Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
State of the Art Software Development in the Automotive Industry and Analysis upon Applicability of Software Fault Prediction

Printausgabe
EUR 55,90

E-Book
EUR 39,13

State of the Art Software Development in the Automotive Industry and Analysis upon Applicability of Software Fault Prediction (Band 119)

Harald Altinger (Autor)

Vorschau

Inhaltsverzeichnis, PDF (53 KB)
Leseprobe, PDF (460 KB)

ISBN-13 (Printausgabe) 9783736995086
ISBN-13 (E-Book) 9783736985087
Sprache Englisch
Seitenanzahl 206
Umschlagkaschierung matt
Auflage 1. Aufl.
Buchreihe Audi Dissertationsreihe
Band 119
Erscheinungsort Göttingen
Promotionsort Graz
Erscheinungsdatum 28.03.2017
Allgemeine Einordnung Dissertation
Fachbereiche Informatik
Schlagwörter Automotive, Software development, Software fault prediction, Development tools
Beschreibung

In recent years the amount of software within automobiles has increased up to 100 Million LOC in modern day premium vehicles. Virtually all innovations in automotive engineering in the last decade include software components. Parallel to this increasing amount, testing becomes more vital. Automotive software development follows restrictive guidelines in terms of coding standard, language limitations and processes. Traditionally testing is a core part of automotive development, but the raising number of features increases the time and money required to perform all tests. Repeating them multiple times due to programming errors might jeopardises a cars introduction on the market. SFP is a new approach to forecast bugs already at time of commit, thus to guide test engineers upon defining testing hotspots. This work reports on the first successful application using model driven and code generated automotive software as a case study and a success prediction rate up to 97% upon a bug or fault free commit. A compiled and published dataset is presented along with analysis upon the used software metrics. Performance data achieved using different machine learning algorithms is given. An indepth analysis upon factors preventing CPFP is conducted. Further usage and practical application areas will conclude the work.