

Verification of Semidefinite Optimization
Problems with Application to Variational

Electronic Structure Calculation

Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg
zur Erlangung des akademischen Grades

Doktor-Ingenieur
genehmigte Dissertation

von

Denis Chaykin

aus
Krasnogorsk

2009

Bibliografische Information er Deutschen ibliothek

Die Deutsche ibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über

http://dnb.ddb.de abrufbar.

 Nonnenstieg 8, 37075 Göttingen

 Telefon: 0551-54724-0

 Telefax: 0551-54724-21

 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung

des Verlages ist es nicht gestattet, das Buch oder Teile

daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)

zu vervielfältigen.

Gedruckt auf säurefreiem Papier

1. Auflage, 200

� CUVILLIER VERLAG, Göttingen 2009

1. Aufl. - Göttingen : Cuvillier, 2009
Zugl.: (TU) Hamburg-Harburg, Univ., Diss., 2009

978-3-86955-066-4

978-3-86955-066-4

d Nationalb
Nationalb

9

1. Gutachter: Prof. Dr. Dr. h.c. Frerich J. Keil

2. Gutachter: PD Dr. Christian Jansson

Tag der mündlichen Prüfung: 19.06.2009

Acknowledgements

Naturally, my greatest appreciation goes to my advisors Christian Jansson and Frerich
Keil. Christian Jansson’s dedicated involvement has actually made this thesis possi-
ble. His knowledge, experience and insight are directly and indirectly reflected in this
work. He was always the first person to consult with and to get advise from whenever
I had to face any difficulties. I will be forever grateful for the given chance.

I want to thank Prof. Frerich Keil for the provided opportunity to continue my
research, for his inspiring supervision, patience and understanding. Without his en-
couragement, it would be difficult to bring this thesis to its successful completion.

To all my colleagues, both in the Institute for Reliable Computing and in the Insti-
tute of Chemical Reaction Engineering, thank you for your help, support and for just
making it a nice time.

Finally, on a more personal note, I would like to express my deepest gratitude and
appreciation to my family for their understanding and encouragement. Especially I
thank my wife Pei-Chi for many years of unconditional support and love. Without her
by my side, this thesis could never be brought out.

Abstract

In this thesis we develop ideas of rigorous verification in optimization. Semidefinite
programming (SDP) is reviewed as one of the fundamental types of convex optimiza-
tion with a variety of applications in control theory, quantum chemistry, combinatorial
optimization as well as many others. We show, how rigorous error bounds for the
optimal value can be computed by carefully postprocessing the output of a semidef-
inite programming solver. All the errors due to the floating point arithmetic or ill-
conditioning of the problems are considered. We also use interval arithmetic as a
powerful tool to model uncertainties in the input data.

In the context of this thesis a software package implementing the verification al-
gorithms was developed. We provide detailed explanations and show how efficient
routines can be designed to manage real life problems. Criteria for detecting infeasible
semidefinite programs and issuing certificates of infeasibility are formulated. Exam-
ples and results for benchmark problems are included.

Another important contribution is the verification of the electronic structure prob-
lems. There large semidefinite programs represent a reduced density matrix variational
method. Our algorithms allow the calculation of a rigorous lower bound for the ground
state energy. The obtained results and modified algorithms are also of importance
because they show how much we can benefit in terms of problem complexity from
exploiting the specific problem structure.

Contents

Contents vii

List of Tables ix

1 Introduction 1
1.1 Overview and motivation . 1
1.2 Outline . 4

2 Theory and algorithms 6
2.1 Semidefinite programming . 6
2.2 Notation . 10
2.3 Interval arithmetic . 10
2.4 Rigorous error bounds in semidefinite programming 13

2.4.1 Rigorous lower bound . 14
2.4.2 Rigorous upper bound . 19
2.4.3 Verification of ill-posed problems 23

2.5 Certificates of infeasibility . 24

3 Rigorous error bounds for RDM variational problems 27
3.1 Introduction . 27
3.2 Reduced density matrices . 29
3.3 N-representability . 31
3.4 Eigenvalue bounds of the problem structures 34

3.4.1 Maximal eigenvalues of 1-RDMs and 2-RDMs 35
3.4.2 Maximal eigenvalues of other matrices 38
3.4.3 Considerations . 40

3.5 SDP implementations . 43

vii

3.5.1 Rigorous error bounds for the RDM method in “dual” SDP
formulation . 45

3.5.2 Numerical results . 51
3.6 Discussion . 58

4 Rigorous error bounds with verifiedSDP 59
4.1 Implementation of algorithms computing rigorous results 60

4.1.1 Calculating a lower eigenvalue bound of an interval matrix . . 60
4.1.2 Solving linear systems rigorously 62
4.1.3 Checking SDP infeasibility 62

4.2 Numerical results for the SDPLIB 63

5 Conclusions 70

A Phase I methods in semidefinite programming 72
A.1 Dual feasibility . 72
A.2 Primal feasibility . 74

B verifiedSDP quick reference 77
B.1 Installation . 77
B.2 Examples of use . 79

B.2.1 Stand-alone executable binary 79
B.2.2 Using verifiedSDP library 79

Bibliography 81

Lebenslauf 89

List of Tables

3.1 Rigorous bounds for the electronic structure benchmark problems. . . 51
3.2 Accuracy of the rigorous bounds for the electronic structure problems. 53
3.3 Computational efforts for the electronic structure benchmark problems. 54
3.4 Ratios of maximal eigenvalues and upper bounds. 57

4.1 Approximate optimal values and rigorous bounds for the SDPLIB prob-
lems. 63

4.2 Accuracy and computational effort for the SDPLIB problems. 66

ix

Chapter 1

Introduction

1.1 Overview and motivation

A wide variety of problems in global optimization, combinatorial optimization, as
well as systems and control theory can be solved by using semidefinite program-
ming. Sometimes, due to the use of floating point arithmetic in combination with
ill-conditioning and degeneracy, erroneous results may be produced. The purpose of
this work is to show how rigorous error bounds for the optimal value can be com-
puted by carefully postprocessing the output of a semidefinite programming solver. It
turns out that in many cases the computational costs for postprocessing are small and
reasonable compared to the effort required by the solver.

Semidefinite programming together with linear programming and second order
cone programming is a special case of conic optimization. It is documented by many
applications and a number of survey papers (see, for example, Skelton and Iwasaki
[70], Balakrishnan and Feron [5], and Vandenberghe and Boyd [74]). In the context
of linear matrix inequalities (LMI) it is well known since more than 100 years. In
his work Concerning the constant rotational motion of rigid bodies in fluids (1890)
Lyapunov showed that the differential equation

d

dt
x(t) = Ax(t) (1.1)

is stable (i.e., all trajectories converge to zero) if and only if there exists a positive
definite matrix P such that

ATP + PA ≺ 0. (1.2)

The requirement P � 0, ATP+PA ≺ 0 is what we now call a Lyapunov inequality on
P , which is a special form of an LMI (Boyd et al. [8]). System and control theory is in

1

2 Chapter 1. Introduction

general a very wide and well studied application domain of semidefinite programming.
Thus Lyapunov ideas found their further development in works of Lur’e, Postnikov
and, later, Yakubovich (see e.g. [45], [77], [76]). More recent results can be found in
the works of Kamenetskii [38] and [39], and Pyatnitskii [62] published in the 1980’s
and early 1990’s.

Nevertheless, the use of LMIs in control is not limited to the Lyapunov stability
theory alone. Many interesting results have been achieved by using LMIs for pole
placement (Chilali, Gahinet and Apkarian [10]) and shaping stability regions for sys-
tems with saturation (Paré et al. [60], and Hindi and Boyd [28]). Different LMI based
observer design techniques for state or input estimation can be found among others in
Ha and Trinh [24], and Arcak and Kokotović [4]. A good overview of different aspects
of semidefinite programming in control can be found in the work of Parrilo and Lall
[61], and, of course in the book by Boyd, Ghaoui, Feron and Balakrishnan [8]. Finally,
the article by Henrion and Šebek [27] illustrates the use of LMIs for solving control
problems with polynomial methods.

Control theory is, without a doubt, one of the main applications of semidefinite
programming, but by far not the only one. Other important application fields include
global optimization problems, combinatorial optimization (see e.g. Jansson [34] or
Helmberg [26]), integer programming problems, process engineering (see e.g. Balakr-
ishnan et al. [6], Chmielewski et al. [11]), as well as eigenvalue problems in the form
of minimizing the largest, or minimizing the sum of the first few largest eigenvalues of
a symmetric matrix X subject to linear constraints on X . And, of course, we cannot
omit the use of semidefinite programming in quantum chemistry.

In Chapter 3 of this thesis we discuss the application of SDP methods to quantum
chemical problems in more details. There we use the reduced density matrix (RDM)
formulation of the electronic structure problem to determine a ground state energy of
a system of N electrons. The method is well known and its history can be traced back
to the works of Coleman [12] and Garrod and Percus [21]. In our work we follow
the approach described in the paper of Fukuda et al. [19] to get an SDP formulation
of the problem. With the help of rigorously bounding algorithms from Chapter 2 we
then can find an accurate and reliable lower bound for the ground state energy. The
RDM based electronic structure problem was chosen as an application example for
our verification algorithms not only because of its high practical importance, but also
because by producing large and not necessarily well-conditioned SDP problems, it
sends a real numerical challenge.

Semidefinite programs can be solved in polynomial time if an a priori bound for

1.1. Overview and motivation 3

the size of their solution is known (see Grötschel, Lovász, and Schrijver [23]). This is
a consequence of the ellipsoid method for convex programming. The ellipsoid method
has not proven practical, and interior point methods turned out to be the methods of
choice in semidefinite programming.

Conventionally, algorithms assume that the input data are given exactly, and they
use floating point arithmetic for computing an approximate solution. Occasionally,
wrong results may be produced, not solely but especially for ill-conditioned and ill-
posed problems in the sense defined by Renegar [64]. He defines the condition number
as the scale-invariant reciprocal of the smallest data perturbation that will render the
perturbed data instance either primal or dual infeasible. It is set to ∞ if the distance
to primal or dual infeasibility is 0, and in this case the problem is called ill-posed.
Examples where commercial solvers fail to solve linear optimization problems can
be found in Neumaier and Shcherbina [57] and in [33]. It cannot be answered how
frequently such failures occur. Ill-conditioning is, however, frequently observed. In
a paper by Ordóñez and Freund [58] it is stated that 71% of the LP instances in the
NETLIB Linear Programming Library [53] are ill-posed; i.e., the problems have an
infinite condition number. Recently, Freund, Ordóñez, and Toh [15] solved 85 out
of the 92 problems of the SDPLIB [7] with SDPT3 [73] and investigated the interior
point iteration counts with respect to different measures for semidefinite programming
problems. They omitted the four infeasible problems and three very large problems
where SDPT3 ran out of memory. Of the remaining 85 problems they have shown 32
to be ill-posed.

As pointed out in Neumaier and Shcherbina [57], ill-conditioning is also likely to
take place in combinatorial optimization when branch-and-cut procedures sequentially
generate linear or semidefinite programming relaxations. Therefore, the computation
of rigorous error bounds, which take account of all rounding errors and of small errors
in the input data, is valuable in practice.

The primary purpose of this thesis is to show that by properly postprocessing the
output of a semidefinite solver, rigorous error bounds for the optimal value can be
obtained. Moreover, existence of optimal solutions can be proved, or a certificate of
infeasibility can be given. The input data are allowed to vary within small intervals.
Our numerical experience with the SDPLIB demonstrates that, roughly speaking, rig-
orous lower and upper error bounds for the optimal value are computed even for ill-
conditioned and degenerate problems. The quality of the error bounds depends on
the quality of the computed approximations and the distances to dual and primal in-
feasibility. By comparing these bounds, one knows whether the computed results are
good.

4 Chapter 1. Introduction

Furthermore, we apply the developed algorithms to the electronic structure prob-
lem and thus calculate a rigorous lower bound of the ground state energy ofN-fermion
atomic-molecular systems. We also show how one can use specific problem informa-
tion to adapt the algorithms to improve their verification quality in terms of perfor-
mance and precision.

The structure of this thesis is detailed in the next section.

1.2 Outline

The thesis is organized as follows.

• Chapter 2 contains basics of semidefinite programming and interval arithmetic
which are followed by our verification methods. We introduce an algorithm for
computing a rigorous lower bound of the global minimum value, and present a
rigorous upper bound of the optimal value together with a certificate of existence
of optimal solutions. Later we show how these rigorous bounds can be used for
obtaining certificates of infeasibility. The content of Chapter 2 reflects, for the
most part, our results published in [37].

• Optimal value bounding algorithms are then applied to the electronic structure
problem in Chapter 3. For a N-electron system in RDM formulation different
available SDP representations are considered. We obtain eigenvalue bounds of
reduced density matrices and other problem structures present in SDP formu-
lations. Later we introduce two different approaches for calculating a rigorous
lower bound to the ground state energy of such electron systems and compare
them. Finally, numerical results for sample problems are presented.

• In Chapter 4 we describe verifiedSDP, a software package for rigorous verifi-
cation of semidefinite programming problems developed in the context of our
work. We explain some implementation details and specify functionality of
the software. The chapter also contains numerical results for problems of the
SDPLIB library.

• Chapter 5 concludes the thesis with a short summary.

• Methods of finding a starting feasible point or proving infeasibility of semidefi-
nite programming problems, known as phase I methods, are described in detail

1.2. Outline 5

in Appendix A. We elaborately discuss both primal and dual semidefinite pro-
grams and give examples. Special attention is payed to possible difficulties that
can arise when solving derived phase I problems.

• Finally, in Appendix B a short verifiedSDP instruction manual is given. There
we explain the package structure as well as introduce some parameters and meth-
ods that can be of interest to the potential users of the software. Some examples
are also presented.

Chapter 2

Theory and algorithms

In this chapter the ideas behind rigorous verification will be presented. For a start, we
give a detailed introduction into semidefinite programming. Notations and techniques
of interval arithmetic are provided later. This allows for a more general approach
to the rigorous verification (uncertainties in the input data can thus be involved in the
computation). The actual theorems and algorithms for rigorously bounding the optimal
value are presented in the subsequent sections. Finally, an important case of infeasible
problems is examined in detail.

2.1 Semidefinite programming

Let us first define a semidefinite program in its primal form

p∗ := min〈C,X〉 s.t. 〈Ai, X〉 = bi for i = 1, . . . , m,

X � 0,
(2.1)

where C ∈ Ss, Ai ∈ Ss and b ∈ Rm are given problem parameters, and X ∈ Ss is the
optimization variable. Here, S

s denotes the space of real symmetric matrices of order
s.

〈C,X〉 = trace (CTX) (2.2)

in its turn denotes the inner product over Ss. Moreover, � is the Löwner partial order,
that is X � Y iff X − Y is positive semidefinite.

The Lagrangian dual of (2.1) is

d∗ := max bT y s.t.
m∑

i=1

yiAi 	 C, (2.3)

6

2.1. Semidefinite programming 7

0

0.2

0.4

0.6

0.8

−1

−0.5

0

0.5

1
0

0.5

1

1.5

x1x2

x 3

(a)

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

1.5

2

−2

−1

0

1

x2

x1

x 3
(b)

Figure 2.1: Semidefinite cones for s = 2: X � 0 (left) and 0 	 X 	 I (right).

where y ∈ R
m. The constraints

∑m
i=1 yiAi 	 C are called linear matrix inequalities

(LMI). We use the convention that p∗ = −∞ if (2.1) is unbounded and p∗ = ∞ if (2.1)
is infeasible. The analogous convention is used for (2.3).

Since we have formulated semidefinite programming in its standard form, it is easy
to see, that the optimization domain is the intersection of the cone of positive semidef-
inite matrices with an affine space. The objective function is linear. The introduced
problem can thus be seen as a subclass of cone programming and also as a general-
ization of linear programming. Indeed, if we demand all symmetric matrices to be
diagonal, (2.1) will define a standard linear programming problem.

Example 2.1. To get basic ideas about the geometry of the problem, let us consider
the simplest case of s = 2 and a single equality constraint (m = 1) in Figures 2.1 and
2.2. The positive semidefiniteness condition

X =

(
x1 x2

x2 x3

)
� 0 (2.4)

is fulfilled for all the points in the interior and on the boundary of the cone in Fig-
ure 2.1a. The intersection of two semidefinite cones, shown in Figure 2.1b, is also a
typical configuration. We have this situation, for example, in Chapter 3, where the
condition on one-particle reduced density matrix is exactly 0 	 1RDM 	 I .
For the semidefinite optimization example in Figure 2.2 we use the following data:

C =

(
1 0

0 1

)
, A =

(
2 0.5

0.5 1

)
and b = 1. (2.5)

8 Chapter 2. Theory and algorithms

−1
0
1 −2−1.5−1−0.500.511.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x2
x1

x 3

〈 A, X 〉 = b

(a)

−1
−0.5

0
0.5

1
−2 −1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

x1
x2

x 3

〈 A, X 〉 = b

〈 C, X 〉 = p*

X
~

(b)

Figure 2.2: Intersection of the semidefinite cone from Figure 2.1a with the linear con-
straint plane (left) and the objective function plane passing through the optimal solu-
tion X̃ (right).

The solution of the obtained semidefinite optimization problem is

X̃ =

(
0.3867 0.1602

0.1602 0.0664

)
(2.6)

and the objective value p∗ = 〈C, X̃〉 = 0.4531. When trying to graphically solve the
problem, the idea is again similar to that in LP. We shift the plane 〈C,X〉 = const

downwards until we reach the edge of the feasibility region. In our example we have
to stop at const = 0.4531. X̃ is then the only intersection point of the cone X � 0,
the affine constraint 〈A,X〉 = b and the objective function plane 〈C,X〉 = 0.4531.

As a standard solution algorithm, interior point methods proved to be an approach
of choice. They have their roots in Karmarkar’s work [40], where he introduced an al-
gorithm to solve an LP with polynomial iteration complexity1. As applied to SDPs, the
idea found its development in the works of Nesterov and Nemirovski (see for example
[51] and [52]) and Alizadeh [2]. The concept, similarly to any other barrier function
method, would be to substitute the initial problem with an optimization problem (more
precisely a sequence of them) without the semidefiniteness constraint

p∗ := min〈C,X〉 + μφ(X) s.t. 〈Ai, X〉 = bi for i = 1, . . . , m, (2.7)
1However the development of the idea can be tracked back to the works of Frisch [16] on logarithmic

barrier functions and Huard [30] on the method of centers.

2.1. Semidefinite programming 9

where φ(X) is the barrier function and μ > 0 is the barrier parameter. Standard
barrier function would be a logarithmic function of the type

φ(X) = − ln detX = ln(detX)−1 if X � 0,

φ(X) = +∞ otherwise.
(2.8)

Later on by sequentially decreasing μ towards 0, we solve the initial problem.
The duality theory of semidefinite programming is a bit more subtle compared to

linear programming. The programs satisfy the weak duality condition

d∗ ≤ p∗, (2.9)

but strong duality requires in contrast to linear programming additional conditions
(see for example Nemirovski [50], Ramana, Tunçel, and Wolkowicz [63] and Vanden-
berghe and Boyd [74]).

Theorem 2.1 (Strong Duality Theorem).

a) If (2.1) is strictly feasible (i.e. there exists a feasible positive definite matrix X)
and p∗ is finite, then p∗ = d∗ and the dual supremum is attained.

b) If (2.3) is strictly feasible (i.e. there exists some y ∈ Rm such thatC−∑m
i=1 yiAi

is positive definite) and d∗ is finite, then p∗ = d∗, and the primal infimum is
attained.

In general, one of the problems (2.1) and (2.3) may have optimal solutions while its
dual is infeasible, or the duality gap may be positive at optimality. The strict feasibility
assumptions in Theorem 2.1 are called Slater’s constraint qualifications.

As a matter of convenience, in the rest of the thesis semidefinite programs will be
considered in more general block diagonal form reflecting the sparsity of the problem.
The primal problem (2.1) becomes then

p∗ := min
n∑

j=1

〈Cj, Xj〉 s.t.
n∑

j=1

〈Aij, Xj〉 = bi for i = 1, . . . , m,

Xj � 0 for j = 1, . . . , n,

(2.10)

where Cj ∈ Ssj , Aij ∈ Ssj and Xj ∈ Ssj . Finally, instead of the dual problem (2.3) we
now have

d∗ := max bT y s.t.
m∑

i=1

yiAij 	 Cj for j = 1, . . . , n. (2.11)

10 Chapter 2. Theory and algorithms

2.2 Notation

Throughout this thesis we use the following notation. R, R
n, R

n
+, and R

m×n denote the
sets of real numbers, real vectors, real nonnegative vectors, and real m × n matrices,
respectively. S

n, in its turn, stands for the set of real symmetric matrices. Comparisons
≤, absolute value | · |, min, max, inf and sup are used entrywise for vectors and
matrices. The identity matrix is denoted by I .

For a symmetric matrix A the eigenvalues are sorted non-increasingly, λmax(A) =

λ1(A) ≥ λ2(A) ≥ . . . ≥ λmin(A).
For μ ∈ R the operator

svec(A, μ) := (A11, μA21, . . . , μAn1, A22, μA32, . . . , μAn n−1, Ann)T , (2.12)

transforms symmetric n× n matrices into ((n+ 1)n/2)-dimensional vectors with the
property that the inner product of two symmetric matrices A,B is

〈A,B〉 = svec(A, 2)T svec(B, 1) = svec(A,
√

2)T svec(B,
√

2), (2.13)

and svec(A,
√

2) is the customary svec operator. We prefer the first representation of
the inner product, since this avoids conversion errors of the input data of semidefinite
programs in its vector representation form. The inverse operator of svec is denoted by
smat(a, μ), where a is the vector representation (2.12).

For block matrices with blocks Aj for j = 1, . . . , n we define the concatenated
vector

svec((Aj), μ) := (svec(A1, μ); . . . ; svec(An, μ)). (2.14)

A block diagonal matrix with blocks B1, . . . , Bn will be written as

Diag(B1, . . . , Bn). (2.15)

Other necessary notation concerning, for example, interval arithmetic, will be in-
troduced in the corresponding sections.

2.3 Interval arithmetic

Rigorous verification requires to consider rounding errors of the floating point arith-
metic. One needs tools to control machine rounding and to estimate error propagation.
Interval arithmetic provides us with such tools. Besides that, in real life applications

2.3. Interval arithmetic 11

many values or model parameters are measurement results. Since no devices possess
infinite precision, such values have to be considered with measurement errors. To cope
with this, we allow interval input in all problems discussed in the thesis.

We require only some elementary facts about interval calculations, which are de-
scribed here. There are a number of textbooks on interval arithmetic and self-validating
methods that can be highly recommended to readers. These include Alefeld and
Herzberger [1], Moore [49], and Neumaier [54], [55].

If V is one of the spaces R, Rn, Rm×n, and v, v ∈ V, then the box

v := [v, v] := {v ∈ V : v ≤ v ≤ v} (2.16)

is called an interval quantity in IV with lower bound v and upper bound v. In par-
ticular, IR, IR

n, and IR
m×n denote the set of real intervals a = [a, a], the set of real

interval vectors x = [x, x], and the set of real interval matrices A = [A,A], respec-
tively. The real operations A ◦ B with ◦ ∈ {+,−, ·, /} between real numbers, real
vectors and real matrices can be generalized to interval operations. The result A ◦ B

of an interval operation is defined as the interval hull of all possible real results, that is

A ◦ B := ∩{C ∈ IV : A ◦B ∈ C for all A ∈ A, B ∈ B}. (2.17)

All interval operations can be easily executed by working appropriately with the lower
and upper bounds of the interval quantities. In the simple cases of addition and sub-
traction, we obtain

A + B = [A +B,A+B],

A − B = [A−B,A− B].
(2.18)

Interval multiplications and divisions require a distinction of cases. Let a = [a, a] ∈
IR and b = [b, b] ∈ IR, then

a · b := [min{ab, ab, ab, ab},max{ab, ab, ab, ab}],
a/b := [a, a] ·

[
1

b
,
1

b

]
, assuming 0 /∈ b.

(2.19)

The rules of commutativity and associativity remain valid also for operations on
IR. The sub-distributivity rule

a(b + c) ⊆ ab + ac (2.20)

with c ∈ IR substitutes the distributivity from R. x = [0, 0] and y = [1, 1] are the
unique neutral elements with respect to addition and multiplication. A fundamental

12 Chapter 2. Theory and algorithms

property of interval arithmetic is inclusion monotonicity:

a ⊆ a′, b ⊆ b′ ⇒ a ◦ b ⊆ a′ ◦ b′, ◦ ∈ {+,−, ·, /}. (2.21)

This property follows directly from the set-theoretical definitions of the interval arith-
metic operations (2.17). Thus rational interval functions are inclusion monotonic, as
are natural interval extensions of all the standard functions used in computing. With
proper rounding procedures, rounded interval arithmetic operations are also inclusion
monotonic (Moore [49]).

Similarly all operations (2.17) between interval vectors and interval matrices can
be executed by replacing every real operation by the corresponding interval operation.
For example the i, j component of the product of two interval matrices C,X ∈ IR

n×n

is

(CX)ij :=
n∑

k=1

CikXkj, (2.22)

and the inner product

〈C,X〉 = trace (CTX) =

n∑
i,j=1

CijXij. (2.23)

For interval quantities A,B ∈ IV we define

midA := (A+ A)/2 as the midpoint, (2.24)

radA := (A−A)/2 as the radius, (2.25)

|A| := sup{|A| : A ∈ A} as the absolute value, (2.26)

A+ := max{0, A}, (2.27)

A− := min{0, A}. (2.28)

Moreover, the comparison in IV is defined by

A ≤ B iff A ≤ B,

and other relations are defined analogously. Real quantities v are embedded in the
interval quantities by identifying v = v = [v, v].

We call A ∈ IR
n×n symmetric, if Aij = Aji for all i, j, and A is called positive

semidefinite if all A ∈ A have this property.

2.4. Rigorous error bounds in semidefinite programming 13

For linear systems of equations with inexact input data, the aim frequently is to
compute an interval vector x ∈ IR

n containing the solution set

Σ(A,b) := {x ∈ R
n : Ax = b for some (A, b) ∈ (A,b)}, (2.29)

where A ∈ IR
n×n, and b ∈ IR

n. This is an NP-hard problem, but there are several
methods that compute enclosures x. A precise description of such methods, required
assumptions, and approximation properties can be found for example in Neumaier
[54]. Roughly speaking, it turns out that for interval matrices with ‖I − RA‖ < 1

(R is an approximate inverse of the midpoint midA) there are several methods which
compute an enclosure x with O(n3) operations. The radius radx decreases linearly
with decreasing radii radA and radb. For the computation of enclosures in the case of
large-scale linear systems the reader is referred to Rump [66].

In interval arithmetic several methods for computing rigorous bounds for all or
some eigenvalues of interval matrices were developed. Some important references are
Floudas [14], Mayer [46], Neumaier [56], and Rump [66, 67]. We will describe the
used algorithm for computing a lower eigenvalue bound of an interval matrix in detail
in Section 4.1.1.

2.4 Rigorous error bounds in semidefinite programming

In this thesis we show that by properly postprocessing the output of a semidefinite
solver, rigorous error bounds for the optimal value can be obtained. Moreover, exis-
tence of optimal solutions can be proved, or a certificate of infeasibility can be given.
The quality of the error bounds depends on the quality of the computed approximations
and the distances to dual and primal infeasibility. It is typical that either no finite rigor-
ous bounds or bounds being not close-by are computed if the solver gives bad approx-
imations. By comparing these bounds one knows whether the computed results are
good. Our numerical experience demonstrates that, roughly speaking, rigorous lower
and upper error bounds for the optimal value are computed even for ill-conditioned
and degenerate problems.

In the following sections we present theoretical results on optimal value bounding
as well as the corresponding algorithmic frameworks. The special case of ill-posed
problems is dealt with in section 2.4.3.

14 Chapter 2. Theory and algorithms

2.4.1 Rigorous lower bound

In many applications some or all input data are uncertain. We model these uncertain-
ties by intervals. In the case of semidefinite programming we assume that symmetric
interval matrices Cj ,Aij ∈ IR

sj×sj , i = 1, . . . , m, j = 1, . . . , n, and an interval vector
b ∈ IR

m are given. This yields a family of semidefinite programs (2.10), where the
input data P = (A, b, C) are allowed to vary within interval bounds P := (A,b,C).

In order to indicate the dependency on the input data, we sometimes write p∗(P),
d∗(P), X∗(P), etc.

First, we state a lemma proving a lower bound for the inner product of two sym-
metric matrices.

Lemma 2.1. Let D,X be symmetric matrices of dimension s that satisfy

d ≤ λmin(D), 0 ≤ λmin(X), and λmax(X) ≤ x. (2.30)

Then

〈D,X〉 ≥ s · d− · x, (2.31)

where d− := min{0, d}.

Proof. Let D have the eigenvalue decomposition

D = QΛ(D)QT , QQT = I,

where Λ(D) is the diagonal matrix with eigenvalues of D on the diagonal. Then

〈D,X〉 = trace(QΛ(D)QTX)

= trace(Λ(D)QTXQ)

=
s∑

k=1

λk(D)Q(:, k)TXQ(:, k).

Because of (2.30), we have 0 ≤ Q(:, k)TXQ(:, k) ≤ x yielding

〈D,X〉 ≥
s∑

k=1

λk(D)− · x ≥ s · d− · x.

We are now ready to prove a rigorous lower bound for the optimal value p∗.

2.4. Rigorous error bounds in semidefinite programming 15

Theorem 2.2. Let P define a family of semidefinite programs (2.10) with input data
P ∈ P, let ỹ ∈ Rm, set

Dj := Cj −
m∑

i=1

ỹiAij for j = 1, . . . , n, (2.32)

and suppose that

dj ≤ λmin(Dj) for j = 1, . . . , n. (2.33)

Assume further that upper bounds for the maximal eigenvalues of the primal feasible
solution of (2.10)

λmax(Xj) ≤ xj, for j = 1, . . . , n (2.34)

are known, where xj may be infinite. If

dj ≥ 0 for xj = +∞, (2.35)

then for every P ∈ P the inequality

p∗(P) ≥ inf{bT ỹ +
n∑

j=1

sj · d−j · xj} (2.36)

is satisfied, and the right hand side of (2.36) is finite2. Moreover, for every P ∈ P and
every j with dj ≥ 0 the LMI

m∑
i=1

yiAij − Cj 	 0

is feasible with y := ỹ.

Proof. Let P = (A, b, C) ∈ P be chosen fixed, and letXj = Xj(P) be primal feasible
for P and j = 1, . . . , n. Let

Dj = Cj −
n∑

i=1

ỹiAij for j = 1, . . . , n,

2Notice that b
T y is an interval operation yielding an interval for the expression in the braces in

(2.36). Hence, the infimum denotes the lower bound of this interval. This notation applies also for the
supremum and subsequently.

16 Chapter 2. Theory and algorithms

then
n∑

j=1

〈Cj, Xj〉 − bT ỹ =

n∑
j=1

〈Dj , Xj〉.

Since Dj ∈ Dj, Lemma 2.1 implies
n∑

j=1

〈Dj, Xj〉 ≥
n∑

j=1

sj · d−j · xj,

which proves the inequality (2.36), and the assumption (2.35) yields a finite right hand
side. The last statement is an immediate consequence of Dj ∈ Dj and λmin(Dj) ≥
dj ≥ 0.

Observe that ỹ is dual feasible provided dj ≥ 0 for j = 1, . . . , n. Hence in this
case, (2.36) yields the lower bound inf{bT ỹ} for the dual optimal value d∗(P) for
every P ∈ P.

In order to judge the quality of the lower bound (2.36), we assume that
i) exact input data P = P are given,

ii) D = D is computed exactly, and
iii) Slater’s constraint qualifications (see Theorem 2.1) are fulfilled.

Moreover, let ỹ be the optimal solution of the dual problem (2.11), and let dj =

λmin(D) for j = 1, . . . , n. Then dj ≥ 0 for j = 1, . . . , n, and

p∗(P) = d∗(P) = bT ỹ.

Hence, no overestimation occurs, and it follows that the quality of this lower bound
mainly depends on the quality of the dj and on the computed approximation ỹ.

An immediate consequence is the following error bound for linear programming
problems

p∗ := min cTx s.t. Ax = b, x ≥ 0, (2.37)

which is proved in [33], and in [67] for finite bounds xj. The input data areA ∈ Rm×n,
b ∈ Rm, c ∈ Rn and P = (A, b, c) ∈ Rm×n+m+n.

Corollary 2.1. Let P = (A,b, c) ∈ IR
m×n+m+n, ỹ ∈ Rm, and let

d := c − AT ỹ. (2.38)

Assume further that upper bounds of the primal feasible solutions

xj ≤ xj for j = 1, . . . , n

2.4. Rigorous error bounds in semidefinite programming 17

are known for all P ∈ P, which may also be infinite. If

dj ≥ 0 for xj = +∞, (2.39)

then for every P ∈ P the optimal value p∗(P) satisfies the inequality

p∗(P) ≥ inf{bT ỹ +
n∑

j=1

d−
j · xj}. (2.40)

Proof. Apply Theorem 2.2 to the semidefinite program where the symmetric matrices
Aij , Cj and Xj are one-dimensional.

Next, we describe an algorithm for computing a lower bound of the optimal value,
which is based on Theorem 2.2. We assume that an approximate dual optimal solution
ỹ ∈ Rm of the midpoint problem mid P is known. If condition (2.35) is fulfilled, the
only work is to compute the right hand side of (2.36). Otherwise, the idea is to perturb
all constraints which violate condition (2.35); that is, we solve a perturbed midpoint
problem P = (midA,midb, C(ε)) with

Cj(ε) = mid Cj − εjI, εj =

{
> 0 if dj < 0 and xj = +∞
0 otherwise.

(2.41)

Then the dual optimal solution y(ε) satisfies the constraints

midCj −
m∑

i=1

yi(ε) mid Aij � εjI.

Hence, the minimal eigenvalues of the new defect

Dj(ε) := Cj −
m∑

i=1

yi(ε)Aij

will increase. Choosing εj very large may imply dual infeasibility, choosing εj > 0

too small may not be sufficient for satisfying (2.35). Our current trade off is to solve
repeatedly perturbed programs until either condition (2.35) is satisfied, or the dual is
infeasible. The details are given in the following algorithm.

Algorithm 2.1. Rigorous lower bound

Given: real or interval input data P = (A,b, c),
upper bounds xj for j = 1, . . . , n,
approximate dual optimal solution ỹ for mid P,

18 Chapter 2. Theory and algorithms

p∗ := −∞,
ε, k are the n-dimensional zero vectors,
maximal numbers of iterations lmax,
l := 0.

While perturbed problem P (ε) is dual feasible and l ≤ lmax

1. ComputeDj = Cj −
m∑

i=1

ỹiAij, j = 1, . . . , n.

2. Compute rigorous lower bounds dj ≤ λmin(Dj), for j = 1, . . . , n.
3. If dj ≥ 0 for every j with xj = +∞ then compute

p∗ = inf{bT ỹ +
n∑

j=1

sj · d−j · xj},

stop.
4. Compute for j = 1, . . . , n

kj :=

⎧⎨
⎩kj + 1 if dj < 0 and xj = +∞
kj otherwise,

εj :=

⎧⎨
⎩−2kjdj + εj if dj < 0 and xj = +∞
εj otherwise.

5. Solve the perturbed midpoint problem P (ε) = (mid A,midb, C(ε)), where
Cj(ε) = mid Cj − εjI for j = 1, . . . , n, and set ỹ := ỹ(ε) (approximate dual
optimal solution).

6. l := l + 1.
end.

This algorithm requires interval arithmetic (or at least the monotonic rounding op-
erations) for computing the defect matrices D and the lower bounds dj , and a semidef-
inite solver for computing approximate solutions of the perturbed problems.

The algorithm terminates during the first iteration in step 3 if all simple bounds
xj are finite or all dj are nonnegative. In this case the computational costs are O(m ·∑n

j=1 s
2
j) for computing the Dj’s, the lower bounds dj requireO(

∑n
j=1 s

3
j) operations,

and the bound p∗ needs O(m+n) operations. Hence the costs are negligible compared
to the costs for approximately solving a semidefinite program.

In other cases, however, the computational costs may increase because perturbed
semidefinite programs must be solved until either the semidefinite programming solver

2.4. Rigorous error bounds in semidefinite programming 19

indicates dual infeasibility of the perturbed problem or the maximal number of itera-
tions lmax is reached.

Several modifications of this algorithm are possible and may yield improvements.
Here we have considered a simple choice of perturbations: In each step we add to εj

the negative defects −dj multiplied by a factor 2kj , where kj counts the number of
iterations that violated the inequality dj ≥ 0.

In applications we recommend to use infinite bounds xj instead of unreasonable
large bounds, because otherwise the sum in (2.36) may yield an unnecessary overesti-
mation.

If the upper bounds xj = +∞ for j = 1, . . . , n, and Algorithm 2.1 delivers a finite
lower bound p∗, then the lower eigenvalue bounds dj must be nonnegative. This proves
dual feasibility, and if dj is positive for j = 1, . . . , n strict dual feasibility is verified.

2.4.2 Rigorous upper bound

In this section we investigate the computation of a rigorous upper bound for the opti-
mal value of a semidefinite program together with a certificate of existence of primal
feasible solutions. The basic idea is to compute interval matrices Xj for j = 1, . . . , n

that contain for every semidefinite program P ∈ P a primal feasible solution. The
desirable characteristics of the matrices Xj are given in the next theorem.

Theorem 2.3. Let P define a family of semidefinite programs (2.10), and suppose that
there exist interval matricesXj for j = 1, . . . , n, such that

∀ b ∈ b, ∀Aij ∈ Aij, i = 1, . . . , m, j = 1, . . . , n

∃ symmetricXj ∈ Xj :
n∑

j=1

〈Aij, Xj〉 = bi,
(2.42)

and for j = 1, . . . , n

Xj � 0 for all symmetric Xj ∈ Xj. (2.43)

Then, the optimal value is bounded from above by

p∗(P) ≤ sup{
n∑

j=1

〈Cj,Xj〉} (2.44)

Moreover, if all symmetric Xj ∈ Xj are positive definite and p∗(P) is bounded from
below, then p∗(P) = d∗(P) for every P ∈ P (no duality gap), and the dual supremum
is attained.

20 Chapter 2. Theory and algorithms

Proof. Let P ∈ P be a fixed chosen problem. Then the conditions (2.42) and (2.43)
imply that there exists a primal feasible solutionXj = Xj(P) for j = 1, . . . , n. Hence,∑n

j=1〈Cj, Xj〉 ≥ p∗(P), and the inclusion property (2.17) yields (2.44). If allXj ∈ Xj

are positive definite, then (2.42) and (2.43) imply the existence of strictly primal feasi-
ble solutions, and hence Theorem 2.1 shows that the dual optimal solution is attained
and strong duality holds valid.

By weak duality the upper bound in (2.44) is also an upper bound of the dual
optimal value. Moreover, if all Xj ∈ Xj are positive definite, then the Strong Duality
Theorem 2.1 implies that the right hand side of (2.36) is also a lower bound of the dual
optimal value for all P ∈ P. Hence, in this case it is not necessary to assume dj ≥ 0

for j = 1, . . . , n.
In the following, we describe an algorithm for computing this rigorous upper

bound. This algorithm must find appropriate interval matrices Xj , and verify the con-
ditions (2.42) and (2.43). We discuss these items below.

To make sure that the upper bound (2.44) is close to the optimal value, the interval
matrices Xj must be close to optimality. In general the complementary slackness
relations yield rank-deficient matrices that are not positive definite. Therefore, we
solve the slightly perturbed midpoint problem

min
n∑

j=1

〈Cj, Xj〉 s.t.
n∑

j=1

〈Aij, Xj〉 = bi for i = 1, . . . , m,

Xj � εj · I, for j = 1, . . . , n,

(2.45)

where εj is positive and the input data (A, b, c) = mid P. Then for small εj the optimal
solution (Xj(εj)) is positive definite and close to the optimal solution of the midpoint
problem.

In the following we show how we can construct an appropriate interval matrix (Xj)

by using an approximate optimal solution (Xj(εj)) of (2.45).
The semidefinite program (2.10) can be written in the equivalent vector represen-

tation form

min cTx s.t. Amatx = b, Xj � 0, for j = 1, . . . , n, (2.46)

where

c := svec((Cj), 2), (2.47)

x := svec((Xj), 1), (2.48)

2.4. Rigorous error bounds in semidefinite programming 21

and the i-th row of the m× ∑n
j=1

sj(sj+1)

2
matrix Amat is defined by

Amat(i, :) = svec((Aij)
n
j=1, 2). (2.49)

If interval input data P are given, then we denote by Amat, b, and c the corresponding
interval quantities. Thus condition (2.42) is equivalent to

∀ b ∈ b, ∀Amat ∈ Amat ∃x ∈ x such that Amatx = b, (2.50)

which is an underdetermined system of linear equations with interval input data. Given
an approximate optimal solution (Xj(εj))

n
j=1, it is straight forward to solve such a

system.
We start by assuming that the m × m submatrix mid Amat

I with the m columns
mid Amat(:, βi) is nonsingular, where the index set I := {β1, . . . , βm}. Let N denote
all indices of columns of midAmat which are not in I , let Amat

N be the matrix with
columns corresponding to the indices ofN , and let x̃ = svec((Xj(εj)), 1). In our algo-
rithm we choose the index set I by performing an LU-decomposition on (mid Amat)T

and assembling the computed pivot columns to Amat
I . Now we fix the variables x̃N ,

and compute with some verification method for interval linear systems an enclosure
xI of the solution set

ΣI := {xI ∈ R
m : Amat

I xI = b−
∑
γ∈N

Amat
N x̃N , A ∈ Amat, b ∈ b}. (2.51)

Then x := (xI ; x̃N) fulfills (2.50), and therefore (Xj) := smat(x, 1) satisfies condition
(2.42). Condition (2.43) must be verified by some method for computing a rigorous
lower bound for the smallest eigenvalue of a symmetric interval matrix.

The following algorithm contains the details for computing a rigorous upper bound
for the optimal value and for proving existence of primal feasible solutions. The algo-
rithm needs verified solvers for interval linear systems and eigenvalue problems, and a
semidefinite solver for computing approximations of the perturbed problems.

Algorithm 2.2. Rigorous upper bound, certificate of feasibility

Given: real or interval input data P = (A,b, c),
approximate primal optimal solution (X̃j)

n
j=1 of the midpoint problem,

p∗ := ∞,
ε, k are the n-dimensional zero vectors,
maximal number of iterations lmax,
l := 0.

22 Chapter 2. Theory and algorithms

Choose an index set I such that the submatrixmid Amat
I is (at least numerically) non-

singular (for example, by performing an LU-decomposition on (midAmat)T).

If there is no nonsingular submatrix then stop.

While perturbed problem P (ε) is primal feasible and l ≤ lmax

1. Compute an enclosure xI of the solution set ΣI , and set x := (xI ; x̃N).
2. Set (Xj) = smat(x, 1), and compute rigorous bounds

λj ≤ λmin(Xj) for j = 1, . . . , n.

3. If λj ≥ 0 for j = 1, . . . , n then compute

p∗ = sup{cTx},
stop.

4. Compute for j = 1, . . . , n

kj :=

⎧⎨
⎩kj + 1 if λj < 0

kj otherwise,

εj :=

⎧⎨
⎩−2kjλj + εj if λj < 0

εj otherwise.

5. Solve the perturbed problem (2.45), set X̃j := X̃j(ε) for j = 1, . . . , n (approxi-
mate primal optimal solution), and set x̃ := svec((X̃j), 1).

6. l := l + 1.
end.

If Algorithm 2.2 delivers a finite upper bound p∗, then the lower eigenvalue bounds
λj must be nonnegative. If λj > 0 for j = 1, ..., n, then strict primal feasibility is
verified.

Krawzcyk [44] was the first who solved non degenerate interval linear program-
ming problems by using the technique of fixing appropriate variables (the nonbasic
variables) and solving a remaining quadratic interval linear system for the basic vari-
ables. In [32] this technique was used to compute enclosures of all optimal vertices in
the case of degeneration. Hansen [25] used this technique in order to prove existence
of a feasible point for nonlinear equations within a bounded box. It was further mod-
ified and investigated numerically by Kearfott [42], and is also described in his book
[41].

2.4. Rigorous error bounds in semidefinite programming 23

2.4.3 Verification of ill-posed problems

Ill-conditioned and ill-posed problems constitute a group of the most challenging tasks
for any semidefinite solver. Thus it is all the more important to get verified error bounds
for them. However, the bounding algorithms 2.1 and 2.2 given in the previous sections
cannot be applied to the ill-posed cases. There perturbations of the initial problem,
that underlie the iterations, might lead to infeasibility. In this section we will briefly
introduce results found in Jansson [35] and [36]. The presented methods will also
serve as a foundation for future modifications in the subsequent chapters.

It is useful to begin with the introduction of new boundedness qualifications, the
so called primal boundedness qualification (PBQ) and dual boundedness qualification
(DBQ). They are more appropriate for the ill-posed case than the Slater’s constraint
qualifications 2.1.

PBQ:

(i) Either the primal problem is infeasible,

(ii) or p̃∗ is finite, and there is a nonnegative number x such that for every ε > 0 there
exists a primal feasible solution X(ε) ≤ x · I and 〈C,X(ε)〉 − p̃∗ ≤ ε.

DBQ:

(i) Either the dual problem is infeasible,

(ii) or d̃∗ is finite, and there is a simple bound y such that for every ε > 0 there exists
a dual feasible solution y(ε) satisfying |y(ε)| ≤ y and d̃∗ − bT y(ε) ≤ ε.

Both conditions are rather weak compared to Slater’s qualifications. Even the ex-
istence of optimal solutions is not demanded, and only simple bounds for ε-optimal
solutions are required. Now we are ready to present the bounding theorems applicable
also to ill-posed semidefinite programs.

Theorem 2.4. Assume that PBQ holds, and let ỹ ∈ Rm. Let also

D = C −
m∑

i=1

ỹiAi. (2.52)

Suppose further that d = λmin(D), and that D has at most l negative eigenvalues.
Then

p∗ ≥ bT ỹ + l · d− · x =: p. (2.53)

24 Chapter 2. Theory and algorithms

Moreover, if d− = 0 then ỹ is dual feasible and d∗ ≥ p = bT ỹ, and if ỹ is optimal, then
d∗ = p .

Here we used again the notation d− := min{0, d} and x is a PBQ bound. The follow-
ing theorem provides a finite upper bound d of the dual optimal value.

Theorem 2.5. Assume that DBQ is fulfilled. Let X̃ ∈ Ss, X̃ � 0. Suppose further
that

|〈Ai.X̃〉 − bi| ≤ ri for i = 1, . . . , m. (2.54)

Then

d∗ ≤ 〈C, X̃〉 + yT r =: d. (2.55)

If r = 0 then X̃ is primal feasible and p∗ ≤ d = 〈C, X̃〉, and if moreover X̃ is optimal,
then p∗ = d .

Should the computed approximation X̃ not be positive semidefinite, we could, for
example, determine a shifted matrix with all eigenvalues above zero. Then we would
use it instead of X̃ in (2.54) and (2.55). Another possibility would be to measure the
deviation from positive semidefiniteness and include it directly in (2.55). For further
details and proofs the reader is kindly referred to Jansson [35] and [36].

2.5 Certificates of infeasibility

In branch and bound algorithms a subproblem is discarded if the local nonlinear solver
detects infeasibility. It is not a rare phenomenon that sometimes local solvers do not
find feasible solutions of a subproblem, although they exist (see for example the com-
ments for use of SDPT3 [73]). A consequence is that the global minimum solutions
may be cut off.

To avoid this disadvantage we can apply the algorithms for computing rigorous
bounds described in the previous sections to a phase I problem in order to verify in-
feasibility for primal and dual semidefinite problems. In the literature there are several
variations of the phase I method. It is common, however, that the auxiliary objective
function describes the infeasibility in the sense that the problem has no feasible solu-
tions, provided the optimal value has specific sign. The latter property can be verified
by the algorithms of the previous sections. A reference implementation of the phase I
methods for primal and dual semidefinite programs can be found in Appendix A.

2.5. Certificates of infeasibility 25

Another approach is based on certificates of infeasibility. For linear programs with
bounded variables rigorous certificates of infeasibility are described in Neumaier and
Shcherbina [57]. For infeasible semidefinite problems often (but not every time) cer-
tificates of infeasibility exposed by improving rays can also be obtained (see the dis-
cussion in Todd [72])

The primal problem (2.10) has a primal improving ray if there exists a block-
diagonal matrix (Xj) such that for all i = 1, . . . , m and j = 1, . . . , n

Xj � 0,

n∑
j=1

〈Aij , Xj〉 = 0, and
n∑

j=1

〈Cj, Xj〉 < 0. (2.56)

It is well-known and straightforward to show that the existence of a primal improving
ray implies dual infeasibility. If interval input data P are given, and for the midpoint
problem of P an approximate primal improving ray is known, then we can try to verify
dual infeasibility for all problems with P ∈ P by using a similar approach as in the
previous section. We assume that the semidefinite solver has computed an approximate
primal improving ray (X̃j) for the midpoint problem. Let β ≈ ∑n

j=1〈midCj, X̃j〉
be approximately calculated and assume that β < 0. Notice that for positive β the
conditions (2.56) are in general not satisfied. Now, analogously to the previous section,
we can compute enclosures (Xj) such that for every Aij ∈ Aij and for every Cj ∈ Cj

there exist solutions Xj ∈ Xj of the underdetermined linear system
n∑

j=1

〈Aij, Xj〉 = 0 for i = 1, . . . , m,
n∑

j=1

〈Cj , Xj〉 = β. (2.57)

If an enclosure (Xj) is computed, and if all minimal eigenvalues λmin(Xj) are non-
negative, then, because β < 0, it follows that for every P ∈ P there exists Xj ∈ Xj

for j = 1, . . . , n such that (2.56) is satisfied. Therefore, all problems with P ∈ P are
dual infeasible, and the block-matrices (Xj) contain the primal improving rays.

The dual problem (2.11) has a dual improving ray if there is a vector y ∈ Rm such
that

m∑
i=1

yiAij 	 0 for j = 1, . . . , n, and bT y > 0. (2.58)

The existence of a dual improving ray implies primal infeasibility. If interval input
data P are given and for some problem P ∈ P an approximate dual improving ray ỹ
is known, then we can try to verify primal infeasibility for all problems with P ∈ P as
follows: First we compute by using interval arithmetic upper bounds of the maximal

26 Chapter 2. Theory and algorithms

eigenvalues of
∑m

i=1 ỹiAij for j = 1, . . . , n. If these upper bounds are nonpositive
and if bT ỹ > 0, then ỹ is a dual improving ray for all P ∈ P. Hence, ỹ is a rigorous
certificate of primal infeasibility for all P ∈ P.

Chapter 3

Rigorous error bounds for RDM
variational problems

In this chapter, the previously developed approaches for bounding optimal values of
a semidefinite program will be applied to the electronic structure problem in the re-
duced density matrix (RDM) formulation. Verification algorithms adapted to utilize
the specific problem structure will be proposed for computing a rigorous lower bound
of the ground state energy. Different benchmark problems involving small molecules
and ions will be rigorously solved.

3.1 Introduction

The problem of determining a ground state energy of a system of N electrons, known
as the electronic structure problem, is one of the central challenges in quantum chem-
istry. A standard approach to cope with this task would be applying a variational
principle. One tries to minimize the functional E[Ψ] = 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 to obtain an
upper bound to the true ground state energy E0. Here Ĥ is the Hamiltonian of the
studied system, and Ψ is a normalizable trial wave function. Then the principle says
that E[Ψ] ≥ E0 and the equality is attained if and only if Ψ is equal to the ground state
wave function.

The RDM method allows to solve this problem without using wave functions which
contain much more information than it’s actually needed for the ground state calcu-
lation (see for example Coleman [12], Garrod and Percus [21]). One-electron and
two-electron density matrices are used as trial functions instead.

The difficulty with RDMs is to assure that they describe some N-fermion system

27

28 Chapter 3. Rigorous error bounds for RDM variational problems

(N-representability problem). An illustrative example showing the necessity of extra
requirements together with the introduction of standard P , Q and G conditions can be
found in [21]. Without imposing them, the minimization result appears deep below the
exact value. The accuracy of the RDM method depends on how well we can restrict the
trial density matrices to be N-representable. To approach the problem, either new N-
representability conditions can be introduced (six-index matrices T1 and T2 in [79]),
or higher order RDMs can be added to the model (see Mazziotti [47]). Unfortunately,
the full set of sufficient conditions is not known.

Due to their nature, RDM problems can easily be represented as semidefinite pro-
grams. The Zhengji Zhao’s dissertation [78] contains a detailed analysis of different
possibilities to formulate such SDPs. A collection of benchmark problems in “dual”
SDP formulation, used also by Zhao et al. in [79] can be found at [18]. The set
contains data in SDPA [17] format for different molecules and ions with the biggest
electron number N = 16 and basis sizes of 12, 14, 16 and 20 functions.

It is important to understand, that RDM problems are ill-posed due to the modeling.
The antisymmetricity of two-electron density matrices assumes solutions only at the
boundary of the semidefinite cone where Slater’s constraint qualifications do not hold.
Luckily, the corresponding SDP problems do not possess this property. Due to the
redundancy elimination in “compacted” matrices, zero eigenvalues are no more an
integral property of the solution. The conditions of the strong duality theorem 2.1 are
thus fulfilled and the optimum is attained.

By solving an RDM problem, we get, in contrast to the wave function variation, a
lower bound of the ground state energy1. The immediate cause of this is the unknown
full N-representability condition. The variational minimization problem becomes re-
laxed and the optimum lies below the full configuration interaction (full CI) value. An-
other relaxation is hidden in the “dual” SDP formulation. The price for the relatively
small problem size there is the necessity to replace all equality constraints by relaxed
inequalities. The corresponding feasibility gap amounts to 2 · 10−7 in the sample prob-
lems. Nevertheless, an approximate RDM solution cannot be taken as a ground state
energy lower bound. As we show in due course, in many cases the obtained approxi-
mation is greater than the known full CI value. This happens if a semidefinite solver
fails to find a good solution and the duality gap remains relatively big.

In this chapter we present a time efficient algorithm for calculating a rigorous lower
1It is necessary to note, that all the obtained values are valid within a fixed basis. Should we increase

or change the one-particle basis set, the correspondences will remain, but the numerical values might
change.

3.2. Reduced density matrices 29

bound of the ground state energy. The obtained bound is accurate independent of the
initial approximation quality (though a better approximation delivers a tighter bound).
All rounding errors due to floating point arithmetic are rigorously estimated. Interval
input data are also possible. Of course, an upper bound of the SDP optimal value can
also be computed. However because of the relaxations described above, it cannot be
taken as an upper bound of the ground state energy. To obtain one, a wave function (or
a full density matrix) variational method like Hartree-Fock or similar should be used.

3.2 Reduced density matrices

For a system of N particles in a state with wave function Ψ = Ψ(x1,x2, . . . ,xN), the
corresponding p-body reduced density matrix (RDM) is defined as

Γp(x1,x2, . . . ,xp;x
′
1,x

′
2, . . . ,x

′
p) = Cp

N

∫
Ψ(x1,x2, . . . ,xp,xp+1, . . . ,xN)

× Ψ∗(x′
1,x

′
2, . . . ,x

′
p,xp+1, . . . ,xN)dxp+1 · · ·xN , (3.1)

where Cp
N = N !/(N − p)!p! is a binomial coefficient and xi denotes full (spatial and

spin) coordinate of the ith particle. For our work, of particular interest are the one-
particle RDM (1-RDM)

γ(x1,x
′
1) = N

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x′

1,x2, . . . ,xN)dx2 · · ·xN , (3.2)

and the two-particle RDM (2-RDM)

Γ̌(x1,x2;x
′
1,x

′
2) =

N(N − 1)

2

∫
Ψ(x1,x2,x3, . . . ,xN)Ψ∗(x′

1,x
′
2,x3, . . . ,xN)dx3 · · ·xN .

(3.3)

We will, however, use the 2-RDM normalized by trace(Γ) = N(N − 1) as was done,
for example, in [21]

Γ(x1,x2;x
′
1,x

′
2) = N(N−1)

∫
Ψ(x1,x2,x3, . . . ,xN)Ψ∗(x′

1,x
′
2,x3, . . . ,xN)dx3 · · ·xN .

(3.4)

The factor 1
2
, eliminating symmetric interactions, can be then embedded in the Hamil-

tonian.
The exact wave function of an N-electron system can be written as a linear com-

bination of all possible N-electron Slater determinants formed from a complete set of

30 Chapter 3. Rigorous error bounds for RDM variational problems

spin orbitals [71]. These single electron wave functions, in there turn, can be repre-
sented in a discrete orthonormal finite basis {ψi} of size r. The following expansion
of our N-electron wave function Ψ is then valid:

Ψ(x1, . . . ,xN) =
∑

i1,...,iN

ci1,...,iNψi1(x1) · · ·ψiN (xN), (3.5)

where ij are independent indices taking values from 1 to r. Therefore, we can also
switch to discrete representations of 1-RDM and 2-RDM in the orthonormal basis
{ψi}, denoted by γ(i, i′) and Γ(i, j; i′, j′) respectively. In case of γ(i, i′), for example,
we obtain

γ(i, i′) =

∫
ψ∗

i (x1)γ(x1,x
′
1)ψi′(x

′
1)dx1dx

′
1, (3.6)

so that

γ(x1,x
′
1) =

∑
i,i′

ψi(x1)γ(i, i
′)ψ∗

i′(x
′
1). (3.7)

In what follows, we keep to the assumption, that all entries of 1-RDM and 2-RDM
are real. As described in [79], this is possible for the problem considered. Hence, both
generally Hermitian γ and Γ are symmetric matrices. Furthermore, antisymmetry of
the original N-electron wave function Ψ requires that Γ change its sign on interchange
of unprimed or primed indices, thus

Γ(i, j; i′, j′) = −Γ(j, i; i′, j′) = −Γ(i, j; j′, i′). (3.8)

As mentioned before, the purpose of introducing reduced density matrices is to use
them as variables in Rayleigh-Ritz minimization to find the ground state energy of an
N-electron system. Originally, for a system with Hamiltonian Ĥ in the state Ψ we
have

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ E0, (3.9)

where E0 is the true ground-state energy. Full minimization of the functional E[Ψ]

with respect to all allowed N-electron wave functions will give the true ground state
Ψ0 and energy E[Ψ0] = E0:

E0 = min
Ψ
E[Ψ]. (3.10)

3.3. N-representability 31

Reformulating the minimization problem (3.10) in terms of the discrete full density
matrix ΓN yields

E0 = min
ΓN

E[ΓN] = min
ΓN

〈H,ΓN〉, (3.11)

where H is matrix representation of the Hamiltonian Ĥ, and

〈H,ΓN〉 = trace(HT ΓN) (3.12)

denotes the usual inner product on the linear space of symmetric matrices.
Considering the fact, that the Hamiltonian of a N-electron system involves one-

body and two-body interaction terms only, we can write

〈H,ΓN〉 = 〈H1, γ〉 + 〈H2,Γ〉, (3.13)

where H1 and H2 are the one-body and two-body parts of the Hamiltonian. There
is, however, a big obstacle to implementing this idea. Trial matrices γ and Γ must
correspond to some antisymmetric Ψ, that is, for any guessed (γ,Γ) there must be
a Ψ from which they come via (3.2) and (3.4). This is the reduced density matrices
N-representability problem. Running minimization without imposing these extra con-
ditions can give results far below the ground-state energy that are also in contradiction
with the physics of the problem [21]. Unfortunately, completeN-representability con-
dition is known only for γ, and for Γ a full set of constructive necessary and sufficient
conditions is not available. Thus RDM method can give us only a lower bound for the
ground-state energy, and the quality of this bound depends on how good the family of
used conditions represents the initial electronic structure problem.

3.3 N -representability

The first restriction on γ and Γ resulting directly from their definitions (3.2) and (3.4)
is the dependency∑

j

Γ(i, j; i′, j) = (N − 1)γ(i, i′). (3.14)

Hence γ is a scaled partial trace of Γ and can thus be eliminated entirely from the
problem. We will however follow the approach used for example by Fukuda in [19]
and retain it. The trace condition (3.14) will then be used as a set of linear constraints
on the pair (γ,Γ).

32 Chapter 3. Rigorous error bounds for RDM variational problems

The corresponding trace conditions on γ and Γ themselves are

∑
i

γ(i, i) = N (3.15)

and

∑
i,j

Γ(i, j; i, j) = N(N − 1). (3.16)

In case of the 1-RDM γ, the remaining necessary and sufficient N-representability
conditions were defined in [12]:

γ � 0, I − γ � 0 (3.17)

with I being the identity matrix.

As already mentioned before, the complete set of N-representability conditions
for Γ is not known. In this work we will utilize the P , G, Q, T1 and T2 conditions as
found in [19]. Namely the positive semidefiniteness relations

P � 0, G � 0, Q � 0, T1 � 0, T2 � 0, (3.18)

where the matrices P , G, Q, T1 and T2 are defined by linear combinations of the
entries of γ and Γ.

P ≡ Γ. (3.19)

G(i, j; i′, j′) ≡ Γ(i, j′; j, i′) + δ(i, i′)γ(j′, j). (3.20)

Q(i, j; i′, j′) ≡Γ(i, j; i′, j′) − δ(i, i′)γ(j, j′) − δ(j, j′)γ(i, i′)

+ δ(i, j′)γ(j, i′) + δ(j, i′)γ(i, j′)

+ δ(i, i′)δ(j, j′) − δ(i, j′)δ(j, i′).

(3.21)

3.3. N-representability 33

T1(i, j, k; i′, j′, k′) ≡δ(i, i′)Γ(k′, j′; k, j) − δ(i, j′)Γ(k′, i′; k, j)

+ δ(i, k′)Γ(j′, i′; k, j) − δ(j, i′)Γ(k′, j′; k, i)

+ δ(j, j′)Γ(k′, i′; k, i) − δ(j, k′)Γ(j′, i′; k, i)

+ δ(k, i′)Γ(k′, j′; j, i) − δ(k, j′)Γ(k′, i′; j, i)

+ δ(k, k′)Γ(j′, i′; j, i)

+ (δ(j, k′)δ(k, j′) − δ(j, j′)δ(k, k′))γ(i′, i)

+ (δ(i, j′)δ(k, k′) − δ(i, k′)δ(k, j′))γ(i′, j)

+ (δ(i, k′)δ(j, j′) − δ(i, j′)δ(j, k′))γ(i′, k)

+ (δ(j, i′)δ(k, k′) − δ(j, k′)δ(k, i′))γ(j′, i)

+ (δ(i, k′)δ(k, i′) − δ(i, i′)δ(k, k′))γ(j′, j)

+ (δ(i, i′)δ(j, k′) − δ(i, k′)δ(j, i′))γ(j′, k)

+ (δ(j, j′)δ(k, i′) − δ(j, i′)δ(k, j′))γ(k′, i)

+ (δ(i, i′)δ(k, j′) − δ(i, j′)δ(k, i′))γ(k′, j)

+ (δ(i, j′)δ(j, i′) − δ(i, i′)δ(j, j′))γ(k′, k)

+ δ(i, i′)δ(j, j′)δ(k, k′) − δ(i, j′)δ(j, i′)δ(k, k′)

− δ(i, i′)δ(j, k′)δ(k, j′) + δ(i, j′)δ(j, k′)δ(k, i′)

+ δ(i, k′)δ(j, i′)δ(k, j′) − δ(i, k′)δ(j, j′)δ(k, i′).

(3.22)

T2(i, j, k; i′, j′, k′) ≡δ(i, i′)Γ(j′, k′; j, k) − δ(j, j′)Γ(k′, i; k, i′)

− δ(k, k′)Γ(j′, i; j, i′) − δ(j, k′)Γ(j′, i; k, i′)

+ δ(k, j′)Γ(k′, i; j, i′)

+ δ(k, k′)δ(j, j′)γ(i, i′) − δ(j, k′)δ(k, j′)γ(i, i′).

(3.23)

In the above definitions all indices range over 1, . . . , r and δ is the Kronecker delta.
Another class of conditions comes from the spin symmetry of the N-electron sys-

tem [19]. Exploiting these properties will let us introduce block diagonal structures
into the above presented matrices. To do that, we first have to arrange our basis func-
tions ψi, i = 1, . . . , r. Each of them will be a product of a spatial orbital and one of two
spin states. Each index i stands therefore for a pair of indices ni and σi. The spatial
orbital index ni can then take values 1, 2, . . . , r/2 while the spin states σi can be either
+1/2 (α spin) or −1/2 (β spin).

Hence, we obtain

γ(niσi, ni′σi′) = 0 for σi �= σi′ , (3.24)

34 Chapter 3. Rigorous error bounds for RDM variational problems

Γ(niσi, njσj ;ni′σi′ , nj′σj′) = 0 for σi + σj �= σi′ + σj′, (3.25)

G(niσi, njσj ;ni′σi′ , nj′σj′) = 0 for σi + σj′ �= σj + σi′ , (3.26)

Q(niσi, njσj ;ni′σi′ , nj′σj′) = 0 for σi + σj �= σi′ + σj′ , (3.27)

T1(niσi, njσj , nkσk;ni′σi′ , nj′σj′, nk′σk′) = 0

for σi + σj + σk �= σi′ + σj′ + σk′, (3.28)

T2(niσi, njσj , nkσk;ni′σi′ , nj′σj′, nk′σk′) = 0

for σi + σj′ + σk′ �= σj + σk + σi′ . (3.29)

Trace constraints corresponding to the number of electrons with α spin (Nα):
r/2∑

ni=1

γ(niα, niα) = Nα, (3.30)

r/2∑
ni,nj=1

Γ(niα, njα;niα, njα) = Nα(Nα − 1). (3.31)

Finally, there is a linear constraint for the given total spin S,

r/2∑
ni,nj=1

(Γ(niα, njα;niα, njα) + Γ(niβ, njβ;niβ, njβ))

− 2

r/2∑
ni,nj=1

Γ(niα, njβ;niα, njβ) − 4

r/2∑
ni,nj=1

Γ(niα, njβ;njα, niβ)

+ 3N = 4S(S + 1). (3.32)

3.4 Eigenvalue bounds of the problem structures

In order to be able to efficiently apply our rigorous verification algorithms, we need
to know the eigenvalue bounds of all the structures present in the SDP formulation of
the problem. Those include γ,Γ, Q,G, T1 and T2. The lower eigenvalue bound of
all the operators is 0, which follows immediately from their positive semidefiniteness
requirement (3.18). The upper bounds for all the above mentioned operators will be
sequentially obtained in the following sections.

3.4. Eigenvalue bounds of the problem structures 35

3.4.1 Maximal eigenvalues of 1-RDMs and 2-RDMs

In case of γ the upper bound is also straightforward and comes from theN-representability
condition (3.17):

λmax(γ) ≤ 1. (3.33)

For Γ an immediate upper bound can be obtained from its trace. Since the operator
is positive semidefinite and thus possesses only nonnegative eigenvalues,

λmax(Γ) ≤
∑

i

λi(Γ) = trace(Γ) = N(N − 1). (3.34)

Though a tighter bound can be found. In their work [21] C. Garrod and J. K. Percus
show, that the largest possible eigenvalue of Γ is N . Following their derivation, we
will now carry out the proof in our notations.

In our matrix representation, Γ(i, j; i′, j′) is an operator acting on antisymmetric
matrices. The Rayleigh-Ritz theorem says:

λmax(Γ) = max
〈F,F 〉=1

F ∗ΓF, (3.35)

where in our case, we optimize over antisymmetric matrices F , satisfying the norm
condition 〈F, F 〉 = 1. Thus we have to obtain an upper bound to

Λ = F ∗ΓF =
∑
i,j

i′,j′

F ∗(i, j)Γ(i, j; i′, j′)F (i′, j′), (3.36)

where

F (i, j) = −F (j, i) (3.37)

and

〈F, F 〉 =
∑
i,j

|F (i, j)|2 = 1. (3.38)

Without loss in generality F may be assumed real. Then the matrix iF is Hermitian
and can thus be diagonalized in terms of its eigenvectors vk.

iF (i, j) =
r∑

k=1

λkvk(i)v
∗
k(j) =

r∑
k=1

λkVk(i, j), (3.39)

36 Chapter 3. Rigorous error bounds for RDM variational problems

where λk are the real eigenvalues of iF and Vk = vkv
∗
k. Since iF is a normal matrix,

‖F‖2
2 =

∑
i,j

|F (i, j)|2 =
∑

k

|λk|2 (3.40)

and equation (3.38) can now be written
∑

k

|λk|2 = 1. (3.41)

Expressing Λ in terms of the eigenvalues and eigenvectors of iF we obtain

Λ = F ∗ΓF = (iF)∗Γ(iF)

=
∑
i,j
i′,j′

(∑
k

λkVk(i, j)

)
Γ(i, j; i′, j′)

(∑
l

λlVl(i
′, j′)

)

=
∑
k,l

λkλl

∑
i,j

i′,j′

Vk(i, j)Γ(i, j; i′, j′)Vl(i
′, j′) =

∑
k,l

λkΓ̃(k, l)λl, (3.42)

where

Γ̃(k, l) =
∑
i,j
i′,j′

Vk(i, j)Γ(i, j; i′, j′)Vl(i
′, j′). (3.43)

Using again the Rayleigh-Ritz theorem and keeping in mind the normalization condi-
tion (3.41) we get

Λ =
∑
k,l

λkΓ̃(k, l)λl = λT Γ̃λ ≤ λmax(Γ̃). (3.44)

The fact that Γ is positive semidefinite implies that Λ ≥ 0 for any choice of λ in (3.44).
Then we can conclude, that Γ̃ is also positive semidefinite and the following bound is
valid

Λ ≤ trace(Γ̃). (3.45)

According to the N-representability condition (3.18), G is a nonnegative operator:
∑
i,j

i′,j′

vk(i)v
∗
k(j)G(i, j; i′, j′)vk(i

′)v∗k(j
′) ≥ 0. (3.46)

3.4. Eigenvalue bounds of the problem structures 37

Using the definition of G, we get∑
i,j
i′,j′

vk(i)v
∗
k(j)Γ(i, j′; j, i′)vk(i

′)v∗k(j
′)

+
∑
i,j
i′,j′

vk(i)v
∗
k(j)δ(i, i

′)γ(j′, j)vk(i
′)v∗k(j

′) ≥ 0. (3.47)

But, notice that∑
i,j
i′,j′

vk(i)v
∗
k(j)Γ(i, j′; j, i′)vk(i

′)v∗k(j
′)

= −
∑
i,j

i′,j′

vk(i)v
∗
k(j

′)Γ(i, j′; i′, j)vk(i
′)v∗k(j) = −Γ̃(k, k) (3.48)

and ∑
i,j
i′,j′

vk(i)v
∗
k(j)δ(i, i

′)γ(j′, j)vk(i
′)v∗k(j

′)

=
∑

i

v2
k(i)

∑
j,j′

v∗k(j)γ(j, j
′)v∗k(j

′) = v∗k
Tγv∗k, (3.49)

where we have used the normalization condition on vk from (3.39) and Hermiticity of
γ. As Hermitian, γ, in analogy to (3.39), can be represented in terms of its eigenvalues
and eigenvectors

γ =
r∑

l=1

μlulu
∗
l . (3.50)

The eigenvectors ul, in their turn, have a representation in the orthonormal basis v∗k:

ul =
∑
m

αlmv
∗
m, (3.51)

with ∑
m

α2
lm = 1. (3.52)

Going back to equation (3.49) and taking sum over all k we obtain∑
k

v∗k
Tγv∗k =

∑
k,l

μlv
∗
k
Tulu

∗
l v

∗
k =

∑
l

μl

∑
k

v∗k
Tulu

∗
l v

∗
k

=
∑

l

μl

∑
k

α2
lk =

∑
l

μl = trace(γ) = N. (3.53)

38 Chapter 3. Rigorous error bounds for RDM variational problems

Considering the results of (3.48), (3.49) and (3.53), (3.47) becomes

−trace(Γ̃) +N ≥ 0. (3.54)

This brings us to the conclusion Λ ≤ N and completes the proof.

3.4.2 Maximal eigenvalues of other matrices

To determine the maximal eigenvalue bounds for Q, G, T1 and T2 matrices, two
different approaches were considered. Firstly, the Weyl theorem can be used. That is
for two Hermitian matrices A and B we have

λmax(A+B) ≤ λmax(A) + λmax(B). (3.55)

Secondly, the same idea as in (3.34) can be used, where we took the trace as an upper
bound for positive semidefinite matrix eigenvalues.

Both strategies will now be compared by the example of the Q matrix (3.21). Fol-
lowing (3.55) we obtain the bound

λmax(Q(i, j; i′, j′)) ≤λmax(Γ(i, j; i′, j′)) + λmax(δ(i, i
′)(−γ(j, j′)))

+ λmax(δ(j, j
′)(−γ(i, i′))) + λmax(δ(i, j

′)γ(j, i′))

+ λmax(δ(j, i
′)γ(i, j′)) + λmax(δ(i, i

′)δ(j, j′))

+ λmax(δ(i, j
′)(−δ(j, i′))).

(3.56)

To proceed, a matrix representation of the four and six index structures has to be intro-
duced. We used the following mappings:

A(i, j; i′, j′) = Am((i− 1)r + j, (i′ − 1)r + j′),

B(i, j, k; i′, j′, k′) = Bm((i−1)r2 +(j−1)r+k, (i′−1)r2 +(j′−1)r+k′),

(3.57)

where Am ∈ R
r2×r2 , Bm ∈ R

r3×r3 and r is the basis size. In this representation
δ(i, i′)γ(j, j′) = γdiag is a block diagonal matrix with γ as each of r blocks. Then

λmax(−γdiag) = −λmin(γ) = 0, (3.58)

ρ(γdiag) = 1, (3.59)

3.4. Eigenvalue bounds of the problem structures 39

where ρ(A) denotes the spectral radius of a matrix. Other matrices of type δγ are
permutations of γdiag . Some, as for example δ(i, j′)γ(j, i′), can be obtained with only
column permutations. For others both column and row interchanges are necessary. In
general case, any matrix of type δγ present in (3.56) can be represented as P1γdiagP2,
where P1 and P2 are symmetric permutation matrices. Having said that, the upper limit

λmax(δγ) ≤ ‖P1γdiagP2‖2 ≤ ‖P1‖2‖γdiag‖2‖P2‖2 = ρ(γdiag) = 1 (3.60)

follows immediately. Here we utilized the fact, that spectral norm of a symmetric real-
valued matrix is equal to its spectral radius. In their turn, δ(i, i′)δ(j, j′) is an identity
matrix of size r2 and δ(i, j′)δ(j, i′) is its symmetric permutation (and thus a symmetric
permutation matrix itself). Obviously

λmax(−δ(i, j′)δ(j, i′)) ≤ λmax(δ(i, j
′)δ(j, i′)) = 1. (3.61)

Now we are ready to calculate the upper eigenvalue bound for Q by substituting the
results of (3.58), (3.60), (3.61) into (3.56) and using the eigenvalue bound on Γ from
the previous section.

λmax(Q) ≤ N + 0 + 1 + 1 + 1 + 1 + 1 = N + 5. (3.62)

Another bound based on the matrix trace equals:

trace(Q) = N(N − 1) +
∑
i,j

(−δ(i, i)γ(j, j) − δ(j, j)γ(i, i)

+δ(i, j)γ(j, i) + δ(j, i)γ(i, j) + δ(i, i)δ(j, j) − δ(i, j)δ(j, i))

= N(N − 1) − rN − rN +N +N + r2 − r

= (r −N)(r −N − 1).

(3.63)

None of the results (3.62) or (3.63) delivers in the case of Q matrix an unambiguously
better bound. The quality of the estimations depends on the electron number and the
corresponding basis size. Concerning other matrices, one can notice that trace in aver-
age shows a tighter result compared to that from the Weyl theorem. Plus no assump-
tions about mappings like those in (3.57) or similar are necessary for trace calculation.
It is also worth mentioning, that for our verification algorithm the difference between
the obtained bounds is not crucial (they will be multiplied by feasibility defects of the
calculated approximation, which are supposed to be close to zero). Therefore, we will
be using traces to constrain maximal eigenvalues of positive semidefinite matrices.

40 Chapter 3. Rigorous error bounds for RDM variational problems

Trace calculations for the remaining matrices yield

trace(G) = −N(N − 1) + rN = N(r −N + 1), (3.64)

trace(T1) =3N(N − 1)r − 6N(N − 1) + 3N(r − r2) + 6N(r − 1)

+ r3 − 3r2 + 2r = (r − 2)(r(r − 1) − 3N(r −N)),
(3.65)

trace(T2) = −rN(N − 1) + r2N − rN = rN(r −N). (3.66)

3.4.3 Considerations

Beside the obtained upper eigenvalue bounds

λmax(γ) ≤ 1,

λmax(Γ) ≤ N,

λmax(G) ≤ N(r −N + 1),

λmax(Q) ≤ (r −N)(r −N − 1),

λmax(T1) ≤ (r − 2)(r(r − 1) − 3N(r −N)),

λmax(T2) ≤ rN(r −N)

(3.67)

themselves, of importance for us are some relations between the number of particles
N and the basis size r, that can be derived from these inequalities. Indeed, if we
require positive semidefiniteness of the matrices, that is nonnegativity of their traces,
we immediately get

r ≥ N + 1 (3.68)

from the condition on Q matrix, and

N ≥ 3 (3.69)

if we want trace(T1) to be always nonnegative. Thus, the approach works only for
systems with not less than 3 electrons and the minimum required basis size is 4. In
addition the condition (3.68) must be satisfied.

All the bounds obtained so far were derived solely for matrices satisfying the N-
representability conditions formulated in section 3.3 and are implementation indepen-
dent. To proceed, we have to introduce “compacted” matrices, as found for example in

3.4. Eigenvalue bounds of the problem structures 41

[79] and [78], and the respective maximal eigenvalue bounds. After performing a map-
ping similar to (3.57), we get symmetric matrices of dimensions r2 and r3. As a result
of the antisymmetricity of operators Γ, Q, T1 and T2, the corresponding matrices have
both dependent and zero rows and columns. This gives us a possibility to drastically
reduce the matrix dimensions by omitting such entries. This elimination also helps to
fight the ill-posedness of the initial problem. If the original matrices necessarily had
zero eigenvalues, and were thus always on the boundary of the semidefinite cone, their
“compacted” versions can lie in its interior. The new dimensions are: Γ̃, Q̃ ∈ SC2

r ,
T̃1 ∈ SC3

r and T̃2 ∈ Sr×C2
r . Furthermore, by choosing an appropriate mapping (re-

arranging rows and columns), matrices γ, Γ̃, Q̃, G, T̃1 and T̃2 can be made block
diagonal. This is possible due to the spin symmetries (3.24) - (3.29).

Since the “compacted” matrices also have their positive semidefiniteness required,
traces still can be used to estimate their maximal eigenvalues. Unfortunately, an ex-
plicit trace calculation for Q̃, T̃1 and T̃2 is not trivial. Nevertheless, since all diagonal
elements of a positive semidefinite matrix are nonnegative, transformation to “com-
pacted” form can only reduce traces of the matrices involved: trace(M̃) ≤ trace(M).
Thus, the corresponding eigenvalue bounds from (3.67) are still valid, though with a
greater overestimation.

In the case of Γ̃ the trace bound would be

trace(Γ̃) =
1

2
trace(Γ) =

1

2
N(N − 1). (3.70)

Nevertheless, analogously to Γ, we can prove N to be a suitable eigenvalue bound for
it. Note, that the following decomposition is valid:

Γ = Γpos + Γneg, (3.71)

where Γpos contains elements corresponding to Γ(i, j; i′, j′) for i < j, i′ < j′ and
i > j, i′ > j′, and Γneg is a negative row or column permutation of Γpos.

Example 3.1. To illustrate the decomposition and the structure of Γ, consider a very
simple case of r = 3. According to (3.68) and (3.69) this is not an appropriate basis
size for the RDM problems considered, but for Γ alone it’s acceptable and allows us to
observe the properties on a matrix of reasonable size. We do not give attention to spin
symmetries, and only symmetric/antisymmetric behavior of the operator is reflected.

42 Chapter 3. Rigorous error bounds for RDM variational problems

As a product of mappings (3.57) comes a 9 × 9 matrix.

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 g1 g4 −g1 0 g5 −g4 −g5 0

0 g4 g2 −g4 0 g6 −g2 −g6 0

0 −g1 −g4 g1 0 −g5 g4 g5 0

0 0 0 0 0 0 0 0 0

0 g5 g6 −g5 0 g3 −g6 −g3 0

0 −g4 −g2 g4 0 −g6 g2 g6 0

0 −g5 −g6 g5 0 −g3 g6 g3 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Γpos + Γneg , (3.72)

where

Γpos =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 g1 g4 0 0 g5 0 0 0

0 g4 g2 0 0 g6 0 0 0

0 0 0 g1 0 0 g4 g5 0

0 0 0 0 0 0 0 0 0

0 g5 g6 0 0 g3 0 0 0

0 0 0 g4 0 0 g2 g6 0

0 0 0 g5 0 0 g6 g3 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.73)

and

Γneg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 0 0 −g1 0 0 −g4 −g5 0

0 0 0 −g4 0 0 −g2 −g6 0

0 −g1 −g4 0 0 −g5 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −g5 0 0 −g6 −g3 0

0 −g4 −g2 0 0 −g6 0 0 0

0 −g5 −g6 0 0 −g3 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.74)

g1 . . . g6 denote unique elements of Γ present also in Γ̃:

Γ̃ =

⎛
⎜⎝ g1 g4 g5

g4 g2 g6

g5 g6 g3

⎞
⎟⎠ . (3.75)

3.5. SDP implementations 43

It can be seen, that

Γneg = −ΓposP (3.76)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.77)

is a symmetric permutation matrix with eigenvalues 1 and −1.

In the general case, Γpos has in addition to r zeros also C2
r distinct eigenvalues

λ1, . . . , λC2
r

(those of Γ̃). They are nonnegative and have algebraic multiplicity 2.
Γneg, in its turn, has −λC2

r
, . . . ,−λ1, λ1, . . . , λC2

r
plus r zeros as its eigenvalues. An

important conclusion can be drawn

λmax(Γ̃) = λmax(Γpos) = λmax(Γneg). (3.78)

Putting now (3.78), (3.71), (3.67) together and keeping in mind that Γpos is positive
semidefinite, we prove the suggested bound

λmax(Γ̃) = λmax(Γneg) ≤ λmax(Γneg + Γpos) = λmax(Γ) ≤ N. (3.79)

Thus, the maximal eigenvalue bounds for “compacted” matrices are:

λmax(Γ̃) ≤ N,

λmax(Q̃) ≤ (r −N)(r −N − 1),

λmax(T̃1) ≤ (r − 2)(r(r − 1) − 3N(r −N)),

λmax(T̃2) ≤ rN(r −N).

(3.80)

3.5 SDP implementations

Owing to the character of the constraints, RDM optimization problems can be naturally
represented as semidefinite programs. Obviously, there are numerous possibilities to

44 Chapter 3. Rigorous error bounds for RDM variational problems

formulate such an SDP. A very detailed study on it can be found in the work of Zhao
[78]. Two main approaches, the so called “primal” and “dual” formulations, are pre-
sented there. The names tell us which part of an SDP carries the physical meaning of
the initial electronic structure problem. They are not in any way SDP primal and dual
of each other.

For the “primal” problem formulation the objective function is straightforward and
appeared already in (3.11) and (3.13)

E = min(〈H1, γ〉 + 〈H̃2, Γ̃〉). (3.81)

As primal variable a block diagonal matrix

X = Diag(γ, I − γ, Γ̃, Q̃, G, T̃1, T̃2) (3.82)

is taken. This guarantees us the fulfillment ofN-representability conditions (3.17) and
(3.18). With such choice of X , the objective C matrix has only 2 nonzero blocks:

C = Diag(H1, O, H̃2, O, O, O, O). (3.83)

The fulfillment of equality constraints like (3.14) to (3.16), dependences (3.19) to
(3.23) and relations (3.30) to (3.32) can also be secured by the appropriate choice
of the Ai matrices and the b vector. For an extensive description and implementation
details see [78].

To compute a fast lower bound to the ground state energy (primal optimal value)
in this formulation, the Theorem 2.2 can be applied directly. For an approximate dual
solution ỹ the residual matrix D = C − ∑

ỹiAi needs to be calculated. The lower
eigenvalue bounds dj to all of its n blocks can then be determined. Using them and the
upper eigenvalue bounds xj of the X blocks, given in the previous section, the right
side of the inequality

E ≥ inf{bT ỹ +
n∑

j=1

sj · d−j · xj} (3.84)

can be evaluated. Here sj are the blocks sizes.
Yet because of its size, the “primal” SDP formulation described here is not compu-

tationally competitive with a less straightforward “dual” one [78], and thus the lower
bound in (3.84) is rather of theoretical interest.

3.5. SDP implementations 45

3.5.1 Rigorous error bounds for the RDM method in “dual” SDP
formulation

In this approach the ground state energy is given by a dual SDP objective function. We
define the dual variable

y = (svec(γ,
√

2); svec(Γ̃,
√

2)) (3.85)

and the parameters vector

b = −(svec(H1,
√

2); svec(H̃2,
√

2)). (3.86)

Then the objective function turns to

E = −max bT y. (3.87)

The difficulty with the “dual” formulation is that it does not allow any equality
constraints. To overcome the problem, the equalities will be relaxed with a gap of 2εd.
For example instead of

trace(γ) −N = 0 (3.88)

we will use

trace(γ) −N + εd ≥ 0,

−trace(γ) +N + εd ≥ 0,
(3.89)

where εd is a small positive number (in her work Z. Zhao used values 10−7 and 10−5).
Such relaxations introduce an additional positive semidefinite diagonal matrixDa hav-
ing entries similar to the left hand sides in (3.88) for all the equalities present in the
RDM problem. Then, in analogy to the “primal” case, we define our dual matrix vari-
able as

Z = C −
∑

i

yiAi = Diag(γ, I − γ, Γ̃, Q̃, G, T̃1, T̃2, Da). (3.90)

The upper eigenvalue bound for Da is obvious. In the worst case, one or several of the
inequalities reach the gap edge, which means none of the entries can be greater than
2εd. Since it’s diagonal,

λmax(Da) ≤ 2εd. (3.91)

46 Chapter 3. Rigorous error bounds for RDM variational problems

The introduced relaxation also influences the upper eigenvalue bounds of the other
blocks inZ. Since all theN-representability equalities (including traces of γ and Γ) are
now fulfilled only with εd tolerance, the appropriate corrections have to be introduced.
Only λmax(γ) ≤ 1 remains unchanged. As λmax(Γ̃) ≤ trace(γ),

λmax(Γ̃) ≤ N + εd (3.92)

is the new valid bound for the 2-RDM matrix. For other matrices, εd has to appear in
their trace calculations everywhere γ or Γ occurs, plus it should also be added to the
traces at the end.

The matrices Ai and C in (3.90) are chosen to reflect the N-representability con-
ditions and to relate all the blocks of Z to γ and Γ̃.

For obtaining a fast rigorous lower bound of the ground state energy, one approach
would be to use Theorem 2.5 and to calculate the dual optimal value upper bound

E = −fd = −〈C,X〉 − yT r (3.93)

knowing the bounds of the dual feasible variable vector |y| ≤ y. Another solution to
this problem could be reformulating the problem so, that the dual matrix variable Z
becomes a primal variable X ′ of a new problem. Then the eigenvalue bounds from
Section 3.4 and the formula (3.84) can be applied. We will proceed as follows: first
the latter approach will be discussed and the reformulation introduced; afterwards the
algorithm involving the calculation of the dual optimal value upper bound will be
presented.

Though problems in the “primal” SDP formulation are too big to consider solving
them, their structures can be used to calculate a lower bound of the primal optimal
value (ground state energy) if the solution is known. A high-level description of the
algorithm follows:

Algorithm 3.1.

1. Solve the RDM problem in “dual” formulation and get the primal and dual
approximate solution matrices X̃ and Z̃.

2. Write down a new problem having Z̃ as a primal feasible solution and Ẽ = 〈Cnew, Z̃〉
as its primal optimal value.

3. Express ỹnew in terms of the original problem structures and its approximate
solution.

3.5. SDP implementations 47

4. Find the rigorous lower bound E using the formula (3.84) applied to the refor-
mulated problem.

Steps 2 and 3 of the Algorithm 3.1 require some explanations.
To tell apart old and new structures, the latter will be primed. We start by preserv-

ing the energy value.

E = −bT y = 〈C ′, X ′〉, (3.94)

where

X ′ = Z = Diag(γ, I − γ, Γ̃, Q̃, G, T̃1, T̃2, Da). (3.95)

This gives us the C ′ matrix:

C ′ = Diag(−smat(b1,
√

2), O, −smat(b2,
√

2), O, O, O, O, O), (3.96)

where b1 and b2 are two parts of the b vector in (3.86) of length l1 = s1(s1 + 1)/2 and
l2 = s3(s3 + 1)/2, so that b = (b1; b2) and l1 + l2 = m. Of course this relation is
identical to (3.83), but our task is to express the primed matrices as functions of the
“dual” formulation structures, and in that way, the formula (3.96) is preferred. The next
step will be to use the equality constraints of the new problem to guarantee X ′ = Z.
We have

X ′ = C −
m∑

i=1

yiAi (3.97)

and

y = (svec(X ′
1,

√
2); svec(X ′

3,
√

2)), (3.98)

where X ′
1 and X ′

3 are the first and the third blocks of X ′ in (3.95). Thus we can reach
the aim by having an equality for every unique element in X ′. The total amount of
equalities will then be

m′ =

8∑
j=1

1

2
sj(sj + 1), (3.99)

where sj is again the size of the jth block. Let us now rewrite (3.97) with the substitu-
tion of (3.98). We have

48 Chapter 3. Rigorous error bounds for RDM variational problems

⎛
⎜⎜⎜⎜⎝

x′11 x′12 · · · 0

x′12 x′22 · · · 0
...

...
0 0 · · · x′pp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

c11 c12 · · · 0

c12 c22 · · · 0
...

...
0 0 · · · cpp

⎞
⎟⎟⎟⎟⎠−A1·x′11−A2·

√
2x′12−. . .

−Al1 · x′s1s1
−Al1+1 · x′(s1+s2+1) (s1+s2+1) −Al1+2 ·

√
2x′(s1+s2+1) (s1+s2+2) − . . .

− Am · x′(s1+s2+s3) (s1+s2+s3)
, (3.100)

where p =
∑8

j=1 sj is the total size of X ′. Further

x′11

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 0 · · · 0
...

...
0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ + A1

⎞
⎟⎟⎟⎟⎠ + x′12

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

0 1 · · · 0

1 0 · · · 0
...

...
0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ +

√
2A2

⎞
⎟⎟⎟⎟⎠ + . . .

+ x′pp

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0

0 0 · · · 0
...

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

c11 c12 · · · 0

c12 c22 · · · 0
...

...
0 0 · · · cpp

⎞
⎟⎟⎟⎟⎠ . (3.101)

Now it is easy to see the structure of the A′
i matrices. For example

〈A′
1, X

′〉 = 〈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + A1(1, 1)
1√
2
A2(1, 1) · · · 0

1√
2
A2(1, 1) As1+1(1, 1) · · · 0

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, X ′〉

= C(1, 1) = b′1; (3.102)

〈A′
2, X

′〉 = 〈

⎛
⎜⎜⎜⎜⎜⎜⎝

A1(1, 2)
1

2
(1 +

√
2A2(1, 2)) · · · 0

1

2
(1 +

√
2A2(1, 2)) As1+1(1, 2) · · · 0

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, X ′〉

= C(1, 2) = b′2; (3.103)

3.5. SDP implementations 49

and

〈A′
m′ , X ′〉 = 〈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A1(p, p)
1√
2
A2(p, p) · · · 0

1√
2
A2(p, p) As1+1(p, p) · · · 0

...
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, X ′〉

= C(p, p) = b′m′ . (3.104)

The b′ vector is then

b′ = (svec(C1, 1); . . . ; svec(C8, 1)). (3.105)

Finally, the dual variable vector y′ is chosen so that

b′
T
y′ = −〈C, X〉. (3.106)

This yields

y′ = (−svec(X1, 2); . . . ; −svec(X8, 2)). (3.107)

At this point, the reformulation can be considered complete. C ′, A′
i, b′, X ′ and

y′ of the new problem can now be found, given the original RDM problem in “dual”
formulation. According to step 4 of the Algorithm 3.1, the ground state energy lower
bound can be calculated now.

However, this approach did not turn out to be a good solution to the lower bound
problem. The reformulated SDP is very similar to the “primal” formulation described
before. The only significant difference is that we transfer the relaxed equalities from
the “dual” formulation instead of using them directly. The new SDP is large. The
problem has the same block structure, but the number of constraints grows drastically.
For RDMs with basis size r = 12, for example, we get 121 063 instead of 948 con-
straints. For r = 20 the number goes from 7 230 up to 2 595 595. From the other side,
the reformulated problem does not have to be solved and the sparsity of its matrices is
much higher than in the “dual” problem itself.

The trouble is hidden in the residual matrixD′. Though all A′
i matrices themselves

are extremely sparse (it’s not obvious from (3.102), (3.103) and (3.104), but except for
the blocks 1 and 3, A′

is have at most 2 nonzero entries), they “perfectly” complement

50 Chapter 3. Rigorous error bounds for RDM variational problems

each other. Pooled together in D′, they produce a block diagonal matrix which, in gen-
eral case, does not have a single nonzero element in its blocks. The time to calculate
its eigenvalues, but, above all, to allocate a dense matrix of such size is no longer com-
petitive. Based on the numerical experience, we can say, that calculating the energy
lower bound according to the Algorithm 2.2 is in average faster, though it requires a
rigorous solution of a liner system.

Now we will concentrate on the other approach, which was previously mentioned
in (3.93). There the ground state energy lower bound is calculated as a negative SDP
upper bound directly for the RDM in “dual” formulation. We start by posing an algo-
rithm.

Algorithm 3.2.

1. Solve the RDM problem in “dual” formulation and get the approximate primal
solution X̃ .

2. Compute a rigorous bound x ≤ {λmin(X̃), 0}. Then shift the matrix X̃ ′ = X̃ − xI .

3. Calculate rigorous upper bounds on the residuals r ≥ |〈Ai, X̃ ′〉 − bi|.
4. Find the lower bound

E = −〈C, X̃ ′〉 − yT r, (3.108)

where y is a bound on ỹ such that |ỹ| ≤ y.

Here step 2 is performed to compensate possible deviations from positive semidefi-
niteness in the computed approximation.

Essential for a successful use of the Algorithm 3.2 is the knowledge of the bound
y. If we look at (3.85), it becomes evident, that we can achieve this by bounding the
elements of γ and Γ̃. Let M = [mij] be a Hermitian positive semidefinite matrix. The
diagonal entries then satisfy the inequality

0 ≤ λmin ≤ mii ≤ λmax, (3.109)

which can be seen as, for example, a corollary of the Rayleigh-Ritz theorem. Here
λmin and λmax are again the minimal and the maximal eigenvalue of M . It is also
known, that

|mij| ≤ mii +mjj

2
≤ λmax. (3.110)

Thus, all the components of y are available, given the eigenvalue bounds (3.67) (for γ)
and (3.92) (for Γ̃), and the Algorithm 3.2 can now be applied to calculate a rigorous
lower bound of the ground state energy.

3.5. SDP implementations 51

3.5.2 Numerical results

In this section the calculated optimal value bounds for the electronic structure bench-
mark problems are presented. The SDPs were taken from [18] and are those found in
Tables 1 and 2 in [79]. As an approximate semidefinite solver, SDPA [17] was used
in all calculations. Rigorous bounds were obtained with the help of verifiedSDP, a
verification software package developed in the context of this thesis. This package is
described in more detail in Chapter 4 and in Appendix B.

Results could be obtained for all the problems from the benchmark set with the only
exception of Fluoromethylidyne (CF). The problem file in SDPA format appeared to
be inconsistent (for example, the electron number equaled 12 instead of 15) resulting
in incorrect output.

Detailed numerical results can be found in the Tables 3.1, 3.2 and 3.3. Table 3.1
contains the approximate value of the ground state energy Ẽ∗2 and its rigorous bounds.
TheE∗ andE∗

1 are the upper and the lower optimal value bounds obtained according to
the Algorithms 2.1 and 2.2 respectively. The value E∗

2 is the lower energy bound cal-
culated following the Algorithm 3.2 in the previous section. In Table 3.2 the accuracies
of the computed approximations and bounds are shown. The quantity

μ(a, b) :=
a− b

max{1.0, (|a|+ |b|)/2} (3.111)

measures the relative accuracy. Table 3.3 reveals the time costs t̃, t, t1 and t2 for
calculating Ẽ∗, E∗, E∗

1 and E∗
2 respectively. The ratio t2/t1 is also shown to indicate

the time benefit of using the Algorithm 3.2 to compute the lower bound of the ground
state energy.

Table 3.1:
Rigorous bounds for the electronic structure benchmark problems

(all energies are in Hartree).

Problem Ẽ∗ E∗ E∗

1 E∗

2

LiH −7.701590 −7.701346 −8.311430 −8.328970

BeH −15.031051 −15.031020 −15.211742 −15.223065

BH+ −24.711638 −24.711546 −24.908349 −24.926349

BH −24.868066 −24.868023 −25.230332 −25.252726

CH+ −37.791631 −37.791645 −37.990384 −38.007703

CH −38.072447 −38.072351 −38.305066 −38.330361

continued. . .
2Ẽ∗ results after adding the nuclear repulsion energy to the negative dual optimal value of the

semidefinite program.

52 Chapter 3. Rigorous error bounds for RDM variational problems

Problem Ẽ∗ E∗ E∗

1 E∗

2

CH− −37.790264 −37.790147 −38.079407 −38.097093

NH+ −54.259270 −54.259208 −54.530753 −54.553506

NH −54.755845 ∞ −54.863067 −54.895371

NH− −54.343880 −54.343584 −54.679564 −54.732619

OH+ −74.699369 −74.699390 −74.824963 −74.854506

OH −74.915322 −75.045130 −75.270221 −75.294777

OH− −74.690903 −74.690903 −74.965723 −74.986655

HF+ −99.063292 ∞ −99.179959 −99.207903

HF −99.525649 −99.525649 −99.525654 −99.525655

BH2 −25.599463 −25.481014 −25.795225 −25.837000

CH2(1) −38.565139 −38.565116 −39.001309 −39.101874

CH2(3) −38.759072 −38.759072 −38.925286 −38.957234

NH2 −55.210014 −55.210014 −55.582395 −55.642632

H2O+ −75.319716 −75.192582 −75.603978 −75.558738

H2O −75.571667 −75.571528 −75.847698 −75.975893

NH3 −56.014499 −56.014488 −56.014497 −56.014497

H3O+ −76.104886 −76.104873 −76.104889 −76.104889

O+

2 −148.796142 −148.796108 −148.796142 −148.796153

O2 −149.163951 −149.163935 −149.163955 −149.163955

SiH −288.377609 −288.377588 −288.377631 −288.377631

SiH− −288.131908 ∞ −288.131926 −288.131927

NO− −128.665758 −128.665739 −5356.284879 −128.665771

NF −153.244885 −153.244876 −153.244892 −153.244893

HS+ −396.498571 −396.498532 −396.498590 −396.498591

Li2 −14.837748 −14.837743 −14.837748 −14.837748

B2 −49.017651 −49.017610 −49.017658 −49.017702

C+

2 −75.078961 −75.078938 −75.078958 −75.078966

C2 −75.438209 −75.438194 −75.438217 −75.438211

C−

2 −75.316191 −75.316172 −75.316195 −75.316205

LiF −106.444036 −106.444025 −106.444034 −106.444035

BeO −89.201540 −89.201526 −89.201543 −89.201550

NaH −161.738049 −161.738037 −161.738059 −161.738059

BeF −113.641045 −113.641029 −113.641048 −113.641049

BO −99.259120 −99.259100 −99.259132 −99.259143

N+

2 −108.224658 −108.224625 −108.224668 −108.224677

N2 −108.701822 −108.701805 −108.701819 −108.701820

CO+ −112.037934 −112.037906 −112.037947 −112.037959

CO −112.443919 −112.443901 −112.443921 −112.443923

BF −123.612505 −123.612495 −123.612516 −123.612517

AlH −241.507340 −241.507326 −241.507340 −241.507342

3.5. SDP implementations 53

Table 3.2:
Accuracy of the rigorous bounds for the electronic structure problems.
Here Ẽ∗

d
is the approximate dual optimal value computed by SDPA.

Problem μ(Ẽ∗, Ẽ∗

d
) μ(E∗, E∗

1) μ(E∗, E∗

2)

LiH 6.77495250e− 02 6.77775244e− 02 6.96582874e− 02

BeH 1.08206339e− 02 1.08225341e− 02 1.14967558e− 02

BH+ 7.28876060e− 03 7.29217873e− 03 7.95650788e− 03

BH 1.33205011e− 02 1.33220720e− 02 1.41396765e− 02

CH+ 4.88354276e− 03 4.88320678e− 03 5.30760949e− 03

CH 5.67033815e− 03 5.67267150e− 03 6.28733079e− 03

CH− 7.07387615e− 03 7.07674557e− 03 7.50780808e− 03

NH+ 4.69232879e− 03 4.69339181e− 03 5.08565993e− 03

NH 1.83471686e− 03 NaN NaN
NH− 5.78270177e− 03 5.78782558e− 03 6.69873214e− 03

OH+ 1.59228232e− 03 1.59200965e− 03 1.96619123e− 03

OH 4.46647622e− 03 2.83050144e− 03 3.13879648e− 03

OH− 3.47026390e− 03 3.47026390e− 03 3.73408862e− 03

HF+ 1.11893784e− 03 NaN NaN
HF 5.16619753e− 08 5.16619753e− 08 5.20739583e− 08

BH2 6.43439292e− 03 1.03477637e− 02 1.17154792e− 02

CH2(1) 9.71668378e− 03 9.73075965e− 03 1.19607843e− 02

CH2(3) 3.69216243e− 03 3.69216243e− 03 4.40029311e− 03

NH2 5.91453905e− 03 5.91453905e− 03 6.86799895e− 03

H2O+ 2.18488454e− 03 4.88617681e− 03 4.35002510e− 03

H2O 3.25107803e− 03 3.25271072e− 03 4.75898359e− 03

NH3 −2.88982565e− 08 1.33048997e− 07 1.34286355e− 07

H3O+ 3.18258752e− 08 1.79953070e− 07 1.80871458e− 07

O+

2 −7.33315858e− 10 1.86976863e− 07 2.52641619e− 07

O2 2.26148021e− 08 1.14560700e− 07 1.15510751e− 07

SiH 7.47490148e− 08 1.45456042e− 07 1.46151661e− 07

SiH− 6.19425910e− 08 NaN NaN
NO− 8.74319781e− 08 1.89009929e + 00 2.07987491e− 07

NF 4.28158379e− 08 9.10670206e− 08 9.20458830e− 08

HS+ 4.70607402e− 08 1.45426257e− 07 1.45935459e− 07

Li2 −1.40985166e− 08 2.82259208e− 07 2.83821771e− 07

B2 −3.07284567e− 07 8.30115744e− 07 1.60930716e− 06

C+

2 −3.93277769e− 08 2.26425697e− 07 3.10565764e− 07

C2 −3.78755770e− 08 2.51955508e− 07 1.86173826e− 07

C−

2 −4.42974374e− 08 2.49676326e− 07 3.62031476e− 07

LiF −1.19280976e− 08 7.90331413e− 08 8.33049230e− 08

BeO 3.31789806e− 08 1.67925245e− 07 2.29854405e− 07

continued. . .

54 Chapter 3. Rigorous error bounds for RDM variational problems

Problem μ(Ẽ∗, Ẽ∗

d
) μ(E∗, E∗

1) μ(E∗, E∗

2)

NaH 5.91194074e− 08 1.32461766e− 07 1.33461373e− 07

BeF 2.69829874e− 08 1.50175519e− 07 1.53876387e− 07

BO 8.71624232e− 08 2.73302338e− 07 3.73791444e− 07

N+

2 7.77705073e− 08 3.27831383e− 07 3.96942882e− 07

N2 −2.66884648e− 08 1.03767561e− 07 1.10451066e− 07

CO+ 9.67583873e− 08 3.03668089e− 07 3.91139291e− 07

CO 1.40674927e− 08 1.47084159e− 07 1.65718055e− 07

BF 8.06621960e− 08 1.51589161e− 07 1.56653663e− 07

AlH 2.95436623e− 09 5.77518147e− 08 6.34182585e− 08

Table 3.3:
Computational efforts for the electronic structure benchmark problems (in seconds).

Problem t̃ t t1 t2 t2/t1
LiH 184.30 215.01 87.12 4.74 5.4408e− 02

BeH 207.63 243.27 88.59 5.08 5.7343e− 02

BH+ 204.59 239.62 84.12 4.87 5.7893e− 02

BH 181.54 218.13 85.01 5.08 5.9758e− 02

CH+ 193.71 233.96 85.23 4.76 5.5849e− 02

CH 197.69 232.01 89.16 4.94 5.5406e− 02

CH− 202.69 238.47 85.39 5.25 6.1483e− 02

NH+ 194.10 238.90 87.48 5.10 5.8299e− 02

NH 212.73 1597.55 373.85 5.09 1.3615e− 02

NH− 199.53 237.93 84.49 4.72 5.5865e− 02

OH+ 204.93 251.74 92.20 5.02 5.4447e− 02

OH 192.59 249.48 83.52 5.21 6.2380e− 02

OH− 201.25 18.09 84.24 4.99 5.9236e− 02

HF+ 213.69 1595.88 366.64 5.24 1.4292e− 02

HF 346.23 18.19 85.31 5.12 6.0016e− 02

BH2 1074.45 2372.17 536.77 24.57 4.5774e− 02

CH2(1) 915.89 1440.96 2007.14 29.21 1.4553e− 02

CH2(3) 1031.98 107.57 532.16 24.37 4.5794e− 02

NH2 1060.12 114.87 542.02 25.39 4.6843e− 02

H2O+ 1129.96 2668.34 2063.36 24.78 1.2010e− 02

H2O 1058.53 1537.46 549.85 24.89 4.5267e− 02

NH3 8871.36 10111.15 2715.03 102.48 3.7745e− 02

H3O+ 9359.03 11813.02 2622.24 114.75 4.3760e− 02

O+

2 151648.46 188182.83 210175.90 981.44 4.6696e− 03

O2 210506.71 250956.60 44206.35 1256.59 2.8426e− 02

SiH 173374.23 216012.32 39694.06 1161.07 2.9250e− 02

SiH− 182323.98 1432016.55 35283.97 998.71 2.8305e− 02

continued. . .

3.5. SDP implementations 55

Problem t̃ t t1 t2 t2/t1
NO− 160852.13 200886.74 203252.95 1001.09 4.9253e− 03

NF 213465.37 250389.31 38889.09 1199.99 3.0857e− 02

HS+ 183277.95 220068.98 40911.00 1208.92 2.9550e− 02

Li2 184344.38 221733.11 42447.46 1032.78 2.4331e− 02

B2 177982.85 198597.99 688761.75 1013.14 1.4710e− 03

C+

2 175298.65 210272.63 261548.67 1133.67 4.3345e− 03

C2 166848.15 207500.37 421375.58 1115.64 2.6476e− 03

C−

2
157356.87 193556.12 437603.92 1019.05 2.3287e− 03

LiF 204941.14 231529.60 45476.43 1451.44 3.1916e− 02

BeO 170350.62 215724.36 246105.61 1092.81 4.4404e− 03

NaH 180483.03 228871.70 41847.35 1441.32 3.4442e− 02

BeF 189988.88 663130.02 43601.91 1329.82 3.0499e− 02

BO 136933.08 182904.38 200500.61 999.61 4.9856e− 03

N+

2 133803.37 172144.76 33617.73 983.02 2.9241e− 02

N2 173932.10 210359.02 42531.46 1042.67 2.4515e− 02

CO+ 132556.80 182132.18 360098.91 978.20 2.7165e− 03

CO 168828.64 202342.14 36485.30 1035.51 2.8382e− 02

BF 194003.70 237460.27 42328.54 1046.14 2.4715e− 02

AlH 179670.64 230179.11 42028.82 1085.38 2.5825e− 02

The approximate energies in the first column of the Table 3.1 reproduce, for the
most part, the values found in [79]. Nevertheless, for some problems (mostly with
basis sizes r = 12 and r = 14) the semidefinite solver (SDPA) delivered results a bit
above those in Table 1 in [79]. The problem lies in SDPA convergence. The primal
minimum is not attained due to the duality gap remaining relatively big (see the first
column of the accuracy Table 3.2). Another indicator of the solver difficulty is the
returned termination code. Instead of pdOPT expected in case of normal termination,
pFEAS was returned, showing that the primal problem is feasible, but an optimal so-
lution could not be found within the iteration cycle (see [17] for more details). The
situation could probably be improved by optimizing the SDPA parameters or using
another SDP solver. All our calculations were performed with the default parameter
set.

In three problems, namely CH+, OH+ and OH, the calculated rigorous upper bound
E∗ appeared to be less then the approximation Ẽ∗. This is normal and the upper bound
is still valid and accurate. The reason for such behavior is that during an iteration of
the Algorithm 2.1, SDPA found a better solution even though the admissible region
is smaller for the perturbed problem. This could never be possible if the initial ap-

56 Chapter 3. Rigorous error bounds for RDM variational problems

proximation was exactly the optimum point, but CH+, OH+ and OH belong to the
group described in the previous paragraph, and the precision of Ẽ∗ is insufficient.
The described phenomenon also becomes apparent in Table 3.2, where, for the above
mentioned problems, we have μ(E∗, E∗

1) ≤ μ(Ẽ∗, Ẽ∗
d). That is the gap between the

rigorous bounds becomes smaller than the gap between the approximate primal and
dual optimal values. For three other problems, NH, HF+ and SiH− despite many iter-
ations (note longer running times t in the Table 3.3), no verified upper bound could be
found.

As can be seen in Table 3.2, some accuracies μ(Ẽ∗, Ẽ∗
d) are negative. This indi-

cates a weak duality violation in the corresponding approximations. In such cases it
is common to obtain a lower bound which will be greater than Ẽ∗. This, for example,
happened for NH3, Li2, C+

2 and LiF. Again, the lower bounds are accurate, and the
corresponding approximate solutions Ẽ∗ should be discarded.

It can be observed, that E∗
1 usually delivers a tighter lower bound compared to E∗

2.
Only for some problems like H2O+ and C2 the fast bound E∗

2 appeared to be better.
The same is true in case of NO−, but the value E∗

2 = −5356.28 with relative accuracy
μ(E∗, E∗

1) = 1.89 is a definite outlier and should not be considered. Nevertheless, no
matter which value, E∗

1 or E∗
2, they both give a verified lower bound of the ground

state energy.
The time win of using Algorithm 3.2 compared to the standard Algorithm 2.2 for

computing a rigorous lower bound is significant. Depending on the necessity of ex-
tra iterations in Algorithm 2.2, the value of t2/t1 varies between 1.4710e − 03 and
6.2380e − 02. Owing to its non-iterative nature, the computational cost of applying
Algorithm 3.2 remains relatively constant for different problems of the same size.

For the use of Algorithms 3.1 and 3.2, it would be interesting to evaluate the quality
of the obtained eigenvalue bounds λ in (3.67). Though the numerical results in Tables
3.1 to 3.3 were obtained with the Algorithm 3.2, and upper eigenvalue bounds forG,Q,
T1 and T2 are not used there, we were monitoring the maximal eigenvalues of all the
blocks in the solution matrix. Table 3.4 shows the corresponding ratios of λmax / λ.
We present our results as min-max intervals of all calculated ratios for each matrix.
An ideal upper bound should have this interval narrow, and max λmax / λ should be
approaching 1.

As you can see from the table, overestimation can be significant for all matrices
except γ. Especially poor results were obtained for T1 and T2. There are several
reasons for that. Firstly, we justified and used the eigenvalue bounds derived for full
(not “compacted”) matrices. Much better estimations could be received if we consid-

3.5. SDP implementations 57

Table 3.4:
Ratios of maximal eigenvalues and upper bounds.

Matrix min λmax / λ max λmax / λ

γ 9.819005e− 01 1.000000e+ 00

Γ 6.252713e− 02 2.415637e− 01

G 6.348046e− 02 3.315521e− 01

Q 6.140103e− 03 4.999994e− 01

T1 2.957354e− 04 3.879563e− 03

T2 3.402340e− 03 4.144608e− 02

ered the new matrix structure when calculating traces of “compacted” matrices. Since
T1 and T2 undergo the biggest changes, their estimation results suffer the most. Sec-
ondly, different N-representability conditions influence each other. For example, for
electronic structure problems without Q, T1 and T2 conditions, the following results
were obtained over 100 000 randomly generated problems:

max
λmax(Γ)

N
= 0.9936,

max
λmax(G)

N(r −N + 1)
= 0.9813.

(3.112)

Adding the Q N-representability condition to the problem changes the situation for G
considerably

max
λmax(Γ)

N
= 0.9784,

max
λmax(G)

N(r −N + 1)
= 0.4918,

max
λmax(Q)

(r −N)(r −N − 1)
= 0.9992.

(3.113)

Thus knowing the maximal eigenvalue bound ofQ, we could possibly track it back and
improve our bound forG. Using such dependencies between differentN-representability
conditions could help us to further improve our eigenvalue bounds. After all, trace is a
fast to find, but not the most precise maximal eigenvalue bound of a positive semidefi-
nite matrix.

The upper bounds of the residuals r, present in Algorithm 3.2, were calculated
as supremums of the actual residuals |〈Ai, X̃ ′〉 − bi| computed using interval arith-

58 Chapter 3. Rigorous error bounds for RDM variational problems

metic. For the benchmark problems in Table 3.1, these upper bounds lie between
8.018579e− 11 and 4.123265e− 04.

3.6 Discussion

The algorithm introduced in this chapter proved to be an accurate tool for determining
a lower bound of the ground state energy. Nevertheless, a good approximate solution
(γ∗, Γ̃∗) is crucial for a tight lower bound. Does a corresponding semidefinite program
always have a finite solution? The feasible region is evidently not empty. Any RDMs
representing an N-electron wave function of type (3.5) will by definition give a fea-
sible point (all N-representability requirements are necessary conditions). The dual
variables y from (3.85) are bounded. This immediately follows from the relations

0 	 γ 	 I and 0 	 Γ̃ 	 N · I. (3.114)

The optimization domain is therefore convex and compact. From the Weierstrass ex-
treme value theorem we know, that the objective function attains its optimal value and
is bounded. Since the conditions of the strong duality theorem (Theorem 2.1) are also
fulfilled, the duality gap in the considered RDM problems is zero.

After obtaining an approximate solution point, the advisable step in computing a
lower bound would be the Algorithm 3.2. Based on the results presented in the pre-
vious section, we can say that the proposed method proved to be a fast and reliable
postprocessing instrument for the RDM problems. It does not only compute an accu-
rate and reliable lower bound for the ground state energy, but also helps to verify the
quality of the approximate solutions delivered by an SDP solver.

Though we have paid the most attention to RDM problems in “dual” SDP for-
mulation in this work, the shown approach remains valid for other semidefinite im-
plementations too. Given an approximate solution and eigenvalue bounds of the key
structures derived in this chapter, it should be fairly easy to adapt the algorithms for a
new formulation.

Chapter 4

Rigorous error bounds with
verifiedSDP

In the context of our work a software package for rigorous verification in semidefinite
programming verifiedSDP was developed. The program implements verification algo-
rithms from Section 2.4 and feasibility tests described in Section 2.5. This chapter is
devoted to a description of implementation details that can be interesting to the reader
and go beyond brief formulations in Chapter 2. Numerical results for the benchmark
problems from the SDPLIB [7] collection are also provided at the end.

To be able to calculate rigorous error bounds, an approximate solution of the con-
sidered semidefinite program is required. No further assumptions about the quality of
this approximation are necessary. The SDPA [17] software package was extensively
used to solve all emerging semidefinite optimization problems. The corresponding
SDPA file format was also taken as standard for input data. verifiedSDP was tested
to work with SDPA libraries up to version 6.2.1. All necessary interval functionality
was provided by the PROFIL [43] library. PROFIL is based on BIAS (Basic Interval
Arithmetic Subroutines) and supports all needed interval data structures and operations
on them. Both full and sparse matrix formats are available. Other software packages
used in verifiedSDP include linear algebra package LAPACK [3], sparse linear system
solver UMFPACK [13], and sparse eigenvalue and eigenvector solver ARPACK++
[22].

Functionality similar to that of verifiedSDP can also be found in VSDP [31]. This
MATLAB software package uses the INTLAB [69] toolbox and allows semidefinite
programming problems to be solved rigorously. Please refer to corresponding papers
for more details.

59

60 Chapter 4. Rigorous error bounds with verifiedSDP

4.1 Implementation of algorithms computing rigorous
results

Though the solution methods described in the next subsections are parts of an SDP ver-
ification process, they represent standalone problems of their own value. With maybe
slight modifications, these approaches can find their application in diverse problems of
various nature.

4.1.1 Calculating a lower eigenvalue bound of an interval matrix

Computation of verified eigenvalue bounds is an important component of many algo-
rithms described in this thesis and has, without any doubt, crucial value for a successful
SDP verification. In the following we present one of the possible approaches to this
problem, implemented in verifiedSDP. The aim is to obtain a verified lower bound of
the minimal eigenvalue of a symmetric interval matrix.

Let A ∈ IR
n×n be our matrix of interest and midA and radA will be its midpoint

and radius matrices. Then for a lower bound λ ≤ λmin(A) the following inequality
holds

λ ≥ λmin(midA) − ρ(radA), (4.1)

where ρ(M) denotes the spectral radius of a matrix M . This result can be found, for
example, in the work of Rohn [65] and in the book by Floudas [14]. For our calculation
of a lower bound of the smallest eigenvalue of midA, we apply the algorithm proposed
by Rump in [68]. There perturbation analysis based on the Weyl’s theorem is used.
First, an approximation t to the smallest eigenvalue of midA is computed. Then we
put

As = midA − sI, (4.2)

where s is a somewhat reduced t (e.g. s = 0.9t for positive t and s = 1.1t for
negative). Afterwards, we try to compute an approximate Cholesky decomposition
As ≈ HHT . Should this not be possible (the matrix (midA− sI) does not seem to be
positive semidefinite), we have to further reduce s and try again. At the end we get a
decomposition HHT with all nonnegative eigenvalues. The Weyl’s theorem states

|λi(As+E)−λi(As)| ≤ ‖E‖2, where E = HHT −As and 1 ≤ i ≤ n. (4.3)

4.1. Implementation of algorithms computing rigorous results 61

Hence,

0 ≤ λi(HH
T) = λi(As + E) ≤ λi(As) + ‖E‖2. (4.4)

At the same time

λi(midA − sI) = λi(midA) − s. (4.5)

Finally, combining (4.4) and (4.5) we get a lower bound to the smallest eigenvalue of
midA:

λmin(midA) ≥ s− ‖E‖2. (4.6)

To determine an upper bound of the spectral radius of radA, we use its properties as
a nonnegative matrix and apply the Perron-Frobenius theorem. We know that spectral
radius of such matrix is equal to its biggest eigenvalue: ρ(radA) = r ≥ 0, and that
there exists an eigenvector xr ≥ 0, such that radAxr = rxr. On the other hand, the
inequality

ρ(radA) ≤ max
1≤i≤n

1

xi

n∑
j=1

(radA)ijxj (4.7)

is valid for any positive vector x ∈ Rn. Hence we compute an approximation x̃ of the
eigenvector corresponding to the largest eigenvalue of radA and put the upper bound
of the spectral radius

ρ(radA) ≤ ρ = max
1≤i≤n

1

x̃i

n∑
j=1

(radA)ijx̃j . (4.8)

If an eigenvector estimation is not available, or the obtained one is not positive, an
arbitrary positive vector (e.g. normed random or all-ones) can be used instead. This
will impair the bound, but preserve its correctness. Finally, after substituting (4.6) and
(4.8) into (4.1), we obtain the required lower bound to the minimal eigenvalue of the
original interval matrix A:

λmin(A) ≥ s− ‖E‖2 − ρ. (4.9)

In the verifiedSDP implementation of this algorithm directed rounding is used
throughout the calculations to guarantee a verified bound. This and general interval
functionality are provided by PROFIL. Standard LAPACK routine DSYEVwas used as
an eigensolver for dense matrices, and methods of the ARluSymStdEigARPACK++
class were used to deal with sparse eigenproblems. DPOTRF from LAPACK was used
for an approximate Cholesky decomposition in both cases.

62 Chapter 4. Rigorous error bounds with verifiedSDP

4.1.2 Solving linear systems rigorously

The Algorithm 2.2 in Section 2.4.2 describes a procedure of computing an upper bound
for the optimal value of a semidefinite program. One of the key steps in this algorithm
is the computation of an enclosure vector x ∈ IR

N (step 1). There we have a rectan-
gular interval matrix Amat ∈ IR

m×N , m ≤ N , interval vector b ∈ IR
m and vector

x = svec((Xj), 1) ∈ Rn, where (Xj), j = 1, . . . , n are blocks of an approximate pri-
mal optimal point. The desired interval vector x must possess the following property
(2.50):

∀ b ∈ b, ∀Amat ∈ Amat ∃x ∈ x such that Amatx = b. (4.10)

First, a nonsingular square submatrix has to be put together from the columns of
Amat. As already mentioned in Section 2.4.2, an LU-decomposition of the mid-
point matrix (mid Amat)T does the job in our program. For dense matrices the stan-
dard DGETRF routine from LAPACK package is used. It computes a decomposi-
tion and returns a necessary pivoting vector. Sparse matrices of moderate size can
also be treated as dense (in most cases the redundancy of memory usage is com-
pensated by the speed of the dense algorithm). To be able to approach large and
highly sparse matrices we, nevertheless, use routines of the UMFPACK package [13].
umfpack di get symbolic in combination with umfpack di symbolicmade
it possible to verify problems for which dense algorithms would run out of memory.
The choice of procedure for sparse matrices is implemented in verifiedSDP by the flag
SPARSE LU in init.h. SPARSE LU = 0 will initiate a call of DGETRF, whereas
by setting SPARSE LU = 1 we trigger sparse routines of UMFPACK.

In case of success, the obtained pivoting vector is used to split the Amat matrix.
Hence we get a square interval linear system with a new right side in accordance with
(2.51). Since no linear system solver for sparse interval matrices is available in PRO-
FIL yet, a dense routine ILSS is used to solve the derived system regardless to the
sparsity of the problem. Finally, we build the required enclosure by merging both
parts of x and reversing the pivoting to restore the original order.

4.1.3 Checking SDP infeasibility

A few words should be said about the SDP infeasibility verification in verifiedSDP.
Phase I methods, explicitly described in Appendix A, as well as the improving rays
approach, discussed in Section 2.5, are implemented in our program. If a task is given

4.2. Numerical results for the SDPLIB 63

to check either primal or dual infeasibility of a semidefinite program, and no approxi-
mate solution (an improving ray candidate) for this SDP is available, the corresponding
phase I algorithm will be chosen. If, on the other hand, the infeasibility suspicion arises
after we have already tried to solve the SDP, the obtained approximation will first be
checked for improving ray properties in accordance with the algorithms in Section 2.5.
Only if no infeasibility certificate can be issued this way, the phase I methods will be
applied. This strategy can help us avoid unnecessary computational effort on solving
an extra SDP and reduce verification time.

4.2 Numerical results for the SDPLIB

The SDPLIB library [7] is a collection of semidefinite programming test problems. In
this section we present some numerical results obtained with verifiedSDP. Table 4.1
contains approximations of the primal and dual optimal values p̃∗ and d̃∗ computed
using SDPA, as well as the corresponding rigorous bounds p∗ and p∗. The bounds are
expected to be infinite if the problem is infeasible or very ill-conditioned.

verifiedSDP could handle 91 out of 92 SDPLIB problems with the only exception
of maxG60. In that case we had to capitulate because of the problem’s very large
size and, accordingly, solver’s extremely high memory demand. The largest problems
which could be solved are maxG55 with its m = 5000 constraints and 12497500

primal variables, and thetaG51 with m = 6910 constraints and 500500 primal vari-
ables.

Table 4.1:
Calculated approximate optimal values and rigorous bounds for the SDPLIB problems.

Problem p̃∗ d̃∗ p∗ p∗

arch0 −5.665172e− 01 −5.665173e− 01 −5.665170e− 01 −5.665173e− 01

arch2 −6.715153e− 01 −6.715154e− 01 −6.715153e− 01 −6.715154e− 01

arch4 −9.726273e− 01 −9.726274e− 01 −9.726272e− 01 −9.726274e− 01

arch8 −7.056975e + 00 −7.056982e + 00 −7.056969e + 00 −7.056982e + 00

control1 −1.778463e + 01 −1.778463e + 01 −1.778448e + 01 −1.778463e + 01

control2 −8.299999e + 00 −8.300000e + 00 −8.296941e + 00 −8.300000e + 00

control3 −1.363326e + 01 −1.363327e + 01 −1.341884e + 01 −1.363327e + 01

control4 −1.979423e + 01 −1.979423e + 01 −1.974714e + 01 −1.979423e + 01

control5 −1.688357e + 01 −1.688361e + 01 −1.678034e + 01 −1.688361e + 01

control6 −3.730434e + 01 −3.730443e + 01 −3.632569e + 01 −3.730443e + 01

control7 −2.062506e + 01 −2.062508e + 01 −1.975616e + 01 −2.062508e + 01

continued. . .

64 Chapter 4. Rigorous error bounds with verifiedSDP

Problem p̃∗ d̃∗ p∗ p∗

control8 −2.028633e + 01 −2.028637e + 01 −1.989140e + 01 −2.028637e + 01

control9 −1.467542e + 01 −1.467543e + 01 −1.432014e + 01 −1.467543e + 01

control10 −3.853284e + 01 −3.853308e + 01 −3.352668e + 01 −3.853308e + 01

control11 −3.195842e + 01 −3.195871e + 01 −2.915175e + 01 −3.195871e + 01

equalG11 −6.291546e + 02 −6.291553e + 02 −6.047805e + 02 −6.291553e + 02

equalG51 −4.005599e + 03 −4.005601e + 03 −3.527486e + 03 −4.005601e + 03

gpp100 4.494365e + 01 4.494355e + 01 ∞ 4.494355e + 01

gpp124-1 7.344950e + 00 7.343064e + 00 ∞ 7.343064e + 00

gpp124-2 4.686272e + 01 4.686229e + 01 ∞ 4.686229e + 01

gpp124-3 1.530154e + 02 1.530141e + 02 ∞ 1.530141e + 02

gpp124-4 4.189863e + 02 4.189876e + 02 ∞ 4.189876e + 02

gpp250-1 1.544627e + 01 1.544491e + 01 ∞ 1.544491e + 01

gpp250-2 8.187348e + 01 8.186893e + 01 ∞ 8.186893e + 01

gpp250-3 3.035431e + 02 3.035393e + 02 ∞ 3.035393e + 02

gpp250-4 7.473290e + 02 7.473283e + 02 ∞ 7.473283e + 02

gpp500-1 2.532244e + 01 2.532053e + 01 ∞ 2.532053e + 01

gpp500-2 1.560607e + 02 1.560604e + 02 ∞ 1.560604e + 02

gpp500-3 5.130260e + 02 5.130176e + 02 ∞ 5.130176e + 02

gpp500-4 1.567025e + 03 1.567019e + 03 ∞ 1.567019e + 03

hinf1 −2.032623e + 00 −2.032611e + 00 ∞ −2.032611e + 00

hinf2 −1.096700e + 01 −1.096709e + 01 −1.447394e + 00 −1.096709e + 01

hinf3 −5.694556e + 01 −5.694527e + 01 ∞ −5.694527e + 01

hinf4 −2.747641e + 02 −2.747641e + 02 ∞ −2.747641e + 02

hinf5 −3.627368e + 02 −3.626485e + 02 ∞ −3.626485e + 02

hinf6 −4.489816e + 02 −4.489603e + 02 ∞ −4.489603e + 02

hinf7 −3.899108e + 02 −3.912731e + 02 ∞ −3.912731e + 02

hinf8 −1.161089e + 02 −1.161626e + 02 ∞ −1.161626e + 02

hinf9 −2.362492e + 02 −2.362493e + 02 −2.362492e + 02 −2.362493e + 02

hinf10 −1.088896e + 02 −1.088007e + 02 ∞ −1.088007e + 02

hinf11 −6.592865e + 01 −6.589497e + 01 ∞ −6.589497e + 01

hinf12 −4.535424e− 01 −2.267973e− 01 ∞ −2.267973e− 01

hinf13 −4.880138e + 01 −4.728583e + 01 ∞ −4.728583e + 01

hinf14 −1.298103e + 01 −1.299714e + 01 ∞ −1.299714e + 01

hinf15 −2.761076e + 01 −2.662883e + 01 ∞ −2.662883e + 01

infd1 −7.706246e + 01 1.200141e + 06 ∞ 1.200141e + 06

infd2 6.334026e + 00 2.806876e + 06 ∞ 2.806876e + 06

infp1 −8.190125e + 07 −7.708220e + 00 −8.190125e + 07 −∞
infp2 −1.337344e + 08 −6.894643e + 00 −1.337344e + 08 −∞
maxG11 −6.291648e + 02 −6.291648e + 02 −6.291648e + 02 −6.291648e + 02

maxG32 −1.567640e + 03 −1.567640e + 03 −1.567640e + 03 −1.567640e + 03

maxG51 −4.006255e + 03 −4.006256e + 03 −4.006255e + 03 −4.006256e + 03

continued. . .

4.2. Numerical results for the SDPLIB 65

Problem p̃∗ d̃∗ p∗ p∗

maxG55 −1.286987e + 04 −1.286987e + 04 −1.286987e + 04 −1.286987e + 04

mcp100 −2.261573e + 02 −2.261574e + 02 −2.261573e + 02 −2.261574e + 02

mcp124-1 −1.419905e + 02 −1.419905e + 02 −1.419905e + 02 −1.419905e + 02

mcp124-2 −2.698802e + 02 −2.698802e + 02 −2.698802e + 02 −2.698802e + 02

mcp124-3 −4.677501e + 02 −4.677501e + 02 −4.677501e + 02 −4.677501e + 02

mcp124-4 −8.644118e + 02 −8.644119e + 02 −8.644118e + 02 −8.644119e + 02

mcp250-1 −3.172643e + 02 −3.172643e + 02 −3.172643e + 02 −3.172643e + 02

mcp250-2 −5.319300e + 02 −5.319301e + 02 −5.319300e + 02 −5.319301e + 02

mcp250-3 −9.811725e + 02 −9.811726e + 02 −9.811725e + 02 −9.811726e + 02

mcp250-4 −1.681960e + 03 −1.681960e + 03 −1.681960e + 03 −1.681960e + 03

mcp500-1 −5.981485e + 02 −5.981485e + 02 −5.981485e + 02 −5.981485e + 02

mcp500-2 −1.070057e + 03 −1.070057e + 03 −1.070057e + 03 −1.070057e + 03

mcp500-3 −1.847970e + 03 −1.847970e + 03 −1.847970e + 03 −1.847970e + 03

mcp500-4 −3.566738e + 03 −3.566738e + 03 −3.566738e + 03 −3.566738e + 03

qap5 4.360624e + 02 4.359993e + 02 ∞ 4.359993e + 02

qap6 3.814358e + 02 3.814370e + 02 ∞ 3.814370e + 02

qap7 4.248868e + 02 4.247967e + 02 ∞ 4.247967e + 02

qap8 7.570976e + 02 7.569443e + 02 ∞ 7.569443e + 02

qap9 1.410377e + 03 1.409895e + 03 ∞ 1.409895e + 03

qap10 1.093368e + 03 1.092526e + 03 ∞ 1.092526e + 03

qpG11 −2.448659e + 03 −2.448659e + 03 −2.448659e + 03 −2.448659e + 03

qpG51 −1.181800e + 04 −1.181800e + 04 −1.181800e + 04 −1.181800e + 04

ss30 −2.023950e + 01 −2.023951e + 01 −2.023948e + 01 −2.023951e + 01

theta1 −2.300000e + 01 −2.300000e + 01 −2.300000e + 01 −2.300000e + 01

theta2 −3.287917e + 01 −3.287917e + 01 −3.287917e + 01 −3.287917e + 01

theta3 −4.216698e + 01 −4.216698e + 01 −4.216698e + 01 −4.216698e + 01

theta4 −5.032122e + 01 −5.032122e + 01 −5.032122e + 01 −5.032122e + 01

theta5 −5.723231e + 01 −5.723231e + 01 −5.723231e + 01 −5.723231e + 01

theta6 −6.347709e + 01 −6.347709e + 01 −6.347709e + 01 −6.347709e + 01

thetaG11 −4.000000e + 02 −4.000000e + 02 −4.000000e + 02 −4.000000e + 02

thetaG51 −3.489997e + 02 −3.490000e + 02 −3.489882e + 02 −3.490000e + 02

truss1 8.999997e + 00 8.999996e + 00 8.999997e + 00 8.999996e + 00

truss2 1.233804e + 02 1.233804e + 02 1.233804e + 02 1.233804e + 02

truss3 9.109996e + 00 9.109996e + 00 9.109996e + 00 9.109996e + 00

truss4 9.009997e + 00 9.009996e + 00 9.009997e + 00 9.009996e + 00

truss5 1.326357e + 02 1.326357e + 02 1.326357e + 02 1.326357e + 02

truss6 9.010013e + 02 9.010014e + 02 9.010551e + 02 9.010014e + 02

truss7 9.000014e + 02 9.000014e + 02 9.000030e + 02 9.000014e + 02

truss8 1.331146e + 02 1.331146e + 02 1.331146e + 02 1.331146e + 02

As can be seen from the table above, a rigorous lower bound p∗ could be found for

66 Chapter 4. Rigorous error bounds with verifiedSDP

all problems except infp1 and infp2 which are dual infeasible. Thus verifiedSDP
could compute for all 85 problems discussed in [15] a rigorous lower bound of the
optimal value and verify the existence of strictly dual feasible solutions which implies
a zero duality gap. A finite rigorous upper bound could be computed for all well-posed
problems. For the 32 ill-posed problems (those from [15]) and two primal infeasible
problems infd1 and infd2 verifiedSDP has computed p∗ = +∞, which reflects
that the distance to the next primal infeasible problem is zero as well as the infinite
condition number.

The following Table 4.2 contains the approximate duality gap μ(p̃∗, d̃∗), the rigor-
ous error μ(p∗, p∗), as well as computation times t̃, t and t for calculating an SDPA
approximation and determining upper and lower rigorous bounds respectively. We
measure the accuracy by the quantity

μ(a, b) :=
a− b

max{1.0, (|a|+ |b|)/2} . (4.11)

Notice that we do not use the absolute value of a − b. Hence, a negative sign implies
that a ≤ b. We have set μ(a, b) = NaN if one of the arguments is infinite.

Table 4.2:
Accuracy and computational effort (in seconds) for the SDPLIB problems.

Problem μ(p̃∗, d̃∗) μ(p∗, p∗) t̃ t t

arch0 1.411e− 07 2.564e− 07 4.32 6.94 0.50

arch2 8.859e− 08 9.344e− 08 4.48 7.10 0.50

arch4 1.495e− 07 2.097e− 07 4.80 7.62 0.50

arch8 9.368e− 07 1.754e− 06 4.66 7.48 0.50

control1 7.138e− 08 8.013e− 06 0.02 0.01 0.00

control2 1.461e− 07 3.686e− 04 0.11 0.12 0.01

control3 4.470e− 07 1.585e− 02 0.53 0.67 0.00

control4 1.196e− 07 2.382e− 03 1.73 2.46 0.01

control5 1.997e− 06 6.135e− 03 5.02 8.76 0.02

control6 2.387e− 06 2.659e− 02 14.68 26.26 0.05

control7 1.051e− 06 4.304e− 02 35.48 73.29 0.07

control8 1.885e− 06 1.966e− 02 67.95 150.99 0.12

control9 7.376e− 07 2.451e− 02 127.51 290.59 0.20

control10 6.194e− 06 1.390e− 01 200.99 539.09 0.29

control11 9.082e− 06 9.187e− 02 158.96 681.51 0.27

equalG11 1.117e− 06 3.951e− 02 290.45 969.05 1276.94

equalG51 6.712e− 07 1.269e− 01 731.19 4538.63 3024.85

continued. . .

4.2. Numerical results for the SDPLIB 67

Problem μ(p̃∗, d̃∗) μ(p∗, p∗) t̃ t t

gpp100 2.254e− 06 NaN 0.32 3.62 0.19

gpp124-1 2.568e− 04 NaN 0.64 13.86 0.44

gpp124-2 9.050e− 06 NaN 0.72 6.99 0.43

gpp124-3 8.233e− 06 NaN 0.60 6.84 0.44

gpp124-4 −3.196e− 06 NaN 0.81 5.96 0.43

gpp250-1 8.795e− 05 NaN 5.39 57.63 7.01

gpp250-2 5.552e− 05 NaN 4.75 68.38 6.98

gpp250-3 1.255e− 05 NaN 5.49 61.54 7.01

gpp250-4 9.352e− 07 NaN 5.38 62.07 7.32

gpp500-1 7.536e− 05 NaN 35.31 457.66 68.18

gpp500-2 2.133e− 06 NaN 33.52 454.68 66.96

gpp500-3 1.648e− 05 NaN 26.66 395.01 58.97

gpp500-4 4.005e− 06 NaN 58.31 690.14 192.69

hinf1 −6.054e− 06 NaN 0.00 0.05 0.00

hinf2 8.622e− 06 1.534e + 00 0.00 0.06 0.00

hinf3 −5.034e− 06 NaN 0.00 0.03 0.00

hinf4 −5.516e− 08 NaN 0.00 0.04 0.00

hinf5 −2.435e− 04 NaN 0.00 0.04 0.00

hinf6 −4.752e− 05 NaN 0.01 0.05 0.00

hinf7 3.488e− 03 NaN 0.00 0.04 0.00

hinf8 4.623e− 04 NaN 0.00 0.03 0.00

hinf9 1.147e− 07 1.147e− 07 0.00 0.01 0.00

hinf10 −8.164e− 04 NaN 0.01 0.05 0.00

hinf11 −5.109e− 04 NaN 0.03 0.08 0.01

hinf12 −2.267e− 01 NaN 0.05 0.16 0.00

hinf13 −3.155e− 02 NaN 0.02 0.14 0.00

hinf14 1.241e− 03 NaN 0.03 0.28 0.00

hinf15 −3.621e− 02 NaN 0.05 0.30 0.00

infd1 −2.000e + 00 NaN 0.03 0.29 0.00

infd2 −2.000e + 00 NaN 0.03 0.23 0.00

infp1 −2.000e + 00 NaN 0.03 0.02 0.25

infp2 −2.000e + 00 NaN 0.02 0.02 0.28

maxG11 3.471e− 08 3.471e− 08 73.39 217.11 21.49

maxG32 1.967e− 08 1.967e− 08 1124.21 5001.41 766.84

maxG51 4.228e− 08 4.228e− 08 131.34 303.47 1280.89

maxG55 2.461e− 08 2.461e− 08 16138.81 231628.62 267432.42

mcp100 1.745e− 08 1.745e− 08 0.20 0.13 0.06

mcp124-1 1.137e− 08 1.137e− 08 0.40 0.23 0.07

mcp124-2 3.174e− 08 3.174e− 08 0.38 0.24 0.13

mcp124-3 2.803e− 08 2.803e− 08 0.38 0.25 0.19

mcp124-4 2.156e− 08 2.156e− 08 0.37 0.25 0.24

continued. . .

68 Chapter 4. Rigorous error bounds with verifiedSDP

Problem μ(p̃∗, d̃∗) μ(p∗, p∗) t̃ t t

mcp250-1 6.006e− 08 6.006e− 08 2.44 2.36 0.68

mcp250-2 8.401e− 08 8.401e− 08 2.25 2.36 1.38

mcp250-3 4.582e− 08 4.582e− 08 2.29 2.36 2.34

mcp250-4 5.549e− 08 5.549e− 08 2.27 2.38 3.39

mcp500-1 1.583e− 08 1.583e− 08 18.92 29.15 6.33

mcp500-2 1.840e− 08 1.840e− 08 18.02 29.44 18.07

mcp500-3 2.242e− 08 2.242e− 08 17.16 29.37 34.40

mcp500-4 1.158e− 08 1.158e− 08 17.01 29.54 53.56

qap5 1.449e− 04 NaN 0.07 0.54 0.00

qap6 −3.152e− 06 NaN 0.18 1.82 0.00

qap7 2.121e− 04 NaN 0.42 8.66 0.02

qap8 2.025e− 04 NaN 1.04 29.04 0.05

qap9 3.424e− 04 NaN 2.21 80.88 0.11

qap10 7.703e− 04 NaN 4.74 223.85 0.25

qpG11 3.399e− 08 3.399e− 08 569.47 2230.77 311.03

qpG51 3.701e− 08 3.701e− 08 1146.61 6938.11 10320.09

ss30 7.125e− 07 1.395e− 06 21.44 24.34 32.31

theta1 5.411e− 08 5.411e− 08 0.06 0.04 0.01

theta2 1.475e− 08 1.475e− 08 1.07 2.63 0.21

theta3 1.581e− 08 1.581e− 08 6.22 27.88 1.10

theta4 2.270e− 08 2.270e− 08 26.97 160.21 4.12

theta5 2.479e− 08 2.479e− 08 89.27 759.76 10.09

theta6 2.483e− 08 2.483e− 08 257.09 2374.57 22.60

thetaG11 2.299e− 08 2.299e− 08 76.38 250.55 17.15

thetaG51 9.443e− 07 3.387e− 05 1889.96 48907.86 1600.74

truss1 2.785e− 08 2.785e− 08 0.01 0.00 0.00

truss2 3.714e− 08 3.714e− 08 0.06 0.01 0.00

truss3 4.141e− 08 4.141e− 08 0.01 0.00 0.00

truss4 5.485e− 08 5.485e− 08 0.00 0.00 0.01

truss5 3.348e− 08 3.348e− 08 0.58 0.16 0.02

truss6 −3.798e− 08 5.959e− 05 0.48 2.83 0.04

truss7 −3.428e− 08 1.769e− 06 0.19 0.81 0.23

truss8 1.868e− 08 3.034e− 07 4.59 2.95 4.71

One of the first observations made upon this table would be the negative signs
of μ(p̃∗, d̃∗) showing that the approximations do not satisfy weak duality. Therefore
SDPA is not backward stable; i.e., p̃∗ and d̃∗ are not exact solutions of a slightly per-
turbed problem. This demonstrates that the measures for termination and accepting
an approximation are not appropriate for ill-conditioned or ill-posed problems. The
rigorous bounds p∗ and p∗ recognize difficult problems much better and overestimate

4.2. Numerical results for the SDPLIB 69

the optimal value only slightly, and this overestimation depends on the quality of the
computed approximations.

Looking at computation times of those problems for which no rigorous upper
bound could be found (p∗ = ∞), one can notice that t/t ratio for them is much higher
than that of problems with finite upper bounds. The reason lays in the big number of
futile iterations of the algorithm 2.2 before it reaches lmax. Otherwise the time over-
head of computing rigorous results is fair compared to the time required to find an
approximation.

Chapter 5

Conclusions

Finding rigorous error bounds for semidefinite optimization problems is a difficult
computational problem, important for many real life applications. This thesis con-
tributes to semidefinite programming verification by presenting algorithms for com-
puting lower and upper bounds of its global optimal value, as well as enclosures of
ε-optimal solutions. In Chapter 2 we have introduced a detailed investigation of the
problem. Suggested verification methods for computation of rigorous error bounds can
be viewed as a carefully postprocessing tool that uses only approximate solutions com-
puted by an SDP solver. The numerical results show that such rigorous error bounds
can be computed even for problems of large size. Moreover, we have shown how these
verification algorithms can be used to check the possibility of issuing a certificate of
infeasibility and thus to prove the existence of optimal solutions.

A key achievement of this thesis is the successful application of the suggested
verification methods to the electronic structure problem. The proposed approach was
thoroughly described in Chapter 3. There we took the corresponding atomic-molecular
problem in reduced density matrix formulation (in its SDP representation). Then a
rigorous lower bound of the resulting semidefinite program, and thus a lower bound of
the ground state energy of the considered N-electron system, was computed.

To improve the algorithm’s accuracy and performance, we have reformulated the
respective semidefinite problem and estimated spectral properties of the involved op-
erators. This gave us a considerable increase in performance and made the rigorous
evaluation of large-scale problems possible in reasonable time.

In addition, we have developed a C++ software package which implements our
verification algorithms and allows, in combination with an approximate semidefinite
solver, to calculate rigorous optimal value bounds and to check feasibility of semidefi-

70

71

nite programs. This package, called verifiedSDP, permits interval input and rigorously
controls rounding errors. All numerical results in this thesis were obtained with veri-
fiedSDP.

Based on our experience we can say, that at least for the problems considered in this
study, our rigorous bounds reflect the problem’s difficulty much better than warnings
and termination codes of solvers. They provide safety, especially in the case where
algorithms subsequently call other algorithms, as is done for example in branch-and-
bound methods. The observed results show a strong correlation between the rigorous
bounds and the difficulty of the problem. Moreover, since approximations often violate
weak duality, our verification algorithms provide valuable means for optimal value
assessment.

Appendix A

Phase I methods in semidefinite
programming

For many semidefinite programming solvers a feasible starting point is necessary. If
such a point is not known, a preliminary stage, called phase I, is used to find a feasible
point or to prove the infeasibility of the problem. The feasible point found during phase
I is then used as the starting point for the optimization algorithm (e.g. interior-point
method), which is called the phase II stage [9].

We consider semidefinite programming problems in the following primal and dual
block diagonal forms:

p∗ := min
n∑

j=1

〈Cj, Xj〉 s.t.
n∑

j=1

〈Aij, Xj〉 = bi for i = 1, . . . , m,

Xj � 0 for j = 1, . . . , n;

(A.1)

d∗ := max bT y s.t.
m∑

i=1

yiAij 	 Cj for j = 1, . . . , n, (A.2)

where Cj , Aij, Xj ∈ Ssj and b, y ∈ Rm.

A.1 Dual feasibility

We start our description of the method with the dual SDP (A.2), since the implemen-
tation is more straightforward for checking feasibility of LMIs. The general idea is to
modify the original problem to make it evidently feasible and to organize an optimiza-
tion process to bound the maximum infeasibility of the original SDP. To check the fea-
sibility of (A.2), we introduce a complementary variable ym+1, put b = (0, . . . , 0, 1)T ,

72

A.1. Dual feasibility 73

and set A(m+1)j = Ij, j = 1, . . . , n, where Ij are identity matrices of appropriate size.
The phase I dual problem then becomes

d∗ := max ym+1 s.t. Cj −
m∑

i=1

yiAij � ym+1Ij for j = 1, . . . , n. (A.3)

Indeed, there will always exist a ym+1 such that the inequality above holds for
any values of y1, . . . , ym and the optimization problem (A.3) is thus always feasible.
Depending on the optimal value d∗, different cases can be distinguished.

1. d∗ > 0 (ym+1 > 0): the LMIs in (A.2) are strictly feasible.

2. d∗ < 0 (ym+1 < 0): the LMIs in (A.2) are infeasible.

3. d∗ = 0 (ym+1 = 0): the feasibility problem for LMIs in (A.2) is ill-posed. Arbitrary
small perturbations yield infeasibility.

Since any d∗ > 0 proves feasibility, an artificial bound ym+1 ≤ y, added to the
problem (A.3), can help an SDP solver to find the optimum point. We recommend a
simple bound of the type y ≈ α · ‖C‖ with α ≥ 103. The necessary modifications of
the feasibility problem are minimal. One extra block of size 1 has to be added, making
the total number of blocks j + 1.

Ai(n+1) = 0, for i = 1, . . . , m,

A(m+1)(n+1) = 1,

Cn+1 = y.

(A.4)

As we have seen, the dual SDP (A.3) is always feasible. This fact does not, nev-
ertheless, mean, that the corresponding primal problem is feasible too. In fact, the
primal infeasibility of the phase I problem (A.3) is not a rare phenomenon at all, what
makes the use of primal-dual interior-point methods in many cases inefficient. We will
illustrate such behavior by a simple example.

Example A.1. Let us take the problem discussed in example 2.1. There m = 1, n = 1

and

C =

(
1 0

0 1

)
, A =

(
2 0.5

0.5 1

)
, b = {1}. (A.5)

The primal variable

X :=

(
x1 x2

x2 x3

)
(A.6)

74 Appendix A. Phase I methods in semidefinite programming

yields the primal feasibility constraints

2x1 + x2 + x3 = 1,

x1 ≥ 0,

x1x3 − x2
2 ≥ 0.

(A.7)

This set is not empty and contains strictly feasible points (e.g. x1 = 0.5, x2 = −0.25

and x3 = 0.25). This means, that the initial SDP is primal feasible.
Let us now switch to the dual phase I problem of this SDP. The primal feasibility

constraints then become

〈A,X〉 = 0,

〈I,X〉 = 1,

X � 0.

(A.8)

From the first and the third conditions above we obtain

x3 = −2x1 − x2,

x1 ≥ 0,

− x2
2 − x1x2 − 2x1

2 ≥ 0.

(A.9)

This system has only one trivial solution x1 = x2 = x3 = 0 (follows from the last
inequality), which is not compatible with the second equation in (A.8) (x1 + x3 = 1)
and the phase I problem for the SDP (A.5) is thus proven to be primal infeasible.

The purpose of this simple example was to show, that potential primal infeasibility
of phase I problems should not be neglected, and that special care is needed when
using primal-dual interior-point methods to solve them.

A.2 Primal feasibility

Phase I feasibility check of a primal SDP (A.1) is similar, but less evident. It is useful
to begin with a formulation of the target feasibility problem.

p∗ := min−s s.t.
n∑

j=1

〈Aij, Xj〉 = bi for i = 1, . . . , m,

Xj � sIj for j = 1, . . . , n.

(A.10)

This semidefinite program is again always feasible, and the optimization aim is to
bring minimum feasibility of the original problem above zero. In the following we

A.2. Primal feasibility 75

will show modifications of the original problem necessary to represent it in the form
(A.10). First a change of variables X̂j = Xj − sIj is necessary. This yields

n∑
j=1

〈Aij, Xj〉 =
n∑

j=1

〈Aij , X̂j〉+s
n∑

j=1

〈Aij, Ij〉 =
n∑

j=1

〈Aij , X̂j〉+s ·gi = bi, (A.11)

where gi = trace(Ai) ∈ R. Nevertheless, simple inclusion of s as an extra block
in the variable matrix is not acceptable. This will impose a constraint s ≥ 0 which
is inconsistent with the idea of phase I methods. To overcome this limitation, we
introduce a decomposition s = s+ − s−. Having both s+ and s− positive, we avoid
restrictions on s. The equation (A.11) then becomes

n∑
j=1

〈Aij, X̂j〉 + s+ · gi − s− · gi = bi, (A.12)

and the new variable is the block diagonal matrix X ′ = (X̂1; . . . ; X̂n; s+; s−). The
corresponding constraint matrices become A′

i = (Ai1; . . . ;Ain; gi;−gi), with gi =∑n
j=1〈Aij, Ij〉 = trace(Ai). To obtain the desired objective function from (A.10), we

put C ′ = (0; . . . ; 0;−1; 1). The resulting semidefinite program

p∗ := min
n+2∑
j=1

〈C ′
j, X

′
j〉 s.t.

n+2∑
j=1

〈A′
ij, X

′
j〉 = bi for i = 1, . . . , m,

X ′
j � 0 for j = 1, . . . , n+ 2

(A.13)

is then identical to (A.10) and represents the phase I feasibility problem for a primal
SDP (A.1). Depending on the optimal value of (A.13), three cases can again be segre-
gated.

1. p∗ < 0 (s > 0): the semidefinite program (A.1) is strictly feasible.

2. p∗ > 0 (s < 0): the semidefinite program (A.1) is infeasible.

3. p∗ = 0 (s = 0): the feasibility problem for (A.1) is ill-posed. Arbitrary small
perturbations yield infeasibility.

Of course, if the initial problem has design drawbacks and equations
∑n

j=1〈Aij, Xj〉 =

bi in (A.1) represent incompatible constraints, both (A.1) and (A.13) will be infeasi-
ble. Otherwise, (A.13) will always have a solution. Furthermore, a situation similar
to that in the Example A.1 is possible, when initially feasible dual SDP will become
infeasible after the described phase I reformulation.

76 Appendix A. Phase I methods in semidefinite programming

For both, primal and dual semidefinite programs, including problems with uncer-
tain input, the bounding algorithms from Chapter 2 can be used for a verified infea-
sibility check. By calculating a rigorous upper or lower bound of the dual optimal
value d∗ in (A.3) or of the primal optimal value p∗ in (A.13) respectively, one can ei-
ther prove strict feasibility, alternatively infeasibility, of the corresponding problem, or
illustrate the uncertainty of the case.

Appendix B

verifiedSDP quick reference

B.1 Installation

To be able to compile verifiedSDP, the following software has to be installed before-
hand:

• SDPA (SemiDefinite Programming Algorithm) [17] is used as a semidefinite
solver.

• LAPACK(CLAPACK) [3] and ATLAS (Automatically Tuned Linear Algebra
Software) [75] provide verifiedSDP and SDPA with necessary linear algebra
functionality.

• PROFIL/BIAS [43] interval libraries permit interval input data and contribute to
verified calculations.

• UMFPACK [13] (optional) is necessary to enable sparse LU decompositions.
Though it is possible to perform this operations with LAPACK routines, for
large and highly sparse input data, using sparse methods can bring a considerable
performance benefit and extend the scope of solvable problems.

• ARPACK/ARPACK++ [22] (optional) can be used for sparse eigenvalue calcu-
lations as an alternative to dense LAPACK functions.

The files delivered with the verifiedSDPpackage include:

77

78 Appendix B. verifiedSDP quick reference

Files Description

verSDP.h, verSDP.cpp — Declaration and implementation of the verSDP
class. Contains the verification algorithms and in-
put/output methods.

verSDP struct.h,
verSDP struct.cpp

— Define different necessary structures (e.g. block di-
agonal matrices, rectangular matrices, etc.) and op-
erations on them (such as svec, smat).

infeassdp.h,
infeassdp.cpp

— Contain the algorithms permitting infeasibility ver-
ification.

arpack interface.h,
arpack interface.cpp

— Wrapper for the ARPACK++ eigenvalue calculating
routine.

init.h — Configuration file. Contains flags defining, for ex-
ample, if sparse or dense methods should be taken
to perform LU decompositions.

sdpl.cpp — This is a program for verified SDP solving (see sec-
tion B.2.1).

test.cpp, test.dat-s — A sample program and a test SDP problem in SDPA
format demonstrating the use of the libverSDP li-
brary.

Makefile — A makefile.
After adapting the makefile to the environment (external library paths, preferred com-
piler, etc.) it will be enough to call make in the directory where verifiedSDP is lo-
cated to compile the package. After a successful compilation, the callable library
libverSDP.a, an executable binary sdpl and an example program test will be
generated.

To test the installation, execute test or sdpl. Make sure the programs work and
that information similar to the output below is displayed:

$./test test.dat-s

The primal objective value :-1.7784338847274242e+01

The dual objective value :-1.7784340068152051e+01

The upper bound :-1.7784338847274238e+01

The lower bound :-1.7784627305451828e+01

$./sdpl

Use sdpl -{v|i} input file [output file]

-v : for a rigorous verification of an SDP problem

B.2. Examples of use 79

-i : for infeasibility check of an SDP problem

B.2 Examples of use

B.2.1 Stand-alone executable binary

To rigorously solve semidefinite optimization problems or to verify their feasibility,
the sdpl program can be used. It requires input problem to be in either dense (.dat)
or sparse (.dat-s) SDPA format. To obtain rigorous upper and lower bounds of the
primal optimal value, sdpl should be executed with -v option, input file name and
an optional output file name. To check, if primal or dual infeasibility of a problem can
be proven, run sdpl with the -i option:
$./sdpl -v test.dat-s

$./sdpl -i test.dat-s test.out

B.2.2 Using verifiedSDP library

The simplest program doing rigorous semidefinite verification using our libverSDP.a
library will look similar to the example below (the provided source code was taken
from test.cpp):
#include <stdio.h>

#include <verSDP.h>

int main (int argc, char *argv[])

{
verSDP *sdp = new verSDP();

sdp->readProblemFromFile(argv[1]);

sdp->solveProblem();

sdp->pointToFile();

double lowerBound = sdp->sdpLow();

double upperBound = sdp->sdpUp();

fprintf(stdout, "p* :%.16e\n", -sdp->sdpProblem->getDualObj());

fprintf(stdout, "d* :%.16e\n", -sdp->sdpProblem->getPrimalObj());

fprintf(stdout, "pˆ :%.16e\n", upperBound);

fprintf(stdout, "p :%.16e\n", lowerBound);

delete(sdp);

80 Appendix B. verifiedSDP quick reference

exit(0);

}
The program reads an SDPA file whose name is passed as a command line argument,
calculates an approximate optimal value, and then finds the rigorous bounds. The
pointToFile()method is used to save an approximate solution of the semidefinite
problem in a text file. It can then be used for the successive verification, or even kept
for a later reuse.

The corresponding makefile could then be:
PROF = $(HOME)/Profil-2.0

SDPA = $(HOME)/sdpa

UMF = $(HOME)/umfpack/UMFPACK

VSDP = $(HOME)/verifiedSDP

CFLAGS = -Wno-deprecated -c -O3 -fomit-frame-pointer

LFLAGS = -z muldefs

CC = g++

test: test.o

$(CC) -o test $(LFLAGS) test.o \
-L$(VSDP) -L$(SDPA) -L$(HOME)/lapack/lib -L$(PROF)/lib \
-L$(UMF)/Lib -lverifiedSDP -lsdpa -lg2c -lf2c -llapack2 \
-lcblaswr -lcblas -latlas -lProfilPackages -lProfil \
-lBias -llr -lm -lblas -lumfpack -lgfortran

test.o: test.cpp

$(CC) $(CFLAGS) test.cpp -I$(VSDP) -I$(SDPA) \
-I$(PROF)/include -I$(PROF)/src/base -I$(HOME)/lapack/include

clean:

rm -f *.o *.a test

As already mentioned, verifiedSDP implements only import of semidefinite pro-
grams in SDPA format. Nevertheless, any other alternative importer (for example for
interval problems) can be easily written. One just has to generate internal structures
used in verifiedSDP. Those are elaborately described in verSDP struct.h.

For more detailed information on the library interface, please refer to the definitions
in the corresponding header files directly.

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, New York, 1983.

[2] F. Alizadeh. Combinatorial optimization with interior point methods and
semidefinite matrices. PhD thesis, Univ. of Minnesota, October 1991.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A.Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA,
third edition, 1999.

[4] M. Arcak and P.V. Kokotović. Nonlinear observers: A circle criterion design and
robustness analysis. Automatica, 37(12):1923–1930, 2001.

[5] V. Balakrishnan and E. Feron, editors. Linear Matrix Inequalities in Control
Theory and Applications, special edition of International Journal of Robust and
Nonlinear Control, volume 6, no. 9/10. 1996.

[6] V. Balakrishnan, F. Wang, and L. Vandenberghe. Applications of semidefinite
programming in process control. In Proceedings of the American Control Con-
ference, volume 5, pages 3219–3223, 2000.

[7] B. Borchers. SDPLIB 1.2, A Library of Semidefinite Programming Test Prob-
lems. Optimization Methods and Software, 11(1):683–690, 1999.

[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory. SIAM, Philadelphia, 1994.

[9] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, March 2004.

81

82 Bibliography

[10] Mahmoud Chilali, Pascal Gahinet, and Pierre Apkarian. Robust pole placement
in lmi regions. IEEE Transactions on Automatic Control, 44:2257–2270, 1999.

[11] D.J. Chmielewski, T. Palmer, and V. Manousiouthakis. On the theory of optimal
sensor placement. AlChE Journal, 48(5):1001–1012, 2002.

[12] A. J. Coleman. Structure of fermion density matrices. Rev. Mod. Phys.,
35(3):668–686, Jul 1963.

[13] Timothy A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern mul-
tifrontal method. ACM Trans. Math. Softw., 30(2):196–199, 2004.

[14] C. A. Floudas. Deterministic Global Optimization - Theory, Methods and Ap-
plications, volume 37 of Nonconvex Optimization and Its Applications. Kluwer
Academic Publishers, Dordrecht, Boston, London, 2000.

[15] R. M. Freund, F. Ordóñez, and K. C. Toh. Behavioral measures and their corre-
lation with ipm iteration counts on semi-definite programming problems. Math.
Program., 109(2):445–475, 2007.

[16] K. R. Frisch. The logarithmic potential method for convex programming. Mem-
orandum, Institute of Economics, University of Oslo, Oslo, Norway, May 1955.

[17] K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. SDPA (SemiDefinite Pro-
gramming Algorithm) User’s Manual — Version 6.2.0. Department of Mathemat-
ical and Computing Sciences, Tokyo Institute of Technology, September 2004.

[18] Mituhiro Fukuda. SDP benchmark problems from electronic structure calcula-
tions. http://www.is.titech.ac.jp/˜mituhiro/.

[19] Mituhiro Fukuda, Bastiaan J. Braams, Maho Nakata, Michael L. Overton,
Jerome K. Percus, Makoto Yamashita, and Zhengji Zhao. Large-scale semidef-
inite programs in electronic structure calculation. Math. Program., 109(2):553–
580, 2007.

[20] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

[21] Claude Garrod and Jerome K. Percus. Reduction of the n-particle variational
problem. Journal of Mathematical Physics, 5(12):1756–1776, 1964.

Bibliography 83

[22] F. A. M Gomes and D. C. Sorensen. ARPACK++: a C++ implementation of the
ARPACK eigenvalue package. Technical Report TR97729, CRPC, Rice Univer-
sity, Houston, TX, USA, 1997.

[23] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[24] Q. P. Ha and H. Trinh. State and input simultaneous estimation for a class of
nonlinear systems. Automatica, 40(10):1779–1785, 2004.

[25] E. R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New
York, 1992.

[26] C. Helmberg. Semidefinite Programming for Combinatorial Optimization. Ha-
bilitation thesis, TU Berlin, 2000. ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum
Berlin.

[27] D. Henrion and M. Šebek. Lmis and polynomial methods in control: Illustrative
examples. Research Report 00075, LAAS-CNRS, 2000.

[28] H. Hindi and S. Boyd. Analysis of linear systems with saturation using con-
vex optimization. In Proceedings of the 37th IEEE Conference on Decision &
Control, volume 1, pages 903–908, 1998.

[29] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[30] P. Huard. Resolution of mathematical programming with nonlinear constraints
by the method of centers. In Nonlinear Programming, pages 207–219. North
Holland, Amsterdam, The Netherlands, 1967.

[31] C. Jansson. VSDP: Verified SemiDefinite Programming, User’s Guide. Beta
Version 0.1, to appear.

[32] C. Jansson. A Self-Validating Method for Solving Linear Programming Problems
with Interval Input Data. Computing, Suppl. 6:33–45, 1988.

[33] C. Jansson. Rigorous Lower and Upper Bounds in Linear Programming. SIAM
J. Optimization (SIOPT), 14(3):914–935, 2004.

84 Bibliography

[34] C. Jansson. On Verifed Computation in Combinatorial Optimization. Inter-
national Symposium on Nonlinear Theory and its Applications (NOLTA2005),
Bruges, Belgium, pages 714–717, 2005.

[35] C. Jansson. Termination and verification for ill-posed semidefinite programming
problems. Optimization online, 2005.

[36] C. Jansson. Guaranteed accuracy for conic programming problems in vector
lattices. Optimization online, 2007.

[37] C. Jansson, D. Chaykin, and C. Keil. Rigorous error bounds for the optimal value
in semidefinite programming. SIAM J. Numer. Anal., 46(1):180–200, 2007.

[38] V. A. Kamenetskii. Absolute stability and absolute instability of control systems
with several nonlinear nonstationary elements. Automation and Remote Control,
44(12):1543–1552, 1983.

[39] V. A. Kamenetskii. Convolution method for matrix inequalities. Automation and
Remote Control, 50(5):598–607, 1989.

[40] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4(4):373–395, 1984.

[41] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Aca-
demic Publisher, Dordrecht, 1996.

[42] R. B. Kearfott. On proving existence of feasible points in equality constrained
optimization problems. Math. Program., 83(1):89–100, 1998.

[43] O. Knüppel. PROFIL/BIAS and extensions, Version 2.0. Technical report, Inst.
f. Informatik III, Technische Universität Hamburg-Harburg, 1998.

[44] R. Krawczyk. Fehlerabschätzung bei linearer Optimierung. In K. Nickel, editor,
Interval Mathematics, volume 29 of Lecture Notes in Computer Science, pages
215–222. Springer Verlag, Berlin, 1975.

[45] A. I. Lur’e. Some Nonlinear Problems in the Theory of Automatic Control.
Gostechizdat, Moscow, 1951. In Russian.

Bibliography 85

[46] G. Mayer. Result verification for eigenvectors and eigenvalues. In J. Herzberger,
editor, Topics in validated computations. Proceedings of the IMACS-GAMM in-
ternational workshop, Oldenburg, Germany, 30 August - 3 September 1993, Stud.
Comput. Math. 5, pages 209–276, Amsterdam, 1994. Elsevier.

[47] David A. Mazziotti. Variational minimization of atomic and molecular ground-
state energies via the two-particle reduced density matrix. Phys. Rev. A,
65(6):062511, Jun 2002.

[48] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia,
U.S.A., 2000.

[49] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-
phia, 1979.

[50] A. Nemirovski. Lectures on Modern Convex Optimization, 2003.

[51] Y.E. Nesterov and A.S. Nemirovski. A general approach to polynomial-time
algorithms design for convex programming. Technical report, Centr. Econ. &
Math. Inst., USSR Acad. Sci., Moscow, USSR, 1988.

[52] Y.E. Nesterov and A.S. Nemirovski. Self-concordant functions and polynomial
time methods in convex programming. Technical report, Centr. Econ. & Math.
Inst., USSR Acad. Sci., Moscow, USSR, May 1990.

[53] Netlib. Netlib linear programming library. http://www.netlib.org/lp.

[54] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, 1990.

[55] A. Neumaier. Introduction to Numerical Analysis. Cambridge University Press,
2001.

[56] A. Neumaier. Complete Search in Continuous Global Optimization and Con-
straint Satisfaction. Acta Numerica, 13:271–369, 2004.

[57] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer pro-
gramming. Mathematical Programming, Ser. A, 99:283–296, 2004.

[58] F. Ordóñez and R. M. Freund. Computational experience and the explanatory
value of condition measures for linear optimization. SIAM J. Optimization,
14(2):307–333, 2003.

86 Bibliography

[59] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization :
Algorithms and Complexity. Dover Publications, Mineola, NY, 1998.

[60] T.E. Paré, H. Hindi, J.P. How, and S.P. Boyd. Synthesizing stability regions for
systems with saturating actuators. In Proceedings of the 37th IEEE Conference
on Decision & Control, volume 2, pages 1981 – 1982, 1998.

[61] P.A. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic
optimization in control. European Journal of Control, 9:307–321, 2003.

[62] E. S. Pyatnitskii and L. B. Rapoport. Existence of periodic motions and test
for absolute stability of nonlinear nonstationary systems in the three-dimensional
case. Automation and Remote Control, 52(5):648–658, 1991.

[63] M. V. Ramana, L. Tunçel, and H. Wolkowicz. Strong duality for semidefinite
programming. SIAM J. on Optimization, 7(3):641–662, 1997.

[64] J. Renegar. Linear programming, complexity theory and elementary functional
analysis. Math. Program., 70(3, Ser. A):279–351, 1995.

[65] J. Rohn. Bounds on eigenvalues of interval matrices. Technical Report 688,
Institute of Computer Science, Academy of Sciences, Prague, 1996.

[66] S. M. Rump. Validated Solution of Large Linear Systems. In R. Albrecht, G.
Alefeld, and H.J. Stetter, editors, Validation numerics: theory and applications,
volume 9 of Computing Supplementum, pages 191–212. Springer, 1993.

[67] S. M. Rump. Verification Methods for Dense and Sparse Systems of Equations.
In J. Herzberger, editor, Topics in Validated Computations — Studies in Compu-
tational Mathematics, pages 63–136, Elsevier, Amsterdam, 1994.

[68] S. M. Rump. Verified Solution of Large Linear and Nonlinear Systems. In H.
Bulgak and C. Zenger, editors, Error Control and adaptivity in Scientific Com-
puting, pages 279–298. Kluwer Academic Publishers, 1999.

[69] S. M. Rump. INTLAB - Interval Laboratory, the Matlab toolbox for verified
computations, Version 5.3, 2006.

[70] R. E. Skelton and T. Iwasaki. Increased roles of linear algebra in control educa-
tion. IEEE Control Syst. Mag., 15(4):76–89, 1995.

Bibliography 87

[71] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry. Dover Publica-
tions, New York, 1996.

[72] M. J. Todd. Detecting Infeasibility in Infeasible-Interior-Point Methods for Op-
timization. In F. Cucker, R. DeVore, P. Olver, and E. Süli, editors, Founda-
tions of Computational Mathematics, Minneapolis 2002, number 312 in London
Mathematical Society Lecture Note Series, pages 157–192. Cambridge Univer-
sity Press, 2004.

[73] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Math. Program., 95B(2):189–217, 2003.

[74] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

[75] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1–
2):3–35, 2001.

[76] V. A. Yakubovich. The method of matrix inequalities in the stability theory of
nonlinear control systems, I, II, III. Automation and Remote Control, 7(1964),
4(1965), 5(1965):1017–1029, 577–590, 753–763. In Russian.

[77] V. A. Yakubovich. The solution of certain matrix inequalities in automatic control
theory. Soviet Math. Dokl., 5:620–623, 1961. In Russian.

[78] Zhengji Zhao. The Reduced Density Matrix Method for Electronic Structure
Calculations - Application of Semidefinite Programming to N-fermion Systems.
PhD thesis, Department of Physics, New York University, 2004.

[79] Zhengji Zhao, Bastiaan J. Braams, Mituhiro Fukuda, Michael L. Overton, and
Jerome K. Percus. The reduced density matrix method for electronic structure
calculations and the role of three-index representability conditions. The Journal
of Chemical Physics, 120(5):2095–2104, 2004.

Lebenslauf

Persönliche Daten
Name Denis Chaykin
Geburtsdatum 01.12.1977
Geburtsort Krasnogorsk

Schulausbildung
09/1985 - 06/1995 Schule Nr. 30, Chernigov

Studium
09/1995 - 06/2001 Angewandte Mathematik an der Bauman

Moskauer Staatliche Technische Universität
06/2001 Abschluss: Diplom-Ingenieur
10/2001 - 02/2004 Informatik an der TU Hamburg-Harburg
02/2004 Abschluss: Master of Science

Wissenschaftliche Tätigkeit
03/2004 - 07/2005 Wissenschaftlicher Mitarbeiter an der

TU Hamburg-Harburg, Institut für Zu-
verlässiges Rechnen

08/2005 - 04/2008 Wissenschaftlicher Mitarbeiter an der
TU Hamburg-Harburg, Institut für Chemische
Reaktionstechnik

