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Einführung

Polykristalle mit Korngrößen im Submikometer-Bereich stellen eine aussichtsreiche Mate-
rialklasse für strukturelle Anwendungen dar. Insbesondere bei niedriger homologer Tem-
peratur Thom = T/TM (mit T : absoluter Temperatur und TM: Schmelzpunkt) zeigen sie,
verglichen mit konventioneller Korngröße (cg), verbesserte mechanische Eigenschaften [1].
Veröffentlichte Festigkeitssteigerungen beziehen sich zum Großteil auf den Beginn plastis-
cher Verformung. Hansen [2] sowie Meyers und Mitarbeiter [3] zeigten, dass die erhöhte
Festigkeit entlang der Fließkurve erhalten bleibt. Für Rein-Cu (OFHC) stellten Blum et
al. [4] die jeweils bei Raumtemperatur in Druckversuchen gemesse Fließspannung und mit-
tels Nanoindentierung gemessene Härte für den Korngrößenbereich 0.10 μm ≤ d ≤ 50 μm
zusammen. Die Daten zeigen, dass eine Hall-Petch Beziehung sogar für bzw. nahe am
Zustand stationärer Verformung gilt, d.h. die Fließspannung und Härte nimmt mit ab-
nehmender Korngröße zu. Somit verfestigen Großwinkl-Korngrenzen dieses Material bei
Raumtemperatur. Allerdings findet sich für hochverformtes Cu mit ultrafeinen Körn-
ern der Größe 0.35 μm bei erhöhter Temperatur und/oder geringen Dehnraten, dass die
stationäre Fließspannung unter derjenigen bei konventieller Korngröße liegt [5–8]. Dieses
Phänomen wurde durch beschleunigte Versetzungsannihilation an Korngrenzen erklärt [5].
Der Zustand stationärer Verformung – mit gleichbleibender Fließspannung und Dehnrate
bei konstanter Temperatur – ist dabei durch ein dynamisches Gleichgewicht der Evolution
der Versetzungsstruktur gekennzeichnet.

Man nimmt an, dass Plastizität auch in nanokristallinen Stoffen bis in den Bereich
von d ≈ 30 nm durch die Gleitung von Gitterversetzungen dominiert wird [9]. Ferner
wird vermutet, dass der Verformungswiderstand von (ultra)feinkörnigen Materialien stark
durch die überproportionale Anreicherung von Versetzungen an Korngrenzen beeinflusst
ist [5, 9, 10]. Unter dieser Annahme spielen die Deposition und Annihilation von Korn-
grenzversetzungen eine entscheidende Rolle. Ersteres erzeugt eine Festigkeitssteigerung
während Letzteres eine entfestigende Tendenz erklären kann. Zur Zeit existiert noch kein
schlüssiges Modell, welches auf Basis von Ratengleichungen für die Erzeugung und Ver-
nichtung von Korngrenzversetzungen die beobachteten Phänomene einer durch hohen An-
teil von Großwinkel-Korngrenzen verursachte Ver- und Entfestigung zu erklären vermag.
In der vorliegenden Arbeit wird versucht ein einfaches statistisches Versetzungsmodell
zu entwickeln, das in der Lage ist die entscheidenden Einflüsse der Korngröße auf den
stationären Verformungswiderstand wiederzugeben. Die Ableitung von Mechanismen zur
Versetzungsstrukturevolution steht dabei im Vordergrund.

Am Beispiel von Cu mit Korngrößen 0.10 μm ≤ d ≤ 100 μm werden ausführliche Sim-
ulationen des Modells durchgeführt. Der resultierende stationäre Verformungswiderstand

ix



Einführung

wird unter zwei Gesichtspunkten analysiert. Zum Einen wird dessen Abhängigkeit von
Dehnrate und Temperatur für eine Reihe fester Korngrößen untersucht. Zum Anderen
der Einfluss der Korngröße bei gegebenen Verformungsbedingungen studiert. Anhand des
Vergleichs mit experimentellen Ergebnissen wird das Modell kritisch diskutiert.
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1 Introduction

From the point of view of structural application, the continuing scientific interest in poly-
crystalline materials with grain sizes from sub-micron to nanometer is mainly due to their
improved mechanical behavior, especially at low homologous temperatures Thom = T/TM

(where T and TM are (absolute) temperature and melting temperature, respectively), com-
pared to material of conventional grain size (cg) [1]. To a large extent, reported strength-
ening concerns the onset of plasticity. Hansen [2] and Meyers et al. [3] pointed out that
such improved mechanical behavior also holds beyond plastic yielding [2, 3]. Recently, for
pure Cu1 of various grain sizes 10 nm ≤ d ≤ 50 μm the flow stress from uniaxial compres-
sion and the hardness from nanoindentation at ambient temperature were compiled [4].
These data indicate that a Hall-Petch relation holds at room temperature even near or in
the steady state of deformation, i.e., flow stress increases with decreasing grain size. That
suggests that the material is hardened by high-angle grain boundaries at ambient temper-
ature. However, at elevated temperatures and/or low strain rates, for severely plastically
deformed Cu with ultrafine grains of 0.35 μm, the steady state flow stress becomes smaller
than that of cg material [5–8]. This phenomenon has been attributed to fast dislocation
annihilation within high-angle grain boundaries, meaning that high-angle grain bound-
aries soften the material at elevated temperatures [5]. The term steady state deformation
is defined as the state of dynamic equilibrium of the dislocation structure consisting of
free dislocations (not incorporated in dislocation networks constituting low-angle grain
boundaries) and low-angle boundaries, where both flow stress σ and strain rate ε̇ do not
change any more with strain ε at constant temperature T . In the present work, attempts
will be made on microstructural basis to model the role of high-angle grain boundaries in
the deformation of pure Cu in a wide range of grain sizes and temperatures.

In this section we shall start with demonstrating the phenomena of grain boundary
hardening as well as softening found in Cu with grain size range of 0.01 < d /μm < 50
in the interval 298 ≤ T/K ≤ 470 corresponding to 0.22 ≤ Thom ≤ 0.35. The deformation
mechanisms of relevance will be briefly reviewed in section 1.2. The detailed scope of the
current work will be presented in section 1.3.

1.1 Phenomena of grain boundary hardening and
softening

Figure 1.1 combines published data of the maximum deformation resistances (maximum
stress σ at constant strain rate ε̇ and minimum ε̇ at constant σ) of Cu of different initial
grain sizes in a wide range of temperatures and strain rates [4]. The normalization of
the ordinate was done as proposed by Kocks and Mecking [11] by kBT/(G b3) ln (ε̇/ε̇0),
where kB is Boltzmann constant, G is the shear modulus, b is the length of Burgers vec-
tor, and ε̇0 = 107 s−1. The values of G and b were taken from [12] (also see Table 3.1).
This normalization successfully serves the purpose to combine data measured at different
temperatures in a narrow band. Grain size varies over a large range from 0.01 μm up

1oxygen-free high-conductivity grade
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1.1 Phenomena of grain boundary hardening and softening

to the dimensions of the single crystalline specimen. The circles stem from tests on bulk
specimens with conventional grain size of 50 μm and ultrafine grain (ufg) size of 0.35 μm
[13]. The ufg material originally came from the same batch as the cg one and achieved
its fine structure by SPD through 12 passes of equal channel angular pressing (ECAP)
on route C at room temperature. The tests were performed in uniaxial compression in a
temperature range extending from ambient temperature up to Thom = 0.33. For details
it is referred to [5, 8]. The triangles stem from hardness H measured in nanoindentation
at ambient temperature (see [14]). The materials with small sizes subjected to nanoin-
dentation were prepared in several ways, such as magnetron sputtering (d ≤ 0.031 μm),
mechanical attrition (d = 0.042 μm) and ECAP (d = 0.19 μm) (see [14] for details). The
flow stresses were calculated as σ = H/3 from the hardnesses H [4].

1.1.1 Grain boundary hardening at low homologous temperature

Comparison of the data from nanoindentation to uniaxial compression tests at a normalized
strain rate of about −0.13 shows that the flow stress increases significantly with decreasing
d (see Fig. 1.1)2. Fig. 1.2 shows the room temperature data from Fig. 1.1 as function of
d−0.5. Within scatter the data for room temperature are well described by a straight line
in agreement with the Hall-Petch relation:

σ = σ0 + kHP d−0.5 , (1.1)

where σ0 is the overall resistance of the crystal lattice to dislocation movement and kHP

represents the relative hardening contribution of the grain boundaries.

1.1.2 Grain boundary softening at elevated homologous temperature

For elevated temperature of 418 K, the trend is reversed in Fig. 1.2 compared to room
temperature, as the maximum flow stress decreases with decreasing d. This decrease is
related with increase of the strain rate sensitivity m = d log σ/d log ε̇ observed to occur for
ufg Cu in Fig. 1.1. The significant difference in strain rate sensitivities causes a crossover
in the saturation stresses of ufg and cg Cu at a normalized strain rate of 0.17. This means
that ufg Cu becomes softer than the cg variant for normalized strain rates < −0.17 (see
Fig. 1.1). There is thus a transition from hardening at low Thom and high strain rate ε̇ to
softening at elevated Thom and low ε̇ in ufg Cu compared to cg Cu. Note that the softening
relates to the steady state of deformation, but not to the yield stress which is lower for cg
Cu compared to ufg Cu even at elevated temperatures [8].

Breakdown of the Hall-Petch relation has frequently been reported to occur even at
low temperature, where yield stress decreases with grain refinement once the grain size is

2The fact that the flow stresses for d = 50 μm are distinctly higher than those for d = 23 μm is
not unexpected, as in the first case stresses have been extrapolated to be the steady-state stresses
corresponding to ε ≈ 2 [15] from the values measured at ε ≈ 0.35, while in the latter case the stresses
were measured only at about ε ≈ 0.15.

3



1 Introduction

Figure 1.1: Temperature normalized strain rate as function of shear modulus normalized
flow stress for Cu with different grain sizes d and a 〈123〉-oriented Cu single
crystal from nanoindentation at ambient temperature (Thom = 0.22) [4, 14] and
uniaxial compression from room temperature up to 448 K (Thom = 0.35) [5, 8,
15]. Large symbols: saturation stress (or steady-state deformation resistances);
small symbols: maximum deformation resistance (the flow stress or creep rate
measured at the end of a test). Right ordinate axis: strain rate at 300 K.

reduced below a critical value [16–20]. However, as stated by Meyers et al. in their recent
review paper, ”Though researchers have debated the existence of the negative Hall Petch
effect, there is insufficient information to validate the existence of this effect” [1].

1.2 Review on deformation mechanisms for grain
boundary hardening and softening

This section briefly reviews some relevant deformation mechanisms responsible for hard-
ening/softening by grain boundaries.
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Figure 1.2: Variation of flow stress with inverse square root of grain size d with different
T and ε̇. The arrow pointing to the saturated flow stress (400±50) MPa of cg
Cu with d = 50 μm [4]. Data from Fig. 1.1.

1.2.1 Hall-Petch relation and explanation

As stated above, the Hall-Petch relation (1.1) describes not only the yield stress, but
also the flow stresses beyond plastic yielding and the hardnesses derived from indentation
testing [2–4]. Many theoretical studies have been conducted to understand this relation
[21–26]. In the following some of them will be briefly reviewed.

1.2.1.1 Pile up theories

The original mechanism proposed by Hall [21] and Petch [22] involves a pile-up of dislo-
cations against grain boundaries. The grain boundaries act as obstacles, hindering the
dislocation glide along the slip planes. When subsequent dislocations move along the
same slip plane, the dislocations pile up at the grain boundaries. The dislocations repel
each other, so that the stress on the grain boundary increases with increasing number of
dislocations in the pile-up. If there are n dislocations in the pile-up, the stress at the
grain boundary will be nσ where σ is applied stress. In order to propagate the plastic
deformation, dislocations are needed to be emitted into the neighboring grain. If the crit-
ical stress required at a grain boundary for the emission of a dislocation is σc, then there
needs to be a stress of σc/n applied to the sample. In a larger grain there will be more
dislocations within the grain, so there will be more dislocations in the pile-up. Therefore
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a lower applied stress is required to produce a local stress which is sufficiently large to
cause emissions of dislocations.

Many researchers have theoretically studied various kinds of pile-ups. These include
single-layer single-ended pileups in homogeneous, heterogeneous, and anisotropic media,
single-layer double-ended pileups, circular pileups, and multiple-layer pileups. Excellent
reviews were presented by Li and Chou [26] and Hirth and Lothe [27].

Several considerations stemming from experimental observations lead one to question
the general applicability of the pile-up theories. The first is the lack of direct observation
of pile-ups in pure metals. Secondly, Worthington and Smith [28] found that in Fe-3%Si,
dislocations are emitted from grain boundaries at stresses much below the yield stress
without the help of pile-ups and that these stresses do not seem to depend on grain size.
According to the pile-up model, the function of the pile-up is to create a stress concen-
tration at the grain boundary to activate dislocation sources. If these dislocation sources
can be activated without a pile-up and at stresses below the yield stress, the necessity for
pile-ups is no longer existing. Also, as the number of pile-up dislocations is reduced with
grain size, the multiplication effect is lost when the dislocation spacing becomes compara-
ble to the grain size in the nanocrystalline (nano) regime.

Motivated by these considerations, theories without the use of pile-ups have been pro-
posed, e.g., work hardening theories, grain boundary source theories and a theory based
on geometrically-necessary dislocations (GNDs).

1.2.1.2 Work hardening theories

In this class of theories the athermal stress component, which is inversely proportional to
the average dislocation spacing ρ−0.5, serves as a hardening term [24, 29]:

σ = σ0 + α M G b
√

ρ . (1.2)

σ0 is a lattice friction stress. To arrive at the Hall-Petch relation, ρ needs to be inversely
proportional to d. The essential assumption of the work hardening theories is that the
mean free path of dislocations, Λ, is limited by the grain size d (not by the dislocation
structure) so that Λ = β d where β is a constant. Dislocations with a density of ρ gliding
a distance L produce a plastic shear strain γ = ρ b L, so that ρ = γ/(b Λ) = γ/(b β d) with
L = Λ. Inserting the expression into Eq. (1.2) yields (1.1) with

kHP = α M G
√

γ/
√

b β . (1.3)

Supporting evidence for this model was found by Conrad et al. [29] who showed that
flow stress of niobium (columbium) is linear with the square root of strain as required by
Eqs. (1.3) and (1.1) However, as ρ is not generally linearly dependent on ε and σ is not
generally a parabolic function of ε as derived in Eq. (1.3), this treatment is not generally
valid.
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1.2.1.3 Grain boundary source theories

Li assumes grain boundaries to act as sources of dislocations [25, 26]. According to [26],
let N be the total length of dislocations emitted per unit area of grain boundary at the
time of yielding. Then the density of dislocations at the time of yielding is, for a spherical
grain: ρ = 1

2
π d2 N/

(
1
6
π d3

)
= 3 N/d where the factor 1/2 arises from the fact that each

boundary is shared by two grains. Inserting ρ into Eq. (1.2) leads to the Hall-Petch relation
with a slope:

kHP = α M G b
√

3 N . (1.4)

A similar version was proposed by Crussard [30, 31]. An experimental evidence of disloca-
tion loops emitted from grain boundaries in an Fe-3.17%P alloy was reported by Hornbogen
[32]. Recently van Swygenhoven demonstrated that grain boundary ledges act as sources
as well as sinks for lattice dislocations in molecular dynamics simulations of nano Nickel
[33].

1.2.2 Grain boundary softening and explanation

1.2.2.1 Grain boundary sliding and grain boundary diffusional creep

Since the well-known work of Chokshi et al. [16], the possibility of rapid diffusional creep
in nano metals has received great attention [16, 34–36]. In addition, grain boundary sliding
(GBS) has been considered as an important, even dominant process in plastic deformation
of ufg and nano crystals [37–43].

GBS is generally believed to be the dominant mechanism of superplasticity, as it repre-
sents most of the strain in superplastic flow occurring at high temperatures [44]. Recently,
three-dimensional molecular dynamic computer simulations predict that GBS also occurs
at low temperature in nanocrystallines [45–49]. There is indirect evidence suggesting that
grain-boundary sliding may occur more easily in ufg metals produced by SPD such as
ECAP and high-pressure torsion [37–39, 41, 43, 50–56]. Valiev estimated the contribu-
tion of grain boundary sliding to total deformation to be 10∼15% at room temperature
[39]. He attributed the occurrence of GBS at relatively low temperature to the existence
of highly non-equilibrium grain boundaries formed during ECAP [39, 54], which enable
a faster diffusion process taking place to accommodate GBS. Recently a direct finding
of low temperature GBS was reported for pure Aluminum (99.99%) processed by ECAP
[57]. The authors employed depth sensing indentation (DSI) testing and atomic force
microscopy (AFM) to show that there are significant differences in the indentation charac-
teristics with and without the application of SPD. They concluded that GBS makes a very
significant contribution of 40∼70% strain in ECAP Al. Sklenička et al. estimated that
the contribution of GBS to creep strain reaches 33% in the best case (12 passes of ECAP)
[58]. In the phase mixture model developed by Kim et al. [59–61], the grain boundary
softening effect was essentially accounted for by diffusional creep.
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It seems clear that GBS will occur in the deformation of ufg materials, but it can hardly
be an independent and rate-controlling process. If the deformation is entirely carried by
GBS, theoretically a strain rate sensitivity as high as 0.5 would result [62, 63]. However,
a maximum m−value of only about 0.14 was found in ufg Cu at 418 K as derived from
Fig. 1.1 (also see [5, 8]). Similar findings have been reported by Höppel and Valiev [64]
(m = 0.14 for ECAP Cu after 16 passes) and Valiev et al. (m = 0.06 for ECAP Cu after
2 passes). Hayes et al. also ruled out GBS as a rate controlling process based on the
measured strain rate sensitivity and activation volume [65]. This suggests that dislocation
activities must be considered.

1.2.2.2 Annihilation of dislocations at grain boundaries

The grain boundary softening behavior found in ufg Cu in its steady state deformation
at elevated temperature was explained by Blum and coworkers by a thermally activated
annihilation of dislocations at grain boundaries [5–8, 66, 67]. The idea is that in ufg Cu
the mean free path of free dislocations is no longer determined by the dislocation structure,
but is limited by the high-angle grain boundaries. Then fewer dislocations than normal
are stored in the grain interior and more dislocations are stored at the grain boundaries.
Therefore the situation becomes strongly dependent on grain boundary properties. As the
diffusion process occurs much faster at grain boundaries than in grain interiors, disloca-
tions are more easily annihilated at grain boundaries through thermally activated processes
of structural rearrangement. Thus the grain boundaries may soften the material in the
steady state where loss of dislocations must occur [5, 66].

A similar idea has been adopted by Wang and Ma to explain the low strain hardening
rate found in ufg Cu [10]. An review was presented by Ovidka [9]. According to Wang and
Ma [10] and Ovidka [9], in ufg and nano materials with grain size down to d ≈ 30 nm, the
lattice dislocations are still dominant in deformation. However, in contrast to the case of
cg materials where lattice dislocations are mainly stored in grain interiors, in the ufg and
nano cases dislocations are intensively stored at grain boundaries. Thus the deformation
resistance is crucially influenced by grain boundaries [9, 10]. In this case, both the storage
and annihilation of dislocations at grain boundaries strongly influence the deformation re-
sistance. The storage process provides hardening, while the annihilation process provides
tendency of softening. When the latter process prevails, the material becomes soft.

1.3 Scope of the current work

As described in the previous sections, the understanding of the deformation mechanism in
ufg and nano materials is still unclear. So far, no satisfactory model, which incorporates
rate equations governing the generation and annihilation of grain boundary dislocations,
is available to interpret the grain boundary hardening and softening phenomena. The aim
of the present work is to develop a simple dislocation model which catches significant fea-
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tures of steady state deformation resistance of crystalline materials of various grain sizes.
Two dislocation densities will be introduced to describe the microstructure: the density of
dislocations in grain interiors and the density of dislocations stored at grain boundaries.
The emphasis will be put on the derivation of rate equations of structure evolution, i.e.,
the rates of generation and annihilation of the two dislocation species.

Extensive simulations will be presented on Cu with grain size varying in the range of
0.1 μm < d < 100 μm. The steady state deformation resistance will be studied in two
ways of i) dependence of ε̇ on σ and T at constant d; and ii) dependence of σ on d at
constant ε̇ and T . The simulation results will be compared with the experimental findings.
The model will be assessed with a composite approach. Deficiencies of the model will be
discussed.
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2.1 Basic considerations

2.1.1 Microstructure of coarse-grained and ultrafine-grained material

(a) (b)

Figure 2.1: Schematic of a) subgrains of size w with free dislocations in grain interior in
coarse grain of size d, b) ultrafine-grained structure with d = w∞. Thick lines:
high-angle grain boundaries; Thin lines: low-angle subgrain boundaries.

In cg material the dislocations generally form a cellular structure within the grains
(Fig. 2.1(a)). In the course of straining the cell boundaries build up increasing misorien-
tations. In doing so they become more planar and take the character of low-angle grain
boundaries. Naturally the state of order of these boundaries is not perfect, because the
boundaries are subject to steady flows of dislocations entering and leaving them, thereby
creating disorder. The cell size w (average spacing determined from the line intersec-
tion technique which is a measure of the boundary area per volume, 2/w for an equiaxed
structure) soon reaches a value

w∞ = kw b G/σ (2.1)

(kw: factor between 10 and 30) found in the steady state of deformation [68, 69]. The
low-angle (subgrain) boundaries generally have a strengthening effect [69–71].

The grain structure of the ufg Cu is a severely cold worked (not recrystallized) structure,
with about 50% low-angle grain boundaries [54, 72]. That means that the cold worked
structure also contains subgrains with w according to (2.1). When the as-produced ma-
terial is subjected to a test under a stress being lower than the stress at which the ufg
structure was achieved, firstly, new subgrains can no longer form inside the grains due to
the fact that dislocations are not able to get stored in grain interiors, as the mean free
path Λρ of dislocations, which generally corresponds to a multiple of grain size w (factor
of 2 to 4, see section 2.2.1.1 for details), becomes larger than the grain size. Thus the
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dislocations are mainly stored at high-angle boundaries and not in the subgrain interior.
Secondly, the existing subgrains are smaller than they will be at the reduced stress. Thus,
one expects that the low-angle subgrain boundaries will disappear during deformation by
migration and recombination with high-angle grain boundaries, in the attempt to attain
w∞. This leads to the situation depicted in Fig. 2.1(b). This is the case for ufg Cu with
d = 0.35 μm in most of the investigated range as can be seen by calculating Λρ and w∞
from the observed flow stresses (see Fig. 2.2). Increase in subgrain size during deformation
of ufg Cu has in fact been observed by transmission electron microscopy [73]. The virtual
absence of low-angle boundaries makes the pronounced normal transient creep effects due
to reversible subgrain coarsening/refinement disappear in the deformed ufg Cu [74]. Con-
sistent with its history of predeformation and structure evolution, the ufg Cu attains a
relative maximum of flow stress relatively early at ε ≈ 0.05, before approaching its steady
state.

2.1.2 Assumptions and microstructure parametrization

The model to be outlined in the present work relies on a number of assumptions and
simplifications:

• deformation is (only) mediated by dislocation motion;

• slip occurs spatially homogeneously within the grains;

• the grain boundaries are considered as internal surfaces where dislocations arrive
without immediately loosing their stress fields;

• each dislocation stored at the grain boundary is assumed to be in a dipolar configu-
ration.

Justifications for the assumptions will be given below.

2.1.2.1 Why a dislocation model?

For Frank-Read sources emission of dislocation occurs if the total force on a source exceeds
the Orowan stress σsource for dislocation multiplication [75, 76]. The Orowan stress criterion
is roughly given by

σsource =
2 G b

ls
, (2.2)

where ls is the length of dislocation segment acting as source. In the limiting case ls = d,
the sources cannot be activated if the applied stress is smaller and if stress concentrations
are neglected. In this case, if plastic deformation still occurs, it cannot be connected to
dislocation activity. Fig. 2.2 visualizes the relation ls-σ/G for Cu. The grain sizes of cg
and ufg Cu, which will be modelled in the present work, are also plotted to check whether
the sources can be activated in these materials. It is seen that in the experimental range
extending over a certain σ/G range, ls is smaller than d indicating that there is no problem
for activating the dislocation sources in the investigated stress range even in the absence
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Figure 2.2: Mean free path of free dislocations Λρ = 50 b G/σ, subgrain size w∞ and criti-
cal size of dislocation sources as function of shear modulus normalized stress.
Horizontal lines display the grain sizes dcg for cg Cu and dufg for ufg Cu. Ver-
tical dotted lines mark the boundary of experimental range where cg and ufg
Cu were investigated by Li [5, 8].

of stress concentrations. This means that the first of the above assumptions is justified.

2.1.2.2 Hardening by extrinsic dislocations

Lattice dislocations trapped at high-angle grain boundaries generally keep their character
as linear defects [77]. They cause lattice distortion near the grain boundary and increase
the grain boundary energy [78]. This is illustrated by the fact that these extrinsic grain
boundary dislocations can be made visible by transmission electron microscopy [78, 79].
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Thus the extrinsic dislocations give rise to an athermal stress component. Formally the
athermal stress given later by Eq. (2.30) is consistent to the one proposed by Ashby [80]
who suggested that the geometrically necessary dislocations stored at grain boundaries
contribute to hardening by creating a long-range back stress.

2.1.2.3 Annihilation of dislocations at grain boundaries

Grain boundary dislocation structure Figure 2.3 illustrates the arrangement of edge
dislocations in a high-angle grain boundary. In symmetric double slip, edge dislocations
form (single-sided) steps at the grain surface. A regular arrangement lead to valleys and
hills. In a regular arrangement of dislocations there is a regular sequence of intrusions and
extrusions which are connected to the single-sided steps of parallel hills and valleys (see
Fig. 2.3(a)). This description holds only for the surface of single grains (single crystals).
The grains are in contact with neighbours. Atomic attraction leads to stresses at the
single-sided steps. When two such grains with a sequence of parallel hills and valleys are
superimposed one gets the pattern of Fig. 2.3(b). Gray-gray superposition means two hills
are in contact. White-white superposition means two valleys superimpose. Gray-white
superposition means possible fit as valley superimposes with hill. In consequence, fit of
the two grains can be reached by combining gray-gray and white-white areas such that
only gray-white contacts remain. If this is the case, there is good fit everywhere due to the
fact that the boundaries of hills agree with the boundaries of valleys and hills and valleys
superimpose. Thus there is no elastic strain needed any more for closing valley-valley con-
tacts and compressing hill-hill contacts. The fact that superposition of hill boundaries with
valley boundaries can be attained, shows that the stresses related with the single-sided
steps (extrinsic dislocations) can in principle be removed. This is possible by transport of
matter by diffusion. The resulting grain boundary structure consists only of double sided
steps, i.e. ledges.

Based on this consideration, the single-sided steps is simplified as regular dislocations
with opposite signs. Fig. 2.3(c)) schematically show a regular arrangement of dislocations
which form dipoles. These dipoles can eliminate each other by diffusion. The dipoles
have opposite signs. The dislocations of these dipoles climb by absorption and emission
of vacancies.

To quantify the rate of annihilation of the grain boundary dislocations, some approxi-
mations need to be made. By neglecting the slight difference in the Burgers vectors and
line directions of the dislocations in dipolar configurations, one arrives at the pattern of
Fig. 2.3(d). The regular arrangement of dislocations implies that the average distance
between the dipole constituents ddip,gb scales with the average spacing of grain boundary
dislocations sgb. Generally the arrangement of dislocations at grain boundaries is irregu-
lar, so that it is difficult to make an good estimation of ddip,gb. We assume here that the
average dipole height equals the average spacing of grain boundary dislocations, namely,

ddip,gb = sgb . (2.3)
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(a) (b)
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(c) (d)

Figure 2.3: Schematic of edge dislocation structure in grain boundaries. a) grain 1 with a
nonplanar surface due to intrusions (valleys) and extrusions (hills) produced
by single-sided steps formed by edge dislocations resulting from symmetric
double glide; b) superposition of two such grains (grain 1 and 2) with parallel
gray-white sequence of hills and valleys which are in general not parallel for the
two neighboring grains due to different grain orientations. The marked areas
represent superpositions of valley-valley, hill-hill and valley-hill configurations
from left to right; c) regular arrangement of dislocations in dipolar configura-
tions resulting from single-sided steps of neighbouring grains on the two sides
of the grain boundary; d) simplified picture of c) neglecting the differences in
Burgers vectors and line directions of dislocations in dipolar configurations.
sgb: spacing of grain boundary dislocations; ddip,gb: dipole height (spacing of
glide planes); φ: angle between the slip plane and the grain boundary surface.
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Annihilation of dislocation dipoles at grain boundaries According to Fig. 2.3(d), the
dipoles may annihilate through climb of the extrinsic dislocations at the grain boundaries.
In a grain boundary without perfect lattice of atomic positions dislocations on the two
sides of the boundary need not have exactly the same Burgers vector and opposite sign to
annihilate.

Figure 2.4: Schematic of the structure of extrinsic grain boundary dislocations. (a) a grain
boundary between grain 1 and 2; (b) schematic dislocation picture of (a); (c)
stress-free grain boundary ledge after recombination of steps by dislocation
climb in grain boundary.

Fig. 2.4 illustrates the process of dissolution of a grain boundary dislocation dipole
(formed in the way as demonstrated in Fig. 2.3) through mutual climb of dipole con-
stituents. A lattice edge dislocation entering a high-angle boundary from one of the two
neighboring crystallites forms a step at the surface of that crystal while the surface of
the neighboring crystal remains unchanged. An analogous single-sided step results from
glide in the second crystallite. Despite the slight difference in Burgers vectors and line
directions, the two steps in Fig. 2.4(a) react by diffusive processes in the boundary to form
a ledge with reduced stress field (Fig. 2.4(c)). In an approximative manner we treat this
process of ledge formation from two single-sided steps as dissolution of a dislocation dipole
(Fig. 2.4(b)) [81]. Note that the lack of crystalline order at the boundary is the prereq-
uisite for the formation of ledges as shown in Fig. 2.4(c). This process cannot happen so
easily inside the grain unless the Burgers vectors of reaction partners are exactly equal.
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2.1.2.4 Microstructure parametrization

The dislocation structure is described in a statistical manner. The microstructural param-
eters entering the model are the density (dislocation length per crystal volume) ρf of free
dislocations in grain interiors, the areal density Ngb (dislocation length per grain boundary
area) at grain boundaries, the mean grain size d, and the width of grain boundary δgb (see
Fig. 2.5). Dislocations in the grain interior may exist in the form of dipoles (see the pairs

Figure 2.5: Schematic of the microstructure with dislocations described by: ρf : density of
free dislocations in grain interior; Ngb : areal density of dislocations at grain
boundaries; d : grain size; δgb: the width of grain boundary. Dashed ellipses
mark dislocations in a dipolar configuration.

of dislocations marked by the dashed ellipses in Fig. 2.5) and in the form of singles. For
the dislocations deposited at the grain boundaries, all the dislocations are assumed to be
in dipolar configurations as stated before. In principle, both edge and screw dislocations
can form dipoles. Since the annihilation of screw-dipoles through cross slip is generally
easier than the annihilation of edge-dipoles through climb, the rate of annihilation is de-
termined by edge-dipoles. Therefore, only edge-dipoles are considered in the current work.

The average grain boundary dislocation density (length per volume) ρgb is the areal
density Ngb (length per area), times the grain boundary area per volume 2/d:

ρgb = Ngb
2

d
. (2.4)
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The average spacing of free dislocations δ is defined as

δ = ρ−0.5
f . (2.5)

is called spacing of free dislocations. The average spacing of grain boundary dislocations
sgb equals the reciprocal of the length of dislocations per grain boundary area, namely,

sgb =
1

Ngb

. (2.6)

In the following the rates of evolution of dislocation densities as well as the kinetics for
dislocation motion will be derived.

2.2 Evolution of microstructure

Dislocations are generated as free ones from sources and then glide in their slip plane
to produce plastic strain until they leave the crystal or annihilate through formation of
dipoles. The formation and annihilation of dipoles during deformation lead to a decrease
in dislocation line energy. The current model considers two kinds of mechanisms of dislo-
cation annihilation. If the distance between dipole constituents is smaller than a certain
value dspon, the mutual attraction force between the dislocations is sufficient high to leads
to an immediate annihilation [82, 83] (Fig. 2.9(a)); otherwise the dipole constituents need
to approach each other through a thermally activated process (Fig. 2.9(b)). The net rate
of change of dislocations equals the difference between the generation rate of dislocations
(denoted by ”+” in the superscript) and the sum of the annihilation rates (denoted by
”-” in the superscript, spon: spontaneous annihilation, therm: thermally activated anni-
hilation). A steady state of deformation is attained when the generation rate equals the
annihilation rate.

ρ̇ = ρ̇+ − ρ̇− (2.7)

ρ̇− = ρ̇−,spon + ρ̇−,therm (2.8)

In following, the rates for the generation and annihilation of dislocations will be formu-
lated.

2.2.1 Generation of dislocations

2.2.1.1 Grain interior

The rate of storage of free dislocations in crystals is written as

ρ̇+
f =

2

b Λρ

γ̇ . (2.9)

where Λρ is the mean free path of dislocations [70, 84, 85] and γ̇ is the shear strain rate.
If the dislocations are circular loops [70], Λρ equals the average radius of the dislocation
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loops at the point of storage. The length of free dislocations generated per slipped area is
determined as 2 π Λρ/(π Λ2

ρ) = 2/Λρ. Statistically the mean free path Λρ is proportional
to the spacing of free dislocations δ (see Eq. (2.5)):

Λρ = kρ δ , (2.10)

where kρ is a constant [11, 70, 85, 86]. As can be derived from the rate of work hardening
in stage II of single crystal deformation, the quantity kρ equals α G/θII (α: dislocation
interaction constant, G: shear modulus, θII: rate of hardening in stage II of single crystal
deformation), which approximately equals 50 [11]. The mean free path of 50 δ corresponds
to about 2 subgrains (2.1). The quantity kρ has been derived by Nes [70] as

kρ =
1

2
√

p
, (2.11)

where p ≈ 10−4. p is the probability for a dislocation loop expanding on its slip plane to
be stored per dislocation encountered1.

Relation (2.10) only applies to the situation where the grain size d is much larger than
the mean free path of free dislocations Λρ and the dislocation loops get stored in the grain
interior (Fig. 2.6(a)). With decreasing grain size, more and more dislocation loops are
able to reach the grain boundaries. Accordingly, the length of free dislocations generated
in the grain interior per slipped area 2/Λρ is reduced (Fig. 2.6(b)). In the limit of very
small grains, dislocation storage in the grain interior virtually ceases. In this case, the
length generated per slipped area 2/Λρ in the grain interior approaches 0. This indicates
that the mean free path of free dislocations is not only a function of the average spacing
between free dislocations δ (see Eq. (2.10)), but also a function of grain size d.

Based on Nes’ statistical approach [70], the grain-size dependent storage rate of free
dislocations in grain interiors can be derived in several steps. If there are dNm loops which
are generated per volume in the interval dγ, a certain fraction of dNm loops will get stored
due to interactions with other dislocations during expanding. Within a certain area, the
more dislocations a loop encounters during expanding, the more interactions occur to stop
the loop from further expanding (see Fig. 2.7). This means that the probability of a loop
getting stored is dependent on the dislocation density (or the spacing between disloca-
tions). Hence, the first step is to statistically determine the number of dislocation loops
dN(d/2, δ) which get stored within the grain of size d. Then one can determine the length
of the stored dislocation loops and the shear strain produced by these loops per volume.
The ratio of these two quantities gives the total length of dislocation generated per shear
strain in grain interiors dρf/dγ.

Figure 2.7(c) schematically display the probability derived from Eq. (A.6) of dislocation
loops getting stored within grains of different sizes. For a certain dislocation spacing, e.g.

1This is identical to the probability per slipped area and per total dislocation density ρf introduced by
Nes, as the product of the two equals the number of encountered dislocations
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(a)

(b)

Figure 2.6: Schematic of the comparison between the slipped area (gray region) and the
cross section of a grain. a) the dislocation loop is completely stored in the grain
interior; b) most part of the dislocation loop is stored at the grain boundary.

δ1, for a large grain of size dcg, all loops are stored in the grain interior (bounded by the
thick line in Fig. 2.7(a)), the probability reaches 1 (see Fig. 2.7(c)). For the small grain of
size dufg, the probability stays below 1 as only a few small loops can be stored within the
small grain, the rest enters the grain boundary (bounded by the thick line in Fig. 2.7(b)).
When the dislocation spacing becomes larger (as is usually the case of deformations at low
stresses), even the probability of the storage of dislocation loops within the large grain of
size dcgbecomes smaller than 1. Accordingly, the storage rate is reduced.

The generation rate of dislocations in grain interior is derived in appendix A.2. From
Eqs. (A.12) and (2.9) one obtains the expression for the length of dislocations stored in
the grain interior per slipped area:

2

Λρ,d

=
2 r

(
1 − exp

(
−p ρf π r′2

))
(
r2 +

(
r′2 − r2

)
exp

(
−p ρf π r′2

)) . (2.12)

Here r is the average radius of the dislocation loops being stored in grain interiors; r′ is
proportional to the grain size d (see Appendix A.1 for the geometrical factor). For coarse

grains (r′ → ∞),
2

Λρ,d

equals
2

r
with r → kρ ρ−0.5

f . This means that Λρ,d become identical

to Λρ (see 2.10). As the grain size decreases (r′ → 0),
2

Λρ,d

is a grain-size dependent

quantity which accounts for the influence of grain boundary on the storage of dislocations
in grain interiors.
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(a)
(b)

(c)

Figure 2.7: Schematic of dislocation loops in a) a large and b) a small grains, and c) the
probability of loops getting stored within grains as a function of dislocation
spacing δ and grain size at the same deformation condition.

2.2.1.2 Grain boundary

Penetration of grain boundaries by free dislocations is in general impossible. Note that
the penetration means passage of the whole dislocation, not nucleation in the neighbour-
ing grain at a point near the grain boundary; the latter is always possible, but does not
affect the storage rate of dislocations in the boundaries. The grain boundaries are thus
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filled with dislocations coming from neighbouring grains. The mean free path Λgb of such
dislocations is proportional to grain size d.

The rate of dislocation length stored at grain boundaries per volume is derived in ap-
pendix A.3). Combining Eqs. (A.19) and (2.4) leads to the rate of dislocation length stored
per grain boundary area:

Ṅ+
gb =

1

2kgb b
· γ̇ . (2.13)

where kgb is a geometrical constant equal to 0.5.

Summary From Eq. (A.19) the length of dislocation which is deposited per slipped area
at the grain boundaries can be determined as

2

Λgb

=
2

2 kgb d
=

2

d
. (2.14)

Combining Eqs. (2.12) and (2.14) yields the total length of dislocations generated in grain
interiors and at grain boundaries per slipped area

2

Λtot

=
2

Λρ,d

+
2

Λgb

. (2.15)

Figure 2.8 shows the length of dislocations generated per slipped area versus δ for sev-
eral grain sizes d. The curve for 2/Λρ was derived from Eq. (2.10) with a constant kρ (see
Table: 3.2) meaning that the length of free dislocations generated in grain interiors per
slipped area is exclusively determined by the free dislocations themselves within grains
without any influence of grain boundaries. This line serves the purpose to assess the
relative significance in the contributions of free dislocations in grain interiors and disloca-
tions at grain boundaries to the total rate of generation of dislocations. The curves for
2/Λtot (total length of dislocations generated in grain interiors and at grain boundaries
per slipped area (see Eq. 2.15)) display a kink where Λρ (see Eq. (2.10)) approximately
equals the grain size d. At the left of this point 2/Λtot progressively agrees with 2/Λρ with
decreasing spacing of free dislocations δ. This means that the total rate of dislocation gen-
eration is determined by the free dislocations in grain interiors. This is in agreement with
the fact that the length of free dislocations generated per slipped area 2/Λρ,d, which pro-
gressively increases in proportion to decreasing δ, approximately equals 2/Λρ and 2/Λtot

in large grains. At the right of this point 2/Λtot levels off. The corresponding level of total
mean free path Λtot equals the grain size d indicating that the total rate of generation of
dislocations is no longer dominated by the rate of generation of free dislocations in grain
interiors but by the rate of generation of dislocations at grain boundaries. And the total
rate of dislocation generation is enhanced due to d < Λρ. It can be seen that 2/Λρ,d con-
tinuously decreases in proportion to δ2 with increasing δ. This is due to the fact that more
dislocations reach the boundaries and fewer are stored inside the grains as the average free
dislocation spacing increases.
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2.2 Evolution of microstructure

Figure 2.8: Relation between length of dislocations generated per slipped area and spacing
of free dislocations δ. 2/Λρ,d (Eq. (2.12)) and 2/Λρ (Eq. (2.10)): length of free
dislocations generated in grain interiors per slipped area; 2/Λtot: total length
of dislocations generated in grain interiors and at grain boundaries per slipped
area (Eq. (2.15)); The line marked by ρ̇+

f = ρ̇−,spon
f is derived by equating the

rate of generation (2.9) and the rate of spontaneous annihilation (2.16) of free
dislocations. The symbols < and > mark the area as where the generation
rate ρ̇+

f is smaller or larger than the annihilation rate ρ̇−,spon
f , respectively.
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2.2.2 Annihilation of dislocations

Depending on temperature and stress the annihilation of dislocations may take place in
two manners. In the following sections the rates of annihilation of dislocations in grain
interiors and at grain boundaries will be formulated, respectively.

2.2.2.1 Grain interior

Spontaneous annihilation Kocks [87] proposed that dynamic recovery is controlled by
glide of dislocations to (unspecified) recovery sites. A more detailed description of glide-
controlled recovery was given by Essmann and Mughrabi [88] who proposed that the
recovery site of a gliding dislocation is provided by a dislocation of opposite sign lying on
a parallel glide plane which is less than a spacing dspon,f apart from that of the incoming
dislocation (Fig. 2.9(a)). Assuming spatially homogeneous distribution of the dislocations
of equal sign, the rate of spontaneous annihilation of free dislocation density thus equals
the volume fraction (γ̇/b) 2 dspon,f , which is sampled per time by the gliding dislocations
for potential annihilation partners, times the length per volume 2 (1/(2 ng)) ρf of such
partners of one glide system; ng is the number of active slip systems so that 1/(2 ng) is the
average fraction of dislocations with Burgers vectors of opposite sign. The leading factor
2 is appropriate as both dislocations disappear in each annihilation event [82, 83]:

ρ̇−,spon
f =

γ̇

b
2dspon,f × ρf

ng

. (2.16)

The spontaneous annihilation usually takes place at low temperature and high stress
as a high density of dislocations results. Figure 2.8 also shows the line where generation
of free dislocations is compensated by spontaneous annihilation. At the left of this line
spontaneous annihilation of dislocations outweighs generation of free dislocations. This
means that the density of free dislocations in the grains must decrease. This is due to
the relatively small spacings of free dislocations which make spontaneous annihilation a
rather probable event. Note that not only single dislocations, but also free dislocations in
dipolar configuration are subject to such spontaneous annihilation with bypassing gliding
dislocations. In the case of the curves for 2/Λρ,d, which intersect this line, a steady state
free dislocation density is reached when the generation rate equals the annihilation rate
at the intersection point. In the case of the curves for 2/Λρ,d, which do not intersect this
line, the free dislocation density must steadily decrease. This is due to the fact that the
mean free path Λρ,d increases more strongly with δ.

Thermally activated annihilation The rate of thermally activated annihilation is de-
rived under the assumption that steady state deformation is controlled by climb of edge
dislocations [89–91]. Dislocation climb occurs by diffusion of vacancies to or away from
the site of the dislocation leading it to move out of the slip plane onto a parallel plane
directly above or below the slip plane.
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(a) spontaneous annihilation

(b) thermally activated annihilation

Figure 2.9: Formation of dipoles by mutual attraction of free dislocations with Burgers
vectors of opposite sign within slip planes of ddip apart. Within the spacing
dspon, the dipole disappears spontaneously; Beyond the spacing dspon but within
ddip, the dipole constituents overcome the distance of ddip through mutual
climb. Vacancy debris (open squares) are left after annihilation.

The rate, at which dislocation length is annihilated per volume through the thermally
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activated process, is
ρ̇−,therm

f = ρdip,f νc,f , (2.17)

where ρdip,f is the density of dislocations existing in dipolar configuration, and νc,f is the
frequency of annihilation.

Dipoles exist with a dipole separation between dspon,f (minimum) and ddip,f (maximum
separation of stable dipoles at stress σ). The frequency is assumed to be controlled by
the time interval at which the distance (ddip,f − dspon,f)/2 has been overcome by climb
(Fig. 2.9(b)):

νc,f =
2vc,f

(ddip,f − dspon,f)/2
(2.18)

The factor 2 in the numerator accounts for the factor that two dislocations disappear in
each annihilation event. Following a simple approach [11, 70], the density of dislocation
dipole ρdip,f is assumed to be a fraction of the density of free dislocations ρf , namely,

ρdip,f = fdip ρf . (2.19)

An intensive study of the evolution of ρdip,f presented by Eisenlohr [92] shows that when
the annihilation is controlled by the thermally activated process, the ratio of the single
dislocation density to the dipole density is almost stress independent showing only a slight
decrease with increasing stresses. This statement suggests a scaling relation between ρf

and ρdip,f as postulated in Eq. (2.19).

The average separation between dipole constituents ddip,f is assumed to be proportional
to the average spacing of free dislocations of one glide system:

ddip,f =
ρ−0.5

f

ξ
. (2.20)

where ξ is a constant. The dipole capture spacing is expressed in [83, 93] by the passing
stress of parallel edge dislocations which is inversely proportional to stress. The same
inverse proportionality results from (Eq. 2.20) if δ is inversely proportional to stress as is
usually the case [69].

The climb velocity vc,f , at which the dipole constituents climb perpendicular to their
slip planes, is expressed as [27, 94]

vc,f =
Dsd

b

[
exp

(
σc,f Ω

kBT

)
− 1

]
(2.21)

where Dsd is the coefficient of volume diffusion, Ω is the atomic volume, kB is Boltzmann
constant, and σc,f is the climb stress of dipole constituents. This formula was proposed
for the case that dislocations are perfect. In reality they are split into partials with a
stacking fault in between. The splitting reduces the climb rate. Climb is concentrated at
jogs and becomes dependent on jog density and stacking fault energy. The dependence on
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2.2 Evolution of microstructure

jog spacing may enhance the stress dependence of the climb velocity. Eq. (2.21) has been
modified by Argon and Moffatt by incorporating the stack fault energy [95]. The formation
and concentration of jogs has been treated by many others [92, 96, 97]. For simplicity the
influence of splitting and jogs is neglected here. This means that the thermally activated
annihilation rate is somewhat overestimated.

σc,f is the stress which drives the dipole constituents to climb towards each other. As
mentioned above, dipoles exist with dipole separations between dspon,f and ddip,f . Thus an
average dipole can be defined with an average separation of (ddip,f + dspon,f)/2. The climb
stress can be expressed as a function of the average dipole separation

σc,f =
G b

2π (1 − ν)

1

(ddip,f + dspon,f)/2
(2.22)

(ν: Poisson’s ratio)
It might be better to treat the dipole density ρdip,f as an explicit microstructure param-

eter as was done, for example, in the work of Roters [98], Roters et al. [82] and Blum et al.
[83] and Eisenlohr [92]. The intention of discarding this parameter in the present work is to
make the model as simple as possible. Compared to the model of thermally activated anni-
hilation presented in [83] where the evolution of dipole density was separately formulated,
the present simplified model will not bring about any qualitative difference. By carefully
choosing the relevant model parameters, quantitative differences can be minimized. In
addition, since there are very few dislocations within ultrafine grains, the simplification
in the treatment of the annihilation rates of free dislocations will not result in significant
influences on the simulation results. Using the simplified model facilitates to assess the
role of grain boundary dislocations in deformation without paying much attention to the
detailed configuration of free dislocations in grain interiors.

2.2.2.2 Grain boundary

Annihilation of dislocations in the grain boundary is described by similar concepts as in
the grain interior (section 2.2.2.1). The rates of annihilation will be derived for one glide
system.

Spontaneous annihilation Whenever a dislocation arrives at the boundary within a dis-
tance dspon,gb from an annihilation partner, i.e. an already present dislocation from the
neighbouring grain with nearly the same Burgers vector and opposite sign, spontaneous
annihilation of both occurs.

According to Fig. 2.3(c) the probability of an intruding dislocation to find an appropriate
annihilation partner (with the same Burgers vector and opposite line direction) equals
2 dspon/(2 ng sgb). Considering that two dislocations disappear in each annihilation event,
the rate, at which the spontaneous annihilation occurs, equals two times the product of the
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storage rate of dislocations at grain boundaries and the probability for a grain boundary
dislocation to be spontaneously annihilated determined above

Ṅ−,spon
gb = 2 Ṅ+

gb

dspon,gb

ng sgb

. (2.23)

Combining Eqs. (2.13), (2.6) and (2.3) yields

Ṅ−,spon
gb =

1

kgb

γ̇

b
dspon,gb × Ngb

ng

. (2.24)

Thermally activated annihilation The rate, at which dislocation length is annihilated
per grain boundary area through the thermally activated process is

Ṅ−,therm
gb = Ngb νgb , (2.25)

where νgb is the frequency of annihilation, which is estimated to be determined by the
velocity of climb vc,gb at which the distance (ddip,gb − dspon,gb)/2 is overcome by each
climbing annihilation partner:

νgb =
2vc,gb

(ddip,gb − dspon,gb)/2
. (2.26)

Climb occurs through diffusive motion of matter or point-defects like vacancies or inter-
stitials to or from the climbing dislocations. For the climb of grain boundary dislocations,
matter mainly diffuses along the grain boundary, while vacancies or interstitials mainly
diffuse through the lattice. For pure Cu we ignore the diffusive motion of interstitials
as vacancies are the main point-defects. Thus the climb velocity is connected to the dif-
fusion fluxes of matter and vacancies along the grain boundary and through the lattice
respectively. The diffusion flux is the product of the current density of atoms or vacancies
given by Fick’s first law and the relevant areas across which the currents flow. Detailed
derivations of the fluxes of matter and vacancies are presented in appendix A.4. From
Eqs. (A.26), (A.34) and (A.48) one obtains the climb velocity of grain boundary disloca-
tions:

vc,gb =
2

π (1 − ν)

G Ω

kB T
δgbDb

1

s2
gb

+
Dsd

b

[
exp

(
σc,gb Ω

kB T

)
− 1

]
2 π

ln [R2/(b sgb)]
. (2.27)

where σc,gb (Eq. (A.37)) is the mutual attractive between the dipole constituents; R is the
distance from the dislocation to the region where the concentration of vacancies being in
equilibrium. In the present case, one may choose R ≈ d/2.
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2.3 Kinetics of dislocation glide

The strain rate ε̇ is determined by the product of density ρf of free dislocations and their
average velocity vg [99]:

ε̇ =
M

b
ρf vg . (2.28)

This formula connects the macroscopic strain to the average velocity of individual dislo-
cations. In following the ingredients of Eq. (2.28) will be determined.

2.3.1 Mobile dislocation density

When dislocations move, the slipped area per volume expands, thus strain results. The
slipped area expands or the dislocation length (as the circumference of the slipped area)
increases with a certain velocity, thus strain rate is determined. If the dislocations move
in a stop and go manner, so that only the density ρmob of mobile dislocations is moving at
the average velocity vmob [69], then one needs to quantify ρmob and vmob. Attempts have
been made to identify ρmob [100–102]. However, so far there is no generally agreed theory
or approach available. One may argue that in steady state deformation all dislocations
must be able to move somehow. In that sense one may describe the strain rate by the
total dislocation density and the average velocity of the total dislocations. In addition,
one may introduce a factor fmob to account for the fact that dislocations are not always
moving at the assumed glide velocity vg of all dislocations, but may intermediately wait
at obstacles (stop and go). This factor can be be integrated into the equation of average
velocity.

2.3.2 Average glide velocity

Thermal and athermal stress The average glide velocity vg depends not only on the
applied stress σ, but is limited by dislocation interaction at a given temperature T [83].
According to the classical effective stress approach, the average glide velocity vg of mo-
bile dislocations is a monotonic function of the effective stress σ� available for thermally
activated overcoming of obstacles:

σ� = σ − σG , (2.29)

where σG is the athermal (back) stress.

The observation of extrinsic grain boundary dislocations by transmission electron mi-
croscopy [78, 79] indicates that the extrinsic dislocations give rise to an athermal stress
(also see section 2.1.2.2). According to [9, 10, 24, 26, 80], the athermal stress component
σG resulting from dislocations within the grain and at the grain boundary can be expressed
as

σG = α M G b
√

ρf + fgb ρgb , (2.30)
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where fgb is a weighting factor accounting for the relaxation of the stress field of the
extrinsic grain boundary dislocations.

Velocity of Jerky glide Dislocations may glide in a jerky manner in pure metals (class
M) or in a viscous manner in alloy (class A) [103]. The current work considers only the
jerky glide resulting from thermally activated overcoming of obstacles which are posed by
forest dislocations. The kinetics of the thermally activated process has been thoroughly
studied in [104]. Usually it is described by a sinh function:

vg = fmob Δx νG exp
(
−ΔG0

kB T

)
sinh

(
σ� b Δa�

M kB T

)
(2.31)

Δa� = Δx λ , (2.32)

where Δx is the width of obstacles (Fig. 2.10), νG is the attempt frequency, ΔG0 is the
free activation enthalpy of the thermal obstacles at σ� = 0, Δa� is the activation area
[70, 82, 83], and λ (Fig. 2.10) is the spacing of thermal obstacles along the dislocation
lines. As the dislocations do not move across high-angle grain boundaries, the dislocations
stored at grain boundaries do not pose thermal obstacles. Then the obstacle spacing λ is
solely related to the dislocations existing in grain interiors. Following a common approach
it is chosen to be the average spacing of free dislocations δ [70]. See the preceding section
(2.3.1) for the reason of the introduction of fmob.

Figure 2.10: Schematic of the thermally activated process of a dislocation overcoming local
obstacles. λ: the mean spacing of thermal obstacles along the dislocation line;
Δx: the width of obstacle; shadowed area: the activation area.

2.4 Numerical implementation

The model presented in the current work is constructed in a general framework proposed
by Sedláček and Blum [105] for developing microstructure based statistical dislocation
models. From its logics, the model can be divided into several interconnected modules
(Fig. 2.11).

The model is implemented in the programming language C to be able to incorporate an
efficient solver (CVODE) for ODEs developed by Cohen and Hindmarsh [106]. The results
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2.4 Numerical implementation

of integration are passed to the commercial mathematical software Mathcad2 version 11
for various evaluations and preliminarily visualization.

Figure 2.11: Logical structure of the model.

2Mathcad (from Mathsoft Engineering & Education, Inc., 101 Main Street, Cambridge, MA 02142-1521,
USA).
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3 Results

3.1 Parameter set and initial microstructural state

3.1.1 Material and model parameters

The material parameters and variables entering the current model are listed in Table 3.1
and 3.2, respectively.

parameter value

b /nm 0.256 [12]
Ω /m3 1.18 · 10−29 [12]

G /GPa 42.1

(
1 − 0.54

T/K −300

1356

)
[12]

E /GPa 118

(
1 − 0.54

T/K −300

1356

)

ν 0.34 [107] [12]
νG /s−1 1011 [104]

Dsd /m2s−1 2 · 10−5 exp

(
−197 kJ/mol

R T

)
[12]

Dgb /m2s−1 5 · 10−6 exp

(
−104 kJ/mol

R T

)
[12]

Table 3.1: Material parameters for Cu.

parameter Cu Eq.

M 3.06 (2.9)
α 0.2 (2.30)

dspon,f 6 b (2.16)
dspon,gb 6 b (2.24)
fmob 10−4 [92] (2.31)

ΔG0 /eV 1.5 (2.31)
Δx b (2.31)
ng 2 (2.16)
kρ 50 (2.10)
ξ 25 [70] (2.20)

fdip 1 (2.19)
fgb 1 (2.30)

Table 3.2: Model variables.
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3.2 Evolution of deformation resistance and microstructure with strain

3.1.2 Integration conditions

Deformation condition The calculations have been performed in the current work exclu-
sively in the condition of strain controlled deformation where the total mechanical strain
εmech increases with time at a constant prescribed strain rate. However, as demonstrated
in [92], the choice of other deformation modes, e.g. stress controlled deformation condition
(so-called creep) does not yield any difference in the steady state deformation resistance.
In principle, the model can be applied to any deformation condition.

Initial condition The initial microstructural parameters chosen were shown in Table 3.3.
The choice of the initial value of ρf is based on the microstructural observations done
by Dalla et al. [108] for pure Cu after ECAP. The choice of the initial value of Ngb is
arbitrary as there is no microstructural observation available. The value is chosen with
considerations that the spacing of grain boundary dislocations is not larger than grain
size and is not smaller than the critical distance for spontaneous annihilation occurring.
The same initial values of dislocation densities are taken for cg Cu to facilitate direct
comparisons in simulation results between cg and ufg Cu so that one can exclude possible
differences in final results caused by different choices of initial values. Actually, the exact
choice of these parameters is not important as the steady state deformation behavior is of
major concern in the present work.

ρf /m−2 Ngb /m−1 d /μm

value 1014 108 0.01 ∼ 100

Table 3.3: Initial state of microstructure.

3.2 Evolution of deformation resistance and
microstructure with strain

Figs. 3.1 and 3.2 display examples of the evolution of stress and dislocation densities with
strain for cg and ufg Cu at ε̇ = 10−3 s−1 and 298 K, respectively. For the cg material
(d = 50 μm), the generation of free dislocations in grain interiors is not affected by high-
angle grain boundaries as the grain size d is distinctly larger than Λρ ≈ 2 μm (derived
from Eq. (2.10) and the density ρf shown in Fig. 3.1(b)) so that the grain-size dependent
mean free path of free dislocations Λρ,d approximately equals the grain-size independent
quantity Λρ (Fig. 2.8). Thus the generation of free dislocations in the grain interiors is
determined by the free dislocations themselves. Meanwhile, the generation rate of grain
boundary dislocations is so small that the total rate of generation of dislocations virtually
equals the rate of generation of free dislocations in grain interiors (Fig. 3.1(c)).
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The areal density of grain boundary dislocations Ngb attains its maximum value close
to dspon,gb as spontaneous annihilation prevails. However, the large d translates Ngb into
a rather small ρgb (Eq. (2.4)) compared to ρf so that the deformation resistance is mostly
determined by the free dislocations within the grain interior through contributing to ather-
mal as well as effective stress (see Fig. 3.1(b)). In the current case of high stress, the glide
of dislocations controls not only the rate of generation of dislocations, but also the rate of
loss of dislocations by spontaneous annihilation (Fig. 3.1(b)-(c)).

For ufg material (d = 0.2 μm) at the same condition, the grain-size independent mean
free path of free dislocations Λρ becomes larger than the grain size d so that free disloca-
tions are able to leave from grain interiors and arrive at grain boundaries. Consequently,
the grain-size dependent mean free path of free dislocations Λρ,d becomes larger than Λρ

and d and increases in proportion to δ2 with increasing δ (Fig. 2.8). Accordingly, the rate
of generation of free dislocations is slowed down (see Fig. 3.2(c)). The mean free path
Λρ,d at d = 0.2 μm lies in the left region of Fig. 2.8 where the rate of generation of free
dislocations is larger than the rate of spontaneous annihilation. The result is a continuous
decrease of density ρf (see Fig. 3.2(b)-(c)). The density ρf may decrease too low so that
the spacing between thermal obstacles becomes too large, even larger than the grain size.
This may indicate that i) thermal obstacles become unimportant for ufg materials; ii) that
the density of mobile dislocations which produce strain is underestimated (see section 4.4
for further discussions). Presently the density of mobile dislocations is treated to equal
the density of free dislocations in grain interiors. And we do not consider those disloca-
tions which also produce strain before they get stored at grain boundaries. That means
the density of mobile dislocations may become larger than the density of free disloca-
tions in grain interiors if we count those dislocations which ever produced strain as mobile
ones before they arrive at grain boundaries. In any case, when the grains become very
small there is no accumulation of dislocations within the grains any more as dislocations
can reach the next-neighbouring grain boundary before getting stored in the grain interior.

In contrast to the rate of generation of free dislocations the total generation rate is
enhanced in the ufg case (Figs. 3.2(c)) compared to the cg case (Figs. 3.1(c)) as grain
size d as well as Λtot is decreased. The generated dislocations are mainly stored at grain
boundaries. Since the annihilation of grain boundary dislocations is not very efficient at
the present simulation condition (low temperature and high strain rate), the steady state
density ρgb remains at a rather high level (Fig. 3.2(b)). The high density ρgb compared to
the density ρf in the cg case (Fig. 3.1(b)) causes the ufg material to have higher steady
state deformation resistance than the cg material. This means that the ufg material is
strengthened by the grain boundary dislocations at low temperature and high strain rate.
The effective stress becomes negligible. This is due to disappearance of thermal obstacles
in consequence of decreasing density of free dislocations in grain interiors (see Fig. 3.2(a)).

At elevated temperature of 418 K and a low strain rate ε̇ = 10−8 s−1, for cg material,
the mean free path of free dislocations holds a value of about 2 μm similar to the low
temperature case. Thus it is still distinctly smaller than d. Consequently, the deforma-
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3.2 Evolution of deformation resistance and microstructure with strain

tion is still dominated by the free dislocations in grain interiors. The thermally activated
annihilation of free dislocations becomes competitive, but is still less efficient than sponta-
neous annihilation (Fig. 3.3(c)). However, for grain boundary dislocations, the thermally
activated climb process now becomes dominant in annihilation. This is due to the fact
that the diffusion process is more efficient at grain boundaries than in grain interiors.

The same situation of annihilation of grain boundary dislocations being dominated
by dislocation climb is found in the ufg material (Fig. 3.4(c)) at the same deformation
conditions. As in the case of low temperature, the grain interior becomes free from dislo-
cations, and the storage rate of grain boundary dislocations is enhanced due to the small
d (Fig. 3.4(c)). However, as the high rate of annihilation by climb reduces the level of
density ρgb below that which would be necessary for purely spontaneous annihilation as in
the low temperature case (Fig. 3.2(c)), the ufg material loses strength. This means that
the ufg material is softened by the fast annihilation of grain boundary dislocations at high
temperature and low strain rate.
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(a) (b)

(c)

Figure 3.1: Example of curves for the evolution of stress and dislocation densities with
strain for cg (d = 50 μm) at 298 K. (a) flow stress σ, athermal stress σG,
and effective stress: σ�; (b) dislocation spacing ρ−0.5

f , ρ−0.5
gb and sgb. The

quantities d and dspon are the grain size and the critical spacing for spontaneous
annihilation, respectively. (c) rates of evolution of dislocation density. Deriving
from Eq. (2.15) the total rate of generation of dislocations dρ+

tot/dε equals
dρ+

f /dε + dN+
gb/dε · 2/d.
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3.2 Evolution of deformation resistance and microstructure with strain

(a) (b)

(c)

Figure 3.2: As Fig. 3.1 for ufg Cu.
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(a) (b)

(c)

Figure 3.3: As Fig. 3.1 for 418 K.
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3.2 Evolution of deformation resistance and microstructure with strain

(a) (b)

(c)

Figure 3.4: As Fig. 3.2 for 418 K.
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3.3 Steady state deformation resistance

3.3.1 Deformation resistance

Figure 3.5 shows the relation between steady state stresses and strain rate for cg and ufg
Cu resulting from simulations at 298 and 418 K. In both kinds of material the calculated

Figure 3.5: Calculated steady state deformation resistance of cg (grain size d = 50 μm)
and ufg (d = 0.2 μm) at 298 and 418 K. Simulations were done at strain rates
ranging from 10−3 to 10−8 s−1 separated by one order of magnitude. Open and
full Circles mark strain rates at the shear modulus normalized stress σ/G for
cg and ufg Cu, respectively.

steady state flow stress decreases with increasing temperature and/or decreasing strain
rate. However, the dependence of stress on temperature and strain rate is stronger for
ufg than for cg Cu as shown in Figs. 3.5 and 3.6. At the lower temperature of 298 K,
the significant difference in strain rate sensitivities of flow stress causes a crossover of the
curves for the steady state stress of ufg and cg Cu. This means that the ufg Cu becomes
softer than the cg Cu at low strain rates. At the elevated temperature of 418 K the ufg Cu
is softer than its cg variant even at high strain rates in the steady state of deformation.
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3.3 Steady state deformation resistance

Figure 3.6: Stress exponent n ≈ Δ ln ε̇/Δ ln σ (derived from neighouring points of Fig. 3.5)
of the steady state deformation rate and strain rate sensitivities m = 1/n of
the steady state flow stress as function of shear modulus normalized stress.

For cg material the ε̇-σ relations at low and high temperature are similar. This is due
to the fact that spontaneous annihilation of free dislocations prevails in grain interiors
(Fig. 3.1(c) and 3.3(c)) at both temperatures. This causes most n-values (derived from
Fig. 3.5) to be larger than 40 (Fig. 3.6). The strong decrease of n with decreasing stress at
418 K is due to the fact that the thermally activated annihilation process becomes com-
petitive so that the annihilation process is accelerated (Fig. 3.4(c)).

For ufg Cu the reduction in n-value from a relatively high value of 20 to 8 is due to a
gradual shift in the most effective annihilation mechanism from spontaneous annihilation
which prevails at high strain rate and low temperature to dislocation climb at low strain
rate and/or high temperature (Fig. 3.2(c) and 3.4(c)). This transition in the annihilation
mechanism leads to a transition from strengthening to softening in ufg material.

In the following sections we shall explain why ufg Cu has such unusual properties. We
shall start with analyzing the stress components and dislocation densities of ufg as well as
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cg Cu.

3.3.2 Stress components: ratio σ�/σ

Figure 3.7: σ�/σ versus ε̇ in steady state deformation of cg and ufg Cg at 298 and 418 K.

Figure 3.7 displays the strain rate dependent steady state ratios σ�/σ and σG/σ obtained
from the simulations. For cg Cu σ�/σ lies in the range of 0.4 ∼ 0.6. At ambient tem-
perature the effective stress is larger than the athermal stress. The high effective stress is
required to transport dislocations which end their lives by spontaneous annihilation. The
decrease in σ�/σ (or increase in σG/σ) indicates that the thermally activated annihilation
of dislocations becomes progressively important compared to the spontaneous annihila-
tion. This can be seen by comparing Fig. 3.1 to 3.3.

For ufg Cu, the effective stress is negligible because thermal obstacles are no longer exist-
ing as the density of free dislocations in the grain interior is negligible (e.g. see Figs. 3.2(b)
and 3.4(b)).
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3.3 Steady state deformation resistance

Summary In the simulated range of strain rates, for cg material the athermal stress and
effective stress both make significant contributions to the steady state flow stress; for ufg
material, only the athermal stress contributes to the steady state flow stress.

3.3.3 Dislocation density

In this section we shall analyze which kind of dislocation contributes to the applied stress
and its components in each kind of material.

Figures 3.8 and 3.9 display the average spacing of grain boundary dislocations, quantified
by sgb (derived from Eq. (2.6)) and ρ−0.5

gb , and the average spacing of free dislocation ρ−0.5
f

(derived from Eq. (2.4)) for cg and ufg Cu, respectively.

Figure 3.8: Strain rate dependence of dislocation spacings for cg Cu at 298 and 418 K.
The horizontal lines mark dspon,gb and the grain size.

By comparing Fig. 3.8 and 3.9 it is found that the spacing sgb is independent of grain size
d. This means that the cg and ufg material have the same areal density of grain boundary
dislocations Ngb. This is due to the fact that the evolution of Ngb (see Eqs. (2.13), (2.24)
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Figure 3.9: As Fig. 3.8 for ufg Cu. The densities ρf are obtained from the calculations at
ε = 0.5 where the flow stresses have already saturated.

and (2.25)-(A.37)) is independent of grain size. However, the geometric factor 2/d (grain
boundary area per volume) transforms Ngb into the grain-size dependent quantity ρgb (see
Eq. (2.4)).

For cg material, as stated before (see Figs. 3.1 and 3.3), generation of ρf is not affected
by high-angle grain boundaries. The density ρf is distinctly larger than the density ρgb

so that the deformation resistance is mainly determined by the free dislocations in grain
interiors through contributing to athermal as well as effective stress (Fig. 3.7).

For ufg material, as the small grains can hardly accommodate the storage of free dis-
locations in their interiors, dislocations are mainly stored at high-angle grain boundaries.
Thus the density ρgb determines the athermal stress and the applied stress.

At ambient temperature the increase of sgb with decreasing ε̇ indicates the transition
in the most effective annihilation mechanism from spontaneous annihilation to thermally
activated annihilation. At elevated temperature the relation ε̇ ∝ N4

gb is found (see Fig. 3.9).
See section 3.5.2 for detailed derivation of this relation.
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3.3 Steady state deformation resistance

3.3.4 Annihilation mechanism of grain boundary dislocations

Figures 3.10 and 3.11 illustrate the steady state rates of the generation and annihilation
of grain boundary dislocations resulting from the present simulations at 298 K and 418 K,
respectively.

In any case the easier annihilation process controls the loss of dislocations. At low
temperatures and high strain rates, in order for spontaneous annihilation to occur, the
dipole spacings ddip,gb must be less than dspon,gb. This requires high stresses to produce
dislocations. When the flow stress is high enough, spontaneous annihilation occurs along
with glide and balances dislocation generation. In this situation glide is the only process
controlling not only the rate of generation, but also the rate of annihilation of dislocations.
At low strain rate and high temperature climb-controlled annihilation becomes compet-
itive. It allows dipoles with ddip,gb > dspon,gb to disappear. In this case annihilation is
no longer a byproduct of glide but depends on an independent process. The high rate of
annihilation by climb reduces the level of flow stress below that which would be necessary
for purely spontaneous annihilation.

Figure 3.10: Rates of generation and annihilation of grain boundary dislocations as func-
tion of strain rate at 298 K.
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Figure 3.11: As Fig. 3.10 for 418 K.
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3.4 Grain-size dependence of steady steady deformation
resistance

To analyze the influence of grain size d on the steady state deformation resistance, besides
the simulations performed for the two kinds of materials in the previous sections, additional
calculations were done for different modeled materials of different grain sizes.

3.4.1 Low temperature

Fig. 3.12 displays the steady state deformation resistance resulting from the simulations for
ambient temperature as function of grain size. The newly calculated curves with d ≤ 1 μm
have a same shape as the curve calculated for the ufg Cu with d = 0.2 μm indicating that
grain boundary dislocations dominate the deformation resistance in the materials modeld.
With d decreasing from the size of ufg regime further into nano regime, the curves shift
to the right in proportion to d−0.5 (see Fig. 3.12). This phenomenon of hardening by fine
grains is related to the fact that the rate, at which dislocations are stored at the bound-
aries, increases with decreasing d (see Eq. (A.19)).

The modeled materials with d = 0.35 μm and 1 μm are softer than the cg material
even at high plastic strain rate of 10−3 s−1 at room temperature. To understand the rea-
son behind this observation, more simulations were done for a wide range of grain size
0.01 ≤ d /μm ≤ 100 at constant plastic strain rate of 10−3 /s. Figure 3.13(a) displays
the steady state stress as a function of d−0.5; the corresponding steady state dislocation
densities are shown in Figure 3.13(b). The difference between the flow stress σ and the
athermal stress σG gives the effective stress σ�. As the deformation rate is high and the
temperature is low, spontaneous annihilation dominates the loss of grain boundary dislo-
cations so that the areal density Ngb remains independent of d.

In the regime of large grain size the grain-size dependent mean free path of free dislo-
cations Λρ,d is distinctly smaller than the grain size (Fig. 3.14(b)). Thus Λρ,d reduces to
the grain-size independent quantity Λρ of about 2 μm. This means that high-angle grain
boundaries do not affect the evolution of ρf . The deformation resistance is dominated by
the free dislocations in grain interiors. For detailed informations of the evolution of stress
and dislocation densities with strain, see the examples shown in Fig. 3.1. When the grain
size approaches Λρ, the fraction of free dislocations, which are able to reach high-angle grain
boundaries, begins to rise significantly. This leads Λρ,d to deviate from Λρ and increase.
With further decrease of d below Λρ, more and more dislocations reach grain boundaries;
thus Λρ,d increases further (Fig. 3.14). Consequently ρf decreases (Fig. 3.13(b)), which in
turn leads to a decrease in athermal stress (see σG,f in Fig. 3.13(a)) as well as effective
stress produced by the free dislocations in grain interiors. In contrast to the decrease of ρf

with decreasing d, the average volume density of grain boundary dislocations ρgb following
from the areal density Ngb increases with decreasing d. When the density ρf becomes
significantly smaller than ρgb, the flow stress is determined by the grain boundary disloca-
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Figure 3.12: Steady state deformation resistance ε̇-σ of pure Cu at room temperature cal-
culated from the model as function of grain size.

tions where σ ≈ σG ≈ σG,gb. Thus the Hall-Petch relationship between σ and d−0.5 results.

In the vicinity of d = 4 μm the flow stress displays a relative minimum. This grain
size corresponds to a radius of the average grain cross section r′ to be 2.5 μm, which is
very close to Λρ at the given deformation condition. The small grain size, on the one
hand, leads to a tendency of decreasing the deformation resistance as free dislocations are
lost in the grain interior by reaching high-angle grain boundaries; on the other hand, the
volume density ρgb stored at grain boundaries becomes very high causing the athermal
stress component to increase strongly. However, when the density ρgb is not sufficiently
high to compensate the loss of strengthening by free dislocations contributing to athermal
as well as effective stress, the deformation resistance is reduced. This explains the relative
minimum of flow stress.
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3.4 Grain-size dependence of steady steady deformation resistance

Figure 3.13: Steady state stresses and dislocation densities as function of grain size at
ambient temperature and ε̇ = 10−3 s−1 for Cu. (a) stress σ and athermal stress

components; σG: total athermal stress (Eq. (2.30)); σG,gb = α M G b
√

fgb ρgb

and σG,f = α M G b
√

ρf characterize the athermal stress contributions due
to ρgb and ρf alone. (b) dislocation densities; ρtot = ρf + ρgb is the total
dislocation density. The density ρf is obtained from the calculations at ε =
0.5.
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Figure 3.14: (a) Stored dislocation length per slipped area in the grain interior and (b)
mean free path of free dislocations as function of d−0.5. Data are derived from
Fig. 3.13(b).

3.4.2 High temperature

Fig. 3.15 displays the steady state deformation resistance resulting from the simulations
at elevated temperature as function of grain size. Due to the enhancement in the rate of
thermally activated annihilation of grain boundary dislocations, the softening compared
to cg material even becomes visible in the modeled nanocrystalline material with d =

54



3.5 Simplified steady state solution for ufg materials

0.03 μm. The curves for d = 0.1 μm and 0.03 μm do not extend into the field of even
lower strain rates is to prevent the spacing of grain boundary dislocations from exceeding
the grain size.

Figure 3.15: Steady state deformation resistance ε̇-σ of pure Cu at elevated temperature
of 418 K calculated from the model as function of grain size.

3.5 Simplified steady state solution for ufg materials

Based on the results shown in the previous sections, a simplified steady state solution can
be derived for ufg and nano material by neglecting the density of free dislocations in grain
interior ρf as it is negligible compared to the density of grain boundary dislocations ρgb.
The flow stress can thus be modified as

σ ≈ σG ≈ α M G b
√

fgb ρgb . (3.1)

In the following two simplified steady state solutions for low temperature and elevated
temperature will be derived, respectively.
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3.5.1 Hall-Petch relation at low homologous temperature

In the low temperature case loss of dislocations during deformation is mainly controlled
by spontaneous annihilation. Saturation is attained by equating the rates given in (2.13)
and (2.24). This yields the steady state value of Ngb,∞ as

Ngb,∞ =
ngb

2 dspon,gb

. (3.2)

Combining Eqs. (2.4), (3.1) and (3.2) yields

σ = α M G b

√√√√ fgb ng

dspon,gb

d−0.5 . (3.3)

This formula reproduces the Hall-Petch hardening (1.1) with

kHP = α M G b

√√√√2 fgb ng

dspon

. (3.4)

3.5.2 Grain boundary softening at elevated homologous temperature

At elevated temperature climb facilitates annihilation of edge dislocations at grain bound-
aries. A complete expression of the rate of thermally activated dislocation annihilation
Ṅ−,therm

gb can be derived based on the equations given in section 2.2.2.2. As the diffusion
of atoms along grain boundaries dominates the climb of dislocations, the second term of
Eq. (2.27) which accounts for the contribution to dislocation climb by diffusion of vacancies
through the lattice can be neglected. In addition, as the dipole separation ddip,gb becomes
distinctly larger than dspon,gb, it is also possible to ignore dspon,gb from Eqs. (2.26). With
this simplifications and combining Eqs. (2.25) to (2.27), (2.3) and (2.6) yields:

Ṅ−,therm
gb =

8

π (1 − ν)

G Ω

kB T
δgbDgb N4

gb . (3.5)

Equating the rate of dislocation generation (Eq. (2.13)) to the rate of dislocation annihi-
lation (Eq. (3.5)) yields the steady state grain boundary dislocation density:

Ngb,∞ =

[
16 kgb b

π (1 − ν)

G Ω

kB T
δgbDgb

]− 1
4

γ̇
1
4 . (3.6)

Combining Eqs. (2.4), (3.1) and (3.6) leads to the γ̇-τ relation in the saturation state as

γ̇ = C d4 G Ω

kB T
· δgb Dgb

b7
·

(
τ

G

)8

, (3.7)

where

C =
kgb

α8 f 4
gb π (1 − ν)

. (3.8)

The results calculated by the simplified equations (Eqs. (3.3) and (3.7)) and the results
calculated by the complete model outlined in section 2 will be compared in the next section.
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3.6 Comparison with experimental observations

Fig. 3.16 shows the room temperature data from Fig. 1.2 together with the model line.
The flow stress predicted by Eq. (3.3) is slightly higher than the flow stress calculated
by the complete model. This is due to the neglect of thermally activated annihilation in
deriving Eq. (3.3) (see section 3.5.1). For the cg Cu with d ≤ 10 μm, the modeled steady
state stress well agrees to the experimental findings. In the grain size range of d ≤ 0.1 μm
the model overestimates the hardening effect. Three reasons may be responsible for that.
First, the measured σ-data for nano Cu produced without severe plastic deformation are
too low, as work hardening is not yet complete at the strain applied in nanoindentation
in the equivalent normal strain of about 10∼20%. Second, the dislocation interaction
constant α = 0.2 which is typical for lattice dislocations [69], may be too high for extrinsic
grain boundary dislocations as the relaxation of the dislocation line energy and stress
field by the grain boundaries is neglected. Although the weighting factor fgb has been
introduced to account for the relaxation of the stress field of grain boundary dislocations,
presently, in the present calculations, the choice of fgb = 1 does not alter α. Third, grain
boundary sliding, which has not been considered in the model, may increasingly reduce
the gain of strength with decreasing d in the nano regime. In the grain size range of
0.1 < d /μm < 10, the modeled materials show lower steady state stress compared to the
cg material at room temperature and high strain rate. Due to lack of experimental data in
this range of grain size comparison is not possible. One must also take into account that
polycrystals always contain a rather broad mixture of grain sizes which does not allow to
observe the minimum.

Fig. 3.17 displays the comparison of simulated and experimental deformation resistance
of cg (d = 50 μm) and ufg (d = 0.35 μm) Cu in the steady state using the temperature
normalization described in section 1.1.

The simulation agrees reasonably well with the experimental findings at ambient and
elevated T in the case of cg Cu. For the ufg material, only qualitative consistency emerges
in that the relative softening of ufg compared to cg Cu increases with increasing T (or
decreasing ε̇) as seen from the sequence of simulation results at elevated T . The model
overestimates the softening at both low and elevated temperatures. The reason may be
twofold. First, the rate of generation of free dislocations in grain interior is underestimated
at this grain size (see section 3.4.1 for the explanation of the occurrence of the relative
minimum) so that the grain interior is too soft. Second, the assumption that each grain
boundary dislocation is in dipolar configuration, is clearly overidealized. This means that
the density of dislocation dipoles at grain boundaries is grossly overestimated. Consid-
ering the more general case where dislocations arrange irregularly at grain boundaries,
there must be some dislocations which cannot find a compatible partner to form dipoles.
Therefore the estimate of the average distance between grain boundary dislocation dipoles
ddip,gb ≈ sgb may be too low. A good fitting is demonstrated in Fig. 3.17 (see the dashed
line) by choosing a little large ddip,gb = 10 sgb. At elevated temperature, the overestimation
of softening by high-angle grain boundaries may have been further intensified by overesti-
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Figure 3.16: Data from Fig. 1.2 in double log scale. Line from Fig. 3.13 and Eq. (3.3).

mating the climb velocity at which the dipole partners approach each other. The driving
force, which acts on dipole constituents, is presently assumed to be identical to that of
an equally wide dipole in the grain interior. Due to relaxation of the stress fields of dis-
locations at grain boundaries the actual climb force will certainly be lower than assumed.
When this point is taken into account, the factor 10 chosen in the fitting simulation will
certainly be reduced towards a more reasonable value.

At 418 K, the slight difference between the line predicted by Eq. (3.7) and the curve cal-
culated by the complete model is due to linearizing the square bracketed term in Eq. (2.27)
in deriving Eq. (3.7) (see section 3.5.2).

The semi-quantitative agreement between the experimental data and the calculated
results indicates that in spite of its deliberate simplicity, the model captures essential
features of influence of grain boundaries on the steady state deformation resistance of
pure metals at homologous temperatures less than 0.31. At ambient temperature, the
model is able to explain the Hall-Petch relation found in Cu; at elevated temperature, it
is able to account for the softening of ufg compared to cg Cu.
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Figure 3.17: Temperature-normalized relation between steady state stress σ∞ and strain
rate ε̇ in compression for cg (d = 50 μm) and ufg (d = 0.35 μm) Cu. The
dashed line from the simulation with ddip,gb = 10 sgb. The experimental data
from Fig. 1.1.
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4 Discussion

4.1 Dislocation structure at grain boundaries

One may raise the question whether the dislocations can enter the boundaries when the
dislocation spacing is so low here that enormous forces must act on the dislocations to
press them into the boundaries against the stress fields of the existing dislocations. The
problem is equivalent to inserting a new dislocation into a low-angle tilt boundary.

The situation may be checked by using a composite model [109] where the flow stress
is a weighted sum of the local stresses σs > 0 in the soft region and σh > 0 in the hard
region. The soft regions, which contain few dislocations, are enclosed by the hard regions
with a high density of dislocations. In the current case the grain interior is the soft region
and the grain boundary and its vicinity is the hard region. The flow stress reads

σ = fs σs + fh σh with fs + fh = 1 , (4.1)

where fs and fh are the volume fractions of the soft region and hard region, respectively.

We estimate that the width of the hard region roughly equals the spacing of grain bound-
ary dislocations sgb. Then volume fraction of hard region is estimated to be the ratio of
sgb to grain size, sgb/d. The local stress in the hard region, which acts on an intruding
dislocation, equals α M G b/sgb. Inserting the estimated quantities into Eq. (4.1) yields

σs =
σ d − α M G b

d − sgb

. (4.2)

Now the question is whether the local stress σs is positive to fulfill Eq. (4.1). The result
shown in Fig. 4.1 indicates that the assumption that each dislocation can be stored at the
grain boundary although a dense array of dislocations is existing there, is valid.
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Figure 4.1: Estimated local stresses as a function of grain size. The data are taken from
Fig. 3.13.

4.2 An alternative mechanism of annihilation of grain
boundary dislocations

4.2.1 Concept of lateral climb of dislocation dipole

Fig. 2.3(b) actually describes a grain boundary consisting of a dislocation network formed
by dislocations (the boundaries of the gray and white areas) of symmetric double glide
systems from neighbouring grains. Considering the dislocations of one glide system,
Fig. 2.3(b) can be simplified as Fig. 4.2 where the dislocations marked by 1 and 2 are
from neighbouring grains and slightly differ on Burgers vector and line direction. At the
intersection points of the dislocation lines there are immediate (spontaneous) annihila-
tions. In the rest of the dislocation lines dipoles with a curved end are formed [110, 111].
Fig. 4.3 illustrates the configuration of a dipole taken from Fig. 4.2 by turning 90◦ and by
neglecting the difference in the Burgers vector and the line direction.

According to Fig. 4.3, there are two possibilities for the dislocation dipoles to annihi-
late. Either the dipoles disappear by mutual climb of the dipole partners, which has been
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Figure 4.2: Schematic of a grain boundary consisting of a network formed by nonparallel
dislocations of one one glide system from neighbouring grains.

Figure 4.3: Schematic of annihilation of edge dipoles in a hair-needle configuration. b:
Burgers vector, t : sense vector; ddip: the average separation between dipole
constituents, lc: the length of the dipole segment needed to be overcome by
the curved-end through climb at velocity vc.
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formulated in the present work (section 2.2.2.2); or the curved end climb along the lateral
dislocation lines to shorten their lengthes and decrease the line energy.

The velocity of lateral climb has been formulated by Nes et al. [111] in estimating
the rate of annihilation of dislocations in the cell interior. In the following the rate of
annihilation of grain boundary dislocations by lateral climb will be derived.

4.2.2 Rate of annihilation by lateral climb

The rate at which dislocations are lost through the above-mentioned process can be ex-
pressed as:

Ṅ−
gb = Ngb ν . (4.3)

where ν is the collapse frequency of dipoles, which is controlled by the time interval at
which the distance lc is overcome by climb

ν =
vc

lc
. (4.4)

The length of dipole segments lc and the average separation between dipole partners ddip

scale with the average spacing of dislocations sgb, respectively,

ddip =
sgb

ξdip

=
1

ξdip Ngb

, (4.5)

lc = ξc sgb =
ξc

Ngb

. (4.6)

where ξdip and ξc are scaling factors.

According to Nes [111], the velocity of lateral climb reads

vc = b2 Bρ cj νDebye exp
(
−Qgb

R T

)
2 sinh

(
Fc b2

kB T

)
(4.7)

where Bρ is a constant, Qgb is the activation energy of diffusion of atoms along grain
boundaries, the diffusion of vacancies through the lattice is neglected here. Fc is the climb
force given by line tension of the dislocation in the dipolar configuration driving the curved
end to climb,

Fc =
G b2

ddip/2
, (4.8)

and cj is the density of geometrically necessary jogs in the strongly curved segments,
estimated as

cj =
1

ddip

. (4.9)

Combining Eqs. (4.3) to (4.9) yields

Ṅ−
gb =

ξdip

ξc

Bρ b2 νDebye N3
gb exp

(
−Qgb

R T

)
2 sinh

(
2 ξdip G b4 Ngb

kB T

)
. (4.10)
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The sinh-function term in Eq. (4.10) can be linearized at high temperature and low strain
rate where its argument is much smaller than 1. Then equating the rates of generation
(2.13) and annihilation (4.10) yields the steady state relation:

ε̇ ∝ N4
gb . (4.11)

Combining Eqs. (4.11), (2.4) and (2.30) and neglecting ρf , one gets

ε̇ ∝ σ8 . (4.12)

This limiting relation agrees to that obtained with the previous model (see Eq. (3.7)).
However, It is seen from Fig. 4.4 that it has not yet been reached within the range of
simulation.

4.2.3 Comparison between mutual climb and lateral climb

Figure 4.4 compares the normalized relations ε̇-σ calculated by using the mutual climb
and lateral climb velocity. The calculations were done by choosing Bρ = 0.01 [84],
Qgb = 104 kJ/mol [12], ξdip = 1 and ξc = 5.

At low temperature, the lateral climb gives lower deformation resistance at high strain
rates. This means that the rate of annihilation of grain boundary dislocations determined
by the lateral climb is more efficient than the rate of spontaneous annihilation. According
to Fig. 4.3, the smaller the spacing ddip of dislocation dipoles, the smaller is the radius
of the curved end, and the larger the climb stress acting on the curved end produced
by the line tension of the dipole partners. The enhancement in climb stress will lead to
increase in climb velocity which is amplified by sinh function (see Eq. (4.7)). Moreover,
the small dislocation spacing will lead to a short distance lc over which the cruved ends
climb (Eq. 4.6)). When the dipole spacing becomes sufficiently small, as is usually the
case at low temperature and high strain rate, a high frequency of annihilation resulted
from the fast climb velocity and the short climb distance may lead to a high annihilation
rate, which with the parameters chosen even exceeds the rate of spontaneous annihilation.

At elevated temperature the lateral climb process results in higher deformation resis-
tance compared to mutual climb. This means that the lateral climb process is less efficient
than the mutual climb process in annihilating of dislocations. To understand this situation
one needs to compare the frequencies of annihilation given by the mutual climb and lateral
climb, respectively (Eqs. (2.26) and (4.4)). Comparing Eqs. (4.8) and (A.37) it is found
that the climb stress in the lateral climb case (Eq. (4.8)) is about 4 times of the climb
stress in the mutual climb case (Eq. (A.37)). This may result in a higher climb velocity
in the case of lateral climb. However, at elevated temperature, the dislocation spacing
also becomes very large, then the distance lc may becomes much larger than the distance
over which the dipole partners climb towards each other as in the case of mutual climb.
The larger ξc is chosen (Eq. (4.6)), the larger is the difference in the climb distance. The
present choice of ξc = 5 leads the distance of climb in the case of lateral climb to be 10
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4.2 An alternative mechanism of annihilation of grain boundary dislocations

Figure 4.4: Comparison of normalized relation between ε̇ and σ for ufg Cu predicted by
the mutual climb and lateral climb processes. The experimental data are from
Fig. 3.17.

times that in the case of mutual climb (lc/(ddip,gb/2)). Thus, for the case of lateral climb,
if the enhancement in velocity does not compensate the increase in climb distance, a lower
frequency of annihilation compared to that in the case of mutual climb may be resulted.

The calculations suggest that the lateral climb may act as a very competitive annihilation
process compared to the annihilation process described in the present model. However,
to have a more exact evaluation of the rate of annihilation given by the lateral climb,
one needs to consider more details on the formation of the dipolar configuration shown in
Fig. 4.3 based on a microstructural basis.
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4 Discussion

4.3 Deformation due to high-angle grain boundaries in
ufg Cu

Frequently, grain boundary related process like grain boundary sliding [39, 41] and dif-
fusive flow (Nabarro-Herring and Coble creep) [16] are invoked as major mechanisms of
deformation of ufg material. In the following we shall compare experimental results to
theoretical predictions to discuss the possibility of Coble creep in ufg Cu.

The rate of diffusional flow by Coble creep (with diffusion along grain boundaries) is
shown in Fig. 4.5 for two grain sizes d chosen as the initial grain size of ufg Cu and, to
illustrate the effect of possible grain growth, as 1μm. It was calculated from the standard
formula [12, 112]:

ε̇ = 14π
σ Ω

kB T

δ Db

d3
. (4.13)

It is seen that the strain rate due to Coble creep is negligible at the lowest investigated tem-
perature, but lies close to the experimental results at the highest one. The T -normalized
plot of the data of Fig. 4.5 yields a band of data approaching the Coble creep prediction
with decreasing σ (see Fig. 4.6). Lower stresses than shown could not be reached due to
beginning instability of the grain structure [5]. In summary, at room temperature, Coble
creep can hardly be an independent and rate controlling mechanism for ufg Cu. However,
at elevated temperature, Coble creep may become the dominant deformation process.

In addition, if grain boundary sliding or diffusive flow is the dominant deformation
mechanism, a strain rate sensitivity m = 0.5 [62, 63] or 1 [112] would be expected from
theory. However, such values have never been observed for ufg Cu produced by ECAP
either in our own work [5] or from literatures. Thus the deformation of ufg materials
cannot be solely attributed to direct strain contributions by grain boundaries, such as
grain boundary sliding and Coble creep.
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4.3 Deformation due to high-angle grain boundaries in ufg Cu

(a) 323K (b) 373K

(c) 418K

Figure 4.5: Steady-state deformation resistances of ufg Cu from [6]. Large symbols:
isothermal tests at constant ε̇ or σ, small symbols: additional data from
changes of deformation conditions, dashed lines: prediction for Coble creep.
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4 Discussion

Figure 4.6: Normalized relation between stress and strain rate for steady-state deformation
resistance of ufg and cg Cu. Symbols from Fig. 3.17, lines for coble creep
calculated with d/μ = 0.3 and 1.

4.4 Density of mobile dislocations

A deficiency of the model presented in this work is that the density of free dislocation in
grain interior continuously decreases with increasing strain (Figs. 3.2 and 3.4) in modeled
ufg materials. This deficiency may suggest that the mobile dislocation density may be
underestimated as stated in section 3.2.

According to the Orowan equation (Eq. (2.28)), for a prescribed strain rate, a continu-
ous decrease in the mobile dislocation density must result in a continuous increase in the

70



4.4 Density of mobile dislocations

average velocity of moving dislocations. However, the velocity cannot increase to infinity
but must stop at an upper limit. The upper limit for dislocation velocity appears to be
the velocity of sound in the crystal [113]. That means that the density of mobile disloca-
tions must not further decrease to attain the prescribed strain rate when the upper limit
of dislocation velocity is reached. Thus a new situation may arise in grain interiors of
ufg and nano materials where the density of mobile dislocations becomes larger than the
density of stored dislocations. From this point of view, the density of mobile dislocation is
underestimated for modeled ufg and nano materials. One may expect that a steady state
of free dislocation density can be reached, if the mobile dislocation density is enhanced by
counting the dislocations which produce strain before they arrive at grain boundaries.

To check the consequence of enhancement in mobile dislocation density, one may modify
the rate of generation of free dislocations by replacing the density ρf in Eq. (2.12) by the
total density ρf + ρgb. Thus the generation rate of mobile dislocations is accounted for
by the dislocations stored at grain boundaries. A steady state in the evolution of the
density of free dislocations can be indeed observed in simulations based on this consider-
ation. However, to arrive at reasonable formulations on the rates of evolution of mobile
dislocations, more considerations are needed in the future work.
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5 Summary

5.1 English

Published data on pure Cu at or close to its steady state of deformation suggest a Hall-
Petch relation for the flow stress at ambient temperature in the range of grain sizes
1 μm > d > 10 nm [4] while for elevated temperatures ultrafine-grained (ufg) Cu pro-
duced by severe plastic deformation exhibits softening relative to conventional grain (cg)
sizes d > 10 μm [5]. Such deformation behavior can be explained based on understand-
ings the microstructure of the materials. In cg materials the dislocations generally form a
cellular structure with low-angle (subgrain) boundaries within the grains. The low-angle
(subgrain) boundaries generally have a strengthening effect [69–71]. In ufg and nanocrys-
talline materials, the mean free path of free dislocations approaches or becomes larger
than the grain size so that free dislocations are able to reach high-angle grain boundaries,
before they get stored in the grain interiors. Thus the cellular structure does not form
and the deformation resistance is determined by the extrinsic dislocations with edge char-
acter of high density located at high-angle grain boundaries. The extrinsic dislocations
form single-sided steps in the grain boundaries. The single-sided steps may react with
each other to form grain boundary ledges (double sided steps) with zero stress field. The
formation of double-sided steps with two single-sided steps is regarded as annihilation of
extrinsic grain boundary dislocations. If the annihilation process is not sufficiently high
to lower the density of grain boundary dislocations, the material is hardened. Otherwise,
the material is softened.

A model based on statistical dislocation theory was developed to explain the deforma-
tion behavior of ufg and nano Cu. Two dislocation species were introduced to describe the
dislocation structure consisting of dislocations in grain interiors and dislocations stored
at grain boundaries. Rate equations for dislocation structure evolution by generation and
annihilation of the two dislocation species were derived.

The steady state deformation behavior of Cu within a grain size range of 0.01 ≤ d /μm ≤
100 was simulated in the interval 298 ≤ T/K ≤ 418, corresponding to 0.22 ≤ Thom ≤ 0.31.
Strain-controlled simulations were performed for strain rates ranging from 10−3 to 10−8 s−1.
The simulation results were compared with the experimental findings. The possibility of
the occurrence of Coble creep in ufg Cu (d = 0.35 μm) was evaluated.

The main results are:

• Within the simulated range of deformation conditions, for cg Cu, the ratio of effective
stress to applied stress varies in the range 0.4 < σ�/σ < 0.6 (see 3.3.2), while for ufg
Cu, the ratio is vanishingly small.

• For cg Cu, the density of free dislocations is distinctly higher than the density of
dislocations at grain boundaries. Thus the deformation resistance is mainly deter-
mined by the free dislocations in grain interiors. For ufg Cu, the opposite is the case
(see 3.3.3).
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• The dependence of strain rate on temperature and stress is stronger for ufg than
for cg Cu. The enhanced strain rate sensitivity of flow stress leads to a transition
from strengthening to softening in steady state deformation for some modeled ufg
Cu compared to cg Cu. The strain rate sensitivity of 0.125 predicted by the model
for ufg Cu at elevated temperature agrees remarkably well with the experimental
observations [5] (see 3.3.1, 3.6).

• The total rate of generation of dislocations increases with decreasing grain size. In
cg material, the enhancement in the total generation rate due to grain boundaries
is not significant as the mean free path of free dislocations is distinctly smaller than
the grain size. In ufg materials, the generated dislocations are mainly stored at grain
boundaries. We consider two mechanisms of annihilation of grain boundary disloca-
tions. At low homologous temperatures where spontaneous dislocation annihilation
prevails, Hall-Petch strengthening leads to increase of deformation resistance with
decreasing grain size (see 3.4, 3.5.1). At elevated temperatures fast thermally ac-
tivated (climb-controlled) annihilation of dislocations at grain boundaries leads to
softening compared to cg material when the grains are ultrafine.

• The Hall-Petch relation can be derived from the model. The flow stresses are over-
estimated by the model compared to the experimental results. Probable reasons
are i) possible uncertainty of the experimental results; ii) neglect of relax the relax-
ation of the stress field of grain boundary dislocations; and iii) neglect of diffusional
deformation in nano materials (see Fig. 3.16 in 3.6).

• The simulation results for ufg Cu (d=0.35 μm) are in semi-quantitative agreement
with experimental findings. At ambient temperature, the model falls short of predict-
ing the hardening effect of grain boundary for d = 0.35 μm. At elevated temperature,
the softening effect is overestimated. This may be due to i) underestimating the rate
of generation of free dislocations in grain interiors; and ii) overestimating the rate of
annihilation of grain boundary dislocations (see Fig. 3.17 in 3.6).

• At room temperature, Coble creep can hardly be independent and rate controlling
mechanisms for ufg Cu. However, at the highest investigated temperature, Coble
creep may be the dominant deformation process (see 4.3).

In spite of its deliberate simplicity, the model captures essential features of influence of
grain boundaries on the steady state deformation resistance of pure metals at homologous
temperatures less than 0.31.

5.2 German

Publizierte Daten zum Verformungsverhalten von Rein-Cu im bzw. nahe am Zustand
stationärer Verformung legen eine Hall-Petch Beziehung bei Raumtemperatur für einen
Korngrößenbereich 1 μm > d > 10 nm nahe [4]. Hingegen zeigt durch Hochverformung
erzeugtes ultrafeinkörniges (ufg) Cu bei erhöhter Temperatur eine Erweichung im Vergleich
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zur konventionellen Korngröße (cg) mit d > 10 μm [5]. Dieses Verhalten kann auf der Basis
eines Verständnisses der Mikrostruktur erklärt werden. In cg Materialien ordnen sich die
Versetzungen zu zellularen Strukturen mit einem Netzwerk von Kleinwinkel-Korngrenzen
(KWKG) innerhalb der Kristallite. Die KWKG führen üblicherweise zu einer Verfesti-
gung [69–71]. In ufg und nanokristallinen (nano) Materialien erreicht der mittlere Laufweg
freier Versetzungen die Korndimension so dass Versetzungen die Großwinkel-Korngrenzen
erreichen bevor sie innerhalb des Kornes liegenbleiben. In diesem Fall bildet sich keine
Zellstruktur im Korninneren und der Verformungswiderstand wird durch die (hohe) Dichte
von Korngrenzversetzungen bestimmt. Korngrenzversetzungen stellen einseitige Stufen in-
nerhalb der Korngrenze dar (sofern eine entpsrechende Stufenkomponente vorliegt). Zwei
einseitige Stufen durch Versetzungen aus benachbarten Körnern können zu einer zweiseit-
igen Stufen mit verschwindendem Spannungsfeld reagieren. Diese Reaktion wird als An-
nihilation von Korngrenzversetzungen betrachtet. Falls die Annihilationsgeschwindigkeit
nicht ausreicht, um die Dichte der Korngrenzversetzungen zu reduzieren folgt eine Mate-
rialverfestigung bzw. eine Entfestigung im Falle rascher Annihilation.

In dieser Arbeit wurde ein Modell auf der Basis einer statistischen Versetzungstheorie
entwickelt, mit dem das Verformungsverhalten von ufg und nano Kupfer erklärt werden
soll. Die Versetzungsstruktur wird dabei durch die beiden Familien von Versetzungen im
Korninneren und an den Korngrenzen beschrieben. Für beide Versetzungstypen sind Evo-
lutionsgleichungen, d.h. Terme zur Erzeugung und Vernichtung, formuliert worden.

Das stationäre Verformungsverhalten von Cu mit Korngrößen 0.01 ≤ d /μm ≤ 100
wurde im Temperaturbereich 298 ≤ T/K ≤ 418 (entspricht 0.22 ≤ Thom ≤ 0.31) simuliert.
Dehnratenkontrollierte Simulationen deckten den Bereich von 10−3 bis 10−8 s−1 ab und
sind mit experimentellen Ergebnissen verglichen worden. Die Möglichkeit des Auftretens
von Coble-Kriechen in ufg Cu (d = 0.35 μm) wurde erörtert.

Im Folgenden sollen die wichtigsten Ergebnisse der Simulationen zusammengefasst wer-
den.

• Innerhalb des abgedeckten Dehnratenbereichs ergibt sich für cg Cu ein Verhältnis
von effektiver zu angelegter Spannung von 0.4 < σ�/σ < 0.6 (siehe 3.3.2). Im Falle
von ufg Cu ist dieses Verhältnis verschwindend klein.

• In cg Cu überwiegt die Dichte freier Versetzungen im Korninnern die der Korngrenz-
versetzungen deutlich. Der Verformungswiderstand ist somit durch die Dichte freier
Versetzungen bestimmt. In ufg Cu ist die Situation umgekehrt (siehe 3.3.3).

• Die Abhängigkeit der Fließspannung von Dehnrate und Temperatur ist für ufg Cu
größer als für cg Cu. Diese erhöhte Dehnratenabhängigkeit führt unter bestimmten
Bedingungen zu einem Übergang von relativ erhöhter zu relativ erniedrigter Fes-
tigkeit von ufg im Vergleich zu cg Cu. Die Modellvorhersage eines Spannungsex-
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ponenten von n = 8 (entspricht m = 0.125) bei erhöhter Temperatur stimmt be-
merkenswert mit den experimentellen Beobachtungen überein [5] (siehe 3.3.1,3.6).

• Die Gesamterzeugungsrate von Versetzungen steigt mit sinkender Korngröße. Für cg
Material spielt diese Erhöhung keine Rolle, da der mittlere freie Laufweg immer deut-
lich geringer als die Korngröße bleibt. Die in ufg Material erzeugten Versetzungen
werden überwiegend an den Korngrenzen deponiert. Im vorliegenden Modell wer-
den zwei Annihilatonsmechanismen für Korngrenzversetzungen angenommen. Bei
niedriger homologer Temperatur, bei der spontane (athermische) Annihilationsreak-
tionen dominieren, findet sich Hall-Petch Verfestigung mit abnehmender Korngröße
(siehe 3.4, 3.5.1). Bei erhöhter Temperatur erfolgt Annihilation thermisch aktiviert
(und kletterkontrolliert), und sorgt für eine relative Erweichung von ufg im Vergleich
zu cg Material.

• Die Hall-Petch Beziehung kann aus dem Modell abgeleitet werden. Das Modell
überschätzt alerdings die Fließspannung verglichen mit experiemntellen Resultaten.
Mögliche Gründe könnten sein: i) Unsicherheit der Messwerte; ii) Vernachlässigung
der Reduzierung des Spannungsfelds von Korngrenzversetzungen; iii) Vernachlässi-
gung von Diffusionsbeiträgen zur Verformung in nano Materialien (siehe Abbil-
dung 3.16 in 3.6).

• Die Simulationsergebnisse von ufg Cu (d=0.35 μm) stimmen halb-quantitativ mit
den experimentellen Ergebnissen überein. Bei Raumtemperatur sagt das Modell
keine Festigkeitssteigerung durch Korngrenzen mit mittlerem Abstand d=0.35 μm
(ufg) voraus. Für erhöhte Temperatur wird die Erweichung überschätzt. Dies kann
durch folgende Punkte begründet werden: i) Unterschätzung der Erzeugungrate von
Versetzungen im Korninnern; und ii) Überschätzung der Annihilationsrate von Ko-
rngrenzversetzungen (siehe Abbildung 3.17 in 3.6)

• Coble-Kriechen kann bei Raumtemperatur kaum als unabhängiger und ratenkon-
trollierender Verformungsmechanismus angesehen werden. Hingegen erscheint dies
plausibel bei erhöhter Temperatur (siehe 4.3).

Obwohl das Modell bewusst einfach gehalten ist, beschreibt es die wichtigen Einflüsse
der Korngrenzen auf den stationären Verformungswiderstand reiner Metalle bei ho-
mologen Temperaturen von unter 0.31.
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Figures

1.1 Temperature normalized strain rate as function of shear modulus normal-
ized flow stress for Cu with different grain sizes d and a 〈123〉-oriented Cu
single crystal from nanoindentation at ambient temperature (Thom = 0.22)
[4, 14] and uniaxial compression from room temperature up to 448 K
(Thom = 0.35) [5, 8, 15]. Large symbols: saturation stress (or steady-state
deformation resistances); small symbols: maximum deformation resistance
(the flow stress or creep rate measured at the end of a test). Right ordinate
axis: strain rate at 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Variation of flow stress with inverse square root of grain size d with different
T and ε̇. The arrow pointing to the saturated flow stress (400±50) MPa of
cg Cu with d = 50 μm [4]. Data from Fig. 1.1. . . . . . . . . . . . . . . . . 5

2.1 Schematic of a) subgrains of size w with free dislocations in grain interior
in coarse grain of size d, b) ultrafine-grained structure with d = w∞. Thick
lines: high-angle grain boundaries; Thin lines: low-angle subgrain boundaries. 12

2.2 Mean free path of free dislocations Λρ = 50 b G/σ, subgrain size w∞ and
critical size of dislocation sources as function of shear modulus normalized
stress. Horizontal lines display the grain sizes dcg for cg Cu and dufg for ufg
Cu. Vertical dotted lines mark the boundary of experimental range where
cg and ufg Cu were investigated by Li [5, 8]. . . . . . . . . . . . . . . . . . 14

2.3 Schematic of edge dislocation structure in grain boundaries. a) grain 1
with a nonplanar surface due to intrusions (valleys) and extrusions (hills)
produced by single-sided steps formed by edge dislocations resulting from
symmetric double glide; b) superposition of two such grains (grain 1 and 2)
with parallel gray-white sequence of hills and valleys which are in general
not parallel for the two neighboring grains due to different grain orienta-
tions. The marked areas represent superpositions of valley-valley, hill-hill
and valley-hill configurations from left to right; c) regular arrangement of
dislocations in dipolar configurations resulting from single-sided steps of
neighbouring grains on the two sides of the grain boundary; d) simplified
picture of c) neglecting the differences in Burgers vectors and line directions
of dislocations in dipolar configurations. sgb: spacing of grain boundary dis-
locations; ddip,gb: dipole height (spacing of glide planes); φ: angle between
the slip plane and the grain boundary surface. . . . . . . . . . . . . . . . . 17
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2.4 Schematic of the structure of extrinsic grain boundary dislocations. (a) a
grain boundary between grain 1 and 2; (b) schematic dislocation picture
of (a); (c) stress-free grain boundary ledge after recombination of steps by
dislocation climb in grain boundary. . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Schematic of the microstructure with dislocations described by: ρf : density
of free dislocations in grain interior; Ngb : areal density of dislocations at
grain boundaries; d : grain size; δgb: the width of grain boundary. Dashed
ellipses mark dislocations in a dipolar configuration. . . . . . . . . . . . . . 19

2.6 Schematic of the comparison between the slipped area (gray region) and
the cross section of a grain. a) the dislocation loop is completely stored in
the grain interior; b) most part of the dislocation loop is stored at the grain
boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Schematic of dislocation loops in a) a large and b) a small grains, and c) the
probability of loops getting stored within grains as a function of dislocation
spacing δ and grain size at the same deformation condition. . . . . . . . . . 23

2.8 Relation between length of dislocations generated per slipped area and spac-
ing of free dislocations δ. 2/Λρ,d (Eq. (2.12)) and 2/Λρ (Eq. (2.10)): length
of free dislocations generated in grain interiors per slipped area; 2/Λtot: total
length of dislocations generated in grain interiors and at grain boundaries
per slipped area (Eq. (2.15)); The line marked by ρ̇+

f = ρ̇−,spon
f is derived

by equating the rate of generation (2.9) and the rate of spontaneous anni-
hilation (2.16) of free dislocations. The symbols < and > mark the area as
where the generation rate ρ̇+

f is smaller or larger than the annihilation rate
ρ̇−,spon

f , respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Formation of dipoles by mutual attraction of free dislocations with Burgers

vectors of opposite sign within slip planes of ddip apart. Within the spacing
dspon, the dipole disappears spontaneously; Beyond the spacing dspon but
within ddip, the dipole constituents overcome the distance of ddip through
mutual climb. Vacancy debris (open squares) are left after annihilation. . . 27

2.10 Schematic of the thermally activated process of a dislocation overcoming
local obstacles. λ: the mean spacing of thermal obstacles along the dis-
location line; Δx: the width of obstacle; shadowed area: the activation
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Logical structure of the model. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Example of curves for the evolution of stress and dislocation densities with
strain for cg (d = 50 μm) at 298 K. (a) flow stress σ, athermal stress
σG, and effective stress: σ�; (b) dislocation spacing ρ−0.5

f , ρ−0.5
gb and sgb.

The quantities d and dspon are the grain size and the critical spacing for
spontaneous annihilation, respectively. (c) rates of evolution of dislocation
density. Deriving from Eq. (2.15) the total rate of generation of dislocations
dρ+

tot/dε equals dρ+
f /dε + dN+

gb/dε · 2/d. . . . . . . . . . . . . . . . . . . . . 40
3.2 As Fig. 3.1 for ufg Cu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 As Fig. 3.1 for 418 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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3.4 As Fig. 3.2 for 418 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Calculated steady state deformation resistance of cg (grain size d = 50 μm)
and ufg (d = 0.2 μm) at 298 and 418 K. Simulations were done at strain
rates ranging from 10−3 to 10−8 −1s separated by one order of magnitude.
Open and full Circles mark strain rates at the shear modulus normalized
stress σ/G for cg and ufg Cu, respectively. . . . . . . . . . . . . . . . . . . 44

3.6 Stress exponent n ≈ Δ ln ε̇/Δ ln σ (derived from neighouring points of
Fig. 3.5) of the steady state deformation rate and strain rate sensitivi-
ties m = 1/n of the steady state flow stress as function of shear modulus
normalized stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 σ�/σ versus ε̇ in steady state deformation of cg and ufg Cg at 298 and 418 K. 46

3.8 Strain rate dependence of dislocation spacings for cg Cu at 298 and 418 K.
The horizontal lines mark dspon,gb and the grain size. . . . . . . . . . . . . 47

3.9 As Fig. 3.8 for ufg Cu. The densities ρf are obtained from the calculations
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A Appendix

A.1 Average radius of grain sections

The grains are assumed to be spheres with a radius of r. Consider a cross section through
P parallel to plane XOY (Fig. A.1(a)). The average area A of the cross sections parallel
to plane XOY reads

A =
1

r

∫ r

0
π y2 dz

=
1

r

∫ 0

r
π y2 d

√
r2 − y2 , with z =

√
r2 − y2

=
1

r

∫ 0

r
− π y3

√
r2 − y2

dy

=
2 π

3
r2 . (A.1)

The radius of the average cross section r′ equals
√

A/π. Thus

r =

√
3

2
r′ . (A.2)

The relation between r′ and the grain size d measured by line intersection (Heyn’s size) is
given by 2 r′ d = π r′2 (see Fig. A.1(c)), namely,

r′ =
2

π
d . (A.3)
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A.1 Average radius of grain sections

(a) Idealized grains being spheres with a radius of r. (b) Determination of the average
grain section by equating the vol-
umes of the sphere and the cylinder
with π r′2 in cross section and 2 r in
height.

(c) Determination of the average grain
size by equating the areas of the av-
erage grain section and the rectangle
with d and 2 r′ in width and height,
respectively.

(d) Two-dimension view of (b). Horizontal
thick lines: slip planes; X: the spacing be-
tween slip planes.

Figure A.1: Geometrical relationship between average radius of grain sections r′ and the
measured grain size d.
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A.2 Generation rate of dislocations in grain interiors

Nes [70] considers there are dNm small loops generated per volume in the shear strain
interval dγ, an increasing fraction of the loops is getting immobilized according to a certain
probability p (for a dislocation loop expanding on its slip plane to be stored per dislocation
encountered), as the radius r of the loops increases. It is assumed that the loop fraction
dN/dNm has been immobilized by reaction with other dislocations while the loop radius
was growing to r so that only dNm−dN mobile loops are remaining to be further expanding.
If r grows further by dr, the area 2 π r dr is slipped and the volume density of mobile loops
further decreases by the fraction:

d2N

dNm − dN
= −d ln (dNm − dN) = p · ρ · 2 π r dr = p · ρ ·π dr2 . (A.4)

Integration yields the increase of volume density dN of stored loops in the interval dΔγ:

∫ dN(r)

0

d2N

dNm − dN
=

∫ dN(r)

0
−d ln (dNm − dN) =

∫ r

0
p · ρ · 2 π r dr = p · ρ ·π dr2 , (A.5)

namely,
dN(r) = dNm (1 − exp(−p ρ π r2)) . (A.6)

Eq. (A.6) was originally derived by [70]. Based on this equation, the storage rate of dis-
locations in a confined volume may be derived.

Consider a grain with size d (measured by line intersection), the fraction of loops which
is stored in the grain interior is dN(r′)/dNm, where dN(r′) is the number of the stored
loops per volume; and r′ is the average radius of grain sections which is proportional to
the grain size d (see Appendix A.1). The average radius r of the dN(r′) loops stored in
the grain interior reads

r =
1

dN(r′)

∫ dN(r′)

0
r d2N . (A.7)

Inserting Eq. (A.6) into Eq. (A.7) leads to

r = p ρ π
dNm

dN(r′)

∫ r′

0
(r2)

1
2 exp

(
−p ρ π r2

)
dr2

=
0.5 (p ρ)−0.5 erf

(√
p ρ π r′

)
− r′ exp

(
−p ρ π r′2

)
1 − exp

(
−p ρ π r′2

) . (A.8)

In the limiting case of r′ → ∞, r approaches 0.5 (p ρ)−0.5 which is the mean free path of
dislocations of density ρ [70].

The remaining fraction of loops which reaches the grain boundaries is 1− dN(r′)/dNm.
The shear strain increment dγ connected to dN(r′) loops stored in the grain interiors and
dNm − dN(r′) loops stored in the grain boundaries per unit volume is thus given:

dγ = b dN(r′) A(r) + b (dNm − dN(r′)) A(r′) , (A.9)
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where A(r) = π r2 and A(r′) = π r′2 are the average slipped area of each loop stored in
the grain interior and boundary, respectively. Inserting Eq. (A.6) into (A.9) yields

dγ

dNm

= b π
(
r2 +

(
r′2 − r2

)
exp

(
−p ρ π r′2

))
. (A.10)

The increase in dislocation density within the grain of radius r′ in an interval dγ at the
shear strain γ is directly proportional to the increase of number of dislocation loops stored
in the grain interiors generated in dγ:

dρ = 2 π r dN(r′) . (A.11)

Combining Eqs. (A.10)-(A.11) one gets:

dρ

dγ
=

2 r
(
1 − exp

(
−p ρ π r′2

))
b

(
r2 +

(
r′2 − r2

)
exp

(
−p ρ π r′2

)) (A.12)
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A.3 Storage rate of dislocations at grain boundaries

The rate equation will be derived through three different approaches in terms of the choices
of the grain geometries. The intention is to check whether the rate equation to be derived
is sensitive to the choice of grain geometry.

Approach I According to Fig. A.1(a), consider a cross section through P parallel to
plane XOY , the specific dislocation length (length per slipped area), which is stored at
the grain boundary, is:

1

ΛP

=
2 π y

π y2
. (A.13)

It is seen that 1/Λp varies with the location of the cross section. Its average value is:

1

Λ′
P

=
1

r

∫ r

0

1

ΛP

dz =
1

r

∫ r

0

2 π y

π y2
dz

=
1

r

∫ 0

r

2 π y

π y2
d
√

r2 − y2 , with z =
√

r2 − y2

=
1

r

∫ 0

r
− 2√

r2 − y2
dy

=
π

r
. (A.14)

Combining Eqs. (A.14) and (A.3) leads to:

1

Λ′
P

=
π2

√
6

1

d
. (A.15)

The average dislocation density ρgb can be derived as:

ρgb =
dislocation length

slipped area
· slipped area

volume
. (A.16)

The ratio of slipped area/volume equals
1

2

2πr′

2πr′ x
=

1

2x
, where r′ is the average radius of

the grain sections (see Fig. A.1 and Eq. (A.2)). The factor of 1/2 means that only half
of the grain boundary (consisting of two grain surfaces) must be counted. x is the mean
spacing between the slip planes (see Fig. A.1(d)). A relative displacement by b along slip
planes at spacing x causes a crystal to shear by

γ =
b

x
. (A.17)

Inserting the ratio given above into (A.16) and combining (A.17) yield

ρgb =
1

b kgb d
· γ (A.18)
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with kgb
.
= 0.5. Differentiating both sides of Eq. (A.18) leads to the storage rate of grain

boundary dislocations of one glide system

ρ̇+
gb =

1

b kgb d
· γ̇ . (A.19)

Approach II The ratio of the average length of dislocations to the surface area of the

sphere is
2 π r′

4 π r2
=

r′

2r2
, where r′ is the average radius of the slip planes (see Fig. A.1(d)).

According to the definition of areal density Ngb (length per area), consider there are 2r/x
slip planes (see Fig. A.1(d)), Ngb reads,

Ngb =
r′

2r2
· 2r

x
=

r′

r
· 2

x
. (A.20)

Combining (A.2), (A.17) and (A.21) leads to

Ngb =

√
2

3

1

b
· γ . (A.21)

Combining (A.21) and (2.4) yields the expression of the storage rate of dislocation length
per volume ρ̇+

gb of

ρ̇+
gb = Ṅ+

gb ·
2

d
=

1

b kgb d
· γ̇ (A.22)

with kgb
.
= 0.6.

Figure A.2: Storage of dislocations at grain boundaries in one grain in 1-Dimension
schematic. X: the spacing between the slip planes; gb: grain boundary being
perpendicular to the paper.
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Approach III In the one dimension model proposed in [5], it is assumed that grain bound-
aries are infinite planes in parallel separated by the grain size of d (Fig. A.2). Suppose
the length of a dislocation lying in the grain boundary is L, then the area between two
dislocation lines is L x where x is the spacing between dislocation lines. Consider there
are two dislocations coming from neighboring grains, the areal density Ngb reads

Ngb = 2
L

L x
=

2

x
. (A.23)

Combining (A.17) leads to

Ngb =
2

b
γ . (A.24)

The area of grain boundary per volume in the one dimension model is 1/d. The storage
rate of dislocation length per volume ρ̇+

gb in the one dimension case can be expressed as

ρ̇+
gb = Ṅ+

gb ·
1

d
=

1

b kgb d
· γ̇ (A.25)

with kgb
.
= 0.5.

By comparing Eqs. (A.19), (A.22) and (A.25) it is concluded that no significant differ-
ence was found in the rate equations derived through the three approaches.
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A.4 Climb velocity of grain boundary dislocations

Figure A.3: Configuration of (a) dislocation dipoles (marked by A and B) and (b) the
normal stress σyy in the center of the dipole at the grain boundary.

The grain boundaries contain an array of dislocation dipoles of opposite signs. When
the constituents of dipole A (see Fig. A.3(a)) climb towards each other due to mutual
attractive force, they need atoms or emit vacancies. On the contrary, dipole B emits
atoms or absorbs vacancies when its constituents climb. If we assume that the core of a
dislocation is a prefect source or sink for vacancies, grain boundary diffusion thus plays an
essential role in annihilation of dipoles by transporting atoms from dipole B to dipole A.
In addition, emission of vacancies (by dipole A) to the lattice and absorption of vacancies
(by dipole B) from the lattice also contribute to dislocation climb. The climb velocity of
dislocations of dipole A/B vc,gb is determined by the diffusion flux of atoms (atoms/second)
arriving at/leaving the dislocation’s core Ja [114] and by the diffusion flux of vacancies
(vacancies/second) leaving/arriving at its core Jv [27]. Then

vc,gb =
b

1/(Ja + Jv)
. (A.26)
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The diffusion flux of atoms or vacancies J is the product of the flux of atoms/vacancies/area
per (atoms or vacancies/second/area) j and the diffusion area A.

J = j · A . (A.27)

Diffusion flux of atoms Ja From the first Fick’s law the flux of atoms ja reads

ja = − 1

Ω

Dgb

kB T
∇μ , (A.28)

where ∇μ is the gradient of chemical potential of vacancies. The assumption of the core of
a dislocation being a perfect source or sink of vacancies implies that the chemical potential
of vacancies in the immediate vicinity of a dislocation is that which is in equilibrium with
the core of a straight dislocation, acted on by the local stress σl [114]:

μ − μv = μ0 − σl Ω , (A.29)

where μv is the chemical potential of vacancies and μ0 that of vacancies in a standard,
stress-free crystals. It is the gradients of μ−μv which drive the diffusive flux of vacancies.
Thus one gets

∇μ = −∇σl Ω . (A.30)

The stress gradient ∇σl can be derived from the normal stresses perpendicular to y-axis
at annihilation sites of the dipoles. The middle points between dipole A and B correspond
to the sites where the dipoles annihilate. The stresses at these sites are represented by
a tensile stress σ̂l for dipole A and a compressive stress −σ̂l (see Fig. A.3(b)). Consider
the limit case where the climb velocity is described by minimum stress gradient which is
determined by minimum stresses at the annihilation sites and maximum spacings between
the two annihilation sites. One may approximately linearize the stress gradient by

∇σl =
2 σ̂l

2 sgb

. (A.31)

The stress σ̂l is described by superimposing stresses caused by each dislocations in the
array as shown in Fig. A.3(b):

σ̂l = 2
G b

2 π (1 − ν)

1

0.5 sgb

+ 2
G b

2 π (1 − ν)

1

1.5 sgb

− 2
G b

2 π (1 − ν)

1

2.5 sgb

+ ... . (A.32)

The factor 2 before the fractions is appropriate as the dislocations are mirrored about the
annihilation site. The number of the terms is determined by d/(2 sgb). As the dislocations
in the array alternatively change their signs, the terms in Eq. (A.32) alternatively change
their sign accordingly. A minimum stress can be obtained by remaining only the first term
and eliminating the rest terms of Eq. (A.32). When there are five terms in the series, this
approximation will cause an error less than 20%.

The cross section A of diffusion flux (per atom’s width) through the boundary reads

A = δgb b . (A.33)
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Combining Eqs. (A.27) to (A.33) and taking into account the approximation in local stress
(Eq. A.32), one gets yields

Ja =
2

π (1 − ν)

G Ω

b kB T
δgbDb

1

s2
gb

. (A.34)

Diffusion flux of vacancies Jv According to the first Fick’s law the flux of vacancies jv

reads
jv = −Dv ∇C , (A.35)

where Dv is diffusion coefficient of vacancies in the lattice, C is concentration of vacancies
(vacancies/volume). The local equilibrium concentration of vacancies near the dislocation
reads [27]

C = C0 exp
(

σc,gb Ω

kB T

)
, (A.36)

where σc,gb (see Eq. A.37) is the mutual attractive stress between the dipole constituents
[27] of dislocations of average (ddip,gb + dspon,gb)/2 apart:

σc,gb =
G b

2π (1 − ν)

1

(ddip,gb + dspon,gb)/2
, (A.37)

which is treated identical to an equally wide dipole formed by interior dislocations. Taking
into account that the stress field of grain boundary dislocations will relax, the climb stress
is somewhat overestimated.

Consider a dipole locating in the center of a cylinder with a radius R as marked by the
circle in Fig. A.3. Both dislocations tend to establish the same vacancy concentration near
their cores. For a cylinder with a radius r the cross section for vacancy flux (per atom’s
width) reads,

A = 2 π r b with rc ≤ r ≤ R , (A.38)

where rc ≈ b is the radius of the dislocation core. According to Eqs. (A.28) and (A.27)
one can obtain the diffusion flux of vacancies Jv. In steady state of diffusion of vacancies
Jv becomes constant, thus

Jv = j · 2π r b = −2π b Dv
r d C

d r
= const . (A.39)

By integrating the concentration C,∫ C0

C(r)
d C = − const

2π b Dv

∫ R

r

r

d r
, (A.40)

one gets the concentration of vacancies at radius r of each dipole constituent C(r),

C0 − C(r) = − const

2π b Dv

ln
(

R

r

)
, (A.41)
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By superposition, the two terms of Eq. (A.41) for each dipole constituent give the vacancy
distribution with both dislocations present. At r = rc, namely, in the vicinity of each
dislocation core, one gets,

C0 − C(rc) = − const

2π b Dv

[
ln

(
R

b

)
+ ln

(
R

sgb

)]
, (A.42)

To determine const, one may combine Eqs. (A.36) and (A.42) and replace rc with b, thus

const = C0

[
exp

(
σc,gb Ω

kB T

)
− 1

]
2 π b Dv / ln

(
R2

b sgb

)
. (A.43)

Inserting const into Eq. (A.41) yields

C(r) = C0 + C0

[
exp

(
σc,gb Ω

kB T

)
− 1

]
ln (R /r)

ln
[
R2 /(b sgb)

] . (A.44)

Now the gradient ∇C of concentration of vacancies can be determined:

∇C =
1

r
C0

[
exp

(
σc,gb Ω

kB T

)
− 1

]
1

ln [R2/(b sgb)]
. (A.45)

Combining Eqs. (A.35), (A.39) and (A.45) yields

Jv = Dv c0 b
[
exp

(
σc,gb Ω

kB T

)
− 1

]
2 π

ln [R2/(b sgb)]
. (A.46)

Invoking the definition of the atomic self-diffusion coefficient Dsd [27]

Dsd = Ω c0 Dv , (A.47)

and combining Eq. (A.46) yields

Jv =
Dsd

b2

[
exp

(
σc,gb Ω

kB T

)
− 1

]
2 π

ln [R2/(b sgb)]
. (A.48)
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