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1 Introduction

With the expected development of new mobile multimedia services in the com-
ing years, radio systems will have to meet demands for much higher data rates
than today. Those variable and high data rates (20 Mbps and more) will be re-
quested at all different levels of mobility, even at high vehicular speeds. There-
fore future radio systems will have to offer data services at a high degree of
flexibility, where additionally high adaptivity to the actual transmission situa-
tion is necessary. To meet this demand for higher data rates, new technologies
need to be implemented.

In general, the design of communication systems depend strongly on the
properties of the radio channel. Broad-band radio propagation is characterized
by a multitude of propagation paths (“multi-path”) which lead to a frequency
selective behavior of the radio channel. In high data rate applications this leads
to strong Inter-Symbol Interference (ISI), which requires a high equalization
complexity at the receiver. Multicarrier techniques have been proposed to deal
with the frequency selectivity while still keeping the implementation feasible.
In these techniques, a high rate source data stream is distributed onto multiple
parallel low rate substreams which are modulated individually and transmit-
ted simultaneously. In Orthogonal Frequency Division Multiplexing (OFDM),
those substreams are chosen to be orthogonal subcarriers. Due to this, OFDM is
an effective transmission technique to deal with the frequency selectivity with
low complexity.

An interesting new technology proposes to use multiple transmit and receive
antennas simultaneously, denoted as Multiple Input Multiple Output (MIMO,
figure 1.1), which will be used in combination with OFDM in this thesis.
The multiple antennas will transmit simultaneously and in the same radio fre-
quency. Even though conventionally this would result in degraded performance
due to interference, suitable MIMO techniques exist so that this simultane-
ous transmission can be used to increase the resulting data rate significantly
[Fos96, RC98, TSC98, Ala98]. With this MIMO techniques, the radio channel
can have a much higher capacity, enabling very high data rates.

However, this improved channel capacity depends strongly on the proper-
ties of the radio channel: If there are a lot of different radio propagation paths
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1 Introduction

Figure 1.1: Multiple users using MIMO radio communication

through reflection and rich scattering, the capacity is indeed increased signifi-
cantly. In contrast to this, a radio channel with only few propagation paths will
offer almost no improvement compared to a single antenna system.

Simulations of communication systems are of crucial importance to evaluate
the design and implementation of new systems. In such simulations the rele-
vant radio channel properties need to be modeled realistically and an adequate
statistical model for the essential properties of this channel need to be found.
Unfortunately, simple multi-antenna radio channel models will predict the in-
creased MIMO capacity to be available in all circumstances, which will result
in too optimistic simulation results.

In this thesis, a new multi-antenna radio channel model will be developed
that characterizes the relevant properties of the channel but is still easily con-
figurable. The relevant parameters of a MIMO radio channel model are ex-
plained and lead to the newly introduced MIMO-WSSUS (Wide Sense Sta-
tionary Uncorrelated Scattering) radio channel model. This approach promises
to represent the MIMO-related channel properties realistically enough, so that
MIMO techniques can now be evaluated by simulations which give realistic
performance results.

Subsequently, this thesis introduces several basic MIMO techniques:

• Receiver Diversity where multiple receiving antennas for combining sev-
eral independent copies of the received signal are used.
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• Transmit Diversity to send one data stream in precoded form over multi-
ple transmit antennas simultaneously, which will be re-assembled in the
receiver.

• Spatial Multiplexing to transmit multiple data streams in parallel, which
can be distinguished in the receiver as long as the radio channel has rich
enough scattering.

These techniques are evaluated by simulations in the context of high data rates
and different radio channel conditions. Simulations are carried out both in a
simple radio channel model and the newly proposed MIMO-WSSUS model.

Additionally, a linear precoding technique with variable amount of feedback
from [Tau05] is explained and improved. This technique calculates a matrix
factorization of the optimum precoding matrix into unitary product matrices,
some or all of which can be used for the approximation of the optimum precod-
ing matrix. All or only a subset of the factorization matrices can be fed back to
the transmitter to reduce the required feedback data rate. This enables a trade-
off between the amount of feedback information and system performance. In
this thesis, an improvement to the matrix parameterization is introduced, which
shows a performance gain over the original parameterization.

For all techniques, the performance will be evaluated and the dependency
on the radio channel model and its chosen parameters will be shown. It is ex-
pected that in a rich scattering channel even the simple Spatial Multiplexing
techniques with linear receiver will strongly increase the available data rate
when increasing the number of transmit and receive antennas. However, in a
more unfriendly radio channel with little scattering as modeled with the new
MIMO-WSSUS model, it is expected that Spatial Multiplexing techniques per-
form not as good anymore.

It can be concluded that MIMO performance simulations must use a MIMO
radio channel model which adequately describes the radio channel conditions
even with little scattering. Otherwise unrealistically optimistic performance
results will occur. The introduced MIMO-WSSUS radio channel model is a
simple approach that represents these statistical properties accurately enough
and is still easily configurable.

The thesis is divided as follows:
The general properties of radio channels are introduced in chapter 2 for

single-antenna communication.
Chapter 3 explains the OFDM transmission technique as an effective way of

broad-band communication.
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1 Introduction

In chapter 4, a new multi-antenna radio channel model is being developed
in logic continuation to the single-antenna radio channel WSSUS model, but
with adequately representing the important multi-antenna correlation. This in-
troduces the new MIMO-WSSUS radio channel model.

Several basic MIMO techniques will be introduced in chapters 5 through 7.
Each of the described MIMO techniques are evaluated both in simple MIMO
radio channels and in the MIMO-WSSUS model, and in some cases this gives
different results than what has been expected by previously proposed channel
models.

To demonstrate the important influence of the MIMO radio channel model,
eventually chapter 8 repeats some system evaluations but with different MIMO
radio channel models as taken from literature. This will underline the impor-
tance of the radio channel model developed in this thesis and the required at-
tention for the channel model when system performance is evaluated with sim-
ulations.

The thesis is finished by the conclusion and appendix.
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2 Radio Channel Model

2.1 Introduction

The fundamental limitations of wireless data transmission are given by the
properties of the radio channel. The first step in understanding the relevant
performance parameters in every study is to characterize the radio channel and
find suitable models for those effects that will actually appear in reality.

For a single radio communication link, three effects are most relevant for the
digital communication and are considered in the following section:

• Path loss

• Shadowing

• Multi-path propagation

From the point of view of a mobile receiver, all these effects will influence the
received signal after transmission through the channel. Eventually it will not
be necessary to model each effect correctly individually, but instead to model
the effect of the whole radio channel on the transmitted input signal. For this
reason, the radio channel is modeled as a Linear Time-Invariant (LTI) system.

In multi-antenna (MIMO) radio communication, in addition the dependency
or correlation properties between the multiple available radio channels are ex-
tremely relevant to the performance of a communication system, which will be
discussed in chapter 4.

For any kind of proposed transmission system it is vital to demonstrate the
actual benefit of one approach versus others. In order to show this comparison
under controllable conditions, it is necessary to use a statistical radio channel
model in which the algorithms and systems can be evaluated. The following
section describes the relevant effects of the radio channel and the implications
on radio channel models.

5



2 Radio Channel Model

Figure 2.1: Path loss as a function of distance d

2.2 Path Loss

The signal power of a received radio signal decreases with increasing distance
d between transmitter and receiver (figure 2.1). In free-space propagation, the
received power P (d) at distance d decreases according to

P (d) =
PtGtxGrxλ

2

(4πd)2 (2.1)

where Pt is the transmitted power, Gtx and Grx is the antenna gain of the trans-
mit and receive antenna, respectively, and λ is the wave length of the transmis-
sion wave.

It is obvious from (2.1) that the received power decays with d−2 in free space
propagation conditions. If the free space condition is not met and instead ob-
jects are placed in between the transmitter and receiver, the power decay will be
even stronger, leading to a decay according to d−α with the path loss exponent
α > 2.

The received signal power in free space propagation can be calculated de-
terministically. However, in realistic propagation conditions it is not possible
to take into account all different objects that exists in the propagation region.
Instead, some approximations from extensive measurements will be used to
model the path loss as a function of distance. Examples of path loss approxi-
mations can be found in [OOKF68, Hat80, WB88, IYTU84].

In this work, the decay of the received power is approximated by the model
of a deterministic function that decreases with the distance d. Two different
path gain models will be considered: Single-slope exponential decay, and dual-
slope exponential decay.

6



2.2 Path Loss

dd0

logPg(d)

logP0

−α

Figure 2.2: Single-slope radio channel model (P (d) plotted in logarithmic
scale)

2.2.1 Single-slope path loss model

The first path gain model in this work is assumed to follow a single slope ex-
ponential decay (figure 2.2), so that the received power after path gain Pg(d) at
a distance d from the transmitting antenna is approximated by

Pg(d) = P0

(
d

d0

)−α
(2.2)

where P0 is the reference received power at some reference distance d0, and α
is the path loss exponent and the equation can also be given in dB, as follows:

Pg(d)[dB] = P0[dB] − α · 10 log(
d

d0
) (2.3)

Common choices for the path loss exponent α are in the range 2 . . . 4. In this
work, a value of α = 3.0 [SCR05] is being used.

The constants P0 and d0 are a simplification from (2.1) that take into account
the transmit power, both antenna gains, and the additional constants. This sim-
plification is especially useful because in this work, only relative power levels
are of importance instead of absolute ones.

2.2.2 Dual-slope path loss model

As an alternative radio propagation model, a dual-slope exponential decay
could be considered as well (figure 2.3). The received power after path gain
Pg(d) at a distance d from the transmitting antenna is then approximated by

Pg(d) =

⎧⎨
⎩P0

(
d
d0

)−α1

for d ≤ Dt

P0

(
Dt

d0

)−α1
(

d
Dt

)−α2

for d > Dt

(2.4)
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2 Radio Channel Model

Dt dd0

−α2

−α1

logPg(d)

logP0

Figure 2.3: Dual-slope radio channel model (P (d) plotted in logarithmic scale)

The dual-slope model has two different path loss exponents, where the expo-
nent of the smaller distances α1 is chosen smaller than the exponent α2 of the
larger distances. This model should take into account the change in propagation
conditions of dense urban areas, where there is a different path loss between the
base station and the first row of buildings compared to the second and further
row of buildings.

The threshold distanceDt is defined in terms of the cell radiusR of a cellular
system as

Dt = δtR (2.5)

where δt denotes the relative threshold distance. Possible values for the relative
threshold distance in the following are δt = 1, 1.2, 1.5, or 2, i.e. the threshold
distance is on the order of the cell radius or slightly larger.

One common choice for the path loss exponents is α1 = 2, α2 = 4. For
the relative threshold distance a value δt = 1.2 would result for a particular
cell radius R = 250m and a threshold distance Dt = 300m, resulting in the
abovementioned relative threshold distance [WDM05].

The constants P0 and d0 do not need to be fixed here because only the SIR
expressions are of interest below and these constants will cancel out anyway.

2.3 Shadowing

The path-loss at a particular location depends not only deterministically on the
distance to the base station, but also randomly on particular terrain features such
as obstructions in the radio channel propagation, or additional reflections from
neighboring buildings, or diffraction from vegetation, see figure 2.4. These in-
fluences are called shadowing [Rap01]. Although each of these effects are well
known, in general it is not possible to calculate the resulting received power ex-
actly because of the large number of input parameters. Therefore in radio com-
munications the effect of shadowing is commonly summarized by a stochastic

8



2.3 Shadowing

Figure 2.4: Obstructed and reflected radio propagation: Shadowing

model as an additional random variable Xσ with log-normal distribution. The
received power including path gain and shadowing Ps(d) is then

Ps(d) = Pg(d) ·Xσ (2.6)

where Pg(d) is the path gain from (2.2) or (2.4).
On a linear scale, the shadowing is a multiplicative random variable Xσ with

log-normal distribution. A random variable with log-normal probability dis-
tribution is one whose logarithm is normally (GAUSSIAN) distributed, and the
probability density function (figure 2.5) is

fXσ
(x;μ, σ) =

1

xσ
√

2π
exp

(
−(lnx− μ)2

2σ2

)
(2.7)

for x > 0, where μ and σ are the mean and standard deviation of the vari-
able’s logarithm lnx. The expectation is E(X) = eμ+σ2/2 and the variance
is var(X) = (eσ

2 − 1)e2μ+σ2

. This distribution is suitable for this problem
because it models the multiplicative product of many small independent fac-
tors, which model the multiplicative changes to the path loss by many different
objects involved in the propagation path.

9
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Figure 2.5: Log-normal Probability Density Function, linear scale

If the path loss is described on a logarithmic scale (in dB), then the shadow-
ing Xσ[dB] is modeled by an additive random variable with GAUSSIAN distri-
bution, standard deviation σ and zero mean. The received power after path gain
in dB (2.3) and shadowing is then given by:

Ps(d)dB = P0[dB] − α · 10 log(
d

d0
) +Xσ[dB] (2.8)

Since the shadowing has a normal distribution in dB, so has the received
power Pr(d) = Ps(d). The probability that the received power will exceed a
particular level x is obtained from the Q-function1 as:

Prob[Pr(d) > x] = Q

(
x− ¯Pr(d)

σ

)
(2.9)

Typical values of the standard deviation σ for the lognormal distribution of
the shadowing are around 7-9 dB for a transmission at 1-3 GHz and outdoor en-
vironments and 1-16 dB for indoor applications [Rap01]. Values of σ between
1-6 dB and 1-4 dB are reported from indoor measurements at 2 GHz [PL95].

2.4 Multi-Path Propagation

The third – and for digital communication most significant – effect of the radio
channel on the transmitted signal is the reception of a superposition of multiple

1The Q-Function is defined as a normalized form of the cumulative GAUSSIAN probability density function,

Q(x) = 1√
2π

∫ x

0
e−t2/2dt = 1

2

[
1 − erf( x√

2
)
]
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2.4 Multi-Path Propagation

Figure 2.6: Superposition of multiple radio propagation paths: Multi-Path
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2 Radio Channel Model

propagation paths (figure 2.6). These effects are modeled by describing the
radio channel as a LTI system, which is fully characterized by its the impulse
response h(τ) or the transfer function H(f). The path gain and shadowing
from before will be multiplied to calculate the actual channel impulse response

hg(τ, d) = Ps(d) · h(τ) (2.10)

For brevity, the factor Ps(d) will be neglected in the rest of this section and only
h(τ) will be considered.

2.4.1 Multiple reflectors

The most important property of the radio channel is the propagation over mul-
tiple paths, which are all attenuated and delayed differently (figure 2.7). Each
of these K paths (figure 2.7) has different delay τk, phase shift θk, and attenua-
tion αk > 0. For a single-antenna system, this results in the following channel
impulse response:

h(τ) =
K∑
k=1

δ(τ − τk)αke
jθk (2.11)

The Fourier transform of the channel impulse response is called the channel
transfer function H(f). It is calculated from h(τ) by the Fourier transform
which is

H(f) =

∞∫
−∞

h(τ) · e−j2πτf dτ (2.12)

The channel transfer function for a multi-path radio channel shows a character-
istic behavior which is called frequency selectivity.

This model (2.11) describes well the situation of a large number of propaga-
tion paths that have an attenuation of approximately the same order of magni-
tude. This corresponds to the physical situation where no direct line-of-sight
propagation path exists (figure 2.4), which is also called a non line-of-sight
(NLOS) radio channel. The opposite case would be the existence of a line-of-
sight (LOS) propagation path, but this case is not considered in this thesis.

2.5 Statistical channel model

From the mobile receiver point of view, all these effects will influence the re-
ceived signal after transmission through the channel. It is therefore no longer

12



2.5 Statistical channel model

Tx Rx

τ1, θ1

τ2, θ2

τ3, θ3

τ4, θ4

Figure 2.7: Single-Antenna (SISO) radio channel model with multiple paths:
Delays τk, Phases θk

necessary to model each effect individually, but instead the effect of the whole
radio channel on the transmitted input signal needs to be modeled in terms of
the impulse response h(τ).

In the rest of this work, a statistical channel model needs be used of which
many realizations can be computer-generated to evaluate the system perfor-
mance under many different channel situations. For this reason, the equivalent
base-band impulse response of the radio channel is considered. Also, for a
communication system with bandwidth W and sampling time T = 1/W only
the discrete-time impulse response of the channel is of interest.

2.5.1 Broad-band and Narrow-band radio channel

A communication system will communicate over a radio channel at a symbol
clock with symbol duration T and an occupied system bandwidth W = 1/T .
A radio channel’s impulse response h(τ) can have its delay times spread over a
time interval that is either large or small compared to the symbol duration. An
important characterization of the channel impulse response is this time interval
in which most of the delayed propagation paths are located.

13



2 Radio Channel Model

This time interval is denoted as maximum delay2 τmax and is defined to be
the interval of all impulse response contributions whose magnitude has not yet
decreased to a level lower than e.g. −30dB compared to the maximum magni-
tude.

Equivalently, in the frequency domain the coherence bandwidth WC is de-
fined as the bandwidth in which the channel “does not change too much”, and
the coherence bandwidth is proportional3 to the inverse of the maximum delay
as WC ∼ 1/τmax.

Depending on the relation between symbol duration and maximum delay of
the radio channel, the complete communication system is said to be

• Narrow-band if T � τmax and W 	 WC , or

• Broad-band if T 	 τmax and W � WC .

f
W

|H(f)|2

Figure 2.8: Transfer function of broad-band (solid) and narrow-band (dashed)
communication system in bandwidth W

The channel transfer functions in the relevant bandwidth of a broad-band
and a narrow-band communication system can be distinguished very easily,
figure 2.8: In a broad-band system, the transfer function is varying (figure 2.8,
solid), whereas in a narrow-band system it is approximately constant (figure
2.8, dashed). For a narrow-band communication system, the channel transfer
function can therefore be approximated by one complex-valued constant H0:

H(f) ≈ H0 if T � τmax (2.13)

2Also called maximum excess delay
3The exact relation depends, among others, on the actual shape of h(τ). For an exponentially decreasing impulse

response, WC = 3
√

3 ln(10)/(πτmax) (from [Gal06])
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2.5 Statistical channel model

In a narrow-band communication system, the influence of the channel is fully
described by this simple complex-valued number H0 which is called channel
transfer factor.

2.5.2 Narrow-band statistical models

For the narrow-band communication system, the channel transfer factor H0 is
modeled as a random variable with certain probability distributions.

Complex Gaussian distribution

In a NLOS situation the real part and the imaginary part of H0 are the sum
of a large number of small independent real random variables each. Due to
the central limit theorem, it follows that both the real and imaginary part of
H0 can be modeled as an independent zero-mean GAUSSIAN random variable
with variance σ/2, denoted as N (0, σ2/2) each. The channel factor H0 is then
a circularly symmetric4 complex Gaussian random variable with variance σ2,
denoted by CN (0, σ2).
σ2 is also the power of that channel transfer factor. Its magnitude |H0|

has RAYLEIGH distribution and its phase5 argH0 has uniform distribution in
[0, 2π].

Rayleigh distribution

The Rayleigh distribution has the probability density function (PDF)

pRayleigh(r) =
2r

σ2 exp

(
− r2

σ2

)
(2.14)

with mean σ
√
π/2 and variance (1 − π/4)σ2, where σ2 is the power of the un-

derlying complex Gaussian and σ2/2 the variance of its real part and imaginary
part, respectively6.

4x is circularly symmetric if ejθx has the same distribution of x for any θ [TV05].
5The operator arg r · ejφ is defined as the argument φ of the complex number.
6Note: In some textbooks [Pro00] the variance of the real and imaginary part is defined as σ2, but here it is

defined as σ2/2 [TV05].
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2 Radio Channel Model

2.5.3 Time-invariant WSSUS model

Each of the propagation paths in multi-path propagation is characterized by a
slightly different propagation delay. Hence, the impulse response of the su-
perposition of all paths has a certain maximum delay in time direction. Ad-
ditionally, due to different propagation distances and potentially different re-
flections, all paths have experienced a different phase shift and potentially a
different attenuation. And finally, in multi-antenna (MIMO) communication,
each propagation path has a different angle of arrival/departure at the receiv-
ing/transmitting antenna array.

All these effects are modeled by a WSSUS channel model (Wide-Sense Sta-
tionary Uncorrelated Scattering) [Bel63]. This WSSUS model in the single-
antenna case is described in the following.

For the usual single-antenna WSSUS channel model (Single-Input Single-
Output, SISO), a number of propagation paths K are considered (figure 2.7),
and for each path the delay τk, the phase shift θk, and the attenuation αk > 0 are
chosen randomly from some given distribution (e.g. exponential delays, uni-
form phases, Rayleigh attenuations). For a single-antenna system, this results
in the channel impulse response

h(τ) =
K∑
k=1

δ(τ − τk)αke
jθk . (2.15)

If the number of paths K is large enough (e.g. K ≥ 30), then the amplitude
can even be modeled as fixed (αk = 1 ∀k), since the sum over a large number
of paths with random phases is a good approximation for a complex-valued
Gaussian random variable (with Rayleigh fading amplitude). For the sake of
brevity, αk = 1 will be assumed in the rest of this work.

As an additional impairment in mobile data communication, the radio chan-
nel in reality changes over time. This is caused by movements of the trans-
mitter, the receiver, or the reflecting objects. However, these radio channel
variations are not considered in this thesis. Instead, only time-invariant radio
channels will be considered in the following.
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3 OFDM Transmission
Technique

3.1 OFDM System Model

The principle of multicarrier modulation is to map a serial high rate source
stream onto multiple parallel low rate substreams and to modulate each sub-
stream on another subcarrier. Since the symbol rate on each subcarrier is much
less than the serial source symbol rate, the effects of delay spread significantly
decrease, reducing the complexity of the equalizer a lot. The Nc subcarriers are
chosen such that each subchannel ideally appears frequency-nonselective. The
data symbol rate per subcarrier is reduced by a factor of Nc and with that, the
Inter-Symbol Interference (ISI) is reduced. The ISI can even be avoided totally
by using a guard time as described below.

−30

−20

−10

0

10

 

W

Ws

f

lo
g
|H

(f
)|2

Figure 3.1: Bandwidth divided into multiple subcarriers

A common realization of multicarrier communications is conventional fre-
quency division multiplexing where the subbands are completely separated in
the frequency domain. However, due to finite steepness of the filter roll-offs, the
subchannel spacing has to be greater than the Nyquist bandwidth to avoid inter-
subchannel interference (ICI). This inefficient use of the available spectrum can
be overcome by permitting spectral overlap between adjacent subchannels. In
that case, ICI can be avoided by guaranteeing orthogonality between the sig-
nals on the subcarriers. With rectangular pulse shaping, orthogonality between
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3 OFDM Transmission Technique

the signals is obtained by choosing a subcarrier spacing equal to the inverse
symbol duration per subcarrier Ts. This technique is referred to as Orthogonal
Frequency Division Multiplexing (OFDM). [WE71, Cim85]

One of the main design goals for a multicarrier transmission scheme based
on OFDM in a mobile radio channel is that the channel can be considered as
time-invariant during one OFDM symbol and that the fading per subcarrier can
be considered as flat. Thus, the OFDM symbol duration should be smaller than
the coherence time (Δt)c of the channel and the subcarrier spacing should be
smaller than the coherence bandwidth WC of the channel. By fulfilling these
conditions, the realization of low-complex receivers is possible.
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Figure 3.2: Multi-Carrier transmission with OFDM

System structure

In the following, the basic setup of an OFDM system is described, see Figure
3.2. The multicarrier modulator maps a sequence Sk of Nc serial source sym-
bols of rate 1/T onto Nc parallel substreams, where k is the time index. The
symbol rate per substream 1/Ts reduces to

1

Ts
=

1

NcT
(3.1)

According to OFDM, the Nc substreams are modulated on subcarriers with
a spacing of

Ws =
1

Ts
(3.2)
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3.1 OFDM System Model

to achieve orthogonality between the signals on the Nc subcarriers, presum-
ing a rectangular pulse shaping. The Nc in parallel modulated source symbols
Sk, k = 0, . . . , Nc − 1 are referred to as an OFDM symbol of duration Ts.

3.1.1 Transmission Signal

A key advantage of using OFDM is that the multicarrier modulation can be im-
plemented in the discrete domain by using an Inverse Discrete Fourier Trans-
form (IDFT), or a computationally much more efficient IFFT [WE71]. The
sequence of transmission samples x(ν) is calculated by taking the IDFT of the
sequence Sk as

x(ν) =
1√
Nc

Nc−1∑
k=0

Ske
j2πkν/Nc, ν = 0, . . . , Nc − 1 (3.3)

and the transmission symbol rate is Nc/Ts. The block diagram of an multi-
carrier modulator based on an IFFT and the respective demodulator employing
inverse OFDM based on a FFT is illustrated in Figure 3.2.

When the number of subcarriers increases, the OFDM symbol duration Ts
becomes large compared to the duration of the channel impulse response τmax
and the amount of ISI reduces. However, to completely avoid the effect of ISI
and, thus, to maintain the orthogonality between the signals on the Nc subcar-
riers and avoid ICI, a guard interval of duration

Tg ≥ τmax (3.4)

has to be inserted between adjacent OFDM symbols [Pro00]. The guard in-
terval is a cyclic prefix added to each OFDM symbol which is obtained by
extending the duration of an OFDM symbol to

T ′
s = Tg + Ts (3.5)

The discrete length of the guard interval has to be

Lg ≥
⌈
τmaxNc

Ts

⌉
(3.6)

samples to prevent ISI.
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3 OFDM Transmission Technique

Time-continuous signal

For the actual transmission, the sampled sequence x(ν), ν = −Lg, . . . , Nc− 1
is passed through a digital-to-analog converter to get the continuous-time signal
x(t). This signal is then transmitted through the channel. The continuous-
time output signal of the channel is obtained from convolution of x(t) with the
channel impulse response and addition of a noise signal z(t),

y(t) =

τmax∫
0

x(t− τ)h(τ, t)dτ + z(t) (3.7)

The output of the receiver’s analog-to-digital converter is a sequence y(ν),
which is the received signal sampled at rate Nc/Ts. Since ISI is only present in
the first Lg samples of the received sequence, these Lg samples are removed be-
fore demodulation. The ISI-free part of y(ν) is demodulated by inverse OFDM
using a DFT or FFT. The output of the FFT is the sequence Rk consisting of Nc

complex-valued symbols

Rk =
1√
Nc

Nc−1∑
ν=0

y(ν)e−j2πkν/Nc, k = 0, . . . , Nc − 1 (3.8)

Since ICI does not exist due to the assumption of a stationary channel, and
ISI can be avoided due to the guard interval, each subchannel can be considered
separately. When, furthermore, assuming that the fading on each subchannel
is flat and ISI is removed, a received symbol Rk at the output of the FFT is
obtained from the frequency domain representation according to

Rk = HkSk + Zk, k = 0, . . . , Nc − 1 (3.9)

where Hk is the channel transfer factor of the kth subcarrier and Zk represents
the AWGN of the kth subcarrier. The flat fading factor Hk is the sample of the
channel transfer function H(k, i) at the kth subcarrier, where the time index i
has been dropped for notational convenience due to the stationarity assumption
of the channel. With this equation, the OFDM transmission system can be
viewed as a discrete-time and discrete-frequency transmission system with a
set ofNc parallel Gaussian channels with different complex-valued attenuation.

Matrix-Vector Notation

In some cases, a matrix-vector description of the OFDM system is more suited
for the calculations to follow. In a matrix-vector notation, the sequence Sk of
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3.1 OFDM System Model

source symbols transmitted in one OFDM symbol is represented by the vector

s = (S0, S1, . . . , SNc−1)
T (3.10)

The respective receiver sequence Rk, k = 0, . . . , Nc − 1 is given by the vector

r = (R0, R1, . . . , RNc−1)
T (3.11)

The received vector r is obtained from

r = H · s+ z (3.12)

see also figure 3.3. The Nc ×Nc channel matrix

H =

⎛
⎜⎜⎝
H0 0 . . . 0
0 H1 0
... . . . ...
0 0 · · · HNc−1

⎞
⎟⎟⎠ (3.13)

is a diagonal matrix due to the absence of ICI. The diagonal components ofH
are the complex-valued flat fading coefficients Hk. The vector

z = (Z0, Z1, . . . , ZNc−1)
T (3.14)

represents the additive white Gaussian noise on the Nc subcarriers.

diagonal
channel
matrix
H

serial-
to-

parallel
converter

parallel-
to-

serial
converter

Z0

ZNc−1

RkSk

s r

Figure 3.3: Simplified OFDM transmission

Advantages of OFDM

With these assumptions, the necessary equalization on the receiver side can
simply be realized by one complex-valued multiplication per subcarrier. This
is a significant simplification because otherwise, the equalizer needs to take into
account all intersymbol-interference over the whole length Ng of the channel
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3 OFDM Transmission Technique

impulse response. The algorithmic complexity of such an equalizer grows with
O(N 3

g ) [Pro00] due the necessary convolution operation, which is too large in
most broad-band systems. But OFDM is an effective technique to avoid such
complexities.

In addition to the simplified equalization process, the structure of an OFDM
system also provides the flexibility to apply numerous different schemes for
adaptive modulation. [RGG01, GBR01] This is especially important since fu-
ture radio systems will require much higher flexibility in the air interface for
each user and also for multiple access schemes. [CGR02, RG05]

3.2 Channel Capacity

The capacity of an individual AWGN channel was given by Shannon in his
ground-breaking 1948 paper [Sha48]. He showed that there is a maximum
data rate, called the channel capacity, for which one can communicate with as
small an error probability as desired, given sufficiently intelligent coding of the
information.

This capacity of a continuous-time AWGN channel (normalized by the chan-
nel bandwidth) is

C = log2

(
1 +

P |H|2
N0

)
bits/s/Hz (3.15)

where P is the transmit power, H is the channel transfer factor, and N0 the
noise power density in the bandwidth of interest1. The logarithm is taken to the
basis 2 in order to obtain the capacity in bits per second per Hertz.

The right-side expression in the logarithm of (3.15) is frequently summarized
as the Signal-to-Noise ratio at the receiver, SNR = P |H|2/N0. Figure 3.4
shows the capacity as a function of this SNR, given in dB.

This capacity of the AWGN channel gives an upper bound to actual data rates
that can be achieved with non-ideal channel coding and practical modulation
schemes. In contrast to this, the actual data rate is described by a different
measure, the bandwidth efficiency.

1In [Sha48] and when considering a channel with concrete bandwidth, the capacity is given as W log2 1+ P |H|2
N0

bits/s, i. e. proportional to the channel bandwidth. However, here and in the rest of this thesis the capacity is
always normalized by the channel bandwidth, as the considerations in this thesis are independent of the actual
bandwidth. For the sake of brevity the capacity will be used in normalized form with the unit [bits/s/Hz],
similar to [Tel99, TV05] and many other literature.

22



3.2 Channel Capacity

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25  30

C
ap

ac
ity

C
[b

its
/s

/H
z]

SNR [dB]

Figure 3.4: Capacity (3.15) of a continuous-time AWGN channel

3.2.1 Bandwidth Efficiency

Any concrete communication system needs to choose a specific modulation
scheme and channel coding rate (see next section). This choice sets a specific
data rate that is transmitted over the channel. Depending on the SNR and radio
channel conditions, the resulting bit error rate of that communication system
is sufficient for normal usage. This data rate, normalized by the system band-
width, will be called the bandwidth efficiency E (also known as spectral effi-
ciency or spectrum efficiency). The bandwidth efficiency specifies the amount
of information that can be transmitted over the given bandwidth in a specific
communication system, measured in bits per second per Hertz.

In this work, the bandwidth efficiency of a combination of modulation and
coding that can be communicated with a bit error rate less than a threshold
of, say, 10−4, is used as a comparison criterion of different transmission tech-
niques.

By definition, the bandwidth efficiency will always be lesser than or equal to
the channel capacity. Hence, this quantity describes “how close to the capacity”
an actual system is being realized. For this reason, the bandwidth efficiency
and (as its upper bound) the corresponding channel capacity will be used as
a comparison criterion for the performance of the systems in the rest of this
thesis.
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Figure 3.5: OFDM system with channel coding and modulation

3.2.2 OFDM Capacity

In the frequency selective radio channel of an OFDM system, the capacity can
be calculated by recognizing each subcarrier as one of many parallel AWGN
channels. With an arbitrary transmit power allocation, the bandwidth efficiency
of an OFDM system is the sum of the bandwidth efficiencies of all subcarriers,
given by

EOFDM =

Nc−1∑
k=0

log2

(
1 +

Pk|Hk|2
N0

)
bits/s/Hz, (3.16)

where the Pk and Hk are the transmit powers and channel transfer factors on
each subcarrier k, respectively. The resulting bandwidth efficiency EOFDM

depends not only on the statistics of the noise, but now additionally on the
statistics of the channel transfer factors |Hk|2 and also on the chosen transmit
power allocation Pk. The efficiency EOFDM is maximized by optimizing the
transmit power allocations, explained in section 3.3.3 below. This optimized
EOFDM is the capacity of the OFDM channel.

3.3 Modulation

The above OFDM system of figure 3.2 just assumed that the source bits bn were
modulated on complex modulation symbols Sk according to some modulation
scheme. In a realistic OFDM system, the source bits bn will be coded by a
channel code with an additional bit interleaving before the modulation as shown
in figure 3.5.

In this thesis, both modulation and channel coding is not investigated in de-
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Figure 3.6: Bit Error Rate of uncoded OFDM and three modulation schemes,
Rayleigh Fading channel, simulation parameters of table 3.2

tail. Several modulation schemes are explained in the next sections. In terms
of channel coding, a well-known convolutional code with Viterbi decoding is
being used as explained in section 3.3.2 below.

3.3.1 Fixed Modulation

In general, a modulation scheme is a mapping of M bits to one complex value
out of a modulation alphabet {C1, C2, . . . , C2M}, where the modulation alpha-
bet has 2M elements. The modulation scheme is the most relevant system com-
ponent to decide upon the number of bits that are transmitted per OFDM sym-
bol. The resulting bandwidth efficiency of a modulation scheme is directly
given by the number of bits per symbol, E = M bits/s/Hz.

As a first approach, all subcarriers will utilize the same modulation scheme.
This single modulation scheme is called the PHY mode. The PHY mode can
be chosen independently of the current radio channel situation, in which case
it would have to be chosen according to the expected worst case of the radio
channel. This usually means a very bad performance on average. Instead, the
PHY mode is chosen according to some criterion that depends on the current
radio channel. Under the title Link Adaptation many different techniques have
been proposed to choose one single PHY mode and modulation scheme for all
subcarriers together, see [Lam04].
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3 OFDM Transmission Technique

One straightforward modulation scheme is the Quadrature Amplitude Modu-
lation (QAM) where the symbols are placed on a regular rectangular grid in the
constellation diagram [Pro00]. This scheme is denoted as e.g. QPSK (4-QAM),
16-QAM, or 64-QAM, where the number refers to the alphabet size 2M and M
bits are mapped to each symbol. The resulting bandwidth efficiency is then
E = M bits/s/Hz.

When using such a QAM modulation scheme, an uncoded bit error rate
(BER) as shown in figure 3.6 can be achieved in a fading channel (Broad-band
Rayleigh fading channel, see section 2.5.1). In this case the BER is limited
by the probability that a few of the subcarriers are in a deep fading situation
(figure 3.1). This fading probability leads to a characteristic error floor in un-
coded OFDM transmission, as can be observed in figure 3.6 for all modulation
schemes shown.

In practical systems, the circumvention for this is to apply channel coding,
described in the next section.

3.3.2 Channel Coding

Channel coding is a practical means to provide forward error correction. Extra
bits are added to the input bit stream so to add redundancy to the transmitted bit
sequence. This will make the transmission of data more robust to disturbances
encountered in the radio channel.

Many different channel codes exist. In this work simply a convolutional
code [Pro00] will be considered with memory length 6 as used in the WLAN
standards IEEE 802.11a and HiperLAN/2. The generator polynomial in octal
notation is 171 133 and puncturing is used when code rates larger than 1/2 are
needed.

When applying channel coding, the bit error curves in OFDM will improve
significantly as shown in figure 3.7. To achieve a given bandwidth efficiency
E, various combinations of modulation scheme (bits per symbol) and code rate
can be considered. In general, it is not known in advance which combination
of modulation and rate (the so-called PHY mode) will give optimal results.
In the above figure only the best PHY mode for this radio channel model is
shown. The chosen PHY mode combinations in the single-antenna system are
summarized in table 3.1.

In order to compare the bandwidth efficiency of these transmission schemes
with the channel capacity (3.15), a threshold on the BER curves is considered
as “close enough to error-free”. In particular, the intersection point of the BER
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Figure 3.7: Bit error rate of OFDM with channel coding in Rayleigh Fading
channel; PHY modes from table 3.1

E Modulation Code Rate
1 QPSK 1/2
2 16-QAM 1/2
3 64-QAM 1/2
4 64-QAM 2/3
6 256-QAM 3/4
8 1024-QAM 4/5

Table 3.1: Chosen modulation scheme and code rate (PHY Mode) for each
bandwidth efficiency E
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3 OFDM Transmission Technique

curve with 10−4 is considered almost error-free, and the bandwidth efficiency at
that SNR is plotted in figure 3.8. The channel capacity of an AWGN channel2

according to Shannon’s formula (3.15) is shown as a comparison as well.
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Figure 3.8: Bandwidth Efficiency of PHY modes from table 3.1 at BER=10−4

in Rayleigh Fading channel (coded); AWGN capacity

One can observe in figure 3.8 that all simulated bandwidth efficiencies clearly
achieve less data rate than the predicted upper bound of the capacity. Hence,
the interesting question is how close to the capacity can each actual system
perform? In the following, each investigated transmission technique will be
compared with this AWGN capacity.

Up to now all subcarriers were modulated with the same modulation schemes.
The OFDM transmission technique would alternatively offer the possibility to
modulate each subcarrier with a different individual modulation scheme. This
is explained in the next section.

3.3.3 Adaptive Modulation

In the OFDM technique, the multicarrier approach offers the advantageous
degree of flexibility as different modulation schemes can be used on differ-

2The capacity of a Rayleigh Fading channel (which is used for BER simulations) is not identical to the one of
the AWGN channel. However, in the SNR region of interest the difference is rather small (less than 1 bit/s/Hz
[TV05]) and for this reason the AWGN capacity is still used as a comparison here and in the rest of this thesis.
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3.3 Modulation

ent subcarriers. With a frequency-selective radio channel, the individual sub-
carriers encounter different transfer factors Hk and thus offer different indi-
vidual channel capacities. Selecting the modulation scheme for each subcar-
rier with respect to the current transfer factor is called Adaptive Modulation.
[Grü00, Lam04, Gie06, Gal06]

Water Pouring

The capacityC is defined as the maximum bandwidth efficiencyEOFDM (3.16)
that can be transmitted over the channel, optimized over all possible transmit
symbols. In the OFDM system, this can be varied according to the different
transmit power allocations Pk over the different subcarriers. Hence, the maxi-
mum efficiency must be calculated by solving the optimization problem for the
transmit powers Pk subject to a fixed overall transmit power NcP̄ .

This is an optimization problem with the objective

C = max
Pk

NC−1∑
k=0

log

(
1 +

Pk|Hk|2
N0

)
(3.17)

subject to
Nc−1∑
k=0

Pk = NcP̄ (3.18)

The solution is calculated by introducing a Lagrange multiplier β and consid-
ering the objective function

f(β, P0, . . . , PNc−1) =

NC−1∑
k=0

log

(
1 +

Pk|Hk|2
N0

)
− β

Nc−1∑
k=0

Pk (3.19)

The solution, i. e. the optimum power allocations P̂k, must satisfy the Kuhn-
Tucker conditions

∂f

∂Pk
=

{
= 0 for Pk > 0

≤ 0 for Pk = 0
(3.20)

These conditions are fulfilled by the power allocation

P̂k = max

(
0,

1

β
− N0

|Hk|2
)

(3.21)
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Figure 3.9: Water pouring solution

where the constant β is chosen to satisfy the power constraint

Nc−1∑
k

max

(
0,

1

β
− N0

|Hk|2
)

= NcP̄ (3.22)

Figure 3.9 explains this result. The values N0/|Hk|2, i. e. the inverse SNRs
of the subcarriers, can be viewed as the bottom of a vessel. If NcP̄ units of
water are filled in this vessel, the depth of the water at sub-carrier k is the
power allocated to this particular subcarrier, and 1/β is the overall height of
the surface. Hence, this optimal solution is called the water pouring or water
filling solution. [Pro00, TV05]

With this solution, some subcarriers might actually have a value N0/|Hk|2
above the water level. In these subcarriers, the radio channel is too bad for any
communication and no power at all is allocated to them. Instead, this strategy
rather allocates more power to the stronger subcarriers in order to take advan-
tage of the better channel conditions.

Power Loading

An OFDM system with fixed modulation schemes can use the power allocation
of (3.21) to adapt the transmit power to the channel conditions. This adaptation
strategy is called power loading and its particular advantage is that no signaling
of the allocated powers has to be done.

However, the different capacities of each subcarrier are not at all exploited
as long as the modulation scheme and data rate are chosen identical for all
subcarriers. For this reason, as was shown in [Gie06], adapting only the power
allocations will degrade the performance of the overall OFDM system.
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Figure 3.10: Different bit allocations on each subcarrier by Adaptive Modula-
tion

Instead, any adaptive modulation in OFDM must adapt the data rates as well.
This is described in the next section.

Bit and power loading

In contrast to allocating only different power levels, the modulation schemes
should be adapted on a per-subcarrier basis as well [Gie06]. For each subcar-
rier, the optimum power allocation is calculated from (3.21). In a second step,
for each subcarrier the modulation scheme for each subcarrier is chosen as a
function of the receiver SNR Pk|Hk|2/N0. This process is called bit loading.

Various algorithms for bit loading have been proposed, e. g. [HH87, FH96,
GBR01, Grü00, Gie06]. One principal problem here is that modulation schemes
exist only for some discrete data rates, but the solution of the capacities are
continuous values. Each different loading algorithm has different approaches
to deal with the impreciseness that arises from this discrete values.

In general, all loading algorithms achieve a comparable performance.

Bit Loading

Although the optimum solution is obtained by modifying both the power lev-
els and the modulation schemes, practical systems might require a fixed power
level on each subcarrier. For these cases, changing the modulation schemes
only is a viable solution. As was shown in [Gie06], in the usual case the per-
formance with bit loading only but no power loading is not too different from
loading both.
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3 OFDM Transmission Technique
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Figure 3.11: Bandwidth Efficiency (at BER=10−4) in Rayleigh Fading channel
(coded); AWGN capacity

Performance

The actual BER performance with subcarrier-specific bit loading is improved
compared to the uniform modulation scheme. In both cases only the system
with channel coding is interesting. The resulting bandwidth efficiencies are
shown in figure 3.11. Again, the different available PHY modes are taken from
table 3.1 and the AWGN capacity3 is shown as a comparison.

It can be concluded that bit loading is an efficient strategy for OFDM in
frequency selective radio channels. However, in systems with interleaved and
coded transmission, the additional gain by subcarrier-specific modulation turns
out to be rather small. For that reason it can be concluded that a uniform PHY
mode combined with a strong channel code is more efficient in a single-user
transmission system.

3.4 Simulation Parameters

The OFDM simulations in this thesis are being conducted with the parameters
as shown in table 3.2. The transmission system will be simulated in time do-

3Again, even though the capacity of a Rayleigh Fading channel is different from the one of the AWGN channel,
this difference is small enough to be neglected here, see explanation at figure 3.8.
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3.4 Simulation Parameters

OFDM Transmission
Number of subcarriers Nc = 64
System bandwidth W = 20 MHz
Subcarrier spacing Ws = W/Nc = 312.5 kHz
Useful symbol length Ts = 1/Ws = 3.2 μs
Guard interval length Tg = 0.8 μs
Total symbol length T ′

s = 4 μs
Channel coding
Generator polynomials of r = 1/2 code [131]8,[177]8
Memory length 6
Puncturing, Modulation see table 3.1
Radio channel model
Delay power spectral density negative exponential
Maximum excess delay (−30 dB) τmax = 0.8 μs
Doppler frequency 0 (no time-variance)

Table 3.2: OFDM parameters

main, so that the radio channel influence is calculated by the convolution of the
OFDM time signal with the channel’s impulse response. The physical param-
eters of this system are chosen to match those of the WLAN standards IEEE
802.11a and HiperLAN/2, as those are intended for high data rate communica-
tion already.
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4 Multi-Antenna Radio Channel
Models

4.1 Introduction

In multi-antenna (MIMO) communications, the decisive difference to single-
antenna communications is the availability of multiple radio channels. Between
each available transmit and receive antenna (figure 4.1) there is a different radio
channel impulse response. Each of these impulse responses can be modeled ac-
cording to (2.15) individually, but the interesting question now is: In which way
are the impulse responses related or correlated to each other? In other words,
what is an adequate MIMO radio channel model that captures all performance-
relevant relations between the different channels, yet is simple enough to be
understandable?

Figure 4.1: Multi-path propagation and multiple antennas

It is an open question how the effects of the MIMO radio channel (figures
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4 Multi-Antenna Radio Channel Models

4.1, 4.2) can adequately be modeled in a baseband simulation system [DM03,
GC02, TV05].

There are very simple MIMO channel models available, the “i.i.d. Gaussian”
being the most prominent. But, as information theory has shown [DM05], this
is already the upper bound for performance measures such as the capacity of
the channel, and many realistic channel conditions will exhibit much worse
performance for communication. Some of the MIMO techniques described
in later chapters will show radically different performance depending on the
radio channel model used. In those cases, performance simulations are much
too optimistic and meaningless as long as their radio channel model does not
represent the reality in the most performance-relevant aspects.

This section will describe the simple channel models and the newly pro-
posed modeling approach of this thesis. The new multi-antenna radio channel
model will be developed that characterizes the relevant properties of the chan-
nel but is still easily configurable. The relevant parameters of a MIMO radio
channel model are explained and lead to the newly introduced MIMO-WSSUS
(Wide Sense Stationary Uncorrelated Scattering) radio channel model. This ap-
proach promises to represent the MIMO-related channel properties realistically
enough, so that MIMO techniques can now be evaluated by simulations which
give realistic performance results.

...

...

1
1

2

NT
NR

Hnm(f)

Figure 4.2: MIMO channel representation

4.2 MIMO Channel Representation

As shown in figure 4.2, the multi-antenna (MIMO) radio channel is described as
follows: Let NT be the number of transmit antennas, NR the number of receive
antennas. The impulse response of antenna n to m is denoted as hmn(τ). The
transfer function from antenna n to m is denoted as Hmn(f).
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4.2 MIMO Channel Representation

Allm·n transfer functions together can be written as a matrix-valued transfer
functionH(f) as follows

H(f) =

⎛
⎝H11(f) · · · H1N(f)

. . .
HM1(f) · · · HMN(f)

⎞
⎠ (4.1)

In an OFDM system, this frequency selective transfer function is turned
into a set of parallel flat fading subcarriers, each of which is described by one
complex-valued constant Hmn(p) per subcarrier p,

Hmn(p) ≈ Hmn(f) (4.2)

In the following, only one single subcarrier will be considered. For the sake of
brevity the subcarrier index p will be dropped from the notation.

All MIMO radio channels on this subcarrier can now be described by the
complex-valued MIMO channel matrix

H =

⎛
⎝H11 · · · H1N

. . .
HM1 · · · HMN

⎞
⎠ . (4.3)

To explain the benefit of this matrix notation, consider one subcarrier of an
OFDM communication system in this time-invariant channel. Let the transmit-
ted symbols at transmit antennas 1 through NT on this subcarrier be given as
s1 . . . sNT

. Let the received symbols at receive antennas 1 through NR on this
subcarrier be given as r1 . . . rNR

.
Due to the superposition of all transmitted signals on each receive antenna,

the received symbol at antenna m is

rm =

NT∑
n=1

Hmn · sn + zm (4.4)

where zm is some additive noise at receive antennam. With s = (s1, . . . , sNT
)T

and r = (r1, . . . , rNR
)T , the vector of all received symbols can be written in

vector-matrix notation as
r = H · s+ z (4.5)

For an OFDM communication system, the question of MIMO channel mod-
eling is summarized by the question how to model the channel matrix H in
(4.5). The easiest model is to assume each entry of the channel matrix to be an
independent identically distributed random variable, which is described in the
next section.
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4.3 I.i.d. Gaussian Radio Channel Model

The easiest radio channel model for MIMO-OFDM applications is to assume
uncorrelated subcarriers, and on each subcarrier the vector of received symbols
is given by

r =
1√
NT

Hs+ z . (4.6)

The matrix H is constructed from NR · NT independent and identically dis-
tributed (i.i.d.) complex Gaussian random variables with unit variance σ2

H = 1.
The normalization factor 1/

√
NT is introduced to account for the fixed total

transmit power constraint: When more transmit antennas are added, the trans-
mit power at each single antenna is reduced by 1/

√
NT so that the sum transmit

power of the full antenna array is constant. In this model, for simplicity the
transmit power constraint is expressed by this additional factor so that σ2

H and
|sn|2 can be chosen independently from the actual number of transmit antennas.

Figure 4.3: MIMO radio channel with a lot of scattering as assumed in the
i.i.d. Gaussian channel model

From information theory [DM05], a MIMO channel with this statistical be-
havior was shown to have maximum capacity. This represents a physical situ-
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4.3 I.i.d. Gaussian Radio Channel Model

ation where the propagation at each antenna array proceeds by a huge number
of scattering propagation paths, visualized in figure 4.3. This large number of
scattering paths will result in independent radio channels for each pair of trans-
mit and receive antennas, hence the matrix coefficient will be uncorrelated.

However, in reality the coefficients of the matrix H are not independent but
instead have non-negligible correlation. The assumption of the existence of
a huge number of scattering paths does not hold in reality most of the time,
and this results in a significant correlation between the radio channels and in
turn the matrix coefficients. This also results generally in lower MIMO capac-
ity. Therefore some extensions of the radio channel model are needed which
describe the physical situation more precisely.

In any case this i.i.d. Gaussian channel model will always be the model with
optimum capacity, which means it can be used as a reference case with opti-
mum performance for any communication technique.

In order to characterize the different radio channel models more easily, some
measures for predicting the expected MIMO performance need to be found.
The actual MIMO techniques will use the H matrix directly for their algo-
rithms and no additional specific knowledge about the radio channel. Hence,
characterizations of the stochastic and algebraic properties of this matrix are
needed for the MIMO techniques. Those are being investigated in the follow-
ing sections.

A stochastic measure of the H properties is the pair-wise correlation be-
tween all entries of the channel matrix. However, in some channel models this
correlation will unexpectedly show no relation to the resulting MIMO perfor-
mance at all. Nevertheless the correlation and its behavior will be discussed for
each radio channel model. This is followed by the algebraic characterization of
the H matrix through its singular value decomposition, which will turn out to
be a useful measure for all radio channel models.

4.3.1 Correlation

The correlation of all entries of H is a first measure to characterize the statis-
tical properties of the MIMO channel matrix, even though its result will be of
limited value.

In the i.i.d. Gaussian model, the matrix entries are assumed to consist of
independent random variables. In this case the covariance (and due to this also
the correlation coefficient) between each pair of matrix entries will be zero by
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definition:

Cov{Hij, Hk	} =

{
σ2
H if ij = k�

0 else
(4.7)

This result is a first hint with which one can expect a good performance for
each MIMO technique that assumes a “high independence”, i.e. zero correlation
between the different radio channels of the MIMO antenna arrays.

However, some radio channel models with non-zero correlation between the
antenna elements have the interesting property that this correlation is a fixed
value, independent of the actual MIMO technique’s performance (see section
4.4.5). For this reason, another evaluation criterion has to be considered, and
the chosen criterion is the behavior of the singular value decomposition of the
H matrix. This is described in the next section.

4.3.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) of any matrix H ∈ CNR,NT is de-
fined as

H = UHΣV (4.8)

where1 U ∈ CNR,NR and V ∈ CNT ,NT are unitary matrices, and Σ ∈ RNR,NT is
a rectangular matrix with non-negative real numbers on the diagonal and zeros
elsewhere. The values on the diagonal of Σ = diag(σ1, σ2, . . . , σK) are called
singular values and are sorted by value, σ1 ≥ σ2 ≥ . . . σK

This implies that the squared singular values σ2
j are the Eigenvalues of the

matrix HHH and also of HHH . There are at most K = min(NR, NT ) sin-
gular values. The number of non-zero singular values k ≤ K is the rank of the
matrixH .

Singular Values in Gaussian Channel Model

If the channel matrix H consists of random variables, the singular values of
that matrix will be random variables as well. To investigate the properties of
the singular values it is desirable to find out their PDF or joint distribution.

The joint distribution of the singular values of H with i.i.d Gaussians has
been solved before [Ede88], but is a complicated expression. In this work, the
resulting PDF is simply shown graphically as obtained by numerical experi-
ments: A large sample of random channel matrices was used to calculate a

1By UH the Hermitian of U is denoted, i.e. the transposed and complex conjugate matrix.
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4.4 MIMO-WSSUS Radio Channel Model

histogram of the respective random variables, which is a good enough approx-
imation of the actual PDF.

The resulting PDF for all four singular values of a 4x4 MIMO channel matrix
is shown in figure 4.4. It can be seen that each of the four expected singular
values have a bell-shaped distribution around some mean value. This mean
value and the whole bell shape is decreasing for the smaller singular values.
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Figure 4.4: PDF of the four singular values of an i.i.d. Gaussian H in a 4x4
channel

The important result is that all four singular values and even the smallest σ4
are non-zero with very high probability. This means MIMO techniques which
assume the existence of many non-zero singular values can be expected to show
very good performance in this channel model. And indeed, the spatial multi-
plexing techniques explained below will demonstrate a very good performance
in such radio channels.

But such radio channels cannot be expected to appear in reality in all cases.
Instead, a different channel model has to be considered that models the chang-
ing radio channel properties in a better way than the Gaussian model. This is
explained in the next section.

4.4 MIMO-WSSUS Radio Channel Model

Multi-antenna radio channels are characterized by the spatial relations of the
different propagation regions or paths, and a channel model should capture this
relations that exist in space. Fortunately, the Wide Sense Stationary Uncor-
related Scattering (WSSUS) channel model for time-variant frequency-select-
ive single antenna channels [Bel63, Pät02] from section 2.4 already included
the spatial propagation path characteristics in its modeling approach. This can
readily be extended to MIMO situations in a straightforward way.
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4 Multi-Antenna Radio Channel Models

Figure 4.5: MIMO radio channel with a small number of scatterers (here L =
3) as assumed in the MIMO-WSSUS channel model
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4.4 MIMO-WSSUS Radio Channel Model

In the multi-antenna case, it is necessary to rethink the different spatial prop-
agation properties of all the simulated WSSUS paths. The WSSUS model only
assumes the fact that “much scattering is taking place all over the whole radio
channel” (figure 4.3), but for MIMO it is necessary to model this scattering in
a slightly more detailed way. Namely, the scattering reflection that determines
the angle of arrival (and departure) has to be modeled.

Measurements have shown [DM03] that the number of these “scatterers closely
located to the antennas” L is surprisingly small and in the range of L = 5, 6, 7.
Therefore this number of transmit scatterers LT and receive scatterers LR are
introduced as two new parameters in the MIMO-WSSUS model, visualized in
figure 4.5. For the propagation between one transmit scatter and one receive
scatterer, K propagation paths are assumed, so that the total number of paths
now is K · LT · LR. Similar to the single-antenna WSSUS model, each prop-
agation path is characterized by a set of parameters as described in the next
section.

4.4.1 Scatterers

For each of these scatterers, the Angle of Arrival (AoA) of the arriving wave at
the receiver is denoted by ψi. As explained below (section 4.4.3), this parameter
can either be chosen as a uniformly distributed random variable, or it can be set
to the fixed Fourier angles to simplify the correlation analysis.

Similarly, the Angle of Departure (AoD) at the transmitter is denoted by βj.
For each pair of scatterers i and j, the K different propagation paths linking
these two scatterers have a random delay τijk and phase θijk which are num-
bered by the three-fold index i, j, and k. These parameters are shown in figure
4.6.

Additionally the actual geometry of the antenna arrays at the transmitter and
receiver need to be known (e.g. uniform linear with spacing λ/2). Depending
on this geometry of the antenna arrays, one can calculate different phase shifts
for each antenna as a function of βk and ψk by determining the phase shift
φm(βk) of path k at antenna m as a function of ψk at the receiver and as a
function of βk at the transmitter.

4.4.2 Antenna Array geometries

The phase shifts φm(ψ) on each antenna as a function of the angle of ar-
rival/departure is calculated from the geometry of the antenna array [CKBS04].
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Figure 4.6: Parameters of MIMO-WSSUS radio channel model: AoA ψi, AoD
βj, Delays τijk, Phase shifts θijk

In this thesis, a Uniform Linear Array with antenna spacing d = λ/2 and ran-
dom orientation is assumed, as shown in figure 4.7. The radiation pattern of
each single antenna is assumed to be omnidirectional in the horizontal plane,
which could be implemented in reality by e.g. a vertically oriented dipole an-
tenna.

d = λ/2

ψ

Figure 4.7: Uniform linear antenna array with impinging wave and wave fronts

This results in the following phase shifts at antenna element number m for
an incoming angle ψ and wave length λ:

φm(ψ) = m
2π

λ
d sin(ψ) = mπ sin(ψ) (4.9)
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4.4.3 Random Angles vs. Fourier Angles

An antenna array can distinguish between only a limited number of directions
from which an impinging wave is arriving. This limit also describes the gran-
ularity by which different angles can be resolved i.e. distinguished, or can not
be resolved any longer. An array with N antennas can only resolve up to N
different angles or directions. The maximum number of resolvable directions
can be seen by the beam forming pattern of the antenna array.

Beam Forming Pattern

The beam forming pattern of a Uniform Linear Array (ULA) with four antennas
is shown in figure 4.8. This pattern is always symmetric with respect to the
array line so that each beam occurs both to the front and the back of the array.
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Figure 4.8: Beam forming pattern of N = 4 Uniform Linear Array with ele-
ment spacing λ/2

In any case, with four antennas only four directions can be resolved, denoted
as β0, . . . , β3 in figure 4.8. If arriving propagation paths occur from more than
those four directions, the received signal vector will contain the energy from
the non-resolved signal components spread out over the resolvable beams.
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This “angular sampling” is the same situation as the time sampling when
trying to resolve multipath components in time. The multiple paths can only
be resolved up to the sampling time, but not finer than that. This very same
sampling theorem applies for the angles here as well.

Fourier Angles

The N angle directions of the ULA beams are given by

sin(βp) =
2p

N
for any integer p with −N < 2p ≤ N (4.10)

These angles are also the coefficients of a Fourier series, and for this reason the
directions of the beam forming pattern are also called Fourier directions.

Figure 4.9 demonstrates those discrete angles for the case N = 4. The
Fourier angles are those radian measures whose sine (the projection on the
y-axis) is an integer multiple of 2/N , which is 2/4 = 1/2 in the example of
figure 4.9. Hence, the four Fourier angles are those with a sine value of −1/2,
0, 1/2, and 1.

sin β(p)

−1
2

0

1
2

1

β(0)

β(1)

β(2)

β(−1)

Figure 4.9: The four Fourier angles for N = 4 and p = {−1, 0, 1, 2}

Inserting this set of Fourier angles into the phase shift expression (4.9) gives
the following set of phase shifts

φm(β) = mπ sin(β) =
mπ2p

N
for any integer p with −N < 2p ≤ N

(4.11)
The proposed MIMO-WSSUS model assumes the path angles βk, ψk as uni-

form random variables, which is how the physical propagation properties can
be represented. However, for the correlation analysis of the resultingH matrix,
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4.4 MIMO-WSSUS Radio Channel Model

it is useful to choose the path angles βk as the fixed Fourier directions instead.
This will be picked up in the correlation and singular value discussion below,
but the model itself assumes random path angles instead.

4.4.4 Wide-band MIMO channel impulse response

The wide-band MIMO channel impulse response from antenna n to antenna m
is then given by

hmn(τ) =

LR∑
i=1

ejφm(ψi) ·
LT∑
j=1

ejφn(βj) ·
K∑
k=1

δ(τ − τijk)e
jθijk . (4.12)

It is important to emphasize that no further assumption about the actual prop-
agation geometry is made, except for the known angles. There is no further
assumption about the distances, or about the space in between the transmit
scatterers and receive scatterers. These parts of the radio channel are still as-
sumed to be unknown, similar to the original assumptions of WSSUS, where
only the facts of wide-sense stationarity of the impulse response (“WSS”) and
of uncorrelated scattering (“US”) is assumed but nothing more.

The sums over the different scatterers in equation (4.12) can also be written
as a vector-matrix equation

hmn(τ) = ψm · Θ(τ) · βn , (4.13)

where the steering vectors with all the phase shifts at the receive antenna ψm

and transmit antenna βn are defined as

ψn =

⎛
⎝ ejφn(ψ1)

...
ejφn(ψLT

)

⎞
⎠ , (4.14)

βm =
(
ejφm(β1) . . . ejφm(βLR

)
)
. (4.15)

The scatterer linking matrix Θ describes the sum of propagation paths from
one transmit scatterer j to one receive scatterer i. Its entries for one pair of
scatterers are

Θij(τ) =
K∑
k=1

δ(τ − τijk)e
jθijk . (4.16)
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Now, writing the propagation path sums for all scatterer pairs into one matrix
gives the following full scatterer linking matrix

Θ(τ) =

⎛
⎜⎝
∑K

k=1 δ(τ − τ11k)e
jθ11k

∑K
k=1 δ(τ − τ1LT k)e

jθ1LT k

. . .∑K
k=1 δ(τ − τLR1k)e

jθLR1k
∑K

k=1 δ(τ − τLRLT k)e
jθLRLT k

⎞
⎟⎠ .

(4.17)
The steering vectors βm and ψn for all transmit and receive antennas can be

written into one matrix each, which will result in the matrix-valued broadband
MIMO impulse response

H(τ) = Ψ︸︷︷︸
Receiver Steering

· Θ(τ)︸ ︷︷ ︸
Scatterer Linking

· Φ︸︷︷︸
Transmitter Steering

. (4.18)

This is the matrix-valued MIMO impulse response which can be used to simu-
late a wide-band transmission system in time domain.

Wide-band MIMO channel transfer function

Alternatively, the impulse response can be transformed into frequency domain
to obtain the matrix-valued MIMO transfer function H(f). This is achieved
by calculating the Fourier transforms of the entries (4.16) of the scatter linking
matrix as

Θij(f) =
K∑
k=1

ej(θijk−2πfτijk) . (4.19)

Inserting this into (4.18) gives the matrix-valued MIMO transfer functionH(f)
for simulations in the frequency domain

H(f) = Ψ︸︷︷︸
Receiver Steering

· Θ(f)︸ ︷︷ ︸
Scatterer Linking

· Φ︸︷︷︸
Transmitter Steering

. (4.20)

Fourier directions

If the Angles of Departure or Arrival (AoD, AoA) βi are chosen from the fixed
Fourier directions, the phase shifts due to the antenna array are no longer ran-
dom variables and even the steering vectors and matrices are no longer random.
Inserting the phase shifts for the Fourier angles (4.11) into the steering vector
(4.15) gives

βm =
(
e−j2πm0/LR . . . e−j2πm(LR−1)/LR

)
(4.21)
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and the full steering matrix

Φ =

⎛
⎝ e−j2π0·0/LR . . . e−j2π0(LR−1)/LR

. . .
e−j2π(NR−1)·0/LR . . . e−j2π(NR−1)(LR−1)/LR

⎞
⎠ . (4.22)

For LR = NR this result is identical to the inverse Discrete Fourier Transform
(DFT) matrix. As the DFT matrix is a unitary matrix, this means the statistical
properties of the scatterer linking matrix Θ will be preserved after multiplica-
tion with the steering matrices in the Fourier direction case.

4.4.5 Correlation

In order to get insight into the statistical properties of the resulting MIMO-
WSSUS radio channel matrices, the correlation coefficients between its matrix
entries will be investigated. First, the fixed path angles from the Fourier direc-
tions will be considered, where a nice relation between correlation and resulting
MIMO performance exists. Second, the random path angles will be considered,
where unexpectedly no relation to the resulting MIMO performance is found
at all. Nevertheless the correlation and its behavior will be discussed. This is
followed by the algebraic characterization of the H matrix through its singu-
lar value decomposition in the next section, which will turn out to be a useful
measure for all radio channel models.

Fourier directions

As there are only up to NT and NR Fourier directions on each side, the number
of scatterers with Fourier directions is limited by LT ≤ NT and LR ≤ NR.
In this case, the scatterer linking matrix will contain nonzero entries up to the
number of scatterers, and zeros for the rest2. The steering matrices on each side
are simply an inverse DFT matrix, and the statistical properties of theH matrix
is determined from the scatter linking matrix Θ.

For the maximum number of Fourier direction scatterers LT = NT , LR =
NR this results in a scatter linking matrix with NT × NR Gaussian entries,
multiplied by the unitary steering matrices. The resulting H is then Gaussian
i.i.d. as well and this is identical to an i.i.d. Gaussian radio channel model.

2In [TV05], this matrix configuration is given for the angular representation of the channel, which is denoted
Ha, sec. 7.3.4.
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For smaller number of scatterers LT < NT , LR < NR, there will be a non-
zero correlation between at least some of the matrix elements. An example of
this is visualized by the grey-scale image in figure 4.10 and following. First,
the 4x4 system with LT = LR = 2 instead of 4 Fourier directions is shown:

The larger boxes are arranged like the full matrix entries. Each 4x4 square
visualizes the correlation of one matrix entry (the black-most square) to all
other matrix entries, calculated by the Monte-Carlo method. The correlation of
the matrix entry with itself is always one. All other correlations are smaller than
that and visualized by different shades of grey, up to zero correlation which
is visualized by white. The entries which are “further away” obviously have
smaller correlation, visualized by a white or light grey entry. The neighboring
entries have the highest correlation coefficient, visualized by a dark grey entry.

The resulting correlation pattern corresponds to an over-sampling of the LR
random variables in the scatterer linking matrix into the received signal vector
of size NR > LR.

The actual values of the correlation coefficients can be calculated analytically
for each combination of NT , NR, LT , LR and each pair ofH matrix entries. In
all cases the covariance expression between the matrix elements reduces to the
variance of some of the Gaussian random variables, multiplied with powers of
the coefficients from the DFT matrix.

i

j

Figure 4.10: Correlation coefficients between matrix elements, Fourier direc-
tions, L = 2 scatterers, 4x4 ULA. Mean correlation 0.37
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In figure 4.10 which visualizes the correlation with L = 2 scatterers one can
observe the high correlation of neighboring matrix entries, but no correlation to
the “far end” of the matrix. When more scatterers are available with L = 3 in
figure 4.11, the pattern changes and the mean correlation coefficient (as denoted
in the figure caption and also in table 4.1) reduces.

i

j

Figure 4.11: Correlation coefficients between matrix elements, Fourier direc-
tions, L = 3 scatterers, 4x4 ULA. Mean correlation 0.25

With L = 4 scatterers in the Fourier direction case, the resulting H entries
are completely independent again, which results in the rather boring pattern of
figure 4.12.

In order to give one single classification number, the mean correlation co-
efficient is also calculated. This is basically the mean of all numbers in figure
e.g. 4.10. This mean will always be non-zero because by taking the mean be-
tween all pairs, the covariance of each random variable with itself will also
be taken into account, which is simply the variance (which is 1 by definition
here). Hence, in the 2x2 case with 2 Fourier directions the covariance between
each of the four different channel matrix entries is zero, but out of the 16 dif-
ferent covariances 4 will unity because they are the variances itself. The mean
correlation coefficient in this case is 4/16 = 0.25.

The mean correlation coefficient for several antenna configurations and scat-
terer numbers is shown in table 4.1.
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4 Multi-Antenna Radio Channel Models

i

j

Figure 4.12: Correlation coefficients between matrix elements, Fourier direc-
tions, L = 4 scatterers, 4x4 ULA. Mean correlation 0.07

Antennas Scatterers Mean correlation
2x2 1 1

2 0.25
4x4 1 1

2 0.37
3 0.25
4 0.07

Table 4.1: Mean correlation coefficient, Fourier directions
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4.4 MIMO-WSSUS Radio Channel Model

Random directions

With random paths angles βi, ψj, the correlation shows an unexpected and in-
teresting property: The correlations between the H entries turn out to be inde-
pendent of the number of scatterers! This means even though the correlation
can be calculated, it is not a useful measure for predicting the MIMO perfor-
mance. Instead, the algebraic characterization of the channel matrix by the
singular value decomposition has to be used for predicting the MIMO perfor-
mance, which will be considered in the next section.

The reason for the fixed correlation is as follows: Each covariance expres-
sion can be factored into the product of independent expectations. Due to the
independence of the scatterer linking matrix Θ and the random path angles,
the covariance will always end up as the product of the variance of one Gaus-
sian random variable, multiplied with the mean value of the phase shift random
variable.

This is shown as an example with a 3x1 system and one scatterer:

H =

⎛
⎝e−jπ0 sinβ1

e−jπ1 sinβ1

e−jπ2 sinβ1

⎞
⎠(X1

) (
1
)

=

⎛
⎝ X1
X1 · e−jπ sinβ1

X1 · e−jπ2 sinβ1

⎞
⎠ (4.23)

In contrast to the MIMO-WSSUS definition, the entries of the scatter linking
matrix (here: onlyX1) are here assumed to be Gaussian random variables, with
zero mean and variance σ2

H . In the MIMO-WSSUS definition (4.16), these were
a sum of random phase rotations, but that in turn is rather an approximation for
a Gaussian random variable. That approximation is valid as long as the sum is
large, which was assumed to be the case. In any case for this analysis Gaussian
random variables are used for simplicity.

The covariance of, say, the first two entries of (4.23), H11 and H21, is

Cov{H11, H21} = E{[H11 −H11][H21 −H21]
∗} (4.24)

Both matrix entries have zero mean. For H11 this follows from the definition of
X1. For H21 due to the independence of X1 and β1 this follows also from the
definition of X1. The covariance simplifies to

Cov{H11, H21} = E{[H11][H21]
∗} = E{X1 ·X∗

1 · ejπ sinβ1} (4.25)

Due to the independence of X1 and the random phase shift angle β1, this is

Cov{H11, H21} = σ2
H · E{ejπ sinβ1} (4.26)
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4 Multi-Antenna Radio Channel Models

As a result, the covariance is just the X1 variance multiplied by the expected
value of the random phase shift. In appendix A.1, the PDF and the expected
value for the random phase shift is derived; the result is

E{ejnπ sinβ1} = J0(nπ) (4.27)

where J0(·) is the Bessel function of the first kind of order zero.
If the channel matrix H is calculated from a larger sum of scatters and not

only one as in this example, due to the linearity of the expectation in (4.25) and
the independence of multiple Xi and multiple random phases, the expression
will turn out as a sum of multiple results of form (4.27). Eventually, even with
a larger sum of scatterer paths, the resulting covariance between entries of H
is still one of the fixed values J0(nπ) of (4.27), independent of the number of
paths.
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1 0.304 0 0.304 1
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Figure 4.13: Correlation coefficients between matrix elements, Random direc-
tions, 2x2 ULA. Mean correlation 0.4253

This is shown for a 2x2 system in figure 4.13, a 3x3 system in figure 4.14,
and a 4x4 system in figure 4.15, all calculated from (4.27).

However, even though the correlation in the resulting H is independent of
the number of paths, the performance of MIMO techniques is not. For this
reason, another evaluation criterion has to be considered. As explained in the
previous section, the more interesting evaluation criterion is the behavior of the
singular value decomposition of the H matrix. This is described in the next
section.

4.4.6 Singular Values

Similar to the evaluation of theH matrix in the Gaussian model (section 4.3.2),
the singular values of the channel matrix are evaluated in the MIMO-WSSUS
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i

j

Figure 4.14: Correlation coefficients between matrix elements, Random direc-
tions, 3x3 ULA. Mean correlation 0.2678

i

j

Figure 4.15: Correlation coefficients between matrix elements, Random direc-
tions, 4x4 ULA. Mean correlation 0.1948
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Figure 4.16: PDF of the singular values in a 4x4 MIMO-WSSUS model with
Fourier directions and different numbers of scatterers

model as well. First the singular values in MIMO-WSSUS with fixed Fourier
directions are evaluated, then the singular values with random directions.

The PDF of the singular values of the 4x4 matrix H of the MIMO-WSSUS
model with Fourier directions are shown in figure 4.16, calculated by the Monte-
Carlo method. In case of all four Fourier directions (top plot), the PDF are
identical to the Gaussian case by definition. In case of less than four Fourier
directions, the PDF changes: The smallest singular values will now disappear
as they are zero, and the larger singular values have a broader PDF so that they
are of smaller value with higher probability than before.

This behavior of the singular values nicely demonstrates how MIMO tech-
niques using multiple singular values will degrade their performance if a lower
number of scatterers is present in the radio channel.

The MIMO-WSSUS model with random directions shows exactly the same
behavior, see figure 4.17, except that the number of scatterers can now go up to
infinity instead of the fixed number of Fourier directions.
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Figure 4.17: PDF of the singular values in a 4x4 MIMO-WSSUS model with
random directions and different numbers of scatterers
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Figure 4.18: Mean singular value in a 4x4 MIMO-WSSUS H as a function
of the number of scatterers (logarithmic scale) with Fourier and
Random directions

With random directions, the limiting case of an infinite number of scatterers
is the i.i.d. Gaussian model by definition, which is why the SVD PDF of the
Gaussian matrix is shown at the top of figure 4.17. When a finite number of
scatterers exists, the PDF of the smaller singular values shifts towards zero or
disappears completely, but in a smoother transition as compared to the Fourier
direction picture.

To summarize, the mean value of all singular values is shown in figure 4.18
over the number of MIMO-WSSUS scatterers. The i.i.d. Gaussian model shows
the largest mean value, which confirms this model to be the optimum radio
channel situation. The MIMO-WSSUS model with Fourier directions nicely
shows the increasing mean singular value with increasing number of Fourier
directions, up to the size of the matrix at which the mean value of the Gaus-
sian model is met. The MIMO-WSSUS model with random directions shows
the same trend, except that the upper limit of the Gaussian model will be met
asymptotically at an infinite number of scatterers. With a finite number of scat-
terers the mean singular value is less than the Gaussian upper limit, but in-
creases monotonically with increasing scatterers.
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4.5 Other MIMO Channel Models

4.5 Other MIMO Channel Models

In the previous section, a MIMO-WSSUS radio channel model was introduced.
This model will be compared with some other radio channel models in terms
of the BER performance of actual MIMO techniques in chapter 8, after the
MIMO techniques have been introduced. Those models are briefly described
in the following.

In [DM03, DM05], a different channel model is derived on the basis of maxi-
mizing the entropy that is represented by the model. The resulting construction
of the channel matrix H is very similar to the one introduced in the MIMO-
WSSUS model, see section 8.3.

In [GC02, GC04], another MIMO channel model is proposed based on an
exact geometrical description of the area used for transmission. The MIMO
channel matrix H will be calculated through ray-tracing simulations inside a
two-dimensional plane. This construction of the channel matrix is very dif-
ferent from the one presented here, but the resulting system performance can
still be characterized by only one parameter, similar to the MIMO-WSSUS ap-
proach. This will be shown in section 8.4.

Other MIMO radio channel models are being proposed and used in [RC98,
GBGP02], but those were not considered in this thesis.

One interesting relation to another well-explained proposal should be noted:
In [TV05] an angular domain approach to MIMO channel modeling is intro-
duced. The significant influence of “close scatterers” in this thesis is modeled as
a transformation from physical to angular domain in [TV05]. A high-capacity
MIMO channel would be characterized by a dense angular domain channel ma-
trix instead of a sparse one in that model. Hence, the MIMO-WSSUS steering
and scatter linking matrices can be viewed as transformation and angular do-
main channel matrices, respectively, where the MIMO-WSSUS path angles are
chosen as Fourier directions. In effect, the resulting construction of H is very
similar to the one in this thesis. The performance characterization through the
number of close scatterers is similarly available by the number of nonzero ele-
ments in the angular domain channel matrix. Thus, the comparison of chapter
8 is valid for that channel model as well, but the model will not be considered
any further in this thesis.
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4 Multi-Antenna Radio Channel Models

4.6 Channel Normalization

For some applications it is useful to normalize the channel. This is done to
reduce the random effects that influence the performance. For example, the
average power of a realization of H(f) can be normalized to a certain constant
(figure 4.19), so that the performance depends only on the frequency selectivity
but not on the fluctuation of the total power.
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Figure 4.19: Three channel transfer functions and their average power without
(left) and with (right) normalization

A time-invariant radio channel model is usually being normalized in fre-
quency with a normalization factor γ so that the integral over the transfer func-
tion H ′(f) = γH(f) of bandwidth W is unity:

1

W

∫
W

γ|H(f)|2df = 1 (4.28)

This way, the fluctuations of the average power is eliminated and only the ef-
fects of the frequency selective fading is being investigated. This is useful if and
only if the investigated techniques should combat the frequency selectivity, and
other techniques for compensating the changing average power are proposed
and investigated separately.

This normalization does not make sense anymore for a time-variant radio
channel model, because in that case the fluctuations of the average power is a
fundamental outcome of the time variant model and techniques for its compen-
sation must be included in the system model. Thus this discussion is restricted
to the time-invariant case.
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4.7 Conclusion

In MIMO, there is an additional degree of freedom. One not only has to
choose whether to normalize in frequency or in time, but also in space. In
MIMO simulations one is interested in the fading between the different MIMO
subchannels, i.e. the variations of the channel between the different antennas.
Our main interest is not the fast fading of the overall channel, i.e. the variation
in time from sample to sample that is common for all MIMO subchannels. A
straightforward extension of the above normalization in frequency would be to
normalize in space:

1

W

∫
W

γ‖H(f)‖2df = 1 (4.29)

The matrix norm ‖H‖ can be chosen as e.g. the FROBENIUS norm, ‖H‖2
F =∑

n

∑
m|Hnm|2, but other matrix norms can be used as well. The actual choice

has no noticeable impact on the resulting simulated radio channels.
In the rest of this thesis, such normalized channels will be considered ac-

cording to (4.29) unless otherwise noted.

4.7 Conclusion

The behavior and performance of a MIMO communication system needs to
be confirmed by quantitative simulation results. It is important to use a radio
channel model in these simulations that will capture as much realistic circum-
stances as possible, but without distracting from the relevant results by offering
too many parameters.

The characterization of MIMO radio channels was shown by construction
of the channel matrix H and also by two derived measures, the pair-wise cor-
relation of the H elements, and by the singular values of H . In some cases,
the correlation between the matrix elements turned out to have no relation to
the relevant MIMO parameters, which means this measure is not useful as a
prediction of the MIMO performance. In contrast to this, the algebraic char-
acterization of the H matrix by its singular values were shown to be a useful
measure for all radio channel models.

In simulations of communication systems the relevant radio channel prop-
erties need to be described realistically and an adequate statistical model for
the essential properties of this channel need to be found. Unfortunately, simple
multi-antenna radio channel models will predict the increased MIMO capacity
to be available in all circumstances, which gives much too optimistic simulation
results.

61



4 Multi-Antenna Radio Channel Models

A new MIMO-WSSUS radio channel model was introduced. This model
promises to represent the MIMO-related channel properties realistically enough,
so that MIMO techniques can now be evaluated by simulations which give real-
istic performance results. It enables the simulation of different MIMO-OFDM
systems with only two additional parameters, the number of transmit and re-
ceive scatterers. The relevance of this parameter will also be verified in chapter
8 by comparing different radio channel model approaches, leading to the same
MIMO-OFDM system performance results.

One additional benefit of the MIMO-WSSUS channel modeling approach is
that the statistics of the WSSUS approach are clearly preserved for any single
radio channel in the model. The radio link between any transmit-receive an-
tenna pair viewed in isolation will clearly be modeled according to the WSSUS
channel impulse response. This serves as a strong indication that the frequency
selectivity statistics will still be modeled in accordance with the conventional
single-antenna broad-band research.

As a conclusion, the MIMO-WSSUS radio channel model and its compari-
son with the i.i.d. Gaussian model will be used for the rest of this work.
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5 MIMO Techniques

Transmission techniques for multiple transmit and receive antennas (MIMO
techniques) are able to increase the link reliability and data rate. This chapter
explains the basic MIMO techniques in conjuction with broad-band OFDM
transmission, so that these techniques can be evaluated both in a simple radio
channel model and the newly proposed MIMO-WSSUS model. This thesis
considers MIMO techniques only in the context of a single user, figure 5.1.

Figure 5.1: Single-user MIMO communication

5.1 MIMO-OFDM Structure

As mentioned earlier, most MIMO techniques have been proposed for a flat-
fading radio channel. This assumption is unrealistic for future high data rate
systems. High data rate demands will require using a bandwidth that is much
greater than the coherence bandwidth of the radio channel. But by using OFDM,
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5 MIMO Techniques

each subcarrier can be seen as such a flat-fading channel, where any of the pro-
posed MIMO techniques can be applied directly. This would lead to a system
structure as shown in figure 5.2. This MIMO-OFDM system uses NT trans-
mission antennas, NR receiver antennas, and Nc subcarriers as described in the
previous section.
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Figure 5.2: Subcarrier-specific MIMO in OFDM

In figure 5.2, the MIMO transmission system is presented as the following
parts:

• The input to the MIMO modulation is the sequence of modulation sym-
bols {Bk}, which may have been modulated just as in a normal SISO
system.

• The output of the parallel per-subcarrier MIMO modulation, in turn, is a
set of MIMO transmission vectors, one for each subcarrier.

• For OFDM processing, the IFFT is calculated for each antenna sepa-
rately. Hence, all vector components that belong to the first antenna are
processed by the first antenna’s IFFT, all components belonging to the
second are processed by the second IFFT, and so on. In the figure this is
suggested by the re-ordering arrows.

• On the receiver side, the output of the OFDM processing’s FFT is re-
ordered into a set of MIMO receive vectors, one for each subcarrier.

• The parallel per-subcarrier MIMO demodulation will eventually calculate
a sequence of receive symbols which are passed on to demodulation, just
as in a normal SISO system.
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5.1 MIMO-OFDM Structure

The task of the “MIMO modulation” block, in general, is to modulate the se-
quence of complex input symbols into some “modulation” or “encoding scheme”
that is suited to the MIMO transmission situation. The MIMO modulation can
be either

• linear, or

• non-linear, but in this thesis, only linear MIMO modulation schemes are
considered.

Additionally, potential MIMO modulation strategies are distinguished by the
amount of required channel knowledge at the transmitter. The MIMO modula-
tion can require

• full channel knowledge, i. e. H completely known but with a certain
SNRH , or

• partially known, e.g. only the magnitude of H might be known but not
its phase, or

• no channel knowledge at the transmitter.

Examples for MIMO modulation strategies are:

• For an antenna selection technique (section 6.1.1), this means transmit-
ting the input symbol on one antenna whereas the other antennas are kept
silent.

• For a Space-Time Coding technique (section 6.2.1), this means mapping
the input symbols on the codewords of the space-time code.

• For an SVD/Eigenbeamforming technique (section 7.1.1), this means
multiplying the input symbols with the singular vectors of the radio chan-
nel.

• For a Space-Time layered architecture (e.g. BLAST, section 7.2), this
means applying the layer-specific processing (e.g. channel coding) to
each antenna layer.

More specifically, there is one MIMO modulator block per subcarrier, result-
ing in Nc MIMO modulator blocks. The sequence {Bk}, where k is the time
index, holds the complex information symbols chosen from some constellation
(e.g. QPSK). The bit stream that modulated these information symbols may
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possibly have been processed by an outer channel code and interleaver (not
shown), but as this is not directly MIMO-related, it will not be taken into ac-
count here. The serial-to-parallel converter routes the consecutive symbols of
the input sequence into the subcarrier-specific processing chains.

Thus, the MIMO modulator at the nth subcarrier processes an input se-
quence {Bk(n)} of complex scalars into an output vector sequence {s	(n)}
of dimension NT × 1 each, where � is the time index (possibly but not neces-
sarily different from k). Each component of those vectors is then modulated
on a different antenna but on the same nth subcarrier. For a given time index
�, the time subscript is dropped and the output vectors of all MIMO modula-
tors s(n), n = 0, . . . , Nc − 1 are written into one long vector s of dimension
NT ·Nc × 1 as

s = (s(0)T , s(1)T , . . . , s(Nc − 1)T )T (5.1)

This vector is then OFDM modulated, i.e. each part corresponding to one an-
tenna is IFFT processed, guard interval is added, D/A conversion is performed,
and the signal is transmitted. It can easily be seen that several parts of the
OFDM processing need to exist for each antenna separately. In particular, this
applies to the IFFT/FFT and each processing step in between (not shown in Fig-
ure 5.2): Guard Interval introduction, D/A conversion, transmission circuitry,
receiver circuitry, A/D conversion, and Guard Interval removal.

If this OFDM part of the system is designed according to the criteria men-
tioned in the previous section, then no ICI or ISI is present. Therefore on each
subcarrier the channel transfer function for the transmission from antenna to
another is again only one complex coefficient. Let Hij(n) denote this flat fad-
ing coefficient of the channel transfer function from antenna j to antenna i on
subcarrier n. The matrixH(n) then holds all NR×NT channel coefficients on
the nth subcarrier as

H(n) =

⎛
⎝ H11(n) . . . H1NT

(n)
... ...

HNR1(n) . . . HNRNT
(n)

⎞
⎠ (5.2)

The vector of received symbols on subcarrier n can be calculated as

r(n) = H(n)s(n) + n(n) (5.3)

where n(n) is the noise vector containing the AWGN samples for each receiver
antenna, and both n(n) and r(n) are of dimension NR × 1.

The basic assumption for this straightforward combination of MIMO in OFDM
is that there is negligible correlation between neighboring subcarriers. This is
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5.1 MIMO-OFDM Structure

valid if there is sufficient interleaving among subcarriers, or if FDMA multi-
user access is used so that each individual user is assigned a subset of subcar-
riers, where this subset can be chosen such that sufficiently spaced subcarriers
are assigned for each user.

Alternatively, the MIMO modulation can be designed in frequency direc-
tion to exploit the available correlation in frequency. Example approaches for
this are Space-Frequency Coding [BBP03]. However, this work only considers
subcarrier-specific MIMO modulation in the following.

The MIMO-OFDM structure of figure 5.2 enables an efficient implementa-
tion of MIMO techniques in a broad-band radio channel [Ran08]. The intersymbol-
interference which is introduced in the broad-band channel will be equalized
by the frequency domain equalization of the OFDM technique. This simpli-
fied equalization is an important point because otherwise, the equalizer needs
to take into account the whole length Ng of the channel impulse response for
all MIMO radio channels in parallel. The algorithmic complexity of such an
equalizer grows with O(N 3

g ) [Pro00] due the necessary convolution operation,
which is too large in most broad-band systems. But OFDM is an effective tech-
nique to avoid such complexities, and in combination with MIMO even a large
number of parallel radio channels can be processed with moderate implemen-
tation complexity.
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6 Diversity

Diversity is the reception of one transmitted signal in several independently
disturbed versions.

Under certain assumptions, different MIMO radio channels in a MIMO com-
munication system will be changing independently from each other. Therefore
these different MIMO channel can be considered as statistically independent
and identically distributed random variables, and diversity techniques can be
used to combat fading on these radio propagation paths.

It is known [ZT03] that if the fading is pairwise independent between anten-
nas, an antenna array with N antennas can obtain a maximum diversity gain of
N . This diversity gain is defined by observing that the average error probability
can be made to decay like 1/SNRN at high SNR, in contrast to the SNR−1 for
the single antenna fading channel.

In the following analysis, the SNR distribution, the mean SNR, the analyti-
cally calculated BER and the simulated BER rates will be evaluated in order to
verify this prediction for various diversity techniques. This evaluation is done
in the i.i.d. Gaussian channel model first, and the additional degradation in a
MIMO-WSSUS channel model is considered as a second step.

6.1 Receive Diversity

...

1

1

NR

Figure 6.1: Receive diversity: Single transmit antenna, multiple receiver anten-
nas

The easiest implementation of spatial diversity is receive diversity, where the
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transmitter is using one antenna just as in conventional systems but the receiver
is using multiple antennas (figure 6.1 and 6.2). This configuration is sometimes
also called SIMO (Single-Input Multiple-Output).

Figure 6.2: Communication link with antenna diversity on one end

6.1.1 Selection diversity

The easiest diversity technique is to select the best available version of the
received signal and ignore the rest. This is commonly known as selection di-
versity and has been used for decades already [Pro00].

In a MIMO system, antenna selection can be employed both at the receiver
or the transmitter. At the receiver, the signal from only one antenna is selected,
and the receive signals of all other antennas on that subcarrier at this time are
ignored. At the transmitter, the transmission signal is sent over one specific
antenna, and all other antennas are inactive on this particular subcarrier at this
time.

This selection can be done both at the receiver and transmitter, depending on
the actual antenna configuration. For a transmitter-side antenna selection, the
channel information about all magnitudes of ‖H‖ would have to be available
at the transmitter, which is rather uncommon but possible. For receiver-side
antenna selection, that information would have to be available at the receiver,
which is the case for almost any transmission system anyway. In any case, the
analysis depends only on the number of available diversity branches, regardless
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6.1 Receive Diversity

of where the selection from those diversity branches is made. Hence, the rest
of this section considers NR diversity branches to choose from.

PDF of selection diversity

In order to calculate the gain of selection diversity analytically, first the proba-
bility distribution of the resulting SNR is considered.

The error probability is always a function of the SNR= |H|2/N0. In a SISO
random channel model with Rayleigh fading where the real and imaginary com-
ponent are Gaussian, the SNR∼ |H|2 is a random variable of Chi-square distri-
bution with 2 degrees of freedom. With the variance of each component chosen
as σ2 = 0.5, the PDF of one channel is as simple as

fSNR,SISO(x) = e−x , x ≥ 0 (6.1)

and has mean 1.
In selection diversity, one out of many such Rayleigh fading channels is se-

lected, which means the resulting SNR is the maximum out of a set of random
variables. By the help of order statistics [Pap84] the distribution of the maxi-
mum of N i.i.d. random variables is calculated from the individual distribution
F and density f , which results in

fmax,N(x) = N(F (x))N−1f(x) . (6.2)

Inserting the above Rayleigh channels (6.1) gives the following PDF for the
resulting SNR after selection diversity

fSNR,sel(x) = N(1 − e−x)N−1e−x , x ≥ 0 (6.3)

which is shown in figure 6.3 for a few values of N .
The mean of this distribution is

μSNR,sel = N

N−1∑
k=0

(
N − 1

k

)
(−1)k

∞∫
0

xe−(k−1)xdx

= N

N−1∑
k=0

(
N − 1

k

)
(−1)k

1

(k + 1)2 . (6.4)

The first few values of this are shown in figure 6.4 for this technique and for the
one in the next section. Clearly, the mean SNR increases with more diversity
branches, but lesser than linearly and hence not optimal.
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Analytical BER

However, the mean SNR is not the interesting criterion of evaluating the perfor-
mance. Instead, the BER which depends on the full probability distribution is
the interesting criterion. For that reason, a concrete modulation scheme is used
as an example in the following. For BPSK modulation with constellation sym-
bols {+a,−a} the bit error rate can be calculated explicitly. The error prob-
ability, conditioned on a known channel |h|2 after selection combining (6.3),
is

Q(
√

2|h|2ρ) (6.5)

where ρ = SNR = a2/N0 is the average received signal to noise ratio per
symbol, and |h|2ρ is the received SNR for the whole channel after selection
combining. Now this expression is averaged over the distribution of |h|2 to
obtain the actual error probability. Again, independent Rayleigh fading with
unit variance is assumed on each diversity branch. The corresponding PDF for
|h|2 was given in (6.3). Inserting this in (6.5) results in

pe,sel =
1

2

[
1 −

N∑
n=1

(
N

n

)
(−1)n−1

√
ρ

n+ ρ

]
(6.6)

[TV05]. This analytically calculated BER is shown in figure 6.5 together with
simulation results which are consistent with the analytical ones.

To evaluate the asymptotic behavior at high SNR, a Taylor series expansion
of the expression

√
ρ/(n+ ρ) is calculated in 1/ρ at 1/ρ→ 0, as given by√

ρ

n+ ρ
= 1− n

2

1

ρ
+

3n2

22

1

ρ2 −
3 · 5n3

23

1

ρ3 +
3 · 5 · 7n4

24

1

ρ4 − . . . at 1/ρ→ 0 .

(6.7)
When inserting this into (6.6), it turns out all terms up to the N th term will
cancel out due to the to the binomial series and the factor nk in the nominator
of each Taylor term. Only the N th term gives a nonzero contribution to the
resulting pe, which means

pe,sel ∼ 1

SNRN
. (6.8)

It can be concluded that selection diversity provides a diversity gain N .

Simulated BER

This analytically calculated BER of uncoded BPSK can also be observed in
actual simulations, see figure 6.6 (right plot). However, even this uncoded BER
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Figure 6.5: Analytically calculated BER of uncoded BPSK with selection di-
versity, N = {1, 2, 4, 8} (markers: simulated values)

is not the final criterion of performance evaluation – the BER with channel
coding is. Hence, figure 6.6 (left plot) shows the BER from simulations of a
coded system. One can observe a significant performance increase due to the
diversity. Each additional receive antenna gives an additional diversity branch
and improves the uncoded and coded Bit Error Rate.

In an uncoded system, the achieved performance gain is very large because in
the SISO system the BER is dominated by deep fades. Diversity is one means to
combat this fading. Channel coding is another means, and extending channel
coding by diversity will show smaller performance improvements. However,
even in a coded system a noticeable increase of 3dB for the first and roughly
1dB for each additional diversity branch can be observed.

Finally, the achievable maximum bandwidth efficiency at a target BER is
compared with the original channel capacity of a SISO channel, which was
discussed in section 3.3.2. Figure 6.7 shows the capacity of a single-antenna
Rayleigh fading channel and some achievable simulation results from figure
3.8. Additionally, the improved data rate through diversity is shown as well,
which confirms nicely the performance gain through diversity.

However, this comparison neglects the fact that the theoretical capacity of a
channel with diversity is much higher than the single-antenna capacity, which is
the shown capacity. Nevertheless, it can be observed that the BER performance
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6 Diversity

is significantly improved through the use of diversity, even with the simple but
suboptimal selection diversity technique.

6.1.2 Maximum Ratio Combining

In the previous section, only one out of many available diversity branches was
being used as the actual received signal. This approach can obviously be im-
proved by using not only one diversity branch but instead using all branches by
a suitable combining technique.

Maximizing the Signal-to-Noise Ratio

A combining technique is a function that maps all diversity branches ri back
to the one single desired signal s̃. Such a function is chosen according to a
particular criterion. One common criterion is to maximize the resulting Signal-
to-Noise Ratio. A combining technique that achieves this criterion is called
Maximum Ratio Combining (MRC), also known as matched filter or coherent
combining:

s̃ =
N∑
i=1

h∗i · ri (6.9)

In order to evaluate the performance gain of MRC, the probability density
of the SNR after MRC combining is considered. The PDF without diversity
was e−x with mean 1 (6.1). With MRC diversity, the SNR is the sum of 2N
independent real-valued Gaussian random variables. Hence, its distribution is
Chi-square with 2N instead of 2 degrees of freedom, which is

f2N(x) =
1

(N − 1)!
xN−1e−x, x ≥ 0 , (6.10)

which is shown for the first values of N in figure 6.8. The mean of (6.10)
is simply N . Figure 6.4 nicely shows the performance advantage of MRC
diversity compared to selection diversity, even when only paying respect to
the mean SNR. The same result can be seen from comparing picture 6.8 to 6.3,
which demonstrates the improved SNR by MRC.

Analytical BER

Again, the mean SNR is not the most interesting evaluation criterion, but the
BER is. Therefore, a concrete modulation scheme is used to calculate the re-
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Figure 6.8: PDF of |H|2 without diversity, selection diversity of degree 2, and
with MRC diversity of degree {2, 4, 8} (σ = 1)

sulting BER analytically. The error probability of BPSK with constellation
symbols {+a,−a}, conditioned on the known channel realization h [TV05], is

Q(
√

2‖h‖2SNR) (6.11)

where SNR = a2/N0 is the average received signal to noise ratio per symbol,
and ‖h‖2SNR is the received SNR for the whole channel h, almost similar to
(6.5). This expression is averaged over the distribution of ‖h‖2 to obtain the
actual error probability.

The channel norm is distributed as Chi-square with 2N degrees of freedom,
(6.10). With this density function, the resulting error probability of (6.11) can
be computed analytically:

pe,mrc =
1

2

[
1 −
√

SNR

1 + SNR

N−1∑
n=0

(
2n

n

)
1

4n(1 + SNR)n

]
(6.12)

[TV05]. This bit error probability is shown in picture 6.9 for some N = NR

together with simulation results which are consistent with the analytical results.
Additionally, this figure shows the curves for selection diversity from figure 6.5.
One can easily observe the better performance of MRC diversity.

Even more insight can be obtained from its approximation at large SNR us-
ing the Taylor series (6.7). In this case the linear term of the Taylor series is
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Figure 6.9: Analytically calculated BER of uncoded BPSK with MRC diver-
sity (markers: simulated values) and selection diversity, NR =
{1, 2, 4, 8}

sufficient and this will result in a bit error probability at high SNR given by

pe,mrc ≈
(

2N − 1

N

)
1

(4SNR)N
. (6.13)

This result shows that at high SNR, the error probability decreases with theN th
power of the SNR instead of the first power. Hence, MRC obtains a diversity
gain of N , just as selection diversity does. In BER plots, this gain is visible as
a faster decay of the error rate curves.

The previous technique, selection diversity, was shown to obtain a diversity
gain of N as well. This can be seen by comparing the decent rate of both
techniques in figure 6.9: Both techniques exhibit the same steepness, and MRC
is only shifted to the left. This confirms as well that both techniques obtain the
same diversity gain, although MRC additionally provides a performance gain
on top of that.

Simulated MRC BER

The bit error rate of a MIMO transmission using MRC combining is shown
in figure 6.10. Each additional receive antenna gives an additional diversity
branch and improves the uncoded and coded Bit Error Rate.
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Figure 6.10: BER performance of Maximum Ratio Combining at the receiver,
coded and uncoded comparison, E = 2 bits/sec/Hz. (NT = 1,
NR = {1, 2, 4, 8} Rx antennas. Left: 16QAM with code rate r =
1/2, Right: QPSK uncoded)

In theory this technique can be used not only for exploiting diversity but
additionally in the context of spatial multiplexing for transmitting multiple data
streams in parallel. However, in practice this is only usable if the error due to
inter-stream interference is small compared to the noise. In other words, this
would only be used at very high noise levels and low SNR, which is not the
region of interest here. This section only considers the diversity benefits of
MRC combining in the receiver.

Finally, the achievable maximum bandwidth efficiency at a target BER is
compared with the original channel capacity of a SISO channel, which was dis-
cussed in section 3.3.2. Figure 6.11 shows the SISO capacity of a Rayleigh fad-
ing channel together with the improved data rate that can be achieved through
MRC diversity.

6.1.3 Equal Gain Combining

As a simplification of MRC in terms of the computational complexity, Equal
Gain Combining (EG) is a technique that corrects only the phase rotation of hi
but leaves the magnitude unchanged.

s̃ =
N∑
i=1

h∗i
|hi| · ri (6.14)

The simulated performance of Equal Gain combining in shown in figure 6.12
and 6.13, where the other diversity techniques are shown as well. Each addi-
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Figure 6.11: Bandwidth Efficiency of MRC Receive Diversity (coded)

tional diversity branch in EG increases the performance almost as much as with
MRC combining.

The degradation compared to MRC combining is surprisingly small. Es-
pecially at low antenna numbers, there is almost no degradation compared to
MRC combining. Even at higher antenna numbers the difference is small. The
same comparison can be seen in the final bandwidth efficiency comparison of
figure 6.14. It can be concluded that an equalization (6.14) is a useful simplifi-
cation for the implementation complexity in the receiver hardware.

Comparison of Diversity Combining

SNR increase SNR increase SNR increase
diversity=2 diversity=4 diversity=8

Selection Div. Coded 3.3 dB 5.2 dB 6.5 dB
EG Coded 3.9 dB 7.4 dB 10.5 dB
MRC Coded 4.0 dB 7.7 dB 11.1 dB

Table 6.1: Resulting SNR increase at BER=10−4 compared to the SISO perfor-
mance

As a comparison, some BER curves of the three considered diversity schemes
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Figure 6.14: Bandwidth Efficiency of MRC and EG combining (coded, Gaus-
sian channel)

are shown in figure 6.12 and 6.13, showing the performance at the same band-
width efficiency. The performance gain in numbers is summarized in table 6.1.

Both the uncoded and coded simulations confirm any of the diversity tech-
niques to be a good way of combating fading. Selection diversity is the easiest
technique, but can provide only significantly less gain compared to MRC and
EG. MRC diversity shows the best performance, which is being expected due to
its construction criterion. Nevertheless the simpler EG diversity shows almost
as much gain both in the uncoded and coded simulations.

The achievable bandwidth efficiency of the three diversity techniques is shown
in figure 6.14, which confirms the observed improvement also for other band-
width efficiencies in the i.i.d. Gaussian channel model.

In figure 6.15, the same improvement can be observed even in the MIMO-
WSSUS channel model with LR = LT = 6 scatterers, even though the absolute
bandwidth efficiency is slightly degraded compared to the i.i.d. Gaussian per-
formance. Nevertheless, the performance increase by using receive diversity
holds in both radio channel models alike.

Coherently combining schemes such as MRC and EG are significantly more
efficient than simple selection diversity in both Gaussian and MIMO-WSSUS
radio channels. It can be concluded that a large diversity gain is realized by
coherently combining the different diversity branches. On the other hand, the
EG simplification of neglecting the amplitude weighting does not degrade the
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Figure 6.15: Bandwidth Efficiency of MRC and EG combining (coded, MIMO-
WSSUS channel)

performance significantly. Hence, the additional weighting of the branches in
MRC does not show a significant additional gain and can be skipped in order
to decrease the computational complexity.
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6.2 Transmit Diversity

As an alternative implementation of spatial diversity when it would be difficult
to place multiple antennas at the receiver, transmit diversity can be used as well.
In this case, the receiver is using one antenna just as in conventional systems,
but the transmitter is using multiple antennas (figure 6.16). This configuration
is sometimes also called MISO (Multiple-Input Single-Output).

...

1

1

N

Figure 6.16: Transmit diversity: Multiple transmitter antennas, single receiver
antenna

6.2.1 Space-Time Block Codes: Alamouti Scheme

A MIMO technique where a block of modulation symbols {B(k)} are encoded
to a block of transmission symbols {S(k)} is called a Space-Time Block Code.
A prominent example of this is the Alamouti Scheme [Ala98] which is a two-
branch transmit diversity scheme.

For the Alamouti Scheme, a block of two modulation symbols {B(1), B(2)}
is considered in a system with two transmit and one receive antenna, NT = 2,
NR = 1. The two modulation symbols are transmitted over the time duration of
two time-steps, just as in a normal system without space-time coding. However,
the symbols are not transmitted individually, but at each time-step both symbols
are transmitted simultaneously, encoded in a special way.

{B(2), B(1)}
{
(−B(2)∗

B(1)∗

)
,

(
B(1)
B(2)

)
}

Encoding Decoding
H2

H1

{R(2), R(1)}

H1, H2

{D(2),D(1)}

Figure 6.17: Alamouti Space-Time Block Code, NT = 2, NR = 1
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This encoding is done as follows: At the first time-step t = 1, the transmit
vector for the two transmit antennas is constructed as

s(1) =

(
B(1)
B(2)

)
. (6.15)

At the next time-step t = 2, the transmit vector is constructed as

s(2) =

(−B(2)∗

B(1)∗

)
. (6.16)

The overall bandwidth efficiency is unchanged compared to a single antenna
system, where two modulation symbols are transmitted in two time-steps as
well. This Alamouti encoding scheme is depicted in figure 6.17.

At the receiver, the two receive symbols {R(1), R(2)} of the two time-steps
are used to recover an estimate {D(1), D(2)} of the original modulation sym-
bols by space-time decoding. This decoding requires the knowledge of the two
channel transfer factors H1, H2 and these are assumed to be constant for the
two time-steps in question. The decoding is done as follows:

D(1) = H∗
1R(1) +H2R(2)∗ (6.17)

= H∗
1(B(1)H1 +B(2)H2 +N(1)) +H2(−B(2)∗H1 +B(1)∗H2 +N(2))∗

= (|H1|2 + |H2|2)B(1)︸ ︷︷ ︸
Signal

+H∗
1N(1) +H2N(2)∗︸ ︷︷ ︸

Noise

. (6.18)

The decoding of the other symbol follows as D(2) = H∗
2R(1) − H1R(2)∗. If

there were no noise, the original symbols are directly obtained, scaled by the
channel power. In a realistic system with noise, the Signal-to-noise ratio is the
interesting quantity.

The Signal-to-noise ratio of the decoded symbol results as

SNR = E{ (|H1|2 + |H2|2)2

(H∗
1N(1) +H2N(2)∗)2} =

(σ2
H + σ2

H)2

σ2
Hσ

2
n + σ2

Hσ
2
n

= 2
σ2
H

σ2
n

, (6.19)

assuming unit power in the data symbolB(k), σ2
H as the average channel power

and σ2
n as the average noise power. This SNR is increased by a factor of 2 due

to the increased diversity, compared to a single-antenna system.
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Figure 6.18: BER of Alamouti scheme and receive diversity (MRC and selec-
tion), coded and uncoded. (Left: 16QAM with code rate r = 1/2;
Right: QPSK uncoded; Gaussian channel)

This result shows that the Alamouti Space-Time coding scheme increases the
SNR by 3dB, which is just another way of saying that it achieves a diversity
gain of 2. Also, the result after decoding is maximum-likelihood.

The Alamouti scheme [Ala98] is a simply way of exploiting diversity in a
system with two transmit antennas. This can be generalized to multiple receive
antennas, where the receiver uses maximum ratio combining on the receive
symbol vector, although it has been shown that this scheme is no longer optimal
[TV05]. For multiple transmit antennas, generalizations exist as well [TJC99],
but all of them will incur a rate loss where the space-time encoded symbols
need more time-steps to be transmitted compared to the original system without
space-time code.

Performance

The bit error rate of the Alamouti scheme is shown in figure 6.18. This scheme
offers a clear improvement over the SISO system by 1.3dB through exploiting
Transmit Diversity. However, this does not quite meet the predicted 3dB of
(6.19). This difference originates from the underlying OFDM transmission,
which in turn limits the achievable BER because of the outage events due to
channel fading.

The achievable bandwidth efficiency at various SNRs is summarized in fig-
ure 6.19. Using transmit diversity with the Alamouti schemes shows an im-
provement over using no diversity at all (the “1x1” curve). This is true for both
i.i.d. Gaussian (figure 6.19) and MIMO-WSSUS radio channels (not shown
here but in figure 7.18), as the diversity techniques show comparable perfor-
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Figure 6.19: Bandwidth Efficiency (at BER=10−4) of receive diversity (MRC)
and transmit diversity (Alamouti), coded, Gaussian channel

mance improvements in both radio channel models alike.

Comparison of Receive and Transmit Diversity

The interesting question is how the performance of the Alamouti transmit di-
versity scheme compares to the receive diversity schemes discussed before. For
this reason in figure 6.18 also two receive diversity schemes have been plotted.

Somewhat surprisingly it turns out even a simple antenna selection scheme
offers significantly more improvement compared to Alamouti. The optimum
receive diversity scheme with Maximum Ratio Combining shows an even larger
improvement of 4.0dB over the SISO system, where Alamouti only shows
1.3dB as explained in the previous paragraph. This is true even for all band-
width efficiencies shown in figure 6.19.

This difference between the Alamouti scheme and the other diversity schemes
is a direct outcome of the fact that the other schemes exploit more knowledge
about the MIMO radio channel. In the Alamouti scheme, the transmitter does
not know the channel. The transmitter cannot assume any spatial structure of
the channel and is unable to direct the transmit energy into specific channel
directions, if there were any. On the other hand, the MRC scheme assumes
channel knowledge at the receiver where the combining is done, which means
the transmit energy can be collected from the specific channel directions.
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For this reason, the Alamouti scheme shows less MIMO performance im-
provement than the other MIMO schemes that require and exploit more chan-
nel knowledge, see figure 6.19. If a system design faces the question whether
to prefer multiple receive antennas over transmit antennas, this result clearly
suggests to prefer multiple receive antennas for receive diversity.

Nevertheless, if the antenna configuration is fixed and only the transmitter
side has two antennas, the Alamouti scheme is one simple and efficient solution
to exploit diversity even though no channel knowledge at the transmitter is
required, so that the performance is improved compared to the single antenna
case.
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7 Spatial Multiplexing
Transmit or receive diversity is a means to combat fading. By this means,
multiple antennas are used to to improve the reliability for one communication
channel.

In contrast to this, multiple antennas on both transmitter and receiver sides
(figure 7.1) can also be used to turn the single radio link into multiple parallel
channels [Fos96, Tel99]. This exploits an increase in the available degrees of
freedom available for communication. The MIMO channel will then be turned
into a Gaussian vector channel, where the parallel channels are multiplexed in
space, hence the name Spatial Multiplexing [ZT03, TV05]. A technique is said
to have a spatial multiplexing gain r if the data rate of this technique scales like
r logSNR, compared to the data rate scaling of logSNR in the single antenna
case.

... ...

11

NT NR

Figure 7.1: Multiple transmitter antennas, multiple receiver antennas

By transmitting independent information symbols over each of these paral-
lel channels, the data rate can be increased. This is evaluated by determining
the bandwidth efficiency of this technique over the SNR. This is done in the
i.i.d. Gaussian channel model first. The behavior in a MIMO-WSSUS channel
model is considered as a second step. It is expected that in a rich scattering
channel even the simple Spatial Multiplexing techniques with linear receiver
will strongly increase the available data rate when increasing the number of
transmit and receive antennas. However, in a more unfriendly radio chan-
nel with little scattering as modeled with the new MIMO-WSSUS model, it
is expected that Spatial Multiplexing techniques perform not as good anymore.
This emphasizes the fact that performance simulations must use a realistic radio
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channel model like MIMO-WSSUS in order not to give too optimistic results,
as will be seen in the following sections.

7.1 Multiplexing with transmitter channel
knowledge

The ideal case for exploiting the available parallel spatial channels is when the
channel state information (CSI) is known perfectly at both the receiver and the
transmitter [Ran08]. For this case the current channel matrix H is known and
fixed.

The information theoretical capacity of the MIMO channel has been calcu-
lated in literature [Tel99]. It has been shown that the optimum mutual informa-
tion, hence the capacity, can be reached when the MIMO modulation consists of
a multiplication with the Singular Value Decomposition (SVD) at the transmit-
ter side, together with adaptation of the modulation scheme according to some
bit loading scheme. For this technique the definition of SVD as explained in
section 4.3.2 is used.

7.1.1 Transformed MIMO transmission

With the Singular Value Decomposition, the following transformation will be
defined

s̃ = V Hs (7.1)

r̃ = UHr (7.2)

z̃ = UHz (7.3)

The MIMO matrix channel of (4.5) and (5.3) can be rewritten as

r̃ = Σs̃+ z̃ (7.4)

where z̃ has the same distribution as z due to the unitary U and ‖s̃‖2 = ‖s‖2,
which means the energy is unchanged. This way, the original MIMO channel
is turned into several parallel AWGN channels:

r̃j = σj s̃j + z̃j, j = 1, . . . , K (7.5)

The maximum data rate over these parallel AWGN channels in space can
be obtained by applying the same techniques that have been described in sec-
tion 3.2.2 for parallel AWGN channels in frequency by OFDM. Namely, the
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Figure 7.2: BER performance of “naive” SVD without adaptive modulation
compared to linear ZF receiver, bandwidth efficiency E = 4
bits/s/Hz. Left: Coded, Right: Uncoded.

capacity over parallel channels is the maximization of the sum of bandwidth
efficiencies of all the sub-channels (3.16). In the MIMO case the channel trans-
fer factors of OFDM are instead replaced by the squared singular values σ2

j of
the respective spatial sub-channel. The resulting bandwidth efficiency over the
time-invariant known MIMO channel is

EMIMO =
K∑
k=1

log

(
1 +

Pkσ
2
k

N0

)
bits/MIMO transmission. (7.6)

Ignoring this result for a moment, (7.4) could naively be used for transmis-
sion, which is a system of SVD transmission without adaptive modulation. Its
BER performance is shown in figure 7.2.

In the uncoded case (figure 7.2 right), the performance is completely un-
changed compared to spatial multiplexing with no channel knowledge at the
transmitter (Linear ZF receiver, see section 7.2.1). Changing the transmission
vector according to (7.4) does not improve the performance at all, as long as the
transmit power is not adapted to the actually available channel quality on the
different subchannels. This is because without different power allocation, the
performance is limited by the outage events due to channel fading. The outage
events due to fading are the limiting factor for the performance in SVD without
adaptive modulation.

However, in a coded system (figure 7.2 left) the behavior is not so clear
anymore. Some improvement over the ZF system can be observed, but it is not
very significant.

In any case, for SVD the channel is assumed to be known anyway and a
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7 Spatial Multiplexing

capacity-achieving bit and power allocation can be calculated. Hence, in the
following sections the technique for exploiting the actual capacity is discussed.

Capacity through Water pouring

Just as in section 3.2, the capacity (which is the maximum bandwidth effi-
ciency) is obtained by solving an optimization problem over the power alloca-
tions Pk. The problem formulation leads to the same solution as in the OFDM
case. Namely, water pouring and bit loading are needed to achieve the capacity.
The water pouring power allocations (3.21) are

P̂k = max

(
0,

1

β
− N0

σ2
k

)
(7.7)

where the constant β is chosen to satisfy the power constraint

K∑
k

P̂k = P . (7.8)

One important difference between OFDM and MIMO-SVD is that in the for-
mer, the pre-processing matrices U ,V (the IFFT and FFT) do not depend on
the channel realization H , whereas in the latter they do depend on the specific
realization of the MIMO channel.

Expected Capacity Value

The expected capacity that can be achieved in MIMO-SVD has been evaluated
analytically by Telatar [Tel99]. The capacity of each of the spatial sub-channels
(7.5) is a function of the singular values σj of the channel matrix H , whose
entries are random variables. Hence, the singular values are random and thus
the capacity is a random variable as well.

In different channel models, the statistics of the singular values are different
as well. Figure 4.4 and figure 4.17 show the PDFs of the singular values in
various antenna configurations in the Gaussian i.i.d. and the MIMO-WSSUS
radio channel model, respectively.

The expected value of the capacity is analyzed by obtaining the PDF of an
unordered singular value σ from a WISHART1 distribution and then integrating

1Let H be a random matrix with entries forming a i.i.d. Gaussian collection with zero-mean, independent real
and imaginary parts. The matrix W = HHH is a random non-negative definite matrix. The distribution law
ofW is called the WISHART distribution, and its joint density of the ordered eigenvalues is known analytically
[Ede88, Tel99].

92



7.1 Multiplexing with transmitter channel knowledge

−5 0 5 10 15 20 25
0

5

10

15

20

25

SNR [dB]

C
ap

ac
ity

 [b
its

/s
/H

z]

 

 
6x6
5x5
4x4
3x3
2x2
SISO

Figure 7.3: Theoretical Capacity of SVD-MIMO and NT = NR =
{1, 2, . . . , 6}

over the PDF of that singular value [Tel99]. The resulting expectation of the
capacity for NT = NR is

CSV D(P ) =

∞∫
0

log(1 + Pλ/NR)

NR−1∑
k=0

Lk(λ)2e−λdλ (7.9)

where Lk(·) is a Laguerre polynomial of order k (see2 [AS64] §22.3) and P
is the total transmit power. The resulting capacity for the first few numbers of
antennas with NR = NT is shown in figure 7.3, where the single-antenna case
is identical to figure 3.4.

These results have been subsequently refined by others [KH05, DM05, Ran08].
With the same number of transmit and receive antennas, in the limit of a large
number3 of antennas the capacity increases linearly with the number of anten-
nas NT :

C ∼ NT

4∫
0

log(1 + SNR · ν) 1

π

√
1

ν
− 1

4
dν (7.10)

2The first few Laguerre polynomials are L0(x) = 1, L1(x) = −x + 1, L2(x) = 1
2 (x2 − 4x + 2), L3(x) =

1
6 (−x3 + 9x2 − 18x+ 6), L4(x) = 1

24 (x4 − 16x3 + 72x2 − 96x+ 24)
3The antennas number where this asymptotical expression comes close to the exact capacity is surprisingly small

and for many cases is in the region of 5 to 10 antennas [DM05]
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Figure 7.4: BER performance of SVD with adaptive modulation. Bandwidth
efficiency E = 4 bits/s/Hz, Gaussian i.i.d. Channel. Left: Coded,
Right: Uncoded.

The increase in capacity and bandwidth efficiency of figure 7.3 is termed the
spatial multiplexing gain. By using Singular Value Decomposition with Water
Filling and Loading this capacity can be achieved.

7.1.2 Performance

The bit error rate of a MIMO transmission using SVD with water filling and
bit loading is shown in figure 7.4. It is clearly visible how SVD with loading
improves the performance significantly with increasing numbers of antennas
[BVR07, BVR08, Ran08].

In comparison to the linear ZF receiver (see section 7.2.1) even a NT =
2, NR = 2 system outperforms ZF systems with much higher antenna num-
bers. In the uncoded case (figure 7.4, right) it can be observed how subchannel-
specific adaptive modulation already improves the BER performance signifi-
cantly. However the full exploitation can be obtained only by the combination
of adaptive modulation and channel coding.

The bandwidth efficiency that is actually achieved in these simulation results
should now be compared with the theoretical capacity of figure 7.3. The sim-
ulated results are being shown in figure 7.5, where the single points represent
the bandwidth efficiency due to one particular MIMO configuration at an SNR
required for a BER of less than 10−4.

The resulting relation between SNR and achievable bandwidth efficiency al-
ready shows the same slope as the theoretical curves, increasing much more
steeply with a higher number of antennas available. The simulation results of
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Figure 7.5: Bandwidth Efficiency (at BER = 10−4) and Capacity of SVD-
MIMO and NT = NR = {1, 2, 4}, Gaussian channel

the MIMO-SVD scheme with water filling, bit interleaving, and channel coding
achieves bandwidth efficiencies which are more or less close to the theoretical
capacity, although there is still a gap of 4-5 dB due to non-ideal (finite) channel
coding and discrete modulation steps.

However, the SNR of these simulation results is to be taken with care. In
this case the SNR shown is only the average SNR, but due to water filling,
the SNRs of the subset of actually used subcarriers and MIMO subchannels
is higher than this average SNR. Hence, the SNR of the simulations does not
accurately represent the SNR which would be seen by a system in reality. Nev-
ertheless these results give a clear indication that an MIMO-SVD scheme with
ideal channel knowledge can achieve a performance that is rather close to the
theoretical capacity.

Also, these results are simulated under the assumption of a perfect channel
knowledge at the transmitter. If this assumption no longer holds, the perfor-
mance degrades significantly and the MIMO technique needs to be modified
[BVR07, BVR08], but this was not considered in this thesis.

Performance in MIMO-WSSUS channel

The previous results of figure 7.4 showed a bandwidth efficiency that comes
nicely close to the capacity, but in a Gaussian i.i.d. radio channel. The inter-
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Figure 7.6: Bandwidth Efficiency of SVD-MIMO in Gaussian and in MIMO-
WSSUS radio channel

esting question is how this performance looks like if the radio channel does
not offer as much statistical independence and the degrees of freedom for spa-
tial multiplexing are much more limited. Hence, the bandwidth efficiency in
a MIMO-WSSUS radio channel is the relevant criterion to judge whether this
technique can work well in a realistic system as well.

In figure 7.6, this MIMO technique is simulated in a MIMO-WSSUS radio
channel with LR = LT = 6 scatterers. As one can observe, the performance
is somewhat degraded compared to the Gaussian channel. Nevertheless the
slope of the bandwidth increase is still comparable to the ideal capacity, and
increasing the number of antennas still increases the achievable bandwidth effi-
ciency. Hence, SVD-MIMO were a good candidate for increasing the spectral
efficiency even in MIMO-WSSUS channels, if the required channel knowledge
in the transmitter could be obtained by efficient means.

7.2 Multiplexing without transmitter channel
knowledge: Linear MIMO Receivers

The previous technique requires the ideal channel state information (CSI) not
only at the receiver, but also at the transmitter. In a realistic system, this is
usually not achievable. For this reason, the available spatial multiplexing gain
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for receiver CSI only is explained in the following.
Exploiting spatial multiplexing is achieved by transmitting different and in-

dependent data symbols from each transmit antenna. Hence, more than one
data stream is transmitted in parallel. This is a similar situation to the multi-
user channel, where multiple spatially separated users will transmit indepen-
dent data streams, and a base station receiver has to separate those data streams
again.

Receiver structures for separating independently transmitted data streams
have been under research for a long time already. Linear structures can easily be
thought of, but their performance is limited. Non-linear structures, especially
iterative iterative cancellation techniques (“Successive Interference Cancella-
tion”, SIC), show huge potential, but are beyond the scope of this thesis.

In this section, linear receiver techniques for spatially multiplexed signals
are presented and their BER performance is evaluated. The performance is
simulated in both the i.i.d. Gaussian and the MIMO-WSSUS radio channel
model, as the behavior will turn out to be rather different in different radio
channel models.

7.2.1 Zero Forcing / Matrix Inversion

The straightforward way of separating all parallel original data streams is to
invert the channel matrix. This way, all data streams will not interfere with each
other at all. This receiver ideally corrects all distortion that has been introduced
by the channel matrix, but at the expense of enhanced noise power. The receiver
structure is called Zero Forcing, or Interference Nulling, or Decorrelator.

The MIMO demodulator matrix is

GZF = H−1 . (7.11)

In other words, the MIMO demodulator is a matrix multiplication of the re-
ceived vector withH−1, the inverse of the MIMO channel matrix. The received
signal on a single OFDM subcarrier results as

s̃ = H−1(Hs+ n) = s︸︷︷︸
Signal

+H−1n︸ ︷︷ ︸
Noise

. (7.12)

However, this demodulation technique works only under the assumption that
the channel matrix H is invertible, which means it has full rank and (equiva-
lently) it has no singular values close to zero. And even if there is full rank, the
inversion of singular values close to zero will result in a large noise amplifica-
tion in the estimated symbols.
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Figure 7.7: Coded BER performance of linear ZF receiver, E = 4 bits/sec/Hz.
Left: Gaussian channel; Right: MIMO-WSSUS channel.
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Figure 7.8: Coded BER performance of linear ZF receiver, E = 12 bits/sec/Hz.
Left: Gaussian channel; Right: MIMO-WSSUS channel.

Performance

The BER performance of this spatial multiplexing with linear zero forcing re-
ceiver is shown in figure 7.7, left plot, for an i.i.d. Gaussian channel at band-
width efficiency E = 4. Given the same bandwidth efficiency, in this channel
model using some more parallel data streams results in better performance.
This demonstrates the potential gain of spatial multiplexing.

For the same efficiency and same number of transmit antennas, increasing
the number of receive antennas will additionally improve performance due to
the diversity gain. This is no different from what the previous section showed.

Figure 7.8 shows the same comparison but for the higher bandwidth effi-
ciency of E = 12 bits/s/Hz.

In terms of increased capacity, figure 7.9 compares the achievable bandwidth

98



7.2 Multiplexing without transmitter channel knowledge: Linear MIMO Receivers

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

SNR [dB]

B
an

dw
id

th
 E

ffi
ci

en
cy

 [b
its

/s
/H

z]

 

 
Capacity 4x4
4x4 SVD
Capacity 2x2
4x4 ZF
Capacity 1x1
2x2 SVD
2x2 ZF
1x1 ZF

Figure 7.9: Bandwidth Efficiency of MIMO-ZF in Gaussian channel

efficiency to the theoretical capacity of the different antenna configurations.
One can nicely see the steepness of the capacity curves reflected in the simu-
lation results, although the linear ZF receiver has a large gap to the capacity:
At NT = NR = 2 the linear ZF receiver has 8dB gap to the optimum, at
NT = NR = 4 the gap is more than 12 dB. Nevertheless this technique can be
used to achieve also very high bandwidth efficiencies.

However, this promising performance does not hold anymore if the channel
model is not so MIMO-friendly. The same antenna and PHY mode combina-
tions are shown in figure 7.7, right plot, for the MIMO-WSSUS channel model
with LR = LT = 6 scatterers. Diversity-only (NT = 1) shows an unchanged
behavior compared to the Gaussian case. But all spatial multiplexing config-
urations (NT ≥ 2) exhibit significantly worse performance than the Gaussian
case. For the efficiency shown here one would still have to choose the NT = 1
case to achieve the best performance. The corresponding capacities are shown
in figure 7.10, which demonstrates that this linear MIMO receiver will actually
decrease the achievable efficiency once such a difficult radio channel is being
used.

Discussion

For a channel matrix with i.i.d. Gaussian random variables as entries, the PDF
of the singular values have been calculated by [Tel99]. As it turns out, even
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Figure 7.10: Bandwidth Efficiency of MIMO-ZF in MIMO-WSSUS channel

for a small dimension of the matrix NT = NR = 4 there is already a non-
negligible probability for some singular values to be very close to zero. Due
to the quantization in any realistic channel estimation device this is a serious
issue, and in conclusion the Zero Forcing equalizer will not give any useful
performance in a realistic MIMO system.

This effect turns out to be performance limiting once the Gaussian channel
model is replaced by the MIMO-WSSUS one. In that case, ill-conditioned
channel matrices will occur rather often, and in this case the linear ZF receiver
cannot reliably work, as is obvious in figure 7.7, right plot. For this reason,
the receiver could be used for some radio channels, but surely not as a general
solution for all different radio channels that appear in realistic systems.

7.2.2 Optimum MMSE Receiver

The optimum linear MIMO demodulator for a flat-fading channel is also opti-
mum for the MIMO-OFDM system with subcarrier specific MIMO modulation
(section 5.1), which is an obvious outcome of the orthogonality of the subcar-
riers. In this chapter, the single-user detection case is considered only.

The optimum linear equalizer (and MIMO demodulator) is one that mini-
mizes the mean square error ε in the received data symbols d, i.e. it fulfills
the minimum mean square error (MMSE) criterion. The error in the received
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signal is denoted as
ε = d− b (7.13)

and the optimization criterion is to minimize its squared magnitude E{‖ε‖2}.
The derivation of such an MMSE equalizer is fairly straightforward, using the
orthogonality principle E{ε · dH} = 0 which says that the demodulated signal
and its residual error should not be correlated anymore. In other words, af-
ter demodulation the residual error “should contain no information” about the
actual signal anymore.

The equalized vector d is calculated with equalization matrixG as

d = GHb+Gn . (7.14)

The covariance matrix of the input data symbols is defined as Rbb = E{bbH},
and Rnn = E{nnH} the covariance matrix of the noise samples, and noise
and data symbols are assumed to be uncorrelated:

E{εdH} = 0 (7.15)

= E{[(HGH − I)b+Gn][GHb+Gn]H}
= (GH − I)E{bbH}HHGH +GE{nnH}GH

0 = GHRbbH
H −RbbH

H +GRnn . (7.16)

The optimum matrix-valued MIMO demodulator solution is given by

GMMSE = RbbH
H [HRbbH

H +Rnn]
−1 . (7.17)

This result is in accordance with similar results in [SSB+02] and many others.
Further simplifications can be carried out by assuming the transmit symbols to
be independent and with power P so that Rbb = PI , and the noise similarly
Rnn = σ2

nI , which gives

GMMSE = HH [HHH +
σ2
n

P
I]−1 . (7.18)

Resulting Signal-to-Interference Ratio

Using such an equalization matrix, it is now the interesting question to see
the resulting Signal-to-Interference and Noise Ratio (SINR) after equalization.
This SINR of a linear MMSE receiver has been calculated by Tse et al. [TH99,
TZ00, DM05].
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Figure 7.11: Asymptotic limit of the SIR for equal receive powers (7.19) with
α = NT/NR as the ratio of transmit over receive antenna numbers

Although the actual SINR of the MMSE receiver results in a rather involved
expression, the asymptotic Signal-to-Interference (SIR) itself was given in a
relatively simple analytical formulation by [TH99]. The surprising result there
was that although the MMSE receiver depends on the actual channel realization
through the H multiplications, for large antenna numbers (NR → ∞ with
α = NT/NR fixed) the SIR will converge to a limit that is independent of the
channel realization.

In [TH99] a general solution for this limiting SIR was given, but an explicit
solution can be given only for the special case of equal receive powers from all
transmit antennas. In this case, the asymptotic SIR is

SIR =
1 − α

2

P

σ2
n

− 1

2
+

√
(1 − α)2

4

(
P

σ2
n

)2

+
1 + α

2

P

σ2
n

+
1

4
(7.19)

where α = NT/NR is the ratio of transmit over receive antenna numbers, and
P/σ2

n is the average received Signal-to-Noise Ratio (SNR) at the receive an-
tenna of interest. This SIR is plotted in fig. 7.11 over the SNR for several
values of α.

BER Performance

The BER performance of this spatial multiplexing with optimum linear receiver
is shown in figure 7.12, left plot, for an i.i.d. Gaussian channel at bandwidth ef-
ficiencyE = 4 bits/s/Hz. Similar to the ZF results in the previous section, using

102



7.2 Multiplexing without transmitter channel knowledge: Linear MIMO Receivers

 1e−04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25

B
E

R

SNR [dB]

SISO MMSE, 64−QAM 2/3
1x2 MMSE, 64−QAM 2/3
2x2 MMSE, 16−QAM 1/2

4x4 MMSE, QPSK 1/2
2x4 MMSE, 16−QAM 1/2

4x8 MMSE, QPSK 1/2

 1e−04

 0.001

 0.01

 0.1

 1

 10  15  20  25

B
E

R

SNR [dB]

4x4 MMSE, QPSK 1/2
4x8 MMSE, QPSK 1/2

2x2 MMSE, 16−QAM 1/2
2x4 MMSE, 16−QAM 1/2

SISO MMSE, 64−QAM 2/3
1x2 MMSE, 64−QAM 2/3

Figure 7.12: Coded BER performance of linear MMSE receiver, E = 4
bits/sec/Hz. Left: Gaussian channel; Right: MIMO-WSSUS
channel.
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Figure 7.13: Coded BER performance of linear MMSE receiver, E = 12
bits/sec/Hz. Left: Gaussian channel; Right: MIMO-WSSUS
channel.

some more parallel data streams results in better performance. This demon-
strates the potential gain of spatial multiplexing.

However, similar to the ZF receiver this promising performance does not
hold in the MIMO-WSSUS channel model with LR = LT = 6 scatterers, see
figure 7.12, right plot. Diversity-only (NT = 1) shows an unchanged behav-
ior compared to the Gaussian case. But all spatial multiplexing configurations
(NT ≥ 2) exhibit significantly worse performance than the Gaussian case. For
the efficiency shown here one would still have to choose the NT = 1 case to
achieve the best performance.

For a higher bandwidth efficiencies the same comparison is made forE = 12
bits/s/Hz in figure 7.13.
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Figure 7.14: Bandwidth Efficiency of MIMO MMSE in Gaussian channel

The achievable bandwidth efficiencies are summarized in the capacity plots
of figure 7.14. It turns out the linear MMSE receiver does not perform signif-
icantly better than the ZF receiver in the SNR and data rate ranges of interest.
The outage events due to ill-conditioned channel matrices are the performance
limiting factor in the MMSE receiver as well. For this reason, the receiver
could be used for some radio channels, but surely not as a general solution for
all different radio channels that appear in realistic systems.

7.2.3 Linear Receivers in MIMO-WSSUS radio channel

The performance of the techniques in the previous sections looked fine when
using only the i.i.d. Gaussian radio channel model. In terms of spatial degrees
of freedom, this radio channel is an ideal situation. In contrast to this, a realistic
system will have to cope with radio channels that do not offer such a high
degree of stochastic independence. Hence, all presented linear MIMO receivers
are again evaluated in the MIMO-WSSUS radio channel model.

The simulated results indicate problems for Spatial Multiplexing in MIMO-
WSSUS channels, figure 7.15. The basic assumption for Spatial Multiplexing
is a large number of scatterers in the radio channel, so that the entries of H
can assumed to fade independently to begin with. However, when choosing
parameters for a MIMO-WSSUS radio channel model which seem reasonable
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Figure 7.15: Bandwidth Efficiency of MIMO MMSE in MIMO-WSSUS chan-
nel

enough (see section 4.4), the performance is already degraded beyond any us-
able values.

Hence, with the linear receivers investigated in this work, it can be con-
cluded that for realistic non-Gaussian channels, using Receiver Diversity is
pretty much all that is possible as MIMO technique. If MIMO techniques
should be used with multiple antennas on both sides, non-linear receiver struc-
tures will be essential, but these are beyond the scope of this work.

Comparison of Spatial Multiplexing and Alamouti Diversity

An interesting question is the comparison of this simple linear spatial multi-
plexing scheme with the diversity scheme of Alamouti coding (section 6.2.1).
Both schemes assume the same amount of channel knowledge – no knowl-
edge at the transmitter but full knowledge at the receiver. Both schemes can
be used with arbitrary numbers of receive antennas to increase the diversity of
the system. The actual coded BER performance is shown in figures 7.16 for a
bandwidth efficiency of E = 4 bits/s/Hz and various antenna configurations.

In a Gaussian radio channel (figure 7.17), for a small number of receive
antennas (one or two) the Alamouti scheme slightly outperforms linear MMSE
equalization, whereas for a larger number of receive antennas (more than two)
MMSE clearly outperforms Alamouti. This demonstrates how the Alamouti
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Figure 7.16: Coded BER of Alamouti scheme and linear MMSE spatial multi-
plexing. Bandwidth efficiency E = 4 bits/s/Hz. Left: Gaussian
Channel; Right: MIMO-WSSUS channel.

scheme exploits a diversity order of two through the two transmit antennas, but
the MMSE system with enough receive antennas can additionally make use of
the spatial degrees of freedom through spatial multiplexing.

Figure 7.17 shows how the bandwidth efficiency of Alamouti is an improve-
ment over SISO, but only a small improvement compared to MMSE diversity.

Also, the Alamouti scheme is obviously much less sensitive to the amount of
scattering that is available in the MIMO radio channel. This is demonstrated by
the fact that the Alamouti curves in the MIMO-WSSUS channel (figure 7.16,
right pictures) show almost no degradation compared to the Gaussian chan-
nel (left pictures), whereas the MMSE performance is greatly reduced in the
MIMO-WSSUS channel. This is confirmed for different bandwidth efficien-
cies in figure 7.18.

The disadvantage of Alamouti is observable with larger antenna numbers:
The receive antennas already provide a lot of diversity and one can observe only
a minimal increase in performance because the Alamouti system cannot exploit
the additional degrees of freedom. E.g. a 2-by-4 MMSE system improves the
performance quite substantial, compared to the Alamouti system with the same
antenna numbers.

In summary, the Alamouti scheme is a good choice for one or two receive an-
tennas in any radio channel. Additionally, the Alamouti scheme clearly offers
much more robust performance regardless of the MIMO radio channel condi-
tions.

However, in systems with more receive antennas and rich scattering radio
channels, other MIMO techniques show better performance, where even linear
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Figure 7.17: Bandwidth Efficiency (at BER=10−4) of Alamouti and MMSE re-
ceiver, Gaussian channel
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Figure 7.18: Bandwidth Efficiency (at BER=10−4) of Alamouti and MMSE re-
ceiver, MIMO-WSSUS channel
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MMSE equalization strongly outperforms the Alamouti scheme. Nevertheless
one should note the MMSE advantage greatly depends on the rich scattering
radio channel and thus cannot be relied upon in general.
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7.3 Spatial Multiplexing with variable Channel
Knowledge at the Transmitter

The previous sections have introduced several approaches for linear precoding
techniques in MIMO radio channels. Some of them assumed no channel knowl-
edge at the transmitter, others assumed perfect channel knowledge. In this sec-
tion, a previously proposed scheme presented in [Tau05] is described that uses
a variable amount of radio channel knowledge at the transmitter through the
factorization of a matrix and using only a subset of the factors for the channel
knowledge at the transmitter.

An improvement to this scheme is also presented that modifies its param-
eterization of the unitary matrices. The optimum precoding matrix is factor-
ized into several unitary product matrices which are parameterized by simple
reconstruction parameters. The modification simplifies the parameterization
technique and improves the performance of the original algorithm.

Introduction

The technique described in this section uses linear precoding on the transmitter
side [Tau05, SSB+02] which requires the feedback of channel state information
(CSI) through a feedback channel from the receiver side to the transmitter side.
To reduce the amount of required feedback information, a variable amount of
CSI is used which is based on a factorization of the precoding matrix. The
optimum precoding matrix is factorized into specific unitary product matrices
by an algorithm described in [Mur62], where the unitary product matrices are
parameterized by simple reconstruction parameters. This scheme enables a
flexible trade-off between an optimum precoding matrix and the amount of
CSI signaling to the transmitter side. Nevertheless, an ideal knowledge of the
CSI at the receiver side is assumed throughout this section.

The matrix parameterization technique of [Mur62] has also been used in
[ARU01] and subsequently [MBV02] for finding good packings in complex
Grassmannian space. The parameterization scheme has been used to compute
gradients in an efficient manner. However, the modifications described in this
contribution are not expected to have any significant impact on the optimization
outcome in [ARU01, MBV02], although the simplification in the choice of pa-
rameters might lead to an easier implementation of the optimization algorithm.

In this contribution, the algorithm of [Tau05, Mur62] is improved by a mod-
ified choice of particular parameters during the factorization algorithm. The
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7 Spatial Multiplexing

resulting performance improvement in the factorized matrix and in a coded
MIMO-OFDM system is demonstrated analytically and quantitatively.

7.3.1 Variable Channel Knowledge through Matrix
Parameterization

The considered transmission system has NT transmit and NR receive antennas
and NT ≤ NR. In a vector-matrix notation, the system is shown in figure 7.19.

t
U

s
H

n
r

QH
R−1 t̃

Precoder Radio channel Decoder/Equalizer

Figure 7.19: Per-subcarrier block diagram of transmission system

At each time step, the symbol vector t ∈ C
NT contains NT modulation sym-

bols in parallel. It is multiplied by the precoding matrixU to give the baseband
transmission vector s, which is transmitted by NT antennas simultaneously.
The radio channel is described in the baseband by a multiplication with the
channel transfer matrixH and the addition of white Gaussian noise n.

At the receiver side, the signals from the NR receive antennas are sampled,
giving the baseband receive vector

r = HUt+ n . (7.20)

This receive vector r is decoded by the MIMO equalizer. In figure 7.19, it
is shown that this equalizer is split into a multiplication with a unitary de-
coder matrixQH and a second multiplication with the equalization matrixR−1.
These matrices are obtained from the QR decomposition of the matrix product
H ·U

QR := HU (7.21)

where Q is an unitary and R an upper triangular matrix. Additionally, the
equalization block R−1 may include non-linear techniques like successive in-
terference cancellation. The MIMO equalization obtains the estimated symbol
vector t̃ which is then used for demodulation.

Precoding with variable Channel Knowledge

It is well known that the channel capacity is maximized if the matrix of left
singular vectors U from the singular value decomposition (SVD) of the radio
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channel matrix H = V ΣUH is used for precoding [RC98, SSB+02]. How-
ever, to determine this ideal precoding matrix U , the full knowledge of the
channel transfer matrix H is necessary at the transmitter, or equivalently, the
full matrix U has to be signaled back from the receiver to the transmitter with-
out any errors.

In this proposal, an approximation to the ideal precoding matrix is calculated
by the factorization of the ideal precoding matrix U into unitary matrices U pq.
Since the matrices U pq are all unitary, any subset of the U pq can be used for
precoding without losing the unitary property of the linear precoding. Addition-
ally, each of the U pq factors are fully determined by a small set of parameters,
which can be signaled back from the receiver to the transmitter with smaller
effort than the full matrix. And for a trade-off between signaling effort and per-
formance gain, only a subset of the U pq parameters can be signaled according
to different criteria as described below.

In combination, the matrix factorization is a promising technique to achieve
a flexible adaptation to the current radio channel situation and to the current
possibilities for signaling channel information back from the receiver to the
transmitter.

Similar to the previous sections, this technique is proposed to be used on
each subcarrier separately, as described in section 5.1. This leads to a system
structure as shown in figure 5.2.

7.3.2 Parameterization of Unitary Matrices

Definition of the factorization

Definition 7.1 Let p and q > p be any two numbers from the set 1, . . . , n. Let
an unitary base matrix U pq(φpq, σpq) ∈ C

n×n be defined as follows:

1. All its diagonal elements are 1 except the pth and qth elements which are
cos(φpq), and

2. All its non-diagonal elements are zero except the element in the pth col-
umn and qth row which is sin(φpq)e

jσpq , and the element in the pth row
and qth column which is − sin(φpq)e

−jσpq

These base matrices are “almost” identity matrices, except for the pth and qth
row and column, so that a multiplication with such a base matrix will result in
a complex rotation in the p, q-plane. Note that UH

pq(φ, σ) = U pq(−φ, σ).
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As an example, one such base matrix in C
3×3 is

U 12(φ12, σ12) =

⎛
⎝ cos(φ12) − sin(φ12)e

−jσ12 0
sin(φ12)e

jσ12 cos(φ12) 0
0 0 1

⎞
⎠ . (7.22)

For any dimension n, there are
(
n
2

)
= n(n − 1)/2 different dimension pairs

and hence different base matrices, and each of these base matrix U pq is unam-
biguously defined by the pair of real-valued parameters φpq, σpq. In [Mur62]
some of the φpq’s are called longitude angles and bounded by the parameter
range −π ≤ φpq < π (notably those with q = n), whereas the σpq’s and the
rest of the φpq’s are called latitude angles and bounded by the parameter range
−π/2 ≤ σpq ≤ π/2.

Theorem 7.1 (from [Mur62]) Any unitary matrixS ∈ C
n×n can be factorized

into a product of base matrices and one diagonal matrix:

S = Δ
1∏

p=n−1

(
n∏

q=p+1

U pq(φpq, σpq)

)
(7.23)

(note: the first product term is counting downwards) where

Δ :=

⎛
⎝ejδ1 0

. . .
0 ejδn

⎞
⎠ (7.24)

The first n − 1 parameters δ1, . . . , δn−1 of the diagonal matrix Δ are called
latitude angles and bounded by −π/2 ≤ δk ≤ π/2, k = 1 . . . n − 1, whereas
the last parameter δn is called a longitude angle and bounded by −π ≤ δn < π.
The parametric space is closed by the identification of the end-points of the
interval −π ≤ φpq < π and of the interval −π ≤ δn < π. The topological
character of the parametric space is that of an anchor ring or torus.

The factorization (7.23) is unambiguous on the understanding that when σ11
is indeterminate it is set to zero.

The proof by construction can be found in [Mur62].

Approximation criteria

With this matrix factorization at hand, in [Tau05] it is proposed to calculate the
actual MIMO precoding matrix from a subset of the base matrices in (7.23) if
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the amount of CSI feedback signaling should be decreased. In this section, a
criterion of choosing the “most significant” base matrices of (7.23) is described.

The diagonal matrix Δ of (7.24) can be ignored for the MIMO precoding.
To show this, the factorization (7.23) of the Hermitian matrix UH in the SVD
of the channel matrix (section 7.3.1) with n = NT is calculated as

UH = Δ
1∏

p=n−1

n∏
q=p+1

U pq . (7.25)

Inserting this into the equation for the received vector (7.20) gives

r =

(
V ΣΔ

1∏
p=n−1

n∏
q=p+1

U pq

)
· Ũt+ n . (7.26)

This shows that the (potentially approximated) precoding matrix Ũ only needs
to cancel the U pq base matrices by their respective Hermitian UH

pq factors but
can ignore the diagonal matrix Δ. The effect of Δ is viewed as a variation
of the diagonalized radio channel matrix Σ, which has to be estimated and
compensated for at the receiver side anyway. Therefore the diagonal matrix Δ
will be neglected for the MIMO precoding matrix.

In the product of unitary base matrices U pq in (7.23), the base matrices that
are most significant are those most different from an identity matrix. The dif-
ference to the identity matrix can be calculated and results in the simple expres-
sion4

‖U pq(φpq, σpq) − I‖F = 2 sin
|φpq|

2
. (7.27)

This expression is maximized by the maximum absolute values of φpq.
Therefore if less than the full number of base matrices should be used (say,

k < K = n(n − 1)/2 instead of K), the k base matrices with the largest |φpq|
are chosen for the approximated precoding matrix.

7.3.3 Matrix Factorization Algorithm

Iteration steps

The algorithm for constructing the factorization (7.23) will be described in the
following. The basic idea of the iterative algorithm is to calculate the parame-
ters of a single base matrix per step. In particular, the rightmost base matrix of

4‖·‖F denotes the Frobenius norm which is the square root of the sum of all squared absolute values of the matrix
elements
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(7.23) is determined in each step, and an algorithm for unambiguously obtain-
ing the resulting U pq matrices will be described.

In the first step this base matrix is U 1n. Multiplying S by the complex
conjugate matrix will then remove this base matrix from the product due to
UUH = I , giving the next matrix iterate S′ as

S[U 1n(φ1n, σ1n)]
H = S′ . (7.28)

The algorithm is then repeated for the restS′ of the product until the parameters
for all base matrices are determined and the diagonal matrix (7.24) is the only
remainder on the right hand side of (7.28).

Now it is described how to reduce the product in (7.23) by a single matrix,
i.e. how to execute one step (7.28) and determine the matrixU 1n. The approach
is to choose appropriate conditions on the reduced matrix S′ in (7.28) to obtain
suitable φpq, σpq, so that the resulting U pq will be of the desired form (7.22).

Two particular matrix elements of S′ are considered, namely

s′11 = s11 cos(φ1n) − s1n sin(φ1n)e
jσ1n (7.29)

s′1n = s11 sin(φ1n)e
−jσ1n + s1n cos(φ1n) (7.30)

which have been obtained from (7.28) by⎛
⎝s′11 · · · ∗ s′1n

. . . ∗
∗ · · · ∗ ∗

⎞
⎠ =

⎛
⎝s11 s1n

. . .
sn1 snn

⎞
⎠ ·

⎛
⎜⎜⎝

cos(φ1n) 0 · · · sin(φ1n)e
−jσ1n

0 1 0
. . .

− sin(φ1n)e
jσ1n 0 · · · cos(φ1n)

⎞
⎟⎟⎠ .

Murnaghan algorithm

In [Mur62] the following conditions on the two matrix elements are used for
the construction of one base matrix:

c1) s′1n = 0

c2) −π/2 ≤ arg(s′11) ≤ π/2 or s′11 = 0 .

These conditions are sufficient to obtain an unambiguous solution for φ1n, σ1n
so thatU 1n is of the form (7.22), and the detailed calculation steps are described
in [Mur62].
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Modified parameterization algorithm

In this contribution, the bounds for the parameter space are chosen differently,
resulting in a modified construction of the factorization. According to section
7.3.2, the diagonal matrix Δ of latitude angles δ1, . . . , δn−1 and one longitude
angle δn will not be used for the precoding matrix anyway. This contribution
proposes to use all angles δ1, . . . , δn as longitude angles and all angles φpq as
latitude angles. This is in contrast to the original proposal of [Mur62], where
the φpq, q = n have been used as longitude angles.

In other words, this contribution proposes a tighter bound on the parameter
space of all φpq parameters as follows (“modified” parameterization):

−π/2 < φpq ≤ π/2 . (7.31)

For the construction of one base matrix, it is sufficient to use only this single
condition

c3) s′1n = 0 . (7.32)

To obtain unique solutions for the parameters so that the resultingU 1n is of the
desired form (7.22), some case differentiations are necessary:

If s11 = 0 but s1n �= 0 in (7.30) with (7.32), then φ1n = π/2 is chosen. On
the other hand if s1n = 0 but s11 �= 0, then φ1n = 0. And if s11 = s1n = 0, then
φ1n becomes irrelevant and is arbitrarily chosen as zero.

If s11 = 0 or s1n = 0 or both, σ1n becomes irrelevant in (7.30) due to the
choice of φ1n and its value is arbitrarily chosen as zero.

Now the case s11 �= 0 and s1n �= 0 is discussed. Inserting (7.32) into (7.30)
gives

tan(φ1n) = −s1n

s11
ejσ1n . (7.33)

The right hand side must result in a real valued parameter due to the real-valued
φ1n. By writing the fraction on the right hand side as s1n

s11
= a+jbwith a, b ∈ R,

the imaginary part of (7.33) is set to zero by

σ1n =

{
π/2 if a = 0

arctan(−b/a) elsewhere.
(7.34)

Eventually, the parameter φ1n and thus the full base matrix U 1n(φ1n, σ1n) is
obtained by

φ1n = arctan(a cos(σ1n) − b sin(σ1n)) . (7.35)

Interestingly, this modified parameterization is even easier to implement when
compared to the description in [Mur62], but it shows better performance in the
later simulations.
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7.3.4 Approximation Error

First of all, the approximation error of the approximated precoding matrixU of
both parameterizations is checked. The residual error in the received symbols
ε is

ε = t̃− t = R−1(Rt+QHn) − t = R−1QHn

where R = QHHU , and if the noise is assumed uncorrelated (E{nnH} =
σ2
nI), the error power is

E{εεH} = σ2
n(R

HR)−1 . (7.36)

The mean squared error values are the diagonal elements of (7.36).
The matrix R is a direct measure for the error power in the resulting esti-

mated symbols and will be investigated further. The optimum matrix R̂ will
result if the precoding matrixU is obtained from the Singular Value Decompo-
sition (SVD) as explained in section 7.3.1. In that case the resulting optimum
matrix (with additional null columns or rows for n �= m) is identical to the diag-
onal matrix of the channel matrix’ singular values R̂ = Σ, and the expression
RHR in (7.36) is diagonal as well. This is used as the reference case.

The relative Euclidian distance of the diagonal elements of the R matrices
to the ideal R̂ matrix is calculated according to

ddiag =
‖diag(R) − diag(R̂)‖2

‖diag(R̂)‖2
, (7.37)

where the diag operator denotes the vector of diagonal elements of a matrix.
The average result is shown in the bottom plots of figure 7.20, calculated

as the average over many precoding matrices for random i.i.d. Gaussian ma-
trix realizations. This serves as a comparison for the modified and the orig-
inal parameterization. In this example with NT = NR = 5 antennas, k =
NT (NT − 1)/2 = 10 different base matrices exist, so with the maximum num-
ber of 10 base matrices, both parameterizations enable an ideal reconstruction
of the optimum precoding matrix and the distance to R̂ converges to zero. For
a smaller number of base matrices where the precoding matrix is no longer
optimum, it can be seen that the modified parameterization shows a smaller
distance to the optimum matrix than the one described in [Mur62].

The same difference can be seen when comparing not only the diagonal val-
ues but a Frobenius norm of the matrix difference

dmat =
‖R− R̂‖F

‖R̂‖F
. (7.38)
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Figure 7.20: Comparison of Murnaghan and modified parameterization. Top:
Frobenius norm of matrix difference (7.38) between R and the
optimum SVD matrix; Bottom: Relative euclidian distance (7.37)
of diagonal elements to optimum SVD diagonal

The top plots of figure 7.20 show a similar result as the previous comparison.
With the maximum number of 10 base matrices, both parameterizations enable
an ideal reconstruction of the optimum precoding matrix and there is no fur-
ther distance to R̂. For a smaller number of base matrices where the precoding
matrix is no longer optimum, it can be seen that the modified parameteriza-
tion shows a smaller distance to the optimum matrix than the parameterization
described in [Mur62].

The differences between the parameterizations can be explained by the choice
of latitude and longitude angles. Murnaghan’s parameterization chooses some
φpq as longitude angles and almost all δk as latitude angles. The modified pa-
rameterization chooses all φpq as latitude angles and all δk longitude angles,
i. e. the parameter bounds are distributed differently but in total the same pa-
rameter space is used. Since the Δ matrix is unused for MIMO precoding
anyway (see section 7.3.2), the modified parameterization can be said to “shift
the approximation error” partly into the unused Δ matrix. A more smooth
approximation as shown in figure 7.20 is the result.

7.3.5 Performance

The linear precoding algorithm has been simulated in the framework that is
used throughout this thesis. The OFDM parameters of table 3.2 have been
used as well, and an i.i.d. Gaussian MIMO radio channel with independent
Rayleigh fading across subcarriers has been assumed. This sections describes
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the performance results in terms of the resulting Bit Error Rate (BER).
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Figure 7.21: Unitary matrix precoding with variable number of base matrices
(Bandwidth efficiency E = 4 bits/s/Hz; uncoded, 4x4 antennas,
Gaussian channel)

In an uncoded MIMO-OFDM system with NT = NR = 4 antennas, the
system performance is shown in figure 7.21. The upper bound for the BER is
identical to a linear ZF equalizer as described in section 7.2.1. The lower bound
for the BER is identical to SVD transmission as described in section 7.1.

Similar to the investigated SVD system, the linear precoding does give much
performance benefit unless combined with Adaptive Modulation. This can be
observed by the “6 param., no adapt.mod.” curve which shows almost no im-
provement compared to the “0 param.” curve. Instead, when combining the
Variable Channel State technique with Adaptive Modulation5, the performance
is improved and eventually reaches that of SVD with Adaptive Modulation,
marked by the curve “6 param., adapt.mod.” (the factorization consists of
K = NT (NT − 1)/2 = 6 base matrices). The lower bound is identical to
an uncoded spatial multiplexing system with matrix inversion, marked by the
curve “0 param”.

It is visible how a trade-off between a larger amount of feedback information
and a better BER performance exists, since any additional base matrix that is
used will also improve the performance. In this simulation, no difference be-
tween Murnaghan and modified parameterization was observed in the average

5This is possible because a feedback channel from the receiver to the transmitter is assumed anyway.
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BER results.
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Figure 7.22: Unitary matrix precoding with variable number of base matrices
with adaptive Modulation and Channel coding (Bandwidth effi-
ciency E = 4 bits/s/Hz; 4x4 antennas, Gaussian channel)

For a comparison in a MIMO-OFDM system, channel coding (convolutional
coding with polynomial 171 133) together with adaptive modulation (bit and
power loading according to [CCB95]) is considered.

The resulting system performance with NT = NR = 4 antennas is shown
in figure 7.22. Similar to the uncoded case, an increasing number of used base
matrices will increase performance (at the expense of increased CSI feedback).

Interestingly, in this simulation there is also a noticeable performance dif-
ference between the base matrices obtained by modified versus the ones by the
Murnaghan parameterization as can be observed in figure 7.23. In all cases with
the approximated precoding matrix, the base matrices calculated by the mod-
ified parameterization result in a performance improvement by roughly 1dB
compared to the Murnaghan parameterization.

As for the performance in a MIMO-WSSUS radio channel, figure 7.24 clearly
shows again how the Variable Channel Knowledge technique varies the perfor-
mance between Spatial Multiplexing as lower bound and SVD as upper bound.
Hence, the best performance in MIMO-WSSUS is simply the case with full
channel information at the transmitter (here: “6 param.”). Unfortunately in the
MIMO-WSSUS channel even a minor reduction in the channel information (“5
param.”) degrades the performance very much so that this technique is as un-
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Figure 7.23: Comparison of Unitary matrix precoding with Modified and orig-
inal Murnaghan factorization. (Coded, Adaptive Modulation,
Bandwidth efficiency E = 4 bits/s/Hz; 4x4 antennas, Gaussian
channel)
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Figure 7.24: Unitary matrix precoding in MIMO-WSSUS channel, with adap-
tive Modulation and Channel coding (Bandwidth efficiencyE = 4
bits/s/Hz; 4x4 antennas)
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7.3 Spatial Multiplexing with variable Channel Knowledge at the Transmitter

usable as Spatial Multiplexing in the MIMO-WSSUS channel. Nevertheless in
some radio channels (like Gaussian) this technique promises to reach similar
performance but with reduced feedback requirements.

Discussion

A linear MIMO precoding technique with variable feedback information pro-
posed by [Tau05] has been investigated. The optimum precoding matrix is
factorized into unitary product matrices, some or all of which can be used
for the approximation of the optimum precoding matrix. For the case of full
feedback information and ideal reconstruction of the precoding matrix, no dif-
ference between the investigated algorithms and SVD precoding could be ob-
served, as had been expected. In the approximated case with limited feedback
information, the matrix factorization enables a trade-off between the amount
of feedback information and the system performance. In this contribution, a
modification to the matrix parameterization of [Mur62, ARU01, MBV02] has
been described. The modified parameterization shows a performance gain over
the original parameterization in terms of matrix norms and also in the BER
performance of a coded MIMO system.
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Figure 7.25: Bandwidth Efficiency of MIMO techniques at BER=10−4, Gaus-
sian channel

7.4 Conclusion

Many different techniques have been proposed that exploit various aspects of
multiple antennas. All techniques can be combined with OFDM to form a
broad-band communication system for high data rates. The bandwidth effi-
ciency of them is summarized in figure 7.25 (Gaussian channel) and figure 7.26
(MIMO-WSSUS channel).

The OFDM transmission technique enables an efficient implementation of
MIMO techniques in a broad-band radio channel. The intersymbol-interference
will be equalized by the frequency domain equalization of the OFDM tech-
nique. This simplification is important because otherwise, the equalizer needs
to take into account the whole length of the channel impulse response for all
MIMO radio channels in parallel. The algorithmic complexity of such an equal-
izer will grow too large for broad-band systems. But OFDM is an effective
technique to avoid such complexities, and in combination with MIMO even a
large number of parallel radio channels can be processed with realistic imple-
mentation complexity.

In a rich scattering radio channel represented by the Gaussian model, even
the simple Spatial Multiplexing with simple linear receivers can strongly in-
crease the available bandwidth efficiency when increasing the number of trans-
mit and receive antennas. Using ideal channel knowledge at the transmitter in
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Figure 7.26: Bandwidth Efficiency of MIMO techniques, MIMO-WSSUS
channel

SVD would still give additional performance gain, but even without this trans-
mitter knowledge the Spatial Multiplexing techniques improve the data rate.
This gives new opportunities in designing a system, where simple algorithms
can be used at the expense of additional hardware for multiple antennas. The
results of figure 7.25 confirm that a linear ZF receiver and a transmitter without
channel knowledge would be sufficient in such a radio channel.

However, in a more unfriendly radio channel with little scattering represented
by the MIMO-WSSUS model, the picture is rather different. The simulated
results indicate problems for any Spatial Multiplexing technique in MIMO-
WSSUS channels, figure 7.26. The assumed large number of scatterers for
Spatial Multiplexing is no longer available, and its performance is degraded
beyond any usable values in the MIMO-WSSUS radio channel. Only by using
transmitter channel knowledge it would be possible to reach usable data rates
through SVD, but only with a larger number of antennas where the effort to
obtain an accurate channel prediction at the transmitter is prohibitive in reality.

Hence, with the linear receivers investigated in this work, it can be con-
cluded that for realistic non-Gaussian channels, using Receiver Diversity is
pretty much all that is possible as MIMO technique. If MIMO techniques
should be used with multiple antennas on both sides, non-linear receiver struc-
tures will be essential, but these are beyond the scope of this work.

Additionally, it can be concluded that MIMO performance simulations must
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7 Spatial Multiplexing

be aware of using a MIMO radio channel model that adequately models the
correlation between the different channel coefficients, as otherwise unrealis-
tically optimistic performance results will occur. The MIMO-WSSUS radio
channel model is a simple modeling approach that enables this choice by the
single parameter of the number of scatterers. This way, the performance of the
investigated techniques could be evaluated in a realistic radio channel behavior.
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8 System Performance and
Radio Channel Models

In this work, the information-theoretical channel capacity is not the most im-
portant performance measure; instead, the Bit Error Rate (BER) of the complete
communication system is the much more important performance figure.

This section uses the BER performance of the MIMO techniques introduced
in chapter 7 as a comparison criterion of the MIMO-WSSUS radio channel
model of chapter 4 with some other channel models from literature. The com-
munication technique in question is the simple Spatial Multiplexing with linear
MMSE demodulation.

It is expected that in a rich scattering channel this simple Spatial Multiplex-
ing technique will strongly increase the available data rate when increasing the
number of transmit and receive antennas. Each radio channel model in the fol-
lowing sections should be able to represent this data rate gain. However, in a
more unfriendly radio channel with little scattering, it is expected that Spatial
Multiplexing techniques perform not as good anymore. Realistic radio chan-
nel models should be able to model this performance degradation as well. The
MIMO-WSSUS radio channel model introduced in this thesis is a simple mod-
eling approach that represents these statistical properties accurately enough and
is still easily configurable.

8.1 Gaussian I.I.D. Radio Channel Model

The Bit Error Rate (BER) of Spatial Multiplexing from section 7.2.2 is evalu-
ated here as an example in various radio channel models.

The performance simulations of this Spatial Multiplexing technique demon-
strate that the MIMO channel model shows a noticeable impact on the perfor-
mance results. In Figure 8.1 (left plot), the i.i.d. Gaussian model from section
4.3 has been used.

In the i.i.d. Gaussian model, the channel transfer matrix H always has full
rank and all singular values will be nonzero (see section 4.3.2). For a larger
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8 System Performance and Radio Channel Models

number of antennas, this means the simulations will show a huge potential
for the parallel transmission of data. But this is a much more optimistic per-
formance than what could be expected in realistic radio channels. In fact, this
channel model is so optimistic that the performance increases significantly with
an increasing number of antennas in figure 8.1, hence increasing the bandwidth
efficiency enormously – which is contrary to what has been expected.
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Figure 8.1: Spatial Multiplexing BER. Left: Unrealistically good performance
in i.i.d. Gaussian radio channel model. Right: Realistic perfor-
mance in MIMO-WSSUS channel model, 10 scatterers. (QPSK
uncoded)

In contrast to these unrealistically optimistic results, the same simulations
have been performed in the MIMO-WSSUS channel model described in section
4.4, here with 10 scatterers. The results in figure 8.1 (right plot) show a behav-
ior completely different from the Gaussian model: For a small number of anten-
nas, Spatial Multiplexing shows an acceptable performance, but as the number
of antennas grows larger than the expected rank of the channel matrix (corre-
sponding to the 10 scatterers in the MIMO-WSSUS radio channel model), the
performance is no longer acceptable and different MIMO techniques would be
required for useful communication. This is the realistic performance that is
expected from such a simple MIMO technique in radio channels with realistic
correlation among the channel matrix elements.

8.2 MIMO-WSSUS Radio Channel Model

The significant parameter of the MIMO-WSSUS model is the number of scat-
terers. The influence of this particular parameter on the overall Bit Error Rate
(BER) of a MIMO-OFDM system with spatial multiplexing and linear MMSE
receiver is investigated in the following.

126



8.3 Maximum Entropy Radio Channel Model

The BER with various choices of the number of scatterers can be seen in
figure 8.2 and 8.5, where a larger number of scatterers leads to a better BER
performance of this example MIMO-OFDM system. (For simplicity, LT =
LR = L is chosen in these examples.) The other radio channel parameters are
of less importance for this MIMO performance difference – only this number of
scatterers is the relevant parameter to distinguish different channel realizations.
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Figure 8.2: Spatial Multiplexing performance in MIMO-WSSUS and Maxi-
mum Entropy channel models (4x4 QPSK uncoded, MMSE re-
ceiver)

8.3 Maximum Entropy Radio Channel Model

In [DM03, DM05], a different channel model is derived on the basis of maxi-
mizing the entropy that is represented by the model, see figure 8.3. Based on
the available knowledge in an MIMO-OFDM system setting with s close scat-
terers at the receiver and s1 at the transmitter, the resulting channel model is
expressed by

H =
1√
ss1

Ψr×sΘs×s1Φs1×t (8.1)

where Θ is a matrix of i.i.d. Gaussian random variables, Φ is the matrix of
steering vectors to the closely located scatterers at the transmitter and Ψ at the
receiver.
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Tx Rx

ΨΘs×s1Φ

Figure 8.3: Maximum Entropy channel model

The MIMO characteristics of this channel model can be changed by the same
two parameters as described in the MIMO-WSSUS model: The number of
closely located scatterers s on the transmitter side and s1 on the receiver side
of the radio link. (For the sake of brevity s = s1 is chosen for the rest of this
section.)

In figure 8.2, the BER of a spatial multiplexing MIMO-OFDM system is
shown. The number of scatterers s in the Maximum Entropy channel model is
used as a parameter. Also, the BER of the same system but with the MIMO-
WSSUS model is calculated, and the number of WSSUS scatterers L is used as
a parameter. As one can observe, the system shows the very same behavior in
both channel models, and the parameter in each model shows the same impact
on the performance of the system.

In figure 8.4, the same comparison is made for a system employing Space-
Time-Block codes (STBC) according to the Alamouti scheme, as explained in
section 6.2.1. In figure 8.5, the system of figure 8.2 now uses additional channel
coding.

In all cases, the resulting performance behaves the same in both channel
models, depending on the single parameter of number of scatterers. Nev-
ertheless the Maximum Entropy channel model has been designed with an
Information-Theoretic approach, which means the MIMO-WSSUS channel model
approach for broad-band communications was not used here. Therefore this
confirms the choice in this work to prefer the MIMO-WSSUS model when the
actual system performance of a broad-band MIMO system is the investigated
criterion.
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Figure 8.4: Alamouti-coded system in MIMO-WSSUS and Maximum Entropy
radio channel model (2x2 QPSK uncoded)
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Figure 8.5: Spatial Multiplexing in MIMO-WSSUS and Maximum Entropy ra-
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8.4 Wide-band Double-directional Radio
Channel Model (WDDCM)

In [GC02, GC04], yet another MIMO channel model is proposed based on an
exact geometrical description of the area used for transmission.

Figure 8.6: WDDCM channel model

In this model, a number of clusters NC is chosen (fig. 8.6). For each real-
ization of the channel model, each cluster is assigned randomly a place on the
two-dimensional plane of the transmission area. In each cluster, some scatter-
ers are randomly located, but close to each other. Then, the actual propagation
rays of radio transmission are calculated by the geometry from one transmit
antenna over the scatterers to the receive antenna, so that for each path a delay
τk, a phase shift θk, an angle of departure βk and arrival ψk is calculated. These
values are used in equation (4.12) to calculate the channel impulse response
from antenna n to antenna m.

In figure 8.7, the BER of the spatial multiplexing MIMO-OFDM system
from figure 8.2 is shown. The number of clusters NC in the WDDCM channel
model is used as a parameter (solid lines). Also, the BER of the same system
but with the MIMO-WSSUS model is calculated, and the cardinality of the
set of angles L is used as a parameter (dotted lines). In this case as well, the
resulting performance behaves the same in both channel models.

However, the WDDCM channel model requires much more parameters to
be chosen, which means that the results depend on the accurately chosen pa-
rameters. From our point of view this is a distraction from the actual system
performance evaluation and should be avoided.

It can be concluded that for the BER comparison of MIMO-OFDM systems,
the actual details of the MIMO channel model are of less importance, and any
of the three radio channel models could have been used to evaluate the perfor-
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Figure 8.7: Spatial Multiplexing performance in MIMO-WSSUS and WD-
DCM MIMO channel models (4x4 QPSK uncoded)

mance of the system in different MIMO environments. But for the evaluation
in an OFDM system, the MIMO-WSSUS model seems the best compromise
between simple parameter choices and meaningful performance results. This
confirms the usage of the MIMO-WSSUS radio channel model as an evalua-
tion criterion for the performance of MIMO transmission techniques in realistic
radio channels.
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9 Conclusion

Multi-antenna (MIMO) communication is a proposed technology to increase
the capacity of wireless links. The prerequisite for evaluating the performance
of MIMO techniques is a profound knowledge of the MIMO radio channel
and an adequate statistical model for the essential properties of this channel.
Several MIMO radio channel models have been discussed in this thesis, start-
ing from the well-known Gaussian model with completely uncorrelated fading,
and eventually introducing a MIMO-WSSUS channel model with the correla-
tion chosen by the single parameter of the number scatterers. Using an appro-
priate radio channel model is a crucial component when evaluating candidate
technologies for future radio communication systems.

OFDM is the signal processing technique of choice to communicate with a
high data rate over broadband channels, either in single antenna or in MIMO
systems. This multicarrier technique enables a simple equalization even in
strong multi-path radio channels where an equalizer of the inter-symbol in-
terference would be prohibitively complex. But with OFDM the equalization
can be done with moderate complexity, even in MIMO systems.

Several basic MIMO techniques were presented in this work. The perfor-
mance of them depend strongly on the assumed radio channel model. In a rich
scattering radio channel represented by the Gaussian model, no correlation be-
tween the radio channels occurred and even simple linear MIMO techniques
can strongly increase the available bandwidth efficiency when increasing the
number of transmit and receive antennas. This gives new opportunities in de-
signing a system, where simple algorithms can be used at the expense of addi-
tional hardware for multiple antennas.

However, in a more difficult radio channel with only little scattering as rep-
resented by the MIMO-WSSUS model (figure 9.1), the picture is rather dif-
ferent. With a small number of scatterers, the correlation between the radio
channels becomes significant and the performance of any linear Spatial Multi-
plexing technique is degraded beyond any usable values in the MIMO-WSSUS
channel. Hence, it can be concluded that for realistic non-Gaussian channels,
using Receiver Diversity is basically all that is possible as MIMO technique. If
MIMO techniques should be used with multiple antennas on both sides, non-
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9 Conclusion

Figure 9.1: MIMO radio channel with a small number of scatterers (here L =
3) as represented by the MIMO-WSSUS channel model

linear receiver structures could be a solution to this problem, but those were not
covered in this work.

Additionally, a linear precoding technique with variable amount of feedback
was explained and improved. All or only a subset of factorization matrices of
the unitary matrix factorization can be fed back to the transmitter to reduce the
required feedback data rate. This enables a trade-off between the amount of
feedback information and system performance. In this thesis, an improvement
to the matrix parameterization was presented, which shows a performance gain
over the original parameterization. However, in radio channels with little scat-
tering, this technique suffered the same performance degradation as the other
spatial multiplexing techniques and is not usable in those radio channels.

It can be concluded that MIMO performance simulations must use a MIMO
radio channel model that adequately models the channel conditions with little
scattering. Otherwise unrealistically optimistic performance results will occur.

This has been verified by evaluating the system performance degradation
with different MIMO radio channel models as taken from literature. All of
them enabled an adequate representation of the correlation and performance
degradation of simple MIMO techniques. The MIMO-WSSUS model is a sim-
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ple modeling approach that enables this choice by the single parameter of the
number of scatterers. This way, the performance of the investigated techniques
could be evaluated in a realistic radio channel context. The introduced MIMO-
WSSUS radio channel model represents these statistical properties accurately
and is easily configurable.

OFDM can be used in MIMO systems and enables using MIMO techniques
in broadband channels. Receive diversity as a simple MIMO technique can be
used always, but other MIMO techniques do not seem to give enough perfor-
mance benefit in realistic radio channels. OFDM is a very good candidate for
future radio communication systems.
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A Derivations

This chapter derives the Probability Density Functions of the random phase
shifts and gives an analytical expression for its mean value.

A.1 PDF of random phases

A.1.1 PDF of Y = sinU

Given a uniformly distributed random variable U ∼ Unif(−π, π), this section
derives the PDF of the transformed random variable Y = sinU .

For the transformation function y = sin(u) the inverse exists and is f(y) =

u = arcsin(y). Its derivative is f ′(y) = 1/
√

1 − y2. The PDF of the trans-
formed random variable is

fY (y) = fU(u = f(y)) · |f ′(y)| .
This results in the following PDF for the transformed random variable Y :

fY (y) =
1

π
√

1 − y2
for |y| < 1, 0 elsewhere (A.1)

This PDF is plotted in figure A.1. It is still symmetric, just like the input random
variable U .

A.1.2 PDF of �{exp(jπ sinU)}
This transformed random variable is now used as an angle on the unit circle, re-
sulting in the complex-valued random variableZ = exp(jπY ) = exp(jπ sinU).
The PDF of Z can also be calculated analytically.

The polar coordinates of the result are immediately obvious: The magnitude
is unity, the argument is πY . But the interesting question is the mean value in
Cartesian coordinates. To obtain this, the PDF of the real and imaginary part
(i.e. in Cartesian coordinates) is needed.
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Figure A.1: PDF of Y = sin(U) from (A.1)

For the real part fRe(x) the transformation function is x = g(y) = cosπy
where y ∈ [−1, 1]. Its derivative is g′(y) = −π sinπy. Its inverse has multiple
solutions in the co-domain of y:

f(x) =

{
y1 = 1

π arccosx for 0 < y < 1

y2 = − 1
π arccosx for −1 < y < 0

The PDF of the transformed random variable must take into account all those
solutions of the inverse, giving

fRe(x) =
fY (y1)

|g′(y1)|
∣∣∣∣
y1=g−1(x)

+
fY (y2)

|g′(y2)|
∣∣∣∣
y2=g−1(x)

=
1

π
√

1 − ( 1
π arccosx)2 · |−π sin arccosx|

+
1

π
√

1 − ( 1
π arccosx)2 · |π sin arccos x|

.

The result for the PDF of the real part is

fRe(x) =
2

π2
√

1 − ( 1
π arccosx

)2 · sin arccos x
. (A.2)

This PDF is plotted in figure A.2, left picture. The function is not symmetric!
It has a nonzero mean, calculated below.
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Figure A.2: PDF of real (left) and imaginary (right) part of Z, (A.2) and (A.4)

A.1.3 PDF of �{exp(jπ sinU)}
To calculate the imaginary part, the transformation function is x = g(y) =
sinπY , again y ∈ [−1, 1]. Its derivative is g′(y) = π cosπy. Its inverse again
has multiple solutions in the co-domain of y,

f(x) = g−1(x) =

⎧⎪⎨
⎪⎩
y1 = 1

π(− arcsinx− π) for −π < πy < −π
2

y2 = 1
π arcsinx for −π

2 < πy < π
2

y3 = 1
π(− arcsinx+ π) for π

2 < πy < π

.

The PDF of the transformed random variable must take into account all three
solutions of the inverse.

fIm(x) =
∑
k

fY (yk)

|g′(yk)|
∣∣∣∣
yk=g−1(x)

=
1

π2 cos arcsinx

⎡
⎢⎣ 1√

1 − ( 1
π arcsinx)2

+

⎧⎨
⎩

1√
1−(1− 1

π arcsinx)2
for x > 0

1√
1−(1+ 1

π arcsinx)2
for x < 0

⎤
⎥⎦

(A.3)
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By merging the last term with the case distinction into an absolute value of the
arcsin, the result for the imaginary part is

fIm(x) =
1

π2 cos arcsinx

⎡
⎢⎣ 1√

1 − ( 1
π arcsinx)2

+
1√

1 − (1 − 1
π |arcsinx|)2

⎤
⎥⎦ .

(A.4)
This PDF is plotted in figure A.2, right picture. This function is symmetric and
has zero mean.

A.1.4 Mean value of �{exp(jπ sinU)}
The mean value of the random phase shift Z is the goal of this derivation.
Above, the imaginary part of Z was shown to be symmetric, hence it has zero
mean. For the mean value of Z only its real part is relevant anymore. This
mean value of the real part part γ = fRe(x) is obtained by solving the integral
for the mean,

γ =

∫
xfRe(x) dx =

2

π2

1∫
−1

x√
1 − ( 1

π arccosx)2 · sin arccosx
dx .

This integral is simplified using integration by parts,

=
2

π2

⎡
⎣ 1∫
−1

π arcsin
arccosx

π
dx− πx arcsin

arccosx

π

∣∣∣1
−1

⎤
⎦

=
2

π

1∫
−1

arcsin(
1

π
arccosx) dx− 1 .

The remaining integral is solved by solving the integral over its inverse, which
is possible because graphically one can observe how the inverse must be cho-
sen over the various co-domains. This way, to solve the integral over y =
arcsin( 1

π arccosx) in x ∈ [−1, 1], instead an integral over x = cos(π sin y) is
solved over suitable argument ranges, giving

1∫
−1

arcsin(
1

π
arccosx) dx =

π

2
+

π/2∫
0

cos(π sin y) dy .
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Inserting this into γ above gives the mean value

γ =
2

π

π/2∫
0

cos(π sin y) dy =
1

π

π∫
0

cos(π sin y) dy

where in the second equation the integral borders could be doubled due to the
symmetry of sin y with respect to y = π/2. This last expression is identical to
the integral form of the Bessel function of the first kind with z = π,

J0(z) =
1

π

π∫
0

cos(z sin θ) dθ .

The final result for the overall mean value is

γ = fRe = J0(π) .

Even in the generalization of the random phases where an integer multiple k
of Y occurs in the exponent and the transformation is exp(jkπ sinU) (note the
k), the resulting mean value of this PDF is still the Bessel function of the first
kind,

fRe = J0(kπ) . (A.5)

Again, J0(·) is the Bessel function of the first kind of order zero. Its first few
values are listed in table A.1.

k J0(kπ)
1 -0.3042
2 0.2203
3 -0.1812
4 0.1575
5 -0.1412

Table A.1: First few values of the Mean of fRe(x), the real part of the random
phase shift distribution
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B Simthetic: A programming
framework for multiple
contributors in OFDM and
MIMO simulations

Research work often involves the programming of computer simulations for the
evaluation of proposed algorithms. In this chapter, a programming framework
is described that simplifies the creation of computationally intensive simula-
tions. This framework supports especially the combination of programming
contributions by several different researchers into the same simulation. This
is very common in a University context, where multiple PhD candidates and
other students work together on the same algorithmic problems. The presented
Simthetic software is publicly available as Open Source Software and already
includes many building blocks for OFDM and MIMO simulations.

B.1 Introduction

For any kind of proposed transmission system it is vital to demonstrate the
actual benefit of one approach versus others. In order to show this comparison
under controllable conditions, it is necessary to use a simulation environment
in which the algorithms and systems can be implemented.

A plethora of different simulation environments exist in the computer world,
and many researchers will simply produce their own simulation tools tailored
to their specific needs. It is an open question whether such a simulation envi-
ronment can be designed in a way so that it has re-usable and universal compo-
nents. Additionally, a simulation tool should also support an easy combination
of contributions by several different researchers. This aspect is especially com-
mon in a University context, where multiple PhD candidates and other students
work together on the same simulation problems.

The Technische Universität Hamburg-Harburg (TUHH, Hamburg University
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of Science and Technology) created the Simthetic1 Open Source software for
Windows and Linux operating systems in order to find a common framework
for base-band system simulations [SR04, SR06]. The framework and first steps
for programming OFDM systems with or without MIMO techniques will be
described below.

B.2 Software

B.2.1 Simulation Structure

The simulation software Simthetic implements a stream-driven model of com-
putation. The system is divided into “Devices” which exchange data by
means of stream “Interfaces”, figure B.1. These are classes in the pro-
gramming language C++ and a UML class diagram is shown in figure B.2
[Fow03]. Connections between Interfaces are specified at run-time by
a simulation parameter file in XML format and are strongly type-checked at
run-time as well. Every Device can be freely exchanged by other Devices,
as long as the connections between Interfaces remain type-correct. It is
therefore very easy to re-use existing systems or parts of systems, and directly
extend them by new algorithms.

Figure B.1: Example Devices in Simthetic

To combine the contributions by several independent researchers, each one
would be asked to work on a different Device class. The C++ language
will enforce the same data interfaces and configuration mechanisms on all
contributed C++ classes, so that eventually every Device can be easily ex-
changed by functionally equivalent alternative implementations. For exam-
ple, a Device for PSK modulation can easily be exchanged by an alterna-
tive Device that implements a QAM modulation (figure B.3), and similar
Devices on the receiver side can be exchanged as well. This way, the perfor-
mance comparison between two modulation approaches can be achieved while
all the rest of the simulation parameters are completely unchanged.

1http://simthetic.sourceforge.net
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Figure B.2: UML Class Diagram [Fow03] of main classes in Simthetic

Figure B.3: Exchanging Devices in the graphical user interface
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B.2.2 Graphical user interface KSimthetic

Additionally, a graphical user interface named KSimthetic is available, see fig-
ure B.5. In this graphical user interface, a simulation is composed by two steps:

1. Connections between Interfaces are created, figure B.5,

2. and the settings (the so-called Properties) of each Device are spec-
ified, figure B.4.

This simulation setup is saved in an XML file. At run-time of Simthetic,
this XML file is loaded. The Simthetic system will then instantiate the spec-
ified Device objects with the given Properties according to the simu-
lation XML file. Then, the connections between the Interfaces will be
created and the simulation starts by calling the processing code of the first
Device. This first device will create a data stream that is passed through
the Interface to the second Device, whose processing code will be called
next, and so forth. This simulation loop will be repeated until the BER counting
Device sends a special signal to the simulation system so that the simulation
ends and the final results are written into output files.

Figure B.4: Setting the Properties of a Device

Many different system blocks for coded OFDM with coherent, differential
or adaptive modulation and convolutional or turbo codes are available. For
MIMO-OFDM, various MIMO techniques and MIMO radio channel models
are available. Since the software is licensed under the LGPL (GNU Lesser
Public License [GNU99]), the full source code of the simulation blocks can
be downloaded by everyone from http://simthetic.sourceforge.net. Every in-
terested person can install, use, modify, or redistribute the software for them-
selves.
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Figure B.5: Creating simulations in the graphical user interface (KSimthetic)

B.3 OFDM

For future communication systems, the OFDM transmission technique is of
special interest [RGG01]. The principle of multi-carrier modulation and OFDM
in particular is to map a serial high rate source bit stream onto multiple paral-
lel low rate sub-streams. Each subcarrier is modulated individually based on
a single sub-stream. Since the symbol rate on each subcarrier is considerably
smaller than the serial symbol rate, the effects of delay spread significantly
decrease which reduces the equalizer computation complexity.

Every OFDM system consists of similar building blocks. In Simthetic, most
of the commonly proposed blocks are already available, figure B.5.

On the left side of the block diagram, a bit sequence is generated randomly.
The input bit sequence is then coded by a convolutional channel code, bit in-
terleaved, modulated into complex modulation symbols, and transmitted by the
OFDM transmission technique (IFFT and guard interval).

The time continuous signal that is transmitted through the radio channel can
be approximated using oversampling techniques. Time shifts of non-integer du-
ration are represented by appropriate oversampling in the radio channel model.
It is also possible to display particular signals graphically and in animated form,
for example the radio channel transfer function, figure B.6.

At the receiver side, each transmitter block has its corresponding receiver
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Figure B.6: Example radio channel transfer function animation

block. The received baseband signal is OFDM processed, demodulated, and
transmission errors are corrected by a Viterbi decoder. In the end, the bit errors
are counted, written into a file, and (optionally) displayed, figure B.7.

Figure B.7: Example Bit Error Rate

B.4 Getting Started with Programming

This section should explain the necessary steps to follow when somebody in-
tends to add new processing code into the Simthetic system. As an example, it
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is explained how a new MIMO radio channel model would be implemented.
First of all one should start to read the existing HTML-documentation2 where

the “Alphabetical List” of classes quickly shows the existing MIMOChannel
class for a MIMO radio channel. In the documentation of that class, one can
see that all MIMO-Channels which are already implemented in Simthetic are
subclasses of the basic class simth::Device. One can check for functions
of the base class that are available in all subclasses by clicking on the Device
button. At the beginning those functions are usually not needed.

Back in the documentation of the MIMOChannel class, one can look un-
der “Public Methods” for the functions getTransfer() and transmit().
Those are the functions that one has to implement in a new channel class, in-
dicated by the =0 at the end of the function which declares these functions as
purely virtual. The function transmit() should define how the transmis-
sion of the symbol-sequence from the transmitting antennas (variable insym)
to the receiving antennas (outsym) is done. transmit() does its operation
in the time domain, because the function arguments are time domain signals.
getTransfer() is used for an ideal estimation of the channel transfer func-
tion and should return the channel transfer matrices H(f) in the frequency
domain, because the function argument is a frequency signal.

Now one should open the source code file src/mimo-channel.cpp and
take a look at the source code of these functions in existing classes. For the
implementation of a MIMO channel normally several mathematical operations
from linear algebra are needed. The MIMO library of Simthetic uses data types
from the Lapack++ library3 for those operations.

At the beginning one can easily build a “perfect” MIMO Channel, which of
course only works for an equal number of transmitting and receiving antennas
(set by the Properties in the simulation XML file). In transmit() every
sample from the incoming VectorTimeSignal insym is directly given to
the outgoing VectorTimeSignal outsym:

// The "transmission"
for(size_t k; k!=insym.size(); k++)

outsym[k] = insym[k];

Starting with this simple channel one can extend it step by step. It can be
helpful to look at the work by others in the existing source code files. Also, for
many people it has been helpful to print intermediate values by std::cout to

2http://simthetic.sourceforge.net/mimolib/api-doc/html
3http://lapackpp.sourceforge.net
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double-check the results with a calculator or a mathematical program. As soon
as a new class has been added with the virtual functions implemented, this new
class is available in the graphical tool KSimthetic and it can be used in own
simulations.

B.5 Conclusion

The behavior and performance of any simulation algorithm needs to be con-
firmed by quantitative simulation results. The Open Source simulation software
Simthetic offers a platform for many different communication system evalua-
tions, especially for OFDM systems and MIMO techniques. This simulation
framework additionally supports an easy integration of contributions by dif-
ferent researchers. This aspect is especially common in a University context,
where multiple PhD candidates and other students work together on the same
simulation problems. All the described algorithms and systems can directly be
downloaded with the full program source code for Windows and Linux oper-
ating systems, so that tests and modifications are available for every interested
reader.
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