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Abstract

Macromolecular structural formation and hierarchical self-assembly is crucial for a va-

riety of systems in both nature and technology. Such systems may retain a remarkable

structural organization from the atomistic up to the macroscopic scale enabling crucial

features for their function. Many of these systems achieve this through self-assembly

and consequently do not rely on external assembly mechanisms. In the field of material

science one example is hydrogels, which achieve significant mechanical strength through

polymer network formation on the molecular level. In the field of biology examples are

abundant including most enzymes and viruses. One example is the hepatitis B virus,

which contains a structural protein that assembles into regular spherical structures to

transport the genetic material of the virus. Another example is the pyruvate dehydroge-

nase complex, which is crucial for cellular respiration and achieves its high biocatalytic

activity through structural formation, thereby enabling features such as metabolic chan-

neling. While there is an abundant amount of examples, investigation is challenging both

experimentally and numerically. The phenomena involved in such structural assembly

spread over vast scales in length and time and contain not only regular structures, but

often also disordered elements. Consequently, capturing the mechanisms of formation,

especially their kinetics, is inherently difficult.

In order to improve understanding of these phenomena, this work proposes a physics-

based and data-driven multiscale modeling framework capable of describing structural

formation on the micro-meter and milli-second scale, while retaining large amounts of

molecular detail. The framework achieves this by abstracting the elementary macro-

molecules of a system as anisotropic unit objects and describes the interaction between

units as well as the environment through data-driven models, e.g. 6D interaction poten-

tial fields. The models are parameterized in a bottom-up fashion and validated top-down.

The framework is applied to and validated on three model systems: the gelation of algi-

nate in CaCl2 solution, the self-assembly of the hepatitis B core antigen into virus-like

particles, and the assembly and agglomeration of the pyruvate dehydrogenase complex.

Results are validated using literature data and experimental data provided by collabo-

rators, which show good agreement with measurable characteristics. Consequently, the

developed framework enables novel scales to be investigated using numerical simulations

and proposes a streamlined bottom-up parameterization, thus paving the way towards

physically-mechanistic modeling of such structural assembly processes.
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1

Introduction

1.1 Motivation

Structural formation through self-assembly or external assembly is omnipresent in a

large number of natural and technological systems. At the smallest atomistic scales of

individual (macro-)molecules (few to thousands of atoms connected by covalent bonds)

examples such as polymers, carbon nano tubes [1, 2], and polyoxometalates (large poly-

atomic ion structures) [3, 4] exist in technology. These macromolecules provide for

example material building blocks or catalysts for oxidization of organic compounds in

the case of polyoxometalates. Similarly and likely even more important for all living or-

ganisms, virtually all proteins require a specific three dimensional structure, also called

conformation or secondary/tertiary structure, to enable their function. Issues with re-

gard to their conformation directly impact function e.g. leading to various diseases such

as in the context of allergies [5]. This high impact has lead to significant scientific inter-

est to understand protein folding as shown in the ’critical assessment of protein structure

prediction’ (CASP) [6], a biennial competition of protein folding prediction algorithms,

which has notably been won in 2018 and 2020 by the deep-learning algorithm AlphaFold

[7].

Similarly, these structural formation mechanisms extend hierarchically to larger assem-

blies of multiple macromolecules, which is the focus of this work. These macromolecular

assemblies are defined by both composition and structure to enable their function. De-

pending on the field other terms such as supramolecular assembly in

(supramolecular) chemistry and nanotechnology or quaternary structure in biology are

also common [8, 9]. The occurring structural formation is caused by non-covalent in-

termolecular interactions, which is the distinguishing element from individual macro-

molecules (see IUPAC definition [8]). However, some structures such as chemically

1
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cross-linked gels [10], which are connected by covalent bonds, might also be considered

to fall in the same category of macromolecular assemblies while not adhering to the

previous definition. Macromolecular assemblies in general may vary with regard to their

function, size, selectivity of intermolecular binding sites, regularity of structural organi-

zation, assembly mechanisms, and other properties. In the following, some examples of

macromolecular structures will be provided with special regard to their function.

In the biological context, a variety of biopolymers (polypeptides [polymers of amino

acids, e.g. collagen; protein when sufficiently large with biological functionality], polynu-

cleotides [e.g. RNA, DNA], polysaccharides [e.g. alginate] [8]) and non-polymeric bio-

molecules (e.g. lipids) build larger structures through self-assembly of multiple copies

either of the same biomolecule or different types to enable their function. One example

is the field of viruses, which often contain structural proteins with the ability to assemble

into regular structures, called virus capsids or virus-like particles (VLP). These struc-

tures are critical for the function of the overall virus during infection and reproduction,

as well as for the immune system recognition [11]. Examples are the hepatitis B virus

[12], adenoviruses [13], and coronaviruses [14].

Another example is the field of multi-enzymatic biocatalysis [15], where different enzymes

(proteins with biocatalytic function) catalyze a cascade chemical reaction. Many times

such systems achieve their high activity through structural formation leading to effects

like metabolic channeling [16, 17]. Examples for this are the pyruvate dehydrogenase

complex (PDC) [18], fatty acid synthase [19], glutamine synthetase [20], and others.

Adaptations and possibly de novo creations of multi-enzymatic biosynthetic reactions

are consequently also of high interest and being developed for industrial applications

[21–23].

Further examples exist in the context of material science, e.g. in regard to colloids or

gels [8]. For a variety of dispersed and continuous phases the molecular assembly is

critical to ensure its function, e.g. with regard to mechanical stability. Examples are

hydrogels and aerogels [24], which rely on their cross-linked polymer network structure

to enable mechanical stability. Underlying polymers can be a variety of natural poly-

mers, such as alginate [25], as well as synthetic polymers, such as polyethylene glycol

[26]. Other examples from supramolecular chemistry and nanotechnology include self-

assembled monolayers [27] and host-guest chemistry [28, 29].

In summary, the large body of examples, literature, and features highlights the great

interest of both the scientific and industrial community in understanding, modifying, and

possibly de novo creating such macromolecular structures. In order to gain this state of

the art understanding, a variety of experimental and numerical techniques have already

been developed. Nonetheless, limitations apply steering from the challenging multiscale
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nature of such phenomena, as well as high dynamics and partially disordered structural

elements. Focus of this work will be placed on numerical simulation of these systems

to improve mechanistic understanding. For this, a novel physics-based and data-driven

methodology will be presented capable of reaching the micro-meter and milli-second

scales using bottom-up parameterization, thus advancing capabilities in the field. In the

following, the state of the art with regard to numerical simulation approaches will be

depicted.

1.2 Theory and State of the Art in Molecular Mechanics

Modeling and simulation of real-world systems is required to be both accurate and

efficient - thus the chosen model description is dependent on the system and properties

of interest.1 In the context of molecular modeling and specifically molecular mechanics of

the aforementioned systems, neither the treatment of quantum dynamical or relativistic

effects, nor abstractions as a continuum are accurate and efficient. As a result, most

developed simulation methods (under the assumption of interest in the dynamics of

the system) describe such systems using discrete modeling approaches in the context of

molecular dynamics (MD) related methods. As such, they assume the atomistic objects

of the system to behave non-relativistic (i.e. velocities are much smaller than the speed

of light), the Born-Oppenheimer approximation to hold (i.e. electrons move much faster

than nuclei), and atomic motion to be following classical mechanics including inertia

effects. By abstractions of the discrete units from individual atoms to coarse-grained

(CG) beads the level of detail and thus numerically reachable scales of length and time

can be controlled. In the following, the fundamentals of MD and related methods will

be discussed. For textbooks and reviews see e.g. refs. [30–35]. Before going into the

details, it should be noted that other modeling approaches exist when one is primarily

interested in the static properties of such systems, e.g. regarding molecular assembly,

but not formation mechanisms and dynamics. These approaches will be discussed briefly

in Sec. 1.2.3.

1.2.1 Molecular Dynamics (MD)

As just highlighted, molecular dynamics (MD) describes the dynamic motion of atomic

nuclei (referred to simply as atoms in the following) using classical mechanics to study

molecular systems in the fields of physical chemistry, biochemistry, and others. For

these systems, the Born-Oppenheimer approximation holds and electrons are typically

1This overview is conceptually based on Berendsen [30] and begins on his level 4 abstraction.
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assumed to be in their ground state. Thus, atom interaction is fundamentally captured

by the time-independent Schrödinger equation depending on nuclei positions and elec-

trons. Effective interactions are subsequently modeled through so called ’force-fields’

enabling a simple description, thus not requiring the explicit treatment of electron dis-

tributions. Starting from classical mechanics, the motion of an atom i with mass mi

in a system of N atoms is described using Newton’s equation of motion as

mi⃗̈xi = F⃗i = −∇Ui, (1.1)

where the acceleration ⃗̈xi (second time-derivative of position x⃗i) corresponding to the

force F⃗i results from the interaction potential Ui with other atoms. Assume the inter-

action potential U to be known at this point. The resulting velocity and trajectory in

time can be calculated based on an initial condition of coordinates and velocities using

numerical time integration with time steps ∆t. In MD, numerical time integrations

is typically performed using explicit time stepping using e.g. Verlet [36] or leap-frog [37]

algorithms. In order to enable a numerically stable solution, a sufficiently small time

step has to be chosen. As can be seen directly in eq. 1.1, this is primarily influenced

by light atoms leading to time step requirements in the 1 fs (10−15 s) range required by

hydrogen bonds [38].

Due to the high complexity and small time steps, only small system sizes on scales

up to tens or hundreds of nano-meters can currently be modeled. The shape and size

of the simulation domain, as well as its boundary conditions has to be chosen

suitable to avoid boundary effects. While open boundaries are generally possible, the

represented molecules in dilute gas phases or vacuum are of limited interest. Thus,

periodic boundary conditions are most widely employed and to a lesser extend continuum

boundary conditions (e.g. for surface absorption) or restrained-shell boundary conditions

[30, 39]. Additionally, note that the shape of simulation domains, also with periodic

boundary conditions, is not restricted to cubic domains, but may also include e.g. triclinic

shapes, hexagons, and more [40] - as might be advantageous e.g. for studying crystals.

Having provided the simulation domain for atoms to be placed in and time integration

algorithms to determine trajectories based on the forces an atom experiences, the main

question becomes a descriptor for the forces F⃗i (see eq. 1.1) between interacting atoms,

which are equivalent to the negative gradient of the potential energy −∇Ui. As pre-

viously noted, force-fields provide the effective description for the interaction of all

atoms or groups of atoms (beads, see coarse-graining in next section) in a system. Con-

sequently, such force-fields provide an effective model of the electron distribution in their

ground state, i.e. no chemical reactions, resulting from the time-independent Schrödinger

equation. As such, they have to be sufficiently simple to solve large atomistic systems
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over reasonably long times, while also providing sufficient accuracy. For this, force-fields

typically take the covalent structure of molecules into account2 and separate the energy

contributions as

U = Ucovalent + Unon−covalent, (1.2)

Ucovalent = Ubond + Uangle + Udihedral + Uimprop. dihedral, (1.3)

Unon−covalent = Uelectrostatic + Uvan der Waals, (1.4)

where Ucovalent are energy terms of covalent bonds3 including Ubond describing bond

stretching, Uangle describing bond angles formed by three atoms (e.g. O-C-O in CO2),

and Udihedral / Uimprop. dihedral describing dihedral angles between four atoms in different

planes (improper dihedral to keep planar groups like aromatic rings planar); Unon−covalent

are non-bonded interactions (bonded interaction pairs excluded/modified) that are pair-

wise additive including Uelectrostatic describing electrostatic interaction (Coulomb poten-

tial) and Uvan der Waals describing van der Waals interaction (typically modeled as a

Lennard-Jones potential). Typically, established functional descriptions are used for the

respective energy contributions and tabulation is employed for computational efficiency

[41, 42]. More elaborate force-fields might incorporate additional features such as polar-

izability, virtual interaction sites, dummy particles, coupling terms, flexible constraints,

charge distributions, multipoles, reactive components, and others [30]. A variety of

force-fields have been developed with the motivation of providing an as widely applica-

ble atom interaction parameterization as possible. However, research has shown that

such (simple) force-fields are largely only applicable to a class of systems and less trans-

ferable as they would ideally be4. Details on parameterization of force-fields is beyond

the scope of this work, but approaches include e.g. ab initio quantum calculations and

adjustments according to empirical observations [43]. Examples of important classical

force-fields are AMBER [44], CHARMM [45], GROMOS [46], and OPLS [47]. Exam-

ples of polarizable force-fields are further developments of AMBER [48] and CHARMM

[49, 50]. An example for reactive force-fields (i.e. incorporating chemical reactions) is

ReaxFF [51]. For more details on force-fields see e.g. with regard to protein simulation

ref. [52].

In order for pairwise contacts of non-covalent contributions to be calculated efficiently

for reasonably large systems (i.e. not scaling with a computational complexity of O(N2)

for the number of atoms), cutoff distances are employed. Each force-field comes

2Thus no chemical reactions, changes in covalent structure, redox states, or protonation may take
place [30]. Such systems have to be treated differently, e.g. using quantum-chemical methods.

3Note that covalent bonds are sometimes also represented through constraints. Such approaches will
be discussed in more detail in Ch. 5.

4Limitations in force-field transferability might e.g. result from non-additivity of constituent terms,
neglect of contributions, or adjustments to empirical observations [30]
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with specific cutoff distances integral for the overall energy balance and reproduction of

desired properties, see e.g. ref. [53]. In order to account for the discontinuity at cutoff, a

variety of switching and shifting methods have been developed, see e.g. in refs. [30, 42]. In

order for long-range interactions (specifically electrostatic interactions and especially

with polarization in medium) to be modeled more accurately, coupled field approaches

such as the (smooth) Particle-Mesh-Ewald method [54, 55] have been developed.

Note that in addition to classical functional descriptions a variety of machine learned

force-fields have been developed recently using (deep) neural networks on quantum me-

chanical data [56–58]. Alternatively to an effective force-field, ab initio molecular dy-

namics, initially proposed by Car and Parrinello [59], solves first principle quantum

mechanical methods (such as the density functional theory (DFT) and approximations

like ’divide-and-conquer’ DFT [60] or ’tight-binding’ DFT [61]) to gain more detailed

information on the electron distribution and potential energy at the cost of significantly

higher computational demand [59, 62, 63]. Such approaches can further capture elec-

trons in excited states, e.g. for chemical reactions. Additionally, a variety of methods

for treating subsystems at the quantum mechanical scale while maintaining effective

MD force-fields in the remaining have been developed in the context of hybrid quantum

mechanical / molecular mechanics (QM/MM) methods, initially proposed by Warshel

and Levitt [64], see also refs. [65, 66]. More details with regard to force-fields and

intermolecular interaction will be provided in Ch. 4.

Until this point, systems in molecular dynamics were considered as a simulation domain

filled with atoms that evolve in time from a given initial condition. However, such a

system is merely one form of a thermodynamic ensemble in statistical mechanics

- specifically a microcanonical ensemble of constant number of particles N , volume V ,

and energy E. Alternatively, instead of constraining the number of particles N one

can constrain the chemical potential µ; instead of the volume V one can constrain the

pressure p; and instead of energy E one can constrain the temperature T (or enthalpy

H). Some of the most widely employed ensembles and their names are listed in Tab. 1.1.

In the context of MD and specifically this work, the canonical NV T and isothermal-

isobaric NPT ensemble are most crucial. Thus, the main question consequently becomes

how pressure and temperature control can be achieved.

Table 1.1: Most widely used thermodynamic ensembles.

Abbreviation Name

NV E Microcanonical
NV T Canonical
µV T Grand canonical
NPT Isothermal-isobaric
NPH Isoenthalpic-isobaric
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In order to enforce the desired ensemble or perform non-equilibrium simulations, a vari-

ety of temperature and pressure coupling methods (also called thermostats and

barostats) have been developed and can typically be classified as stochastic methods,

strong-coupling methods, weak-coupling methods, and extended system dynamics [30]:

Stochastic methods apply either stochastic exciting forces in combination with friction

forces or randomly reassign certain variables (e.g. velocities for temperature control).

They are particularly used to control temperature and enforce a canonical ensemble.

Examples are the Anderson thermostat [67] (work also contains a barostat) and more

generally Langevin dynamics (see following section). Strong-coupling methods constrain

a certain variable (e.g. velocities for temperature control) employing e.g. a scaling in

every time step. Examples are the isokinetic Gauss thermostat [68, 69] and related

barostats by Evans et al. [70, 71]. Weak-coupling methods apply non-stochastic pertur-

bations to enable a first-order decay of deviations from the desired controlled quantities

(temperature via velocity scaling or pressure via coordinate scaling). An example is

the Berendsen thermostat [72]. Extended system dynamics add additional degrees of

freedom to control quantities and an example is the Nosé-Hover thermostat [69, 73, 74].

A more detailed discussion can be found in ref. [30]. Additional details with regard to

temperature control and diffusion will be provided in Ch. 3.

Note that while the majority of MD simulations are performed at constant temperature,

a variety of additional methods exist, which are advantageous for enhanced sampling,

e.g. conformation sampling through thermodynamic state changes. Examples are sim-

ulated annealing [75], replica exchange MD [76], and expanded ensembles [77]. More

details will be provided in Sec. 3.6.

Furthermore, as most molecular systems exist in solution, solvent modeling is given

special attention in MD. This is especially true for modeling water, which is the most

common solvent in nature and also many technical systems - thus the focus in the follow-

ing. For many of such systems the computational load resulting from the modeling of the

solvent is quite significant - often exceeding that of the actual molecules investigated. In

this regard, it is crucial which properties of the solvent one wants to reproduce, e.g. phase

changes and dielectric constants. With regard to water, a large variety of explicit models

have been developed employing at least up to six sites for parameterization [78, 79].

Widely used examples are the SPC [80], SPC/E [81], TIP3 [82], TIP2P/TIP3P/TIP4P

[83], and MCDHO [84]. The high number of water models indicates the challenge in

reproducing all properties accurately, especially with regard to varying conditions. In

this context, special attention has to be paid e.g. on polarizability and induced dipols

[30]. For reviews see e.g. ref. [85]. In addition, implicit water models have gained inter-

est in recent decades to reduce the overall computational requirements, while describing

the molecules of interest with atomistic resolution [86–94]. Examples are semi-heuristic
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methods like ASP [95], Generalized-Born models [96], or more generally ones based on

Poisson-Boltzmann theory [97]. For reviews see e.g. refs. [98–102].

In summary, molecular dynamics provides an established and still heavily researched

framework for studying molecular phenomena on atomistic scales under the assumption

of non-relativity and applicability of the Born-Oppenheimer approximation. Applica-

tions extend from crystal cracks / defects [103] to protein folding [104], protein-ligand

binding [105], and protein-protein interaction [106]. Various molecular dynamic codes

are available, both free and commercial, in order to investigate chemical, biological,

and other systems. Examples are the codes AMBER, CHARMM, GROMACS, TIN-

KER, OpenMM, NAMD, and LAMMPS. For MD simulations in this work the code

GROMACS was used, as it provides a free and open-source platform.

1.2.2 Coarse-Graining in Space and Time

In order to investigate systems on larger scales of length and time, various methods have

been developed beyond atomistic MD [30]. These methods employ the same ideas based

on classical mechanics, but perform coarse-graining with regard to space, i.e. reduction

of the degrees of freedom by combining multiple atoms to a unit/bead, as well as time,

e.g. neglecting inertia terms. In the following, the most widely employed approaches will

be presented. For reviews see e.g. refs. [30, 107–111].

Generally speaking, every coarse-graining approach consists of a structural and a func-

tional model. The structural model separates the system into relevant (explicit)

and omitted (implicit) degrees of freedom (DOF) / particles, and provides a map-

ping methodology to combine multiple relevant atoms / particles into a coarse-grained

bead. The functional model provides a coarse-grained force-field describing the

interaction between coarse-grained beads and possibly implicit aspects of the omitted

DOF. As a result, coarse-grained approaches are inherently more specialized and less

transferable than all-atom descriptions. Existing coarse-grained models thus employ a

variety of approaches for definition and parameterization of the structural and functional

model. Before going into their detail, a more general formalism based on a bottom-up

abstraction will be provided following Berendsen [30]. With regard to mathematical

formulations, this will be restricted to the cartesian degrees of freedom in their center

of mass. For generalized coordinates the reader is e.g. referred to ref. [30].

The Mori-Zwanzig projection-operator formalism [112–114] presents a systematic

(bottom-up) approach to derive the evolution of a subsystem in phase space. Based on

this, the equation of motion for the relevant (explicit) particles i (omitted/implicit j)



1 Introduction 9

becomes [30]

mi⃗̈xi = − ∇UCG
i

︸ ︷︷ ︸

systematic forces
between explicit DOF

(CG beads)

−
∑

j

∫ t

0
miγij(τ)⃗̇xi(t − τ)dτ

︸ ︷︷ ︸

friction forces
from implicit DOF

+ η⃗i(t)

︸ ︷︷ ︸

random forces
from implicit DOF

, (1.5)

where mi is the mass of the bead, ⃗̈xi its acceleration, and UCG
i the coarse-grained

potential describing the systematic forces between beads (to be defined later, often

called potential of mean force). Effects of the omitted (implicit) DOF are captured

through the frictional forces resulting from the friction kernel γij (including its time

dependence), as well as the random forces η⃗i. Note that this formulation assumes the

systematic force (gradient of potential of mean force) to be curl free, frictional forces

to be linearly dependent on velocity (i.e. laminar flow with a Reynolds number of less

than one for macroscopic systems), and omitted (implicit) DOF to equilibrate much

faster than relevant (explicit) DOF. This formulation is equivalent to the generalized

Langevin equation5 [116] and one arrives at the following Langevin Dynamics (LD)

formulation in the memory-free Markovian limit6 applicable for the time scales of coarse-

grained simulations as

mi⃗̈xi = −∇UCG
i − miγi⃗̇xi + η⃗i, (1.6)

or more commonly written in 1D as

mẍ = −∇UCG − mγẋ +
√

Ψζ, (1.7)

where the random force is decomposed into a constant Ψ and a normally distributed

random number ζ with zero mean, unit variance, and no correlation in time7. Resulting

from the assumption of a stationary process with time-independent velocity correlations

5Langevin’s equation was introduced in 1908 by Paul Langevin [115] as a stochastic differential
equation to describe Brownian motion of particles in a fluid. Newton’s equation of motion is extended
by a random exciting force and systematic damping force, which represent the collision with high-velocity
fluid molecules and the fluid drag, respectively. The equation is discretized in Langevin Dynamics (LD)
and frequently employed in coarse-graining approaches to represent the forces of neglected degrees of
freedom through friction and noise, see e.g. ref. [30]. As a result, it acts essentially as a thermostat and
enforces a canonical ensemble, while accounting for the solvent (similar to an implicit solvent model,
but not accounting e.g. for electrostatic screening) and neglected degrees of freedom implicitly.

6For works in the non-Markovian limit see e.g. ref. [117].
7As previously noted we assume the memory-free Markovian limit and omitted (implicit) DOF to

equilibrate much faster than relevant (explicit) DOF, which is reasonably fulfilled for most coarse-
graining applications. See e.g. discussion in ref. [30].
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of a canonical ensemble, the friction and random force are related by the fluctuation-

dissipation theorem [30]

Ψ = 2mγkBT. (1.8)

Note that while this is only generally valid without systematic forces, it yields con-

sistent dynamics with proper equilibrium fluctuations under the chosen assumptions

of a memory-free Markovian process [30]. For more details the reader is referred to

refs. [114, 118].

For practical purposes the question remains how to derive the friction coefficients. A

variety of approaches based on theory (e.g. Einstein [119], Debye [120], and Perrin

[121, 122]), experiments (e.g. FCS [123]), and detailed MD simulations (e.g. ref. [124])

have been explored.

Further note that many coarse-grained approaches do not employ this formalism and

the resulting LD-related formulation, thus do not include additional friction and random

forces resulting from the neglected degrees of freedom (e.g. MARTINI [53, 125, 126]).

Other approaches scale down these contributions by a factor between 10 - 1000 through

an effective viscosity [110, 127, 128]. While this is not expected to influence equilibrium

properties, their dynamics are likely to be accelerated [30]. In the context of this work,

this formalism and resulting Langevin Dynamics will be employed later in the limit of

representing entire macromolecules as (ultra-)coarse-grained beads in implicit solution.

Thus, the friction and random forces represent specifically the solvent and their parame-

terization is performed using detailed MD simulations. In the same context, it should be

noted that for the simulation of non-dilute solutions in addition to the systematic force

between coarse-grained beads accounting for hydrodynamic interaction, i.e. forces result-

ing from their relative velocities coupled through the solvent, can become important.

More detail on hydrodynamic interaction is provided in App. A.3.

Having accounted for the omitted DOF through implicit random and friction forces, the

remainder of this section will focus on the derivation and parameterization of coarse-

grained force-fields describing the systematic forces between beads. Note that these

forces are not necessarily pairwise additive, but may also include multi-body contribu-

tions. In their functional description they are often closely related to atomistic force-

fields (see eq. 1.3, also termed neoclassical [110]), but alternative descriptions through

e.g. neural networks have found increasing interest in recent years [129–131]. In or-

der for the respective force-fields to be parameterized, a variety of approaches exist

in literature, which are often classified as bottom-up, top-down, or hybrid approaches

[108, 110]. Bottom-up approaches parameterize the coarse-grained force-fields using
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lower-scale methods such as atomistic MD, while top-down approaches aim at the re-

production of measurable properties on scales of the coarse-grained model through op-

timization of force-field parameters. In many cases bottom-up approaches are either

not sufficiently accurate or prohibitively expensive leading to hybrid approaches [30]. In

the following, some of these approaches are summarized in more detail and examples

presented. Note that alternatively coarse-grained force-fields can e.g. be characterized

as being derived vs. parameterized [107] or physics based vs. knowledge based [109].

In this work slight focus is placed on a bottom-up/top-down point of view, but some

flexibility maintained as a clear differentiation is not always possible. For reviews see

e.g. refs. [107–111, 132, 133].

Approaches with a bottom-up and derived focus attempt a direct determination of

(pairwise) potentials between coarse-grained beads based on the atomistic and possi-

bly quantum mechanical level (ab initio MD). Traditional approaches in the aforemen-

tioned formalism aim to reproduce the thermodynamic properties on the coarse-grained

scales as accurately as possible through the coarse-grained potential UCG, also called

potential of mean force (PMF) [30]. One classical method for derivation is through

thermodynamic integration, which applies constraints on the desired DOF in atomistic

simulations to determine the forces for different configurations [30]. In the following,

the overall coarse-grained potential can be determined through numerical integration of

the average constraint forces. Similarly, umbrella sampling [134] employs restrain po-

tentials instead of constraints (e.g. of harmonic shape), which can then be used either

via their forces similarly to thermodynamic integration or via the distribution of config-

urations. Commonly this is achieved through the weighted histogram analysis method

(WHAM) [135] (see [136] for a further generalization). Alternatively to using forces (via

constraints/restrains), the free energy perturbation method [137] (also called thermody-

namic perturbation [30]) determines the potential difference between nearby configura-

tions using the Boltzmann factor of a perturbation (i.e. slight change in configuration).

The individual potential differences between nearby configurations are then used to re-

construct the overall coarse-grained potential. In a similar direction, steered molecular

dynamics (also referred to as pulling simulations) [30, 138] applies an external force on

the desired DOF (either force or velocity controlled) to change the configuration over

time. In the limit of zero pulling rates (i.e. without friction forces), the coarse-grained

potential can be calculated from the work of the pulling force. For finitely larger, but

still small pulling rates, the reversible work can be estimated from a set of simulations

using the Jarzynsky equation [139, 140]. Further examples include the effective force

coarse-grained (EFCG) [141] and conditional reversible work (CRW) method [142].

Approaches with a top-down and parameterized focus attempt to derive force-field

parameters through optimization towards macroscopic properties on the scales of the
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coarse-grained model and above. These properties are often structure-based, but can

also be force-based. Consequently, a distinct differentiation to bottom-up approaches

is not always possible, leading to hybrid approaches. One of the most widely used

structure-based method is the iterative Boltzmann inversion (IBI) method [143], which

performs an iterative refinement of the interaction potential based on the radial distribu-

tion function (RDF) between the beads, e.g. determined from all-atom MD simulations.

Similarly inverse Monte Carlo (IMC) [144] iteratively refines based on RDFs, but per-

forms corrections based on statistical mechanical arguments. More generally, the relative

entropy formalism [145] aims to minimize the relative entropy difference between the

atomistic and coarse-grained system (i.e. loss of information through coarse-graining)

captured through relative probability density distributions for force-field parameteri-

zation. Both IBI and IMC are special cases [107]. Alternatively, in a non-iterative

fashion the generalized-Yvon-Born-Green theory (GYBG) [146] employs coupled linear

integration equations based on CG bead structural correlation functions to determine

CG potentials. Force-based methods attempt to match the force-distribution of the

coarse-grained model to that of the atomistic [107] - thus being similar to the previ-

ously mentioned bottom-up approaches. For example the force matching (FM) [147]

method does so by matching to atomic forces and trajectories, which was later extended

e.g. in the multiscale coarse graining (MSCG) method [148] to enable increased number

of parameters.

In addition to these more traditional approaches, machine learning has gained increas-

ing interest in the context of coarse-grained modeling generally, as well as with regard

to force-field development. This includes specifically the usage of neural networks to de-

scribe (components of the) coarse-grained model. Examples include CGnets [130] with

a reformulation of FM as a supervised learning problem and the deep coarse-grained po-

tential (DeePCG) method [131] employing neural networks trained with all-atom data.

Further details on machine learning approaches will be provided in the following section.

For reviews see e.g. ref. [149].

A variety of coarse-grained models and force-fields have been proposed in literature and

some examples of the most widely established (transferable) ones will be presented in the

following. One of the most popular examples is the MARTINI force-field [53, 125, 126],

which has initially been developed for lipids [53] and extended to a variety of other appli-

cations such as biological systems (e.g. proteins) [126] and material science [150]. Further

examples in the context of proteins include SIRAH [151, 152], UNICORN [153], AWSEM

[154], and OPEP [155]. Specific developments for nucleic acids include e.g. HiRE-RNA

[156] and oxDNA/oxRNA [157, 158]. Further fields include e.g. polymers [132], metals

[159], and clay [160]. Most of these transferable coarse-grained models combine a few

atoms into a bead (e.g. four non-hydrogen atoms in the case of MARTINI [53]), thus
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enabling moderate speedup while maintaining applicability to multiple systems. Higher

(ultra-)coarse-grained levels are inherently more specialized and less transferable. Exam-

ples of such higher levels can be found in refs. [161, 162] and include simplified anisotropic

bead shapes [163–166] and potentials [163, 166, 167].

Thus far, focus was placed on coarse-grained approaches in space. While these do

also enable larger time scales through increased time steps (resulting from increased

mass to force stiffness ratio) and accelerated dynamics (e.g. when neglecting random

and friction forces from implicit DOF), dynamic detail of the relevant DOF is largely

preserved. For systems with systematic forces changing slower than time scales of γ−1

with regard to the velocity distribution, Langevin’s equation can be averaged over these

time scales and thus the acceleration/inertia term in eq. 1.7 be neglected (mẍ ≈ 0) [30].

This approximation leads to inertia-free Brownian Dynamics (BD) describing the

velocity as

ẋ = − D

kBT
∇UCG +

√
2Dζ, (1.9)

where D is the diffusion coefficient according to the Einstein relation [168]

D =
kBT

mγ
(1.10)

with kB being the Boltzmann constant and T temperature. At the cost of loosing

dynamic detail, this approximation increases addressable time scales and is explored in

a variety of examples [169–176].

1.2.3 Other Derivatives and Related Methods: From Monte Carlo to

Machine Learning

In addition to the mentioned coarse-graining strategies in space and time, there is a vari-

ety of further derivatives from MD and related methods. In the following, some examples

related to this work are provided. For reviews on related methods see e.g. refs. [30, 32].

With regard to the structural formation of colloidal systems, a variety of methods

have been developed in which particles form rigid structures upon contact with a de-

fined probability. Depending on their propagation and contact scheme, these are usually

called ballistic, diffusion-limited, or reaction-limited cluster-cluster aggrega-

tion (BLCA, DLCA, RLCA) [177–180].

With regard to static properties of molecular systems, these approaches employ

for example statistical sampling, such as Monte Carlo [32, 181–183], or more recently

data-driven methods, such as in machine learning [149, 184, 185]. Monte Carlo (MC)
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methods are widely employed in the context of molecular modeling with regard to gener-

ating representative statistical ensembles of molecular system configurations at specific

thermodynamic conditions [30, 186]. This is achieved by applying random pertubations

to those system configurations according to their (thermodynamic) probability [187].

Thus, the conformational space is sampled instead of analyzing trajectories in time

[30, 187]. Additionally, hybrid MC/MD have been developed to combine dynamic infor-

mation from MD with improved conformational sampling through MC [188]. Similarly,

event driven methods such as discrete molecular dynamics (DMD) [189–191] pro-

vided improved sampling and increased time scales. In addition, data-driven methods

have gained increasing interest in recent years through the rapid development of ma-

chine learning (ML) supported by increasing data sets and computational resources

(e.g. graphics processing units, GPUs). On small scales, this has lead e.g. to machine

learning descriptions of potential energy surfaces from quantum mechanics [56, 57] and

coarser atomistic systems [130, 131]. On larger scales, ML has been employed to predict

protein complexes and their quaternary structure [192], design materials and molecules

[193, 194], as well as pharmaceuticals [195]. Similarly, these trends show in increasing

efforts for benchmarking and comparison of methods [6, 196]. Nonetheless, the majority

of research in the field of molecular modeling remains in the context of discrete meth-

ods around molecular dynamics, as these methods enable detailed dynamic insights and

physics-based descriptions. For reviews on machine learning in molecular modeling see

e.g. refs. [149, 184, 185].

With regard to larger macroscopic scales, further methods including both discrete

and continuum approaches have been developed. For macroscopic objects in the diffusion-

free limit, the discrete element method (DEM) [197–199] provides a framework

to study particle and granular systems in engineering applications. Methodologically

this is equivalent to MD, i.e. Newton’s equation of motion is solved for discrete ob-

jects, but requires different interaction models (i.e. force-fields) and no thermostats or

barostats. Similarly, bonds can be employed, which are especially useful to study me-

chanical breakage of structures [200–203]. Furthermore, DEM has been applied to nano-

and microscopic particles and agglomerates for insights in formation (e.g. using spray-

drying [204]) or mechanical characterization [205] - particularly of battery materials

[206, 207]. In addition, continuum methods through finite volumes or finite differences

enables investigation of fluids (computational fluid dynamics (CFD) [208]) and

solids (finite element method (FEM) [209]). Coupling of these methods is also fre-

quently performed: CFD-DEM [210–212] and FEM-CFD [213] enable for example the

investigation of interacting solids and fluids.

Additionally, there are methods on the intermediate scale to describe fluid systems

using discrete approaches, while attempting to conserve macroscopic properties such
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as mass, momentum, and energy. For example multi-particle collision dynamics

(MPC) [214–216], also called stochastic rotational dynamics (SRD), uses a particle

description for (complex) fluids. It performs alternating streaming/collision steps for

particles and has gained interest for a variety of fluid systems including binary mixtures

and micro-emulsions [215, 217]. Another example is dissipative particle dynamics

(DPD) [218, 219], which employs a method similarly to LD by applying friction and

noise terms to describe e.g. the rheology of polymers and other complex fluids [220–222].

1.2.4 Scope of this Work

In the scope of this work, a novel abstraction will be proposed for Langevin Dynamics

using data-driven methods. In contrast to state of the art methods typically employing

simple 1D interaction potentials between coarse-grained beads, this abstraction describes

entire macromolecules as anisotropic unit objects and interactions through data-driven

potential fields in 6D space of relative position and orientation. As a result, a high

level of detail can be retained within these potential fields, while exploiting larger time

scales through increased coarse-graining. Furthermore, an implicit model for anisotropic

diffusion and enforcement of the desired canonical ensemble will be proposed. The

method will be demonstrated on the structural formation of the hepatitis B core antigen

and pyruvate dehydrogenase complex, including a bottom-up parameterization strategy.

Additionally, a specialized form will be presented for modeling the structural formation

of alginate during calcium mediated gelation. In the following, these model systems will

be presented in detail.



16 1 Introduction

1.3 Model Systems

This chapter is based on the following publications:

P. N. Depta, U. Jandt, M. Dosta, A.-P. Zeng, and S. Heinrich. Toward Multiscale

Modeling of Proteins and Bioagglomerates: An Orientation-Sensitive Diffusion Model

for the Integration of Molecular Dynamics and the Discrete Element Method. J. Chem.

Inf. Model., 59(1):386–398, 2019

P. N. Depta, P. Gurikov, B. Schroeter, A. Forgács, J. Kalmár, G. Paul, L. Marchese,

S. Heinrich, and M. Dosta. DEM-Based Approach for the Modeling of Gelation and

Its Application to Alginate. J. Chem. Inf. Model., 62(1):49–70, 2022

P. N. Depta, M. Dosta, W. Wenzel, M. Kozlowska, and S. Heinrich. Hierarchical

Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis

B Virus-Like Particles. Int. J. Mol. Sci., 23(23):14699, 2022

P. N. Depta, M. Dosta, and S. Heinrich. Data-Driven Multiscale Modeling of Self-

Assembly and Hierarchical Structural Formation in Biological Macro-Molecular Sys-

tems. In W. E. Nagel, D. H. Kröner, and M. M. Resch (editors), High Performance

Computing in Science and Engineering ’21. Springer International Publishing, Cham,

2023

P. N. Depta, M. Dosta, and S. Heinrich. Data-Driven Multiscale Modeling of

Self-Assembly and Hierarchical Structural Formation in Biological Macro-Molecular

Systems: Pyruvate Dehydrogenase Complex. In W. E. Nagel, D. H. Kröner, and

M. M. Resch (editors), High Performance Computing in Science and Engineering ’22.

Springer International Publishing, Cham, 2024 (in print)

P. N. Depta, M. Dosta, and S. Heinrich. Multiscale Model-Based Investigation of Func-

tional Macromolecular Agglomerates for Biotechnological Applications. In A. Kwade

and I. Kampen (editors), Dispersity, Structure and Phase Changes of Proteins and Bio

Agglomerates in Biotechnological Processes. Springer International Publishing, Cham,

2024 (in print)

In the context of this work, three model systems from a material science and biological

background will be studied and used for validation of the proposed model framework.

While macromolecular structural formation occurs in a variety of other fields, these

fields exhibit some of the most interesting phenomena with regard to human life and

technological development.
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1.3.1 Alginate Gelation

Cross-linked hydrophilic polymers, also called hydrogels in solution, find a variety of

applications in material science and biomedicine such as for example soft contact lenses.

Additionally, in recent decades the further processing into lightweight nano-porous ma-

terials called aerogels through supercritical drying has gained increasing interest [24,

229, 230]. In this context, biopolymers such as alginate are important base materials

and chosen as one model system for this work based on the respective publication Depta

et al. [224].

Alginate is an umbrella term of polysaccharides naturally occurring in brown algae with

weight-averaged molecular weights around 200 kDa and molar-mass dispersities between

1.5 and 3 [231]. It is a binary copolymer of mannuronic (M) and guluronic (G) acid

with linearly 1-4-linked residues as it can be seen in the atomistic structure visualized

in Fig. 1.1. As shown, the polymer composition is structured in block-wise patterns

of homopolymeric regions (G- and M-blocks), as well as regions of alternating residues

[231]. While G- and M-units are of identical molar mass (175 g/mol) and overall similar,

their configuration of the C-5 atom leads to different conformations of the pyranose ring.

Based on this, homopolymeric M and alternating GM regions exhibit the shown flat

ribbon-like structure with increased flexibility, while homopolymeric G regions exhibit

a buckled structure with increased rigidity.

GGGG

x
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z

MMMM GMGM

Figure 1.1: Visualization of the alginate reference structure from data provided by
Hecht et al. [232]. The sequences GGGG (left), MMMM (center), and GMGM (right)
are shown and colored according to atom type (carbon in cyan, oxygen in red,
hydrogen in white).

Alginates are characterized by their molecular weight and polymer composition. This

includes at the fundamental level the fraction of G and M units ϕG and ϕM, respectively,

but also more complete statistical descriptions through fractions of diads, triads, tetrads,

and higher multads [233]. Due to their biosynthetic production, composition varies for

example depending on season and part of the brown algae plant [231].

Gelation of alginate is achieved through addition and binding of di- and trivalent cations

(except Mg2+) [234] leading to the polymer network formation considered a (physical,

i.e. non-covalently bonded) hydrogel on the macroscopic scale. In this regard, gelation

through calcium cross-linking is the most widely studied alginate system due to its
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straightforward production via pouring of aqueous sodium alginate into a solution of

dissolved calcium carbonate salt. While the exact mechanisms of metal binding remain a

subject of scientific debate, qualitatively cross-linking is established to be driven through

the binding of M2+ ions to two adjacent G units favored by the nest-like structure with

carboxylate and hydroxyl groups of guluronic acid. With increasing ion concentrations

this leads to a dimerization of G-M2+-G sites on different polymer fibers resulting in

cross-linking of zigzag-shaped junction zones and an auto-cooperative zipping. This

mechanism termed ’egg-box’ model has been initially proposed and described by Grant

et al. [235] and revised by numerous authors in the following decades [236–238]. The

mechanism is established to be driven by the nest-like conformation of poly-G regions

and hindered for the flatter conformation of poly-M and alternating GM regions. The

cross-linking subsequently leads to inter-cluster associated multimers and the overall gel

network [239], as visualized schematically in Fig. 1.2.

Figure 1.2: Schematic drawing of the calcium mediated gelation of alginate. The
zigzag lines represent the alginate polymer fiber inspired by the ’egg-box’ model and
circles represent calcium ions.

During gelation, various parameters such as ion concentration, alginate molecular weight,

and composition have a direct impact on the gel structure and its mechanical properties

[232]. For example, alginates with high G fraction of ϕG > 0.7 and homopolymeric G

regions of tens of residues exhibit increased mechanical strength in comparison to those

with high ϕM. Based on this, industrial alginates are typically characterized as either

high-G or low-G alginates [233]. Further effects will be discussed in more detail in the

respective results section.

With regard to modeling, the majority of approaches in literature were conducted around

MD and DFT, thus providing primarily insight on small scales. From these insights, for

example the ’egg-box’ model [235] has been modified concerning its molecular struc-

ture and the importance of electrostatic effects [236, 237]. Similarly, the specifics of ion

acceptance with regard to free energy have been investigated [240]. Furthermore, on

slightly larger scales of multiple poly-G chains cross-linkage was investigated elucidating

the association mechanisms [241, 242]. In the following, similar works were performed
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extended to alternating G and M compositions of fibers and their influence on asso-

ciation [232, 243]. With regards to larger scales of modeling, e.g. BD and MC were

used to improve the understanding of polymer stiffness and persistence lengths [170].

The subsequently proposed model and framework builds upon these previous works for

parameterization and validation. The framework attempts to advance the field by pro-

viding a meso-scale model for the overall structural formation during calcium mediated

gelation of alginate.

1.3.2 Hepatitis B Core Antigen (HBcAg)

A variety of viruses, such as the hepatitis B virus, contain structural proteins with the

ability to assemble into regular structures, called virus-like particles (VLP) or virus cap-

sids. These structures are critical for the overall function of the virus during infection and

reproduction, as well as for the immune system recognition [11]. Due to this importance,

this work investigates the self-assembly of the hepatitis B core antigen (HBcAg) into its

VLP. The HBcAg VLP, shortly referred as VLP, is composed of either 90 or 120 dimer

units, subsequently termed HBcAg2, in an icosahedral capsid structure [12, 244, 245].

For the fully expressed HBcAg, the 120 dimer capsid was found to account for more

than 95 % of the population [245]. A visualization of this capsid including its atomistic

secondary structure, as well as coarse-grained structure, can be found in Fig. 1.3.

Coarse-Grained DimerAtomistic Dimer

x

y

z

HBcAg Capsid

Figure 1.3: Visualization of the HBcAg virus capsid assembly for the coarse-grained
reference structure (right, coloring by index to improve contrast) and atomistic
structure (left, coloring by chain to improve contrast) based on data provided by
Mariana Kozlowska and processed by Uwe Jandt based on PDB 6HTX [246] and PDB
1QGT [244] as outlined in Depta et al. [225].

Within the capsid, two slightly different dimer conformations (AB and CD) are typically

distinguished build from two copies of the HBcAg monomer (root-mean-square devia-

tions between 0.5 - 1.2 Å in α-carbons) [244]. While the majority of the conformation is

the same, larger differences in conformation of AB and CD are in the inter-dimer inter-

action regions for the capsid assembly, particularly residues 128-136 [244]. Note that in
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the context of this work, only one reference structure of the dimer is modeled. This is

sufficient, as the molecule’s structure is flexible in itself during MD for parameterization

of all models.

In literature, a variety of attempts have been conducted to better understand the VLPs,

specifically those of HBcAg and the human immunodeficiency virus (HIV). Atomic struc-

ture and organization of the HBcAg monomer, dimer, and resulting VLPs are well un-

derstood through electron cryomicroscopy (cryo-EM) [12, 244]. Similarly, the role of spe-

cific sections of the composing amino acid chain with respect to capsid self-assembly and

binding of genetic material is well understood through experimental testing [247, 248].

Furthermore, such systems are regularly being adapted for vaccines [249, 250] and drug

delivery [251, 252]. However, understanding the self-assembly mechanics remains diffi-

cult, as the process is nucleation-limited and trapping intermediates is nearly impossible

[225, 253, 254]. Similarly to experimental insights, numerical methods such as atomistic

and coarse-grained MD have improved understanding of subunits and capsid stability

[255–258], but are unable to capture time and length scales necessary for VLP assembly.

For understanding these processes, hundreds to thousands of copies of the structural

proteins need to be simulated over milli-seconds and longer. In this context, so far only

very simplified and specialized models have been proposed based for example on trape-

zoidal/triangular shapes, patchy-spheres, or hard pseudoatoms [163–166]. Consequently,

transferability to different systems and process aspects remains difficult. In this regard,

the subsequently proposed model and framework targets to provide a generic meso-scale

model for structural formation including a data-driven bottom-up parameterization ap-

proach building upon aforementioned works for validation.

1.3.3 Pyruvate Dehydrogenase Complex (PDC)

The pyruvate dehydrogenase complex (PDC) links the anaerobic glycolytic energy path-

way to the aerobic tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyru-

vate into acetyl coenzyme A (acetyl-CoA) [18], thus enabling cellular respiration. As a

result, PDCs exist in various living organisms from bacteria (e.g. Escherichia coli) to

mammals such as humans [18], in which form it is the focus of this work. For enabling

this biocatalytic functionality at sufficient rates, PDC relies on structural assembly. It

is composed of multiple copies of four different proteins shown in Fig. 1.4 for mam-

malian and specifically human PDC: pyruvate dehydrogenase (E1), dihydrolinpoamide

acetyltransferase (E2), dihydrolipoamide dehydrogenase (E3), and the E3 binding pro-

tein (E3BP) [259, 260]. As it can be seen, E2 and E3BP contain a flexible linker arm,

often called swinging arm, connecting catalytic, binding, and lipoyl domains [261]. In
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Figure 1.4: Visualization of the secondary structure of all PDC components based
on their atomistic structure. Adapted with permission from Depta et al. [223].
Copyright 2019 American Chemical Society.

contrast, the heterotetramer E1 and homodimer E3 are structurally more globular. Note

that some organisms can lack the E3BP protein [262, 263].

Human PDC forms a comparatively large 60-mer core of E2 and E3BP in pentago-

nal dodecahedral shape [264, 265] with studies indicating composition from two trimer

populations of either three E2 or two E2 with one E3BP [259, 266]. The 60-mer core

stoichiometry is still a matter of some debate with earlier studies finding a 48×E2 +

12×E3BP stoichiometry more likely [264, 267] including stability indications from model-

ing [268], while recent studies are rather supporting a 40×E2 + 20×E3BP stoichiometry

[259, 265, 266]. As a visual example, the 60-mer core based on a composition of 48×E2

+ 12×E3BP is shown in Fig. 1.5. The E1 and E3 proteins then bind as shown to the

E1
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Full PDC PDC w/o E1, E3

Figure 1.5: Visualization of the PDC assembly (48×E2 + 12×E3BP) and
components based on their coarse-grained structure. Note that this is the structure
after representative clustering for E2 and is consequently different from that in
Fig. 1.4. Adapted with permission from Depta et al. [223]. Copyright 2019 American
Chemical Society.
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binding domains of E2 and E3BP, respectively assembling the overall complex. This self-

assembled structure of PDC aids its function of biocatalysis through mechanisms such

as metabolic channeling [261] by avoiding free diffusion of metabolites [16]. Nonetheless,

activity of PDC has also been observed for smaller structural assemblies than the 60-

mer core as well as larger ones [269]. Consequently, understanding and predicting the

structural assembly of macromolecular systems such as PDC is of great interest.

As discussed before, the investigation of such systems is challenging both experimentally

and specifically numerically. While the majority of previously mentioned findings with

regard to PDC has been developed experimentally, numerical investigations to the same

extend are lacking. Nonetheless, an increasing number of studies have investigated the

PDC system typically employing MD to gain insight to structural mechanisms on the

atomistic scale.

With regard to the modeling of (human) PDC, only a limited number of publications

are available primarily with a focus on MD leading to atomistic insights. In this regard,

atomistic MD has been used to further establish the molecular structure of PDC subunits

and their dimer and trimer interaction to aid detailed understanding of the core assembly

[106]. Similarly, atomistic simulations have been extended to the 60-mer core without

linker arms providing similar results [270]. As such atomistic MD models are strongly

limited with regard to reachable length and time scales, coarse-grained MD models

of PDC have been developed and validated by the underlying atomistic models [268].

With these models it has been possible to investigate the 60-mer core stability including

linker arms with respect to stoichiometry (suggesting a higher stability of the 48×E2 +

12×E3BP composition [268] in contrast to recent experimental works pointing towards

40×E2 + 20×E3BP [265]), as well as binding of E1 and E3 to the 60-mer core improving

understanding of binding and assembly stoichiometry (suggesting approximately 30×E1

per 60-mer core) [268, 271]. Furthermore, MD simulations have been performed with

regard to the binding of thiamine pyrophosphate (TPP) to E1 for various mutations

caused by disease to identify the underlying mechanisms [272]. Similarly, substrate

binding and inhibition of E1 has been investigated by other authors [273–276]. Note

that while these models provide detailed insight on the atomistic scale, they are unable

to capture length scales for structures beyond the 60-mer as well as time scales required

for assembly. In order to improve understanding on such scales, the same generic data-

driven multiscale model as for the VLP system will be applied to study the more complex

PDC system.
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1.4 Outline

The main focus of this thesis is on method development in the field of structural for-

mation of macromolecular systems. In Ch. 2, the proposed model framework will be

presented and all components outlined. In total, there are three components, which will

be described in the following chapters:

The first model component, the diffusion and thermodynamic model, will be presented

in Ch. 3. An anisotropic diffusion model for enforcing the appropriate thermodynamics

(canonical ensemble, i.e. constant temperature) will be derived based on Langevin dy-

namics. The model will be at the foundation of the diffusion driven structural formation.

The second model component, the intermolecular interaction, will be presented in Ch. 4.

Two different approaches for describing intermolecular interaction will be provided. The

first approach will be a specialized model for ion mediated gelation of alginate based on

literature and theoretical considerations. The second approach will be a generic data-

driven approach for deriving the potential fields for interactions between macromolecules

from MD, which can then be used for meso-scale simulations.

The third model component, the bonded interaction model, will be presented in Ch. 5.

Two different approaches will be provided. The first approach will be on a pairwise

elastic bond model including orientation, which is useful for complex macromolecular

bonds. The second approach will be a simplified fiber bond model used in gelation

modeling.

After providing the methods, the results will be presented for each model system includ-

ing alginate (Ch. 6), HBcAg virus-like particles (Ch. 7), and PDC (Ch. 8). Lastly, in

Ch. 9 the main results will be summarized and an outlook provided.
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Model Framework

This chapter is based on the following publications:

P. N. Depta, M. Dosta, W. Wenzel, M. Kozlowska, and S. Heinrich. Hierarchical

Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis

B Virus-Like Particles. Int. J. Mol. Sci., 23(23):14699, 2022

P. N. Depta, M. Dosta, and S. Heinrich. Data-Driven Multiscale Modeling of Self-

Assembly and Hierarchical Structural Formation in Biological Macro-Molecular Sys-

tems. In W. E. Nagel, D. H. Kröner, and M. M. Resch (editors), High Performance

Computing in Science and Engineering ’21. Springer International Publishing, Cham,

2023

P. N. Depta, U. Jandt, M. Dosta, A.-P. Zeng, and S. Heinrich. Toward Multiscale

Modeling of Proteins and Bioagglomerates: An Orientation-Sensitive Diffusion Model

for the Integration of Molecular Dynamics and the Discrete Element Method. J. Chem.

Inf. Model., 59(1):386–398, 2019

2.1 Introduction and Framework Overview

As outlined in the introduction, macromolecular structural formation is at the foun-

dation of many processes in material science and technology, as well as virtually all

processes in biology and biotechnology. At small scales, molecular dynamics (MD)

related methods are typically applied in order to capture these structural formation,

self-assembly, and agglomeration processes. MD related methods have the advantage

of describing systems at atomistic resolution and thus provide a wealth of knowledge.

However, while coarse-grained methods exist, their applicability to the scales necessary

25
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for describing structural formations on the micro-meter and milli-second scale remains

difficult.

In order to provide insight into these processes, this work aims at providing a generically

applicable model framework capable of describing structural formation phenomena on

the micro-meter and milli-second scale, building upon MD and literature data for param-

eterization. For this, an entire macromolecule is abstracted as an anisotropic

object with a certain position, orientation, and spatial extent. As the proposed

abstraction level is in between MD and DEM, the methodology is termed the Molecu-

lar Discrete Element Method (MDEM). Three model components, which can be

seen in Fig. 2.1, are then used to describe the interaction between macromolecules and

with the environment, e.g. solvent and salts. While the model components are chosen

similarly to the typically employed strategies in MD, model formulations and parameters

are derived specific to the abstraction and system. At the basis of the framework stands

the molecular reference structure, which is available for many systems from the protein

database (PDB). Details on the origin of reference structures for the model systems in

this work are provided in Sec. 2.3. Similarly, often information on structural assembly

and binding locations are available, which are optional information for this framework.

As the first model component, a Langevin Dynamics (LD) and implicit solvent based

diffusion model provides the foundation for describing the anisotropic diffusion kinet-

ics of molecular movement in translation and rotation, as well as enforcing the desired

canonical ensemble [223]. The proposed model provides a full methodology for deriving

anisotropic 6D diffusion coefficients from MD based on the molecular reference structure.

Furthermore, effects of solvent temperature and viscosity can be readily modeled and

do not require a re-parameterization as long as no significant conformational changes of

the reference structure occur. Alternatively, diffusion coefficients can also be estimated

from the molecular reference structure based on theoretical considerations. Hydrody-

namic interaction between units, i.e. forces resulting from their relative velocities coupled

through the solvent, is neglected in line with literature for anisotropic biomolecules [277].

More details will be provided in Ch. 3.

As a second model component, a pairwise intermolecular interaction model pro-

vides a model for the interaction of macromolecules in 6D space of all relative configura-

tions. Two different approaches were explored within this work. One approach provided

a probabilistic functional model to describe alginate gelation based on literature data

and theoretical considerations [224], which is consequently specific to the system. The

other approach explores a generic data-driven methodology for deriving intermolecular

interaction potentials from MD [225, 226] for wide applicability. More details will be

provided in Ch. 4.
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As a third model component, bonded interaction of strong intermolecular assemblies

can be captured separately from the pairwise intermolecular interaction. This optional

component can be advantageous from a numerical point of view and provides a more

effective description of bonded structures, which are very stable over the course of a

simulation. Such bonded interaction can either be parameterized by decoupling from the

intermolecular interaction potential or through information on the structural assembly.

In the context of this work, bonded interaction is avoided as far as possible to capture

assembly from the most fundamental monomer or dimer units. More details will be

provided in Ch. 5.

The three model components provide the force and torque contributions on each macro-

molecule resulting from interaction with the environment and other molecules. Time
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Figure 2.1: Overview of the physics-based and data-driven framework for
macromolecular structural formation.
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integration can then be performed in the context of Newton’s equation of motion and

will be discussed in more detail in the following section. Note that during parameteri-

zation of model parameters in MD, the molecular reference structure is flexible. Conse-

quently, structural variability is at least partially sampled during parameterization. For

a more detailed overview including sub-components the interested reader is referred to

App. A.2.

2.2 MDEM Implementation

The proposed framework was implemented in a custom C++ and CUDA based software

suite building upon the open-source code GROMACS [41, 278] for MD and a heavily

modified version of the open-source DEM code MUSEN [279] for the structural formation

simulations of MDEM. GROMACS was used for investigating the molecules of interest

on an atomistic and coarse-grained MD scale and no development was performed. The

code for pre-/post-processing, especially for data-driven interaction potential extraction,

was written in C++ with a hybrid MPI+OpenMP parallelization and will be described

in more detail in Ch. 4. The focus of this section is on the modifications of the DEM code

MUSEN [279]. For more detail on MUSEN the interested reader is referred to ref. [279].

In the following, the term ’particles’ will typically be used consistent to DEM, which

refers in the context of this work to the abstracted macromolecular unit structures.

Equation of Motion and Numerical Time Integration In order to model the

structural assembly over time, numerical time integration has to be performed. For all

time steps, the total force F⃗tot,i and torque M⃗tot,i of each particle i has to be calculated

from all contributions as

F⃗tot,i = F⃗dif,i +
∑

j∈Np

F⃗pp,i−j +
∑

k∈Nbonded,i

F⃗bond,i−k, (2.1)

M⃗tot,i = M⃗dif,i +
∑

j∈Np

M⃗pp,i−j +
∑

k∈Nbonded,i

M⃗bond,i−k, (2.2)

where Np is the number of particles in the system and Nbonded,i is the number of bonded

interactions of particle i. As the particles, i.e. macromolecules, are highly anisotropic,

their mass moment of inertia is a tensor. The reference structures of all macromolecules

are orientated along their principle component axes in ascending order of x, y, z (body

frame of reference in center of mass). Consequently, time-integration of rotation has to

be performed in this body frame of reference and the forces and torques from the global

reference frame rotated accordingly for each particle. This is different from the typical

DEM formulation, which usually works with spherical particles. Time integration is
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subsequently performed using the leap-frog algorithm and quaternion integration from

ref. [198]. Normalization of unit quaternions was performed after each time step. Note

that the convergence of explicit time integration algorithms is highly dependent on

the time step size. Consequently, for each model component a critical time step was

determined.

Inter-particle/molecule Contact and Detection As inter-particle contact detec-

tion for structurally anisotropic macromolecules is challenging, two adaptations were

implemented. First, in order to build upon the normal contact detection algorithm im-

plemented in MUSEN [279], an extended (spherical) contact radius was implemented

covering all orientations for which a contact can occur including long-range interactions.

Second, in order to reduce the computational demand of the pairwise interaction model,

a boolean field was pre-calculated for each interaction pair, which saves whether a rel-

ative position and orientation of two objects requires a calculation of the interaction

model, thus reducing the number of contacts.

Boundary Conditions In the context of this work only periodic boundary conditions

(PBC) were used in order to avoid boundary effects. If required in the future, e.g. for

interface phenomena, other boundaries could be implemented.

Initialization In order to initialize the system, all particles / macromolecules were

randomly placed and oriented [280] inside the simulation domain with zero translation

and rotation velocity, as well as disregarding potential overlaps. This includes structures

such as alginate polymer fibers. Equilibration took place at the beginning of each sim-

ulation study by the respective model. Velocity equilibration was performed using the

diffusion model and took place typically within 2-3 critical time steps (≈ 1 ps). Overlaps

of initially placed molecules were resolved by the repulsive component of the interaction

model (Ch. 4). Alginate polymer fibers were initially placed straight in the simulation

domain, followed by an equilibration procedure (see 6.2).

Numerical Precision Similarly to MD, all simulations were performed using single

point floating precision for accelerated runtime and the MUSEN source code adapted

accordingly. While higher precision is advantageous to ensure reproducible results in

deterministic DEM simulations, in the context of diffusion and numerical thermostats

this is not required and would only lead to unnecessarily longer runtimes.
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2.3 Molecular Reference Structures

The molecular reference structures provide the foundation for parameterization of the

proposed framework shown in Fig. 2.1. For most macromolecules, especially in the bi-

ological context, structural information is available from the protein data bank (PDB).

Furthermore, as the question of a molecular reference structure is directly equivalent to

the widely studied topic of protein folding, there is an increasing number of predictive

models including e.g. AlphaFold [7]. Based on this structural information, the proposed

framework can then be employed. With regard to the studied model systems, the fol-

lowing reference structures were used. Note that all of these reference structures were

centered in their center of mass and oriented along their principle component axes (x

first, then y, then z), which is considered their body frame of reference.

Alginate The atomistic reference structures of mannuronic and guluronic acid includ-

ing permutations along alginate polymer chains were provided by Hecht et al. [232] as

shown in the introduction Sec. 1.3.1 Fig. 1.1 [224]. No modifications were performed.

Hepatitis B Core Antigen (HBcAg) The atomistic reference structure of HBcAg2

for AB and CD shown in the introduction Sec. 1.3.2 Fig. 1.3 (left) [225, 226] was provided

by Mariana Kozlowska based on a modified version of PDB 6HTX [246] and PDB 1QGT

[244]. Two residues (74 and 97) of 6HTX were changed back to the original ones and

reconstructed by ROSETTA using 1QGT as a template. Residues from the C-terminal of

chain D were used to reconstruct missing residues on chain A. Furthermore, the missing

three residues of the terminal of chain C were added by loop homology modeling in

Modeller 9.21. In order to derive the coarse-grained reference structure primarily used

within this work (see Fig. 1.3 right), representative clustering of the AB dimer was

performed by Uwe Jandt using the linkage method as implemented in GROMACS [42]

on the Martini coarse-grained structure. For this, conformations of a 10 ns MD run

with 10 ps savings interval were used (process conditions 293 K and 150 mM NaCl in

addition to charge neutralization, see further description in models section). Root-mean-

square deviation (RMSD) of the determined reference structure in comparison to the

original structure was 0.39 nm. Note that in the context of this work, only one reference

structure of the HBcAg2 dimer is modeled. This is sufficient, as the molecule’s structure

is flexible in itself during MD for parameterization of all models.

Pyruvate Dehydrogenase Complex (PDC) The atomistic and coarse-grained ref-

erence structures of the four proteins E1, E2, E3, and E3BP belonging to PDC were
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provided by Uwe Jandt based on Hezaveh et al. [106, 268, 271] as shown in the intro-

duction Sec. 1.3.3 Fig. 1.4 and 1.5 [223, 227, 228]. Due to the more volatile linker arm

of E2, additionally representative clustering was performed using the linkage method as

implemented in GROMACS [42] based on 61 Martini coarse-grained pairwise interac-

tions between E2-E2 for 0.5 ns (process conditions 300 K and no additional ions, only

charge neutralized, see further description in models section). Root-mean-square devi-

ation (RMSD) of the determined E2 reference structure in comparison to the original

structure was 3.27 nm highlighting the effects of the linker arm. The results published

in Depta et al. [223] are based on the non-clustered E2 structure, while the updated

structure based on representative clustering is used for this work.
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Diffusion and Thermodynamics

This chapter is based on the following publication:

P. N. Depta, U. Jandt, M. Dosta, A.-P. Zeng, and S. Heinrich. Toward Multiscale

Modeling of Proteins and Bioagglomerates: An Orientation-Sensitive Diffusion Model

for the Integration of Molecular Dynamics and the Discrete Element Method. J. Chem.

Inf. Model., 59(1):386–398, 2019

3.1 Introduction

Molecular phenomena are generally influenced by their system’s temperature, resulting

in a specific velocity distribution and subsequent motion of all objects known as diffusion

or Brownian motion. The velocity distribution increases with temperature from absolute

zero and follows a Maxwell-Boltzmann distribution for each object and degree of freedom

(DOF). As discussed in detail in Sec. 1.2, this is modeled for the individual atoms in

MD through thermostat models typically distinguishing between stochastic methods,

strong-coupling methods, weak-coupling methods, and extended system dynamics [30].

Furthermore, these aspects are strongly related to the representation of the solvent

in coarse-graining approaches leading e.g. to an implicit solvent representation and a

stochastic thermostat as in Langevin dynamics (see Sec. 1.2.2).

In contrast to the point masses modeled in atomistic and coarse-grained MD, the ab-

stracted macromolecules in the proposed methodology further require treatment of rota-

tional diffusion and directional anisotropy resulting from their complex molecular struc-

ture, e.g. the linker arm of PDC’s E2 enzyme inducing diffusion anisotropy (Fig. 1.4).

In order to address this, an orientation-sensitive diffusion model was formulated [223]

based on the MD thermostat by Goga et al. [281], which will be presented subsequently.

33
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3.2 Model Description

3.2.1 Overview

Consider as outlined in Ch. 2 an anisotropic macromolecule of mass m oriented along its

principle component axes in ascending order x, y, z (body frame of reference in center

of mass, rotational axes α, β, γ) with moment of inertia Ii (i indicating the axis). The

molecule possesses a translatory velocity vglobal,i and angular velocity ωglobal,i in the

global frame of reference, which can be transformed into the body frame of reference

(vbody,i and ωbody,i) through the unit quaternion q describing the orientation. The

molecule is placed in a dilute Newtonian fluid with dynamic viscosity η and temperature

T , which is to be modeled implicitly (i.e. no fluid particles) through stochastic exciting

and systematic damping forces, thus leading to Langevin dynamics (LD) as shown in

Sec. 1.2.2 eq. 1.6. Note that this assumes that the molecule has sufficiently small m and

Ii for diffusion effects to be relevant regarding their average thermokinetic energy kBT
2

per DOF, where kB is the Boltzmann constant and T the system’s temperature [114].

The diffusive movement of the molecule resulting from the atomistic structure and its

interaction with the solvent environment is described by three translatory diffusion coef-

ficients Dt,i and three rotatory diffusion coefficients Dr,i in the principle component axes,

which will be determined subsequently in Sec. 3.3. Note that this formulation assumes

that the diffusion tensor collapses onto its diagonal components in the body frame of

reference, which will be checked in Sec. 3.5 by comparison with the fully resolved move-

ment in MD. The diffusion coefficients are determined at a reference viscosity ηref and

temperature Tref , which can be different from the system viscosity η and temperature

T as long as the molecular structure and its interaction with the solvent environment

remain stable. In order to model the diffusive movement and enforce the desired canon-

ical ensemble for these abstracted molecules in the MDEM framework (see Fig. 2.1 and

eqs. 2.2ff) with explicit time integration in increments ∆t, the diffusive forces and torques

in each time step and for each DOF i (x, y, z for translation; α, β, γ for rotation) can be

calculated as [223]

Fdif,body,i = −cdis,t,i vbody,i + Ffluct,i ξt,i, (3.1)

Mdif,body,i = −cdis,r,i ωbody,i + Mfluct,i ξr,i, (3.2)
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where ξt,i and ξr,i are six independently drawn random numbers with zero mean and

unit variance, while cdis and Ffluct / Mfluct are the dissipative drag and fluctuating force

/ torque coefficients calculated as

cdis,t,i =
m

∆t

(

1 − e
− η

ηref

kBTref

mDt,i(Tref ,ηref)
∆t
)

, (3.3)

Ffluct,i =

√
√
√
√mkBT

(

1 − e
−2 η

ηref

kBTref

mDt,i(Tref ,ηref)
∆t
)

∆t
, (3.4)

cdis,r,i =
Ii

∆t

(

1 − e
− η

ηref

kBTref

IiDr,i(Tref ,ηref)
∆t
)

, (3.5)

Mfluct,i =

√
√
√
√IikBT

(

1 − e
−2 η

ηref

kBTref

IiDr,i(Tref ,ηref)
∆t
)

∆t
. (3.6)

Additionally, the model can be used as a direct coupling to computational fluid dynamics

by replacing the particle velocity with the differential to the fluid velocity. Thus, enabling

for example the investigation of shear flow on molecular assemblies.

However, note that the proposed model neglects hydrodynamic interaction, i.e. forces

acting through the solvent by relative movement of molecules in proximity, and instead

only accounts for molecular interaction as a function of relative position and orientation

in the overall MDEM framework (Ch. 2). This is done due to the significant complex-

ity of solving the relative friction tensor for arbitrarily aniostropic molecules and in

line with literature. Instead, a reduction of the effective viscosity is performed as an

approximation, which is discussed in detail in App. A.3.

3.2.2 Background

The proposed model is based on Langevin dynamics and is specifically an extension of

the ”impulsive Langevin leap-frog algorithm for systems without constraints” by Goga

et al. [281] implemented in GROMACS [278, 282, 283]. While the original model serves

as a thermostat for atoms in molecular systems to enforce a canonical ensemble in an

impulse-based formulation [281], it was extensively modified to reproduce the anisotropic

diffusion kinetics of abstracted molecules in an implicit solvent. For this, the formulation

was written in a force-based solution and friction coefficients were derived to reproduce

the anisotropic diffusion of the abstracted molecules including rotational diffusion. Thus,

an adequate modeling of the movement and thermodynamics of complex molecules on the
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abstraction level necessary for supramolecular assemblies was achieved. Furthermore,

the formulation enables modification of the system temperature and solvent viscosity

without requiring a re-parameterization of the diffusion coefficients. Derivation details

are provided in the supplementary of Depta et al. [223] and accuracy of the model can

easily be verified by inserting the dissipative drag (cdis) and fluctuating force / torque

coefficients (Ffluct / Mfluct) into the fluctuation-dissipation theorem in eq. 1.8 as will be

done subsequently in Sec. 3.4.1 for derivation of the critical time step.

3.2.3 Simplification for Isotropic Diffusion

While the proposed model is specifically designed to address complex molecules with

anisotropic diffusion, it can also be used for spherical molecules or nanoparticles by

using equal diffusion coefficients for x, y, z and α, β, γ, respectively. Furthermore, the

diffusion coefficient is related to Stoke’s radius through Einstein’s relation [168] as

Dt,i (Tref , ηref) =
kBTref

6πηrefrs,t,i
, (3.7)

Dr,i (Tref , ηref) =
kBTref

8πηrefr
3
s,r,i

. (3.8)

As a result, the radius of a nanoparticle can be used directly to parameterize the diffusion

model. However, note that potentially a shell of hydration has to be accounted for. This

model has for example been used to model the diffusive component of industrial zeolite

production including a fluid flow coupling for describing the effects of shear flow [284].

3.3 Parameterization

3.3.1 Approaches

In order to employ the proposed diffusion model for macromolecules, knowledge of the

diffusion coefficients is necessary. Generally speaking, these diffusion coefficients can

be determined either through experimental investigation, analytical considerations, or

numerical investigation. With regard to experimental investigation, the determined

diffusion coefficients are typically isotropic due to limited resolution and differentia-

tion on the required scales of length and time. Hence, limiting usefulness for complex

molecules such as PDC. Regarding rotational diffusion, methods include for example nu-

clear magnetic resonance (NMR) [285], dynamic magnetic susceptibility measurements
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[286], and fluorescence correlation spectroscopy (FCS) [123]. With regard to analytical

considerations, theoretical works on the fundamentals of diffusion by Einstein [119], De-

bye [120], and Perrin [121, 122] enable the direct calculation of diffusion coefficients from

radii using eq. 3.7. However, these are limited to simple objects such as spheres or ellip-

soids. Consequently, while this can be used to estimate anisotropic diffusion coefficients

- even for elongated molecules such as the E2 enzyme of PDC - more detailed insight

is preferential. Lastly, numerical investigation through MD enables detailed insight

including anisotropy by fully resolving the molecules and solvent environment. Conse-

quently, this approach was chosen for parametrization and the setup will be described

next. However, note that for the specialized model of the alginate system analytical

estimation was employed in line with the overall approach of literature-based modeling

for this model system.

3.3.2 Parameterization through Molecular Dynamics

The open-source software package GROMACS [41, 278] version 5.1.1 was used to perform

all MD simulations. As a force-field, the coarse-grained (CG) Martini force-field ver-

sion 2.2P [125, 287] was used with polarizable water (PW) [287] and the particle mesh

Ewald (PME; fourth-order, 1.2 nm real space cutoff, 0.16 nm Fourier mesh spacing)

method [54] for electrostatics to improve accuracy in comparison to the standard Mar-

tini water. The CG model was previously validated structurally for PDC [106, 268, 271]

and is employed in this context as atomistic MD simulations are slower by 1-2 orders

of magnitude and consequently infeasible for this purpose [223]. However, validation

simulations with the atomistic OPLS-AA force-field were performed for the E1 enzyme

of PDC yielding comparable results with regard to the isotropic diffusion coefficients

(isotropic translation: 53.1 ± 3.63 µm2 s−1 for CG vs. 46 ± 29.4 µm2 s−1 for atomistic;

isotropic rotation: 2.70±0.18 Mrad2 s−1 for CG vs. 2.73±0.05 Mrad2 s−1 for atomistic)

[223]. Note that an anisotropic investigation was not possible due to limited statistics

resulting from computational requirements.

Each molecule was placed in a cubic (E1 and E3) or triclinic box (all other) with peri-

odic boundary conditions (PBC, x-y-z) and a minimum distance of 23.5 nm to its mirror

image, which was determined through a convergence study (see supplementary data in

Depta et al. [223]). All systems were charge-neutralized and for the HBcAg system an

additional 150 mM of sodium chloride ions added, none for the PDC system. Temper-

ature was maintained at 293 K for the HBcAg system and 300 K for the PDC system

using the velocity-rescaling algorithm [288] (coupling time constant τ = 1 ps).
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In a first step, each system was solvated and energy minimization performed using the

steepest descent algorithm [289] to a tolerance of 10’000 kJ/mol/nm for up to 100’000

steps. Next, equilibration was performed for 20 ps in an NVT ensemble using a time step

of 5 fs with position restraints on the back-bone atoms using a force constant of 1000

kJ/mol nm2. Subsequently, another equilibration was performed for 40 ps in an NPT

ensemble using the Parrinello-Rahman barostat [290, 291] (coupling constant p = 12 ps,

isothermal compressibility 3 × 10−4 bar−1) ensuring stable density. Lastly, production

MD was run on a NPT ensemble with PW, PME, and without any constraints using

a time step of 20 fs and savings step of 1 ps for 2 ns, which is significantly above

the minimum time for the correlation between mean-square-displacement (MSD) and

diffusion coefficient to hold [119] (minimum for investigated molecules is 3.1 ps) and was

validated through a convergence study.

GROMACS utilities were used to calculate positions and orientations over time by fitting

the current structure to the reference structure, as well as analyze kinetic energies.

The initial 10 ps of each simulation were discarded allowing for additional equilibration.

Matlab version 2018a was subsequently used to calculate the MSD displacement using

inverse time integration in the body frame of reference and compensate for possibly

drift of the center of mass (COM) resulting, e.g., from flexibility of E2 and E3BP linker

arms. A convergence study concerning the number of replicates was carried out by

incrementally increasing the number of replicates by 50 until relative changes remained

below 5 % for two steps, which was fulfilled for all molecules by 600 replicates. Diffusion

coefficients were subsequently determined by least-square fitting the MSD displacements

of each DOF in the body frame of reference according to [119, 168]

⟨r2
i ⟩ = 2Dt,it, (3.9)

⟨θ2
i ⟩ = 2Dr,it. (3.10)

The determined diffusion coefficients will be provided in the results chapters of the

respective model system, while the remainder of this chapter will discuss the various

convergence aspects of the diffusion model. Credit for the MD setup and simulations is

given to Uwe Jandt.

3.4 Convergence

In order to ensure numerical reliability of the diffusion model, a convergence study was

performed analyzing the influence of the simulation time step on reproduction of the
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desired diffusion coefficient (determined through MSD in eq. 3.10) and kinetic energy.

For this, in a first step the critical time step was determined based on theory subsequently

followed by the numerical investigation. As the numerical investigation is additionally

dependent on the statistical sample size, a parallel study on the system size n (number

of molecule copies) was carried out. All convergence evaluations were carried out on the

molecules of the PDC system (see Ch. 8 for MD parameterization including diffusion

constants), specifically the E2 enzyme1, as it contains the most complex and anisotropic

structure. All MDEM simulations were performed with 100 replicates (multiplied by

system size n) in dilute state without any molecular interaction for 5 ns with a 1 ps

saving step (if time step was larger, then time step was used for saving). Unless otherwise

stated, a time step of ∆t = 10−13 s and system size of n = 5 × 105 was used.

3.4.1 Critical Time Step

As outlined in Sec. 1.2.2, the diffusion model based on Langevin dynamics has to fulfill

the fluctuation-dissipation theorem (eq. 1.8) to ensure a stationary process with time

independent velocity correlations of a canonical ensemble. Thus, leading to [223]

e
− kBTrefη

mDt,i(Tref ,ηref)ηref
∆t ≃ 1, (3.11)

e
− kBTrefη

IiDr,i(Tref ,ηref)ηref
∆t ≃ 1, (3.12)

which is only fulfilled for time steps ∆t

∆t ≪ mDt,i (Tref , ηref) ηref

kBTrefη
(3.13)

∆t ≪ IiDr,i (Tref , ηref) ηref

kBTrefη
. (3.14)

As a result, the critical time step τcrit of the diffusion model can be defined as

τcrit = min

(
mDt,i (Tref , ηref) ηref

kBTrefη
,
IiDr,i (Tref , ηref) ηref

kBTrefη

)

(3.15)

with i ∈ ¶x, y, z, α, β, γ♢. Relative to this critical time step the error of discrete time

integration is investigated subsequently.

1Note that for this work a slightly updated reference structure of E2 was used in contrast to ref. [223].
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3.4.2 Thermal Equilibration Speed

First, the speed of thermal equilibration, i.e. how fast the system reaches its steady state

temperature from a different previous temperature, was investigated. It was found that

independent of previous temperature and temperature difference, the system equilibrates

to its average kinetic energy with less than a 1 % deviation in 2 − 3 × τcrit. This result is

in agreement with theory as the critical time constant is also the thermal rate constant

[281]. Consequently, no equilibration procedure is needed before MDEM simulations.

3.4.3 Diffusion Coefficient

In order to evaluate convergence of the diffusion coefficient, firstly the system size was

varied between n = 103 and 107 for the model molecule E2 to determine the statistic

limits resulting from finite sample size at a constant time step of ∆t = 10−13 s, which is

considerably below the critical time steps of E2 shown in Tab. 3.1. As it can be seen in

Fig. 3.1A, the root-mean-square (RMS) error decreases linearly in the double logarithmic

plot with system size. As expected, DOFs with large critical time constants (specifically

x, β, γ) follow a linear trend throughout the investigated system sizes, while DOFs with

small critical time constants (specifically α and partially y) exhibit an asymptotic error

trend towards large system sizes. This is attributed to increasing errors from time

integration due to the small critical time step relative to the simulation time step of

10−13 s. In order to further study the convergence of the simulation time step ∆t,

based on these results a system size of n = 5 × 105 was chosen as its error limit of

0.2 % through sample size is below the expected accuracy from parameterization of the

diffusion coefficient.

Table 3.1: Critical time constants for each DOF of the model enzyme E2. Reprinted
with permission from Depta et al. [223]. Copyright 2019 American Chemical Society.
Note that in contrast to Depta et al. [223] an updated reference structure of E2 was
subsequently used in this work, specifically Ch. 8.

Direction Dt [µm2 s−1] τcrit[ps] Dr [Mrad2 s−1] τcrit[ps]

x/α 48.0 1.136 8.74 0.588
y/β 37.7 0.894 0.33 1.250
z/γ 41.2 0.976 0.36 1.371

Subsequently, the time step ∆t was varied between 2 × 10−14 s and 5 × 10−12 s for all

molecules of PDC as shown in Fig. 3.1B. As it can be seen, the RMS error decreases

linearly in the double logarithmic plot with decreasing time step until reaching the

asymptotic limit of approximately 0.2 % imposed by the finite system size. Independent

of model molecule and DOF, all data points follow the same trend when normalized by
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their respective critical time constant underlining the importance of τcrit. Consequently,

the relationship between RMS and ∆t can be used to estimate the error of the apparent

diffusion coefficient a priori, thus, giving guidance for choosing the time step. For this,

the data between an RMS of 0.3 % and 100 % was used to find the correlation

∆t = τcrit · 10

(
log(RMSerror[%]/1%)−0.90

1.97

)

. (3.16)

by least square fitting. Note that validity of the correlation is limited to an RMS above

0.3 %. However, the correlation likely remains accurate beyond this and additionally

accuracy of diffusion parameters is typically less.

3.4.4 Kinetic Energy

Lastly, convergence of the apparent kinetic energy was investigated as shown in Fig. 3.2.

For this, statistical analysis was performed over all molecule copies and times for each

DOF in its respective body frame of reference and compared to the expected average

thermokinetic energy of kBT
2 per DOF [114]. As it can be seen, trends are qualitatively

similar to those for the convergence of the diffusion coefficient, but with errors one to

two order of magnitude lower. Consequently, errors of the apparent diffusion coefficient

dominate and thus the previous discussion holds overall.

Nonetheless, as a difference it should be noted that DOF with higher critical time con-

stants lead to slightly higher errors visible at sufficiently large sample sizes provided by

large n. This opposite trend compared to the apparent diffusion coefficient is attributed

to the critical time constant also being the thermal rate constant [281] (see Sec. 3.4.2).

Thus, leading to longer restoration times to thermal equilibrium and thereby larger

errors. However, as the error in kinetic energy always remains significantly below the er-

ror in the apparent diffusion coefficient, these differences are not relevant for the overall

MDEM framework.
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(A) Diffusion coefficient: System size for E2.

(B) Diffusion coefficient: Normalized time step for all PDC enzymes.

Figure 3.1: Convergence of diffusion coefficient for varying system size (A) and
normalized time step (B) for individual DOF. The root-mean-squared (RMS) error
relative to the specified diffusion coefficient is displayed. When varying the system
size a time step of 10−13 s was specified and when varying the time step a system size
of 5 × 105 was specified. In (A) a fit is provided for the DOF γ and in (B) a fit is
provided for errors between 0.3 % and 100 %. Reprinted with permission from Depta
et al. [223]. Copyright 2019 American Chemical Society.
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(A) Energy: System size for E2.

(B) Energy: Time step for E2.

Figure 3.2: Convergence of kinetic energy for varying system size (A) and time step
(B) for individual DOF. The root-mean-squared (RMS) error relative to the desired
energy per DOF ( kBT

2 ) is displayed. When varying the system size a time step of
10−13 s was specified and when varying the time step a system size of 5 × 105 was
specified. Reprinted with permission from Depta et al. [223]. Copyright 2019
American Chemical Society.
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3.5 Comparison with Molecular Dynamics Data

Furthermore, the anisotropic diffusive movement and thermokinetic energy were com-

pared between the proposed model and the MD model (Sec. 3.3.2) for all molecules

of PDC. In order to ensure comparable stastistics, 600 replicates over 2 ns were used

for the MDEM model in agreement with the number of MD replicates. Based on the

(A) Translation - X

(B) Rotation - α

Figure 3.3: Comparison of MD data and DEM diffusion model data using the
mean-squared-displacement (MSD) plots for x and α DOF of the model enzyme E2.
Solid lines indicate mean values (MSD) and shaded regions the standard deviation.
To ensure a good comparability, both MD and DEM statistic consisted of 600 enzyme
repetitions. Reprinted with permission from Depta et al. [223]. Copyright 2019
American Chemical Society.
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convergence study in Sec. 3.4, a time step of 10−13 s was used for the MDEM model

leading to an RMS error below 0.3 % for the apparent diffusion coefficient.

Concerning anisotropic diffusive movement, the mean-square displacement (MSD) is

shown exemplary for the x and α DOF of the E2 enzyme in Fig. 3.3. As it can be seen,

for translation and rotation both the average (solid lines) and distribution (transparent

regions) of the MSD are in good agreement with the MD model, thereby accurately

(A) Translation

(B) Rotation

Figure 3.4: Comparison of the velocity probability-density-functions (PDF) for the
DEM diffusion model, MD results, and a Maxwell-Boltzmann distribution at 300 K.
The enzyme E2 is used as a model enzyme. For the DEM diffusion model the
rotational velocity was determined by weighting body frame velocity components with
their respective moment of inertia and for MD by using the rotational energy and the
average moment of inertia. Reprinted with permission from Depta et al. [223].
Copyright 2019 American Chemical Society.
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reproducing the diffusive movement even for structurally complex molecules such as E2.

Similarly, all other PDC components and their respective DOF are accurately reproduced

as shown in App. B Fig. B.1. Likewise, the velocity distribution agrees well for both

translation and rotation with the MD model and theoretical predictions of a Maxwell-

Boltzmann velocity distribution as shown in Fig. 3.4 for E2. The proposed diffusion

model therefore accurately reproduces the diffusion behavior of anisotropic molecules

for the MDEM framework.

3.6 Enhanced Sampling of the Conformation Space through

Simulated Annealing

Molecular simulations are typically performed at constant temperature employing one

of the thermostats outlined in Sec. 1.2 similarly to the proposed diffusion model in

this section. Starting from an initial condition of the molecular system, also called

conformation, simulations are performed over a finite period of time constrained by

computational resources with the goal of reaching equilibrium. However, many times

various potential minima exist separated by high potential barriers from the initial

conformation [30]. Thus, sampling of the conformation space is restricted to a small

subset and naturally occurring conformations may be missing.

In order to remedy this limitation, various methods have been proposed to enhance

sampling of the conformation space. One example is simulated annealing [75], which

temporarily increases and then again lowers temperature according to a protocol to en-

hance crossing of potential barriers and takes its name from the related metallurgy pro-

cess. Another example is the replica exchange method (REM), which simulates replicas

of the system at various temperature and performs probabilistic temperature exchanges

between replicas. Further examples include expanded ensembles [77] and simulated tem-

pering [292].

In order to be able to address these aspects of enhancing conformation sampling, sim-

ulated annealing has been implemented for the proposed diffusion model. For this,

the temperature of the simulation domain can be varied over the course of the simula-

tion by updating the fluctuating force coefficient Ffluct,i and fluctuating torque coefficient

Mfluct,i, which is implemented through a scaling factor of
√

Tcur(t)/Teq, where Tcur is the

desired current temperature at time t and Teq is the original equilibrium temperature.

The viscosity of the fluid was kept constant. As a temperature protocol, periodic step

increases (time period τan,period, repeated until final time tan,finished) to the maximum

temperature Tan,max followed by a linear decay over a time of τan,cool back to equilibrium

were implemented subsequent to testing.
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Intermolecular Interaction

4.1 Introduction

During the assembly of supramolecular structures the intermolecular interaction is of

critical importance. As shown in Ch. 1, this is commonly defined by non-covalent in-

teraction between macromolecules. In traditional all-atom and coarse-grained MD (see

Sec. 1.2), this is modeled by the underlying interaction between individual atoms de-

fined through force-fields. However, while providing great detail, an investigation on

the scales in length and time necessary for larger molecular assemblies is not possi-

ble with current computational resources. In order to address these scales, this work

abstracts each entire macromolecule as an object with a position and orientation re-

sembling an ultra-coarse-grained approach (see Ch. 2). As a result, the intermolecular

interaction model is (up to) six dimensional (6D) capturing the relative position (3D)

and orientation (3D). Furthermore, this interaction has to be uniquely formulated for

each pairwise interaction of two macromolecules, which cannot directly be transferred

to other molecules including for significant changes in secondary and tertiary structure.

As a result, it becomes a trade-off whether the work deriving such a unique force-field

between two macromolecules is reasonable in comparison to the speed-up the model

provides in understanding the system of interest. In the method development focus of

this work, two approaches are explored for deriving such intermolecular interaction mod-

els: one specialized model based on literature for alginate gelation, as well as a generic

data-driven approach to derive interaction potentials based on MD.

The task of formulating such intermolecular interaction models can be embedded in

the broader field of surrogate modeling, which has received increasing attention in recent

decades with the rise of machine learning (ML) methods. The goal of surrogate modeling

47
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is to derive an effective model with fast evaluation times for a complex process by map-

ping an arbitrarily dimensional input space to an arbitrarily dimensional output space.

Specific to the task of interaction models this means a description of the potentials/

forces/torques (output) for relative positions and orientations (input). In the following,

a few of the most commonly applied surrogate modeling techniques will be highlighted.

Traditionally the mapping of input-output relationships for surrogate modeling has been

performed using fitting of functional descriptions such as polynomials. Optimization of

parameters is then performed using e.g. least squares or support vector regression (SVR)

[293]. Traditional MD force-fields widely use such functional 1D descriptions. However,

this approach becomes significantly difficult for highly dimensional and complex rela-

tionships. In this regard, one of the most popular approaches without a function and

parametric description is Kriging [294–297], also called Wiener–Kolmogorov prediction

or Gaussian process regression (GPR) in ML context [298, 299], as well as being further

embedded in Bayesian statistics as a form of regression/inference. Kriging provides the

best linear unbiased estimator (BLUE) [294] for the value of a variable in an arbitrarily

dimensional space based a set of observations (data) and their correlation, i.e. a statisti-

cal description of the data. Not only the estimate, but also an error estimate is achieved,

which is especially useful in understanding and improving the non-parametric surrogate

model. Kriging is used in this work for the data-driven approach to estimate the inter-

action potential with further details provided in Sec. 4.3.4. In a related direction, radial

basis functions (RBF) [300, 301] provide a description based on the linearly weighted

combination of the distance to specific center points in space to formulate the surrogate

model. Furthermore, artificial neural networks (ANN) [298, 302] provide more general

and flexible descriptors by employing complex networks of neurons between the input

and output space. ANNs have gained significant interest in ML and are applied to a

variety of problems such as natural language processing [303, 304]. For further examples

and reviews on surrogate modeling see e.g. refs. [305–308].

With regard to the parameterization of such surrogate models for the desired intermolec-

ular interaction, similar approaches to those discussed in Sec. 1.2.2 for coarse-grained

MD can be employed. As shown, these approaches are often classified as bottom-up,

top-down, and hybrid - thus incorporating a variety of information as purely first-

principle based methods are frequently not sufficient [30]. Related bottom-up method-

ologies include e.g. thermodynamic integration [30], free energy perturbation [137], um-

brella sampling [134], and steered molecular dynamics. In addition to these traditional

methods, Gaussian progress regression (GPR) has previously employed for example by

Bartók et al. [309] to derive potentials based on quantum models (for broader review see

ref. [310]). Following works have employed GPR in combination with umbrella sampling,

constraints, or instantaneous collective forces (ICF) to derive potential energies up to
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4D for very small molecules such as alanine tripeptide [311, 312] and methanol/ben-

zene [129]. In similar regards and with similar limitations, Poisson equation formalism’s

have been applied [313]. Additionally, ANN have been employed increasingly on similar

scales of coarse-graining [130, 131, 314] in addition to the atomistic [56, 315]. However,

while providing detailed insight, these methods are largely restricted to few degrees of

freedom by computational requirements - thus they are not directly applicable to the

6D interaction space between molecules.

The subsequently presented models attempt to remedy some of these limitations. The

first model presented in Sec. 4.2 is specialized for alginate interaction to implicitly cap-

ture ions through a probabilistic binding and unbinding model, therefore alleviating the

need to explicitly model solvent or ions. It is fully based on theoretical considerations

and literature knowledge, thus employing a top-down knowledge-based parameterization.

The second model presented in Sec. 4.3 is a generic formulation for the full 6D case and

employs a bottom-up focus, while also permitting incorporation of empirical data. It

employs a Kriging-based approach with a similar methodology as free energy perturba-

tion, while sacrificing some thermodynamic accuracy to gain practicality in computation

for the 6D interaction space. The determined interaction potential is then captured in

a homogeneously gridded 6D field on which the gradient operation to derive forces and

torques is carried out for each contact between macromolecules during the higher-level

MDEM simulation. This approach has the benefit of being flexible with regard to the

shape of the potential and maintains a constant runtime independent of its complexity,

which is a significant advantage over e.g. ANNs or functional descriptions. However, due

to the memory requirements to store the field, the number of different molecules in the

system is limited to a few. This trade-off was found to be acceptable for the investigated

systems and is expected to become less relevant with increasing computer memory over

time.

4.2 Probabilistic Interaction Model for Calcium Mediated

Alginate Gelation Based on Literature and Theory

This chapter is based on the following publication:

P. N. Depta, P. Gurikov, B. Schroeter, A. Forgács, J. Kalmár, G. Paul, L. Marchese,

S. Heinrich, and M. Dosta. DEM-Based Approach for the Modeling of Gelation and

Its Application to Alginate. J. Chem. Inf. Model., 62(1):49–70, 2022

During the gelation of alginate, the presence of ions is crucial to mediate the binding

process of polymer chains and resulting network formation. This network of polymer
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fibers is the structural foundation of the macroscopic gel. In the context of this work,

calcium is used as the mediating ion as is visualized in the introductory Fig. 1.1 and 1.2.

In the following, a probabilistic interaction model for the calcium mediated pairwise

interaction of alginate polymer fiber (dimer) units will be proposed. The model will

take a functional form and will be derived and parameterized based purely on literature,

theoretic considerations, and approximations. As previously stated, the smallest units of

description are the dimer units of alginate, i.e. GG, MM, and GM/MG. In the following,

the basic functional description followed by the probabilistic ion binding and unbinding

model will be presented.

4.2.1 Interaction Model

A subset of alginate components, namely the GG - GG dimers and to some extend

MM - MM, possess an attractive interaction during gelation. This interaction of two

GG dimers with one calcium ion bound in the center is characteristic for the alginate

system and has originally been described by Grant et al. as the ’egg-box’ model [235]. At

the same time, other polymer chain components, namely ones with alternating G and M

units (GM), are known to not form connections and consequently posses only a repulsive

interaction. As a result, for the functional description of the forces between dimers units,

a basic function capable of capturing these trends is necessary: repulsive behavior at

small distances and a defined potential minimum / well, i.e. attractive behavior, at

specific distances for a subset of interactions.

In order to capture this, the Lennard-Jones (LJ) potential was chosen as an effective

potential to describe the potential shape of unbonded pairwise interaction. The LJ po-

tential is widely used in the field of molecular modeling to describe atomic interaction

and is especially useful in this context due to its defined potential well inducing an

attractive interaction at large distances, which effectively models the ’egg-box’ interac-

tion, as well as the possibility to be repulsive-only for other interaction pairs. While

other potential shapes are certainly conceivable, the LJ potential is a reasonable first

estimation. The basic LJ potential and forces can be calculated as

ULJ,base = ϵ((
dm

d
)12 − 2(

dm

d
)6) + Ucor, (4.1)

Fpp = −∇ULJ,base = 12
ϵ

dm
((

dm

d
)13 − (

dm

d
)7), (4.2)

where dm is the location of the potential well (minimum), ϵ is the potential scaling factor,

and Ucor is the correction potential to ensure zero potential at the employed cutoff dcut.

Additionally, two corrections have been implemented: First, a maximum force Fmax

was implemented to avoid numerical instabilities resulting from the singularity of the
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Figure 4.1: Visualization of ion models IM1 and IM2 for alginate gelation. Adapted
with permission from Depta et al. [224] under CC-BY 4.0 license.

LJ potential at zero. Consequently, once the force exceeded this threshold and remains

constant, the potential increases linearly. Second, in cases when no calcium is present to

mediate the interaction or the interaction partners only possess a repulsive interaction,

the potential was set to zero above dm and shifted accordingly. The forces were adapted

accordingly and the remaining interaction is repulsive only for such cases.

4.2.2 Ion Model

As previously noted, the availability of ions is critical in the gelation of alginate. Depend-

ing on the presence of a (calcium) ion, a pairwise interaction between two GG dimers

can be either repulsive or attractive - mediated by the ion. Consequently, to describe

gelation, modeling the presence, binding, and unbinding of ions is of crucial importance.

The limit case of an unlimited supply of ions at any location in the polymer solution

consequently represents an idealized case: It leads to very homogeneous and densely

connected gels, which overestimate the experimental reality. Preliminary simulations

with such a model (termed IM0 for ion model 0) were carried out and exhibited the

described behavior. In order to capture the physics of ion mediated gelation more real-

istically, two probabilistic models were derived based on theoretical considerations and

the geometric structure of the binding zone based on the ’egg-box’ model [235].

IM1 The first ion model (IM1) describes the availability and consequently binding

probability of ions as a random process dependent on the calcium concentration

in the system. The model is visualized in Fig. 4.1. A limited number of ions is available

in the simulation domain and decreases with every bound ion at a pairwise interaction.

The probability of an ion being at the binding site of an interaction (capable of accepting
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an ion) in each time step is modeled as

pbind =
Vbind

Vtot
· Navail,ions, (4.3)

where Vbind is the volume of the binding site, Vtot is the volume of the system domain,

and Navail,ions is the number of currently available ions in the system. Once an ion binds

to a pairwise interaction, the ion is bound until the connection breaks, i.e. their cutoff

distance is exceeded. Consequently, unbinding is neglected, which will be considered in

the next model IM2.

The main parameter defining the binding probability besides ion concentration thus

becomes the volume of the binding site Vbind. Generally speaking, Vbind is a function

of the conformation of interacting molecules, their distance, resulting internal charge

distribution, affinity of the (calcium) ion to the interaction (i.e. binding energy), as

well as thermodynamic effects (i.e. diffusion, leading to a time step dependency during

simulation). To understand this in its entirety, DFT simulations of various configurations

would be necessary similar to ref. [240], which goes beyond the scope of this work. In

order to estimate Vbind for the purpose of an effective and simplified model, the following

approach was chosen.

As it can be seen in Fig. 4.1, each molecule of a pairwise interaction possesses its own

binding volume. The binding volume of each molecule is centered at half the equilibrium

distance dm/2, i.e. location of the ion in the ’egg-box’ cavity and location of potential

well in the pairwise interaction. The binding volumes can overlap when being in prox-

imity, but are independent from each other when sufficiently spatially separated. The

shape is approximated as spherical with contributions from an electrostatic rion and a

diffusive/thermodynamic component rdif . The part of the binding volume away from

the molecule is unconstrained by the conformation and described by radius router, which

is the sum of rion and rdif . In contrast, the part of the binding volume towards the

molecule is constrained by the molecule’s conformation and described by radius rcavity

for which rion is a sufficient approximation as there is no diffusive component. Fur-

thermore, it is modeled that the binding volume can be closed off by the interacting

molecules to account e.g. for the enclosure of the ’egg-box’. For this, the binding volume

is modeled as closed off / inaccessible from the outside if the distance between binding

volume (di−j − dm) centers does not exceed a minimum gap dgap,min.

As previously noted, the binding model IM1 assumes that an ion will remain bound until

the interaction breaks, i.e. cutoff is exceeded. As a result, the overall binding probability

is a function of the cutoff distance.
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IM2 In order to address this, the second ion model (IM2) includes the unbinding

probability of calcium ions in addition to the previous binding probability, leading

to a dynamic equilibrium of binding and unbinding. The model is visualized in Fig. 4.1.

Inclusion of unbinding comes at the cost of significantly increased computational require-

ments primarily resulting from the decreased gelation kinetics. Generally speaking, the

unbinding probability depends on the binding energy, temperature, solvent effects, and

conformational constraints. These aspects will be discussed and modeled next.

As noted earlier, calculation of the exact binding energy Uion,bind of an ion at a molecule

requires detailed methods such as DFT and is beyond the scope of this work. Thus, to

estimate Uion,bind efficiently, it is assumed to be half the interaction potential ϵ. This

is reasonable as the ion is primarily bound to one molecule and effects of the interac-

tion partner are captured in the context of geometric constraints. Using the Maxwell-

Boltzmann distribution of the kinetic energy of the ion at temperature T , the probability

of the kinetic energy exceeding the binding energy can then be estimated. This probabil-

ity is further lowered by geometric constraints to determine the unbinding probability.

Specifically, the ion can only unbind in a direction away from both interacting molecules,

as it is shown in Fig. 4.1. In accordance with the previously described binding volumes,

the exit ratio over all directions in 3D space associated with unbinding can be calculated

as

cs =
1

2 ·
√

( router

db−b
)2 + 1

, (4.4)

where db−b = r − rm is the distance between centers of ion volumes and router is the

previously defined outer radius of the binding volume. cs is always less than 0.5 and

the overall probability of unbinding can be calculated from the Maxwell-Boltzmann

distribution as

punbind = cs ·
(

1 − erf

(
v√
2a

)

−
√

2

π
· v

a
· e

−v2

2a2

)

, (4.5)

v =

√

2Uion,bind

mion
, (4.6)

a =

√

kBT

mion
, (4.7)

where v is the velocity corresponding to Uion,bind, erf is the error function, kB is the

Boltzmann constant, and mion is the ions mass. Similar to IM1, below the minimum

gap dgap,min no unbinding is assumed possible, i.e. punbind = 0. Note that for the used

time step of 10−13s there are no inertia effects of the calcium ion and consequently punbind

is uncorrelated in time.
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Generally speaking, with an increasing overlap of binding regions, the binding energy

Uion,bind increases and unbinding probability punbind should decrease. At the same time,

the exit ratio cs increases with decreasing overlap, leading to opposite effects. Some of

these inaccuracies are at the same time mitigated by the minimum gap dgap,min. Overall,

as exact modeling is non-trivial, the proposed simplified model was chosen.

All model parameters including binding volumes and probabilities as a function of dis-

tance will be presented in Sec. 6.1. Note that the presented models can be extended

easily in the future to model ion heterogeneities by replacing the global concentration

of ions by a local concentration derived from a coupled CFD simulation of ion diffusion.

4.2.3 Critical Time Step

In order to estimate the critical time step τcrit,pp,gel of the intermolecular interaction

model for the gelation of alginate, the oscillation period T0,pp,gel of the corresponding

two-mass spring system of particles i and j can be used. The derivation based on

Lagrangian mechanics can be found in most mechanics textbooks and is omitted here

as it presents a simplified case of the one shown in the following section. The critical

time step for the interaction model can be estimated as

τcrit,pp,gel = 2π · min

(√

µm,i−j

kpp,max,i−j

)

(4.8)

over all particle interactions i − j, where kpp,max,i−j is the maximum stiffness of the

interaction pair at any difference and µm,i−j represents the reduced mass defined as

µm,i−j =
mimj

mi + mj
. (4.9)

Note that this is an approximation of the oscillation period. Due to the fact that the

used time step is typically lower by a factor of five [42], this approximation is sufficient.
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4.3 Data-Driven Interaction Potential Fields Based on MD

This chapter is based on the following publications:

P. N. Depta, M. Dosta, W. Wenzel, M. Kozlowska, and S. Heinrich. Hierarchical

Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis

B Virus-Like Particles. Int. J. Mol. Sci., 23(23):14699, 2022

P. N. Depta, M. Dosta, and S. Heinrich. Data-Driven Multiscale Modeling of Self-

Assembly and Hierarchical Structural Formation in Biological Macro-Molecular Sys-

tems. In W. E. Nagel, D. H. Kröner, and M. M. Resch (editors), High Performance

Computing in Science and Engineering ’21. Springer International Publishing, Cham,

2023

As previously outlined, modeling intermolecular interaction is crucial for understand-

ing the behavior and structural assembly of macromolecules. This section presents a

data-driven approach for determining interaction potential fields based on MD, which

can subsequently be used to describe interactions of the abstracted macromolecules in

MDEM. Conceptually speaking, this approach transfers the detailed information neces-

sary to describe intermolecular interaction from many 1D atom interactions into a single

gradient operation on a 6D potential field (see Fig. 4.2). As a result, high levels of de-

tail are maintained in the complex potential field, while computational requirements are

drastically reduced. Thus, an investigation of larger system sizes and times is possible.

F

MM

F

n = 4

O(nlog(n)) to O(n2) O(1)×O(∇U)

F

Potential U

Figure 4.2: Comparison between atomistic representation of intermolecular
interaction (left) and abstraction as anisotropic beads with interaction potential
(right) on computational complexity (n is number of atoms, neglecting solvent and
ions). Note that for example a single interaction of HBcAg2 is equivalent to n = 9432
and further increased by the solvent atoms (n ≈ 105). Reprinted with permission from
Depta et al. [225] under CC-BY 4.0 license.
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based on molecular dynamics. Adapted with permission from Depta et al. [225] under
CC-BY 4.0 license.
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In order to derive the necessary intermolecular potential fields, a generic approach was

formulated based on MD, which is visualized in Fig. 4.3 and will be explained in detail in

the following sections. At the basis of the method lies the molecular reference structure

of the macromolecules, which is used within the MD model to study and parameterize

interaction including effects of solvent molecules and ions (i.e. salts). The molecular

reference structures of many macromolecules are typically available from the PDB based

on a variety of previous works in literature, which is also what the reference structures

in this work are largely based upon. The derived interaction potential fields from the

method can then be used in the MDEM structural formation simulations by employing

a numerical gradient operation.

Note that in the following section the conformation refers to the 3D structure of a

molecule, i.e. in the case of a protein its folded structure, while the configuration

refers to the relative position and orientation of two molecules interacting with each

other.

4.3.1 Molecular Dynamics Setup and Potential Groups

The open-source software package GROMACS [41, 278] version 2020.1 was used to

perform all MD simulations and the respective protocols were slightly adjusted from the

previous diffusion parameterization (Sec. 3.3.2) as follows. As a force-field, the coarse-

grained Martini force-field version 2.2P [125, 287] was used with polarizable water (PW)

[287] and the particle mesh Ewald (PME) method [54] for electrostatics to improve

accuracy in comparison to the standard Martini water. The coarse-grained model was

previously validated structurally for PDC [106, 268, 271] and is employed in this context

as atomistic MD simulations are slower by 1-2 orders of magnitude and consequently

infeasible for this purpose [223]. Full credit for this MD setup and portion of this work is

given to Uwe Jandt and will be summarized in the following. Out of this, the MD setup

for E3BP – E3 was provided by Cornelius Jacobi. In the context of the remaining work,

the MD model is considered a black-box model for determining interaction potential

contributions at a relative position and orientation of two macromolecules, which is

then used to estimate an overall potential by spatial structure and overall relation. The

remaining methodology for estimating the overall interaction potential based on these

samples using Universal Kriging and employing it for structural formation simulations

is decoupled from the underlying MD model, which is interchangeable depending on

improvements on the MD side.

The ’new’ parameter set for the Martini force-field was used as a basis for the MD setup

and PW and PME employed unless otherwise stated. Each simulation consisted of two
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molecules A and B (depending on types investigated) at a specified relative position

and orientation, which could flexibly change during the simulation. The molecules were

centered in a triclinic box with a minimum of 5.5 nm to all periodic boundary conditions

(PBC, x-y-z). A larger distance of 8 nm to all PBC was tested in a convergence study for

HBcAg2 and found largely similar potential trends. All systems were charge-neutralized

and for the HBcAg system an additional 150 mM of sodium chloride ions added, none

for the PDC system. Temperature was maintained at 293 K for the HBcAg system and

300 K for the PDC system using the velocity-rescaling algorithm [288].

In a first step, each system was solvated using normal Martini water (no PW and no

PME) and energy minimization performed using the steepest descent algorithm [289] to

a tolerance of 10’000 kJ/mol/nm for up to 100’000 steps. Afterwards, the solvent was

replaced by polarizable water (and PME enabled) and a second energy minimization

performed using the steepest descent algorithm to a tolerance of 10’000 kJ/mol/nm

for up to 50’000 steps. Next, equilibration was performed for 50 ps using a time step

of 5 fs with position restraints on the back-bone atoms using a force constant of 1000

kJ/mol nm2. The Berendsen barostat [72] with a compressibility of 3 × 10−4 bar−1

was used to avoid oscillations with position restraints and a coupling constant of 4 ps

used. Lastly, production MD was run on a NPT ensemble with PW, PME, and without

any constraints for 0.6 ns using a time step of 20 fs. As no constraints were used, the

Parrinello-Rahman barostat [290, 291] with the previous compressibility and coupling

constant of 12 ps was employed. Energies between all groups (A, B, PW, ions) were

calculated every 20 steps and saved along with trajectories every 500 steps.

GROMACS utilities were used to perform postprocessing of each MD simulation. For

each saving step, relative positions and orientations were calculated by fitting the cur-

rent structure to the reference structure. The initial 0.5 ns of each production run were

discarded to allow for further equilibration to take place and (small) conformational

changes to occur, e.g. during binding events. Between 0.5 and 0.6 ns all energies, po-

sitions, and orientations were then averaged. Potential components were grouped and

Lennard-Jones and Coulomb potentials were added for each potential group when appli-

cable leading to the following potential components1: A-B, A-A + B-B, A-PW + B-PW,

PW-PW, A-ions + B-ions, PW-ions, ions-ions, bonds, G96-angles, improper dihedral an-

gles, Coulomb reciprocal. Note the inclusion of effects due to water, ions, bonds, and

long-range electrostatics. Furthermore, MD runs were checked for errors and quality

criteria enforced concerning e.g. distances to mirror images, which are documented in

App. C.4. The remainder of this section will focus on deriving a simplified overall de-

scription of the intermolecular interaction based on this information using Universal

Kriging.

1Dash ’-’ indicates the potential between, plus ’+’ an addition of potentials.
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Note that carrying out such MD simulations is only possible when no collisions of atom-

s/molecules occur. Consequently, no information is available for colliding conformations.

This limitation including a proposed solution is addressed in Sec. 4.3.6. However, in a

first step a definition of the collision distance is required in order to avoid simulations of

entangled molecules. For this, a collision distance dcoll,full = 0.4 nm is defined between

any atom / bead combination of A and B using their full reference structure including

side-chains. No MD simulation can be and is performed if such a collision is present for

a starting configuration and the number of such collisions between A and B is termed

Ncoll,full. This limit is motivated by the fact that during all interaction sampling, no dis-

tance less than 0.39 nm between any atom / bead combination of A and B was detected,

which is attributed to the force-field. Additionally, a collision distance of dcoll,bb = 0.305

nm is defined between the back-bone atoms and the number of such collisions between

A and B is termed Ncoll,bb. As the stiff back-bone structure is assumed to be largely

responsible for the repulsive potential during molecular collision in comparison to the

flexible side-chains, this definition will become important when accounting for the col-

lision potential in Sec. 4.3.6. The limit is motivated by the equilibrium distance of

carbon-carbon bonds in the studied structures (determined from back-bone structure to

be approximately 0.34 nm), which leads to a repulsive distance of 0.305 nm under the

assumption of a Lennard-Jones potential.

4.3.2 Spatial Descriptors

The interaction space (configuration space) of two macromolecules is described by their

relative position and orientation, leading to a six dimensional space of coordinates

x, y, z, α, β, γ (see App. A.1 for definition of Euler angles). These relative coordinates

are coordinates of B with respect to A, which is located at the origin. Additionally to

these coordinates, we will introduce spatial descriptors to enable a lower-dimensional,

ideally 1D, description. Two groups of spatial descriptors are distinguished: A-B spatial

descriptors, which provide a lower-dimensional coordinate for B with respect to A; and

B-B spatial descriptors, which provide a distance measure between two configurations of

B (A is always located at the origin) and are required to investigate spatial continuity.

While a well-established solution for the B-B spatial descriptor exists, the A-B spatial

descriptor is more complicated.

A-B: The spatial descriptors between A-B are motivated by the goal of trend mod-

eling in a lower dimensional space. Universal Kriging, which will be introduced in the

following sections, assumes data to be composed of a deterministic trend and random

component with a spatial continuity. As trend modeling of the interaction potential in 6D
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space is challenging (and also not required with Universal Kriging), a lower-dimensional

description is favorable. Generally for molecular interaction, the emphasis is on small

distances between molecules, as well as their contact / proximity intensity (i.e. if two

small side-chains are in proximity or if a substrate is at a tailored binding zone of an

enzyme forming an extensive ’contact surface’). Motivated by this, three different de-

scriptors were tested with the following definition, advantages, and disadvantages. Let

Nbb,A and Nbb,B be the number of back-bone atoms of A and B, respectively, and δi−j

the distance between the center of atom i of A and j of B.

• δm is defined as the minimum distance between the back-bone (bb) atoms of A and

B corrected by dcoll,bb. Advantages of this descriptor are that it is referenced to

zero (distinct position for binding) and provides a simple measure. A disadvantage

is that it does not capture proximity intensity.

δm = max¶ min
j∈Nbb,B

min
i∈Nbb,A

δi−j − dcoll,bb, 0♢ (4.10)

• δm is defined as the average minimum distance of all back-bone atoms of B to

any back-bone atom of A corrected by dcoll,bb. An advantage of this descriptor

is that it captures proximity intensity well. A disadvantage is that it starts at

a non-zero value determined by the molecular conformations and complex trends

with multiple minima/maxima are possible in case of more than one binding site.

δm =

Nbb,B∑

j=1

max¶ min
i∈Nbb,A

δi−j − dcoll,bb, 0♢/Nbb,B (4.11)

• δ is defined as the average distance between all A and B back-bone atoms. An

advantage of this descriptor is that it captures proximity intensity well. A disad-

vantage is that it starts at a non-zero value determined by the molecular confor-

mations and complex trends with multiple minima/maxima are possible in case of

more than one binding sites.

δ =

Nbb,A∑

i=1

Nbb,B∑

j=1

δi−j

Nbb,ANbb,B
(4.12)

All three spatial descriptors were investigated and an overview will be provided in

App. D.1 for HBcAg. Overall, δm was chosen for trend modeling as it provides a simple

overall descriptor for all ranges, including the collision region, which is especially useful

and will be discussed in Sec. 4.3.6. Alternatively, a wide variety of other spatial descrip-

tors could be derived, e.g. simple functions between strategic back-bone atoms similar
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to radial basis functions. However, this is beyond the scope of this work and could be

addressed in the future.

B-B: The spatial descriptor between B-B is motivated by providing a distance mea-

sure between two conformations, i.e. two different relative positions and orientations

of molecule B. In this context, A is always located at the origin. Such a measure is

for example necessary to describe spatial continuity between two MD simulations in a

lower-dimensional space, which captures both translatory and rotatory differences. Such

a measure is provided by the well established root-mean-squared deviation (RMSD) of

the reference structure of B as

δr =

√
√
√
√ 1

NB

NB∑

i=1

δ2
i,B1−B2 , (4.13)

where Nbb,B is the number of back-bone atoms of molecule B and δi,B1−B2 is the distance

between atom i in the two conformations of B, i.e. B1 and B2. As it can be seen, the

back-bone structure of B is used as it provides sufficient detail and enables a faster

computation in comparison to using the full reference structure. Overall, it provides a

meaningful 1D descriptor capturing translatory and rotatory differences.

4.3.3 Basic Functions for Trend and Variogram Modeling

For trend and variogram modeling, a set of basic functions is required. In the context of

trend modeling, it is desired for these functions to be continuous and asymptotic towards

a constant value. In the context of variogram modeling, beyond similar considerations

more stringent mathematical requirements exist (e.g. conditional definiteness) [294]. As

fulfillment of these requirements is difficult for arbitrary functions, a set of basic func-

tions is typically used in literature [294, 295, 297]. Such a subset of functions is used in

the context of this work and shown next. The nomenclature follows literature, where n

is termed nugget2, s sill, and r range. As basic functions, the constant, linear, exponen-

tial, spherical, Gaussian, cubic, and generalized logistic function (GLF) are used. All

functions are used for trend modeling (linear typically only for box size compensation)

and all except for the constant function and GLF used for variogram modeling. The

2Note that the nugget(-effect) describes the discontinuity at zero and is inspired by the geological
background of Kriging in the context of finding a gold nugget. Typically, this discontinuity is required
for Kriging to honor the observed measurements and for most models desired. In the context of this
work, the discontinuity at zero is omitted in order to avoid the introduction of noise into the overall
interaction potential.
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equations are

ξ = x/r, χ = x − r , (4.14)

fconst(x) = c , (4.15)

flin(x) = a + bx , (4.16)

fexp(x) = n + (s − n)(1 − e−3ξ) , (4.17)

fsph(x) = n + (s − n)(h(−χ) × (1.5ξ − 0.5ξ3) + h(χ)) , (4.18)

fgauss(x) = n + (s − n)(1 − e−x2r−2/3

) , (4.19)

fcubic(x) = n + (s − n)(h(−χ) × (7ξ2 − 8.75ξ3 + 3.5ξ5 − 0.75ξ7) + h(χ)) ,(4.20)

fGLF(x) = n + (s − n)(1/(1 + e−Bχ)) , (4.21)

where h is the heaviside function and B is an additional fitting variable for GLF. A

visualization of all base functions can be found in Fig. 4.4. Fitting is performed using

weighted-least-squares and the trust region reflection algorithm as implemented in SciPy

[316] (version 1.3.3) and Matplotlib [317] (version 3.3.4) in Python. For all functions,

reasonable start conditions were specified and the range constrained between the mini-

mum and maximum x value. For variogram fitting, n and s were constrained to positive

values as required to be meaningful. For each data set to be fitted, all function fits were

performed and the best considering its R2 selected.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Linear (only trend)
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Figure 4.4: Visualization of all basic functions with the following parameters:
r = 1, n = 0.1, s = 1, c = 1, a = 0.1, b = 0.6, B = 10

Concerning validity and usage in the overall Kriging algorithm, a variogram fit is con-

sidered valid if n < s, r < 5 nm, σ(r) < 0.2r, σ(s) < 0.2♣n − s♣, or σ(n) < 0.2♣n − s♣,
where σ indicates the estimation variance of a parameter. A trend fit is considered valid
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if r95 < 4 nm, r95 > 0.2 nm, σ(r) < 0.2r, σ(s) < 0.2♣n − s♣, σ(n) < 0.2♣n − s♣, or for

GLF σ(B) < 0.25B, where r95 is the range when f = n + 0.95(s − n) for GLF.

4.3.4 Multi-Variant Field Interpolation using Univeral Kriging

In order to estimate the interaction potential field based on a set of MD samples, a Uni-

versal Kriging approach was implemented [225, 226]. Kriging is most widely applied in

the field of geostatistics, as it provides the best linear unbiased estimation for arbitrarily

dimensional problems and is consequently especially useful when sampling is expensive

(e.g. in geological exploration). Similarly, it provides a useful tool for the intermolecu-

lar field interpolation as the dimensionality of the problem is comparatively large with

regards to the sampling cost. In the following, the essential equations and background

on Universal Kriging will be provided following literature and the terminology therein

[294–297].

4.3.4.1 Method

The overall aim of Kriging is to estimate the value of a spatially distributed random

variable at any location in an arbitrary dimensional space based on a set of observa-

tions, also called data set in the following. Kriging assumes that the estimation can

be inferred by a linearly weighted combination of the observations and provides the

best linear unbiased estimation (BLUE) upon the fulfillment of certain mathematical

assumptions (e.g. intrinsic stationarity) [294]. In this regard, optimality (best) refers

to minimum estimation variance. Consequently, the main question to be answered by

Kriging is the determination of optimal weights for estimation. While a variety of Krig-

ing algorithms exist, typically, three kinds of Kriging are distinguished: Simple Kriging,

Ordinary Kriging, and Universal Kriging. Of the three, Universal Kriging presents the

most general one and will be presented in the following, as it is used within this work.

For details on Simple and Ordinary Kriging the interested reader is referred to litera-

ture [294–297]. In brief, Simple Kriging requires a zero mean of the investigated field /

process, while Ordinary Kriging requires a constant mean (at least locally), which can

be unknown. Due to the strong trend over the distance between molecules, neither one

is applicable.

In this work, the variable to be estimated is the interaction potential UK(x⃗, q), which is

a super-position of the potential components P (see Sec. 4.3.1), in the space of relative

position x⃗ and orientation q. The estimation is performed as a linear combination of
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NK observations Up,i as

UK(x⃗, q) =
P∑

p=1

UK,p(x⃗, q) =
P∑

p=1

NK∑

i=1

wp,iUp,i(x⃗i, qi) . (4.22)

Note that in most cases, only a subset of observations NK ⊆ Ntot (local neighborhood)

out of the total set of observations is used for estimation at a given location. This is

motivated by computational feasibility, as a linear system of equation has to be solved

for the determination of weights3, and also leads to an improved estimate, as Universal

Kriging estimates the local mean based on this observation set (local neighborhood). A

convergence study of the required size of NK along with the search algorithm is provided

in App. C.2.

The underlying process, in this case potential U (each potential component separately,

index p dropped for simplicity), is assumed by Univeral Kriging to be decomposable into

a systematic trend µ(x⃗, q) and random component Y (x⃗, q) as

U(x⃗, q) = µ(x⃗, q) + Y (x⃗, q) , (4.23)

where the systematic trend µ(x⃗, q) can be modeled by the linear combination of M

deterministic basic functions fm

µ(x⃗, q) =
M∑

m=0

bmfm(x⃗, q) =
M∑

m=0

bmfm(δm) . (4.24)

The basic functions fm can either be modeled in the same space as the original pro-

cess or a fitting derived space. Due to the significant complexity of generally highly

anisotropic macromolecular interaction, a lower-dimensional space of the minimum dis-

tance δmin between back-bone atoms of molecules A and B was chosen (see Sec. 4.3.3

for more details). This approach has the advantage of general applicability and negative

effects due to the simplification are mitigated by the local estimation of the mean in the

neighborhood of the estimate. To address bias as a result of sampling heterogeneity, the

measurement data set is weighted using an inverse Gaussian weighting scheme using δr

as a distance measure and a Gaussian width of 2 nm. Based on these weights for all

measurement observation, the trend fitting approach in Sec. 4.3.3 is employed and the

best resulting fit in combination with the constant function for local mean estimation

used to model the trend. Note that for potential components, which are dependent

on the MD system size (box size), trend fitting was performed on the residuum after

3For a data set of 100’000 points the memory requirements of the linear system of equation alone
would exceed 37 GB at single point floating precision.
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box size compensation (linear fit through either the number of water molecules or ions

depending on potential component).

After subtraction of the trend, the remaining random component Y has approximately

a zero mean in δm space for all tested systems as required by Universal Kriging. In

addition, Universal Kriging requires Y to be intrinsically stationary and optimality of

the estimation relies on Y being Gaussian [294]. This poses a challenge in the case of

molecular interaction as the width of the (approximately) Gaussian distribution changes

from a finite value at small δm towards zero for large δm, i.e. a delta distribution. To

solve this, the problem and data set is split into sections in δm space. Within each

section, the requirement of intrinsic stationarity is approximately fulfilled. At the same

time, the requirement of a Gaussian distribution for estimation optimality is fulfilled in

the important close (binding) region and only violated at large distances, which tend

towards zero anyway.

Over the range of the trend function, five sections are used and the data within each

section, as well as the upper and lower neighboring section, used. By inclusion of data

points from the neighboring upper and lower section issues with jumps of the estimate

(not estimation variance) at the boundaries and spatial paradoxes are avoided. The

spatial continuity of Y is then described for each section by a separate residual variogram

γY using the root-mean-square distance of back-bone atoms δr as a distance measure4

between two relative locations:

γY (δr) =
1

2
Var(Y ((x⃗, q) + δr) − Y (x⃗, q)) . (4.25)

γY is estimated based on the correlations between all data point for each section. As

the number of correlations is in the order of 1010 and consequently direct curve fitting is

unfeasible, an automatic iterative binning strategy was derived (see App. C.1 including

discretized form of eq. 4.25) followed by the fitting procedure described in Sec. 4.3.3

using the standard deviation in each bin as its uncertainty. Note that in the context

of variogram modeling, the nugget value n (see Sec. 4.3.3) can be interpreted as the

intrinsic measurement error (e.g. due to the thermodynamic ensemble), while the sill can

be interpreted as the overall variance of the process. Any failed sectional Variograms

(see Sec. 4.3.3) are replaced by a valid neighboring sectional Variogram, preferably from

a lower section.

Based on the trend and variogram models, which are separately derived for each po-

tential component, the optimal weights providing the unbiased estimate with minimum

estimation variance at a location x⃗ and q denoted as κ can then be determined solving

4Note that generally, anisotropic direction-dependent variograms models are possible. Due to the
dimensionality of the problem and sampling cost, this is not feasible in this context.



66 4 Intermolecular Interaction

the Universal Kriging system
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As all components have to be on the same order [318], a normalization was performed

for both variogram and trend functions. For details on the background, derivations, and

proofs the interested reader is referred to refs. [294–297]. As it can be seen, the system of

equations contains information on the spatial correlation between the estimate location

and data points, the spatial correlation within the data points, and trend. Furthermore,

row N + 1 constrains the sum of weights to one and leads to a local estimation of

the mean. Based on the resulting weights for each potential component, the estimate

can be calculated using eq. 4.22. Furthermore, the estimate variance for each potential

component P can be calculated as

σ2
K(x⃗κ, qκ) =

N∑

i=1

wiγY (δr,κ−i) +
M∑

j=0

λjfj(x⃗κ, qκ) . (4.26)

The estimation variance can be and is later used to iteratively resample and improve

the estimation of the potential field. Note in this context that solving the Universal

Kriging system requires no knowledge of the actual value of the data points, but only

their location, as well as a trend and variogram model.

When solving the system of equation, one of the most frequent issues is that the matrix

can become ill-conditioned, especially for a variogram model based on a Gaussian func-

tion due to the zero slope for small x. In order to avoid such issues [319], the system

is solved using the bidiagonal divide and conquer singular value decomposition (SVD)

using double precision and a maximum factor between smallest and largest eigenvalue

of 106. The overall algorithm was implemented in C++ with hybrid MPI+OpenMP

parallelization using the library Eigen (revision 14db78c53) for solving the linear system

of equations using SVD [226]. For function fitting, the code was coupled to SciPy [316]

(version 1.3.3) and Matplotlib [317] (version 3.3.4) in Python. As previously mentioned,

the described procedure is carried out for all potential components separately, as trend

and spatial correlation can differ. The overall interaction potential can be calculated as a

super-position of all potential components as shown in eq. 4.22. It was found that out of
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all potential components only the A-B potential contained sufficient spatial correlation

and signal-to-noise ratio to perform Kriging. For all remaining potential components,

only the trend was used.

4.3.4.2 Grid Design

The presented Universal Kriging approach provides a method to estimate the respective

variable of interest, in this case interaction potential, at one location based on nearby

samples. In order to use this knowledge during a MDEM simulation, a more general

representation is needed, as Kriging cannot be performed for all contacts during a sim-

ulation. For this, the interaction potential is determined on a grid. On this grid, a

numerical gradient operation can then be carried out to determine forces and torques of

two macromolecules in contact. At this point, the most important aspects for homoge-

neous grid design of translatory and rotatory dimensions will be discussed. Alternative

representations will be discussed later, including methods for refinement.

In order to design the interaction potential grid, three aspects are important: the

structure of both molecules, the interaction cutoff dinter,cut
5, and the available mem-

ory. Molecule A is located at the origin, while molecule B can have any configuration

nearby, leading to a 6D representation of all relative positions x, y, z and orientations

α, β, γ (see App. A.1). In this context, the cartesian space of relative positions has to

incorporate all configurations with an orientation inside the cutoff. In order to calculate

the extend of the cartesian space C, the maximum distance of any atom of B from its

center of mass (COM) has to be added to the bounding box of molecule A at the ori-

gin extended by dinter,cut in all directions. After C is known, the equivalent rotational

equivalent R has to be determined. While the extend is known for all systems to be −π

to π for α and γ and −π/2 to π/2 for β, an equivalent angular resolution to a cartesian

resolution has to be determined. For this, the maximum distance of any atom of B from

each axis in its reference frame at the COM can be used to calculate the angular equiva-

lent for which the segment of a circle with that radius is equal to the cartesian distance.

Note that this methodology employs the strictest conditions on the angular resolution

for cartesian equivalence. Alternatively, the RMS distance from the axis could be used.

Based on C, R, and the angular equivalents, the finest grid resolution for a specified field

size (memory size available) can be determined. Unless otherwise indicated, any grid

definition refers to this methodology and is consequently fully described by the cartesian

grid resolution. In addition, a more advanced multi-grid hierarchical field approach was

developed, which will be presented in the following.

5The interaction cutoff dinter,cut is defined as the maximum of the trend cutoff (largest spatial de-
scriptor, δm , after which the absolut trend sum is less than 1 kJ/mol) and Kriging cutoff (largest spatial
descriptor, δm , after which the absolut trend residual of any data point is less than 1 kJ/mol).
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Figure 4.5: Visualization of the multi-grid hierarchical field approach in 2D.

Multi-Grid Hierarchical Fields While the presented grid design covers the entire

interaction space, it is limited in local resolution due to constraints in memory. In

order to resolve this problem, an approach was developed to automatically create higher-

resolution grids in regions of interest, which are then hierarchically stacked and searched

during calculation of forces and torques. This approach enables an efficient calculation

of forces and torques due to the maintained homogeneous grid design. Alternative

approaches will be discussed in Sec. 4.4.2.

The main idea of this approach is to locally improve grid resolution based on four possible

criteria in descending order of priority: potential minima, potential maxima, gradient

maxima (estimated as absolute maximum difference to a neighboring grid point), and

second gradient maxima (similarly from first gradient). In the following, the approach

will be described and a 2D visualization can be found in Fig. 4.5.

1. Specification of the number of refinement grids for each criteria, which are in the

previously stated order of priority.

2. Load overall potential field and mark all grid locations outside of cutoff and with

collisions (conditional on being further than 0.6 nm from the closest MD point) as

not permissible for refinement.
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3. Identify grid location matching the extrema of the current criteria.

4. Create a new grid centered in found location with 10 steps at a resolution of 0.15

nm (angular equivalent according to previous methodology) using the Universal

Kriging model. Account for wrap-around of angular dimensions.

5. Mark all grid locations of overall grid within new grid as not permissible for further

refinement.

6. Return to step 3 until the specified number of grids for each criteria are generated

or no more permissible points are available for refinement.

As it can be seen in Fig. 4.5, the proposed approach provides a good methodology to

refine the grid resolution in regions of interest, while keeping the memory requirements

low.

4.3.4.3 Initial Sampling and Iterative Refinement

One of the main advantages of Universal Kriging is that it provides an error estimate

and consequently a powerful way to improve the overall estimate. Nonetheless, Kriging

requires a sufficient initial data set to perform statistical analysis concerning trends

and spatial correlation. Consequently, a two-step process was employed to first perform

systematic random sampling over the interaction region, followed by iterative resampling.

This procedure will be discussed in the following.

Initial Sampling In the field of sampling statistics, a variety of techniques exist. Ex-

amples are purely random sampling, cluster sampling, and latin hypercube sampling,

see e.g. ref. [320] for further. In the context of this work, three aspects are most impor-

tant: Firstly, interaction occurs within a certain interaction distance of a 6D space. The

space extends towards larger distances, while smaller distances are especially crucial for

binding. Consequently, simple random sampling is not favorable. Secondly, the interac-

tion region is a highly complex subregion of the original 6D space. In combination with

the dimensionality, advanced placement is challenging. Thirdly, for spatial correlation

analysis at least a subset of samples have to be in proximity to provide information

on spatial correlations at small distances. As a result, a systematic random approach

consisting of two components was employed to generate the initial sample set.

• Systematic random sampling at different distance classes was performed to

control sampling density over the interaction distances. Distance was measured as

the minimum distance between the center of mass of atoms of A and B. Classes
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were defined as following: I) 0.4 - 0.5 nm for an emphasis on binding locations II)

0.5 - 2.5 nm in 0.2 nm increments for an emphasis on binding behavior III) 2.5 - 5.0

nm in 0.5 nm increments for an ephasis on determining cutoff. Typically 25’000

samples were carried out in region I and 5’000 for each increment in regions II

and III. Each sample was created by randomly inserting (position and orientation)

both molecules in a 100 nm box until their distance was within the specified region.

Credit for the implementation is given to Uwe Jandt.

• Proximity resampling was performed for the sample set to contain samples at

small distances between each other and improve Variogram estimation. For this,

a set of 50 samples in each increment of region II was replicated 50 times and

the dynamic nature of the MD simulation used, which caused all final sampling

locations to deviate slightly from each other. This sample set was only used for

Variogram analysis and not for estimation of the field to avoid any bias. This was

only employed for the PDC system and not necessary for the HBcAg system.

Iterative Refinement In order to improve the potential field estimate, an iterative

resampling strategy was derived. Resampling was performed based on four criteria:

(normalized) estimation variance maxima, potential maxima, potential minima, and

gradient maxima. The derived strategy will be outlined in the following and results

presented for each model system in the results section. In each case, a set of resampling

points is determined per iteration for which MD simulations are run.

First, the special case of estimation variance maxima will be discussed. Normalized and

absolute estimation variance are distinguished, as per Kriging section the absolute values

differ and the overall estimation variance is meant to be improved, which also includes

outer points for which the absolute variance is lower. One of the main advantages of

Kriging is that not only an estimation variance is known along with the field estimate,

but also that no knowledge of the actual data point values is required to determine

the variance. During variance resampling, this advantage was exploited to iteratively

determine the resampling locations as:

1. Find maximum (normalized) estimation variance on the grid under the constraint

that no collision of molecules is present (see Sec. 4.3.1).

2. Add virtual data point to data set at this location and recalculate the variance of

affected nearby grid points.

3. Return to step 1 until the desired number of resampling points is found.
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Although this placement procedure of resampling points is not necessarily optimal as

combined placement of multiple resampling points can provide a better result, the proce-

dure provides very good results and exploits knowledge of the model in a straightforward

and computationally efficient manner. Furthermore, due to the dynamic nature of the

MD simulations, no exact placement of resampling points is possible either way. This

also motivates the iterative resampling strategy. For each iteration of variance mini-

mization, a set of 5’000 resampling points was run. Variance minimization resampling

was always performed before extrema resampling to first improve the overall estimate

and avoid false-negatives concerning e.g. binding location identification.

Second, the more general cases of extrema resampling will be discussed, i.e. potential

minima, potential maxima, gradient maxima. Extrema resampling is motivated by

improving the estimation of location and potential value of e.g. binding locations and

repulsive locations. For this, an extrema search algorithm was implemented:

1. Find the current (global) extrema on the grid under the constraint that no collision

of molecules is present (see Sec. 4.3.1).

2. Determine all neighboring points of the current extrema for which a continuous

increase/decrease (minima/maxima) is present. This is called the neighborhood

of the extrema. Direct neighbors are called first-level neighbors.

3. Remove extrema and neighborhoods from eligibility for current extrema and return

to step 1 until the desired number of resampling points is found.

The gradient field is calculated beforehand as the maximum absolute potential difference

to a neighboring grid point. For each iteration of extrema resampling, a set of extrema

points and random first-level neighborhood points relative to the extrema’s neighborhood

size (after limiting the maximum to 25 %) was run. Results of iterative resampling will

be provided for each model system in the results section. In the following, a simplified

2D example will be shown for validation and visualization.

4.3.4.4 2D Example

In order to validate the algorithm and provide a visual understanding, a two dimensional

example was created. The example consists of a random scalar field (no units) between

two objects of radius 0.15 and can be found in Fig. 4.6 and Fig. 4.7. The random truth

field (Fig. 4.6 top left) has similar statistical properties as typical MD data and was

created in the following fashion: In a first step, a random field was generated using

sequential Gaussian simulation [321] using a Gaussian variogram model with a range of
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0.7, nugget of 3000, and sill of 10000. In a second step, a scaling of the random field

to zero was performed between a minimum distance of 0.4 and 1.2 using a Gaussian

function. Lastly, a trend of -400 at object contact and zero at range one with Gaussian

shape was super-positioned.

The simplified example shows how the Kriging algorithm performs resampling based on

normalized variance minimization. Initially 20 samples are randomly selected and then

iteratively 10 samples are added for each of 18 iterations (200 samples in total). Note

that in order to ensure sufficient quality of the variogram, the full field was provided for

statistical analysis. Selected iterations in Fig. 4.7 show how the algorithm automatically

chooses resampling locations to reduce the overall estimation variance and ’learn’ the

entire interaction potential. As Fig. 4.6 shows, the overall trends and extrema (e.g. min-

ima, meaning binding locations) are identified and the final estimation error consists

largely of noise and small-scale discontinuities. In addition to this simplified example,

the overall sampling algorithm employs even more advanced resampling techniques based

on extrema resampling to localize and quantitatively evaluate e.g. binding, leading to

even better results.

4.3.5 Biased MD and Insertion of Empirical Data

In many cases a bottom-up parameterization of an effective surrogate model is not

sufficient. Due to limitations of the lower-scale model, e.g. model simplifications or

sampling resolution during parameterization of the effective model, not all effects of the

actual system can often be captured. Similar limitations were found to apply to the

parameterization using MD. These include, but are not limited to the following:

As computational resources are always limited, only finite sampling can be performed for

parameterization. Especially in the context of the highly complex conformational space

during binding, similarly to the problem of protein folding, this leads to a significant

noise ratio in the data and capturing binding events, especially at short MD durations,

can be challenging due to its low probability. Furthermore, to the knowledge of the

author, no MD force-field is parameterized with the motivation of accurately reproducing

intermolecular interaction potentials, especially for generic systems. While deriving more

appropriate and generally applicable MD force-fields will likely remain a research topic

for decades, two approaches were attempted to overcome some of the limitations in the

context of sampling.

First, the impact of simulation time in the context of binding was evaluated by per-

forming biased MD simulations at the binding locations. For this, the binding

locations were first extracted based on literature knowledge of the structural assembly,
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Figure 4.6: 2D example of Universal Kriging algorithm starting from 20 samples
after 18 iterations with 10 samples per iteration (200 samples total). For variogram
determination the entire truth field was provided to ensure sufficient statistics.

e.g. for HBcAg2 four binding locations based on PDB 1QGT capsid. As the exact bind-

ing positions typically contain overlapping atoms of the reference structures, in a first

step an algorithm was written to find the closest (w.r.t. δr , root-mean-square distance

of back-bone atoms) collision-free location. The algorithm was based on a grid search

with five steps in all directions and dimensions with a resolution of 0.2 nm or 10°. For

each binding location, 1’016 MD simulations of 10 ns duration were performed with the

same settings as described in Sec. 4.3.1. These biased simulations of extended time were

performed to check whether this might improve identification of binding in the overall
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Figure 4.7: 2D example of Universal Kriging algorithm after initial random
sampling (20 samples total), two iterations of 10 samples each (40 samples total), and
seven iterations of 10 samples each (90 samples total).
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potential.

Second, various approaches to insert additional knowledge through empirical

data points were evaluated and the most effective one found will be presented in this

work. For this, two sets of empirical data points are introduced into the data set for

potential A-B. These points are considered virtual data points and have no impact on the

trend or variogram. The first set of points has a constant potential Uemp,bind,center and

is located on a regular grid centered at the binding location (not corrected for avoiding

atom collisions) with one step dstep,center (e.g. 0.1 nm equivalent to -0.1, 0.0, and 0.1 nm)

in all directions including rotational equivalents. This replication is necessary due to the

possible existence of data points from MD sampling in the proximity of the binding site,

causing an insufficient impact of a single empirical data point. The second set of points

is also located at the binding location, but has an increasing potential with increasing

distance from the binding location representing the shape of the potential minima. The

best solution found has a Gaussian shape (see eq. 4.19) with a range of remp,bind in δr

space and an asymptotic value of Uemp,bind,outer located on a regular grid with two steps

dstep,outer in all directions (e.g. 0.2 nm equivalent to -0.4, -0.2, 0.0, 0.2, 0.4 nm), including

rotational equivalents. Empirical points are added up to the range remp,bind and up to

an increase of Nemp,coll,inc in back-bone atom collisions relative to that at the binding

location to limit overlapping configurations.

In order to quantitatively evaluate the impact on structural stability and derive appro-

priate parameters for the insertion of empirical data points, an objective function for

structural stability was used (see App. C.3). A variety of parameters were evaluated

and the results including biased MD simulations will be presented in the results.

Additional approaches to overcome the sampling problem worth exploring might be in

similar contexts as protein folding, e.g. the replica exchange method. However, in the

context of this work a further investigation into this exceeds the computational resources.

4.3.6 Molecular Collisions

The presented methodology is limited by the fact that configurations containing molec-

ular collisions cannot be investigated in the same manner. While it might be feasible to

use steered MD to parameterize collision configurations, the complexity would become

similar to the non-colliding potential. As the primary interest and consequent deploy-

ment of computational resources of this work lies on the non-overlapping potential, a

simplified model for capturing collisions was implemented inspired by the mechanism of

repulsion: overlapping atoms.
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When two molecules are overlapping, the interaction potential is modeled to increase as

a function of the number of atom collisions and proximity of the configuration (relative

position and orientation) to MD data. The motivation for including the proximity to

MD data comes from the fact that conformation changes can occur during interaction /

binding. When such conformation changes are present in the MD data, nearby configu-

rations are considered possible, as the conformation changes avoid molecular collisions.

Consequently, a configuration between two molecules is described by the number of

back-bone collisions Ncoll,bb (definition see Sec. 4.3.1), the number of side-chain atom

collisions Ncoll,side = Ncoll,full − Ncoll,bb (definition see Sec. 4.3.1), the distance to the

next MD point dMD (δr as distance measure). The respective values are calculated for

each point on the interaction potential grid.

The proposed model increases the interaction potential as a function of these measures.

The model will be described qualitatively first to emphasize the background and moti-

vation, followed by the mathematical formulation. As the collisions field (Ncoll,bb and

Ncoll,side) contains jumps due to its discrete nature, in a first step smoothing of the

collision fields is performed using a Gaussian kernel G with a width wcoll. In order for

a collision to increase the potential, the following criteria need to be fulfilled:

• the smoothed number of collisions exceed a threshold value of Nmin,bb or Nmin,side,

respectively; and

• dMD is larger than dMD,min + wMD,min. If it is between dMD,min and dMD,min +

wMD,min, it is linearly scaled from zero to one to achieve a smooth increase in

repulsion potential.

Based on the fulfillment of these conditions, the potential is increased by a repulsion

coefficient crep,bb or crep,side, respectively. Overall, this leads to

U = Ukrig + f(dMD) ×

(crep,bb × h(ζbb) × ζbb + crep,side × h(ζside) × ζside) , (4.27)

ζbb = G(Ncoll,bb, wcoll) − Nmin,bb , (4.28)

ζside = G(Ncoll,side, wcoll) − Nmin,side , (4.29)

f(dMD) =







1 if dMD > dMD,min + wMD,min

0 if dMD < dMD,min

dMD−dMD,min

wMD,min
else

(4.30)

where h is the heaviside function. Optionally, the base potential Ukrig can also be

smoothed with a Gaussian kernel G of width wkrig (none as default). More complex
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approaches were investigated, but did not lead to improved results. In order to determine

the parameters, a combination of optimization and parameter studies based on the

stability of a HBcAg capsid and PDC 60-mer (see App. C.3 for objective function) was

carried out, which will be presented in the results sections.

4.3.7 Method Summary and Uncertainties

Overall, an extensive framework for deriving data-driven interaction potential fields

from MD for the configuration space of two macromolecules has been presented. A

visualization of the method procedure can be found in Fig. 4.3. Focus of this work is the

multi-variant estimation of interaction potential including a sampling procedure based

on a set of MD potential data. The presented approach provides a methodology for

deriving the interaction potential field based on a set of observations using Universal

Kriging as a best linear unbiased estimator, including an estimation variance. The various

components of the methodology include spatial descriptors (Sec. 4.3.2), basic functions

for trend and variogram modeling (spatial correlation, Sec. 4.3.3), Universal Kriging

(Sec. 4.3.4), and treatment of molecular collisions (Sec. 4.3.6). Furthermore, an approach

for insertion of empirical knowledge has been presented to enable the often needed

correction due to limitations of the lower-scale model (Sec. 4.3.5). The methodology has

been presented in detail providing parameters, background, and a 2D example. Overall,

the presented method procedure is summarized:

1. Trend fitting of all potential components using basic model functions (Sec. 4.3.3)

in a lower-dimensional space using spatial descriptors (Sec. 4.3.2).

2. Spatial correlation analysis and Variogram fitting of all potential components

for trend-removed residuals (Sec. 4.3.3 and 4.3.4).

3. Additional data (optional): Insertion of empirical knowledge, e.g. from exper-

imental findings (Sec. 4.3.5).

4. Universal Kriging of qualifying potential components to determine best linear

unbiased estimate (Sec. 4.3.4).

5. Summation of all potential components for overall potential (Sec. 4.3.4).

6. Molecular collision analysis for increasing overall potential (Sec. 4.3.6).

7. Iterative resampling for improvement of estimation (Sec. 4.3.4.3).

Lastly, the main uncertainties of the method should be named. The first main uncer-

tainty comes from the underlying MD model. In the context of this work, this model
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is considered a black-box model, which was provided by collaborators, and it is only

noted that this model comes with limitations due to the force-field, general extraction

of potentials, and more. Note that to the knowledge of the author, no force-field is

parameterized with the goal of providing accurate (relative) interaction potentials. This

work, however, focuses on how such data can be post-processed to a meso-scale model,

as well as providing a sampling approach.

The second main uncertainty comes from the estimation at each grid location of the

potential field. The presented Universal Kriging approach provides the best linear unbi-

ased estimator including an estimation variance based on the surrounding data including

its spatial structure, agreement with trend, and local estimation of the mean. Conse-

quently, a good estimation of the uncertainty of the Kriging model is provided. The

main limitation of the approach lies in the fact that some potential components possess

such significant noise that Kriging cannot be reasonably performed, in which case only

the potential trend is used. While this is the most reasonable approach at this point,

it also presents the biggest opportunity for future improvement: More elaborate trend

models could provide a more detailed and improved overall potential. However, special

care would have to be taken to avoid over-fitting and such a further improvement is

beyond the scope of this work.

The third main uncertainty comes from the dimensionality of the interaction space.

Due the highly complex 6D space, sampling is - at least with current computational

resources - always limited. In this context, the presented approach for insertion of

empirical knowledge (Sec. 4.3.5) is especially useful, as it provides means to make up at

least partially for this sampling limitation.

In the following section, the approach for deriving forces and torques from the interaction

potential will be described. This can then be used to model the interaction of two

macromolecules in conjunction with the diffusion model presented in Ch. 3.

4.4 Derivation of Interaction Forces and Torques From Po-

tential Fields

In this section, the background and equations for deriving interaction forces and torques

from the previously determined potential fields will be discussed. Theoretically, the

forces and torques could be pre-calculated before the simulation and access performed

using linear interpolation. However, it was found that the penalty on the grid resolu-

tion in the context of memory consumption due to the additional dimension was too



4 Intermolecular Interaction 79

significant. Additionally, alternative representations and possible simplifications will be

provided.

4.4.1 Direct Usage of Potential Field

In order to calculate the forces and torques on molecule A resulting from a pairwise inter-

action with molecule B (position x⃗body,A→B in cartesian space and orientation θ⃗body,A→B

in Eulerian space), the gradient operations

F⃗pp,body,A = −∇tU(x⃗body,A→B, θ⃗body,A→B) , (4.31)

M⃗pp,body,A = −∇rU(x⃗body,A→B, θ⃗body,A→B) (4.32)

have to be carried out. This can be done numerically using finite differences and has to

be carried out in the local coordinate system of molecule A (body frame of reference).

For conciseness, the index ’body, A → B’ is omitted in the following. In the context of

this work, a central difference form was chosen to calculate the gradient as

−∇t,iU = −U(x⃗ + îhi, θ⃗) − U(x⃗ − îhi, θ⃗)

2hi
+ O(h2

i ) (4.33)

in second-order approximation or

−∇t,iU = −−U(x⃗ + 2̂ihi, θ⃗) + 8U(x⃗ + îhi, θ⃗) − 8U(x⃗ − îhi, θ⃗) + U(x⃗ − 2̂ihi, θ⃗)

12hi
+ O(h4

i )

(4.34)

in fourth-order approximation in cartesian space dimension i ∈ ¶x, y, z♢, where hi is

the grid spacing. When the point of gradient evaluation is not located directly on the

grid, two options of evaluating U were implemented: First, a linear interpolation in

6D space, which is computationally expensive due to having to access all 26 = 64 grid

points around the evaluation point of U , but provides a more accurate result. And

second, a nearest-neighbor search, which is computationally efficient, but provides a

less accurate and non-continuous result of the gradient. Tests on energy conservation

during time integration showed that the usage of a fourth-order gradient scheme and

linear interpolation is advantageous for coarse grids to improve energy conservation in

the absence of thermodynamic effects over longer time periods. However, in the presence

of the diffusion model and resulting thermodynamically induced randomness, a second-

order scheme and nearest-neighbor search was found to be sufficient.

While carrying out the finite difference scheme in cartesian space is straight-forward,

calculation in Eulerian space is not as simple. Reason for this is that the performed

orientation step has to be distributed over A and B as both are free in space, which
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consequently leads to a change in relative position of B with respect to A, i.e. rotation

and translation are coupled6. Note that this cannot be neglected. Furthermore, the

gradient in Euler space has to be transformed into a gradient in ¶x, y, z♢ space using the

respective Jacobian. As a result, the calculation of ∇rU has to be adapted accordingly

as

−−−→∇rU = −








cos(β) cos(γ) − sin(γ) 0

cos(β) sin(γ) cos(γ) 0

− sin(β) 0 1















∇r,αU

∇r,βU

∇r,γU








, (4.35)

∇r,iU =
U(M−1x⃗, θ⃗ + îϕi/2) − U(Mx⃗, θ⃗ − îϕi/2)

2ϕi
+ O(ϕ2

i ), (4.36)

(4.37)

with grid spacing ϕi in Eulerian space i ∈ ¶α, β, γ♢, where M is the relative rotation

matrix from θ⃗ to θ⃗ + îϕi/2. The fourth-order approximation of the gradient can be

calculated similarly.

Note that previously stated tests concerning order of gradient operation and search

scheme were carried out including orientation. For dimensions with periodicity (α and

γ) a wrap around was implemented, while for non-periodic dimension a mapping onto

the boundary was implemented when leaving the grid during gradient operation.

Note further that significant effort was placed on optimizing the implementation of this

gradient operation for Nvidia GPUs, as this operation is the most time-consuming of

the entire MDEM simulation.

4.4.2 Alternative Representations and Simplifications

This section serves to provide some alternative representations and simplifications, which

might be worth exploring in future works. While the chosen representation of homoge-

neous multi-grid fields provides many advantages, such as being one of the most flexible

representations of arbitrary interaction potentials, it also comes with disadvantages.

Most importantly, the grid resolution is limited by memory. While hardware memory

has improved very significantly and is expected to improve in the future, some limita-

tions will always apply. Additionally, the numerical gradient operation to be performed

for every contact during the simulation comes at a computational cost, which could be

reduced by an alternative representation.

6The step in cartesian space also has to be distributed over both A and B. However, a translatory
movement of neither A nor B results in a changing relative orientation of B, i.e. in this case translation
and rotation are effectively decoupled.
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The first alternative representation to be named is adaptive mesh refinement (AMR),

which is more commonly used in CFD to improve accuracy in solution sensitive regions.

AMR might provide a more powerful alternative to multi-grid fields, but will come at

the cost of more complexity for the numerical gradient operation and was therefore not

used within this work. Furthermore, a principle component analysis (PCA) might

provide more insight into degrees-of-freedom, which contain little information and can

therefore be neglected. Consequently, the interaction potential fields could be simplified.

Additionally, function representations of the 6D field might provide an alternative

for simple molecules. While generic formulations in a 6D space are challenging, for

certain cases sufficient solutions might exist, possibly aided by a PCA resulting in a

lower-dimensional representation. In a slightly more detailed fashion, the interaction

potential could be saved in a very coarse-grained representation of the molecules

structures with simple functional potentials between beads, similar to a very coarse-

grained force-field in MD. Lastly, the interaction potential could also be represented in

an ANN building upon the Kriging model to provide post-processed data. Detailed

investigation of the neural network design would be crucial to ensure an appropriate

representation, avoid over-fitting, and manage computational requirements during us-

age.

4.5 Critical Time Step

In order to estimate the critical time step τcrit,pp,field of the intermolecular interaction

model using data-driven potential fields, the oscillation period T0,pp,field of the corre-

sponding two-mass spring system of particles i and j can be used. The critical time step

for the interaction model can be estimated as

τcrit,pp,field = 2π · min

(√
µm,i−j

max(∥
−−−→
2∇tU∥)

,

√
√
√
√

min(µI,i−j,comp)

max(∥
−−−→
2∇rU∥)

)

, (4.38)

over the potential fields and structural features of all particle interactions i−j, where 2∇
is the second partial derivative of the potential field U defined as 2∇t =

(
∂2

∂x2 , ∂2

∂y2 , ∂2

∂z2

)

for translation and 2∇r =
(

∂2

∂α2 , ∂2

∂β2 , ∂2

∂γ2

)

for rotation (calculated equivalently to Sec. 4.4.1

using central finite differences with second-order accuracy and nearest-neighbor approx-

imation). Further, µm,i−j represents the reduced mass defined as

µm,i−j =
mimj

mi + mj
. (4.39)
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and µI,i−j,comp the (minimum) reduced mass moment of inertia over all permutations of

particle interaction i − j and degrees-of-freedom k ∈ ¶α, β, γ♢ as

µI,i−j,comp =
Ii,kIj,k

Ii,k + Ij,k
. (4.40)

As a result, the chosen approximation represents the worst-case approximation with

regard to the time step. Alternatively, one could calculate at significant computational

cost more accurately the reduced mass moment of inertia relative to
−−−→
2∇rU for the entire

field. However, this more conservative approximation was found to be sufficient as other

model components were dominating the critical time step for the investigated systems.

Further note that the used time step is typically lower by a factor of five [42].
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Bonded Interaction

5.1 Introduction

The main purpose of bonded interactions in the context of molecular modeling is to

describe strong interactions between the primary units. In the context of MD, bonded

interactions are typically used to represent covalent interaction between atoms or coarse-

grained beads and are consequently an integral part of each force-field [30]. A variety

of bonded interactions have been proposed in literature not just for pairwise interac-

tions, but also three and four body interactions. Applications of multi-body bonded

interactions are e.g. dihedral angles. Concerning the potential shape of bonded inter-

actions, beyond harmonic potentials a variety of more complex potentials such as the

Morse and Ryckaert-Bellemans potential have been used [30] and are e.g. implemented

in GROMACS [42]. For bonded interactions, oscillation frequencies can become a lim-

iting factor concerning time integration. This is especially true for light particles /

atoms, such as the hydrogen atom [42]. In order to address this, constraint algorithms

have been developed in literature. Examples are the algorithms SHAKE [322], RAT-

TLE [323], SETTLE [324] (for water molecules), LINCS [325], and its parallel version

P-LINCS [326]. For an in-depth discussion of (hononomic) constraint algorithms the

interested reader is referred to refs. [30, 42]. Constraint parameters are often addressed

directly in the force-field parameterization, e.g. for the Martini force-field [53, 125, 126].

In the context of macro-scale methods such as DEM, bonded interaction is typically

used to model structures and their breakage in a similar concept as the Finite Element

Method (FEM). This approach is typically called the Bonded Particle Model (BPM)

and applications range from models for rock mechanics [201, 202], over concrete [203],

to bio-polymers [200]. The main strength of such an approach in contrast to e.g. FEM

is that breakage can easily be modeled. However, parameterization of micro-scale bond

83
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parameters is especially challenging. While methods for parameterization and calibra-

tion have been proposed [327], parameterization based on macro-scale properties is not

yet possible. From a methodological point of view, BPM is equivalent to the bonded

interaction in MD and the main difference lies in application and scale.

In the context of this work, many of the previously developed approaches in MD and

DEM are build upon. However, in contrast to previously developed methods, the chosen

abstraction of an entire macromolecule as the smallest unit in this work does not only

contain positions for each object, but also its orientation. This is especially important

in the context of macromolecular bonds, as these are primarily meant to describe struc-

tures such as dimers, trimer, and multimers for which the relative orientation is crucial.

Consequently, this feature will be incorporated when formulating the bond models in

the following sections. Overall, two bond models will be provided in the scope of this

work. The first model will address pairwise bonding including normal, shear, torsion,

and bending using an orientation-defined approach. The second model will address poly-

mer fibers for which a three body bond model will be formulated to capture normal and

bending deformation of fibers.

5.2 Pairwise Elastic Bond Model (incl. Orientation)

5.2.1 Model Description

In order to model stable structures of multiple macromolecules, the following pairwise

linear elastic bond model was formulated based on relative position and orientation.

As it can be seen in Fig. 5.1, it contains four stiffness parameters for normal kbond,F n,

shear kbond,F t, torsion kbond,Mn, and bending kbond,Mt load. Shear and bending are

uniform within their load plane. Terminology is based on that of classical mechanics

and represents different components of a harmonic oscillator, which will be simplified

as being independent of each other. Stiffness parameters can either be determined

through analytical considerations, MD simulations, or optimization using empirical sta-

bility information. As the model is specifically meant to describe interactions between

macromolecules, which are stable over the entire simulation time, no breakage was im-

plemented. However, if a model system requires, breakage conditions based on a critical

bond energy, strain, or stress can be added.

Let a bond connect two particles i and j with the initial positions p⃗0,i and p⃗0,j and

current positions p⃗i and p⃗j , as well as the initial orientations q0,i and q0,j and current

orientations qi and qj . The average relative orientation of the bond at the current point
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i j

kbond,Fn kbond,Mnkbond,Mt

kbond,Ft

Figure 5.1: Visualization of the pairwise bond model.

in time can be calculated as

qbond,rel,i−j = ¶qiq
−1
0,i , qjq−1

0,j ♢, (5.1)

being the quaternion average [328] of both particles’ relative orientations with respect

to their initial orientation. Based on this, the relative rotation for i to reach equilibrium

(qbond,rel,i−j) is

∆qi = qbond,rel,i−jq0,iq
−1
i . (5.2)

For the typically small angles of ∆qi, the corresponding displacement angles can be

calculated from the quaternion elements as

∆θi = 2 arccos(0∆qi), (5.3)

∆θ⃗i = ∆θi








1∆qi

2∆qi

3∆qi








. (5.4)

Based on the normalized bond vector

b̂i−j =
p⃗j − p⃗i

∥p⃗j − p⃗i∥
, (5.5)

the displacement angle can be split into a normal (Mn, torsion) and perpendicular (Mt,

bending) component

∆θ⃗i,Mn = b̂i−j(b̂i−j • ∆θ⃗i), (5.6)

∆θ⃗i,Mt = ∆θ⃗i − ∆θ⃗i,Mn. (5.7)

Similarly, using qbond,rel,i−j and the original bond vector

b⃗0,i−j = p⃗0,j − p⃗0,i, (5.8)



86 5 Bonded Interaction

the desired bond vector b⃗des,i−j (equilibrium) and consequently normal and shear dis-

placements can be calculated as

b⃗des,i−j = qbond,rel,i−j b⃗0,i−jq−1
bond,rel,i−j , (5.9)

δ⃗i−j = p⃗j − p⃗i − b⃗des,i−j , (5.10)

δ⃗i,F n = b̂i−j(b̂i−j • δ⃗i−j), (5.11)

δ⃗i,F t = δ⃗i−j − δ⃗i,F n. (5.12)

Consequently, the bond force and torque on particle i and j can be calculated as

F⃗bond,i←j = kbond,F nδ⃗i,F n + kbond,F tδ⃗i,F t, (5.13)

M⃗bond,i←j = kbond,Mn∆θ⃗i,Mn + kbond,Mt∆θ⃗i,Mt + 0.5(p⃗j − p⃗i) × F⃗i←j , (5.14)

F⃗bond,j←i = −kbond,F nδ⃗i,F n − kbond,F tδ⃗i,F t, (5.15)

M⃗bond,j←i = −kbond,Mn∆θ⃗i,Mn − kbond,Mt∆θ⃗i,Mt + 0.5(p⃗i − p⃗j) × F⃗j←i, (5.16)

where F⃗j←i = −F⃗i←j and while also accounting for the (asymmetric) torque resulting

from shear and ensuring a zero moment balance over both particles. The bond stiffnesses

can be assigned either universally for all bonds or unique for each individual bond.

Alternatively, as many interactions are softening with increasing distance, e.g. in the

PDC 60-mer core the intra-trimer bonds are shorter and stiffer in comparison to inter-

trimer bonds. In order to model this with as few as possible parameters, the bond

stiffnesses can be formulated as

kbond,F n,i−j =
κbond,F n

b0,i−j
, (5.17)

kbond,F t,i−j =
κbond,F t

b0,i−j
, (5.18)

kbond,Mn,i−j =
κbond,Mn

b0,i−j
, (5.19)

kbond,Mt,i−j =
κbond,Mt

b0,i−j
, (5.20)

where b0,i−j is the initial bond length between i and j.

Note that this bond model was not employed for any of the systems studied in this

work and is provided as an extension for future model systems requiring treatment of

interaction portions through numerically more stable bonds.
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5.2.2 Bond Contact Point

The previously formulated bond model is valid for all pairwise bonds connecting the

center of mass (COM) of particles. However, when contact points are not coinciding

with the COM, the model needs to be modified. An example of a model system requiring

this is the E2 component of the PDC complex. While the COM is along the linker arm

of the enzyme, bonded interaction when forming trimer and 60mer structures occurs at

the catalytic domain of E2. In order to address such cases, the following modifications

can be applied.

Let p⃗bcp,i be the bond contact point for a particle i in the local coordinate frame of the

particle. When calculating bond displacements all occurrences of particle positions p⃗ for

i and j have to be replaced by the position of the bond contact point as

p⃗bcp,i = p⃗i + qip⃗bcp,iq
−1
i . (5.21)

Additionally, the resulting torque has to be adapted as

M⃗bond,i←j = kbond,Mn∆θ⃗i,Mn + kbond,Mt∆θ⃗i,Mt

+ (p⃗bcp,i − p⃗i + 0.5(p⃗bcp,j − p⃗bcp,i)) × F⃗i←j , (5.22)

M⃗bond,j←i = −kbond,Mn∆θ⃗i,Mn − kbond,Mt∆θ⃗i,Mt

+ (p⃗bcp,j − p⃗j + 0.5(p⃗bcp,i − p⃗bcp,j)) × F⃗j←i, (5.23)

to account for the modified contact point and lever arm.

5.2.3 Critical Time Step

In order to estimate the critical time step τcrit,bond,pair of this bond model, the oscillation

period T0,bond,pair of the corresponding two-mass spring system of particles i and j can

be used. The derivation based on Lagrangian mechanics can be found in most mechanics

textbooks and is omitted here as it presents a simplified case of the one shown in the

following section. The critical time step for this model can be estimated as1

τcrit,bond,pair = 2π · min

(√

µm,i−j

kbond,F n,i−j
,

√

µm,i−j

kbond,F t,i−j
,

√

µI,n,i−j

kbond,Mn,i−j
,

√

µI,t,i−j

kbond,Mt,i−j

)

(5.24)

1Note that the critical time steps of all degrees of freedom are estimated independently.
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over all bonds i − j, where µm,i−j represents the reduced mass defined as

µm,i−j =
mimj

mi + mj
. (5.25)

Equivalently, the remaining effective mass moment of inertia in normal µI,n,i−j and

bending µI,t,i−j direction can be calculated relative to the bond center. Note that this

is an approximation of the oscillation period. Due to the fact that the used time step is

typically lower by a factor of five [42], this approximation is sufficient.

5.3 Fiber Bond Model

This chapter is based on the following publication:

P. N. Depta, P. Gurikov, B. Schroeter, A. Forgács, J. Kalmár, G. Paul, L. Marchese,

S. Heinrich, and M. Dosta. DEM-Based Approach for the Modeling of Gelation and

Its Application to Alginate. J. Chem. Inf. Model., 62(1):49–70, 2022

5.3.1 Model Description

In order to model the behavior of polymer fibers and the interaction between neighbor-

ing objects within the fiber, a linear elastic bond model (i.e. harmonic potential) was

implemented. Note that in this context, no information on the orientation of the units

making up the fibers has to be available. As it can be seen in Fig. 5.2, the model acts

on two degrees of freedom: the distance between neighboring particles of the fiber with

the stiffness kbond,F n, as well as the fiber curvature described by the bond angle between

three consecutive particles of the fiber with the stiffness kbond,Mt. The remaining degrees

of freedom are free. While the model acts between three consecutive particles connected

by bonds, it captures in its essence both structural stability of the fiber chain as well

i

j

k

kbond,Mt

k
bond,Fn

αk

α

αi

Figure 5.2: Visualization of the fiber bond model.
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as long range interaction between macromolecules/particles in proximity, such as elec-

trostatic interaction (e.g. repulsion in the case of alginate). As the model is specifically

meant to describe interactions between macromolecules based on covalent bonds (e.g. in

the case of alginate a C-O-C bond), which are stable over the entire simulation time, no

breakage was implemented. However, if a model system requires, breakage conditions

based on a critical bond energy, strain, or stress can be added.

Let a bond connect three particles i, j, and k in consecutive order within a fiber with

the initial positions p⃗0,i, p⃗0,j , and p⃗0,k, as well as current positions p⃗i, p⃗j , and p⃗k. b0,i−j

denotes the initial bond length, b⃗i−j the bond vector, and b̂i−j between i and j defined

as

b⃗i−j = p⃗j − p⃗i, (5.26)

b̂i−j =
b⃗i−j

∥⃗bi−j∥
. (5.27)

Definitions between j and k are equivalent. Based on this, the bond angle α can be

calculated as

α = arccos (b̂j−i • b̂j−k). (5.28)

Based on the equilibrium angle αeq, the relative bond angle αrel can be calculated as

αrel = α − αeq. (5.29)

Consequently, the bond torque becomes

M⃗bond = kbond,Mt♣αrel♣(b̂j−k × b̂j−i) (5.30)

and is set to zero for αrel < 0.01 rad to avoid problems with numerical singularities. The

forces acting on the three particles are then calculated as

F⃗bond,i←ijk =
(M⃗bond × b̂j−i)

∥⃗bj−i∥
+ kbond,F n(∥⃗bi−j∥ − b0,i−j)b̂i−j , (5.31)

F⃗bond,k←ijk =
(b̂j−k × M⃗bond)

∥⃗bj−k∥
+ kbond,F n(∥⃗bk−j∥ − b0,k−j)b̂k−j , (5.32)

F⃗bond,j←ijk = −F⃗bond,i←ijk − F⃗bond,k←ijk, (5.33)

based on the current length of the bonds as a lever arm and including normal forces.

As a result of this formulation, the angular stiffness decreases with increasing bond

length, which is in agreement with physical expectation e.g. of the alginate model system.

The bond stiffnesses can be assigned either universally for all bonds or unique for each
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individual bond. Due to the nature of the alginate system for which this model was used,

universal bond stiffnesses were implemented. Note that the model could alternatively be

formulated by Taylor series expansion to avoid the inverse trigonometric function [35].

However, this form was found to be sufficient for the studied systems.

5.3.2 Critical Time Step

In order to estimate the critical time step τcrit,bond,fib of the fiber bond model, the

oscillation period T0,bond,fib of the corresponding three-mass spring system of particles

i, j, and k was determined. To simplify the derivation, the planar case with the center

particle j being stationary was assumed, as well as all masses being equal to m. For

the derivation using Lagrangian mechanics, a polar coordinate system with its origin

located at j is used. Consequently i is located at (bj−i, αi) and k at (bj−k, αk). The

Lagrangian energy can be calculated as

L =
1

2
m((bj−iα̇i)

2 + ḃ2
j−i) +

1

2
m((bj−kα̇k)2 + ḃ2

j−k)

− 1

2
kbond,Mt(αi − αk − αeq)2 − 1

2
kbond,F n((bj−i − b0,j−i)

2 + (bj−k − b0,j−k)2). (5.34)

Using the relative angle α = αrel = αi − αk − αeq and normal displacements δj−i =

bj−i − b0,j−i (similarly for δj−k), the expression can be simplified as

L = m((bj−iα̇i)
2 + δ̇2

j−i) + m((bj−kα̇k)2 + δ̇2
j−k)

− kbond,Mtα
2 − kbond,F n(δ2

j−i + δ2
j−k). (5.35)

Assuming that with regard to the angular movement, the changes in bj−i and bj−k are

negligible and both are equal to b0, it follows that

L = mb0(α̇2 + 2α̇k(α̇ + α̇k)) + m(δ̇2
j−i + δ̇2

j−k)

− kbond,Mtα
2 − kbond,F n(δ2

j−i + δ2
j−k). (5.36)

Using Lagrange’s equation without constraints for the degree of freedom

x ∈ ¶α, αk, δj−i, δj−k♢

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (5.37)
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the equation of motion can be determined. The solution leads to

α̈ = −2kbond,Mt

mb2
0

α, (5.38)

δ̈j−k = −kbond,F n

m
δj−k, (5.39)

δ̈j−i = −kbond,F n

m
δj−i. (5.40)

Consequently, the oscillation period and critical time step can be calculated according

to

τcrit,bond,fib = 2π min

(
√

mb2
0

2kbond,Mt
,

√

m

kbond,F n

)

. (5.41)

Note that this is an approximation of the oscillation period. Due to the fact that the

used time step is typically lower by a factor of five [42], this approximation is sufficient.
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Results: Alginate System

This chapter is based on the following publication:

P. N. Depta, P. Gurikov, B. Schroeter, A. Forgács, J. Kalmár, G. Paul, L. Marchese,

S. Heinrich, and M. Dosta. DEM-Based Approach for the Modeling of Gelation and

Its Application to Alginate. J. Chem. Inf. Model., 62(1):49–70, 2022

6.1 Model Parameters

6.1.1 Structural Model

In order to study the underlying mechanisms of cross-linking and network formation

during gelation, the polymer chains of the alginate model system were abstracted using

their composing dimer units as primary building blocks, also called units or particles.

Consecutive dimer units along the polymer chain were then connected by elastic bonds

(see Sec. 5.3) representing the overall chain. As introduced in more detail in Sec. 1.3.1,

the calcium mediated gelation of alginate is highly dependent on the distribution of

monomers (G and M units), leading to structural features such as the ’egg-box’ confor-

mation (two consecutive G units) [235]. Consequently, in the case of alginate the choice

of dimers as primary building blocks is reasonable.1 This abstraction leads to three types

of dimer units: GG, MM, and GM. For simplicity, the MG dimer is considered equal

to GM. The mass of each dimer unit is 350 Da = 5.812 × 10−25 kg and no orientation is

modeled.

1Note that for other polymers abstractions of monomers or larger multimers as primary building
blocks might be more appropriate.

93
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Table 6.1: Overview of alginate gelation model parameters. Non-specified
permutations are described as involving XX. Table adapted with permission from
Depta et al. [224] under CC-BY 4.0 license.

Parameter Value Literature

Structural Model

dGG−GG 0.92 nm [232]

dGG−MM, dGG−GM 0.97 nm [232]

dMM−MM 1.01 nm [232]

dGM−GM, dMM−GM 1.02 nm [232]

Dimer mass m 350 Da

Fiber molar mass 100 - 200 kDa

Functional Model

Diffusion and Thermodynamics

Temperature T 300 K

Dynamic viscosity η 8.54 × 10−4 Pa s [329]

Stokes radius rS 0.35 nm [232]

Intermolecular Interaction

Shape Lennard-Jones

Cutoff dcut 1.5 nm

Gradient limit ∇Umax ±500 kJ/mol/nm

GG-GG dm 0.6 nm [243]

GG-GG ϵ 22 kJ/mol attr.+rep., [239]

MM-MM dm 0.7 nm [243]

MM-MM ϵ 3 kJ/mol attr.+rep., [239]

XX-XX dm 0.7 nm [243]

XX-XX ϵ 1 kJ/mol rep. only

Ion Model

mCa2+ 40 u

rion 1.2 Å [330]

rdif 0.3 Å [331]

dgap,min 1 Å

GG-GG rcavity rion = 1.2 Å

MM-MM rcavity 0 Å

XX-XX rcavity 0 Å

GG-GG router rion + rdif = 1.5 Å

MM-MM router rion + rdif = 1.5 Å

XX-XX 0 Å

Bonded Interaction

Normal stiffness kbond,Fn 2.5 N m−1

Bending stiffness kbond,Mt 2.5 × 10−19 N m rad−1 [232, 332]
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Table 6.2: Second-order Markov chain properties of alginate (fractions of classes)
based on refs. [224, 234].

Main Fractions

ϕGGG ϕGGM ϕGMG ϕGMM ϕMGG ϕMGM ϕMMG ϕMMM

High G (H) 0.475 0.050 0.055 0.050 0.050 0.055 0.050 0.215
Low G (L) 0.180 0.020 0.045 0.085 0.020 0.110 0.085 0.455

Resulting Fractions

ϕG ϕM ϕGG ϕGM ϕMM

High G (H) 0.630 0.370 0.525 0.105 0.265
Low G (L) 0.330 0.670 0.200 0.130 0.540

In order to generate a polymer solution, random instances of polymer chains are neces-

sary. For this, knowledge of the chain conformation (i.e. distance between dimer units),

composition (i.e. sequence probabilities), and fiber molar mass (i.e. length) is necessary.

The chain conformation was provided by Hecht et al. [232] and from this atomistic struc-

ture the equilibrium distance between dimer units was extracted (center of mass distance

di−j), which can be found in the overview Tab. 6.1. These equilibrium distances and

the resulting bending stiffnesses are in agreement with literature as poly-G > poly-M

> alternating GM [232] (see also Sec. 1.3.1). Concerning fiber composition and molar

mass, information is typically available or can be determined for most industrially used

materials. For this work, the alginate properties of Agulhon et al. [234] in the corrected

form of Depta et al. [224] were used, which can be found in Tab. 6.2. The composition is

modeled by a second-order Markov process, which describes the fractions ϕijk of ternary

sequences i, j, k along the chain. Concerning the fiber molar mass, different masses

between 100 - 200 kDa (285 - 571 dimers per polymer chain) were investigated.

G - M - G - G - M - M - G - M - G - M - M - G - ...

Random chain (2nd order Markov process)

GM MM GG GM GM GM ...

MDEM model

dGM-MM dMM-GG dGG-GM 2rS

Particles Bonds

Figure 6.1: Structural model of the alginate polymer chain. Figure adapted with
permission from Depta et al. [224] under CC-BY 4.0 license.

Based on this knowledge, a two-step process was employed for the generation of random

polymer chains, which is visualized in Fig. 6.1. In a first step, random sequences of

G and M monomers were generated as a function of the second-order Markov process

and length of the polymer chain. In a second step, the generated monomer units were

combined pairwise to the dimer units GG, MM, and GM/MG. The units were then
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connected consecutively by elastic bonds thereby making up the polymer chain as shown

in Fig. 6.1. Note that this two-step process enables the direct usage of typically available

material parameters, but comes at the expense of an error when combining into dimer

units. The resulting overestimation of GM units over GG and MM units is considered

acceptable, as longer poly-G sections are crucial for stable gelation.

The gelation process of alginate is mediated in the model system by calcium ions. While

it would be possible to model those calcium ions explicitly, i.e. in the structural model, it

would significantly increase the computational requirements and decrease the required

time step approximately by a factor of 5. Consequently, an implicit calcium model

was formulated in Sec. 4.2, which will be parameterized in the following as part of the

functional model components.

6.1.2 Functional Model

6.1.2.1 Diffusion and Thermodynamics

Diffusion and the respective thermodynamics of the desired canonical ensemble were

modeled using the isotropic translational version of the presented diffusion model in

Sec. 3.2.3. The model captures the interaction of the dimer units with the solvent

environment and requires the objects masses and diffusion coefficients (or equivalent

Stokes radii), as well as the solvent temperature and dynamic viscosity as parameters.

Table 6.3: Stokes radii of alginate system for all dimer units in x, y, z. Table
adapted with permission from Depta et al. [224] under CC-BY 4.0 license. For the
model, the average Stokes radius of 0.35 nm was used.

rS,x rS,y rS,z

GG 0.29 nm 0.34 nm 0.40 nm

MM 0.29 nm 0.41 nm 0.42 nm

GM 0.29 nm 0.35 nm 0.39 nm

In agreement with normal experimental conditions, simulation studies were carried out

at an equilibrium temperature of 300 K and a resulting dynamic viscosity for water

of 8.54 × 10−4 Pa s [329]. Furthermore, the dimer unit masses are readily available

from their atomic structure as 350 Da. As shown in Sec. 3, the diffusion coefficients

can for example be determined in detail using molecular dynamics simulations. These

diffusion coefficients were found to be largely in agreement with structural predictions

even for the highly anisotropic molecules of PDC. Consequently, for the purpose of

this model, the diffusion coefficients / Stokes radii were estimated from the atomistic

reference structure [232] by the following methodology: The unit dimers were oriented

along their principle axes and the radius of gyration rgyr calculated for all axes. Stokes
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radii rS were then estimated by accounting for the shell of hydration using the relation

rS = rgyr/0.77 in each direction, which is widely employed for globular proteins. As it

can be seen in Tab. 6.3, the resulting values vary between 0.29 - 0.42 nm indicating a low

degree of anisotropy. Motivated by this, as well as model simplicity and computational

performance, the average Stokes radius of 0.35 nm was used for all dimer units.

Simulated Annealing Simulated annealing procedures have been employed to im-

prove the probability of reaching the global potential minimum through enhanced sam-

pling and reduce overall simulation times to reach equilibrium. For details on simulated

annealing please refer to Sec. 3.6. Different annealing procedures have been developed

depending on the simulation stage (system generation, relaxation, equilibration, and

production, see Sec. 6.2). Parameters of annealing procedures provided in Sec. 3.6 and

used in the context of alginate gelation are:

• AN1: τan,cool = 5 µs, τan,period = 5 µs, tan,finished = 5 µs, linear temperature decay,

Tan,max = 2000 K (used for relaxation step)

• AN2: τan,cool = 2 µs, τan,period = 2 µs, tan,finished = 10 µs, linear temperature decay,

Tan,max = 2000 K (partially used for production step)

Validation of annealing procedure AN1 against standard conditions found equivalent

system properties concerning fiber structures (see Sec. 6.1.2.3). Results of annealing

procedure AN2 will be presented in direct comparison to runs without annealing in the

results section. Note that unless specifically indicated, no annealing is performed.

6.1.2.2 Intermolecular Interaction

The pairwise intermolecular interaction of alginate dimers was captured using the model

presented in Sec. 4.2. The intermolecular interaction depends on the dimer type, as

well as presence of a calcium ion, which is modeled through an implicit binding (IM1)

and unbinding (IM2) process. A schematic representation is reprinted in Fig. 6.2 and

parameters will be derived in the following. All parameters are summarized in Tab. 6.1

and are based on literature and estimations. Future studies might determine some of

the parameters in more detail, e.g. through steered MD. However, this is beyond the

intended scope of this work.

Interaction Potential The gelation process of calcium mediated alginate is domi-

nated largely by the dimerization of poly-G regions through an ’egg-box’ association
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between two GG dimers on interacting chains mediated by a central calcium ion, as es-

tablished initially by Grant et al. [235]. Subsequently, a lateral association and zipping

mechanism of the polymer chains occurs as described e.g. by Hecht et al. [232, 243]. This

mechanism is attributed to the ’egg-box’ structure of the binding zone encapsulating the

ion, while other areas such as poly-M and and alternating GM aggregate less readily due

to their flatter structure [232, 235, 243]. The binding enthalpy of this association mech-

anism has been experimentally measured by Fang et al. [239] using isothermal titration

calorimetry. The binding enthalpy was found to be ∆H = −11.6 kJ/mol for calcium

alginate with a G fraction of 46% and ∆H = −15.0 kJ/mol for a system with a G

content of 64% (Gibb’s free energy ∆G = −23.0 kJ/mol in both cases) [239]. Modeling

works of the ’egg-box’ binding mechanism have found similar, but slightly lower Gibb’s

free energies in the range of ∆G = −35 kJ/mol to -60 kJ/mol [237, 240].

These mechanisms are replicated in the intermolecular interaction model through the

binding energy and equilibrium distance dependent on the type of interaction and ion

availability. In order to estimate the binding energies, the experimental measurements

by Fang et al. [239] were used. Extrapolating the measured G content to 0 and 1 was used

to estimate the binding enthalpy for pure poly-G as -22 kJ/mol and for pure poly-M as

-3 kJ/mol, which was used for the GG-GG and MM-MM interaction, respectively. These

values are reasonable in regard to the previously discussed association mechanisms. As

other interaction permutations are understood to aggregate significantly less readily,

these interactions were set to be repulsive only with a scaling factor ϵ = -1 kJ/mol.

With regard to estimating the equilibrium distance dm during association, the work by

Hecht [243] on investigating the composition dependent associating of alginate using MD

was used. The estimated equilibrium distances based on this were found to be dm = 6 Å

for GG-GG and dm = 7 Å for MM-MM and all other permutations.

Based on the interaction potential (eq. 4.2) with these parameters, the cutoff distance

was chosen in agreement with literature [333] as 1.5 nm (2.1 × dm to 2.5 × dm). Fur-

thermore, the gradient limit ∇Umax was chosen as ±500 kJ/mol/nm to avoid numerical

instabilities resulting from the singularity at zero distance. ∇Umax was reached only

very rarely at the beginning of equilibration.

Ion Model In order for a GG-GG or MM-MM interaction to be attractive, a calcium

ion needs to be present. Consequently, the ion model is crucial for describing the ion

availability, binding, and unbinding. Thus, controlling both dynamics and steady-state

of gel formation and breakage. Two separate models have been proposed in Sec. 4.2.2 to

model ion binding (IM1) and unbinding (IM2). Concerning parameterization, the ion

binding model IM1 requires parameters with regard to the ion type (Ca2+), conformation
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Figure 6.2: Visualization of intermolecular interaction and ion models IM1 and IM2
for alginate gelation (reprint of Fig. 4.1 with permission from Depta et al. [224] under
CC-BY 4.0 license).

of interaction partners, and simulation time step to estimate the binding volume. The

binding site volume is considered to contain an electrostatic and diffusive component.

The electrostatic component is estimated using the ionic radius rion ≈ 1.2 Å for calcium,

which is experimentally known to be in the region 1.0 − 1.4 Å according to Shannon et

al. [330].2 In addition, the time step dependent diffusive component is estimated as the

average of the diffusive length based on the diffusion coefficient according to ref. [331]

(0.16 Å for ∆t = 10−13s) and the characteristic length of mean velocity (0.43 Å for

∆t = 10−13s), leading to rdif = 0.3 Å for ∆t = 10−13s. This diffusive component was

added to the outer half-sphere of the interaction region in addition to the electrostatic

component.

Depending on the conformation of the interaction zone, the binding domain can extend

into a cavity of the interacting molecules (see rcavity). For the ’egg-box’ conformation of

the GG-GG interaction, the cavity is approximately as large as the ionic radius leading

to the estimation rcavity ≈ rion = 1.2 Å. For the flatter conformation of the MM-MM

interaction no such cavity exists and only the outer half-sphere is considered as the sum

of the ionic and diffusive radius router = rion + rdif = 1.5 Å.

Additionally, the binding model describes the encapsulation of the ion through the con-

formation of the interacting molecules for small distances. This is achieved by a required

minimum gap of dgap,min = 1 Å beyond the equilibrium distance to permit entry and

exit of the ion. The proposed value of dgap,min = 1 Å is slightly lower than rion = 1.2 Å

in order to account for slight conformational changes of the interacting molecules.

Overall, this leads to a binding domain volume Vbind,i−j as a function of center of mass

distance as shown in Fig. 6.3 for IM1. As an additional parameter for the unbinding

2Note that hydration effects of the calcium ion were neglected. Future studies might investigate
this influence by increasing the effective ionic radius in regard of strong dissociation energies of water
molecules from calcium ions(∼ 21.9 kcal/mol for first water molecule and ∼ 26.3 kcal/mol for second
according to ref. [334]).
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Figure 6.3: Volume of binding domain for pairwise interaction at a temperature of
300 K with a time step of 10−13 s using ion model IM1.
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Figure 6.4: Ion unbinding probability for pairwise interaction at a temperature of
300 K with a time step of 10−13 s using ion model IM2.

model IM2 only the ion mass of mCa2+ = 40 u = 6.64×10−26 kg is required. The unbind-

ing probability as a function of distance di−j is shown in Fig. 6.4. During simulation, all

interaction forces were tabulated with a resolution of 0.01 Å and all binding/unbinding

probabilities with a resolution of 0.1 Å. An overview of all parameters is provided in

Tab. 6.1.



6 Results: Alginate System 101

6.1.2.3 Bonded Interaction

The elastic bonds connecting the dimer units along the polymer chains were described

using the bonded interaction model presented in Sec. 5.3. The model contains the nor-

mal stiffness kbond,F n and bending stiffness kbond,Mt as parameters to be specified. These

parameters were chosen to be universal for connections of all dimer unit types, leading

implicitly to stiffnesses in order poly-G > poly-M > alternating GM, which is consis-

tent with literature [232] (see also Sec. 1.3.1). These parameters could be determined

through a variety of approaches, e.g. steered MD or umbrella sampling. For this work,

an optimization approach using experimental data and the employed diffusion model

was chosen. The bond-angle correlation (BAC) [332] and resulting persistence length

lp of the polymer chain’s shape was chosen as an optimization target for the bending

stiffness and tuned to the experimental data of ref. [232]. The BAC is defined as

BAC(i) =


b⃗j · b⃗j+i

∥⃗bj∥ · ∥⃗bj+i∥

〉

= ⟨cos(θ)⟩, (6.1)

BAC(x) = exp

(−xσ

lp

)

, (6.2)

being the scalar product of normalized bond vectors b⃗ at increasing distances along

the chain [232, 332]. It exhibits an exponential decay at increasing distances and is

characterized through the persistence length lp. Experimental results from ref. [232]

predict a lp between 20 - 30 nm for poly-M and poly-G fibers at saturated calcium

conditions, as well as a lp < 5 - 10 nm for alternating GM. Consequently, the optimization

target was set between lp = 15 - 20 nm for the primary model system high-G (H).

Concerning the normal stiffness, the bond strain was used as an optimization target.

However, no literature data was available concerning polymer fiber stretching of alginate,

which is attributed to the stable structure and inherently strong C-O-C bond between

monomers. Consequently, the optimization target was defined more flexibly with a

reasonably stable bond of near zero mean strain and maximum strain < 0.25. In order

to narrow the stiffness parameter range and initial estimation, energy estimations were

performed based on the thermodynamic energy of the dimer units. Afterwards, free

diffusion experiments (dilute solution with no interaction between fibers) were conducted

with 100 polymer fibers of 200 kDa for 50 µs using a time step of 10−13 s (additionally

5 × 10−14 s convergence study). As the best stiffness parameters the values of kbond,Fn =

2.5 N m−1 and kbond,Mt = 2.5 × 10−19 N m rad−1 were found. For this parameterization

the persistence length lp is 16 nm and the normal bond strain has an average value of

0.004 (minimum -0.16, maximum 0.22).
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6.1.2.4 Critical Time Step

In order to estimate the critical time step τcrit necessary for a convergent and numerically

stable solution, the previously discussed methods for the individual model components

were used, see Sec. 3.4.1, 4.2.3, and 5.3.2. Based on this, the critical time step can be

estimated as 1.0 × 10−13 s for the diffusion model, 7.3 × 10−13 s for the intermolecular

interaction model, 3.0 × 10−12 s for the normal direction of the bond model, and 6.2 ×
10−12 s for the bending direction of the bond model. For bonded interactions in discrete

simulations with explicit time-stepping typically a simulation time step of 0.2 × τcrit is

recommended [42], which is fulfilled by a simulation time step of 10−13 s. Concerning

diffusion and the related thermodynamics, this is also at the advisable limit with an

error of 8.0 % regarding RMS displacement (see Sec. 3.4.1). Thus, the simulation time

step was chosen as 10−13 s and an additional convergence study at 5 × 10−14 s showed

no notable differences.

6.2 Simulation Setup and Procedure

A variety of simulation setups with varying polymer and ion conditions was investigated

in cubic simulation domains with periodic boundary conditions to study the gelation

process. Details on the MDEM implementation can be found in Sec. 2.2 and all model

parameters are provided in Tab. 6.1. The simulation procedure is closely related to

the widely employed workflows in molecular dynamics and consists of the following four

steps:

1. System generation: A system of defined box size, polymer concentration, fiber

composition, and fiber molar mass is generated. Each fiber is generated with a

random composition resulting from the respective second-order Markov process

as specified in Sec. 6.1.1. The fibers are positioned and oriented randomly in the

simulation box and may cross any periodic boundary condition. All polymer fibers

are initially perfectly linear.

2. Relaxation: The initially perfectly linear polymer fibers are relaxed using the

employed diffusion model without interacting with each other (similar to a per-

fectly dilute system). The fibers transition from their artificial state of generation

to their natural state with respective to curvature / BAC. Annealing procedure

AN1 (see Sec. 6.1.2.1) was validated and employed, which enabled a reduction of

required simulation time from approximately 50 µs without annealing to 15 µs with

annealing.
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3. Equilibration: The system is equilibrated for 5 µs without any annealing to cor-

rect possible overlaps between fibers and reach its natural state without calcium

ions in the system. Accordingly, all intermolecular interaction models are set to

be repulsive only, i.e. without any ions present.

4. Production (Gelation): The desired concentration of calcium ions is added

to the system and the full intermolecular interaction model employed (IM1 or

IM2) representing the calcium mediated gelation. As the gelation process is more

prone to run into local potential minima during network formation, both normal

simulation (no annealing) and annealing procedure AN2 (see Sec. 6.1.2.1) have

been performed and will be compared in the results section.

Note that all simulation times were chosen such as to ensure equilibration of the re-

spective stage, i.e. steady-state conditions with respect to the fast modes of relaxation

of various global properties (e.g. global interaction potential, bond potential, kinetic

energy, BAC; see following section).

6.3 Analysis and Postprocessing

Simulation results were analyzed both online and in postprocessing to study a variety of

energetic and structural features. The analyzed system properties include the following

and are taken from Depta et al. [224]:

• global system energy U in components of the potential energy Uglob.int. due to

pairwise interaction (normalized by number of dimers/particles Npart), bonded

potential energy Uglob.bond., and kinetic energy Uglob.kin.;

• ion ratio f of used fused, available favail., or desired ions fdes.. Desired ions consti-

tute unbonded contacts capable of receiving an ion;

• normalized contact number ξi−j = 2Ncont,i−j/
√

NiNj , where Ncont,i−j is the num-

ber of contacts between type i and j based on the interaction cutoff of 1.5 nm and

Ni (Nj) is the number of particles of type i (j);

• coordination number with regard to its average k0.9nm and histogram fractions

ϕ(k0.9nm) based on a reduced contact distance of 0.9 nm to capture only contacts

in close proximity. Note that the average coordination number is inversely pro-

portional to the specific surface of the polymer;

• volume fractions ϕV of spatially-resolved dimer/particle concentrations. A dis-

cretization of the simulation domain into 5 nm cubes on a regular grid is applied.
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The concentration in each cell is calculated as the number of dimers/particles Ndi.

divided by the cell volume Vel.. From this discretization, volume fractions of pores

(empty cells) and fiber bundles (cells with high concentration) were calculated;

• pore size distribution based on chord length distribution for comparison with ex-

perimental data. The Python library Porespy was used to calculate the chord

length distribution based on the previous 5 nm discretization applying various

limits as to whether a cell is occupied or not for sensitivity analysis;

• thickness of fiber bundles through the number of fibers and bundle diameter

(maximum distance between dimers/particles in bundle cross-section) for com-

parison with experimental data. A contact network search algorithm determined

the dimers/particles in the bundle cross-section for each particle in the system,

while only considering the closest contact (maximum contact distance 0.9 nm as

for coordination number) between dimers/particles of two fibers and only passing

each fiber once.

Based on this, the results will be provided in the following. For a selected number

of simulations the full transient data is provided. For the full transient data of all

simulations the interested reader is referred to the supplementary data of the respective

publication Depta et al. [224].

6.4 Results

A total of 33 case studies were simulated to study the mechanisms of network formation

during gelation and validate the modeling framework. An overview of all conditions can

be found in Tab. 6.4. All studies were performed in 0.5 µm cubic boxes with periodic

boundary conditions in all directions. Primary focus of the case studies was placed on

investigating the influence of the calcium concentration (f = 0.1 − 1.0). Additionally,

the polymer concentration (c = 0.5 − 1.0 wt.%), polymer composition (high and low G

content), and molecular weight (Mw = 100−200 kDa) were varied. Lastly, the influence

of unbinding of ions in addition to binding (IM2 vs. IM1), as well as possible improve-

ments through annealing procedures (AN2) were investigated. Note that in addition to

the gelled conditions, the equilibrated calcium-free conditions provide additional insights

and data.



6 Results: Alginate System 105

Table 6.4: Case study overview with base case marked gray. All cases are in a
500 nm cubic box with periodic boundary conditions. Table adapted with permission
from Depta et al. [224] under CC-BY 4.0 license.

Case Model c [wt.%] G cont. Mw [kDa] f [-] Annealing tsim [µs]
(H/L)

1 IM1 0.5 H 200 0.1 no 10

2 IM1 0.5 H 200 0.2 no 10

3 IM1 0.5 H 200 0.35 no 10

4 IM1 0.5 H 200 0.5 no 10

5 IM1 0.5 H 200 1.0 no 10

6 IM1 0.5 L 200 0.1 no 10

7 IM1 0.5 L 200 0.2 no 10

8 IM1 0.5 L 200 0.35 no 10

9 IM1 0.5 L 200 0.5 no 10

10 IM1 0.5 L 200 1.0 no 10

11 IM1 0.5 H 100 0.1 no 10

12 IM1 0.5 H 100 0.2 no 10

13 IM1 0.5 H 100 0.35 no 10

14 IM1 0.5 H 100 0.5 no 10

15 IM1 0.5 H 100 1.0 no 10

16 IM2 0.5 H 200 0.1 no 40

17 IM2 0.5 H 200 0.2 no 40

18 IM2 0.5 H 200 0.35 no 40

19 IM2 0.5 H 200 0.5 no 40

20 IM2 0.5 H 200 1.0 no 40

21 IM1 1.0 H 200 0.1 no 9.4

22 IM1 1.0 H 200 0.2 no 10

23 IM1 1.0 H 200 0.35 no 10

24 IM1 1.0 H 200 0.5 no 10

25 IM1 1.0 H 200 1.0 no 10

26 IM1 0.5 H 200 0.1 AN2 15

27 IM1 0.5 H 200 0.2 AN2 15

28 IM1 0.5 H 200 0.5 AN2 20

29 IM1 0.5 H 200 1.0 AN2 20

30 IM1 0.5 L 200 0.5 AN2 20

31 IM1 0.5 H 100 0.5 AN2 20

32 IM2 0.5 H 200 0.5 AN2 40

33 IM1 1.0 H 155 0.5 no 10
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6.4.1 Base Case

The fully gelled case 4 marked grey in Tab. 6.4 was chosen as a base case. A visualiza-

tion of a 200 nm cross-section shown in Fig. 6.5 highlights the difference in structural

features between the non-gelled (A and B) and gelled state (C and D). Additionally,

the transient development of system properties is shown in Fig. 6.6 including all poten-

tial components (A), ion balances (B), average coordinate number (C), distribution of

coordination number (D), normalized contact types (E), and volume fractions of dimer

concentrations (F).

150 nm

(A) (B)

50 nm

150 nm

(C) (D)

50 nm

Figure 6.5: Visual comparison of a polymer solution (individual fibers) at
concentration of 0.5 wt.% with high G content in its non-gelled state (A and B)
and its gelled state using f = 0.5 ions (C and D), see base case 4. A 200 nm
depth section is shown and bonds visualized with a 0.7 nm diameter. Figure adapted
with permission from Depta et al. [224] under CC-BY 4.0 license.
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As it can be seen in Fig. 6.5 A and B, the non-gelled solution displays a very homogeneous

state of individual fibers with fine spaces between them. After gelation of the system

through the addition of calcium ions, the system (see Fig. 6.5 C and D) exhibits a

network formation of the fibers into bundles, as well as the formation of pores. As

shown in Fig. 6.6 D through the distribution of the coordination number, approximately

half of all dimers participate in a connection indicating a densely interconnected gel.

The consequently formed pores are highly anisotropic and largely on scales of O(10) nm

with the largest fraction of pores at a size of approximately 45 nm as defined by the

chord length distribution. Due to the high anisotropy and inter-connectivity of pores

a precise quantification is challenging. In order to alleviate this in the following, the

transient data in Fig. 6.6 will be discussed in more detail including the volume fraction

of empty pores, which represents a more universal measure.

As it can be observed in the transient behavior of all system properties shown in Fig. 6.6,

the system reaches steady-state in approximately 4 µs. At this point the kinetics of

gelation significantly slow down and exhibit a steady-state with regard to the fast modes

of equilibration. It can be observed that only f = 0.34 ions are used during the gelation

process, while f = 0.16 ions remain available (unbound in solution). It should be noted

that at the same time f = 0.17 ions are desired by intermolecular GG-GG and MM-MM

interactions. This result indicates that during the zipping mechanism responsible for

bundle formation approximately every third GG-GG and MM-MM interaction remains

without a calcium ion as none was available until closure and the (modeled) inability to

received an ion. It appears plausible that over time through thermodynamic effects such

connections might still receive an ion and that such a process occurs both numerically

and physically. However, the respective time scales of such a process are likely well

beyond current numerical possibilities. Additionally, deviations of the simplified model

from the physical system are likely to some extend in this respect.

Moreover, structural aspects of the bundle and network formation can be observed

through the coordination number shown in Fig. 6.6 C and D. In the initial non-gelled

state virtually no intermolecular contacts exist. Over time, the average coordination

number increases to 1.3 with 46 % of dimers having a coordination number of at least

one. The majority of coordination numbers with 93 % remains below 5 and 99.98 %

below 10. Individual coordination numbers can go as high as 16, which is attributed to

individual compressed junction zones of multiple bundles. Furthermore, it can be seen

in Fig. 6.6 E that an average of 2.74 attractive ’egg-box’ contacts are entered by each

GG-dimer, indicating a strong multi-fiber bundle formation, which is in agreement with

experimental expectations (more detail on experimental validation in Sec. 6.5).
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Figure 6.6: Transient simulation results of the base case 4. See Sec. 6.3 for more
details on the properties. Figure adapted with permission from Depta et al. [224]
under CC-BY 4.0 license.

In addition, the volume fractions at specific concentration limits in Fig. 6.6 F show the

development of pore and bundle volume fractions. It can be observed that the pore

volume fraction (empty cells) increases from 0.75 to 0.84, while the volume fraction

of concentrations higher than 0.08 nm−3 (10 dimers per 5 nm cell) also increases from

0.005 to 0.03. These trends of pore volume generation through bundle formation and

high concentration regions is in agreement with expectations during the gelation process.
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In summary, it should be noted that the presented simulation results represent the ideally

homogeneous case of gelation. Experimental conditions are expected to contain more

inhomogeneities resulting from material composition (e.g. molecular weight), processing

(e.g shear, dispersion of ions), and impurities, thus leading to larger bundle and pore

sizes. More details will be discussed in relation to experimental validation in Sec. 6.5.

6.4.2 Case Studies

6.4.2.1 Constant Temperature (No Annealing)

During the network formation of polymer gelation, the system’s temperature is a critical

parameter. In this regard, numerical studies at constant temperature without annealing

present the lower limit of network formation during the polymer gelation process due to

being more limited by local potential minima and consequently equilibration at the time

scales numerically reachable. In this context, these studies are crucial in understanding

the mechanisms of gelation and its numerical modeling. The gelled systems at constant

temperature are visualized in Fig. 6.7 and will be discussed first qualitatively before a

quantitative analysis of gelation properties, which are shown in Fig. 6.8.

The visualizations in Fig. 6.7 show the various system conditions studied at sufficiently

large ion concentration to enable gelation (f = 0.5). As it can be observed when

comparing the binding model IM1 (A) and unbinding model IM2 (B), both provide

visually similar polymer networks with somewhat larger pores and bundle sizes of the

unbinding model IM2 (B). Additionally, it can be observed that a composition with less

G content leads to smaller bundles and pore sizes (C). In an opposite fashion, a decrease

in molecular weight to 100 kDa appears to increase bundle and pore sizes (D). Lastly,

an increase in polymer concentration to 1.0 wt.% (E and F) visually leads to a denser

polymer network and no clear difference between a molecular weight of 155 kDa and 200

kDa (E and F) is visible. As will be discussed with regards to experimental validation

in Sec. 6.5, literature has largely addressed how the degree of cross-linking through ion

concentration f influences the bundle sizes, but the role of material properties such as

molecular weight and composition (i.e. G content) has not been addressed in literature

to the author’s best knowledge [224]. Thus, predictions using the proposed model may

lay the basis for future experimental works. In the following, the effects of polymer

concentration, molecular weight, fiber composition, and ion concentration on gelation

will be discussed in more quantitative detail based on the proposed model.

With regard to the 200 kDa and high G composition system (see Fig. 6.7A and

blue circular data in Fig. 6.8), all system properties show an asymptotic behavior beyond
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150 nm

(A) Case 4: IM1, 0.5 wt.%, H,
200 kDa.

150 nm

(B) Case 19: IM2, 0.5 wt.%, H,
200 kDa.

150 nm

(C) Case 9: IM1, 0.5 wt.%, L, 200
kDa.

150 nm

(D) Case 14: IM1, 0.5 wt.%, H,
100 kDa.

150 nm

(E) Case 24: IM1, 1.0 wt.%, H,
200 kDa.

150 nm

(F) Case 33: IM1, 1.0 wt.%, H,
155 kDa.

Figure 6.7: Visualization of gelled polymer cases without annealing with an ion
concentration of f = 0.5. A 200 nm depth section is shown and polymer fiber bonds
visualized with a 0.7 nm diameter. Partial data has been previously published and is
reused with permission from Depta et al. [224] under CC-BY 4.0 license.
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Figure 6.8: Simulation results of all case studies without annealing. Partial data
has been previously published and is reused with permission from Depta et al. [224]
under CC-BY 4.0 license.
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a calcium concentration of f = 0.35. This transition point is further characterized and

supported by the uptake of calcium ions between fused = 0.34−0.38 for f = 0.5 and 1.0,

respectively. While the gelled system appears to be saturated of calcium ions at this

point, closed off interaction zones remain resulting from the limited availability during

the zipping mechanism and might bind further calcium ions over time. Nonetheless, no

changes in gel structure are expected. Consequently, the discussion of the base case in

Sec. 6.4.1 applies to the asymptotic case.

With regard to the 200 kDa and low G composition system (see Fig. 6.7C and

green cross data in Fig. 6.8), it can be observed that the asymptotic contact number

ξGG−GG−attract is approximately the same as for the high G composition indicating the

same relative number of ’egg-box’ interactions per GG dimer, thus leading to an overall

reduction with decreasing G content. This leads to a less densely connected gel structure

as also highlighted by the lower coordination number (C) and reduced pore volume (D),

as well as decreased uptake of ions (B) and increased global interaction potential (A).

These effects of G composition are expected as the network formation of alginate gelation

is known to be strongly dependent on the formation of GG-GG ’egg-box’ connections

[235] and thus requiring a large G composition for densely connected gels. Furthermore,

an earlier asymptotic behavior with regard to ion concentration at approximately f = 0.1

- 0.2 can be observed and is in line with the reduced uptake of ions (B) at fused = 0.15.

With regard to the system of reduced molecular weight at 100 kDa and high G

composition (see Fig. 6.7D and red lower triangle data in Fig. 6.8), it can be observed

that the reduced molecular weight leads to an increased bundle thickness and more

densely connected gel as indicated by the increase average coordination number (C)

and increased fraction of coordination numbers above five (G). In a similar direction,

the lower molecular weight uses significantly more ions (B), which are largely bound by

additional ’egg-box’ interactions (D) and further lower the global interaction potential

(A). Furthermore, the pore volume increases slightly (F) highlighting the densification of

the gel. These effects are in line with expectations resulting from the increased mobility

of polymer fibers caused by decreased length. As the polymer fibers are less constrained

due to cross-linking, network formation through bundle formation is supported and in

turn increases pore size.

With regard to an increased polymer concentration of 1 wt.% at constant com-

position (see Fig. 6.7E and violet upper triangle data in Fig. 6.8), it can be observed

that concerning bundle thickness nearly all parameters show similar values to those of

a decreased molecular weight of 100 kDa at 0.5 wt.%. This applies to the average coor-

dination number (C), fraction of coordination numbers at zero (E), number of ’egg-box’

formations (D), uptake of ions (B), and global interaction potential (A). Only for the



6 Results: Alginate System 113

fraction of higher coordination numbers (G) a less pronounced increase relative to the

lower molecular weight can be observed, which is in line with the more constrained poly-

mer fibers. However, the differences in pore volume relative to all previous systems are

significant. Due to the increased polymer concentration the initial pore volume without

ions causing gelation is significantly lower with a fraction of 0.55 (F) and also the pore

volume of the geled system is lower with a fraction of 0.71. At the same time, the volume

fraction of bundles above a concentration of 0.08 nm−3 (10 dimers per 5 nm cell) is more

than doubled. Consequently, the increased polymer concentration leads to a decrease in

pore volume and increase in total number of polymer bundles, while the properties of

bundles are similar to a lower molecular weight of 100 kDa at 0.5 wt.%.

Concerning the increased polymer concentration of 1 wt.% at intermediate

molecular weight of 155 kDa (see Fig. 6.7F and brown star data in Fig. 6.8), no

significant differences from the change in molecular weight relative to 200 kDa can be

noted.

For the ion unbinding model IM2 (see Fig. 6.7B and orange cross data in Fig. 6.8),

some difference concerning polymer bundle and pore formation are notable. The un-

binding model IM2 attempts to describe the loss of a bound ion from interacting dimers

and thus model the dynamic equilibrium of ion binding and unbinding. Convergence

studies with respect to equilibration times found an increase in required simulation time

by a factor 2-4, thus leading to computational requirements of approximately 17 days for

a data point of 40 µs on a Nvidia A100 GPU. Therefore, only selected simulations were

carried out for the base case system (orange cross data in Fig. 6.8). Due to the compara-

tive nature between IM1 and IM2, some experimental literature references are provided

below and extended in Sec. 6.5. As it can be seen, between f = 0.2 - 0.35 ions are re-

quired to initiate gelation. Below this point, ion unbinding is too frequent for permanent

network formation to take place. This minimum ion concentration is in agreement with

experimental findings by Fang et al. [239] (dilute systems) who found a minimum f =

0.16 - 0.35 for ’egg-box’ formation to take place at the studied polymer composition.

Similarly, Fang et al. [239] predicts an asymptotic behavior starting around f = 0.5.

While this agrees well with IM1, the unbinding model IM2 shows less of an asymptotic

behavior indicating a possible overestimation of the unbinding probability. Nonetheless,

the unbinding model predicts largely similar trends for the average gel structure (bun-

dles and pores): While the ion uptake and ’egg-box’ interactions with bound ions are

reduced (A, B, D), the average coordination number (C) and pore volume (F) indicate

similarity in average gel structure. However, the distribution of bundles shows slight

differences. The fraction of dimers with a coordination number of zero (E) increases

indicating a decreased cross-linkage of individual fibers, while in turn also leading to an

increased fraction of thicker bundles (G). Note that these thicker bundles fill a smaller
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space fraction in contrast to the base case as shown in H. In summary, the developed

unbinding model IM2 predicts slightly different gels. Concerning ion uptake, the un-

binding model captures the physically more reasonable case of requiring a minimum

ion concentration for gelation to initiate. For network formation, average structures are

overall similar with respect to pore volume and coordination numbers, but result in a

distribution of slightly thicker polymer bundles. In light of limited experimental insight

into the detailed mechanisms, no clear assessment as to which model is more appropri-

ate can be made at this point. Indications from more limited asymptotic behavior in

relation to experimental literature data [239] suggest that unbinding might be overes-

timated by IM2 and thus overall be between IM1 and IM2. Detailed investigation of

these mechanisms requires further research beyond the scope of this work. In view of

computational cost and the prediction of reasonable experimental and empirical trends,

the simple binding model IM1 was chosen as the primary ion model.

6.4.2.2 Annealing Procedure (AN2)

As the constant temperature procedure represents largely the lower limit of gelation

with regards to network and bundle formation, annealing attempts to overcome these

limitations by temporarily increasing the kinetic energy through temperature and thus

transitioning local potential minima towards a more equilibrated and natural state (see

also Sec. 3.6 and 6.1.2.1). At the same time, annealing comes at the cost of additional

computational requirements and possible introduction of artifacts. Accordingly, the

results of annealing are presented separately for a range of conditions in this method-

developing work. Visualizations of the gelled systems with annealing procedure AN2

are provided in Fig. 6.9 and changes in system properties in comparison to constant

temperature provided in Fig. 6.10, which will be discussed in the following.

Before discussing the results quantitatively, a qualitative visual comparison of Fig. 6.9

at f = 0.5 with the constant temperature results in Fig. 6.7 indicates that the unbinding

model IM2 (B) and low G composition (C) provide largely similar results, while the base

case (A) and to a lesser extend the lower molecular weight case (D) produce slightly larger

pore and bundle sizes. Additionally, the junction zones at lower molecular weight (D)

appear slightly more disorganized, indicating structural changes and possibly artifacts.

These differences will be quantified in the following and an overview is provided in

Fig. 6.10.

As Fig. 6.10 shows, there are no significant differences of any system properties for low

ion concentrations (f ≤ 0.2) between the constant temperature and annealing procedure.

As at these low ion concentration gelation is very limited and consequently low energy
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150 nm

(A) Case 28: IM1, 0.5 wt.%, H,
200 kDa.

150 nm

(B) Case 32: IM2, 0.5 wt.%, H,
200 kDa.

150 nm

(C) Case 30: IM1, 0.5 wt.%, L,
200 kDa.

150 nm

(D) Case 31: IM1, 0.5 wt.%, H,
100 kDa.

Figure 6.9: Visualization of gelled polymer cases with annealing procedure AN2
and an ion concentration of f = 0.5. A 200 nm depth section is shown and polymer
fiber bonds visualized with a 0.7 nm diameter. Figure adapted with permission from
Depta et al. [224] under CC-BY 4.0 license.

barriers are present in the system, these results are reasonable. Furthermore, at the

onset of gelation with f = 0.5, systems with a low G content and the unbinding model

IM2 produce similar results, while high G content and low molecular weight produce

slightly different results in comparison to constant temperature. With regard to low G,

this reasonable behavior is attributed to the lower energy barriers of low G systems in

comparison to high G systems resulting from the reduced number of GG dimers and

thus fewer stable ’egg-box’ bindings. With regard to the unbinding model IM2, these

largely equivalent results also appear reasonable, as the unbinding of ions effectively also

supports equilibration and overcoming of energy barriers. The two different numerical
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Figure 6.10: Difference in simulation results between annealing procedure AN2
and no annealing (AN2 - no). Figure adapted with permission from Depta et
al. [224] under CC-BY 4.0 license.
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mechanisms of probabilistic ion unbinding (IM2) and through temporarily increase tem-

perature (annealing AN2) are thus virtually equivalent. These quantitative results are

therefore in agreement with the qualitative visual comparison.

With regard to the lower molecular weight of 100 kDa, differences are slightly larger,

but remain below that of the base case (IM1, H, 0.5 wt.%, 200 kDa). As discussed in the

previous section, reduced cross-linkage of individual/few fibers over bundle formation

is the main difference to the base case. Thus, the lower differences of annealing might

be attributed to this, as well as the visually higher disorganization resulting from an

increased flexibility of polymer fibers. Instead comparing to the base case of high G

content and high molecular weight, the annealing procedure causes the largest differences

and leads to a higher uptake of ions, increased coordination number / bundle formation,

as well as increased pore volume. Thus, the ’egg-box’ contacts previously left ion-free

during zipping appear to have received an ion (see Sec. 6.4.1). The annealing procedure

hence fulfilled its aim of overcoming local energy barriers.

The annealing procedure AN2 overall has an increased effect for alginate systems with

higher G content and molecular weight using ion model IM1 at sufficiently high ion

concentrations to trigger gelation. As intended, the temporary increase in temperature

leads to a momentary breakage of interactions, thus causing a higher acceptance of

ions, which then results in a higher coordination number (Fig. 6.10C) and ’egg-box’

formation (GG-GG attractive interaction, Fig. 6.10D). Consequently, bundle formation

(Fig. 6.10G) and pore volume generation (Fig. 6.10F) is increased.

Overall, annealing was found to support gelation and lead to increased bundle and pore

sizes in some cases (high G composition and molecular weight at gelation conditions us-

ing IM1). However, as the impact at other conditions and generally on gelation trends

is limited while essentially doubling the computational requirements, the annealing pro-

cedure can only be recommended to a limited extend.

6.5 Comparison with Literature and Collaborator Data

Experimental validation and comparison with literature data was performed in the con-

text of Depta et al. [224] for a polymer concentration of 1.0 wt.%, molecular weight of

155 kDa, high G composition, and saturated calcium concentration of f = 0.5. Val-

idation was performed concerning calcium uptake, pore size distributions, and bundle

thickness. Credit for the experimental works in this context is given to the respective

collaborators and for additional details on experimental procedures the reader is referred

to ref. [224].
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Hydrogel samples were prepared by Pavel Gurikov, Baldur Schroeter, and Parnpailin

Jeansathawong using the jet-cutting process reported in refs. [335, 336] for various solu-

tions of 0.5, 1.0, 5.0 wt.% CaCl2 and remained in solution for at least 12 hours to ensure

completed cross-linking. The produced hydrogel droplets were either preserved in 0.02

wt.% sodium azide prior to analysis or converted into aerogels using solvent exchange

and supercritical drying as described in refs. [335, 336]. All samples were prepared with

a polymer concentration of 1.0 wt.% as preliminary results with a polymer concentration

of 0.5 wt.% exhibited easily breakable hydrogels.

The experimentally used sodium alginate is the same as the ’high G’ alginate used by

Agulhon et al. [234] with a reported G and M content of 0.63 and 0.37, respectively

(no uncertainty estimation provided). For this study, the G content was independently

characterized by Geo Paul and Leonardo Marchese using 13C cross-polarization magic-

angle-spinning nuclear magnetic resonance (CPMAS NMR) as described in refs. [224,

337–340] for respective hydrogels in 0.5 and 1.0 wt.% CaCl2 solution. Results found

the G content to be 0.66 ± 0.10 and 0.70 ± 0.10 for the two calcium concentrations,

respectively. In light of these minor differences, the G content of 0.63 by Agulhon

et al. [234] was kept for consistency. Molecular weight of alginate samples was not

independently measured, but instead used from manufacturer specifications as 155 kDa.

Calcium Uptake/Binding The calcium uptake of hydrogels was measured by Pavel

Gurikov and Baldur Schroeter performing first a processing to the respective aerogel,

followed by an inductively coupled plasma optical emission spectroscopy (ICP-OES)

with dissolution in HNO3/H2O2. Results found the calcium content to be 81.6 ± 1.8,

91.1±2.1, and 85.0±0.90 g Ca/kg-aerogel for the gelation solution concentrations of 0.5,

1.0, and 5.0 wt.% CaCl2, respectively. Consequently, calcium uptake is approximately

equal for all gelation bath concentrations with a mean value of 85.9±4.4 g Ca/kg-aerogel.

The corresponding cross-linking degree fused,exp = 0.38 ± 0.02 is consequently in good

agreement with simulation predictions of the developed framework as fused,sim = 0.43.

Additionally, calcium binding during gelation of alginate has been studied by other au-

thors in literature. In this regard, Fang et al. [239] studied the gelation mechanisms

at increasing ion concentrations in dilute systems using isothermal titration calorimetry

(ITC) and relative viscosity measurements for almost identical alginate compositions

of ϕG = 0.64. They found that a minimum ion concentration of f = 0.16 − 0.35 is

necessary for ’egg-box’ formation to take place and asymptotic behavior starts around

f = 0.5 (each for both short and long chained alginates). In a similar direction, Lu et

al. [341] investigated alginate gelation at various polymer concentrations using rheolog-

ical measurements finding a logarithmic scaling between the critical ion concentration
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fcrit for gelation and polymer concentration. When extrapolating their data (2 - 6 wt.%

for the same ϕG = 0.63 and a lower molecular weight of 62 kDa) to the polymer con-

centrations investigated in this work, this leads to a fcrit of 0.13 and 0.17 for polymer

concentrations of 1.0 wt.% and 0.5 wt.%, respectively, thus being at the lower end of the

range by Fang et al. [239]. These experimental findings are in excellent agreement with

the model predictions presented in Sec. 6.4.2.1. In addition to the ion binding model

IM1, the unbinding model IM2 also captures nicely the delayed ’egg-box’ formation in

agreement with the experimental data by Fang et al. [239].

Pore Size Distribution Furthermore, the pore size distribution (PSD) of exper-

imental hydrogels was measured by Attila Forgács and József Kalmár using nuclear

magnetic resonance (NMR) cryoporometry [224, 342–344] (as previously established

for hydrogel-like systems [345]). In addition, the PSD of corresponding aerogels was

measured by Pavel Gurikov and Baldur Schroeter using N2 porosimetry and the Bar-

rett–Joyner–Halendia (BJH) method for desorption analysis. Measurements of corre-

sponding aerogels are expected to produce comparable results to those of the hydrogel,

as the solvent exchange is known to minimally influence the pore network and gel struc-

ture [346]. Results of all three calcium concentrations produced largely similar pore size

distributions 3 and were consequently averaged given the very similar degree of cross-

linking. Results of average PSD can be seen in Fig. 6.11 and indicate a good agreement

between the different measurement techniques for both hydrogels and aerogels. NMR

cryoporometry results found pore sizes of diameter 30 - 36 nm regardless of calcium con-

centration, while results for corresponding aerogels using N2 porosimetry (BJH method)

were shifted to slightly larger values around approx. 42 nm. Consequently, the most

probable pore diameter of the studied hydrogels lies in the range of 33 - 42 nm.

In addition, small angle neutron scattering (SANS) measurements of hydrogel PSD were

performed by Attila Forgács and József Kalmár as specified in [224, 339, 347] (Beaucage

model for data fitting [348, 349])4. Based on the scattering profile (data in Depta et

al. [224]) and corresponding Beaucage model, the mean pore diameter was estimated

as approximately 29.4 ± 3.0 nm, thus being slightly below estimations through NMR

cryoporometry and N2 porosimetry with BJH. However, such reasonable agreement is

very positive as it should be noted that precise definition and measurement of pores is

inherently challenging due to the anisotropic and interconnected nature of pores within

the gel network.

3As detailed discussion of these minor differences is out the scope of this work, the reader is referred
to Depta et al. [224].

4Note that for SANS preparation hydrogel beads were placed in D2O solution with 0.5 wt.% CaCl2
for two weeks, refreshing the solvent every three days.
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Figure 6.11: Experimental pore size distributions based on NMR cryoporometry
measured by Attila Forgács and József Kalmár and N2 porosimetry measured by
Pavel Gurikov and Baldur Schroeter. Figure adapted with permission from Depta et
al. [224] under CC-BY 4.0 license.

Before going into model validation concerning PSD, the measured values should be

placed into perspective with existing literature. Generally speaking, the pore size distri-

bution is a key property of aerogels as it defines their specific surface area - most notably

influenced by meso pores of range between 2 - 50 nm. Consequently, precise knowledge

and prediction is crucial. Available literature data for alginate aerogels across various

publications indicates a broad range with a median of 23 nm and an interquartile range

of 17 nm (n = 7 from refs. [350–353], see also supplementary in ref. [224]). Consequently,

the measured values for this study are towards the higher end. Note that to date there

is no clear insight as to the factors influencing structural properties of hydrogels and

aerogels. Furthermore, most literature data lacks complete characterization of alginates

and/or documentation of precise process conditions, specifically the calcium content,

making direct comparison of the model to literature data difficult.

In order to compare the numerical predictions of pore sizes to experimental measure-

ments and thus validate the model, the chord length distributions of pores can be used

(see Sec. 6.3). The comparison between experimental PSD in Fig. 6.11 and numerical

PSD in Fig. 6.12B indicates generally good agreement with slighly smaller pore sizes

of the simulation results. As it can be seen in Fig. 6.12B, the definition of a pore

(i.e. whether a single dimer in a 5 nm voxel occupies a pore or not) influences the PSD

leading to a most probable pore size in the range of 20 - 40 nm. The results of NMR cry-

oporometry, N2 porosimetry, and SANS are all in agreement and lie within this range as

it can be seen in Fig. 6.12A. This agreement is very reasonable considering the physically

different experimental measurement approaches, as well as possible inhomogeneities of

the samples.
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(A) Most probable pore diameter (peak
of pore size distribution; model shaded).

(B) Numerical pore size distribution for
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Figure 6.12: A) Comparison of experimental and numerical pore sizes (most
probable pore size, PSD peak). B) Pore size distribution of numerical results for the
corresponding alginate system of c = 1 wt.%, Mw = 155 kDa, high G composition, f
= 0.5, using IM1. Figure adapted with permission from Depta et al. [224] under
CC-BY 4.0 license.

Bundle/Fibril Diameter Lastly, the bundle diameter, also called fibril diameter, is

another fundamental measure extensively reported in literature. Due to this extensive re-

porting, no independent measurements were performed and validation will be performed

with existing data based on small-angle X-ray scattering (SAXS). An extensive overview

of more than forty literature data points of SAXS measurements for CaCl2 cross-linked

alginate hydrogels and aerogels is provided in Tab. 6.5. As it can be observed, the bun-

dle diameter varies by an order of magnitude as a function of polymer concentration,

polymer composition, molecular weight, ion concentration, and other process conditions.

Based on the data shown in Tab. 6.5, some tendencies of bundle formation can be ob-

served: With regard to alginate concentration, there appears to be no strong dependency

on bundle diameter. For alginate composition / G fraction ϕG, there are limited indica-

tions showing a increase in bundle sizes with decreasing ϕG. This might be attributed to

the decreased cross-linking from a reduced number of ’egg-box’ interaction and thus in-

creased mobility during gelation. Such a behavior could not be observed by the proposed

model (see Sec. 6.4.2.1) and indications in experimental data are fairly limited. Con-

sidering molecular weight Mw, the bundle diameter appears to increase with decreasing

Mw. This trend is in agreement with simulation results and attributed to the increase in

flexibility resulting from shorter polymer fibers. For ion concentration, strong dependen-

cies can be observed: While over-saturated gels are in the range 10 - 20 nm (data points

are also at lower ϕG), lower ion concentrations do not exceed 10 nm although being near

estimated ion saturation. Furthermore, the majority of data is in the range 2 – 3 nm. In

a similar regard, Stokke et al. [354] have found a near linear strong correlation between

bundle diameter and relative ion concentration [Ca2+]/[G]. Furthermore, it should be
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noted that lower bundle diameters appear to be present for controlled release of calcium

ions, while uncontrollable and large quantities of ions appear to promote larger bundle

diameters (arbitrarily assigned f = 1.0 in Tab. 6.5).

With regard to the simulation results, the alginate system with a polymer concentration

of 1.0 wt.%, a molecular weight of 155 kDa, and an ion concentration of f = 0.5 exhibits

bundle diameters between 0.6 nm (single polymer fibers) and 5.8 nm. The resulting

average bundle diameter is 1.1±0.5 nm including individual polymer fibers and 1.5±0.3

nm when excluding individual fibers. Thus, a large fraction of individual fibers remain

in the solution, which is attributed to restrained individual fibers due to cross-linking in

the context of a highly homogeneous solution. Additionally, precise definition of contact

distances between bundled fibers relatable to SAXS is difficult: By increasing the center

of mass distance between two dimers on different fibers composing a bundle to 1.5 nm,

the average bundle diameter increases to 1.7 ± 1.1 nm including individual polymer

fibers and 2.4±0.8 nm when excluding individual fibers. Nonetheless, simulation results

are at the lower end in comparison to SAXS data from literature. With regard to

specific comparison, the results marked in grey by Stokke et al. [354] provide the most

similar experimental conditions (denoted as InG155 in ref. [354] with a slightly lower

ϕG = 0.53 and f = 0.44). Stokke et al. found bundle diameters between 1.96 - 4.76 nm

(R1 − R2, average 3.4 nm) for these conditions, which is slightly above the numerically

predicted bundle diameters, but still in reasonable agreement especially considering the

multiplicity of junction zones in SAXS [354].

When analyzing the scattering profile of SAXS data, the Guinier approximation is fre-

quently used, which causes a multiplicity of junction zones [354] (zones of high density,

i.e. polymer thickness). This has been found especially challenging in the high G and

high calcium content systems favorable for alginate gelation, as these conditions cause

curvature effects of Guinier plots [354]. Thus, direct comparison of SAXS data with

the numerically predicted structures is difficult. In this regard, future studies might ex-

plore the modeling of scattering profiles based on the numerically predicted structures.

Additionally, the simulated polymer solution represents the ideally homogeneous case,

thus forming ideal gel networks with individual fibers cross-linked along the network.

In contrast, experimental conditions inherently contain more inhomogeneities resulting

from material composition (e.g. molecular weight), processing (e.g shear, dispersion of

ions, density gradients), and impurities (e.g. gas bubbles), thus leading to larger bundle

sizes.

Overall, good agreement between simulation predictions and experimental results was

achieved by the proposed model. In this context, ion uptake/binding, pore size distri-

butions, and bundle/fibril diameter were compared indicating the network formation
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during gelation and good agreement shown for each property. Future studies might ex-

tend the model validation to additional conditions with regard to polymer concentration,

ion concentration, and polymer composition.
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Table 6.5: SAXS measurements for CaCl2 cross-linked hydrogels and aerogels.
Table reprinted with permission from Depta et al. [224] under CC-BY 4.0 license.
∗) f of 1.0 is assumed given a large excess of Ca2+ over alginate, but not directly
measured in the cited paper; ∗∗) calculated from alginate concentration in g/L,
assuming density of the alginate solution of 1 g/cm3; ∗∗∗) estimated from: R1 = 8.0 Å
with corresponding weights from the cited work; ∗∗∗∗) data for aerogels derived from
the corresponding alginate solution; ∗∗∗∗∗) averaged from two values of the
characteristic size given in the original publication.

Alg. conc. [wt.%] f [−] ϕG[−] Mw [kDa] Bundle diameter [nm] Ref.
2 1.0 ∗) 0.42 250 11.6 [355]
3 1.0 ∗) 0.42 250 12.8 [355]
5 1.0 ∗) 0.42 250 14.2 [355]
2 1.0 ∗) 0.35 n.d. 10.2 [346]
1 1.0 ∗) 0.35 n.d. 9.8 [356]
2 0.46 0.63 n.d. 6.7±0.3 [234]
2 0.46 0.63 n.d. 9.1±0.3 ∗∗∗∗) [234]
2 0.52 0.33 n.d. 21.8±0.3 [234]
2 0.52 0.33 n.d. 15.4±0.3 ∗∗∗∗) [234]

1.0 ∗∗) 0.175 0.68 160 2.2 ∗∗∗) [357]
1.0 ∗∗) 0.175 0.39 230 1.4 ∗∗∗) [357]
0.5 ∗∗) 0.263 0.53 155 2.9 ∗∗∗∗∗) [354]
0.5 ∗∗) 0.525 0.53 155 3.6 ∗∗∗∗∗) [354]
0.75 ∗∗) 0.263 0.53 155 2.6 ∗∗∗∗∗) [354]
0.55 ∗∗) 0.350 0.53 155 3.4 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.175 0.39 230 2.0 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.175 0.39 230 2.2 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.350 0.39 230 2.5 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.175 0.53 155 2.2 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.350 0.53 155 2.9 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.131 0.53 155 1.5 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.175 0.53 155 2.3 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.219 0.53 155 2.5 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.263 0.53 155 2.8 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.438 0.53 155 3.4 ∗∗∗∗∗) [354]
1.25 ∗∗) 0.210 0.53 155 2.4 ∗∗∗∗∗) [354]
1.25 ∗∗) 0.259 0.53 155 2.9 ∗∗∗∗∗) [354]
1.5 ∗∗) 0.175 0.53 155 2.3 ∗∗∗∗∗) [354]
0.5 ∗∗) 0.175 0.50 455 2.2 ∗∗∗∗∗) [354]
0.5 ∗∗) 0.350 0.50 455 2.7 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.175 0.50 455 2.1 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.350 0.50 455 2.9 ∗∗∗∗∗) [354]
0.5 ∗∗) 0.175 0.50 455 1.6 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.175 0.70 51 3.5 ∗∗∗∗∗) [354]
1.0 ∗∗) 0.350 0.70 51 4.4 ∗∗∗∗∗) [354]
1 ∗∗) 0.175 0.68 160 2.5 ∗∗∗∗∗) [354]
1 ∗∗) 0.525 0.68 160 3.2 ∗∗∗∗∗) [354]
1 ∗∗) 0.175 0.68 160 2.9 ∗∗∗∗∗) [354]
1 ∗∗) 0.350 0.68 160 3.6 ∗∗∗∗∗) [354]
1 ∗∗) 0.525 0.68 160 6.0 ∗∗∗∗∗) [354]

0.5 ∗∗) 0.175 0.66 465 2.1 ∗∗∗∗∗) [354]
0.5 ∗∗) 0.350 0.66 465 2.9 ∗∗∗∗∗) [354]
1 ∗∗) 0.175 0.66 465 2.4 ∗∗∗∗∗) [354]
1 ∗∗) 0.35 0.66 465 3.1 ∗∗∗∗∗) [354]
1 ∗∗) 0.175 0.66 465 1.9 ∗∗∗∗∗) [354]
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This chapter is based on the following publications:

P. N. Depta, M. Dosta, W. Wenzel, M. Kozlowska, and S. Heinrich. Hierarchical

Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis

B Virus-Like Particles. Int. J. Mol. Sci., 23(23):14699, 2022

P. N. Depta, M. Dosta, and S. Heinrich. Data-Driven Multiscale Modeling of Self-

Assembly and Hierarchical Structural Formation in Biological Macro-Molecular Sys-

tems. In W. E. Nagel, D. H. Kröner, and M. M. Resch (editors), High Performance

Computing in Science and Engineering ’21. Springer International Publishing, Cham,

2023

7.1 Model Parameters

7.1.1 Structural Model

In order to study the self-assembly of virus-like particles (VLP) on the example of the

hepatitis B core antigen (HBcAg), a dimer of HBcAg monomers (subsequently termed

HBcAg2), is abstracted as the smallest unit object as presented in Sec. 1.3.1 and Ch. 2.

The HBcAg2 dimer can be assumed stable on the time scales studied and its reference

conformation can be found in Sec. 1.3.1, which is used for the parameterization of all

model components. The dimer posses a mass of 33.6 kDa = 5.586×10−23 kg and a radius

of gyration in x, y, and z of 1.31 nm, 1.85 nm, and 1.97 nm, respectively. The dimers are

freely interacting with each other and the environment, i.e. implicit solvent and ions.

They possess a position, orientation, as well as spatial extend and other anisotropic

properties through its functional models, which will be specified in the following.

125
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7.1.2 Functional Model

7.1.2.1 Diffusion and Thermodynamics

Anisotropic diffusion and the respective thermodynamics of the desired canonical ensem-

ble were modeled and parameterized for the HBcAg2 dimer using the method presented

in Ch. 3. The model captures the interaction of the structurally flexible macromolecule

with the solvent, as well as ions. The determined diffusion coefficients for HBcAg2 at the

desired process conditions of 293 K and 150 mM NaCl in aqueous solution are given in

Tab. 7.1. Hydrodynamic interaction was accounted for through reduction of the effective

viscosity by a factor of 0.1 as discussed in Sec. 3.2 and App. A.3.

Table 7.1: Diffusion coefficients for HBcAg2 dimer at 293 K and 150 mM NaCl in
aqueous solution. Table adapted with permission from Depta et al. [225] under
CC-BY 4.0 license.

Dt [µm2 s−1] Dr [Mrad2 s−1]

x y z α β γ
87.69 72.27 71.48 12.05 7.46 7.00

7.1.2.2 Intermolecular Interaction

The intermolecular interaction of HBcAg2 with HBcAg2 was modeled and parameterized

using the method presented in Sec. 4.3. Initial MD sampling was performed based on

distances classes as specified in Sec. 4.3.4.3 and detailed in Tab. 7.2 for a total of 95’000

samples. Based on these initial samples, iterative refinement was performed as specified

in Sec. 4.3.4.3 using the following sequence of refinement criteria and number of samples:

• Iteration 1 - 10: Variance minimization using 5’000 samples for each iteration.

• Iteration 11- 20: Normalized variance minimization using 5’000 samples for each

iteration.

• Iteration 21, 24, 27: Potential minima resampling using 15’000 samples for main

extrema points and 5’000 samples for first-level neighborhood points.

• Iteration 22, 25, 28: Potential maxima resampling using 15’000 samples for main

extrema points and 5’000 samples for first-level neighborhood points.

• Iteration 23, 26, 29: Gradient maxima resampling using 15’000 samples for main

extrema points and 5’000 samples for first-level neighborhood points.
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Overall, 375’000 MD data points were sampled and analyzed for estimation of the in-

termolecular interaction potential of HBcAg2 with HBcAg2. The results of iterative

refinement will be presented in detail in Sec. 7.4.1.1. During resampling, a 0.63 nm grid

was employed and after finalization refined to 0.5 nm for the remaining works.

Table 7.2: Random sampling over distances classes for HBcAg2 – HBcAg2 data set
before iterative resampling. Note that the number of samples is essentially double (or
interaction space half in volume) due to the symmetry resulting from molecule A = B.
Reprinted with permission from Depta et al. [225] under CC-BY 4.0 license.

dA−B [nm] # samples
lower upper

0.4 0.5 20’000

0.5 0.7 5’000

0.7 0.9 5’000

0.9 1.1 5’000

1.1 1.3 5’000

1.3 1.5 5’000

1.5 1.7 5’000

1.7 1.9 5’000

1.9 2.1 5’000

2.1 2.3 5’000

2.3 2.5 5’000

2.5 3.0 5’000

3.0 3.5 5’000

3.5 4.0 5’000

4.0 4.5 5’000

4.5 5.0 5’000

Sum 95’000

Furthermore, biased MD simulations were performed at the binding locations of the

HBcAg capsid for extended simulation times. As non-colliding start configurations are

required for MD, the algorithm described in Sec. 4.3.5 was employed to determine the

configurations closest to known binding locations. The determined non-overlapping

binding configurations can be found in Tab. 7.3. At each binding location, 1’016 simula-

tions were performed for 10 ns each. The results will be discussed in detail in Sec. 7.4.1.2.

7.1.2.3 Bonded Interaction

No bonded interaction was modeled for the HBcAg system. All intermolecular interac-

tions for the self-assembly process were captured by the interaction model in Sec. 7.1.2.2.
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Table 7.3: HBcAg2 – HBcAg2 binding locations from reference capsid and
determined non-colliding locations for dimer reference structure. x/y/z in nano-meter
and α/β/γ in radian with respect to body frame of reference of molecule A. Each
binding location is present 60 times in the reference 120 dimer capsid and the mean
and maximum δr distance to any instance is 0.005 nm and 0.12 nm respectively.
Table adapted with permission from Depta et al. [225] under CC-BY 4.0 license.

# Original Non-colliding

x y z x y z

1 -2.74 -0.74 -3.10 -2.74 -0.94 -3.50
2 1.47 -0.91 -4.14 1.67 -0.91 -4.34
3 -3.01 -0.70 -3.08 -3.01 -1.10 -3.48
4 -0.65 -0.77 4.25 -0.65 -0.57 4.45

α β γ α β γ

1 -0.48 0.98 -0.32 -0.13 0.81 -0.06
2 -0.88 -1.05 0.67 -0.53 -0.79 0.50
3 -2.72 -1.05 3.03 -3.07 -0.96 -3.08
4 2.72 0.92 2.76 2.81 0.83 2.76

7.1.2.4 Critical Time Step

In order to estimate the critical time step τcrit necessary for a convergent and numerically

stable solution, the previously discussed methods for the individual model components

were used, see Sec. 3.4.1 and 4.5. Based on this, the critical time step can be estimated

as 2.9×10−13 s for the diffusion model (2.9×10−12 s when accounting for hydrodynamic

interaction through reduced viscosity as discussed in Sec. 3.2 and App. A.3), 5.3×10−12 s

for the translational component of the intermolecular interaction model, and 2.0×10−12 s

for the rotational component of the intermolecular interaction model. Consequently, the

diffusion model constrains the overall simulation time step. Unless otherwise indicated,

a simulation time step of 10−13 s was used leading to an error of 1.0 % with regards to

RMS displacement (see Sec. 3.4.1).

7.2 Simulation Setup and Procedure

A variety of simulation setups and procedures were performed in order to study the

derived macromolecular interaction potentials, VLP stability, and VLP self-assembly.

Details on the MDEM implementation can be found in Sec. 2.2. Unless otherwise indi-

cated, a temperature of 293 K, dynamic viscosity of 1.0074×10−3 Pa s, time step of 10−13

s, and cubic simulation domain with periodic boundary conditions at all boundaries was

used. The following three simulation procedures can be differentiated.
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VLP Binding Location Agreement and Stability (SP-VLP-1) First, in order

to study the derived macromolecular interaction potentials and agreement of binding

locations with literature data, the stability of the smallest structural assembly of the

HBcAg2, a trimer, was investigated. The used reference trimer (of HBcAg2 dimers) was

extracted from the reference capsid and is shown in Fig. 7.1A. Based on the trimer in

free solution with an open domain, equilibration simulations were performed for 25 ns

at a temperature of 0 K to avoid thermostat effects and enable a pure equilibration of

the structure to its (local) equilibrium based on the macromolecular interaction poten-

tial. Consequently, agreement of binding positions with the potential minima of the

interaction potential can be investigated and visualized.

VLP Capsid Stability (SP-VLP-2) Second, the stability of individual HBcAg

capsids was evaluated using the objective function for structural stability defined in

App. C.3. For these simulations, an assembled capsid based on its reference assembly

was placed in an open domain and simulation performed for 250 ns at normal process

conditions. Structural stability was evaluated every 1 ns and calculated as specified in

App. C.3.

VLP Self-Assembly (SP-VLP-3) Third, self-assembly of HBcAg2 was investigated

based on randomly initialized systems. HBcAg2 dimers were placed and oriented ran-

domly in a cubic box of specified size and concentration with periodic boundary con-

ditions. During placement, overlap of dimers was permitted and then corrected during

the simulation through the intermolecular interaction model. Four concentrations of

5 µm, 10 µm, 50 µm, and 100 µm were investigated. The simulations of the two lower

concentrations were performed in 1 µm3 (1 µm edge) cubic boxes and the two higher

concentrations in 0.125 µm3 (0.5 µm edge) cubic boxes to achieve similar run times and

maintain comparable statistics. In order to account for the non-dilute state during self-

assembly, the effective viscosity was reduced to 1.0074×10−4 Pa s as discussed in Sec. 3.2

and App. A.3. This enabled an increase of the simulation time step to 10−12 s. Based

on this, self-assembly simulations were then performed for 5 ms with a savings interval

of 500 ns.

7.3 Analysis and Postprocessing

Simulation results were analyzed both online and in postprocessing to study a variety

of features with focus on structural properties. The analyzed system properties include

the following and are taken from Depta et al. [225]:
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• objective function of capsid stability fstab during stability analysis of an individual

capsid (SP-VLP-2, see Appendix C.3 for definition);

• self-assembled structures (SAS) were identified using a network search algorithm

distinguishing between structured contacts (δr ≤ 1 nm from a known binding lo-

cation, see Tab. 7.3) and unstructured contacts (δm ≤ 0.3 nm and δr > 1 nm

from a known binding location). Based on these, the following properties were

investigated and can be readily compared to known capsids:

– NSAS is the number of dimers / particles in each SAS;

– dSAS,gyr is the diameter of gyration of each SAS;

– ξstruc is the number of structured contacts normalized by the number of dimers

in the system, can also be used per SAS or per dimer;

– ξunstruc is the number of unstructured contacts normalized by the number of

dimers in the system, can also be used per SAS or per dimer;

– Φstruc = ξstruc/(ξstruc + ξunstruc) is the fraction of structured contacts in the

system, can also be used per SAS or per dimer;

• assembly kinetics were quantified by exponential fitting of average NSAS, see

Sec. 4.3.3 eq. 4.17 with time constant τSAS (r in eq. 4.17) and asymptotic structure

size NSAS,asymp (s in eq. 4.17);

• transitions of dimers between size classes based on NSAS were summarized and

normalized by the number of dimers / particles to capture assembly mechanisms

(note saving step of 500 ns). Bi-directional and net transitions between classes

were distinguished and visualized using chord diagrams [358];

• lifetimes tlife of structures were analyzed based on their duration of existence until

either class change or end of simulation.

In addition, global properties such as potential and kinetic energies were analyzed. How-

ever, as these provided little additional insight focus was placed on the structural fea-

tures.

7.4 Results

In the following section, the results of VLP stability and self-assembly will be presented

based on the HBcAg2 dimer. In this context, first the intermolecular interaction poten-

tial and its impact on stability of VLP sub-structures will be discussed. Second, VLP

self-assembly using the fully parameterized model will investigated for varying concen-

trations of dimers.
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7.4.1 Intermolecular Interaction Potential and VLP Stability

With regard to both the stability and self-assembly of VLPs, the intermolecular inter-

action potential is the most crucial aspect in modeling as it defines binding locations

and hence the overall structural formation. In order to investigate the behavior of the

interaction potential on stability, the smallest sub-component of the HBcAg VLP – a

trimer of HBcAg2 dimers – will be investigated as it is visualized in Fig. 7.1. The inter-

molecular interaction potential will be explored based on pure MD sampling, including

biased MD sampling at the binding locations, and with additional empirical data as

outlined in Sec. 4.3 and 7.1.2.2.

(A) Reference (B) Pure MD
(C) Biased
MD

(D) MD +
Empirical

Figure 7.1: Visual comparison of the trimer equilibrium positions between the
capsid reference structure (A) and MD-based interaction potentials (B-D) after
equilibration using simulation protocol SP-VLP-1. Shown cases are for the pure
MD-based interaction potential (B), biased MD-based at binding locations (C), and
MD-based with empirical data (D). Adapted with permission from Depta et al. [225]
under CC-BY 4.0 license.

7.4.1.1 Pure MD-Based Interaction Potential

MD Data Trends and Statistics During iterative resampling of the supervised

learning algorithm for the intermolecular interaction potential, the MD data was ana-

lyzed adaptively by the algorithm for trends and correlation statistics. An overview of

the full trend and statistical analysis of the final data set for HBcAg2 – HBcAg2 interac-

tion is provided in Appendix D.3. The intermolecular interaction between two HBcAg2

shows an attractive trend for potential A–B (170 kJ/mol), repulsive for potential A–

PW + B–PW (200 kJ/mol), attractive for potential PW–PW (49 kJ/mol), repulsive for

potential A–ion + B–ion (11 kJ/mol), attractive for potential PW–ion (5 kJ/mol), and

repulsive for bond potential (4 kJ/mol). In contrast, the potential contributions A–A

+ B–B, ion–ion, G96-angles, improper dihedral angles, and Coulomb reciprocal contain

no significant trend. Consequently, the results indicate a largely stable conformation of

HBcAg2 during interaction and only a slight repulsion resulting from bonded interac-

tions with each molecule. Furthermore, long-range electrostatic effects captured in the
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reciprocal Coulomb term appear negligible, which is especially notable in the context of

the large concentration of ions known to mediate intermolecular interaction. Overall, the

dominating influences are caused by electrostatic and Lennard-Jones interaction directly

between molecules, through solvent effects, and ion mediation. The overall trend sum

has an interaction range of δm ≈ 1.2 nm and contains a local minimum of -32 kJ/mol at

δm ≈ 0.45 nm before increasing to -9 kJ/mol at δm ≈ 0 nm (contact). These values are

in agreement with theoretical models [359, 360] and slightly higher than experimental

association energies [254, 361], which explicitly account for allosteric modulation effects.

After accounting for the identified potential trends, the remaining residual potential

contained valid correlations only for the potential component A–B with variogram val-

ues up to 1’000 – 10’000 kJ2/mol2 over interaction ranges between 2 – 4 nm increasing

towards sections of larger δm. All other potential components contained either signifi-

cantly more inherent noise and / or very short correlation distances prohibiting further

interpretation beyond the trend. All data is provided in App. D.3 including additional

spatial descriptors in App. D.1.

Convergence The convergence behavior concerning potential changes and estimation

variance resulting from the iterative resampling strategy is shown in Fig. 7.2. The three

criteria of resampling for variance, normalized variance, and extrema (potential minima,

potential maxima, gradient maxima) can be clearly distinguished in the changes of the

potential field and exhibit a decreasing mean change in potential for each criteria. At the

beginning of each criteria, the mean change in potential increases indicating the change

in emphasis within the interaction space. This is especially notable during extrema

resampling, when the overall field changes significantly indicating stronger deviations

from the trend through e.g. binding locations. At the same time, the maximum change

in potential decreases only slightly from approximately 300 kJ/mol to the range of 100

– 200 kJ/mol, indicating locally higher changes in potential overall. Furthermore, the

estimation variance decreases slightly within each criteria of resampling and exhibits

a strong increase at the beginning of extrema resampling followed by a decrease and

stabilization. This increase is attributed to a change in variogram model resulting from

a larger variance of the potential samples during extrema resampling.

Overall, the convergence results underline the challenges of sampling in the six dimen-

sional interaction space and inherent noise caused by lower-scale changes, e.g. ther-

modynamics. While increased sampling would be beneficial, the algorithm performs

reasonably well in the context of limited computational resources, as well as the trade-

off between sampling extrema and learning the overall field, as can be observed in the

reduction of potential changes.
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Figure 7.2: Iterative resampling convergence concerning potential field changes (left,
Ui − Ui−1) and field variance (right). Adapted with permission from Springer Nature
regarding Depta et al. [226].

Resulting Field The interaction potential field resulting from the pure MD-based

sampling is visualized in Fig. 7.3 using a set of 1D, 2D, and 3D projections out of

the 6D space. As it can be seen in the 1D projection into δm space, the interaction

range between two HBcAg2 molecules is approximately δm ≈ 2 nm. After entering the

interaction region, a slight potential barrier between 0 – 5 kJ/mol exists at δm ≈ 1.5

nm followed by a local potential minimum at δm ≈ 0.45 nm, which results from the

minimum in potential trends. After a slight increase in potential with lower δm, the

average potential between δm = 0 − 0.2 nm decreases to −39.0 ± 82.5 kJ/mol leading

to possible binding. The specific potential values for each relative configuration can

vary significantly from the overall trend especially for small δm (note increasing variance

with lower δm), which is attributed to the strong Coulomb and Lennard-Jones interaction

between molecules, solvent, and ions leading to both binding and repulsion depending

on the specific relative configuration.

As it can be seen in the 2D minimum projection in Fig. 7.3B, 3 – 4 primary binding

locations are recognized. These binding locations can be identified more clearly in the 3D

projections in Fig. 7.3C - 7.3D and are located beneath the dimer in negative y-direction,

as well as in positive and negative x-direction from the dimer spike (upper y-axis part

of molecule). As it can be seen in the corresponding trimer equilibration shown in

Fig. 7.1B, the underneath of the dimer essentially binds next to the spike on either side.

Note that these recognized binding locations are different from the expected binding

locations present in the capsid and trimer (see Fig. 7.1A and Tab. 7.3). Consequently,

the derived interaction potential does not produce stable capsids.

Investigations of binding details and the underlying MD data show that these differ-

ences and limitations in capturing binding can be attributed to conformational changes

required for binding in the context of reference conformation, MD simulation time, and
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Figure 7.3: Interaction potential field from pure MD-based sampling strategy
using a 0.5 nm grid (units of kJ/mol). A and B adapted with permission from
Springer Nature regarding Depta et al. [226].

possibly the employed Martini force-field. As it can be seen in Fig. 7.1A, the reference
structure determined by representative clustering during free diffusion runs differs from
the binding conformation causing overlapping side-chains. Consequently, during binding
the conformation is required to change to enable the strong binding interaction. While
the MD model explicitly permits these degrees of freedom during potential sampling, the
studied simulation times appear to be either to short for the conformational difference
to occur with sufficient probability or the employed Martini force-field is not suitable
enough for the HBcAg system. In order to study these effects in more detail, biased MD
simulations are performed for extended simulation times of 10 ns in the following. Note
that a study investigating the suitability of different force-fields goes beyond the scope
and intent of this work.
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7.4.1.2 Biased MD-Based Interaction Potential

In order to address the challenges in binding recognition, at each of the four locations

(see Tab. 7.3 and Fig. 7.1A) 1’016 replicates were performed with 10 ns simulation time

each as specified in Sec. 4.3.5 and 7.1.2.2. Post-processing was conducted using the last

0.1 ns as before (see Sec. 4.3.1). Results show an improved binding recognition with A–B

potentials as low as -762 kJ/mol and conformations similar to literature [12, 244, 246]

as it can be seen in Fig. 7.5. However, probability of strong binding remains low as it

can be seen in the wide probability distribution of potential A–B shown in Fig. 7.4 with

an average potential at -285 kJ/mol and peaks in probability between -200 and -400

kJ/mol. Furthermore, conformational difference of the C-terminal region remain for the

majority of binding simulations.
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(C) Binding location 3.
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Figure 7.4: Probability distribution of UAB for biased MD simulations at binding
locations 1-4 of HBcAg2 system, see Tab. 7.3 and Fig. 7.1A.

The resulting interaction potential field can be found in App. D.2 Fig. D.2 and exhibits

no visual differences to the pure MD-based interaction potential. A detailed comparison

shows a minimal average potential decrease of the interaction region (within cutoff)

by -0.05 kJ/mol and local changes include a decrease of up to -299 kJ/mol, as well as

an increase of up to 234 kJ/mol. While these changes appear visually minimal, the

interaction potential produces stable trimers in equilibration studies as it can be seen

in Fig. 7.1C. Consequently, the extended simulations at the binding locations improve

the interaction potential notably. However, capsid structures remain unstable as the
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Figure 7.5: Visualization from side (left) and top (right) of biased MD simulation
with lowest potential A-B after 10 ns. Adapted with permission from Depta et
al. [225] under CC-BY 4.0 license.

global potential minima (i.e. global binding locations) remain unchanged and are not

coinciding with the known binding location. Consequently, while recognition of binding

is improved, the extended simulation runs are not sufficient in recognizing the specificity

and strength of binding due to the remaining low probability attributed to conformation

changes required.

In the context of effective surrogate modeling and force-field development using lower-

scale models, such limitations are well known [30]. While lower-scale methods such as

MD provide a wealth of information, their detail, scales, and sampling capabilities are

limited. Furthermore, the abstraction and formulation of the effective surrogate model

is limited. In order to address this in the context of surrogate modeling, additional

information is often included to address such limitations and improve the overall model.

The following section will explore such an approach through insertion of empirical data.

7.4.1.3 MD-Based Interaction Potential with Empirical Data

In order to address the limitations of the underlying MD model during parameterization

of the macromolecular interaction potential, a variety of approaches to insert additional

empirical data were explored. The main goal in this context was to perform adaptations

only locally, while retaining the remaining information from MD. Good results were

achieved through the insertion of empirical data points with specific potential values at

defined locations. These empirical data points influence the interaction potential esti-

mation in their proximity through Universal Kriging in the same manner a data point

from MD sampling does. However, they are considered virtual as they do not influ-

ence the trend and variogram model (i.e. correlations), leaving the remaining molecular

information of the macromolecular interaction potential unchanged.
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A variety of insertion methods were explored for improving the definition of HBcAg2 –

HBcAg2 binding sites in the context of VLP / capsid stability and self-assembly. For

this, the shape and potential depth of inserted empirical data points were varied, as

well as the repulsion model for molecular overlap, which correlates closely. This was

performed through parameter studies, optimizations, as well as manual testing. It was

found that the binding locations have to be specified lower than the potential minima of

the pure MD-based potential, i.e. at least -800 to -1000 kJ/mol at the binding locations.

Improved stability and self-assembly of capsids was achieved by decreasing potentials

to approximately -1400 kJ/mol. While these potentials are considerably low, they are

not overly different from the lower potentials found during extended MD simulations

in Sec. 7.4.1.2, especially in the context of remaining conformational differences of the

C-terminal [362]. Additionally, the unbinding barrier through the conformational inter-

connection of molecules during binding is captured efficiently through this deepened

interaction potential. Lastly, it was found that the most suitable spatial extend of

binding locations for achieving capsid stability is approximately 1 nm in δr space with

increasing potentials of a Gaussian shape. Both smaller and larger spatial extends lead

to unstable capsids through lacking spatial specificity.

Overall, the best solution concerning capsid stability and self-assembly achieved an ob-

jective stability criterion fstab = 0.725 over 250 ns (see simulation procedure SP-VLP-2)

indicating a near perfect capsid. Similarly, the reference trimer was kept stable during

equilibration as it can be seen in Fig. 7.1D. The empirical data points were inserted as

specified in Sec. 4.3.5 at the binding locations in Tab. 7.3 including symmetry points

using Uemp,bind,center = −1400 kJ/mol, dstep,center = 0.1 nm, Uemp,bind,outer = −1000 kJ/-

mol, remp,bind = 1.0 nm, and dstep,outer = 0.2 nm as parameters. Molecular collisions

were found to be optimally accounted for by the repulsion model (see Sec. 4.3.6) using

crep,bb = 50 kJ/mol, Nmin,bb = 0.25, dMD,min = 0.4 nm, wMD,min = 0.5 nm, wcoll = 0.3

nm, and crep,side = 0 kJ/mol as parameters. These parameters for the repulsion model

were used consistently for pure MD and biased MD results in Sec. 7.4.1.1 and 7.4.1.2.

The resulting interaction potential from the insertion of empirical data points together

with MD-based samples is visualized in Fig. 7.6. As it can be seen in Fig. 7.6B and

7.6C in comparison to the pure MD-based potential in Fig. 7.3, four specific potential

minima are introduced coinciding with the desired binding locations. At the same time,

the overall potential seen most prominently in Fig. 7.6A and 7.6D is visually unchanged

indicating a majority of information resulting from the MD-based sampling, e.g. the

potential barrier at δm ≈ 1.5 nm. Consequently, the MD-based information is merged

with empirical information at specific locations underlining feasibility of the approach.
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Figure 7.6: Interaction potential field from MD with empirical data (units of
kJ/mol). Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.

7.4.2 VLP Self-Assembly

In the following section, the self-assembly of HBcAg2 into virus-like particles (VLPs, also
termed virus capsids) will be investigated using the proposed framework and MD-based
interaction potential with empirical data shown in Sec. 7.4.1.3. Four HBcAg2 concen-
trations of 5 µm, 10 µm, 50 µm, and 100 µm were investigated at constant conditions of
293 K and 150 mM sodium chloride employing the procedure SP-VLP-3 presented in
Sec. 7.2. The two lower concentrations were performed in a cubic simulation domain
of 1 µm3, while the two larger concentrations were performed in 0.125 µm3 domains to
ensure comparable run-times and statistics. Exemplary for the 1 µm3 system with 10 µm
concentration, the transition from its initially disordered random state at the beginning
to self-assembled capsid structures is visualized in Fig. 7.7. In the following, the results
of self-assembly will be discussed in detail for all concentrations with regard to assembly
properties, kinetics, and pathways.
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Figure 7.7: VLP self-assembly for 1 µm3 box (1 µm edge) with 10 µm concentration
before (left) and after (right) 5 ms with simulation protocol SP-VLP-3. Back-bone
carbon structures are visualized and color indicates self-assembled structure sizes by
number of dimer particles (NSAS).

Assembly Properties As it can be seen in the overall visualization of systems (Fig. 7.8)

and closeups of structures (Fig. 7.9), the individual HBcAg2 dimers self-assemble into

regular spherical capsids, which are visually in good agreement with the expected icosa-

hedral VLPs [244] (e.g., 5A, 5C, and 10B in Fig. 7.9). Each dimer forms on average

ξstruc = 3.5 structured connections for all concentrations, which is close to the expected

value of ξstruc = 4.0 for perfect T = 4 capsids (120 dimers), thus supporting agreement

with icosahedral VLPs. The majority of the formed capsid population contains around

100 dimers (green coloring) and possesses a diameter of gyration between 24 - 30 nm as

is shown in the population distribution in Fig. 7.10. As indicated by the marked regions,

a smaller portion of the population agrees with the T = 3 capsid with regard to these

properties (24.0 %, 20.7 %, 19.2 %, and 11.5 % for concentrations of 5 µm - 100 µm,

respectively), while the majority of the capsid population can be considered pre-stages

of T = 4 capsids missing up to 20 dimers. Such excess of T = 4 capsids over T =

3 capsids is in agreement with literature [246, 363–365], which predicts more than 90

% of T = 4 capsids. This assessment is further supported by closeup visualizations of

capsids (e.g. 5B in Fig. 7.9), which tend to show defects in the form of missing dimers

or dimer segments. It appears the finalization to perfect T = 4 capsids is incomplete

at the end of the simulations, which is attributed to the decreased equilibration kinet-

ics resulting from low availability of individual dimers or small structures at this stage

(discussed subsequently in assembly kinetics, visible through comparatively low number

of blue colored structures). These observations are in line with experimental insights

[254, 366]. In addition to defects of missing individual dimers and dimer segments, rare

defects of misalignments in structure can be observed such as 100B in Fig. 7.9, where

the ring assembly at the center contains seven instead of six dimers. However, as can
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(D) 0.125 µm3 box (0.5 µm edge) with
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Figure 7.8: VLP self-assembly for four concentrations after 5 ms using simulation
protocol SP-VLP-3. Back-bone carbon structures are visualized and color indicates
self-assembled structure sizes by number of dimer particles (NSAS). Note that red
structure at the bottom left of C exceeds the color scale with a structure size of 221,
as well as structure 100D with 233 dimers. Adapted with permission from Depta et
al. [225] under CC-BY 4.0 license.

be seen, such defects appear to be rare. With regard to the influence of concentration,

a slightly higher population in the range of 100 – 120 dimers can be observed for the

higher concentrations (see Fig. 7.10) supporting experimental findings [367, 368].

In addition to the primary capsid population around 90 - 120 dimers, structures of

smaller and larger sizes can be observed in lower quantities. Smaller structures closely
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Figure 7.9: Close-up visualizations of capsids marked in Fig. 7.8. Spheres with
orientation arrows used for visualization of each dimer (x-axis red, y-axis green, z-axis
blue). Numbers in brackets behind identifier specify number of HBcAg2 in structure.
Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.

resemble pre-stages of capsids (e.g. 5F and 10C in Fig. 7.9) and appear to be more fre-

quent for lower concentrations. As will be shown subsequently with regard to assembly

kinetics, this can be attributed to a diffusion limitation at these concentrations result-

ing from decreased diffusivities with increasing structural assembly, as also observed

experimentally [254]. In contrast, larger structures beyond 120 dimers can almost ex-

clusively be observed for the higher concentrations starting with 50 µm. While some
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over-growing appears to be involved, these structures are also largely caused by contact-

ing capsids (e.g. 100D and 100E in Fig. 7.9), which are generally stable. Nonetheless,

this leads to an increase of unstructured contacts per dimer from ξunstruc = 0.34 for 5 µm

to ξunstruc = 0.42 for 100 µm. These variations of capsid assembly dependent upon the

initial concentration, particularly the increase of unstructuredness and kinetic traps for

higher concentrations, are well known from experiments [254, 367, 369]. Overall, the self-

assembled structures are highly regular and match the expected icosahedral structure of

HBcAg capsids [244].
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Figure 7.10: Size fraction of self-assembled structures versus their diameter of
gyration at the end of the simulation (average over last ten saving steps). Adapted
with permission from Depta et al. [225] under CC-BY 4.0 license.

Assembly Kinetics Furthermore, the presented methodology enables detailed in-

sight into the assembly kinetics starting from individual HBcAg2 dimers. In this regard,

Fig. 7.11 and 7.12 show the development of population sizes and structuredness of con-

tacts over time, respectively. After an initial growth to the previously discussed primary

population of structures around 100 HBcAg2 in size, finalization towards perfect T =

3 and T = 4 capsids significantly slows down exhibiting drastically longer time scales.
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These finalization procedures are known from experiments to take between seconds and

days [366, 369, 370] and are consequently beyond current computational capabilities.

Regarding the population sizes (Fig. 7.11), it can be observed in agreement with afore-

mentioned assembly properties that for lower concentrations there is a comparatively

larger fraction of smaller structures below 90-mers (29.0 % of HBcAg2 for 5 µm and 7.5 %

for 100 µm at the end of the simulation), which additionally decreases more slowly than

for higher concentrations (τSAS = 2.9 ms, see Tab. 7.4). Both is attributed to the more

dilute solution and thus increased diffusion lengths for self-assembly with decreasing con-

centration, i.e. a diffusion limitation [254]. Furthermore, for these lower concentrations

virtually no assemblies exist above 120-mers. In contrast, with increasing concentration
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Figure 7.11: Histogram of self-assembled structures sizes by number over time.
Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.

Table 7.4: Properties of assembly kinetic fits in Fig. 7.11.

c [µm] τSAS [ms] NSAS,asymp [-]

5 2.91 83.9
10 1.55 90.7
50 0.39 103.8
100 0.21 109.5
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the number of larger structures increases and a frequent formation of such is visible in

agreement with experimental observations [367, 368]. The lifetime of structures beyond

120-mers is, however, very low on the micro-second scale supporting the aforementioned

interpretation of in part colliding capsids, which are otherwise generally stable, addi-

tionally to temporarily overgrown capsids. This is further supported by the development

of ξstruc and ξunstruc in Fig. 7.12, which exhibits an increase of ξunstruc from 0.34 to 0.42

with the concentration change from 5 µm to 100 µm, while ξstruc remains similar for all

concentrations. Furthermore, the shift in size distribution with concentration leads to

an increase in the average asymptotic structure size NSAS,asymp from 83.9 to 109.5, as

can be seen in Tab. 7.4. Similar observations have been the subject of previous reviews

[371].

With regard of the timescales of self-assembly, it can be observed that the critical time

constant τSAS for initial structural assembly increases with decreasing concentration as

shown in Tab. 7.41. While it takes τSAS = 2.9 ms for initial structural assembly to take

1Note that the simulation timescales are only comparable between each other and not real-world
timescales as the coarse-grained simulations are inherently accelerated through their abstraction.
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Figure 7.12: Average number of structured and unstructured connections per dimer
particle including their relation (right axis). Note a perfect T = 4 (120 dimer) capsid
features four structured connections per dimer particle (ξstruc = 4). Adapted with
permission from Depta et al. [225] under CC-BY 4.0 license.
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place and ξstruc to converge to 3.5 at a concentration of 5 µm, the same process takes with

τSAS = 0.2 ms more than one order of magnitude less time for a concentration of 100 µm.

Concerning the functional relationship of average structure size over time, good agree-

ment with the fitted asymptotic exponential behavior (R2 see Fig. 7.11) can be observed

for all concentrations, which is in line with literature [371–374], including modeling ap-

proaches [375]. Similar to the formation of structures, the fraction of individual dimers

falls below 1% in 40 µs for 5 µm and 2 µs for 100 µm. This acceleration is equally at-

tributed to the reduced distances having to be covered via diffusion for self-assembly

and comes at the price of a slightly increased unstructuredness of assemblies as seen in

Φstruc. While initial self-assembled structures at low concentrations are very structured

for low concentrations with Φstruc = 0.84, this is slightly reduced to Φstruc = 0.80 for

the higher concentrations.

Furthermore, self-assembly can be better understood by observing the distribution of

structure lifetimes tlife in Fig. 7.13. The average lifetime tlife,ave (Fig. 7.13A) increases

from the micro-second scale for small structures with increasing size until reaching

a maximum in the range of tlife,ave = 0.1 − 0.9 ms between 70-mers and 100-mers

(NSAS = 70 − 100) - thus, being in agreement with expectations of capsid assembly

[244]. In the range 90-mers to 120-mers, tlife,ave decreases slightly, which is attributed

to a re-organization and finalization during T = 4 assembly. Beyond 120-mers, the

lifetime decreases drastically to the micro-second scale indicating instability of over-

grown structures. Correspondingly, the maximum lifetime tlife,max (Fig. 7.13B) exhibits

a sharp decrease above 120-mers, while being in the range of multiple milli-seconds (up

to simulation time of 5 ms) for structures between 10-mers and 120-mers, especially at

low concentrations. Lastly, with increasing concentration the average lifetime tlife,ave

decreases drastically by one order of magnitude. This effect is most prominently shown

for the range between 90-mers and 120-mers in Fig. 7.13C and highlights the increasing

unstructuredness and necessary re-organization of capsids with increasing concentration.

Consequently, the proposed model clearly captures increases in kinetic traps and capsid

aggregation for higher protein concentrations well known from experimental VLP yields

[254, 367, 369].

Assembly Pathways Understanding the self-assembly and disassembly pathways of

virus capsids is an essential aspect, especially for the development of medical treatments

against virus infections, such as antivirals and vaccines. However, while experimental

methods provide various insights, e.g. regarding effects of environmental conditions and

variations in pathways [361, 369], detailed understanding and development of the knowl-

edge necessary for rational design and prediction of new capsids is limited, e.g. regarding

mutations of core proteins [370, 376, 377]. These limitations are even more significant
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Figure 7.13: Lifetimes of structures with regard to their averages (A, C) and
maxima (B). Adapted with permission from Depta et al. [225] under CC-BY 4.0
license.

than for assembly properties and kinetics as experimental trapping of intermediates is

virtually impossible in the nucleation-limited self-assembly [253, 254]. Consequently, the

proposed simulation method is highly desired as it not only enables detailed insights into

the assembly pathway, but also allows for variations of the core protein (e.g. mutations)

explicitly through its parameterization approach. In order to visualize the complex self-

assembly and disassembly pathways, chord diagrams [358] are employed showing the

transitions between size classes (1, 2, 3, 4, 5 - 14 [10], ..., 195 - 204 [200], ≥205 [205])

normalized by the number of HBcAg2 dimers. In this regard, bi-directional (Fig. 7.14)

and net transition (Fig. 7.15) are provided for the four concentrations of the studied

HBcAg2 core protein.

As it can be observed in the chord diagrams of Fig. 7.14 and 7.15, the self-assembly

process is highly complex and includes various pathways of different probabilities and

intermediates. Throughout all concentrations and particularly for lower concentrations,

such as 5 µm, a hierarchical step-wise self-assembly takes place from smaller to larger

structures until reaching capsid-like sizes around 90-mers to 120-mers. Initially in this
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(A) 1 µm3 box (1 µm edge) with 5 µm. (B) 1 µm3 box (1 µm edge) with 10 µm.

(C) 0.125 µm3 box (0.5 µm edge) with
50 µm.

(D) 0.125 µm3 box (0.5 µm edge) with
100 µm.

Figure 7.14: Chord diagrams showing transitions between size classes
(bi-directional) with multiple transitions possible per dimer particle. Transitions are
normalized by the number of dimers (major ticks outer scale are unit one). Adapted
with permission from Depta et al. [225] under CC-BY 4.0 license.

process, the individual HBcAg2 assemble from their disorganized state into structure

of two, three, four, and ten (5 - 14, 10-mer) with decreasing probability. The tran-

sition probabilities are concentration dependent with higher concentrations leading to

an increased probability of a direct transition from single HBcAg2 (1) to the 10-mer,

thus indicating an accelerated assembly with increasing concentration2. In the following,

larger structures up to the 30-mer (25 - 34) are built primarily from these 10-mer struc-

tures (see light purple/blue transitions from 10-mers, particularly in Fig. 7.15), which is

2Note the savings interval of 500 ns for class transition analysis.
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(A) 1 µm3 box (1 µm edge) with 5 µm. (B) 1 µm3 box (1 µm edge) with 10 µm.

(C) 0.125 µm3 box (0.5 µm edge) with
50 µm.

(D) 0.125 µm3 box (0.5 µm edge) with
100 µm.

Figure 7.15: Chord diagrams showing net transitions between size classes (i.e. only
one direction between all classes) with multiple transitions possible per dimer particle.
Transitions are normalized by the number of dimers (major ticks outer scale are unit
one). Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.

in line with recent experimental observations [361]. The importance of the 10-mer pop-

ulation is further highlighted by being the first population class of significantly higher

average and maximum lifetimes (see Fig. 7.13).

Once these initial small intermediates have formed, subsequent assembly continues pri-

marily through addition towards the next size class until approximately the 80-mer pop-

ulation. Consequently, highlighting the hierarchical nature of the self-assembly pathway,

which can also be observed visually in the chord diagrams with few transitions directly
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to larger structures, i.e. through the center of the diagram (Fig. 7.14 and 7.15). Sub-

sequently larger structures, such as the 90-mer, exhibit a shift towards a pathway of

disassembly from overgrown structures (see e.g. light green transition from 100-mer to

90-mer accounting for the largest transition class to 90-mer in Fig. 7.14). Nonetheless,

combined pathways through both step-wise growth and overgrowth can also be observed,

particularly for the 120-mer population. This multiplicity of pathways to capsid assem-

bly including overgrowth has previously been observed by Lutomski et al. [369].

In this context, the large number of intermediates and transitions in the range of 100-

mers and 110-mers, i.e. 95 - 114 HBcAg2 (e.g. 5A, 10B, and 100C in Fig. 7.9), are

crucial to be noted for the assembly pathway. Similarly, experimental investigation have

shown such intermediates in the assembly pathway [378] (e.g. 104/105-mer similarly to

5C and 50B in Fig. 7.9; and 110/111-mer similarly to 100C in Fig. 7.9). As discussed

previously, these intermediates are in addition to T = 3 capsids most likely pre-stages of

the T = 4 capsid, which can be considered semi-stable. On their self-assembly pathway,

a partial disassembly and re-organization takes place including separation and addition

of smaller structures, if available in proximity. Consequently, finalization of the capsid,

particularly T = 4 capsid, becomes a question of simulation time and availability of

small structures, i.e. a thermodynamic process of structured docking and self-assembly

versus unstructured and thus unstable contacts. Generally, also T = 3 appear to have

formed (see Fig. 7.10 and 7.13), which is experimentally known to be very sensitive with

regard to initial assembly conditions [361].

Beyond sizes of the 120-mer, formation of structures is notably concentration depen-

dent with high concentrations exhibiting temporary formation of large aggregates (>205

HBcAg2). Particularly, for the high concentrations of 50 µm and 100 µm the majority of

structures follow this pathway during capsid assembly with short term overgrowth (life-

times on the micro-second scale, see Fig. 7.13). However, note as previously discussed

the influence of the contact of otherwise well-structured capsids. In contrast, for the low

concentrations of 5 µm and 10 µm this pathway is significantly less pronounced with few

structures overgrowing beyond the range of 130-mer to 150-mer.

In summary, the self-assembly pathway is observed to employ a hierarchical buildup of

sequentially larger structures combined with a semi-stable equilibrium between 90-mers

and 120-mers for finalization of capsids through addition and hole closure. Larger con-

centrations, specifically above 50 µm, appear to cause temporary overgrowth above 120-

mers highlighting another pathway to capsid formation through overgrowth. These find-

ings are in good agreement with experimental insights, e.g. regarding pathway through

overgrowth [369] and intermediates [378], and provide many additional insights through

the high level of detail of the proposed modeling approach.
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8.1 Model Parameters

8.1.1 Structural Model

In order to study the structural self-assembly of the pyruvate dehydrogenase com-

plex (PDC), each of the four components E1, E2, E3, and E3BP is abstracted as an

anisotropic unit object as presented in Sec. 1.3.3 and Ch. 2. More details on PDC and

the respective reference conformations of the individual components can be found in

151
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Sec. 1.3.3. Masses and radii of gyration are specified in Tab. 8.1. The abstracted four

components are freely interacting with each other and the implicit solvent environment.

Each abstracted object possesses a position, orientation, as well as spatial extend and

other anisotropic properties through its functional models, which will be specified in the

following.

Table 8.1: Masses and radii of gyration of PDC components based on Depta et
al. [223]. Table adapted with permission from Depta et al. [223]. Copyright 2019
American Chemical Society.

Kind m [kg] rg,x [nm] rg,y [nm] rg,z [nm]

E1 2.42 × 10−22 2.51 2.60 2.95
E2 9.81 × 10−23 1.44 9.96 9.93
E3 1.67 × 10−22 1.98 2.74 2.76

E3BP 7.95 × 10−23 1.60 10.68 10.72

8.1.2 Functional Model

8.1.2.1 Diffusion and Thermodynamics

Anisotropic diffusion and the respective thermodynamics of the desired canonical en-

semble were modeled and parameterized for each PDC component using the method

presented in Ch. 3. The model captures the interaction of the structurally flexible

macromolecules with the solvent. The determined diffusion coefficients for the PDC

components at conditions of 300 K without additional salts in aqueous solution can be

found in Tab. 8.2. Hydrodynamic interaction was accounted for through reduction of

the effective viscosity by a factor of 0.1 as discussed in Sec. 3.2 and App. A.3.

Table 8.2: Diffusion coefficients of PDC components at 300 K without additional
salts. Table adapted with permission from Depta et al. [223]. Copyright 2019
American Chemical Society. Note slight changes in the diffusion coefficients of E2 due
to an update of the reference structure in comparison to Depta et al. [223].

Kind Dt [µm2 s−1] Dr [Mrad2 s−1]
x y z α β γ

E1 54.9 52.5 52.0 2.96 2.78 2.35
E2 49.6 42.9 41.0 10.6 0.60 0.55
E3 66.5 53.0 58.1 5.16 3.33 3.08

E3BP 53.8 45.4 45.3 12.3 0.48 0.50

8.1.2.2 Intermolecular Interaction

The intermolecular interaction of PDC components was modeled and parameterized as

presented in Sec. 4.3. Overall, ten pairwise interaction permutations exist for the four
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PDC components. Due to the computational cost of parameterization, not all of the ten

interaction pairs could be parameterized. In the context of PDC, the most important

interactions are E2 – E2 for assembly of the 60-mer core and trimers, as well as E2

– E1 and E3BP – E3 for binding of enzymes necessary for catalytic activity. Most of

the remaining interaction pairs are less relevant and thus subject to simplification. In

the context of this work and the available computational resources (13.25 million CPU

core-hours on the Hawk system at HLRS, Acid 44178 [227]), the following simplifications

were chosen in line with literature (see Sec. 1.3.3) and are summarized in Tab. 8.3:

• As the interactions of all combinations of E1 and E3 are not known to attrac-

tively interact, their interaction is assumed to be repulsive only (i.e. due to atomic

overlap). Specifically, this includes E1 – E1, E1 – E3, and E3 – E3.

• As E2 and E3BP are similar in structure / function (E3BP is an additional enzyme

in most eukaryotic PDC, e.g. human, for specific binding of E3 [259, 260, 265, 379–

381]), their interaction with each other (E2 – E2, E2 – E3BP, E3BP – E3BP) is

assumed equivalent and the potential field for E2 – E2 used for all such interactions.

• As E3BP is known to specifically bind E3 [259, 260, 265, 379–381], the interaction

E3BP – E1 is assumed to be repulsive only (i.e. due to atomic overlap).

• As E3 is typically thought to not bind to E2 for human PDC [18, 263, 379, 382],

but has been found to possess residual affinity in E3BP deficient cases [383], the

interaction E2 – E3 is assumed to be a weaker version of E2 – E1. For this,

the relative binding strength was determined as a fraction of E2 – E1 to be 0.746

through statistical binding analysis in MD by Jacobi et al. [384] (E2 – E3 = 0.746 ×
E2 – E1). Results will later show that this still leads to a higher binding specificity

of E3 to E3BP and to a lesser extent to E2 as expected [18, 263, 379, 382].

Table 8.3: Overview of PDC component intermolecular interaction simplifications.
A+R = attractive + repulsive; R = repulsive-only based on molecular collisions
model; FP = fully parameterized from MD; D = derived from a similar interaction
parameterized from MD.

E1 E2 E3 E3BP

E1 R A+R (FP) R R
E2 A+R (FP) A+R (FP) A+R (D) A+R (D)
E3 R A+R (D) R A+R (FP)

E3BP R A+R (D) A+R (FP) A+R (D)

For the remaining interaction pairs, initial MD sampling was performed based on dis-

tances classes as specified in Sec. 4.3.4.3 and detailed in Tab. 8.4 for a total of 100’000 to

150’000 samples per interaction pair. Furthermore, proximity resampling was performed
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Table 8.4: Random sampling over distances classes for PDC data sets before
iterative resampling. Note that the number of samples is essentially double (or
interaction space half in volume) for interaction partners A = B, i.e. E2 = E2.

dA−B [nm] # samples
lower upper E2 – E2 E2 – E1 E3BP – E3

0.4 0.5 25’000 25’000 25’000

0.5 0.7 15’000 5’000 5’000

0.7 0.9 15’000 5’000 5’000

0.9 1.1 15’000 5’000 5’000

1.1 1.3 15’000 5’000 5’000

1.3 1.5 15’000 5’000 5’000

1.5 1.7 5’000 5’000 5’000

1.7 1.9 5’000 5’000 5’000

1.9 2.1 5’000 5’000 5’000

2.1 2.3 5’000 5’000 5’000

2.3 2.5 5’000 5’000 5’000

2.5 3.0 5’000 5’000 5’000

3.0 3.5 5’000 5’000 5’000

3.5 4.0 5’000 5’000 5’000

4.0 4.5 5’000 5’000 5’000

4.5 5.0 5’000 5’000 5’000

Sum 150’000 100’000 100’000

to improve variogram statistics at short distances as specified in Sec. 4.3.4.3 and detailed

in Tab. 8.5 for a total of 25’000 samples per interaction pair. Proximity resampling be-

comes increasingly necessary with the large interaction spaces of extended molecules

such as E2 and E3BP. Starting from these initial samples, iterative refinement was per-

formed as specified in Sec. 4.3.4.3 using the following sequence of refinement criteria and

number of samples:

• Iteration 1 - 5: Variance minimization using 5’000 samples for each iteration.

• Iteration 6 - 7: Extrema resampling using 7’500 samples for each iteration.

– Potential minima resampling using 2’000 samples for main extrema points

and 500 samples for first-level neighborhood points,

– Potential maxima resampling using 2’000 samples for main extrema points

and 500 samples for first-level neighborhood points,

– Gradient maxima resampling using 2’000 samples for main extrema points

and 500 samples for first-level neighborhood points.

Overall, between 165’000 and 215’000 MD data points were sampled and analyzed for

estimation of each intermolecular interaction potential. Fields were discretized with a
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resolution of 0.8 nm for E2 – E1 / E3BP – E3, 1.3 nm for E2 – E2, and 1.5 nm for all

all repulsive potentials – leading to an overall size of 36.2 GB. Similarly to the HBcAg

VLP system, in addition to the pure MD-based interaction potentials supplementa-

tion by inclusion of empirical data from known binding locations was performed, which

are specified in Appendix E.1. The resulting potentials will be presented in detail in

Sec. 8.4.1.

Table 8.5: Proximity resampling for improved statistical correlation information at
short distances. At each location the number of replicates is run. These data points
do not influence the trend or are used for Kriging besides Variogram modeling. Note
that the number of samples is essentially double (or interaction space half in volume)
for interaction partners A = B, i.e. E2 = E2.

dA−B [nm] # rep. # locations total # samples
lower upper / loc. E2-E2 E2-E1 E3BP-E3 E2-E2 E2-E1 E3BP-E3

0.5 0.7 50 50 50 50 2’500 2’500 2’500

0.7 0.9 50 50 50 50 2’500 2’500 2’500

0.9 1.1 50 50 50 50 2’500 2’500 2’500

1.1 1.3 50 50 50 50 2’500 2’500 2’500

1.3 1.5 50 50 50 50 2’500 2’500 2’500

1.5 1.7 50 50 50 50 2’500 2’500 2’500

1.7 1.9 50 50 50 50 2’500 2’500 2’500

1.9 2.1 50 50 50 50 2’500 2’500 2’500

2.1 2.3 50 50 50 50 2’500 2’500 2’500

2.3 2.5 50 50 50 50 2’500 2’500 2’500

Sum 25’000 25’000 25’000

8.1.2.3 Bonded Interaction

No bonded interaction was modeled for the PDC system. All intermolecular interactions

for the self-assembly process were captured by the interaction model in Sec. 8.1.2.2.

8.1.2.4 Critical Time Step

In order to estimate the critical time step τcrit necessary for a convergent and numerically

stable solution, the previously discussed methods for the individual model components

were used, see Sec. 3.4.1 and 4.5. Based on this, the critical time step can be estimated as

5.2×10−12 s for the diffusion model dominated by E2 when accounting for hydrodynamic

interaction through reduced viscosity as discussed in Sec. 3.2 and App. A.3 (5.2×10−13 s

without hydrodynamic interaction at regular dynamic viscosity), as well as 1.3 × 10−12 s

for the intermolecular interaction model dominated by E2 – E2. Consequently, without

hydrodynamic interaction the diffusion model constrains the overall simulation time step

and when accounting for hydrodynamic interaction the intermolecular interaction model
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does (default). Therefore, unless otherwise indicated, a simulation time step of 10−12 s

was used leading to an error of 0.6 % with regards to RMS displacement (see Sec. 3.4.1).

8.2 Simulation Setup and Procedure

PDC Self-Assembly (SP-PDC-1) Self-assembly of PDC components was investi-

gated at a constant temperature of 300 K without any additional ions etc. based on

randomly initialized system according to the composition specified for each case. All

components were placed and oriented randomly in a cubic box of 1 µm3 and concentration

of 1 mg/mL with periodic boundary conditions applied throughout. During placement,

overlap of units was permitted and then corrected during the simulation through the

intermolecular interaction model. In order to account for the non-dilute state during

self-assembly, the effective viscosity was reduced by a factor of 0.1 to 8.5416 × 10−5 Pa s

as discussed detailed in Sec. 3.2 and App. A.3 enabling a simulation time step of 10−12 s.

Based on this, self-assembly simulations were performed for 5 ms with a savings interval

of 500 ns.

PDC Self-Assembly with Simulated Annealing (SP-PDC-1-AN) As the SP-

PDC-1 simulation procedure at constant temperature was found to be prone to trap-

ping in local potential minima during structural formation similarly to alginate gelation

(Ch. 6), various simulated annealing procedures were tested for PDC assembly. Based

on a self-assembly analysis of pure E2 at 1 mg/mL concentration, it was found that

the following parameter set corresponding to the annealing model provided in Sec. 3.6

provides a good balance between temporary breakage due to temperature increase and

stability: τan,cool = 2 µs, τan,period = 5 µs, tan,finished = 4 ms, linear temperature decay,

Tan,max = 1300 K, total simulation time 5 ms with a savings interval of 500 ns.

8.3 Analysis and Postprocessing

Simulation results were analyzed both online and in postprocessing to study a variety of

features with focus on structural properties. The analyzed system properties include the

following and are supplemented from the HBcAg model system in Sec. 7.3 and Depta et

al. [225]:

• self-assembled structures (SAS) were identified using a network search algorithm

distinguishing between structured contacts (δr ≤ 3.5 nm from a known binding
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location, see Tab. E.1) and unstructured contacts (δm ≤ 1 nm and δr > 3.5 nm

from a known binding location). Based on these, the following properties were

investigated and can be readily compared to known structures like the 60-mer:

– NSAS is the number of molecules in each SAS;

– dSAS,ave is the average extent of backbone atoms of each SAS (averaged over

a discretization of 162 orientations). Size of reference 60-mer provided by

Hezaveh et al. [271] based on MD is 51.2 nm and marked ±5 nm in plot;

– dSAS,gyr is the diameter of gyration of each SAS (provided in App. E.5). Size

of reference 60-mer provided by Hezaveh et al. [271] based on MD is 43.0 nm

and marked ±5 nm in plot;

– dSAS,max is the maximum extent of backbone atoms of each SAS (provided in

App. E.5). Size of reference 60-mer provided by Hezaveh et al. [271] based

on MD is 68.0 nm and marked ±5 nm in plot;

– ξstruc is the number of structured contacts normalized by the number of

molecules in the system, can also be used per SAS or per molecule;

– ξunstruc is the number of unstructured contacts normalized by the number of

molecules in the system, can also be used per SAS or per molecule;

– Nkind is the stoichiometry by number of molecules relative to the E2 content

in a 60-mer (determination restricted to NSAS ≥ 5);

– Φkind is the stoichiometry by molar fraction for each SAS;

• assembly kinetics were quantified by exponential fitting of average NSAS excluding

monomers, see Sec. 4.3.3 eq. 4.17 with time constant τSAS (r in eq. 4.17) and

asymptotic structure size NSAS,asymp (s in eq. 4.17);

• transitions of molecular assemblies between size classes (1, 2, 3, 4, 5 - 14 [10], 15

- 24 [20], ...) based on NSAS were summarized and normalized by the number

of molecules to capture assembly mechanisms (note saving step of 500 ns). Bi-

directional and net transitions between classes were distinguished and visualized

using chord diagrams [358];

• independent of structural recognition, molecular interaction was analyzed based

on:

– fbind is the (un-)binding rate per molecule type (uniform smoothing applied

over 10 µs);

– Ni−j/NE2 is the number of reactant / active-site (AS) combinations i and j

at a specific center-of-mass distance dCOM normalized by the number of E2

molecules in the system;
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– Ncont is the number of contacts for each molecule type with other molecule

types (provided in App. E.5);

• KD is the equilibrium dissociation constant, also called affinity constant, calculated

over the last 0.1 ms as the ratio (cA × cB)/cAB, where cA is the concentration of

species A (e.g. unbound E2), cB is the concentration of species B (e.g. unbound

E1), and cAB is the concentration of structured compound AB (e.g. E2+E1).

In addition, global properties such as potential and kinetic energies were analyzed. How-

ever, as these provided little additional insight focus was placed on the structural fea-

tures.

8.4 Results

In the following section, the results of PDC self-assembly will be presented based on

the four components E1, E2, E3, and E3BP. In this context, first the intermolecular

interaction potentials will be discussed building upon the insights of the HBcAg2 system.

Second, structural self-assembly will be investigated using the fully parameterized model.

8.4.1 Intermolecular Interaction Potentials

As previously discussed regarding the determination of the HBcAg2 – HBcAg2 interac-

tion potential (Sec. 7.4.1), limited sampling in the context of available computational

resources in combination with remaining conformational changes during binding drives

the need for additional data beyond pure MD and can be addressed by inclusion of

empirical data (e.g. binding locations from crystallography, see Sec. 7.4.1.3). While

slightly more computational resources were available for the PDC system (13.25 million

CPU core-hours on the Hawk system at HLRS, Acid 44178 [227]), similar limitations

applied due to the increased complexity of the PDC system. As it can be seen in the

convergence plots for PDC component interaction in Fig. 8.1, such sampling limitations

are even more pronounced for this model system, which is attributed to the spatial

extent of the involved molecules (specifically E2 and E3BP, see introduction Fig. 1.4

and 1.5) and consequently decreased sampling density of the interaction region between

two molecules. Furthermore, the high flexibility of linker arms requires larger numbers

of samples to sufficiently cover the various binding states. Consequently, inclusion of

empirical data from known binding sites becomes necessary and was directly performed

similarly to the HBcAg system, which will be presented subsequently. Full data of the
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pure MD-based sampling including statistical data from Kriging is provided in App. E.4

and E.2, respectively.

0 1 2 3 4 5 6 7
Iteration [-]

101

102

U
K [

kJ
/m

ol
] Variance Extrema

max
mean

0 1 2 3 4 5 6 7
Iteration [-]

103

2 × 103

3 × 103

4 × 103

2 k
 [k

J2 /m
ol

2 ]

Variance Extrema

max
mean

(A) E2 - E2 Refinement.

0 1 2 3 4 5 6 7
Iteration [-]

101

102

U
K [

kJ
/m

ol
]

Variance Extrema

max
mean

0 1 2 3 4 5 6 7
Iteration [-]

103

2 k
 [k

J2 /m
ol

2 ]

Variance Extrema

max
mean

(B) E2 - E1 Refinement.
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(C) E3BP - E3 Refinement.

Figure 8.1: Convergence of iterative resampling procedure concerning potential
changes (left, Ui − Ui−1) and variance development (right). Note that iterations 1-5
perform resampling for variance minimization (5’000 samples each) and iterations 6-7
for extrema identification (e.g. binding or repulsive locations, 7’500 samples each).
Adapted with permission from Springer Nature regarding Depta et al. [227].

In order to incorporate the empirical data on binding sites (App. E.1), the approach

determined for HBcAg2 – HBcAg2 (Sec. 4.3.5 and 7.4.1.3) was slightly updated to
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the stability of an E2 60-mer, as well as bound states of E1 to E2 and E3 to E3BP.

As expected for the highly flexibly linker arms involved in binding and the resulting

more flexibly spatial organization, this leads to an increase of the binding radius with

remp,bind = 2.0 nm and dstep,outer = 0.8 nm as parameters for E2 – E2 (HBcAg2 –

HBcAg2 was remp,bind = 1.0 nm and dstep,outer = 0.2 nm). Furthermore, due to the bind-

ing domain being located directly on the flexible linker arm of E2 – E1 and E3BP – E3,

for these interaction pairs the binding radius was increased to remp,bind = 8.0 nm and

dstep,outer = 1.6 in addition to a potential reduction to Uemp,bind,center = −3000 kJ/mol

and Uemp,bind,outer = −2000 kJ/mol.

Similarly motivated, the molecular repulsion model (see Sec. 4.3.6) was updated to

crep,bb = 100 kJ/mol, Nmin,bb = 1, dMD,min = 0.3 nm, wMD,min = 0.5 nm, wcoll = 0.3 nm,

and crep,side = 0 kJ/mol as parameters, as well as including a smoothing of the Kriging

potential with wkrig = 3 nm. These parameters for the repulsion model were used

consistently for all pairwise interaction of PDC components. Note that these changes

in comparison to HBcAg are primarily motivated by the high flexibility of the E2 and

E3BP linker arms, as these conformational features and their flexibility are at the limit of

the proposed methodology, which assumes semi-stable macromolecules during structural

assembly.

However, while the inclusion of empirical data is necessary overall, it can be noted that

the pure MD-based potential provides qualitatively similar results for the E2 – E2 inter-

action potential (see Fig. 8.2 for pure MD-based vs. Fig. 8.3 with empirical data). As it

can be seen in Fig. 8.2 B and C, the global potential minimum of pure MD-based E2 –

E2 interaction is similarly located to the binding location of catalytic domains inside the

60-mer core (for reference see MD with empirical data in Fig. 8.3 B and C). However,

the empirical potential minimum is significantly deeper and wider resulting from the

large variation in binding locations in turn resulting from flexibility of the linker arm.

Furthermore, the pure MD-based potential contains a slightly repulsive potential over

the minimum distance with approximately 6 kJ/mol and significantly less variations

(standard deviations of up to approximately 4 kJ/mol vs. up to 30 kJ/mol), which is

attributed to the emphasized binding location by the empirical data. Overall, positive

agreement between the purely MD-based interaction potential and with additional en-

hancements from empirical data can be noted in light of limited computational resources

(6.22 million CPU core-hours for E2 – E2).

Regarding E2 – E1 and E3BP – E3, the interaction potentials with additional empirical

data are displayed in Fig. 8.4 and 8.5, while pure MD-based potentials are provided

in App. E.2. As it can be seen, the interaction potentials with empirical data nicely

outline binding at the respective binding domains along the linker arms (see subfigures
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B – D in comparison to molecular structure provided in introduction Fig. 1.4 and 1.5).

These potential minima lead to an overall slightly attractive behavior over the mini-

mum distance with significant variation depending upon specific location (subfigure A).

Regarding these two interaction pairs, the pure MD-based potentials exhibit more chal-

lenges attributed to sampling as in contrast to E2 – E2 no symmetry exists (interaction

partners are not equal). Particularly, for the case E3BP – E3 an additional strong in-

teraction of E3 with the catalytic domain of E3BP is found (Fig. E.2), as well as for E2

– E1 an interaction of E1 with the catalytic domain of E2 and to a lesser extend the

inner lipoyl domain dominate (Fig. E.1). Consequently, for these interaction partners

the additional empirical data is similarly needed as for the HBcAg system due to limited

sampling and computational resources (2.71 and 2.38 million CPU core-hours for E2 –

E1 and E3BP – E3, respectively).

Enhanced E2 – E2 Arm Interaction Furthermore, in this context the precise

interaction of two E2 linker arms (catalytic domains on opposite sites) and possibly a

subsequent structural assembly beyond the 60-mer is an additional topic of interest.

While PDC is almost exclusively known to form the 60-mer core [259, 264, 266, 385],

Guo et al. [269] have observed the additional presence of a larger size fraction around rh

= 75.2 nm using dynamic light scattering (DLS) on wild-type human E2/E3BP systems,

i.e. without any genetic modifications. In order to improve understanding, a variation

of the E2 – E2 interaction potential with enhanced arm interaction has been derived

and is presented in App. E.5.3 along with its impact on PDC assembly. Summarized

briefly, those simulation studies find it unlikely that such large agglomerates can maintain

similar catalytic activity as binding of E1 and E3 necessary for the reaction pathway

was found to be severely inhibited. Consequently, the following section will present the

self-assembly of PDC without such variations and in line with the established 60-mer

core.
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Figure 8.2: Interaction potential field of E2 with E2 from pure MD-based
sampling strategy (units of kJ/mol).
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Figure 8.3: Interaction potential field of E2 with E2 from MD with empirical
data (units of kJ/mol).
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Figure 8.4: Interaction potential field of E2 with E1 from MD with empirical
data (units of kJ/mol). C and D adapted with permission from Springer Nature
regarding Depta et al. [228].
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Figure 8.5: Interaction potential field of E3BP with E3 from MD with
empirical data (units of kJ/mol).
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8.4.2 PDC Self-Assembly

In the following section, the self-assembly of PDC will be investigated using the proposed

model framework and MD-based interaction potential with empirical data shown in

Sec. 8.4.1. First, self-assembly of the E2 component into the known 60-mer cores of

PDC will be investigated at 1 mg/mL employing simulation procedure SP-PDC-1-AN

(Sec. 8.2). Beforehand, it was found this simulated annealing procedure is necessary for

overcoming local potential minima in 60-mer formation leading to early core closure. For

reference, simulations without annealing (SP-PDC-1) are provided in App. E.5. Second,

the full PDC system will be investigated with a stoichiometry 40 × E2 + 20 × E3BP +

30 × E1 + 10 × E3 at 1 mg/mL employing simulation procedure SP-PDC-1-AN. In the

following, the results of self-assembly will be discussed in detail.

8.4.2.1 Pure E2 System

With regard to the self-assembly of the well-known 60-mer core of PDC, the E2 enzyme

is the most crucial component. While human PDC is known to also include E3BP in

its 60-mer core for specific binding of E3 [265], many organisms (e.g. bacteria) lack this

specific enzyme while still forming the 60-mer core [386] – subsequently providing the

structural features for enabling catalytic function. Hence, the pure E2 system provides

a reasonably simplified model system for investigating the self-assembly process. The

pentagonal dodecahedral structure of the 60-mer core is well known from small-angle

X-ray scattering (SAXS), small-angle neutron scattering (SANS), and cryoelectron mi-

croscopy (cryo-EM) [265, 381, 387], similarly supported by size measurements from

analytical ultracentrifugation (AUC) [260] and dynamic light scattering (DLS) [269],

as well as supported by molecular dynamics (MD) studies [271]. Consequently, this

available knowledge can be used for validation of the proposed model, while the model

additionally provides molecular details on the self-assembly process difficult to establish

experimentally – thus improving understanding through enhanced modeling capabilities.

The self-assembly of E2 is visualized qualitatively and quantitatively in Fig. 8.6. As

it can be seen in Fig. 8.6 A and B, the randomly distributed E2 enzymes assemble

into regular spherical structures with the catalytical domains of E2 at the center of

the core. While individual monomers and other small structures are still present in the

solution, the majority of units is structured into cores matching the expected pentagonal

dodecahedral [265] visually well. This is further supported quantitatively by Fig. 8.6 H

indicating ξstruc = 2.5 structured contacts per enzyme close to the theoretical value of

ξstruc = 3 for the pentagonal dodecahedral core [388].
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Concerning the self-assembly pathway, Fig. 8.6 C and D show the chord diagrams of

transitions between size classes (1, 2, 3, 4, 5 - 14 [10], 15 - 24 [20], ...) indicating an

initial formation of dimers and then trimers out of the originally present monomers. The

formation of trimers has been identified experimentally [389] to be a key intermediate

in the formation of 60-mers and hence matches current results well. Subsequently, the

formation of larger oligomers takes place in a sequentially hierarchical buildup through

addition of trimers and other small units from solution, i.e. growing from one size class

to the neighboring larger one (see particularly Fig. 8.6 D). This self-assembly through

addition continues until reaching the size of 50-mers and 60-mers, which exhibit a contin-

uous back-and-forth transition between the two classes (50-/60-mer) on their pathway to

equilibrium (see particularly Fig. 8.6 C). Beyond the 60-mer, only few larger structures

form and if so only temporarily - highlighting the 60-mer structure as expected [265].

Regarding the self-assembly kinetics, Fig. 8.6 E shows the process matches the functional

fitting of an asymptotic exponential behavior well (R2 = 0.972) similarly to the case of

VLPs (Sec. 7) for which it is also in line with literature [371–375]. A rapid structural

growth takes place with a critical time constant τSAS = 0.8 ms1 towards an asymptotic

value of NSAS = 55.4 closely matching the 60-mer. Additionally, it can be noted that

after the end of the annealing procedure (4 ms), small structures detach from some of the

60-mers, which subsequently re-assemble to larger structures and also cause a transition

of 60-mers to 50-mers. It can hence be estimated that the 60-mers still contain individual

defects and longer timescales are necessary for perfect assembly. Similar conclusions can

be made from the binding rates shown in Fig. 8.6 G.

Concerning the reactant distance distribution, Fig. 8.6 I and J show that the self-

assembly leads to a much closer distance distribution between E2 units resulting from

the 60-mer formation. While this is primarily of interest for the full PDC system in the

following section, it can already be noted regarding the pure E2 system that the distance

distribution increases almost linearly between dCOM = 4 nm and dCOM = 20 nm with

two slight discontinuities at dCOM ≈ 6 nm and dCOM ≈ 12 nm, which might be related

to trimer substructures and curvature of the 60-mer, respectively.

Overall, self-assembly of the pure E2 system of PDC leads to a composition of 50-mers

and 60-mers at the end of the simulation. In addition to matching the expected 60-mer

well by number of enzyme copies and pentagonal dodecahedral structural organization

[265, 388], good agreement can also be found with regard to the diameter of structures

(dSAS,ave ≈ 50 nm, see Fig. 8.6 F) in comparison to various experimental measurements of

comparable systems (52.2 nm from DLS [269], 44.8 nm to 57.6 nm from AUC [387, 390],

1Note that the simulation timescales are only comparable between each other and not real-world
timescales as the coarse-grained simulations are inherently accelerated through their abstraction.
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as well as 51.2 nm from MD [271]). Hence, the proposed modeling approach matches

experimental data from literature well in addition to providing further insights regarding

assembly pathway and dynamics through the high level of detail.

Detached from this self-assembly simulation of the pure E2 system, a stability analysis

of the preassembled 60-mer based purely on E2 was performed to assess fluctuations in

the core over a time of 1 µs difficult to investigate during assembly. Results showed that

the core remained stable throughout the simulation and the average diameter fluctuated

over time as dSAS,ave = 52.7 ± 1.2 nm (49.0 – 56.4 nm). Similar variations of the 60-

mer core size have been previously reported experimentally [391] (approximately 1.0

nm standard deviation of flucations with 4 nm range between minimum and maximum

diameter observed on 60-mer core without linker arms) and in MD simulations [268, 271].

These fluctuations were attributed by Zhou et al. [391] to a ’breathing’ process of the

core via contractions and retractions between the composing trimers connected via the

C-terminal of E2 and E3BP (ball-and-socket joint). Consequently, the proposed model

also matches experimental data of such stability fluctuations well.
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(A) Close-up visualization of self-assembled structures by enzyme type: E1, E3, E2, E3BP.

Figure 8.6: PDC self-assembly for a pure E2 system at concentration of 1 mg mL−1

in 1 µm3 cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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(B) Visualization of before (left) and after (right) self-assembly using back-bone carbon
structures. Color indicates enzyme type: E1, E3, E2, E3BP.

(C) Assembly pathway by bi-directional
transitions between size classes.

(D) Assembly pathway by net
transitions between size classes.
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Figure 8.6: PDC self-assembly for a pure E2 system at concentration of 1 mg mL−1

in 1 µm3 cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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Figure 8.6: PDC self-assembly for a pure E2 system at concentration of 1 mg mL−1

in 1 µm3 cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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8.4.2.2 Full Component PDC System

Secondly, self-assembly of the full component PDC system was investigated. As outlined

in the introduction, recent studies suggest 40 × E2 + 20 × E3BP being the most likely

stoichiometry of 60-mer core [265], which was consequently used for the ratio of E2 and

E3BP. Regarding E1 and E3 binding, ranges of 20 − 30 × E1 and 6 − 12 × E3 have

been widely reported [18, 263, 266, 267, 271] aside from the maximum occupancy of

40 × E1 + 20 × E3 [259, 265]. Based on this, 30 × E1 and 10 × E3 have been chosen,

thus leading to an overall stoichiometry of 40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3

in the solution. For this stoichiometry, simulations were performed at a concentration

of 1 mg mL−1 (similarly to DLS studies [269]) in a 1 µm3 cubic box (1 µm edge). Note

that as before results with simulated annealing protocol SP-PDC-1-AN (see Sec. 8.2)

will be presented directly and results without annealing (SP-PDC-1) are provided in

App. E.5.2.

The self-assembly of this full component PDC system is visualized qualitatively and

quantitatively in Fig. 8.7 with additional data provided in App. E.5.2 Fig. E.22. As it

can be seen qualitatively in Fig. 8.7 A and B, the randomly distributed E1, E2, E3, and

E3BP enzymes assemble into regular sphere-like structures with E2 and E3BP (green) at

the core (similar to earlier 60-mer), while E1 (red) and E3 (blue) attach to the outside.

The core structure of E2 and E3BP matches the 60-mer core visually well with some

structures having formed only a partial core. This structural organization matches the

experimental expectations of 60-mer core of E2 and E3BP with E1 and E3 attached

[18, 263, 266, 267, 271]. At the end of the simulation, a larger fraction of E1 and E3

appear to remain in solution with few E2 and E3BP bound to them, while the majority

of E2 and E3BP appears to have formed 60-mers (or structurally similar oligomers). In

the following, these qualitative visual observations will be discussed quantitatively.

Concerning the self-assembly pathway, Fig. 8.7 C and D show the chord diagrams of

transitions between size classes (1, 2, 3, 4, 5 - 14 [10], 15 - 24 [20], ...) indicating an

initial formation of dimers and trimers out of the originally present monomers similarly

to the pure E2 system (Sec. 8.4.2.1) and as experimentally observed as key intermediates

in systems without E1 and E3 [389]. Subsequently, the formation of larger oligomers

takes place in a similar sequential hierarchical buildup through addition as for the pure

E2 system. In this regard, it can be noted that in contrast to pure E2, the model

predicts that for the full PDC system dimers play a key role as the additive unit in

structural growth (see particularly net transitions away from ’2’ in Fig. 8.7 D, possibly

being E2+E1 or E3BP+E3). The self-assembly through addition subsequently continues

until reaching sizes between 50-mers and 70-mers, which exhibit the same back-and-forth

transition between classes on the pathway to equilibrium as pure E2 – only also including
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the larger 70-mer fraction. Hence, the presence of E1 and E3 seems to modify the self-

assembly pathway only slightly besides the increased role of dimers, which might be

attributed to the binding of dimers of E2+E1 or E3BP+E3 to larger structures. Above

70-mers, i.e. more than 75 enzymes, only few structure form indicating the full 60-mer

plus 20 − 30 × E1 and 6 − 12 × E3 is not finalized, which will be further discussed

subsequently.

In addition to the self-assembly pathway, binding and unbinding of monomers to assem-

bled structures like the 50-mer and 60-mer is especially notable in the chord diagram of

total transitions (Fig. 8.7 C). These bindings and unbindings are particularly attributed

to E1 and approximately half as many E3 (absolute numbers, note relative flux in Fig. 8.7

G combined with E1/E3 ratio of 3). Thus, indicating a high (un-)binding flux of E1 and

E3 supporting the reaction pathway enabled by PDC [261]. The higher absolute flux

of E1 is also in line with E1 known to catalyze the rate-limiting step in PDC activity

[18, 264]. Regarding binding kinetics, it can be noted that experimental knowledge on

macroscopic protein binding is available through methods such as isothermal titration

calorimetry (ITC) [259, 260, 380, 381], surface plasmon resonance (SPR) [379, 382], and

bio-layer interferometry (BLI) [392]. However, the determined equilibrium binding con-

stants are difficult to compare (between each other and with simulations) as there is a

measurement dependency in addition to various truncations of enzymes [392]. Experi-

mental works have found depending on measurement method and truncation of enzymes

dissociation constants KD for E1 to E2 between 9.5 – 218 nM [260, 382] and for E3 to

E3BP between 0.8 – 102 nM [259, 260, 379–381] with upper bounds being the most sim-

ilar system, where E1 and E3 are separately bound to a 60-mer core of E2+E3BP [260].

Simulation results in this work find intermediate values of 23.2 nM for E1 to E2 and

81.1 nM for E3 to E3BP (average over last 0.1 ms). The higher value for E3 to E3BP

indicates a decreased binding affinity of E3 relative to E1, which might be attributed

by the simultaneous presence of E2 in the simulation setup. Overall, the dissociation

constants are within the range of experimental values and thus in reasonable agreement

considering the measurement dependency of related methods and setup differences [392].

Regarding the self-assembly kinetics, Fig. 8.7 E shows the same asymptotic exponential

behavior (R2 = 0.995) as was found for the pure E2 assembly, but with considerably

longer timescales of τSAS = 2.1 ms (pure E2 to 60-mer was τSAS = 0.8 ms) and a

slightly lower asymptotic structure size NSAS = 46.0 (pure E2 to 60-mer was NSAS =

55.4). A detailed investigation shows that the majority of enzymes (dark blue region

in Fig. 8.7 E) self-assembles into structure of 50-mers to 70-mers within 1 – 2 ms with

considerably larger size variations than for the pure E2 system (Fig. 8.6) in addition

to more small structures. While this indicates partially incomplete structural assembly,

which could be addresses through longer simulation times and possibly higher annealing
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temperatures, these larger variations are also expected with E1 and E3 dynamically

binding and unbinding to and from the 60-mer core of E2 and E3BP – hence exchanging

reactants with the solvent. Regarding the diameter of structures (Fig. 8.7 F), it can

be observed that it is slightly larger than that of the pure E2 60-mer and in line with

experimental sedimentation studies finding Stoke’s diameters of up to 59.5 nm [390].

Concerning the stoichiometry, Fig. 8.7 I and J provide compositions of structures over

time and size. It can be observed that E1 and E3 bind correctly to the core provided

by E2 and E3BP with initially particularly E2+E1 forming complexes, which supports

the earlier argument of E2+E1 providing the dimer units in the assembly pathway. It

can further be observed that E3 binds generally to both E3BP and E2, but relative to

the stoichiometry (E2/E3BP = 2/1) primarily to E3BP and only half as much to E2

(App. E.5.2 Fig. E.22 C), which is even more significant without annealing (App. E.5.2

Fig. E.21 C). Consequently, although E3 is permitted to bind to E2 via a weaker inter-

action derived through statistical binding analysis in MD (see Sec. 8.1.2.2), the binding

specificity of E3 to E3BP expected for human PDC in literature is largely reproduced

[18, 263, 379, 382]. With regard to the overall stoichiometry in Fig. 8.7 I, it can be seen

that a complex is on average composed of 40 × E2 + 23 × E3BP + 10 × E1 + 5 × E3 (E2

fixed according to original stoichiometry). Consequently, the E3BP fraction is slightly

overestimated, while the E1 (and partially E3) fraction are slightly underestimated com-

pared to expectations of 20×E3BP, 20−30×E1, and 6−12×E3 [18, 263, 266, 267, 271].

With increasing structure size (see Fig. 8.7 J), less E1 and E3 are found to bind2, which

is likely attributed to the large flexibility of E2 and E3BP linker arms not being fully

captured by the proposed modeling approach and hence limiting the number of E1 and

E3BP bound by atom collisions with the (at least primarily) rigid model of the linker

arm. While the model still permits capturing such flexible systems to a large extent,

this aspect might present an opportunity for further developments, e.g. by decreasing

repulsion of the linker arm in the molecular repulsion model or sampling different con-

formations. Nonetheless, even with fewer E1 and E3 binding the essential aspects of

PDC self-assembly are still captured.

In this regard, the reactant distance distribution shown in Fig. 8.7 K is particularly im-

portant for enabling PDC’s catalytic activity through active-site coupling and metabolic

channeling [261]. In brief, E1 binds the reactant pyruvate, which is subsequently trans-

ferred to E2 where the product acetyl coenzyme A (acetyl-CoA) is released, followed by

a regeneration of the active site of E2 at E3 [18]. Consequently, for catalytic activity

the active sites of E1 and E2, as well as E2 and E3 have to be in proximity. As it can be

seen in Fig. 8.7 K, the structural self-assembly leads to a peak in E1 – E2 (red) and E3 –

2Excess E1 and E3 are mainly unbound in solution as shown in Fig. 8.7 J (NSAS = 0) and visually
in Fig. 8.7 A and B, which further leads to a decreased number of structured contacts in Fig. 8.7 H.
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E2 (blue) around dCOM ≈ 5 nm. Consequently, the formed structures enable active-site

coupling and hence ensure catalytic activity of the complex. Note that high activity is

further supported by a continuous binding and unbinding of E1 and E3 (Fig. 8.7 G),

which further enhances exchange of reactants with the solvent environment.

In a similar context, Prajapati et al. [265] have found local clusters of E1 and E3 around

the 60-mer core. These findings are supported by the proposed model through the

distance distribution of E1 – E1, E3 – E3, E1 – E3 (number of contacts at peak located

around dCOM ≈ 5 nm, normalized by number of enzymes NE1, NE3, and
√

NE1NE3,

respectively). This shows clustering of E1 – E1 with 8.5 %, while E1 – E3 and E3 – E3

only have approximately 2.3 % and 1.7 % at peak. Hence, particularly E1 – E1 clusters

are present (also beyond pure stoichiometry considerations) similarly to the observations

of Prajapati et al. [265].

In summary, the complex self-assembly of the multi-enzymatic human PDC system into

pentagonal dodecahedral cores of E2 and E3BP with attached E1 and E3 enzymes neces-

sary for catalytic activity is well reproduced by the proposed modeling approach. While

slightly fewer amounts of E1 and E3 were found to bind (10×E1 and 5×E3 compared to

20−30×E1 and 6−12×E3 expected, likely associated with the limited flexibility of E2

and E3BP linker arms in the model), the fundamental properties of complex size, compo-

sition, and buildup were reproduced correctly in comparison to available literature data.

Hence, for the first time it has been possible to model the full self-assembly of such com-

plex multi-enzymatic machines underpinning the structural features enabling catalytic

activity and thus going towards predictive modeling of enzymatic reaction cascades.
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(A) Close-up visualization of self-assembled structures by enzyme type: E1, E3, E2, E3BP.

Figure 8.7: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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(B) Visualization of before (left) and after (right) self-assembly using back-bone carbon
structures. Color indicates enzyme type: E1, E3, E2, E3BP.

(C) Assembly pathway by bi-directional
transitions between size classes.

(D) Assembly pathway by net
transitions between size classes.
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Figure 8.7: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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Figure 8.7: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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Conclusions

In conclusion, a framework for hierarchical multiscale modeling of structural formation

in macromolecular systems using a physics-based and data-driven parameterization from

atomic scales has been presented. The proposed framework resembles an ultra coarse-

grained molecular dynamics approach based on Langevin dynamics and abstracts each

macromolecule as an object with anisotropic properties concerning interaction with the

environment, i.e. solvent, as well as other molecules. For this, the framework builds

upon three main model components: (I) a diffusion and thermodynamic model describes

the interaction with the implicit solvent and enforces the correct thermodynamics (Ch.

3); (II) intermolecular interaction models describe the effective anisotropic interaction

between molecules (Ch. 4); (III) optional bonded interaction models allow for speci-

fic/decoupled treatment of stable molecular structures (e.g. through chemical bonds,

see Ch. 5). Using the proposed framework, large length and time scales in the order

of micro-meters and milli-seconds can be reached well beyond traditional simulation

methods such as (coarse-grained) molecular dynamics (CG-MD).

Focus of this work was placed on method development with regards to a generic model

formulation through data-driven approaches (e.g. interaction potential fields), but also

specialized functional models. In addition, methods for parameterization from molecular

dynamics were developed to enable a bottom-up modeling approach, while performing

top-down validation and enabling optional incorporation of empirical information. The

framework with its various model components has been applied to three model systems

from material science and biology to study their structural self-assembly and test the

framework. First, the polymer network formation during gelation was investigated for

alginate in CaCl2 solution. Second, self-assembly of the hepatitis B core antigen (HBcAg)

into virus-like particles (VLPs) was studied, which is essential for its biological function

of virus transport and infection. Third, self-assembly and agglomeration of the pyruvate

177
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dehydrogenase complex (PDC) was investigated, which features hierarchical assembly

critical to enable catalytic activity through phenomena such as metabolic channeling.

Thus, the developed framework was tested on a variety of applications and systems,

which are highly interesting from a scientific and commercial point of view.

With regard to the modeling of alginate gelation, a specialized version of the proposed

framework has been applied to study the mechanisms of structural network formation

using calcium cations in solution. In order to describe the calcium mediated interaction

of alginate polymer chains, a probabilistic ion model has been developed and integrated

into the framework based on literature parameters and theoretical considerations. Re-

sults were able to capture the mechanisms and dependencies with regard to polymer

concentration, polymer composition, and ion concentration on gelation. Validation was

performed in comparison to literature data and collaborator experimental data, which

yielded good agreement with respect to calcium uptake, gel pore sizes, and bundle forma-

tion of polymer chains. Thus, the model aids understanding of the underlying gelation

mechanisms and supports predictions in the design of gels. Details can be found in Ch. 6

and Depta et al. [224].

With regard to modeling the self-assembly of HBcAg dimers (HBcAg2) into VLPs, the

generic model framework building upon MD parameterization was employed. Mechanics

of hierarchical capsid formation and intermediates were studied at protein concentrations

of 5 µm, 10 µm, 50 µm, and 100 µm with ion concentrations of 150 mm sodium chloride.

Results provided detailed insight into stage-wise assembly and highlighted importance of

small agglomerates (10 - 35 HBcAg2) in the assembly process. Furthermore, concentra-

tion dependent effects could be observed including diffusion limitations at low concen-

trations and overgrowing, i.e. increased kinetic traps, at high concentrations. Validation

was performed in comparison to literature data showing good agreement with respect to

structural properties and limited experimental insights on formation mechanics. Thus,

the model aided understanding of the self-assembly processes and enabled predictions

for future works, e.g. at different process conditions. At the same time, limitations of

the model were investigated and addressed including allostery-induced conformational

changes during pairwise HBcAg2 binding through biased MD parameterization or incor-

poration of empirical data. Details can be found in Ch. 7 and Depta et al. [225, 226].

With regard to modeling PDC self-assembly and agglomeration, the same generic model

framework was employed as used for the HBcAg system. Mechanics of hierarchical

structural formation and intermediates were studied at different component stoichiome-

tries for the more complex system comprised of up to four enzyme types E1, E2, E3,

and E3BP. Besides the investigation of assembly kinetics similar to HBcAg, analysis
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highlighted the structural composition and detailed organization of formed agglomer-

ates. Furthermore, binding and unbinding of E1 and E3 to agglomerate structures was

investigated in detail, which is essential in enabling the catalytic activity of PDC. Conse-

quently, the model aided detailed understanding of PDC structure in combination with

functional requirements, which were discussed in combination with available literature

data showing good agreement. At the same time, inherent challenges and possible fu-

ture extension of the model framework resulting from the complex structural features of

PDC components, specifically the flexible linker arms of E2 and E3BP, were discussed.

Details can be found in Ch. 8 and Depta et al. [223, 227, 228].

In summary, a framework for physics-based and data-driven multiscale modeling of

macromolecular structural formation has been proposed and tested on three highly inter-

esting model systems to show wide applicability. The developed framework enables novel

scales to be investigated using numerical simulations and includes a supervised-learning

bottom-up parameterization, thus paving the way towards physically-mechanistic mod-

eling of such structural assembly processes. As a result, the framework can be readily

applied to better understand and test modifications of a variety of natural and synthetic

molecular systems including for example other viruses (e.g. adenovirus, coronaviruses),

enzymatic complexes (e.g. glutamine synthase), self-assembled monolayers (e.g. thiolates

on metals), or colloids. Future studies might also improve and extend the framework

in various ways, including for example: improved interaction potential parameterization

through e.g. novel MD force-fields, higher-dimensional interaction potentials including

conformational changes, further abstractions to larger multimers (e.g. trimer), incor-

poration of fluid flow, coupling to population balance modeling, structure-dependent

reaction kinetics through e.g. finite volume modeling approaches, and more.





Appendix A

General Appendix

A.1 Euler Angle Definition

The order of Euler angles in this work used is first α, then β, and γ. The value range is

from −π to π for α and γ, as well as from −π/2 to π/2 for β. Conversion from a unit

quaternion with components q0, q1, q2, q3 can be calculated as

α = atan2(2(q2q3 + q0q1), q0q0 − q1q1 − q2q2 + q3q3), (A.1)

β = asin(2(q0q2 − q1q3)), (A.2)

γ = atan2(2(q1q2 + q0q3), q0q0 + q1q1 − q2q2 − q3q3). (A.3)
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A.2 Detailed Framework Overview
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Figure A.1: Detailed visualization of the physics-based and data-driven framework
for macromolecular structural formation.
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A.3 Hydrodynamic Interaction

Introduction and Literature For the simulation of non-dilute solutions hydrody-

namic interaction, i.e. forces resulting from the relative velocities of coarse-grained beads

coupled through the solvent, can become important in addition to systematic forces be-

tween beads, i.e. forces resulting from relative position and atomic structure. This is

for example more widely employed for polymer systems [393] using Brownian Dynamics

(see Sec. 1.2.2) with the Ermak-McCammon algorithm [394, 395]. The friction coefficient

(see eq. 1.7) becomes a tensor coupling the DOF of all coarse-grained beads. Common

forms are the Oseen tensor [396] and the Rotne-Prager-Yamakawa tensor [393, 397] as-

suming stationary flow fields1. While these are derived for the translation of uniformly

sized spheres in solution, extensions for rotation-translation coupling [394], different

sphere radii [399, 400], and ellipsoids [401] have been researched as well. However,

while mathematical incorporation of anisotropic particles leading to a 6N × 6N friction

tensor is straightforward [172], derivation of the individual friction tensors between ar-

bitrarily anisotropic objects is not and requires detailed investigation [277]. Subsequent

solution of the hydrodynamic interaction requires complexity O(N3) for direct solution

through factorization of the tensor, but can be approximated by the truncated expan-

sion ansatz (TEA) of Geyer and Winter [402] with complexity O(N2). For reviews see

e.g. refs. [277, 403]. Alternatively on larger scales of macroscopic objects outside the

focus of this work, e.g. the discrete element method (DEM), hydrodynamic interaction

and generally fluid flow is often described by coupling to continuum methods such as

computational fluid dynamics (CFD) to solve the Navier-Stokes equation numerically.

Relation to this Work With regard to (anisotropic) macromolecular assemblies in

the context of Langevin Dynamics (LD) and implicit solvation, effects are nontrivial.

While in dilute systems the macromolecules are fully surrounded by solvent molecules

(typically water), these are replaced by the respective binding partner during assembly.

As a result, the effective friction and random forces in LD are reduced2 in the respective

direction (similarly to an effective reduction in viscosity) and replaced by intermolecular

interaction. During binding, i.e. direct structural contact between two macromolecules,

it is reasonable to assume that this is primarily dominated by their relative position

and orientation and not their relative velocities. For larger distances as well as with

respect to mutual movement through the solvent, however, hydrodynamic interaction is

likely relevant, as it essentially shields macromolecules from the solvent and couples the

1Thus they are strictly speaking not applicable to LD, which requires an explicit time-dependent
modeling, see e.g. refs. [277, 398].

2Note that these also incorporate internal DOF of the coarse-grained bead and cannot directly be
separated (see Sec. 1.2.2).
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respective DOF of the macromolecules through the friction tensor in LD. As discussed

in the previous paragraph, methods have been developed in the context of BD primar-

ily with regard to spherical objects. Due to the complexity of extending this to

general anisotropic and rotation dependent objects, hydrodynamic interac-

tion has been neglected throughout this work and is left for future works as

refinement - an approximation which is in line with literature [277]. Further-

more, as the primary argument for inclusion of hydrodynamic interaction is

that shielding through neighboring elements limits the effective friction/re-

sistance of the molecule with respect to the fluid flow [396], decreasing the

effective viscosity leads to a partial account of the non-dilute state of the

solution. Consequently, this strategy of reducing the effective viscosity is

employed with respect to assembly studies in the results. Note that such a

reduction of effective viscosity is widely employed in literature as it additionally leads to

accelerated dynamics, while expected to largely maintaining equilibrium [30]. Reduction

is typically performed using a factor between 10 - 1000× [110, 127, 128].

In order to quantify the reduction in effective viscosity beyond literature values, an ex-

ample of hydrodynamic interaction and influence on drag is provided in the following.

This example is employing the Rotne-Prager-Yamakawa (RPY) tensor [393, 397], i.e. fol-

lowing Stoke’s law at low Reynolds numbers. Let five spherical particles be positioned

with one at the center and each of the remaining four at 2.2 times the radius in ±x or

±y (formation of a plus-like structure ’+’)3. Let all of them have a uniform velocity in x

direction and no fluid velocity. Their respective drag in comparison to a diluted particle

is 5.8% for the center particle, 41.8% for the particles in ±x, and 57.9% for the particles

in ±y. Alternatively, for a flow in z direction it is 12.9% for the center particle and

56.2% for the outer particles. Both cases highlight the shielding effect of hydrodynamic

interaction and support a reduction of the effective viscosity by a factor between 8 - 20×.

Consequently, an effective viscosity reduction by a factor of 10× was chosen,

which is at the lower end of literature scaling (10 - 1000×) [110, 127, 128].

Note additionally that for opposite movement between particles strong restoring forces

due to hydrodynamic interaction and consequently coupled DOF occur: In case of a

zero velocity central particle e.g. 208.9% its normal drag in x direction and 142.4% its

normal drag in z direction. As discussed before, these aspects are not further modeled,

but would additionally stabilize the assembled structures.

3Note that the chosen simplified positioning resembles part of the structure on the HBcAg VLP
capsid. While being simplified, it provides insight into the qualitative effects. The actual HBcAg VLP
structure contains direct contacts between anisotropic dimers (thus making direct application of the
RPY tensor less accurate), as well as repeating structural elements over the VLP - thus leading to
further shielding of the solvent and drag reduction.
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Figure B.1: Comparison of MSD plots from molecular dynamics data (red) and
diffusion model results (black). Solid lines indicate mean values (MSD) and shaded
regions the standard deviation. The MD statistic consists of 600 independent
replicates, while the DEM statistic consists of 500’000 replicates to provide a more
accurate trend for comparability. For a close-up of the x and α DOF of E2-arm as an
example please see Fig. 3.3. Reprinted with permission from supplementary of Depta
et al. [223]. Copyright 2019 American Chemical Society.
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This chapter is based on the following publications:

P. N. Depta, M. Dosta, W. Wenzel, M. Kozlowska, and S. Heinrich. Hierarchical

Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis

B Virus-Like Particles. Int. J. Mol. Sci., 23(23):14699, 2022

P. N. Depta, M. Dosta, and S. Heinrich. Data-Driven Multiscale Modeling of Self-

Assembly and Hierarchical Structural Formation in Biological Macro-Molecular Sys-

tems. In W. E. Nagel, D. H. Kröner, and M. M. Resch (editors), High Performance

Computing in Science and Engineering ’21. Springer International Publishing, Cham,

2023

C.1 Variogram Binning Algorithm

During analysis of spatial correlation and subsequent variogram fitting, a large number

of samples exist due to the scaling of the problem with O(N2) (resulting from the correla-

tion between all points), where N is the number of samples. The number of correlations

is typically in the order of 1010 for a fully sampled field and becomes infeasible for direct

fitting. In order to overcome this, an adaptive binning algorithm was implemented. The

fundamental idea is to bin all correlation samples according to their distance, calculate

averages and standard-deviation in each bin, and perform weighted-least-squares fitting

based on these bins as described in Sec. 4.3.3.

For this, the continuous variogram definition in equation 4.25 is discretized as

γ∗Y (δr) =
1

2♣N(δr)♣
∑

N(δr)

(Y (x⃗i, qi) − Y (x⃗j , qj))2 , (C.1)
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where N(δr) denotes the set of pairwise distances in distance class δr between data points

i and j, which is also known as the method-of-moment estimator or classical estimator

of the experimental variogram [295, 297, 404]. Note that this formulation is sensitive

to outliers due to the square of the difference. To address this, more robust estimators

against outliers have been proposed in literature [405]. This is typically achieved by

transformations to determine the expected value of the squared difference under the as-

sumption of a Gaussian distribution, see e.g. refs. [294, 405]. This assumption is fulfilled

by many processes, especially in the context of the central limit theorem. However, as

in this case for large δm the distribution of the residuum Y tends towards a Laplace

distribution and the number of samples at small lag distances is small, applicability of

such an estimator is questionable. Initial tests on the HBcAg system using the estimator

proposed by Cressie et al. [405] showed no significant differences and consequently, the

classical estimator defined in eq. C.1 was used.

In order to automatically perform binning and avoid statistical issues at large sample

distances (e.g. a decrease of the experimental variogram), the following algorithm was

developed: First, all sample correlations are calculated within a limit of 4 nm to reduce

the number of overall samples. Second, initial binning is performed between the min-

imum distance and maximum distance with 100 bins including the calculation of the

mean and standard-deviation. At least 200 samples are required for a bin to be con-

sidered valid. Third, a smoothed version of the bin averages is calculated (0.25 weight

for bin before and after, 0.5 for center bin) and based on this, the sum of all incre-

ments calculated. If this sum is positive, an increasing function will be deduced and

decreasing otherwise (this is kept generic although a decreasing function is not a valid

variogram). Furthermore, the extrema of the bin average will be determined along with

its (bin) position. Motivation for this is that the experimental variogram often tends

to decrease again after reaching a maximum. Fourth, the minimum (bin) distance at

which either the last binning element is reached or the value has dropped to 95 % of the

extrema value will be determined. Binning will be re-run (second step) based on this

distance as the upper limit until convergence is reached (upper limit change less than 0.1

%) or ten iterations are exceeded. Once the last binning was run, binned average and

standard-deviations are used for weighted-least-squares fitting as described in Sec. 4.3.3.

C.2 Kriging Neighborhood Search and Convergence

In order to perform the Kriging estimation, the data set has to be searched for the subset

of nearby points, also called neighborhood points (number NK). As calculating the dis-

tance between points from the RMSD δr between two structure of B is computationally
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demanding, a more efficient search algorithm was implemented to avoid a brute force

search through the data set to determine the closest data points. This algorithm will be

explained in the following and is based on incrementally increasing the cartesian search

volume:

1. Pre-calculate the cartesian distance from the estimation point to all data points

in the current section.

2. Search the data set for points within an interaction volume of radius rcur = 1 nm

in cartesian space around the estimation point.

3. Calculate δr from the estimation point to each found point and save the result.

Calculate the number of thus far found points with δr ≤ rcur, termed Ncur.

4. Increase rcur by a factor of 1.26 (doubling the cartesian volume) and return to step

2 until Ncur ≥ NK .

5. Sort all points with δr ≤ rcur by δr and use the first NK for estimation.

As calculating the cartesian distance is much faster than calculating the δr distance, the

used algorithm is significantly more performant.

Note that the estimate is dependent on the number of Kriging points used (NK). In

order to estimate the impact, a convergence study was performed varying NK between

100 and 1000 and comparing the potential field and variance of the field to the reference

case of NK = 1000. For this, the random HBcAg2 – HBcAg2 data set was used together

with the grid for iterative refinement. Results can be found in table C.1. As it can

be seen, the differences to the reference case of NK = 1000 decrease with increasing

NK indicating a convergent behavior. The difference in variance indicates an over-

estimation of the variance for lower NK , which is consistent with the expectation of a

reduced estimation accuracy for lower numbers of used samples. Nonetheless, results

indicate that the overall variance is captured even for NK = 100. Consequently, in order

to reduce computational demand during variance minimization resampling, NK = 100

was chosen. The difference in potential estimate are more significant for lower NK ,

but overall balanced around a zero mean. Consequently, NK = 500 was chosen for all

remaining Kriging to ensure a balance between computational demand and accuracy.
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Table C.1: Convergence study of the number of Kriging points NK in reference to
NK = 1000 on the example of the HBcAg2 – HBcAg2 random data set and grid for
iterative refinement. Relative comparisons are for portions of the grid within cutoff
and outside of collisions. Reprinted with permission from Depta et al. [225] under
CC-BY 4.0 license.

Parameter 100 250 500 1000

Mean potential dif. [kJ/mol] -0.064 0.042 0.065 0

Min potential dif. [kJ/mol] -80.5 -33.0 -19.0 0

Max potential dif. [kJ/mol] 62.3 46.3 21.4 0

Mean variance dif. [kJ2/mol2] 5.9 2.5 0.8 0

Min variance dif. [kJ2/mol2] -0.32 -0.19 -0.002 0

Max variance dif. [kJ2/mol2] 309.5 103.0 31.6 0

C.3 Objective Function For Quantitative Structural Sta-

bility

In order to quantitatively evaluate the stability of the HBcAg VLP and PDC 60-mer

core, an objective function was derived. The function is based on the combination of

various properties of the structures in comparison to the starting structures, i.e. ground

truth (gt). The following properties of the structures were used:

• rgyr: radius of gyration

• dcom,min: minimum distance from COM of entire structure to the COM of any

molecule / particle

• dcom,max: maximum distance from COM of entire structure to the COM of any

molecule / particle

• di,minDistAnyJ,rmsd: root-mean-square of the minimum distance from all i to any

j ̸= i

• dij,min: minimum distance between the COM of all molecule / particle permuta-

tions i and j with i ̸= j

• dij,rmsd: root-mean-square distance between the COM of all molecule / particle

permutations i and j

For all time points saved, the deviation from the ground truth was calculated and denoted

as e.g. ∆rgyr. Based on this, the overall objective function fstab is defined as

fstab = ⟨2♣∆rgyr♣ + ♣∆dcom,min♣/3 + ♣∆dcom,max♣/3

+ 2♣∆di,minDistAnyJ,rmsd♣ + ♣∆dij,min♣ + ♣∆dij,rmsd♣⟩10 (C.2)
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where ⟨⟩10 indicates the time-averaging over the last 10 saving points. The objective

function consequently captures both the extend of the structure, as well as the inner

conformation with respect to the reference structure. Furthermore, by referencing to

the original structure (ground truth), a value of zero indicates perfect agreement, while

increasing values of fstab indicate increasing structural changes. Negative values are not

possible.

C.4 MD Quality Criteria

Criteria to identify errors and quality issues during MD runs were as follows:

• Minimum distance between A and B less than 0.35 nm

• Temperature less than 290 K or more than 305 K

• Minimum distance to a periodic image less than 7 nm

• Minimum distance between A-B less than the distance to a periodic image

• Difference between minimum distance between A-B and distance to the PBC less

than 3 nm

MD runs which failed any of these criteria at the end of a run were discarded.
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D.1 Spatial Descriptors
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Figure D.1: Overview of spatial descriptor trends using Gaussian smoothing for
HBcAg2 – HBcAg2 interaction with final MD data set. Note that excitations at large
distances are due to low numbers of samples.
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D.2 Biased MD-Based Interaction Potential
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Figure D.2: Interaction potential field from biased MD sampling at binding
locations (units of kJ/mol). Note that trend and variogram models were generated
without biased MD data. Adapted with permission from Depta et al. [225] under
CC-BY 4.0 license.

D.3 Kriging Statistical Data

The statistical data of the Kriging algorithm for HBcAg2 is reprinted with permission
from Depta et al. [225] under CC-BY 4.0 license: ”Note that not all shown trend and
variogram fits are considered valid for Kriging purposes. See Sec. 4.3.3 for requirements.
Valid trends are A–B, A–PW + B–PW, PW–PW, A–Ion + B–Ion, PW–Ion, Bond. Not
valid trends are A–A + B–B, Ion–Ion, G96-Angles, improper dihedral angles, reciprocal
coulomb potential. Valid variogram models were only those for potential A–B besides
that above range.”
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Figure D.3: HBcAg2 – HBcAg2 potential A–B. Adapted with permission from
Depta et al. [225] under CC-BY 4.0 license.



Appendix D HBcAg Results Supplementary 197

0 2 4 6
m [nm]

29780

29770

29760

29750

29740

29730

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.001)
Trend (Smoothed)

0 1 2 3 4
r [nm]

44000

46000

48000

50000

52000

54000

56000

Y [
kJ

2 /m
ol

2 ]

Exponential fit (R² = 0.993)
Data

(A) A–A + B–B.

0 2 4 6
m [nm]

21300

21250

21200

21150

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.058)
Trend (Smoothed)

0 1 2 3 4
r [nm]

80000

85000

90000

95000

100000

105000

110000

Y [
kJ

2 /m
ol

2 ]

Exponential fit (R² = 0.991)
Data

(B) A–PW + B–PW.

0 2 4 6
m [nm]

30

20

10

0

10

20

30

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.001)
Trend (Smoothed)

0 1 2 3
r [nm]

200000

220000

240000

260000

280000

Y [
kJ

2 /m
ol

2 ]

Exponential fit (R² = 0.993)
Data

(C) PW–PW.

0 2 4 6
m [nm]

260

255

250

245

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.006)
Trend (Smoothed)

0 1 2 3 4
r [nm]

3800

3900

4000

4100

Y [
kJ

2 /m
ol

2 ]

Exponential fit (R² = 0.91)
Data

(D) A–Ion + B–Ion.

Figure D.4: HBcAg2 – HBcAg2 potential trends (left) and overall variogram (right).
Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.
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Figure D.5: HBcAg2 – HBcAg2 potential trends (left) and overall variogram (right).
Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.
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Figure D.6: HBcAg2 – HBcAg2 potential trends (left) and overall variogram (right).
Adapted with permission from Depta et al. [225] under CC-BY 4.0 license.
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E.1 Binding Locations

Table E.1: Binding locations of PDC components extracted from structural
assemblies in ref. [271] provided by Uwe Jandt (E2 – E2) and Cornelius Jacobi (E2 –
E1, E3BP – E3). Note the large flexiblity of E2 – E2.

# x [nm] y [nm] z [nm] α [rad] β [rad] γ [rad]

E2 – E1

1 -0.87 -0.27 -1.87 -2.46 1.06 2.22

2 -0.87 -0.27 -1.87 -0.85 -0.97 -0.75

E3BP – E3

1 7.37 -2.62 -1.94 2.48 0.54 1.47

2 7.37 -2.62 -1.94 -2.59 -0.48 1.63

E2 – E2

1 -4.02 3.27 9.78 1.43 -0.73 0.13

2 -7.89 -1.77 -12.45 -2.48 1.2 0.30

3 -4.48 -5.84 -9.77 3.02 0.82 -0.34

4 -2.94 -4.72 -10.02 2.81 0.72 -0.18

5 -7.28 -9.64 -6.54 2.53 0.6 -0.87

6 -4.63 -4.47 -10.41 3.07 0.91 -0.14

7 -4.82 -7.55 -9.11 2.85 0.78 -0.55

8 -3.52 -0.55 -9.01 -2.82 0.75 0.41

9 -4.97 -5.37 -9.79 2.98 0.87 -0.31

10 -2.67 -7.18 -6.68 2.91 0.55 -0.39

11 -4.06 -6.62 -7.31 2.92 0.55 -0.40

12 -8.05 -2.96 -11.39 -2.9 1.1 -0.05

13 -7.49 -3.11 -10.15 -2.38 0.97 -0.10

14 -1.33 -6.81 -5.44 2.53 0.41 -0.31

15 -5.9 -1.74 -10.18 -2.77 0.96 0.29

16 -3.18 -3.95 -9.5 -2.44 0.75 -0.12

17 -7.77 -5.39 -10.91 -3.11 1.05 -0.59

18 -5.8 6.5 -7.97 -3.09 0.91 0.61

19 -8.95 1.81 -11.98 -2.19 1.03 0.81

20 -4.39 -9.41 -4.15 2.44 0.42 -0.68

21 -5.5 4.74 -8.8 2.4 0.93 0.35

22 -5.84 -9.1 -6.15 2.82 0.62 -0.81

23 -4.39 -6.15 -9.32 2.7 0.78 -0.42

24 -4.09 -4.69 -8.67 2.8 0.64 -0.23

25 -3.04 2.16 -7.9 1.51 0.69 -0.03
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26 -3.19 -7.03 -6.96 2.16 0.5 -0.41

27 -4.17 3.62 -8.88 2.5 0.85 0.15

28 -7.17 5.53 -7.72 2.95 0.96 0.53

29 -3.32 -0.59 -7.4 1.41 0.59 -0.37

30 -3.56 8.63 0.11 -1.79 0.15 0.67

31 -9.38 -2.1 -10.58 -3.08 1.19 0.00

32 -3.93 -0.88 -8.37 1.48 0.74 -0.35

33 -3.83 5.18 -6.44 2.7 0.6 0.35

34 -4.53 -0.82 -8.42 1.17 0.74 -0.39

35 -1.43 6.01 0.18 -1.67 0.09 0.33

36 -5.61 8.91 -4.39 -2.96 0.45 0.82

37 -10.02 1.96 -11.79 -1.44 1.2 0.88

38 -4.09 -1.15 -7.31 0.56 0.66 -0.47

39 -4.46 9.38 1.24 -2.66 0.02 0.81

40 -7.8 8.1 -5.18 -2.27 0.17 1.09

41 -3.92 0.76 -7.98 1.1 0.71 -0.21

42 -1.78 6.46 -1.84 -1.69 0.32 0.37

43 -3.32 7.41 -2.97 -2.99 0.33 0.55

44 -8.93 5.77 -10.51 -1.73 0.84 1.03

45 -2.93 -0.62 -6.23 1.36 0.51 -0.27

46 -2.21 7.11 -0.85 -1.45 0.23 0.55

47 -3.8 5.54 -6.64 -2.98 0.73 0.37

48 -3.65 0.43 -8.68 1.29 0.67 -0.21

49 -1.51 6.66 -0.35 -2.01 0.14 0.39

50 -4.51 8.57 -4.35 2.88 0.44 0.64

51 -8.19 2.47 -11.37 -1.92 1.01 0.69

52 -4.2 2.79 -8.55 2.19 0.76 0.10

53 -4.3 9.81 -1.22 -1.93 0.24 0.83

54 -4.65 0.61 -9 1.72 0.8 -0.16

55 -4.32 1.64 -8.81 1.49 0.86 -0.02

56 -3.07 8.84 -0.93 -1.33 0.24 0.70

57 -5.27 6.54 -6.71 -3.02 0.65 0.60

58 0.7 0.33 2.21 1.68 0.3 0.09

59 -2.67 1.57 -6.74 1.48 0.5 -0.09

60 -4.23 10.29 1.07 -1.65 0 0.87

61 -10.14 -1.51 -10.98 -2.6 1.26 0.02

62 -4.28 11.26 -1.13 -2.05 0.24 0.96

63 -8.57 -3.46 -11.89 -2.85 1.18 -0.50

64 -4.01 -1 -8.61 1.59 0.71 -0.36
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65 -1.22 5.73 -0.94 -1.85 0.19 0.31

66 -4.82 5.85 -7.38 2.69 0.67 0.46

67 -3.5 2.91 -7.84 1.8 0.71 0.11

68 -2.92 8.88 -0.35 -2 0.16 0.67

69 -3.94 5.02 -7.17 2.37 0.65 0.39

70 -2.26 2.29 -6.64 1.97 0.51 0.04

71 -2.74 7.87 -0.53 -1.54 0.21 0.59

72 -3.21 2.65 -7.17 2.58 0.59 0.02

73 -3.51 7.72 -2.78 2.8 0.35 0.63

74 -3.83 7.96 6.86 -0.83 -0.46 0.85

75 -3.41 2.64 -8.63 2.7 0.83 0.07

76 -4.15 2.27 -7.01 1.64 0.62 0.10

77 -4.37 9.5 -2.12 -2.09 0.32 0.82

78 -2.47 3.75 -7.49 2.27 0.69 0.15

79 -6.33 5.59 -8.3 2.37 0.83 0.49

80 -4.41 8.9 1.03 -1.01 0.1 0.77

81 -4.66 4.61 -7.65 2.89 0.71 0.33

82 -5.18 -0.04 -9.86 0.9 0.95 -0.35

83 -3.23 7.94 -3.29 2.83 0.3 0.63

84 -4.52 0.85 -8.1 1.84 0.82 -0.08

85 -2.46 8.3 -1.06 -1.55 0.28 0.73

86 -4.13 -2.03 -8.46 1.23 0.66 -0.58

87 -5.91 4.72 -8.47 2.58 0.81 0.45
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E.2 Pure MD-Based Interaction Potentials
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Figure E.1: Interaction potential field of E2 with E1 from pure MD-based
sampling strategy (units of kJ/mol).
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Figure E.2: Interaction potential field of E3BP with E3 from pure MD-based
sampling strategy (units of kJ/mol).

E.3 Repulsive-Only Interaction Potentials
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Figure E.3: Interaction potential field of E3BP with E1 from repulsion model
(units of kJ/mol).
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Figure E.4: Interaction potential field of E1 with E1 from repulsion model
(units of kJ/mol).

0

20

40

60

80

100

(A) 3D minimum over orientations.

0

20

40

60

80

100

(B) 3D mean over orientations.

Figure E.5: Interaction potential field of E1 with E3 from repulsion model
(units of kJ/mol).
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Figure E.6: Interaction potential field of E3 with E3 from repulsion model
(units of kJ/mol).
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E.4 Kriging Statistical Data

Valid potential trends are for E2 – E2 potentials A – B, A – PW + B – PW, and

reciprocal Coulomb; for E2 – E1 potentials A – B and A – PW + B – PW; for E3BP

- E3 potentials A – B and A – PW + B – PW. Valid variogram models were those for

potential A – B over all distance classes for all molecular interactions. See Sec. 4.3.3 for

requirements. Note that fitting jumps at large δm (typically beyond 6-7 nm) are caused

by significant undersampling. None of such fits were considered valid and used.
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Figure E.7: E2 – E2 potential A–B.
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Figure E.8: E2 – E2 potential trends (left) and overall variogram (right).
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Figure E.9: E2 – E2 potential trends (left) and overall variogram (right).
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Figure E.10: E2 – E2 potential trends (left) and overall variogram (right).
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Figure E.11: E2 – E1 potential A–B.
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Figure E.12: E2 – E1 potential trends (left) and overall variogram (right).
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Figure E.13: E2 – E1 potential trends (left) and overall variogram (right).
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Figure E.14: E2 – E1 potential trends (left) and overall variogram (right).
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Figure E.15: E3BP – E3 potential A–B.



218 Appendix E PDC Results Supplementary

0.0 2.5 5.0 7.5 10.0
m [nm]

67700

67650

67600

67550

67500
U

 [k
J/m

ol
]

Fit (GLF, R² = 0.003)
Trend (Smoothed)

1 2 3 4
r [nm]

45000

50000

55000

60000

65000

70000

75000

80000

Y [
kJ

2 /m
ol

2 ]

Cubic fit (R² = 0.979)
Data

(A) A–A + B–B.

0.0 2.5 5.0 7.5 10.0
m [nm]

53000

52950

52900

52850

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.014)
Trend (Smoothed)

1 2 3
r [nm]

120000

140000

160000

180000

200000

Y [
kJ

2 /m
ol

2 ]

Cubic fit (R² = 0.988)
Data

(B) A–PW + B–PW.

0 2 4 6 8 10
m [nm]

150

100

50

0

50

100

150

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.021)
Trend (Smoothed)

1 2 3 4
r [nm]

520000

540000

560000

580000

600000

620000

640000

Y [
kJ

2 /m
ol

2 ]

Gaussian fit (R² = 0.956)
Data

(C) PW–PW.

0 2 4 6 8 10
m [nm]

2.0

1.5

1.0

0.5

0.0

U
 [k

J/m
ol

]

Fit (GLF, R² = 0.001)
Trend (Smoothed)

0 1 2 3 4
r [nm]

37.5

40.0

42.5

45.0

47.5

50.0

52.5

Y [
kJ

2 /m
ol

2 ]

Gaussian fit (R² = 0.024)
Data

(D) A–Ion + B–Ion.

Figure E.16: E3BP – E3 potential trends (left) and overall variogram (right).
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Figure E.17: E3BP – E3 potential trends (left) and overall variogram (right).
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Figure E.18: E3BP – E3 potential trends (left) and overall variogram (right).
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E.5 PDC Self-Assembly

E.5.1 Pure E2 System

SP-PDC-1 (Without Annealing)

(A) Close-up visualization of self-assembled structures by enzyme type: E1, E3, E2, E3BP.

Figure E.19: PDC self-assembly for a pure E2 system at concentration of
1 mg mL−1 in 1 µm3 cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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−→

(B) Visualization of before (left) and after (right) self-assembly using back-bone carbon
structures. Color indicates enzyme type: E1, E3, E2, E3BP.

(C) Assembly pathway by bi-directional
transitions between size classes.

(D) Assembly pathway by net
transitions between size classes.
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Figure E.19: PDC self-assembly for a pure E2 system at concentration of
1 mg mL−1 in 1 µm3 cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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Figure E.19: PDC self-assembly for a pure E2 system at concentration of
1 mg mL−1 in 1 µm3 cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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E.5.2 Full Component PDC System

SP-PDC-1 (Without Annealing)

(A) Close-up visualization of self-assembled structures by enzyme type: E1, E3, E2, E3BP.

Figure E.20: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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−→

(B) Visualization of before (left) and after (right) self-assembly using back-bone carbon
structures. Color indicates enzyme type: E1, E3, E2, E3BP.

(C) Assembly pathway by bi-directional
transitions between size classes.

(D) Assembly pathway by net
transitions between size classes.
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extent without monomers (final time).

Figure E.20: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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Figure E.20: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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(C) Contacts with each enzyme type over time (10 µs saving).

Figure E.21: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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Figure E.21: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1.
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SP-PDC-1-AN (With Annealing)
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Figure E.22: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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Figure E.22: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1-AN.
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E.5.3 Enhanced E2 – E2 Arm Interaction

In the context of PDC the precise interaction of two E2 linker arms (catalytic domains
on opposite sites) and possibly a subsequent structural assembly beyond the 60-mer is
an additional topic of interest. Guo et al. [269] have observed in addition to a formation
of the 60-mer structure (radius of hydration rh = 26.1 nm) the presence of a fraction of
larger size around rh = 75.2 nm (using DLS on wild-type human E2/E3BP systems).
However, while activity increases have been observed for a larger population fraction
from C-terminal truncations of E2 and E3BP (i.e. reduced catalytic domain binding
for a 60-mer leading to more unstructured agglomerates; activity 120.1 % relative to
wild-type) [269], it is unknown whether wild-type human PDC (as is investigated in this
work) also exhibits an increase in activity for larger structures, which might possibly
form beyond the predominantly observed 60-mer. Note that large agglomerates might
also be attributed to (partial) unfolding of proteins [406].

In this direction, umbrella sampling of the E2 – E2 arm interaction using the CG-MD
model [268] has been performed by Uwe Jandt showing an attractive behavior towards an
equilibrium distance between E2 – E2 centers of mass at approximately 10 – 20 nm [407].
Inspired by these results and in an attempt to better understand structural formation
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Figure E.23: Interaction potential field of E2 with E2 from MD with
additional arm interaction (units of kJ/mol). C and D adapted with permission
from Springer Nature regarding Depta et al. [227].
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through increased E2 linker arm interaction, a variant of the E2 – E2 interaction potential

was derived as shown in Fig. E.23. For this, empirical data points were inserted along

the x-axis with arms oriented in opposing directions (y = z = 0 nm, α = −π to π in

π/36 increments, β = 0, γ = π) and following a Morse potential as

U(x) = −1400 kJ/mol + 1344 kJ/mol × (1 − e
10 nm−x

30 nm/3.676 )2 (E.1)

between x = 5 nm and x = 40 nm (grid extended to x = 40.5 nm accordingly). These

data points were then replicated in y and z by ±1.5 nm and ±3.0 nm to account for

the flexibility of the linker arm in an approximate nature. Fig. E.23 shows the resulting

interaction potential with enhanced E2 – E2 linker arm interaction located at x ≈
10−20 nm. Variations in potential width and depth have been investigated additionally

indicating the used values are necessary for meaningful structural assembly beyond the

60-mer as will be discussed subsequently.

For this variation of the E2 – E2 interaction potential with enhanced arm interaction, the

full component PDC system was simulated equivalent to the normal E2 – E2 interaction

shown in Sec. 8.4.2.2. The self-assembly of this adaptation is visualized qualitatively

and quantitatively in Fig. E.24 and E.25. As it can be seen, large-scale agglomerates

form with substructures being similar to the 60-mer core of PDC [265, 388]. These

agglomerates are composed of approximately 100 - 400 enzymes with average diameters

around 100 nm (Fig. E.24 F) and maximum diameters between 100 - 150 nm (Fig. E.25

B). Consequently, sizes of formed agglomerates are comparable to the population of 150.4

nm diameter observed by Guo et al. [269]. However, when investigating the stoichiometry

of structures (Fig. E.24 I and J) it has to be noted that much fewer E1 and E3 bind to

these structures - particularly the large structures. Visually this can also be observed in

Fig. E.24 A with few E1 and E3 located at the center of agglomerates. As a result, the

reactant / active-site distribution (Fig. E.24 K) decreases drastically, e.g. for E1 – E2

around dCOM = 5 nm by a factor of 2.7 from 0.16 for the normal linker arm interaction

to 0.06 for the enhanced linker arm interaction.

Consequently, based on this model of an enhanced E2 – E2 linker arm interaction it is

doubtful whether such large agglomerates can maintain the same catalytic activity as the

60-mer core. Similarly, it is questionable whether reactants can be transported into and

out of the agglomerate at sufficient rates for catalytic participation of the agglomerate

center. Hence, it is considered more plausible that no further agglomeration beyond

the predominantly reported 60-mer takes place – at least near physiological conditions

enabling catalytic activity.
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(A) Close-up visualization of self-assembled structures by enzyme type: E1, E3, E2, E3BP.

Figure E.24: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1 with enhanced E2 – E2
arm interaction.
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(B) Visualization of before (left) and after (right) self-assembly using back-bone carbon
structures. Color indicates enzyme type: E1, E3, E2, E3BP.

(C) Assembly pathway by bi-directional
transitions between size classes.

(D) Assembly pathway by net
transitions between size classes.
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Figure E.24: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1 with enhanced E2 – E2
arm interaction.
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Figure E.24: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1 with enhanced E2 – E2
arm interaction.



236 Appendix E PDC Results Supplementary

0 50 100 150 200
dSAS, gyr [nm]

50

100

150

200

250

300

350

400

N
SA

S [
-]

60-mer

0.000
0.006
0.012
0.018
0.024
0.030
0.036
0.042
0.048
0.054

(A) Numbered size versus diameter of
gyration without monomers (final time).

0 50 100 150 200
dSAS, max [nm]

50
100
150
200
250
300
350
400

N
SA

S [
-]

60-mer

0.000
0.004
0.008
0.012
0.016
0.020
0.024
0.028
0.032
0.036

(B) Numbered size versus maximum
extent without monomers (final time).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
co

nt
 p

er
 E

1 
[-]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
co

nt
 p

er
 E

3 
[-]

0 1 2 3 4 5
t [ms]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
co

nt
 p

er
 E

2 
[-]

0 1 2 3 4 5
t [ms]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
co

nt
 p

er
 E

3B
P 

[-]

E1 (struc.)
E1 (unstruc.)

E3 (struc.)
E3 (unstruc.)

E2 (struc.)
E2 (unstruc.)

E3BP (struc.)
E3BP (unstruc.)

(C) Contacts with each enzyme type over time (10 µs saving).

Figure E.25: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1 with enhanced E2 – E2
arm interaction.
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Figure E.25: PDC self-assembly for a stoichiometry of
40 × E2 + 20 × E3BP + 30 × E1 + 10 × E3 at concentration of 1 mg mL−1 in 1 µm3

cubic box (1 µm edge) using simulation protocol SP-PDC-1 with enhanced E2 – E2
arm interaction.
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and C. Clementi. Machine Learning of Coarse-Grained Molecular Dynamics Force

Fields. ACS Cent. Sci., 5(5):755–767, 2019.

[131] L. Zhang, J. Han, H. Wang, R. Car, and W. E. DeePCG: Constructing Coarse-

Grained Models Via Deep Neural Networks. J. Chem. Phys., 149(3):034101, 2018.

[132] F. Müller-Plathe. Coarse-Graining in Polymer Simulation: From the Atomistic to

the Mesoscopic Scale and Back. Chem. Phys. Chem., 3(9):754–769, 2002.

[133] S. Takada. Coarse-Grained Molecular Simulations of Large Biomolecules. Curr.

Opin. Struct. Biol., 22(2):130–137, 2012.

[134] G. Torrie and J. Valleau. Nonphysical Sampling Distributions in Monte Carlo

Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys., 23(2):187–199,

1977.

[135] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Koll-

man. The Weighted Histogram Analysis Method for Free-Energy Calculations

on Biomolecules. I. the Method. J. Comput. Chem., 13(8):1011–1021, 1992.

[136] C. Bartels. Analyzing Biased Monte Carlo and Molecular Dynamics Simulations.

Chem. Phys. Lett., 331(5-6):446–454, 2000.



250 Bibliography

[137] R. W. Zwanzig. High-Temperature Equation of State by a Perturbation Method.

I. Nonpolar Gases. J. Chem. Phys., 22(8):1420–1426, 1954.

[138] H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten. Unfolding of Titin

Immunoglobulin Domains by Steered Molecular Dynamics Simulation. Biophys.

J., 75(2):662–671, 1998.

[139] C. Jarzynski. Equilibrium Free-Energy Differences from Nonequilibrium Measure-

ments: A Master-Equation Approach. Phys. Rev. E, 56(5):5018–5035, 1997.

[140] C. Jarzynski. Nonequilibrium Equality for Free Energy Differences. Phys. Rev.

Lett., 78(14):2690–2693, 1997.

[141] Y. Wang, W. G. Noid, P. Liu, and G. A. Voth. Effective Force Coarse-Graining.

Phys. Chem. Chem. Phys., 11(12):2002, 2009.

[142] E. Brini, V. Marcon, and N. F. A. van der Vegt. Conditional Reversible Work

Method for Molecular Coarse Graining Applications. Phys. Chem. Chem. Phys.,

13(22):10468, 2011.
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tano. SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins

with Aqueous Solvation and Long-Range Electrostatics. J. Chem. Theory Com-

put., 11(2):723–739, 2015.

[152] M. R. Machado and S. Pantano. SIRAH Tools: Mapping, Backmapping and

Visualization of Coarse-Grained Models. Bioinformatics, 32(10):1568–1570, 2016.

[153] A. Liwo, M. Baranowski, C. Czaplewski, E. Go laś, Y. He, D. Jagie la,
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G. Csányi. Gaussian Process Regression for Materials and Molecules. Chem. Rev.,

121(16):10073–10141, 2021.
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[336] C. López-Iglesias, J. Barros, I. Ardao, P. Gurikov, F. J. Monteiro, I. Smirnova,
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B. Bujoli, Z. Gan, and G. Hoatson. Modelling One- and Two-Dimensional Solid-

State NMR Spectra: Modelling 1D and 2D Solid-State NMR Spectra. Magn.

Reson. Chem., 40(1):70–76, 2002.
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[350] İ. Şahin, E. Uzunlar, and C. Erkey. Investigation of the Effect of Gel Properties

on Supercritical Drying Kinetics of Ionotropic Alginate Gel Particles. J. Supercrit.

Fluids, 152:104571, 2019.

[351] D. Lovskaya, A. Lebedev, and N. Menshutina. Aerogels as Drug Delivery Systems:

In Vitro and in Vivo Evaluations. J. Supercrit. Fluids, 106:115–121, 2015.

[352] M. Robitzer, A. Tourrette, R. Horga, R. Valentin, M. Boissière, J. Devoisselle,

F. Di Renzo, and F. Quignard. Nitrogen Sorption as a Tool for the Characterisation

of Polysaccharide Aerogels. Carbohydr. Polym., 85(1):44–53, 2011.

[353] T. Mehling, I. Smirnova, U. Guenther, and R. Neubert. Polysaccharide-Based

Aerogels as Drug Carriers. J. Non-Cryst. Solids, 355(50-51):2472–2479, 2009.

[354] B. T. Stokke, K. I. Draget, O. Smidsrød, Y. Yuguchi, H. Urakawa, and K. Kaji-

wara. Small-Angle X-Ray Scattering and Rheological Characterization of Alginate

Gels. 1. Ca-Alginate Gels. Macromolecules, 33(5):1853–1863, 2000.

[355] Y. Maki, K. Ito, N. Hosoya, C. Yoneyama, K. Furusawa, T. Yamamoto,

T. Dobashi, Y. Sugimoto, and K. Wakabayashi. Anisotropic Structure of Calcium-

Induced Alginate Gels by Optical and Small-Angle X-Ray Scattering Measure-

ments. Biomacromolecules, 12(6):2145–2152, 2011.

[356] M. Robitzer, L. David, C. Rochas, F. Di Renzo, and F. Quignard. Supercritically-

Dried Alginate Aerogels Retain the Fibrillar Structure of the Hydrogels. Macromol.

Symp., 273(1):80–84, 2008.

[357] Y. Yuguchi, H. Urakawa, K. Kajiwara, K. Draget, and B. Stokke. Small-Angle

X-Ray Scattering and Rheological Characterization of Alginate Gels. 2. Time-

Resolved Studies on Ionotropic Gels. J. Mol. Struct., 554(1):21–34, 2000.

[358] Z. Gu, L. Gu, R. Eils, M. Schlesner, and B. Brors. Circlize Implements and

Enhances Circular Visualization in R. Bioinformatics, 30(19):2811–2812, 2014.



Bibliography 269

[359] M. F. Hagan and D. Chandler. Dynamic Pathways for Viral Capsid Assembly.

Biophys. J., 91(1):42–54, 2006.

[360] B. Venkatakrishnan and A. Zlotnick. The Structural Biology of Hepatitis B Virus:

Form and Function. Annu. Rev. Virol., 3(1):429–451, 2016.

[361] R. Asor, C. J. Schlicksup, Z. Zhao, A. Zlotnick, and U. Raviv. Rapidly Forming

Early Intermediate Structures Dictate the Pathway of Capsid Assembly. J. Am.

Chem. Soc., 142(17):7868–7882, 2020.

[362] J. K. Hilmer, A. Zlotnick, and B. Bothner. Conformational Equilibria and Rates of

Localized Motion within Hepatitis B Virus Capsids. J. Mol. Biol., 375(2):581–594,

2008.

[363] K. A. Dryden, S. F. Wieland, C. Whitten-Bauer, J. L. Gerin, F. V. Chisari,

and M. Yeager. Native Hepatitis B Virions and Capsids Visualized by Electron

Cryomicroscopy. Mol. Cell, 22(6):843–850, 2006.

[364] A. M. Roseman, J. A. Berriman, S. A. Wynne, P. J. G. Butler, and R. A. Crowther.

A Structural Model for Maturation of the Hepatitis B Virus Core. Proc. Natl. Acad.

Sci. U.S.A., 102(44):15821, 2005.

[365] S. Seitz, S. Urban, C. Antoni, and B. Böttcher. Cryo-Electron Microscopy of
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