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1 Introduction

Nowadays, many modern materials, such as high-temperature superconduc-
tors, geometrically frustrated oxides and low-dimensional magnets, are dis-
cussed in terms of strong correlations in complex systems. Common to these
materials is that their unique properties arise from many-body effects. In par-
ticular, in this field strongly correlated electron materials represent one of the
major topics. Here, to obtain more insight in this - on behalf of theory - still
poorly understood research area, model systems are needed in order to advance
our knowledge on correlated electron materials in particular and correlation
physics in general. In this situation, the physics of heavy fermion systems, as
archetypical strongly correlated electron systems, is one key to better under-
stand such behavior.
As a result of electronic correlations, heavy fermion systems display a wide
range of exotic features, such as

• quantum phase transitions and non-Fermi liquid behavior, e.g. in
CeCu5.9Au0.1 [1–5];

• unconventional superconductivity, e.g. in UPt3 [6];
• "hidden order" phases, as observed in URu2Si2 [7].

Inherent to heavy fermions is the vicinity to a magnetic instability as a re-
sult of the hybridization J between conduction and localized f electrons. The
physical ground state properties of heavy fermions as function of the strength
of hybridization is schematically summarized in the so-called Doniach phase
diagram. With decreasing hybridization these materials transform from an in-
termediate valence state for large J values into a stable f -shell system, and in
between crossing the Kondo regime. In the Kondo regime, the hybridization
between conduction and f -electrons is the source for strong correlations be-
tween the electrons. As long as no magnetic order occurs, this behavior can be
described in terms of Fermi liquid behavior.
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1 Introduction

Upon further reduction of the hybridization, at a critical hybridization value Jc
magnetic order sets in. At Jc the physics of heavy fermion systems is deter-
mined by quantum fluctuations, hence the name quantum critical point (QCP).
At the QCP exceptional physical properties are observed, such as non-Fermi
liquid behavior with a resistivity deviating from Fermi liquid behavior. Ex-
perimentally, in most cases magnetically ordered heavy fermion system can
be tuned by external control parameters such as pressure or magnetic fields
through such a quantum critical point.

On the low hybridization side of the Doniach phase diagram are systems with
localized f -electrons. These f -electrons can potentially order, resulting in
magnetically ordered structures composed of dipolar moments. Further, higher
multipole moments, in particular quadrupolar moments, can also exhibit or-
dered structures and control the physical ground state properties.

One of the main open topics concerning heavy fermions is the interplay be-
tween crystallographic disorder and the correlated electron state. Enhanced
disorder effects are arising from correlations between the charge carriers. Fur-
thermore, non-Fermi liquid behavior is predicted and observed for moderately
structural disordered systems in the vicinity of a quantum critical point.

In contrast, for strongly localized or completely delocalized systems pro-
nounced disorder effects are not expected. An investigation of the effect of
disorder on the degree of itinerancy appears to be of interest. Therefore, in
this thesis materials with a varying level of itinerancy are investigated with
respect to the physical ground state properties. In particular, materials studied
here are ranging from Ce intermetallics like CePt3B, U heavy fermion systems
such as UPd2Sb, and UPd2Sn, or systems previously considered to be strongly
localized, viz., UPt2Si2 and UPd3. Finally, a truly localized f -electron mate-
rial, PrB6, is studied regarding its properties.

The outline of this thesis is as follows:

In Chapter 2 a brief introduction in the theory of heavy fermion systems is
provided. The competition between magnetic RKKY interaction and Kondo
interaction is summarized in the Doniach phase diagram. The properties of the
Fermi liquid model are summarized and concepts accounting for non-Fermi
liquid behavior are pointed out. Finally, a brief introduction into quadrupolar
ordering will be provided.

2



In Chapter 3 the experimental methods used in this thesis are described and il-
lustrated using measurements on the alloying series CePt3B1−xSix. Bulk prop-
erty studies from previous works, in particular susceptibility, specific heat and
electronic transport, on CePt3B reveal a first transition into an antiferromag-
netic and secondly at lower temperatures into a weak ferromagnetic phase. In
addition, here the bulk properties of the alloyed samples CePt3B0.8Si0.2 and
CePt3B0.6Si0.4 have been investigated. Using these measurements the phase
diagram of CePt3B1−xSix has been generated. In order to verify the scenario
deduced from the bulk property study and to determine the magnetic structure
neutron scattering experiments on CePt3B have been carried out. Surprisingly,
in our neutron scattering experiments no evidence of neither antiferromagnetic
nor ferromagnetic order has been found. Subsequently, μSR measurements
have been carried out to successfully prove the existence of bulk magnetism
in CePt3B. In addition, at the end of Chapter 3 an introduction into resonant
x-ray scattering is given to provide the basis for the experiments presented on
PrB6.

In Chapter 4 two closely related material classes are investigated, namely
UPd2Sb and UPd2−xSn. First, a review of the properties of the Heusler com-
pounds UT2M (T: d electron element, M heavier element such as In, Sn Sb
or Pb) investigated so far is presented. In the following, the heavy fermion
system UPd2Sb is investigated by means of neutron scattering experiments.
From these data, it is shown that unconventional semi-conductor like behav-
ior of the resistivity can be accounted for by structurally disordered regions
in the sample. The antiferromagnetic structure has been determined and the
neutron scattering experiments reveal an interplay of structural disorder and
magnetism. The influence of structural disorder on the Fermi liquid proper-
ties has been investigated on a series of compounds UPd2−xSn, with different
stoichiometric composition (x = 0, 0.02 and 0.04) and different heat treat-
ments. Using these experimental results the predictions on disorder induced
non-Fermi liquid behavior in the vicinity of a quantum critical point and the
influence of structural disorder on the Hall effect have been investigated.

Chapter 5 is dedicated to the moderately mass enhanced compound UPt2Si2.
Previously, UPt2Si2 has been discussed as a local moment antiferromagnet,
which ought to be describable by a crystal electric field level scheme. In our
reinvestigation of the low temperature electronic transport properties strong

3



1 Introduction

evidence has been found, that UPt2Si2 is better understood in terms of an itiner-
ant system rather than a localized one. This evidence of delocalized f -electron
behavior has been supported by susceptibility and resistivity measurements in
high magnetic fields. Furthermore, a new phase diagram, based on high mag-
netic field magnetization and resistivity measurements, has been generated and
new field induced phases have been observed. Altogether, these findings imply
that UPt2Si2 has to be discussed as a delocalized f -electron system with the
unusual physical properties arising from Fermi surface effects.
Chapter 6 discusses the influence of Pt doping on the properties of antiferro-
quadrupolar ordered intermetallic UPd3. The phase diagram of U(Pd1−xPtx)3
has been generated by means of specific heat, electronic transport and suscep-
tibility measurements. We show that UPd3 is very sensitive to Pt doping, i.e.,
a very small amount of Pt in UPd3 destroys the quadrupolar ordered phases.
Moreover, the magnetic phase diagram of U(Pd1−xPtx)3, x = 0.005, has been
obtained by means of susceptibility and resistivity measurements in different
applied magnetic fields. Furthermore, a newly observed splitting in the sus-
ceptibility between zero-field cooled and field cooled measurements with the
magnetic field applied along the crystallographic c-axis is detected, which pos-
sibly is associated to a quadrupolar and magnetic transition.
In Chapter 7 the results of a detailed study of the rare earth hexaboride PrB6
by means of resonant x-ray scattering is presented. PrB6 undergoes two phase
transitions, the first one from a paramagnetic into an incommensurate, antifer-
romagnetically ordered phase and at lower temperatures a second one into a
commensurate antiferromagnetic phase. In this study, structural Bragg peaks
are investigated for all three phases and evidence of a lattice distortion in the
commensurate phase has been provided. Furthermore, detailed investigations
on magnetic and charge Bragg peaks have been carried out. The Bragg peaks
associated with charge ordering have been examined in all three phases. In
addition, the type of magnetic ordering in the commensurate and incommen-
surate phase has been determined.
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2 Fundamentals of heavy fermion systems

2.1 Heavy fermion systems

Heavy fermion systems represent an archetypical class of strongly correlated
electron systems. Most of the heavy fermion systems contain materials with
partly filled 4f - or 5f -shells like Ce, Yb, U, and Np. Well-known and exten-
sively investigated examples are CeAl3, CeCu2Si2, UPt3 or CeCu6 [8–11].
For a characterization of the essential properties of these materials it is useful
to distinguish between two temperature regimes with a qualitatively different
behavior of the electron system. The transition between these two regimes
is not sharp, therefore a temperature Tco is introduced as a measure for the
crossover between the two regimes.
Above Tco the electrons behave like a weakly interacting ensemble of local f -
moments and conduction electrons. In contrast, in the low temperature regime
the electrons behave like a collection of electrons with strongly enhanced ef-
fective mass, the heavy fermion quasiparticles, that scatter one another. For
T < Tco, such behavior results from the hybridization between the local f -
electrons and the delocalized conduction electrons. The strength of this hy-
bridization is given via Fermi’s golden rule

Γ = πV 2N(EF), (2.1)

with N(EF) representing the density of states at the Fermi Energy EF, and V
as an average of the hybridization matrix element.
Regarding the hybridization strength Γ three regimes can be distinguished:

• Γ� E0 → stable 4f -shell,
• Γ < E0 → Kondo regime,
• Γ ≥ E0 → intermediate valence regime,
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where E0 is the binding energy of an unperturbed f n state. In the first case,
the hybridization is relatively small, and therefore the mixing of localized and
delocalized states can be neglected. The magnetic properties can be described
using a Heisenberg exchange, taking into account the f -level crystal field split-
ting induced by the local f -ion symmetry. With a residual magnetic exchange,
as a consequence very often long range antiferromagnetic ordering is observed
for materials residing in this parameter range.

In the Kondo regime Γ < E0, in comparison to the intermediate valence
regime Γ ≥ E0, a stable f -state is present. Hence, only small deviations from
an integer valence state of the f -ion can be found. In this range, hybridiza-
tion between localized and delocalized electrons controls the behavior of the
materials. Then, at temperatures below Tco, an extremely enhanced Pauli sus-
ceptibility appears because of the large effective electron mass, in contrast to
the Curie-Weiss behavior occurring for temperatures higher than Tco.

In the last case, the intermediate valence regime, a strong mixing of f -
electrons and conduction electrons is present. Therefore, the f -states are un-
stable, with a non-integer valency, resulting in a non-magnetic ground state.
Still, in contrast to ordinary metals a typically one order of magnitude en-
hanced Pauli susceptibility is observed as a result of electronic hybridization.

The label "Kondo" for the second regime derives from the so-called Kondo
effect [12]. Originally, it describes a situation in which dilute magnetic mo-
ments, embedded in a metallic host matrix, are screened by the conduction
electrons of the surrounding matrix below a certain temperature TK. Hence,
a non-magnetic singlet ground state, with the singlet consisting of the lo-
cal moment spin and the oppositely aligned spins of the conduction electron
screening cloud, is formed. The tell-tale mark of this kind of singlet forma-
tion is an increase of the resistivity at temperatures somewhat below TK with
ρ ∝ ln(T/TK) for decreasing temperature, and a resistive saturation at lowest
temperatures with ρ ∝ (1− (T/TK)2) [13].

An equivalent situation is believed to exist in heavy fermions for Γ < E0,
i.e., in the Kondo regime. In these systems the f -electron atoms reside on a
regular sublattice of the crystal structure, hence the label "Kondo lattice". With
the hybridization Γ the conduction electrons are coupled to the f -electrons,
leading to screening processes analogous to the single ion Kondo effect.
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For high temperatures (T > TK) the physical properties of such systems are
those of ordinary f -electron local moment systems. Below TK, screening pro-
cesses develop, yielding a behavior which initially resembles that of the single
ion Kondo effect, with for instance a strongly enhanced Pauli susceptibility.
Only, as temperature is further lowered, stark deviations from the single im-
purity Kondo model appear due to phase correlations between the different
Kondo scattering centers. With the periodicity of the f electron sublattice the
Kondo singlets can form a Bloch wave state, resulting in a decreasing resistiv-
ity with decreasing temperature, in contrast to the single impurity model. This
low temperature coherent state is well described by Fermi liquid theory.

Further, in contrast to dilute Kondo systems, in a Kondo lattice the interactions
between the magnetic moments can no longer be neglected. For f electron sys-
tems these interactions are of the Ruderman-Kasuya-Kittel-Yosida (RKKY)
type. Within the so-called "Doniach model" [14] the energy scale related to
this coupling strength, which promotes long-range magnetic order, is given by

kBTRKKY ∝ |ΓN(EF)|2, (2.2)

with kB - Boltzmann factor, TRKKY - temperature characterizing RKKY-
exchange strength, EF - Fermi energy, N(EF) - density of states at the Fermi
level and Γ - hybridization between conduction and localized electrons.

On the other hand, the Kondo interaction, which tends to suppress magnetic
order, has to be taken into account, and for which the corresponding energy
scale evolves like

kBTK ∝ exp
−1

|ΓN(EF)| , (2.3)

with TK - temperature characterizing Kondo coupling.

As a result, there are two competing energy scales, one promoting magnetic
order, the other suppressing it. The combined behavior is schematically sum-
marized in the "Doniach phase diagram" (Fig. 2.1) (originally derived within
molecular field approximation of the periodic Anderson model for a one di-
mensional system of S = 1/2 spins). As a consequence of the competition
there is a critical hybridization value Γc, which separates a spin compensated
state of strong hybridization with |ΓN(EF)| > |ΓcN(EF)| from a weakly
hybridized state with magnetic order for |ΓN(EF)| < |ΓcN(EF)|. Heavy
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fermions are located close to the magnetic instability at Γc, where the com-
petition between the Kondo and the RKKY interaction is strongest.

Figure 2.1: The Doniach phase diagram of the one-dimensional Kondo-lattice [15]; for details
see text.

2.2 Fermi liquid and non-Fermi liquid theory

In contrast to most common metals where the conduction electrons are consid-
ered as independent and non-interacting particles, in strongly correlated elec-
tron systems the electron-electron interaction cannot be neglected. In order
to deal with this issue, with the Fermi liquid theory the concept of fermionic
quasiparticles is introduced. According to energy and momentum conserva-
tion and Pauli exclusion principle low energy excitations (e.g., an additional
electron at a wave vector k with |k| = k > kF and k − kF � kF, where
kF is the Fermi wave vector) of the Fermi sea are very stable with a life-
time of τk ≈ (k − kF)2. Furthermore, there is a one-to-one mapping of the

8



2.2 Fermi liquid and non-Fermi liquid theory

low energy eigenstates of these quasiparticles to the eigenstates of a system
of non-interacting electrons. The total energy of a system of weakly excited
quasiparticle states with respect to the various occupation numbers of states
(with momentum k and spin projection σ = ±) is given by

E = EG +
∑
k,σ

ε(k)δnk,σ +
∑

k,σ;k′,σ′
f(k, σ;k′, σ′)δnk,σδnk′,σ′, (2.4)

with EG - ground state energy. ε(k) ≈ vF(k − kF) is the quasiparticle disper-
sion, which is parameterized by vF = kF/m∗, where m∗ is the effective mass
of the quasiparticle. The last term in Eq. 2.4 incorporates the self-interaction
among the quasiparticles.

For many heavy fermion systems it has been demonstrated that their proper-
ties can be understood within the Fermi liquid theory, with an effective mass
m∗ which is 2 to 3 orders of magnitude larger than the free electron mass
(hence the name “heavy fermions”). However, while the Fermi liquid the-
ory has successfully been applied in the context of heavy fermion physics, in
recent years many compounds out of this class of materials have been found
which show deviations from Fermi liquid behavior in their basic physical prop-
erties, and therefore have attracted a lot of interest. These systems have been
labeled non-Fermi liquid systems (commonly abbreviated as NFL systems).
Currently, there are various models to account for non-Fermi liquid behav-
ior in f electrons systems, of which the most important ones will be briefly
summarized:

• Multichannel Kondo effect: The f electrons are overscreened with more
than one conduction electron per f electron site stemming from different
conduction bands or channels. The overcompensation gives rise to non-
Fermi liquid behavior [16, 17].

• The disordered Kondo model scenario: Because of structural disorder,
different f electrons in a system have different Kondo temperatures, re-
sulting in a distribution of Kondo temperatures in this system, this way
leading to non-Fermi liquid anomalies in various physical properties [18].

• Griffiths phase model: Similarly, in the Griffiths phase model - as a result
of crystallographic disorder - magnetic cluster of different sizes appear
in the paramagnetic phase in the proximity to a quantum critical point
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(QCP). Magnetic fluctuations associated to these clusters yield non-Fermi
liquid behavior [19, 20].

• Vicinity of a quantum critical point: In the vicinity of a QCP the physical
properties are determined by excitations generated by quantum fluctua-
tions rather than single fermion excitations, yielding a non-Fermi liquid
behavior [21, 22]. In this context, in recent years two different scenarios
of the relevant processes have been developed.
In the first scenario, the spin density wave scenario, the Kondo tempera-
ture TK stays finite for all values of an external parameter controlling the
ground state. Hence, the local moments are quenched at finite temper-
atures. The physics close to the QCP is determined by quantum spin
fluctuations. In the spin density wave scenario only for a few quasi-
particles along "hot lines", which are connected by the ordering vector
of the antiferromagnetism Q, the inelastic scattering is strong, whereas
in the remaining "cold regions" it is weak [23].
In the second scenario, the local breakdown of the Fermi liquid, the com-
petition between the Kondo effect and the antiferromagnetism leads to
a breakdown of the Kondo effect, yielding a suppression of an effective
Kondo temperature to T = 0. This causes a local destruction of the Fermi
liquid at the quantum phase transition, and results in strong scattering
over the whole Fermi surface [24].
Both, the phase diagrams for the spin density wave and local breakdown
of the Fermi liquid scenarios are qualitatively depicted in Fig. 2.2 (a) and
(b), respectively. CeCu6−xAux and YbRh2Si2 are discussed as materials
which display a local breakdown of the Fermi liquid [25, 26], the spin
density wave scenario is used to explain the observations in CePd2Si2,
CeNi2Ge2, and CeIn3 [23, 27–29].

2.3 Quadrupolar ordering

Aside from the Kondo physics at Γ < E0, also very stable f electron shells in
the limit Γ � E0 may lead to interesting and exotic phenomena and ground
state properties. Especially, in localized f electron systems the ordering can-
not only be of dipolar nature (i.e., magnetic), but also higher order multipole
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Figure 2.2: Sketches of the phase diagram for two different scenarios of NFL behavior, that
is i.e., spin density wave and local breakdown of the Fermi liquid at the quantum
critical point; taken from [26], for details see text.

moments such as quadrupolar ordering etc. may be realized and can lead to
complex phase diagrams. Furthermore, the existence of quadrupolar moments
can be of relevance to Kondo systems as well. The asymmetric charge distri-
bution is screened by conduction electrons which may result in the so-called
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quadrupolar Kondo effect and give rise to non-Fermi liquid behavior as dis-
cussed in terms of the overcompensated two channel Kondo effect.
The interaction which leads to an ordering of quadrupolar moments can have
different sources. It can arise from biquadratic exchange due to the presence
of the orbital moment [30, 31], analogous to the Heisenberg type bilinear cou-
pling between magnetic dipoles, or from magnetoelastic coupling, correspond-
ing to a direct coupling between lattice deformation and the f shell [32]
Although multipole ordering has attracted a lot of interest in recent years, a
full and detailed theory is still lacking. First treatments have been presented
recently [33], but due to the complexity in the treatment of multipole degrees
of freedom only limited progress in theoretical calculations has been obtained
so far. In consequence, most of the theoretical studies have been limited to a
phenomenological treatment of such ordering phenomena.
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In this chapter a short introduction of the measurement methods used in this
work will be given. In doing so, to illustrate what kind of information can be
gathered from the various experimental techniques corresponding studies on a
material out of the heavy fermion range, CePt3B, and the related alloying series
CePt3B1−xSix will be presented. Finally, additional experimental techniques
used in the context of studies of quadrupolar systems will be discussed.

3.1 Basic properties of CePt3B

CePt3B, which has been studied for the first time in Ref. [34], is isostructural
to the recently discovered heavy fermion superconductor CePt3Si [35]. For
almost 30 years, heavy fermion superconductors have attracted a lot of interest
because of the possible realization of unconventional superconducting pairing
mechanisms and symmetries of the superconducting state.
In conventional superconductors the coupling of two electrons to a Cooper
pair is mediated by an exchange of virtual phonons. This effect is explained in
much detail within the Bardeen-Cooper-Schrieffer theory. The superconduct-
ing order parameter in common BCS-type superconductors mirrors the full
lattice symmetry.
However, in heavy fermion superconductors the BCS theory seems not to be
valid, instead unconventional superconducting pairing states and symmetries
may occur. For instance, in these systems a pairing mediated by spin fluc-
tuations is discussed [29]. As well, in unconventional superconductors the
symmetry of the order parameter is broken under symmetry operations of the
crystal lattice.
Moreover, CePt3Si is the first heavy fermion superconductor without a center
of symmetry in the crystallographic lattice. In such systems a spin triplet state
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of Cooper pairs is believed to be excluded [36]. However, for CePt3Si an
anomalously large superconducting upper critical field Bc2 has been observed
experimentally [35], and which has been taken as indication for a spin-triplet
pairing, in apparent conflict with the statement from Ref. [36]. As yet, this
issue concerning the superconducting state in CePt3Si has not been resolved.
Complicating matters is the antiferromagnetically ordered phase below TN =
2.2 K, with an ordered moment of 0.16μB (ordering vector k = (0 0 1

2)), em-
bedding the superconducting state, and whose role has not fully been under-
stood so far [35, 37, 38]. In this context, various scenarios regarding the nature
of the superconducting state have been proposed in recent years, with mixed
singlet-triplet pairing states as the most prominent and exotic models [39, 40].
Unlike CePt3Si, CePt3B does not show superconductivity. Both systems,
CePt3Si and CePt3B, crystallize in the P4mm structure, see Fig. 3.1 [35, 41].
For CePt3B lattice parameters a = 4.0051(7) Å and c = 5.0760(8) Å and for
CePt3Si a = 4.072(1) Å and c = 5.442(1) Å have been found [35, 41].
Moreover, CePt3B exhibits two magnetic transitions at TC = 6 K and TN =
7.8 K [34, 41, 42]. While the upper transition temperature is antiferromag-
netic, a study of the magnetic bulk properties reveals a weakly ferromag-
netic behavior below the lower transition temperature, with a ferromagnet-
ically ordered moment of 0.08μB/Ce atom. The most straightforward in-
terpretation of such a low ferromagnetic moment, together with a high tem-
perature Curie-Weiss like behavior in the susceptibility with an effective mo-
ment of μeff = 2.3μB and an antiferromagnetic Curie-Weiss temperature of
ΘCW = −12 K, would be that below TC the magnetic state is antiferromagnet-
ically ordered with comparatively large (order of one μB) magnetic moments,
together with a canting of the moments causing the weak ferromagnetic re-
sponse. Such a canting could possibly result from the lacking inversion sym-
metry of the crystal structure, as under these conditions an additional exchange
mechanism, the magnetic coupling via Dzyaloshinskii-Moriya (DM) interac-
tion, might become relevant.
In combination with the Heisenberg exchange, given by

HHeisenberg =
∑
i,j
Jijsi · sj,

with Jij - magnetic exchange coupling and si and sj - neighboring spins, the
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Si/B

Figure 3.1: Crystal structure of CePt3B and CePt3Si (from [35]); for details see text.

Dzyaloshinskii-Moriya interaction term given by

HDM =
∑
i,j
Dij(si × sj),

with Dij - Dzyaloshinskii-Moriya vector, is known to often cause canted or
helical magnetic structures. Although such a scenario regarding the magneti-
cally ordered state appears to be quite likely realized in the case of CePt3B, as
yet a direct and microscopic determination of the symmetry of the antiferro-
magnetic phase is lacking.
Furthermore, in order to understand the ground state properties of heavy
fermion systems, it is a common procedure to carry out doping experiments,
this way to change the electronics of the material in a controlled fashion and
exerting chemical pressure to some degree. With CePt3B being isostructural
to CePt3Si, an alloying series CePt3B1−xSix for 0 ≤ x ≤ 1 can be studied
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and hence the complete phase diagram from unconventional superconductiv-
ity to possible canted local moment antiferromagnetism is accessible, allowing
to draw conclusions about the physics of the pure ternary system. Therefore,
in order to clarify the magnetic structure of CePt3B and to unravel the phase
diagram of CePt3B1−xSix a set of microscopic and bulk measurements will be
presented in the following.
The samples CePt3B1−xSix studied here have been prepared by mixing the
elements in stoichiometric ratio. Subsequently, the polycrystalline material
was produced by melting the constituents under argon atmosphere in a water-
cooled copper crucible using a high frequency generator.

3.2 Bulk methods

3.2.1 Magnetization

If not noted, all low field magnetization and susceptibility measurements pre-
sented in this work have been performed in a commercial DC-SQUID. The
pulsed high field magnetization measurements on UPt2Si2 will be discussed in
the corresponding chapter. The magnetization densityM(H) at T = 0 K of
a volume V in a homogeneous magnetic fieldH is defined as

M(H) = − 1
V

∂E0(H)
∂H

. (3.1)

For simplicity it is assumed thatM is parallel toH . The magnetic suscepti-
bility is defined as

χ = ∂M
∂H
. (3.2)

For sufficiently low magnetic fields, and provided no ferromagnetic ordering
occurs, the magnetization M is linear in H and therefore the susceptibility
is reduced to χ = M/H . With these definitions, the magnetic behavior of
materials can be grouped into two different types, as distinguished by the sus-
ceptibility χ behavior:

Diamagnetism In completely filled orbitals the spin- and orbital angular
momentum of the electrons are compensated. The magnetic moment is
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induced by an external field and directed antiparallel to this field, the sus-
ceptibility is negative:

χdia < 0, (3.3)

This behavior is called the Larmor diamagnetism.

Paramagnetism Paramagnetism stems from magnetic moments which are
aligned in an external field and point parallel to this field, hence the sus-
ceptibility is positive:

χpara > 0. (3.4)

In a material with only partially filled orbitals there may exist localized
magnetic moments. In an applied field, these moments are aligned in the
direction parallel to the field. The total angular momentum J is the sum
of spin S and orbital angular momentum L:

J = L+ S. (3.5)

As long as there is no interaction between the magnetic moments, the
susceptibility is given by the Curie law

χLangevin = C
T
, (3.6)

with the Curie constant C .

Also the spins of the free electrons in a metal can contribute to the para-
magnetism (Pauli paramagnetism). In a magnetic field the energy of the
conduction electrons is increased or reduced by |μBB|, depending on the
direction of the spins with respect to the magnetic field. As both spin-
up and spin-down electrons have the same Fermi energy, more electrons
have a spin parallel to the magnetic field than antiparallel, yielding a net
magnetization in field direction. The paramagnetic Pauli susceptibility is
given by

χPauli = μ0μ
2
BN(EF), (3.7)

with N(EF) the density of states at the Fermi energy. As the Fermi tem-
perature is very high in comparison to the temperatures used in experi-
ments, N(EF) and hence the Pauli susceptibility, are nearly temperature
independent.
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Most of the systems discussed in this work are heavy fermion systems.
Due to the strong electronic correlations the low temperature properties
are understood using Fermi liquid theory. Within Fermi liquid theory the
magnetic susceptibility can be written as

χPauli = m∗kFμ2
B

π2(1 + F α0 ), (3.8)

with the Landau parameter F α0 ∝ f(k ↑, k′ ↑) − f(k ↑, k′ ↓). Here,
f(kσ, k′σ) is the quasiparticle interaction function between two quasi-
particles characterized by their wavevectors k, k′ and spins σ.

Furthermore, magnetic moments in a solid environment very often interact
with each other, resulting in ordered magnetic structures. Two basic examples
are ferromagnetism (all magnetic moments are pointing in the same direction)
and antiferromagnetism (neighboring magnetic moments are antiparallel). The
interaction between the magnetic moments can be the result of different pro-
cesses, such as RKKY exchange interaction or magnetic superexchange.

3.2.1.1 Magnetic properties of CePt3B1−xSix

CePt3B exhibits two magnetic phase transitions at low temperatures [34]. The
first one at TN = 7.8 K is assumed to be a transition into an antiferromag-
netically ordered structure, the second one at TC ≈ 6 K shows ferromagnetic
characteristics. For the latter transition a substantial sample dependence is
reported, with Lackner et al. obtaining a value of TC = 4.5 K [42].
For one specific sample, the inverse magnetic susceptibility χ−1 versus the
temperature T , as measured in Ref. [34], is plotted in Fig. 3.2. At high tem-
peratures, using a Curie-Weiss fit Süllow et al. [34] found an effective Ce
moment of 2.3μB and a Curie-Weiss temperature ΘCW of −12 K. Such be-
havior would be consistent with local moment antiferromagnetism at low tem-
peratures. The inset of Fig. 3.2 shows that a kink, followed by a plateau, is
observed at ∼ 8 K. Below 7 K χ−1 decreases further and finally saturates at
low temperatures. These two anomalies have been associated to the magnetic
transitions referred to above.
The overall susceptibility behavior of the sample CePt3B examined in this
work is similar to that reported in Ref. [34]. This is illustrated in Fig. 3.3,

18



3.2 Bulk methods

Figure 3.2: Temperature dependence of the inverse suseptibility χ−1 of CePt3B (from
Ref. [34]); for details see text.

where the temperature dependence of the inverse susceptibility measured in a
residual field of 13.3·10−4 T at low temperatures is plotted. From the construc-
tion displayed in Fig. 3.3 the two transition temperatures have been determined
to TC = 5.8 K and TN ∼ 8 K (marked by arrows in Fig. 3.3).
For basic sample characterization, the susceptibility of the alloyed samples
CePt3B1−xSix, with x = 0.2, 0.4, has also been measured in a residual field
of 8.68 · 10−4 T, see Fig. 3.4. The susceptibility behavior in the paramag-
netic phase is similar to that of CePt3B. However, in CePt3B0.8Si0.2 only one
magnetic transition remains clearly observable, while in CePt3B0.6Si0.4 clear
signatures of both magnetic transitions have disappeared.
In Fig. 3.5 the low temperature region of the inverse susceptibility χ−1 for the
three samples CePt3B1−xSix, with x = 0, 0.2, and 0.4 is depicted. From the
constructions indicated in the plot the transition temperatures are derived and
marked by arrows.
From the same procedure as used for CePt3B (see Fig. 3.3) the upper transi-
tion temperature of CePt3B0.8Si0.2 has been determined to TN = 4.8 K. For
this sample as for CePt3B0.6Si0.4 an accurate determination of Tc is not possi-
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Figure 3.3: Temperature dependence of the inverse susceptibility χ−1 of the sample CePt3B
examined in this work. The linear construction to determine TC and TN is shown
by the dotted and dashed gray lines. The transition temperatures are marked by
arrows; for details see text.

ble as the lowest accessible temperature of the SQUID magnetometer is 1.8 K.
However, an estimate of Tc is possible using a linear extrapolation as shown in
the plot. For comparison, for CePt3B, employing this procedure, a transition
temperature TC of 5.6 K is obtained, in reasonable agreement with the val-
ues obtained from other experimental techniques or procedures to analyze the
susceptibility data, see Fig. 3.5. Correspondingly, for the alloyed sample TC
values of 1.8 K for CePt3B0.8Si0.2 and 1.1 K for CePt3B0.6Si0.4, respectively,
are obtained (Fig. 3.5).

Furthermore, magnetization measurements at low temperatures have been car-
ried out on CePt3B1−xSix, x = 0, 0.2, 0.4. The magnetization vs. magnetic
field for CePt3B is depicted in Fig. 3.6. Below TC a hysteresis is observable
in the field sweeps, which has vanished in the 8 K data. To quantify the tem-
perature dependent evolution of the ferromagnetic moment associated to the
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Figure 3.4: Temperature dependence of the inverse susceptibility χ−1 of CePt3B and the al-
loyed samples CePt3B1−xSix, x = 0.2, 0.4; for details see text.

phase below TC, the average value of the extrapolated remanent magnetization
at B = 0 T has been determined and summarized in Fig. 3.7. Again an extrap-
olation of the temperature dependence of the remanent magnetization yields
a transition temperature TC of 5.5 K, in good agreement with the previously
described procedures to determine TC, see Fig. 3.7.
For the alloyed samples CePt3B1−xSix, x = 0.2, 0.4, no hysteresis is observed
down to 1.8 K (Fig. 3.8 a. and b.). Thus, for the alloyed samples, no ferro-
magnetic ordering is observed down to 1.8 K.

3.2.2 Resistivity

For metallic heavy fermion systems the electrical resistivity usually represents
a probe of the ground state properties. Hence, it is a very useful tool to inves-
tigate these compounds.
As long as disorder related processes are not dominant, assuming the valid-
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Figure 3.5: Enlarged view of the low temperature region of the inverse susceptibility χ−1 of
CePt3B and the alloyed samples CePt3B1−xSix, x = 0.2, 0.4; for details see text.

ity of Matthiessen’s rule, i.e., scattering processes are independent from each
other for heavy fermion metals, the temperature dependence of the electrical
resistivity ρ(T ) is given by

ρ(T ) = ρ0 + ρph(T ) + ρmag(T ).

ρ0 represents the residual resistivity from impurity scattering, ρph(T ) from
phonon scattering and ρmag(T ) that of scattering from magnetic moments.
Relevant limiting cases for ρph(T ) are T  ΘD, yielding a behavior ρph(T ) ∝
T , and a characteristic ρph(T ) ∝ T 5 for T � ΘD.
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Figure 3.6: Magnetic field dependence of the magnetization of CePt3B; for details see text.

In the basic models of magnetic scattering, ρmag(T ) is constant above a mag-
netic transition temperature Tmag [43]. For real systems, however, this is often
not the case, and the temperature dependence of magnetic fluctuations need to
be considered in detail. While on a qualitative level there are lots of insights
into the associated resistive behavior, there is only a very limited number of
analytical descriptions.
Sufficiently far below Tmag the electrical resistivity is given by a magnon scat-
tering term

ρmag(T ) = AT y.
Here, y depends on the type of magnetic ordering, e.g. y = 2 for ferromagnetic
magnons [44], y = 5 for antiferromagnetic magnons [44]. The excitation of
antiferromagnetic magnons in the presence of a spin excitation gap can be
described by

ρ(T ) = ρ0 + DTΔ

[
1 + 2T

Δ

]
exp

(
−TΔ

)
,

with ρ0 - impurity scattering, Δ - spin excitation gap value [45].
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Figure 3.7: The remanent ferromagnetic moment vs. temperature of CePt3B. The solid line is
an extrapolation; for details see text.

In heavy fermion systems the Kondo scattering of the conduction electrons,
correlation effects at low temperatures and the crystal field have to be taken
into account. In the high temperature range, e.g., T > TK the resistivity can be
calculated from the Heisenberg Hamiltonian (s− f model):

H = −2JsS,

J - exchange coupling parameter, s - spin state of the conduction electron and
S - magnetic ion spin. For T > TK, Kondo found a logarithmic increase of
the resistivity

Rimp(T ) = ρ0
[
1− JN(E) ln kBTΔ

]
,

N(E) - density of states , Δ - width of the Friedel virtual bound state [46].
In heavy fermion systems the magnetic ions are arranged in a regular lattice.
Due to the periodicity of the Kondo lattice, coherence of the electrons is ob-
served. In the coherent state, the system can be described by Fermi liquid the-
ory. Within the framework of Fermi liquid theory the low temperature behavior
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Figure 3.8: Magnetic field dependence of the magnetization of CePt3B1−xSix, x = 0.2 (a.)
and 0.4 (b.).

(T < T ∗) of the resistivity in heavy fermions evolves like ρ(T ) = ρ0 + AT 2,
where A is a coefficient proportional to the square of the density of states at
the Fermi energyN(EF). Further, A is related to the Sommerfeld parameter γ
by the empirical Kadowaki-Woods relation A/γ2 ∼ 10 μΩcmK2mole2J−2.

In the last two decades many materials have been found which show a "non-
Fermi liquid" (NFL) behavior. For these materials a resistive behavior ρ(T ) =
ρ0 + AT y with y < 2 has been observed. The different models to account for
such behavior are described briefly in Chapter 2.2. Here, only the interplay
between resistivity and structural disorder will be discussed in more detail.

The observation of NFL behavior in the resistivity in the vicinity of a quantum
critical point (QCP) may result from small amounts of disorder [23]. The
scattering at antiferromagnetic (AFM) spin fluctuations is most effective along
so called “hot lines”, e.g., regions on the Fermi surface which are connected
by the scattering vectorQ. In a clean sample these regions are short-circuited
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3 A case study: Basic properties of CePt3B

by “cold” regions, e.g. regions where the scattering rate is small. If disorder is
introduced into the system this mechanism does not work anymore as impurity
scattering leads to an averaging of the scattering rates over the Fermi surface,
resulting in non-Fermi liquid behavior, with resistive exponents y < 2 at low
temperatures [23].

Moreover, in disordered system without electronic correlations, disorder in-
duced localization effects have to be considered. Anderson demonstrated in
his calculation [47], that a certain amount of perturbation in the periodic poten-
tial of the lattice can lead to a localization of the charge carrier wave function.
The envelope of such a localized state is given by

|Ψ(r̄)| ∼ exp
⎛⎝ |r̄ − r̄0|
ζ

⎞⎠ ,
where ζ is the correlation length.

For this type of localization the system becomes insulating for T → 0. With
increasing temperature a thermal activation of the electrons occurs. In the most
basic models, it leads to a conductivity

σ = σ0 exp
(
−Ec −EF

kBT

)
,

withEc characteristic for the mobility edge energy of the system,EF the Fermi
energy and σ0 being proportional to the product of diffusion constant and re-
laxation time. More advanced models take into account additional processes,
e.g., thermally activated hopping etc.

Conversely, besides of disorder, also electronic correlation can lead to a metal-
insulator transition. The Mott-insulator transition is a model in which a disor-
der induced insulator-to-metal transition can occur [48]. In this model, a half-
filled conduction band is assumed. The electronic correlation results from a
large value U of the Coulomb interaction between electrons, which prohibits
movement of the electrons from site to site, viz., the system is insulating. Now,
by introducing disorder into the system, electrons for instance might be re-
moved on some sites, which leads to a situation, where hopping of electrons
from site to site is possible on a locale scale. As a result, a conducting (metal-
lic) state is generated.
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3.2 Bulk methods

However, due to these localization mechanisms the resistivity cannot be de-
scribed as a series of resistors ρ0, ρph and ρmag anymore. It has to be described
in terms of different non-interacting conduction channels as expressed in the
Kawabata-formula [46]

σ = σ0 exp
⎛⎝1− C8lk2

b
(1− l
Li

)
⎞⎠ ,

where σB is the Boltzmann conductivity, l the mean free path, C is a con-
stant and the inelastic diffusion length Li corresponds to processes (electron-
electron or electron-phonon) responsible for delocalization out of the local ran-
dom potential. In moderately disordered heavy fermion systems, both, elec-
tronic correlation U and disorder are present.

3.2.2.1 Resistivity of CePt3B1−xSix

All resistivity measurements presented in this work have been performed us-
ing a conventional four probe AC method in a standard Oxford 4He cryo-
stat. Moreover, an Oxford Top loading 3He insert has been employed for
T < 1.8 K.
The parent compound CePt3B was only available as a powder, hence no re-
sistivity measurements were possible. For the alloyed material CePt3B1−xSix
polycrystalline bar-shaped samples were available. For these samples the ab-
solute (normalized) resistivity ρ (ρ/ρ300) is depicted in the Figs. 3.9 and 3.10
(3.11). In order to compare these data with pure CePt3B, the resistive data of
CePt3B from Ref. [34] are included in the Figs. 3.9, 3.10 and 3.11.
Qualitatively, the overall shape of the resistive curves remains the same with
Si alloying. However, the absolute resistivity ρ is increasing with increasing Si
amount, reflecting the enhanced disorder level with alloying. As well, in the
normalized resistivity ρ/ρ300 the low temperature resistivity ratio (ρ0/ρ300)−1

is also largest for the pure sample, consistent with least disorder in this sample.
Further, in the normalized resistivity data of the alloyed samples the antifer-
romagnetic transition is apparent but broadened, also reflecting the disorder
induced by Silicon alloying. From the constructions in Fig. 3.10 transition
temperatures of TN = 6.1 K for the sample x = 0.2 and TN = 4.5 K for
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3 A case study: Basic properties of CePt3B

Figure 3.9: Temperature dependence of the absolute resistivity ρ of CePt3B1−xSix, x = 0, 0.2
and 0.4. The data for x = 0 are taken from Ref. [34].

x = 0.4 are derived. The broadening, however, results in a rather large error
bar associated to the upper transition temperature.

Therefore, as a second variant to determine TN, the minimum in the second
temperature derivative d2(ρ/ρ300)/dT 2 has also been used to determine TN,
see Fig. 3.12. While for the pure sample the transition occurs as a sharp peak,
for the alloyed CePt3B1−xSix, x = 0.2, 0.4 the transition becomes broader due
to disorder. Further, it is shifted to lower temperatures of TN = 5.2 K for
x = 0.2 and TN = 4 K for x = 0.4, respectively.

Using the result of the susceptibility and electronic transport measurements,
and by including the data for CePt3Si, a preliminary phase diagram of
CePt3B1−xSix is constructed, see Fig. 3.13. The antiferromagnetic transition
temperature TN is suppressed with increasing Si alloying. By extrapolating the
data, a QCP is obtained for x ∼ 0.8. The ferromagnetic transition temperature
TC exhibits a more complicated behavior, as a linear evolution with x is not
observed. However, overall a reduction of TC with Si alloying is clearly seen.
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3.2 Bulk methods

Figure 3.10: The low temperature range of the absolute resistivity ρ of CePt3B1−xSix, x =
0, 0.2 and 0.4. The data for x = 0 are taken from Ref. [34].

3.2.3 Hall effect

The Hall coefficient RH is given by

RH = VHt

BI
, (3.9)

where t is the thickness,B is the field transverse to the direction of the current
I, and VH is the voltage transverse to the direction of both, the current and
the field. In heavy fermions, in contrast to normal metals where the tempera-
ture dependence of the Hall coefficient is constant, a strong T dependence can
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3 A case study: Basic properties of CePt3B

Figure 3.11: Temperature dependence of the normalized resistivity ρ/ρ300 of CePt3B1−xSix,
x = 0, 0.2 and 0.4. The data for x = 0 are taken from Ref. [34].

be observed. Besides this, the Hall constant is much larger than in most nor-
mal metals and at low temperature drops rapidly with decreasing temperature.
Hence, a maximum inRH(T ) at a temperature Tcoh occurs, which indicates the
transition into the coherent state. To analyze the Hall effect in heavy fermions,
the Hall constant is separated into two terms, a normal, temperature indepen-
dent term R0 and an anomalous, temperature dependent term RA,

RH = R0 + RA. (3.10)

Here, R0 represents the normal contribution to the Hall effect and measures
the carrier density n. Besides this, according to Ref. [49], also skew scattering
by defects contributes to R0. Hence, in samples with similar carrier densities
R0 should act as a measure for the number of crystallographic defects.
For the anomalous term several model descriptions exist. Schoenes and Franse
postulated an empirical ansatz: RA ∼ χ, T  TC,ΘCW [50]. Subsequently,
Fert and Levy proposed a theoretical model which accounts for skew scatter-
ing in the anomalous Hall contribution, see Fig. 3.14 [49]. In this model the
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3.2 Bulk methods

Figure 3.12: Temperature derivative d2(ρ/ρ300)/dT 2 of CePt3B1−xSix, x = 0, 0.2, 0.4. The
arrows indicate the transition temperature TN for the three samples; for details
see text.

anomalous contribution RA represents intrinsic skew scattering. The temper-
ature dependence of RA is predicted to RA ∼ χρmag, with χ as susceptibility
and ρmag the magnetic scattering component of the resistivity. The intrinsic
skew scattering above Tcoh is given by R(T )

H = γχ̄(T )ρres(T ), with the param-
eter γ, which has different values above and below TK depending on the phase
shift associated with the scattering channels. χ̄(T ) is the reduced susceptibility
and ρres(T ) is the resistivity due to resonant scattering, thus the total resistivity
reduced by phonon and impurity contributions.

In practice ρres is given by the magnetic scattering contribution ρmag. However,
as the temperature dependence of RH is mainly determined by the intrinsic
skew scattering and the reduced susceptibility χ̄ does not significantly deviate
from the susceptibility χ(T ), the anomalous Hall constant RA is assumed to
evolve like ∝ χ(T )ρmag(T ).

Fert and Levy [49] calculated their model on the basis of the periodic Anderson
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Figure 3.13: Phase diagram of CePt3B1−xSix. Black triangles indicate TN, black squares TC,
the solid lines are guides to the eye; for details see text.

Hamiltonian, but neglected the coupling between different sites for T > Tcoh.
An alternative view has been developed by Kontani and Yamada [51] on the
basis of the periodic Anderson model by taking the phase factor of the mixing
potential between conduction electrons and impurity ions into account. These
authors describe the maximum in RH(T ) as a transition from a regime T �
Tcoh with RA ∝ ρ2 to one at T  Tcoh, with RA = χ (ρ the total resistivity).
In practice for a real system, a distinction between these models is often not
unambiguous, e.g. in UCu4Pd [52].
A fourth model to account for the anomalous Hall contribution is the side jump
effect, which is usually considered only to be relevant in disordered materials
[53]. Within this scenario, in the presence of disorder the scattered charge car-
riers are discontinuously shifted out of their original trajectory. This quantum
mechanical effect is resulting in a temperature dependence RA ∝ ρ2, with ρ
the total resistivity.
According to the model of Ref. [49] the value of the Hall constant RH at low
temperatures should be determined by structural disorder. If this prediction is
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Figure 3.14: Schematic behavior of the Hall effect in heavy fermion compounds, taken from
Ref. [49]; for details see text.

true, the question occurs if the general shape of the curve is affected by disor-
der. This would result in an influence of disorder on the coherence temperature
Tcoh, a question that will be discussed in Chapter 4.

3.2.4 Specific Heat

The specific heat represents one of the central physical quantities in the context
of heavy fermion physics, as it is used to distinguish heavy fermions from
"ordinary metals". Usually, the specific heat is separated into four terms:

c = cel + cph + cmag + cnuc.

Here, cel represents the electronic contribution to the specific heat, cph the spe-
cific heat of the phonons, cmag the magnetic contribution and cnuc the nuclear
contribution to the specific heat. As the specific heat at constant volume cv and
that at constant pressure cp are basically the same in the solid state, these two
quantities are usually not distinguished here. Further, cnuc is only important at
very low temperatures (mK range) and therefore it is not further discussed.

33
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Within the free electron approximation the electronic contribution to the spe-
cific heat is given by

cel = π
2

3 k
2
BTN(EF), (3.11)

with the density of states at the Fermi energy N(EF). Commonly, the linear
electronic contribution to the specific heat is written as cel = γT , with the
Sommerfeld coefficient

γ = π
2

3 k
2
BN(EF) = k

2
Bk

2
Fm
∗

3�2 ,

N(EF) - Fermi level density of states, kF - Fermi wave vector and m∗ - effec-
tive electron mass. In heavy fermion systems extraordinary large Sommerfeld
parameters γ of the order of 1000 mJ/mole K2 are observed. The Sommerfeld
coefficient γ is depending linearly on the density of states at the Fermi level
and thus also linearly on the effective mass of the electrons m∗ (renormalisa-
tion), hence the label "heavy fermion" materials.
The phonon contribution to the specific heat cph is given by

cph = 1
V

∑
ks

∂

∂T

�ωs(k)
eβ�ωs(k) − 1, (3.12)

with V the volume of the crystal, k representing the wave vector of the
phonons, s denoting the branch of the phonons, β = 1/kBT and ωs(k) as
the angular frequency of the phonon given by ks. As there is no analytical
solution for the expression 3.12, approximation schemes are required.
For the high temperature regime the Dulong-Petit law must hold

cph = 3nkB,

with n the number of ions per unit volume, as all degrees of freedom con-
tribute with kB/2 to the specific heat. In contrast, at low temperatures there
are two models to approximate the phonon spectra. In the Debye model a
linear phonon dispersion relation

ω = ck

is assumed for the acoustic phonons, with c as a constant. It leads to

cph = 12π4

5 nkB
(
T

ΘD

)3
, (3.13)
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with the Debye temperature ΘD as a measure for the stiffness of the crystal.
While the acoustic branches are usually approximated by the Debye model,
the optical branches are calculated using the Einstein model. In this model the
frequencies of the optical branches of the phonon spectrum are replaced by
one Einstein frequency ωE. However, in practice often for each optical branch
p a certain Einstein frequency ωE,p is assigned. Assuming p optical branches
leads to the optical phonon specific heat

coptph =
∑
p
nkB

(�ωE,p/kBT )2e�ωE,p/kBT

(e�ωE,p/kBT − 1)2 . (3.14)

At temperatures above the Einstein temperature ΘE,p = �ωE,p/kB the optical
branch p contributes a constant value kB/V to the specific heat, consistent
with the Dulong-Petit law. At low temperatures the contribution to the specific
heat evolves exponentially with temperature, reflecting that it requires a finite
energy to excite optical phonons.
Additionally, another contribution to the specific heat arises in magnetically
ordered materials, since the spin system also stores energy. Within mean-field
theory, and ignoring fluctuations, the magnetic contribution cmag of a ferro-
magnet per mole is given by

cmag = −3
2RTC

S

S + 1
∂

∂T

⎛⎝M(T )
M(0)

⎞⎠2

, (3.15)

with R as the universal gas constant. For temperatures far below the critical
temperature TC there is only a small contribution from the magnetic specific
heat, as here the magnetization is nearly temperature independent. In the para-
magnetic regime T > TC no magnetic specific heat is observed, reflecting
the fact that the spontaneous magnetization is M(T ) = 0. Hence, only in
the vicinity of the phase transition T → TC a substantial magnetic specific
heat contribution occurs, since the derivative ∂M2

∂T changes substantially, with
a sharp maximum in the specific heat right at the phase transition T = TC.
While the mean-field approach reproduces the essential features of the specific
heat associated to a second order magnetic phase transition, it fails to account
for the T dependence of cmag far below TC. An improved description of cmag is
provided by the spin wave approximation. Consider a ferromagnetic insulator
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withN ordered atoms possessing spins S. Now, in a ferromagnet only acoustic
(terminology analog to phonons) magnons occur with a dispersion relation

�ωm(q, i) = Ja2q2. (3.16)

Here, i distinguishes different magnon branches for a given wave vector q,
a is the lattice parameter and J measures the strength of magnetic coupling
between adjacent spins. Subsequently, the calculation is carried out as for the
Debye model of the phononic specific heat, but with ωm(q, i) ∝ q2 instead of
ω(q, i) ∝ |q|, yielding

cmag(T ) = NkB4π2

(
kBT

J

)3/2 ∫ ∞
0

x5/2exp(x)
(exp(x)− 1)2dx = 0.113 ·NkB(kBT/J)3/2

(3.17)
and V = Na3. To approximate above expression only next-nearest-neighbour
interactions and a cubic lattice are considered, leading to a Curie temperature
TC given by

kBTC = (S + 1)J. (3.18)

Furthermore, for cmag and at T < TC it follows

cmag(T ) = 0.113 ·NkB(S + 1)3/2(T/TC)3/2. (3.19)

Finally, the entropy S can be calculated from the specific heat. In general, the
entropy difference dS of a system is defined as

dS = dQ
T
,

with the change of heat dQ and the temperature T . The entropy can be calcu-
lated by integrating the specific heat divided by the temperature Cp/T

S =
∫ Cp

T
dT.

For a system with spin J , the maximum in the entropy

S = R ln(2J + 1)

is achieved at high temperatures.
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3.2.4.1 Specific heat of CePt3B

The specific heat of CePt3B, as taken from Ref. [42], is plotted in Fig. 3.15
as cP/T versus T . In addition, the specific heat for isostrucutral non-magnetic
LaPt3B is included in the plot. As LaPt3B is isostrucutral and non-magnetic
it is used to determine the phonon contribution to the specific heat of CePt3B.
Only, a correction factor

√
mLa
mCe

for the Debye modes has to be considered. The
electronic contribution can be extracted from an extrapolation to T = 0 K.

Figure 3.15: Temperature dependence of cP/T of CePt3B (yellow dots) and LaPt3B (blue
squares), taken from Ref. [42]. The red curve is a least square fit according to
Eq. 3.20 plus phonon and electronic contribution. The dashed curve represents
the magnetic entropy calculated from the specific heat; for details see text.

The two magnetic phase transition of CePt3B can be clearly observed as a peak
in cP for the antiferromagnetic transition at TN = 7.6 K, and as a shoulder for
the ferromagnetic transition at TC ≈ 4.5 K, respectively. The antiferromag-
netic spin wave contribution to the specific heat is given by [54]:

cmag = δΔ7/2T 1/2exp(−Δ/T )
⎡⎣1 + 39

20

(
T

Δ

)
+ 51

32

(
T

Δ

)2⎤⎦ , (3.20)
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with δ ∝ 1/D3. D is the spin wave velocity, Δ represents the value of the anti-
ferromagnetic spin wave dispersion gap. Using this model Lackner et al. [42]
obtained a gap of Δ ≈ 7 K and a Sommerfeld constant γ = 57 mJmole−1K−2.
The magnetic entropy Smag is calculated after subtracting the phonon contribu-
tion by using the specific heat data of the isostructural, non-magnetic LaPt3B.
At TN it reaches a value of about 4.5 Jmol−1K−1, which is about 20 % less
than the expected value of Rln2 for a spin 1

2 system (Ce in a 4f1 state), a value
only fully recovered well above TN.

Besnus et al. [55] calculated the specific heat jump for Ce based Kondo com-
pounds within the mean field framework. They found a close relation between
the size of the specific heat jump at TN and the ratio TK/TN. Furthermore,
the entropy Smag, in comparison to 12.48 J/moleK for a purely magnetic sys-
tem [55], is suppressed. Together with the reduced peak of cP(T = TN), it
is reflecting Kondo-type interactions. This way, a characteristic temperature
TK ≈ 6 K is obtained using the calculations from Ref. [55].

Further, at higher temperatures, i.e., between 20 K and 50 K the magnetic spe-
cific heat, given as the difference between cP of CePt3B and LaPt3B is zero,
resulting in a plateau in Smag. This is indicating that the first excited level of
the crystal electric field splitting of the ground state multiplet lies well above
the ground state.

3.3 Microscopic Methods

3.3.1 Neutron scattering

Neutron scattering has become a powerful tool in solid state physics due to the
physical properties of the neutron. First of all the de Broglie wavelength of
a thermal neutron is of the order of interatomic distances in condensed mat-
ter. Hence, neutrons are a suitable probe to measure these distances. Apart
from that, the scattering length is not a monotone function of the number of
protons or nuclei in an atom, in contrast to x-ray scattering. Therefore, light
elements even in the vicinity of heavy elements can be detected, with promi-
nent examples such as deuterium in a metal or, used in this work, boron in the
neighborhood of cerium.
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Despite from the nuclear interaction, the neutron is a spin 1
2 particle and there-

fore it interacts with magnetic moments. Hence, neutron scattering can be used
to detect magnetic structures. As the typical energies of thermal neutrons are
of the same order of magnitude as most elementary excitations in solid state
physics, inelastic neutron scattering can be used to measure these excitations,
e.g., magnons and phonons.
The partial differential cross section d2σ

dΩdE′ for neutrons with spin state σ, which
is the number of neutrons scattered per second into a small solid angle dΩ
in the direction Θ, φ with final energy between E ′ and E ′ + dE ′ divided by
Φ dΩ dE ′ is given by [56]:⎛⎝ d2σ
dΩdE ′

⎞⎠
σλ→σ′λ′

= k
′

k

(
m

2π�2

)2
| 〈k′
σ
′
λ
′|V |kσλ〉 |2δ(Eλ − Eλ′ +E −E ′).

(3.21)
Here, Φ is the flux of the incident neutrons, λ and λ′ are the initial and final
state of the scattering system and k and k′ are the initial and final state of
the neutron. Correspondingly, E and E ′ are the initial and final energies of
the neutron and Eλ and Eλ′ are the initial and final energies of the scattering
system. The interaction between the neutron and the scattering system is given
by V . In this work only elastic neutron scattering has been used and therefore
only this topic will be discussed in further detail.
For nuclear scattering from the jth nucleus 〈k′|V |k〉 is given by:

bjexp(iκ ·Rj), (3.22)

with the scattering vector κ. The scattering length bj is constant because the
nuclear potential has a short range.
For magnetic scattering from the jth electron, the matrix element is [56]:

−γr0σ ·
{
κ̂× (si × κ̂) + i

�κ
(pi × κ̂)

}
exp (iκ · ri) . (3.23)

The factor r0 is the classical radius of an electron μ0e
2/4πme, γ is the magnetic

moment of the neutron, si is the spin state of the ith electron and ri its position.
κ̂ is a unit vector in the direction of κ. The expression 3.23 is more elaborated
in comparison to the corresponding nuclear counterpart. First, because the
magnetic interaction is long range, and second because both, the dipole-dipole
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interaction for the spin and the dipole-current interaction for the orbital motion
are non-central forces.

In particular for the determination of nuclear or magnetic structures the shape
and the position of Bragg peaks in the diffraction pattern matters. For a fer-
romagnetic crystal the magnetic Bragg peaks occur at the same positions in
reciprocal space as the nuclear Bragg peaks. However, there are some differ-
ences between nuclear and magnetic scattering. Nuclear scattering is weakly
temperature dependent, while magnetic scattering is strongly temperature de-
pendent as it vanishes at the Curie temperature TC. More precisely, for nuclear
scattering the atomic form factor is independent of the reciprocal lattice vec-
tor τ because it is the Fourier transform of the nuclear potential which has
a very short range. Hence, the only term to vary the intensity with τ is the
Debye-Waller factor. In contrast, the magnetic form factor falls rapidly with
increasing |τ | as the magnetic potential has a long range.

Further, as an antiferromagnet consists of at least two interpenetrating mag-
netic sublattices, more complicated spin patterns are possible. For example,
the most basic antiferromagnetic structure consists of oppositely aligned next
nearest neighbor spins. Now, both the nuclear unit cell and the magnetic unit
cell have to be considered. In this case the magnetic unit cell axes are twice
as long as those of the nuclear unit cell, and therefore additional half-integer
peaks in the neutron diffraction pattern are observed. As the magnetic order-
ing vanishes above the critical temperature TN the additional peaks disappear.
Moreover, aside from the information on the magnetic structure the magnitude
of the magnetic moment can be estimated using neutron diffraction. Here, the
nuclear peaks act as a measure for the total intensity, and by combining the
knowledge of the nuclear and magnetic scattering lengths the magnetic mo-
ment can be calculated from the intensity of the magnetic peaks.

The neutron scattering experiments presented in this work have been carried
out using powder diffraction (Debye-Scherrer method). In powder diffraction,
the incident beam is monochromatic with wavelength λ and the sample is a
powder, representing a distribution of all possible orientations of the crystal-
lites. Hence, when illuminating the sample, Debye-Scherrer circles are ob-
served, satisfying Bragg’s law nλ = 2d sin Θ, d - spacing between the planes
in the atomic lattice and Θ - angle between the incident beam and the scat-
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tering planes. The instruments used in this work cut out a 2D rectangle of
the whole circle, resulting in diffraction lines. The intensity of these lines is
integrated and detected as intensity vs. scattering angle.

3.3.1.1 Neutron scattering experiments on CePt3B

In Ref. [34] the low temperature behavior of the bulk measurements on CePt3B
has been interpreted as a transition from a paramagnet to an antiferromagnet at
TN, and developing a canted antiferromagnetic structure at TC which leads to a
ferromagnetic moment [34]. As yet, a direct determination of the magnetically
ordered state, and thus the fundamental information required for a verification
of this scenario, is lacking.

To determine the magnetic structure of CePt3B neutron scattering experiments
have been carried out at the E6 spectrometer of the Berlin Neutron Scattering
Center (BENSC) at the Helmholtz Zentrum Berlin in collaboration with N.
Stüßer and A. Buchsteiner. A neutron wave length of λ = 2.444 Å has been
used. Natural Boron is a very strong neutron absorber (absorption cross sec-
tion 767(8) barn for 2200 m/s neutrons), and therefore the sample examined
here has been prepared using 11B (absorption cross section 0.0055 barn for
2200 m/s neutrons).

The data taken at T = 15 K are displayed in Fig. 3.16. These data have been
fitted with the tetragonal structure model of Sologub et al. [41] (space group
P4mm). Five different models have been tested, i.e., occupancy of (i) B site
free, (ii) Pt(1) site free, and (iii) Pt(2) site free, further (iv) leaving these pa-
rameters successively free and (v) leaving these parameters altogether free.
The best result has been obtained by using model (i). Model (iv) and (v) did
not yield a further reduction of RBragg. The occupancy of the B site has been
obtained to ∼ 114%, reflecting a reduced occupancy of the Ce site. For model
(iv) and (v) the occupancy of the Pt sites does not change significantly from
stochiometric values.

The results of the refinement are summarized in Table 3.1. All parameters
are in good agreement with the values obtained by Sologub et al. [41]. The
smaller lattice parameters are reflecting a shrinking of the lattice due to the
lower temperature used in our experiments, as compared to the experiments
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Four Bragg peaks could not be fitted with this structure model, implying that a
second phase is present in the examined sample. From the ratio of intensities
between peaks associated to the P4mm structure and those that could not be
fitted, the volume fraction of the second phase is estimated to about 10 %.
Due to the small number of secondary phase peaks, the crystal structure of the
second phase cannot be determined. In the refinement, by excluding the peaks
associated to the second phase, a value RBragg ∼ 6.2% is obtained.

Figure 3.16: Neutron scattering pattern of CePt3B (data points) and its refinement (solid line,
using model (i)) at T = 15 K; for details see text.

In the Figs. 3.17 and 3.18 a comparison of the spectra taken at 1.6 K / 15 K
and 6.55 K / 15 K are depicted. All data have been normalized to the peak
at 2Θ = 69.2 ◦, which belongs to the second phase and therefore should not
change upon transition into the magnetically ordered state. In addition, in the
figures the difference spectra between 1.6 K / 15 K and 6.55 K / 15 K data
are shown in the lower panels. In both the antiferromagnetic phase and the
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15 K Sologub et al. [41]

a (Å) 3.9943(4) 4.0031(3)
b (Å) 3.9943(4) 4.0031(3)
c (Å) 5.0620(1) 5.0736(4)
RBragg (%) 6.2 4.8

15 K x y z Biso

Ce 0 0 0 0.1a
Pt(1) 0 0.5 0.522(1) 0.1a
Pt(2) 0.5 0.5 0.131(3) 0.1a
B 0.5 0.5 0.713(8) 0.1a

Sologub et al. [41] x y z Biso

Ce 0 0 0 0.587(85)
Pt(1) 0 0.5 0.5132(13) 0.429(49)
Pt(2) 0.5 0.5 0.1174(11) 0.607(75)
B 0.5 0.5 0.688(17) 1.0

Table 3.1: Results of a refinement of powder neutron diffraction data of CePt3B at T = 15 K,
in comparison to x-ray powder diffraction refinement results of CePt3B at room
temperature carried out by Sologub et al. [41]. In the table the lattice parameters a,
b and c, the positional parameters x, y, z and the isotropic displacement factor Biso
for inequivalent atom sites are summarized, a is denoting a fixed parameter. The
quality of the refinement is measured by RBragg; for details see text.
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3 A case study: Basic properties of CePt3B

ferromagnetic phase additional intensity has only been found for the (1 0 0)
peak at 2Θ = 35.6 ◦. This additional integrated intensity in the difference
spectrum is only ∼ 2 % of the intensity of the largest peak of the CePt3B
lattice. No additional intensity has been found for any other examined Bragg
peaks, nor have additional peaks been observed.

Figure 3.17: Neutron scattering pattern of CePt3B, taken at 1.6 K (red) and 15 K (black). In
the lower panel, the difference between the 1.6 K and 15 K data are shown; for
details see text.

It implies that no information on the antiferromagnetic structure has been ob-
tained, as no additional peaks at low temperatures are observed. As well, ferro-
magnetic ordering appears not be indicated by the data, despite the observation
of the (1 0 0) peak intensity change, as no other peak has acquired additional
intensity at low temperatures. Therefore, we believe that the additional inten-
sity of the (1 0 0) peak is not of magnetic origin, but reflects an experimental
inaccuracy of the 15 K measurement. This is supported by a detailed temper-
ature dependence for 2Θ= 25 - 55◦ using a doubled counting time is depicted
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3.3 Microscopic Methods

Figure 3.18: Neutron scattering pattern of CePt3B, taken at 6.55 K (green) and 15 K (black).
In the lower panel, the difference between the 6.55 K and 15 K data are shown;
for details see text.

in Fig. 3.19. Again, no indication of magnetic ordering can be observed.
Given that no magnetic intensity is observed in our experiments, to estimate
the magnetic moment that ought to be experimentally detectable, magnetic
structure simulations with different magnetic moments and moment arrange-
ments have been performed. In particular, a ferromagnetic arrangement of the
magnetic moments and an antiferromagnetic arrangement with a doubling of
the unit cell in a direction have been assumed, see Figs. 3.20 and 3.21.
These simulations indicate that a magnetic moment of 0.5μB in the ferromag-
netic and 0.2μB in the antiferromagnetic case should be detectable in our ex-
periments. The absence of a magnetic signature in the E6 measurements could
either indicate that the actual sample used here does not exhibit magnetic order
and the susceptibility signal stems from the second phase, or that the ordered
moment is below the detection limit of the E6 instrument. Thus, in order to
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Figure 3.19: Neutron scattering pattern of CePt3B at various temperatures; for details see text.

decide between these two scenarios, μSR measurements have been performed.

3.3.2 μSR measurements

In contrast to neutron scattering measurements, μSR is a local probe technique,
i.e., information on the magnetic behavior stems from the direct vicinity of the
probing object, viz., the muon. Due to the large magnetic moment of the muon
(3.18 times larger than a proton), μSR is able to detect very small internal
magnetic fields of the order of 10−5 T. Furthermore, μSR experiments can
distinguish magnetic and non-magnetic phases co-existing in the same sam-
ple. The amplitudes of the μSR signals from ordered/non-ordered phases are
proportional to the volume of the sample occupied by those particular phases.

The muon is an elementary particle with spin 1
2 , a mass of roughly 200 electron

masses and a charge that could be either positive or negative with an absolute
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3.3 Microscopic Methods

Figure 3.20: Simulated neutron scattering pattern of CePt3B assuming a ferromagnetic align-
ment of the moments of size as given in the figure; for details see text.

value of |e|. For μSR spectroscopy the positive muon μ+ is commonly used
instead of the negative muon μ−, because the μ− will be localized close to an
atom nucleus while the μ+ will go to interstitial sites of the lattice.
In μSR facilities muons are produced by directing a beam of medium energy
protons (E ≥ 500 MeV) on a target which consists usually of light elements
like beryllium or carbon. In this subsequent decay process positive pions (π+)
are produced which decay with τπ = 26 ns:

π+ −→ μ+ + νμ. (3.24)

The muon beam resulting from this decay process is completely spin polarized,
as the pion (π+) is a S = 0 particle (in the inertial frame of the pion) and the
neutrino νμ has a spin antiparallel to its momentum. Hence the muon μ+ also
has a spin antiparallel to its momentum.
A typical experimental setup for a zero field μSR experiment is depicted in
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3 A case study: Basic properties of CePt3B

Figure 3.21: Simulated neutron scattering pattern of CePt3B assuming an antiferromagnetic
alignment of the moments of size as given in the figure; for details see text.

Fig. 3.22. After implanting the muon in the sample it loses its energy by
Coulomb interaction mediated scattering processes which do not influence its
spin polarization. Finally, the muon rests on an interstitial site. In a magnetic
field B the muon-spin precesses with the Larmor frequency ωμ = γμB, where
γμ = ge/2mμ is the gyromagnetic ratio for the muon. It decays with a lifetime
τμ = 2.2μs in a three particle process:

μ+ −→ e+ + νe + ν̄μ. (3.25)

The energy of the positrons vary, based on the momentum distribution between
the three particles. The μ decay, as a weak decay, violates the parity symme-
try, viz., more positrons e+ are emitted in the direction of the μ+ spin than in
the opposite direction. The positrons are counted by detectors which are posi-
tioned in front and behind the sample. As an example, the angular dependence
displayed for emitted positrons with highest energy is depicted in Fig. 3.23.
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3.3 Microscopic Methods

Figure 3.22: Typical experimental setup for a zero field μSR experiment, taken from Ref. [57];
for details see text.

However, in a μSR experiment an integration over all energies is measured. In
this case, the angular dependence is not as pronounced as in Fig. 3.23, but a
substantial asymmetry also in the direction of the spin is observed. From the
precession of the muon spin the internal magnetic field at the local muon site
can be estimated.

3.3.2.1 μSR measurements on CePt3B

To decide whether the discrepancy between susceptibility data and neutron
scattering experiments stems from a second phase, or if the magnetic moment
is too small to be detected in our neutron scattering experiment, μSR experi-
ments on CePt3B have been carried out at the Paul Scherrer Institut in collabo-
ration with H.-H. Klauß and H. Luetkens. In these zero field μSR experiments
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Figure 3.23: Angular dependence of μ+ decay for emitted positrons with highest energy [58].
The big arrow is indicating the direction of the muon spin; for details see text.

a distinct μSR oscillatory signal is observed below TN (see Fig. 3.24), implying
an ordered local moment below TN.

From the time dependence of the muon signal the oscillation frequency is de-
termined as function of temperature. The frequency of these oscillations to-
gether with the inverse susceptibility χ−1 are depicted in Fig. 3.25. Both tran-
sition temperatures TN and TC are observed in the muon oscillation frequency
and in the susceptibility data indicating the presence of an ordered magnetic
moment of the order of 1μB at the Ce site. An ordered moment of this size
ought to be detectable in neutron scattering experiments.
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Figure 3.24: Time dependence of the μ+ spin polarization of CePt3B. Fro clarity, only selected
temperatures of T = 1.6 K; 6 K and 9 K are plotted; for details see text.

3.4 Conclusion of the investigation of CePt3B1−xSix

In conclusion, the investigations on the alloying series CePt3B1−xSix con-
firmed the bulk properties of CePt3B as reported by Ref. [34]. The alloyed
samples CePt3B1−xSix, x = 0.2, 0.4 exhibited lower transition temperatures
TN and TC. The structural properties, investigated by neutron scattering exper-
iments, are in good agreement with those reported in Ref. [41], with evidence
for a small amount of a secondary phase (∼ 10% volume). The μSR experi-
ments show unambiguously the existence of an ordered moment of the order of
1μB. Taking the susceptibility and μSR measurements together, we can con-
clude that the magnetism is a bulk property of CePt3B. So far, the reason for
the difference in observations between neutrons and μSR/susceptibility mea-
surements is not clear and will require further investigations.
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3 A case study: Basic properties of CePt3B

Figure 3.25: Oscillation frequency of the muon signal obtained from μSR experiments, to-
gether with the inverse susceptibility χ−1 of CePt3B. The dashed line is an ex-
trapolation; for details see text.

3.4.1 X-ray resonant scattering

X-ray diffraction is a standard experimental tool to investigate ordered struc-
tures, i.e., structures of crystals or molecules like DNA. Now, x-rays do not
only couple to the electron shell of an atom but also to a magnetic moment.
However, using a common laboratory x-ray tube magnetic diffraction is rather
difficult to observe, as the magnetic scattering contribution is only a relativis-
tic correction to the total scattering cross section and therefore its intensity is
six orders of magnitude smaller than charge scattering. Hence, using standard
x-ray tubes it took until 1972 for the first successful x-ray magnetic diffraction
experiment [59].
In recent years, with the availability of synchrotron radiation sources it has
become much more convenient to perform magnetic scattering experiments.
In consequence, nowadays magnetic scattering experiments provide various
informations on magnetic correlation lengths, the local magnetic moments,
the magnetic structure and phase transitions.

52



3.4 Conclusion of the investigation of CePt3B1−xSix

However, even using synchrotrons the intensity of magnetic diffraction is still
several orders of magnitude weaker than charge scattering. Therefore, mag-
netic scattering is still difficult, and only the discovery of resonant scattering
changed the situation. Resonant scattering leads to a significant resonant en-
hancement for the magnetic cross section. It occurs at an absorption edge,
where a core level electron is promoted to an unoccupied state above the Fermi
energy. Afterwards the unoccupied core electron state is filled again, which is
associated by a reemission of a photon.

Theoretically, these transitions can be described in terms of magnetic and elec-
tric multipole expansions. In the x-ray energy regime it turns out that predom-
inantly the electric dipole and electric quadrupole transitions contribute, hence
only these contributions are considered. In the 4f -elements mainly the LII
(2p → 5d, dipolar) and LIII (2p → 4f , quadrupolar) as well as the MII
(3p → 5d, dipolar) and MIII (3p → 4f , quadrupolar) edges are of interest.
In the case of 5f -elements, theMIV edge is of particular interest as it directly
provides a dipolar connection between the 3d3/2 states and the 5f -states. By
convention, electric dipolar transition are labeled E1, electric quadrupolar tran-
sitions are labeled E2.

For the following considerations it is important to perform polarization analy-
sis of the scattered x-rays. Radiation, as provided by a synchrotron, is mainly
linear polarized, making polarization dependent experiments possible. The ra-
diation is linearly polarized in the plane of the synchrotron, while above and
below this plane it is circular polarized to some extend. The polarization plane
is defined with respect to the scattering plane, by convention σ-polarisation is
perpendicular and π-polarisation is parallel to the scattering plane. Hence, in
an experiment in vertical geometry the incident radiation is σ-polarized. In
Fig. 3.26 a typical vertical scattering geometry is depicted.

Hence, a study of polarization changes for the scattered beam is very conve-
nient. The unrotated σ − σ and rotated σ − π components of the scattered
beam are separated by an analyzer crystal. For the polarization analysis we
take advantage of the fact that for pure charge scattering in a dipole transition
only σ − σ scattering is allowed. Therefore, for analyzing the polarization of
the scattered beam the analyzer crystal is aligned to scatter only the σ − σ
component. After rotating the analyzer crystal by 90◦ around the scattered
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Figure 3.26: Vertical scattering geometry for an x-ray scattering experiment. For clarity, only
the σ component of the incident beam is depicted. Polarization analysis can be
performed by rotating the detector. Azimuthal dependent experiments can be
performed by rotating Ψ; for details see text.

beam, only the σ − π component is scattered by the analyzer crystal. Hence,
by rotating the analyzer around the scattered beam the unrotated σ−σ and the
rotated σ − π components of the scattering can be determined.
Furthermore, by varying Ψ, an azimuthal dependence of the scattering can be
measured, which reflects the shape of the electron distribution on the scattering
atoms. A detailed theory of the polarization dependence for resonant x-ray
scattering is given by Hill and McMorrow [60]. The resonant dipole scattering
amplitude for an incommensurate antiferromagnet is given by

fXRESnE1 = F (0)
⎛⎝ 1 0

0 cos 2Θ

⎞⎠ (3.26)

− iF (1)
⎛⎝ 0 z1 cos Θ + z3 sin Θ
z3 sin Θ− z1 cos Θ −z2 sin 2Θ

⎞⎠
+ iF (2)

⎛⎝ z22 −z2(z1 sin Θ− z3 cos Θ)
+z2(z1 sin Θ + z3 cos Θ) − cos2 Θ(z21 tan2 Θ + z23)

⎞⎠ ,
where Θ is the Bragg angle. The first term describes the charge scattering,
the second term produces first harmonic magnetic satellites and the last term
stems from second harmonic satellites.
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Even though the intensity of the quadrupolar transition is typically weaker than
the intensity of the dipolar transition, it still can be significant in experiments.
The quadrupolar scattering amplitude can also be found in Hill and McMorrow
[60], but will not be further considered here.
In principle, with the two expressions for the dipolar and quadrupolar contri-
bution to the resonant process, in an azimuthal angle dependence experiment
we can determine if the origin of the scattering is due to charge or magnetic
ordering. Furthermore, the orientation of the magnetic moments are accessi-
ble.
Altogether, the scattering amplitude is given by

A = ε′ · f · ε, (3.27)

with ε (ε′) the polarization of the incident (scattered) beam. f is the resonant
scattering length of the unit cell, given by

f =
∑
n
Dn exp(iQ · rn), (3.28)

with Q the scattering vector and rn the position of the n-th atom. Dn repre-
sents the resonant scattering length of the n-th atom.
With this brief overview of x-ray resonant scattering the basic principles to
discuss the experiments on PrB6 in Chapter 7 are provided. Furthermore, the
background to understand the experiments to determine the ordering parameter
in UPd3 is given.
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4.1 Introduction

UPd2X, X = Sb and Sn, belong to the class of UT2M compounds, where T is a
d-electron metal and M a heavier metal such as In, Sn, Sb or Pb. Many of these
systems are moderately mass enhanced to heavy fermion like f -electron inter-
metallics. Altogether, the class of compounds UT2M displays a rich variety of
different physical properties, such as:

• structural instabilities like in UPd2In [61] and UNi2Sn [62];
• antiferromagnetic ordering, e.g., in UPd2In [61], UCu2Sn [63] or UPd2Pb

[64];
• Pauli paramagnetism like in UNi2Sn [62, 63] and UNi2In [65];
• multiple magnetic transitions, e.g., in UPt2In from Pauli paramagnetism

to antiferromagnetism, and subsequently at low temperatures ferrimag-
netic ordering. [66]

The compounds UT2M have been subject to a very extensive set of studies
for more than two decades by now. Most of these compounds crystallize in
the cubic Heusler structure or in a structure derived from the Heusler lattice
but with lower symmetry. For example, the related structures with lower sym-
metries have been found in UCu2Sn (P63/mmc) [63] and UAu2Al (Pnma)
[65]. In Fig. 4.1 the Heusler lattice and the orthorhombic Pnma structure are
displayed to visualize the affinity between these two crystal structures. These
observations reflect the tendency towards structural instabilities for the class
of UT2M materials, a tendency found for Heusler compounds in general, e.g.,
in the archetypical ferromagnetic shape memory alloy Ni2MnGa [67] or the
related system Co2NbSn [68]. Both compounds show a structural transition at
TS ∼ 200− 400 K for Ni2MnGa and 200− 250 K for Co2NbSn, respectively
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[67, 68]. The temperature at which the transition takes place strongly depends
on the actual stoichiometry of the sample.

U

T

M

cubic

L2

orthorhombic

Pnma 1

Figure 4.1: Cubic Heusler L21 in comparison to the orthorhombic Pnma structure. The unit
cell is indicated by black lines, for details see text.

Structural disorder is an important topic in heavy fermion systems, e.g., even
moderate disorder in the vicinity to a quantum critical point can lead to non-
Fermi liquid behavior [69], extraordinary large residual resistivity values for
such intermetallic Uranium compounds or even a non-metallic behavior of the
temperature dependence of the resistivity.

4.1.1 Review of the class of compounds: UT2M

In the following, an overview of UT2M compounds investigated in recent years
is given. In particular, the structural properties and those physical properties
related to the level of disorder have been summarized.
For the compounds UT2In, as it can be seen in Table 4.1, that with the light-
est transition element T (Ni) crystallizes in a stable Heusler structure. With
increasing the atomic mass number to Pd, and thus the atomic diameter of
the transition metal element, a structural phase transition at TS = 180 K oc-
curs (for atomic radii, see Table 4.2). Takabatake et al. [61] performed x-ray
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diffraction experiments on the low temperature phase of UPd2In, but they were
not able to index the diffraction peaks, hence the low temperature structure of
UPd2In is still not resolved. In case of the 5d element Pt [66] the crystal lat-
tice is not even the cubic L21 Heusler structure anymore, but of hexagonal
P63/mmc symmetry. Hence, for this group of materials there is a structural
instability, possibly as result of the ionic diameter or atomic mass of the tran-
sition metal.

This trend is not followed by UAu2In, as this compound crystallizes in the
cubic Heusler structure as reported for the compounds with lighter transition
elements. However, for both UPd2In and UAu2In the residual resistivity is
large and the ratio of the resistivity between room temperature and low tem-
perature (ρ300/ρ0) is small, indicating the presence of structural disorder in
these materials. In contrast, the other two samples UNi2In and UPt2In show
a small residual resistivity and a resistivity ratio of the same order of magni-
tude as for common metallic heavy fermion systems, reflecting a well ordered
crystal structure.

In the family of compounds UT2Sn the issue concerning the structural prop-
erties is more complicated and no clear trend is detectable. However, the ex-
istence of three different crystal structures and the presence of a structural
transition in UNi2Sn and UAu2Sn again indicates structural instabilities in this
family of compounds. Moreover, some of the samples show a large residual
resistivity, e.g., UNi2Sn: ρ0 = 206μΩcm and UAu2Sn: ρ0 = 125μΩcm, and
a small resistivity ratio ρ300/ρ0 of 0.74 and 1.08, respectively. All the com-
pounds listed in Table 4.3 are characterized by comparatively small resistivity
ratios, with the highest value of ∼ 13 for UPd2Sn, reflecting a stronger ten-
dency for UT2Sn towards structural instabilities than for the family UT2In.

In Fig. 4.2 the different crystal structures as function of temperature of the
compounds UT2Sn and UT2In are summarized. The compounds in the upper
left corner, UNi2Sn to UPd2In, feature cubic Heusler structure at room tem-
perature. At lower temperatures UNi2Sn shows a phase transition at ∼ 220 K,
whereas, in the family UT2In two members, UPd2In and UNi2In, crystallize in
the cubic Heusler structure with an additional structural transition of UPd2In
at 180 K. Hence, there is the tendency to build stable Heusler structures for
the family UT2In, whereas the tendency to structural instabilities is more pro-
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UT2In Ni (3d) Pd (4d) Pt (5d) Au (5d)

Crystal structure cubic cubic hexagonal cubic
Space group L21 L21 P63/mmc L21
a (Å) 6.501 6.804 4.569 6.969
c (Å) - - 8.920 -

Type of mag-
netism

PP AFM Multi AFM

TN (K) - 20 35 70
ΘCW (K) 31 -307 (-111) -178 n.r.
μeff (μB) n.r. 3.78 (3.16) 3.25 3.50
γ (mJ/mole K2) 45 200 100 n.r.
ρ0(μΩcm) ∼4 ∼150 ∼3 ∼ 75
ρ300/ρ0 25.5 ∼0.9 ∼41 ∼1.7

specials structural transi-
tion at 180K

Ref. [63] [61] [66] [70]

Table 4.1: Physical properties of UT2In. Abbreviations: AFM denotes antiferromagnetism
with the Néel temperature TN, PP indicates Pauli paramagnetism and Multi that
multiple magnetic transitions were found at different temperatures (with the highest
transition temperature listed in the table). ”n.r.” indicates that the corresponding
parameter has not been reported, the parameter values for UPd2In given in brackets
are measured below the structural transition occurring at 180 K.

element Ni (3d) Cu (3d) Pd (4d) Pt (5d) Au (5d)

empirical atomic
radius

135 135 140 135 135

Table 4.2: Empirical atomic radii of Ni, Cu, Pd, Pt and Au, from Ref. [71].
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UT2Sn Ni (3d) Cu (3d) Pd (4d) Pt (5d) Au (5d)

Crystal structure cubic hexagonal orthorhombic hexagonal hexagonal
space group L21 P63/mmc Pnma P63/mmc P63/mmc

a (Å) 6.459 4.459 9.9787 4.550 4.704
b (Å) - - 4.58843 - -
c (Å) - 8.712 6.89166 9.021 9.208

Type of magnetic
order

PP AFM PP AFM PP

TN (K) - 16.6 - 60 -
ΘCW (K) n.r. -89 -77 -220 n.r.
μeff (μB) n.r. 3.36 3.18 3.61 n.r.
γ (mJ/mole K2) 45 60 70 17 n.r.
ρ0(μΩcm) 206 105 14 35 125
ρ300/ρ0 0.74 4.1 13 9.2 1.08

specials structural
transition
∼ 220 K

Ferroquadrupolar
ordering at
16 K

structural
transition
∼ 1090 K
from L21 to
P63/mmc

Ref. [62, 63, 72] [65, 73] [74, 75] [65] [70, 76]

Table 4.3: Physical properties of UT2Sn, with abbreviations as in Table 4.1.
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nounced in the class UT2Sn.
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Figure 4.2: Crystal structure as function of temperature and transition metal ion T in UT2Sn
and UT2In. Green denotes orthorhombic Pnma, blue hexagonal P63/mmc, red
cubic L21 and black implies that the structure has not been resolved so far.

Beside the two above mentioned families of Uranium compounds, two other
compounds, UAu2Al and UPd2Pb, have been investigated in the literature, see
Table 4.4. Also these compounds have a rather small resistivity ratio ρ300/ρ0
of 1.7 and 9.5, suggesting some level of crystallographic disorder.

Altogether, this summary reflects that a tendency towards a structural instabil-
ity is inherent to U based Heusler compounds. Insofar this instability does not
lead to a structurally fully relaxed lattice, it appears that it causes strain and
structural disorder in the compounds. Combining this observation with the
presence of strong electronic correlations, the physical properties of U based
Heusler compounds depend sensitively on the actual sample quality.
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compound UAu2Al UPd2Pb

Crystal structure orthorombic cubic
space group Pnma L21
a (Å) 7.683 6.85
b (Å) 7.239 -
c (Å) 5.730 -

Type of magnetic
order

AFM AFM

TN (K) 25 35
ΘCW (K) -97 -51
μeff (μB) 2.96 2.8
γ (mJ/mole K2) 102 98
ρ0(μΩcm) ∼35 n.r.
ρ300/ρ0 9.5 1.7

Ref. [65] [64]

Table 4.4: Properties of uranium based Heusler compounds, abbreviations as in Tab. 4.1.

In this context, one additional difficulty is associated with the preparation of
the samples, i.e., the low melting point of some of the constituents, e.g., for
Sn and In (Tm = 232◦C and 156.2◦C, respectively). Together with the high
melting point of 1132.4◦C for uranium and the different transition metals, the
vapor pressure of the low melting constituents is already comparatively large
before all elements are melted and mixed during the synthesis procedure. In
this situation, preferential evaporation of some elements might occur during
sample preparation, resulting in off-stoichiometric material.

However, structural investigations by means of microscopic methods have
been performed on UPd2−xSn [77]. Therefore, the question arises if the struc-
tural disorder properties found for UPd2−xSn also exists in other members of
the class of compounds UT2M.

4.2 Structural and magnetic properties of UPd2Sb

In order to further understand the relevance of structural instabilities and the
types of structural disorder a case study material from the class of compounds
UT2M is needed. UPd2Sb is a suitable candidate as this compound has a small
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resistivity ratio indicating the presence of disorder. Therefore, UPd2Sb was
selected to investigate the structural properties by means of neutron scattering.

4.2.1 Crystal structure

The uranium based heavy fermion compound UPd2Sb has been synthesized
and characterized for the first time by Gofryk et al. [78]. The samples which
have been examined in this work were synthesized by arc-melting the con-
stituents in stoichiometric ratio (U: 2N8, Pd: 5N, Sb: 5N) under titanium-
gettered argon atmosphere. The buttons were remelted several times to ensure
good homogeneity. No further heat treatment was applied [78].

Subsequently, in Ref. [78], the crystal structure was checked at room tempera-
ture using a Siemens D5000 x-ray powder diffractometer with Cu Kα radiation.
From the x-ray measurements the sample appears to be single phase with cu-
bic symmetry and a lattice parameter of a = 6.766(2) Å at room temperature
[78]. Based on the x-ray diffraction pattern Gofryk et al. [78] suggested that
the material crystallizes in a Heusler lattice.

4.2.2 Transport properties

The temperature dependence of the electrical resistivity ρ of UPd2Sb, as mea-
sured in Ref. [78], is depicted in Fig. 4.3. At room temperature the resistivity
is about 210μΩcm. Such an order of magnitude is large, but not absolutely
uncommon for uranium intermetallics. However, quite uncommonly, with de-
creasing temperature the resistivity is continuously increasing and reaches a
value of 262μΩcm at lowest temperature. The antiferromagnetic phase tran-
sition can be seen as an additional, but rather smooth upturn of ρ(T ). Its
signature is more pronounced in the temperature dependence of the derivative
of the resistivity dρdT (T ), see inset Fig. 4.3.

Above the phase transition the data have been fitted assuming Kondo behavior
[78]

ρ(T ) = ρ0 + ρ∞0 + cK lnT,
where ρ0 describes the scattering of conduction electrons on defects, ρ∞0 on
disordered spins and cK lnT on Kondo impurities. Employing a least square
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Figure 4.3: Temperature dependence of the electrical resistivity of UPd2Sb in zero magnetic
field. The solid line is indicating a fit to the data assuming a Kondo like behavior.
The antiferromagnetic transition temperature TN is marked. In the inset the deriva-
tive of the resistivity dρ/dT is displayed. The phase transition at TN is marked by
an arrow, for details see text (figure taken from [78]).

fit to the data the following parameters could be determined: ρ0 + ρ∞0 =
278μΩcm and cK = −14μΩcm.

However, the overall semiconductor-like behavior of the resistivity of UPd2Sb
in combination with the large residual resistivity is hinting towards an alter-
native scenario. As heavy fermion systems are very sensitive to structural
disorder regarding their electronic transport properties, possibly this behavior
might reflect crystallographic disorder. The strong influence of even moderate
levels of disorder in strongly correlated electron systems has been shown by
Maksimov et al. [77] and is discussed in chapter 3.

4.2.3 Thermodynamic properties

Furthermore, in Ref. [78] the magnetic susceptibility χ of UPd2Sb has been
measured in an applied field of 0.1 T, with χ−1 shown in Fig. 4.4. At low tem-
peratures a distinct minimum in χ−1 manifests the onset of antiferromagnetic
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ordering below the Néel temperature TN = 55 K. Above TN the susceptibility
exhibits a modified Curie-Weiss behavior in the form of

χ(T ) = Nμ2
eff

3kB(T −ΘCW) + χ0,

with an effective moment μeff = 2.7μB, the Curie-Weiss temperature ΘCW =
−86 K and χ0 = 3 · 10−4 emu/mole. The fit is included as a solid line in
Fig. 4.4.

Figure 4.4: Temperature dependence of the inverse magnetic susceptibility of UPd2Sb in a
magnetic field B = 0.1 T. In the inset the magnetization versus magnetic field at
T = 1.7 K is depicted (full circles are indicating an increasing field, open circles
a decreasing field), taken from Ref. [78].

The negative Curie-Weiss temperature ΘCW is consistent with the antiferro-
magnetic ordering at lower temperatures. The effective moment μeff is re-
duced, compared to the expected magnetic moment of a free U3+ or U4+ ion
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4.2 Structural and magnetic properties of UPd2Sb

(3.62μB and 3.58μB, respectively). The antiferromagnetic transition tempera-
ture TN is reduced as compared to the absolute value of the Curie-Weiss tem-
perature. The reduced value of TN is typical for strong Kondo interactions
[78]. In addition, in the inset of Fig. 4.4 the magnetization of UPd2Sb ver-
sus the applied field is depicted, no hysteresis nor metamagnetic transition is
observed.

The specific heat has been measured in Ref. [78] between 3 K and 70 K em-
ploying a standard adiabatic method. The result is depicted in Fig. 4.5. The
antiferromagnetic phase transition at TN = 55 K is not reflected as a well de-
fined peak, but only seen as a small shoulder in the specific heat data (marked
by an arrow). The transition is more pronounced in cp/T versus T , as can be
seen in the upper left inset of Fig. 4.5 where it is marked by an arrow.

Thus, the feature, which indicates the antiferromagnetic transition in the spe-
cific heat is rather broad and small, compared to a textbook specific heat
anomaly indicating a second order magnetic phase transition. Again, this
smoothing of the transition indicates that crystallographic disorder affects the
physical properties in the sample studied here.

In the lower right inset of Fig. 4.5 cP/T versus T 2 is displayed to verify a
linear behavior in this type of representation and to allow an extrapolation of
the data to low temperatures. The solid line in the lower right inset of Fig. 4.5
is a fit using the standard equation for specific heat in metallic samples:

cP(T ) = γT + βT 3,

where γT represents the electronic contribution and βT 3 the phonon contri-
bution to the specific heat. From the fit parameters γ = 81 mJ/moleK2 and
β = 4.1 mJ/moleK4 are obtained. Thus, in comparison to normal metals the
value of the Sommerfeld coefficient γ is enhanced by one order of magnitude.
Such behavior reflects moderately strong electronic correlations in this system,
implying that it belongs to the class of moderately mass enhanced f -electron
materials.

To determine the Debye temperature from the value β the formula ΘD =
3
√

12Rπ4/5β is employed [79]. This way, a Debye temperature ΘD of 124 K
is calculated. While this value is rather low, compared to normal metals, it is
of the same order of magnitude as for related materials, e.g., ΘD = 127 K for
UPd2Pb [61] and 180 K for UPd2In [64].
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4 Disorder effects in UPd2X, X=Sb, Sn

Figure 4.5: Temperature dependence of the specific heat of UPd2Sb in zero magnetic field
taken from Ref. [78]. The antiferromagnetic transition temperature TN is marked
by an arrow. In the upper inset cp/T versus temperature is displayed. The phase
transition is again marked by an arrow. In the lower inset cp/T is plotted as a
function of T 2. The solid line represents a fit to the data, for details see text.

4.2.4 Neutron scattering experiments

In Ref. [78] the semiconductor-like resistivity is attributed to a Kondo-like
behavior. An alternative scenario accounting for the negative dρ/dT over the
whole temperature range investigated in Ref. [78] would consider structural
disorder induced localization effects [46, 77]. Such an approach might also
explain the rather broad antiferromagnetic transition seen in the specific heat
data of the sample UPd2Sb examined in this work. In this situation, UPd2Sb
needs to be examined extensively with respect to the presence of structural
disorder in order to distinguish between the two scenarios proposed to explain
the unusual behavior of the resistivity.
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Now, in x-ray diffraction experiments it is often difficult to detect small
amounts of disorder (e.g. ∼ 10 % of crystallographic randomness). The reason
is that the x-ray cross section is proportional to Z2, with Z the atomic number
of the corresponding element. Hence, it is very difficult to detect atoms with
a small atomic number, when there are atoms with a much larger Z present
in the material. Furthermore, it is difficult to detect site exchange between
atoms with similar atomic numbers, as the cross section does not differ signif-
icantly. Therefore, comparing U (atomic number 92) with Pd (atomic number
46) and Sb (atomic number 51) x-ray scattering is not the optimum tool to
detect small amounts of disorder in this compound, and the x-ray experiments
from Ref. [78] have to be considered as being inconclusive regarding this is-
sue. As a consequence, we have carried out neutron scattering experiments to
study the structural and magnetic properties of UPd2Sb.

4.2.4.1 Structural properties

In order to figure out if the physical properties of UPd2Sb are induced by
disorder, high resolution neutron scattering using the Fine Resolution Powder
Diffractometer E9 at the Berlin Neutron Scattering Center (BENSC) at the
Helmholtz Zentrum Berlin have been performed. Neutron scattering is a very
suitable method to resolve disorder in UPd2Sb, because the constituents of the
material have a fairly bright elemental contrast, as is evidenced by the different
scattering cross sections (U: 8.87 barn, Sb: 3.64 barn, Pd: 4.48 barn). Thus, in
order to examine the crystallographic structure and to search for the presence
of disorder a neutron powder diffraction study at room temperature and 60 K
has been performed, using a neutron wavelength of λ = 1.797 Å.

The total diffraction pattern measured at 60 K is depicted in Fig. 4.6. A result
of a full Rietveld refinement using a derivative of the fully ordered Heusler
lattice is included in Fig. 4.6. Using a lattice parameter a = 6.7407(3) Å (a =
6.7625(3) Å) for the 60 K (300 K) data, most experimentally observed peaks
could be reproduced. Only three very small peaks with a relative integrated
intensity of ∼ 2 % could not be reproduced.

In order to better understand the nature of the disorder different structure mod-
els, including different site exchange models for the atomic positions, have
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4 Disorder effects in UPd2X, X=Sb, Sn

Figure 4.6: Neutron powder diffraction spectrum of UPd2Sb at 60 K. The solid line represents
a fit which allows 20 % U and Sb site exchange, using a full Rietveld refinement,
the tics indicate Bragg peak positions. The solid line in the lower panel shows the
difference between the experimental data and the fit, for details see text.

been tested. The fitted models are (a) a Heusler structure without site ex-
change, (b) a U-Pd site exchange model with the amount of U atoms located
on Pd sites and vice versa as fitting parameters, (c) a U-Sb site exchange model
with the number of U atoms located on Sb sites and vice versa as fitting pa-
rameters. All these models have been tested with I.) the thermal displacement
parameter Biso equal for all atoms and II.) different Biso parameters for differ-
ent atoms.

However, for all models the residual value for the Bragg factor RBragg is rather
poor. RBragg is a parameter to describe the quality of the fit, defined by:

RBragg = 100
∑
h |′I ′obs,h − Icalc,h|∑

h |′I ′obs,h|
, (4.1)
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with Icalc,h the calculated integrated intensity of the fit. ′I ′obs,h is a modified
observed integrated intensity

′I ′obs,h = Icalc,h
∑
i

⎧⎨⎩Ω(Ti − Th)(yi − bi)
(yc,i − bi)

⎫⎬⎭ , (4.2)

with T - scattering variable (e.g. 2Θ in powder diffraction experiments), yi
(yc,i) - observed (calculated) profile intensity and bi observed background [80].

With the fully ordered Heusler lattice a value RBragg of ∼ 21 % has been ob-
tained for the 60 K data. Overall, the best value RBragg has been found using a
model which allows about 20 % site exchange between U and Sb ions, yield-
ing RBragg ∼ 18 %, see Fig. 4.6. For the 300 K data a value RBragg ∼ 19 %
for the fully ordered Heusler lattice has been found, see Fig. 4.7. Using a site
exchange model leads to no further reduction of RBragg.

Moreover, for all these different structure models unusually large isotropic
thermal displacement factors Biso = 4.8 Å2 for U and Pd atoms and Biso =
1.8 Å2 for the Sb atoms at low temperatures of T = 60 K are obtained. At
T = 300 K the thermal displacement factor is even larger being Biso = 5.1 Å2

for U and Pd atoms and Biso = 2.0 Å2 for the Sb atoms, which is consistent
with the higher temperature of the experiment. The extraordinary large ther-
mal displacement factors Biso for both temperatures possibly reflect structural
disorder, which is characterized by a small static displacement of the atoms out
of their high symmetry positions. Moreover, even with the optimized models,
the large RBragg values indicate a fundamental problem of the fits.

A closer inspection of the results of the Rietveld refinement reveals the short-
comings of the Rietveld refinements. In Fig. 4.8 a detailed view of the (2 2 0)
peak, which is located at 2Θ = 44 ◦, is displayed. The solid line in Fig. 4.8
represents the result of the fit with the site exchange model, allowing 20 % U-
Pd site exchange. As can be seen from the figure, the peak consists of a central
main area, adjacent to which there are broad tails. These broad tails are not
adequately described by the refinements carried out here, and account for the
large RBragg values. 1

The broad tails of the Bragg peaks clearly indicate that there are structurally
short-range ordered regions in the sample. A picture, that most of the ma-

1The step in the fit function at the bottom of the main peak is a fit artifact. The peak has a FWHM of 0.5 ◦, but
this cannot be adapted to the broad tails, resulting in the small step of the fit function.
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4 Disorder effects in UPd2X, X=Sb, Sn

Figure 4.7: Neutron powder diffraction spectrum of UPd2Sb at 300 K. The solid line repre-
sents a fit with the fully ordered Heusler lattice, using a full Rietveld refinement,
the tics indicate Bragg peak positions. The solid line in the lower panel shows the
difference between the experimental data and the fit, for details see text.

terial orders in a (derivative of the) Heusler lattice, and only a small amount
of the material in between these crystalline grains is disordered, seems to be
appropriate. The model would consist of crystalline grains with the Heusler
structure, and between these grains there are strongly disordered regions giv-
ing rise to the quasi-amorphous signal in the neutron scattering experiment,
viz., the broad tails.

Regarding the origin of the physical mechanisms leading to the structural dis-
order in UPd2Sb, one can think of two different scenarios. First, a static model
is possible in which one of the constituents of the compound is either too
small or too large to fit into the crystal structure. While preparing the samples,
this would cause stress in the sample, with only small grains crystallizing,
and the remaining sample containing heavily stressed areas. The second sce-
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4.2 Structural and magnetic properties of UPd2Sb

Figure 4.8: Enlarged region of the neutron powder diffraction spectrum of UPd2Sb. The step
in the fit function at the bottom of the main peak is only a fit artifact.

nario would consider phonon softening, in which the dispersion relation of
the phonons has a second local minimum. In this case, the material would
show a tendency towards a structural instability. To distinguish between these
scenarios further measurements would be required.

4.2.4.2 Magnetic structure

The detected structural disorder in UPd2Sb strongly influences the transport
properties, resulting in a semiconductor-like behavior from room temperature
to low temperatures of 2 K. Furthermore, the antiferromagnetic transition is
broadened, as detected in specific heat measurements. Then, the question
occurs, if the magnetic structure of UPd2Sb is also influenced by structural
disorder.
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4 Disorder effects in UPd2X, X=Sb, Sn

In order to determine the antiferromagnetic structure of UPd2Sb powder neu-
tron scattering experiments have been carried out at T = 60 K and 1.6 K us-
ing the Focussing Diffractometer E6 at the Berlin Neutron Scattering Center
BENSC (neutron wavelength of λ = 2.444 Å). In the data taken with the E6
diffractometer, the previously observed broadening of the tails of the Bragg
peaks is reproduced. These tails reflect the structural disorder in UPd2Sb and
have prohibited a full Rietveld refinement of the data. Now, in order to pa-
rameterize these tail structures for the refinement of the E6 data an ad-hoc
non-linear background function has been used. Then, a full Rietveld refine-
ment of the neutron diffraction data, using the known crystal structure of the
Heusler lattice, can be performed for the high temperature measurement, see
Fig. 4.9. Using this method a residual value RBragg = 8.3 % is obtained for the
60 K data.

Including an additional magnetic phase for the antiferromagnetic state yields
a refinement of the data taken at 1.6 K with a residual value RBragg of 5.8 %.
The used antiferromagnetic structure of UPd2Sb refinement consists of ura-
nium magnetic moments ferromagnetically coupled within a plane aligned
along two cubic axes of the Heusler lattice, and which are antiferromagnet-
ically staggered along the third cubic axis. This magnetic structure has also
been obtained for the related system UPd1.85Sn (see Refs. [77, 81]). From the
intensity ratio between the nuclear and the magnetic Bragg peaks the ordered
moment of UPd2Sb was determined to μord = 1.3μB at zero temperature.
This value as well nicely compares to that of UPd1.85Sn (μord � 1μB at zero
temperature).

For a more detailed investigation of the antiferromagnetic phase a temperature
dependent study of a magnetic peak (1 1 0) has been performed. Although
all measurements have been performed with the same number of incident neu-
trons, to check for a constant intensity a structural peak (1 1 1) has also been
measured. In Fig. 4.10 the temperature dependence of these peaks is displayed.
At T = 3 K, 6 K, 10 K and 20 K no reduction of the magnetic peak intensity is
observed, hence for clarity these data are not shown. Consistent with the bulk
properties a reduction of the sublattice magnetization is observed above 20 K,
with the ordered magnetic moment having disappeared for T ≥ 60 K.

The development of the antiferromagnetic moment as function of temperature
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4.2 Structural and magnetic properties of UPd2Sb

Figure 4.9: Powder neutron diffraction pattern of UPd2Sb at 1.6 K (top) and 60 K (bottom).
The solid line represents a Rietveld refinement, the tics (a) indicate structural
Bragg peaks, the tics (b) in the 1.6 K graph indicate the Bragg peaks from the
antiferromagnetically ordered phase. The solid lines at the bottom of the figures
show the difference between the experimental data and the fit, for details see text.

for the (1 1 0) peak is depicted in Fig. 4.11. Aside from experimental scatter,
the overall behavior of the ordered magnetic moment is that expected for the
sublattice magnetization of a standard local moment antiferromagnet with a
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4 Disorder effects in UPd2X, X=Sb, Sn

Figure 4.10: Temperature dependence of the magnetic (1 1 0) and structural (1 1 1) peak of
UPd2Sb. Data shifted against each other for clarity, for details see text.

critical behavior μord ∝ (TN − T )2β, β = 0.3± 0.1.

A closer inspection of the (1 1 0) and (1 1 1) peaks reveals, that the width
of the structural peak is smaller than that of the magnetic peak, see Fig. 4.12.
Fits of the data using gaussian peak functions yield a FWHM of 0.655◦ for
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4.2 Structural and magnetic properties of UPd2Sb

Figure 4.11: Temperature dependence of the ordered magnetic moment of UPd2Sb from neu-
tron diffraction, obtained from the intensity evolution of the (1 1 0) peak. The
solid line is a fit μord ∝ (TN − T )β, for details see text.

77



4 Disorder effects in UPd2X, X=Sb, Sn

the structural (1 1 1) peak, a value which corresponds to the resolution limit
of the E6 spectrometer in this 2Θ range. In contrast, for the (1 1 0) peak a
FWHM 0.818◦ is obtained, which is significantly larger than the experimental
resolution limit.

Thus, the structural Bragg peak is resolution limited in our experiment,
whereas the magnetic peak appears broadened, reflecting a comparatively
small correlation length (order of magnitude hundred Å) in the antiferromag-
netic phase. This behavior is similar to that observed in related compounds
such as UPd2−xSn or U2PdGa3 and U2PtGa3 [77, 82]. It implies that the struc-
tural disorder affects the magnetic behavior in this respect, in a quite similar
fashion as observed in previous investigations.

4.2.5 Conclusion

The crystallographic disorder in UPd2Sb has been determined to result from a
kind of phase separation with small, structurally well ordered grains embedded
in "quasi amorphous" regions. The transport properties are influenced by the
structural disorder, resulting in a semiconductor-like behavior over the whole
temperature range. The magnetic structure has been determined to consist
of ferromagnetically coupled magnetic moments within a plane aligned along
two cubic axes, and which are antiferromagnetically staggered along the third
cubic axis. A non resolution limited magnetic Bragg peak reflects a magnetic
correlation length of the order of hundred Å, mirroring an influence of the
structural properties on the magnetism in UPd2Sb.

4.3 Fermi liquid state in UPd2Sn

4.3.1 Introduction

The transport properties of heavy fermions are strongly influenced by struc-
tural disorder, e.g., disorder induced localization effects or disorder induced
non-Fermi liquid behavior in the vicinity of a quantum critical point as dis-
cussed in Chapter 3 may occur. Furthermore, Fert and Levy [49] predicted
a disorder dependency of the Hall effect. As yet, a verification of the latter
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4.3 Fermi liquid state in UPd2Sn

Figure 4.12: Comparison of the peak width of the magnetic (1 1 0) and structural (1 1 1)
peaks of UPd2Sb. The solid lines represent fits to the data using gaussian peak
functions. The two horizontal bars indicate the experimental resolution limit of
the E6 spectrometer at BENSC.
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prediction is lacking. In this situation, an investigation of an extended set of
samples with a controlled and well known level of structural disorder is re-
quired. In this context the work of Maksimov et al. [77] indicated that a class
of compounds UPd2−xSn; x = 0.02, 0.04, with different heat treatments might
be a suitable candidate for such an investigation.

UPd2−xSn, x = 0, crystallizes in an orthorhombic Pnma lattice and shows no
magnetic ordering. However, off-stoichiometric samples, and thus moderately
disordered material, form a cubic Fm3m structure [74, 77]. Experimentally, it
has been observed that for x ≤ 0.04 UPd2−xSn crystallizes in the orthorhombic
Pnma structure, while for x ≥ 0.05 it forms in the cubic Fm3m lattice [77].

This structural transition suggests that UPd2−xSn shows an affinity to structural
disorder. Maksimov et al. [77] investigated the influence of structural disor-
der on the physical properties. Based on the work by Maksimov, the question
occurs in which way the transport properties of UPd2−xSn on the nonmag-
netic side of the phase diagram are influenced by the interplay of electronic
correlations and structural disorder. To answer these questions, a detailed in-
vestigation for several samples in the orthorhombic phase with 0 ≤ x ≤ 0.04
and different heat treatments is presented here.

Therefore, the electronic transport properties of a set of samples UPd2−xSn
with different stochiometry x < 0.05 and various heat treatments have been
examined. In particular, the following samples have been examined in this
work: UPd2−xSn with x = 0 in as-cast form, annealed at 700◦C, and 800◦C
for one week, x = 0.02 in as-cast form and annealed at 800◦C for one week,
and x = 0.04 in as-cast form and annealed at 800◦C for one week.

4.3.2 Specific resistivity of UPd2−xSn

Previously, Maksimov et al. [77] observed a metallic behavior of the resistivity
for orthorhombic UPd2−xSn, x < 0.05. At high temperatures, a large temper-
ature independent specific resistivity (∼ 150μΩcm) has been found, which in
such intermetallic uranium compounds is generally associated with scattering
from crystal electric field excitations and Kondo-like interactions, as well as
with magnetic scattering and scattering from phonons. With decreasing tem-
perature, at about 100 K, a substantial reduction of the resistivity is observed,
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which denotes the transition into a coherent state. Finally, at sufficiently low
temperatures T < T ∗, the resistive behavior can be described within Fermi
liquid theory with ρ = ρ0 + AT 2. T ∗ denotes the Fermi liquid temperature,
i.e., Fermi liquid behavior is observed below T ∗.

Surprisingly, Maksimov et al. [77] found an extraordinary strong sample de-
pendence of the residual resistivity of their samples UPd2−xSn, ranging from
1μΩcm for annealed UPd2Sn to 98μΩcm in as-cast UPd1.96Sn. Moreover,
these experiments indicated possible deviations from Fermi liquid behavior
for some of the high resistive samples. Hence, from the studies in Ref. [77]
the question arises, if in a Fermi liquid system a non-Fermi liquid behavior can
be induced through disorder, possibly in a way as proposed by Rosch [23].

Even if such a scenario is not realized for UPd2−xSn a study of the resistive
properties of a set of samples UPd2−xSn with varying residual resistivities as
result of varying disorder levels allows to investigate if the Fermi liquid pa-
rameters A and T ∗ are disorder dependent.

For the samples UPd2−xSn studied here ρ has been measured in the range from
T = 0.5 to 300 K. The overall behavior is shown in the Figs. 4.13, 4.14 and
4.15. Qualitatively, the same behavior as by Maksimov et al. [77] is observed.

For all samples UPd2−xSn; x = 0 (Fig. 4.13) no phase transition is observed,
i.e., the material is a "heavy fermion vegetable". At low temperatures, the
transition into the coherent state occurs. The same behavior is observed for
the other non-stoichiometric samples UPd2−xSn; x = 0.02 and UPd2−xSn;
x = 0.04, see Figs. 4.14 and 4.15, respectively.

The values of the resistivity at lowest temperature ρ0, at room temperature
ρ300, and the ratio ρ300/ρ0 are summarized in Table 4.5. From this table, a
range of resistivity ratios ρ300/ρ0 between about 2 and 16 is observed for the
samples UPd2−xSn. For the as-cast samples the ratio is between 2.2 and 2.8,
while for the annealed samples the ratio is larger ranging from 4.6 to 15.8, as
expected because of less disorder. As well, with decreasing concentration of
Pd the resistivity ratio is decreasing for the as-cast as well as for the annealed
samples, again reflecting less disorder for the samples closer to stochiometry
1:2:1.

On the other hand, the absolute values of the resistivity show some irregu-
larities, see Table 4.5 and Fig. 4.16. Especially the values for the two an-
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Figure 4.13: Temperature dependence of the resistivity of UPd2Sn for the as-cast sample (red
squares) and the annealed ones (700◦C - orange dots), (800◦C - bordeaux trian-
gles), for details see text.

nealed samples UPd2−xSn; x = 0, show different absolute resistivity values,
compared to those examined in the Refs. [74, 77]. In particular, UPd2−xSn;
x = 0 annealed at 700◦ C has a room temperature resistivity value, which is
larger by about a factor 2 than the other samples examined here or reported in
Refs. [74, 77], while UPd2−xSn; x = 0, annealed at 800◦C has a room temper-
ature resistivity value, which is smaller by a factor 2 compared to those other
samples.

One explanation for this variance in absolute ρ values might be the presence
of microcracks in the sample annealed at 700◦C, that is the true current path
in the sample would be longer resulting in a larger resistivity. In contrast, mi-
crocracks cannot explain the reduction of ρ for the sample annealed at 800◦C.
Here, one might speculate that during the annealing process a second grain
boundary phase forms, causing a short circuit in the sample. For instance, this
could be due to the low melting point of Sn and the resulting high vapour pres-
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Figure 4.14: Temperature dependence of the resistivity of as-cast (light blue triangles) and
annealed (800◦C - dark blue diamonds) UPd1.98Sn, for details see text.

sure. This way, it may lead to a Sn rich phase in the grain boundaries or on the
surface of the sample, a behavior often observed for Sn containing samples.

With these irregularities in ρ300 it is more useful to compare the resistivity data
normalized to 300 K. With such a normalization, as plotted in Fig. 4.17, it is
easy to see that the qualitative behavior of all samples is the same. Only the
resistivity ratios are different, which thus is a measure for the disorder level in
the different samples. Altogether it is ensured that all samples show the generic
behavior of orthorhombic UPd2−xSn [77]. Furthermore, with the present set of
samples a large range in terms of the experimental parameter "crystallographic
disorder" is covered.

Therefore, with our set of samples we are able to address the question if the
system UPd2−xSn is driven into non-Fermi liquid behavior, i.e., ρ = ρ0 +AT y,
y < 2, by disorder. Even if this should not happen, that is if Fermi liquid
behavior with ρ = ρ0+AT 2 remains prevalent, the question can be investigated
if the temperature range 0 < T < T ∗ within which Fermi liquid behavior is
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Figure 4.15: Temperature dependence of the resistivity of UPd1.96Sn for the as-cast (light
green triangles) and the annealed sample (800◦C - dark green triangles), for de-
tails see text.

observed depends on the level of disorder.

In order to test these scenarios, the data have to be fitted using ρ = ρ0 +
AT y. Since, fitting the data with free parameters ρ0, A, y yields no significant
deviation of y from the Fermi liquid prediction y = 2 for any of the samples.
In consequence, for a detailed analysis of the Fermi liquid behavior, in the
following the data are analyzed using ρ = ρ0 + AT 2. In this analysis, due to
correlation of the fitting parameters ρ0 and A, these two parameters are very
sensitive to the fitting interval. Therefore, in order to verify the prediction
from Fermi liquid theory and to determine the Fermi liquid temperature T ∗,
in which the coherent state is developed, the data have been fitted in different
temperature intervals T (1) to T (N). Here, T (1) is representing the lowest
measured temperature and T (N) is varied. As the fit is sensitive to the fitting
range, a quantitative measure for the fit quality, i.e., for the deviation between
measured data and fit in the fitted area is needed. One such measure would be
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ρ300(μΩcm) ρ0(μΩcm) ρ300/ρ0

UPd1.96Sn as-cast 148 67 2.2
UPd1.96Sn 800◦C 145 32 4.5
UPd1.98Sn as-cast 169 71 2.4
UPd1.98Sn 800◦C 164 34 4.8
UPd2Sn as-cast 159 56 2.8
UPd2Sn 700◦C 303 19 15.9
UPd2Sn 800◦C 72 8 9

Table 4.5: Room temperature resistivity ρ300, low temperature resistivity ρ0 and resistivity ra-
tio ρ300/ρ0 of UPd2−xSn.

Figure 4.16: Temperature dependence of the resistivity of UPd2−xSn, x = 0, 0.02 and 0.04;
for details see text.
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Figure 4.17: Normalized temperature dependence of the resistivity of UPd2−xSn, x = 0, 0.02
and 0.04; for details see text.

a relative deviation between fit and data per number of data points [83],

ζ(T (N)) =
∑N
i=1
|ρexp,i(T )−ρfit,i(T )|

ρexp,i(T )

N
. (4.3)

ΔT (N) = [T (1), . . . , T (N)] starts at the lowest measured temperature
T (1) = Tlow up to the highest fitted one T (N) = Tmax. N is the number
of data points in the corresponding temperature range ΔT (N). ρexp,i is the
ith data point in the temperature interval ΔT (N) and ρfit,i the corresponding
fitted point in ΔT (N). For each range ΔT (N), a set of fit parameters is deter-
mined and ρfit is calculated. The argument of the sum represents the relative
deviation between fit and data at temperature Ti. The sum is giving a measure
for the overall mismatch between fit and data in the whole range ΔT (N), viz.,
the fit quality. Division byN yields the average mismatch per point. With this
notation, ζ(Tmax) represents a measure for the fit quality in the temperature
range ΔT (N) = [Tlow, . . . Tmax], provided that N is not too small. For small
values N (for narrow temperature ranges fitted), ζ will tend to zero. This is
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strictly true for N = 1, as for a single point it can be ensured that ρexp − ρfit =
0.

If a fit adequately describes the data, then ζ(Tmax) is constant, its absolute
value being controlled by the scatter of the data. Conversely, an inappropriate
fit leads to a continuously increasing ζ(Tmax) with Tmax since with a larger
range ΔT (N) the mismatch will become worse. With the ζ function a tool is
provided which gives a measure for the quality of the fit. For the determination
of the characteristic temperature T ∗ a plot ζ versus T (N) is used, see as an
example Fig. 4.18. In this figure, in principle the expected behavior has been
found. Only in the intermediate range of T (N) a decrease of ζ instead of a
constant behavior is observed.

Figure 4.18: The quality of the fit for as-cast UPd2Sn using the ζ function, for details see text.

The decrease of ζ for 2 K � T (N) � 3 K is explained with a higher scattering
of ρexp at low temperatures T < 2 K. With increasing T (N) the relative devi-
ation between ρexp and ρfit is reduced as the scattering of the data is reduced
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for T > 2 K. Thus, the temperature T ∗ is given by the temperature at which a
change from decreasing ζ to increasing ζ occurs.

Having thus established T ∗, it is possible to obtain the optimum values for ρ0
and A. The values T ∗, ρ0 and A of all samples UPd2−xSn have been deter-
mined using this method and are summarized together with ρ300/ρ0 in Table
4.6.

Here, the resistivity ratio ρ300/ρ0 serves as a measure of the level of disorder.
In Fig. 4.19 the characteristic temperature T ∗ vs. resistivity ratio ρ300/ρ0 for
orthorhombic UPd2−xSn is depicted. From the figure no clear dependency of
the two quantities is derived, implying that structural disorder in orthorhom-
bic UPd2−xSn has no detectable influence on the onset of the coherent state,
as determined by T ∗. Furthermore, a non-Fermi liquid behavior induced by
structural disorder, as discussed by Rosch [23], cannot be observed. Possibly,
UPd2−xSn is too far away from the quantum critical point to develop disorder
induced non-Fermi liquid behavior, which means that the theory from Ref. [23]
is not applicable here.

4.3.3 Hall effect in UPd2Sn

According to Fert and Levy [49] the Hall constant RH is influenced by disor-
der. Skew scattering on impurities results in a constant background in RH(T ),
leading to a dependence of RH on the level of structural disorder in particular
at low temperatures. Furthermore, the question occurs, if the overall shape of

T ∗ (K) A ρ0 (μΩcm) ρ300/ρ0 Tcoh (K)

UPd1.96Sn as cast 3.2 1.41·10−7 67 2.2 35
UPd1.96Sn 800◦C 3.4 1.9·10−7 32 4.5 70
UPd1.98Sn as cast 3.4 1.88·10−7 71 2.4 42
UPd1.98Sn 800◦C 2.4 1.96·10−7 34 4.8 77
UPd2Sn as cast 3.1 1.92·10−7 56 2.8 52
UPd2Sn 700◦C 2.7 4.19·10−7 19 16.0 75
UPd2Sn 800◦C 3.8 1.22·10−7 8 9.5 70

Table 4.6: Fermi liquid temperature T ∗, resistive prefactor A, low temperature resistivity ρ0,
resistivity ratio ρ300/ρ0, and coherence temperature Tcohof UPd2−xSn.
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4.3 Fermi liquid state in UPd2Sn

Figure 4.19: Fermi liquid temperature T ∗ derived from the fits vs. resistivity ratio ρ300/ρ0 for
orthorhombic UPd2−xSn. In the figure, Tcoh as discussed below is included, for
details see text.

RH(T ) is modified by a large value ofRH,imp, effectively resulting in a disorder
dependent coherence temperature Tcoh.

In Fig. 4.20 the Hall coefficient RH is plotted against the temperature T for all
samples. For comparison, the data for as-cast UPd2−xSn, x = 0, investigated
by Maksimov et al. [77], are included. The overall shape of RH(T ) is the
same for all samples, with a maximum around ∼ 50 K. On the other hand the
absolute values of RH(T ) show big differences up to a factor 5.

Regarding the origin of the large differences in the absolute values RH is un-
clear. One possible scenario is that in the polycrystalline samples the actual
measured thickness d of the polycrystalline resistive bar is not the adequate
value to determine the Hall coefficient RH. There might be cracks in the sam-
ples which would lead to a reduction of the effective thickness, and thus one
would have to use an effective value deff instead of d.

In order to test this assumption,RH has been normalized to a value at∼ 200 K.
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4 Disorder effects in UPd2X, X=Sb, Sn

Figure 4.20: Temperature dependence of the Hall coefficient of UPd2−xSn, the magenta data
are measured by Maksimov [77] on as-cast UPd2Sn, for details see text.

As shown in Fig. 4.21, using the normalized Hall constant RH,eff a much bet-
ter agreement between the different data sets is observed. This supports the
notion of cracks, prohibiting the establishment of the correct thickness of the
sample. However, using this assumption, the similar temperature dependencies
of RH,eff reveal no significant correlation between disorder and Hall effect.

Further, the principle behavior predicted by Fert and Levy can be seen in
Fig. 4.21. At high temperatures a Curie-Weiss-like behavior is observed and
all samples show a pronounced maximum in RH with a coherence temperature
Tcoh in the regime of ∼ 40 K to 70 K. The dependence of Tcoh on the level
of disorder, given by the resistivity ratio ρ300/ρ0, is displayed in Fig. 4.19.
The coherence temperature increases with disorder up to saturation for low
disorder values, i.e., large ρ300/ρ0. Below the coherence temperature the Hall
coefficient RH is reduced, which is consistent with this theory. The differences
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4.3 Fermi liquid state in UPd2Sn

Figure 4.21: Temperature dependence of the normalized Hall coefficient of UPd2−xSn, the
magenta data are measured by Maksimov [77] on as-cast UPd2Sn. The solid
lines are guides to the eye, for details see text.

in the normalized valuesRH,eff for the samples UPd2−xSn are rather small, and
no correlation between structural disorder and residual RH is observed.

Therefore, the similarity in the T dependence of the normalized Hall coeffi-
cient, compared to the differences in the absolute values, reflects a problem
in the determination of the effective thickness rather than differences in the
carrier density.
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4.3.4 Conclusion

In conclusion, a detailed study of the transport properties of orthorhombic
UPd2−xSn has been carried out. In this study a detailed analysis of the Fermi
liquid behavior, as observed in the resistivity, and the signatures of the coher-
ent state appearing in the Hall effect have been performed. The predictions
of Rosch [23] regarding a disorder induced non-Fermi liquid behavior do not
apply to the materials studied here. Rosch predicted a non-Fermi liquid be-
havior in the vicinity of a QCP, therefore one might speculate, that UPd2Sn
is not close enough to a QCP. Of course, here the question occurs of a quan-
titative measure of the "distance" to the QCP. Furthermore, no characteristic
dependency of the Fermi liquid temperature T ∗ on disorder could be estab-
lished, implying that this quantity is a rather robust characteristic parameter of
the Fermi liquid state.

In addition, no disorder dependency of the residual value of the Hall constant
RH has been observed in this study, together with an increase of the coherence
temperature Tcoh, as it appears in the Hall effect, with decreasing disorder
level. Both findings are at odds with the theory of Fert and Levy [49], casting
doubt on the adequacy of this model. Here, additional theoretical studies on
the anomalous Hall effect in heavy fermion systems would be desirable.
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5 UPt2Si2: Field induced phases in an
antiferromagnet

5.1 Introduction

In the context of electronic transport properties influenced by moderate struc-
tural disorder in heavy fermion systems, UPt2Si2 has been studied intensively
as a model system [84]. For this material, the type of structural disorder has
been determined and based on these findings, Otop [84] explained the main
characteristics of the electronic transport properties of moderately disordered
UPt2Si2. Further, additional analysis of the experimental data in Ref. [85]
has provided evidence that the antiferromagnetic heavy fermion compound
UPt2Si2 should be discussed as an itinerant rather than a localized 5f electron
system, this in contrast to a crystalline electric field scheme view previously
put forth by Nieuwenhuys [86].

In order to further elucidate the question of itinerancy, in the following high
field magnetization and resistivity measurements are presented and the mag-
netic phase diagrams are derived. The experimental data are compared to the
calculations carried out by Nieuwenhuys [86], this way giving additional ev-
idence for an itinerant picture of UPt2Si2. Moreover, the magnetic phase dia-
grams of UPt2Si2 resemble those of URu2Si2, bringing up the issue of exotic
high field phases in UPt2Si2 analogous to URu2Si2.

5.2 Crystallographic structure

As the physical ground state properties of heavy fermion systems are very sen-
sitive to even a moderate level of structural disorder, to gain a full understand-
ing of the exotic ground state properties of these strongly correlated electron
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5 UPt2Si2: Field induced phases in an antiferromagnet

systems the relationship between disorder and ground state properties must be
understood. It is very difficult to prepare or obtain samples with a well defined
amount of moderate (i.e., ∼ 10 % of crystallographic randomness) disorder.
As well, it is very hard to experimentally detect such moderate levels of dis-
order. In this situation, a model substance is required which allows to study
both, the crystallographic disorder and its effect on the physical properties.

In this context, UT2M2 materials (with T representing a transition metal and
M elements of the periodic table groups III or IV, most commonly Si or Ge)
turn out to be of special value. These systems usually crystallize in one of
two tetragonal structures: either the CaBe2Ge2 (P4/nmm) or the ThCr2Si2
(I4/mmm) lattice (Fig. 5.1). Both are derivatives of the BaAl4 structure,
the CaBe2Ge2 lattice possessing a lower symmetry of the unit cell than the
ThCr2Si2 lattice. The close relation between the two structures can lead to
structural instabilities. For instance, in UCo2Ge2 a structural transition be-
tween the two structures has been found [87].

Figure 5.1: The tetragonal structure of the CaBe2Ge2 (left) and the ThCr2Si2 (right) lattices.

Even if no structural transition occurs, the close relation between the two struc-
tures can lead to crystallographic disorder as observed in a recent study of
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5.2 Crystallographic structure

URh2Ge2. In this compound, ∼ 5 − 10 % of Rh/Ge site exchange generates
moderate bond length disorder, as it has been established for an as-grown crys-
tal by x-ray absorption fine structure experiments [88]. This type of disorder
is the origin of a spin glass ground state below ∼ 9 K and it controls the elec-
tronic transport properties [89].

In this situation, to go a step beyond the studies carried out so far concerning
the influence of disorder on the physical properties of correlated electron sys-
tems, a material would be needed which fulfills various requirements. First,
the material has an inherent tendency towards a structural instability, resulting
in a moderate level of crystallographic disorder. Second, it must be possible to
detect the disorder and to quantify its level. Regarding this point, it is difficult
to detect disorder in U intermetallics by means of x-ray diffraction with the
scattering cross section for U being extremely large, compared to other con-
stituents, and hence most of the disorder signatures of the other elements be-
ing hidden. In this situation, the complementarity of neutron scattering might
possibly be used to detect disorder. At last, it would be desirable if single crys-
talline samples with different heat treatments are available in order to study the
influence of an annealing process on the structural and physical properties.

Given these requirements, UPt2Si2 has been demonstrated to be a very suitable
candidate to study disorder effects in heavy fermions [85]. Regarding the issue
of determining type and level of disorder, the containing elements U, Pt and Si
have a very bright elemental contrast in neutron scattering due to their different
neutron scattering cross sections (U: 8.9 barn, Pt: 11.7 barn and Si: 2.2 barn).
We will review the properties of this material in order to set the ground for the
ensuing discussion of the physical properties.

In the following brief summary of the physical properties we will in particular
pay attention to the structural disorder and electronic transport properties of
UPt2Si2. Afterwards, magnetization and electronic transport measurements in
high magnetic fields will be presented. Based on these data the magnetic phase
diagram will be generated and compared with the phase diagram of URu2Si2
[90]. Using the high magnetic field measurements the validity of calculations
based on the crystal electric field model will be discussed [86].

If not noted otherwise ,the measurements discussed in this work have been car-
ried out on as-cast single crystalline material grown by a modified Czochralski
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method in Leiden as described in Ref. [91]. For the samples studied here,
single crystal neutron scattering experiments have been performed using the
E5 spectrometer at BENSC, with a wavelength λ = 2.4307 Å at a temper-
ature T = 50 K. For the refinement of the data a CaBe2Ge2 lattice (space
group P4/nmm) has been used. Within experimental resolution an optimum
refinement has been found for a fully ordered lattice of stoichiometry 1 : 2
: 2. The results are summarized in Tab. 5.1. The lattice parameters and the
atomic sites x, y, z match well the results reported for polycrystalline [92] and
single crystalline [93] samples. The displacement parameters U11 and U22 on
the Pt(2)/Si(2) sites have been observed to be extraordinary large, see Tab. 5.1.
Since the experiments have been carried out at low temperatures of 50 K, this
displacement cannot be thermally induced.

For further illustration these findings are depicted schematically in Fig. 5.2.
A structure is observed which consists of ordered and disordered layers. The
displacement on the Pt(2)/Si(2) ligand sites is within the tetragonal a−b plane.
This type of disorder is reflected in an unusual behavior of the thermal expan-
sion.

In Fig. 5.3 the lattice parameters along the a and c axis of UPt2Si2 are displayed
as function of temperature. These data have been derived from powder neu-
tron diffraction using the E9 spectrometer at BENSC (neutron wave lengths
λ = 1.797429 Å and 1.308 Å; refinement values RBragg ∼ 6−8 %). The c axis
lattice constant shows a normal behavior as it shrinks with decreasing temper-
ature in contrast to the a axis behavior. For the a axis a minimum at around
100 K has been found, apparently reflecting a tendency towards a structural

x y z U11 U22 U33
(Å2/8π2) (Å2/8π2) (Å2/8π2)

U 1/4 1/4 0.8484(2) 0.45(4) 0.45(4) 0.08(4)
Pt(1) 1/4 1/4 0.3785(2) 0.10(3) 0.10(3) 0.28(4)
Pt(2) 3/4 1/4 0 1.86(5) 1.86(5) 0.14(4)
Si(1) 3/4 1/4 1/2 0.10(6) 0.10(6) 0.18(7)
Si(2) 1/4 1/4 0.1330(3) 0.94(8) 0.94(8) 0.29(8)

Lattice parameters: a = 4.186 Å , c = 9.630 Å

Table 5.1: Single crystal neutron scattering refinement from Ref. [85], for details see text.
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5.3 Magnetic properties

Figure 5.2: Crystal structure of UPt2Si2 in a thermal displacement ellipsoidal representation;
for details see text.

distortion in UPt2Si2 [85] as a result of the compression of the lattice.

5.3 Magnetic properties

The susceptibility χ of UPt2Si2 forB//a andB//c is depicted in Fig. 5.4. The
high temperature range (∼ 40 − 400 K) of the susceptibility data cannot be
fitted using a Curie-Weiss law. The data has to be separated into two regimes,
i.e., above and below 250 K. In Ref. [84] it is suggested that this separation
might be associated to a previously reported phase transition at 305 K [94].
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Figure 5.3: Temperature dependence of the a and c axis lattice parameters in UPt2Si2, for
details see text [85].

However, fitting the data below 250 K using a Curie-Weiss fit

χ = C

T −ΘCW
(5.1)

with C = NAμ
2
eff/3kB,ΘCW: Curie-Weiss temperature and μeff : effective mo-

ment in Bohr magnetons, yields an effective moment of 4.17μB (3.09μB) and
a ΘCW of −116 K (−35 K) for the a (c) axis. The effective moment for the
a axis is much to large to stem from U ions as those values are much smaller
for the different ionization states. The large value of the magnetic moment
previously was attributed to crystal electric field effects influencing the sus-
ceptibility [86].

The difference between field cooled (FC) and zero field cooled (ZFC) mea-
surements in the susceptibility data at low temperatures reflects structural dis-
order, see Fig. 5.5. For an accurate determination of the deviation between
FC and ZFC measurements the difference Δχ = χFC − χZFC is plotted in
the lower panel of Fig. 5.5. The temperature where the ZFC measurements is
different from the FC data, i.e., Δχ �= 0, is introduced as a new characteristic
temperature Tirr as indicated in Fig. 5.5.
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5.3 Magnetic properties

Figure 5.4: Temperature dependence of the susceptibility χ of UPt2Si2 for B//a and B//c,
for details see text [84].

For an exact determination of the magnetic transition temperature specific heat
measurements between 10 K and 50 K in zero field using a standard adiabatic
method have been performed, see Fig. 5.6. In order to determine TN more
accurately the electronic and phononic contribution to the specific heat (solid
lines in Figs. 5.6) have been subtracted, with cp,mag depicted in Fig. 5.7.

As a nonmagnetic isostructural sample (e.g., ThPt2Si2) was not available to
perform a phonon correction, a fitting model using the full Debye integral and
including an optical mode has been employed. For the phonon contribution
two Debye modes ( ΘD1(U) = 122 K and ΘD2(Pt) = 218 K) and one Einstein
mode (ΘE(Si) = 491 K) have been assumed. The electronic contribution to
the specific heat was reported to γ = 32 mJ/(moleK2) and is included in the
specific heat background (solid lines) depicted in Fig. 5.6.

This way the magnetic contribution cp,mag to the specific heat has been ob-
tained, see Fig. 5.7. Using a linear extrapolation scheme the transition tem-
perature TN was determined to 32.1 K. Furthermore, from cp,mag/T using an
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5 UPt2Si2: Field induced phases in an antiferromagnet

Figure 5.5: Temperature dependence of the susceptibility χ (upper pannel) and Δχ = χZFC−
χFC (lower pannel) of UPt2Si2, for details see text [84].

entropy balance model TN was determined to 32.9 K. However, the peaks
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5.3 Magnetic properties

Figure 5.6: Temperature dependence of the specific heat cp and cp/T of UPt2Si2. The black
solid line is representing the non-magnetic contribution, for details see text [84].

Figure 5.7: Temperature dependence of the magnetic specific heat cp,mag and cp,mag/T of
UPt2Si2, for details see text [84].

101
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which are indicating the transition are rather broad (∼ 3 K) again reflecting
structural disorder in this sample UPt2Si2.

The magnetic structure of UPt2Si2 has been derived from single crystal neutron
scattering experiments using the E1 spectrometer at BENSC (neutron wave
length λ = 2.42757 Å). The magnetic structure of Ref. [93] (moments are
pointing along the c axis and building up ferromagnetic sheets within the a-b
plane which are antiferromagnetically coupled on adjacent planes along the
c axis) could be confirmed. The magnetic moment is ∼ 2.5μB/U atom, and
thus somewhat larger than in Ref. [93].

Figure 5.8: Temperature dependence of the linewidth of (1 0 0) Bragg peak of UPt2Si2, for
details see text [84].

The linewidth of the magnetic (1 0 0) Bragg peaks is depicted in Fig. 5.8
[84]. Below TN the peak is resolution limited, reflecting a magnetic correlation
length larger than the experimental resolution limit. Above TN the Bragg peaks
are broadened reflecting a limited magnetic correlation length. At T = 34 K a
correlation length of ∼ 130 Å is obtained, again reflecting structural disorder
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5.4 Electronic transport properties

5.4 Electronic transport properties

Aside from the anisotropy in the magnetic properties, UPt2Si2 exhibits also
an extraordinary strong anisotropy in the electrical resistivity. Single crystals
of UPt2Si2 grown in Leiden (black, closed symbols) and in Sapporo (green,
open symbols) have been measured along the a and c axis, see Fig. 5.9. The
crystal grown in Sapporo has smaller residual resistivities (213μΩcm //c and
38.5μΩcm //a) in contrast to the crystal grown in Leiden (335μΩcm //c and
43μΩcm //a). Further, the resistivity ratio is smaller for the latter one, being
0.96 and 3.5 for //c and //a, respectively, in contrast to 1.5 for //c and 5.3
for //a for the Sapporo crystal. The stark sample dependence of the resistivity
reflects the strong influence on the level of crystallographic disorder. In the
discussion below only the crystal from Leiden will be considered.

The resistivity along the a axis shows heavy fermion metallic behavior with an
antiferromagnetic ground state. The broad maximum around 180 K indicates
the transition into the coherent state. The AFM transition appears as a kink
in the resistivity at low temperatures, see Fig. 5.10. Altogether the behavior
along the a axis is that of a Kondo type heavy fermion antiferromagnet.

The antiferromagnetic transition appears in the resistivity derivative dρ/dT as
a maximum (Fig. 5.11). This way TN is determined to 32 K, in good agree-
ment with the thermodynamic measurements discussed above. The resistivity
reduction below the antiferromagnetic transition can be described with a fit
assuming a freezing out of magnons caused by the opening of a spin wave
excitation gap:

ρ(T ) = ρ0 +AT 2 + DTΔ

[
1 + 2T

Δ

]
exp

(
−Δ
T

)
. (5.2)

A fit below 20 K yields gap values Δ = 44 K and 47 K for the crystals from
Leiden and Sapporo, respectively, see Fig. 5.10.

The resistivity along the c axis is completely different from the behavior ob-
served along the a axis. At high temperatures a non-metallic behavior with
a negative dρ/dT is observed (Fig. 5.9). Matthiesen‘s rule is not valid as the
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Figure 5.9: Temperature dependence of the resistivity of UPt2Si2 measured along the a and
the c axis. The black, closed (green, open) data points are measured on a single
crystal grown in Leiden (Sapporo). The red curve indicates a fit assuming disorder
induced localization behavior [85].

residual resistivity is larger than the room temperature value (Leiden crystal).
The extraordinary behavior above TN is associated to the ligand disorder on
the Pt(2)/Si(2) sites. The idea is that the wave functions of the electrons are lo-
calized in between disordered Pt(2)/Si(2) planes, that is electronic localization
on a length scale of a few Å.

The electronic transport properties in disordered heavy fermion systems can
be parameterized by localization theory [89]. In this situation the conductivity
is given by σ0 + σ(T ), with the conductivity correction σ(T ) given by

Δσ(T ) = e2

2π2�

(
3
√
b+ c2T 2 − cT − 3

√
b+ d
√
T

)
, (5.3)

with b = 1/Dτso, c =
√

1/4DτiT 2, d = 0.7367
√
kB/D� (diffusion coefficient

D, spin-orbit τso, and inelastic τi scattering times) [95, 96]. The full resistivity
is then given by ρloc = (σ0 +Δσ)−1. Using this model an excellent description
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Figure 5.10: Temperature dependency of the resistivity ρ along a and c axis of UPt2Si2 for
the Leiden crystal. The orange curve indicates a fit assuming a freezing out of
magnons caused by the opening of a spin wave excitation gap. The antiferromag-
netic transition temperature is indicated [85].

of the data above TN can be achieved (solid red line in Fig. 5.9).

Upon lowering the temperature just below TN, initially a stronger increase fol-
lowed by a reduction of the resistivity is observed (Fig. 5.10). This "overshoot"
is difficult to see in the temperature dependence of the resistivity, but more
clearly it is observed in the derivative of the resistivity dρ/dT as a minimum
at TN subsequently followed by a maximum, see Fig. 5.11. This behavior is
reflecting a superzone formation on the Fermi surface and implies that a Fermi
surface reconstruction occurs at TN.

The anomaly in the resistivity reflects band gaps introduced by superzone for-
mation upon onset of long range magnetic ordering. This notion is supported
by band structure calculations carried out by P. Oppeneer, University Uppsala
[97]. These calculations indicate that a pseudo gap appears at the Fermi sur-
face upon entering the magnetically ordered state. It implies that the essential
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Figure 5.11: Temperature dependency of the resistivity derivative dρ/dT along a and c axis
of UPt2Si2 for the Leiden crystal. The antiferromagnetic transition temperature
is indicated [85].

behavior of UPt2Si2 is explained in a band structure model, and that the crystal
electric field model is not valid.

The low temperature data of the c axis resistivity can be described with the
same model as along the a axis (Eq. 5.2), but this time without the AT 2 term
as along the c axis no transition into the coherent state occurs. From the fit,
the value of the gap has been obtained to Δ = 44 K for I//a and Δ = 32 K
for I//c axis, respectively.

To elucidate the magnetic field dependence of the spin excitation gap Δ, resis-
tivity measurements in fields up to 9 T at temperatures between 2 K and 40 K
along the c axis have been carried out. These measurements have been per-
formed on an annealed sample (900◦C/1 week). In Ref. [84] it is shown that
the annealing process does not alter the physical properties significantly. Thus,
it is ensured that the data from annealed samples can be used to determine the
in-field behavior of UPt2Si2. The value of the spin wave gap has been obtained
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by fitting these measurements with Eq. 5.2. As well, the transition tempera-
ture TN has been determined from the minimum in dρ/dT . Both quantities are
summarized in the phase diagram depicted in Fig. 5.12.

Figure 5.12: Spin excitation gap Δ and antiferromagnetic transition temperature TN of
UPt2Si2. The magnetic field B has been applied along the c axis. TN is indi-
cated by black squares, values of the gap Δ are indicated by dark gray dots. The
solid lines are fits to the data, for details see text.

The value of the spin wave gap Δ exhibits a larger reduction in an applied
magnetic field than the antiferromagnetic transition temperature TN. The field
dependence of the spin excitation gap has been fitted in the same way as for
URu2Si2 [98], using

Δ(B) = Δ(0)
[
1− (B/Bgap,c)2] ,

with Bgap,c = 13.8 T - critical field of the spin gap and Δ(0) = 33.8 K. Anal-
ogous to the field dependence of the spin excitation gap, the antiferromagnetic
transition has been fitted using the corresponding expression:

TN(B) = TN(0)
[
1− (B/Bafm,c)2] ,
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with Bafm,c = 50 T - critical antiferromagnetic field and TN(0) = 32 K.

The different field dependencies of the spin excitation gap and the antiferro-
magnetic transition temperature are rather puzzling, as the gap Δ can be closed
with a rather small magnetic field of 13.8 T, whereas a field of 50 T is needed
to suppress antiferromagnetic ordering.

We speculate that the observed different behavior of the gap Δ and the anti-
ferromagnetic transition temperature TN is due to two different energy scales
in UPt2Si2. It might be a hint, that UPt2Si2 exhibits a mixed localized/itinerant
behavior, with a dominant itinerant contribution, in a similar fashion as sug-
gested for related systems like UPt3 and UPd2Al3 [99, 100].

Altogether, from these studies it appears that the crystal electric field descrip-
tion put forth in Ref. [86] is not suitable to account for the transport properties
of UPt2Si2. Hence, UPt2Si2 is not a localized f electron system in the way
as thought previously. Instead, these new insights indicate that a band struc-
ture model ought to be more adequate to describe UPt2Si2. In the following,
measurements have been carried out to lend more support to the notion that a
crystal electric field model is not applicable to UPt2Si2.

5.5 High magnetic field measurements

Hitherto, high field experiments have only been discussed within the crystal
field model [86]. Here, with the band structure approach to understand the
properties of UPt2Si2 a re-investigation of the high field behavior is presented.

High field magnetization measurements have been carried out at the Labora-
toire National des Champs Magnétiques Pulsés (LNCMP) in Toulouse in col-
laboration with H. Rakoto in a 60 T pulsed field magnet (for the experimental
setup see Ref. [101]). The magnetization as function of the external field for
different temperatures along the a and the c axes is depicted in the Figs. 5.13
and 5.14, respectively.

In good agreement with Amitsuka et al. [102] a metamagnetic transition,
which occurs as an inflection point in the magnetization, is observed at low
temperatures. The transition along the c axis occurs in two steps at 25 T and
32.2 T at 1.7 K and 4 K. At 10 K only the lower transition persists, at 20 K also
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Figure 5.13: High field magnetization curves of UPt2Si2 for temperatures of 1.5 K, 4.2 K,
10 K, 20 K and 35 K with the magnetic field applied parallel to the a axis.

this transition has vanished. Along the a axis a dominant one-step transition is
observed. The transition field is 46 T at 1.7 K, decreases to 43.8 T at 10 K, and
is not observable anymore at 20 K. Also, a multistep-like fine structure with
small hysteresis, as in previous works, is verified.

In Fig. 5.15 the low temperature magnetization at T = 1.5 K (solid line), in
comparison with calculated magnetization based on the crystal electric field
model by Nieuwenhuys [86], is depicted.

Along the a axis, a metamagnetic transition is seen in the calculated curve
at ∼ 67 T, in contrast to 46 T in the measured data. For the c axis, above
∼ 20 T the calculations strongly deviate from the measured values, with only
one transition predicted in the calculated curve in contrast to two transitions
in the measured curve. Altogether this is indicating that a crystal electric field
model is not appropriately describing the physical properties of UPt2Si2.

To more clearly visualize the hysteresis the difference between averaged mag-
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5 UPt2Si2: Field induced phases in an antiferromagnet

Figure 5.14: High field magnetization curves of UPt2Si2 for temperatures of 1.5 K, 4.2 K,
10 K, 20 K and 35 K with the magnetic field applied parallel to the c axis.

netizations and field-sweep up (field-sweep down) values for B//a and B//c
are depicted in the Figs. 5.16 and 5.17, respectively. For B//a, at 1.7 K the
hysteresis sets in at∼ 15 T, the hysteretic behavior up to around 37 T probably
is an experimental artifact, with only 0.02μB/Uatom difference between field-
sweep up and down at an absolute magnetization of 0.6μB/U atom. However,
between∼ 37 T and∼ 48 T there is additional structure in the hysteresis, with
a maximum difference between upper and lower curve of 0.08μB/Uatom,
which clearly is intrinsic to UPt2Si2.

Similar as for B//a, for B//c there is a low field hysteretic region resulting
from experimental inaccuracies in these pulsed magnetic field experiments.
Further, two hysteretic regions are observed, from ∼ 19 T up to ∼ 27 T (with
a difference of 0.1μB/U atom) and subsequently one up to∼ 33 T (with a dif-
ference of 0.06μB/U atom), which are intrinsic. With increasing temperature
the hysteresis becomes smaller and vanishes at 20 K for both directions.
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5.5 High magnetic field measurements

Figure 5.15: Measured (solid lines) and calculated (dashed lines) high field magnetization
curves of UPt2Si2 at 1.5 K with the magnetic field applied parallel to the a and c
axes. In the lower panel a smaller section is depicted. The calculated curves are
taken from Ref. [86].

A metamagnetic transition is defined as an inflection point in the magneti-
zation curve. Therefore, it can be seen as a maximum in the field dependent
susceptibility. This quantity has been obtained by differentiation of the magne-
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Figure 5.16: Difference between averaged magnetization and field-sweep up (red) (field-
sweep down (black)) values of UPt2Si2 for T = 1.5 K with the magnetic field
applied parallel to the a axis.

tization curves. For this analysis the point density of the magnetization curves
has been reduced by smoothing to 100 points for the whole magnetic field
range. Afterwards, the average value of field-sweep up and down values have
been calculated. These averaged curves are then differentiated and shown in
Figs. 5.18 and 5.19 for B//a and B//c, respectively. This way the metamag-
netic transition field can be determined more accurately.

For B//a, at low temperatures of 1.5 K and 4.2 K the transitions appear at
38 T and 45 T. At 10 K only one maximum is clearly observable at 43 T.
For B//c, at low temperatures (1.5 K and 4.2 K), again two maxima in the
susceptibility at 25 T and 32 T occur, at 10 K only one transition at 26 T is
observable. Above 10 K no transition is visible anymore.

Further, high magnetic field longitudinal resistivity measurements using
a standard four point technique have been carried out at the Hochfeld-
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5.5 High magnetic field measurements

Figure 5.17: Difference between averaged magnetization and field-sweep up (red) (field-
sweep down (black)) values of UPt2Si2 for T = 1.5 K with the magnetic field
applied parallel to the c axis.

Magnetlabor Dresden, Forschungszentrum Rossendorf, in collaboration with
M. Bartkowiak. The measurement of the resistivity of metallic samples in a
high magnetic field is a sophisticated experimental technique. Due to the short
duration of a pulse (typical ∼ 150 ms) the electronics for data acquisition
have to work very fast. Therefore, a digital storage oscilloscope has been used
for data acquisition which, in comparison to a lock-in amplifier, has a reduced
signal-to-noise ratio. For each field sweep (up and down) 1024 data points
have been recorded. The data point density for the field sweep down is some-
what higher than for field sweep up because of the longer duration of the down
sweep. Therefore, in this work only the field sweep down data are shown and
analyzed. Due to the larger absolute resistance values, the signal-to-noise ratio
is larger for B//c than for B//a.

The data interpretation of the pulsed field resistivity experiments for both crys-
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5 UPt2Si2: Field induced phases in an antiferromagnet

Figure 5.18: Field dependence of the susceptibility ∂M/∂B of UPt2Si2 at various tempera-
tures with the magnetic field applied parallel to the a axis.

tallographic directions is in part still affected by the comparatively low signal-
to-noise ratio. Therefore, in order to ensure that the pulsed field data reflect
the intrinsic behavior of UPt2Si2, additional field dependent resistivity mea-
surements for both crystallographic directions in static magnetic fields up to
18 T have been carried out by M. Bartowiak in Dresden. For comparison,
in Figs. 5.20 and 5.21 high magnetic field measurements in static and pulsed
fields forB//a andB//c, respectively, are depicted. These data verify that the
pulsed field measurements show the same principal behavior as measurements
in static fields, even though it is with a smaller signal-to-noise ratio.

Further, in the Figs. 5.22 and 5.23 the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0)

in magnetic fields up to ∼ 50 T for B//a and B//c are depicted. In gen-
eral, forB//a below 35 K the normalized magnetoresistivity is increasing with
field, up to a maximum value of 0.9 for 4.2 K. At 1.4 K a saturation at about
40 T is found, which is shifted to 50 T at 4.2 K. At 12 K only data up to 45 T
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5.5 High magnetic field measurements

Figure 5.19: Field dependence of the susceptibility ∂M/∂B of UPt2Si2 at various tempera-
tures with the magnetic field applied parallel to the c axis.

are available, hence if a plateau is present in the normalized magnetoresistivity
it possibly is not seen in this limited field range.

For the c axis measurements, at low temperatures a distinct maximum at
∼ 25 T, which is slightly shifted to lower fields (∼ 22 T) at 20.3 K is ob-
servable in the normalized resistivity. Beyond the resistive maximum ρ−ρ(B=0)

ρ(B=0)
strongly decreases and saturates at a negative normalized magnetoresistivity of
∼ −0.35 at 1.6 K. For temperatures above 20.3 K the maximum has vanished,
and instead the normalized magnetoresistivity is always negative.

Qualitatively, the field dependence of the magnetoresistivity can be explained
by a combination of (a) a reduction of spin disorder scattering, and possibly
both, (b) Fermi surface effects and (c) crystallographic disorder. In (a), the
spins are polarized in the direction of the magnetic field, and with the reduced
level of structural disorder in the spin system the electrons can move more
easily. In (b), the antiferromagnetic order is associated to Fermi surface effects
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5 UPt2Si2: Field induced phases in an antiferromagnet

Figure 5.20: Comparison of static and pulsed high magnetic field resistivity measurements
of UPt2Si2 at various temperatures with the magnetic field applied parallel to
the a axis. Solid lines indicate pulsed field measurements, dotted lines represent
measurements in static fields.

which might be affected in high magnetic fields. Compared to the other effects,
(c) changes of the level of electronic localization in magnetic fields generally
are considered to be relatively small and probably are only of secondary order
in the present case.

In the following it will be tested to what extent the normalized magnetoresis-
tivity ρ−ρ(B=0)

ρ(B=0) displays the same principal behavior as the differential suscep-
tibility. Based on this analysis, using normalized resistivity and differential
susceptibility data, the magnetic field phase diagram will be generated.

In the Figs. 5.24 and 5.25 the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0) and the

susceptibility of UPt2Si2 as function of the magnetic field applied parallel to
the a axis for various temperatures are depicted. Each plot displays the resis-
tivity and susceptibility data taken at the same temperature or the ones most
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Figure 5.21: Comparison of static and pulsed high magnetic field resistivity measurements
of UPt2Si2 at various temperatures with the magnetic field applied parallel to
the c axis. Solid lines indicate pulsed field measurements, dotted lines represent
measurements in static fields.

closely to each other.

For B//a, at 35 K both, susceptibility and magnetoresistivity, are featureless,
consistent with the paramagnetic state of UPt2Si2. Surprisingly, at 20 K there
is a clear mismatch between susceptibility and magnetoresistivity above 30 T,
which needs to be verified in future experiments. In contrast, at 12 K and
below, both, susceptibility and magnetoresistivity, behave in a similar fashion,
with maxima in high fields of about 45 T, although the noise level prohibits a
very accurate determination of transition fields.

Further, in the Figs. 5.26 and 5.27 the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0)

and the susceptibility of UPt2Si2 as function of the magnetic field applied par-
allel to the c axis for various temperatures are depicted. At 10 K and above
both, susceptibility and magnetoresistivity, display a similar behavior. In con-
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5 UPt2Si2: Field induced phases in an antiferromagnet

Figure 5.22: Field dependence of the normalized magnetoresistivity ρ−ρ(B=0)
ρ[B=0) of UPt2Si2 at

various temperatures with the magnetic field applied parallel to the a axis.

trast, at 4.2 K and below in the magnetoresistivity only one maximum appears,
while in the susceptibility there are two. However, from magnetoresistivity
data it appears as if there is a discontinuous change of the field evolution ap-
proximately at the field of the second susceptibility maximum. Additional
experiments will have to verify this point.

From the maxima in ∂M/∂B the phase diagrams for B//a and B//c are ob-
tained, see Figs. 5.28 and 5.29, respectively. In the phase diagram for B//c,
in addition the values obtained from the maxima in ∂ρ/∂B and ∂ρ/∂T are
included. The possible phase boundaries are indicated by dashed lines. Due to
the higher noise level in the resistivity measurements for B//a an analysis as
performed for B//c was not possible. Even a smoothing of the curve prior to
the differentiation does not yield a sufficient reduction of the noise level, lead-
ing to unreasonably large error bars in the phase diagram. Therefore, these
data points are not included in the phase diagram.
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5.5 High magnetic field measurements

Figure 5.23: Field dependence of the normalized magnetoresistivity ρ−ρ(B=0)
ρ[B=0) of UPt2Si2 at

various temperatures with the magnetic field applied parallel to the c axis.

Surprisingly, and in contrast to previous high field studies on UPt2Si2, the
phase diagrams are quite complex, with two phases for B//a and two or three
phases for B//c which are probably magnetically ordered.

The phase diagram of UPt2Si2 reveals close similarities to the phase diagram
of URu2Si2, which is depicted in Fig. 5.30 (from Ref. [90]). URu2Si2 is a
heavy fermion material in which the f electrons have an itinerant character,
rather than being localized. At low temperatures (T < 17.5 K), URu2Si2 is
characterized by a hidden order phase. In magnetic fields, this phase is first
destroyed by a critical field of ∼ 35 T, and at ∼ 36 T a field induced reentrant
phase is created. In contrast to URu2Si2, UPt2Si2 is not a hidden order material
but orders antiferromagnetically at low fields. We speculate, that the existence
of the high field phases in both materials reflects Fermi surface effects. Hence,
these similarities would indicate that UPt2Si2 cannot be described in terms
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Figure 5.24: Field dependence of the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0) and the suscep-

tibility of UPt2Si2 with the magnetic field applied parallel to the a axis.

of a crystal electric field model, and that UPt2Si2 is another typical Uranium
compound for which itinerant effects have to be considered.

In order to further clarify the high field behavior of UPt2Si2 and reveal the na-
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5.5 High magnetic field measurements

Figure 5.25: Field dependence of the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0) and the suscep-

tibility of UPt2Si2 with the magnetic field applied parallel to the a axis.

ture of these different phases a detailed investigation including additional high
field magnetization and high field resistivity will be necessary. In particular,
magnetoresistivity measurements for B//a with a higher signal-to-noise ratio
would be very helpful to complete the exciting phase diagram of UPt2Si2.
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Figure 5.26: Field dependence of the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0) and the suscep-

tibility of UPt2Si2 with the magnetic field applied parallel to the c axis.

5.6 Conclusion

In conclusion, the reinvestigation of UPt2Si2 presented here reveals that the
crystal electric field picture developed by Nieuwenhuys [86] to describe this
material is not valid. Instead, UPt2Si2 has to be discussed as a delocalized f
electron system, that is Fermi surface properties determine its physics. This
situation closely resembles the case of the hidden order material URu2Si2,
which initially was also discussed in terms of a crystal electric field model. It
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Figure 5.27: Field dependence of the normalized magnetoresistivity ρ−ρ(B=0)
ρ(B=0) and the suscep-

tibility of UPt2Si2 with the magnetic field applied parallel to the c axis.

was revealed later that this picture is inadequate and that URu2Si2 should be
treated as an itinerant f electron system [103, 104].

The multitude of analogies between UPt2Si2 and URu2Si2, the most remark-
able one is the similarity of their complex high magnetic field phase diagrams,
which are not understood until now, suggest that UPt2Si2 might be a key to un-
derstand the exotic properties of hidden order/heavy fermion superconductor
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Figure 5.28: Proposed magnetic phase diagram B//a of UPt2Si2 obtained from the maxi-
mum in ∂M/∂B. The dashed lines suggest the proposed evolution of the phase
boundaries, for details see text.

URu2Si2. To achieve this, further investigations, and in particular high field
measurements ought to be carried out on UPt2Si2 in the future.
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5.6 Conclusion

Figure 5.29: Proposed magnetic phase diagram B//c of UPt2Si2 obtained from the maxima
in ∂M/∂B (black) and in ∂ρ/∂B (red), as well as the minima in ∂ρ/∂T (green).
The dashed lines suggest the proposed evolution of the phase boundaries, for
details see text.
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Figure 5.30: Magnetic phase diagram for B//c of tetragonal URu2Si2 after Ref. [90], for
details see text.
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6 Ground state properties of U(Pd1−xPtx)3

6.1 Introduction

Actinide and rare earth systems are of special interest, as their f -electron
shells exhibit various local degrees of freedom, which are based on the dipo-
lar, quadrupolar, octupolar etc. character of the f -electronic shells. In con-
sequence, in localized f -electron systems the f -orbitals carry the potential to
exhibit long-range order of various types. For many of these ordering phe-
nomena the question occurs if the ordering can be suppressed by an external
control parameter. This in turn directly leads to the question if such a suppres-
sion of an ordered state to T = 0 K leads to quantum critical behavior in a way
as observed experimentally for magnetic ordering [27–29].

In many heavy fermion systems long-range dipolar ordering, (viz., here mag-
netic ordering) has been observed, but examples for long-range quadrupolar
ordering in metallic materials are very rare. In magnetically ordered systems,
the magnetic dipole moments form an ordered structure. As the name indi-
cates, for the quadrupolar case the electric quadrupolar moments are respon-
sible for the ordering. In contrast to dipolar ordering where the ordering pa-
rameter is directly accessible with neutron scattering, in quadrupolar ordered
systems it is difficult to determine the ordering parameter. Higher order multi-
pole ordering is only directly accessible with x-ray resonant scattering.

Another way to gain information on the nature of the ordered quadrupolar
ground state is to observe the associated phase transition, e.g., with specific
heat measurements, even though a direct determination of the ordering param-
eter is not possible. However, to study the evolution of the phase transition
associated to quadrupolar ordering by the variation of an external parameter,
measurements of bulk properties are a suitable tool.

In this situation, to study the influence of an external parameter on quadrupolar
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ordering and on the physical properties, a material is needed for which long-
range quadrupolar ordering is established.

6.2 UPd3: An archetypical quadrupolar ordered system

As one of the rare metallic examples which exhibits long-range quadrupolar
ordering UPd3 has been intensively studied for more than 30 years, e.g. [105–
112]. The material crystallizes in the double-hexagonal close-packed (dhcp)
crystal structure (space group P63/mmc) as shown in Fig. 6.1, with lattice pa-
rameters a = 5.73 Å, c = 9.66 Å at room temperature [113]. In this structure,
the B plane is situated between the hexagonal planes A, hence the B plane has
hexagonal symmetry. Conversely, the A planes are stacked within a sequence
BAC, which locally represents a cubic symmetry, hence the A plane can be
treated in a quasi-cubic approximation. In order to illustrate the quasi-cubic
symmetry, the A plane is depicted in Fig. 6.2.

In the course of the years, and with improving sample quality, in total four
phase transitions at T0 = 7.8 K, T+1 = 6.9 K, T−1 = 6.7 K and T2 = 4.4 K
have been identified at low temperatures [108, 109, 114–121]. By now, it
has been demonstrated that the transition at T0 = 7.8 K is into an antiferro-
quadrupolar ordered (AFQ) structure (order parameter Qzx), which is associ-
ated with a periodic lattice distortion and a doubling of the dhcp unit cell, see
Fig. 6.3 [112]. The transitions at T+1 and T−1 are also of quadrupolar origin,
the transition at T−1 is accompanied by another lattice distortion (space group
P 3̄m1) [117, 121]. The transition at lowest temperatures (T2) is into an an-
tiferromagnetically ordered state with a very small ordered magnetic moment
of ∼ 10−2 μB/U atom in zero magnetic field.

There are several alloying studies to investigate the development of the local-
ized character and the influence of doping on the quadrupolar phases. In one
such study substitution of U by Np has been investigated [122]. The transition
temperatures are not very sensitive to Np alloying, with the phase diagram
summarized in Fig. 6.4 (from Ref. [122]). With a small amount of Np alloying
(up to 5 %) the lower transition temperatures T−1 and T2 are reduced, contrary
to T0 which is increased.

In contrast to Np alloying, UPd3 is much more sensitive to Pt doping. Zo-
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6.2 UPd3: An archetypical quadrupolar ordered system

Figure 6.1: Double-hexagonal structure (space group P63/mmc) of UPd3, from Ref. [114].

chowski et al. [121] have shown by thermal expansion measurements of single
crystalline material along the c axis, that a small amount of 5 % Pd substitu-
tion by Pt is completely suppressing the antiferroquadrupolar and antiferro-
magnetic ordering. However, Zochowski et al. [121] did not carry out further
alloying experiments with amounts < 5 % Pt, and thus have not identified the
critical composition x in U(Pd1−xPtx)3 of a zero temperature phase transition.

On the other side of the U(Pd1−xPtx)3 phase diagram the heavy fermion
(γ = 440 mJ/K2molU) superconductor UPt3 is located. UPt3 has been studied
extensively for many years (for reviews see Refs. [6, 99, 123]). It crystallizes
in a hexagonal closed-packed structure (space group P63/mmc; lattice con-
stants a = 5.764 Å and c = 4.899 Å at room temperature), corresponding to
a stacking of only AB planes. The distance between the U atoms aU−U is
4.132 Å in UPt3 and 4.106 Å in UPd3 which is far beyond the Hill limit (3.5 Å
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b

a

Figure 6.2: Illustration of the hexagonal A plane of UPd3 to illustrate the local quasi-cubic
symmetry.

Figure 6.3: TheQzx AFQ structure with antiphase stacking along the z axis in UPd3 at T+1 <
T < T0 in an orthorhombic unit cell. The U 5f -quadrupoles on the quasicubic
sites are represented schematically by ellipsoids; figure taken from Ref. [112]

130
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Figure 6.4: Magnetic phase diagram of U1−xNpxPd3 as a function of x, from Ref. [122].

for uranium [124]). The Hill limit denotes the distance beyond which the over-
lap of the f -orbitals is to small to form f -bands and the f -electrons become
localized. In the normal state above the superconducting critical temperature
TC = 0.5 K UPt3 appears to exhibit Fermi liquid behavior up to a temperature
of about 1.5 K [6]. Up to TN ∼ 6 K a small moment antiferromagnetic phase
(SMAF) (μord = 0.02μB/U atom) is observed.

In the phase diagram of U(Pd1−xPtx)3 the evolution from double-hexagonal
closed-packed structure (UPd3) to hexagonal closed-packed structure (UPt3)
is suspended by an intermediate phase (0.42 < x < 0.67) characterized by a
10-layer stacking sequence along the c-axis [125].

Various studies on U(Pt1−yPdy)3 [126–130] have been performed to clarify the
behavior of the superconducting phase in UPt3 with Pd alloying. The phase
diagram of U(Pt1−yPdy)3 for 0 ≤ y ≤ 0.1 as taken from Ref. [128] is de-
picted in Fig. 6.5. The physical properties of UPt3 are extremely sensitive to
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small amounts of Pd doping. The superconducting phase of UPt3 is suppressed
with only ∼ 0.6 % of Pd doping, see Fig. 6.5. Contrary to the superconduct-
ing phase, the small moment antiferromagnetic phase is more stable with Pd
doping and exists till at least y = 0.01 [129]. In addition, the superconduct-
ing phase is replaced by a conventional large moment antiferromagnetic phase
(LMAF) (μord = 0.63 ± 0.05μB/U atom for y = 0.05) [128]. The criti-
cal point of superconductivity coincides with the magnetic critical point at
y = 0.006, reflecting a competition between superconductivity and antiferro-
magnetic order.

Figure 6.5: The magnetic phase diagram of U(Pt1−yPdy)3, as taken from Ref. [128].

As the U atoms are carrying the magnetic moment in UPt3, it is surprising
that substitution of the non-magnetic Pd ion for the heavier isoelectronic Pt
ion has such a strong influence on the physical properties. In this situation,
an analogous study of the influence of a small amount of Pt in UPd3 appears
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very promising, but is lacking so far. Therefore, in this work the physical
properties of single crystals U(Pd1−xPtx)3 with x = 0.005 and x = 0.01 have
been examined and the essentials of the magnetic phase diagram established.

The samples U(Pd1−xPtx)3 investigated in this work are bar shaped single crys-
tals produced in the UK and provided by K. A. McEwen, University College
London. Other parts of the crystals are studied by microscopic techniques such
as neutron and x-ray scattering.

6.3 Bulk properties of U(Pd1−xPtx)3

6.3.1 Specific heat

Specific heat measurements have been employed to determine the ground state
properties of U(Pd1−xPtx)3. The heat capacity measurements have been per-
formed by using a standard heat pulse technique in a Quantum Design Physical
Property Measurement System with a 3He insert1.

The specific heat cp and cp/T vs. temperature T of U(Pd1−xPtx)3 with x =
0.005 and x = 0.01 in fields up to B = 9 T applied parallel to the a axis
are depicted in Fig. 6.6. Further, in Fig. 6.7 the temperature dependence of
cp,mag/T of U(Pd1−xPtx)3 with x = 0, 0.005 and 0.01 is shown. The data
for the sample with x = 0 have been provided by H. C. Walker, University
College London, and are published in Ref. [112].

In Fig. 6.7, for all data x = 0, 0.005 and 0.01 the non-magnetic phonon contri-
bution has been subtracted by using ThPd3 as a phonon blank, with the ThPd3
data taken from Ref. [105]. For T ≤ 20 K the specific heat cp of ThPd3 can be
fitted with the polynomial of 5th degree:

cp = 1.5 · 10−3T + 5.01 · 10−4T 3 + 2.04 · 10−7T 5J ·mole−1 · K−1 (6.1)

The fit is included as a solid line in Fig. 6.6. The fit also is in good agreement
with the heat capacity measurements of ThPd3 provided by H. C. Walker and
published in Ref. [112].

1The samples had a rather large mass of 46.88 mg (x = 0.01) and 54.61 mg (x = 0.005), resulting in a long
measuring time. The access to a 3He specific heat measurement set up was limited, therefore only low
temperature data could be taken and the sample x = 0.005 measurement at B = 9 T is uncompleted.
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Figure 6.6: Specific heat cp and cp/T of U(Pd1−xPtx)3, x = 0.005 and 0.01, in fields up to
B = 9 T. The magnetic field was applied parallel to the a axis. The solid line is
representing a fit of the ThPd3 data used for the phonon correction, for details see
text.

In the heat capacity of U(Pd1−xPtx)3, x = 0, the transitions at T−1 = 6.7 K and
T2 = 4.4 K are clearly observable, while the transition at T+1 [109] cannot be
resolved. No clear peak structure is observed at T0 = 7.8 K, although there is a
broad specific heat anomaly in this range. For x = 0.005 the transition at T−1
is still present but shifted to a lower temperature of T−1 = 4.5 K. Further, the
lowest transition T2 is only present as a broad shoulder at ∼ 2.5 K. In the data
for x = 0.01 the transition at T−1 becomes very broad and is shifted further
towards lower temperatures, T−1 ∼ 2.7 K, while T2 is not observable anymore.
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Figure 6.7: Temperature dependence of cp,mag and cp,mag/T of U(Pd1−xPtx)3 with x = 0,
0.005 and 0.01. The data for pure UPd3 are taken from Ref. [112], for details see
text.

From the specific heat data the magnetic entropy was determined using

Smag =
∫ T
0

cp,mag/T

T
dT (6.2)

and is depicted in the Figs. 6.8 and 6.9. For Smag displayed in Fig. 6.8 the
low temperature specific heat cp,mag has been extrapolated to T = 0 K, and
subsequently the magnetic entropy has been determined. In contrast, for Smag
in Fig. 6.9 the integration has been started at T = 2 K, in order to check that
the extrapolation is adequate. Qualitatively, both procedures reveal the same
entropic behavior, thus it is ensured that the extrapolation to low temperatures
is appropriate.
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Figure 6.8: Temperature dependence of the magnetic entropy Smag of U(Pd1−xPtx)3 with x =
0; 0.005 and 0.01. In the calculation the integration of the specific heat has been
started at T = 0 K by extrapolating cp,mag to zero temperature.

From the figures it is seen that the magnetic entropy Smag is shifted to lower
temperature with increasing Pt doping. Quantitatively, at T−1 for x = 0.005
only 70 % and for x = 0.01 only 30 % of the entropy is reached, if com-
pared to pure UPd3. The lacking entropy, together with the broadening in
cp,mag/T possibly reflects short range antiferroquadrupolar ordering in the
sample x = 0.01, likely together with a distribution of transition tempera-
tures in the present sample. This suggestion could possibly be verified with
x-ray resonant scattering experiments where one would expect a broadening
of charge peaks associated to the AFQ phase.

In Fig. 6.10 the magnetic specific heat cp,mag and cp,mag/T in zero magnetic
field and in a magnetic field of B = 5 T applied parallel to the a axis are pre-
sented for U(Pd1−xPtx)3, x = 0.005. It can be observed that the transition at
T−1 shifts to higher temperatures with increasing magnetic field, see Figs. 6.6
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Figure 6.9: Temperature dependence of the magnetic entropy Smag of U(Pd1−xPtx)3 with x =
0, 0.005 and 0.01. In the calculation the integration of the specific heat has been
started at T = 2 K as for pure UPd3 no data below 2 K were available.

and 6.10. The transition at T2 is not unambiguously observable in the heat ca-
pacity data in an applied magnetic field. Qualitatively, this behavior resembles
that observed for UPd3, as reported in Ref. [114], and reflects the AFQ nature
of the phase below T−1.

In order to further characterize the ground state properties of U(Pd1−xPtx)3, re-
sistivity and susceptibility measurements in applied magnetic fields have been
carried out. From these measurements a magnetic phase diagram will be ob-
tained for the sample x = 0.005 and compared to the sample of pure UPd3.

6.3.2 Resistivity

Specific heat experiments have been performed in applied magnetic field to
gain information on the magnetic phase diagram. However, resistivity mea-
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Figure 6.10: Temperature dependence of cp,mag and cp,mag/T of U(Pd1−xPtx)3 with x = 0.005
in zero magnetic field and in an applied magnetic field of B = 5 T applied along
the a axis, for details see text.

surements in magnetic fields are less time consuming, and can also provide
enough information to determine the phase diagram. Therefore, corresponding
experiments have been carried out, with the normalized low temperature resis-
tivity ρ(T )/ρ10K of U(Pd1−xPtx)3, x = 0.005 and 0.01, depicted in Fig. 6.11.

Qualitatively, the derivative of the resistivity dρ/dT resembles the magnetic
specific heat cp,mag. Again, only for U(Pd1−xPtx)3, x = 0.005, the transitions
at T−1 and T2 are clearly resolvable, while for x = 0.01 only a broad maximum
is observed in dρ/dT indicative of a smeared out transition in this sample.
Therefore, electronic transport measurements in applied magnetic fields B//a
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6.3 Bulk properties of U(Pd1−xPtx)3

Figure 6.11: Temperature dependence of the normalized resistivity ρ/ρ10K of U(Pd1−xPtx)3,
x = 0.01 along the a (green stars) and c (black triangles) direction and x = 0.005
along the a direction (red circles).

have been carried out2 on U(Pd1−xPtx)3, x = 0.005. Resistivity measurements
in 4He show a larger signal-to-noise ratio than those measured in a 3He setup.
Hence, detailed measurements of the resistivity in an applied magnetic field
B = 0 T− 9 T have been carried out using a standard four point technique in
a 4He cryostat and are depicted in Fig. 6.12.

According to Fisher-Langer theory [131], for a second order phase transition
the specific heat cp is proportional to the derivative of the electrical resistivity
dρ/dT . Fisher and Langer calculated the resistivity for a magnetic transition
assuming a lattice of spins Si at positions Ri and a single band of conduc-
tion electrons. The fluctuations are assumed to be slow enough that inelastic
scattering does not have to be considered.

2Unfortunately, no resistive bar for measurements along the c axis was available.
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6 Ground state properties of U(Pd1−xPtx)3

Figure 6.12: Temperature dependence of the resistivity ρ of U(Pd1−xPtx)3, x = 0.005, in
various magnetic fields applied along the a direction.

In order to test if Fisher-Langer theory is applicable for U(Pd1−xPtx)3, x =
0.005, the derivative dρ/dT of the electrical resistivity and the specific heat cp
in B = 0 T and 5 T of U(Pd1−xPtx)3, x = 0.005 are depicted in Fig. 6.13.

Overall, the derivative dρ/dT of the electrical resistivity exhibits the same fea-
tures as the specific heat cp, a finding that might be indicative of the transition
at T−1 being of second order. Only, a small shift (∼ 0.2 K) between spe-
cific heat and dρ/dT is observed, which is not fully understood. Altogether,
it implies that the quantity dρ/dT provides a suitable tool to determine the
transition temperatures in U(Pd1−xPtx)3, x = 0.005.

Analogous to the magnetic specific heat cp,mag, the transition at T2 is broad-
ened in the derivative of the resistivity dρ/dT of U(Pd1−xPtx)3, x = 0.005.
To accurately determine T2 additional methods in analyzing the experimental
data have been tried, such as the calculation of the second derivative d2ρ/dT 2
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6.3 Bulk properties of U(Pd1−xPtx)3

Figure 6.13: Temperature dependence of dρ/dT and cp,mag of U(Pd1−xPtx)3, x = 0.005,
in zero magnetic field and in 5 T. The magnetic field was applied along the a
direction.

and the quantity 1/Tdρ/dT . In the second derivative d2ρ/dT 2 the maximum
of the broad anomaly in dρ/dT occurs as a zero crossing. In contrast, the
quantity 1/Tdρ/dT should be proportional to cp,mag/T . Therefore, T2 is deter-
mined as the shoulder in 1/Tdρ/dT and from the kink in the second derivative
d2ρ/dT 2. To illustrate these analyzing procedure both quantities d2ρ/dT 2 and
1/Tdρ/dT are depicted in Fig. 6.14.

6.3.3 Susceptibility

As the final step to establish the magnetic phase diagram B//a of
U(Pd1−xPtx)3, x = 0.005, the temperature dependent susceptibility has been
measured in various magnetic fields, both, in a vibrating sample magne-
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Figure 6.14: Temperature dependence of 1/Tdρ/dT and d2ρ/dT 2 of U(Pd1−xPtx)3, x =
0.005, in B = 1 T and in 4 T. The magnetic field was applied along the a
direction.

tometer (B//a) and in a commercial SQUID (B//c), this in collaboration
with M. Bartkowiak, Forschungszentrum Dresden. In addition, U(Pd1−xPtx)3,
x = 0.01, has been measured in a commercial SQUID for both directions in
low magnetic fields B//a and B//c. The low field (x = 0.005 in B = 0.1 T
and x = 0.01 in B = 0.01 T) measurements up to room temperature for both
samples are depicted in the Figs. 6.15 and 6.16, respectively. Overall, the sus-
ceptibility χ closely resembles the behavior reported for pure UPd3 [132].

Further, in Fig. 6.17 the low temperature region of the susceptibility χ in B =
0.01 T of U(Pd1−xPtx)3, x = 0.005 and 0.01, is enlarged. Again, for both
samples the behavior qualitatively resembles that of UPd3. Only the transition
temperatures are lower than for the pure sample.

Since from susceptibility measurements alone a distinction between T−1 or
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Figure 6.15: Temperature dependent susceptibility of U(Pd1−xPtx)3, x = 0.005 (red circles)
and x = 0.01 (green stars), with the magnetic field B applied parallel to the a
axis, for details see text.

T+1 cannot be made unambiguously, in the following the upper transition ob-
tained from χ is labeled T1. For B//a, the antiferroquadrupolar transition at
T1 appears as an inflection point in the susceptibility, while forB//c it appears
as a maximum in χ. Further, T2 cannot be determined from these susceptibility
data. From our data T1 = 4.6 K (2.1 K) for x = 0.005 (x = 0.01) is extracted.
(arrows in Fig. 6.17).

Further, and quite surprisingly, in the low temperature susceptibility χ of
U(Pd1−xPtx)3, x = 0.005, for B//a a difference between zero field cooled
(ZFC) and field cooled (FC) measurement is observed below T ∼ 3 − 4 K (
Fig. 6.18). This difference cannot be an experimental artifact, as it is not ob-
served for measurements B//c using the same experimental setup (Fig. 6.19).
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Figure 6.16: Temperature dependent susceptibility of U(Pd1−xPtx)3, x = 0.005 (blue squares)
and x = 0.01 (black triangles), with the magnetic field B applied parallel to the
c axis, for details see text.

For pure UPd3, no ZFC-FC susceptibility data have been published so far, and
therefore it is not possible to compare our finding with the behavior of the
pure system. However, the temperature at which the FC-ZFC splitting starts is
around T2. Further, differences between FC and ZFC measurement can often
be associated to domain formation in a magnet. Hence, the splitting might
possibly be attributed to pinned antiferromagnetic and/or antiferroquadrupo-
lar domains. If this would be the case, by measuring the susceptibility in FC
and ZFC mode would give another measure for T2. Further, if the concept of
pinned domains is adequate, with the reduced amount of impurities in UPd3,
in comparison to U(Pd1−xPtx)3, x = 0.005, it should result in a reduced ab-
solute value of the difference between FC and ZFC measurement in UPd3, as
compared to the sample x = 0.005.
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6.4 Conclusion

Figure 6.17: Low temperature susceptibility of U(Pd1−xPtx)3, x = 0.005 and 0.01, for fields
B applied parallel to the a and c axes, respectively. T1 is marked by an arrow, for
details see text.

6.4 Conclusion

Using the specific heat, resistivity and susceptibility data a phase diagram of
U(Pd1−xPtx)3 can be constructed, see Fig. 6.20. In both alloyed samples x =
0.005 and 0.01 the observable transition temperatures are shifted very strongly
to lower temperatures, compared to UPd3. In fact, while for x = 0.005 both
T1 and T2 leave a clear signature in the data, for x = 0.01 the transition at T2
is not observable anymore, while that at T1 is very much broadened.

Using a linear extrapolation scheme in Fig. 6.20 it appears that T2 is sup-
pressed to zero for a Pt concentration of x = 0.012 in U(Pd1−xPtx)3, while
T−1 is suppressed to zero for x = 0.017. In other words, the characteristic
temperatures of quadrupolar ordering in UPd3 react in an even more drastic
fashion to Pt doping than the superconducting transition temperature in UPt3
upon Pd doping.
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Figure 6.18: Low temperature susceptibility of U(Pd1−xPtx)3, x = 0.005, in magnetic fields
B//a measured in field cooled and zero field cooled mode, for details see text.

Further, the broadening of the antiferroquadrupolar transition with increasing
amount of Pt alloying indicates that a small amount of Pt (∼ 1%) is destroying
long range quadrupolar ordering in U(Pd1−xPtx)3. Most likely, the sample
x = 0.01 consists of microscopic clusters of different size with substantially
different values T1, leading to such "smearing out" of the transition. This
finding implies that in the phase diagram of U(Pd1−xPtx)3 there is no quantum
critical point, but at best (if at all) a region of quantum criticality for x ∼ 0.02.

A verification of this scenario would require an investigation of a series of Pt
doped samples by means of x-ray resonant scattering experiments. A reduced
size of the ordered antiferroquadrupolar clusters with increasing amount of
Pt doping might be detectable as an increasing peak width in such a x-ray
resonant scattering experiment.

The magnetic phase diagram for U(Pd1−xPtx)3, x = 0.005 is depicted in
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6.4 Conclusion

Figure 6.19: Low temperature susceptibility of U(Pd1−xPtx), x = 0.005, in magnetic fields
B//c measured in field cooled and zero field cooled mode; for details see text.

Fig. 6.21. The transition temperatures T−1 and T2 of U(Pd1−xPtx)3, x = 0.005,
are indicated as points, the solid and dashed lines represent the behavior of the
pure sample UPd3 and are taken from Ref. [114].

From the figure it can be seen that the transition temperatures increase with
increasing magnetic field. Qualitatively (that is, aside from a shift to lower
temperatures), this behavior of U(Pd1−xPtx)3, x = 0.005, follows closely that
of UPd3. The increase of transition temperatures in an applied field is a char-
acteristic feature of quadrupolar ordering [114]. It implies that essentially the
behavior of U(Pd1−xPtx)3, x = 0.005 and x = 0, is the same - probably aside
from the size of the ordered quadrupolar moment. If the entropy is a measure,
the reduction of Smag for x = 0.005 by 30 % compared to x = 0 would sug-
gest a reduction of the quadrupolar moment by the same order of magnitude.
It might be interesting to check this observation by x-ray diffraction studies.
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Figure 6.20: Alloying phase diagram of U(Pd1−xPtx)3, with the transition temperatures ob-
tained from heat capacity (stars), resistivity (squares) and susceptibility (trian-
gles) measurements. The data for the pure UPd3 sample (circles) are taken from
Ref. [112]. The solid lines are guides to the eyes, for details see text.

In summary, the phase diagram of U(Pd1−xPtx)3, 0 ≤ x ≤ 0.01, has been elab-
orated. A suppression of T−1 as well as T2 with Pt doping has been observed,
suggesting a complete suppression of T−1 and T2 at x = 0.017 and x = 0.012,
respectively. Hence, the suppression of quadrupolar ordering does not lead to
a quantum critical point, but at best to a broad region of quantum criticality in
the phase diagram U(Pd1−xPtx)3.

Furthermore, the magnetic phase diagram of U(Pd1−xPtx)3, x = 0.005, has
been derived. The principle behavior of U(Pd1−xPtx)3, x = 0.005 resembles
that of pure UPd3, making the former system to a test material for a deeper
understanding of UPd3.

Finally, a splitting in susceptibility measurements between ZFC and FC mode
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Figure 6.21: Magnetic phase diagram of U(Pd1−xPtx)3, x = 0.005, with the magnetic field
applied in the a direction. T−1 has been obtained as a maximum in ∂ρ/∂T , cp
and χ. T2 was deduced from a maximum in ∂2ρ/∂T 2, 1/T∂ρ/∂T and cp. The
black and red solid lines indicate the phase boundaries of T−1 and T2 determined
for pure UPd3 (from Ref. [114]), for details see text.

has been observed for the first time for U(Pd1−xPtx)3, x = 0.005. The split-
ting seems to begin at T2 and would thus indicate the magnetic ordering in
combination with the antiferroquadrupolar transition. If this view is correct,
measurements in FC and ZFC mode on UPd3 (and possibly related quadrupo-
lar ordered systems) would give an easily accessible measure for T2.
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7 Quadrupolar vs. magnetic order in PrB6

7.1 Introduction

Because of their simple crystal structure, and in combination with various in-
teresting magnetic and electronic transport properties, rare-earth hexaboride
materials are often used as model systems, and have attracted a lot of interest
among both, theorists and experimentalists [133–135]. For example, CeB6 is
a dense Kondo material [136], SmB6 has been discussed in terms of a nar-
row gap semiconductor [137], while EuB6 as a low carrier density material is
exhibiting ferromagnetic order [138].

The topic of multipolar ordering received renewed attention in recent years
since it has been recognized that orbital ordering plays an important role for
the magnetic and electronic properties of d- and f -electron systems. In order to
better understand the mechanisms associated to such behavior model systems
are required. Hence, multipolar ordering is one of the main topics discussed
for f -electron systems in recent years [139–143].

In particular, the cubic CaB6 type RB6 (R = rare-earth element) compounds of-
ten display orbital degeneracies, and therefore these materials can be utilized
to study multipolar ordering phenomena. For example, CeB6 is well known
for its unusual type of antiferroquadrupolar ordering. Below the antiferrodu-
adrupolar transition temperatur TQ and above the antiferromagnetic transition
temperature TN (phase II) in zero magnetic field, an antiferroquadrupolar or-
dering is observed [144]. In an external magnetic field, in phase II an addi-
tional field induced complicated non-collinear antiferromagnetic phase occurs
[145]. As well, for the antiferromagnetic compound NdB6 a two step meta-
magnetic transition was reported by Awaji et al. [146] recently, for which
quadrupolar interactions seem to play an important role.

PrB6 is another compound where the competition between quadrupolar and
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dipolar ordering may influence the physical properties, although a direct proof
is still lacking. Kobayashi et al. [147] reported the magnetic phase diagram
of PrB6 and discussed the coexistence of quadrupolar and antiferromagnetic
exchange interactions.

PrB6 crystallizes in the CaB6 structure with a lattice parameter of 4.133 Å at
room temperature (space group Pm3m, unit cell coordinates of Pr: (0 0 0) and
B: (x 1

2
1
2); x ∼ 0.2 [148]). The PrB6 crystal structure is depicted in Fig. 7.1.

Figure 7.1: Crystal structure of PrB6, taken from Ref. [149].

PrB6 exhibits two successive first order phase transitions at low temperatures.
The first one is from a paramagnetic to an incommensurate (IC) antiferromag-
netic (AFM) phase at TN = 7 K, the second one from the IC to a commensu-
rate (C) phase at TIC = 4.2 K.

The magnetic structure in the C and IC phase was determined by neutron scat-
tering [150]. In the IC phase a double-k structure with an ordering vector of k
= [1

4
1
4−δ 1

2 ] with δ = 0.05 has been reported. The double-k structure in the C
phase is described by an ordering vector k = [ 1

4
1
4

1
2], see Fig. 7.2.

Both, in the C and the IC phase the magnetic structure is of planar type. With
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Figure 7.2: Magnetic structure of the C phase (a.) and the IC phase (b.), as seen by viewing it
along a cubic main lattice vector.

the cubic symmetry three different antiferromagnetic domains have been ob-
served in the C and the IC phase. As the C phase in PrB6 is similar to phase
III in CeB6 [145], it suggests that the magnetic behavior in the C phase is
dominated by antiferroquadrupolar (AFQ) effects. This idea is supported by
the comparatively small ordered moment (∼ 1.2μB/Pr atom) as observed in
Ref. [150]. This is assumed to be the result of the coexistence of magnetic and
quadrupolar interactions. However, the value from Ref. [150] is at odds with
earlier neutron scattering experiments, where μord =∼ 1.8μB/Pr has been
found in the C phase [151].

The magnetic moment for a free Pr3+ ion is 3.20μB. In PrB6, the ground state
multiplet of the Pr3+ion is split into Γ5 (triplett)-Γ3(314 K, doublet)-Γ4(377 K,
triplet)-Γ1(464 K, singlet) as result of the crystalline electric field, measured
by inelastic neutron scattering [152]. In this configuration, for the Γ5 triplet as
ground state the maximum ordered moment is 2.0μB.

Further, McCarthy et al. [145] argued that a lattice distortion is associated to
the phase transition into the C phase. However, they could not provide direct
evidence because of the resolution limit in their neutron scattering study.

In order to clarify the origin of the complicated magnetic ordering behavior
in the C and IC phase and to determine if there are possibly structural phase
transitions, it is necessary to investigate the crystal structure in both, C and
IC phases, with very high accuracy. Furthermore, direct evidence for the ex-
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istence of quadrupolar moments in the C phase has not yet been established.
Moreover, the driving mechanisms for the transitions in the magnetically or-
dered states of PrB6, i.e., quadrupolar versus dipolar ordering effects, have
not yet been identified. Also, the value of the magnetic moment has not been
determined to high accuracy. In order to contribute to the solution of these
open issues, K.A. McEwen, University College London (UCL), has initiated a
research program using high resolution resonant x-ray scattering at low tem-
peratures on single crystalline PrB6. In the following sections some of the
results from this study are presented and discussed in the context of quadrupo-
lar ordering in PrB6.

7.2 Experimental Methods

The single crystal PrB6 used for these experiments was grown by F. Iga (Hi-
roshima University) and S. Lee (SungKyunKwan University) at Hiroshima
University, using a traveling solvent floating zone method in a mirror fur-
nace equipped with Xe lamps. The sample was cut and aligned to give a
face normal to the [0 1 1] direction and polished using fine diamond paste.
The x-ray scattering experiments were performed in cooperation with H. C.
Walker, K. A. McEwen, D. F. McMorrow (all UCL), J.-G. Park, S. Lee (both
SungKyunKwan University), and D. Mannix (ESRF) at the XMaS beamline
of the European Synchrotron Facility ESRF in Grenoble, France. The sample
was mounted in a displex cryostat allowing to adjust temperatures down to
1.7 K. The vertical scattering plane is [1 1 0]− [0 0 1].
The radiation for the diffractometer is provided by a bending magnet. It is
predominantly (to 97.5 %) plane polarised in the horizontal plane. By using
an analyzer crystal the non-rotated σ − σ and the rotated σ − π components
of the scattered x-ray radiation can be separated. The analyzer crystal used in
our experiments (i.e., for energies close to the Pr LII edge) was copper (2 2 0).
In resonant scattering a core electron is excited to an orbital close to the Fermi
energy. In this study on PrB6 only LII absorption edge processes are used.
The main contribution to the resonant process is an electric dipole (E1) tran-
sition from the 2p1/2 orbital to the 5d band (E = 6.444 keV), and an electric
quadrupole (E2) transition from the 2p1/2 to the 4f -orbitals (E = 6.437 keV).

154
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The accessible area in reciprocal space for an incident x-ray radiation energy of
E = 6.444 keV is displayed in Fig. 7.3. As a consequence the reflections that
can be investigated here are limited to those indicated in the plot and discussed
in the following.

(033)

(022)

(011)

(100) (200) (300)

Bragg Peak
Charge Peak
Magnetic Peak

Figure 7.3: . Accessible area in reciprocal space with the investigated reflections for an inci-
dent energy of E = 6.444 keV, for details see text.

7.3 Experimental Results

7.3.1 Structural lattice distortion

As yet, a possible lattice distortion has not directly been detected in neutron
scattering experiments because of a limited Q-resolution in these experiments
[145]. Hence, in order to verify the presence of such a distortion the (2 2 2) and
(0 1 1) structural peaks have been examined at low temperatures and in all three
(paramagnetic, IC, C) phases. The essential observations in our experiments
are the same for both Bragg peaks, therefore in the Figs. 7.4 and 7.5 only the
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data for the (2 2 2) peak are presented, which has been measured with higher
resolution.

(0 1 1)

(0 1 1)

(0 -1 1)

a.

b.

Figure 7.4: . In plane mesh scans on the (2 2 2) peak of PrB6 at 5.5 K (a.). Corresponding out
of plane mesh scans at 5.5 K (b.), for details see text.

For the labeling of the measurements a simple cubic basis is used, viz., also
for the distorted crystal the peak association in reciprocal space is performed
in this basis. In general, a reciprocal lattice vector is given by

a∗ = 2π b× c
a · (b× c) , (7.1)

where a, b, c are the primitive vectors of the real space lattice. The other two
primitive vectors of the reciprocal lattice are given by permutation of a, b, c in
the numerator.

In the plot, so-called "in plane" scans, viz., two-dimensional cuts through the
peak in the [hkl]-plane, with k = l are depicted. The measured area in re-
ciprocal space ranges from −0.015 Å−1 to +0.015 Å−1 relative to the center
in h-direction, and −0.006 Å−1 to 0.006 Å−1 relative to the center along kl,
respectively.
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(0 -1 1)

(0 1 1)(0 1 1)

d.

c.

Figure 7.5: In plane mesh scans on the (2 2 2) peak of PrB6 at 1.7 K (c.). Corresponding out
of plane mesh scans at 1.7 K (d.), for details see text.

In addition, "out of plane" scans, i.e., mesh scans in [h k l], with h = 2 =
const., and the two-dimensional plane spanned by varying k = l = 1.9885−
2.0115 and k = 2.02 − 1.98; l = 1.98 − 2.02, are depicted. In the figures,
the central areas obtained in these measurements are enlarged for clarity. The
different colors indicate counting rates.

In the incommensurate and paramagnetic phases the structural peaks have the
same size and the same shape. At these temperatures no splitting of the struc-
tural peaks appears. As an example, an in plane scan of the (2 2 2) peak at
5.5 K is shown in Fig. 7.4(a). In contrast, in the commensurate phase a split-
ting of the structural peaks into four smaller ones is detected. For the (2 2 2)
peak ((1 1 0) peak) a relative splitting

(Δd
d

)
222(110) = 6.81 · 10−4(1.892 · 10−3)

were found, where d is the d spacing of the peak and Δd is the mean value of
the distortion for the four peaks. This is illustrated in Fig. 7.5(c), where the
(2 2 2) peak measured in plane at 1.7 K is displayed.

In order to examine the splitting in more detail out of plane scans have
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been performed. These confirm the splitting in the C phase, as is shown in
Figs. 7.4(b) and 7.5(d) for the (2 2 2) peak at 5.5 K and 1.7 K, respectively. To
ensure that no peak intensity is missed, additional mesh scans were performed
for a very wide range of 0.02 Å−1 around the peak centers, but no additional
intensity has been found.

The largely varying intensity of the different split-up Bragg peaks in the C
phase, as for instance seen in Fig. 7.5(c) and (d), is reflecting the formation
of structural domains, as would be expected to occur for a rhombohedrical
distortion of this cubic system. The distribution of the intensity within the
splitted peaks is determined by integrating the intensity of every splitted peaks.
The full intensity, i.e., 100 % is given by the sum of the integrated peaks. The
three bigger peaks all have roughly 30 % of the full intensity of the unsplit
Bragg peak (see Fig. 7.6: peak i.: 30 %, peak ii.: 34.8 %, peak iii.: 26 %), but
the lower peak iv. has only about 10 % of the full intensity (error bars in the
determination of the relative intensity about ±5 %).

2.000

1.998

2.002

1.995 2.000 2.005

i.

ii. iii.

iv.

[h 0 0] (rlu)

[0
 k

 l]
 (r

lu
)

Figure 7.6: In plane scan of the (2 2 2) peak at 1.7 K of PrB6, for details see text.

158



7.3 Experimental Results

To finally verify that the Bragg peak splitting is associated to the transition
into the C phase T dependent scans of the (1 1 0) peak by varying Θ have
been carried out, that is the angle between (1 1 0) plane and incoming beam.
A typical scan is depicted in Fig. 7.7. From these data the T dependence of
the integrated intensities of main and satellite peaks for (1 1 0) (see Gaussian
peak fits in Fig. 7.7) is derived, which are displayed in Fig. 7.8. From the
figure it can be seen that around 5 K (∼ TIC) three peaks appear, indicating
the occurrence of a lattice distortion upon transition into the C phase.

Figure 7.7: A typical scan of the (1 1 0) peak including the Gaussian fits used to derive relative
peak intensities, for details see text.

A detailed investigation of the position of the (1 1 0) Bragg peak, depending
on the thermal history is depicted in Fig. 7.9. The position of the single peak in
the incommensurate and in the paramagnetic phase, together with the satellite
peaks, occurring in the commensurate phase is depicted. The arrows and the
numbers are indicating the thermal history. The position of the peak is depend-
ing on the thermal history and is not reproducible, indicating hysteresis effects
in the lattice distortion. Further, the splitting of the (2 2 2) peak, defined as
the difference between the original peak position at T > TIC and that of the
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Figure 7.8: Temperature dependence of the relative intensity of the split up (1 1 0) Bragg peak
lines of PrB6, for details see text.

splitted peaks at T < TIC is summarized in Tab. 7.1.

The question arises about the crystallographic symmetry of the C phase. If
a tetragonal distortion of the cubic lattice is assumed, it implies that only one
crystallographic axis, say, the c axis, changes. The cross product and the scalar
product both are linear operations. Hence, a change in c is resulting both in a
change of the denominator and a change of same magnitude in the numerator.
Correspondingly, a∗ and b∗ both remain constant, while only c∗ is changed.

peak Δh (·10−3) Δk (·10−3) Δl(·10−3)

i. -2.3 -2.1 -2.1
ii. 2.3 0.1 0.1
iii. -5.5 0.1 0.1
iv. -2 1.9 1.9

Table 7.1: Splitting of the (222) peak given by the difference between the original peak at
T > TIC and the positions of the splitted peaks at T < TIC.
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Figure 7.9: Temperature dependence of the position (0 k l) of the (1 1 0) Bragg peak of PrB6.
The triangles are indicating the position of peak 1, the squares the position of peak
2, and the circles of peak 3. The number of the peaks are defined in Fig. 7.7. The
arrows and the red numbers are indicating the thermal history, for details see text.

In other words, for a tetragonal distortion only one of the Miller indices a∗,
b∗, c∗ should change, as observed for peaks ii. and iii.. In contrast, all three
Miller indices of peaks iv. and i. are changed, not consistent with a tetragonal
distortion. The, from symmetry, expected peaks, where k and l, respectively
changes cannot be observed due to the scattering geometry. In the third axis
[0 1 1] a reduction of l (or k) would imply an increase of k (or l). Hence a
complete scan in three dimensions would be necessary to detect all reflections
associated with the distortion. Due to the enormous amount of measuring time
required this was not possible.

However, for a rhombohedral distortion a change in the nominator and the
denominator of Eq. 7.1 would occur. The denominator can be written as a ·
(b× c) = b · (c× a) = c · (a× b). Therefore, the change of the nominator is
as big as the change in the cross product in the denominator. The lengths of
the primitive vectors stay constant and only the angles between the primitive
vectors change but they are all equal. Hence, the Miller indices change by the
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7 Quadrupolar vs. magnetic order in PrB6

same value, as observed for peak i. For the other peaks no change of the same
value in all three Miller indices is observed.

For a monoclinic distortion without a change in the length of the direct lattices,
a change in two reciprocal vectors is anticipated for the same reasons as above.
This would not be consistent with the measured data. One can speculate that
the monoclinic distortion is accompanied with a change in one or more lattice
constants, this would only be consistent with peak iv.
However, the type of structural distortion cannot be unambiguously concluded.
A mixture of distortion types as well as a domain structure is possible. Further-
more, the origin of the distortion is not unambiguously determined, a possible
origin is a distortion of the boron octahedra as proposed in CeB6 [153], but
not detected within experimental resolution in neutron scattering experiments
[154]. Together with the knowledge of the magnetic structure one can specu-
late that the lattice distortion is rhombohedral, as illustrated in Fig. 7.10.

Figure 7.10: Distortion of a cubic lattice to rhombohedral symmetry.

In conclusion, the lattice distortion in PrB6 associated to the transition into
the commensurate phase has been observed directly by high resolution x-ray
diffraction. Further, its temperature dependence has been measured. Our ob-
servations fully support the speculation from Ref. [145]. At this point, only an
unambiguous determination of the symmetry of the distorted low temperature
phase remains to be resolved.
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7.3 Experimental Results

7.3.2 Charge peaks

In previous studies on GdB6, a system closely related to PrB6, a low temper-
ature lattice distortion has been observed [155, 156], whose nature has not
been understood so far. In GdB6, additional charge peaks with wave vectors of
(0 0 1

2) and (1
2

1
2 0) have been detected in the magnetically ordered phases. The

question arises if similar charge superstructures appear in PrB6. Therefore, a
systematic search for charge peaks in PrB6 has been performed.

In this study, a search at various positions in reciprocal space at base tem-
perature (1.7 K) revealed an additional peak at (3

2
3
2 0). Further, areas unsuc-

cessfully scanned include (3
2

3
2

1
2), (2 2 3

2) and (2 2 1
2). For the (3

2
3
2 0) peak the

absorption energy has been determined by measuring its energy dependence
in σ− σ and σ− π geometry (Fig. 7.11), respectively, while keeping the wave
vector transfer fixed.

Figure 7.11: Energy scan of the Bragg peak at ( 3
2

3
2 0) in σ − σ and σ − π geometry for fixed

wave vector transfer of PrB6 at 1.7 K.

In the σ − σ data a ∼ 50% suppression of the intensity at resonance is ob-
served, with the resonance energy determined to 6.443 keV. At the resonance
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7 Quadrupolar vs. magnetic order in PrB6

the emitted x-rays are radiated into all directions, which accounts for the ob-
served suppression. In contrast, for the σ − π channel there is essentially no
signal. In conclusion the (3

2
3
2 0) peak is a pure charge peak. The propagation

vector of this lattice distortion in PrB6 is (1
2

1
2 0), closely resembling the situa-

tion in GdB6 [155, 156]. Subsequently, the T dependence of the ( 3
2

3
2 0) peak

has been measured, as shown in Fig. 7.12.

Figure 7.12: k dependent scans in σ−σ geometry at different temperatures of the ( 3
2

3
2 0) peak

of PrB6.

In this figure, k dependent scans in σ − σ geometry at different temperatures
are depicted. The data are shifted by 60 counts/second against each other for
clarity. The (3

2
3
2 0) peak splits up upon entering the IC phase, and disappears in

the paramagnetic phase. The splitting γ in the incommensurate phase, with the
peak positions at (3

2
3
2 ± γ0), is found to be γ = 2δ, with δ characterizing the

incommensurability of the magnetic structure. It indicates that there is a close
connection between magnetic and charge ordering in PrB6. The doubling of
γ = 2δ as incommensurability vector of the charge ordering, in comparision to
the incommensurability δ of the magnetically ordered phase reflects the dou-
bling of the unit cell lattice vectors of the antiferromagnetic phase compared
to the charge ordered one.
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7.3 Experimental Results

Figure 7.13: The temperature dependence of the integrated intensity of the ( 3
2

3
2 0) and (3

2 ±
γ 3

2 0) peaks (from Θ scans in the C phase, from k scans in the IC phase). The
data in the C phase are scaled by a factor of 0.25.

From the data as in Fig. 7.12 the T dependence of the relative peak intensities
of the (3

2
3
2 0) and corresponding superstructure ( 3

2
3
2 ± γ0) peaks (Fig. 7.13) is

derived. From the figure it appears that the transition at TIC is first order. With
the accuracy of the temperature control of the cryostat, ΔT = ±0.1K , from
these data the transition temperature TIC within these limits is determined, a
fact indicated by the shaded box in Fig. 7.13. Conversely, due to the lack
of thermal hysteresis for the transition at TN from these data the order of the
transition cannot be unambiguously concluded, although specific heat mea-
surements indicate that it is also first order [147, 151]. To determine the nature
of the superstructure peaks in GdB6 [156] is has been argued that a scaling
with (Q · ê) should be observable (Q: wave vector transfer, ê : unit vector
parallel to the distortion). Unlike GdB6, such a scaling could not be found in
PrB6. The reason for this different behavior is not understood so far.

In conclusion, a coupling of charge ordering in PrB6 to the magnetically or-
dered state is found. While there appears to be a clear connection between
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7 Quadrupolar vs. magnetic order in PrB6

charge and magnetic incommensurability in the IC phase, the situation is less
clear in the C phase.

7.3.3 Magnetic peaks

In order to search for possible scattering contributions from quadrupolar or-
dering a detailed investigation of the magnetic peaks has been carried out,
including azimuthal scans by analyzing the relative scattering strength of the
peaks in σ − σ and σ − π geometry. Furthermore, with these measurements
the magnetic structure can be verified.

In order to find the resonance energies of the different peaks energy scans in
σ − π and σ − σ geometry have been performed in k space at ( 5

4
5
4

1
2), (7

4
7
4

1
2)

and (7
4

7
4

3
2). The data for (5

4
5
4

1
2) are depicted in Fig. 7.14, those for (7

4
7
4

1
2) and

(7
4

7
4

3
2) closely resemble the behavior of the peak at (5

4
5
4

1
2) and are not shown

here.

Figure 7.14: Energy scans of the ( 5
4

5
4

1
2) peak at T = 1.7 K for Ψ = −75.13, see Fig. 3.26.

The red line in the lower panel and the black line in the upper panel are Lorentzian
fits, for details see text.
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From the measurements the resonance energies for all three peaks have been
determined to E = 6.444 keV and E = 6.437 keV for σ − π and σ − σ,
respectively. For σ−π the scattering stems from an E1-term dipole transition,
for σ − σ it is due to a E2-term quadrupole transition, thus for PrB6 the two
transitions are separated by only 7 eV (Fig. 7.14). The FWHM of the peaks for
all measured magnetic k space positions is determined to ∼ 6 eV.

The intensities in the energy scans could not be corrected for crosstalk because
the angle between scattered beam and polarizer, ΘP , depends on the energy.
Hence, no corrections for these scans were possible. However, from an analy-
sis of purely structural peaks the crosstalk is estimated to contribute less than
5% to the absolute intensity in σ − σ geometry. This observation implies that
because of this crosstalk between σ−σ and σ−π channels measurements in the
two geometries affect each other in the peak ranges, limiting the experimental
resolution in this study.

Further, the temperature dependence of the (7
4

7
4

1
2) peak in σ−π and σ−σ con-

figuration was measured in detail. The Θ scans were fitted using a Lorentzian,
with the integrated intensity from the fits plotted as function of temperature in
Fig. 7.15. From the figure a transition temperature of TIC = 4.3 K is obtained,
in good agreement with the results presented in Secs. 7.3.1 and 7.3.2.

In order to analyze the azimuthal dependence of the scattering the electric
dipole (E1) transition is more closely inspected. The peaks discussed in this
chapter all are far away from structural Bragg peaks. Hence, the first term
in Eq. 3.26 in the dipole scattering amplitude is zero. The scattering ampli-
tude for the first harmonic magnetic satellites is given by the second term in
Eq. 3.26. The scattering amplitude for the contribution from a magnetic scat-
tering center is zero in σ− σ, while in σ− π this scattering amplitude is given
by −iF (1)(z3 sin Θ + z1 cos Θ) , where z1 is the component of the magnetic
moment in [1 1 0] and z3 the component in [0 1 1] direction, respectively. As
seen in Fig. 7.2 the magnetic moments are pointing along the [1 1 0] direction,
hence z3 is zero. The effectively detected magnetic moment is the projection
of the moment in the direction of the incident/scattered beam. In an azimuthal
scan the sample is rotated around the scattering vector Q. Hence, a variation
z1 = M sin Ψ, whereM is denoting the magnetic moment and Ψ the angle of
rotation, is expected, resulting in an intensity variation ∼M 2 sin2 Ψ.
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7 Quadrupolar vs. magnetic order in PrB6

Figure 7.15: Temperature dependence of the ( 7
4

7
4

1
2) peak in the C-phase measured in σ − π

and σ − σ geometry. The solid lines are guides to the eyes.

As shown in Fig. 7.16 in σ − π configuration the azimuthal angle dependence
of the (5

4
5
4

1
2) peak measured in the C phase at 1.7 K is well described by a

sin2 Ψ function, compatible with the antiferromagnetic structure of PrB6. At
E = 6.444 keV in σ− σ geometry the intensity is about 3.7 % of that in σ− π
configuration. The crosstalk of the structural (1 1 0) peak at this energy has
been determined to 3.8 %. Hence the (5

4
5
4

1
2) peak at E = 6.444 keV appears

only in σ − π reflecting the AFM order as discussed above.

The E2 transition appears at a slightly lower energy of E = 6.437 keV. Its az-
imuthal angular dependence is included in Fig. 7.16. The intensity is very low
(about 1% of the σ − π channel), however it cannot not be due to feedthrough
from the analyzer crystal because of the different energy with respect to the E1
transition. Unfortunately, an accurate analysis of the data is difficult, because
of the residual crosstalk limiting the experimental resolution.

Further, in the IC phase a behavior of the azimuthal angular dependence has
been found in σ − π geometry which is similar to the one in the C phase. To
illustrate this, the data taken in σ − σ and σ − π configuration for the peak
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7.3 Experimental Results

Figure 7.16: Azimuthal angular dependence of the integrated intensity of the ( 5
4

5
4

1
2) reflection

at 1.7 K for the σ − σ scattering component at E = 6.437 keV and the σ − π
component at E = 6.444 keV. Solid lines are the fits with cos2 Ψ for σ − σ and
sin2 Ψ for σ − π, for details see text.

at (7
4

7
4 − δ 1

2) at 5.25 K are plotted in Fig. 7.17, which should be compared to
Fig. 7.16 (T = 1.7 K). Again, the intensity of the scattering in σ−σ is roughly
2 % of the intensity in σ − π. As well, the intensity of the scattering in σ − π
is well described by a sin2 Ψ function, reflecting the AFM ordering in the IC
phase. The difficulties in accurately analyzing the σ − σ data are the same as
in the C phase discussed above.

Comparing the Figs. 7.16 and 7.17 the minima are not in the same positions,
reflecting the different angles between the reciprocal lattice and the magnetic
moments in the IC phase and the C phase.

Finally, to complete the study of the azimuthal angular dependence the (3
4

5
4

1
2)

peak in the σ − π configuration is examined (Fig. 7.18). Since, again a sin2 Ψ
behavior is observed, these data represent confirmation of our findings from
the other peaks. Altogether, these data are consistent with the magnetic struc-
ture proposed in Ref. [145] for the C and IC phases.
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7 Quadrupolar vs. magnetic order in PrB6

Figure 7.17: Azimuthal angular dependence of the integrated intensity of the ( 7
4

7
4 − δ 1

2) re-
flection at 5.25 K for σ − σ and σ − π scattering. Solid lines are the fits with
cos2 Ψ for σ − σ and sin2 Ψ for σ − π, for details see text.

In conclusion, the magnetic scattering contribution has been identified with
the σ− π data in the C and the IC phase, but no clear evidence of quadrupolar
ordering has been found. Further investigations on the origin of the σ − σ
scattering in the E2 channel have to be carried out. For the future, in order
to resolve the question of quadrupolar ordering in PrB6 measurements using a
better analyzer crystal, yielding a reduction of crosstalk, would be helpful.
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7.3 Experimental Results

Figure 7.18: Azimuthal angular dependence of the integrated intensity of the ( 3
4

5
4

1
2) reflection

at 2 K for σ−π scattering. The solid line is a fit with sin2 Ψ for σ−π, for details
see text.

171





8 Summary

In this thesis, various f -electron systems, ranging in their f -electron charac-
ter from itinerant to localized, have been investigated by means of bulk and
microscopic methods.

The alloying series CePt3B1−xSix is of interest as it might shed more light
onto CePt3Si, the first heavy fermion superconductor without inversion sym-
metry. The phase diagram of the alloying series CePt3B1−xSix has been de-
termined by means of bulk measurements. Furthermore, susceptibility and
μSR measurements of CePt3B have shown, that the antiferromagnetic order at
low temperatures is a bulk property with a magnetic moment of the order of
1μB. Surprisingly, no magnetic signal has been observed in neutron scattering
experiments, an observation that will require further investigation.

The influence of structural disorder on the physical properties of the antifer-
romagnetic heavy fermion system UPd2Sb has been investigated by means of
neutron scattering. The unusual semiconductor like behavior of the resistivity
could be associated to crystallographic disorder, present in UPd2Sb. The type
of structural disorder has been determined as a kind of phase segregation, with
small crystallites embedded in quasi amorphous regions. Furthermore, the an-
tiferromagnetic structure has been determined to consist of ferromagnetically
ordered planes, which are antiferromagnetically coupled along the third cubic
axis. We have shown that the size of the crystallites affects on the correlation
length of the magnetically order phase.

A detailed analysis of structural disorder on the Fermi liquid properties, as
observed in the resistivity of UPd2−xSn, revealed that there is no disorder in-
duced non-Fermi liquid behavior and the Fermi liquid temperature T ∗ is not
significantly altered by structural disorder. In context of the prediction of dis-
order induced non-Fermi liquid behavior in the vicinity of a QCP by Rosch
[23], these observations bring up the question, how to measure the distance to
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8 Summary

a QCP, viz., what is the meaning of "vicinity to a QCP". Furthermore, the re-
sults of the study on the influence of disorder on the coherent state in the Hall
effect contradict the predictions of the theory of Fert and Levy [49]. Therefore,
new theoretical studies on the anomalous Hall effect in heavy fermion systems
are desirable.

The reinvestigation of the resistivity and magnetoresistivity, in combination
with new high magnetic field measurements, of UPt2Si2 revealed that this
compound has to be discussed as an itinerant f -electron system. New field
induced phases have been found, bearing resemblance to the the hidden or-
der/heavy fermion superconductor URu2Si2. It suggests that UPt2Si2 might be
a key to understand the exotic properties of the hidden order/heavy fermion
superconductor URu2Si2. To achieve this, further investigations, and in partic-
ular additional high field measurements ought to be carried out on UPt2Si2 in
the future.

UPd3 is one of the rare examples of metallic, quadrupolar ordered systems. In
this study, for the first time a phase diagram of U(Pd1−xPtx)3 has been deter-
mined by means of specific heat, susceptibility, and resistivity. A small amount
of ∼ 1% Pt doping destroys long range quadrupolar ordering in UPd3, imply-
ing that the quadrupolar phases in UPd3 are even more sensitive to Pt doping
than the superconducting phase in UPt3 to Pd doping. Because of substan-
tial broadening of the quadrupolar transitions with Pt alloying, most likely no
quadrupolar QCP exists in the phase diagram.

Furthermore, the magnetic phase diagram of U(Pd1−xPtx)3, x = 0.005, has
been derived. The principle behavior of U(Pd1−xPtx)3, x = 0.005 in a mag-
netic field is the same as observed for UPd3, aside from a shift of the transitions
to lower temperatures and a reduction of the entropy Smag associated to the
quadrupolar phase transition, and which possibly might indicate a reduction of
the quadrupolar moment. A splitting of the susceptibility between FC and ZFC
mode at low temperatures has been observed for the first time in U(Pd1−xPtx)3,
x = 0.005. We speculate that the splitting provides an easy avenue to deter-
mine the associated transition temperature T2. In order to fully resolve the
open questions of the quadrupolar properties of U(Pd1−xPtx)3, resonant x-ray
experiments would be desirable.

The resonant x-ray experiments on the rare earth hexaboride PrB6 revealed a

174



splitting of the structural peaks in the antiferromagentic commensurate phase.
Furthermore, a charge peak in the commensurate phase has been observed,
which splits in the incommensurate phase and vanishes in the paramagnetic
phase. A detailed investigation of the magnetic peaks could verify the earlier
proposed magnetic structure, while no unambiguous evidence for quadrupolar
ordering has been found.

In conclusion, the investigations presented in this thesis reveal that the heavy
fermion related systems investigated in this study have a pronounced itinerant
character. Both, UPd2Sn and UPd2Sb are well understood within an itinerant
approach, and even UPt2Si2, which was considered a prime example of a lo-
cal moment U-based antiferromagnet, is more adequately described within an
itinerant Fermi surface picture. Furthermore, in UPd3, again considered to be
an archetypical localized system, Fermi surface effects seems to play an im-
portant role. This is indicated by the suppression of the entropy with 0.5 % of
Pt doping and a complete elimination of the quadrupolar ordering with only
∼ 1.5 % Pt content. Only PrB6 is a localized system with the physical proper-
ties being well described in a crystal electric field scheme. In conclusion, with
this study, it appears that Fermi surface effects ought to be emphasized if a
detailed understanding of heavy fermion related materials should be attained.
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