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Notation

Latin symbols

Symbol Description Units
Ab Surface area of face b of the control volume
ALE Arbitrary–Lagrangian–Eulerian
b Face of the control volume (i.e. w, n, e, s)
B Nodal point (cell), i.e. W, N, E, S

BC Boundary condition
bt Thickness of the blade mm

c Dimensionless constant
C Carbon
CC Concentric–cylinder
CCD Coupled charge device
CC 27 Concentric–cylinder measuring system
[c] Concentration w/w%

c1 Device constant (for shear stress) Pa/mN–
m

c2 Device constant (for shear rate) s/s

CD Central difference
CFX Commercial software used for the simulations
ChC Characteristic curve
CL Correction factor
CMR Creeping motion regime
CP Cone–plate
CPyCl Cetylpyridinium mM

Cv Device constant (for viscosity)
cγ Device constant for the vane s/s

cτ Device constant for the vane Pa/N −

m

D Displacement (PIV measurement) px

D Rate of deformation tensor 1/s

dA Surface element of control volume
DCS Deferred correction scheme
Dij ij component of rate of deformation tensor 1/s

dx Length of a CV face in x–Cartesian coordinate mm

Dxx xx component of rate of deformation tensor 1/s

Dxy xy component of rate of deformation tensor 1/s

dp Diameter of a tracer particle μm



Symbol Description Units
dv Diameter of the vane mm

dV Volume element of control volume
dy Length of a CV face in y–Cartesian coordinate mm

e Unit vector
er, eϕ, Unit vector in r and ϕ direction, respectively
eϕ Unit vector, ϕ–direction
er Unit vector, r–direction
FC

b Convective flux through face b of the control volume
FD Finite difference
FD

b Diffusive flux through face b of the control volume
FDK Flügeldrehkörper (Eng. vane)
FE Finite element
fx Interpolation factor
FVM Finite volume method
GNF Generalized Newtonian fluid
H Hydrogen
H+ Ion of hydrogen
hpg Hydroxypropyl guar
I2 Second principal invariant
i Unit vector i–direction
j Unit vector j–direction
k Unit vector k–direction
ICEM CFD Commercial software used to generate the mesh
K Device constant m3

KZV Konzentrisch Zylinder Viskometer (Eng. concentric cylin-
der)

LDV Laser Doppler velocimetry
lv Length of the vane mm

lB Length of the cup mm

m Consistency (power–law fluid) Pa sn

mp Mass of polymer g

MC Master curve
ms Mass of solvent g

M Torque mN m

MS Torque at the side (bob or imaginary cylinder circumscribed
in the vane geometry)

mN m

ME Torque at the end (bob or imaginary cylinder circumscribed
in the vane geometry)

mN m

Mmax Maximum torque mN m



Symbol Description Units
Mref Reference torque mN m

MUSCL Monotone Upwind Schemes for Scalar Conservation Laws
MS Torque on the side mN m

MNS Torque calculated under non–slip mN m

conditions
n Power–law index
n Unit–vector in the normal direction
nb Unit–vector normal to the face b

N Number of blades
NF Newtonian fluid
NNF Non–Newtonian fluid
Na Sodium
NaSal Sodium salicylate mM

Ne Newton number
O Oxygen
P Hydrodynamic pressure Pa

Pe, Pw Hydrodynamic pressure on east and west sides of the CV Pa

pa Polyacryalamide
P∗ Dimensionless pressure Pa

PDE Partial differential equation
PIV Particle image velocimetry
QΦ Source term of the transported variable Φ

QD
Φ Diffusive source–term of the transported variable Φ

QP
Φ Pressure source–term of the transported variable Φ

r Radius mm

r ′ Radius (local coordinate) mm

r∗ Dimensionless radius
rc Radius of the bob mm

Re Reynolds number
Reref Reference Reynolds number
Rfg Cross correlation function
ri Inner radius mm

r ′

max Maximum value of the radius (local coordinate) mm

ro Radius of the cup mm

ROH Mannose unit
rv Radius of the vane mm

Si Silicon
sio Silicon oil
SS Schleichende Strömung (Eng. creeping flow)



Symbol Description Units
t Time s

t∗ Dimensionless time
te Final time (PIV measurement) s

ti Initial time (PIV measurement) s

TiO2 Titanium dioxide
TVD Total variation diminishing
u Total velocity
u Speed mm/s

u∗ Dimensionless velocity vector
ub Velocity vector through face b mm/s

UD Upwind difference
UDS 200 Universal dynamic spectrometer (series model 200)
uf Velocity of the fluid mm/s

ux Component of the velocity in x–direction mm/s

uy Component of the velocity in y–direction mm/s

ur Component of the velocity in r–direction mm/s

uϕ Component of the velocity in ϕ–direction mm/s

VF Viscometric flow
W, N, E, S West, North, East and South (nodal point)
w, n, e, s West, North, East and South (face of control volume)
x Cartesian coordinate (global) mm

x ′ Cartesian coordinate (local) mm

xi Position of the tracer particle in Cartesian coordinate (PIV
measurement)

mm

x00 Half of the blade thickness in Cartesian coordinates (origin
of local coordinate system)

mm

xb Nodal location of face b of the CV in Cartesian coordinates mm

xB, xE, xP Nodal location of computational points B, E and P in Carte-
sian coordinates, respectively

mm

xg Xanthan gum
y Cartesian coordinate (global) mm

y ′ Cartesian coordinate (local) mm

y00 Half of the blade–thickness in Cartesian coordinates (origin
of local coordinate system)

mm

2–D Two–dimensional
3–D Three–dimensional



Greek symbols

Symbol Description Units
α Parameter for power–law region

in Cross model
β Parameter in Carreau–Yasuda model
ΔA Surface area of control volume
Δt Elapsed time (PIV measurement) s

ΔV Volume of control volume
ε Error associated between exact and approximated velocity

fluid in a PIV measurement
η Viscosity Pa s

η0 Zero–shear Viscosity Pa s

ηeff Effective viscosity Pa s

η∞ Infinite shear–viscosity Pa s

ηref Reference shear–viscosity Pa s

η∗ Dimensionless viscosity
λ Characteristic time s

γ Blend factor
γ̇ Shear rate 1/s

γ̇∗ Dimensionless shear rate
ΓΦ Transport coefficient of the transported variable Φ Pa s

ΓΦ,b Transport coefficient of the transported variable Φ through
face b

Pa s

ΓΦ,B;ΓΦ,E;ΓΦ,fx
;ΓΦ,P Transport coefficient of the transported variable Φ through

nodal points B, E, fx and nodal point P, respectively
Pa s

κ Aspect ratio
∇ Nabla operator
Ω Angular velocity 1/s

∂t Partial time–derivative
Π Pressure scaling–parameter
Φ Transported variable, i.e. velocity mm/s

Φb, Φe Transported variable through face b and e of the control vol-
ume

ΦB, ΦE,Φfx
, ΦP Transported variable through nodal points B, E, fx and P of

the control volume, respectively
ρ Density kg/m3

τ Shear stress Pa

τ Shear stress tensor Pa

τ
∗ Dimensionless shear–stress tensor

ϕ Angle (global coordinate–system) ◦



Symbol Description Units
ϕ ′ Angle (local coordinate–system) ◦

τe Shear stress at the end Pa

τi Shear stress at the inner wall Pa

τmax Maximum shear stress Pa

τo Shear stress at the outer wall Pa

τy Yield stress Pa

τv Shear stress at the bob Pa

τw Shear stress at the wall Pa
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Summary

The aim was to find out if, and if yes subject to what restrictions, the vane could be
used as a viscometer, even for viscoelastic fluids. The rationale of such an attempt is
based on the fact that in all viscometers, which require fluid inertia to be neglected,
a viscometric flow does not exist, no matter how small Re is. Prominent examples
are cone–plate flow and torsional (i.e. plate–plate) flow. Secondary motions always
affect the ideal local flow kinematics. Yet, only at sufficiently large Re–numbers
do these changes in the local velocity field lead to measurable global relationships,
which are used in determining η. For purely rotational devices this is the M–Ω rela-
tionship.

The fluids used were taken from the class of aqueous polymer–solutions. Three
different types of polymers were used, namely an industrial one (polyacrylamide),
a biopolymer (hydroxypropyl guar) produced industrially by adding polypropy-
lene to guar gum and the biopolymer xanthan gum with its helical backbone. For
either type of polymer solution three or four different concentrations were used.

Using a Couette viscometer (concentric cylinder, CC) the flow curves were obtained.
It turned out that, depending upon concentration, the flow curves differed quantita-
tively but showed qualitatively similar behavior. While a Cross–like model sufficed
for the two biopolymers, a Carreau–Yasuda–like model was required for the poly-
acrylamide solutions. Irrespective of these details a master curve allows the flow
curve to be determined for any concentration without actually measuring η(γ̇).

To use the vane as a viscometer requires its characteristic curve (ChC) Ne = Ne(Re)

to be established. To this end various Newtonian fluids (NFs) were used, in our case
various silicon oils of low molecular weight. The influence of η on the ChC is largest
in the creeping motion regime (CMR), when Ne = c/Re is bound to hold. In our case
up to Re ≈ 10 one is in the CMR, where c = 13.51 was established experimentally.
Since this constant differs rather drastically from the one used in our commercial
CC–viscometer (of similar dimensions as the vane device) it is clear that substan-
tially different flow fields have to prevail in these two devices.

For non–Newtonian fluids (purely viscous or viscoelastic ones) η is not a constant
but rather depends upon γ̇. Thus, ηref was utilized (in our case the solvent water
was used as the reference fluid) to define a reference Reynolds number Reref.
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SUMMARY

If Ne Re = c characterizes the CMR then a change of Ne Reref vs Reref to Ne Re vs
Re requires, in a log–log plot a shift along a 45◦ line. The magnitude of this shift fur-
nishes η. For each Ω the function η = η(Ω) can thus be determined. Equating then
η(Ω) with the viscometrically established flow curve η = η(γ̇) furnishes a relation
between Ω and γ̇. For Ω small enough (small Re) the relation is linear, i.e. γ̇ = cγΩ

prevails. Although cγ differs slightly from fluid to fluid , the fluid–independent ap-
proximation cγ ≈ 4 (in our case) produces satisfactory results in all cases. It is this
fact which allows the vane to be used as a viscometer.

Having succeeded in showing that the vane can be used as a viscometer there are
limitations. For viscoelastic fluids deviations from NeRe = c show up at higher Re

numbers, even when NeRe = c holds in case of Newtonian fluids. This can be most
clearly seen in a direct comparison between η(γ̇) from viscometric measurements
with η(Ω) from vane flow. Elastic effects seem to be responsible for such behavior.
Being non–linear they start to influence the global M–Ω relation at higher shear–
rates, the more so the more elastic the fluid is. As soon as elasticity affects the global
M–Ω relation the vane ceases to furnish flow curves. For slightly elastic fluids it
is fluid inertia which limits the vane’s use as a viscometer (as it does in cone–plate
and, respectively in torsional flow).

This gets strengthened from PIV results. Even for NFs these results show clearly
that the streamlines between the blades are not circular. Thus, a rigid body motion
between the blades and a viscometric flow outside the blades does not exist. This,
however, would be the requirement for the fluid’s elasticity to have no effect on the
flow field.

The numerical results were obtained in the true CMR regime, i.e. Re = 0. In this
limit fluid inertia plays no role and the flow can be approximated by a steady one.
This fact can be understood if one uses a rotating coordinate system in which the
vane is at rest. In this system the flow is indeed steady. But Coriolis and centrifugal
forces have to be reckoned with the fact that either one scales with Re implies that
for Re = 0 they play no role. The name inertial forces is quite appropriate. While
the local streamlines and contour lines (lines of constant speed) quite clearly devi-
ate from the ideal ones (in agreement with the PIV measurements) the M–Ω relation
shows good agreement with experimental results for small Ω, with noticeable devi-
ations at larger Ω. This does not come unexpected, given the fact that generalized
NFs cannot account for any elasticity of the fluid. All polymer solutions used were
viscoelastic. Thus the conclusion is that the vane can be used as a viscometer, subject
to the limitations that the fluid’s elasticity and/or fluid inertia will sooner or later
limit its use for viscoelastic fluids.
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1 INTRODUCTION

1 Introduction

Since the breakthrough of Bingham in the late 20’s of the 20th century when he mo-
deled for the first time a non–Newtonian f luid, rheology , a branch of continuum
mechanics, has been evolving in the study of the deformation of matter. This study
covers not only the measuring of the deformation of matter under a certain applied
stress or strain but also its use, modeling and understanding.

In order to characterize a material, data need to be collected from measurements.
These data should allow to reproduce the deformation of the material and under-
stand how this deformation occurs. This step encloses the modeling of the material
property of interest, e.g. the viscosity. One correlates forces acting on the fluid (e.g.
torque) with the deformation rate (shear rate) and the resulting relationship between
these two variables provides information concerning the viscosity.

To describe the behavior of a material and collect data experimentally a rheome-
ter is necessary. In this device one tries to create ideal flow conditions of the fluid.
An example is provided by a rotational rheometer.
Rotational rheometers are well established devices which have been widely used in
research as well as in industry.

As mentioned above, for the case of the viscosity one tries to establish a function
of the form

η = f(
M

Ω
) , (1.1)

where M stands for the torque applied and Ω for the angular velocity measured
during the test.

In rotational rheometers it is sometimes necessary to carry out the tests up to rel-
ative high velocities or torques. This implies that secondary motions have to be
reckoned with. In rheometers such as the (one–gap) concentric cylinder (bob–in–
cup geometry) this type of flow will deliver wrong values for the viscosity of the
fluid. Although this is a limiting factor this is not the only problem when measur-
ing the viscosity of a fluid with a bob–in–cup system. The so–called wall slip may
also occur at the surface of the cylinders.

1



1 INTRODUCTION

One can say that slip occurs when a thin layer or film forms on the shearing sur-
face so that the typical equations used to estimate the viscosity with the bob–in–cup
system, based on the assumption of non–slip at the walls will not allow to predict
the viscosity. It is possible to overcome these obstacles just by limiting the measur-
ing range or modifying the surface of the cylinders. Of course this is not always the
best and simplest way to overcome these issues. Often one encounters suspensions
where special care has to be paid to avoid disrupting the sample during the immer-
sion of the bob.

An alternative to the bob–in–cup geometry is the vane–in–cup geometry. In this
geometry any slip effect at the vane can be excluded and less breakage of the struc-
tures –in the case of suspensions– will occur upon immersion of the rotating body.
The sample is kept homogeneous. In the present work we investigate a 4–bladed
vane immersed in a cup. Despite its simplicity in construction its use has been re-
stricted until now almost only to measuring the yield stress .

Since the vane–flow is not viscometric there is no simple analytic solution for es-
timating the shear rate if one wants to calculate the deformation as done with the
bob–in–cup geometry. Any application of the equations that are employed for rota-
tional rheometers to estimate the shear rate is bound to lead to wrong values.

One way of calculating the shear rate is via numerical simulations which also serve
to validate experimental data and / or rheological models. Computational fluid
dynamics (CFD) has been developing continuously during the last twenty years
with an increasing tendency toward non–Newtonian rheology. Nowadays powerful
numerical techniques and hardware are available to investigate relatively complex
flows. This allows us to overcome experimental limitations encountered in rheome-
try due to restrictions imposed by the equipment or measuring techniques.

In the present work experimental and numerical investigations are carried out for
vane flow. In this context special attention is paid to its use for material characteri-
zation. The whole work is structured as follows.

Chapter 2 gives an overview of the work performed with the vane geometry in the
last twenty years. There, a summary is given of the direction investigations have
taken to measure the yield stress and attempts to measure the viscosity of fluids.

Chapter 3 is devoted to the numerical aspects to perform the simulations for vane
flow. The finite volume method (FVM) and the discretization approach to solve
the governing equations are presented. The non–dimensional scaling of the gen-
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eral transport equation, which is the basis for our simulations, is also derived and
at the end of the chapter, the software used for the simulations, the pre and post–
processing is also briefly described.

Chapter 4 introduces the vane–in–cup geometry. Here are imposed the boundary
conditions of the problem, the mesh of the geometry and some theoretical aspects
for its general use in rheological material–characterization.

In chapter 5 the methodology of the optical measuring technique used for the vi-
sualization of the flow is described. Here we are concerned with the elementary
procedure for image acquisition, statistical validation and analysis of data for the
estimation of the displacement of the tracer particles present in the fluid.

Chapter 6 is concerned with Newtonian and non–Newtonian fluids considering
their chemical and physical properties. The reference viscometer, namely the bob–
in–cup system which was used to characterize the different fluids is shown schemat-
ically under the usual assumptions to calculate the shear stress and the viscosity of
a fluid and compared to the vane–in–cup geometry. In addition, the experimental
set–up including the vane viscometer is schematically represented.

Chapter 7 deals with the rheological material–characterization of the Newtonian
and non–Newtonian fluids. In chapter 8 our approach in estimating the device
constants for the vane–in–cup geometry for its use as viscometer is explained and
demonstrated. The flow curves of non–Newtonian fluids modeled in chapter 7 are
compared with those computed with our approach and the usage of the vane as vis-
cometer is shown.

Finally in chapters 9 and 10 the results of the experimental visualization and numer-
ical simulations for the vane flow at certain regions of the flow domain are presented
and discussed.
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2 Literature survey

In the last twenty years many authors attempted to develop methods to use the
vane for material characterization in a rheological context. These methods were de-
veloped or implemented to measure the yield stress or the viscosity of fluids. A
consequence of these methods is a self–imposed dependence upon the rheological
model used to calculate the device constants. All these works can be divided into
three main categories: experimental, theoretical and numerical.

Experimental investigations have been devoted to characterize materials and to de-
termine the device constants. The efforts of theoretical and numerical studies try to
describe the flow behavior in the vane–in–cup system considering material proper-
ties and / or the geometry. Theoretical studies show that the mathematical treat-
ment of the vane is complex. Whatever the investigations were dealing with there
were always common assumptions about the type of flow.

The following section gives an overview of the most important research work car-
ried out for the vane flow in the last twenty years. Table 2.1 summarizes these
works.

Table 2.1: Overview of the research–work carried out
with the vane geometry since 1983.

Author Year Material Approach

Nguyen et al. [58] 1983 Bingham, Casson, Experimental
Herschel–Bulkley,
Buckingham–Reiner

(Yield stress)

Keentok et al. [48] 1985 Bingham Numerical
(Shear surface)

Nguyen et al. [59] 1985 Bingham, Casson, Experimental
Herschel–Bulkley (Yield stress)

Continued on next page
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Author Year Material Approach
Yoshimura et al. [83] 1987 Suspensions Experimental

(Yield stress)

Haimoni et al. [39] 1988 Cement slurry Experimental
(Yield stress)

Barnes et al. [11] 1990 Newtonian, Numerical
Ostwald de Waele

Alderman et al. [2] 1991 Clay suspensions Experimental
(Yield stress)

Sherwood et al. [72] 1991 Colloidal suspensions, Theoretical
Newtonian

Castell–Perez et al. [23] 1990 Newtonian, Experimental
Ostwald de Waele (Device con-

stants)

Atkinson et al. [5] 1992 Newtonian, Theoretical
linear elastic (Stress, Flow)

Briggs et al. [18] 1996 Frozen ice Experimental
(Yield stress)

Liddell et al. [62] 1996 Suspensions Experimental
(Yield stress)

Yan et al. [80] 1997 Herschel–Bulkley, Numerical
Casson, Maxwell (Yield surface)

Daubert et al. [28] 1998 Food products Numerical
(Yield stress)

Perez et al. [63] 1999 Red mud, Numerical
soft clay (Stresses)

Glenn III et al. [36] 2000 Newtonian, Experimental
Continued on next page
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Author Year Material Approach
Ostwald de Waele (Device con-

stants)

Bravian et al. [15] 2002 Newonian, Experimental
Power–law (Yield stress,

Device con-
stants)

Rolon–Garrido et al. [69] 2002 Micellar solutions Experimental
(Flow stability)

Farias et al. [33] 2004 Polymer solutions Experimental
(Material char-
acterization)

Krulis et al. [49] 2004 Flavored yoghurt, Experimental
Newtonian (Device con-

stants)

Martinez–Padilla et al. [53] 2004 Sauces Experimental
(Material char-
acterization)

Nguyen et al. ([58], [59]) introduced at the beginning of the eighties a relatively
new method for measuring the yield stress with the vane–in–cup geometry. This
method consisted in treating the rotating vane as an imaginary cylinder 1. This fa-
cilitated the calculation of the torque exerted on the vane since the equations used to
calculate stress distributions in a cylinder were directly applied. In this experimen-
tal work they performed a series of measurements with high liquid–solid suspen-
sions whose flow behavior could be predicted with different constitutive equations
namely the Bingham, Herschel–Bulkley, Buckingham–Reiner and Casson models.
They also considered a ’correction’ since the vane diameter in practice does not ap-
proach zero, that is, they took into account a non–uniform stress–distribution effect
over the ends of the cylinder.

Following the assumptions introduced by Nguyen et al., Keentok ([48]) carried out

1This has been an usual assumption in soil mechanics ([59]).
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numerical simulations with a finite–element (FE) code on a four–bladed vane as
well as some experimental work. He concentrated his work on the fracture zone
(or surface of shearing) around the four–bladed rotating vane in a Bingham fluid.
According to his numerical simulations the region where shearing occurs has a di-
ameter slightly larger than the vane diameter and was about 2.5% larger than the
vane diameter. No information is given about the mesh employed. From the results
of his experiments he claims that the diameter of the shearing surface was 1.00–1.05
times larger than the vane diameter. He employed for his experiments automotive
greases (represented by a Bingham model). Furthermore, he reports he was able to
photograph the flow in the vane rheometer and that the fractural surface was ap-
proximately cylindrical, but this is not clear how it was conducted.

Although he affirms that he got good agreement between his experimental and
numerical works he did not find any theoretical relationship between theory and
experiment. For example, the fact that the shearing–surface diameter increased
in experiments linearly with the ratio yield–stress to plastic viscosity but numeri-
cal simulations showed the contrary, an exponential decrease with increasing ratio
yield–stress to plastic viscosity. Despite these discrepancies he recommended the
use of the vane for yield stress measurements if a diameter correction is applied.

Yoshimura et al. ([83]) compared the vane technique with other standard methods
to measure the yield stress. According to them, values obtained for different oil-in-
water emulsions with the vane geometry were of high precision. They pointed out
the difficulty in obtaining viscosity information of the fluid after the material starts
to flow since the flow field around the vane is quite complex.

Haimoni et al. ([39]) performed yield–stress measurements with a six–bladed vane
on a cement slurry. It is well known that cement slurries change their behavior
from liquid to solid in matter of hours. Measurements were performed long before
reaching the solid state but the samples were given enough time to rest, so that the
structures could strengthen. They discuss the shear stress distribution on the vane
edges. Different theoretical models to describe this distribution are described: uni-
form (square), triangular (zero at the vane center having its maximum at the vane
tip), parabolic or exponential.

In order to have an uniform stress distribution a large ratio height–to–diameter
seems to be required. On the other hand if this ratio is small (less than 2.0) the
stress distribution should deviate strongly from a square–uniform distribution and
tends to become triangular, depending on the type of material. In practice these
distributions will deviate along the vertical and the horizontal edges of the vane,
depending on the type of material. They compared all measurements with a bob–

8
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Barnes [11] carried out simulations with a FE code for a four–bladed vane and a
power–law fluid (shear thinning, index n � 0.5). He compared his results with
those obtained with a bob–in–cup geometry. The shear stress calculated at the cup
wall was equal for both geometries for a given rotational speed. He obtained equiv-
alent flow curves at low shear rates with the same fluid but a sudden viscosity drop
was found with the bob geometry at low shear rates. This affect was atributed to
wall slip. Since this effect was not observed with the vane he noted this geometry
as a valuable tool when slip occurs.

Alderman et al. ([2]) performed experimental investigations to measure the yield
stress of aqueous bentonite clay suspensions. They found that there is no end con-
tribution from the blades for the lower yield stress muds something that is different
with the findings by Nguyen et al. ([59]). A comparison with a Carrimed bob–
in–cup rheometer suggests that the vane technique may be suitable only for yield
stresses greater than a minimum value, most likely dependent on the number of
blades. The accuracy of the measurements was not only attributed to the number
of blades (a four bladed–vane was used) but also to the concentration of the sus-
pensions. The failure of the measurement for lower concentrations was attributed
to the simplified assumptions in the vane technique. For high concentrations the
divergence in the measurements between the vane–in–cup and the bob–in–cup ge-
ometries was attributed to slip at the walls of the last system.

The results of Alderman et al. ([2]) provided an important basis for Sherwood et
al. ([72]). Sherwood et al. showed that the vane could not only be used to measure
the yield stress of concentrated suspensions but also to obtain the shear modulus of
the suspension (treated as a linear–elastic solid) in small deformations. Sherwood et
al. studied different N–bladed 2 configurations of the vane imposing slip and non–
slip conditions for each different case. With the use of a complex variable analysis
they came out with certain simplified results for 2,3,4, and 6–bladed vanes. Their
results show that despite the simplicity of the geometry of the vane the mathemati-
cal analysis of the vane is not trivial and for practical purposes assumptions and /
or simplifications are necessary.

Castell–Perez et al. ([23]) performed a series of measurements with 10 different vane
geometries. The height of the vane was kept constant while the ratio vane–diameter
to cup–diameter was varied. Their results show that shear rates evaluated with an
averaged constant were both, geometry and material dependent. Their results are

2N denotes the number of vanes.

9

limited to Newtonian and Oswald–de–Waele fluids.



2 LITERATURE SURVEY

Atkinson et al. ([5]) went further with theoretical analysis. Using Mellin transforms
and the Wiener–Hopf technique they investigated different N-bladed configurations
and different boundary conditions. Their interest was the stress distribution and the
flow for a 2–D vane.

Briggs et al. ([18]) give an example of the use of the vane in food technology. They
consider the vane technique to be advantageous for testing the characteristics of
frozen ice cream, mainly for the reason that the vane does not destroy the product
structure when the vane is immersed in the sample. Neglecting any end–effects as
proposed by Nguyen et al. ([58], [59]), they assumed a solid–body rotation to mea-
sure the yield stress of the frozen ice.

Liddell et al. ([62]) performed yield–stress measurements of TiO2 suspensions with
the vane geometry under the same solid–body rotation assumption. They pointed
out that this assumption is "slightly incorrect". Although Nguyen et al. ([59]) have
already addressed a non–uniform stress distribution at the ends of the imaginary
circumscribed cylinder and Alderman et al. ([2]) minimize its influence on the mea-
suring of the yield stress. Results of Liddell et al. agree only in part with it. Accord-
ing to them the size of the vane will affect the required torque for a given stress but
it does not change the development of stress. Thus, the vane dimensions should be
immaterial in determining the yield stress.

Yan et al. ([80]) used a commercial finite–element package (FIDAP) to model the
behavior of Herschel–Bulkley, Casson and a Maxwell type fluids within a domain
of 1300 elements. They assumed a shearing surface located on a cylinder whose di-
mensions correspond to those of the vane, an uniform shear–stress distributed on
this surface being equal to the yield stress and no secondary flows between the vane
blades.

Results from Keentok ([48]) are criticized since the way the yield surface is deter-
mined is not shown, furthermore, the number of elements between the blades is too
coarse (there were only four elements). For this reason, no attempt to investigate the
nature of the yield area through elastic, viscoelastic and plastic behavior is made.

Characteristics of the flow such as velocities, streamlines, pressure and shear rate
are presented. No difference was found between the Herschel–Bulkley and the Cas-
son model regarding the fluid trapped between the vanes while for the Maxwell
model differences were found in the strain rate near the vane tips (which does not
agree with the cylinder assumption). For the viscoelastic material there is a more or
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less uniform distribution of the shear rate away from the tips of the blades. This dis-
tribution is explained in terms of the elastic and the viscous part of the shear. That
means that the elastic shear is mainly located in the area around the blade tips while
the viscous shear is more uniformly distributed along the yield area. The asymme-
try in the shear rate distribution found in the numerical simulations is attributed to
the effect of elasticity. As a consequence the cylinder assumption would be valid
only for certain models, geometry and flow conditions.

Daubert et al. ([28]) related the vane technique when measuring the yield stress to
spreadability, a subjective term used in food technology. For a good product, or say,
for a spreadable product the yield stress is inverse proportional to the yield stress of
the product. Measurements with the vane allowed them to produce "texture maps"
easily and avoided disruption of the sample upon immersion of the vane. A total
of 13 different products were tested with different vane geometries. To be in agree-
ment with the cylinder assumption they selected radii of the height–to–diameter of
the vane greater than 2.0.

Their results of the yield stress measurements indicate that any influence of the end–
effects were negligible. They did not use any constitutive models. Paradoxically,
some materials that had a low yield stress were able to withstand a large degree of
deformation after yielding, suggesting that effects that were not considered in their
analysis (e.g. viscosity) play an important role for the vane flow.

Perez et al. ([63]) performed an analysis of the vane geometry with an Arbitrary–
Lagrangian–Eulerian (ALE) formulation within a finite element domain consisting
of 1492 elements. They presented an analysis of the stress distributions on the shear-
ing surface. Their analysis considered time and size effects, that is, the influence of
the rate of rotation of the vane on the surface of shearing. These results show a
shearing surface of 1.01 times larger than the vane radius (slightly smaller than that
obtained by Keentok et al. ([48])).

Numerical simulations for the 2–D vane geometry depended upon two dimension-
less parameters that were represented and limited by inertial and viscous regimes
(the last one being typical in vane tests). Before formulating the problem they
showed that stress distributions along the top of the vane are not uniform. It was
conjectured that material anisotropy and progressive failure are the cause of this
non–uniform stress distribution. This suggests that the material model will deter-
mine how the stresses are distributed.

When the material is anisotropic the interpretation of the test becomes difficult. For
example, the maximum shear can be reached in the vertical surface while the behav-
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ior at the top maybe elastic. Since the ratio of both stresses (that at the top and that
at the vertical surface) may vary depending on the vane dimensions the influence
of the vane dimensions can not be excluded (contrary to the affirmation of Castell–
Perez et al. ([23]) and Liddell et al. ([62])). If the contribution of the failure at the
top of the vane is dismissed from the total torque (as it has been done usually in
practice) then the stress would be underestimated.

Glenn et al. ([36]) tried to obtain device constants for a four–bladed vane in order
to obtain averaged shear stresses and shear rates. It was expected that this should
lead to the characteristic flow curves of a power–law fluid. The way the constants
were obtained was dependent not only on the vane dimensions (again the cylin-
der assumption is adopted as in [48], [11], [63]) but also on the power–law index
n of the material. For the geometries used, the expected behavior is close to the
bob–in–cup geometry as n decreases (it is not clear what type of behavior is meant
there, probably the characteristic flow curves). Thus, the method used to estimate
the device constants would not allow to characterize any type of fluid nor use any
vane–geometry due to the dependence upon the type of fluid.

Bravian et al ([15]) used a six–bladed vane with certain slight modifications. For
instance, the bottom of each blade was sharpened to reduce sample disruption. To
correct deviations from a bob–in–cup system he included a correction factor ap-
proximated by a power series. He characterized Newtonian fluids and measured
the yield stresses of Power–law fluids in the same manner as carried out by Liddell
et al. ([62]).

He noticed the difficulty of defining a shear rate factor due to the non–linearities
observed in the curves of shear stress vs. time. Only at the beginning of the linear
stress region would it be allowed to introduce a shear rate formulation. The effective
radius should be equal to the height of the triangle formed by the tips of two adja-
cent blades and the corner resulting from the union of the blades.

Rolon–Garrido et al ([69]) studied the non–linear elastic behavior of worm–like mi-
celles in aqueous solutions (cetylpyridinium 100mM / sodium salicylate 60 mM
chloride (CPyCl/NaSal) dissolved in distilled water) with a six–bladed vane. This
non–linear behavior, characteristic in micellar3 systems, is represented by a non–
monotonic flow curve divided into three main regions. The vane technique helped
them to establish conditions when the flow became unstable, a condition that de-
pends upon shear rate. They were able to reach shear rates higher than with a cone–

3Micellar solutions can be regarded as dispersions of small particles (usually spheres or ellip-
soids).
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plate or plate–plate system since for these systems the sample is ejected and slip
effects occur.

Farias et al. ([33]) characterized viscoplastic materials with different geometries.
Different bob–in–cup systems were used (different heights, lengths, modified sur-
faces: roughed surface, smooth surface) and compared with a vane geometry (No
information is given about how many blades were attached to the shaft). The vane
performed better than the cylinder with smooth surface at low shear rates and
agreed well with the one with roughed surfaces indicating that it is suitable to elim-
inate slip–effects. At higher shear rates there were discrepancies between the bob–
in–cup systems (roughed and smooth surface) and the vane, discrepancies that were
attributed to secondary flows.

Krulis et al. ([49]) approached a four–bladed vane geometry similarly as by Glenn
et al. ([36]). They proved that the vane is suitable for food products, analogous to
the results of Briggs et al. ([18]).

Another application of the vane for food products was carried out by Martinez–
Padilla et al. ([53]). They used the system to characterize two different type of
sauces, one that contained fine particles and another with coarse particles. They
used two different aspect ratios for the vane–in–cup geometry, one with κ = 1.06

and a large–gap configuration with κ = 2.0 4. The vane–in–cup with small–gap used
four blades while the one with the larger gap had eight blades (in both cases the
blades were equally spaced).

Their measurements were in agreement with measurements performed with the
bob–in–cup geometry. As previous works, they based their investigations on the
solid body rotation thereby employing a Couette analogy for small and large gaps.
Curiously they conclude recommending the vane–in–cup with large κ. It is known
that there is no viscometric flow in this system and that Couette approximations in
the bob–in–cup system get worse as κ grows. They calculated shear rate and shear
stress factors based on the material properties of the investigated sauces departing
from a Couette flow and used a correction factor for the shear viscosity as proposed
by Bravian et al. ([15]).

Fisher et al. ([35]) used a 4–bladed vane to investigate measurement errors that
arise in yield–stress rheometry in modern rheometers as a result of an extra induced
torque upon immersion of the measuring device into the cup containing the sample.
In most cases a residual torque is not negligible and can be still present if consecutive

4κ is given by the ratio of the outer cylinder to the inner cylinder radius.
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measurements are performed with the same sample. This would lead eventually to
erroneous measurements and the tests will not be reproducible. Modern equipment
have built–in software to set this initial torque to zero at the beginning of the test to
avoid or at least to reduce the effect of this additional torque.

For the calculation of the yield stress they use the methodology proposed by Nguyen
et al. ([58]) with a vane having a ratio length–to–radius equal 2.0 (lv/rv). If the vane
is immersed carefully and no stress is induced, using this modern software–feature
to zero the initial stress will make no difference. However, if an initial stress is
present and this stress is zeroed, errors will not be eliminated from the measure-
ment and any reproducibility will be difficult to achieve.

2.1 Effect of vane dimensions

Previous approaches seem to fit the experimental data for Newtonian fluids well.
Although this may be true, one has to notice that the dimensions of the vane are an
important factor that can not be ignored nor should be taken arbitrarily especially
when the shear rate is calculated under the assumption of a solid body rotation.

Castell–Perez et al. ([23]) investigated 10 different geometric combinations. In their
experiments they kept the diameter of the vane constant while the height of the vane
and the ratio vane–diameter to cup–diameter was varied in a certain range. They
concluded their work affirming that a certain averaged–constant used to estimate
the shear–rate changes as the geometry of the system is modified and / or the ma-
terial properties change. They used Newtonian and Ostwald de Waele fluids.

An important aspect in the measurement of the yield stress is the minimal influence
of the vane dimensions. Liddel et al. ([62]) have performed measurements of the
yield stress for different suspensions. In their work they compare the results of
other researchers with their results (see for example [58], [83]) to show that the vane
dimensions have little effect on the measured yield stress. The size of the vane
affect the required torque for a given stress but do not change the development of
the stress. This is in agreement with the definition of the yield stress as a material
parameter.

On the other hand, for the viscosity, Castell–Perez et al. ([23]) found differences
when estimating the constants to compute the shear–rate, that is, the ratio κ = ro/rv

has an influence on the shear rate. Evidently one expects higher shear–rates for
lower values of κ. For accurate measurements the ratio length–to–radius of the vane
should be greater than 2 (lv/rv > 2).
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2.2 End effects

In the previous section, works carried out by different researchers have shown how
the length of the vane and the outer cup can affect the measurement of the viscosity
and that the interpretation of the data may become difficult especially for complex
fluids. For a small gap (small κ) these problems can be associated with the ends of
the vane (bottom and top). How strong or weak they are will depend on the na-
ture of the fluid, whether it is Newtonian or non–Newtonian, shear–thickening or
shear–thinning. It is well known that slip might be a problem when using a Searle or
Couette rheometer in a concentrated suspension. In this type of rheometer, the fluid
in contact with the bottom contributes a drag which must be matched by the applied
torque. The profile of this torque is well described in the annular region (along the
whole length lv of the cylinder) but over the immersed end in an undefined way. If
the gap width is kept small enough so that ro − rv << ro then the above problem is
reduced since the contribution of the bottom becomes negligible ([66]).

Ideally in these conditions the shear stress at the outer wall is:

τo =

(
rv

ro

)2

τi . (2.1)

Here τi is the shear stress at the inner wall.

2 rv

2 ro

(a) Top view.

2 rv

2 ro

lv lB

(b) Lateral view.

Figure 2.1: Bob–in–cup geometry.
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Solutions proposed for the bob–in–cup geometry, used to account for end–effects
cannot be applied to the vane–in–cup system. Instead one would have to deter-
mine experimentally the end–effect. In this procedure the torque M applied to the
rotating–vane at an angular velocity Ω is determined as a function of the height of
the vane immersed in the fluid ([11], [20]).

If the height lv of the vane is long enough compared to the vane diameter 2rv one
may assume that the deformation of the fluid around the vane is independent of
position along the vertical axis of the vane (two–dimensional). This situation cor-
respond to a problem of plane strain ([72]). The effect above and below the vane is
unknown.
Sherwood et al. ([72]) show that for the fluids used by them there is no tendency for
tangential slip. However, they say, there may be a tendency for separation to occur
at the tips (trailing face of the vane) where the material is in tension.

2.3 Scope of the thesis

The vane flow is mathematically complex. All investigations carried out by other re-
searchers in the past whether experimental, theoretical or numerical in nature, have
shown that the vane flow –besides yield stress measurements– is up to now not a
tool used for viscometric measurements for any type of material.

No method employed until now is capable of using the vane as a viscometer, inde-
pendently of the fluid model. This limitation is, in great part, due to the assumption
of a solid–body behavior as the vane rotates. A consequence is that the Couette anal-
ogy used to estimate the shear–rate or the shear–stress would deliver wrong values
if a different material is used at the same flow conditions. Correction factors will
not solve the issue. The problem is just of another kind since no viscometric flow
governs the vane flow.

The main goal in this thesis is to find out if the vane can be used as a viscometer
and if so under what conditions and limitations. Investigations are performed ex-
perimentally and numerically .

Experiments are carried out with a four–bladed vane adapted to a commercial rheome-
ter (UDS 200, Physica–Paar). These experiments are divided into two parts: rheo-
logical measurements and flow visualization.

The rheological characterization consists of determining the flow curves and their
corresponding rheological models for different aqueous polymeric–solutions. Flow
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visualizations are accomplished with the particle–image velocimetry technique (PIV).
The visualizations should serve to compare the flow conditions in the vane with the
simulated models.

Numerical simulations are implemented with a commercial package (CFX) based
on the finite volume method (FVM). Since no viscometric flow occurs we do not
assume a solid–body rotation in any part of the work. This should lead to a fluid–
independent way of using the vane as viscometer. In general terms, both, experi-
ments and numerical simulations should give an insight about the flow.
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3 Numerical method

Approximation and integration methods are often used for the solution of the con-
servative partial–differential equations (PDEs) in fluid mechanics.

A numerical simulation in fluid mechanics can be divided into three main parts.
First, the physical problem is modeled with (a set of) PDEs. Next, the numerical–
method to be used has to be specified in order to give the solution of the PDEs
according to their boundary and initial conditions. This is based on a lineariza-
tion process and a finite approximation (discretization) of the PDEs as well as the
solution of the resulting algebraic system of equations. The third step covers the
evaluation and visualization of the numerical results.

In this thesis a commercial software based on the finite volume method (FVM) has
been used to solve the system of governing equations. In this method, the conser-
vation and transport equations have to be written in integral form. Flux balances
for the mass, momentum and /or energy have to be approximated on the finite–
volume elements (control volumes) defined by the geometry in which the problem
has to be solved . One advantage of this method is that the conservative properties
of the integral form of the equations are preserved. In other methods, such as finite–
difference (FD) or finite–element (FE) methods this is possible only under certain
circumstances ([17], [61]).

Within the next sections, the FVM will be described. Detailed information about
finite approximations and the FVM can be found in [16], [17], [34] and [61].

3.1 Finite volume method

In principle the vane geometry could be represented by a cartesian mesh. This is of
course not suitable since its boundaries –due to the curvature– cannot be accurately
matched. Near the cup, the mesh of the vane could be orthogonal in cylindrical
coordinates but toward the vane blades this would, due the finite thickness of the
blades, lead to non–orthogonal intersection–lines (lines that connect the center of
the cell and any bounding face).

Thus, the most practical approach is to use a non–orthogonal mesh for the whole
domain with no restriction on the angles of the intersection of the mesh lines. This
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ensures a more accurate modeling since the geometry is better matched. The princi-
ples of the FVM are independent of the type of mesh. Therefore, the FVM used for
rectangular geometries can be used on a non–orthogonal mesh. Non–orthogonal
meshes have certain characteristics so that certain extensions need to be considered.

The FVM will be briefly described with a two–dimensional cell–centered mesh. In
fig. 3.1 the computational point P is located at the center of the control volume (CV)
so that

∫
ΔV

(x − xP) dV = 0 . (3.1)

There the control volume is bounded by a set of flat faces and each face is shared by
only one neighboring CV.

Other approaches are possible and their implementation depend upon the accuracy
sought (first order, second order, etc.) and the way the approximations are carried
out (discretization scheme). But independently of the cell–orientation the discretiza-
tion principle is the same for all variants.

Here cartesian coordinates are used but the numerical grid is non–orthogonal. The
difference to orthogonal meshes is that in an orthogonal grid the mass flow in one
direction –say the the x–direction– flows in only through one side (the west side) and
out only through another one (the east side) –see fig. 3.1, while for non–orthogonal
grids all lines have to be taken into account –see fig. 3.1.

By decomposing the unit outer normal n into its x and y components the contri-
bution of the various sides of the rectangle to the mass flow in the x–direction can
be accomplished. The software used automatically accounts for this.

3.2 General transport equation

The general transport equation for any unsteady flow of an incompressible fluid,
written in terms of the primitive variable Φ is

∂t (ρ Φ) + ∇ · (ρuΦ − ΓΦ ∇Φ) = QΦ . (3.2)
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Figure 3.1: Two–dimensional orthogonal control volume and notation
used.
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Figure 3.2: Two–dimensional non–orthogonal control volume and no-
tation used.

In this equation, the variable Φ can be a scalar or a vectorial value (e.g. velocity), ΓΦ

stands for the transport coefficient of the transported variable Φ, u for the velocity
vector and ρ for the density. The source term QΦ can be divided into its components

QP
Φ + QD

Φ = QΦ , (3.3)
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where QP
Φ represents the pressure source–term and QD

Φ the diffusive source–term.
The values that each variable can take in previous equations leading to the impulse
and continuity equations are summarized in table 3.1.

Table 3.1: Values of the transported variables in the
general transport equation (eq. 3.2).

Model Continuity x–momentum y–momentum

All Φ 1 u v

QP
Φ 0 −∂P

∂x
−∂P

∂y

NF ΓΦ 0 η η

QD
Φ 0 η

⎛
⎜⎝

∂u
∂x

∂u
∂y

⎞
⎟⎠ η

⎛
⎜⎝

∂v
∂y

∂v
∂y

⎞
⎟⎠

GNF ΓΦ 0 η(γ̇) η(γ̇)

QD
Φ 0 η(γ̇)

⎛
⎜⎝

∂u
∂x

∂u
∂y

⎞
⎟⎠ η(γ̇)

⎛
⎜⎝

∂v
∂y

∂v
∂y

⎞
⎟⎠

The corresponding values of the transported variable Φ and the transport coefficient
ΓΦ replaced into eq. 3.2 furnishes the momentum equation

ρ (∂tu + (u · ∇)u) = −∇P + Δ · τ . (3.4)
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3.3 Non–dimensional formulation

For the solution of eq. 3.4 it is necessary to input the different variables such as the
density, the viscosity and the velocity in consistent units. We rewrite the govern-
ing equation 3.4 in a non–dimensional form to simplify the analysis of the different
variables on the flow.

To formulate this equation dimensionless, for each variable will be sought a scal-
ing parameter. For the velocity u and the length (radius r) it is reasonable to scale
with the angular velocity Ω and the diameter of the vane dv, respectively, as

u = Ωdv u∗, r = dv r∗ . (3.5)

The remaining variables time t, shear stress τ and hydrodynamic pressure P are
scaled similarly. For that we choose the angular velocity and the effective viscosity
of the fluid ηeff. For the pressure P we use a parameter Π.

t =
t∗

Ω
, τ = ηeffΩ τ

∗ , P = ΠP∗ . (3.6)

After replacing these non–dimensional variables eq. 3.4 becomes:

ρd2
vΩ

ηeff︸ ︷︷ ︸
Re

(∂tu
∗ + (u∗ · ∇)u∗) = −

Π

ηeffΩ︸ ︷︷ ︸
=1

∇P∗ + Δ · τ∗ . (3.7)

The term ρd2
vΩ

ηeff
in eq. 3.7 represents the Reynolds number. All variables in previ-

ous equations with a superscript (∗) represent dimensionless quantities.

As Re → 0 the left hand–side of eq. 3.7 vanishes. Viscous transport dominates
over inertia (density plays no role at all). Then we can write

0 = −∇P + Δ · τ . (3.8)
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3 NUMERICAL METHOD

This allows us to formulate a quasi–steady numerical simulation for the vane flow
in the creeping motion regime.

3.4 Discretization of the general transport equation with
the FVM

Previous non–dimensional analysis shows that the density plays no role in the creep-
ing motion regime. Integration of eq. 3.2 over each CV, neglecting inertial terms and
replacing QΦ with its components given by eq. 3.3 leads, via the Gauss theorem, to
the following form:

−

∫
ΔA

∫
n · ΓΦ∇ΦdA =

∫ ∫
ΔV

∫
QP

Φ +

∫
ΔA

∫
QD

Φ dA . (3.9)

The area of the surface and the volume of the CV is denoted by ΔA and ΔV , re-
spectively. If we assume that the value of the variables at the center of the face and
at the center of the CV can be represented by mean values then we can rewrite eq.
3.9 as

∑
b

−nb · (ΓΦ∇Φ)b Ab = QP
Φ dV +

∑
b

nb · QD
Φ Ab . (3.10)

Here, b denotes any surface of the control volume, for instance e,w,n or s and nb

the unit–vector normal to the face b. One has to introduce approximations for the
variable Φ on each side of the CV which later have to be interpolated. The inter-
polation scheme, as we will see in the next sections, establishes a relationship be-
tween the value of the variables at the center P of the CV and the neighboring cells
B = E, W, N, S .

3.5 Discretization of the diffusive flux

Any formulation of the FVM express infinitesimally the conservation principle. These
mathematical expressions contain terms that represent, in the case of the general
transport equation 3.2, convective and diffusive fluxes through the finite volume.
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3.5 DISCRETIZATION OF THE DIFFUSIVE FLUX

The total diffusive flux (left hand–side of eq. 3.9) through the faces of the control
volume can be obtained by estimating the term ΓΦ∇Φ over the surface ΔA. This
approximation is carried out here by means of the midpoint–rule. In this method,
the integral is approximated as a product of the integrand at the center of the face b

of the control volume and the face area ΔA

− ∈ΔA

∫
n · (ΓΦ ∇Φ) dA =

∑
b

FD
b =

∑
b

−nb · (ΓΦ∇Φ)b Ab . (3.11)

Equation 3.11 represents the sum of the diffusive fluxes through all the faces of
the CV. Integration over the CV leads to the necessity to estimate the derivative of
ΓΦ with respect to the face normal. Here it is necessary to interpolate the diffusion
coefficient ΓΦ,b as well as the gradient (∇Φ)b. Normally they can be treated inde-
pendently from each other. In non–orthogonal meshes the surface vector has com-
ponents in more than one Cartesian direction and all of its components contribute
to the total flux.

The variable ΓΦ,b corresponds to the value of the diffusion coefficient ΓΦ at the cen-
ter of the face cell b. On non–orthogonal grids the linear interpolation offers the best
compromise among accuracy, generality and simplicity. This linear interpolation is
carried out in terms of the neighboring cells (see fig. 3.3).

ΓΦ,b = fxΓΦ,B + (1 − fx)ΓΦ,P with B = E, W, N, S . (3.12)

B corresponds to the center of the neighboring cell.

The interpolation factor fx accounts for the internodal distances. It can be written as

fx =
xb − xP

xB − xP

. (3.13)

Other higher–order integration and interpolation techniques can also be used re-
sulting in a high usage of computer resources ([17], [34]).

The differencing scheme used in eq. 3.12 to estimate the face value of the diffusion
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ΓΦ,P

ΓΦ,E

P E
fx

ΓΦ,fx

Figure 3.3: Stencil used for the linear interpolation.

coefficient ΓΦ is called central difference (CD). The CD scheme is one of the simplest
methods and frequently used schemes. The linear interpolation approximates the
variable ΓΦ at the CV face b and has second order accuracy. However, this scheme
can lead to oscillations (instability).

An alternative to this scheme is the upwind differencing (UD) scheme which is un-
conditionally stable. The interpolation is performed according to the direction of
the flow, thus resulting in a backward or forward–difference approximation. This
scheme is first order accurate and tends to be numerically diffusive.

Expressions exist that combine properties of the CD and the UD schemes. In these
hybrid approximations a compromise is made between stability and accuracy. The
following hybrid equation, often called deferred correction scheme (DCS) is an ex-
ample.

ΓΦ,b = (1 − γ)ΓΦ,b︸ ︷︷ ︸
UD

+ γΓΦ,b︸ ︷︷ ︸
CD

. (3.14)

The parameter γ, called blend factor, can take values in the range [0,1] (in the present
work γ = 1). For γ = 0 eq. 3.14 becomes a UD scheme. Thus, the factor γ controls
how much diffusion will be introduced.

There are many ways to calculate the derivative normal to the cell face or the
gradient vector at the cell center. If the diffusive coefficient is assumed to be con-
stant along the face of the CV then a cell–centered gradient can be calculated and
interpolated for the two cells sharing the face (with a linear interpolation, similarly
as done with eq. 3.12).
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3.6 DISCRETIZATION OF THE SOURCE TERM

The x–component of the gradient of Φ, say for the east side, can be estimated with a
CD scheme:

(
∂Φ

∂x

)
e

=
ΦE − ΦP

xE − xP

. (3.15)

It is assumed that Φ changes linearly between P and E.

3.6 Discretization of the source term

The source term for the equation of motion is of the form

QΦ = QP
Φ + ∇ · QD

Φ , (3.16)

with QP
Φ the pressure source–term and QD

Φ the diffusive source–term. One can ap-
proximate the pressure source–term (see the first term of the right hand–side of eq.
3.10) by multiplying the source term with the volume of the CV. In this way the gra-
dient of the pressure at the center P of the CV can be obtained with a CD scheme.

For the x–momentum component

−

(
∂P

∂x

)
P

· dV ≈ −
Pe − Pw

dx
dV = −(Pe − Pw)dy . (3.17)

Here dx and dy denotes the length of a face of a CV in their respective Cartesian
coordinates. Pe and Pw are the hydrodynamic pressures at the face e and w, respec-
tively. The discretization of the diffusive source–term QD

Φ requires, via Gauss’ the-
orem, only areal integration. Treatment of such terms had been shown in previous
sections.

3.7 Software used

To solve the set of discretized PDEs obtained (see governing equations in Chap-
ter 4) a commercial package based on the FVM and marketed as CFX version 5.6
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was used. This package is modular, i.e., it consists of different elements to perfom
different tasks such as pre–processing, solving and post–processing. This package
offers an all–in–one solution. For the mesh generation and the post–processing ad-
ditional modules have been used.

For the visualization of the vane–flow Tecplot version 10.0 was used along with Mat-
lab R14 version 7.0. Both applications automated efficiently these laborious tasks.
The mesh generation was carried out with another commercial package, ICEM CFD
version 5.4. This program allows the mesh to be exported with the specific CFX–
format.

3.7.1 CFX package

• Pre–processing module
The pre–processing module allows the problem to be set–up. Although the
package has only got Newtonian fluids built–in, the user can implement gen-
eralized Newtonian fluids. In addition, the discretization scheme, time–steps,
boundary and flow conditions are also imposed. The mesh, generated with
another commercial package (ICEM CFD version 5.4), can be imported into
this module.

• Solver module
The discretization process provided by CFX is fully conservative and the solver
provides different advection schemes. Available schemes are of first and sec-
ond order accuracy (’high–resolution’). It is also possible to use a hybrid ex-
pression with specific blend. A blend factor γ = 1 turns the discretization
scheme into a second order differencing scheme (see eq. 3.14).

The high–resolution scheme stands for the MUSCL (Monotone Upwind Schemes
for Scalar Conservation Laws) approach. This advection scheme is based on
a bounded discretization technique to consider strong (sharp) gradients with-
out numerical oscillations 1. This is a TVD–like2 discretization with a global
second–order accuracy which, according with the convergence criteria, switches
to first order upwind scheme locally, in order to prevent oscillations.

The overall solution procedure results in both a high level of robustness and
often in a faster convergence than those achieved with segregated solvers (see

1This condition depends upon the finiteness of the mesh.
2Total Variation Diminishing.
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• Post–processing
The huge amount of data resulting from the simulations can directly be ex-
ported from this module. With user–scripts and / or user–subroutines in For-
tran or Perl, the user is able to extract data from selected regions in the domain.
All these allow to automate the whole post–process. Visualization of the flow
can also be performed. In CFX the discretization process is fully conservative
and the solver provides one with different advection schemes.

An overview of the whole numerics, starting from the mesh generation and go-
ing through the set–up of the problem and the iterative process up to the visualiza-
tion of the results is shown schematically in fig. 3.7.1.
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Figure 3.4: Flow chart of the numerical procedure.
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4 VANE GEOMETRY AND STATEMENT OF THE PROBLEM

4 Vane geometry and statement of the
problem for the numerical simulations

If one desires to characterize suspensions, then a vane–in–cup geometry seems to
be a better choice over other type of geometries such as the bob–in–cup system . It
offers, for example, the possibility of much less disruption to the sample, any effect
due to slip can be avoided, and homogeneity of the sample is possible (note that its
shape resembles some mixers).

It is almost unavoidable to introduce the vane if one does not mention the principles
of rotational rheometers, especially the bob–in–cup geometry, since this system also
features a rotating body in a cup. Many of the studies devoted to characterize ma-
terials with the vane–in–cup system assume a solid–body rotation within the vane
region (see chapter 2).

Thus, before setting up the numerical case for the vane–in–cup geometry it is nec-
essary to introduce its geometrical features and the way it is used and operated
in rheological measurements. The governing equations derived from the general
transport equation (eq. 3.2) and the boundary conditions that need to be prescribed
will be formulated in the next chapters.

4.1 Vane geometry

Simply stated, the vane–in–cup geometry consists of a shaft and a number of N

blades attached to it, immersed in a cup (fig 4.2). Typically, it operates in a Searle
mode, that is, the inner body (vane) rotates with constant angular velocity Ω relative
to the cup. M is the torque required to maintain that situation while the outer cup
remains at rest.

4.2 Idealized assumptions

With few exceptions, most of the published work on the rheological characterization
of fluids with the vane geometry (radius rv and height lv) is based on the assumption
of an imaginary rotating cylinder of radius rv and height (= lv). As a consequence
the same equations used to estimate the viscosity with a bob–in–cup system are em-
ployed. Anticipating viscometric flow to prevail between rv and the cup of radius
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4 VANE GEOMETRY AND STATEMENT OF THE PROBLEM

Figure 4.1: Four–bladed vane used in the present work.

ro the equation for the shear–stress in such a system (neglecting end effects) is

τ =
M

2πr2
vlv

= c1 M . (4.1)

For the (apparent) shear–rate at rv one has

γ̇ =
2 κ2

κ2 − 1
Ω = c2 Ω . (4.2)

The parameter κ is given by the ratio of the outer radius ro to the inner radius rv. The
angular velocity Ω is related to the number of revolutions n per second by Ω = 2πn.

Equations 4.1 and 4.2 imply for the (apparent) viscosity η

η =
τ

γ̇
=

c1

c2

M

Ω
=

κ2 − 1

4πlvr2
o

M

Ω
. (4.3)

4.3 Torque on a rotating vane

For a given N bladed vane (fig. 4.3) which rotates with an angular velocity Ω in an
ubounded fluid (κ → 0), Akitson et al. ([5]) proposed an equation to evaluate the
torque as a function of the number of blades N and angular velocity when the vane
is immersed in an incompressible Newtonian fluid of viscosity η.
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2 rv

2 ro

(a) Top view.

2 rv

2 ro

lv lB

(b) Lateral view.

Figure 4.2: Schematic representation of a four–bladed vane–in–cup ge-
ometry.

v = rΩ

ϕ

ϕ = α

ϕ = 0

r = rv

Figure 4.3: N–bladed vane geometry.
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This vane has blades of zero thickness, equally spaced around the axis of rotation.
The angle that separates the blades is α. Equation 4.4 has been derived with the
assumption of a non–slip boundary condition and two–dimensional flow situation
in the creeping motion limit.

The equation for the torque per unit length on the vane as a function of the num-
ber of blades N has been approximated by ([72]):

M ≈ 4πηr2
v(1 − N−1) Ω . (4.4)

As N → ∞ Eq. 4.4 turns into

M ≈ 4πηr2
vΩ , (4.5)

which is exactly the torque on a solid cylinder (see eq. 4.3 in the κ → 0 limit).

4.4 Governing equations

The vane flow is investigated in a laboratory frame. If in the general transport equa-
tion given by eq. 3.2 the primitive variable Φ is set equal to 1 (continuity equation) or
replaced by the velocity u and the transport coefficient ΓΦ by the viscosity function
η(γ̇), where γ̇ denotes the shear rate, one gets the incompressible (mass conserva-
tion) equations of motion. In the creeping motion regime we have

0 = ∇ · u , (4.6)

0 = −∇P + Δ · τ . (4.7)

In this equation P is the hydrodynamic pressure and τ is the extra stress–tensor
which has to be written according to the constitutive equation used. In this work
only generalized Newtonian fluids (GNF) are considered, i.e.

τ = 2 ηD . (4.8)

Here D is the rate of deformation tensor

D =
1

2

(
∇u + (∇u)T

)
. (4.9)
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The shear rate γ̇ is written in terms of the second principal invariant I2 of D:

γ̇ =
√

−4I2 , (4.10)

with I2 related to the trace of D2

I2 =
1

2
tr(D)2 (4.11)

The viscosity function η used fits the Newtonian and or shear–thinning behavior of
the fluids employed (details of the viscosity functions are given in chapter 7).

4.4.1 Boundary conditions

In order to save memory and increase the computational speed only a quarter of
the whole domain is simulated. Therefore adequate boundary conditions have to be
prescribed at the corresponding locations of the domain. To illustrate this, a spatially
fixed coordinate system with the origin located at the center of the axis of rotation is
used in fig. 4.4.

If the blades have thickness bt = 1 mm, then fig. 4.4 is a sketch of a quarter of
the vane–in–cup geometry for this situation.

Wall conditions

At the walls are imposed non–slip conditions. The fluid velocity at the vane surface
is:

u = Ω × r , Ω = Ω k . (4.12)

Here, u is the velocity vector and r the variable radius r = (x, y). The velocity u

written in terms of its components is:

u = (ux, uy) = Ω (x j − y i) . (4.13)

For the transformations the following relationships are used (see fig. 4.5):
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er = i cosϕ + j sinϕ , (4.14)

eϕ = −i sinϕ + j cosϕ , (4.15)

which implies

i = er cosϕ − eϕ sinϕ (4.16)

j = er sinϕ − eϕ cosϕ . (4.17)

ur and uϕ stand for the components of the velocity in cylindrical coordinates, ux

and uy for the components in Cartesian coordinates. These non–slip conditions are

x

y

ϕ

eϕ er

bt

Figure 4.4: Cylindrical coordinate system.

summarized in table 4.1, for the 4–bladed vane flow with blades of thickness bt = 1

mm.

Periodicity conditions

This type of boundary condition reduces significantly the size of the domain. For
the vane a pure–periodic BC is used. This means that all dependent variables are
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u = Ω × r

in x–direction

Ω(−y00; x) at y = y00 x00 � x � rv

Ω(y; rv) at x = rv 0 � y � y00

0 at r0

in y–direction

Ω(−y; x00) at x = x00 y00 � y � rv

Ω(−rv; x) at y = rv 0 � x � x00

Table 4.1: Non–slip boundary conditions

identical and repeat periodically at the specified locations. These conditions are im-
posed at locations 1© and 2© (fig. 4.5).

For the velocity at locations 1© and 2© this means:

(ur;uϕ)

∣∣∣∣ 1©
= (ur;uϕ)

∣∣∣∣ 2©
. (4.18)

ur and uϕ are:

ur = u · er = (ux i + uy j) · er = ux cosϕ + uy sinϕ , (4.19)

uϕ = u · eϕ = (ux i + uy j) · eϕ = −ux sinϕ + uy cosϕ . (4.20)

At 1©: ϕ = π
2

ur = uy; uϕ = −ux (4.21)
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4 VANE GEOMETRY AND STATEMENT OF THE PROBLEM

and at 2©: ϕ = 0 .

Then it follows that

ur = ux; uϕ = −uy . (4.22)

Finally:

ur

∣∣∣∣ 1©
= ur

∣∣∣∣ 2©
∴ uy

∣∣∣∣ 1©
= ux

∣∣∣∣ 2©
, (4.23)

uϕ

∣∣∣∣ 1©
= uϕ

∣∣∣∣ 2©
∴ −ux

∣∣∣∣ 1©
= uy

∣∣∣∣ 2©
. (4.24)

4.5 Mesh for the vane geometry

The mesh used for the simulations has 10744 nodal points and 13940 elements. It
was refined so that any coarseness does not affect the solution or the convergence
of the simulations. It can be observed, that there is a higher resolution near the solid
boundaries (fig. 4.5).
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Figure 4.5: Coordinate system and location of boundary conditions
imposed on the vane geometry (mesh).
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5 Optical method

Experimental flow visualization is often used in fluid mechanics to gain insight of
the structure of the flow. In optical tracer–based methods, light–reflecting particles
have to be added to the fluid. These particles should be small enough to follow
the flow but large enough to scatter the light. The light scattered by these particles
is recorded, for instance by means of a computer equipped with a digital camera.
Depending on the purpose of the visualization further post–processing may be nec-
essary.

Certain methods such as the Laser Doppler Velocimetry (LDV) allow the local veloc-
ity of the fluid to be measured. The flow velocity can be measured by using particles
as tracers. Tracers (also known as seeding), should not interact with the fluid and
should be able to follow the flow. In the LDV technique one measures the velocity
only at one specific location.

Other alternatives exist which allow the velocity to be measured at more than one
location at the same time. The particle image velocimetry (PIV) has been chosen
and used in the present work to perform the visualization of the flow. A commer-
cial equipment fully controlled by a personal computer has been used for the optical
measurements. The software provided with the equipment offers different options
to perform the set–up and the post–processing (data validation and analysis).

In the next sections the most relevant aspects concerning the PIV technique, the
processing of the information obtained from the measurements and its evaluation
will be briefly described. References [1], [38], [6], [77] and [79] are recommended
sources for information about this technique and its digital manipulation.

5.1 Particle image velocimetry

Particle image velocimetry is an optical measurement technique that allows the ex-
perimenter to acquire the instantaneous velocity field in a planar cross–section of
the flow. In this technique the velocity of the flow is indirectly measured from the
motion of the tracer particles where any velocity lag between the particles and the
fluid is neglected (ideal flow). The local velocity of the fluid is given by the displace-
ment of the particles over a certain period of time. Tracer particles are randomly
distributed in the flow. In order to perform an estimation of the displacement of the
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To give an overview of the PIV technique, its fundamental steps can be summa-
rized as follows. First, the flow has to be populated with particles that posse light–
scattering properties. Particles have to be illuminated so that their movement can
be detected by variations of the light intensity. The particles that are observed in the
image–plane of the camera lens are stored at different preset times.

The next step is to ’divide’ the images taken into subregions (interrogation) in order
to increase the accuracy and speed–up the validation of the collected data (data val-
idation). Results obtained with a statistical method are then further analyzed and
processed. Schematic representations of a PIV set–up and the technique are shown
in figs. 5.1 and 5.2.

5.1.1 Image acquisition

In modern PIV equipments the raw image can be stored on a coupled charged de-
vice (CCD1) for further processing. The light–intensity that has been scattered by
the tracer is kept over a small area in the device called pixel2. A high number of
pixels means high resolution. It is desired to obtain pictures of high resolution so
that the small structures of the flow can be captured but this is only possible under
certain conditions or is restricted to the characteristics of the flow. But a good CCD
sensor is one item responsible for the quality of the shots. The quality of the infor-
mation that is stored also depends on the objective of the camera, the wavelength of
the laser and/or the diameter of the tracer, just to mention a few.

For a good image acquisition, the following parts need to be selected carefully.

• Seeding
Images obtained from a PIV measurement are directly proportional to the scat-
tered light. In general, the light scattered by small particles is a function of the
ratio of the refractive index of the particles to that of the surrounding medium,
the particle size, shape and orientation. For spherical particles with a diameter
bigger than the wavelength of the laser, Mie’s scattering theory can be applied.
For example, silicon–coated particles with a diameter dp ≈ 10 μm can be used
for a pulsed laser with a wavelength of 532 nm.

1The CCD–chip stores and converts light (photons) into electric charge (photoelectric effect).
2Picture element.
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Figure 5.1: Schematic representation of a PIV set–up.
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5 OPTICAL METHOD

• Illumination
Obviously, the light source has to be selected depending on the properties and
the geometry of the tracer. The quantity of light that is reflected is important
for a successful measurement. Therefore, special attention has to be paid to its
selection. The source has to be able to illuminate the particles at a high inten-
sity during a short period of time. Furthermore, the light source must possess
certain flexibility to form a thin light–sheet with adequate lenses. Modern PIV
measuring devices are equipped with (pulsating) lasers. Thus, a high intensity
and a coherent light–beam is guaranteed with these type of light–sources.

• Imaging
In PIV, the light–sheet generates a planar cross–section where the tracer par-
ticles are projected on a storage medium through (free–aberration) lens. The
optical device has a certain numerical aperture and all tracer particles that are
in the imaging plane are focused. The imaging obtained is basically a projec-
tion of the tracer population onto the planar cross–section. Thus, high quality
lenses are mandatory.

• Registration
Digital cameras are equipped with CCD–chips whose storing capacity is typ-
ically 1000 × 1000 elements. Therefore, any resulting picture has a matrix of
M × N pixels. One important parameter in the selection of a CCD sensor is its
dynamic3 (the capacity of the chip to get the information before reaching the
saturation). This fact has a direct relationship with the velocity at which the
information can be registered in a short interval of time. In [77] it is shown
that the recording of two or more images should require a frame rate equal
to Δt−1. There are other factors that the user should also consider such as the
sensitivity, noise, image area and pixel size.

5.1.2 Interrogation

To evaluate the information stored in two pictures taken at two different times, ti

and te, the picture has to be divided in small regions called interrogation areas. Since
each picture has a size M × N, the picture taken at time ti can be divided in many
small parts f(i, j) of equal size (in pixels). The same is done with the second picture

3Manufacturers of CCD use the term ’full well capacity’.
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tor (k − i, l − j) necessary to evaluate the velocity can be found.

An evaluation picture to picture would require an enormous amount of time. Thus,
one has to compare (correlate) statistically4 two pictures that are located in the same
global region of size M × N by using the corresponding interrogations areas.

In standard PIV applications cross–correlation methods are used to estimate the
highest matching probability between two functions. Digital pictures are not con-
tinuous. Raffel ([67]) defines the cross–correlation for a discrete signal with a finite
number of elements as

Rfg(x, y) =
∑

i

∑
j

f(i, j) g(i + x, j + y) , (5.1)

with x and y the displacement in pixels.

5.1.3 Data validation

One always finds that measurements contain a number of ’spurious’ vectors. These
vectors deviate from the ’valid’ vectors in direction and magnitude. They are orig-
inated from regions that do not contain enough particle–image pairs. Despite its
occurrence, in practice the quantity of spurious vectors in a PIV measurement is
usually less than 5 % ([77]). The ocurrence of spurious vectors is almost inevitable
even for carefully prepared experiments.

In a post–interrogation process spurious vectors are identified and eliminated from
the final data. Experimentally, an increase of the seeding density leads to an im-
provement of the quality of the resulting data. One should be carefully since an
increase of the seeding density (with a fixed size particle) could influence the flow
and the optical opacity of the fluid ([77]).

5.1.4 Data analysis

All information gathered from measurements and processed numerically is always
treated statistically. The interrogation with high pixel–resolution is relatively slow,
therefore a compromise has to be made, for instance, a relatively low–pixel resolu-
tion has to be used. Spurious vectors that were found and eliminated have to be

4One is looking for two matching regions between both pictures.
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vectors.

Fortunately, this number is low and modern equipment can manage this tasks in
short time. Many tools are available commercially in order to analyze and report
PIV data. The information obtained from PIV measurements, e.g the velocity field,
is presented as a picture containing the vectors that represents the velocity. Figure
5.2 summarizes the procedure of the PIV technique.

5.1.5 Displacement of the tracer particles

The velocity is measured indirectly as a displacement of the tracer particle in an
infinitesimal time–interval Δt = te − ti. In the ideal case the tracer velocity is equal
to the local velocity of the fluid, however, in practice this can only be approximated.

The displacement of the tracer is given by

D(xi, ti, te) =

te∫
ti

v(xi(t), t) dt , (5.2)

where v(xi(t)) is the velocity of the tracer. In the ideal case the velocity of the tracer
is equal to the local velocity of the fluid uf = u(xi, t), however, in practice this can
only be approximated. Equation 5.2 implies that the displacement field only pro-
vides information about the average velocity. Therefore, D(xi, ti, te) does not lead
to the exact value of the fluid velocity but to an approximation.

For an accurate measurement this approximation should lie below an error ε given
by the following relationship

|D(xi, ti, te) − uf · Δt| < ε for ti � t � te. (5.3)

This error is usually negligible whenever the spatial and time scales of the flow are
much larger than the spatial resolution and the exposure time delay of the storing
media, and the dynamics of the particles ([1]).
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Figure 5.2: Flow chart for the particle image velocimetry procedure.
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6 Materials and equipment

6.1 Materials

6.1.1 Newtonian fluids

Silicon oil Silicon oils are long–chain polymers. Their molecular weight (given by
the length of the chain or degree of polymerization) governs their behavior. Typ-
ically, oils with low–molecular weights show a Newtonian behavior. Another im-
portant aspect is that their structure is linear. This implies chemical and thermal
stability in a moderate range (i.e. weak dependence of the viscosity upon tempera-
ture). Another reason for selecting these fluids is their transparency.

SiCH3

CH3

CH3

O Si O

CH3

CH3

Si

CH3

CH3

CH3

n

Figure 6.1: Molecule of silicon–oil.

Notation η (mPa s)

sio20 32.20
sio80 80.00
sio100 122.00
sio350 355.56
sio500 544.20
sio125e3 544.20
sio60e3 57412

Table 6.1: Vicosities of Newtonian silicon oils
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6.1.2 Non–Newtonian fluids

Hydroxypropyl guar

Hydroxypropyl guar (hpg) belongs to the family of Galactomannans 1. It is a com-
plex linear–long–chain polymer with a molecular weight of approximately one mil-
lion kg/kmol. One important property of this material is its high water–binding ca-
pacity. Relatively small concentrations of (hydroxypropyl) guar change fluid prop-
erties (i.e. increase of the viscosity). It is widely used in the food industry to modify
certain characteristics such as texture and/or mouthfeel or in the tertiary oil extrac-
tion.

H
O

H

OH

H

H

OH

OO
O

OH

OH

CH2OH

H

H

H

OH

H

O

m n

O

CH2OH

H

OH

H

H

OH

H

O

OH

H

CH2

Figure 6.2: General molecule of the Galactomannans. For hydrox-
ypropyl guar m = 1.

Hydroxypropyl guar can be obtained by oxydixing the molecule of guar (fig. 6.2),
for example, with propylenoxid. In this specific reaction the hydroxyl groups of the
galactose and mannose units (ROH) are etherified through an acid catalysis. The
steps for this reaction are shown in Figure 6.3.

Xanthan gum

Xanthan gum (xg) is a high molecular polysaccharide produced by the xanthomonas
campestris bacteria. Its rheology is of great interest because of its wide use in the

1Galactomannans are plant reserve carbohydrates. During sprouting (germination), the galac-
tomannans are enzymatically degraded and used as nutrition.
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+ H+ +ROH

- H+
R

O

OH

O O+

H

Figure 6.3: Representation of the reaction to obtain hydroxypropyl
guar.

food industry. It develops a weak structure in water which creates high–viscosity
solutions at relatively low concentrations. It has excellent solubility and stability
in acid and alkaline conditions. Xanthan gum is based on a linear 1,4 β–D–glucose
backbone (main chain) similar as in cellulose (see fig. 6.4).
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C
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Figure 6.4: Molecule of xanthan gum.

Polyacrylamide

Polyacrylamide is a high–weight acrylate–polymer formed by units of acrylamide.
It is highly soluble in water forming a soft gel. It finds application in the treatment
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of disturbed soils to avoid or to recover from erosion. In the food industry as a
thickener, and in fundamental research in optical measuring techniques such as the
Laser Doppler Velocimetry (LDV) or the Particle Image Velocimetry (PIV) due to its
transparency.

CHCH2

C=O

NH2

CH2 CH

C=O

O- Na+

n

Figure 6.5: Molecule of polyacrylamide.

6.2 Equipment

6.2.1 The rheometer Physica UDS 200

A rheometer manufactured by the company Anton–Paar Messtechnik GmbH, model
Physica UDS 200, was used for rheological measurements. It is a Searle–type rheome-
ter and allows modifications of the standard concentric–cylinder measuring system
(by exchanging the outer metallic cup by a transparent–glass cup).

This device is able to measure from rather low up to relative high angular velocities
(or high shear rates depending on the geometry of the system used). A schematic
representation of this rheometer is given in figure 6.6.

Two different measuring–systems have been used in the experimental work. To
measure reference values the standard bob–in–cup geometry (CC 27) was utilized.
The second geometry, the 4–bladed vane–in–cup, had the same aspect ratio as the
bob–in–cup system (i.e. cup–radius to vane–radius) and same length lv (see figs. 4.2
and 6.7). The same outer cup was used for both, the vane–in–cup and the bob–in–
cup system, respectively 2. In the following sections these systems are described.

2For rheological measurements the standard metallic cup was kept. During the PIV measure-
ments this cup was exchanged by a transparent–glass cup.
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T = 298 K

Figure 6.6: Illustration of the rheometer used for the measurements
(Physica UDS 200, Searle–type).

6.2.2 Concentric–cylinder measuring system (CC 27)

This system, which is particularly useful when measuring the properties of suspen-
sions has been a standard measuring device for a long time. In the early 20’s of
the 20th century Mooney ([55], [56]) proposed end–effect corrections which consist
in changing the flat–bottom shape of the bob with a conical one (the CC 27 uses
this type of modified geometry, [3]). With the corresponding corrections, the shear–
stress and the shear–rate can be calculated with eqs. 4.2 and 4.1, respectively.

The influence of the ratio torque–to–angular velocity in a laminar flow, because of
end–effects (bottom) and the finite length of the cylinder, basically consist of two
parts:

a) The flow between the ends of the cylinder contributes to an extra torque. Thus,
the actual measured torque is higher.

b) Torques acting within the gap (see fig. 6.7) and the ends of the cylinder are in
principle not additive. This is only possible when the profiles of the shear rates
at both regions are identical (laminar regime, small κ, large lv/rv).

The corrected (representative) shear stress τ is:

53



6 MATERIALS AND EQUIPMENT

2 rv

2 ro

(a) Top view.

2 rv

2 ro

lv lB

(b) Lateral view.

Figure 6.7: Schematic representation of the bob–in–cup geometry (CC
27).

τ =
τv + τo

2
, (6.1)

where τv stands for the shear stress at the bob surface and τo for the shear stress
at the outer wall.

6.2.3 Vane–in–cup measuring system

Equations used for the bob–in–cup rheometer can not be applied to the vane geom-
etry. The vane flow is more complex. Thus, the assumption of an uniform force dis-
tribution as for a solid cylinder cannot lead to accurate results. In order to estimate
geometric or fluid dynamic constants for this system it is necessary to measure (for
example) the viscosity of different fluids with a reference (concentric) rotational–
rheometer. In chapter 8 we show our approach to estimate the device constants for
the vane–in–cup necessary to calculate a representative shear–rate and the viscosity
of the fluid.

A representative shear rate γ̇ sought for the vane geometry can be written as
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γ̇ = cγ Ω . (6.2)

And similarly for the shear stress:

τ = cτ M . (6.3)

cγ and cτ are constants of the system, Ω and M the angular velocity and the torque
exerted on the vane, respectively. The dimensions of the vane geometry utilized in
the present work are summarized in table 6.2.

Radius rv (mm) Height lv (mm) Thickness
bt (mm)

Radius of the cup
ro (mm)

13.33 40.00 1.00 14.46

Table 6.2: Dimensions of the vane geometry used for the experimental
and numerical work.

6.2.4 PIV set–up

As mentioned before in section 6.2.1, the rheometer UDS 200 allowed for some mod-
ification in the standard system. The cup used for the PIV measurements was made
of plexiglas. In figure 6.8 the PIV set–up is depicted. The whole arrangement con-
sisted of the rheometer UDS 200, a PIV–system produced by the company DANTEC
GmbH (for more information on the components see Appendix D) whose parts are
a pulsed laser with a wavelength of 532 nm and a HighSense 80C60 CCD camera
with a 60 mm Nikon macro–objective. The plane where the laser is located is shown
in figure 6.9. Here it can be seen that the plane is located at the middle of the edge
of the vane (P). The vane is immersed in the cup up to a distance from the bottom
of the cup equal to the radius of the vane rv. The height of liquid above the upper
tips of the vane is also equal to rv.
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Figure 6.8: Set–up used for the PIV measurements.
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2 r

lB
P l= /B 2

i

2 ro

lV

Figure 6.9: Location of the plane for the PIV–measurements in the
vane–in–cup system.
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7 Flow curves

Most polymeric liquids and suspensions show a shear–thinning behavior in visco-
metric flow. The intensity of shear thinning can be strengthened by increasing the
molecular weight of the polymer and for the case of aqueous solutions by increasing
the concentration of the polymer.

Changes in the concentration increase the viscosity at a faster rate. Indeed, there
may be cases where viscosity varies proportional to the concentration as to the
power 3 or higher ([13]). When flocculated structures occur in the suspensions the
apparent phase–volume increases and –as consequence– the measured viscosity is
higher than expected. Typically, polymeric shear–thinning solutions will exhibit
a first Newtonian region at low shear rates followed by a shear–thinning region
(power–law region). In many cases due to experimental limitations it is not possible
to reach the second Newtonian region.

In the next sections we show the experimental flow curves and the models for
Newtonian and non–Newtonian fluids used by us.

7.1 Newtonian fluids

In chapter 6 we already explained that silicon oil, depending upon its molecular
weight, can be classified as a Newtonian or non–Newtonian fluid. For a chain of
low–molecular weight, silicon oil shows Newtonian behavior.

The viscosity function is given by:

η =
τ

γ̇
. (7.1)

Here τ is the shear stress and γ̇ the shear rate. For a Newtonian silicon oil the vis-
cosity η is independent of the shear–rate (or shear–stress).
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7.2 Non–Newtonian fluids

Non–Newtonian fluids in general show a viscosity dependence of the form η = η(γ̇)

or η = η(τ). Many NNF used in industry, research and daily life are of this type.
Suspensions or solutions that contain flocs (conglomerates), macro molecules or dis-
persed solids are of that kind.

The intensity of the applied stress governs the degree of rupture of the structures
that give the fluid its representative viscosity. Most NNF are shear–thinning fluids.
In [78] models for Generalized Newtonian fluids (GNF) can be found. The models
that describe the GNF used in this thesis are the 4–parameter Cross model and the
5–parameter Carreau–Yasuda model.

The Cross model is given by ([27]):

η = η∞ +
η0 − η∞

1 + (λγ̇)α
, α > 0 . (7.2)

Here η0 represents the zero–shear–rate viscosity:

η0 = lim
γ̇→0

τ

γ̇
, (7.3)

and η∞ the infinite–shear–rate viscosity:

η∞ = lim
γ̇→∞

τ

γ̇
, (7.4)

λ is a characteristic time (transition from the Newtonian plateau to the power–law
region) and α a dimensionless parameter that describes the power–law behavior at
higher shear–rates.

The Carreau–Yasuda model is:

η = η∞ +
η0 − η∞

[1 + (λγ̇)β]
1−n

β

. (7.5)
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In contrast to the parameter α used in eq. 7.2 for the power–law region, β is used
in eq. 7.5 to improve the transition from the Newtonian plateau to the power–law
region. In eq. 7.5 (1 − n) is used to predict the behavior in the power–law region.

7.2.1 Preparation of the solutions

All samples were prepared in one liter of deionized water at 298 K 1. To avoid the
formation of lumps in the solution, the polymer was added slowly at a constant stir-
ring rate.

The concentration for all solutions was calculated with:

[c] =
mp

ms

· 100 . (7.6)

Here mp represents the mass of the polymer, ms the mass of the solvent and [c]

the concentration of the solution in w/w%.

Fluid Solute Concentration [c]
(g) (w/w%)

Hydroxypropyl guar 4.0 0.40
5.0 0.50
6.0 0.60

Xanthan gum 2.0 0.27
2.0 0.33
4.0 0.40

Polyacrylamide 0.5 0.05
1.0 0.10
2.0 0.20

Table 7.1: Different concentrations of polymer solutions used for the
experimental and numerical work.

1With exception of xanthan gum solutions of concentrations 0.27 and 0.33 w/w%, which were
prepared in 0.75 and 0.60 liters of deionized water, respectively.
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7.2.2 Hydroxypropyl guar

The characterization of Hydroxypropyl guar (hpg) was performed with data ob-
tained from measurements carried out with the bob–in–cup rheometer. The charac-
teristic shear–thinning curves (fig. 7.1(b)) were fitted with the Cross model written
in Matlab v7 R14. In this diagram, a strong dependence of the viscosity η on the
shear–rate γ̇ can be observed.

It can be seen that small changes in the concentration of the polymer lead to rel-
atively large changes of the viscosity of the fluid (parameter η0 is indicative of this).
With an increasing shear–rate these curves approach a common value η∞.

Fluid [c] η0 η∞ α λ

(w/w) % (Pa s) (Pa s) (–) (s)

Hydroxypropyl guar 0.40 0.15 0.01 0.574 0.029
0.50 0.33 0.01 0.624 0.059
0.60 0.69 0.01 0.663 0.111

Xanthan gum 0.27 27.254 0.016 0.777 47.2825
0.33 102.38 0.016 0.810 129.6086
0.40 136.94 0.016 0.832 111.2683

Table 7.2: Parameters for the Cross model.

7.2.3 Xanthan gum

The characterization of the solutions of xanthan gum (xg) was performed analo-
gously to the solutions of hpg. In fig. B.1(b) one can observe a similar shear–thinning
behavior for moderate low–concentrations.

These flow curves were also fitted with eq. 7.2 and Matlab v7 R14. The Parame-
ters that satisfy eq. 7.2 for the experimental data–set are given in table 7.2. Notice
that for similar changes on the concentration of the polymers in the solutions (about
20 %), the increase of the viscosity was not as pronounced as those of the hpg solu-
tions (fig. 7.1(b)) for a given shear rate. A predominant power–law region can also
be observed.

7.2.4 Polyacrylamide

Polyacrylamide solutions, similarly as the xg solutions, show a predominant shear–
thinning behavior for about three decades. The concentrations of the solutions were
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Figure 7.1: Flow curves for the hydroxypropyl guar solutions.

kept at values much lower than the hpg and xg solutions (0.05 up to 0.20 %).
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One reason for this behavior can be attributed to its very high molecular–weight
(106g/gmol) combined with its linear shape (see fig. 6.5). To approximate the ex-
perimental data the Carreau–Yasuda had to be used (fitting the data via the Cross
model produced unsatisfactory results). Values of the parameters for this model are
given in table 7.3.

Fluid [c] η0 η∞ λ β n

(w/w) % (Pa s) (Pa s) (s) (–) (–)

Polyacrylamide 0.05 4.7122 0.0180 31.32 1.5 0.28
0.10 8.7438 0.0180 31.23 1.5 0.28
0.20 27.63 0.0180 48.64 1.5 0.28

Table 7.3: Parameters for the Carreau–Yasuda model.

7.3 Characterization with the solvent viscosity

We have seen in previous sections that the aqueous polymer–solutions exhibited a
shear-thinning behavior. Such behavior can be seen as being of modest proportions
since the concentrations used were relatively small. However, the tendency of the
viscosity is to increase as the concentration grows and/or the molecule chain be-
comes larger (η0 is an indication of this).

Because of experimental limitations we cannot reach the first and the second New-
tonian plateau and it is especially difficult to reach high shear-rates. In general, the
shear–thinning behavior of dilute aqueous polymer-solutions and polymer melts
(those of very high molecular weight) is qualitatively similar. This behavior is
strengthened as the polymer concentration in the solution increases (similar behav-
ior for polymers with large molecule–chains). Notice that as γ̇ → ∞ the functional
η → η∞ (see eq. 7.4).

The dissolved polymer contributes to the solution viscosity in a certain amount de-
pending on the concentration (for a given molecular weight). At very high shear–
rates, in the hypothetical experimental–case in which the structures are oriented in
the flow direction it is expected that the viscosity solution approaches that of the
solvent viscosity. There is some evidence ([13]) that even at very high shear-rates
the polymer viscosity still contributes to the solution viscosity. In this situation η∞
will lie between η0 and the solvent viscosity.
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When a model is fitted to experimental data the solvent viscosity can be used to
account for shear-thinning effects at high shear–rates. At very high shear–rates the
polymer would not contribute to the solution viscosity or its contribution is weak.
Figure 7.2 shows the results when the solvent viscosity is used. The parameters are
given in table 7.4.

Fluid [c] η0 η∞ α λ

(w/w) % (Pa s) (Pa s) (–) (s)

Hydroxypropyl guar 0.40 0.1462 0.001 0.60 0.02
0.50 0.3388 0.001 0.60 0.06
0.60 0.7475 0.001 0.60 0.14

Table 7.4: Parameters for the Cross model when the solvent viscosity
is used.
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Figure 7.2: Flow curve for the hydroxypropyl guar solutions. The sol-
vent viscosity is used.
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8 The vane as viscometer

One of the most important aspects of the vane geometry that has already been men-
tioned in previous chapters, is the simplicity of its shape. This shape provides the
vane certain features that are characteristic in mixing systems ([54],[43],[60],[84],[7]).
Typically in mixing operations one is interested in the energy consumption and the
degree of mixing.

Obviously this is related to the geometry of the system and the rheology of the ma-
terials. For a given system–geometry and material, this relationship cannot a priori
be derived, i.e. the dependence of mixing on the energy supplied, since the flow for
mixing operations is rather complex and there is no theoretical calculation for the
power input ([84], [60]). Dimensional analysis is an important tool to study the flow
phenomena for the vane.

8.1 Non–dimensional formulation

Dimensional arguments show that for vane flow of a Newtonian fluid (of viscosity
η) the Newton number

Ne =
1

ρd5
v

M

Ω2
, (8.1)

must be a unique function of the Reynolds number1

Re =
ρd2

v

η
Ω , (8.2)

i.e.

Ne = f(Re) . (8.3)

1Here we assume constant geometrical dimensions.
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Figure 8.1: Characteristic curve for the vane flow (Ne vs Re).

where M is the torque applied in order to rotate the vane with angular velocity Ω,
dv is the diameter of the vane and ρ and η are the mass density and shear viscosity
of the liquid. In the creeping motion limit (Re → 0) ρ can play no role and Ne α1/Re

is the consequence.

Starting from the creeping motion regime (Ne α1/Re) the influence of the viscos-
ity diminishes as the Reynolds number increases since Ne = const. has to prevail for
sufficiently high Reynolds numbers (highly turbulent flow).

From now on we shall concentrate on the creeping motion regime (CMR), i.e.

Ne =
c

Re
, (8.4)
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8.1 NON–DIMENSIONAL FORMULATION

The constant c crucially depends on the geometry of the system. For the vane used
by us the creeping motion regime extended up to a Reynolds number of about 5 as
fig. 8.2 shows.
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Figure 8.2: Data of fig. 8.1 plotted as NeRe vs Re.

Expressed dimensionally eq. 8.4 reads

η = Cv

M

Ω
, (8.5)

where

Cv =
1

cd3
v

. (8.6)

Equation 8.5 is the fundamental equation for the determination of η in all rotational
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8 THE VANE AS VISCOMETER

viscometers. There it is assumed that (an ideal) viscometric flow (VF) prevails, thus
allowing an analytic expression for the device constant Cv. For example, for tangen-
tial annular flow Cv is given by

Cv =
κ2 − 1

4πlvr2
o

. (8.7)

If the bob–cup dimensions are identical to the vane–cup dimensions used by us
(bob radius = rv) then

Cv = 1631.52 m−3 (8.8)

results. The bob–in–cup geometry used by us for the experimental work uses a
Cv = 1527.1 m−3 as given in [3]. For the vane used by us one gets c = 13.51 and
consequently

Cv = 3906.3 m−3 . (8.9)

This differs rather drastically from the theoretical value for tangential annular flow
(eq. 8.8). This implies that the intuitive ideal assumption for vane flow, namely
solid body rotation up to the vane tips and viscometric flow (VF) from these up to
the cup is wrong (as anticipated in [23],[62], [58], [59], [48], [28], [36], [48], [11] and
[63]). Despite these differences it is tempting to use the vane as a viscometer. The
rationale for such an attempt rests on experimental facts.

For most rotational viscometers the kinematics of VF require fluid inertia to be ne-
glected. Prominent examples are plate–plate (PP) flow and cone–plate flow (CP).
Yet, experimentally it is well known that in these devices a three dimensional (3D)
flow prevails at all Reynolds numbers ([46], [19]). Global relations like eq. 8.5 are
not affected by these facts up to rather moderate Reynolds numbers (e.g [25]). Based
on these facts it seems rather natural to anticipate that eq. 8.4 (which implies eq. 8.5)
should hold in the CMR for purely viscous fluids and, within limits (to be discussed
later), for viscoelastic fluids as well.

These conjectures are strengthened by the fact that porous medium flow and flow
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8.1 NON–DIMENSIONAL FORMULATION

around an excentrically rotating sphere have both been succesfully used for deter-
mining the viscosity of non–Newtonian fluids (e.g. [74], [24]).

In the CMR measuring the torque of a Newtonian reference fluid (subscript ref)
and of another Newtonian or non–Newtonian fluid implies by eq. 8.5 the relation

η

ηref

=
M

Mref

∣∣∣∣
Ω

, (8.10)

provided the measurements are taken at the same angular velocity Ω. Thus, de-
termination of η is readily accomplished. In an NeReref = f(Reref) diagram this
implies a shift along a 45 degrees line in order to reach the NeRe = c curve. Note
that Reref > 5 may very well imply Re < 5, i.e. data within CMR. Figure 8.3 demon-
strates this quite clearly.
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Figure 8.3: NeRe vs Re and NeReref vs Reref.
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8.2 DETERMINING THE SHEAR RATE IN VANE FLOW

For non–Newtonian fluids η is not in general a constant but varies with the shear
rate γ̇ and shear stress τ, respectively. By dimensional reasoning one can assume re-
lations of the kind

γ̇ = cγΩ ,

τ = cτM . (8.11)

These two constants are not independent but are related by

Cv =
cτ

cγ

. (8.12)

Since Cv is known (eq. 8.9) it thus sufices to concentrate on one of them and we
choose cγ.

8.2 Determining the shear rate in vane flow

Pointwise measurements of η in vane flow furnishes η = η(Ω), by eq. 8.5. In a
viscometer η is determined as η = η(γ̇). To determine the flow curve η = η(γ̇) in
vane flow it requires a shift from the η = η(Ω) shear viscosity function (determined
from vane flow) to the viscometrically determined flow curve η = η(γ̇), see figures
8.4 and 8.5.
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8 THE VANE AS VISCOMETER

A horizontal shift of the curves at constant η can be mathematically expressed as

η(cγΩ) = η(γ̇) , (8.13)

in this way the shift factor cγ, as defined in eq. 8.11 can be evaluated. Plotting
for the same η as a function of Ω the slope of this graph will furnish cγ. Figure 8.6
shows this further.
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Figure 8.6: Shear rate vs angular velocity (bob and vane geometries).

It can be seen that for small Ω the shear rate is a linear function of Ω, i.e. cγ is a
constant. Table 8.1 lists this constant cγ.
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Fluid Concentration [c] cγ

(w/w%) (s/s)
Hydroxypropyl guar 0.40 1.6804

0.50 3.0734
0.60 3.5957

Averaged cγ 3.3346

Xanthan gum 0.27 4.4474
0.33 4.4455
0.40 4.0000

Averaged cγ 4.2976

Polyacrylamide 0.05 3.8418
0.10 4.7382
0.20 4.4504

Averaged cγ 4.3435

Table 8.1: Device constants for the vane geometry.

Using for each type of solution used by us one cγ value, a comparison between
viscometrically determined flow curves and flow curves determined from vane flow
is shown in figures 8.7 and 8.8.
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It can be clearly seen that the vane correctly predicts the viscosity function, es-
pecially for sufficiently small shear rates. Deviations at higher shear rates cannot
be disputed, however. This is the case whenever cγ is not a constant but depends
on Ω, i.e. cγ = cγ(Ω) (non–linear regime of fig. 8.6). The reason for this is easy to
comprehend. All fluids studied are known to be viscoelastic.

Elasticity of a fluid leads to local changes in the flow field from the purely vis-
cous ones. Being non–linear these changes become more and more pronounced
the higher the shear rate is. Deviations of relations between global quantities are
the consequence. Only as long as the effect of elasticity can be neglected in global
relations between M and Ω can vane experiments be used to determine η. Outside
this range they cannot.

In order to use the vane for viscoelastic fluids as a viscometer within this, limited,
range of validity, it requires a fluid independent constant cγ.The data of table 8.1 re-
veal that an arithmetically averaged cγ of all our measurements is close to 4. Using
this value for cγ produces satisfactory results for the vane viscosity function as figs.
8.9 and 8.10 show.
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This reveals that the vane can indeed be used as a viscometer for viscoelastic
fluids. It thus supplements –on an analogous basis– the porous medium flow vis-
cometer ([75], [44], [42], [57], [50]) and the viscometer based on the principle of a
sphere rotating around an axis eccentric from the sphere ([52]). This latter viscome-
ter seems to be the proper choice for highly filled suspensions (e.g. cement slurries)
where viscometric flow can lead to internal fracture of the fluid and thus to disas-
trous results ([74]). The vane, on the other hand, seems applicable for ’ordinary’
viscoelastic fluids like polymer solutions.
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9 PIV measurements

In the present chapter we show the results of the PIV–measurements carried out for
vane flow. Before going into details and discussing the results, here is a short de-
scription of both the set–up and the procedure from the experimental part.

In section 6.2.4 we have shown the equipment set–up used for the visualization.
There, the rheomether UDS 200 was modified allowing the measurements to be
taken. First, the metallic cup was replaced with one made of polymeric glass, whose
refractive index matches that of the fluid. We were interested in the flow between
the blades of the vane at a plane perpendicular to the axis of rotation which is lo-
cated at the middle of the vertical face of the vane (see fig. 6.9). For that situation all
lateral faces were painted to black except one (where the laser beam illuminates the
flow) in order to reduce interferences due to reflection of the light (see fig. 9.1).

The light source was coupled with the computer so that the triggering (shooting
of the pictures) could be automated and set–up according to the flow conditions.
The light source was a pulsed laser with a wavelength of 532 nm produced by the
company Meillot. All pictures were taken with a HighSense camera model 80C60
CCD and a macro–objective Nikon of 60 mm of focal length. The laser device was
connected to the digital interface in the PIV–hardware.

PIV measurements were performed with a transparent Newtonian fluid (silicon oil)
at moderately low angular velocities. Since the PIV device was borrowed from an-
other research group at Lehrstuhl für Strömungsmechanik Erlangen, a tight time
span was granted during which we could use the device. Thus, it was not possible
to use non–Newtonian fluids.

9.1 Flow between the blades

Our main interest in the experimental part with the PIV–technique was the visual-
ization of the flow in the region between the blades of the vane. For that we selected
as tracer–particles silicon–coated glass–spheres with a diameter ≈ 10 μ m. To pre-
pare the fluid for the measurements the tracer was added slowly to the silicon oil
and stirred as the tracers were poured to avoid conglomerates.
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Figure 9.1: Cup of glass used for the PIV measurements.

The velocity vectors did not show a cylindrical shape in the whole domain as fig.
9.2 (for an angular velocity Ω = 0.064 1/s) shows. The assumption of a purely az-
imuthal velocity field is wrong.

In the same fig. 9.2 for the same angular velocity it can be seen that deviations from
the cylindrical shape are accentuated in the region between the blades (approxi-
mately in the region toward the outer cup from the middle of the vane up to the
tips). Near the corners of the vane, the velocity tends to have a circular shape. This
region is indeed small and not comparable to the remaining part of the flow domain.

In the experimental part it was not always straightforward to obtain a signal free
of interferences (caused by the surface of glass which increases the number of out-
liers). Furthermore, the regions near the outer cup and the gap between the vane
edge and the outer cup could not be resolved. These regions are very small. The
objective and the chip of the CCD camera did not allow to obtain acceptable mea-
surements at these locations.

The parts where the flow could be visualized with less interferences are located
within the blades of the vane. We extracted from selected regions the velocity.
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Figure 9.2: PIV measurement at Ω = 0.064 s−1, Newtonian fluid sio80.

The results of the PIV measurements give an instantaneous view of the flow field.
Despite this, if accurate (quantitative) measurements are sought, specially near the
solid boundaries another technique should be employed. In the next section we will
define the coordinate system we need for the velocity profiles from the PIV mea-
surements.

9.2 Transformation of coordinates

In previous section we have seen how the total velocity deviated from the usually
assumed circular shape. In this section we show the profiles of the total velocity
along selected regions of the vane–in–cup domain. It is interesting to see the be-
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havior of the flow between the blades of the vane, from the common point where
they unite, up to the outer cup. For the visualization we select three segments along
different radial locations.

Boundary conditions have been imposed accordingly at the corresponding loca-
tions. A spatially fixed global coordinate–system whose origin is located at the
axis of rotation of the vane was used for the numerical simulations. To show the
flow field between the vanes another coordinate system is fixed within the global
coordinate–system (the one that was used to perform the numerical simulations (fig.
4.4)). In this way the solid regions are separated from the fluid. Since this new coor-
dinate system will have its origin at the intersection point of the vanes (corner) we
define this coordinate system in terms of the global one.

0

ϕ

ϕ ′

x

x
′

y y ′

r ′

r

ro

Figure 9.3: Sketch of the global and the local coordinate–systems.
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In fig.9.3 the local–coordinate system and the global–coordinate system are shown.
The global–coordinate system (axis x and y) is notated with solid lines whereas the
local–system with dashed lines (axis x

′ and y
′).

Both coordinate systems can be related with the following transformations.

r =
√

x2 + y2 (9.1)

r ′ =
√

x ′2 + y ′2. (9.2)

The global coordinate–system can be written in terms of the local coordinates as

x = x
′

+ x00 = r cosϕ (9.3)

y = y
′

+ y00 = r sinϕ (9.4)

with

x ′ = r ′ cosϕ ′ (9.5)

y ′ = r ′ sinϕ ′ . (9.6)

In this relationship the point x00 = y00 (here 0.5 mm) corresponds to the intersection
point of adjacent vanes (half the thickness of the blade of the vane). That is to say
the origin of the local coordinate system.

The radius r ′ in the local coordinate–system in terms of the global is given by

r ′ =
√

(x − x00)2 + (y − y00)2 . (9.7)

In both systems the angles ϕ and ϕ ′ can be related through the radius r, then

ϕ = tan−1 y

x
= tan−1 r ′ sinϕ ′ + y00

r ′ cosϕ ′ + x00

. (9.8)
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Finally, by replacing equations 9.3 and 9.4 into 9.1 and solving for r
′

(r = ro, ϕ ′)

we get

r
′

(ϕ
′

) =

√
r2
o − x2

00(1 − 2 cosϕ
′ sinϕ

′

) − x00 (cosϕ
′

+ sinϕ
′

) . (9.9)

In equation 9.9 r
′

(ϕ
′

) is the maximum value r
′ reaches as a function of the angle

ϕ
′ in the local coordinate system since r = ro is constant. The maximum value r

′

(ϕ
′

)

reaches in the local coordinate system occurs when (cosϕ
′

+ sinϕ
′

) = 1 (and conse-
quently the product cosϕ

′

sinϕ
′

= 0). This occurs at ϕ
′

= 0 and ϕ
′

= 90◦.

The transformations given by equations 9.8 and 9.9 allow us to extract and visu-
alize the flow information along the desired regions in the local system in terms of
the global one.

We perform our simulations in a quarter of the vane therefore 0 � ϕ � 90. The
angle ϕ ′ can be calculated analogously to eq. 9.8 and restricted to one quarter of the
domain where the vane rotates.

The angle ϕ ′ as measured from the edge of the vane is taken as 15, 45 and 75 de-
grees, that is, a line that is half way apart between the vanes (ϕ ′ = 45◦) and two
additional lines, each near the vane tips (ϕ ′ = 15◦ , 75◦). The visualization of the
results is shown in the range 0 � r

′

� r
′

(ϕ
′

).

9.3 Velocity profiles

Experiments for vane flow were carried out at low angular velocities. For this pur-
pose a transparent Newtonian fluid with viscosity of 80 mPa s was used. We were
particularly interested in the region between the blades. The region selected for the
experiments was perpendicular to the axis of rotation, located midway from the top
and bottom of the vane. The digital information collected from the measurements
was pre and post–processed with a commercial software marketed as Flowmap ver-
sion 3.60, produced by the company DANTEC GmbH. In the post–processing an
interrogation area of 64 × 64 pixels and cross–correlation for the calculation of the
velocity was used with 50 % of overlapping.
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In fig. 9.4(a) we can see the velocity profile of the NF at different locations. There
the total velocity rises from a small value toward the cup and reaches at a radial
location which is smaller than the radius rv of the vane its maximum value. From
this location, up to the outer cup the total velocity starts to decrease.
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(a) Velocity profiles at ϕ ′ = 15◦ and 45◦ .
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Figure 9.4: Total velocity profiles along selected regions, NF at Ω =

0.064 s−1 and 0.735 s−1.
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The qualitative behavior of the shape of the velocity profile is similar at the diferent
ϕ ′ selected, however, in these cases the maximum of the velocity occurs at different
radial locations. This suggests that the velocity is not constant for an arbitrary ϕ ′.
A circular pattern in which the velocity is constant is not possible with the behavior
that is observed in figs. 9.4(a) and 9.4(b). In fig. 9.4(b) the angular velocity is higher
than in fig. 9.4(a), despite this, we can observe that the qualitative behavior is still
similar for both cases.

The explanation of the behavior of each of the velocity profiles can be complemented
with their respective velocity components uϕ ′ and ur ′ . Figures 9.5–9.6 summarizes
this.

One can see in figs. 9.5(a)–9.6(b) that in all cases the velocity component uϕ ′ domi-
nates over the component ur ′ .
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(a) ϕ ′ = 45◦.

Figure 9.5: Components of the velocity profile along different sections
in the vane geometry. Newtonian fluid at Ω = 0.064 s−1 and 0.735 s−1.
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Figure 9.6: Components of the velocity profile along different sections
in the vane geometry. Newtonian fluid at Ω = 0.064 s−1 and 0.735 s−1.
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10 Numerical simulations for vane flow

In the following chapter we are going to present and discuss the results of the nu-
merical simulations performed for vane flow . The purpose of these simulations
is to gain an insight into the flow structure in the vane flow while using different
fluids in the creeping motion regime (CMR) –see chapter 3 section 3.3.

In chapter 8 we showed through experiments that the assumption of a solid–body
rotation is not appropriate for calculating the viscosity of a fluid, since no viscomet-
ric flow occurs and consequently the device constants differ, for example, from that
used for a concentric cylinder where a viscometric flow can theoretically take place.
Our method to evaluate the viscosity and the shear rate is applicable in the CMR
without such an assumption for any of the fluids used. In the literature most of the
work devoted to investigate the vane flow assume a solid–body rotation (see chap-
ter 2).

We have formulated the problem for the simulations in chapter 3. This formulation
consisted of an overview of the numerical method used by the simulation package,
the boundary conditions imposed and the mesh of the geometry. Since we scaled
the general transport equation we were able to formulate a quasi–steady simulation
(Re → 0). Numerical simulations with high spatial resolution (very fine mesh), re-
quire a high amount of computer memory and take a long time until they converge
to a solution. Therefore, to save computer memory and computation time only a
quarter of the whole two–dimensional vane–in–cup domain was used. All simula-
tions were carried out using a personal computer equipped with 1 GB of physical
memory and an Intel Pentium processor of 1.8 Hz frequency.

The fluids employed for the simulations were NF and GNF, where the model pa-
rameters were determined from rheological measurements. The simulations were
initially performed with a bob–in–cup geometry for validation purposes.

The numerical simulations were performed at relatively small angular velocities in
order to approximate the creeping motion regime. The model fluids used were a
NF, the Cross model and the Carreau–Yasuda model.
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The effective viscosity of each GNF is, respectively:

ηeff = η∞ +
η0 − η∞

1 + (λCγΩ)α
, (10.1)

and

ηeff = η∞ +
η0 − η∞

[1 + (λCγΩ)β]
1−n

β

. (10.2)

Some additional information concerning the numerical results can be found in the
Appendix.

10.1 Flow field

The fluid within the blades of the vane is often assumed to move together with the
vane as a solid body. This implies that the velocity will be constant at a given con-
stant radius r ′ for any ϕ ′.

In our work, the rheological models of the GNF used for the simulations consider
Newtonian plateau and power–law regions with a relatively strong shear–thinning
behavior in the range of shear-rates used in the experimental part.

Figures 10.1 and 10.2 show the stream and contour lines for the NF and the GNF
at an angular velocity Ω = 0.01 1/s (clockwise rotation, unless otherwise stated).

For either the NF or the GNF, in these figures there is no evidence of a solid–body
rotation. The stream lines show that a weak cylindrical shape occurs near the corner
of the vanes. Toward the outer cup the streamlines take a flatter shape and clearly
the velocity is not constant for a given constant radius r ′ at any ϕ ′.

The qualitative behavior is similar for both type of fluids implying that the flow
situations are not merely due to the type of material.

The fact that the velocity distribution does not represent a circumscribed solid–
cylinder within the blades of the vane suggests that the shear rate may not be a
constant in the ϕ ′ direction. A cylindrical shearing–zone (Keentok et al. [48]) is un-
likely to exists. The cylinder analogy as used for concentric rotational–viscometers
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does not apply for vane flow because there is no uniform velocity distribution, as
required for a bob–in–cup system.

Concerning the flow structure, our results differ, for example, from those obtained
by Keentok et. al [48] and Barnes et al. [11] (results of Barnes et al. are shown in the
appendix in fig. E.1). Keentok et al. found a discrepancy between theory and exper-
iment that he could not explain. The so–called ’shearing–region’ (imaginary circular
region around the tips of the vane whose radius is slightly greater than the radius
of the vane) was found to increase linearly with increasing ratio of yield stress to
viscosity while their simulations showed a different behavior, i.e., an exponential
decrease.

The results of the simulations by Barnes et al. with their finite element code show
circular streamlines for the non–Newtonian fluid and slightly flatted streamlines for
the Newtonian case. In our simulations the results are similar for both type of fluids
and there is no evidence that somewhere between the vanes such a circular pat-
tern develops for any angular velocity or type of fluid. Recall that our generalized
Newtonian models also account for the power law region.
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(a) Streamlines.

(b) Contour lines.

Figure 10.1: Stream and contour lines for the NF sio500. Angular ve-
locity Ω = 0.01s−1, �.
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(a) Streamlines.

(b) Contour lines.

Figure 10.2: Stream and contour lines for the GNF hpg 0.6 w/w %.
Angular velocity Ω = 0.01s−1, �.
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10.2 Profiles of the velocity within the blades

Stream and contour lines have shown a non–uniform velocity distribution in the
ϕ ′ direction. The radial distributions of the total velocity and its components for
different ϕ ′s are shown in figs. 10.3–10.6. The angles selected for the profiles are
ϕ ′ = 3◦, 15◦, 45◦, 75◦ and 87◦ (See section 9.2 for the transformation of coordinates
and fig. 9.3).

Figures 10.3 and 10.4 show increasing profiles of the total velocity toward the outer
cup for both, the NF and the GNF. In these profiles the total velocity reaches a max-
imum and starts to decrease until it gets its minimum at the outer cup. The radius
r ′ where the velocity reaches its maximum (ϕ ′ = cte.) in each case is summarized in
table 10.1.

ϕ ′ r ′(mm) r ′(mm)

(NF) (GNF)

3◦ 12.28 12.27
15◦ 9.93 9.93
45◦ 8.06 8.06
75◦ 9.93 9.93
87◦ 12.31 12.31

Table 10.1: Radial locations for the occurrence of the maximum veloc-
ity at given angles ϕ ′ (data from figs. 10.3–10.6).
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The numerical simulations are in agreement with PIV measurements. Figures
9.4(a) and 9.4(b) show the same pattern of the total velocity profile as in the numer-
ical simulations. One can see in figs. 10.3 and 10.4 that the values of r ′ where the
velocity reaches its maximum are smaller than the radius of the vane rv. A condition
for a solid–body rotation is that the maximum of the velocity occurs always at the
same radial position being this at a radius equal to the radius rv of the vane.

The components of the total velocity plotted in figs. 10.3 and 10.4 show that the
contribution of each of them is different in magnitude and shape for each ϕ ′, being
uϕ ′ always dominant.
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Figure 10.3: Profiles of the total velocity and its components at
different angles and radial locations for the NF. Angular velocity Ω =

0.01s−1, �.
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Figure 10.4: Profiles of the total velocity and its components at
different angles and radial locations for the GNF. Angular velocity
Ω = 0.01s−1, �.
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10.3 Profiles of the velocities near the vane

Something that could not be resolved in PIV measurements were the velocity pro-
files near the solid boundaries, e.g. in the radial direction near the rotating vane at
a small ϕ ′. Figures 10.5 and 10.6 show that near the tips of the vane (at ϕ ′ = 3◦, 87◦)

the total velocity increases linearly and gets its maximum at a radius r ′ greater than
the radius r ′(ϕ ′ = 15◦, 45◦, 75◦) but still smaller than the radius of the vane (figs.
10.5 and 10.6).

In figs. 10.5(b), 10.5(d), 10.6(b) and 10.6(d) two peaks can be seen in the profile of
ur ′ . There, uϕ ′ dominates over ur ′ similarly as at the other ϕ ′s. The component ur ′

changes its direction near the tips of the vane. The same happens at ϕ ′ = 87◦ which
is also near the tips of the vane. Keentok et al. [48] and Farias et al. [33] presume
that secondary motions can appear behind the vanes. This is not in agreement with
the results of Keentok et al. who claim that a cylindrical shearing-surface appears
circumscribed in the vane as it rotates with a radius slightly greater than the radius
of the vane.

Atkinson et al. [5] showed mathematically that near the vanes a singularity can
occur. This certainly complicates the interpretation of the vane–flow in terms of the
total velocity (or its components). Stream and contour lines have shown for both,
the NF and the GNF, that the type of flow occurring in the vane cannot be strictly a
function of the type of fluid even at low motions. In the experiments carried out in
chapter 8 we have shown that as we depart from the CMR the vane can not estimate
the viscosity of the fluids as inertial forces and effects caused by the GNF change the
vane flow. Thus, the vane is restricted to operating as a viscometer at low angular
velocities.

Most rotational viscometers are designed so that the range of the torque for the
measurements is relatively small. For this reason an approximate value can be ob-
tained even when the viscosity varies in an unknown or unsuspected way.
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Figure 10.5: Profiles of the total velocity and its components at
different angles and radial locations for the NF. Angular velocity Ω =

0.01s−1, �.
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Figure 10.6: Profiles of the total velocity and its components at
different angles and radial locations for the GNF. Angular velocity
Ω = 0.01s−1, �.
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10.4 Profiles of the velocity along the gap

The profiles of the total velocity along the gap (region between the edge of the vane
and the outer cup) decrease continuously for any type of fluid used, from any se-
lected location on the edge of the vane up to the outer cup.

Concerning the shape of the profiles there is practically no difference among them
as figs. 10.7 and 10.8 show. The velocity is slightly higher at x = 0.0 mm. At the
other locations it can be interpreted as a symmetric profile. For example, at y = 0.5

ux dominates over uy whereas at x = 0.5 mm the roles are inverted but the shape and
the magnitudes are preserved. In table 10.2 the locations are given for the velocity
profiles along the gap.

Velocity

along x = 0.5 rv � y � ro ϕ ′ = 90

along x = 0.0 rv � y � ro ϕ = 90

along y = 0.5 rv � x � ro ϕ ′ = 0

Table 10.2: Locations for the velocity profiles along the gap.
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Figure 10.7: Profiles of the total velocity and its components at
different angles and radial locations for the NF. Angular velocity Ω =

0.01s−1, �.
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Figure 10.8: Profiles of the total velocity at different angles and radial
locations for the GNF. Angular velocity Ω = 0.01s−1, �.
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10.5 Vane flow and ideal solid–body rotation

In previous sections we have seen that the usual assumptions of solid–body rota-
tion do not apply for vane flow. A direct comparison of the velocity profile for vane
flow at ϕ = 45◦ with the velocity profile of a solid–body rotation that would occur
is shown in fig. 10.9.

There it can be seen that there is no similitude neither in quantitative nor qualita-
tive behavior. If a circular pattern would develop, as usually assumed, the velocity
profiles would get a constant value in the ϕ ′ direction (0 � r ′ � r ′

max) and the ve-
locity profiles would have the same shape. We have seen that the profiles of the
total velocity and its components differ in shape and in magnitude at any ϕ ′ (figs.
10.3–10.6).
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Figure 10.9: Profile of the total velocity: at ϕ = 45◦ for vane flow and
ideal profile (solid–body rotation), Newtonian fluid at Ω = 0.116s−1.
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10.6 Shear rate along the gap and the edge of the vane

The fluid within the blades of the vanes are less subject to shear. Figures 10.10 and
10.11 show the shear–rate distribution for the NF and the GNF along the edge of the
vane.

At the tips of the vane a singularity can occur (Atkinson et al. [5]). In our case,
to overcome these difficulties, we use data from locations very close to the tips. Pre-
vious research works carried out by Keentok ([48]) and by Barnes et al. ([11]) for
vane blades of zero thickness already pointed out that stress at the tip of the vane
has a sharp peak. In fig. 10.10 one can clearly see for the NF case that the shear rate
along the edge of the vane starts to increase at the vane tips. It reaches a maximum
value at a position near the vane tip and then it starts to decrease gradually until
it reaches a local minimum–value at the center of the edge. The center of the edge
can be seen as an inflection point of the shear–rate profile. In the case of the NF the
profile is symmetric. The GNF shows a symmetric–shape for low angular velocities.

The shape of the shear–rate profiles in fig. 10.10 differ from those plotted in fig.
10.11 at higher angular velocities. With increasing angular velocity the symmetry of
the profiles is broken in the case of the GNF whereas in the NF this remains constant
suggesting that the global relationship τ to γ̇ is constant. In despite the similitude
of the shape of the shear rates of both, the NF and the GNF at low angular veloci-
ties, the global relationship is not constant for the GNF but changing as the angular
velocity is varied. At the point where the symmetry starts to brake non–Newtonian
effects are stronger.

The tendency of the shear–rate profiles in the gap shown in figs. 10.12 and 10.13
is to decrease towards the outer cup. The value of the shear rate is of the same order
at those selected locations (table 10.2) for each type of fluid. This region could not
be resolved experimentally with the PIV technique.
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Figure 10.10: Shear rate along the edge of the vane for the NF.
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Figure 10.11: Shear rate along the edge of the vane for the GNF.
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Figure 10.12: Shear rate along the gap for the NF.
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Figure 10.13: Shear rate along the gap for the GNF.
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10.7 Torque

The use of a rotational viscometer requires a global relationship between the an-
gular velocity and the applied torque. Unfortunately PIV–measurements could not
deliver a flow resolution as high as that found in the numerical simulations near the
walls (i.e. vane). Therefore, to complement the flow field we will show in the fol-
lowing sections the results of the simulations for the torque as this can show where
our global relationships M–Ω hold for the measurement of the viscosity.

The numerical visualization of the vane flow is quite useful, especially in those re-
gions where it is difficult or impossible to carry out measurements, for example in
the gap or along the edge of the vane. Although experiments can never be per-
formed in the true CMR–regime (Re = 0) global M–Ω correlations hold up to rather
moderate Re values. To test our numerical Re = 0 calculations with respect to global
M–Ω correlations the torque was calculated. Fig. 10.14 shows the results.

At low angular velocities our experiments are in good agreement with the numer-
ical simulations (fig. 10.14). As we move from the CMR deviations it cannot be
disputed: elastic effects can not be neglected. In the region of angular velocities
where the numerics predict the experiments quite well a global relationship torque–
to–angular velocity can be formulated. This again confirms the use of the vane for
viscometric measurements.
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10 NUMERICAL SIMULATIONS FOR VANE FLOW
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Figure 10.14: Torque vs angular velocity for GNFs with the vane–in–
cup geometry (Exp: experimental, Num: numerical).
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Zusammenfassung

Ziel der Arbeit war herauszufinden ob, und falls ja unter welchen Einschränkun-
gen, ein Flügeldrehkörper (FDK) als Viskometer verwendet werden kann selbst für
viskoelastische Flüssigkeiten. Das Rational für diesen Versuch basiert auf der Tat-
sache, daß in allen Viskosimetern, die die Vernachlässigung der Trägheit voraus-
setzen, eine rein viskometrische Strömung nicht existiert und nicht existieren kann,
wie klein auch immer Re ist. Bekannte Beispiele sind die Kegel–Platte und Platte–
Platte Viskometer. Sekundärströmungen beeinflussen immer die ideale lokale Strö-
mungskinematik. Nichts desto trotz muß Re hinreichend groß sein, bevor diese Än-
derungen des lokalen Strömungsfeldes meßbare Auswertung auf globale Beziehun-
gen haben, die zur Bestimmung von η verwendet werden. Für Rotationsviskometer
sind dies die M–Ω Beziehungen.

Als Flüssigkeiten wurden verschiedene kommerzielle Polymerlösungen verwen-
det. Drei unterschiedliche Typen kamen zum Einsatz nämlich Polyacrylamid, das
Biopolymer Hydroxypropyl guar und Xanthan Gum, ebenfalls ein Biopolymer aller-
dings mit Helixstruktur. Drei bzw. vier verschiedene Konzentrationen wurden für
jede Lösung angesetzt.

Mit Hilfe eines konzentrischen Zylinders Viskometers (KZV) vom Searle Typ wur-
den die Fließkurven ermittelt. Abhängig von Konzentration ergeben sich quantita-
tiv unterschiedliche Fließkurven, die aber für jeden Polymertyp qualitativ ähnlich
aussehen. Damit liegt es nahe nach einer universellen Darstellung zu suchen, bei
der η0 die einzige Größe ist, die von der Konzentration abhängt. Es zeigte sich, daß
für die beiden Biopolymere eine universelle Cross–ähnliche Beschreibung ausreicht,
während für Polyacrylamid ein Carreau–Yasuda Modell bessere Dienste tut. Un-
abhängig von diesen Details erlaubt eine universelle Darstellung die Bestimmung
einer Fließkurve η(γ̇) für jede Konzentration.

Um den FDK als Viskometer zu verwenden bedarf es zunächst der Kenntnis der
Master–curve (MC) Ne = Ne(Re). Diese wurde mit Newtonschen Füssigkeiten (NF)
erstellt. Dazu dienten verschiedene Silikonöle mit niedriegen Molekulargewicht.
Der Einfluß von η ist am größten im Bereich der schleichenden Strömung (SS), wo
ja bekantlich Ne = c/Re gelten muß. In unserem Fall gilt diese Beziehung bis zu
Re’s von etwa 5, wobei sich experimentell c = 13.51 herausstellte. Da diese Kon-
stante doch beträchtlich von der Konstanten abweicht, die bei unserem kommerzie-
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len KZV vom Hersteller vorgegeben ist (mit gleichen Abmessungen wie unsere
FDK–Apparatur) ist klar, daß in beiden Geräten doch recht unterschiedliche Strö-
mungsformen vorliegen müssen.

Für nicht–Newtonsche Flüssigkeiten (NNF’s), rein viskose oder viskoelastische, ist η

keine Konstante, sondern hängt von γ̇ ab. Deswegen wurde eine Referenzviskosität
ηref verwendet, um Reref zu definieren. Hierzu wurde die Lösungsmittelviskosität
(d.h. Wasser) herangezogen.

Ausgehend von der Vorstellung, daß sich der SS–Bereich durch NeRe = c beschreiben
lässt verlangt eine Änderung von NeReref über Reref zu NeRe = c in doppelt–
logarithmischer Darstellung eine Verschiebung unter 45◦. Die Größe dieser Ver-
schiebung liefert direkt η. Damit erhält man für jedes Ω die Funktion η(Ω). Durch
Gleichsetzen von η(Ω) mit der Fließkurve η(γ̇) erhält man eine Beziehung zwi-

Ω und˙γ. Solange Ω klein genug ist (Re klein ) stellt sich diese Beziehung als
linear heraus, d.h. γ̇ = cγΩ. Obwohl cγ von Flüssigkeit zu Flüssigkeit etwas vari-
iert liefert, was η betrifft, die Näherung cγ ≈ 4 in unserem Fall zufriedenstellende
Ergebnisse für alle untersuchten Flüssigkeiten. Damit ist die Tauglichkeit des FDK
als Viskosimeter nachgewiesen.

Allerdings sind dem ganzen auch Grenzen gesetzt. Es zeigt sich nämlich daß bei
höheren Re’s für viskoelastische Flüssigkeiten Abweichungen von NeRe = c auftreten,
für die bei Newtonschen Flüssigkeiten immer noch NeRe = c gilt. Dies ist am deut-
lichsten zu sehen wenn η(γ̇) direkt mit η(Ω) verglichen wird. Für höhere Re’s ist
die Funktion γ̇ = γ̇(Ω) nicht mehr linear. Die Elastizität der Flüssigkeit macht sich
bemerkbar. Als nicht–lineare Größe macht sich diese in der M–Ω Beziehung bei
höheren γ̇ bemerkbar und dies umso stärker, je elastischer die Flüssigkeit ist. Bei
schwach elastischen Flüssigkeiten ist die Trägheit der limitierende Faktor (wie im
Kegel–Platte und Platte–Platte Viskosimeter), bei stark elastischen die Elastizität der
Flüssigkeit.

PIV–Messungen unterstreichen das. Selbst Newtonsche Flüssigkeiten zeigen Strom-
linien die alles andere als kreisförmig sind. Das bedeutet, daß weder innerhalb des
FDK–Bereiches eine Festkörperrotation vorliegt noch außerhalb eine viskosimetrische
Strömung herrscht. Dies wäre die Voraussetzung, daß die Trägheit der Flüssigkeit
das Strömungsfeld nicht beeinflußt.

Die numerischen Berechnungen für Newtonsche und verallgemeinerte Newtonsche
Flüssigkeiten sind auf den wahren SS–Bereich, Re = 0, beschränkt. Dabei spielt
selbst lokal die Trägheit keine Rolle und die Strömung erscheint stationär. Dies
wird am besten verständlich, wenn man sich ein mitrotierendes Koordinatensys-
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tem vorstellt. In diesem ist, per definitionem, die Strömung stationär, doch müssen
Coriolis– und Zentrifugalkräfte berücksichtigt werden. Allerdings skalieren beide
mit Re, d.h. für Re = 0 fallen beide heraus, was allerdings auch ihr Name ’Trägsheitkräfte’
zum Ausdruck bringt. In Überseinstimmung mit den PIV Messungen zeigen die
Rechnungen, daß die Stromlinien nicht kreisförmig sind. Trotzdem zeigen die berech-
neten M–Ω Beziehungen gute Übereinstimmung mit den gemessenen für hinre-
ichend kleine Ω. Daß für große Ω–Werte Abweichungen auftauchen ist nicht ver-
wunderlich. Verallgemeinerte Newtonsche Flüssigkeiten sind rein viskos. Die ver-
wendeten Polymerlösungen sind alle viskoelastich und die Elastizität läßt sich nur
für kleine Ω’s vernachlässigen.

Zusammenfassend läßt sich feststellen, daß der FDK sich durchaus als Viskosimeter
verwenden läßt, daß allerdings die Elastizität oder die Trägheit der Flüssigkeit dem
Grenzen setzten.
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Seit Bingham in den Zwanziger Jahren des 20. Jahrhunderts zum ersten Mal eine
nicht–Newton’sche Flüssigkeit modellierte, hat sich die Rheologie, ein Zweig der
Kontinuumsmechanik, bei der Untersuchung des Deformationsverhaltens von Stoffen
weiterentwickelt. Derartige Untersuchungen umfassen nicht nur die Messung der
Deformation des unter bestimmten Spannungen oder Scherungen unterzogenen
Stoffes sondern auch seine Anwendung und Modellierung.

Zur Charakterisierung eines Stoffes müssen Daten von Messungen entnommen wer-
den, welche es ermöglichen, die Verformung des Materials darzustellen und zu ver-
stehen, wie diese Deformation auftritt. Dieser Schritt schließt die Modellierung der
betroffenen Werkstoffeigenschaft ein, bspw. die Viskosität. Man bringt die auf die
Flüssigkeit wirkenden Kräfte (z.B. Drehmoment) in Zusammenhang mit der De-
formation (Verformungsgeschwindigkeit) und das sich aus diesen zwei Variabeln
ergebene Verhältnis liefert Information über die Viskosität.

Um das rheologische Verhalten eines Werkstoffes zu beschreiben und die Daten ex-
perimentell zu erfassen, ist ein Rheometer nötig. In diesem Gerät wird versucht,
ideale Strömungszustände der Flüssigkeit herzustellen. Ein Beispiel ist ein Rota-
tionsviskosimeter.

Rotationsviskosimeter sind bewährte Geräte, die sowohl im Forschungsbereich als
auch in der Industrie angewendet werden.

Wie oben erwähnt, im Fall der Viskosität η verwendet man eine Funktion der Form

η = f(
M

Ω
) , (10.3)

wobei M für das eingesetzte Drehmoment und Ω für Winkelgeschwindigkeit ste-
hen, die während des Versuches gemessen wird.

Bei den Rotationsrheometern ist es manchmal notwendig, Versuche mit Geschwindigkeiten
oder Drehmomenten durchzuführen, die sehr hoch sind. Das bringt eine beträchtliche
auf das System wirkende Trägheitskraft mit sich. Sobald diese eine bestimmte Grenze
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überschreitet, entwickelt sich ein unerwünschtes Fließverhalten (Sekundärströmung).
Obwohl das einen einschränkenden Faktor darstellt, ist es nicht das einzige Prob-
lem, wenn man Messungen durchführt. Auf den Oberflächen können Gleiteffekte
(wall slip) auftreten.

Man kann sagen, dass der Gleiteffekt auftritt, wenn sich eine dünne Schicht oder ein
Film auf einer festen Wand bildet. So werden Gleichungen, die zur Bestimmung der
Viskosität benutzt werden und die auf der Annahme der Haftbedingung (Eng. non–
slip) an den Wänden stützen, keine Viskosität vorhersagen. Es ist möglich diese
Schwierigkeiten zu überwinden, wenn man den Messbereich einschränkt oder die
Oberflächen verändert. Selbstverständlich ist dies weder der beste noch der ein-
fachste Weg zur Lösung dieser Probleme. Aufmerksam muß man auch sein damit
die Probe beim Eintauchen nicht verändert wird.

Eine Alternative bietet die Flügeldrehkörper–Geometrie. Mit diesem System wer-
den wenige Beschädigungen der Strukturen beim Tauchen des rotierenden Körpers
auftreten. Die Probe wird homogen gehalten. In der vorliegenden Arbeit wird ein
4–armiger Flügeldrehkörper untersucht, welcher in einen Becher (cup) eingetaucht
wird. Obwohl seine Form einfach ist, ist seine Anwendung bis jetzt auf die Bestim-
mung der Fließgrenze beschränkt.

Die Scherrate kann mittels numerischer Simulationen berechnet werden, welche
der Validierung der experimentellen Daten und / oder der rheologischen Mod-
elle dienen. Das so genannte Computational Fluid Dynamics (CFD) ist im Lauf
der letzten zwanzig Jahre, mit zunehmender Tendenz zu der nicht-Newtonschen
Flüssigkeiten, kontinuierlich weiterentwickelt worden. Heuzutage sind robuste nu-
merische Verfahren und Hardware vorhanden, um relativ komplexe Strömungen zu
untersuchen. Das ermöglicht, die experimentellen Grenzen zu überwinden, welchen
man in der Rheologie begegnet und die von den Einschränkungen der Ausrüstun-
gen oder den Messtechniken abhängig sind.

In der vorliegenden Arbeit sind experimentelle und numerische Untersuchungen
für eine Flügeldrehkörperströmung durchgeführt worden. Die gesamte Arbeit ist
strukturiert wie folgt.

Das 2. Kapitel gibt eine Übersicht der durchgeführten Arbeiten mit dem Flügeldrehkörper
der letzten zwanzig Jahre. Eine Zusammenfassung der durchgeführten Untersuchun-
gen zur Messung der Fließgrenze und der Versuche zur Ermittlung der Viskosität
der Flüssigkeit wird vorgestellt.

Das 3. Kapitel widmet sich den numerischen Aspekten zur Durchführung der Sim-
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ulationen für die Flügeldrehkörperströmung. Hier werden die Finite–Volumen–
Methode (FVM) und das Verfahren für die Diskretisierung der herrschenden Gle-
ichungen präsentiert. Es wird auch die dimensionlose Skalierung der allgemeinen
Transportsgleichung abgeleitet, welche das Fundament unserer Simulationen ist.
Am Ende dieses Kapitels werden die für die Simulation angewendete Software und
ihre Pre– und Postprocessing kurz beschrieben.

Das 4. Kapitel beschreibt den Flügeldrehkörper. Hier werden die Randbedingun-
gen des Problems, das Gitter der Geometrie und einige theoretische Aspekte für
seine allgemeine Anwendung zur rheologischen Charakterisierung des Materials
festgelegt.

In dem 5. Kapitel wird die Methode der optischen Messtechnik PIV präsentiert,
die für die Visualisierung der Strömung angewendet wird. Diese Technik ist um-
fangreich. Hier werden die Verfahren zur Bildaufnahme, statistische Bewertung
und Datenanalysen vorgestellt, die der Schätzung der Verschiebung für die in der
Flüssigkeit vorhandenen Tracer–Partikeln dienen.

Das 6. Kapitel beschäftigt sich mit Newtonschen und nicht-Newtonschen Flüssigkeiten,
nebst ihrer chemischen und physikalischen Eigenschaften. Das Bezugsviskosimeter,
ein konzentrisches Zylinderviskosimeter, das zur Charakterisierung der verschiede-
nen Flüssigkeiten angewendet wird, wird unter idealen Annahmen vorgestellt, um
die Schubspannung und die Viskosität einer Flüssigkeit zu bestimmen. Außerdem
wird es mit der Geometrie des Flügeldrehkörpers verglichen.

Im 7. Kapitel wird eine rheologische Charakterisierung durchgeführt, wobei sowohl
die Newtonschen und nicht-Newtonschen Fließkurven vorgestellt werden.

Im 8. Kapitel wird eine Methode beschrieben, die es erlaubt, den Flügeldrehkörper
als Viskometer einzusetzen. Die im 7. Kapitel bestimmten Fließkurven der nicht-
Newtonschen Flüssigkeiten werden mit den durch unsere Methode berechneten
Kurven verglichen.

Zum Abschluss werden in den 9. und 10. Kapiteln Ergebnisse der experimentellen
Visualisierung und der numerischen Simulationen für die Flügeldrehkörperströmung
vorgestellt. Die Zusammenfassung gibt einen Überblick über die erhaltenen Ergeb-
nisse.
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A CUP FOR PIV MEASUREMENTS

A Cup of glass used for the PIV
measurements (sketch)
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A CUP FOR PIV MEASUREMENTS

A.1 Bob and vane geometries used for the experiments

Figure A.1: Bob and vane geometries (vane painted to black for the
PIV–measurements).
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B FLOW CURVES

B Flow curves

Fluid [c] η0 η∞ α λ

(w/w) % (Pa s) (Pa s) (–) (s)

Hydroxypropyl guar 0.40 0.15 0.01 0.574 0.029
0.50 0.33 0.01 0.624 0.059
0.60 0.69 0.01 0.663 0.111

Xanthan gum 0.27 27.254 0.016 0.777 47.2825
0.33 102.38 0.016 0.810 129.6086
0.40 136.94 0.016 0.832 111.2683

Table B.1: Parameters for the Cross model.

Fluid [c] η0 η∞ λ β n

(w/w) % (Pa s) (Pa s) (s) (–) (–)

Polyacrylamide 0.05 4.7122 0.0180 31.32 1.5 0.28
0.10 8.7438 0.0180 31.23 1.5 0.28
0.20 27.63 0.0180 48.64 1.5 0.28

Table B.2: Parameters for the Carreau–Yasuda model.
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Figure B.1: Flow curves for the xanthan gum solutions. Points corre-
spond to experimental data, solid lines to Cross model.

140



B FLOW CURVES

0.01 0.1 1 10 100 1000
0.01

0.1

0.1

10

γ̇ (s−1)

τ
(P

a
)

UDS 200/CC27
T = 298 K
Polyacrylamide

0.20 %

0.10 %

0.05 %

(a) Shear stress versus shear rate.

0.01 0.1 1 10 100 1000
0.01

0.1

1

10

UDS 200/CC27
T = 298 K
Polyacrylamide

γ̇ (s−1)

η
(P

a
s)

0.20 %

Carreau−Yasuda

0.10 %

0.05 %

(b) Viscosity versus shear rate.

Figure B.2: Flow curves for the polyacrylamide solutions. Points cor-
respond to experimental data, solid lines to Carreau-Yasuda model.
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C Measurement of the yield stress
The existence of a yield point might be an arguable topic in rheology. In practice it
is often accepted that the yield point is the limiting force, when a stress is applied to
the sample, necessary to produce a liquid–like behavior, that is, a continuous defor-
mation 1.

Regardless of the existence of this yielding point the use of this definition has been
useful in engineering and the vane-in-cup system has been used to measure this
particular material characteristic. In the following paragraphs the measurement of
the yield stress with the vane geometry will be addressed.

The most simple relationship employed to estimate the yield stress comes from the
assumption that the yield stress is distributed uniformly along the side and ends of
an equivalent cylinder formed when the vane is rotated.

It can be written that

M1 = MS = 2π rvlvτwrv︸ ︷︷ ︸
Torque of a straight cylinder

(C.1)

and

M2 = ME = 2

⎡
⎣2π

rv∫
0

τe(r)r dr r

⎤
⎦ . (C.2)

Here MS and ME stand for the torque at the side and at the end of the (imaginary)
cylinder, respectively. rv is the radius of the vane, τe and τw is the shear stress at the
end and at the wall, respectively and lv is the length of the rotating body.

Eq. C.2 is integrated assuming viscometric flow conditions. This is done in an in-
terval for a small radius r and τe being equal distributed at both ends. A further
assumption is that τe = τw = τy. Then at the maximum shear stress τmax (cor-
responding to the maximum torque Mmax) it is assumed that the material yields
instantaneously.

Thus,

1Similarly one talks of a yield point when the applied stress is reduced to a certain limiting force
where the sample shows a solid–like behavior. These definitions of course do not provide a satisfactory
explanation of the yield stress. For further reading see [12].
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Mmax = MS + ME , (C.3)

and consequently the sought yield stress is:

τy =
Mmax

K
, (C.4)

with the constant K given by:

K = 2πr3
v

(
lv

rv

+
2

3

)
. (C.5)

Notice that for lv/rv >> 2/3 the constant K becomes the volume of a cylinder. The as-
sumption that the shear stress is uniformly distributed everywhere on the imaginary
cylindrical surface leads to some error ([58]). This error can be estimated experimen-
tally if one measures with different radii rv of the vane (height of the vane should
of course kept constant). Experimental works from Nguyen et al. ([58]) suggest that
for lv/rv > 2 the error associated with previous equations is reduced. Sherwood et
al. ([72]) affirms that this value should be greater than 3 (despite this aspect ratio,
numerical simulations show that the stress takes higher values near the edge of the
vane [48], [63]).
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D VELOCITY PROFILES FOR THE NF AND GNF

D Velocity profiles for the NF and GNF
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Figure D.1: Profiles of the total velocity at different angles and radial
locations for the NF. Angular velocity Ω = 0.77s−1, �.
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Figure D.2: Profiles of the total velocity at different angles and radial
locations for the NF. Angular velocity Ω = 0.77s−1, �.
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Figure D.3: Profiles of the total velocity at different angles and radial
locations for the GNF. Angular velocity Ω = 0.77s−1, �.
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Figure D.4: Profiles of the total velocity at different angles and radial
locations for the GNF. Angular velocity Ω = 0.77s−1, �.
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Figure D.5: Components of the velocity along the gap for the NF. An-
gular velocity Ω = 0.77s−1, �.
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Figure D.6: Components of the velocity along the gap for the GNF.
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E Streamlines for a NF and a power–law
fluid (Ostwald de Waele)

(a) Newtonian fluid: m = 1 Pa s, n = 1.

(b) Power–law fluid: m = 1 Pa s0.2, n = 0.2.

Figure E.1: Streamlines for a Newtonian and a power–law fluid (after
Barnes et al. [11]). Angular velocity Ω = 0.5 s−1 and viscosity η of the
fluid η = m γ̇n−1 .
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