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0.1 Abstract 
 
 
For EM simulations of complex MMIC structures, the usage of PML (Perfectly Matched 
Layer) absorbing boundary conditions is inevitable. PML provides a reflectionless open 
boundary condition and thus helps to keep the mesh size within a reasonable limit. On the 
other hand, structures completely enclosed by PML walls do not allow excitation by 
waveguide ports but require so-called internal ports. Such ports, which are introduced 
between two or more mesh points inside the structure, facilitate also to include lumped 
elements or entire networks thus enabling one to study active circuit, for instance. 
 
This work treats both the PML boundary condition and the internal ports, in the framework of 
the frequency-domain Finite-Difference method (FDFD). It is shown that the presence of 
PML walls enlarges the magnitude range of the system matrix coefficients, encountered 
when calculating the fields. This makes the system matrix ill-conditioned and increases the 
number of iterations when solving the system and may even render this PML totally unusable 
for most practical applications. It is found that by avoiding any overlapping PML walls and by 
making the PML cell sizes the largest ones in the whole mesh the high count of the number 
of iterations can be lowered drastically. 
 
The mode spectrum at waveguide ports with lateral PML walls consists of artificial PML and 
physical modes. We find that the coupling between PML modes and physical modes must be 
analyzed thoroughly in order to filter the artificial PML modes out in a reliable way. 
 
Regarding the internal port, a line-current formulation proves to be the only practical choice. 
The parasitic inductances associated with it are found to be of significant influence. A closed-
form expression for these inductances is developed in order to determine their values so that 
it can be deembedded from the results. 

 
The optimized PML and internal port formulations are verified for the example of a 24 GHz 
slot antenna with integrated front-end MMIC, suitable for short range communications and 
sensor networks.   
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0.2 Kurzfassung 
 
 
Bei Berechnungen des elektromagnetischen Verhaltens von komplexen MMIC-Strukturen ist 
die Verwendung von absorbierenden Randbedingungen in Form des sogenannten Perfectly 
Matched Layer (PML) unvermeidlich. Allseitig durch PML-Wände reflexionsfrei 
abgeschlossene Raumbereiche helfen die Anzahl der Diskretisierungszellen zu reduzieren. 
Sie lassen aber auch keine Wellenleitertore (mit Öffnungen in PML-Regionen) zu. In diesen 
Fällen sind interne Tore erforderlich. Derartige Tore erlauben darüber hinaus das Einbetten 
diskreter Elemente und ganzer Netzwerke und damit z.B. die Analyse aktiver Strukturen. 
 
Diese Arbeit behandelt sowohl die PML-Randbedingung als auch die internen Tore und 
beschreibt ihr Verhalten im Rahmen des Finite-Differenzen-Verfahrens im Frequenzbereich 
(FDFD). Dabei werden insbesondere die unerwünschen parasitären Effekte ausführlich 
untersucht. 
 
Zur Lösung des bei der FDFD-Methode auftretenden Gleichungssystems, das den 
Zusammenhang der elektromagnetischen Felder in der zu berechnenden Struktur 
beschreibt, wird ein iteratives (SSOR-)Verfahren benutzt. Die Konvergenz dieses Verfahrens 
wird sehr stark von der Kondition der Matrix bestimmt. Eine schlecht konditionierte Matrix 
vergrößert die Zahl der Iterationen und damit die Rechenzeit beträchtlich. Leider tritt dieser 
Fall bei der Anwendung von PML-Wänden deutlich in Erscheinung. Trotzdem kann die Zahl 
der Iterationen auf ein vernünftiges Maß beschränkt werden, wenn bestimmte Richtlinien 
eingehalten werden. In dieser Arbeit wurden verschiedene Möglichkeiten zur Reduzierung 
ansonsten hoher Iterationszahlen untersucht und bewertet, was von großem praktischen 
Nutzen ist. 
 
In Strukturen, bei denen die PML-Wände als Berandung eines Wellenleiters eingesetzt 
werden, besteht das Modenspektrum (z.B. des entsprechenden Wellenleitertores) aus den 
physikalisch sinnvollen sowie aus unphysikalischen, künstlichen PML-Moden. Die 
künstlichen Moden lassen sich häufig durch geeignete Kriterien herausfiltern. Aber Beispiele 
zeigen, daß in vielen Fällen das Separieren physikalischer und künstlicher Moden nur nach 
einer umfassenden Betrachtung möglich ist. 
 
Die Beschreibung interner Tore kann mit verschiedenen Ansätzen durchgeführt werden. 
Tatsächlich zeigt sich aber, daß nur der Ansatz mit der Linienstromformulierung praktikabel 
ist. Neben der reinen Implementierung werden in der vorliegenden Arbeit auch die 
parasitären Effekte wie die mit dem internen Tor verknüpften Induktivitäten diskutiert und 
Abschätzungsformeln entwickelt. 
 
Abschließend wird der Einsatz der optimierten PML und der internen Tore am Beispiel einer 
24 GHz-Schlitzantenne mit integriertem Frontend-MMIC, verwendbar für Kurzstrecken-
kommunikation und Sensor-Netze, demonstriert. 
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1 Introduction 
 
 
 
1.1 Motivation 

 
Mobile communications, satellite, radar, automobile and sensor technologies have fuelled the 
development of microwave integrated circuits (MMICs). For the growing demand of MMICs to 
work at higher frequencies, the miniaturisation of the circuit elements, i.e. the active and 
passive devices, is indispensable. Without proper and systematic design and optimisation of 
the circuit elements such MMIC’s are not achievable. Since post-production changes are 
expensive and design cycles are short, accurate design tools are a must. 
 
For the design and simulation essentially two important developments have emerged. On the 
one hand, there are network-oriented design simulators where active devices, lumped 
elements and simple passive distributed circuits are connected or interfaced. These 
simulators take into account only those coupling, mechanism known a priori and deal mostly 
with a single mode for transmission lines. It is very much important however to design the 
active and passive structures in such a way that any crosstalk and the dependencies 
between all modes are included. Presently simulation tools are offered which allow for 
deeper and thorough investigation of the electromagnetic fields and waves in passive 
structures. Such electromagnetic simulation tools (EM simulators) account for all the effects 
of the electromagnetic field behaviour, for example cross talk, surface waves, coupling 
effects and a series of other important issues.  

 
The capabilities of the EM simulators have been extended significantly during the last 
decade, partly due to the advances in computer hardware, partly due to improvements in 
numerical mathematics with a various number of different approaches used. The most 
promising developments are Finite Differences (FD) and Finite Elements (FE), while in the 
beginning of these approaches simple assumptions were made to describe a structure, in the 
latest years more improvements arose which allow to cover the real nature of investigated 
structures more accurately. One of the most useful advances is the description of the open 
boundary. Using in the past electric and magnetic walls with all their disadvantages, e.g. 
error due to reflections from these walls, several new methods have been introduced 
approximating an open boundary, such that waves propagating to the direction of the 
boundary are absorbed by specially defined layers.  
 
A preferable method in this sense is the Perfectly Matched Layer (PML) (Fig. 1.1) technique. 
It was introduced by Berenger [16] and, initially, is based on the splitting of Cartesian electric 
and magnetic field components into two subcomponents leading to a modified set of 
Maxwell’s equations. Some of the limitations of this approach are indicated in [17, 19] and 
one of them is that the generating equations and thus fields in the PML medium are non-
Maxwellian. Another approach of Chew and Weedon [22] is based on the incorporation of the 
complex coordinate stretching variables. In this case, Maxwell’s equations are also to be 
modified and the complex co-ordinates provide no physical meaning. Alternatively, 
introduced by Sachs et al, a PML can be realized by introducing anisotropic material 
properties, with electric and magnetic conductivities, leading to permeability and permittivity 
tensors [3].  
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Fig. 1.1 Replacing the open boundaries of a patch antenna structure with the PML absorbing 

boundary conditions (PML walls) in order to absorb the radiations. 
 

 
 
 
Today, PML forms a salient feature of all common 3D EM simulation methods, both in the 
time domain (FDTD [2,3], TLM [44]) and the frequency domain (finite-element method [45], 
FDFD). In the later case, mostly the anisotropic material approach [18] is applied because it 
can be easily implemented without any need to modify the basic equations.  
 
However, the benefits of PML do not come for free. In the frequency-domain case, the 
material tensors worsen the numerical properties of the system of equations to be solved, 
which results in increased CPU time. In the time domain, mechanisms are not such clearly to 
be identified but similar effects are observed. Generally, the deteriorations depend strongly 
on the number and parameters of the PML layers and occur particularly if the PML layers 
overlap, e.g., at the edges and corners of the outer boundary of the computational domain. 

 
Beyond this, PML gives rise to another problem, which is often overlooked in the literature:  
during waveguide port simulations, a PML boundary causes appearance of parasitic PML 
modes with complex propagation constants which must be dealt with attention in order to 
separate them from the desired physical modes. In [20, 25] a PPP (Power Part in PML) 
criterion is introduced for this separation. However, this does not give reliable results in all 
cases and further investigations are necessary to explore these effects. 
 
Beside the PML definitions, another important feature of EM simulation methods is the 
implementation of so-called internal ports, which allow to feed the test structures internally. 
Like voltage or current sources internal ports are used to excite structures by placing them 
between two conducting lines (e.g. signal and ground lines) inside the structure. Unlike 
waveguide ports where a cross-section is defined on a boundary and a number of modes are 
excited, internal ports are based on a current-voltage description and thus can be used to 
interface the active / lumped circuit. Moreover, when a structure is surrounded by PML walls 
in all directions (e.g. Fig. 1.1), it is not possible to excite the structure by waveguide ports, the 
only option is the use of internal ports to excite the structure internally.  
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 The necessity and use of internal ports are to be described here with the help of a taper 
shaped high electron mobility transistor (HEMT) structure [52] as given in Fig. 1.2. It is 
important to know the current distribution at each the gate finger when a couple of transistors 
are connected in parallel to a common feeding micro-strip line (Fig. 1.2.a). The same is true 
also for the drain fingers. Because if the current distributions at the gate fingers are not 
same, i.e. the input currents of the transistors are not identical, their performances are also 
not same even though identical transistors are used. In order to check these current 
distributions through 3D EM simulation internal ports have to be placed between the gate 
and source fingers as well as between the drain and source fingers (Fig. 1.2.b and c) while 
the micro-strip lines can be excited by waveguide or internal ports. A 3D simulation with all 
these internal ports provides a Z-matrix. When the output impedances of the gate and drain 
fingers are known, current distribution through the gate and drain fingers in relation to the 
input currents at the MS lines can be calculated out of the resulting Z-matrix which is usually 
done in network simulators. Thus internal ports can be used as interface between EM 
simulators and network simulators. The details of this HEMT structure as well as the 
simulation results are presented in Chapter 4.4. 
 
The implementation of internal port in FDFD mesh can be carried out in two ways. In the first 
one two lumped time varying charges of equal magnitudes but of opposite polarities are 
inserted at the two nodes of the internal port and in the second one a rectangular shaped 
current carrying wire is assumed between two metal plates/lines within the structure under 
consideration. The previous works on the implementation of internal ports/lumped elements 
in FDTD method are presented in [28-30]. 
 
The purpose of the work presented here is to improve the capabilities of the Finite-Difference 
method in frequency domain (FDFD), when used for structures of complex geometry and 
with active elements. The main contributions are the derivation of PML parameters and the 
inclusion of internal port in the FDFD scheme. The parasitic effects of PML as well as internal 
ports are explored and the ways how to remove them are discussed. A 4-quadrant slot 
antenna with active circuits is treated as a good example where the use of both the PML 
walls and internal port is a must. In the following sub-chapters, the FDFD method, anisotropic 
version of PML boundary condition and internal port are discussed briefly.  

 
The thesis is organized as follows: Chapter 2 describes the PML related convergence 
problems and how they can be circumvented. Chapter 3 addresses the influence of the PML 
on the mode spectrum of a waveguide with a PML lateral boundary. The mode spectrum 
consists of both PML and physical modes corresponding to the eigenvalues of the system 
matrix. The internal port implementation and the corresponding parasitic effects are given in 
Chapter 4. Finally, the results are verified for the example of a 4-quadrant slot antenna with 
integrated electronics. The design issues of the slot antenna are described in Chapter 5 
employing the newly developed PML walls as well as internal ports in the F3D simulators. 
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(a) Top view 

 
 

(b) : Z1-Z2 cross-section  

 
 

(c) : A, B, C (zoom) : 

 
 
Fig. 1.2 Taper shaped transistor (HEMT) structure [52] (half above the symmetry plane):  

a) organisation of the gate, drain fingers and source pads together with the micro-strip 
lines connecting the gate and drain fingers through the tapers. 

b) cross-sectional view of the structure at Z1-Z2 of (a). The source pads are connected 
with each other through a bridge and to the ground through a via. The substrate 
used is SiC (εr = 10.0).   

c) the encircled regions of A, B and C are same. The zoomed region of encircled A  
(or B or C) shows the three internal ports between gate finger and source bridge, 
and drain finger and the source bridge, respectively. 
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1.2 Finite Difference Frequency Domain (FDFD) Method 
 
 
The FDFD method [4, 5] is the frequency domain counterpart of the FDTD [30] method which 
is based on the discrete approximation of the Maxwell's equations. Unlike the FDTD which 
deals with an initial value problem, in the FDFD method time terms in the equations are 
eliminated leaving them complex in nature and a boundary value problem is treated. In its 
simplest form, the boundary region is a rectangular box as shown in Fig. 1.3. This large box 
is subdivided into a number of elementary cells by a three-dimensional non-equidistant 
Cartesian grid according to Yee [1]. Each elementary cell is filled with homogeneous material 
described by its permittivity and permeability. Hence a change in material properties can only 
be located on the surfaces of the elementary cells. The electric field components are defined 
at the centers of the cell edges where as the magnetic field components are defined at the 
centers of the cell surfaces. Up to this point, the setting is identical to the common FDTD 
approach.  
 
In order to describe the EM fields inside the enclosure of the rectangular box, in frequency 
domain, one has to solve a large system of linear equations instead of applying the leapfrog 
algorithm [8] in the FDTD method. The solution of the large linear equation system is carried 
out iteratively. A brief description of the FDFD formulations is given in Appendix 7.1.  
 
The matrix equation is solved by means of an iterative numerical algorithm of Krylov-
subspace type [11, 15] in the F3D simulator [10] which is used to carry out all these FDFD 
investigations in this thesis work. In this procedure the unknowns are updated as long as the 
values of the unknowns converge to a predefined tolerance. The number of iterations is a 
measure to the numerical efforts and directly proportional to the CPU time. So the fast 
convergence is the key issue of the iterative solution in FDFD method.  
 
The FDFD method is particularly advantageous compared to FDTD method to simulate 
resonating structure like cavities where high possibilities of energy trapping exist. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.3 Meshing of the FDFD boundary value problem and description of the elementary cells 

with the assignments of the field components.  

FDFD mesh

elementary cell
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1.3 Anisotropic PML Absorbing Boundary Condition  
 
 
The PML absorbing boundary condition provides a means of simulating the open boundaries. 
It has the following tasks during the EM simulations:   
 

1. reducing the size of the finite calculation domain. 
2. suppressing the influence of the boundaries on the electrical behaviour of a structure. 
3. absorbing radiation from an antenna or parasitic effects like leaky waves over the 

signal lines and radiation due to the discontinuities, thus allowing to operate 
structures virtually in open space.  

  
In the F3D EM simulator [10, 12], based on FDFD method, the PML has been implemented 
according to the anisotropic material approach [18]. In this implementation the PML half 
space is simply an anisotropic absorbing medium defined by a complex diagonal tensor. The 
permittivity and permeability of the given arbitrary half space which has the interface with the 
PML half space are multiplied by the PML tensor to calculate the permittivity and permeability 
of the PML layers. Fig. 1.4 shows the interface of an arbitrary material and a PML half space. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.4 Definition of the PML medium according to the anisotropic material approach. σE and 

σM are the artificial electric and magnetic conductivities, respectively, and normalized to 
εr.  The PML tensor is so chosen thus the attenuation takes place in the z direction. 

 
 
The PML tensor element of the direction of desired attenuation, in this case the z-direction, is 
made inverse to the other two elements. Under this arrangement, when waves travel from 
the simulation region of interest (arbitrary half space) to the anisotropic PML half space, 
there is no reflection at the interface of the two media while the attenuation takes place in the 
z-direction. As a consequence, the PML part can be terminated by any boundary wall at z = 
constant without affecting the characteristics at z = 0. 
 
In the finite difference (FD) mesh the PML half space is usually terminated by electric or 
magnetic walls and the tensor elements (η) are calculated from an artificial conductivity (σE ) 
predefined for a particular PML wall, which is estimated by the residual reflections at the PML 
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interface. Due to the discretized description of the FD method, the interface of the PML / non 
PML regions results in spurious reflections [19]. This mismatch problem depends on the 
difference in conductivities of the neighboring regions and thus can be alleviated by 
subdividing the PML region into a number of sub layers with varying conductivities, starting 
with relatively low values at the interface and increasing towards the truncation of the mesh. 
The nominal reflection coefficient (rth), i.e. the residual reflection at the PML / non PML 
interface is given by equation 1.1, where d is the thickness of the PML wall in z direction and 
p is the order of the polynomial variation for the varying conductivities at different PML sub 
layers. For constant, linear and parabolic variation of the PML conductivities the value of p is 
0, 1, and 2, respectively.  
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1.4 Internal Ports  
 
Internal ports are an important feature of any EM simulators. They allow to feed or excite 
structure from inside the structure as shown in Fig. 1.2 unlike its counterpart of the 
waveguide ports, which excite a structure with certain mode configuration or spectrum. In 
general, internal ports can be implemented in two ways: the first one uses a conduction 
current source and the second one uses relaxation current source. The wave equation of the 
electrical fields derived from the Maxwell’s equations is given by 1.2. ε and μ are the 
permittivity and permeability of the medium. Je is the conduction current density whereas qv is 
the space-charge density. A non-zero value of Je means the medium contains a conduction 
current source. On the other hand, a time varying non-zero value of qv means the medium 
has a source of non-static surface charges.   
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The conduction current internal port is defined in general as inserting an artificially current I0 
given by equation 1.3 between two certain points (nodes) within two conductors 1 and 2 as 
shown in Fig. 1.5. Due to the excitation by the current a magnetic field is excited and, 
depending on the structure, a voltage U is developed between the conductors. This port can 
be compared with a current source except that in a current source the current does not 
essentially need a direction while the internal port current must have a direction in order to 
connect the thin wire between the conductors. The line current comes up with an inductance 
due to the magnetic fields surrounding the wire and this is to be accounted for if the port 
influence needs to be eliminated.  
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Fig. 1.5 Conduction current internal port : line current source. qv = 0, Je ≠ 0. 
 
 
It is also possible to insert two time varying charges (-Q1 = Q2 = Q and Q defined by equation 
1.4) of equal magnitudes but of opposite polarities at two nodes as shown in Fig. 1.6. Iq is the 
input current and related to the time varying charges Q1 and Q2 - Iq enters the structure at 
node 2 and comes out of the structure at node 1. Due to the presence of the charges electric 
fields develop between the conductors resulting in a potential difference of U. This port 
utilizes the relaxation current between the conductors and can be thought of a voltage source 
providing charges of equal but opposite sign at the two nodes. Another point is that this port 
does not need a direction which is different to the line current source. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.6 Relaxation current internal port : voltage source. qv ≠ 0, Je = 0. 
 
 
The FDFD method solves the discretized version of the wave equation 1.2. The conduction 
current internal port is included in FDFD by defining a path between two conductors and then 
introducing a line current source (I0) at the edges of the cells along the path. Within the FD 
approximation, it can be assumed that the line current I0 is homogeneously distributed along 
the cross section (of the dual cells [8]) of the path – so it has a rectangular cross-sectional 
area. See Appendix 7.3 for the FDFD formulation of this procedure.  
 
On the other hand, according to [8], the implementation of the relaxation current internal port 
in the FDFD scheme (see Appendix 7.2) by inserting the time varying charges at the centers 
of the dual cells (defining the nodes of Fig. 1.8 at the centers of the dual cells) is not feasible 
due to the evolving non physical solutions.  
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2 PML Parameters and Convergence 
 
 
2.1 Motivation and General Considerations 
 
 
According to the FDFD method the analytical wave equation of electromagnetic (EM) fields, 
given by 2.1, is transformed to a discretized form of wave equation following the 
incorporation of grad div term [6] and symmetrical formulation [7], given by 2.2, that 
describes the EM fields inside the enclosure of a rectangular box containing the structure 
under consideration and thereby defining a boundary value problem (see Appendix 7.1). In 
this matrix form of the discretized wave equation, e

�
 is a vector that contains the electric field 

components for all mesh cells. The system matrix M contains all the information about the 
material properties, dimensions and frequency. b

�
represents in general the source for the 

excitation through waveguide ports or internal ports. In case of the waveguide ports, b
�
 

corresponds to the sum over all transversal electric fields of the available modes at the 
waveguide ports. 
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It is worth to look into the construction of the matrix wave equation closely. The F3D solver 
based on the FDFD method is developed according to a Cartesian coordinate system where 
all the information of the materials, dimensions etc. as well as fields and sources are 
assigned to the matrix and vector elements, respectively, cell by cell, first of all in the x 
direction, then in the y direction and lastly in the z direction as given by the equation of 2.3. 
Mij’s (i, j = x, y, z) are the sub matrices with dimension of n × n, where n is the size of the 
mesh, and ie

�
’s as well as ib

�
’s are the vectors with dimension n. A more comprehensive 

representation of 2.3 is given by 2.4 where ai,j‘s are the elements of matrix M consisting of 
material and dimensional information, ei and bi (i = 1 ... 3n ) represent the field and source 
components corresponding to the vectors e

�
 and b

�
, respectively. It should be noted that M is 

symmetric but not positive definite and consists only of very few diagonals with nonzero 
elements. 
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The matrix equation of 2.4 is solved for the unknowns of ei with an iterative numerical 
algorithm, namely a Krylov-subspace method [10, 15] with the Independent Set Ordering and 
SSOR-preconditioning procedure (see the Appendix 7.7). In this procedure the values of the 
unknowns are updated as long as the unknowns converge to a predefined tolerance.  
 
As the anisotropic PML satisfies Maxwell’s equations, the PML cells become part of the 
bounded region automatically during the discretization. The influence of these anisotropic 
PML cells on the convergence of the iterative solution can be explained with the help of the 
Gerschgorin circles [45]. The union of the Gerschgorin circles of radius ri contains all the 
eigenvalues of the system matrix M, where the radius ri is calculated as the summation of the 
magnitudes of all the non-diagonal elements of the ith row in M given by 2.5. A quantity ρi is 
defined as the ratio between the summation of the magnitudes of all the non-diagonal 
elements and the diagonal element at the ith row in M according to equation 2.6. Again ρmax is 
the maximum value of ρi considering all the rows of the system matrix M given by the 
equation 2.7. Some examples of Gerschgorin circles are shown in Fig. 2.1. 
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Fig. 2.1 Gerschgorin circles with centers at (Im(ai,i), Re(ai,i)).  
 
 
For M to be a positive definite matrix, ρi must be smaller than one, all the eigenvalues must 
lie within the right hand side of the imaginary axis in order to make the iterative solution 
provide a stable convergence. But in the case of FDFD method, M is usually not a positive 
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definite matrix, i.e. the periphery of the circles with some of the eigenvalues extends to the 
left hand side of the imaginary axis which may lead to a bad convergence.  
 
In order to describe the importance and consequences of the parameters of ri , aii and ρi  for 
the numerical convergence of the FDFD method with PML the patch antenna[19] in Fig. 2.6.a 
is examined. It is assumed that the antenna has only one PML (X-PML) boundary followed 
by a magnetic wall in the direction perpendicular to the patch. Other open boundaries are 
terminated by magnetic walls. Under these conditions the antenna is simulated at 16 GHz 
and the parameters ri, aii and ρi are calculated out of the system matrix at each row. The 
same is done for the case with the PML medium replaced by air while keeping the 
discretization scheme the same, this is termed as the case without PML (no PML). The ratios 
between the cases of with PML and without PML for all these three parameters are 
calculated. In each case the ratios which are equal to one, corresponding to the inner mesh 
cells and rows of the system matrix not affected by the PML medium, are excluded. The 
remaining ratios are sampled linearly (counted in stepped ranges) and drawn in Fig. 2.2. 
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Fig. 2.2 Densities of the values given by the ratios of @1, @2 and @3. The total number of 

rows in M is 75816 (=3×27×36×26) and the number of the PML affected rows where the 
ratios given by @1, @2 and @3 are not equal to one is 12273. 

 
 
Looking at Fig. 2.2, it is evident that introducing the PML results in an increased number of 
rows in M where the values of the ratios defined by @1, @2 and @3 are larger than 1.0. In 
addition, the values of @1 are larger than those of @2. This helps to state that the addition of 
the PML wall increases the values of ρi and correspondingly ρmax, which means that the radii 
of the Gerschgorin circles become larger and the possibility of the real parts of the 
eigenvalues to be more negative increases. The outcome is that the condition number grows 
larger and the convergence of the iterative process is more unstable when the PML wall is 
included. In this way the inclusion of the PML wall results in a change in the numerical 
properties of the system matrix and thereby affects the convergence of the solver, i.e., the 
number of iterations. The number of iterations is taken here as a measure for the numerical 
efforts and it is directly proportional to the CPU time needed to obtain the solution.  
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When discussing the numerical consequences of introducing the PML, it is important to have 
a close look on the resulting permittivity and permeability tensors, which are written here as 
the products of the isotropic physical material constants and a tensor [ηηηη] representing the 
PML properties according to [3, 4] (see equations (2.8) and (2.9)). [ηηηη] is a diagonal tensor 
with the complex parameter ηi, the imaginary part of which defines the attenuation and thus 
the residual reflections at the PML (see Fig. 2.3). The nominal reflection coefficient (rth) of 
equation 1.1 can be written in terms of the imaginary part of ηi (Im(ηi)) as 2.10. As 
attenuation and reflection are inversely proportional, attenuation (αth) can be written as 2.11.  
For low reflection, i.e., high attenuation in the PML, the product of |Im(ηi )| and d must be 
large. On the other hand, |Im(ηi )| should not be too large, as the matrix condition depends on 
Im(ηi ). So for higher attenuation as well as better matrix condition a relatively small |Im(ηi)| 
and large d should be chosen. When using PML walls for several outer boundaries, these 
walls overlap at edges and corners as illustrated in Fig. 2.3. In case of the overlapping at the 
edges (e.g. overlapping 1 & 2 ) and corners (overlapping 1, 2 & 3 ) the resulting PML tensor 
is the product of the PML tensors of the individual PML walls that form the edges and 
corners, respectively. 
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Fig. 2.3 PML Tensors [ηηηη] (see equations (2.8) and (2.9)) for PML walls in three directions 

detailing the  overlapping regions. σi denotes the artificial conductivities (electrical) of the 
respective PML wall as derived from a given nominal reflection factor (equation 1.1). 
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The inspection of the tensors according to Fig. 2.3 reveals that, because always both ηi and 
its inverse appear, the PML increases the magnitude range of the material tensors and thus 
that of the resulting entries in the system matrix, which in turn increases the radii of the 
Gerschgorin circles as mentioned above. As these circles contain all the eigenvalues of the 
system matrix, larger radii of those circles means higher possibilities of the real parts of the 
eigenvalues to assume smaller values and thereby worse convergence. This situation 
becomes particularly critical for the overlapping regions since there several factors of the ηi 
are multiplied. In order to demonstrate this, Tab. 2.1 shows typical values for the PML tensor 
elements (based on an example at 1GHz with –60dB nominal reflection). This is the basic 
effect why PML causes the numerical properties to deteriorate but one needs an in-depth 
investigation to better understand the underlying effects and to find the solutions minimizing 
the odds. This is presented in the following sections. 

 
 

|η1| |1/η1| |η2| |1/η2| |(1/η1)η2| |η1η2| |(1/η1)η2η3| |η1(1/η2) 
η3| 

83.0 0.012 75.0 0.013 0.9 6225 67.5 83 
 
Tab. 2.1 Diagonal elements of PML tensors according to Fig. 2.3 (εr of PML wall 1 and 2 are 
       1.0 and 2.2 respectively; σi of PML wall 1 and 2 are 4.6 and 4.2 respectively; μr is 1.0 in  
        all cases; for calculation of σi see [18, 19]). 
 
 
Having known that PML in general worsens the convergence of the iterative solution it is 
investigated quantitatively which parameters of the PML wall affect the convergence mostly 
and how that can be tempered by modifying the PML regions and parameters. The most vital 
modifications and parameters will be discussed separately following some general 
considerations regarding convergence as given below:   
 

1. As already mentioned in chapter 1, the interface of the PML/non PML regions in the 
discretized description of FDFD method results in spurious reflections. This mismatch 
problem can be alleviated by subdividing the PML region into a number of layers with 
varying conductivity [19]. In this point it is important to know the impact of the number 
of PML layers on the convergence. More layers improve of course the accuracy but 
increase the numerical expenses. It is found that a 5-layer configuration provides a 
good compromise and this number is used in all the following investigations.  

 
2. The convergence of the iterative solver is influenced also by the choice of the PML 

backing. Commonly, PML walls are followed by electric or magnetic walls. We found 
that for the structures considered in this work, electric walls lead to a less number of 
iterations than magnetic walls. 

 
3. Adjacent PML and non-PML cells should have sizes of comparable dimensions to 

have the results less erroneous and iterations reduced in number. 
 

4. The number of iterations increases with the increase in |εmax -εmin| and frequency, 
where εmax and εmin are largest and smallest relative dielectric constants within the 
structure. These are general characteristics of the FDFD simulation, independently 
whether PML is included or not. 
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2.2 Overlapping PML Walls 
 
While for a single PML wall the tensor elements are in the range 1/η …η, this becomes 
worse if overlapping regions of two PML walls are included. Assuming that both PML walls 
have the same properties, the tensor elements within the structure now cover the range 1/η 
… 1 … η2

.  Proceeding with 3 overlapping PML regions the overall situation does not change 
from this point of view because the additional elements are of same order (if one assumes 
identical PML properties). To give numbers, Tab. 2.1 shows that for a single PML wall (e.g. 
PML wall 1) the range of tensor elements is (0.012 - 83.0) and when the PML wall 2 is 
included the range of matrix elements extends to (0.012 .. 6225.0).  
 
Going beyond these relatively simple arguments, extensive investigations were performed 
simulating typical microwave structures with different PML configurations. It is found that the 
PML disposition indeed has a drastic influence on the efforts required for solving the system 
of equations. Introducing a single PML wall already leads to a significant increase in the 
number of iterations of the solver (typically a factor of 2). Including overlapping regions with 2 
PML results in further drastic deteriorations (an additional factor >15), which in many cases 
render this approach useless for practical design work. Adding more PML walls with 
overlapping regions, convergence deteriorates further. 
 
It is found that this deterioration of convergence can be alleviated by modifying the PML 
definition in the edge and corner regions. Different ideas have been tested including an 
angle-dependent description and the insertion of additional physical conductivities in the PML 
formulation for numerical stabilization. All these approaches did not yield the desired 
improvements. The best solution turned out is to avoid any overlapping. Avoiding the 
overlapping PMLs is carried out by disjoint PMLs (called non-overlapping PML) where the 
edges and corners are replaced by the complete PML walls. Since the edges and corners 
form only a very small fraction of the overall PML surface, the reflections occurring there 
remain negligible in most cases and one can use a PML with attenuation in a single direction 
instead. Fig. 2.4 illustrates this idea of non-overlapping PML for the edge case. When PML 1 
overrides PML wall 2, it is referred to as “12” orientation in the following and vice versa. 
 
 

                                
 
Fig. 2.4  Edge of the structure according to Fig. 2.3 with non-overlapping (disjoint) PML walls 
          illustrating 2 possibilities of edge description. 
 
This approach to circumvent the problem with overlapping PMLs proves its effectiveness for 
various structures like patch antenna, microstrip, flip-chip or LTCC structures. The 
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investigations of how the inclusion of PML (overlapping) and non-overlapping PML influences 
the matrix elements, and thereby the convergence of the iterative solution will be presented 
in the following dealing a micro-strip line and a patch antenna. 
 
The micro-strip structure of Fig. 2.5.a is simulated at 20 GHz first of all without any PML wall. 
In order to keep the mesh the same for all the simulations, the PML walls are not just 
excluded from the structure, rather the tensor elements of the PML walls are made unity (η = 
1.0) in order to represent the case without PML. In this case the PML cells are there but not 
filled with PML material. The density distribution of the non-zero matrix elements as a 
function of magnitudes is shown in Fig. 2.5.b. 
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Fig. 2.5 a) The micro-strip (MS) surrounded by PML walls on all sides other than the port. The 
          MS is 10 μm thick and 50 μm wide. The substrate (εr = 9.8) is 100 μm thick. The PML 
          walls consisting of 5 layers with variable thicknesses have an overall reflection error of 
          -70dB and parabolic spatial variation of the conductivities. 
 
          The density of the matrix elements aij in relation to their magnitudes for the case without 
          PML walls (b), with PML walls including the overlapping regions (c) and with 
          non-overlapping PML walls (d). In (d) graphs in (b) and (c) are redrawn for comparison. 
          The lowest and largest values of the magnitudes are in (b) 1.74E-02 and 845.62, in (c) 
          7.54E-05 and 7584.38, and,  in (d) 7.4E-05 and 1994.16 respectively. 
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In the same way, the MS structure is simulated with all the PML walls including the 
overlapping regions of the corners and edges at 20 GHz. The density of the magnitudes of 
the non-zero matrix elements is presented in Fig. 2.5.c. The structure is simulated also with 
non-overlapping PML walls and again the density of the magnitudes of the non-zero matrix 
elements are plotted together with those of the cases without PML and overlapping PML 
walls in Fig. 2.5.d. 
 
From Fig.s 2.5.b and 2.5.c it is clear that the PML in general widens the range of magnitudes 
of the matrix elements. The very small and large matrix elements, few in number but very 
diverse from each other, are due to the overlapping PML regions (recall the range: 1/η … 1 
… η2) and result in a worse condition of the system matrix. In order to improve the condition 
of the matrix, we must check which of the largest and lowest values we can exclude that do 
not have significant influence on the reflection level. Fig. 2.5.d shows that the upper limit of 
the range of magnitudes arising due to the overlapping regions can be reduced by using the 
non-overlapping PML. That is why non-overlapping PML walls provide better condition of the 
system matrix and also lower number of iterations. 
 
The above-mentioned results obtained in the case of the MS line are also true for the patch 
antenna structure of Fig. 2.6.a. We shall see further with this patch antenna example how 
overlapping and non-overlapping PML influence the Gerschgorin circles and eventually the 
number of iterations. In the picture we see the arrangement of the PML walls in non-
overlapping case, which is formed by replacing the overlapping corners and edges. In the x 
direction the PML is completely x directed (X-PML). The yz columns below the x directed 
PML have been made y directed (Y-PML) and the z directed PML (Z-PML) is surrounded by 
the x and y directed PML walls. This is termed as xyz orientation of PML walls.  
 
In order to compare the non-overlapping PML against the overlapping one, the antenna was 
simulated with all the PML walls including all the overlapping regions. The outcome was 
useless, as the PML fully including all the overlapping descriptions results in an iteration 
count above 300,000 already at 3 GHz and still without any convergence. So the overlapping 
regions were checked one by one. Since the outcome was the same in all these cases, only 
the overlapping region formed by the X-PML and Z-PML will be described in the following. 
Magnetic walls are used instead of PML walls in the y directions. 
  
Now the antenna is simulated without any PML as well as with overlapping and non-
overlapping PML walls in x and z directions. Then the ρi‘s for each row of the system matrix 
M in all these three cases are calculated at 16 GHz. Clearly a significant number of ρi‘s are 
same for all those three cases, namely for the cells corresponding to the non-PML regions. 
So these ρi ‘s are excluded. The rest of the ρi ‘s which are affected by PML walls are drawn 
as a ratio with respect to the no-PML case, separately for the non-overlapping and 
overlapping cases in Fig. 2.6.b and c, respectively. As one can see, for the non-overlapping 
case we have already a moderate number of rows in M, where the ρi‘s are larger than in the 
no PML case. Now the inclusion of overlapping PML wall in the xz edge extends the number 
and values of the ρi‘s extremely as evident in the lower chart. This means that for this high 
number of rows, the radii of Gerschgorin circles become larger extending the peripheries in 
the left side of the imaginary axis, which first results obviously in real part of eigenvalues to 
be more negative and thereby in bad convergence. The same is true also for other 
frequencies. 
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(a)                                                         

 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.6  (a) : The patch antenna[19] surrounded by PML walls on X and Z (Y-PML replaced by 

        magnetic wall). The PML walls consist of 5 layers with variable thicknesses and have an 
          overall reflection error of -70dB and a parabolic spatial variation of the conductivities. The 
          density of PML affected ρi are shown for case of non-overlapping PML (b) and 
          overlapping PML (c), respectively, in relation with the case without PML. 
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Since the overlapping regions of corners and edges form a very small fraction of the whole 
PML surface, the reflection occurring there if non-overlapping PML walls are used can be 
expected to be negligible. For example, we can see in Fig. 2.7.a that there is no significant 
change in the resulting S-parameters due to the simplifications. But we have very significant 
improvement in the convergence of the iterative solution when non-overlapping PML walls 
are used. For non-overlapping walls the number of iterations remains below 2000 up to 16 
GHz where as for overlapping PML case, the number rises from 7000 to above 220,000 (Fig. 
2.7.b).  
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Fig. 2.7  (a)  : Reflection coefficients of the antenna using overlapping and non-overlapping 
          PML walls. (b) : The number of iteration for the simulation of the antenna using overlap- 
          ping and non-overlapping PML walls. In both cases only X- and Z-PML walls are used. 
 
 
 
One should note that the choice of PML direction in the edge and corner regions termed as 
orientation in Fig. 2.4 affects the convergence as well. One of the reasons is the construction 
of the system matrix where the order of elements influences the number of iterations – this is 
solely due to the characteristic of the solver, and has nothing to do with PML in general.   
 
In order to see the influence of the orientation of the structure as well as the PML walls, we 
have to look into the construction of the matrix equations (2.3 and 2.4) closely. As mentioned 
above, our FDFD method is developed according to a Cartesian coordinate system where all 
the information of materials, dimensions etc as well as fields and sources are assigned cell 
by cell first of all in the x direction, then in the y direction and lastly in the z direction. So the 
construction of the matrix equation is totally different for different orientations of the structure 
and in the same way those of the PML walls.  
 
Let us consider two examples of Fig. 2.8. In the first case, one half of a patch antenna (top) 
is calculated with the direction of radiation in the z direction. Two non-overlapping PML walls 
in the z and x directions are used.  Here we see that there is a large difference in the number 
of iterations for different orientations of xz and zx non-overlapping PML walls. By choosing zx 
PML the number of iterations is reduced by 25%. 
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Fig. 2.8 Iterations for different orientation and rotation with respect to the Cartesian co-ordinate 

system of a half patch antenna. The substrate of the antenna is Teflon (εr = 2.2). The 
dimension of the patch is 8000 μm × 50 μm × 16000 μm and that of the feeding 
microstrip is 1226 μm × 50 μm × 8000 μm 

 
 
 

Now the antenna is rotated as given by (bottom), where the radiation takes place in the y 
direction and two PML walls are used in the y and z directions. Here we can see that with 
this orientation the number of iteration is reduced by 45% even though there is no significant 
change in the number of iterations for yz and zy orientations. However the dependence of 
convergence on the orientation of a structure in the x, y or z directions can be tempered by 
improving the solver inputting procedure – rearranging the matrix elements.  
 
 
 
2.3 PML Cell Size 
 
 
The cell size within the PML layers turned out to be a vital quantity, which greatly affects the 
numerical convergence. From equation 2.11 it is clear that thickness of the PML wall (d) has 
a dominant rule over the attenuation. For a constant attenuation, an increase in d means a 
decrease in Im(ηi) and thereby an improvement in numerical convergence. Extensive 
investigations were carried out in order to check the influence of PML cell size on both the 
accuracy and numerical convergence with the help of different structures with single PML 
walls (only one PML wall in one direction) and multiple PML walls (more than one PML wall 
in different directions and non-overlapping). The structures investigated include MS, CPW, 
flip-chip, spiral inductor, coupler, antenna etc. The most important results will be presented in 
the following sub-chapters.   
 
A simple MS structure with a single PML at the end will be investigated in detail with different 
lateral and longitudinal discretization schemes to check the absorbing capability of the PML 
as well as the impact of its thickness (cell sizes) on convergence. In this case the PML wall 
works as a matched layer. The dependency of the convergence on ρmax will be explained.  
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PML walls are used mostly to absorb radiation. Therefore, a radiating antenna structure will 
be studied to optimize the PML cell sizes. Multiple PML walls are used and they are 
assumed to be non-overlapping at the corners and edges. Eventually the slot antenna of Fig. 
5.2 will be examined as an example of practical interest.      
 
 
 
2.3.1 Single PML Wall : Micro-strip Structure 
 
 
The micro-strip structure in Fig. 2.9 is investigated for different lateral and longitudinal 
discretization schemes in order to optimize the PML cell size with regard to convergence. 
Two different lateral discretization schemes are used as given in Fig. 2.10, where in the 
upper picture (a) the smallest and largest cell sizes in the x direction are of 3 and 184 μm 
respectively, in the y direction of 6 and 160 μm, respectively. On the other hand, in the lower 
picture (b) the smallest cell sizes are same as the upper ones but the largest cell sizes in the 
x and y directions are reduced to 40 μm. In both cases the dimension of the xy cross-section 
is identical, only the size and number of cells are varied.  
 
Along with these two lateral discretization schemes, the cell sizes in the longitudinal z-
direction both in the PML and non-PML regions are varied arbitrarily in order to find out the 
PML cell sizes in comparison to the non-PML cell sizes for which the number of iterations 
reduces to a minimum.  In all cases, PML is chosen such that reflection at the end of the MS 
line must approach to the nominal reflection (rth) of the PML wall. Three longitudinal 
discretization schemes are shown in Fig. 2.11, where the length and the number of cells are 
kept constant in each case. In version a1 the smallest cells are the PML cells, in a2 the 
structure is homogeneous and in a3 the largest cells are the PML cells.  Simulations are 
carried out considering each combination of the lateral and longitudinal discretization 
schemes of Fig. 2.10 and 2.11 respectively. The resulting reflection coefficients and the 
number of iterations are plotted in Fig.s 2.12 and 2.13 respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.9 The micro-strip structure with a PML wall at the end. The strip is 10 μm thick and 50 μm 
        wide. The substrate is 100 μm thick and the dielectric constant of the substrate is 9.8. The 
        PML wall consisting of 5 layers with variable thicknesses has an overall reflection error of  
        –60 dB and parabolic spatial variation of the conductivities. 
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(a) 

 
(b) 

 
Fig. 2.10 Discretization schemes in the xy plane of the MS structure given in Fig. 2.9. The 

number of cells in the x and y directions are 24 and 17, respectively, in (a), and 35 and 
24, respectively, in (b). 

 
 
From Fig. 2.12 it is clear that the reflection coefficients in both the cases of different lateral 
discretizations remain the same, where the homogeneous discretization provides the lowest 
reflection error. As the nominal reflection is taken as –60dB, ideally the structure should 
provide a reflection of –60 dB, for the whole frequency range. We see that at the lower 
frequency range (up to 10 GHz) the reflection levels in all cases stay constant at –62 dB. The 
reflection coefficients are below –45 dB up to 200 GHz. The minima’s in the |S11|’s are due to 
the canceling of each other of the reflected waves at the PML layer interfaces. On the other 
hand, larger reflection (> -60 dB) in the higher frequency range is due to the non-quasy static 
behaviour of the fields.  
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Fig. 2.11 Discretization schemes in the longitudinal z direction. The length of the structure is 

1200 μm. The last cell is an electrical wall and the PML wall consists of 5 cells adjacent 
to the electrical wall. PML cell sizes are varied from 10 μm to 40 μm and given in the 
brackets. The smallest and largest cells for a1 and a3 are 10 and 17 μm, and 22.3 and 
40 μm, respectively. 
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Fig. 2.12 Reflection coefficients for the different longitudinal discretizations according to Fig. 
2.11. The graphs in (a) and (b) correspond to the lateral discretization schemes of 
Fig.2.10.a and b respectively. The PML cell sizes are given in bracket. 
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Regarding convergence, a3 with largest cells in the PML region shows the lowest number of 
iterations, which is below 500 up to 200 GHz, in both the cases of the lateral discretizations 
(Fig. 2.13). The number of iterations of the smallest PML cells in the case of lateral 
discretization of Fig. 2.10.a is below 3000 (Fig. 2.12.a) whereas in the case of lateral 
discretization of Fig. 2.10.b it is above 5000 (Fig. 2.13.b). The reason behind this increase in 
iterations is that in the case of Fig. 2.10.b we have higher number of cells (35, 24 and 61) 
than in the case of Fig. 2.10.a (24, 17 and 61). 
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Fig. 2.13 Number of iterations for the different longitudinal discretizations according to Fig. 2.11. 
The graphs in (a) and (b) correspond to the lateral discretization of Fig. 2.10.a and b 
respectively. The PML cell sizes are given in bracket. 

 
 
 
 
In order to better compare the number of iterations for the two cases of cross-sectional 
discretizations, the iterations per cell are plotted in Fig. 2.14. In this figure it is clear that in all 
cases (a1, a2 and a3) the number of iterations in (b) are lower than in (a). In both cases 
when the PML cells in the longitudinal direction are the largest ones we have the lowest 
number of iterations. Regarding the left pictures the largest PML cells (a3, 40 μm) are 
smaller than the largest cells in the x (167 μm) and in the y (136 μm) directions. Regarding 
the right picture the largest PML cells (a3, 40 μm) are larger than the cells in the x and y 
directions. We conclude that the PML cells must not only be the largest cells in the direction 
of PML but also the cell sizes in other directions ( in this case x and y ) must be smaller than 
the PML cells – more definitely, PML cells must be the largest ones overall in order to reduce 
the iterations to the minimum. 
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a) 
 

 

 
b) 

 
 

Fig. 2.14 The number of iterations per cell. The graphs in (a) and (b) correspond to the xy 
discretizations in Fig. 2.10.a and 2.10.b, respectively. PML cell sizes are in the brackets. 

 
 
 
The parameter, ρmax ,as defined by equation 2.7, the maximum value of the ratios of the sum 
of the magnitudes of all the non-diagonal elements to the magnitude of the diagonal element 
of the system matrix, are drawn with respect to frequency in Fig. 2.15. We see here a 
correlation with the number of iterations, which, however, provides no point-to-point relation, 
rather an overall mapping is evident. The graphs in (a) and (b) correspond to the number of 
iterations given in left- and right-hand graphs in Fig. 2.14, respectively. In each case it is 
evident that ρmax decreases with the decrease in the number of iterations. If we compare 
between the left and right pictures, we see that ρmax’s of the right picture are lower than that 
of the left one. This gives the reasons why the number of iterations per cells given in Fig. 
2.14.b are lower than those given in Fig. 2.14.a. 
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Fig. 2.15 Variation in ρmax. The left and right pictures correspond to the xy discretizations in Fig.  
2.10.a and 2.10.b respectively. PML cell sizes are in the brackets. 
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The general trend can be explained also in another way: in all the calculations presented 
above, a constant nominal reflection coefficient (rth) is assumed, which refers to a constant 
attenuation in the PML region. According to equation 2.11, increasing the PML cell sizes (i.e. 
d) decreases in |Im(ηi )| thus improving the numerical condition for a constant attenuation. 
 
 
 
2.3.2 Multiple PML Walls : Patch Antenna 

 
 

A single PML wall at the end of a MS as described in the previous section works as a 
matched termination of waveguide. Now we shall study a radiating structure, the patch 
antenna in Fig. 2.6.a. First, it is simulated with a single PML wall in x direction and then with 
multiple PML walls in all open directions (x, y and z directions) in order to estimate the 
optimum PML cell size regarding convergence. In each case PML walls consist of 5 layers 
followed by an electric wall. The PML walls are non-overlapping. In case of a single PML wall 
in the x direction, the other open boundaries in the y and z directions are terminated by 
magnetic walls. There are four, three and two different discretization schemes used in the x 
(Fig. 2.16), y (Fig. 2.17.a) and z (Fig. 2.17.b) directions, respectively.  
 
 

 
 

Fig. 2.16 The discretizations of the patch antenna in the x direction. The number of cells in the 
          x direction is 45 in each case. The PML cell sizes are the largest cell sizes in each case 
         and given in the brackets.  
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a) 

 
 

b) 
 

 

Fig. 2.17 The discretizations of the patch antenna in y (a) and z (b) directions. The numbers of 
cells in the y and z directions are 94 and 97, respectively. The largest cell sizes in each 
case are given in brackets. 

 
 

First of all, a total of 24 simulations in combination of the discretization schemes in the x, y 
and z directions with each other are carried out with a single PML in the x direction where the 
cells with indices from 40 to 44 as depicted in Fig. 2.16 are defined as the PML cells. 
Considering all the simulation results with respect to the number of iterations, it is found that 
the number of iterations decreases as PML cell sizes in x direction increase. The most 
important simulation results are summarized in Fig. 2.18. In (a) the number of iterations goes 
down at 15 GHz from 5400 to 2500 when the PML cell sizes increase from 500 μm to 1200 
μm where the largest cells in y and z directions are kept at 500μm. In (b) the number of 
iterations decreases at 15 GHz from 7000 to 3750 as the PML cell sizes goes up from 500 
μm to 1200 μm while keeping the largest cells in y and z directions at 900μm. These two sets 
of results clearly suggest that the PML cells should be the largest ones in comparison to the 
non PML cells in all directions in order to obtain fast convergence.  It should be noted that if 
the PML cell sizes are increased further, the decrease in number of iterations reaches 
saturation. It means further increase in the PML cell size will produce very little decrease in 
iterations. Again the PML cell sizes must not be larger than one tenth of the wave length in 
order to keep the dispersion error within an acceptable limit. 
 
Now it must be checked what will happen regarding the number of iterations if PML walls are 
inserted in y and z directions as well. Again the 24 simulations as already used for the single 
x PML were carried out and the most important results are listed in Fig. 2.19.  The cells with 
indices from 2 to 6 and from 88 to 92 in y direction (Fig. 2.17.a), and the cells with indices 
from 92 to 96 in z direction  (Fig. 2.17.b) are defined as PML cells along with x PML cells 
defined as before.  Comparing Fig. 2.18 and 2.19 it is noticeable that the inclusion of y and z 
PML walls raises the number of iterations in the lower frequency ranges making the iterations 
level almost constant from 3 to 15GHz. This is because the y and z PML cell sizes of 500 μm 
(discretization. schemes: y1 and z1) are already in the saturation, i.e., the y and z PML cells 
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are already large enough and if they are increased to 900 μm (discretization schemes: y3 and 
z2) the iteration levels do not go down significantly. This can be seen by comparing left and 
right-hand graphs of Fig. 2.19. From this observation it can be stated that the PML cell sizes 
must be larger than the non-PML cell sizes in all directions, irrespective of PML directions. 
So optimizing the PML cell sizes (x4: 1200 μm, y3: 900 μm, z2: 900 μm) the number of 
iterations goes down below 2800. Comparing the reflection coefficients of this set of 
discretizations with that of the same structure simulated with CST Microwave Studio provides 
a very good matching as given in Fig. 2.20. 
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Fig. 2.18 : The number of iterations for a single PML in the x direction for different PML cell 
          sizes with the discretization schemes according to Fig. 2.16.  The graph in (a) 
          corresponds to the discretizations in the y and z directions labelled by y1 and z1 in  
          Fig. 2.17 respectively. The graph in (b) correspond to the discretizations in the y and  
          z directions labelled by y3 and z2 in Fig. 2.17 respectively 
 
 
 
a) 

 
 

 
b) 

 

Fig. 2.19 : The number of iterations for multiple PML walls in the x, y and z directions for 
          different PML cell sizes in the x direction with different x discretizations according to Fig 
          2.16. The graph in (a) corresponds to the discretizations in the y and z directions labelled 
          by y1 and z1 in Fig. 2.17, respectively.  The graph in (b) corresponds to the discretizations 
          in the y and z directions labelled by y3 and z2 in Fig. 2.17, respectively. 
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Fig. 2.20: The reflection coefficients of the patch antenna calculated using F3D and CST 

Microwave Studio (MWS).  In F3D, calculation the discretizations used are x4, y3, z2 of 
Fig. 2.16 and 2.17, respectively. 

 
 
In the above investigations of the patch antenna, the PML cell sizes in all x, y and z 
directions were already larger than the non-PML cells and then their values were increased. 
We shall check the number of iterations when some of the PML cells are smaller than non-
PML cells for this structure with multiple non overlapping PML walls. The mesh size of the 
patch antenna (Fig. 2.16 and 2.17) was 410310 (45×94×97) which was necessary to keep 
the mesh size same for all the discretization schemes while varying the PML cell sizes in x, y 
and z directions. 
 
In reality we do not need such a high resolution for this simple patch antenna. After knowing 
that we need PML cell sizes larger than non PML cell sizes in all direction to make the 
iteration level low, we can now discretize the structure in a more convenient way to keep the 
PML cells the largest ones. The new mesh of the same antenna structure is now 25272 
(26×36×27). The aim of the following investigations with smaller mesh size is to show that 
mesh optimization by using larger PML cell sizes is true not only for a particular mesh size 
with different cell sizes, but also for different mesh sizes of a particular structure.  
 
First of all, the structure of the new mesh is simulated with different PML cell sizes in the x 
direction, varying from 400 μm to 1500 μm according to Fig. 2.21 while the PML cell sizes in 
both the y and z directions are kept constant at 1500 and 2200 μm respectively. The non 
PML cells in the y and z directions are smaller than the PML cells. Fig. 2.22.a shows the 
comparison in the number of iterations for these three types of discretization schemes with 
different PML cell sizes in x direction.  The number of iterations can be reduced by 86% at 7 
GHz by increasing the PML cell sizes from 400 μm to 1500 μm. Fig. 2.22.b shows that the 
resulting S-parameters do not vary due to the change in PML cell sizes. It should be noted 
here that in the previous investigations of the patch antenna the criterion to terminate the 
iterative solver was 1.0e-08 and in the investigations of Fig. 2.22 the value is taken 1.0e-02. 
However in both the cases holds the argument that if the PML cells larger than the non-PML 
ones, this results in a significantly lower number of iterations. 
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The same calculations were performed for PML cell sizes in the y and z directions while 
keeping the PML cell sizes in other directions larger than the non-PML cell sizes. The results 
supported the previous findings.  
 

 
 

 
 
Fig. 2.21: The discretization schemes in x direction of the patch antenna given in Fig. 2.6.a. The 

PML cells are with indices from 22 to 26. The PML cells sizes are 400 μm (top), 700 μm 
(middle) and 1500 μm (bottom). The size of the largest non-PML cells in x direction are 
1623 μm (top), 1430 μm (middle) and 1343 μm (bottom). 
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Fig. 2.22 : The number of iterations (la) and reflection coefficients (b) for the different PML cell 

sizes in the x direction according to Fig. 2.21. 
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2.3.3 Slot  Antenna 
 
 

The 4-quadrant slot antenna [36, 37] as shown in Fig. 5.2 was developed for near-range 
sensor communications. The antenna provides lateral radiation and matches with the 
common flip-chip type of integration. The resonant properties of the antenna enable it to be 
used as an input / output filter. An active chip can be inserted inside the slot and can make 
the antenna self-dependent. The challenges of designing the slot antenna and simulation (in 
FDFD with the F3D simulator) as well as measurement results will be demonstrated in 
Chapter 5. The antenna is excited with an internal port. The properties of the internal ports in 
FDFD method will be discussed in Chapter 4. 
 
Here the antenna will be used as an example to check the PML cell size and its influence on 
the convergence. All the open boundaries are terminated by PML boundary conditions. 
Three simulations are carried out with half of the structure (see Fig. 5.4). In the first one, the 
PML cell sizes are so chosen that the ratio between the PML cell sizes and the largest non-
PML cell sizes in each direction varies between 0.8 and 0.9. The ratios vary between 2.3 and 
2.4 in the second simulation and between 3.4 and 4.4 in the third simulation. The non PML 
cell sizes (the inner mesh) remains same for all the three cases. So, in the first case the PML 
cell sizes are smaller than the non-PML cell sizes and for the other two cases it is vice versa. 
 
The simulation results are plotted in Fig. 2.23. When the PML cells are smaller than the non-
PML cells, iteration count exceeds 6500 up to 47000, where as when PML cells are larger 
than the non-PML cells, the iteration count is lower than 2200. The resulting S-parameters 
are compared with each other of the three simulations, together with a comparison with CST 
MWS in time domain. There exists a very good fitting in the reflection coefficient curves. 
 
 
(a) 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.23: The number of iterations (a) required to simulate the slot antenna of Fig. 5.4 for 
different ratios between PML cell size and the largest non PML cell size. The number of 
mesh cells is 290244 in all cases.  

 
           The reflection coefficients (b) for different ratios between PML cell size and the largest 

non-PML cell size. The comparison with CST MWS (FDTD method) for the same 
structure is also included. 
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2.4 PML in Layered Media 
 
In this sub-section, the question of how to estimate the artificial electric and magnetic 
conductivities of the PML medium in the presence of layered media is addressed. In order to 
calculate these conductivities for a given nominal reflection (rth) error a thumb rule is 
developed to estimate the dielectric constant of the PML region. These investigations are 
important, because on one hand, the given nominal reflection error (which depends on the 
dielectric constant of the PML region) and the calculated absorption level of the PML after 
the FDFD simulation must be same, on the other hand, the given nominal reflection error has 
significant influence on convergence. 
 
The PML medium is defined by the artificial electric and magnetic conductivities. In order to 
show how they must be chosen in the FDFD method, the PML tensor is presented here 
again by 2.12. σE and σM are the electric and magnetic PML conductivities. In [25] it is shown 
that if σE and σM are assigned at cell edges and cell centers, respectively, better absorption 
by the PML wall is achieved than if both σE and σM are considered to be located at the cell 
centers. From the resulting S-parameters of that work it is evident that the reflection 
coefficient at the lowest frequency does not approach the nominal reflection coefficient (rth). 
This is due to the missing term of the relative effective dielectric constant for the PML 
medium (εrpml) in the calculation of σE from given a rth. Now after including εrpml [19] the 
equation of calculating σE becomes as given by 2.13. Here p denotes the order of polynomial 
variation and d the thickness of the PML wall. The term εrpml should not be confused with the 
effective dielectric constant (εreff) of a certain mode; εreff varies with the frequency between the 
lowest and highest dielectric constants of the available media in the waveguide cross 
section. εrpml is an approximate value selected from the range of εreff for the whole frequency 
range and has a significant influence on the absorption level.   
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According to the new formulation, the MS structure of Fig. 2.9 with lateral and longitudinal 
discretization schemes given by Fig. 2.10.b and 2.11 (a3) respectively is simulated again 
with an rth of –60dB for different assignments of σE and σM. The resulting S-parameters and 
the number of iterations are drawn in Fig. 2.24. It is clear from Fig. 2.31.1 that locating σE and 
σM at the cell edge and cell center, respectively, results in a better absorption. Furthermore, 
the reflection coefficient at the lowest frequency approaches the rth value of –60dB. It should 
be noted that the resulting reflection coefficient (|S11|) should approach rth, at least at the 
lowest frequency, because the PML serves here as (matched) absorbing layer. On the other 
hand, there is not any change in the iteration level for the different assignment of σE and σM. 
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Fig. 2.24 Reflection coefficients (left) and the number of iterations (right) of the MS structure of 
Fig 2.9 for the different definitions of electric and magnetic PML conductivities.  

 
 
 
 
It will be shown in the following how to estimate the value of εrpml for a layered medium with 
the help of the MS structures of Fig. 2.25. All the dimensional information of the structures 
are given in Tab. 2.2. In all cases a PML wall at the end of the structure is added and the 
absorption by the PML wall is verified while varying the parameters of substrate thickness 
and εrpml.  
 
We shall start our investigation with the structure of Fig. 2.25.a. In the PML we have three 
different media other than the PML medium for this structure: air (1.0), PEC (strip) and 
ceramic (9.8).  εrpml is varied from 1.0 to 9.8 for the calculation of σE yielding rth from –20dB to 
–60dB. The resulting S-parameters are drawn in Fig. 2.26. We see in both that the reflection 
coefficients approach the nominal value rth if εrpml is equal to 9.8. The explanation is that most 
of the fields are concentrated in the ceramic substrate and its periphery to air around the 
strip. 
 
Starting with this simple layered structure, we intentionally add another thin-film layer of 
LiTaO3 (εr  = 40.0, Fig. 2.25.b). For this structure εrpml is varied from 1.0 to 40.0 with an rth 
value of –20dB. The resulting S-parameters for two different thicknesses of the thin film are 
plotted in Fig. 2.27. An average value of εrpml is calculated according to equation of 2.14, 
where ti’s are the thicknesses of the different layers (except strip) and εi’s are the relative 
dielectric constants of the layers. 
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(a) 

 
 

(b) 

 

(c) 

 
 
 

Fig. 2.25 a) MS line on ceramic substrate.  b) Microstrip line on thin-film of LiTaO3 and ceramic 
substrate.  Thickness of thin film, tTF, is varied from 1 to 50 μm. c) Microstrip line on a 
sandwich structure of GaAs, thin-film of LiTaO3 and ceramic.  All the details of the 
structures are listed in Tab. 2.2. The dielectric constants of ceramic, GaAs and LiTaO3 
are 9.8, 12.9 and 40.0, respectively.  

 
 
 

thickness (μm) discretization 
 a b c direction a b c 

tms 10 10 10  dim. (μm), 
num. of cells 

dim. (μm), 
num. of cells 

dim. (μm), 
num. of cells 

tceramic 100 100 100 X 700, 35 700 & 754,    
41 & 43 

710, 43 

tTF - 1 & 50 10 Y 500, 24 500, 24 500, 24 
tGaAs - - 50 Z 1200, 61  1200, 61  1200, 61 

 
Tab. 2.2 Thicknesses and dimensions of the structures given in Fig. 2.25. The width of the   
              microstrip is 50 μm. x, y and z refer to the directions of thickness, width and length  
              of the structures. Total number of cells in x, y and z directions is also attached in 
              each case. 
 
 
 
a) 
 

 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.26 The Reflection coefficients of the structure in Fig. 2.25.a for varying εrpml.                   
          (a) : rth = –20 dB and (b) : rth = –60 dB 
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Fig. 2.27 shows that none of the values of εrpml results in a reflection coefficient equal to the 
nominal reflection coefficient (rth) of –20 dB at the lowest frequencies. The reason for such 
deviation is again as stated before that most of the fields are concentrated in the ceramic, TF 
and near the substrate-air boundary. The same calculations are carried out except excluding 
the air space above the substrates in the calculation of average εrpml. The Fig. 2.28 shows the 
resulting S-parameters with different rth of –20 dB and –60dB. The average values of εrpml 
(10.1, 12.5 and 20.0) are calculated considering different thicknesses of thin film (tTF: 1, 10 
and 50 μm respectively). We see that in each case the reflection coefficients approach the 
value of rth. 
 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 

 
b) 
 
 

Fig. 2.27 Reflection coefficients for the structure in Fig. 2.26.b for varying εrpml. rth = –20 dB. 
           (a) : tTF = 1 μm and (b) :  rth = tTF = 50 μm.  
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Fig. 2.28 Reflection coefficients for the structure in Fig. 2.26.b varying tTF.  The average εrpml is 
calculated using 2.14.   

           (a) : rth = –20 dB and (b) : rth = –60 dB 
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Finally the above mentioned experience is checked with the structure of Fig. 2.25.c. Here 
another layer of GaAs (εr = 12.9) is added. Now εrpml approximates 12.65 according to 
equation 2.14 without taking air into account and the resulting S-parameters are shown in 
Fig. 2.29.a. We see a very good matching with the rth value at the lowest frequency (left 
picture). One observes that a thumb rule for  εrpml would be the average of the relative 
dielectric constants of different substrates according to 2.14, excluding the regions ( i.e. air in 
Fig. 2.25 ) from the calculation where the field concentration is negligible compared to the 
other regions (i.e. substrates in Fig. 2.25). As becomes clear from Fig. 2.29.b, rth has an 
influence on the number of iterations, interestingly lower rth gives lower number of iterations 
at the higher frequencies.  
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Fig. 2.29 Reflection coefficients (a) and the number of iterations (b) of the structure in Fig. 
2.25.c for different rth. 
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2.5 Improved Numerical Solver 
 
 
In the course of this work, the Weierstrass-Institute (WIAS), Berlin optimized the F3D solver 
[10-13] in order to tackle the convergence by the PML walls. In the improved version, the 
solver is modified by rearranging the system matrix M given by equation 2.2. In the old 
version (unmodified version, called the old solver), the system matrix is preconditioned 
directly by the SSOR procedure followed by the iterative solution using the Krylov-Subspace 
method [14, 15]. As already mentioned (see the results of Fig. 2.8), the position of the rows 
(as well as matrix elements) in M has a great influence on the convergence and the 
reshuffling of the matrix elements can result in an improved convergence. Taking that in mind 
the solver was modified by using different sorting rules for “Independent Set Ordering” to 
accomplish the rearrangement of the system matrix. In this way the system matrix is reduced 
to a smaller dimension (Schur-complement, S) which can be solved faster after the usual 
SSOR preconditioning. This modified version will be called here new solver. The details of 
the modifications and procedure of the F3D solver are given in the Appendix 7.7. 
 
In order to check the benefits of the new solver version over the old one the comparatively 
simple patch antenna structure of Fig. 2.30 will be demonstrated first. Both the old and new 
solvers are used to simulate the antenna separately with x and y PML as well as x and z 
PML walls including the overlapping regions. In both the cases the iterative procedure for a 
certain frequency is terminated either if convergence is reached or if the number of iterations 
exceeds 300,000 without convergence. The resulting numbers of iterations are given in Fig. 
2.31. For the overlapping PML walls in x and y directions, the old solver does not converge 
already at 2 GHz whereas the new solver reaches the termination without convergence only 
at 16.5 GHz (Fig. 2.31.a). For the overlapping PML walls in x and z directions, again the old 
solver does not converge already at 2 GHz where as the new solver converges in the whole 
frequency range with an iteration count of 36,000 at 18GHz (Fig. 2.31.b). So the new solver 
works much better than the old one regarding the number of iterations when applied to the 
PML walls with overlapping regions. However, even though the new solver reduces the 
number of iterations significantly in the cases of overlapping PML walls, the number of 
iterations is still too high to be used in most practical cases. So we need non-overlapping 
PML and the other concepts described in the previous sub-sections.  
 
 

 
Fig. 2.30 Half of a rectangular patch antenna. The dimensions of the half patch, feeding 

microstrip line and computational domain are (50μm × 16000μm × 16000μm), (50μm × 
1230μm × 8000μm) and (14844μm × 18000μm × 32000μm) in x, y and z directions 
respectively. The PML cell size and number of cells in x, y and z directions are 
(1280μm, 1010μm, 1000μm) and (30, 25, 41), respectively. 
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Fig. 2.31 Iterations of the patch antenna in Fig. 2.30 with overlapping PML walls in x and y 

directions (a), and, in x and z directions (b). 
 
 
 
The new solver allows different sorting of the system matrix and thereby the rearrangement 
of the elements of the system matrix. The number of iterations depends significantly on the 
different sorting rules. The simulations corresponding to the results in Fig. 2.32 were carried 
out with the optimized sorting of the system matrix. The optimization of the sorting will be 
analyzed in the following with help of the patch antenna in Fig. 2.6.a (discretization schemes 
: x4, y3, z4 ; Fig. 2.10 and 2.11). Fig. 2.32.a shows the comparison in the iteration count with 
the non overlapping PML walls in x, y and z directions for three different sorting rules of 
alternate ordering, reverse ordering and ISODEG ordering [14]. Depending on the sorting, 
the number of iterations can be reduced by 27% at 16 GHz. Also, the convergence is greatly 
dependent on another parameter called the relaxation factor, ω [15]. The value of ω lies 
between 1.0 and 2.0. Fig. 2.32.b shows the dependency of the number of iterations on ω at 
different frequencies. For all frequencies, the number of iterations increases abruptly for 
values of ω above 1.6…1.8. It has been found that 1.5 is a good choice for ω for the 
structures studied here, including patch antenna, MS line, CPW line, LTCC, Flip-chip etc. 
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Fig. 2.32  The number of iterations for the different sorting of system matrix in using the new 

solver (a) and for different values of ω (b) applied to the patch antenna in Fig. 2.6.a with 
discretization schemes of x4, y3 and z2 ( Fig. 2.16 and 2.17) 



Chapter 2                                                                                           PML Parameters and Convergence   

 - 42 - 

Fig. 2.33 shows the influence of the new solver in comparison to the old solver for the case 
without PML and the case with non-overlapping PML. Now the same antenna in Fig. 2.6.a 
with discretization schemes of x4, y3 and z2  (Fig. 2.16 and 2.17) is simulated in order to 
check the influence of the new solver in comparison to the old solver for the cases without 
PML and non-overlapping PML. We see that there is a slight improvement in the higher 
frequency ranges in the case without PML when using the new solver. On the other hand, we 
see a 6 to 10% decrease in the number of iterations in the lower frequency ranges with the 
new solver in the non-overlapping PML case. As the matrix elements are frequency 
dependent, the sorting rules work better for different frequency ranges regarding the 
improvement in convergence. The ISODEG sorting is used for rearranging the system matrix 
in the new solver case whereas in the old solver case no sorting is used – no rearrangement 
of the system matrix. We see that ISODEG sorting in this case decreases the number of 
iterations in the higher frequency ranges for the non-PML case (slightly), and in the lower 
frequency ranges for the non-overlapping case.  
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Fig. 2.33 The number of iterations of the patch antenna in Fig. 2.6.a with discretization 
schemes of x4, y3 and z2 ( Fig. 2.16 and 2.17) for the case without PML (a) and for the 
case non overlapping PML walls in x, y and z directions (b) in relation with the old and 
new solvers. 

 
 
 
 
The patch antenna structures studied before are relatively simple and might not provide the 
full picture with regard to the solver’s potentiality. Therefore, the comparatively complex flip-
chip structure with non overlapping PML walls in Fig. 2.34 is analyzed in the following. Non-
overlapping PML walls are used in the lateral direction to replace the open boundaries. The 
resulting iteration numbers are plotted in Fig. 2.35. We see that the ISODEG sorting of the 
new solver provides an overall improvement in convergence in comparison to the old solver 
in the whole frequency range with a decrease in the number of iterations by 10 %. By 
choosing the reverse sorting, the number of iterations can be reduced by 20%, but only in the 
lower frequency ranges. 
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Fig. 2.34 MS to CPW flip-chip interconnect. 
 
 
 
 

 

0 10 20 30 40

1200

1400

1600

1800

2000  new (ISODEG)
 old (natural)
 new (reverse)

 frequency / GHz

ite
ra

tio
ns

 
 

Fig. 2.35 Comparison of the new and old solver: number of iterations against frequency for the 
flip-chip structure of Fig. 2.34. 
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 2.6 Conclusion 
 
 
The influence of the PML boundaries on the convergence of the iterative solution can be 
summarized as follows: PML enlarges the range of the magnitudes of the elements of the 
system matrix. It is shown that due to the PML, several rows of the system matrix are 
affected where the non-diagonal elements become significantly larger in magnitude than the 
main diagonal ones. The outcome is that the condition number of the system matrix grows 
and, consequently, the number of iterations (thereby the CPU time) when solving the system 
of equations increases drastically. 
 
This effect can be mitigated, of course, by improving the mathematical solver applied, as it is 
described in Sec. 2.5. However, the resulting improvements are not significant enough to 
solve the problem. Two main issues have been found: 
 

1) Overlapping PML regions at edges and corners make the usage of the PML boundary 
condition almost impossible for practical microwave structures. It comes out that by 
avoiding any overlapping, the high count of the number of iterations can be lowered 
very significantly without sacrificing accuracy too much.  

 
2)  PML cell size is the most important parameter regarding the convergence of the 

iterative solution. The investigations on several structures like micro-strip, patch 
antenna, flip-chip interconnect, spiral inductor, coupler, reveal that by making the 
PML cell sizes the largest ones in the whole mesh, the iteration level can be lowered 
drastically. 

 
Finally, a thumb rule is developed for estimating the relative dielectric constant in the 
PML region, if the PML wall is inserted in a layered media, thus ensuring that the 
absorption level of the PML approaches the given nominal reflection error.
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3 Waveguide Port Simulation with PML 
 
 
Mostly, three-dimensional (3D) simulations of passive structures are carried out through 
waveguide port excitations. Even though only the desired physical modes are to be excited 
at the wave guide port, parasitic artificial modes are also excited due to the finite boundary of 
the calculation domain. Inclusion of PML as open boundary makes the situation even worse, 
e.g. because it excites modes at the waveguide port with complex propagation constants (�) 
even if the investigated structure is loss free.  
 
The goal of this chapter is to investigate the changes in mode spectrum of a longitudinally 
homogeneous structure due to PML. A simple MS structure is used to describe the effects of 
PML on mode spectrum at the waveguide ports.  

   
 
 
3.1 Physical and artificial modes 
 
 
As the FDFD method deals with a boundary value problem, the waveguide ports support two 
types of modes. The first ones are the physical modes that are related to the physical 
waveguide (MS, CPW lines for example). The second ones are artificial modes, also called 
box modes, which exist due to the boundary which is introduced only for the simulation 
purposes and is not present in reality. Correspondingly, these modes depend on the size and 
type of the boundaries, electric or magnetic walls, for example. The box modes have usually 
nonzero cutoff frequencies where as the physical modes may have zero cutoff frequencies 
(e.g. MS, CPW modes) and nonzero cutoff frequencies (e.g. higher order substrate modes). 
The box modes like the physical modes are able to propagate along the waveguide and 
thereby may interfere with each other whenever there is a discontinuity along the waveguide. 
If there are np numbers of conducting lines at the wave guide port, the number of physical 
modes with zero cutoff frequency is equal to (np –1) assuming that the dimensions of the 
lines are sufficiently small compared with the wavelength.  
 
One should note that this distinction between physical and artificial modes does not apply 
strictly over the entire spectrum. This is because of the FD discretization. For the discretized 
structure, one has a fixed number of modes, which solely depend on the number of mesh 
cells of the waveguide. More precisely, the number of eigenvalues which is equal to twice the 
number of mesh cells (N) at the port. Therefore, in the range for high |�| = |� + j�|, there are a 
lot of modes which are more or less determined by the discretization only and thus neither 
physical nor box modes. 
 
PML boundary conditions are used in order to simulate open space. So the box modes 
existing due to the artificial boundaries should not appear when PML walls are used. Since 
the total number of modes is fixed (see above), these modes can not be eliminated but only 
shifted in the spectrum, desirably to a range far away from the physical modes. However 
PML is designed to absorb waves impinging onto the PML. It is not equally suitable as a 
lateral boundary of a waveguide. Therefore, not all the box modes are shifted properly and 
they may appear between the physical ones. 
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One has to find out how to distinguish among physical, box and rest of the artificial modes in 
using PML. One possibility is the criterion PPP (Power Part in PML) which is defined in [25] 
as the ratio between the power of a particular mode in the PML region and the total power of 
that mode calculated at certain waveguide port. Accordingly, the modes which have 
comparatively large PPP values will be defined here as PML modes. Obviously the PML 
modes belong to the group of artificial modes. The PPP values of the physical and box 
modes depend on the amount of fields in the PML region. However, it turns out that only 
based on the PPP values the PML modes can not be separated from the desired physical 
modes. The PML modes and their effect on physical and box modes will be described in the 
next sub-chapter. 
 
A MS structure (Fig. 3.1.a) is used to show the appearance of all these physical and artificial 
modes. A discontinuity of two MS lines with different widths is used devotedly to check the 
coupling of MS mode to other modes. Except for strip width, the waveguide ports (port 1 and 
2) are the same at both ends of the structure. The cross section of port 1 is depicted in Fig. 
3.1.b. The structure is simulated with and without PML. When simulated with PML, two PML 
walls (designated by X- and Y-PML) are used and when simulated without PML, the PML 
regions are just replaced by the corresponding neighbouring materials (e.g. air and ceramic). 
So in both cases the outer dimensions of the structure remain the same. The PML walls are 
followed by magnetic walls (MW), whereas another magnetic wall (symmetry plane) is used 
to simulate only half of the structure and the ceramic substrate is grounded by electric wall 
(PEC). PML walls are used in such a way that PML cells are the largest ones. An 
overlapping PML wall is used at the crossing of X- and Y- PMLs in the investigations of this 
sub-chapter in order to stick to the basic PML definition [18], however, it is found that XY non 
overlapping PML walls show the same effects as the overlapping PML does. 
   
a) 
 
 

 

b) 

 
Fig. 3.1 (a):  Discontinuity of two MS lines on ceramic substrate. The widths of the MS lines at 
          port 1 and 2 are 210 μm and 110 μm respectively. The thickness of  the metallization is 5 
          μm.  (b): Cross-sectional view at port 1. The thicknesses of the X-PML (ax) and Y-PML 
          (ay) walls as well as  the height (bx) and width of the structure (by) are varied. The cross- 
          section at port 2 is same as at port 1 except for the different width of the strip. The 
          structure is terminated by an electric wall (PEC) at the bottom and otherwise by magnetic 
          walls (MW). 
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In the waveguide simulation, referred to as 2D in the following, all the modes are sorted first 
by the ascending order of |α| (α being the imaginary part of the propagation constant) and 
then by the descending order of |β| if |α|’s of the two modes are same [11]. So the modes 
with smaller |α|’s appear first. In this way the evanescent modes, which are not of interest in 
most cases, are shifted at the end of the mode list. On the other hand, the PPP criterion can 
be used to filter out the modes. The value of PPP varies between 0.0 and 1.0. So if PPP 
equal 1.0 is used all the modes are included and if PPP is 0.3, for example, only the modes 
whose power portion in the PML region is less then 30% are considered. 
 
The MS structure of Fig. 3.1 is simulated without PML (non-PML) and with PML considering 
the first 10 modes in each port in both cases. PPP equal to 1.0 is used with PML case. The 
attenuation constants (α) and effective dielectric constants (εr_effective = (β/β0)

2) of these modes 
at port 1 in the cases of non-PML and with PML are shown in Fig. 3.2.a and 3.2.b 
respectively. Out of these 10 modes, mode 1 (m1) is the MS mode [42]. Mode 2 (m2) is the 
TM0 mode and mode 6 (m6) is the TE1 mode, both of these are surface wave modes, 
transversal magnetic and electric, respectively, to the perpendicular direction to the substrate 
(x direction). The rest of the modes are box modes. The field patterns of TM0 and TE1 modes 
are shown in Fig. 3.3. 
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Fig. 3.2. Without PML: attenuation (a) and effective dielectric constants (b) at port 1 of Fig. 3.1 
          against frequency for different modes. bx = 1900 μm and  by = 2400 μm. 
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Fig. 3.3 Without PML: The electric fields of TM0 and TE1 modes appearing at port 1 of Fig. 3.1. 
          TM0 has the field components of Ex, Ez and Hy. TE1 has the field components of Ey, Hx  
          and Hy. [42,46] 
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It is worthwhile to discuss these surface wave modes in more detail. Not only a grounded 
dielectric waveguide but also other interesting waveguides like ungrounded dielectric slab, 
dielectric rod, corrugated conductor etc. support surface waves [42-44, 46]. Surface waves 
can also be excited on some types of planar transmission lines, such as MS line (e.g. Fig. 
3.1), CPW line (e.g. Fig. 2.35) and slot line.  
 
Surface waves have fields which decay away from the dielectric substrate while most of the 
fields remain in or near the air/dielectric interface. The higher the frequencies, the more 
tightly bound are the surface wave fields in the dielectric, so the surface waves guiding 
waveguides are mostly of practical interest at higher frequencies. Another interesting 
characteristic of surface waves is that their phase velocity is less than the velocity of light in 
vacuum due to the presence of the dielectric. The principal types of surface wave modes 
supported by a grounded dielectric are the transversal magnetic (TMn) and transversal 
electric (TEn) modes. The cutoff frequencies of these modes are given by 3.1 and 3.2, 
respectively, assuming that the grounded dielectric is infinitely extended in the y and z 
direction while the vacuum above the substrate is also unbounded (in x direction). Fig. 3.1 
would be the case when MS is not present and all the lateral boundaries are shifted to 
infinity. h is the height of the dielectric and c is the velocity of light in vacuum. 
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Any nonzero thickness (h >0) dielectric slab with relative dielectric constant (εr) larger than 
unity must support at least one propagating TM mode, the TM0 mode, which is the dominant 
mode of the dielectric slab waveguide with zero cutoff frequency. The guidance equation of 
the TM modes is given by 3.3, where kd and kair are the cutoff wave numbers in the two 
region of dielectric and air, respectively. The phase velocity of TM modes (β) is related to kd 
and kair by 3.4 and 3.5, respectively. Through some mathematical manipulations among 3.3, 
3.4 and 3.5, kd, kair and β can be determined. The TM modes allow only Ez, Ex and Hy field 
components which can be calculated readily once the values of β are known. 
 
 

airrdd khkk ε=tan         (3.3) 

 
22

0 βε −= kk rd          (3.4) 

 
2
0

2 kkair −= β          (3.5) 

 
TE modes unlike TM modes support only nonzero cutoff frequencies. The guidance equation 
for TE modes is given by 3.6. The TE modes allow only Hz, Hx and Ey field components 
which can be calculated readily once the values of kd and kair are known. According to 3.1 
and 3.2 the order of the propagation of the TMn and TEn surface wave modes are TM0, TE1, 
TM1, TE2, etc. 
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airdd khkk =− cot          (3.6) 

 
Now the structure of Fig. 3.1 is compared with the ideal case. This structure supports only 
two propagating surface wave modes, TM0 and TE1 (f1

TE = 100 GHz) up to the frequency of 
150 GHz. According to [42] the effective permittivity of the TM0 mode starts to deviate from 
the value of 1.0 at the frequency (f0) of 60 GHz, calculated by 3.7. 
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In addition to the presence of the MS line, the structure is bounded by magnetic walls in y 
and positive x directions. This introduces a nonzero cutoff for all modes except the MS one. 
TM0 (m2, Fig. 3.2.b) rather starts at 20 GHz with εr_effective equal to 0.0. This dependency of 
cutoff frequency of TM0 on the presence of the magnetic boundary in x direction is checked 
by varying the length of bx (Fig. 3.4). It is obvious that shifting the magnetic wall far away 
from the dielectric can shift the cutoff frequency of the TM0 mode at lower frequencies and 
support the dispersion frequency (f0) given by 3.7.   
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Fig. 3.4 Without PML : Dependence of the cutoff frequency of TM0 mode on the distance of the 
          magnetic boundary in x direction of Fig. 3.1 (i.e. bx is varied).  f0 is 60 GHz and fTM0,min is 
         130 GHz. 
 
 
Again one has to consider that the guidance equation given by 3.3 for TM0 mode is true only 
for unperturbed slab, e.g. if compared with Fig. 3.1, the MS line is not present and bx extends 
to infinity. For the sake of clarity the structure of Fig. 3.1 is calculated and the effective 
dielectric constants for both the cases of with and without MS are listed in Fig. 3.5.a. The 
electric fields of TM0 mode for the cases of with and without MS line are given in Fig. 3.5.b 
and 3.5.c, respectively, clearly showing that the Ex fields of the TM0 mode are perturbed by 
the MS line. It is checked that the guidance equation of 3.3 is valid only for the without MS 
case if εr_effective ≥ 1.0. The difference in εr_effective values for both the cases varies between 1% 
and 8% with respect to the case with MS.  
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The TE1 mode is supported by the structure of Fig. 3.1 as well. This mode is affected in two 
ways in this structure – presence of the MS line and the magnetic wall in the y direction. Due 
to the magnetic wall, the Ey component of the mode must vanish at the boundary. That’s why 
the TE1 (m6, Fig, 3.2.b) starts with εr_effective equal to 0.0 rather than 1.0 at 100 GHz. The 
guidance equation of 3.6 is fulfilled in the frequency range of 120 to 150 GHz where the 
values of  εr_effective start to be larger than 1.0.  
 
[41] suggests that in order to avoid any coupling between the surface wave modes and the 
MS mode, the upper frequency level should be kept below the frequency (fTM0,min given by 
3.8) where the (εr+1)/2 line meets the TM0 dispersion curve, as shown in Fig. 3.4. 
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b) : TM0 mode with MS 
 

 

 
 

 

c) : TM0 mode without MS 
 

 
 

Fig. 3.5 Without PML: Influence of MS line on TM0 mode. bx of Fig. 3.1 is chosen to 10mm. 
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Apart from the physical modes of MS, TM0 and TE1, the other modes in Fig. 3.2 are due to 
the artificial magnetic boundaries and, therefore, are not of interest. 



Chapter 3                                                                                        Waveguide Port Simulation with PML 

 - 51 - 

3.2 PML modes and their coupling to other modes 
 

After knowing what type of physical modes and box modes can be supported by the structure 
of Fig. 3.1 it will be easier to detect the PML modes. Since we know now that same PML 
modes may be close to physical ones in the spectrum and not always early to separate, one 
has to clarify whether and how they affect the behaviour of the physical modes in a 3D 
structure, i.e., the S-matrix of the physical modes. This is done in the following. 
 
PML walls are used in such a way that PML cells are the largest ones. An overlapping PML 
wall is used at the crossing of X- and Y- PMLs in the investigations of this sub-chapter in 
order to stick to the basic PML definition [18], however it is found that XY non-overlapping 
PML walls show the same effects as the overlapping PML does. The nominal reflection 
coefficients used for the PML walls is –80dB. 
 
PML modes are typified in general by their higher PPP values together with nonzero values 
of α and β. Again α values of PML modes are also large compared to the physical and box 
modes. How PML modes can be separated from the physical ones based on PPP criterion 
and α values are shown in [25]. However problems arise when sufficient amount of fields of 
physical modes are in the PML region. In this case, the PPP values are also very high for the 
physical modes and comparable to the PPP values of PML modes.  
 
The MS structure (Fig. 3.1) is simulated with PML as mentioned above and the PML modes 
are filtered out according to their PPP and α values. The PPP, α and εr_effective values of the 
physical MS, TM0, TE1 and box modes (m3 and m7) excited at port 1 are plotted in Fig. 3.6. 
The PPP of MS mode is nearly zero as most of the fields concentrate near the MS and 
almost no fields in the PML region. TM0 mode has very high values of PPP at the lower 
frequencies and PPP decreases at higher frequencies. This is because, at lower frequencies 
the fields (Ex component) exist along the whole Y-PML region and at higher frequencies the 
fields concentrate near the dielectric. Nevertheless, a large portion of the fields are still in the 
Y PML region and that’s why this mode is highly affected by PML. Even at 150 GHz this 
mode has a PPP value of above 0.4. If a PPP value of 0.4 is assumed to filter out the PML 
modes, the TM0 mode will be filtered out as well. This means the effect of this physical mode 
on MS mode is neglected in the 3D calculation. It is also true for TE1 mode and all box 
modes. For TE1 mode the PPP varies from 0.9 to 0.03. Near the cutoff frequencies of these 
modes PPP values are the largest ones. Only modes of m3 and m7 are shown here because 
of their low PPP values and lower attenuation constants.  
 
The physical as well as the box modes are also attenuated or amplified due to the PML, even 
though the structure is loss free. While α of the MS mode remains near to zero, α of TM0 
mode fluctuate between –25.0 to 50.0. This mode is attenuated between 60 and 90 GHz and 
at other frequencies is amplified. TE1 mode is also attenuated and the attenuation starts to 
decrease at 110 GHz from –160 to –36 at 150 GHz. Interestingly both TM0 and TE1 have a 
maximum attenuation constant at 80 and 110 GHz, respectively. The box modes of m3 and 
m7 are also highly attenuated. 
 
The dispersion characteristics of the MS mode do not change when compared with the non-
PML case. However the TM0 mode now starts to propagate at lower frequencies with εr_effective 
values of 1.0 and remains at this value up to 60 GHz. Like TM0 TE1 mode also starts to 
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propagate with εr_effective values of 1.0 at 100 GHz. Because of very high  α and low β values 
in comparison to some PML modes at cutoff frequencies the box modes remain at the lower 
end of the mode spectrum and do not appear if a definite number of modes (e.g. 10) are 
excited at the port. m3 and m7 are shown in Fig. 3.7. 
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Fig. 3.6 With PML : PPP (top), attenuation constants (center) and effective relative dielectric 
          constants (bottom) of the MS, TM0, TE1 and box modes (m3 and m7 Fig. 3.2) at port 1 
          of Fig. 3.1 as a function of frequency. ax, ay, bx and by are 950, 400, 1900 and 2400 μm, 
          respectively. 
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m3 (box mode) 
 

 

 
 

 

m7 (box mode) 
 

 
 

Fig. 3.7 With overlapping PML : mode spectrums of box modes (m3 and m7, Fig. 3.2) of 
         particular interest in port 1 of Fig. 3.1 at 150 GHz. ax, ay, bx and by are 950, 400, 1900 
         and 2400 μm, respectively. 
 
Up to this point, all the results and discussion have been done for the port 1 of Fig. 3.1. The 
same is also true for the port 2 of Fig. 3.1. Now a 3D simulation is carried out while allowing 
10 modes at each port and the coupling of MS mode to all other modes will be checked. In 
Tab. 3.1 these couplings between the MS mode and other modes at port 1 of Fig. 3.1 are 
listed together with α, β and PPP values at 50 and 150 GHz for example.  
 
 

50 GHz 150 GHz 

modes 
type εr-eff. α 

(Np/m) 
PPP coupling 

to MS  
(dB) 

type εr-eff. α 
(Np/m) 

PPP coupling 
to MS  
(dB) 

1 MS 7.83 0.06 0.0 -17 MS 9.29 0.0 0.0 -21 
2 TM0 1.12 12.41 0.79 -38 TE1 3.15 -36.87 0.03 -26 
3 PML 1.46 -52.00 0.86 -41 TM0 6.45 45.25 0.41 -47 
4 PML 1.78 -177.99 0.81 -40 m3 6.04 -99.46 0.38 -42 
5 PML 1.34 -522.74 0.91 -46 PML 1.01 -179.77 0.79 -48 
6 PML 0.98 -524.11 0.80 -42 PML 0.84 -198.05 0.71 -54 
7 PML 5.83 -554.26 0.76 -64 m7 0.75 -218.14 0.20 -28 
8 PML 1.30 -564.36 0.68 -53 PML 0.87 -309.31 0.78 -46 
9 PML 6.09 -574.61 0.61 -78 PML 1.43 -452.45 0.96 -60 

10 PML 6.17 -576.65 0.75 -69 m4 4.94 -489.07 0.40 -45 
 
Tab. 3.1 Coupling between the MS mode (numbered 1) and all other modes (numbered 2 to 10) for 
           50 and 150 GHz at port 1 of Fig. 3.1 are listed. Type, effective dielectric constant (εr-eff.),  
           attenuation (α), PPP values of each mode are also given for completeness. 
 
 
At 50 GHz the reflection of MS is –17 dB as the characteristic impedances of the two lines 
are 50 and 70Ω respectively. At this frequency, except for the MS and TM0 mode, all are 
PML modes and these PML modes are clarified by their high PPP and α values. The 
couplings between MS and PML modes are very low (< -41dB). Obviously the coupling 
between the MS and TM0 mode is also very low (-38dB). At 150 GHz, on the other hand, TE1 
and box modes are also present. The couplings between the PML modes and MS mode are 
again very low (< 42dB).  The TM0 mode shows also very low coupling (-47dB) at 150 GHz. 
TE1 and m7 show relatively high coupling of –26dB and –28 dB, respectively. This is 
because the fields of these two modes look very identical and concentrate with a large 
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amount near the MS (see Fig. 3.3 and 3.7). The reflection coefficient of the MS line at this 
frequency is –21dB. 
 
 
The coupling of the MS mode at port 2 to other modes at port 2 shows similar behaviour as 
summarised in Tab. 3.1, not only for 50 and 150 GHz – coupling of PML modes to MS mode 
remains very low (<-40dB) at all frequencies. As TE1 and m7 shows relatively stronger 
coupling (above 130 GHz) to the MS mode, one must carefully decide whether to neglect or 
not neglect these modes by removing them through the PPP criterion. 
 
Up to 130 GHz PPP turns out to be a very good criterion to remove PML modes and TM0 
mode which have very low coupling to the MS mode for this structure. As the appearance of 
surface modes and box modes depends on the structure itself and its boundary, one needs a 
training of 2D (with the help of PPP) and 3D simulation (with the help of coupling) in order to 
remove unnecessary modes from the calculation domain.  
 
As in the case of TM0 mode where most of the fields are in the PML region and thereby 
strongly affected by the PML (attenuated or amplified), the fields of MS strip mode should be 
concentrated in the non-PML region. Fig. 3.8 shows that if the PML walls are placed very 
near to the MS structure, the MS fields exist in the PML region and the MS mode is highly 
attenuated or amplified. This raises the question of how far the PML walls should be placed, 
particularly for planar structures like MS and CPW line. It is found that a distance of 5 times 
the maximum between substrate thickness and MS width from the MS as well CPW lines is a 
good thumb rule to place the PML walls and thereby to minimize the effect of PML.  
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Fig. 3.8  With PML: effective dielectric constants and attenuations of MS mode (a) at  port 1 of  
          Fig. 3.1 as a function of frequency. ax, ay, bx and by are 150, 150, 500 and 500 μm, 
          respectively. The corresponding MS mode spectrum (b) at 50 GHz.  
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3.3 Conclusion 
 
 
It was shown that the FDFD simulation with PML in general gives rise to artificial PML modes 
at the waveguide ports. These PML modes may appear close to the physical modes in the 
spectrum but were found to show very low coupling to the physical modes of interest (e.g. 
MS, CPW, PPL etc.).  
 
The MS or CPW modes, whose most fields particularly concentrate in the non-PML region, 
are not affected by the PML, if PML walls are sufficiently far away (five times the maximum 
between substrate height and strip width). The surface wave modes as well as box modes 
may be highly affected by the PML.  
 
The so-called PPP criterion defined as the power part of a particular mode in the PML region 
is useful to filter out PML modes but its intent parameters may differ from structure to 
structure. A careful observation following the 2D (using PPP criterion) and 3D simulations 
(checking the coupling of unwanted PML, box and physical modes for couple of first 
simulation run) is needed in order to remove unnecessary modes from the calculation 
domain. In case of doubt, a mode should be included in order to maintain best accuracy. 
Since the influence of PML modes on physical ones is found to be low, the resulting possible 
errors are small.  
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4 Internal Ports  
 
The objective of this chapter is to describe how internal ports can be implemented in the 
FDFD method. In chapter 1, it was shown that the internal ports can be realized in general in 
terms of a relaxation current source or a conduction current source. It will be shown here that 
the relaxation current excitation in FDFD method does not provide physical solution. As is 
known, the conduction current internal ports possess parasitic inductances. It will be shown 
how the values of the parasitic inductances can be estimated for deembedding. 
  
Internal ports make the way of exciting any structure from any position inside the structure. It 
becomes very much inefficient for an EM simulator if an MMIC together with its housing 
(mother board/package) is tried to be simulated. As the dimensions of the lumped and active 
devices in MMICs are very much small compared to the passive elements, the EM simulators 
need a very large mesh size to put all the circuit elements together. Internal ports provide 
one solution for this problem. The tiny circuit components (lumped elements, active 
elements) can be replaced by internal ports and the resulting current/voltage relationship 
(e.g. S- or Z-parameters) found at the internal ports through the EM simulations can be used 
in network simulators in order to interface with the replaced components. This way with the 
help of internal ports the complex MMIC structures along with their housing can be simulated 
easily part by part, e.g. passive package and the active components separately, and then the 
parts can be interfaced in the network simulators.  
 
As an example, Fig. 4.1.a shows the array of a 2 GHz power transistor. The transistor fingers 
are fed by the MS waveguide feeding lines (not shown here) through bond wires. During the 
design of the device, it is interesting for the circuit simulators to know the S-parameters at the 
points where the bond wires are connected with the transistor fingers. This is not possible 
without local excitations at those points. Again the simulation of the structure as a whole is 
cumbersome and inefficient for EM simulators. As a remedy the transistor array is taken out 
of the structure by inserting internal ports at the transistor fingers. The structure without the 
transistor array can be simulated with waveguide ports at the feeding lines and internal ports 
at the transistor fingers. The resulting S-parameters can be used to interface with the 
transistor array in network simulators. As shown in Fig. 4.1.b, the internal ports are placed at 
the feeding lines for the bond wires and the resulting voltage and currents are calculated to 
obtain the resulting S-parameters. 
 
a) 
    
 
 
 
 
 
 
 
 
 
 

b) 
     

Fig. 4.1 Power transistor array (a). Simulation structure for the power transistor’s housing (b). 
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4.1 Relaxation Current Internal Port 
 
 
The relaxation current internal port is realized by inserting two time varying charges of equal 
magnitudes but opposite polarities at two nodes of two conductors which are part of a certain 
circuitry. In this way a time varying current is defined to enter and come out of the circuitry at 
those two nodes. The basic definition of this type of internal port excitation shown in Fig. 1.6 
is repeated here (Fig. 4.2) 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2 Relaxation current internal port : voltage source. qv ≠ 0, Je = 0. 
 
 
 
The implementation of the relaxation current internal port procedure in FDFD method is given 
in Appendix 7.2. The FDFD method deals with a discretized wave equation given by 4.1. 
Equation 4.1 is solved for the vector e

�
 which contains all the electric field components of 

each cell of the FDFD mesh. M1, M2 and M3 are the matrices that contain the information on 
material properties and dimensions of the structure under consideration. M1 matrix is defined 
to correspond to the ∇×∇× operator, on the other hand M3 is defined to correspond the (∇∇⋅) 
operator. Vector rr

�
refers to the relaxation current internal port source (in terms of time 

varying charges) and is related to matrix M3 by 4.2. M3 is brought to the equation 4.1 in order 
to eliminate static charges inside the computational domain and thereby to improve 
convergence [6, 7].  
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rreM
��

=3       (4.2) 

 
In a homogeneous material, 4.1 is the discretized representation of the Helmholz’s equation 
as given below by 4.3. 
 

rEkE
���

=+Δ 2      (4.3) 
 
 
Because the FD formulation allows for a one-to-one correlation with the vector differential 
equation, the following considerations will be based on the latter one (see also [8]). 
 
4.2 can be written as  
 

rEkEE
����

=−⋅∇∇−×∇×∇ 2    (4.4) 
 
Thus, the homogeneous equation (with r

�
=0) has two types of solutions, one with 0≠×∇ E

�
 

and 0=⋅∇ E
�

, the other with 0=×∇ E
�

 and 0≠⋅∇ E
�

. The first refers to the electrodynamic 
but divergence-free (and thus charge-free) E-field. The other refers to a non-physical field, 
which involves 0≠⋅∇ E

�
and thus space charges.  

 
If the excitation fields, i.e., r

�
 in 4.3 and 4.4, are divergence-free, the non-physical fields are 

not excited and thus zero. Using a time-varying charge, however, as done in the excitation 
current version, 0≠⋅∇ E

�
 holds and thus the resulting solution for E

�
 is a mixture of physical 

and non-physical fields and thus useless for the intended EM simulation purpose. 
 
In the FD formulation, )( E

�
ε⋅∇  refers to eM

�
3 and one has in analogy to 4.4 two types of 

solutions for 4.1. The physical one with eM
�

3 =0 and 01 ≠eM
�

, and the non-physical one with 
03 ≠eM

�
 and 01 =eM

�
. 

 
Thus, introducing a relaxation current source, i.e. time varying input charges, the resulting 
solution of equation 4.1 will comprise solutions with M1 e

�
 = 0 and M3 e

�
≠0 and thereby lead to 

non-physical solutions. This non-physical solution makes the excitation of a structure by 
relaxation current sources non-feasible.  
 
The non-feasibility of the relaxation current internal port source is explained using an 
example of the structure given in Fig. 4.3. In a cube of magnetic walls filled with air two 
identical copper lines are defined. At the points of A3 and B3 the two nodes of a relaxation 
current internal port are defined, where a time varying positive charge Q and a negative 
charge - Q are applied at node A3 and B3 respectively. The magnitudes of the charges are 
calculated by means of equation 7.9 for 1 Amp current at 1GHz.  
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Fig. 4.3 Two identical copper (σ = 5.6e7) lines (line A and B) are contained in a cube of 

magnetic walls (MW). The sides of the MW cube are 150 μm. The length (l), width and 
thickness of each line are 50, 4 and 2 μm.  The lines are 40 μm apart from each other. 
A1, A2, A3 and B1, B2, B3 are some points of interest inside the line A and B respectively. 
The cell sizes inside the lines are less than one fourth of skin depth. At point A3 a 
positive time varying charge +Q (1.59169E-10 C) and at point B3 a negative time varying 
charge –Q (-1.59169E-10 C) are applied. The wave length (λ) at 1 GHz for this line 
system is 0.28m. 

   
 
After the 3D solution of equation 4.1, the charges at each cell are calculated. The charge 
distribution at each cell normalized by the maximum charge amplitude on the x = 70 μm 
plane is shown in Fig. 4.4. It is found that the total amount of charge inside the cube is zero. 
The dual cells which contain the points A3 and B3 possess the same amount of charges with 
the same polarities of the input charges. In line A, the same amount of input charges (Q) but 
negative in polarity is inserted by the solution, decreasing from the surrounding cells of A3 
towards the end of the line. In the same way, in line B, a positive charge of Q is distributed by 
the system decreasing from the surrounding cells of B3 towards the end of the line. This 
suggests that the solution tries to oppose the insertion of time varying charges by distributing 
the same amount of charges with opposite polarities. If one end of a two conductors line 
system is connected to current source of 1 Amp and the other end is open, the current 
decreases linearly along the line (assuming l<<λ) and ends with zero at the open end of the 
line system. In case of the example of Fig. 4.3, the charges and currents along the line A (or 
B) are shown in Fig. 4.5. Obviously this does not show a physical behaviour of current for 
such a transmission line system. Even though the input current is 1 Amp, along the line the 
current is almost negligible. This implies that the solution provides non-physical charge as 
well as field distribution. 
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The 2D and 3D electric field distribution on the plane of x = 70 μm, are given in Fig. 4.6 and 
4.7 respectively. Because of positive and negative input charges, we see at point A3 and B3 
the electric fields coming out off and going into the charges respectively. We also see the 
presence of negative charges along the line (e.g. points A2, A1 etc.) where the fields go into 
the charges. Same way along the line B there are positive charges, so that electric fields are 
coming out off these charges. The strength of the fields is also decreasing along the line. All 
of these provide non-physical behaviour of the solution of equation 4.1 which suggests that 
such a relaxation current internal port excitation is not feasible. 
 
 

 

 
 

Fig. 4.4 3D view of charge distribution on the center plane in x direction (x=70 μm).    
 
 

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

along the length of line / μm

|Q
/Q

m
ax

|

0.0

0.5

1.0

1.5

2.0

2.5

3.0input charge

I 0 *
 1

04  / 
A

m
p

 
Fig. 4.5 Current (I0) and charge distribution (Q) along the line A. The same is true for line B as 

well. Qmax = 1.59169E-10 C. 
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Fig. 4.6 2D electric field distribution on the center plane in x direction (x=70 μm).   
  
 
 
 

 

 
 

Fig. 4.7 3D electric field distribution on the center plane in x direction (x=70 μm).    
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4.2 Conduction Current Internal Port (Line Current) 
 
 
The conduction current internal port is realized in FDFD method by defining a path along the 
edges of cells between two conductive structures. The path can be chosen arbitrarily. 
However, in order to obtain useful results the path length should be small compared to the 
wavelength in order to have a well-defined voltage port. Along this path, a finite line current 
(I0) is defined. The basic definition of this type of excitation shown in Fig. 1.5 is repeated here 
(Fig. 4.8) and the implementation in FDFD method is given in Appendix 7.3. Assuming no 
sources other than a conduction current source inside the structure, equation 4.1 looks like 
as given below by 4.5. Here vector cr

�
 stands for the conduction current source. The M1, M2 

and M3 matrices are defined to contain information on material properties and dimensions as 
stated in the previous chapter. The relation between cr

�
 and the matrices are given by 4.6 

and 4.7. Unlike the relaxation current source, here the excited field is divergence free (i.e. 
∇(εE) = 0). So when 4.5 is solved for e

�
, the vector that contains the electric field components 

at each cell, it does not result in any non-physical solution.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.8 Conduction current internal port : line current source. qv = 0, Je ≠ 0. 
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The simple MS structure of Fig. 4.9 is used here to check the feasibility of this excitation 
procedure. Two internal ports with currents I01 and I02 are used to feed the structure. As two 
internal ports are used, the structure must be excited twice in order to get the complete 
voltage/current relationship at the nodes of the ports. Tab. 4.1 shows the values of I01 and I02 
as an example for the excitations. 
 
 

Excitation I01 / Amp I02 / Amp 
1 1 1 
2 1 -1 
3 1 0 

 
Tab. 4.1 Values of I01 and I02 to feed the structure of Fig. 4.9. 

 
 
For all of these excitations the currents along the MS line (IMS) are calculated at 1GHz and 
shown in Fig. 4.10. For the first excitation, both I01 and I02 are assigned with 1 Amp and both 
of them flow in the same direction (i.e. toward the strip). In this case |IMS| must be equal to 1 
Amp at the two ends of the line and linearly decrease to zero at the middle of the line. For the 
second excitation I01 and I02 are assigned with 1 Amp and –1 Amp. In this case both the 
currents are in opposite direction - a steady 1 Amp current must flow along the line. For the 
third excitation, the MS is fed by 1 Amp at one end and open at the other end. So the current 
must decrease linearly from 1 Amp to zero along the line. All these behaviours are physical 
for any line system which is fed by current sources at the two end of the line. Here it should 
be noted that, the linear behaviours of the currents in Fig. 4.10 are due to the very small line 
length compared to wavelength (l<<λ), otherwise they are not linear along the line, rather 
sinusoidal because of standing wave pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.9 PEC MS on ceramic (εr = 9.8) substrate. The length (l), width and height of the strip are 

1600μm, 30 μm and 5 μm respectively. The substrate is 100 μm thick. At the two ends 
of the MS, two conduction current internal ports are inserted. Port 1 and 2 feed the line 
with currents I01 and I02 respectively. The wavelength (λ) at 1 GHz for this line system is 
0.12 m. 
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Fig. 4.10 Currents along the MS line in Fig. 4.9 for the three different excitations according to 

Tab 4.1.  
   
 
 
With any two of the excitations of Tab. 4.1, for example, the Z-matrix at the two ports of the 
MS line can be calculated. The formulas to calculate Z-matrix for this conduction current 
source procedure is given in Appendix 7.4. If the reference impedances of the internal ports 
are specified, then the S-parameters of the line can be calculated. In order to provide a 
matched condition at the ports, the characteristic impedance of the MS line at each 
frequency is taken as the reference impedances of the ports. In this case there should not be 
any reflection at the internal ports. Accordingly, one expects high return loss at the two ports. 
As can be seen from Fig. 4.11, however, considerable reflection occurs. This can be partly 
explained by the fringing fields at the ends of the line, which cause an extra capacitance. 
Since also an inductance is found at the end, this must be due to the source. This parasitic 
inductance will be addressed in the next section. 
 
Deembedding the L and C, one has the line characteristics only. Since the structure is 
symmetric at the middle of the line, the Z- and S-parameters are also symmetric at the two 
ports. The reflection coefficients at port 1 are shown in Fig. 4.11 for both the cases of with 
and without deembedding of parasitic effects. Without deembedding, the reflection is very 
large: > -25 dB above 25 GHz up to –15 dB at 40 GHz. This high reflection is solely due to 
the parasitics as mentioned above. As the port impedances are assumed to be matched with 
the MS line impedance, the very small parasitics become dominant enough to influence the 
MS line characteristic. It is clear that with an LC deembedding the reflection goes below – 50 
dB and the minima at half wave length (i.e. 37 GHz) become prominent. We see that there is 
a significant phase shift at higher frequencies between the cases of with and without 
deembedding (e.g. 22° at 50 GHz).  
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Fig. 4.11 Reflection coefficient (a) and the corresponding phase (b) at port 1 of MS line in Fig. 
4.9. The line impedance at each frequency is taken as the port reference impedance.       
LC deembedding with L = 82 pH and C = 3 fF.  

 
 
 
 
 
 
4.3 Parasitic Effects of Conduction Current Internal Ports 
 
 
 
As mentioned before, the conduction current internal port possesses parasitic inductance. 
The fringing fields at the ends/edges of the transmission line/metal plate, on the other hand, 
result in a parasitic capacitance. Whenever these parasitic inductance and capacitance are 
known they can be deembedded. The deembedding formulas are given in Appendix 7.5. A 
numerical procedure is developed to extract the parasitic inductance and capacitance and a 
look-up table is made for the inductance as a function of internal port length and internal port 
cell sizes.  
 
The extraction of internal port parasitic inductance (Lex) and the end capacitance (Cend) is 
described with the help of the circuit model given in Fig. 4.12. Any transmission line, e.g. MS 
of Fig. 4.9, fed by two identical internal ports at the end of the line can be defined according 
to this model. Lex can be extracted from Zex by 4.8 and 4.9, where ZFDFD is the Z-matrix of the 
EM-simulated structure including the parasitics, Zline is the Z-matrix of the line without 
parasitics and Yc is the admittance matrix describing the end effect. 
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Fig. 4.12 Two identical internal ports are connected at the ends of the transmission line. The 

transmission line is defined by characteristic impedance Z0, phase constant β and length 
l. Lex stands for the parasitic inductance of the ports, where as Cend represents the end 
effects of the line. 
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In [41] it is shown how the end capacitance can be calculated graphically. Cend is in the fF 
range and graphical extraction of Cend may lead to an inaccuracy in Lex extraction. Here Cend 
is extracted in an alternative way. A waveguide port is inserted at the center of the line in the 
longitudinal direction and the reflection coefficient (S11) at the waveguide port is calculated 
through the FDFD EM simulation. Cend is then calculated from S11 by 4.10. The extraction of 
Cend of the MS line in Fig. 4.9 is explained in Fig. 4.13 as an example, where it is assumed 
that in both cases the discretizations are the same. 
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Fig. 4.13 Extraction of Cend by inserting an waveguide port at the center of the MS line of Fig. 

4.9. The discretization schemes of both the (half and full) structures are kept the same. 
 
 
 
The values of Cend for the half MS structure of Fig. 4.13 and thereby the values of Lex for the 
full structure of Fig. 4.9 are listed in Fig. 4.14 for different substrate thicknesses (h). As the 
internal ports are connected between the ground and MS, the lengths of the internal ports 
are same as the substrate thicknesses. An increase in substrate thickness means an 
increase in fringing fields and thereby an increase in end capacitance. For increasing 
substrate thickness the non-quasi-static effects start earlier in terms of frequency. For 30 μm 
substrate thickness, Cend is almost constant up to 50 GHz, whether for 200 μm substrate 
thickness, Cend starts to deviate from the constant value already at 10 GHz. 
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Fig. 4.14 Cend (a) and Lex (b) for different substrate thicknesses (i.e. length of the internal port) 
according to Fig. 4.9 and 4.13, respectively. The internal port cell sizes in y direction 
(ΔY) and z direction (ΔZ) along the path of the internal port are kept 1 μm.  
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At the frequencies corresponding to multiples of half wave length, the difference in the 
sampled values of the standing wave pattern in the neighbouring cells becomes smaller than 
the numerical errors, which results in very large non-physical values. In case of Lex we see 
that near zero and 37 GHz such very large inductance values. Considering the values where 
Lex remains constant with frequency, we see that Lex increases linearly with the length of the 
internal port (i.e. thickness of the substrate) – ranging from 28 pH for 30 μm length to 235 pH 
for 200 μm length. The values of Lex suggest that by reducing the substrate thickness and 
thus the length of the internal port, one can reduce the parasitic effects already significantly.  
 
It is found that Lex is very much sensitive to the cross section of the internal port cells in the 
perpendicular direction to the path of the internal port. For the MS example of Fig. 4.9, the 
internal port path is directed in x direction, the internal port cell sizes in y direction (ΔY) and in 
z direction (ΔZ) comprise the cross section. For the results shown in Fig. 4.11, the values of 
ΔY and ΔZ were 3.75 μm whereas for the results in Fig. 4.14 the values of ΔY and ΔZ were 1 
μm. The extraction of Lex has been carried out while varying ΔY, ΔZ and substrate thickness 
for the above mentioned MS structure.  
 
 
 
4.4 Analytical Formulation for the Parasitic Inductance 
 
 
 
Since one can not perform the various simulations in order to extract the parasitic inductance 
Lex for each structure under consideration, it would be desirable to have an analytical 
approximation. This is presented in the following, starting from the work in [26, 27]. 
 
According to [26-29], the inductance of a wire (Lhm) with rectangular cross section A (= a × b) 
results in an inductance given by 4.11, assuming that the wire possesses homogeneous 
current density over the cross section.  In the FDFD procedure, the assignment of an input 
current of internal port is equivalent to a current density, distributed evenly over the dual cell 
surface as shown in Fig. 4.15. So the internal port can be thought of as a rectangular wire 
with a homogeneous current density over the cross section which is same as the cross 
section of the dual cell. Of course, in contrast to a conductive wire, we do not have a 
condition on the tangential E-field. 
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Thus, replacing a and b in 4.11 by the respective cell sizes (
22

XX
a

Δ
+

Δ
=  ;

22

YY
b

Δ
+

Δ
=  for 

equidistant mesh) one obtains an analytical approximation for Lex given by 4.12. For the 
example in Fig. 4.9: ΔX → ΔY and ΔY → ΔZ, respectively. 
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Fig. 4.15 Formally, the current I0 is assigned at the center of an edge along the current path. In 

the FDFD formulation this current can be described to be distributed with a 
homogeneous current density over the cross section A. In this example, the current path 
is assumed to be in the x direction. The magnetic fields are defined at the center of the 
edges of A. See Appendix for 7.1 for FDFD discretization. 

 
 
 
 
The values of Lhm (calculated according to 4.12) are compared with Lex (extracted from the 
simulations) in Fig. 4.16 corresponding to the internal ports of Fig. 4.9. The internal port 
lengths (h) are varied to 30, 100, 150 and 200 μm. Two different cross-sections of internal 
port are considered – 1μm × 1μm and 7.5 μm × 7.5 μm. In all cases there is a linear 
behaviour of inductance in relation with the port length and the two definitions provide the 
same inductance values. The smaller cross sections result in higher inductances – e.g. in the 
case of 200 μm length the inductances are 227 and 151 pH for the smaller and larger cross 
sections respectively.   
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Fig. 4.16 Comparison of Lex and Lhm as a function of the internal port length for different cross 
sections of the internal port cells. 

 
 
 
 
Fig. 4.17 shows the extracted parasitic inductances (Lex) of the internal ports of Fig. 4.9 as a 
function of port cross-sections for different port lengths. As Lhm in each case are same to Lex, 
only one curve L is drawn. From this graph, it is evident that the inductance decreases with 
the increase in cross section while increasing approximately linearly with the increase in 
length. It is worth to mention here that the parasitic inductances are in the similar range with 
the line inductance. For example, in the case of 200 μm port length and 1μm × 1μm port 
cross section, the line (l=1600 μm) possesses total inductance of 1.32 nH (0.82 pH / μm) 
whereas the parasitic inductance is 227 pH, which is 18% of the line inductance. This implies 
that in matched condition at the internal ports, the parasitic inductances have very significant 
influence on the line, i.e. the reflection coefficients, especially when the simulated structure is 
small compared to the internal port length.  
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Fig. 4.17 Internal port parasitic inductance L (in Fig. 4.9) as a function of cross sectional cell 

dimensions of the current path (ΔY = ΔZ) of the cells for different internal port length (h). 
 
 
 
 
Following the same procedure of calculating internal port parasitic inductance in the case of 
a MS line in Fig. 4.9, a CPW line (Fig. 4.18) is studied. Again the internal ports are placed at 
the ends of the lines. The paths of the internal ports are defined in this case in the y direction 
and the cross sections are in the XZ planes. Lex and Lhm are calculated for different 
discretizations and gaps (g) between the signal and ground lines. It is found that both values 
of parasitic inductances agree well in all cases of different discretizations and gaps. The 
parasitic inductances (Lex) are plotted in Fig. 4.19. Again, it is evident that the inductance 
decreases with the increase in cross section while increasing linearly with the increase in 
length.  
 
Furthermore it is interesting to compare the MS and CPW cases (see Fig. 4.17 and 4.19). 
Both yield identical parasitic inductances – for example for 30 μm internal port length, cross 
sections of 1μm × 1μm and 5μm × 5μm, shows the inductance values of 30 pH and 20 pH in 
both the cases of MS and CPW lines.   
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Fig. 4.18 CPW: The conductor backed ceramic substrate is 254 μm thick. The thickness of the 
metallizations is 5 μm. The widths of the signal and ground lines are 60 μm and 120 μm 
respectively. The ground to signal gap (g) is varied. Only the half structure made by 
magnetic wall symmetry plain is simulated. The internal ports are inserted between the 
ground and signal lines at the two ends of the line. 
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Fig. 4.19 Internal port parasitic inductance Lex for the CPW structure of Fig. 4.18 as a function 

of cross sectional cell dimensions of the current path (ΔX = ΔZ) for different internal port 
length (h). 
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4.5 Simulations with Internal Port  
 
 
In the previous subsections feasibility and parasitic effects of the conduction current internal 
ports were verified using MS and CPW lines. Here some applications of internal ports will be 
demonstrated. First, the conversion (i.e. connection) of an internal port to a lumped resistor 
will be examined by a T-junction. Second, the current distribution on the gate and drain 
fingers of the taper shaped HEMT structure of Fig. 1.2 will be examined using internal ports. 
 
 
 
4.5.1 T-junction  
 
 
The T-junction is realized with thin-film micro-strip lines on BCB substrate (Fig. 4.20). All 
conductors are lossless. The characteristic impedances of the lines are 50Ω. The ground 
pads are connected to the ground PEC with vias. Three internal ports are inserted between 
the centers of signal pads and the ground underneath the substrate. After calculating the Z- 
matrix for the T-junction, internal port 3 is connected to a 50 Ω resistor. See Appendix 7.4 for 
the connecting lumped elements to internal ports.  
 
The resulting 2-port Z- and S-parameters are compared with the measurement results (Fig. 
4.21). During measurement of such T-junction the same procedure is applied – one port was 
terminated with a known resistor (usually 50Ω) and the S-parameters were measured 
between the other two ports. In the case of simulations, the reflection coefficients are 0.33 
and transmission coefficients are 0.66 for the whole frequency range. The measurement 
results show good fitting with the simulation results, although the simulation is carried out 
with a lossless structure.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.20 The MS lines and pads of the T-junction are located on 5.3 μm thick BCB substrate (εr 

= 2.7). Each arm of the MS line is 325 μm long, 8 μm wide. The ground and signal pads 
are of 92 μm × 110 μm and 75 μm × 60 μm cross sections. The top metallization is 4 μm 
thick. 
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Fig. 4.21 Comparison between simulation (with internal port) and measurement for the S-
parameters (magnitude in the left and phase in the right). In simulation a 50Ω resistor is 
connected to the port 3, while in measurement port 3 is terminated by 50Ω as well. 

 
 
 
 
 
4.5.2 HEMT Structure 
 
 
A taper shaped HEMT structure (Fig. 1.2) was introduced in Chapter 1 in order to show the 
necessity and use of internal ports. Such HEMT structures are optimized in [52] in order to 
provide an equal distribution of current to the gate and drain fingers of the transistors. The 
structure here is not optimized yet, presented just to show the application of internal ports.   
 
For clarity Fig. 1.2 is redrawn here as Fig. 4.22. Half of the structure is realized by a 
symmetry plane (magnetic wall) and considered for the simulation. The different dimensions 
of the structure are listed in Tab. 4.2. Between the MS and fingers the taper (triangular 
metallization) is 150 μm long in the direction of the MS line and 275 μm long in the direction 
perpendicular to the MS line. 6 gate fingers as well as 3 drain fingers are connected to the 
corresponding MS lines through tapers (a). The source pads are connected to each other 
through a bridge and to the ground through a via (b). All of these metallizations are placed on 
SiC substrate. Internal ports are placed between the gate fingers and source bridge as well 
as between the drain fingers and source bridge. The MS lines are also fed by internal ports 
at the ends of the lines. The encircled regions of A, B and C in (b) are the same – i.e. all the 
transistors are of the same dimensions. (c) shows the zoomed region of encircled A (or B or 
C) where the three internal ports are inserted between the fingers and source bridge. A total 
of 11 internal ports is used for this structure - 6 internal ports are used for the 6 gate fingers, 
3 internal ports for the 3 drain fingers and 2 internal ports at the outer ends of the MS lines. A 
3D simulation with all these internal ports provides a Z-matrix of dimension 11×11.  The goal 
was to determine the current distribution through the gate and drain fingers varying the 
output impedances of the gate and drain fingers.  
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a) : Top view 

 
 

b) : Z1-Z2 cross-section  

 
 

c) : A, B, C (zoom) : 

 
 
Fig. 4.22 Taper shaped transistor (HEMT) structure (half above the symmetry plane).  

a) organisation of the gate, drain fingers and source pads together with the MS line 
connecting the gate and drain fingers through the tapers. 

b) cross-sectional view of the structure at Z1-Z2 of (a). The source pads are connected 
with each other through a bridge and to the ground through a via. The substrate 
used is SiC (εr = 10.0).   

c) The encircled regions of A, B and C are identical. The zoomed region of encircled A 
(or B or C) shows the three internal ports between gate finger and source bridge, 
and between drain finger and source bridge. 
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 SiC MS gate finger drain finger source pad 
thickness (μm) 100 7 0.5 0.5 0.5 

width (μm) 600 90 0.36 47.12 47.84 
Length (μm)  100* 135 125 140 

 
Tab. 4.2 Dimensions of the tapered HEMT structure of Fig. 4.22 taken from [52]. 
 
 
Fig. 4.23 shows the schematic to calculate the currents at each gate as well as drain fingers 
after the EM-simulations have been performed. The resulting Z-matrix is fed by two currents 
Iin

g and Iin
d replacing the internal ports at the outer ends of the MS lines, which connect the 

gate and drain fingers, respectively. Each gate and drain finger is terminated by load 
impedances of Zout

g and Zout
d, respectively connected to the internal ports at the fingers. The 

currents through the loads are monitored while varying the load impedances. The impedance 
values are taken according to [52]. 
 
 

 
 

Fig. 4.23 The structure in Fig. 4.22 is simulated by means of the FDFD method. The resulting 
Z-matrix is fed by two current sources (Iin

g and Iin
d) placed at the outer ends of the MS 

lines. The internal ports at the fingers are terminated by Zout
g and Zout

d. The resulting 
currents through the gate and drain fingers are calculated. 

 
 
Fig. 4.24 shows the magnitudes and phases of the output currents through the gate and 
drain terminations for Zout

g = 43.2 Ω and Zout
d = 100.5-j84Ω, respectively. The input currents 

are 1mA. Here G1 denotes gate finger 1, D1 drain finger 1 in Fig. 4.22, etc. The magnitudes 
of the currents through the gate fingers increase from gate 1 at the center to gate 6 at the 
periphery. The differences increase with the increase in frequency. At 15 GHz, for example, 
the current through gate 6 (G6) is 10.5% larger than the current through gate 1 (G1) whereas 
at 20 GHz the difference is 12.5%. The current distributions among the drain fingers are also 
not equal. The inner-most drain finger (D1) allows more current than the outer-most drain 
finger (D3). Again the difference increases in higher frequencies. At 15 and 20 GHz the 
difference in current magnitudes between the inner and outer drain fingers are 6% and 10%, 
respectively. In terms of power this difference is just double – e.g. at 15 GHz the power level 
at gate 6 is 25% larger than the power level of gate 1.  
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Fig. 4.24 Magnitudes (a) and phases (b) of the output currents through the gate and drain 

fingers (Zout
g = 43.2 Ω, Zout

d = 100.5-j84 Ω and Iin
g = Iin

d = 1mA).  
 
 
 
This uneven distribution of currents among the gate and drain fingers depends greatly on the 
impedance values of their terminations. If the gate terminations are 100Ω , we do not see 
significant change in current magnitude among the gate fingers (Fig. 4.25.a). However if the 
terminations are 20Ω, there is a very large difference in current magnitudes among the gate 
fingers (Fig. 4.25.b). Already at 10 GHz, the outer-most gate (G6) current is 16% larger than 
the inner most gate (G1) current. The same is also true for the current distribution among the 
drain fingers. Even though identical transistors are used, their output powers at the gate and 
drain fingers may vary considerably depending on the impedances at the gate and drain 
fingers. 
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Fig. 4.25 Magnitudes of the output currents through the gate fingers. Iin

g = Iin
d = 1mA. 

(a) : Zout
g = 100 Ω and (b) : Zout

g = 20 Ω  
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4.6 Conclusion 
 
 
Internal ports are used to feed a structure at certain points inside the structure, especially 
when the structure is entirely bounded by PML as well as electric/magnetic walls. They allow 
to interface network descriptions of sub-structures or active elements with EM-simulation, 
which is particularly important if active elements and/or sub-structures with considerable 
smaller dimensions are to be included. 
 
Two different approaches for implementing internal ports in FDFD method are examined. 
The first one is the relaxation current source, where two lumped time varying charges of 
equal magnitudes but opposite polarities are inserted at the two nodes of the internal port. It 
is shown that this approach excites non-physical solutions and therefore is not feasible to 
work as an internal port.   
 
The more important approach is the conduction current or line-current source, where a path 
of cells is defined between two conductors and a source current is introduced along the path.  
This approach proved to be a very useful and versatile tool. 
 
A more detailed study reveals that the conduction current internal port approach comes up 
with a parasitic inductance. According to the FDFD discretization scheme, this inductance 
has been estimated as the inductance of a rectangular wire (Lhm) assuming a homogeneous 
current density over the cross section of the wire. Two line structures, MS and CPW are 
examined in order to extract the parasitic inductance numerically (Lex), where two internal 
ports are placed at the ends of the lines. It is found that the closed-form approximation for the 
parasitic inductance approximates the actual values with good accuracy. 
 
Finally, a T-junction and a HEMT feeding structure are treated demonstrating usefulness of 
the internal-port concept.     
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5 4-Quadrant Slot Antenna 
 
 
 
5.1  Introduction 
 
 
Distributed sensor systems are presently a hot topic of research and development, since 
they offer various applications in industry, production lines, environmental controlling and 
furthermore, such sensor systems comprise numerous very small sensor nodes in order to 
control and measure local properties, e.g. temperature, material density, viscosity etc. These 
sensor nodes are used to be self-dependent, i.e. equipped with full functionalities so that 
they can exchange information with each other and eventually send the desired information 
to the base node. Keeping in mind such necessities, an antenna for low power monolithic 
24.1 GHz front-ends was developed within the framework of a BMBF project. This is 
presented in the following. 
  
The antenna is designed for lateral radiation, which makes it more attractive to be integrated 
with the planer circuit boards and allows the separation of radiation into four quadrants, each 
of which works like a horn type slot antenna. It can be readily integrated with the front-end 
circuitry for the use of transmission chip. The integration of the front-end chip within the 
antenna reduces the number and length of the device-frontend interconnects and connecting 
signal lines, thereby results in reduced parasitic effects/ losses. The antennas are compact 
and compatible with standard packaging techniques.  
 
Fig. 5.1a shows the basic antenna system with each antenna to be controlled by the RF 
circuitry independently from each other. 
 
 
 
 (a) 
 

 
 

(b) 
 

 
 

Fig. 5.1 The four quadrants antenna structure made up of triangular cavities separated by 
diagonally placed bump fences between two rectangular metal plates. (b) describes the 
working principle of one of the triangular cavities of (a). The bump fences are here 
replaced by closed metal walls for simplicity. 
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One quadrant of the antenna can be thought of as a triangular cavity resonator, a half of a 
common rectangular cavity resonator (Fig. 5.1b). The cavity is formed by a thin slot between 
two metal plates and separated from the other cavities by diagonally placed bump fences. 
The slot has a low characteristic impedance. When the cavity is excited, radiation takes 
place. The thin slot with the electric fields can be described by an equivalent line of magnetic 
current source [44], radiating in the free space. Due to the thin slot the radiation takes place 
laterally. In order to have the maximum radiation the cavity must be tapped in such a way 
that the excitation at a certain position in the cavity results in resonance and the cavity acts 
as a transformer. In addition, as the resonance takes place at the frequency of operation, the 
antenna provides automatically a filtering behavior. 
 
The basic challenges in simulating such an antenna structure are the huge mesh size due to 
the diverse dimensions and the open boundaries to evaluate radiations. Moreover, 
waveguide ports are not suitable in this case as the whole structure is to be bounded by PML 
absorbing boundary conditions. Therefore, internal ports are necessary to excite the antenna 
internally. In Chapter 2 it has been shown how the bad convergence behavior due to the 
inclusion of anisotropic PML in the FDFD method can be alleviated. The excitation of a 
structure internally through internal ports has been described in Chapter 4. The slot antenna 
will be demonstrated in this chapter as a practical example where both the PML and internal 
ports are exploited in the simulations based on the FDFD method. In the FDFD simulations 
the PML walls used are non-overlapping and PML cell sizes are the largest ones in the whole 
mesh. Finally, the simulation results according to the FDFD method are compared with those 
obtained CST MWS in FDTD method. 
 
 
 
5.2 Antenna Design 
 
 
The basic structure of the antenna is given in Fig. 5.2. The antenna is built as a sandwich 
structure. It consists of an upper and a lower metalized planar substrate stacks which are 
flip-chip mounted face-to-face thus forming a parallel-plate resonator and creating an air gap 
as thick as the bump height. This resonator is partitioned into 4 quadrants by the bump 
fences. The metal blocks below and above this sandwich structure are arbitrary blocks with 
proper shielding (electric walls) which ensure appropriate beam-forming. In reality, these 
blocks may contain a further stack of substrates with low frequency electronic modules or the 
battery, for instance. The only condition is that these blocks need via fences or similar 
arrangements at the sides to shield them against the RF radiation from the slot. The 
arrangement of the antenna structure allows to integrate an RF frontend together with a 
complete transceiver function into a cube of compact size. 
 
Fig. 5.3 shows a more detailed view of the lower half of the antenna with its layers in a 
hierarchical view. Backside-metalized Rogers 4003 material (εr = 3.38) of 508 μm thickness 
is used for the antenna substrates. The slot metallization is 35 μm thick and the aperture 
height, i.e., the distance between the two metallization of the parallel-plate wave guide, is 
300 μm. The excitation bump is connected to the upper metallization and the current flows 
back through the bump fences over the lower metallization. 
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(a) 

 
 

(b) 
 
 

 

Fig. 5.2 The basic structure of the 4-quadrant slot antenna (a). The diagonally placed bump 
fences separate the structure into four triangular horn type antenna sectors. (b) provides 
a cross-sectional view. The slot is formed between the metalizations.  

 
 
The bump fences reflect the electromagnetic waves generated by the excitation bump in a 
way similar to a horn antenna and form an electrical separation between the 4 quadrants. So 
each quadrant works as a horn type slot antenna, can be understood as a triangular cavity 
with an open slot at the outer boundary and excited by the bump near the centre of the 
cavity. Because of the low cavity height there is a strong mismatch between the cavity 
impedance and that of the outer space. Therefore the cavity is operated near the resonance, 
which allows impedance transformation and results in a resonant antenna with filtering 
properties. The bumps also have the function of mechanically connecting the upper and 
lower half of the resulting set-up. Within the upper and the lower substrate, via fences at the 
edges form an artificial shielding to block the RF radiation originating out of the slot from 
penetrating into the substrate. Inside the substrate vias are needed to prevent resonances in 
the substrate excited at excitation bump. For this purpose, some vias are distributed over 
each quadruple section. 
 
Regarding design the most essential specification for the antenna is that its resonant 
frequency should meet the centre frequency of the ISM band around 24.1 GHz. The shape of 
the antenna lobe is not an equally important issue because the antenna is to be applied in 
near-range communications with comparatively low constraints on radiation pattern. 
 
The bump and via fences must have a certain density to make sure that there is only low 
coupling between the sections and that no resonances occur in the substrates, respectively. 
On the other hand, the distance between the bumps cannot be chosen arbitrarily small 
because the bump pitch has a lower limit for technological reasons. Similar restrictions hold 
for the minimum via pitch in the substrate.  
 
There are different parameters that cause large tolerances, which in turn result in a shift of 
the resonance frequency or change in the radiation level. Among these, the most important 
parameters are the length of the slot (i.e. the outer dimension of the antenna), the position, 
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height and diameter of the excitation bump and the height of the metal block. 
Electromagnetic simulations are carried out to check the tolerances of the above parameters, 
to find out the parasitic resonances and to optimize the layout. 
 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 
Fig. 5.3 Hierarchical view of the lower symmetrical half of the antenna. (a): the bump fences 

that realize separation of the rectangular cavity into four quadrants. (b): the lower 
metallization with the opening for the excitation bump. (c): The Rogers substrate with 
vias. (d): the metal block which serves here as a representation for the space where 
further functionalities can be realized. 
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5.3 Simulation results in FDFD 
 
The F3D simulator based on the FDFD method with PML and internal ports is used for 
design issues and to determine the influence of tolerances of the physical parameters of the 
antenna. As the four triangular antennas, i.e. the four quadrants, are electrically separated 
and decoupled from each other by the diagonally placed bumps, it is sufficient to simulate 
only one of those antennas. Fig. 5.4 shows one half of the whole antenna structure. In 
comparison to the basic structure given in Fig. 5.2 and Fig. 5.3, rectangular-type vias and 
bumps of same cross-sectional areas are used. The height of the metal block (h, see Fig. 
5.4.b) is varied between 35 μm to 2500 μm. PML walls of five layers are used for the open 
boundaries. 
 
At the beginning, some investigations were carried out in order to estimate the number of 
vias and bumps in the fences which are necessary to keep crosstalk among the quadrants 
sufficiently low. For very coarse fences, additional resonances occur due to the relatively 
strong coupling. Increasing the bump density, the desired single-resonance behaviour is 
found but the value of the resonant frequency still changes because the resulting inductance 
of the bump fences varies. For the targeted purposes, it is found that 9..10 vias or bumps at 
each arm yield good results. 
 
(a) 

 

(b) 
 

 

(c) 

 
 
Fig. 5.4 a): the structure simulated: one half of the basic antenna structure given in Fig. 5.2.  
             b): cross-sectional view (not scaled) – bumps are extended through the substrates to 
                  work as vias as well. Internal port is placed between the two metallizations. 
             c) : top view (from at the center of the slot) – definition of the slot length and the 
                  position of the excitation bump / internal port (x)  from the center of the 4-quadrant 
                  antenna 
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The length of the slot (see Fig. 5.4.c), i.e. the outer dimension of the antenna determines the 
resonance frequency. Fig. 5.5 shows the reflection at the internal port for different slot 
lengths varied between 11 to 13 mm. A 1 mm change in the slot length results in around 2 
GHz shift in frequency. For a center frequency of 24.1 GHz, one has a slot length of around 
11.6 mm. It should be noted here that the antenna is excited by an internal port placed along 
the symmetry axis (Fig. 5.3.a) between the upper and lower metalizations without taking into 
account the excitation bump itself (Fig. 5.4.b). The height of the metal block (h) is 35 μm 
here. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5 Influence of the slot length on the resonant frequency. An internal port between the 
upper and lower metallization is used without excitation bump. The metal block is 
assumed to be 35 μm thick (h). 

 
 
 
 
The tolerances of the height of the aperture, i.e., the distance between the two metal plates 
(metallizations, see Figs. 5.2, 5.3 and 5.4.b), are checked by simulating the structure both in 
F3D and CST MWS. Again the antenna is excited by an internal port and the metal block is 
35 μm thick. The corresponding results are plotted in Fig. 5.6. The bandwidth, i.e. selectivity 
characteristics of a slot antenna, is same as that of the magnetic dipole antenna 
(complementary dipole) [49]. Increase in the slot height, i.e. smaller ratio between the slot 
length and slot height results in the increase in the band width of the slot antenna, in the 
same way as increasing the thickness of a dipole increases its bandwidth. As one can see in 
each case of FDFD and FDTD, increasing the slot height from 250 μm to 350 μm increases 
the bandwidth without shift in the resonance frequency. 
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(a) 
 
 
 

 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.6 Effect of slot height (bump height) calculated using FDFD method (a) and CST MWS 
(FDTD method) (b). The metal block is assumed to be 35 μm thick (h). 

 
  
 
 
The position of the excitation bump (x, Fig.5.4.c) is important in order to achieve a good 
matching. Therefore, the structure in Fig. 5.4 is simulated again for varying x with both the 
F3D simulator in FDFD method and CST MWS and the metal block height of 35 μm. It 
means that the internal port representing the excitation bump is moved along the symmetry 
axis (Fig. 5.3a) with various distances from the centre point of the antenna, the crossing point 
of the diagonals. The simulation results of reflection coefficients at the internal port for 
different positions of it are shown in Fig. 5.7. From the results of both the FDFD and FDTD 
procedures it is evident that by changing the position of the excitation the impedance of the 
internal port (input impedance,  50Ω ) can be matched with the characteristic impedance of 
the slot resulting in a higher level of radiation (i.e. high return loss). However, shifting the 
bump causes also a slight shift in resonance frequency, with different level of radiation 
depending on the actual position. The shift in the port position in either direction by 300 μm 
results in more than 5 dB change in radiation level as well as more than 0.2 GHz shift in 
frequency. Thus, the slot length has to be adapted iteratively in order to fix the resonant 
frequency to the specified value. 
 
Also, the height of the metal block (h) has an influence on the matching. The radiation levels 
in the previous calculations were too low, because a relatively thin block of 35 μm was 
assumed. The same calculations are done except that the metal block is assumed to be to 
2.5 mm. Fig. 5.8.a shows the reflection levels out of the simulations in FDFD for varying slot 
heights. Comparing Fig. 5.6.a and 5.8.a yields that radiation level is increased in all cases of 
different slot heights due to the increase in the thickness of the metal block from 35 μm to 2.5 
mm, e.g. from -8 dB to -28 dB for the slot height of 300 μm. The simulation results carried out 
in FDTD method are shown in Fig. 5.8.b and provide, when compared with those of Fig. 
5.6.b, good resemblance with those of the FDFD method, e.g. from -11 dB to -29 dB for the 
slot height of 300 μm  
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(a) 
 
 
 

 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7 Effect of the excitation bump position, the distance between the centre of the antenna 
and the internal port position along the symmetry axis (see x in Fig.5.4.c and Fig. 5.3a). 
The calculations are carried out using F3D simulator (a) as well as with CST MWS (b). 

 
 
 
 
 
 

 
(a) 

 

 
(b) 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.8 Influence of the metal block (h) on the reflection level for varying slot heights calculated 
with FDFD method (a) and with FDTD method (b). (h= 2.5mm) 
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So far, the simulations are carried out directly with an internal port placed between the 
metallizations without taking into the effects of the excitation bump. In the following the 
influence of the dimension of the excitation bump and the opening that realizes the pad for 
the excitation bump (with a square cross section of 300 μm × 300 μm) will be checked. The 
internal port is placed within the opening between the center of the pad and the lower 
metallization. As shown in Fig. 5.9.a and 5.9.b the excitation bump is placed on the pad with 
a 150 μm opening around it. The resulting S-parameters for different excitation bump 
heights, i.e. different slot heights of the antenna, are given in Fig. 5.9.c. Unlike in Fig. 5.6 and 
5.7, there is a clear shift (0.1 GHz) in the resonance frequency for the different slot heights, 
which is mainly due to the presence of the opening. Due to the opening a part of the input 
power couples into the substrate and is trapped due to the substrate resonances. The 
substrate resonances, which are originated by the triangular substrate cavity surrounded by 
the via and bump fences between the lower metallization and metal block, can be clearly 
seen at 28 GHz.   
 
 
(a) 
 

 

(b) 
 

 

(c) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.9 (a):  Exciting the antenna with an excitation bump. The internal port is placed between 
the excitation bump and the lower metal block in the lower substrate without the internal 
vias.  

            (b): cross-sectional view (not scaled) – excitation bump, opening around it and  
                  placement of the internal port 
            (c): The effect of the opening for the excitation bump on the input reflection of the  
                  Antenna for varying slot heights (bump heights) in FDFD method. 
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In order to suppress these unwanted substrate resonances, inside the substrates several 
vias are placed as given in Fig. 5.10.a, unlike the vias at the periphery of the substrates 
which are used to block the penetration of the RF radiation from outside. The size of the 
excitation bump, i.e. the sides of the squared cross-sectional areas, is varied from 300 μm to 
400 μm while keeping the slot height at 300 μm constant and the resulting S-parameters are 
plotted in Fig. 5.10.b. It is clear that the resonances around 28 GHz are now absent and 
further more the deeper dip at 24 GHz indicates that the radiation level is increased for 
different bump sizes in general. If one compares the 300 μm case (slot height) of Fig. 5.9.a 
and 300 μm case (excitation bump size) of Fig. 5.10.b, where the difference between them is 
only the absence and presence of the vias inside the substrates, |S11| decreases from -5 dB 
to -20 dB. However, the shift in frequency due to different bump sizes, as shown in Fig. 
5.10.b is only around 0.15 GHz.  
 
The bonding process allows relatively large tolerances for size of the excitation bump as well 
as for the other bumps that separate the sectors. The balls with an initial diameter of 400 μm 
vary their diameter after soldering and bonding. The resulting dimension is between 340 μm 
and 420 μm. Again assuming rectangular shape, the side of the cross-sectional areas may 
vary between 300 and 375 μm. The shape of the other bumps, i.e., those in the fences, 
shows less influence than that of the excitation bump. 
 
 
 
 
 

 
(a) 

 

 
(b) 
 
 

 
 
Fig. 5.10 (a): Inserting vias inside the substrate to suppress substrate resonances. (b): The 

effect of the size of the excitation bump. The side length from 300 μm to 400 μm of the 
square cross-section of the excitation bump is varied. 

 
            For the placement of the excitation bump and internal port see Fig. 5.9.b.  
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5.4 Realization and Measurement Results 
 
As already mentioned the RF circuitry is integrated with the antenna. Integrating the chips of 
the RF circuitry into the antenna cavity needs specific design and processing efforts. Fig. 
5.11.a illustrates how the chip is located inside the antenna. Here a dummy passive chip is 
used, which replaces the active RF circuitry for the simulations. The flip-chip mounting is 
used in realization of the chip integration, where two different bump sizes are used, because 
the chip must be smaller than the height of the cavity. The presence of the chip disturbs the 
field distribution inside the cavity. The disturbance takes place in two ways. Firstly due to the 
dielectric loading of the high dielectric constant chip (GaAs, εr = 12.9) and secondly due to 
the CPW feeding line which contains gaps and interrupts the current flow on the metallization 
of the ideal slot antenna. It should be noted that in the final version of the antenna the CPW 
line with this shape and length will not be used, rather the CPW line will be smaller and 
bounded in the vicinity of the chip within the triangular sector in order to make connection 
between the chip and the excitation bump. Here in Fig. 5.11, the CPW line is chosen in this 
way in order to model the measurement test structure (Fig. 5.12). The investigations 
regarding the optimum location of the chip and the excitation bumps as well as the routing of 
the CPW line, which allows less perturbation in the surface current flow, are given in [37]. 
 
(a) 

 
 

 
(b) 

 
 

Fig. 5.11(a): Integration of the dummy chip into the antenna cavity. The antenna is fed by the 
CPW line through the excitation bump. (b): a detail of Fig. 5.11.a (dashed encircled 
region) - the dummy passive chip flip-chip mounted on the lower metallization. The chip 
is assumed to be GaAs with a continuous metallization on top. 



Chapter 5                                                                                                           4-Quadrant Slot Antenna  
 

 - 92 - 

For fabrication the Rogers substrates are structured by using a standard hybrid soft board 
process. This process is cost-effective but results in relatively large tolerances. In order to 
mount the passive chip, AuSn ball bumps of 80 μm diameter are deposited by using a ball 
bumper. The bumps need to be placed on the chip because lateral alignment is most critical 
here. Then, the chip, together with the balls, is flip-chip mounted onto the Rogers substrate 
by solder bonding. In the same way, the lower substrate with the chip is flip-chip mounted to 
the upper substrate, there; of course, larger bumps are needed to maintain enough margin 
so that the height of the mounted chip on the lower substrate is small enough compared to 
the resulting bump height of the second flip-chip process. Therefore, 400 μm balls have been 
used for this process, which defines the height of the antenna cavity. The tolerance in 
nominal height (300 μm) of the antenna slot is about 15…20 μm. 

 
Fig. 5.12.a presents a photograph of the lower Rogers board after mounting the chip. The 
completed antenna after the second flip-chip process is shown in Fig. 5.12.b. The lower 
board is extended on one side to provide room for on-wafer probing or bonding of the feeding 
lines. The vias are realized as through-vias here. They are located along the outer edges of 
the substrate for shielding purposes as well as inside, where the diagonal fences separate 
the four sections from each other in order to avoid substrate crosstalk and the remaining vias 
are distributed in a way to suppress substrate resonances. The antenna corresponding to 
Fig. 5.12 with a CPW feeding line and a dummy chip above this line is measured. The metal 
block in the measured antenna is 35 μm high. This allows easy connection to a wafer prober 
or an SMD connector (see vertical CPW in Fig. 5.12.a). Measured data for this device is 
plotted together with simulation results by F3D (FDFD) and CST MWS (FDTD) in Fig. 5.13. 
In the simulation the structure is assumed to be lossless. The internal port is placed at the 
end of the CPW line opposite to the excitation bump between the CPW line and the lower 
metal block. 
  
 
 
 
 
 (a) 

 

 

 (b) 

 
 
 

Fig. 5.12 (a): Test flip-chip integration of the chip onto the lower substrate stack. The chip is fed 
by the CPW line.   

 
           (b): Photograph after the second flip-chip process of placing the upper substrate stack 

on the lower one via bumps. 
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Fig. 5.13 Input reflection factor vs. frequency: comparison of measurement and simulation data 

by FDFD and FDTD method. The simulations and measurements refer to the structures 
of Fig. 5.11 and 5.12, respectively. 

 
 

 
The shift in frequency between FDFD and FDTD cases is below 0.2 GHz. Both the 
simulation results differ by shifts in frequency from the measurement results despite of the 
good qualitative agreement. The reasons behind the deviations in the simulation and 
measurement results can be summarized as follows: 

 
1. the measured antenna was the first prototype and thus showed larger 

tolerances than assumed a priori. This is true particularly for position and size 
of the excitation bump which have a distinct influence on the resonance 
frequency. The effect of tolerances in the antenna dimension, position of the 
excitation bump, size of the excitation bump are given in Fig. 5.4, 5.7 and 5.8, 
respectively 

 
2. discretization error: even though the numbers of cells in both cases of the 

FDFD and FDTD procedures have been kept approximately the same, the cell 
sizes and number of cells at different discontinuities, e.g. the opening around 
the CPW line, vias, bumps etc., are different.  

 
3. the conductor loss of the CPW line (approximately 10 mm long) is not 

considered in the simulations. However, it is hardly possible that it causes 
purely a shift in resonance. Rather, it causes an overall decrease in |S11| as 
can be seen from Fig. 5.13. 

 
4. parasitics mainly due to the feeding structure, which was not part of the 

simulated geometry. 
 
The determination of loss and efficiency of the antenna is given in [37] where two antennas 
as given in Fig. 5.11 were in face-to-face a few millimeters apart and the transmission loss 
was measured resulting in a loss value of 3dB per antenna which corresponds to 50% 
efficiency. With the help of CST MWS the directivity of the antenna was calculated 7dBi. So, 
the gain of the antenna is 4 dB. 
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In order to demonstrate functionality of the active slot antenna, a complete antenna with an 
integrated GaAs-HBT VCO instead of the dummy passive chip (that is why it is called an 
active slot antenna) [37] is realized. The MMIC chip was fabricated using the FBH GaAs-HBT 
process. Chip size and layout are adapted to meet the constraints given by the antenna 
integration. It is a coplanar circuit with a 100 μm thick substrate. The antenna with the VCO 
was mounted on a probe station with the appropriate DC bias and control signals applied by 
a probe card. The radiated signal was detected by a horn antenna as a receiver. Fig. 5.14 
illustrates the measurement set-up. The results of this measurement are depicted in Fig. 
5.15. What is plotted is the frequency of the received signal at the horn antenna when 
varying the tuning voltage and thus frequency of the VCO in the active slot antenna. An 
almost linear tuning range from 23.3 GHz to 25.0 GHz is observed. This proves functionality 
of the active antenna concept. In the final realization, the transmitter VCO is to be realized on 
a single chip together with a mixer and an LO, which forms a complete RF frontend. Then, 
the bias supply as well as the IF signals can be fed through vias from the backside so that 
the four sections can be operated independently. 

 
 
 
 
 

 

 
 
 
Fig. 5.14 Measurement set-up for the active antenna with horn antenna as a receiver. 
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Fig. 5.15 Measured frequency at the horn-antenna receiver as a function of tuning voltage of 

the active antenna (set-up according to Fig. 5.14). 
 
 
 
 
 
5.5 Conclusion 
 
 
A 4-quadrant slot antenna designed for the ISM band at 24.1 GHz and based on a two-step 
flip-chip process is analyzed and optimized. The size and shape of the antenna makes it 
compact and suitable to be used in sensor nodes, for instance.  
 
Investigations on several design issues as well as fabrication tolerances are demonstrated in 
order to check the functionality of the PML boundary condition (to define the surrounding 
open boundary condition of the antenna) as well as the internal port (in order to excite the 
antenna internally, needed when a structure is totally bounded by PML) which were included 
in the F3D software, based on FDFD method. The F3D simulation results are compared with 
the simulation results obtained by CST MWS as well as measurement results and the 
comparisons provide very good agreement with each other. 
 
Regarding the antenna results, it is found that the slot length and height determines the 
resonance frequency and bandwidth of the antenna, respectively. The excitation bump 
position and the height of the metal block determine the matching of the antenna with the low 
characteristic impedance of the slot. In addition, the excitation bump position also shifts the 
resonance frequency. Any opening like that around the excitation bump pad let the input 
power to penetrate into the substrate which is trapped there due to the substrate resonances. 
The insertion of vias inside the substrate is necessary to suppress unwanted resonances. 
The efficiency, directivity and gain of the antenna are 50%, 7dBi and 4dB, respectively. Last 
but not least, functionality of the antenna with an integrated GaAs-HBT VCO is 
demonstrated. 
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6 Summary 
 
 
PML absorbing boundary condition and internal ports are essential tools included in EM 
simulators in order to overcome the limitations by mesh size, open-space description and 
waveguide excitation. They facilitate the way towards simulating electrically large microwave 
structures, especially when active and/or sub-structures with considerably smaller 
dimensions are to be included. PML provides the open boundary condition as matched 
absorber and helps to keep the mesh size at a reasonable size. Internal ports allow to feed 
structures internally, especially when feeding otherwise (i.e. by waveguide port) is not 
possible, and to include lumped elements into the mesh. With the help of internal ports such 
structures of different dimensions can be simulated easily part by part and interfaced to 
network descriptions, i.e. in terms of S- and/or Z-parameters, including also active elements.  
 
While the benefits of these tools are clear, they give rise to parasitics as well, which 
sometimes even outperform the advantages. In the FDFD method, where a large system of 
equations needs to be solved, PML deteriorates numerical condition thus corrupting the 
convergence behavior of the iterative solver. With this motivation the work presented here is 
focused on the following three areas:  
 

1. resolving the impact of PML on the convergence of the iterative solution.  
 
2. sorting the desired physical modes out of the unwanted ones when analysing a 

waveguide with layered PML walls.  
 

3. implementing internal ports in the FDFD method and determining their parasitics. 
 
 
Regarding PML, the anisotropic PML approach [18] is followed here which shows partly 
active characteristics (due to complex η). Numerically, this enlarges the range of the 
magnitudes of the elements of the system matrix. Several rows of the system matrix are 
affected where the ratios between the sum of the magnitudes of the non-diagonal elements 
and the diagonal element becomes larger than unity. This leads to numerical problems – the 
PML media makes the system matrix ill-conditioned so that the system shows bad 
convergence, i.e. the number of iterations (thereby the CPU time) increases drastically. This 
restricts the utilisation of the PML significantly. The convergence problems are even worse if 
the PML layers are overlapped at the corners and edges. The following key factors were 
found to circumvent the PML-related convergence problems by redefining PML regions and 
optimizing PML parameters:  
 

1. Overlapping regions increase the iteration count of the equation by a factor > 15. Our 
investigations show that by avoiding any overlapping, the high count of the number of 
iterations can be lowered very significantly; replacing overlapping corners and edges 
by complete PML walls (defined as non-overlapping PML walls). Several structures 
(e.g. patch antenna, flip-chip interconnects, spiral inductors, coupler etc) are 
investigated validating this concept. 
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2. PML cell size is the most important parameter regarding the convergence of the 
iterative solution. The iteration level can be lowered drastically by making the PML 
cell sizes the largest ones in the whole mesh.  

 
3. The choice of the nominal reflection error (rth) for the PML has a significant influence 

over the iteration count. On the other hand, it is very important to ensure that the 
absorption level of the PML approaches the given nominal reflection error. A thumb 
rule is developed for estimating the relative dielectric constant in the PML region, if 
the PML wall is inserted in a layered media, in order to calculate the nominal 
reflection error that is nearly equal to the absorption level of the PML wall.

 
Another unwanted effect occurs if PML is used as lateral boundary for waveguides or 
transmission lines. Then, the mode spectrum consists of physical modes and non-physical 
modes which are related to the PML walls. In [25] it is suggested to use the part of the power 
transported in the PML regions to distinguish the two types of modes, the so-called PPP 
value. Our investigation recalls that filtering the PML modes out by the PPP criterion may 
lead to the exclusion of surface wave modes. This suggests that the PPP criterion should be 
used carefully, which may differ from structure to structure. A careful observation following 
the 2D (using mode fields, PPP criterion) as well as 3D simulations (checking the coupling 
among the unwanted PML, box and physical modes) is needed in order to remove 
unnecessary modes from the calculation domain. 
 
The implementation of internal port in the FDFD code is tried following two different 
approaches. In the first approach (relaxation current source), two lumped time varying 
charges of equal magnitudes but opposite polarities are inserted at the two nodes of the 
internal port. It is shown that this approach strongly excites non-physical solutions and 
thereby is not useful to work as an internal port. In the second approach (conduction current 
source) a line-current source is assumed along a path of cells between two conductors. The 
feasibility of this approach is checked and it is found to be accurate and very useful. 
 
However, the advantages of the conduction current internal port do not come for free. It 
introduces extra magnetic fields surrounding it and thereby a parasitic inductance. It is shown 
that this inductance can be estimated as the inductance of a rectangular wire (Lhm) with a 
homogeneous current density at the cross section of the wire. This assumption is similar to 
the basic assumptions of FDFD method – where within the cells the material properties are 
assumed to be homogenous and changes are only allowed at the surfaces of the cells.  The 
parasitic inductances are extracted (Lex) numerically for two line structures of MS and CPW, 
where two internal ports are placed at the ends of the lines. A closed-form expression for the 
parasitic inductance is given, which allows easy calculation of its value so that it can be 
deembedded from the port behaviour. This is essential in using internal ports because the 
parasitic inductance can change the results significantly. 
 
Internal ports represent an important tool in interfacing EM-simulations with active elements. 
A taper shaped HEMT structure is demonstrated as a structure of practical interest, where 
the internal ports are used at the gate and drain fingers. The resulting Z-matrix is used to 
check the current distribution at the fingers – showing how simulation results with internal 
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ports can be used in network simulators. It is shown that the output currents at the fingers 
differ significantly depending on the gate and drain impedances.     
 
As a comprehensive example for application of PML and internal ports, a 24GHz 4-quadrant 
slot antenna is presented, where the slot works as magnetic dipole and each quadrant works 
as a horn antenna. Several design issues as well as the influences of fabrication tolerances 
of the slot are investigated successfully in order to check the functionality of the PML 
boundary condition and the internal ports. The simulations with the F3D solver based on 
FDFD method are compared with those obtained in FDTD method (CST MWS) as well as 
measurement results and the comparisons provide good agreement with each other. The 
antenna is realized following two step flip-chip process. The efficiency, directivity and gain of 
the antenna are 50%, 7dBi and 4dB respectively. The integration of a GaAs-HBT VCO in 
side the antenna with is demonstrated as well. 
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7 Appendix  
 
 
7.1 FDFD Discretization 
 
 
The time harmonic Maxwell’s equations in source free case are given by 7.1 and 7.2, with 
the complex permittivity according to 7.3. 
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The FDFD method deals with a boundary value problem. A rectangular box is treated as the 
boundary region and the box is subdivided into elementary cells by a three-dimensional non-
equidistant Cartesian grid (see Fig. 1.3). Each elementary cell (Fig. 7.1) is filled with 
homogeneous material described by its permittivity and permeability. A change in material 
properties is allowed only at the surfaces of the elementary cells. The E-field components are 
defined at the center of the corresponding cell edges and magnetic fields are defined at the 
center of each cell surfaces.  If the numbers of cells in x, y and z directions are nx, ny and nz, 
then the total number of cells is nx×ny×nz. Each elementary cell is identified by an index of (i, 
j,,k). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1 FD elementary cell and the assignment of the field quantities. The elementary cell is 
           identified by an index of (i, j, k). 
           i  = 1…..nx, j  = 1…..ny and k = 1…..nz 

           nx, ny and nz are the number of cells in x, y and z directions respectively. 
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The discretizations of the analytical equations are carried out by fitting the Maxwell’s 
analytical equations in the Cartesian grid system. The line integral of tangential vectors, here 
for example E-fields, are approximated by multiplying the value at the center point of the 
corresponding edge with the line length as given by 7.4. 
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In the same way, the surface integral is represented by the multiplication of the value of a 
field component in the center of the surface with the surface area, e.g. given by 7.5.  
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[7, 8] shows how the discretized form of Maxwell’s equation as well as the wave equation 
given by 7.6 can be derived following the examples of 7.4 and 7.5. The discretized wave 
equation of 7.6 corresponds to the analytical form given by 7.7. Here A is a canonical matrix 
where as D’s are diagonal matrices that contain the information on all dimensions and 
material properties of each cell. e

�
 is a vector that contains all the electric field components in 

x, y and z directions for each cell inside the rectangular enclosure containing the structure 
under test. 
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Equation 7.6 represents a boundary value problem. Suitable sources can be added through 
waveguide ports at the boundaries or by inserting internal ports (conduction or relaxation 
current source), which results in a non-zero right-hand side in 7.6. 
 
 
 
7.2 Excitation by Relaxation Current (Internal Port) Source 
 
 
Time varying charges are used in order to excite the structure internally by a relaxation 
current internal port. An input current I0 (e.g. 1 mA) is converted to the time varying charges 
as given by 7.8 and 7.9. The excitation is carried out by inserting two lumped charges of 
equal magnitudes but of opposite polarities and thereby using the relaxation current between 
the charges. 
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For zero static space charge, equation (7.10) must hold, which is true only for dielectric 
regions, because charges may exist in the metallic walls and inlays. 
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Now the time varying input charge (Q) is added in equation 7.10 and it results in equation 
7.11. 
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Following the FDFD discretization procedure 7.11 is converted to the matrix equation given 
by 7.12 where q

�
 is a vector containing information of charges at each cell. In [6, 7] it is 

shown that all the static charges from the dielectric region are removed in order to avoid 
irrotational static fields and improve the convergence – this corresponds to q

�
 = 0. On the 

other hand, the time varying input charges are added at the corners of cells (e.g. at the 
centers of the corresponding dual cells [8]) of interest. For each internal port there will be two 
cells assigned with time varying charge (Q ≠ 0). All other cells except those which include 
metal walls/plates etc. are free of static charges (Q = 0). Fig. 7.2 shows an example of 
assigning a time varying charge at a particular cell. If only one internal port is treated, for 
example, the vector q

�
 should look like 7.13, where Q1 and Q2 are the input charges at the 

two nodes of the internal port. 
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(a) 

 
 

(b) 

 
 

Fig. 7.2  Assignment of time varying charge Q in an FDFD cell (a). All other non metal cells 
         are charge (static) free. The assignment of the electric field components surrounding the  
         node where Q is assigned (b). 

 
 

The wave equation in continuous space given by 7.7 turns to 7.14 when space charges ρ are 
included assuming neither conduction loss nor impressed current. Equation 7.12 is converted 
to 7.15 which represents the integral form of the right-hand side of equation 7.14. Again the 
diagonal matrices (D’s) contain information on dimensional and material properties of the 
structure under consideration and B is canonical matrix [7, 8]. The Finite difference 
discretized wave equation in matrix form corresponding to the analytical wave equation of 
7.14 is given by 7.16. After some mathematic manipulation, 7.16 is converted to the 
symmetric one given by 7.17, where the vector rr

�
 stands for the relaxation current internal 

port source. M1 and M3 correspond to rotational and irrotational (static) electric fields 
respectively. The dimensions and form of the vector rr

�
 is given by 7.18 where p is the index 

of the vector components. 
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The assignment of the time varying charge Q as shown in Fig. 7.2 is accomplished by 
assigning the components of rr

�
 vector of 7.18 at the centres of the surfaces of the 

corresponding dual cells which contain the nodes of the internal ports. Fig. 7.3 shows such 
an assignment at the mth dual cell which is to contain an internal port node for example. 
Assignments in x (a) and y (b) directions are shown and the same is also true for Z direction. 
The charge Q is assigned as the divergence of the electric fields at the centers of the 
corresponding cell edges where the electric fields are also defined in FDFD scheme.  
 
 

 
(a) 

 
 

 
(b) 

 
 
 

 
Fig. 7.3 FD elementary cell and the assignment of the fields quantities. The elementary cell is 
           identified by an index of (i, j, k). 
           m = 1 + (i -1) ⋅ Mu+(j -1) ⋅ Mv +(k-1) ⋅ Mw  
           Mu = 1, Mv = nx, Mw = nx ⋅ ny,  
           i = 1 ….. nx,  j  = 1….. ny and k = 1….. nz 

                   n = nx ⋅ ny ⋅ nz 

           nx, ny and nz are the number of cells in x, y and z directions respectively. 
           q(m) : mth component of the q

�
vector etc. 

           Ds(m) : mth component of the diagonal matrix Ds etc. 
 
 
 



Chapter 7                                                                                                                                    Appendix  
 

 - 104 - 

Now if one internal port is treated and the two nodes of the port are contained in the dual 
cells of m1 and m2, then the sub vectors of rxr

� , ryr
�

 and rzr
�

 look like 7.19.1-3. Both m1 and m2 
are calculated in the same way as the calculation of m in Fig. 7.3. The vector rr

�
 can have 

maximum 12 nonzero components per internal port. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                   (7.19.1)   
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7.3 Excitation by Conduction Current (Internal Port) Source 
 
 
In order to add a conduction current source, equation 7.20 must be used instead of equation 
7.1, where eJ

�
  stands for a conduction current density. In this case equation 7.17 will turn to 

7.21, where cr
�

 refers to the conduction current source. The form and components of cr
�

 will 
be explained by examples below. 
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In FDFD mesh conduction current (internal port) source is accomplished by inserting a line 
current along the cell edges. An arbitrary but continuous path of cells is chosen between the 
metal plates to define the rectangular wire and the current I0 is assigned at the centers of the 
cell edges in order to form a continuous current path. The path can be straight, e.g. directed 
in x direction as shown in Fig 7.4.a or oriented in different directions, e.g. in x and y 
directions as given in Fig. 7.4.b. 
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(a) 

 

 

 
(b) 

 

 
 
 

Fig. 7.4 Assignment of the conduction current source in FDFD mesh.  
           m(i, j, k)     = 1 + (i -1) ⋅ Mu+(j -1) ⋅ Mv +(k-1) ⋅ Mw etc. 
            m(i+5, j, k) = 1 + (i+5 -1) ⋅ Mu+(j -1) ⋅ Mv +(k-1) ⋅ Mw  etc. 
           Mu = 1, Mv = nx, Mw = nx ⋅ ny,  
           i = 1 ….. nx,  j  = 1….. ny and k = 1….. nz 

                   n = nx ⋅ ny ⋅ nz 

           nx, ny and nz are the number of cells in x, y and z directions respectively. 
 
 
 
For the example of Fig. 7.4.a the conduction current source vector will look like as given by 
equation of 7.22. In this case only the vector components with indices from m(i, j, k) to m(i+5, 
j, k) possess nonzero values. In the same way the conduction current source vector for the 
example of Fig. 7.4.b is given by equation 7.23. Again only the nonzero components with 
respect to the indices are shown. In this way any arbitrary conduction current path can be 
achieved also in the z direction, which is not shown here for simplicity. 
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If more than one internal port is used, the procedure is same. For each internal port an 
arbitrary current path is chosen with an arbitrary current (i.e. I0 can be different for different 
ports) flowing through it. Then the vectors of each internal port are added to get the resulting 
vector that refers all the conduction current sources as given by 7.24. 
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7.4 Conduction Current Internal Ports as Lumped Elements 
 
 
If p numbers of conduction current internal ports are used, assuming that no other sources 
exist, then a 3D simulation results in a Z -matrix of dimension p×p. The currents through the 
internal ports are known as these are the input currents. After the 3D simulation the electric 
fields at the center of each cell edge is known. So the voltages across the internal ports are 
calculated by summing up the products of the respective electric fields and cell sizes along 
the continuous current paths of the corresponding internal ports. In order to calculate all the 
components of the Z-matrix, the structure under test must be excited p times, where in each 
excitation the input currents must be linearly independent from those of the other excitations. 
For the tth (t = 1…p) excitation the current voltage relationship looks like the equation 7.25. vt 
and it are the vectors which contain the calculated voltages across the internal ports and 
input current through the internal ports respectively for the tth excitation. Vp

t and Ip
t are the 

voltage and current of the pth (p = 1…p) port of the tth excitation. After the p number of 
excitations, there will be p number of linearly independent equations such as 7.25. After 
some mathematical manipulations of these p number of equations, all the components of the 
Z -matrix can be found by 7.26, where s stands for the row index in the Z-matrix and the 
vector zs contains all the components of the Z -matrix in the sth row. In ()t

s matrix the sth row 
contains the input currents of tth excitation and all other components are equal to zero. 
 



Chapter 7                                                                                                                                    Appendix  
 

 - 108 - 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

⋅=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�⋅=

×

t
p

t

t

p

t
p

t

t

tt

I

I

I

Z

V

V

V

iZv

.

.

.

.
2

1

1

2

1

��       (7.25) 

 
 

( ) ( ) ( )

( )

( ) ( ) ( )
1

2

1

1

2

1

21

1
2
1

1
1

×××××××
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

⋅

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

)()()()(

.

.

.

.

...

......

......

.....

......

...

pp
p

t

pp
p

s

pppp

p
ppp

s
t

p

v

v

v

v

z

z

z

z

�

�

�

�

�

�

�

�

  (7.26) 

 
where, 

( )

1

2

1

14321

.

.
,

00.0000

.......

0..0000

.

0..0000

.......

00.0000

×
×

−

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=⇐

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

psp

ss

s

s

sth

pp

t
p

t
p

tttts

t

Z

Z

Z

Z

zrowsIIIIII
�  

 
 
It is possible to eliminate some of the internal ports and thus to reduce the order of Z-matrix, 
if these internal ports are converted (i.e. connected) to lumped elements. If v (v < p) number 
of internal ports are to be converted into lumped elements, then a matrix equation of 7.27 
can be formed in such a way that uv

�
and vv

�
contain the voltages across the rest of the 

internal ports (u number, u = p-v) and the voltages across the lumped elements respectively. 
Same way ui

�
and vi

�
contain the currents through the rest of the internal ports and through the 

lumped elements. The Z–matrix is divided into sub matrices correspondingly. Equation 7.27 
can be broken into two equations of 7.28 and 7.29. Equation 7.30 represents the voltage-
current relationship of the lumped elements, where R is a diagonal matrix containing the 
impedance values of the lumped elements. Combining 7.29 and 7.30 results in 7.31. From 
7.31 and 7.28 the new Z-matrix (Znew) can be found by replacing vi

�
, given by 7.32. Znew 

represents the Z -matrix of the rest of the internal ports while taking the effect of the lumped 
elements into account. 
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7.5 Deembedding Conduction Current Internal Port Parasitics 
  
 
Each conduction current internal port possesses parasitic inductances, since the current 
flowing through the internal port generates magnetic fields which are not present there when 
a structure is excited by any current source at two certain points of the structure. The 
procedure of deembedding of this parasitic inductance is shown in Fig. 7.5. After 3D 
calculation, the evolved Z-matrix (Ztotal) is a function of Zpar and ZDUT, where Zpar contains the 
parasitics of all the internal ports and ZDUT is the desired Z-matrix free of parasitic influences. 
Ztotal is defined by 7.33, where n is the number of internal ports. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 7.5 Deembedding of internal port parasitics when n numbers of internal ports are treated. 
         ZDUT is the desired Z-matrix after deembedding. I1, I3, .I2n-1 are the input currents flowing 
         through the internal ports, where as V1, V3,….V2n-1 are the voltages calculated across the  
         internal ports (source voltages) after the 3D simulation. Zpar matrix represents the parasitic 
         impedances of all the internal ports. Zpar

n stands for the parasitic impedance matrix of the 
         nth internal port.  IDUT,n is the current which enters the device under test out of the nth

   
         internal port after deembedding.  VDUT,n is the voltage across the two nodes of the internal  
         port after deembedding (excluding the parasitics of the internal ports). 
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Zpar is defined by 7.34. Zpar

i (i = 1 …n) represents the impedances of a two port network. So 
the voltages and currents of these two port networks can be related by 7.35, where Za

par is 
just another arrangement of Zpar. Again Za

par can be divided into sub matrices as given by 
7.36. 
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From Fig. 7.5 it is clear that V2n and VDUT,n are equal and I2n and IDUT,n are also equal but 
opposite in direction. ZDUT can be related to the vectors of 2v

�
and 2i

�
by the equations of 3.37 

and 7.38. Through some mathematical manipulations between 7.36 and 7.38, equation for 
ZDUT can be derived as given by 7.39. 
 
 

12,

63,

42,

21,

12,

63,

42,

21,

1,

3,

2,

1,

1,

3,

2,

1,

....

××××

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−=

−=

−=

−=

⋅=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

=

=

=

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

⋅=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

nnnDUT

DUT

DUT

DUT

DUT

nnnDUT

DUT

DUT

DUT

nnDUT

DUT

DUT

DUT

DUT

nnDUT

DUT

DUT

DUT

II

II

II

II

Z

VV

VV

VV

VV

I

I

I

I

Z

V

V

V

V

  (7.37) 

 
 

22

12

6

4

2

12

6

4

2

..

iZv

I

I

I

I

Z

V

V

V

V

DUT

nn

DUT

nn

��
⋅−=�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

⋅−=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

××

      (7.38) 

 
 

( ) 222

11
2111

1
12

aaa
total

a
DUT ZZZZZZ −�

�
��

�
� ⋅−−=

−−−         (7.39) 

 
 
The two port network of Zpar

i (i = 1 …n) is shown in Fig. 7.6. The components of Zpar
i are 

defined by 7.40 and 7.41. 
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Fig. 7.6 Parasitic impedances of an (ith) internal port. Li is the inductance of the internal port 
         and Ci stands for the end effect capacitance which is not part of the internal port 
         parasitics, rather accounts for the fringing fields, i.e. true only for the special case treated  
         here. 
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7.6 Excitation by Waveguide Ports 
 
 
The excitation procedure by waveguide ports together with extraction of modes in 2D 
calculation and S-parameter calculation following the 3D calculation is given in details in [5, 
10]. For the completeness, the 2D and 3D excitation procedures will be shown here in brief 
with the help of a simple example of two wave guide ports as shown in Fig. 7.7. Let us 
assume for simplicity that the number of propagating modes at gate 1 and 2 are 1 and 2, 
respectively, at a certain frequency. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.7 Gate 1 lies in the XZ plane and gate 2 at XY plane.  
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For 2D calculation, equation 7.17 turns to equation 7.42 which deals with an eigenvalue 
problem assuming no source at the boundary and inside the structure (no internal port 
excitation). Dimension of M2D is for gate 1 and 2 is 2.nx.nz × 2.nx.nz and 2.nx.ny × 2.nx.ny 

respectively. The components of this matrix list the material and dimensional information of 
the cells at the cross section of a particular gate. The matrix is built in such a way that the 
curl and divergence formulations in the Maxwell’s equations are also preserved. Dimension 
of e

�
 is for gate 1 and 2 is 2.nx.nz × 1 and 2.nx.ny × 1 respectively. λ  stands for all the 

eigenvalues (λi).  
  

 

),,,,(, 222 ωκμελ dMMeeM DDD ==
��

                                             (7.42) 

 

 
Equation 7.42 is solved for each gate to get the eigenvalues and eigenvectors ie

�
. Each 

eigenvalue refers to a specific mode and the propagation constant is calculated out of that 
eigenvalue. The corresponding eigenvector provides the mode pattern and lists in the vector 
all the transversal field components on the gate, on which the vectors are calculated. 
According to the assumptions at the beginning, three propagating modes have three 
eigenvalues. The first 2D solution at gate 1 provides eigenvalue λ11 and the corresponding 
eigenvector 11e

�
. The second 2D solution provides eigenvalues of λ21 and λ22, and the 

corresponding eigenvectors 21e
�

and 22e
�

. 11e
�

 lists the transversal fields components of mode 1 
in the XZ plane on gate 1 where as 21e

�
 and 22e

�
 list the transversal field components in the XY 

plane of the mode 1 and 2 on gate 2 respectively. 
 
In 3D calculation these eigenvectors are used for excitations (as source) at the waveguide 
ports. So for waveguide port excitation, equation 7.17 is modified to 7.43 assuming no 
relaxation and conduction current sources ( rr

�
 and cr

�
 are equal to zero). wr

�
 stands for the 

waveguide port excitation and defined by 7.44 for k number of waveguide ports. w1, w2 etc 
are constants, represent the sum of amplitudes of the incoming and outgoing fields of the 
corresponding mode, and have unit in volt. For this particular example of three modes, 7.44 
turns into 7.45. It should be noted that in 11e

�
 the Ey components are zero and, in 21e

�
 and 22e

�
 

the Ez components are zero – only cross sectional fields are necessary. Equation 7.43 is 
solved k times (in this example 3 times) numerically in order to get all the components of 
vector e

�
. The sets of values of wi must be linearly independent as it is with the internal ports. 
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 (7.45) 

 
 
 
 
7.7 Improvements in the F3D Solver 
 
 
The Weierstrass Institute for Applied Analysis and Stochastics (WIAS) improved the equation 
solver used for F3D-solver during the course of this thesis work. The F3D-solver based on 
the FDFD method is developed according to a Cartesian coordinate system where all the 
information of the materials, dimensions etc. as well as fields and sources are assigned to 
the system matrix and vector elements respectively cell by cell first of all in the x direction, 
then in the y direction and lastly in the z direction. The construction of the system matrix – i.e. 
the order of elements influences the convergence greatly, especially if a certain structure is 
simulated with PML overlapping regions.  
 
The solver is modified by rearranging the system matrix M = M(εm, μm, κm, dm, ω) of equation 
7.46 where e

�
and b

�
are the unknown electric field vector to be solved and the input excitation 

vector respectively, and m specifies a particular cell.  Rows and columns of M which possess 
only diagonal elements are separated in a way given by equation 7.47, where Pd is a 
permutation, D is a diagonal and H is a squared. Combining 7.46 and 7.47, we get a system 
of linear equations given by 7.48. The vector de

�
 and he

�
can be calculated readily from 

equation 7.49 and 7.50 respectively.  
 
 

beM
��

=⋅         (7.46) 

 

��
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��
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MPPM T

dd 0

0
       (7.47) 
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where, ( )T
hdd eeeP
���

,=  and ( )Thdd bbbP
���

,=  

 

dd beD
��

=⋅    (7.49)  

hh beH
��

=⋅    (7.50) 

 

For the clarity, we define two solver versions: the new solver and the old solver. In the new 
version, H is rearranged as 7.51 according to different sorting rules (e.g. alternate, reverse, 
natural, ISODEG etc. [13]).  The parameter ITR indicates in which order the graph of H is to 
be traversed. Whereas in the old version, H is rearranged as 7.50 without following any 
sorting rule (i.e. natural sorting rule). The upper left block B is block diagonal with block size 
IBZ and, E and C  are sparse matrices [14,15]. The matrix B corresponds to the unknowns of 
independent sets. The procedure of forming independent sets is called Independent Set 
Ordering. This ordering transforms the original linear system 7.50 into the form given by 7.52. 
 

�
�
�

�
�
�
�

�
=→

CE

EB
PHPH

T
T   (7.51) 
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where, ( )T
h yyeP 21

���
,=  and ( )T

h ccbP 21
���

,=  

 
 
Since B is block diagonal, it is easy to eliminate 1y

�
variable to obtain a system with only the 

variable 2y
�

. The coefficient matrix (defined by 7.53) for this reduced system is the Schur 
complement S, which is still sparse.  
 
 

1
1

22 cBEcyS
���

⋅⋅−=⋅ −
   (7.53) 

where, TEBECS ⋅⋅−= −1
 

 
 
At the ith level, the permutations Pi transform the matrices Hi with H0 = H in the form of 7.51. 
Then the following block factorization is computed [13, 14] :  
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  (7.54) 

where, ( )Tiiiii yyePy 21 ,, ,
����

==  and ( )Tiiiii ccbPc 21 ,, ,
����

==  
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The process is repeated recursively on the matrix Hi+1 = Ci – EiBi
-1Ei

T until a selected number 
of levels (LEV) is reached. The algorithm for solving equation 7.50 is described in the 
following [13]:  
 
 

1. set H0 = H, hee
��

=0 , hbb
��

=0  
 
2. forward substitution :  i = 0,……,LEV-1 

 
(a) compute Pi : iiiiii

T
iii bPcePyPHP

����
== ,,  

  
(b) compute 1

1
2121 ,,, , iiiiiii cBEcbye

����� −
++ −==  

 
(c) compute Hi+1 = Ci – EiBi

-1Ei
T 

 
3. solve LEVLEVLEV beH

��
=⋅  

 
4. backward  substitution : :  i = LEV-1,……,0 

 
(a) compute ( )11

1
112 ,,,, , i

T
iiiiii yEcByey
�����

−== −
+  

 
(b) compute i

T
ii yPe
��

=  
 

 
In order to improve the robustness of the factorization (7.54) the numerical values are also 
considered. In this regard, a parameter TOL_ISO is used to filter out the rows that are least 
diagonally dominant to the complement set Ci in any independent set strategy [14]. 
  
Using Krylov-subspace method LEVLEVLEV beH

��
=⋅  is solved with SSOR preconditioning,  

where this system of linear algebraic equations is first transformed to 7.55, then is 
preconditioned as given by 7.56 and is finally solved for e

�~ . In Ma and Mb [51], ω denotes the 
relaxation parameter of the SSOR preconditioning and L is the lower triangular matrix of H

~
. 

 
 

beH
�� ~~~

=⋅    (7.55) 

where, 2

1

2

1
−−

⋅⋅= dLEVd DHDH
~

,   LEVd xDe
��

⋅= 2

1
~  , LEVd bDb

��
⋅=

−
2

1
~

 and ( )LEVd HdiagD =  

 

bMeMMHM abba

�� ~~~ 111 −−− =⋅    (7.56) 

where, ( )T
baba MMMM = ,    ( )LIM a ω+= , ( )T

b LIM ω+=    and  0<ω<2. 

 

 
7.8 Acronyms and Symbols 
 

ABC    - Absorbing Boundary Condition 

BCB    - Benzocyclobutene 

BMBF  - Bundes Ministerium für Bildung und Forschung 

CPU    - Computer Processing Unit 
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CPW   - Co-Planar-Waveguide 

EM      - Electromagnetic  

FBH    - Ferdinand Braun Institute für Höchstfrequenz Technik 

FD       - Finite Difference 

FDFD - Finite Difference Frequency Domain 

FDTD - Finite Difference Time Domain 

FEM   - Finite Element Method 

GaAs  - Gallium-Arsenid 

HBT    - Hetero-junction Bipolar Transistor 

HEMT - High Electron Mobility Transistor 

LTCC - Low Temperature Co-fired Ceramic 

MMIC - Monolithic Microwave Integrated Circuit 

MS     - Micro-Strip 

PEC – Perfect Electric Conductor 

PML   - Perfectly Matched Layer 

PPP   - Power Part in PML 

PPL   - Parallel Plate (Mode) 

SSOR - Symmetric Successive Over Relaxation (Procedure) 

TE     - Transverse Electric 

TM     - Transverse Magnetic 

TEM   - Transverse Electro-Magnetic 

TLM   -  Transmission Line Method 

VCO   - Voltage Controlled Oscillator  

WIAS  - Weierstrass Institute for Applied Analysis and Stochastics 

2D      - Two Dimensional 

3D      - Three Dimensional 

 

 

� - Attenuation constant 

� - Phase constant 

�0 - Phase constant in open space 

λ - Wave length 

μ - Permeability 

ε - Permittivity 

εr - Relative Permittivity 

εr-eff - Effective Relative Permittivity 

j - √-1 

rth - Nominal reflection coefficient 
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η - Tensor elements 

Je – Conduction current density 

qv – Space charge density 

ω - 2πf (π = 3.141592654, f = frequency in Hz) 

E
�

 - Electric field intensity 

H
�

- Magnetic field Intensity 

×∇×∇ - curl curl operator 

⋅∇∇      - grad div operator 
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