

Algorithmic and Computational
Complexity Issues of

MONET

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der

Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Diplom-Informatiker Matthias Hagen

geboren am 29. Oktober 1979 in Ilmenau

Bibliografische Information er Deutschen ibliothek

Die Deutsche ibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über

http://dnb.ddb.de abrufbar.

 Nonnenstieg 8, 37075 Göttingen

 Telefon: 0551-54724-0

 Telefax: 0551-54724-21

 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung

des Verlages ist es nicht gestattet, das Buch oder Teile

daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)

zu vervielfältigen.

Gedruckt auf säurefreiem Papier

1. Auflage, 2008

 CUVILLIER VERLAG, Göttingen 2008

1. Aufl. - Göttingen : Cuvillier, 2008
Zugl.:

978-3-86727-826-3

978-3-86727-826-3

d Nationalb
Nationalb

 Jena, Univ., Diss., 2008

Gutachter

1. Prof. Dr. Martin Mundhenk (Friedrich-Schiller-Universität Jena)

2. Prof. Dr. Michael R. Fellows (The University of Newcastle, Australien)

Tag der letzten Prüfung des Rigorosums: 26.November 2008

Tag der öffentlichen Verteidigung: 27.November 2008

Zusammenfassung

In dieser Dissertation beschäftigen wir uns mit dem Problem Monet – ein eng-
lisches Akronym für Mo(notone) n(ormal form) e(quivalence) t(est). Die Pro-
blemstellung bei Monet ist, die Äquivalenz einer monotonen disjunktiven Nor-
malform ϕ und einer monotonen konjunktiven Normalform ψ zu entscheiden. Dies
ist eigentlich ein Abdeckungsproblem und kann ebenso als das Aufzählen aller
(in einem gewissen Sinne) minimalen Lösungen irgendeines Systems interpretiert
werden. Deswegen gibt es auch eine Vielzahl sehr ähnlicher Fragestellungen aus
unterschiedlichsten Anwendungsgebieten.

Unsere Resultate können grob in zwei Gruppen eingeteilt werden. Zum einen
gibt es Resultate, die den Entwurf und die Analyse von Algorithmen betreffen,
zum anderen sind Resultate enthalten, die eher Komplexitätsaspekte des Pro-
blems berühren. Im algorithmischen Teil geben wir untere Schranken für eini-
ge Algorithmen an und berichten über Resultate von praktischen Untersuchun-
gen des theoretisch schnellsten Algorithmus in Experimenten. Im eher komple-
xitätstheoretischeren Teil dieser Dissertation zeigen wir für verschiedene einge-
schränkte Klassen des Problems, dass sie sich mit logarithmischem Platzbedarf
lösen lassen. Dadurch verbessern wir den Ressourcenbedarf gegenüber den vor-
her bekannten Polynomialzeitschranken. Darüberhinaus ordnen wir Monet für
verschiedene Parameter in die Klasse der festparameter-handhabbaren Probleme
ein.

Im Einzelnen beweisen wir die folgenden Hauptergebnisse unter Zuhilfenahme
einer breiten Palette von algorithmischen und komplexitätstheoretischen Techni-
ken.

• Verschiedene eingeschränkte Klassen des Problems Monet lassen sich mit
logarithmischem Speicherplatzbedarf lösen. Dazu gehören die Klassen bei
denen die DNF

– nur eine konstante Anzahl Monome enthält (Abschnitt 4.1.1), nur Mo-
nome konstanter Größe enthält (Abschnitt 4.1.2), nur Monome entält,
die jeweils nur höchstens konstant viele Variablen nicht enthalten (Ab-
schnitt 4.1.3),

– regulär (Abschnitt 4.2.1), ausgerichtet (Abschnitt 4.2.2), oder 2-mono-
ton (Abschnitt 4.2.3) ist.

• Weder der DL-Algorithmus (Abschnitt 5.1.2), noch der BMR-Algorithmus
(Abschnitt 5.1.3), noch der KS-Algorithmus (Abschnitt 5.1.4), noch der

iii

HBC-Algorithmus (Abschnitt 5.2) für das Problem Monet laufen in Po-
lynomialzeit bezüglich der Ein- und Ausgabegröße. Die Laufzeit der Algo-
rithmen ist jeweils mindestens nΩ(log log n), wobei n die Größe der Ein- und
Ausgabe ist.

• Der FK-Algorithmus B für das Problem Monet erweist sich in praktischen
Experimenten auf vielen Eingaben als konkurrenzfähig zum FK-Algorith-
mus A (Kapitel 6).

• Monet ist festparameter-handhabbar für die Parameter

– Anzahl v der Variablen in ϕ und ψ (Abschnitt 7.1),

– Anzahl m der Monome in ϕ (Abschnitt 7.2),

– einen Parameter q, der die Variablenhäufigkeiten in ϕ beschreibt (Ab-
schnitt 7.3),

– und einen Parameter, der die Größe der Vereinigungen von Transversa-
len bzw. Kanten des Hypergraphen der DNF ϕ angibt (Abschnitt 7.4.3).

Diese Dissertation enthält Material, das in den Zeitschriften Discrete Applied Ma-
thematics, Information and Computation und Information Processing Letters er-
schienen ist bzw. erscheinen wird, sowie Material, das auf der Konferenz

”
Ma-

thematical Foundations of Computer Science“ (MFCS 2005), und den Workshops

”
Graph-Theoretic Concepts in Computer Science“ (WG 2007),

”
Parameterized

and Exact Computation“ (IWPEC 2008) und
”
Workshop on Algorithm Engi-

neering & Experiments“ (ALENEX 2009) vorgestellt und in den entsprechenden
Tagungsbänden veröffentlicht wurde bzw. wird.

iv

Abstract

In this thesis, we study the problem Monet—the Mo(notone) n(ormal form)
e(quivalence) t(est)—that asks to decide equivalence of a monotone disjunctive
normal form ϕ and a monotone conjunctive normal form ψ. This problem is a
covering problem that can be interpreted as the task of enumerating all (in some
sense) minimal solutions of some system. Hence, there is a huge number of similar
questions in many problems from diverse applications.

Our results can roughly be divided into results on the design and evaluation of
algorithms for Monet and results that rather touch complexity questions related
to the problem. As for the algorithmic part, we will give lower bounds for several
known algorithms and report results obtained by practically examining the the-
oretically fastest algorithm in computational experiments. As for the complexity
part of this thesis, we show several restricted classes of the problem to be solvable
in logarithmic space, which improves previously known polynomial time bounds.
We also show Monet to be in the complexity class of fixed-parameter tractable
problems with respect to several parameters.

More precisely, we prove the following main results using various algorithmic
and computational complexity techniques.

• Several restricted classes of Monet are solvable in logarithmic space. In
particular, these are the classes where the DNF

– contains only a constant number of monomials (Section 4.1.1), contains
only monomials of constant size (Section 4.1.2), contains only mono-
mials that each do not contain only a constant number of variables
(Section 4.1.3),

– is regular (Section 4.2.1), aligned (Section 4.2.2), or 2-monotonic (Sec-
tion 4.2.3).

• The DL-algorithm (Section 5.1.2), the BMR-algorithm (Section 5.1.3), the
KS-algorithm (Section 5.1.4), and the HBC-algorithm (Section 5.2) for the
problem Monet are not output-polynomial. Their running times are at
least nΩ(log log n), where n denotes the size of the input and output.

• FK-algorithm B for the problem Monet is experimentally competitive to
FK-algorithm A on many classes (Chapter 6).

v

• Monet is fixed-parameter tractable with respect to the parameters

– number v of variables in ϕ and ψ (Section 7.1),

– number m of monomials in ϕ (Section 7.2),

– a parameter q describing the variable frequencies in ϕ (Section 7.3),

– and a parameter bounding the unions of transversals or edges of ϕ’s
associated hypergraph (Section 7.4.3).

This thesis contains material (to be) published in the journals Discrete Applied
Mathematics, Information and Computation and Information Processing Letters,
as well as material (to be) presented at, and (to be) published in the proceed-
ings of, the conference “Mathematical Foundations of Computer Science” (MFCS
2005), and the workshops “Graph-Theoretic Concepts in Computer Science” (WG
2007), “Parameterized and Exact Computation” (IWPEC 2008) and “Workshop
on Algorithm Engineering & Experiments” (ALENEX 2009).

vi

Acknowledgments

I am very grateful to Martin Mundhenk for his constant support during my time
as a graduate and PhD student in Jena. It was he who suggested working on
problems related to monotone formulas as a Diploma (MSc) thesis topic, and who
offered to supervise research on the problem Monet afterwards.

However, doing research would not have been possible without any financial
support. Hence, I am very grateful to the Freistaat Thüringen for supporting
me by a Landesgraduiertenstipendium through the beginning of my PhD time;
to Rolf Niedermeier, in whose Deutsche Forschungsgemeinschaft (DFG) funded
project OPAL (optimal algorithms for hard problems in computational biology),
NI-369/2, I was pleased to work in the beginning of 2007; and to the team of the
OBA (optimization of vehicle electrical system architectures) project in Kassel,
especially Claudia Fohry’s research group on programming languages / method-
ologies whose member I am since early 2007.

Motivation during the writing of this thesis also emanated from several meetings
with other colleagues. I very much benefited from the broad experience in hyper-
graph transversal research of Khaled Elbassioni, who was my host for one week at
the Max-Planck-Institut für Informatik in Saarbrücken and shared many insights
with me. Khaled and Imran Rauf (MPI as well) were pleasant coauthors who made
major contributions to the papers that cover Sections 5.2 and 7.4. Another very
inspiring stay was my visit to Utz-Uwe Haus at Otto-von-Guericke-Universität
Magdeburg. During Utz’ explanations, I got the impression of finally starting to
really understand the relation of Monet to problems in mathematical program-
ming. As for the algorithm engineering part of my research I owe my thanks to
the organizers, Matthias Müller-Hannemann and Stefan Schirra, and attendees
of the GI-Dagstuhl research seminar 06362 on “Algorithm Engineering.” It was
this seminar that attracted my interest in experimental work with algorithms and
especially the issues related to a careful choice of test instances. The algorithm
engineering part also benefited from collaboration with Peter Horatschek, who
implemented the FK-algorithms and documented the experiments.

Parts of this thesis have profited from discussions, comments, pointers to lit-
erature, etc. of several people such as James Bailey, Peter Damaschke, Michael
Dom, Thomas Eiter, Mike Fellows, Daniel Fötsch, Celine Hébert, Steffen Klamt,
Johannes Köbler, Michael Krüger, Kaz Makino, Hannes Moser, John Pfaltz,
François Rioult, Ron Rymon, Ken Satoh, Thomas Schneider, Henning Schnoor,
Elias Stavropoulos, Ken Takata, and Hisao Tamaki.

I would also like to thank the anonymous referees of several journals, confer-
ences, and workshops for their feedback on parts of this thesis.

Last, but not least, I am very grateful to Saskia and our kids, Svea and Jan,
for their continuous support and encouragement during the last years. Life would
not be complete without you!

vii

Contents

1 Introduction 1
1.1 What means and to what end do we study Monet? 1
1.2 Legend to this thesis . 6

2 Preliminaries 7
2.1 Algorithms and computational complexity 7

2.1.1 Tools for algorithm analysis 8
2.1.2 Complexity classes . 8
2.1.3 Reductions and hardness 9

2.2 Boolean formulas, monotonicity, and the problem Monet 10
2.2.1 Syntax and semantics of Boolean formulas 10
2.2.2 Monotone formulas and equivalence 11
2.2.3 Normal forms of formulas 12
2.2.4 The problem Monet . 14
2.2.5 State of the art in Monet complexity 15

2.3 Hypergraphs, transversals, and the problem TransHyp 16
2.3.1 Hypergraphs and transversals 16
2.3.2 The problem TRANSHYP 17
2.3.3 Further hypergraph notation 17

2.4 Equivalence of Monet and TransHyp 18
2.5 Basic computational tasks . 19

2.5.1 Preprocessing steps . 19
2.5.2 Basic checks . 21

3 Applications 25
3.1 Artificial intelligence . 25
3.2 Combinatorial optimization . 27
3.3 Computational biology . 27
3.4 Computational geometry . 28
3.5 Computational medicine . 29
3.6 Cryptography . 29
3.7 Databases . 29
3.8 Data mining . 31
3.9 Distributed systems . 33
3.10 E-commerce . 33
3.11 Game theory . 34

ix

Contents

3.12 Graph theory . 34
3.13 Lattice theory . 36
3.14 Logic . 37
3.15 Machine learning . 39
3.16 Mathematical programming . 40
3.17 Matroid theory . 41
3.18 Mobile communication systems 41
3.19 Reliability theory . 42
3.20 Semantic web . 42
3.21 Software engineering . 42
3.22 Topology . 42
3.23 XML . 43

4 Easy Classes 45
4.1 Restrictions on the size of the DNF 46

4.1.1 The DNF contains only a constant number of monomials . 46
4.1.2 The DNF contains only monomials of constant size 47
4.1.3 The DNF contains only very large monomials 48
4.1.4 Polynomial time size restrictions 50

4.2 Structural restrictions on the DNF 50
4.2.1 The DNF is regular . 50
4.2.2 The DNF is aligned . 54
4.2.3 The DNF is 2-monotonic 59
4.2.4 Polynomial time structural restrictions 63
4.2.5 A structural restriction that does not help 68

4.3 Concluding remarks . 68

5 Algorithms 69
5.1 Berge-multiplication and its improvements 70

5.1.1 Berge-multiplication . 70
5.1.2 The algorithm of Dong and Li 71
5.1.3 The algorithm of Bailey, Manoukian, and Ramamohanarao 71
5.1.4 The algorithm of Kavvadias and Stavropoulos 77

5.2 The algorithm of Hébert, Bretto, and Crémilleux 82
5.3 The algorithms of Fredman and Khachiyan 84

5.3.1 Preconditions . 85
5.3.2 FK-algorithm A . 85
5.3.3 FK-algorithm B . 87

5.4 Concluding remarks . 89

6 Algorithm Engineering 91
6.1 A few implementation details . 91
6.2 Experimental results . 92
6.3 Conclusion . 95

x

Contents

7 Fixed-Parameter Tractability 97
7.1 Number of variables as parameter 97
7.2 Number of monomials as parameter 99
7.3 Variable degrees as parameter . 101
7.4 Results based on the Apriori technique 102

7.4.1 The generalized Apriori algorithm 103
7.4.2 Intersections of maximal independent sets 103
7.4.3 Unions of minimal transversals or edges 106
7.4.4 Intersections of maximal frequent sets or transactions . . . 106

7.5 Concluding remarks . 107

8 Conclusion 109

Bibliography 111

xi

Chapter 1

Introduction

1.1 What means and to what end do we study

MONET?1

Warning: What we do not(!) do. The first association when reading Monet

probably is the famous French painter Claude Monet (1840–1926). His painting
“Impression soleil levant” from 1872—a morning scene from Le Havre harbor—
coined the term Impressionism that later on was used to describe a whole field
of art. But as this thesis is on Theoretical Computer Science (TCS), this first
impression on Monet is very misleading. We neither reveal any ancient TCS
results due to Claude Monet (as we do not even know whether he was interested
in efficient computation at all), nor do we study algorithmics and computational
complexity with an “impressionistic” view. Hence, a big apology to all who started
reading with the intention of discovering a not yet documented relation between
the fine arts and TCS: Claude Monet is not(!) the topic of this work.

So, what is MONET? In this thesis we consider the problem Monet—an ac-
ronym for Mo(notone) n(ormal form) e(quivalence) t(est)—that asks to decide
equivalence of a monotone DNF (disjunctive normal form) and a monotone CNF
(conjunctive normal form) (for formal definitions of any term we refer to Chap-
ter 2). Monet is equivalent to TransHyp—given two hypergraphs, decide
whether one is the transversal hypergraph of the other. TransHyp is a vari-
ant of the well-known problem VertexCover, in its hypergraph version also
known as HittingSet. But instead of just asking for one vertex set of minimum
cardinality that has a non-empty intersection with all edges, we are interested in
the set of all minimal sets that “cover” resp. “hit” all edges.

Practical relevance. Consequently, Monet is a covering problem and can be
interpreted as the enumeration of all (in some sense) minimal solutions of some
system. Similar questions for enumeration of minimal solutions are ubiquitous in
many problems from diverse applications. In fact, covering and enumeration prob-
lems that are Monet-equivalent or strongly related can be found in fields such as

1Title inspired by Friedrich Schiller’s inaugural lecture (1789) at this thesis’ author’s university.

1

Chapter 1 Introduction

artificial intelligence, computational biology, databases, data mining, distributed
systems, graph theory, logic, machine learning, mathematical programming, ma-
troid theory, and mobile communication systems (cf. Chapter 3 for more details).
The consequence is that any approach solving Monet can be easily transformed
to solve a wide range of problems in very different fields. Thus, on the one hand,
research on algorithms solving Monet and even any technique improving known
procedures is very important from the point of view of practical applications.

And in theory: Unsettled complexity. On the other hand, Monet research
is faced with some very interesting theoretical issues that we will describe in the
following. The equivalence test for arbitrary monotone formulas (not necessarily
in normal form) is coNP-complete [Rei03]. The same bound can be easily proven
for arbitrary Boolean formulas in normal form. The coNP-completeness in this
context means that these problems are “hard” since it is very unlikely that they are
solvable by “fast” algorithms in the sense of deterministic polynomial running time
(running time is usually measured with respect to the input size and polynomial
running time is the usual notion of efficient solutions in complexity theory).

But note that in the Monet setting we require the input formulas to be mono-
tone and in normal form, which together represent stronger “structural” restric-
tions and thus may ease the solution process. Whether these restrictions really can
be exploited to develop polynomial Monet algorithms is an exciting open question
for more than 25 years now [DT87, EG95, Joh91, LLK80, Lov92, Man02, Pap97].
The best currently known Monet algorithm has quasi-polynomial running time
no(log n) [FK96], which still, after all, can be seen as an indication that Monet is
probably not coNP-complete. Otherwise, all coNP-complete problems would be
solvable in quasi-polynomial time—a result that hardly any expert expects. But
as it is quasi-polynomial this algorithm is not “fast” as well.

Another indication that Monet probably is not coNP-complete is a recent result
that shows Monet to be solvable using only O(log2 n) guessed bits [EGM03,
KS03a, KS03b]. Again, no expert expects any coNP-complete problem to be
solvable with O(log2 n) guessed bits as usually a polynomial number is assumed
to be required.

MONET and the P-vs.-NP question. The currently unsolved complexity of
Monet places it in the group of a handful—and thus really rare—problems that
yet cannot be classified as “easy” (polynomial time solvable) or “hard” (NP- or
coNP-complete). Hence, Monet, along with the prominent Graph Isomor-

phism problem—given two graphs, decide if they are isomorphic—, may play some
role in research on the popular P-vs.-NP question (one of the seven major problems
in mathematics whose solution is worth a reward of 1, 000, 000 $ denoted by the
Clay Mathematics Institute). The question is whether the class of deterministic
polynomial time solvable problems (the class P) and the class of nondeterminis-
tic polynomial time solvable problems (the classes NP, resp. coNP) coincide. If

2

1.1 What means and to what end do we study Monet?

Monet is not solvable in polynomial time (formally written as Monet �∈ P),
then this immediately implies a separation of P and NP. But as the P-vs.-NP

question is open since the field of complexity theory emerged, we expect showing
Monet �∈ P a really tough problem. On the other hand, there are no known
complexity theoretic consequences that would follow from Monet ∈ P, although
this question is also open for many years now and, hence, seems to be tough as
well. But note that also Primes—given an integer, decide whether it is prime—
had an analogue unsettled complexity status for a long time until it was actually
shown to be solvable in polynomial time only a few years ago [AKS04]. Thus,
there is still a possibility of a breakthrough showing Monet ∈ P. (Unfortunately,
this breaktrough is not contained in this thesis.) Nevertheless, we expect new
techniques to be necessary as we conjecture that none of the known Monet al-
gorithms (for which not always upper and lower bounds on the running time are
known) is polynomial.

Hence, the problems between “easy” or “hard” (resp., “fast” / no “fast” so-
lution) constitute two very exciting challenges to algorithmicists and complex-
ity theorists as well. One is to actually find a fast algorithm and the other is
to find some kind of complexity theoretic arguments for or against a fast solu-
tion. As for Primes these challenges finally led to a fast solution [AKS04]. In
the case of Graph Isomorphism we have a complexity theoretic classification
that would yield a solution to an unsolved question very strongly related to the
P-vs.-NP question [KST93] in case that Graph Isomorphism is not(!) poly-
nomial. More precisely, Graph Isomorphism cannot be NP-hard unless the
so-called polynomial hierarchy collapses to its second level—an event that is sup-
posed to be rather unlikely. As for Monet the situation is comparable to that
of Graph Isomorphism. There are several indications that Monet is more
likely to be polynomial than to be hard—like the quasi-polynomial algorithms
by Fredman and Khachiyan [FK96] and the solvability with bounded nondeter-
minism [EGM03, KS03a, KS03b]. Furthermore, the consequences of being not
polynomial even seem to be a little stronger for Monet than for Graph Iso-

morphism.

However, all that is known for the fast solvability yet is that Monet is poly-
nomial if and only if its computational variant Monet

′—given an irredundant,
monotone DNF, compute the equivalent irredundant, monotone CNF—is output-
polynomial [BI95a]. Here, output-polynomiality is an appropriate notion of fast
solvability for computation problems [JPY88]. Note in this context, that a slight
generalization of Monet

′ is very unlikely to have an output-polynomial solution.
Namely, finding an algorithm that, given a monotone formula (not necessarily
in DNF), computes the irredundant, monotone CNF in output-polynomial time
is the same as showing P = NP and thus as hard as solving the P-vs.-NP ques-
tion [GHM05].

3

Chapter 1 Introduction

Easy classes as a way out?! As there is no known fast algorithm for Monet

yet, one branch of research focuses on identifying restrictions of the inputs that
sufficiently simplify the problem to allow for polynomial time solutions. Such
restrictions then yield “easy” classes of the problem. One example might be to
examine instances where the DNF only contains monomials of constantly bounded
size. And in fact, Monet with constantly size bounded monomials has polynomial
time algorithms [BEGK00, EG95]. Many other easy classes are known (cf. Chap-
ter 4 for more details). Due to the successes in searching for more and more easy
classes, many practically interesting input instances can be solved in polynomial
time although there is no known polynomial algorithm for Monet itself. This is
maybe the major reason that makes worthwhile every effort invested in research
on easy classes of Monet. But there are two other, possibly not less important
reasons. One is that the knowledge of easy classes reveals new information about
the really hard problems apparent when trying to attack polynomial solvability of
the general problem Monet itself. And the other is that the easy classes might
prove useful when looking for lower bound or hardness results for Monet.

Known MONET algorithms. There are many known algorithms solving Monet

or Monet
′ (cf. Chapter 5 for more details). They are inspired by very diverse

techniques from different fields—which is not that surprising having in mind the
broad range of equivalent problems. We do not really have to distinguish between
algorithms for Monet or Monet

′ as they can be easily transformed to solve the
respective other problem version.

One of the earliest approaches was the Berge-multiplication algorithm (cf.,
e. g., [Ber89]). So far, it is the only algorithm having a known lower bound (that
states what resources (e. g., running time) are minimally needed using the al-
gorithm to solve arbitrary Monet instances). Takata’s lower bound shows that
Berge-multiplication is not fast [Tak07]. But as Berge-multiplication can be easily
implemented, there have been several improvements of it [BMR03, DL05, KS05,
Uno02, US03]. Analyses of the running times of the improved versions have been
pending.

Other algorithms do not follow a term based approach as Berge-multiplication
does but use a variable based decomposition technique [BMR03, EGM03, Eit91,
MR94, Rym92, Rym94a]. Maybe the most famous variable based algorithms are
the FK-algorithms A and B by Fredman and Khachiyan [FK96]. Algorithm B is
the Monet algorithm with the currently best upper bound on the running time
of no(log n). This upper bound is a guarantee on the amount of running time that
will never be exceeded on any instance by FK-algorithm B.

Inspired by model-based diagnosis techniques are Reiter’s algorithm [Rei87]
(and its improvements [GSW89, Wot01]) and several other recently published
algorithms, e. g., [LJ03, TT02]. There are Monet algorithms based on techniques
that were useful in data mining settings [GKM+03, HBC07], as well as genetic
algorithms [LJ02, Vin99a, VØ00b] or parallel approaches [Elb08, KBEG07a].

4

1.1 What means and to what end do we study Monet?

Although there are many very diverse algorithms, all approaches have in com-
mon that there are only very few proven non-trivial upper or lower bounds on their
running times. Hence, theoretical knowledge of the algorithms’ behavior is not
really well developed. Having in mind the wide applicability of Monet results,
this situation is not satisfying at all.

Algorithm Engineering. One possibility—besides thorough theoretical analy-
ses—to get some impression of (practical) performance of an algorithm is to imple-
ment it and run it on a lot of well-chosen inputs. This is one branch of the emerging
field of Algorithm Engineering (cf. Chapter 6 for more details). Though, not that
many experimental studies on Monet algorithms have been published and all
have some lack of coverage [BMR03, DL05, KBEG06, KS05, LJ03, TT02, US03].
Some of the studies only show the potential of a single approach and do not really
compare it to others. In addition, none of them includes the theoretically best
algorithm, FK-algorithm B [FK96]. Hence, it is not clear at all, which of the
currently known algorithms is the best choice on which kind of instances.

This thesis’ contributions. In this thesis, we try to shed some light on the open
questions discussed in the previous paragraphs.

As for the easy classes, there are two main questions. First, how easy are the
easy classes? Can we do better than polynomial running time? The second one is
to find new easy classes. In this thesis we work on both questions. We analyze the
known easy classes with the intention of tightening the known resource bounds.
Thereby, we show some of the easy classes to be solvable with logarithmic space,
which improves the known polynomial time bounds. And we discover some new
easy classes.

As for the known Monet algorithms, our conjecture is that none of the cur-
rently known approaches is fast in the sense of polynomial (resp., output-polyno-
mial) running time. We start working on proving our conjecture, by giving non-
trivial lower bounds on the running times of several algorithms. From the point
of view of practical applications there is also another interesting open question,
namely that for the performance of the theoretically fastest Monet algorithm,
FK-algorithm B, in algorithmic experiments. Using the Algorithm Engineering
methodology we compare FK-algorithm B to FK-algorithm A and show it to be
competitive on our testbed. This result somehow adjusts the folklore assump-
tion that FK-algorithm B should be practically much slower than its theoretically
worse relative, FK-algorithm A.

As for computational complexity issues, we examine the fixed-parameter trac-
tability of Monet, a subject that has not been addressed in the literature so
far. Informally, a problem is said to be fixed-parameter tractable if there is an
algorithm whose running time is arbitrary (exponential or even worse) in a given
parameter but only includes polynomial terms for the input size (cf. Chapter 7 for
more details). The idea then is that for small values of the parameter the running

5

Chapter 1 Introduction

time of the algorithm behaves like being polynomial. We show Monet to be
in the class FPT of fixed-parameter tractable problems with respect to several
parameters.

1.2 Legend to this thesis

This thesis is organized as follows. In Chapter 2, we introduce basic notations
and concepts as well as the problem Monet. Chapter 3 then gives some further
motivation for studying Monet in the sense that we collect problems equivalent
or strongly related to Monet from very different fields. Afterwards, in Chapter 4,
we introduce easy classes of Monet that are restrictions of the input formulas
that allow for polynomial time solutions. In contrast, Chapter 5 contains algo-
rithms solving the general problem Monet without any restrictions on the input.
Some experimental results for important Monet algorithms follow in Chapter 6.
In Chapter 7, we then turn to the emerging field of parameterized complexity
and analyze Monet in that setting. Finally, some concluding remarks follow in
Chapter 8.

Parts of this thesis have already appeared or are accepted for publication in
refereed journals, in refereed conference and workshop proceedings, as technical
reports, or as manuscripts. In particular, Chapter 4 contains results from [GHM05,
GHM08], and [Hag06]; Chapter 5 contains results from [Hag07a] and [EHR08a];
Chapter 6 contains results from [HHM09], whereas the choice of test instances
is based on observations contained in [BHHM07]; and Chapter 7 contains results
from [Hag07b] and [EHR08b].

6

Chapter 2

Preliminaries

In this chapter we introduce basic notations and concepts used throughout the
whole thesis. We start with some of the basic notions used in analyzing algorithms
and evaluating problems based on their computational complexity in Section 2.1.

In Section 2.2 we formally define the problem Monet. Therefore, we first have
to give some facts and notation on formulas and the like.

As sometimes things can be expressed more easily using hypergraph notations,
we introduce this concept in Section 2.3. We also give the problem TransHyp

that then, in Section 2.4, turns out to be the hypergraph analogue of Monet.
Finally, in Section 2.5 we show that basic computations needed throughout the

thesis can be managed by very efficient procedures in the sense of their com-
putational complexity. We especially point out the preprocessing steps from Sec-
tion 2.5.1 as we later on assume that all the corresponding conditions are implicitly
checked when necessary without explicitly mentioning it every time.

2.1 Algorithms and computational complexity

In computational complexity one is interested in the amount of resources necessary
to solve problems. Problems considered in this thesis are usually decision or
computation problems. The term decision problem means that the answer of an
algorithm just is a positive or negative answer to a question concerning the input
whereas for a computation problem we expect some “real” output.

Example 2.1.1. An example of a decision problem on natural numbers is the
problem Primes—given a natural number, decide if it is prime. An appropriate
algorithm would just produce “Yes” as output on the inputs 2, 3, 5, 7, 11, . . . ,
and “No” for all inputs that are not prime.

An example of a computational problem is to compute, on input a natural
number n, the value 2n. Here no longer a “Yes” or “No” suffices as output.

The usual machine model on which algorithms run in computational complexity
settings is that of Turing machines with input, output and working tapes. Ad-
mittedly, we do not “program” Turing machines at a low level giving complete
transition functions but provide our algorithms in more readable pseudocode also
often abstracting away from the different tapes of the machines. The reader who

7

Chapter 2 Preliminaries

is interested in the basics of Turing machines may find appropriate definitions
and justification that low level Turing machine programming can be replaced by
giving pseudocode algorithms, e. g., in [Pap94].

2.1.1 Tools for algorithm analysis

It would be very cumbersome if one would always have to give exact values for the
resource requirements of algorithms. Thus, we only estimate asymptotic running
times or space requirements. One of the main tools in asymptotic estimations is
that of O-notation defined as follows.

Definition 2.1.2 (O-Notation). For a given function f(n) on the natural numbers
we have the following.

Θ(f(n)) = {g(n) : there exist positive constants c1, c2, and n0 such that

c1 · f(n) ≤ g(n) ≤ c2 · f(n) for all n ≥ n0}.
O(f(n)) = {g(n) : there exist positive constants c and n0 such that

g(n) ≤ c · f(n) for all n ≥ n0}.
Ω(f(n)) = {g(n) : there exist positive constants c and n0 such that

c · f(n) ≤ g(n) for all n ≥ n0}.
o(f(n)) = {g(n) : for any constant c > 0 there exists a constant n0 > 0

such that g(n) ≤ c · f(n) for all n ≥ n0}.
Thus, if g(n) ∈ Θ(f(n)), then for large enough n the function g(n) is equal to

f(n) up to a constant factor. We also say that f(n) is an asymptotically tight
bound for g(n). The notion O(f(n)) is used to give an asymptotic upper bound
on f(n), Ω(f(n)) gives an asymptotic lower bound on f(n), and o(f(n)) is used
to denote an upper bound that is not asymptotically tight.

Example 2.1.3. Consider the functions 2n, n2, and 2n2. We have 2n ∈ O(n2)
and 2n2 ∈ O(n2). Among these, only the second bound is asymptotically tight,
whereas the first is not. This yields 2n ∈ o(n2), 2n2 �∈ o(n2) but 2n2 ∈ Θ(n2).

2.1.2 Complexity classes

We classify problems into complexity classes according to the resources needed
to solve them. The resources are usually measured according to the size of the
input. Examples of complexity classes are L (consisting of problems solvable using
logarithmic space), NL (problems solvable using nondeterminism and logarithmic
space), P (problems solvable using polynomial time), NP (problems solvable using
nondeterminism and polynomial time), coNP (complements of problems in NP),
PSPACE (problems solvable using polynomial space). The inclusion structure is

L ⊆ NL ⊆ P ⊆ NP

coNP
⊆ PSPACE.

8

2.1 Algorithms and computational complexity

See [Pap94] for formal definitions of these classes. Note that only problems in
P are usually said to be solvable “fast”, whereas problems above P are usually
considered to be “difficult” in the sense that too many resources are needed to
solve them with justifiable effort.

It is not known which of the above inclusions are proper and especially one
of the central open questions in computational complexity is that of whether
P = NP, also known as the P-vs.-NP question. This corresponds to the question
of whether using a polynomial number of nondeterministic (guessed) bits adds
any power to polynomial time computations. It is straightforward to simulate
any such NP computation in 2O(poly(n)) deterministic time, where poly(n) denotes
functions polynomial in n. But it is not known whether 2O(poly(n)) also is a tight
lower bound.

Note that the above classes only make sense for decision problems.

Example 2.1.4. Consider the example of computing 2n given a natural number
n. Using a bit encoding, the “size” of the input is log n and the size of the output is
n. Hence, the sheer size of the output causes the problem not to fit in P as already
writing the output on the output tape causes any machine to use exponential time
in the input size. But the procedure of just writing a single 1 followed by n 0’s
is quite efficient and, hence, for computation problems there is another notion of
fast solvability.

Definition 2.1.5 (Output-Polynomial, [JPY88]). An algorithm is said to be out-
put-polynomial iff its running time is bounded polynomially in the sum of the sizes
of the input and output.

Note that output-polynomiality is a meaningful notion of fast solvability in case
of computation problems.

2.1.3 Reductions and hardness

One powerful tool to compare different decision problems is complexity theoretic
reduction.

Definition 2.1.6 (Reduction). A problem A is polynomial-time reducible to the
problem B, A ≤p

m B for short, iff there is a polynomial time computable function
f that maps inputs for A to inputs for B such that for all inputs x for A we have
x ∈ A iff f(x) ∈ B.

There is also a notion of equivalence of problems relative to polynomial time
computations.

Definition 2.1.7 (Polynomial-Time Equivalence). Problems A and B are poly-
nomial-time equivalent, A ≡p

m B for short, iff A ≤p
m B and B ≤p

m A.

Using the reduction concept we define hardness and completeness of problems
for complexity classes.

9

Chapter 2 Preliminaries

Definition 2.1.8 (Hardness, Completeness). Let C be a complexity class and A
a problem. A is said to be C-hard iff for every C ∈ C we have C ≤p

m A. If A is
C-hard and contained in C we also say that A is C-complete.

Note that ≤p
m is only interesting for problems “above” the class P as the re-

sources allowed for ≤p
m are as powerful as P itself is and hence the reduction does

not allow any meaningful separation of problems in P (except trivial cases, all
problems in P are P-hard relative to ≤p

m). Hence, the above defined notions of
hardness and completeness relative to ≤p

m are only meaningful in context of classes
containing P. For the purpose of comparing problems in P there are more restric-
tive notions of reduction. But as we will mainly discuss problems not known to
be in P, these more fine-grained reductions are beyond the scope of this thesis.

In Lemma 2.4.1 we give a very basic example of polynomial time problem equiv-
alence upon defining the corresponding formula and hypergraph problems.

2.2 Boolean formulas, monotonicity, and the

problem MONET

In this section, we introduce the basic concepts necessary for defining and under-
standing the problem Monet.

2.2.1 Syntax and semantics of Boolean formulas

As Monet is a formula problem, we give some basics on Boolean formulas before
defining the problem itself. We start with the syntax of Boolean formulas.

Definition 2.2.1 (Syntax of Boolean Formulas). The constants 0 and 1 and every
variable xi, with index i ∈ N, are Boolean formulas. Furthermore, let α and β be
Boolean formulas, then so are ¬(α), (α ∧ β), and (α ∨ β).

The connectives in Definition 2.2.1 are called NOT or negation (¬), AND or con-
junction (∧), and OR or disjunction (∨). Variables and their negations are called
literals. We say that a literal is negative iff it is a negated variable. Otherwise, it
is a positive literal.

Note that Boolean formulas might be arbitrarily nested and that we may often
leave out some parentheses.

Example 2.2.2. The following is an example of a Boolean formula.

(((x1 ∧ ¬x2) ∨ ¬x3) ∧ ¬(((x4 ∨ ¬x5) ∧ ¬x1) ∨ x6)) ∨ (x4 ∧ x5 ∧ ¬x7).

Now that we have defined the syntax of Boolean formulas, we turn to the
corresponding semantics. We first need the notion of truth values and assignments.

10

2.2 Boolean formulas, monotonicity, and the problem Monet

Definition 2.2.3 (Assignments). A Boolean variable xi can be set to the truth
value either true (also denoted by 1) or false (denoted by 0).

An assignment A for a Boolean formula α is a subset of α’s variables. The
notion is that variable xi is set to true by A iff xi ∈ A. When the underlying
variable set V is unambiguous, we denote by A = V \ A the complement of the
assignment A.

Based on assignments we now describe the evaluation of Boolean formulas—
their semantics.

Definition 2.2.4 (Semantics of Boolean Formulas, Satisfiability). For any assign-
ment A we have A(0) = 0 and A(1) = 1. Now let α and β be Boolean formulas
and A an assignment. We have the following properties.

A(¬α) = 1 iff A(α) = 0,

A(α ∧ β) = 1 iff A(α) = 1 and A(β) = 1,

A(α ∨ β) = 1 iff A(α) = 1 or A(β) = 1.

In case of A(α) = 1 we also say that A satisfies α.

Example 2.2.5. Let α be the formula from Example 2.2.2, i. e.,

α = (((x1 ∧ ¬x2) ∨ ¬x3) ∧ ¬(((x4 ∨ ¬x5) ∧ ¬x1) ∨ x6)) ∨ (x4 ∧ x5 ∧ ¬x7).

Consider the assignment A = {x4, x5}. The complement on the variable set of
α then is A = {x1, x2, x3, x6, x7}. It turns out that A(α) = 1 as A satisfies
(x4 ∧ x5 ∧ ¬x7) and this is a disjunctive part of α. Now consider the assignment
A′ = {x1, . . . , x7} containing all variables and note that A′(α) = 0. Hence, in this
case “increasing” the assignment A to include all variables “decreases” the truth
value.

2.2.2 Monotone formulas and equivalence

There is a special class of Boolean formulas where such an increase-decrease con-
trast as observed in Example 2.2.5 is impossible—the so-called monotone or pos-
itive formulas.

Definition 2.2.6 (Monotone Formulas). A Boolean formula is monotone iff it
has only ∧ and ∨ as connectives. No negation signs are allowed!

For monotone formulas every superset of a satisfying assignment is guaranteed
to also be satisfying. This behavior of “monotone increasing” truth values is the
reason for the name “monotone” (the alternative naming “positive” stems from
the fact that there are only positive literals).

11

Chapter 2 Preliminaries

Example 2.2.7. The formula from Example 2.2.5 is not monotone since it con-
tains negations. As an example for a monotone formula consider

α = (((x1 ∧ x2) ∨ x3) ∧ ((x4 ∨ x5) ∧ x1)) ∨ (x4 ∧ x5).

Note that the assignment A = {x4, x5} satisfies α as A satisfies (x4 ∧ x5), a dis-
junctive part of α. In this case, every superset of A and especially the assignment
A′ = {x1, . . . , x5} containing all variables also satisfies α.

Based on the semantics of formulas we have the following equivalence relation.

Definition 2.2.8 (Equivalence). Two Boolean formulas α and β are equivalent
iff for all assignments A it holds that A(α) = A(β).

Example 2.2.9. The formulas ¬(x1 ∨ ¬x2) ∨ (¬x1 ∧ x3) and ¬x1 ∧ (x2 ∨ x3) are
equivalent.

An easy observation is that there is no equivalent monotone formula for such
a simple Boolean formula like ¬x1. Hence, monotone formulas are a proper sub-
class of Boolean formulas and thus a real restriction. Nevertheless, they appear
in many practically relevant settings and often problems restricted to monotone
formulas become very much easier than for arbitrary ones. Consider for instance
the problem of deciding satisfiability of formulas. This is an NP-complete task
for arbitrary formulas [Coo71]. Informally, this means that it is very unlikely to
check satisfiability of arbitrary formulas within an acceptable time bound.

For monotone formulas it becomes trivial. Just evaluate the formula on a single
assignment, namely the one containing all variables. If this assignment does not
satisfy a monotone formula then no other can and the formula is equivalent to the
unsatisfiable constant 0. Note that this might only happen if the constant 0 itself
is “nested” somewhere in the monotone formula under consideration.

2.2.3 Normal forms of formulas

Note that so far formulas, and even monotone ones, may be arbitrarily nested. In
many situations it is more practicable to require formulas to be of a certain form,
the so-called normal forms.

Definition 2.2.10 (Normal Forms). A Boolean formula is in DNF (disjunctive
normal form) if it is a disjunction of conjunctions of literals. Analogously, a
Boolean formula is in CNF (conjunctive normal form) if it is a conjunction of
disjunctions of literals.

In the case of monotone normal forms we can replace “literals” by “variables”
in Definition 2.2.10.

Example 2.2.11. The formula (x1 ∧x2 ∧x3)∨ (x1 ∧x4)∨ (x2 ∧x5 ∧x6) is a DNF,
whereas (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x5 ∨ x6) is a CNF. Both are monotone.

12

2.2 Boolean formulas, monotonicity, and the problem Monet

Note, that formulas in normal form have a very regular structure—they consist
of well-defined subparts.

Definition 2.2.12 (Monomial, Clause). A conjunction of literals is called a mono-
mial. A disjunction of literals is called a clause. Monomials and clauses are also
called terms.

Example 2.2.13. A monomial: (x1 ∧ x2 ∧ x3). A clause: (x1 ∨ x2 ∨ x3). Again,
both are monotone.

Definition 2.2.14 (Containment). A monomial m contains another monomial
m′ iff each assignment satisfying m also satisfies m′. A clause c contains another
clause c′ iff each assignment satisfying c′ also satisfies c.

Example 2.2.15. The monomial (x1 ∧ x2 ∧ x3) contains the monomial (x1 ∧ x3).
The clause (x1 ∨ x2 ∨ x3) contains the clause (x1 ∨ x2).

For each formula there are important special terms, the min- and the maxterms.

Definition 2.2.16 (Minterm, Maxterm). A monomial m is a minterm or prime
implicant of a Boolean formula α iff (1) each assignment that satisfies m also
satisfies α and (2) m does not contain another monomial also having property
(1).

A clause c is a maxterm or prime implicate of a Boolean formula α iff (1) each
assignment that satisfies α also satisfies c and (2) c is not contained in another
clause also having property (1).

Example 2.2.17. The monomial (x1 ∧ x2 ∧ x3) is a minterm of α = (x1 ∧ x2 ∧
x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x5 ∧ x6), whereas (x3 ∨ x4 ∨ x5) is a maxterm of α.

As for monotone terms, if there is no danger of ambiguity, we often abstract from
their representation as formulas and just view them as variable subsets. Thereby,
a monotone term t is represented by the subset of the variables that occur in t.

Example 2.2.18. The monomial (x1 ∧x2 ∧x3) and the clause (x1 ∨x2 ∨x3) both
correspond to the set {x1, x2, x3}.

Note that in this way, monotone terms can also be seen as assignments. Hence,
the naming of min- and maxterms becomes clearer. Minterms of a formula α are
the minimal terms that, seen as assignments, satisfy α. Maxterms of α are the
maximal terms whose complements are non-satisfying assignments of α.

Using the set interpretation of terms we also view monotone normal forms as
subsets of their variables’ power set.

Example 2.2.19. The set representation of both the DNF and CNF from Exam-
ple 2.2.11 is {{x1, x2, x3}, {x1, x4}, {x2, x5, x6}}.

13

Chapter 2 Preliminaries

One often is interested in shortest normal forms—normal forms with fewest
variable occurrences equivalent to a given formula. From the definition of min- and
maxterms it is clear that shortest DNFs have to consist of minterms and shortest
CNFs have to consist of maxterms. To further describe shortest monotone normal
forms, we first define an appropriate cover relation between monotone terms.

Definition 2.2.20 (Cover). A monotone term t covers a monotone term t′ if
t ⊆ t′.

Note that coverage is strongly related to the notion of containedness from Def-
inition 2.2.14. In the normal form setting this means that whenever terms t ⊆ t′

both appear in the same normal form, the term t′ would be logically “absorbed.”

Example 2.2.21. The monomial (x1 ∧ x2 ∧ x3) covers the monomial (x1 ∧ x2 ∧
x3 ∧ x4). The DNF (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) of both then is equivalent
to (x1 ∧ x2 ∧ x3).

Now we are ready to define the notion of shortest monotone normal forms in
another way.

Definition 2.2.22 (Irredundancy). A monotone normal form is irredundant iff
there are no two terms in it such that one covers the other.

Example 2.2.23. The DNF and the CNF from Example 2.2.11 both are irredun-
dant, whereas (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) is not.

It is a well-known fact that the irredundant DNF and CNF of a monotone
formula are unique [Qui53]. (It is straightforward that the DNF consists of exactly
all the minterms whereas the CNF consists of all the maxterms.) Hence, the
irredundant normal forms of monotone formulas are the shortest equivalent normal
forms. Note that in case of arbitrary formulas it is not that easy as, e. g., not all
minterms have to be included in an equivalent DNF.

2.2.4 The problem MONET

In our problem setting, where we are interested in equivalence of monotone normal
forms, we concentrate on irredundant normal forms as inputs. This is reasonable
as terms in monotone normal forms that are covered by other terms do not change
the truth table of the formula. Such terms can be identified by a trivial logspace
preprocessing step (cf. Section 2.5.1). Thus, the main subject of this thesis—
the problem Monet of deciding equivalence of monotone normal forms—can be
defined as follows.

Monet: instance: irredundant, monotone DNF ϕ and CNF ψ
question: are ϕ and ψ equivalent?

14

2.2 Boolean formulas, monotonicity, and the problem Monet

Monet is an acronym for Mo(notone) n(ormal form) e(quivalence) t(est).
Note that we only concentrate on the case of two different normal forms as input,
as testing equivalence of two irredundant, monotone DNFs or two irredundant,
monotone CNFs is just identity checking.

The size of a Monet-instance (ϕ, ψ) is the number of variable occurrences in ϕ
and ψ. Throughout this thesis ϕ will always denote a monotone DNF and ψ will
always denote a monotone CNF. Also note that Monet is a decision problem.
For those who prefer “real” computation, the appropriate version is the following
computational variant Monet

′.

Monet
′: input: irredundant, monotone DNF ϕ

output: equivalent irredundant, monotone CNF ψ

Note that the size of the equivalent CNF may be exponential.

Example 2.2.24. The DNF ϕ = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ . . . (x2n−1 ∧ x2n) has size
2n but the equivalent CNF contains 2n clauses.

Hence, there cannot be an algorithm solving Monet
′ in time polynomial in

the input size. Thus, a suitable notion of fast solvability for Monet
′ is that of

output-polynomial time as described in Section 2.1.2.

2.2.5 State of the art in MONET complexity

The exact complexity of Monet is an exciting open question for more than
25 years now [DT87, EG95, Joh91, LLK80, Lov92, Man02, Pap97]. The algo-
rithm with the currently best known upper bound is the Fredman-Khachiyan-
algorithm B (cf. Section 5.3). It has quasi-polynomial running time no(log n) [FK96],
which still, after all, can be seen as an indication that Monet is probably not
coNP-complete. Another indication that Monet probably is not coNP-complete
is a recent result that shows Monet to be solvable using only O(log2 n) nonde-
terministic bits [EGM03, KS03a, KS03b]. Hardly any expert expects any coNP-
complete problem to be solvable with quasi-polynomial time or only O(log2 n)
nondeterministic bits.

But Monet is not expected to be hard for the class coNP[log2 n] of prob-
lems solvable in polynomial time using O(log2 n) nondeterministic bits. The
reason is that already O(log2 n/ log log n) nondeterministic bits suffice to decide
Monet [EGM03]. Moreover, we do not have any hardness result for Monet

yet—not even for classes contained in L. We also do not have any arguments
against polynomiality of Monet although showing Monet ∈ P seems to be a
tough problem. But a breakthrough result showing Monet ∈ P is not impossible
yet.

15

Chapter 2 Preliminaries

2.3 Hypergraphs, transversals, and the problem

TRANSHYP

In this section we introduce some of the basic concepts related to the hypergraph
version TransHyp of the problem Monet. The main reason is that often things
related to Monet (e. g., some algorithms, cf. Chapter 5) can be expressed in a
more convenient and precise way when using hypergraph notation.

2.3.1 Hypergraphs and transversals

Definition 2.3.1 (Hypergraph). A hypergraph H = (V,E) consists of a set V of
vertices and a finite family E of subsets of V—the edges of H.

If there is no danger of ambiguity, we also identify a hypergraph by its edge set
or use the edge set to refer to H. The notion then is that the vertex set of H is
exactly the set of vertices present in the edges. The size of H is the number of
occurrences of vertices in the edges.

Example 2.3.2. The hypergraph H = {{v1, v2}, {v1, v2, v3}, {v2, v3}, {v3, v4, v5}}
has size 10.

A very important notion in the course of establishing a hypergraph variant of
Monet is that of transversals—also often called hitting sets.

Definition 2.3.3 ((Minimal) Transversal). A transversal of a hypergraph H is
a vertex set t ⊆ V that has a non-empty intersection with each edge of H. A
transversal t is minimal iff no proper subset of t is a transversal.

Thus, just as hypergraphs are a generalization of graphs, transversals generalize
the notion of vertex covers. Note that the set of all minimal transversals also is a
hypergraph.

Definition 2.3.4 (Transversal Hypergraph). The set of all minimal transversals
of H forms the transversal hypergraph Tr(H).

Example 2.3.5. The hypergraph H = {{v1, v2}, {v1, v2, v3}, {v2, v3}, {v3, v4, v5}}
has the transversal hypergraph Tr(H) = {{v1, v3}, {v2, v3}, {v2, v4}, {v2, v5}}.
Definition 2.3.6 (Simple). A hypergraph H is simple iff it does not contain two
hyperedges e, f with e ⊆ f .

By min(H) we denote the simple hypergraph consisting of the minimal hyper-
edges of H with respect to set inclusion.

Example 2.3.7. The hypergraph H = {{v1, v2}, {v1, v2, v3}, {v2, v3}, {v3, v4, v5}}
is not simple as {v1, v2, v3} contains the two other edges {v1, v2} and {v2, v3}. We
can derive min(H) by simply excluding {v1, v2, v3}.

Since min(H) can be easily computed in polynomial time and we have Tr(H) =
Tr(min(H)) for every hypergraph H, we concentrate on the transversal hyper-
graphs for simple hypergraphs.

16

2.3 Hypergraphs, transversals, and the problem TransHyp

2.3.2 The problem TRANSHYP

The problem TransHyp is defined as follows.

TransHyp: instance: simple hypergraphs G and H
question: H = Tr(G)?

Note that for simple hypergraphs we have the following identity.

Lemma 2.3.8 ([Ber89]). We have Tr(Tr(H)) = H for any simple hypergraph H.

Thus, for two simple hypergraphs G and H, testing H = Tr(G) is equivalent to
testing G = Tr(H) and hence the roles of G and H in the definition of TransHyp

can be exchanged.
Again, for those who prefer computation, the appropriate version is the following

computational variant TransHyp
′.

TransHyp
′: input: simple hypergraph H

output: Tr(H)

Note that TransHyp
′ is often called transversal hypergraph generation and

that even for simple hypergraphs the size of the transversal hypergraph may be
exponential.

Example 2.3.9. The hypergraph H = {{v1, v2}, {v3, v4}, . . . {v2n−1, v2n}} has size
2n but 2n minimal transversals.

Hence, there cannot be an algorithm computing the transversal hypergraph in
time polynomial in the input size. Thus, a suitable notion of fast solvability for
TransHyp

′ is that of output-polynomial time as described in Section 2.1.2.

2.3.3 Further hypergraph notation

Let us finish this section on hypergraphs by defining some further notation.

Definition 2.3.10 (Unions). For simple hypergraphs G = {g1, g2, . . . , gm} and
H = {h1, h2, . . . , hm′} we have the following “union” operators

G ∪ H = {g1, g2, . . . , gm, h1, h2, . . . , hm′} and

G ∨ H = {gi ∪ hj : i = 1, 2, . . . , m, j = 1, 2, . . . , m′}.
An important property using these unions is the following.

Proposition 2.3.11 ([Ber89]). Let G and H be simple hypergraphs. Then Tr(G ∪
H) = min(Tr(G) ∨ Tr(H)).

Finally, we name the complements of transversals.

Definition 2.3.12 ((Maximal) Independent Set). Let H be a hypergraph. A subset
of vertices of H is independent if it does not contain an edge. An independent set
is maximal if no proper superset is independent.

Note that the complement of an independent set in a hypergraph is a transversal.
The complements of the maximal independent sets are the minimal transversals.

17

Chapter 2 Preliminaries

2.4 Equivalence of MONET and TRANSHYP

We now show the folklore result that Monet and TransHyp are polynomial
time equivalent and thus are essentially the same problem.

Lemma 2.4.1. Monet ≡p
m TransHyp.

Proof. In order to show the equivalence of Monet and TransHyp we first es-
tablish “equivalence” of minterms of monotone CNFs and minimal transversals of
simple hypergraphs.

Note that a minterm m of an irredundant, monotone CNF ψ is monotone and
intersects every clause of ψ since otherwise the assignment m that clearly satisfies
m does not satisfy ψ. As minterms are minimal with respect to set inclusion we
cannot leave out any variable from m and still have a minterm of ψ.

Now consider the simple hypergraph that corresponds to ψ by viewing it as a set
of clauses that itself are sets of variables. Clearly, a minterm m of ψ, interpreted
as a set of variables, is a minimal transversal of that hypergraph.

Vice versa, consider a minimal transversal t of the hypergraph corresponding
to ψ. As t is a subset of variables that intersects each clause and is minimal with
respect to set inclusion, t interpreted as monomial clearly is a minterm of ψ.

We are now ready to show Monet ≤p
m TransHyp. Therefore, we have to

give an appropriate reduction function f that maps a Monet instance (ϕ, ψ) to
a TransHyp instance (G,H). We define f to be the (identity) function that
constructs hypergraphs from normal forms by viewing normal forms as families of
variable subsets. Hence, each monomial of ϕ forms an edge of G and each clause
of ψ forms an edge of H. From our above discussion of the relationship between
minterms and minimal transversals it now follows that (ϕ, ψ) ∈ Monet iff G =
Tr(H) which is equivalent to (G,H) ∈ TransHyp. As f clearly is polynomial
time computable, this establishes Monet ≤p

m TransHyp.

As for the other way around, we analogously construct a reduction function g
that maps a TransHyp instance (G,H) to a Monet instance (ϕ, ψ). We define g
to construct a DNF ϕ from G in which each edge of G corresponds to a monomial
of ϕ and, analogously, the clauses of the CNF ψ correspond to the edges of H.
Again, it is straightforward that (G,H) ∈ TransHyp iff (ϕ, ψ) ∈ Monet. As g
clearly is polynomial time computable, this establishes TransHyp ≤p

m Monet.

Hence, Monet and TransHyp are polynomial time equivalent.

Another example of polynomial time equivalent problems is TransHyp
′ and

the computation of all maximal independent sets of a given hypergraph. Here the
straightforward reduction just exploits the complement relation between transver-
sals and independent sets. This yields that also TransHyp and the problem of
deciding whether a given set of independent sets contains all the maximal indepen-
dent sets of a given hypergraph are polynomial time equivalent using an analogous
reduction.

18

2.5 Basic computational tasks

Hence, we have two other ways of formulating Monet, namely in terms of
minimal transversals as in the problem TransHyp and in terms of maximal
independent sets.

2.5 Basic computational tasks

2.5.1 Preprocessing steps

Before analyzing Monet itself, it is crucial to be able to check several trivial
necessary conditions of the input to be a Monet instance. As we later on will
show some problems to be logarithmic space solvable, we take special care on the
resources needed for the preprocessing and show it only needs logarithmic space.
Note that if one of the conditions described in the following is violated, we can
immediately reject the input as it cannot be a Monet instance.

We say that an input is well-formed if and only if it can be interpreted as a
monotone Boolean formula. That means that it is a correct formula with respect
to the syntax (Definition 2.2.1). In particular, only variable symbols xi, “∧”, “∨”,
“(”, and “)” are allowed symbols, the parenthesis structure has to be correct,
and the sequence of variables and connectives must not include situations like
“x1 ∨ ∨ x2” or “(∨” or “x1 ∧ x2x3 ∨ x4” etc.

Lemma 2.5.1. Whether an input is well-formed can be decided in logarithmic
space.

Proof. Let n be the number of symbols in the input. An appropriate machine
checks in a first scan whether only allowed symbols are involved. No additional
space is needed.

A second scan of the input is used to examine the parenthesis structure. This
can be done using a counter that is initially 0. Whenever a parenthesis is found,
the counter is incremented by 1 in case of a left and decremented by 1 in case of a
right parenthesis. The parenthesis structure of the input is correct if and only if
the counter always contains a value ≥ 0 and the counter equals 0 when the scan
is completed. Clearly, the counter is bounded logarithmically.

In a third and last scan of the input a few syntactic rules have to be checked.
After the occurrence of a variable only “∨”, “∧” or “)” are allowed. After a left
parenthesis only a variable is allowed. After a right parenthesis only “∧” and “∨”
are allowed. After a “∧” or a “∨” only a variable is allowed. No additional space
is needed while scanning the input and checking these syntactic rules.

We also need a test of being in normal form.

Lemma 2.5.2. Whether a given well-formed formula is in normal form can be
decided without using any additional space.

19

Chapter 2 Preliminaries

Algorithm 1 The irredundancy test

Input: well-formed formula α in normal form with variable set V
Output: Yes, if α is irredundant, and No, otherwise

1: for all terms ti of α do
2: for all other terms tj , j �= i of α do
3: count ← 0
4: for all variables x ∈ ti do
5: if x ∈ tj then
6: count ← count + 1

7: if count ≥ |ti| then
8: output No and stop

9: output Yes

Proof. An appropriate machine has to perform two tests. First, it checks whether
the parenthesis structure of the input formula is “()() . . . ().” Secondly, the correct
usage of the connectives is tested. The machine checks whether the connectives
within a pair “()” are “∧” in case of checking DNFs (respectively “∨” for a CNF)
and whether between any two consecutive pairs of parentheses “()()” the connec-
tives are “∨” (respectively “∧” for a CNF). For both tests the machine does not
need any additional space.

As we only deal with irredundant normal forms, we need a test for irredundancy.

Lemma 2.5.3. Whether a given well-formed formula α in normal form is irre-
dundant can be decided in logarithmic space.

Proof. First we check whether no term of α contains a variable twice. This can
be implemented in logarithmic space in a straightforward way.

Then we have to check whether no term is contained in another term. A proce-
dure that solves this problem and uses logarithmic space is given as Algorithm 1.
The correctness of Algorithm 1 is straightforward. We have to analyze the space
requirement.

Let the size n of α be the number of variable occurrences. We assume that α
consists of m terms. The first two for-loops need the index of the current terms.
Therefore, we assume that the algorithm numbers the terms of α by 1, . . . , m and
the for-loops test the terms by increasing indices. Hence, the for-loops can count
the already tested terms and know the current term. The terms of α need not to
be copied to be compared. Both counters are logarithmically space bounded in n.

The third for-loop has to know the index of the current variable. We analogously
assume that the variables have indices 1, . . . , |V |. Hence, the index is logarithmi-
cally bounded in n. Two other logarithmically in n space bounded counters are
needed for count and to evaluate the size |ti| needed in line 7.

Finally, we check whether both formulas contain the same variables.

20

2.5 Basic computational tasks

Lemma 2.5.4. Whether a given irredundant, monotone DNF ϕ and a given ir-
redundant, monotone CNF ψ have the same variable set V can be decided in
logarithmic space.

Proof. Let the input size n be the number of variable occurrences in ϕ and ψ. We
assume that the variables have indices 1, . . . , |V | and that the formulas are given
on two tapes.

The machine just cycles through the DNF ϕ and tests for each variable occur-
rence whether this variable is present in ψ (via looking for the index of the variable
in ψ from the beginning to the end). When finished, it exchanges the roles and
cycles through ψ in the same way.

Note that in the course of the thesis we do not explicitly check all the conditions
of this section as we now know that they can be managed by a logarithmic space
preprocessing. Hence, from now on, we assume that Monet instances satisfy all
of the above conditions without mentioning it every time.

2.5.2 Basic checks

We now describe other basic checks needed in several of the equivalence test
algorithms in the later sections. For example, we often need to check a maxterm
condition for clauses. This is important as from the maxterm Definition 2.2.16 it
follows that a clause is a maxterm of a DNF ϕ iff it is contained in the irredundant,
monotone CNF of ϕ.

Lemma 2.5.5. Given an irredundant, monotone DNF ϕ and an irredundant,
monotone clause c, it can be decided in logarithmic space whether c is a maxterm
of ϕ.

Proof. Let V = {x1, . . . , x|V |} be the set of variables in ϕ and c, and Mϕ =
{m1, . . . , m|Mϕ|} be the set of monomials of ϕ. Let the input size n be the number
of variable occurrences in ϕ and c. We give an algorithm with the desired proper-
ties as Algorithm 2. It has to be checked whether c has a non-empty intersection
with every monomial of ϕ (lines 1 to 7). Thereafter, it has to be tested whether
c \ {x} has a non-empty intersection with all monomials for every variable x ∈ c
(lines 8 to 19). If one such variable can be found, then c is not a maxterm. The
correctness of Algorithm 2 thus is straightforward. We have to analyze the space
requirement.

To know the current monomial, the for-loops in lines 1 and 10 can manage
counters that give the number of already checked monomials. These counters have
to count till |Mϕ|. Hence, they are logarithmically bounded in n. An analogous
argumentation holds for the for-loops in lines 3 and 12. To know the current
variable, they manage counters that count till |m| for the current monomial m,
which is clearly logarithmic in n. And again, the for-loop in line 8 is handled
analogously. Here, the counter has to count till |c|, which also is logarithmic in n.

21

Chapter 2 Preliminaries

Algorithm 2 The maxterm test

Input: irredundant, monotone DNF ϕ and clause c
Output: Yes, if c is a maxterm of ϕ, and No, otherwise

1: for all monomials mi of ϕ do
2: count ← 0
3: for all all variables xj ∈ mi do
4: if xj ∈ c then
5: count ← count + 1

6: if count = 0 then
7: output No and stop

8: for all variables xi ∈ c do
9: hit ← |Mϕ|

10: for all monomials mj ∈ ϕ do
11: count ← 0
12: for all all variables xk ∈ mj do
13: if xk ∈ c and k �= i then
14: count ← count + 1

15: if count > 0 then
16: hit ← hit − 1

17: if hit = 0 then
18: output No and stop

19: output Yes

It remains to check the variables count and hit . The maximal value of count is
the size of a largest monomial of ϕ. Hence, count remains logarithmic in n. The
maximal value of hit is |Mϕ|. Hence, it is also logarithmic in n.

Another test we will use is that of evaluating a DNF under a given assignment.

Lemma 2.5.6. Given an irredundant, monotone DNF ϕ and an assignment A,
it can be decided in logarithmic space whether A(ϕ) = 1.

Proof. Let V = {x1, . . . , x|V |} be the set of variables and Mϕ = {m1, . . . , m|Mϕ|}
be the set of monomials of ϕ. It has to be tested whether A contains at least one
monomial of ϕ. An appropriate algorithm is given as Algorithm 3. The correctness
of Algorithm 3 is straightforward. We have to analyze the space requirement.

Both for-loops could manage counters that contain the number of the currently
tested monomial and the index of the current variable to know which are the
current monomial and variable. Such counters stay logarithmic in the input size.
The if-test in line 4 does not need any additional space, since it is just a search in
A for the index of the variable. The eval -variable only needs constant space.

Finally, we establish the complexity of testing whether a given set is contained
in a set family.

22

2.5 Basic computational tasks

Algorithm 3 The DNF evaluation

Input: irredundant, monotone DNF ϕ and an assignment A
Output: Yes, if A(ϕ) = 1, and No, otherwise

1: for all mi ∈Mϕ do
2: eval ← 1
3: for all xj ∈ mi do
4: if xj �∈ A then
5: eval ← 0
6: if eval = 1 then
7: output Yes and stop

8: output No

Algorithm 4 isIn

Input: set S = {s1, . . . , s|S|} of subsets of V and subset t ⊆ V
Output: Yes, if t ∈ S, and No, otherwise

1: for all si ∈ S do
2: if |si| = |t| then
3: isin ← 0
4: for all x ∈ t do
5: if x ∈ si then
6: isin ← isin + 1

7: if isin = |si| then
8: output Yes and stop

9: output No

Lemma 2.5.7. Given a set S of subsets of V and a subset t ⊆ V , it can be decided
in logarithmic space whether t is contained in S.

Proof. The algorithm is given as Algorithm 4. The correctness of Algorithm 4 is
straightforward.

The for-loops need two logarithmic counters to count till |si| and |t|. The if-test
in line 2 can be implemented using two other logarithmic counters. The isin-
variable needs logarithmic space as well, since the largest value stored is |t|.

23

Chapter 3

Applications

In this chapter we give an overview of problems that are equivalent to Monet or
that are strongly related to Monet in the sense that Monet techniques can be
applied to solve them. We also discuss generalizations of Monet and its variants.

Our idea is to give some further motivation for the importance of Monet by
showing the broad range of problems where results on Monet are applicable and,
hence, what different fields can benefit from new insights. Thereby, the chapter
is not intended to contain all the details and proofs nor do we formally define
all the terms from the respective fields. Instead, we would like the chapter to
be a bibliography of possible application areas of Monet algorithms and thus we
prefer just giving pointers to the original literature where any details can be found.
We think this chapter’s compilation of applications might be very useful as a new
brief survey consisting of a state-of-the-art reference list to Monet applications
that complements older lists such as the ones in [BEGK02a, CH07, EG95, EG02,
Eit91, Got04, FGBS96].

The chapter is organized as follows. It contains alphabetically ordered sections
for each field where Monet applications can be found. In each section, the
problems themselves are also ordered alphabetically. Of course, sometimes the
classification of the problems is a matter of taste as some fields may overlap,
e. g., artificial intelligence and logic or artificial intelligence and machine learning.

3.1 Artificial intelligence

Abduction Abduction is a tool of common-sense reasoning that helps in finding
explanations or missing knowledge. More formally, given the characteristic set
of a Horn theory Σ—the background theory—, a literal q — the query—, and a
subset A of all literals, the problem is to find all explanations for q with respect
to A. Here, a logical theory is a set of formulas. It is Horn, if it is a set of clauses
having at most one positive literal each. An explanation is a minimal set E of
literals from A such that Σ∪E is satisfiable and implies q, which means that any
model of Σ∪E also is a model of q. Here, a model of Σ is a satisfying assignment.

The above described variant of abduction can be shown to be equivalent to the
computational variant of Monet in its hitting set formulation [EG02, EM07] and
hence algorithms based on hitting set computation exist [SU06].

25

Chapter 3 Applications

Horn envelope The Horn envelope of a propositional theory Σ is the strongest
(with respect to implication) Horn theory Σ′ such that Σ implies Σ′. It can
be shown that, given the models of Σ, computing all prime clauses of its Horn
envelope is equivalent to the computational variant of Monet in its transversal
hypergraph formulation [EG02, Got04, Kha95, Kha96, KPS93].

Knowledge recompilation It can be shown that the task of computing all max-
imal subsets of a Horn theory that are consistent with a new Horn formula is a
generalization of the computational variant of Monet in its transversal hyper-
graph formulation [GPS98].

Knowledge representation Traditionally, knowledge in artificial intelligence is
represented by formulas and the notion is that all logical conclusions are accessible
to some agent knowing the formulas. In [KKS93, KR96] it was proposed to use
as an alternative the representation by characteristic models instead of formulas.
Characteristic models are models that are not the intersection of other models. In
case of Horn formulas, Khardon showed that switching between the representa-
tions of a Horn CNF by its characteristic models and by all its prime implicates is
equivalent to the computational variant of Monet in its transversal hypergraph
formulation [Kha95, Kha96].

Another means of knowledge representation is the formalism of conceptual
graphs that emerged from semantic networks. These structures can be extended to
conceptual graph assemblies by adding hypergraphs to the conceptual graphs. In
case that the hypergraphs have to be given implicitly, it is shown in [CC07, Cro06]
that this can be modeled by hypergraph transversals.

A further notion related to knowledge representation is that of version spaces.
For a class C of concepts, the subset of concepts consistent with a set of given posi-
tive and negative examples is called a version space. The version space is converged
if there is exactly one concept from C consistent with the examples. Deciding con-
vergence of monotone version spaces is equivalent to Monet [HMP04].

In case that only approximation of knowledge in form of a theory is possible,
there are several papers relating model-preference default reasoning to the com-
putational variant of Monet in its transversal hypergraph formulation [KPS93,
SK90, SK96, Zan02].

Model-based diagnosis Roughly speaking, model-based diagnosis is the ques-
tion why and when some system may not behave as it should. Given some system
description, the set of components of the system and some observations on the sys-
tems behavior, model-based diagnosis tries to find minimal consistent states of the
system with respect to the observations. This problem and a first solution based on
hitting set computation was first reported in [Rei87]. Note that this first solution
was improved later on [GSW89, Wot01]. Other hitting set enumeration algorithms
for model-based diagnosis can be found in [Fer05a, FV04, FV05, Hae98, Rym92].

26

3.2 Combinatorial optimization

Actually, the computational variant of Monet in its hitting set formulation is
equivalent to model-based diagnosis [EG91, EG95, Nic02]. A more general ver-
sion of diagnosis is strongly related to prime implicant computation [KMR92].

Examples of hitting set based methods for diagnostics can be found in reliability
estimations [AK03], configuration problems [FFJS04], fault diagnosis for earth mo-
vers [FVB+02, FVB+03a, FVB+03b, FVBM02], debugging [PDA93a, PDA93b],
and disorder diagnosis [VO00a].

Propositional circumscription The decision version of propositional circum-
scription asks, given a CNF and a model, whether the model is minimal for the
CNF. This problem was first studied by Cadoli [Cad92]. As for monotone in-
puts it can be shown to be equivalent to Monet in its transversal hypergraph
formulation [DH08].

Type error diagnosis Type error diagnosis is the task of generating an expla-
nation for some error. It requires finding all minimal unsatisfiable subsets of a
given set of constraints (representing the error) which can be managed via solving
the computational variant of Monet in its hitting set formulation [BS05, LS08,
KLM06].

Universality of cognitive structures Given a cognitive structure, the univer-
sality problem is to decide whether the structure responds to specific instances.
This problem is important to decide the response-ability of the structure. It can
be solved using the dualization formulation (cf. the corresponding paragraph in
Section 3.14) of Monet [PCPO02].

3.2 Combinatorial optimization

Covering problems Associate with a simple hypergraph H consisting of m edges
and v vertices the incidence matrix MH that contains as rows the characteristic
vectors of the edges of H. Then the computational variant of Monet in its
transversal hypergraph formulation is equivalent to finding feasible solutions of
the following set-covering problem [BS87, BS88]:

min{x : MH · x ≥ em, xj ∈ {0, 1}, j = 1, . . . , v},
where em is the vector consisting of m ones. The characteristic vectors of the
transversals of H are the feasible solutions of the above set-covering variant.

A similar problem of computing minimal coverings can also be found in [Law66].

3.3 Computational biology

Computing cut sets Cut sets in metabolic networks are strategies that block
a given set of reactions. Thereby a reaction is blocked if it cannot operate in a

27

Chapter 3 Applications

steady state. Minimal cut sets can be computed from the elementary modes of
the network which turns out to be equivalent to transversal hypergraph gener-
ation [HKS08, IB07, KG04, Kla06, KSG07]. Of course, one can imagine simi-
lar tasks for different types of networks (not necessarily metabolic) where again
transversal computation proves useful [Hau08].

Modeling reaction pathways In [EL03] methods related to evaluating networks
of chemical reactions are described. Several of these methods require computation
of minimal sets and the authors suggest to use algorithms solving the computa-
tional variant of Monet for this purpose.

Phylogeny reconstruction Methods for a restricted computational Monet vari-
ant in the setting of computing all minimal transversals up to a given size can
be applied to almost-perfect phylogeny reconstruction [Dam06]. Almost-perfect
phylogeny reconstruction is the problem of computing a matrix that describes a
phylogenetic tree from a given matrix using row deletions, column deletions, or
bit flips in the given matrix.

Reconstruction of unknown mixtures of proteins Damaschke describes a meth-
od for concluding a set of causes from an observed set of effects [Dam07]. His
method is based on the computational variant of Monet in its hitting set for-
mulation and may for instance be applied to the task of determining which pro-
teins are present in a mixture of proteins using peptide mass fingerprinting and a
database of mass spectra.

3.4 Computational geometry

Bodies Let A ⊆ R
n be a subset of points in R

n and z be a point in R
n. A body of

A then is a minimal subset X ⊆ A containing z in its convex hull. Generating all
bodies can be shown to be a generalization of the computational variant of Monet

in its transversal hypergraph formulation [KBEG08b]. A related question on the
number of bodies compared to the number of maximal sets that do not have z in
their convex hull is discussed in [CKK02] for the special case of n = 2.

Maximal k-boxes Given an anti-monotone property π and a subset of the max-
imal elements of some vector space satisfying π, the problem of computing a new
maximal element or state that the given set contains all of the maximal elements
can be used to compute maximal k-boxes. Such k-boxes are useful in several
data mining scenarios as well as in computational geometry. Solving the maximal
vector problem can be shown to be equivalent to the computational variant of
Monet in an independent vector formulation [KBE+07].

28

3.5 Computational medicine

3.5 Computational medicine

Optimal vaccination strategies Given a subset of initially infected individu-
als from a population of individuals and assumptions about disease transmission,
the task of computing inclusion minimal vaccination strategies can be solved us-
ing the computational variant of Monet in its transversal hypergraph formula-
tion [BG07b].

3.6 Cryptography

Attacking anonymity Anonymity protocols are useful to hide peer partners in
communications. In [KP04] an attack on a generic anonymity protocol is used
to identify all the peer partners of one participant. The attack uses the FK-
algorithm B (cf. Section 5.3) for the computational variant of Monet in its hitting
set formulation.

3.7 Databases

Armstrong relations A relational schema R consists of a set U of attributes and
a set F of functional dependencies between the attributes. The closure F+ of F
contains all dependencies that follow from F . We say that a relational instance r
over U is an Armstrong relation for R iff the functional dependencies holding in r
are exactly the functional dependencies in F+. Armstrong relations are especially
useful in database design as they show, on the instance level, which functional
dependencies hold and provide this information in a human-readable format to a
database designer. There is a close relationship of computing Armstrong relations
to Monet-like problems [DT95, GL90, KMR99, MR86]. Computing an Arm-
strong relation for a given set of functional dependencies in so-called Boyce-Codd
Normal Form (BCNF), where all the left hand sides of the functional dependencies
are keys, can be shown to be equivalent to the computational variant of Monet

in its hypergraph saturation (cf. the corresponding paragraph in Section 3.12)
formulation [EG91, EG95].

Identify keys Keys play an important role in databases as they minimally iden-
tify tuples stored in the relations. Identification of whether a given relation is in
a desirable normal form for relations can often be done knowing all the keys for
the relation, e. g., deciding if it is in BCNF. Again the problem of finding keys
is, just like identifying Armstrong relations, strongly related to Monet [Dem80,
DT87, DT99, GMS97, Thi86, TS05] and the decision problem—given a relation
instance and a set of keys for it, decide if there is another key—can be shown to
be equivalent to the complement of Monet in its hypergraph saturation formu-
lation [EG91, EG95].

29

Chapter 3 Applications

Inclusion dependencies Inclusion dependencies are a generalization of foreign
keys in the relational model. They convey data semantics in an interrelational
manner, e. g., describing the fact that all values of some attributes in one relation
are a subset of the values of some attributes of another relation. Computing such
inclusion dependencies can be done using the computational variant of Monet in
the transversal hypergraph formulation [MP03].

Inferring functional dependencies The problem of inferring functional depen-
dencies from a given relation instance is equivalent to generating Armstrong
relations as it is just the opposite problem. Thus, it also has many applica-
tions in database design and is strongly related to Monet [DT95, GL90, Got04,
IKM99, IKM03, KM95, Koe05, Koe08, LPL00, MR86, MR87, MR92a, MR92b,
MR94, WGR01]. The decision version—given relation instance r and a set F of
functional dependencies in BCNF, decide if the functional dependencies holding
in r equal F+—is equivalent to Monet in its hypergraph saturation formula-
tion [EG91, EG95].

Query processing If a query to a database fails, the user might gain more infor-
mation by not just getting the empty set as an answer but having some information
about what causes the query to fail. An appropriate method to solve this issue
is to look for minimally failing subqueries of the original queries. This problem
then turns out to be solvable by using the computational variant of Monet in
the transversal hypergraph formulation [God97].

Query rewriting Knowing what causes a query to fail in the sense of computing
the minimally failing subqueries (discussed in the previous paragraph) also helps
in rewriting the query [God97].

Another technique for rewriting queries based on database views also is equiva-
lent to the computational variant of Monet in its transversal hypergraph formu-
lation [JBPT06].

Reducts in rough sets Rough sets theory aims at approximating concepts from
data. An important tool are reducts that can be informally described as subsets
of attributes in a data base that do not introduce additional inconsistencies in
the data. They can therefore be used to detect redundant attributes and thus to
achieve reduction in the number of attributes. As shown by Popova, reducts can
be derived as transversals from a special matrix associated with the data [Pop04].
Thus, computing reducts is equivalent to the computational variant of Monet

in its transversal hypergraph formulation. Another possibility of showing the
equivalence is via difference functions as described in [Jär00].

View update Views are an important means of presenting data from databases
to users. In case of database updates also views have to be updated. This can

30

3.8 Data mining

be managed using the computational variant of Monet in its hitting set formu-
lation [AB00, Tom88].

3.8 Data mining

Association rules Association rules in databases are statements of the form
“if item x is present in a tuple than in 95% of the tuples also y is present”
and, thus, are very important for different data mining tasks. A crucial step
in mining association rules is computing frequent and infrequent sets [AMS+96,
AIP04] and as this task is equivalent to the computational Monet variant (see the
corresponding paragraph on frequent item sets below), also association rule mining
is strongly related to Monet. Even more general rules than just association rules
can be found using frequent sets where again Monet techniques apply [MT96a,
RC06].

Closed itemsets The closure of an itemset I is the set of all items that appear
together with I in all tuples of a database. Closed itemsets are itemsets that
equal their closure; the minimal itemsets whose closure equals an itemset Z are
the generators of Z. Association rules where the left hand side is the generator of
the right hand side are especially interesting. Minimal generators of closed item-
sets are computable using the computational variant of Monet in its transversal
hypergraph formulation [BG07a, Gar06, PT02].

Coloring data clusterings To usefully visualize information gained by different
clustering results in data mining applications, one approach is to attribute colors
to the clusters in a way that similar clusters get the same color. The authors
of [DCS06] describe a method of color assignment based on the computational
variant of Monet in its transversal hypergraph formulation.

Dualization of discrete functions Discrete functions are an important means
for analyzing multi-attribute data sets. Bioch shows that for dualizing positive
discrete functions techniques for solving the computational variant of Monet in
its dualization formulation (cf. the corresponding paragraph in Section 3.14) can
be applied [Bio98].

Emerging patterns Given two data sets, emerging patterns are those itemsets
whose support (the number of occurrences in the data sets) differs substantially
between the given data sets. Emerging patterns are useful for, e. g., classification.
Computing emerging patterns can be done applying the computational variant of
Monet in its transversal hypergraph formulation [BMR03, DL05, Man04, RB03,
RF07]

31

Chapter 3 Applications

Extracting semantics from data cubes The cube lattice framework is a search
space for multidimensional data mining. One way of extracting semantics from
cube lattices is that of cube transversals that turn out to be a special case of
hypergraph transversals [CCL03]. Hence, techniques for the computational vari-
ant of Monet in its transversal hypergraph formulation are applicable to the
computation of cube transversals.

Formal concept analysis Concept lattices are complete lattices generated by
closure operators (cf. the above paragraph on closed itemsets). They play a role
in knowledge discovery as a whole [PT02], especially in mining causal dependen-
cies [Pfa06], and generating rule based world-views from data given in a relational
database [Pfa07]. Due to its relation to closed sets also formal concept analysis
can benefit from Monet solving approaches.

Frequent itemsets Given a binary matrix M , a subset C of its columns is called
t-frequent if at least t rows of M only contain non-zero entries in the C-columns.
Otherwise, C is t-infrequent. Of special interest are the maximal t-frequent and the
minimal t-infrequent subsets. Computing both, the maximal t-frequent and the
minimal t-infrequent subsets is equivalent to the computational variant of Monet

in its transversal hypergraph formulation [BGKM03]. As the notion of frequent
sets can be easily extended to arbitrary databases, Monet solving techniques
are very important for computing frequent and infrequent itemsets in data min-
ing [Afr06, Bay98, FMP04, GKM+03, GKMT97, GMS97, Got04, KISI00, Man05,
Mis02, MT98, STT98, SU03, Toi96a, Toi96b].

A generalization of maximal frequent sets to so-called intervals can also be
shown to be solvable using Monet techniques [Elb06a].

Interesting sentences A generalization of frequent sets are interesting itemsets,
where there is some interestingness predicate instead of just frequency. The most
important interesting itemsets are the maximal interesting itemsets. Computing
these maximal interesting sets can be managed using algorithms for the com-
putational variant of Monet in its transversal hypergraph formulation [MFP04,
MT96b]. Actually, the problems can be shown to be equivalent [GKMT97, MT97].

Sequential patterns Sequential pattern mining can be seen as a way of general-
izing association rules. An example is to derive rules like “50% of the customers
that buy a bike and biking clothes, then buy clipless pedals and appropriate biking
shoes, then buy a GPS, then buy . . . ” that cannot be gained using association
rule mining. An ordered list of itemsets forms a sequence. All the transactions
performed by a customer form this customer’s customer sequence. A customer
supports a sequence iff this sequence appears as a subsequence in his customer
sequence. The problem of mining sequential patterns is the problem of finding all
the maximal sequences that have at least a given support. Thus, this problem

32

3.9 Distributed systems

is similar to mining frequent itemsets. And not too surprisingly, it can also be
solved using the computational variant of Monet in its transversal hypergraph
formulation [Li06, LLT07].

3.9 Distributed systems

Synchronization Synchronizing a distributed system without guaranteed com-
munication is an important task that can be solved by mutual exclusion. A
key concept to realize mutual exclusion is that of coteries, which are families
of incomparable subsets such that every pair of contained subsets has at least
one element in common. In case of distributed systems, the subsets are sub-
sets of nodes of the system or, in case of distributed databases, sites of the
database. Very desirable in this setting are so-called non-dominated coteries,
for which no other coterie exists such that each set is contained in some set of
the other coterie. Deciding whether a coterie is non-dominated is equivalent to
Monet in its self-transversality/self-duality formulation (cf. the corresponding
paragraphs in Sections 3.12 and 3.14) and so there is a rich field of applications
of Monet [BI95b, BI95c, EG95, GB85, HY05, IK93, JPY88, MK01].

3.10 E-commerce

Best cover The problem of, given a concept description and an allowed termi-
nology, rewrite the concept using only names from the allowed terminology, is
known as the best cover problem. It has rich applications in e-commerce and can
be solved using the computational variant of Monet in its transversal hypergraph
formulation [BHL+05, HLRT02a, HLRT02b, HLRT03].

Query rewriting in e-catalogs E-catalogs are an important source of informa-
tion in the web. Querying them may result in a failure, as it may in the case of
“real” databases (cf. the corresponding paragraph in Section 3.7) and again the
problem of rewriting the query can be shown to be equivalent to the computational
variant of Monet in its transversal hypergraph formulation [BHP+06, BHRT03].

Web service discovery A very important task in the field of web services is to
automatically find services that fit user specific interestingness constraints. As
this problem is very similar to set-covering in a constrained form, approaches for
solving Monet in its transversal hypergraph generation formulation are applica-
ble [Sir04, ZB06].

33

Chapter 3 Applications

3.11 Game theory

Nash equilibrium Computing so-called NE-theorems and NE-examples in bi-
matrix games is equivalent to deciding whether the game has a Nash equilib-
rium. Computing NE-theorems and NE-examples can be shown to be equivalent
to the computational variant of Monet in its transversal hypergraph formula-
tion [BEG+08].

Nash solvability Given two player’s strategies and the possible outcomes, a game
form is a mapping of the cross-product of the strategies to the outcomes. Thus,
a game form can be seen as game without specified payoffs. Nash solvability of a
game form is equivalent to its tightness (see paragraph below) and thus is equiv-
alent to Monet in its duality (cf. the corresponding paragraph in Section 3.14)
formulation [BGM07, Gur75, Gur88].

Tight game forms A game form can be associated to two DNFs that represent
the mapping of the two player’s possible strategies to the outcomes of the game.
A game form is called tight iff these two DNFs are dual and thus deciding tight-
ness is equivalent to Monet in its duality (cf. the corresponding paragraph in
Section 3.14) formulation [BGM07, Gur75, Gur88]

3.12 Graph theory

2-colorable intersecting hypergraphs A hypergraph k-coloring is an assign-
ment of one of k colors to each vertex such that no edge consists of vertices all
having the same color (this means that the sets consisting of vertices having the
same color are independent). As for 2-coloring, we obviously have to concentrate
on hypergraphs having no singleton edges. 2-coloring a simple, intersecting hy-
pergraph (no disjoint edges) can be shown to be equivalent to the complement of
Monet in its self-transversality (see paragraph below) formulation [EG95].

Bicritical clutters Clutter is just another name for a simple hypergraph. A
clutter H is bicritical iff for every edge e of H, the clutter consisting of the edges
of H disjoint from e, can be colored with two colors less than H. It can be
shown that deciding whether a non-trivial bicritical clutter has chromatic number
3 is equivalent to Monet in its self-transversality (see paragraph below) formu-
lation [Ben99].

Convex generators A convexity space for a set V is a pair (V, C) where C is a
family of subsets of V . For a subset A ⊆ V the convex hull of A with respect to
(V, C) is the intersection of all sets in C that contain A. A convex generator of
a graph G = (V,E) is a minimal subset of V such that its convex hull is V . It

34

3.12 Graph theory

can be shown that findind the convex generators of a graph is equivalent to the
computational variant of Monet in its transversal hypergraph formulation [JD00].

Independent sets A subset of vertices is independent in a hypergraph iff it does
not contain an edge. Thus, independent sets are the complements of transversals
and, hence, computing all the maximal independent sets of a hypergraph is equiv-
alent to Monet in its transversal hypergraph formulation [BEGK00, BEGK04,
JPY88, LLK80, MP97].

Minimal contrast subgraphs Given two collections of graphs, a contrast sub-
graph is a subgraph appearing in one collection but not in the other. Especially
interesting are the minimal contrast subgraphs. Finding them has applications in
graph classification and the like and can be solved using the computational variant
of Monet in its transversal hypergraph formulation [TB06].

Multiple and partial transversals Multiple and partial transversals are gener-
alizations of transversals. As for multiple transversals, we assign weights to the
edges and to hit an edge of weight b a multiple transversal has to contain at least
b vertices of that edge. As for partial transversals, we have a threshold k given
for a hypergraph and “transversals” are allowed to have an empty intersection
with at most k edges. The problems of computing all minimal multiple/partial
transversals are equivalent to the computational variant of Monet in its transver-
sal hypergraph formulation [BGKM01].

Saturation A hypergraph H is saturated iff every vertex subset is contained in
or contains some edge of H. As for simple hypergraphs, it can be shown that
testing saturation is equivalent to Monet in its transversal hypergraph formula-
tion [BI95a, EG95].

Self-transversality A hypergraph is self-transversal or strange iff H = Tr(H).
Testing whether a hypergraph is self-transversal is equivalent to Monet in its
transversal hypergraph formulation [EG95, Sey74].

Spanning subgraphs A graph G is k-vertex connected iff every subgraph of G
obtained by removing at most k−1 vertices is connected (there exist paths between
any two vertices). A subgraph of G is spanning iff it has the same vertex set as
G. Given a graph G, generating all its minimal k-vertex connected spanning
subgraphs can be managed using techniques solving an easy class (cf. Chapter 4)
of Monet in its transversal hypergraph formulation [BBE+07, Bor06].

Total dominating sets Given a graph G, a total dominating set is a subset D of
vertices such that each vertex in G has at least one neighbor in D. Constructing a
hypergraph H from G containing as edges the neighborhoods of the vertices in G

35

Chapter 3 Applications

every minimal transversal of H is a minimal total dominating set of G. Thus com-
puting all minimal total dominating sets can be managed using the computational
variant of Monet in its transversal hypergraph formulation [TY07].

Two-layer planarization A graph is bipartite iff its vertex set can be partitioned
into two parts such that there are no edges between vertices from the same part. A
bipartite graph is biplanar if its vertices can be placed on two parallel lines such
that no edges cross if drawn straight. The problem of two-layer planarization
asks whether a given graph can be biplanarized by deleting k edges. Techniques
that can be seen to use the computational variant of Monet in its hitting set
formulation can solve two-layer planarization [DFH+01, Fer05b].

Weighted transversals Weighted transversals generalize partial and multiple
transversals. Given non-negative weight and threshold vectors for each edge, a
weighted transversal is a minimal vertex subset that intersects every edge except
for a sub-family of total weight not exceeding the given threshold. Generating all
weighted transversals is equivalent to the computational variant of Monet in its
transversal hypergraph formulation [BGKM04].

3.13 Lattice theory

Implicational basis of lattices Computing a minimum implicational basis of a
lattice that is given by the poset of its irreducible elements can be shown to be
equivalent to the computational variant of Monet in its database formulation
of computing functional dependencies [CM03, JN06]. The key idea is that the
implicational basis then forms a functional dependency cover. There exist several
restrictions where the basis computation can be done in output-polynomial time,
namely locally distributive lattices [Duq91], ∧-semidistributive lattices [JN06],
and modular lattices [Wil00].

Independent elements in products of lattices Given the product L of n lat-
tices, a set A in this product, and a partial list of maximal independent elements
of A in L, the task is to either find a new maximal independent element of A or
to decide that there is none. This problem is a generalization of Monet in its
transversal hypergraph formulation [Elb02a] but Monet techniques may also be
useful for appropriate algorithms.

Very similar is the following problem. We are given the product P of n posets,
where the precedence graph of each poset is acyclic and either the in-degree or the
out-degree of each element is bounded. Given a set A ⊆ P, it can be shown that
computing the set of maximal independent elements ofA in P is a generalization of
the computational variant of Monet in its independent set formulation [Elb02c].

36

3.14 Logic

3.14 Logic

Bidual Horn extensions A mapping f : {0, 1}n → {0, 1} is said to be a Boolean
function f on n variables. Note that any Boolean function can be expressed by a
Boolean formula and that each vector from {0, 1}n straightforwardly corresponds
to an assignment for any Boolean formula expressing f . The dual f d of a function
f is defined to satisfy A(f d) = A(¬f) for every assignment A. A function f is
bidual Horn iff f and f d are Horn. A partially Boolean function is given by a
disjoint pair (T, F) of subsets of {0, 1}n that contain vectors where the function
is supposed to be true resp. false. The extension problem for a given partially
defined Boolean function is checking whether it is interpolated by a function f
from a given class of total Boolean functions, and computing a formula for f .
It can be shown that bidual Horn extension is output-polynomial if and only if
the computational variant of Monet in its dualization formulation (see below) is
output-polynomial [EIM99].

Canonical decomposition A monotone function f (which can be expressed by
a monotone formula) is dual-minor iff for all assignments f ’s truth-value is at
most equal to the truth-value of f d. It is self-dual iff f = f d. As for a dual-
minor function, it is interesting to decompose it into a conjunction of monotone
self-dual functions. If all these self-dual functions satisfy special properties, we
have a so-called canonical decomposition. It can be shown that finding canonical
decompositions of positive dual-minor functions is equivalent to Monet in its
duality formulation (see below) [BIM99].

Dualization Given two irredundant, monotone DNFs, decide if they are dual,
is equivalent to Monet [EG02, FK96, Got04]. As follows, the computational
variant—given an irredundant, monotone DNF, compute the dual irredundant,
monotone DNF—, known as dualization, is equivalent to the computational vari-
ant of Monet.

There is also a generalization of this Monet version. Namely dualization of
disguised bidual Horn formulas. A formula is disguised bidual Horn iff it becomes
bidual Horn after renaming some variables. Dualization of disguised bidual Horn
formulas clearly is a generalization of the computational variant of Monet in
its dualization formulation. It can also be managed in output-quasi-polynomial
time [EIM02].

Inner-core and outer-core functions Given sets T and F of a partial function
and an integer k the k-inner-core and k-outer-core functions describe the functions
that are immune against flipping at most k assignments from T to F or vice versa.
For the class of monotone functions, computing the maxterms and the minterms
of inner-core and outer-core-functions in output-polynomial time is equivalent to

37

Chapter 3 Applications

finding an output-polynomial algorithm for the computational variant of Monet

in its dualization formulation [MI99].

Interior and exterior functions The k-neighborhood of an assignment A for a
Boolean function contains all assignments that differ from A in at most k vari-
ables. For a non-negative integer k the k-interior function of a Boolean function
f is defined to be true for each assignment whose k-neighborhood only contains
satisfying assignments of f . Analogously, the k-exterior function is defined to be
true for each assignment whose k-neighborhood contains a satisfying assignment
of f . Given the irredundant DNF of a monotone function f and an integer k, the
problems of computing all min- and maxterms of the k-exterior function of f or all
minterms of the k-interior function of f in output-polynomial time is equivalent to
give a polynomial algorithm for Monet in its duality formulation [MI96, MOI03].

Maximal models Given a CNF consisting only of negative literals, computing
all its maximal models can be shown to be equivalent to the computational variant
of Monet in its transversal hypergraph formulation [KSS00, Sta01].

Proof systems A proof system for a language L is a verifying algorithm V run-
ning in polynomial time and for all x we have x ∈ L iff there is some advice string
p such that V on input x and p accepts. Associated to a proof system V is a
function fV (n), which is defined as the maximum of the minimal advice lengths
for any x ∈ L with |x| = n. A proof system is polynomially bounded iff fV (n) is
polynomial. Associated to the open complexity of Monet in its transversal hyper-
graph formulation is the question of whether or not tree proofs are a polynomially
bounded proof system for the transversal hypergraph language [Pit02].

Satisfiability variants The satisfiability problem can be formulated as the prob-
lem of deciding whether a given CNF is satisfiable. This problem is NP-complete.
There are several restricted variants related to Monet.

IMSAT (intersecting monotone satisfiability) is a satisfiability variant where
each clause of the CNF is restricted to either contain only positive or only negative
literals and each positive clause has an nonempty intersection with each negative
clause. This problem is equivalent to the complement of Monet in its transversal
hypergraph formulation [EG95, EG02, Got04].

Associated with a clause set is its conflict multigraph that has a vertex for each
clause and as many (parallel) edges connecting two vertices as the clauses have
conflicts (variables that appear positive in one and negative in the other clause).
A CNF is bi-hitting iff the conflict multigraph associated to the CNF’s clause
set is a complete bipartite multigraph (where every pair of vertices from different
parts is connected by at least one edge). It can be shown that satisfiability of
bi-hitting clause sets is equivalent to the complement of Monet in its transversal
hypergraph formulation [GK04a].

38

3.15 Machine learning

NAESPI (not all equal satisfiability with positive literals and intersection) is a
satisfiability variant where the CNF is restricted to be monotone and all clauses
must have a nonempty intersection. But in this case we do not just ask for a sat-
isfying assignment (which would be a trivial task) but for a satisfying assignment
not completely containing any clause. This problem is equivalent to the comple-
ment of Monet in its self-duality (see paragraph below) formulation [GK04b].

Self-duality An irredundant, monotone DNF is self-dual iff it is identical to its
dual irredundant, monotone DNF. It can be shown that deciding self-duality of
an irredundant, monotone DNF is equivalent to Monet [BI95a, Dom97, EG95,
GK04b, GK07, GM08].

Unknown assignment Given subsets T of the minterms and F of the maxterms
of a monotone function f , the problem of finding an unknown assignment that is
not superset of any t ∈ T nor subset of any f ∈ F can be shown to be equivalent
to the computational variant of Monet [BI95a, GK99, MI97].

The corresponding decision version asks for a given partial function whether in
fact it is a total function.

3.15 Machine learning

Classification Finding minimal feature sets that can be used as classification
rule templates and preserve a given classification of objects is an interesting task
in machine learning. In [Vin99b, VØ00b] a method for computing such classi-
fication rules is described that uses the computational variant of Monet in its
hitting set formulation. These techniques can also be applied to rough sets (cf. the
corresponding paragraph in Section 3.8).

Kernel rules The input of a typical machine learning scenario is a training set of
class-labeled examples where examples are described by the assignment of values
to a set of attributes. A partial description is an instantiation of a subset of
attributes. A rule is a partial description such that all examples in the training
set that agree with the partial descriptions’ instantiated variables have the same
class-label. If no subset of a rule also is a rule, we say that it is a kernel rule. It can
be shown that kernel rules can be computed using prime implicant generation and
thus in monotone settings algorithms for the computational variant of Monet are
applicable [Rym94b].

Learning monotone formulas Given an oracle for a monotone formula that
answers questions on formula values, learning the formula’s irredundant, monotone
DNF and CNF is equivalent to the computational variant of Monet [BHIK97,
BI95a, DMP99, GKMT97]. Using other oracles or slighly changing the setting,

39

Chapter 3 Applications

there are many more Monet like problems in the field of learning monotone
formulas [Ang88, BCG+96, BD96, Tor01, TT01, TT02].

3.16 Mathematical programming

Enumerate solutions We are given a system Ax ≥ b of r linear inequalities in n
integer variables, where A is a real r×n-matrix, b is a real r-vector, and 0 ≤ x ≤ c
for some non-negative n-vector c. A vector x is a feasible solution iff Ax ≥ b. The
system is monotone iff for every feasible solution x all y ≥ x are also feasible. The
problem of generating all minimal feasible solutions of a monotone system can be
solved using techniques for the computational variant of Monet in its transversal
hypergraph formulation [KBEG08a]. In case of a binary matrix A and all-ones
vectors b and c even equivalence can be established [BEG+02].

Feasibility The chromatic number of a hypergraph can be computed by a linear
relaxation of an integer program. Determining the feasibility of a certain point in
the polytope associated with this linear program can be shown to be equivalent
to Monet in its self-duality formulation [GM08].

Irreducibly infeasible subsystems Given an infeasible system Ax ≤ b, finding all
minimal infeasible subsystems is the question of computing all subsystems whose
deletion would cause the resulting system to be feasible. This problem can be
shown to be solvable using techniques for the computational variant of Monet in
its transversal hypergraph formulation [Pfe02].

Polyhedral cones Given a family K of polyhedral cones and a vector b in their
sum, computing all the minimal subsets of K whose sum contains b and all the
maximal subsets of K whose sum does not contain b is equivalent to the compu-
tational variant of Monet in its transversal hypergraph formulation [Kha00].

Polyhedron representation The problem of, given a bounded polyhedron P
by a system of linear inequalities P = {x ∈ R

n : Ax ≤ b} and a subset X
of P ’s vertex set, decide whether X is the complete vertex set of P , is known
as the polytope-polyhedron problem. This problem is essential in switching be-
tween polyhedron representation from inequalities to vertices. The polytope-
polyhedron problem is very similar to Monet in its transversal hypergraph formu-
lation [Lov92]. For some (restricted) computational variants—find all polyhedron
vertices—algorithms for the computational variant of Monet in its transversal
hypegraph formulation can be applied [BEGM07].

40

3.17 Matroid theory

3.17 Matroid theory

Cut-conjunctions Given a binary matroid M on ground set E and a subset
B ⊆ E, generating all maximal sets X ⊆ S \ B that span no element in B can
be shown to be a generalization of the computational variant of Monet in its
transversal hypergraph formulation [KBB+08]. Here, X ⊆ E spans a b ∈ B if
r(X) = r(X ∪ {b}), where r : E → Z

+ is the rank function of M . A special case
of this matroid problem is generating cut-conjunctions in graphs that is finding
egde sets whose deletion causes a set of source-sink pairs to be disconnected.

Independent sets Given matroids M1, . . . ,Mm on a ground set V , computing
all maximal subsets of V that are independent in all the matroids is a special case
of a problem for polymatroid functions that then turns out to be solvable using
Monet techniques.

Let V be a finite set and f be a function mapping subsets of V to natural
numbers. We say that f is monotone if f(X) ≤ f(Y) for X ⊆ Y ; submodular if
f(X ∪Y)+f(X ∩Y) ≤ f(X)+f(Y) holds for all subsets X, Y ⊆ V ; and polyma-
troid if f is monotone, submodular and f(∅) = 0. Given a system fi(X) ≥ ti, i =
1, ..., m of polymatroid inequalities, computing all minimal feasible solutions can
be shown to be solvable using techniques for the computational variant of Monet

in its transversal hypergraph formulation [BEGK02b, BEGK03a, BEGK03b].

Non-spanning subsets For a subset X of the ground set E of a matroid M let
span(X) denote the set of all elements of E spanned by X. Given a matroid M
on E and two nonempty disjoint subsets A,D ⊂ E, the task of computing all
maximal subsets X ⊆ D, such that span(X) ∩ A = ∅, can be shown to be a gen-
eralization of the computational variant of Monet in its transversal hypergraph
formulation [KBE+05].

Spanning and connected subsets A subset X of the ground set E of a matroid
M is said to be connected iff for every pair of distinct elements x, y of X there
is a circuit C of M such that X ⊇ C ⊇ {x, y}. X spans the matroid M if
r(X) = r(E), where r : E → Z

+ is the rank function of M . Given a matroid M ,
the task of enumerating all minimal spanning and connected subsets can be shown
to be a generalization of the computational variant of Monet in its transversal
hypergraph formulation [KBB+06].

3.18 Mobile communication systems

Channel assignment Given a cellular system, cells that are within a certain
range to each other may not use the same channel due to interference problems.
Contrariwise, cells that are sufficiently apart from each other may use the same
channels to reduce used frequencies. The problem of assigning channels to cells

41

Chapter 3 Applications

can be shown to be solvable using the computational variant of Monet in its
independent set formulation [MS94, SS98].

3.19 Reliability theory

Safeguard sensitive data Given a sensitive database, the task of safeguarding it
consists of ensuring its privacy and its longevity. The search for a “best” system
to safeguard sensitive data under certain metrics can be managed involving a step
that uses the computational variant of Monet [MGM06].

3.20 Semantic web

Semantic composition in e-learning Given a repository of lecture subparts and
a user’s request, the problem of personalized learning involves retrieving subparts
that match the user’s query. Solving this problem involves computing concept
coverings that are closely related to the notion of best covers (cf. the corresponding
paragraph in Section 3.10). And again, computing concept covers can be managed
using an algorithm for the computational variant of Monet in its transversal
hypergraph formulation [KLM07].

3.21 Software engineering

Debugging UML diagrams UML is the standard modeling language in software
engineering. In debugging UML diagrams important tasks are automated contra-
diction detection and repair. As for computing minimal sets of changes in UML
diagrams in order to remove contradictions, an algorithm for the computational
variant of Monet in its hitting set formulation can be used [SKU06].

Revising specifications In software projects the development of code is based
on specifications that state how the final programs should operate. Such speci-
fications are not static as customers may change their mind during the project.
Whenever a new specification is added to the current specification and causes
conflicts, these conflicts have to be resolved. The task of enumerating minimally
revised specifications can be shown to be solvable using an algorithm for the com-
putational variant of Monet in its hitting set formulation [SU05].

3.22 Topology

Homology groups A simplicial complex (V,Δ) can be seen as a special type of
hypergraph with the property that when e ∈ Δ is an edge, then so are all of e’s

42

3.23 XML

subsets. Edges are called faces in this setting. It can be shown that comput-
ing homology groups of finite simplicial complexes from their duals is equivalent
to the computational variant of Monet in its transversal hypergraph formula-
tion [DHSW03].

Non-faces The non-faces of a simplicial complex are subsets of vertices not
contained in Δ. For special simplicial complexes, namely so-called shellable sim-
plicial complexes, computing all minimal non-faces can be solved using methods
for an easy class of the computational variant of Monet in its dualization formu-
lation [BCE+00, Pfe02].

3.23 XML

XML functional dependencies Just like in case of relational databases, func-
tional dependencies can also be defined for XML. As such XML functional depen-
dencies are closely related to relational functional dependencies, computing XML
functional dependencies can be solved using algorithms for the computational
variant of Monet in its transversal hypergraph formulation [Tri08].

43

Chapter 4

Easy Classes

In this chapter we examine easy classes of Monet. These are restrictions of the
input DNF that allow for polynomial time algorithms solving respective Monet

instances. We focus on restrictions of the DNF only as they can be easily trans-
formed to restrictions of the CNF by exchanging the connectives ∧ and ∨ and
thus a role change of the formulas. The study of easy classes is an important
branch of research concerning Monet. One obvious reason is that it allows spe-
cific classes to be solved faster than with any known algorithm for the general
problem. Thereby, the easy classes reveal information about the really hard parts
of the problem. Another reason why easy classes are interesting is the question for
hardness or lower bounds for the problem Monet itself. Unfortunately, no such
results are known yet. But a first step in this direction is a thorough analysis of
the resources needed to solve even easy classes.

Our intention is twofold. First, of course, we want to demonstrate the wide
range of polynomial solvable subclasses of Monet. Our second goal then is to
examine the question of how easy the easy classes really are. All that is known
so far are polynomial time bounds for all the easy classes as this was sufficient to
prove their “easiness.” But there are no known lower bounds (not even logarithmic
space). This situation is not satisfying in the course of hardness analysis of the
easy classes or Monet itself.

We show that some of the easy classes are “easier” than expected, as we will
show them to be solvable with logarithmic space only, improving the previously
known polynomial time bounds.

The discussed restrictions can be divided into two groups. The first group
comprises restrictions on the size of the DNF in the broader sense, like the number
of monomials or their size. The second group contains rather structural restrictions
of the DNF, like being regular, aligned or 2-monotonic.

The chapter is organized as follows. In Section 4.1 we examine restrictions
on the size of the DNF, whereas Section 4.2 is dedicated to the more structural
restrictions. Some concluding remarks follow in Section 4.3.

45

Chapter 4 Easy Classes

4.1 Restrictions on the size of the DNF

In this section we examine restrictions of the DNF ϕ of a Monet-instance (ϕ, ψ)
that concern the size of ϕ in a broad sense.

4.1.1 The DNF contains only a constant number of monomials

First, we restrict the DNF to contain only a constant number of monomials. The
corresponding restricted Monet version is Monetcnm (Monet with a constant
number of monomials).

Monetcnm: instance: irredundant, monotone ϕ in DNF and ψ in CNF,
where ϕ contains only c monomials for constant c

question: are ϕ and ψ equivalent?

Monetcnm is known to be decidable in polynomial time O(nc) [EG91]. We
improve this bound to logarithmic space.

Theorem 4.1.1. Monetcnm is decidable in logarithmic space.

Proof. Let (ϕ, ψ) be a Monet-instance of size n and V = {x1, x2, . . . , x|V |} be its
variable set. We describe the work of an appropriate machine.

Note that checking whether ϕ contains only a constant number of monomials re-
quires only logarithmic space as monomial counting suffices. Let c be the constant
bounding the number of monomials of ϕ.

The machine now has to perform the equivalence test of ϕ and ψ. It systemati-
cally generates candidates for clauses of a CNF equivalent to ϕ (the first candidate
consists of the first variables from each monomial; the second candidate consists
of the second variable from the last monomial and the first variables from all the
other monomials; [. . .]; the last candidate consists of the last variables from all
monomials). There are at most |V |c possible candidates and the machine counts
the already tested ones. This counter is logarithmic in n. By counting the already
tested candidates the machine knows which is the next candidate because of the
systematic generation. Since a candidate consists of at most c variables and since
an index of one variable has size log |V |, the machine could write down the in-
dices of the variables forming the current candidate in space ≤ c log |V | which is
clearly logarithmic in n. For each such candidate the machine checks whether it
is a maxterm of ϕ using Algorithm 2 as a subprocedure. For candidates that are
maxterms, the machine has to ensure that they are included in ψ, since otherwise
ϕ and ψ cannot be equivalent. This is done using Algorithm 4 from Lemma 2.5.7
as a subprocedure.

If all candidates, that are maxterms, can be verified to be contained in ψ, the
machine tests for each clause of ψ (systematically one after the other) if it is a
maxterm of ϕ using Algorithm 2 where a pointer gives the current clause to ensure
that clauses have not to be copied to be compared. If a clause is found that is not

46

4.1 Restrictions on the size of the DNF

a maxterm of ϕ, then (ϕ, ψ) �∈ Monetcnm with this clause as a counter-example.
Otherwise, the machine can conclude (ϕ, ψ) ∈ Monetcnm.

4.1.2 The DNF contains only monomials of constant size

In this section we restrict the DNF to be a k-DNF, that is to contain only mono-
mials of size at most k for a constant k. The corresponding restricted Monet

version is Monetcupp (Monet with a constant upper bound for the monomial
size).

Monetcupp: instance: irredundant, monotone Boolean formulas ϕ in k-
DNF, for a constant k, and ψ in CNF

question: are ϕ and ψ equivalent?

Monetcupp is known to be solvable in polynomial time O(nk+1) [BGH98, DK88,
EG95, EGM03, Elb02b, JPY88, MP97], it is even placed in RNC [BEGK00]. Note
that RNC contains NL and thus L. If k = 2, which corresponds to the case that
the hypergraph associated to the DNF in fact is a graph, there are some good old
(and new) polynomial time results [Epp05, JPY88, LLK80, TIAS77]. We improve
these results by showing that Monetcupp can be decided in logarithmic space.

Therefore, we use the following property of transversal hypergraphs originally
proven in [EG95] (part of Theorem 5.2 there). Note that we only changed notation
to better fit in the Monet setting (remember that Monetcupp is equivalent to the
problem TransHyp with bounded edge-size where ϕ and ψ have to be transversal
hypergraphs of each other).

Lemma 4.1.2 ([EG95]). Let ϕ in k-DNF with the set of monomials Mϕ and ψ in
CNF with the set of clauses Cψ be two irredundant, monotone Boolean formulas.
If k ≥ 2, then:

(ϕ, ψ) ∈ Monetcupp ⇐⇒ Cψ ⊆ Tr(Mϕ) ∧ E1 ∧E2, (4.1)

with

E1 ≡ ¬∃m ⊆ V, |m| ≤ k : m ∈ Tr(Cψ) ∧m �∈Mϕ,

E2 ≡ ¬∃C ′
ψ ⊆ Cψ, |C ′

ψ| = k + 1 : ∀c ∈ Cψ : c �⊆ {x ∈ V : d(x, C ′
ψ) > 1},

where d(x, C ′
ψ) denotes the number of sets in C ′

ψ that contain the variable x.

With Lemma 4.1.2 at hand we are now ready to tighten the complexity bound
for Monetcupp.

Theorem 4.1.3. Monetcupp is decidable in logarithmic space.

47

Chapter 4 Easy Classes

Proof. Let n be the size of the Monetcupp instance (ϕ, ψ). We assume that every
monomial of ϕ has size at most k for a constant k. An appropriate machine is able
to determine this k by counting in logarithmic space. We will show that the right
hand side of (4.1) can be verified in logarithmic space. Therefore, we describe the
work of an appropriate machine T . The machine uses the logspace procedures
isIn from Lemma 2.5.7 and Algorithm 2 from Lemma 2.5.5 as subroutines. Note
that procedure calls can be space-efficiently simulated by using pointers to cells
on input or working tapes of T , where parameters needed for the procedure call
start.

Cψ ⊆ Tr(Mϕ): T calls the maxterm test (Algorithm 2) systematically for ϕ
and every clause in Cψ. To know which clause is currently tested, T counts the
number of tested clauses. This counter can be managed in logarithmic space in
the size of Cψ.

E1: Every constant-sized m has to be checked. To do this, T systematically gen-
erates the candidates. To know which candidate is the actual candidate, T counts
the number of already checked candidates. The number of possible candidates is
bounded by 1 +

(
n
1

)
+

(
n
2

)
+ . . .+

(
n
k

)
= O(nk). Hence the counter needs k · log(n)

bits. Because of the constant size of m, the machine T can write down the whole
current candidate. For every candidate m a procedure analogous to Algorithm 2
from Lemma 2.5.5 answers the question whether m is a prime implicant of ψ. If
the answer is Yes, then T calls isIn (Algorithm 4) to know whether m is in ϕ.
Altogether, E1 can be verified in logarithmic space.

E2: Only a constant number of clauses form the current candidate set for the
E2-test. By systematically generating the candidate sets, T is able to know the
monomials that form the current candidate by counting the candidates. The
counter must count to

(
n

k+1

)
= O(nk+1), hence, logarithmic space suffices. Because

of the constant size of the candidates C ′
ψ, the machine T can manage pointers to

each clause in the current candidate set C ′
ψ on some working tape. Hence, using

isIn (Algorithm 4), T is able to check, for every variable in every clause, if the
variable is contained in more than one element of C ′

ψ.

Altogether, logarithmic space suffices to decide Monetcupp.

4.1.3 The DNF contains only very large monomials

In this section we restrict the DNF with variable set V to contain only monomials
of size at least |V | − c for a constant c. The corresponding restricted Monet

version is Monetclow (Monet with a “constant” lower bound for the monomial
size).

Monetclow: instance: irredundant, monotone ϕ in DNF and ψ in CNF
with variable set V , where monomials in ϕ have
size at least |V | − c for a constant c

question: are ϕ and ψ equivalent?

48

4.1 Restrictions on the size of the DNF

Monetclow is known to be decidable in polynomial time O(nc+1) [BGH98,
EG95]. We improve this bound to logarithmic space. First, we need some tech-
nical definitions. The complement V ′ of a subset V ′ of V and the complement F
of a family F of subsets of V are defined as V ′ = V \ V ′ and F = {F : F ∈ F}.
For an irredundant, monotone DNF ϕ with the set Mϕ of monomials we define
the operator τ as τ(Mϕ) = {m \ {x} : m ∈Mϕ, x ∈ m}. The following important
fact is due to Eiter and Gottlob [EG95].

Proposition 4.1.4 ([EG95]). Let ϕ be an irredundant, monotone DNF with the
set Mϕ of monomials. Every clause of the irredundant, monotone CNF ψ equiva-

lent to ϕ is contained in τ(Mϕ).

With Proposition 4.1.4 at hand, we can give an algorithm deciding Monetclow

in logarithmic space.

Theorem 4.1.5. Monetclow is decidable in logarithmic space.

Proof. Let n be the size of the Monetclow-instance (ϕ, ψ) and Mϕ be the set
of monomials of ϕ. Whether (ϕ, ψ) is a Monetclow-instance can be tested in
logarithmic space. Counting the variables in each monomial of ϕ suffices and the
counter clearly stays logarithmic in n. Let the lower bound for the monomial size
be |V | − c for constant c.

It remains to check the equivalence of ϕ and ψ. From Proposition 4.1.4 it follows
that the only candidates for clauses of a CNF equivalent to ϕ are contained in
τ(Mϕ). The machine performs a candidate generation and check procedure very
analogous to the one from the proof of Theorem 4.1.1. Each candidate arises from
a monomial and includes all variables that are not included in the monomial plus
one variable from the monomial. Hence, the candidate size is bounded by c + 1.
Each such candidate can be written down on an extra tape due to the constant
size. For each candidate the machine works like the one from Theorem 4.1.1
and checks whether they are maxterms and contained in ψ. To know the next
candidate, the machine systematically generates them and counts the number of
already generated candidates. It starts by generating all candidates from the first
monomial m1 of ϕ. The first candidate is the set of all variables not contained in
m1 and the first variable from m1. The second candidate is the set of all variables
not contained in m1 and the second variable from m1, etc. After finishing the
generation of all candidates from the first monomial, the machine generates all
candidates from the second monomial in the same way. After that, all candidates
from the third monomial, etc. Altogether, there are at most |V | · |Mϕ| many
candidates. Hence, the counter stays logarithmic in n. If a candidate, that is
a maxterm of ϕ, cannot be found in ψ, the machine rejects. After finishing the
candidate generation, the machine has to test for all clauses of ψ whether they
are maxterms of ϕ like the machine in the proof of Theorem 4.1.1 does.

49

Chapter 4 Easy Classes

4.1.4 Polynomial time size restrictions

Besides the logspace solvable classes from the previous sections, there are also size
restrictions for which the best known algorithms are polynomial and thus better
than for arbitrary Monet instances.

Logarithmic number of variables Suppose that a Monet instance (ϕ, ψ) of
size n only contains O(logn) variables. Note that then the number of assignments
for (ϕ, ψ) is bounded by a polynomial in n and thus a brute-force test checking
A(ϕ) = A(ψ) for every possible assignment A is polynomial in the input size.

Logarithmic “lower” bound on monomial size This class is a generalization
of the problem Monetclow, where the k in the Monetclow definition now is al-
lowed to be logarithmic. Using an Apriori approach (cf. Sections 5.2 or 7.4),
this class (in the transversal hypergraph setting) can be solved in polynomial
time [GKM+03, GKMT97]. Note that our parameterized result for the unions of
hypergraph transversals (cf. Section 7.4) further generalizes this class.

Logarithmic number of monomials This class is a generalization of Monetcnm

where we now allow not only a constant but a logarithmic number of monomials.
It can be shown to be solvable in polynomial time [Dom97, Mak03].

4.2 Structural restrictions on the DNF

Having examined the size restrictions, we now address more structural restric-
tions. We focus on Monet-instances with a DNF ϕ that is regular, aligned, or
2-monotonic. For all three classes polynomial time algorithms are known [BS87,
Bor94, BHIK97]. We improve the resource bounds by giving logarithmic space
algorithms.

4.2.1 The DNF is regular

Definition 4.2.1 (Regular). A formula α with the set V = {x1, . . . , x|V |} of
variables is regular, if for every pair of variable indices i < j and every assignment
A with xi �∈ A and xj ∈ A it holds that A(α) ≤ A′(α), where A′ = (A\{xj})∪{xi}.
Example 4.2.2. As an example consider the regular DNF

ϕ = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4 ∧ x5) ∨ (x2 ∧ x3 ∧ x4).

In this section, we examine the following special class of Monet.

Monetreg: instance: irredundant, monotone formulas ϕ in DNF and ψ
in CNF with variable set V , where ϕ is regular

question: are ϕ and ψ equivalent?

50

4.2 Structural restrictions on the DNF

Algorithm 5 The regularity test

Input: irredundant, monotone DNF ϕ
Output: Yes, if ϕ is regular, and No, otherwise

1: for all monomials mi do
2: for all variables xj ∈ V do
3: if xj �∈ mi and xj+1 ∈ mi then
4: A ← (mi \ {xj+1}) ∪ {xj}
5: if A(ϕ) = 0 then
6: output No and stop

7: output Yes

Regularity testing of ϕ can be managed in logarithmic space. We use the
following observation due to Muroga.

Proposition 4.2.3 ([Mur71]). Let V = {x1, . . . , x|V |} be the variable set of a
monotone formula α. Then α is regular if and only if for all prime implicants m
of α and all variables xi �∈ m and xi+1 ∈ m the assignment (m \ {xi+1}) ∪ {xi}
satisfies α.

Lemma 4.2.4. The regularity test for an irredundant, monotone DNF ϕ can be
implemented to run in logarithmic space.

Proof. Note that the irredundant, monotone DNF ϕ already consists of all prime
implicants of ϕ. Let V = {x1, . . . , x|V |} be the variable set of ϕ and let Mϕ =
{m1, . . . , m|Mϕ|} be the set of ϕ’s monomials (prime implicants). A regularity
test for irredundant, monotone DNFs is given in Algorithm 5. The correctness
of Algorithm 5 is straightforward as the algorithm implements the test of the
property stated in Proposition 4.2.3. We have to analyze the space requirement.

Both for-loops can manage counters that contain the number of the currently
tested monomial and the index of the current variable to know which are the
current monomial and variable. Such counters stay logarithmic in the input size.

The two containedness tests of the first if in line 3 require only one additional
counter to store the index j+1. This counter is logarithmic in the input size. The
containedness tests just have to search the indices j and j+1 in mi. They need no
additional storage other than the two logarithmic counters of the for-loops and the
logarithmic index j + 1 to know the current monomial and the current variables.
The second if in line 5 is answered by a subprocedure for evaluating a DNF under
a given assignment. Therefore, the machine gives the indices i, j and j + 1 to the
DNF evaluation procedure from Lemma 2.5.6 that then knows the assignment to
be tested. As the evaluation is logspace, this procedure call does not increase the
resource requirements.

It is known that Monetreg is decidable in polynomial time [BS87, Cra87,
HPP79, MI98, PS85, PS94], the best bound being quadratic. We show that al-
ready logarithmic space suffices.

51

Chapter 4 Easy Classes

Theorem 4.2.5. Monetreg is decidable in logarithmic space.

Proof. Let n be the size of the instance (ϕ, ψ) and V = {x1, . . . , x|V |} be the set
of variables.

As for the equivalence test, we slightly adapt the procedure RSC of Bertolazzi
and Sassano [BS87]. RSC computes all the maxterms of a given regular, irre-
dundant, monotone DNF ϕ. Bertolazzi and Sassano have found the following
coherence between a regular DNF and its maxterms. For each monomial m of ϕ
and every variable xj ∈ m, j > l for some value l, the set Fj(m) ∪ {xj} is a max-
term of ϕ. Thereby, l is the smallest index of a variable contained in monomial m
of ϕ but not in the lexicographic predecessor of m; and Fj(m) = {xk �∈ m : k < j}.
Here lexicographic ordering means that the monomials are ordered lexicograph-
ically by their characteristic vectors. The characteristic vector of monomial m
is |V |-dimensional and contains a 1 at position k iff xk ∈ m. Monomial mi is
lexicographically larger than monomial mj , mi >lex mj , if and only if mi’s vector
has a 1 in the first position, where the characteristic vector of mi and mj differ.

The above property for the maxterms of ϕ is used in lines 5 and 6 of our
equivalence test given as Algorithm 6. It computes the maxterms of ϕ, one after
the other, and checks whether they are contained in ψ. Afterwards we have to
check whether each clause of the given CNF ψ really is a maxterm of ϕ.

RSC precomputes a lexicographic ordering of the monomials and an |M |-di-
mensional vector γ containing the smallest variable indices that distinguish lexi-
cographically adjacent monomials. Our algorithm does not have enough space to
store such precomputations. Instead, it processes the monomials in the ordering
they are given and computes the index (in the given ordering) of the predecessor in
a lexicographic ordering (function pred, cf. Algorithm 7) every time it is needed.
Analogously, the smallest variable index that distinguishes the current monomial
from its predecessor (function leastDiff, cf. Algorithm 9) is computed every
time it is needed. The listings of pred and leastDiff are given as Algorithms 7
and 9.

We first show that pred runs in logarithmic space. The for-loop can be man-
aged via a logarithmic counter and since p contains monomial indices, it is also
logarithmic. Hence, it is obvious that pred works correctly and in logarithmic
space if leqLex does. The function leqLex is intended to return the index of the
lexicographically smaller of two monomials. We give an appropriate algorithm as
Algorithm 8. The correctness of Algorithm 8 is straightforward and hence, pred
is correct.

The for-loop in Algorithm 8 can be managed via a logarithmic counter. The
“x ∈ m”-tests can also be managed using counters. Hence, leqLex runs in loga-
rithmic space and so does pred.

We now turn to leastDiff given as Algorithm 9. Given two monomials, the
function leastDiff returns the smallest index l of a variable that is contained
in only one of the monomials. The correctness of Algorithm 9 is straightforward.
As for the space requirement, the for-loop requires a logarithmic counter. The

52

4.2 Structural restrictions on the DNF

Algorithm 6 The equivalence test for regular inputs

Input: Monetreg-instance (ϕ, ψ) with the set Mϕ of monomials and the set
Cψ of clauses

1: for all mi ∈Mϕ do
2: p← pred(mi,Mϕ)
3: l ← leastDiff(mi, mp)
4: for all variables xj do
5: if xj ∈ mi and j > l then
6: if Fj(mi) ∪ {xj} �∈ Cψ then
7: reject

8: for all ci ∈ Cψ do
9: if ci is not a maxterm of ϕ then

10: reject

11: accept

Algorithm 7 pred

Input: monomial mi of an irredundant, monotone DNF ϕ with the set Mϕ

of monomials and variable set V
Output: index of the lexicographic predecessor monomial of mi in Mϕ

1: p← i
2: for all mj ∈Mϕ do
3: if leqLex(mi, mj) = j then
4: if leqLex(mj , mp) = p then
5: p← j

6: return p

“x ∈ m”-tests can also be managed using a logarithmic counter.

Correctness of pred and leastDiff implies correctness of Algorithm 6 as RSC
was proven to be correct in [BS87] and our algorithm is just a slight adaption.

We have to examine the space requirement of Algorithm 6. All three for-loops
could manage counters that contain the number of the already tested monomials
in the original ordering, the index of the current variable, or the number of already
tested clauses to know which are the current monomial, variable or clause. Such
counters stay logarithmic in n. Both, p and l, store indices that remain logarithmic
in n.

The “ �∈ Cψ”-tests in line 6 of Algorithm 6 are answered as follows. We have to
avoid writing down Fj(mi)∪{xj} each time as we have to be careful on the space
requirements. But note that instead the machine knows Fj implicitly, given i and
j. Hence, by slightly adapting the isIn procedure from Lemma 2.5.7 we can just
provide pointers in the form of i and j and get the correct answer by a call to this
subprocedure. Each subprocedure call only needs logarithmic space.

The maxterm-test in line 9 of Algorithm 6 is implemented as a subprocedure

53

Chapter 4 Easy Classes

Algorithm 8 leqLex

Input: two monomials mi, mj on variable set V = {x1, . . . , x|V |}
Output: index of the lexicographically smaller monomial

1: for all xk ∈ V in ascending index order do
2: if xk �∈ mj and xk ∈ mi then
3: return j
4: else if xk ∈ mj and xk �∈ mi) then
5: return i
6: return i

Algorithm 9 leastDiff

Input: two monomials mi ≥lex mj of an irredundant, monotone DNF ϕ with
the set Mϕ of monomials and variable set V
Output: smallest index k, such that xk ∈ mi and xk �∈ mj

1: if i = j then
2: return 0
3: for all xk ∈ V in ascending index order do
4: if xk �∈ mj and xk ∈ mi then
5: return k

call as well. Therefore, the index i is given to Algorithm 2 that then can know
the DNF and the clause.

4.2.2 The DNF is aligned

In this section we turn to a generalization of regular formulas.

Definition 4.2.6 (Aligned). Let V = {x1, . . . , x|V |} be the variable set of a
monotone formula α. Then α is aligned, if for all prime implicants m of α
and all variables xi �∈ m with i ≤ maxm = max{j : xj ∈ m} the assignment
(m \ {xmaxm

}) ∪ {xi} also satisfies α.

Every regular formula is aligned (compare Proposition 4.2.3 and the definition
of aligned). But the converse does not hold, as can be seen by the following
example.

Example 4.2.7.

ϕ = (x1) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4) ∨ (x2 ∧ x5) ∨ (x3 ∧ x4) ∨
(x3 ∧ x5 ∧ x6) ∨ (x4 ∧ x5 ∧ x6 ∧ x7) ∨ (x5 ∧ x6 ∧ x7 ∧ x8).

The DNF ϕ is aligned but it is not regular, since for A = ({x5, x6, x7, x8} \ {x7})∪
{x4} we have A(ϕ) = 0.

Hence, aligned formulas are a generalization of regular ones. In this section, we
consider the following special class of Monet.

54

4.2 Structural restrictions on the DNF

Algorithm 10 The alignedness test

Input: irredundant, monotone DNF ϕ with variable set V
Output: Yes, if ϕ is aligned, and No, otherwise

1: for all mi ∈Mϕ do
2: for all xj ∈ V do
3: if xj �∈ mi then
4: A ← (mi \ {xmaxmi

}) ∪ {xj}
5: if A(ϕ) = 0 then
6: output No and stop

7: output Yes

Monetali: instance: irredundant, monotone formulas ϕ in DNF and ψ
in CNF with variable set V , where ϕ is aligned

question: are ϕ and ψ equivalent?

Testing whether ϕ is aligned can be managed in logarithmic space.

Lemma 4.2.8. Whether an irredundant, monotone DNF ϕ is aligned can be de-
cided in logarithmic space.

Proof. We slightly adapt the algorithm of the regularity test given in Lemma 4.2.4,
since we do not have to test all what we have tested there (compare the definition
of an aligned formula with Proposition 4.2.3).

Note that the irredundant, monotone DNF ϕ, that is input for the test, already
consists of all prime implicants of ϕ. Let V = {x1, . . . , x|V |} be the variable set
and Mϕ = {m1, . . . , m|Mϕ|} be the set of monomials (prime implicants) of ϕ. The
largest variable index appearing in a monomial m is denoted by maxm. An al-
gorithm, testing whether ϕ is aligned, is given as Algorithm 10. The correctness
proof of Algorithm 10 is straightforward, since the algorithm just tests the prop-
erty given in the definition of aligned formulas. We have to analyze the space
requirement.

Both for-loops could manage counters that contain the number of the currently
tested monomial and the index of the current variable to know which are the
current monomial and variable. Such counters stay logarithmic in the input size.
The variable index maxmi

can be stored using logarithmic space, too.
The containment test of the if in line 3 just has to search the index j in mi,

which can be done with logarithmic space as described in the proof of Lemma 4.2.4.
Analogously to the regularity testing algorithm, the if in line 5 is answered by a
subprocedure for evaluating a DNF under a given assignment. Therefore, the
machine gives the indices i, j and j + 1 to the DNF evaluation procedure from
Lemma 2.5.6 that then knows the assignment to be tested.

It is known that Monetali is decidable in quadratic time [Bor94]. We show
that logarithmic space suffices.

55

Chapter 4 Easy Classes

Theorem 4.2.9. Monetali is decidable in logarithmic space.

Proof. Let (ϕ, ψ) be a Monet-instance of size n and V = {x1, . . . , x|V |} be its
variable set. As for the equivalence test, we use an approach of Boros [Bor94] but
modify the algorithm to show that it works in logarithmic space.

For an assignment A let maxA denote the largest variable index that is included
in A. An assignment A satisfying a monotone formula α is called leftmost, if for
A′ = A \ {xmaxA

} we have A′(α) = 0. Boros has shown that the irredundant,
monotone DNF of an aligned formula α exactly comprises of all leftmost assign-
ments of ϕ [Bor94]. In the proof, Boros uses a special type of binary decision tree
(BDT) representation of aligned formulas, shows this representation to be poly-
nomial size bounded, and gives a polynomial time algorithm for Monetali based
on the BDT. We will modify his algorithm to achieve a logarithmic space bound.

A binary decision tree (BDT) T is a directed binary tree. The nodes of the tree
have either two or no outgoing edges. The nodes reachable from node v are the
successors of v and together with v they form the subtree T (v). The nodes w �= v
for which v ∈ T (w) are the predecessors of v. There is only one node without
predecessors, the root r. The nodes with two outgoing edges are the inner nodes
of T . The nodes with no outgoing edges are the leaves of T . The leaves of T
have labels 0 (false leaves) or 1 (true leaves) such that there is no inner node v
for which T (v) only contains leaves with the same label. Let L0 (L1) be the set
of all false (true) leaves of T . The set of predecessors of node v forms a directed
path D(v) = {v1 = r, v2, . . . , vd(v) = v}, where d(v) denotes the depth of v (the
distance from the root). Each inner node gets a variable as label. In our case,
the label of node v is xd(v). Let u be an inner node with the outgoing edges
(u, v) and (u, w). We say that v and w are the sons of u and u is their father.
One son is the true son ts(u) and the other the false son fs(u). For the path
D(v) we define the sets true(v) = {xd(vk) : vk+1 = ts(vk), k = 1, . . . , d(v)} and
false(v) = {xd(vk) : vk+1 = fs(vk), k = 1, . . . , d(v)} of nodes appearing as true sons
respectively false sons. Each such BDT T represents a DNF of a Boolean formula
α and its dual in the following way,

α =
∨

v∈L1

∧
xi∈true(v)

xi

∧
xi∈false(v)

¬xi and αd =
∨

v∈L0

∧
xi∈false(v)

xi

∧
xi∈true(v)

¬xi.

For the dual αd of a formula α it holds that A(α) = ¬A(¬αd). Note that the irre-
dundant CNF of an irredundant, monotone DNF ϕ can be produced by switching
the roles of ∧ and ∨ in the irredundant DNF of ϕd. This will be the key for our
algorithm. Namely, Boros has proven that for each monotone formula α there
exists an unique BDT Tα whose true leaves (false leaves) correspond one-to-one
to the leftmost assignments of α (αd) [Bor94]. We have

α =
∨

v∈L1

∧
xi∈true(v)

xi and αd =
∨

v∈L0

∧
xi∈false(v)

xi.

56

4.2 Structural restrictions on the DNF

Algorithm 11 The equivalence test for aligned inputs

Input: Monetali-instance (ϕ, ψ) with the set Mϕ of monomials and the set
Cψ of clauses

1: for all mi ∈Mϕ do
2: for all xj ∈ mi do
3: if mj−1

i ∪ {xj+1} is not a subimplicant of ϕ then

4: if mj−1
i ∩ {x1, . . . , xj} is not a superclause of ψ then

5: reject

6: for all ci ∈ Cψ do
7: if ci is not a maxterm of ϕ then
8: reject

9: accept

Boros has shown that for aligned formulas the BDT is only polynomial in size
and constructs an algorithm that computes the BDT and from it the CNF of
ϕ [Bor94].

Our algorithm cannot compute the whole BDT since it would require polynomial
space to store it. But remember that our input is the DNF ϕ and it is aligned.
Hence, from the results of Boros it follows that the monomials of ϕ are in a one-
to-one relation with the true leaves of the BDT for ϕ. We only have to search all
false leaves v and check whether false(v) is contained in ψ since no other maxterms
exist. But how do we go through all false leaves? It can be easily proven that
they are sons of nodes lying on the path to a true leave.

Claim 4.2.10. There is no false leave in a BDT T that is not the false son of a
father contained in D(v) for a true leave v.

Proof. Assume that we could find a false leave u that is the true son of a node w.
Then true(u) is a leftmost assignment of a formula represented by T . But then u
cannot be a false leave. A contradiction. Hence, false leaves are false sons of their
fathers.

Assume now that the father w of the false leave u is not contained in any
D(v) for a true leave v. Hence, the leaves in T (w) all are false leaves. Again, a
contradiction.

We will test each node in the BDT described by the monomials of ϕ as a
potential father of a false leave. Therefore, we check for each branch on the path
described by a monomial whether the false son is a false leave and if so whether
the corresponding maxterm is contained in ψ. In a second step we check whether
all clauses of ψ are maxterms of ϕ.

Let mj = m ∩ {x1, . . . , xj} for a monomial m and s = V \ s for a subset s of
V . Using this notation, an appropriate algorithm deciding Monetali is given as
Algorithm 11. The correctness of Algorithm 11 is straightforward, since it just
implements the techniques described above.

57

Chapter 4 Easy Classes

Algorithm 12 Subimplicant test

Input: irredundant, monotone DNF ϕ with the set Mϕ = {m1, . . . , m|Mϕ|} of
monomials and a subset s of the set V = {x1, . . . , x|V |} of variables
Output: Yes, if s is a subimplicant of ϕ, and No, otherwise

1: for all mi ∈ Mϕ do
2: test ← 1
3: for all xj ∈ s do
4: if xj /∈ mi then
5: test ← 0
6: if test = 1 then
7: output Yes and stop

8: output No

We analyze the space requirement. All three for-loops know the current mono-
mial, variable or clause by using logarithmically space bounded counters. The
if-tests in lines 3, 4 and 7 are answered by three subprocedures.

In line 3 the algorithm gives the indices i and j to the procedure given in
Algorithm 12 that then implicitly knows mj−1

i ∪{xj+1}. A monotone monomial m
is a subimplicant of monotone formula α ifm is subset of a term of the irredundant,
monotone DNF of α.

Claim 4.2.11. Whether a subset s of the set V = {x1, . . . , x|V |} of variables of an
irredundant, monotone DNF ϕ is a subimplicant of ϕ can be decided in logarithmic
space.

Proof. Note that the DNF ϕ contains all prime implicants of ϕ. Let the input
size n be the number of variable occurrences in ϕ and s. An algorithm with the
desired properties is given as Algorithm 12. The correctness of Algorithm 12 is
straightforward. We have to analyze the space requirement.

Both for-loops can be managed using logarithmic counters to know the current
monomial or variable. The test-variable needs constant space.

In line 4, Algorithm 11 gives the indices i and j to the procedure given in

Algorithm 13 that then implicitly knows mj−1
i ∩ {x1, . . . , xj}. A monotone clause

c is a superclause of a monotone formula α if c contains a term of the irredundant,
monotone CNF of α.

Claim 4.2.12. Whether a subset s of the set V = {x1, . . . , x|V |} of variables of an
irredundant, monotone CNF ψ is a superclause of ψ can be decided in logarithmic
space.

Proof. Note that the CNF ψ contains all maxterms of ψ. Let the input size n be
the number of variable occurrences in ψ and s. An algorithm with the desired
properties is given as Algorithm 13. Note that Algorithm 13 is analogous to
Algorithm 12. Hence, an analogous argumentation gives the logarithmic space
bound.

58

4.2 Structural restrictions on the DNF

Algorithm 13 Superclause test

Input: irredundant, monotone CNF ψ with the set Cψ = {c1, . . . , c|Cψ |} of
clauses and a subset s of the set V = {x1, . . . , x|V |} of variables
Output: Yes, if s is a superclause of ψ, and No, otherwise

1: for all ci ∈ Cψ do
2: test ← 1
3: for all xj ∈ ci do
4: if xj /∈ s then
5: test ← 0
6: if test = 1 then
7: output Yes and stop

8: output No

Finally, Algorithm 11 gives the index i to the subprocedure given as Algorithm 2
that then implicitly knows ci and can manage the maxterm test in line 7 of Al-
gorithm 11. All three subprocedures are logarithmically space bounded and so is
Algorithm 11.

4.2.3 The DNF is 2-monotonic

Another generalization of regular formulas are 2-monotonic formulas.

Definition 4.2.13 (2-Monotonic). A monotone formula α is 2-monotonic if there
exists a permutation π of the variables such that π(α) is regular.

In this section, we consider the following version of Monet.

Monet2m: instance: irredundant, monotone formulas ϕ in DNF and
ψ in CNF with variable set V , where ϕ is 2-
monotonic

question: are ϕ and ψ equivalent?

It is known that Monet2m is decidable in polynomial time [BHIK97, MI97,
MI98, PB88], the best bound being cubic [MI98]. We show that already loga-
rithmic space suffices. Therefore, we use the following result about 2-monotonic
formulas.

Proposition 4.2.14 ([Mak02, Win62]). Let α be a 2-monotonic formula with
the set V = {x1, . . . , x|V |} of variables. For every xj ∈ V let position k of a
|V |-dimensional vector α(j) be

α
(j)
k = |{m is a prime implicant of α : xj ∈ m, |m| = k}|.

Let α(j1) ≥lex α
(j2) ≥lex · · · ≥lex α

(j|V |), where ≥lex denotes the lexicographic order
between |V |-dimensional vectors, and let π be a permutation of variables such that
π(xji

) = xi for all i. Then π(α) is regular.

59

Chapter 4 Easy Classes

Algorithm 14 Writing the w-permuted DNF on an oracle tape

1: π(ϕ) ← “(“
2: for all mi ∈ Mϕ in ascending order do
3: c1 ← 0
4: if i = 1 then
5: π(ϕ) ← π(ϕ) ◦ “(“
6: else
7: π(ϕ) ← π(ϕ) ◦ “ ∨ (“

8: for all xj ∈ V do
9: if xj ∈ mi and c1 �= 0 then

10: π(ϕ) ← π(ϕ) ◦ “ ∧ “

11: if xj ∈ mi then
12: c1 ← c1 + 1
13: max ← getMax(ϕ)
14: c2 ← 1
15: while max �= i do
16: max ← getNext(ϕ,max)
17: c2 ← c2 + 1

18: π(ϕ) ← π(ϕ) ◦ “xc2“

19: π(ϕ) ← π(ϕ) ◦ “)“

20: π(ϕ) ← π(ϕ) ◦ “)“

We refer to the permutation π from Proposition 4.2.14 as the w-permutation
and show that it can be computed using logarithmic space.

Lemma 4.2.15. Let ϕ be an irredundant, monotone DNF with the variable set
V = {x1, . . . , x|V |} and the set Mϕ = {m1, . . . , m|Mϕ|} of monomials. The w-
permuted π(ϕ) can be written on an oracle tape using logarithmic space only.

Proof. Note that we view an oracle tape to be write-only and hence we do not
count space used on it as a machine is not able to reuse the information. By s1◦s2

we denote the operation of adding string s2 on the oracle tape at the end of string
s1.

We give an algorithm with the desired properties as Algorithm 14. It writes the
string π(ϕ) on an oracle tape, recomputing new variable indices each time they
are needed. The algorithm does not store already computed indices, since that
would need more than logarithmic space. For each variable occurrence xi in ϕ the
algorithm counts where in the lexicographic ordering of the α-vectors the vector
α(i) appears. A variable with the corresponding index is written on the oracle
tape instead of xi. To derive the new index of xi the algorithm computes the
lexicographically last α-vector (getMax in line 13). As long as α(i) is not found,
the algorithm computes the next element in the ordering of the α-vectors (getNext
in line 16) and adds one to the counter c2 that should contain the number of α(i) in

60

4.2 Structural restrictions on the DNF

Algorithm 15 getMax

Input: irredundant, monotone DNF ϕ with the set Mϕ = {m1, . . . , m|Mϕ|} of
monomials and the set V = {x1, . . . , x|V |} of variables
Output: index max of the variable with the lexicographically largest α-vector

1: max ← 1
2: for all xi ∈ V, i �= 1 do
3: k ← 0
4: while k ≤ |V | do
5: k ← k + 1
6: c3 ← |{m ∈Mϕ : xmax ∈ m, |m| = k}|
7: c4 ← |{m ∈Mϕ : xi ∈ m, |m| = k}|
8: if c4 > c3 then
9: max ← i

10: k ← |V | + 1
11: else if c4 < c3 then
12: k ← |V | + 1

13: return max

the lexicographic ordering of Proposition 4.2.14. When α(i) is found, the counter
c2 contains the number of α(i) in the ordering of Proposition 4.2.14. The formula
π(ϕ) is composed as a string on the oracle tape (lines 1, 5, 7, 10, 18, 19, and 20).

The counters c1 (largest value is the size of a largest monomial) and c2 (largest
value is |V |) stay logarithmic in n. Both for-loops can also be managed via loga-
rithmically space bounded counters that contain the number of the current mono-
mial or the index of the current variable. And last but not least, the variable max
is logarithmically space bounded, since it only contains variable indices.

We have to analyze the functions getMax and getNext to fully describe the
algorithm computing π(ϕ). The function getMax should return the index i of
the lexicographically largest of the α(i). An appropriate algorithm is given as
Algorithm 15. Each variable is a candidate for having the lexicographically largest
α-vector. Hence, all variables are tested systematically by Algorithm 15. In the
while-loop (line 4), the vector α(max) which is so far the lexicographically largest
vector and the vector α(i) of the current variable are tested componentwise to
decide which one is lexicographically larger. If it is α(i), then i is the new maximum
so far (line 9). The correctness is straightforward.

As for the space requirement, both counters c3 and c4 remain logarithmic in n,
since their largest value is |Mϕ|. They can be computed by checking the monomials
systematically whether they contain the tested variable. If so, another counter is
used to get the size of the current monomial. This counter is compared to k. The
largest value stored in variable k is |V | + 1 which is logarithmic in n. Another
logarithmically space bounded counter is used for the for-loop. The variable max
contains variable indices. Hence, it is logarithmically space bounded. Altogether,
the function getMax can be computed using logarithmic space.

61

Chapter 4 Easy Classes

The function getNext should return the index of the variable whose α-vector
is the successor, in the lexicographic ordering of Proposition 4.2.14, of the cur-
rent α(max). An appropriate algorithm is given as Algorithm 16. In lines 1

Algorithm 16 getNext

Input: irredundant, monotone DNF ϕ with the set Mϕ = {m1, . . . , m|Mϕ|} of
monomials and the set V = {x1, . . . , x|V |} of variables, and a variable index
max
Output: index of the variable whose α-vector is the successor of α(max) in the
lexicographic ordering of Proposition 4.2.14

1: next ← 0
2: for all xi ∈ V do
3: k ← 0
4: while k ≤ |V | do
5: k ← k + 1
6: c5 ← |{m ∈Mϕ : xmax ∈ m, |m| = k}|
7: c6 ← |{m ∈Mϕ : xi ∈ m, |m| = k}|
8: if c6 < c5 then
9: next ← i

10: k ← |V | + 1
11: else if c6 > c5 then
12: k ← |V | + 1

13: for all xi ∈ V do
14: k ← 0
15: while k ≤ |V | do
16: k ← k + 1
17: c5 ← |{m ∈Mϕ : xmax ∈ m, |m| = k}|
18: c6 ← |{m ∈Mϕ : xnext ∈ m, |m| = k}|
19: c7 ← |{m ∈Mϕ : xi ∈ m, |m| = k}|
20: if c6 < c7 and c7 < c5 then
21: next ← i
22: k ← |V | + 1
23: else if c6 > c7 or c7 > c5 then
24: k ← |V | + 1

25: return next

to 12, getNext searches a variable whose α-vector is lexicographically smaller
than α(max). All variables whose α-vector is lexicographically smaller than α(max)

are candidates for the variable having the lexicographically next largest vector.
Our algorithm simply checks all candidates. In the while-loop of line 15 the al-
gorithm tries to find a variable whose α-vector is smaller than α(max) but larger
than α(next), the successor so far of α(max). If α(i) lies lexicographically in between
α(max) and α(next), then i is a new candidate for the successor (lines 20 to 22). The
correctness of getNext is straightforward.

62

4.2 Structural restrictions on the DNF

The space needed for the three counters c5, c6, and c7 is logarithmically bounded
in n, since their largest value is |Mϕ|. The values of these counters are derived
analogously to the counters c3 and c4 in Algorithm 15. The for-loops in lines 2
and 13 manage two other logarithmic counters to know the current variable. The
variable k is also logarithmically space bounded, since the largest value to store is
|V | + 1. The variables next and max contain variable indices which are logarith-
mically space bounded in n. Hence, the function getNext can be computed using
logarithmic space.

Altogether, we can conclude that the w-permutation π(ϕ) of ϕ can be written
on an oracle tape using logarithmic space.

With the w-permutation at hand we can show the following.

Theorem 4.2.16. Monet2m is decidable in logarithmic space.

Proof. Let (ϕ, ψ) be a Monet-instance of size n and V = {x1, . . . , x|V |} be its
variable set.

Note that in order to test whether the DNF ϕ of a Monet-instance is 2-
monotonic, we can test whether π(ϕ) is regular, where π is the w-permutation
from Proposition 4.2.14. Since π(ϕ) can be written on an oracle tape using log-
arithmic space only (Lemma 4.2.15), we can test 2-monotonicity in logarithmic
space using the logarithmic space regularity test from Lemma 4.2.4 as an oracle.

As for the equivalence test, we again use the algorithm writing π(ϕ) on the oracle
tape and it is obvious that a slight adaption could afterwards also write π(ψ) on
the oracle tape. Then the logarithmic space algorithm for Monetreg is invoked as
an oracle. A conjunction of the answers of both oracle calls—the regularity test
and the equivalence check—yields the result. Since LL = L for conjunctive usage
of two oracles, the oracles do not increase the resource requirements.

4.2.4 Polynomial time structural restrictions

Besides the logspace solvable structural restrictions of Monet mentioned in the
last sections, there are many more structural restrictions that are known to be
polynomial time solvable and thus “easier” than arbitrary Monet instances. In
the following we give a brief survey.

α-acyclic Associate with a hypergraph H the graph GH whose vertex set is
the vertex set of H and in which vertices are adjacent if they appear together
in some edge of H. A hypergraph H is α-acyclic iff GH is chordal (every cycle
of length at least 4 has a chord) and each clique of GH is contained in some
edge of H. This definition can be shown to be equivalent to the case that the
repetition of the following two rules (known as GYO-reduction) yields the empty
hypergraph [BFMY83, GS83]:

1. if vertex v appears in only one edge, remove v from that edge,

63

Chapter 4 Easy Classes

2. if e ⊆ e′ for two distinct edges e, e′, remove e.

Whether a hypergraph is α-acyclic can be tested in polynomial [Fag83] and even
in linear [TY84] time. Monet restricted to instances where the DNF has an asso-
ciated α-acyclic hypergraph is polynomial time solvable [EGM03]. Note however,
that α-acyclicity is not immune against edge deletions as an α-acyclic hypergraph
may have subhypergraphs that are α-cyclic.

β-acyclic The non-immunity against edge deletions of α-acyclicity leads to the
notion of β-acyclicity. A hypergraph is β-acyclic iff each of its subhypergraphs
is α-acyclic. This property can be tested in polynomial time [Fag83]. Monet

restricted to instances where the DNF has an associated β-acyclic hypergraph can
be shown to be polynomial time solvable [EG95].

Bounded clause-monomial intersections A hypergraph H is r-exact iff any
minimal transversal of H intersects any edge in at most r vertices. Recently, it
was shown that Monet restricted to instances where the DNF has an associated
r-exact hypergraph—and thus the DNF’s monomials have bounded intersections
with clauses of the equivalent CNF—is polynomial time solvable [ER08].

Note that this class also includes μ-equivalent DNFs (see the corresponding
paragraph below) and DNFs whose associated binary matrix (each row is the
characteristic vector of a monomial) has the circular ones property [HM03]. The
μ-equivalent DNFs are clearly 1-exact and the DNFs having a circular ones matrix
are 2-exact.

Bounded conformality A hypergraph H is bounded conformal iff for every sub-
set X of H’s vertices, X is contained in an edge of H whenever all of X’s subsets
of size at most δ, for a constant δ, are contained in an edge. It is bounded dual
conformal if its transversal hypergraph is bounded conformal for some constant.
Monet restricted to instances where the DNF has an associated bounded confor-
mal or bounded dual conformal hypergraph can be shown to be polynomial time
solvable [KBEG07a, KBEG07b].

Bounded degree (read-k) A DNF has bounded degree (is read-k) iff every vari-
able appears in at most k monomials. Monet restricted to instances where the
DNF is read-k can be shown to be solvable in polynomial time O(nk+3) for con-
stant k and we even have polynomial time for logarithmic k [DMP99, Dom97,
EGM03, KBEG07a, KBE+05, MP97]. Note that in Chapter 7 we show Monet

to be fixed-parameter tractable with respect to the degree as a parameter and
that this result also implies polynomial time solvability for bounded degree.

Bounded monomial intersections Monet restricted to instances where the
DNF satisfies the property that any k monomials intersect in at most r vari-

64

4.2 Structural restrictions on the DNF

ables, k + r ≤ c, for some constant c, can be shown to be polynomial time solv-
able [KBEG07b].

Bounded treewidth A tree decomposition (of type 1) of an irredundant, mono-
tone DNF ϕ with variable set V is a tree T = (W,E), where each vertex w ∈ W
is labeled with a subset S(w) ⊆ V . The following properties have to hold:

• ⋃
w∈W S(w) = V ,

• for every monomial m ∈ ϕ there is a w ∈W with m ⊆ S(w),

• for each variable xi ∈ V the induced set {w ∈W : xi ∈ S(w)} is a connected
subtree of T .

The width of T is maxw∈W |S(w)|−1 and the type 1 treewidth of ϕ is the minimal
width of all tree decompositions of ϕ.

There is also a type 2 treewidth, which is the usual graph treewidth of the
incidence graph of ϕ. Thereby, the incidence graph G(ϕ) of ϕ is defined as follows.
It has a vertex for each monomial and each variable of ϕ and edges between
monomial and variable vertices if the variable appears in that monomial. Monet

restricted to instances where the DNF has constantly bounded treewidth of either
type 1 or 2 can be shown to be polynomial time solvable [EGM03]. The reason
is that for type 1 a bounded treewidth of k implies that ϕ is a k-DNF and, thus,
has bounded degree (see above), and for type 2 it can be shown that ϕ then is
2k-degenerated (see below) [EGM03].

Degenerated A monotone DNF is k-degenerated if there exists a variable or-
dering x1, . . . , xn such that, for i = 1, 2, . . . , n, the number of monomials which
contain xi and, apart from it, only variables from x1, . . . , xi−1 is at most k. Monet

restricted to instances where the DNF on variable set V is k-degenerated for some
constant k can be shown to be solvable in polynomial time O(nk+3); even if the
DNF is log |V |-degenerated a polynomial time algorithm can be given [EGM03].

Note that this class also includes DNFs whose associated binary matrix (each
row is the characteristic vector of a monomial) has the consecutive ones prop-
erty [McC04]. Such DNFs are 1-degenerated.

Δ-partial threshold A monotone function f is Δ-partial threshold iff it can be
represented as:

f(x) =

⎧⎪⎨
⎪⎩

1, if
∑

(wi · xi) ≥ t+ α,

0, if
∑

(wi · xi) < t− α,

0 or 1, otherwise,

for α = Δ·min{wi} and nonnegative real numbers wi, t, and Δ. Monet restricted
to instances where the DNF is Δ-partial threshold for some constant Δ can be
shown to be solvable in polynomial time O(nΔ+4) [MI97].

65

Chapter 4 Easy Classes

Ideal Given a simple hypergraph H, a vertex vi is said to be last iff for each edge
e containing vi and each edge f not containing vi we have

{vk �∈ e : ∃e′ ∈ H : e′ ⊆ (e \ {vi}) ∪ {vk}} ∩ f �= ∅.

Given a simple hypergraph H and a vertex ordering σ = (v1, v2, . . . , vn) we say
that σ is ideal iff vi is last in Hi = H/{vi+1, . . . , vn} where H/{vi+1, . . . , vn} is
obtained from H by deleting the vertices vi+1, . . . , vn and simplifying the result. A
hypergraph is ideal iff there is an ideal ordering for its vertices. Ideal hypergraphs
have the property that the number of their minimal transversals is bounded poly-
nomially in the number of their edges and vertices. Monet restricted to instances
where the DNF has an associated ideal hypergraph can be shown to be polynomial
time solvable [BS88].

k-degree threshold A monotone function f is k-degree threshold iff it can be
represented as:

f(x) =

{
1, if

∑
(wi · xi) + · · ·+ ∑

i1<···<ik
(wi1...ik · xi1 · . . . · xik) ≥ t,

0, otherwise,

for nonnegative weights wi1...ik′
(1 ≤ k′ ≤ k) and threshold t. Monet restricted

to instances where the DNF is k-degree threshold for some constant k and that
furthermore satisfy

2 · Δ · wmin ≥
k∑

l=2

(
n

l

)
max

i1<i2<···<il
wi1,i2,...,il,

where wmin = miniwi, can be shown to be Δ-partial threshold (see above) [MI97].
Hence, for constant Δ, such instances are polynomial time solvable [MI97].

k-tight An irredundant, monotone DNF ϕ is k-tight if for a positive integer k
we have:

max{|m \ c| : m ∈ ϕ, c is maxterm of ϕ with m \ {x} ⊆ c for some x ∈ m} ≤ k.

Monet restricted to instances where the DNF is k-tight for some constant k can
be shown to be solvable in polynomial time O(nk+3) [MI97].

Note that almost all monotone functions can be shown to be 4-tight [SKA01].

Matroid An irredundant, monotone DNF ϕ is matroid iff for any two monomials
m,m′ of ϕ and any x ∈ m \m′ there is a x′ ∈ m′ \m such that m \ {x} ∪ {x′} is
in ϕ. Monet restricted to instances where the DNF is matroid can be shown to
be solvable in polynomial time O(n5) [MI97, PB88]

66

4.2 Structural restrictions on the DNF

μ-equivalent A DNF is μ-equivalent iff it has an equivalent read-1 formula (in
which each variable occurs only once). This property can be tested in polynomial
time [Mun89]. Monet restricted to instances where the DNF is μ-equivalent can
be shown to be polynomial time solvable [Eit94].

Shellable Let F be a family of subsets of V = {x1, . . . , xn}, π be a permutation
of the elements of F und fi ∈ F . Then the shadow of fi in F with respect
to π is ShaF ,π(fi) = {xj ∈ V : ∃fk ∈ F : π(fk) < π(fi) ∧ fk \ fi = {xj}}.
We say that a monotone DNF ϕ with monomial set Mϕ and variable set V =
{x1, . . . , xn} is shellable iff there is a permutation of the monomials such that for
all mi, mj ∈ Mϕ with π(mi) < π(mj) we can find a xk ∈ mi ∩ ShaMϕ,π(mj). An
equivalent formulation is that there has to be a monomial ml ∈ Mϕ, such that
xk ∈ mi and π(ml) < π(mj) and ml \mj = {xk}. Note that any aligned formula
also is shellable and note that the shellability property of a DNF might get lost
through irredundantization. Note that there is no known polynomial algorithm for
testing shellability yet. However, if the appropriate permutation is given, Monet

restricted to instances where the DNF is shellable, can be shown to be polynomial
time solvable [BCE+00].

Stable For a function f let minT(f) and maxT(f) denote the sets of its min- and
maxterms. For subsets min ⊆ minT(f) and max ⊆ maxT(f) we can approximate
f by two functions g, h with minT(g) = min and maxT(h) = max . A monotone
function f is stable iff for all pairs of functions g, h defined by subsets of f ’s min-
and maxterms as above we have

max{|maxT(g)|, |minT(h)|} ≤ |minT(f)| + |maxT(f)|.
Monet restricted to instances where the DNF is stable can be shown to be
polynomial time solvable [Bio98].

Threshold A monotone DNF ϕ with variable set V is threshold iff there are
|V | + 1 real numbers w1, . . . , w|V |, t, such that

A(ϕ) = 1 ⇔
∑
xi∈A

wi · xi ≥ t

holds for every assignment A. Note that this is a special case of 2-monotonic
formulas. Using the permutation in which i < j for variables xi, xj holds iff
wi > wj , yields a regular formula. Hence, Monet restricted to instances where
the DNF is threshold can be solved in polynomial time.

Uniformly δ-sparse A hypergraph H is uniformly δ-sparse iff for every nonempty
subset X of H’s vertices, the average degree of the subhypergraph of H induced by
X (the edges that only consist of vertices from X) is at most δ. Monet restricted
to instances where the DNF has an associated uniformly δ-sparse hypergraph can
be shown to be polynomial time solvable [BEGK04].

67

Chapter 4 Easy Classes

4.2.5 A structural restriction that does not help

Hypertree-width 2 A restriction for Monet in its transversal hypergraph for-
mulation is to require one of the input hypergraphs to have bounded hypertree-
width, which is a generalization of treewidth. This is similar to require, in the
original Monet setting, that the DNF’s associated hypergraph has bounded
hypertree-width. Unfortunately, it can be shown that even restricting the in-
puts to hypertree-width 2 does not ease the problem [EG02]—note that in this
case not the test for hypertree-width 2 is difficult as it can be implemented in
polynomial time [GLS02].

4.3 Concluding remarks

“Easy” classes of Monet are restrictions of the DNF that admit a polynomial
time solution of the corresponding restricted version of Monet. Many such classes
are known but how easy are they? We showed that many easy classes actually are
solvable using logarithmic space only, improving the already known polynomial
time bounds. Among our results are Monetcnm, where the DNF is allowed to
contain only a constant number of monomials; Monetcupp, where the DNF is
allowed to contain only monomials of constant size; and Monetclow, where each
monomial of the DNF is only allowed not to contain a constant number of vari-
ables. As for the more structural restrictions, we have shown that Monet with a
regular, a 2-monotonic, or an aligned DNF is decidable in logarithmic space.

Nevertheless, it would be very interesting to find logarithmic space algorithms
for other easy classes of Monet. We conjecture that at least instances with β-
acyclic or μ-equivalent DNFs are solvable in logarithmic space. Both classes are
known to be polynomial time solvable [EG95, Eit94]. Especially the class of μ-
equivalent DNFs—that have an equivalent formula in which each variable appears
only once—is interesting, as in all known lower bound results [Hag07a, Tak07]
(cf. Section 5) for algorithms solving the general problem Monet the instances
used are μ-equivalent.

Another issue is to prove lower bounds for easy classes. Such lower bounds for
special classes could be useful when proving hardness of Monet. This should be
addressed in future research.

68

Chapter 5

Algorithms

In this chapter, we examine several algorithms for Monet or its computational
variant. But note that discussing decision or computation algorithms is no big
difference here. In fact, finding a polynomial algorithm for Monet is equivalent to
finding an output-polynomial algorithm for Monet

′ [BI95a]. This can be roughly
seen as follows.

A Monet
′ algorithm computes the equivalent irredundant, monotone CNF of

a given irredundant, monotone DNF. To serve as an algorithm for Monet it can
afterwards just compare its computed CNF and the given one.

The other direction is also not too involved. Note that a Monet algorithm can
be easily transformed to give a witness if it answers “Not equivalent.” This witness
then can be used for the computation as follows. To compute the irredundant,
monotone CNF of a given irredundant, monotone DNF, we start the decision
algorithm on input the given DNF and an empty CNF, ask for equivalence and
probably get a witness for non-equivalence. But this witness has to contain a
maxterm of the DNF that can be found straightforwardly by trying to exclude
variables. We include the computed maxterm in the CNF and again start the
decision algorithm on the input DNF and the so far computed CNF. If still non-
equivalent we use the witness again to find a new maxterm and so on.

As the computational variant of Monet and the hypergraph transversal gener-
ation problem are equivalent, we also have algorithms in this chapter solving the
transversal hypergraph formulation of Monet. We decided not to transform the
hypergraph algorithms to the Monet setting as often the hypergraph notation is
easier to understand.

The aim of this chapter is to give an overview of the major Monet solving tech-
niques implemented in the different algorithms and to give lower bounds for several
of them showing that they are not “fast” in the sense of (output-)polynomial time.

The chapter is organized as follows. In Section 5.1 we examine one of the
earliest approaches for the computational variant of Monet in its transversal hy-
pergraph formulation—the Berge-multiplication algorithm—and several improve-
ments thereof—the DL-, BMR-, and KS-algorithms—showing that not one of
them is output-polynomial. In Section 5.2 we discuss a levelwise approach—the
HBC-algorithm—similar to the well known Apriori technique and we again show
that it is not output-polynomial. Afterwards, in Section 5.3 we introduce the

69

Chapter 5 Algorithms

Algorithm 17 Berge-multiplication

1: Tr(H1) ← {{v} : v ∈ e1}
2: for i← 2, . . . , m do
3: Tr(Hi) ← min(Tr(Hi−1) ∨ {{v} : v ∈ ei})
4: output Tr(Hm)

FK-algorithms to have the theoretical background for the experiments in Chap-
ter 6. The FK-algorithms are the Monet algorithms having the currently best
theoretical upper bound. Some concluding remarks follow in Section 5.4.

5.1 Berge-multiplication and its improvements

In this section we focus on a method to generate transversal hypergraphs known
as Berge-multiplication. We also include the discussion of several improvements
of Berge-multiplication. Namely, the DL-, the BMR-, and the KS-algorithm.

5.1.1 Berge-multiplication

The Berge-multiplication algorithm [Ber89] generates transversal hypergraphs us-
ing Proposition 2.3.11 as follows. For a hypergraph H = {e1, e2, . . . , em} let
Hi = {e1, e2, . . . , ei}, i = 1, 2, . . . , m. We then have

Tr(Hi) = min(Tr(Hi−1) ∨ Tr({ei})) = min(Tr(Hi−1) ∨ {{v} : v ∈ ei})
and Tr(H) = Tr(Hm). This implies a straightforward iterative computation
process—the Berge-multiplication algorithm. A pseudocode listing is given in
Algorithm 17. Despite the simplicity of Berge-multiplication, it took a couple of
years until Takata [Tak07] presented a nontrivial lower bound using the following
inductively defined family of hypergraphs.

Definition 5.1.1 (Takata’s Hypergraphs).

G0 = {{v1}} and

Gi = (A ∪ B) ∨ (C ∪ D), where A,B, C,D are vertex-disjoint copies of Gi−1.

Takata showed the Berge-multiplication algorithm not to be output-polynomial
based on the following observations.

Lemma 5.1.2 ([Tak07]). We have |VGi
| = 4i, |Gi| = 22(2i−1), |Tr(Gi)| = 22i−1.

For i ≥ 2 and any e ∈ Gi, it holds that |Tr(Gi \ {e}) \ Tr(Gi)| ≥ 2(i−2)·2i+2.

From Lemma 5.1.2 it follows that, independent of the edge ordering, the penul-
timate (intermediate) result computed by Berge-multiplication on input Gi is su-
perpolynomial in the size of the input and output (cf. the original paper [Tak07]
for more details).

Very recently, Boros et. al. [BEM08] proved a subexponential n
√

n upper bound
on the running time of Berge-multiplication.

70

5.1 Berge-multiplication and its improvements

Algorithm 18 The DL-algorithm

1: Tr(H1) ← {{v} : v ∈ e1}
2: for i← 2, . . . , m do
3: Trguaranteed ← {t ∈ Tr(Hi−1) : t ∩ ei �= ∅}
4: ecoveredi ← {v ∈ ei : {v} ∈ Trguaranteed}
5: Tr(Hi−1)

′ ← Tr(Hi−1) \ Trguaranteed

6: e′i ← ei \ ecoveredi

7: for all t′ ∈ Tr(Hi−1)
′ in increasing cardinality order do

8: for all v ∈ e′i do
9: if t′ ∪ {v} is not superset of any t ∈ Trguaranteed then

10: Trguaranteed ← Trguaranteed ∪ {t′ ∪ {v}}
11: Tr(Hi) ← Trguaranteed

12: output Tr(Hm)

5.1.2 The algorithm of Dong and Li

The border-differential algorithm of Dong and Li [DL05] comes from the data
mining field and is intended for mining emerging patterns (cf. Section 3.8). The
analogy to the generation of hypergraph transversals was already pointed out by
Bailey, Manoukian, and Ramamohanarao [BMR03]. A pseudocode listing of the
DL-algorithm is given in Algorithm 18.

The algorithm was experimentally evaluated on many instances from data min-
ing settings [DL05] whereas a theoretical analysis of the running time was left
open. For this purpose the conversion of the algorithm to the hypergraph setting
is very fruitful. The only observable difference between Berge-multiplication and
the DL-algorithm is that the DL-algorithm takes special care on how to perform
the minimization of Tr(Hi−1) ∨ {{v} : v ∈ ei}. But as Takata’s analysis showed,
the minimization is not the bottleneck of Berge-multiplication. Thus, we can
extend Takata’s analysis of Berge-multiplication in a straightforward way to the
DL-algorithm and get the same lower bound.

Theorem 5.1.3. The DL-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.

5.1.3 The algorithm of Bailey, Manoukian, and
Ramamohanarao

As we have seen in Theorem 5.1.3, the DL-algorithm is not output-polynomial.
Nevertheless, for hypergraphs with only a few edges of small size the DL-algorithm
has been shown experimentally to perform well [DL05]. This property is exploited
by the BMR-algorithm [BMR03] (cf. Algorithm 19 for the listing) as it uses the
DL-algorithm as a subroutine that computes all minimal transversals for small
hypergraphs (line 14 of the listing). The BMR-algorithm on input H is invoked

71

Chapter 5 Algorithms

Algorithm 19 The BMR-algorithm

Input: a simple hypergraph, given by the set E of its hyperedges, and a set
Vpartition of partitioning vertices

1: V ← set of all vertices in E
2: order vertices by increasing number of occurrences in E ⇒ [v1, . . . , vk]
3: for i← 1, . . . , k do
4: Epartition ← ∅
5: V ← V \ {vi}
6: for all e ∈ E do
7: if vi �∈ e then
8: Epartition ← min(Epartition ∪ {e \ V })
9: Vpartition ← Vpartition ∪ {vi}

10: a← average edge cardinality of Epartition multiplied by |Epartition|
11: if |Epartition| ≥ 2 and a ≥ 50 then
12: recursively call the BMR-algorithm on input Epartition, Vpartition

13: else
14: compute Tr(Epartition) via the DL-algorithm
15: Tr ′ ← Tr(Epartition) ∨ {Vpartition}
16: Tr ← min(Tr ∪ Tr ′)

17: Vpartition ← Vpartition \ {vi}
18: return Tr

by the top-level call with the set E of edges of H and an empty set Vpartition. The
global variable Tr is initially empty.

Before calling the DL-algorithm, the BMR-algorithm ensures that the hyper-
graph has only few edges of small size. If this is not yet the case, the BMR-
algorithm reduces the number of edges and their size by recursively deriving
smaller hypergraphs from H (line 12). This is achieved by partitioning the edge
set and masking out vertices that are more frequent than the actual partitioning
vertex vi (lines 5 to 8). If the hypergraph is small, the DL-algorithm computes
all minimal transversals (line 14). These transversals are expanded by the current
partitioning vertices Vpartition (line 15) since the result is a transversal of H. The
global variable Tr contains all the minimal transversals of the hypergraph H when
the algorithm stops.

A bottleneck for the running time of the BMR-algorithm is that possibly many of
the recursively computed transversals—the set Tr′ in the listing—actually are not
minimal for the input hypergraph H. We concentrate on this issue and construct
a family G ′

i of hypergraphs for which the BMR-algorithm computes too many such
non-minimal transversals to run in output-polynomial time. Let G′(i) = {ei, fi},
where ei = {vi2−i+1, . . . , vi2} and fi = {vi2+1, . . . , vi2+i}. We inductively define

G′
1 = {{v1}, {v2}}, and

G′
i = (G′

i−1 ∪ {{wi}}) ∨ G′(i), for i ≥ 2.

72

5.1 Berge-multiplication and its improvements

Note that G ′
i−1, {{wi}}, and G′(i) are pairwise vertex-disjoint simple hypergraphs

for i ≥ 2. To calculate the size of G ′
i and of Tr(G′

i) we have to solve the recurrences
|G′

i| = 2·|G′
i−1|+2 and |Tr(G′

i)| = |Tr(G′
i−1)|+i2. With the initial conditions |G′

1| = 2
and |Tr(G ′

1)| = 1 we obtain

|G′
i| = 2i+1 − 2 and |Tr(G′

i)| =
2i3 + 3i2 + i

6

by iteration. For the number |VG′
i
| of vertices of G′

i we have |VG′
i
| = i2 + 2i− 1. As

we will especially need G ′
3 later on, we explicitly give G ′

2 and G′
3.

G′
2 = {{v1, v3, v4}, {v2, v3, v4}, {w2, v3, v4},

{v1, v5, v6}, {v2, v5, v6}, {w2, v5, v6}},
G′

3 = {{v1, v3, v4, v7, v8, v9}, {v2, v3, v4, v7, v8, v9}, {w2, v3, v4, v7, v8, v9},
{v1, v5, v6, v7, v8, v9}, {v2, v5, v6, v7, v8, v9}, {w2, v5, v6, v7, v8, v9},
{w3, v7, v8, v9},
{v1, v3, v4, v10, v11, v12}, {v2, v3, v4, v10, v11, v12},
{w2, v3, v4, v10, v11, v12}, {v1, v5, v6, v10, v11, v12},
{v2, v5, v6, v10, v11, v12}, {w2, v5, v6, v10, v11, v12},
{w3, v10, v11, v12}}.

The BMR-algorithm iteratively partitions the input hypergraph to obtain small-
er hypergraphs where the transversal generation is feasible. The partitioning
depends on the vertex frequencies. Hence, we first have to analyze the frequencies
of the vertices in G′

i.

Lemma 5.1.4. For i ≥ 2 let #v(i, j) and #w(i, j) respectively denote the number
of occurrences of vertices vj and wj in G′

i. Then

#w(i, j) = 0, for j > i,

#w(i, j) > #w(i, j + 1), for 2 ≤ j < i,

#w(i, 2) = #v(i, 1) = #v(i, 2),

#v(i, j) = 0, for j > i2 + i,

#v(i, j) = #v(i, k), for l2 − l + 1 ≤ j ≤ k ≤ l2 + l, 1 ≤ l ≤ i,

#v(i, j) < #v(i, k), for 1 ≤ j < l2 − l + 1 ≤ k ≤ l2 + l, 2 ≤ l ≤ i.

Proof. • We have the obvious equations

#w(i, j) = 0, for j > i, and (5.1)

#v(i, j) = 0, for j > i2 + i, (5.2)

as neither wj , for j > i, nor vj, for j > i2 + 1, are vertices of G ′
i.

73

Chapter 5 Algorithms

• Another easy case is

#w(i, 2) = #v(i, 1) = #v(i, 2), (5.3)

as it is not difficult to show that all three values are equal to 2i−1.

• The next inequality

#w(i, j) > #w(i, j + 1), where 2 ≤ j < i. (5.4)

is also straightforward as we have #w(i, j) = 2i−j+1 for 2 ≤ j ≤ i.

• We next consider

#v(i, j) = #v(i, k), for l2 − l + 1 ≤ j ≤ k ≤ l2 + l, 1 ≤ l ≤ i.(5.5)

The proof is by induction on i. Let i = 2. In this case, from the definition
of G′

2 we have 2 = #v(2, 1) = #v(2, 2), and 3 = #v(2, 3) = #v(2, 4) =
#v(2, 5) = #v(2, 6). So let the equation hold for i = m − 1. We will show
it for i = m. From the definition of G ′

m we have #v(m, j) = 2 ·#v(m− 1, j)
for every j < m2 −m + 1. Hence, for 2 ≤ l < m the equation follows from
our assumption.

From the definition of G ′
m we also have #v(m, j) = |G′

m−1|+1 form2−m+1 ≤
j ≤ m2 + l. Hence, the equation follows for l = m. Both cases together yield
Equation (5.5).

• The last inequality to prove is

#v(i, j) < #v(i, k), for 1 ≤ j < l2 − l + 1 ≤ k ≤ l2 + l, 2 ≤ l ≤ i. (5.6)

Again, the induction is on i. Let i = 2. From the definition of G ′
2 we have

#v(2, 1) = #v(2, 2) = 2 < 3 = #v(2, 3) = #v(2, 4) = #v(2, 5) = #v(2, 6).
Let us assume that the inequality holds for i = m− 1. We have to prove it
for i = m.

First, we consider the case l < m. From the definition of G ′
m we have

#v(m, j) = 2·#v(m−1, j) for all j < l2−l+1 and #v(m, k) = 2·#v(m−1, k)
for all l2 − l + 1 ≤ k ≤ l2 + l. Together with the assumption this yields the
inequality for the case l < m.

Secondly, we have to examine the case l = m. Let us consider the vertex
vm2−m, the vertex from G′

m−1 in G′
m with the largest index. From the case

l < m we know that vm2−m is one of the most frequent vertices of G ′
m−1 in G′

m.
To complete the proof it suffices to show #v(m,m

2−m) < #v(m,m
2−m+1)

as we know from Equation (5.5) and the already established “l < m”-case.
From the definition of G ′

m and G′
m−1 we have

#v(m,m
2 −m) = 2 · (|G′

m−2| + 1), and

#v(m,m
2 −m+ 1) = |G′

m−1| + 1.

74

5.1 Berge-multiplication and its improvements

With |G′
i| = 2i+1 − 2 this gives

#v(m,m
2 −m) = 2m − 2, and

#v(m,m
2 −m+ 1) = 2m − 1.

Hence, we have #v(m,m
2 −m) < #v(m,m

2 −m+ 1), which completes the
proof of Equation (5.6).

Thus, the proof of Lemma 5.1.4 is completed.

From Lemma 5.1.4 it follows that the vertices from G ′(i) are the last vertices in
the vertex ordering computed by the BMR-algorithm on input G ′

i. This is crucial
for the next step of our analysis in which we examine the recursive calls produced
by the BMR-algorithm on input G ′

i.

Lemma 5.1.5. For i ≥ 4, the BMR-algorithm on input G ′
i recursively calls the

BMR-algorithm at least 2i times with a modified G ′
i−1 ∪ {{wi}} as input. Here,

modified means that all edges of G ′
i−1 ∪ {{wi}} may additionally include at most

half of the vertices of G ′(i).

Proof. We only examine the last 2i vertices processed by the BMR-algorithm.
From Lemma 5.1.4 we know that these are exactly the vertices from G ′(i)—
contained in the edges ei and fi. Let v′1, v

′
2, . . . , v

′
2i be any ordering of these vertices.

We consider the BMR-algorithm on that ordering.
Let the j-th vertex v′j , 1 ≤ j ≤ 2i, from the above ordering be the current

partitioning vertex (line 3 of the BMR-algorithm). After partitioning (lines 5
to 8), the remaining hypergraph has the form

(G ′
i−1 ∪ {{wi}}) ∨ {{v′1, . . . , v′j−1} ∩ xi},

where xi = fi if v′j ∈ ei, and xi = ei if v′j ∈ fi. Hence, the remaining hypergraph
always is a G′

i−1∪{{wi}} with at most half of the vertices from G ′(i) in every edge.
Altogether, for each of the last 2i vertices the minimal transversals of a modified

G ′
i−1 ∪ {{wi}} have to be computed. Note that a modified G ′

3 ∪ {{w4}} has 15
edges of average size at least 5.4 and, thus, a ≥ 81 (line 10). Hence, for i ≥ 4
the last 2i vertices invoke recursive calls of the BMR-algorithm with a modified
G ′

i−1 ∪ {{wi}} as input.

With Lemma 5.1.5 at hand we can analyze the number of non-minimal transver-
sals computed by the BMR-algorithm.

Lemma 5.1.6. Let i ≥ 4. For the number η(i) of non-minimal transversals
computed during a run of the BMR-algorithm on input G ′

i we have η(i) ≥ 2i−1 · i!.
Proof. From Lemma 5.1.5 it follows that there are 2i recursive calls with a modified
G ′

i−1 ∪ {{wi}} as input. Such a recursive call produces at least all of the minimal
and some non-minimal transversals of G′

i−1 ∪ {{wi}} augmented by the current
partitioning vertex as transversals for G ′

i. But since at least the partitioning vertex

75

Chapter 5 Algorithms

is dispensable in these transversals, not one of them is minimal for G ′
i and thus

will not be part of the final output. There are at least η(i− 1) + |Tr(G ′
i−1)| such

non-minimal transversals per recursive call. Hence, we have to solve the recurrence

η(i) ≥ 2i · (η(i− 1) + |Tr(G ′
i−1)|)

≥ 2i · η(i− 1).

As for the initial condition we have the following.

Claim 5.1.7. η(3) = 34.

Proof. We examine the BMR-algorithm on input G ′
3. Without loss of gener-

ality we assume that the BMR-algorithm processes the vertices in the order
w3, w2, v1, v2, . . . , v12. When using w3, w2, or v1 as partitioning vertex, nothing
happens since the resulting hypergraph is empty.

The next partitioning vertex is v2 and there remains the hypergraph with the
three edges {w3}, {w2}, and {v1}. The DL-algorithm is invoked and outputs
one minimal transversal, which is augmented by v2. The resulting transversal
{w3, w2, v1, v2} is minimal for G′

3.
When using v3 or v4 as partitioning vertex, there remains the hypergraph with

the four edges {w3}, {w2}, {v1}, and {v2}. The DL-algorithm computes the
minimal transversal of this hypergraph, which is augmented by v3 and respectively
v4. Obviously, the resulting transversals are not minimal since they contain the
minimal transversal {w3, w2, v1, v2}. Hence, the BMR-algorithm has computed
two non-minimal transversals of G′

3.
When using v5 or v6 as partitioning vertex, there remains the hypergraph with

the four edges {w3}, {w2, v3, v4}, {v1, v3, v4}, and {v2, v3, v4}. The DL-algorithm
computes the three minimal transversals {w3, v3}, {w3, v4}, and {w3, w2, v1, v2}
and augments them by v5 and respectively v6. This yields four minimal transver-
sals of G′

3 and another two non-minimal transversals of G ′
3.

When using v7, v8, or v9 as partitioning vertex, there remains a G ′
2 ∪ {{w3}}.

Each time, the DL-algorithm is invoked to compute all five minimal transversals of
G ′

2∪{{w3}}. Each such computed minimal transversal of G ′
2∪{{w3}} is augmented

by the current partitioning vertex. The resulting transversal is not minimal for G ′
3

since already the minimal transversals of G′
2 ∪ {{w3}} are minimal for G′

3. Hence,
the algorithm produces 15 non-minimal transversals for the vertices v7, v8, and v9.

As for the vertices v10, v11, and v12 there remains a (G ′
2 ∪ {{w3}}) ∨ {v7, v8, v9}

after partitioning. For each such modified G ′
2 ∪ {{w3}} the DL-algorithm as a

subroutine is invoked to compute the minimal transversals since a = 40 < 50
(line 10 of the BMR-algorithm) for a modified G ′

2 ∪ {{w3}}. For each such call
the DL-algorithm produces all five minimal transversals of G ′

2 ∪ {{w3}} plus the
three minimal transversals {v7}, {v8}, {v9}. Each such computed transversal is
augmented by the current partitioning vertex. This yields nine minimal transver-
sals of G′

3 and another 15 non-minimal transversals.
Altogether, the BMR-algorithm with input G ′

3 computes 34 non-minimal trans-
versals. This yields η(3) = 34 and completes the claim.

76

5.1 Berge-multiplication and its improvements

Hence, η(3) ≥ 22 · 3! and we get η(i) ≥ 2i−1 · i! by iteration, which completes
the proof of Lemma 5.1.6.

Putting all the pieces together we are able to give a superpolynomial lower
bound on the running time of the BMR-algorithm.

Theorem 5.1.8. The BMR-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.

Proof. We consider the BMR-algorithm on input G ′
i. Bymi = |VG′

i
|·(|G′

i|+|Tr(G′
i)|)

we denote an upper bound on the size of the input and output. For i ≥ 22 we
have

mi = (i2 + 2i− 1) ·
(

2i+1 − 2 +
2i3 + 3i2 + i

6

)
≤ 23i.

The running time of the BMR-algorithm on input G ′
i is at least η(i), the number

of generated non-minimal transversals. Thus, to analyze the running time we will
show that η(i) is superpolynomial in mi. It suffices to show that

2i−1 · i! > (23i)c, for any constant c.

This is equivalent to i − 1 + log(i!) > c · 3i, for any constant c. Using Stirling’s
formula we have log(i!) ≥ i · log i− i and thus it suffices to show i−1+ i · log i− i >
c · 3i, for any constant c. This is equivalent to

log i

3
− 1

3i
> c, for any constant c.

Since the last equation obviously holds for sufficiently large i, we have proven that
η(i) is superpolynomial in mi, namely η(i) = m

Ω(log log mi)
i .

5.1.4 The algorithm of Kavvadias and Stavropoulos

A first drawback of Berge-multiplication or the BMR-algorithm observed by Kav-
vadias and Stavropoulos [KS05] is the memory requirement. Since newly com-
puted transversals have to be checked for minimality against the previously com-
puted minimal transversals, all the previously generated minimal transversals have
to be stored. The KS-algorithm tries to overcome this potentially exponential
memory requirement by two techniques. The first is to combine vertices that
belong to exactly the same hyperedges.

Definition 5.1.9 (Generalized Vertex). Let H be a hypergraph with vertex set V .
The set X ⊆ V is a generalized vertex of H if all vertices in X belong to exactly
the same hyperedges of H.

A transversal possibly containing generalized vertices will be referred to as gen-
eralized transversal. While adding edge ei, and hence generating the minimal gen-
eralized transversals of Hi out of the minimal generalized transversals of Hi−1, the

77

Chapter 5 Algorithms

generalized vertices have to be updated according to ei. Kavvadias and Stavropou-
los characterize the following three types of generalized vertices X of a minimal
generalized transversal t of Hi−1.

• type α: X ∩ ei = ∅. Hence, X is a generalized vertex of Hi.

• type β: X ⊂ ei. Hence, X is a generalized vertex of Hi.

• type γ: X ∩ ei �= ∅ and X �⊂ ei. Here, X is divided into X1 = X \ (X ∩ ei)
and X2 = X ∩ ei. Both X1 and X2 are generalized vertices of Hi.

Let κα(t, i), κβ(t, i), and κγ(t, i) denote the number of generalized vertices of type
α, β, and γ in t according to ei. When edge ei is added, the minimal generalized
transversal t of Hi−1 has to be split into 2κγ(t,i) generalized transversals of Hi−1—
the so-called offsprings of t—since all combinations of newly generalized vertices
have to be generated. If κβ(t, i) �= 0, all these newly generated offsprings are
also minimal transversals of Hi. But if κβ(t, i) = 0, there is a special offspring t0
of t that contains all the X1-parts of the γ-type generalized nodes of t. Hence,
t0 ∩ ei = ∅ and t0 has to be augmented by a vertex from ei to be a transversal of
Hi. All the other offsprings of t already are minimal transversals of Hi since they
contain at least one X2-part of a generalized vertex from t.

The second technique to overcome the potentially exponential memory require-
ment is based on the observation that Berge-multiplication is a form of breadth-
first search through a “tree” of minimal transversals. At the ith-level of the “tree”
the nodes are the minimal transversals of the partial hypergraph Hi. The descen-
dants of a minimal transversal t at level i are the minimal transversals of Hi+1 that
include t. Note that, since a node at level i+1 may have several ancestors at level
i, the structure is not really a tree but very tree-like. The bottom level consists
of the minimal transversals of H. When cycling through this “tree” breadth-first,
one has to wait very long for the first minimal transversal to be output and some
nodes are visited several times because they have more than one ancestor. To
overcome the long time that may pass until the first minimal transversal is out-
put, the KS-algorithm uses a depth-first strategy. And to really cycle through a
tree and not a tree-like structure with some cycles, Kavvadias and Stavropoulos
introduce the notion of so-called appropriate vertices.

Definition 5.1.10 (Appropriate Vertex). Let H = {e1, . . . , em} be a hypergraph
with vertex set V and let t be a minimal transversal of the partial hypergraph Hi

of H. A generalized vertex v ⊆ V \ t at level i is an appropriate vertex for t if
no other vertex in t ∪ {v} except v can be removed and the remaining set still be
a transversal of Hi. The set appr(t, e) contains all appropriate vertices for t in
edge e.

Note that the special offspring t0 of a minimal generalized transversal t of Hi−1

has to be augmented by a vertex from appr(t, ei) only. All the other vertices from

78

5.1 Berge-multiplication and its improvements

ei can be skipped. Expanding only with appropriate vertices ensures that no non-
minimal transversals are generated and avoids regenerations. Another advantage
is that the previously described transversal “tree” structure becomes a real tree
(cf. the original paper [KS05] for more details).

All the described techniques—generalized vertices, depth-first strategy, appro-
priate vertices—together with the main idea of Berge-multiplication—processing
the edges one after the other—are used in the KS-algorithm (cf. Algorithm 20 for
the listing).

Algorithm 20 The KS-algorithm

1: express e1 as a set of one generalized vertex
2: compute the transversal t = Tr(e1)
3: addNextHyperedge(t, e2)

4: procedure addNextHyperedge(t, ei)
5: update the set of generalized vertices
6: express t and ei as sets of generalized vertices of level i
7: l ← 1
8: while generateNextTransversal(t, l) do
9: if ei is the last hyperedge then

10: output t′ without using generalized vertices
11: else
12: addNextHyperedge(t′, ei+1)
13: l ← l + 1

14: function generateNextTransversal(t, l)
15: if κβ(t, i) �= 0 then
16: if l ≤ 2κγ(t,i) then
17: t′ ← the l-th offspring of t
18: return true

19: else
20: return false

21: else if κβ(t, i) = 0 then
22: if l ≤ 2κγ(t,i) − 1 then
23: t′ ← the l-th offspring of t except t0
24: return true

25: else if 2κγ(t,i) ≤ l ≤ 2κγ(t,i) − 1 + |appr(t, ei)| then
26: t′ = t0 augmented by the (l − 2κγ(t,i) + 1)-th vertex of appr(t, ei)
27: return true

28: else
29: return false

After computing a first transversal (only one since it consists of a generalized
vertex), the recursive addNextHyperedge procedure is called (note that t′ is a

79

Chapter 5 Algorithms

global variable). Due to the usage of generalized vertices, the expansion of t is
divided into two parts according to the presence (line 15 of the listing) or absence
(line 21) of a generalized vertex of type β in t. If the minimal transversal t of
Hi−1 contains a generalized vertex of type β, all its offsprings intersect ei and
hence are minimal transversals of Hi (lines 16 to 20). If t does not contain a
type β vertex, all its offsprings except t0 intersect ei and hence are minimal for
Hi (lines 22 to 24). The offspring t0 has to be augmented by every appropriate
vertex (line 26).

The effect as shown by Kavvadias and Stavropoulos is that a newly generated
transversal is minimal and that regenerations are avoided [KS05]. Since the KS-
algorithm uses a depth-first strategy, it does not have to store all the minimal
transversals of the subhypergraph Hi−1 to compute the minimal transversals of
Hi. This yields a space requirement of the KS-algorithm that is polynomial in the
input size |H| [KS05].

As for the running time, the KS-algorithm is experimentally shown [KS05] to be
competitive to Berge-multiplication, the BMR-algorithm, and an implementation
of Algorithm A of Fredman and Khachiyan [FK96, KBEG06] (cf. Section 5.3).
We will show that the KS-algorithm is not output-polynomial.

First, we note that there are situations in which the KS-algorithm cannot find
an appropriate vertex.

Example 5.1.11. Consider for example the hypergraph

H = {{v1, v5}, {v2, v5}, {v3, v6}, {v4, v6}, {v5, v6}}.
Having processed all but the last edge, there are no generalized vertices left. We
concentrate on the path down the transversal tree that corresponds to choosing
v1, v2, v3, and v4. The intermediate transversal is t = {v1, v2, v3, v4}. The only
edge left is {v5, v6}. But the KS-algorithm cannot find an appropriate vertex for
t in this edge.

Hence, there are dead ends in the recursion tree of the KS-algorithm, namely
leaves that do not contain a minimal transversal of the input H. The next step is
to find hypergraphs with too many such dead ends.

Lemma 5.1.12. For i ≥ 3, the number of dead ends the KS-algorithm has to visit
for any of Takata’s hypergraphs Gi as input is at least 2(i−2)·2i+1, independent of
the edge ordering.

Proof. Consider the hypergraph family Gi of Takata defined in Section 5.1.1. First
note that when the KS-algorithm adds the last edge of Gi, there are no proper
generalized vertices left (generalized vertices that are not singleton sets). We
want to argue that the same already holds for the penultimate step, hence, that
Gi \ {e} has no proper generalized vertex, for any edge e ∈ Gi. Assume otherwise
that after processing all of Gi \ {e}’s edges there remains a proper generalized
vertex X ⊆ V . As Gi has no proper generalized vertices, we have X ⊆ e. Let

80

5.1 Berge-multiplication and its improvements

e be composed of the A and C component in Gi’s definition (the argumentation
is analogous for the other cases) and consider two different vertices v, u ∈ X. If
both v and u are vertices in the A component we have a contradiction as already
A contains an edge f that contains v but not u. This edge appears in |C| + |D|
edges of Gi \ {e}. Hence, not both v and u can be vertices in X as they would
have been split according to the f copies in prior steps of the KS-algorithm’s run
(an analogous argument shows that not both are in C).

The remaining possibility (minus symmetry) is that v is from A and u is from
C. But note that Gi \ {e} contains an edge f with v ∈ f but f is composed of the
A and D part of Gi. Again, this shows that v and u cannot both be vertices in X
as they would have been split in a prior step.

Altogether, we now know that before processing the last edge, there cannot
be proper generalized vertices in Gi \ {e}. From Lemma 5.1.2 it follows that,
whatever ordering of the edges is chosen, there are at least 2(i−2)·2i+2 nodes in the
penultimate level of the transversal tree described above Definition 5.1.10. The
bottom level of the tree obviously contains |Tr(Gi)| many nodes—one for each
minimal transversal. Since |Tr(Gi)| = 22i−1 (cf. Lemma 5.1.2), there is a decrease
in the number of nodes from the penultimate level to the bottom level for i ≥ 3.
This decrease can only be caused by dead ends in the penultimate level. Hence,
for i ≥ 3 there are at least 2(i−2)·2i+2 − 22i−1 ≥ 2(i−2)·2i+1 many dead ends in the
penultimate level.

Using Lemma 5.1.12 we can show that the KS-algorithm is not output-polyno-
mial.

Theorem 5.1.13. The KS-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.

Proof. We consider the KS-algorithm on input Gi. By mi = |VGi
| · (|Gi|+ |Tr(Gi)|)

we denote an upper bound on the size of Gi and Tr(Gi). From Lemma 5.1.2 we
have mi = 4i · (22(2i−1) + 22i−1), which results in mi ≤ 22i+2

.

Let η̂(i) denote the number of dead end situations visited by the KS-algorithm
on input Gi. The time, the KS-algorithm needs to compute Tr(Gi), is at least
the number of dead end situations visited. Since the KS-algorithm visits the
transversal tree depth-first, it visits all the dead end situations in the penultimate
level of the tree. With Lemma 5.1.12 we have η̂(i) ≥ 2(i−2)·2i+1 for i ≥ 3. Thus,
to analyze the running time we will show that η̂(i) is superpolynomial in mi. It
suffices to show that 2(i−2)·2i

> (22i+2

)c, for any constant c. This is equivalent to
i − 2 > 4c, for any constant c. Since this obviously holds for large enough i, we
have proven that η̂(i) is superpolynomial in mi, namely η̂(i) = m

Ω(log log mi)
i .

81

Chapter 5 Algorithms

Algorithm 21 The HBC-algorithm

Input: a hypergraph H on vertex set V
1: Tr ← {{v} : v ∈ E for each E ∈ H}
2: C1 ← {{v} : v ∈ V } \ Tr
3: i← 1
4: while Ci �= ∅ do
5: for all a, b ∈ Ci, |a ∩ b| = i− 1 do
6: c← a ∪ b
7: if c \ {v} ∈ Ci for all v ∈ c then
8: if c \ {v} hits fewer edges of H than c for all v ∈ c then
9: if c is a transversal of H then

10: Tr ← Tr ∪ {c}
11: else
12: Ci+1 ← Ci+1 ∪ {c}
13: i← i+ 1

14: output Tr

5.2 The algorithm of Hébert, Bretto, and

Crémilleux

The HBC-algorithm [HBC07, Héb07] (cf. Algorithm 21 for the listing) is a level-
wise approach for computing all minimal transversals similar to the classic Apriori
algorithm [AS94, GKM+03, MT97] (cf. Section 7.4). Note that our presentation
of the algorithm slightly differs from the original paper [HBC07] as we avoid using
Galois connections and the like.

The HBC-algorithm generates transversal candidates in a level-wise manner. In
the first step, one element subsets of V are candidates for being minimal transver-
sals. Those that really are transversals are added to the set Tr (line 1 of the
listing) that finally will contain all minimal transversals of H. All other one el-
ement subsets of V are added (line 2) to the candidate set C1 of level 1. In
the (i+ 1)-th step, the HBC-algorithm combines candidates of the i-th step that
have a large enough intersection (lines 5 and 6). For each candidate c it is then
checked whether all its subsets are candidates at level i and whether c hits more
edges than all its subsets (lines 7 and 8). If so, a final check determines whether
c is a transversal or not and, hence, whether c has to be added to Tr or Ci+1,
respectively (lines 9 to 12).

In [HBC07] it is claimed that the HBC-algorithm on input H runs in O(2t(H) ·
|Tr(H)|) time, where t(H) denotes the size of a largest minimal transversal of H.
This bound seems to be intuitive as the HBC-algorithm checks all the subsets
of each minimal transversal. It would also solve a longstanding open question.
Namely, polynomial time decision of TransHyp when edges are logarithmically
size-bounded. Unfortunately, as we will show, the claimed upper bound is wrong.

82

5.2 The algorithm of Hébert, Bretto, and Crémilleux

We shall give a lower bound that also shows the HBC-algorithm not to be output-
polynomial.

To obtain our lower bound we will observe the behavior of the HBC-algorithm
on the Takata hypergraphs (cf. Definition 5.1.1) that we also used in previous
sections. The idea we use in our analysis is probably best described by an example.

Example 5.2.1. Consider Takata’s hypergraph

G1 = {{v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}}
as input and note that Tr(G1) = {{v1, v2}, {v3, v4}}. What may have led to the
running time claim in [HBC07] is the impression that only subsets of sets that are
finally part of the output (minimal transversals in our case) are processed by the
algorithm as this is true in other scenarios where the Apriori technique is used.
But consider the set {v1, v3} in our example. It is an element of the candidate
set C2 in the HBC-algorithm as it hits more edges of G1 than its one element
subsets which all are contained in C1. But {v1, v3} is not subset of any minimal
transversal. The same holds for {v1, v4}, {v2, v3}, and {v2, v4}. All are candidates
in C2 but not contained in any minimal transversal.

As for G1, the O-notation assures that the claimed bound of [HBC07] holds.
But for larger and larger i we show that the HBC-algorithm on input Gi generates
too many candidates to run in O(2t(Gi) · |Tr(Gi)|) time. Thereby, we also show the
HBC-algorithm not to be output-polynomial. A lower bound for the number of
candidates produced is given in the following lemma.

Lemma 5.2.2. The number of candidates generated by the HBC-algorithm on
input Gi is at least 2(i−2)·2i+2 for i ≥ 2.

Proof. Fix any edge e of Gi and note that each element of Tr(Gi \ {e}) \ Tr(Gi) is
generated as a candidate by the HBC-algorithm. This can be seen as follows. Each
element t of Tr(Gi \ {e}) \Tr(Gi) is a minimal transversal of Gi \ {e} and thus hits
more edges of Gi\{e} than all of t’s proper subsets. All of t’s subsets are candidates
in the course of the HBC-algorithm running on input Gi\{e} as t finally is produced
as output. But note that t then also hits more edges of Gi than all its proper
subsets and that all these subsets then also are candidates in the course of the
HBC-algorithm running on input Gi. Hence, each element of Tr(Gi \ {e}) \Tr(Gi)
hits more edges of Gi than all its subsets and all these subsets also are candidates
at a lower level. But not one of the elements of Tr(Gi \ {e}) \ Tr(Gi) is a minimal
transversal of Gi and, thus, on input Gi these elements are produced as candidates
only. From Lemma 5.1.2 we have |Tr(Gi \ {e}) \ Tr(Gi)| ≥ 2(i−2)·2i+2 independent
of the choice of e, which completes the proof of Lemma 5.2.2.

In order to show that the bound given in [HBC07] is wrong, we need the fol-
lowing observation on the size of a largest minimal transversal of Gi.

Lemma 5.2.3. The size t(Gi) of a largest minimal transversal of Gi is 2i.

83

Chapter 5 Algorithms

Proof. Note that by the definition of Gi we have t(Gi) = 2 · t(Gi−1) and with the
initial condition t(G0) = 1 we get t(Gi) = 2i by iteration.

We are now ready to give a lower bound on the running time of the HBC-
algorithm showing it not to be output-polynomial and proving the upper bound
claimed by Hébert et. al. [HBC07] to be wrong.

Theorem 5.2.4. The HBC-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output. Further-
more, the O(2t(H) · |Tr(H)|) upper time bound stated in [HBC07] is wrong.

Proof. We consider the HBC-algorithm on input Gi. By mi = |VGi
|·(|Gi|+|Tr(Gi)|)

we denote an upper bound on the size of Gi and Tr(Gi). From Lemma 5.1.2 we
have mi = 4i · (22(2i−1) + 22i−1), which results in mi ≤ 22i+2

.

Let γ(i) denote the number of candidates generated by the HBC-algorithm on
input Gi. The time, the HBC-algorithm needs to compute Tr(Gi), is at least the
number of candidates generated. With Lemma 5.2.2 we have γ(i) ≥ 2(i−2)·2i+1 for
i ≥ 2. Thus, to analyze the running time we will show that γ(i) is superpolynomial
in mi. It suffices to show that 2(i−2)·2i

> (22i+2

)c, for any constant c. This is
equivalent to i − 2 > 4c, for any constant c. Since this obviously holds for large
enough i, we have proven that γ(i) is superpolynomial in mi, namely γ(i) =

m
Ω(log log mi)
i which gives the stated lower bound.

To prove the second part, namely that O(2t(H) · |Tr(H)|) is not an upper time
bound for the HBC-algorithm we shall show thatγ(i) is superpolynomial in m′

i =
2t(Gi) · |Tr(Gi)| for large enough i. From Lemmata 5.1.2 and 5.2.3 we have m′

i =
22i · 22i−1 = 22·2i−1. Hence, it suffices to show that 2(i−2)·2i

> (22·2i

)c, for any
constant c. This is equivalent to i − 2 > 2c, for any constant c. Since this
obviously holds for large enough i, we have proven that γ(i) is superpolynomial
in m′

i and hence the O(2t(H) · |Tr(H)|) upper time bound claimed in [HBC07] is
wrong.

5.3 The algorithms of Fredman and Khachiyan

In 1996 Fredman and Khachiyan developed two Monet algorithms, FK-algo-
rithm A and the improved version FK-algorithm B [FK96]. There is a nice survey
on the FK-algorithms and follow up work [EMG08].

Both FK-algorithms exploit the self-reducibility of Monet. Namely, ϕ and ψ
are equivalent iff setting any variable x to false resp. true yields two respectively
equivalent DNF/CNF-pairs.

In case of non-equivalence, both FK-algorithms return an assignment A with
A(ϕ) �= A(ψ) as a witness for non-equivalence. Both algorithms work recursively,
but before exploiting the self-reducibility they check some basic conditions that
can easily guarantee non-equivalence in case of monotone normal forms.

84

5.3 The algorithms of Fredman and Khachiyan

5.3.1 Preconditions

Let (ϕ, ψ) be a pair of an irredundant, monotone DNF ϕ and an irredundant,
monotone CNF ψ that are equivalent. Then the following three conditions hold.
Firstly,

m ∩ c �= ∅ for any monomial m ∈ ϕ and any clause c ∈ ψ. (5.7)

Assume there exists a monomial m ∈ ϕ and a clause c ∈ ψ with m ∩ c = ∅. Now
consider the assignment A = m and note that A(ϕ) = 1 and A(ψ) = 0.

Secondly,

ϕ and ψ must contain exactly the same variables. (5.8)

Assume that there is a variable x in ϕ that is not present in ψ (the argumentation
is similar if ψ contains a “new” variable). Let m be a monomial of ϕ containing
x and consider the assignment A = m \ {x}. We have A(ϕ) = 0 and A(ψ) = 1 as
A has a non-empty intersection with every clause of ψ due to condition (5.7).

Thirdly,
max{|m| : m ∈ ϕ} ≤ |ψ|, max{|c| : c ∈ ψ} ≤ |ϕ|. (5.9)

Assume that there is a monomial m ∈ ϕ that contains more variables than clauses
are contained in ψ (the argumentation is similar if ψ contains a clause that is
“too large”). Now let m′ ⊂ m be a proper subset of m satisfying m′ ∩ c �= ∅ for
any clause c of ψ. Consider the assignment A = m′ and note that A(ϕ) = 0 and
A(ψ) = 1.

Conditions (5.7)–(5.9) can be easily tested in linear respectively quadratic time,
which is done by both FK-algorithms as a preprocessing step. We now come to the
description of FK-algorithm A. In Section 5.3.3 we then discuss the improvements
of FK-algorithm B.

5.3.2 FK-algorithm A

FK-algorithm A uses an additional precondition that holds for any equivalent
(ϕ, ψ) pair. Namely,∑

m∈ϕ

2v−|m| +
∑
c∈ψ

2v−|c| ≥ 2v, where v is the number of variables. (5.10)

The left hand side of condition (5.10) sums up the assignments that satisfy ϕ
and the assignments that do not satisfy ψ. Hence, if the left hand side of con-
dition (5.10) is smaller than 2v, there must be an assignment A∗ that does not
satisfy ϕ but ψ. Such an assignment A∗ can then be iteratively found as fol-
lows. Start with the empty assignment and at step i include variable xi iff
(A∗

i−1∪{xi}) ≤ (A∗
i−1), where A∗

i−1 is the partial result from step i−1 and (A)
gives the number of monomials of ϕ satisfied by A plus the number of clauses of
ψ not satisfied by A. Hence, A∗

i is computed in a way as to minimize the value

85

Chapter 5 Algorithms

of where is similar to the left hand side of condition (5.10). Fredman and
Khachiyan [FK96] mainly include condition (5.10) in their algorithm A to ensure
the existence of a sufficiently frequent variable that then guarantees the validity
of estimations made in their worst-case analysis.

A pseudocode listing of FK-algorithm A is given as Algorithm 22. We give some
further brief remarks. As for the initial call of FK-algorithm A, the global variable
A is the empty set. Note that we already discussed how appropriate assignments
are found in case of violation of conditions (5.7)–(5.10).

In case of small inputs consisting of at most one term each (line 3 of the listing),
there are only very few possibilities. If there are no variables at all, ϕ is the empty
DNF (which is unsatisfiable) or contains the empty monomial (which is valid).
The equivalent CNF of the empty DNF contains the empty clause only, and the
equivalent CNF of the empty monomial is the empty CNF. Hence, if the inputs
are not equivalent but contain no variables, any assignment serves as a witness.
If the formulas contain variables but only one term each, the previous check of
condition (5.8) already ensures equivalence as then the formulas must be identical!

As for the recursive process, the FK-algorithm A decomposes the original input
instance (ϕ, ψ) as follows. It selects a “splitting” variable x that appears with
frequency at least 1/ log(|ϕ| + |ψ|) in either ϕ or ψ. The existence of such a
variable is ensured by condition (5.10) [FK96]. Then ϕ and ψ can be rewritten as

ϕ ≡ (x ∧ ϕ0) ∨ ϕ1,

ψ ≡ (x ∨ ψ0) ∧ ψ1,

where ϕ1 (resp. ψ1) contains the monomials (resp. clauses) of ϕ (resp. ψ) that
do not contain x and ϕ0 (resp. ψ0) are the other monomials (resp. clauses) from
which x was excluded. Now deciding equivalence of (ϕ, ψ) is equivalent to deciding
equivalence of the two smaller problems

(ϕ1, ψ0 ∧ ψ1), (5.11)

(ϕ0 ∨ ϕ1, ψ1). (5.12)

Note that (5.11) corresponds to setting x to false in the original instance (ϕ, ψ)
whereas (5.12) corresponds to setting x to true. Hence, if the call on subprob-
lem (5.11) returns an assignment showing non-equivalence, the original call can
return exactly this assignment (remember the set notion of assignments). In case
that the second subproblem (5.12) is not equivalent, the algorithm adds the split-
ting variable x to the assignment.

As for the worst-case analysis, Fredman and Khachiyan show the following.

Proposition 5.3.1 ([FK96]). FK-algorithm A runs in time nO(log2 n).

The main tool in their analysis of FK-algorithm A is to base the estimation
of the number of recursive calls on the fact that for equivalent normal forms
condition (5.10) holds and hence the splitting variable is sufficiently frequent.

86

5.3 The algorithms of Fredman and Khachiyan

Algorithm 22 The FK-algorithm A (FK-A)

Input: irredundant, monotone DNF ϕ and CNF ψ
Output: ∅ in case of equivalence; otherwise, assignment A with A(ϕ) �= A(ψ)

1: make ϕ and ψ irredundant
2: if one of conditions (5.7)–(5.10) is violated then return appropriate assign-

ment
3: if |ϕ| · |ψ| ≤ 1 then return appropriate assignment found by a trivial check
4: else
5: find a variable x appearing with frequency ≥ 1/ log(|ϕ| + |ψ|) in either ϕ

or ψ
6: A ← FK-A(ϕ1, ψ0 ∧ ψ1)
7: if A = ∅ then
8: A ← FK-A(ϕ0 ∨ ϕ1, ψ1)
9: if A �= ∅ then return A ∪ {x}

10: return A

As for the practical performance, an experimental study of a randomized version
of FK-algorithm A showed it to be quite efficient [KBEG06]. There is also a version
by Tamaki designed to run with polynomial space [Tam00].

5.3.3 FK-algorithm B

FK-algorithm A does not exploit the fact that the second recursive call is only
performed if the first call did not yield a witness for non-equivalence, but so
does FK-algorithm B. Assume that the input (5.11) of the first recursive call is
equivalent. Now in the second call, we try to find an assignment A with A(ϕ0 ∨
ϕ1) �= A(ψ1) (a witness for the non-equivalence of the second pair (5.12)). As
ϕ1 is equivalent to ψ0 ∧ ψ1 this then gives A(ϕ0) ∨ A(ψ0 ∧ ψ1) �= A(ψ1). If
now A(ψ0) = 1, we have A(ϕ0) ∨ A(ψ1) �= A(ψ1), which implies A(ψ1) = 0 and
A(ϕ0) = 1. This is a contradiction to condition (5.7), which says that every clause
of ψ1 has a non-empty intersection with every monomial of ϕ0. Hence, actually,
for the second recursive call on (5.12) it suffices to find an assignment A with
A(ψ0) = 0 and A(ψ1) �= A(ϕ0). As for A(ψ0) = 0, note that we only have to
check the maximal assignments not satisfying ψ0, of which there are exactly |ψ0|
(for each clause c ∈ ψ0 the assignment that does not contain exactly the variables
of c). Hence, for each clause c of ψ0, FK-algorithm B is recursively called on an
adjusted pair (ϕc

0, ψ
c
1), where the superscript c denotes that all variables from c

are set to false in the respective formula.
Note that in case we started testing equivalence of ϕ and ψ by first examining

the second pair (5.12), an analogous argumentation yields that pair (5.11) then
is equivalent to finding an assignment A with A(ϕ0) = 1 and A(ϕ1) �= A(ψ0).
Hence, for each monomial m of ϕ0, FK-algorithm B is recursively called on an
adjusted pair (ϕm

1 , ψ
m
0), where the superscript m in this case denotes that all

87

Chapter 5 Algorithms

variables from m are set to true in the respective formula. Note that in case of
non-equivalence we now also have to include the corresponding monomial m in
the respective witness (remember our set notion of assignments).

A pseudocode listing of FK-algorithm B is given as Algorithm 23. The algorithm

Algorithm 23 The FK-algorithm B (FK-B)

Input: irredundant, monotone DNF ϕ and CNF ψ
Output: ∅ in case of equivalence; otherwise, assignment A with A(ϕ) �= A(ψ)

1: make ϕ and ψ irredundant
2: ν = |ϕ| · |ψ|;
3: if one of conditions (5.7)–(5.9) is violated then return appropriate assign-

ment
4: if min{|ϕ|, |ψ|} ≤ 2 then return appropriate assignment found by a trivial

check
5: else
6: choose some variable x from the formulas
7: ε(ν) ← 1/χ(ν)
8: εϕ

x ← |{m ∈ ϕ : x ∈ m}|/|ϕ|
9: εψ

x ← |{c ∈ ψ : x ∈ c}|/|ψ|;
10: if εϕ

x ≤ ε(ν) then
11: A ← FK-B(ϕ1, ψ0 ∧ ψ1)
12: if A �= ∅ then return A
13: for all clauses c ∈ ψ0 do
14: A ← FK-B(ϕc

0, ψ
c
1)

15: if A �= ∅ then return A ∪ {x}
16: else if εψ

x ≤ ε(ν) then
17: A ← FK-B(ϕ0 ∨ ϕ1, ψ1)
18: if A �= ∅ then return A∪ {x}
19: for all monomials m ∈ ϕ0 do
20: A ← FK-B(ϕm

1 , ψ
m
0)

21: if A �= ∅ then return A ∪m
22: else
23: A ← FK-B(ϕ1, ψ0 ∧ ψ1)
24: if A = ∅ then
25: A ← FK-B(ϕ0 ∨ ϕ1, ψ1)
26: if A �= ∅ then return A ∪ {x}
27: return A

exploits the above described decomposition of the second recursive call whenever
useful. The decision, if it is useful and which of the two recursive calls is performed
first, is done according to the frequency of the “splitting” variable x (chosen in
line 5). Therefore, in line 6 the algorithm computes a “threshold” frequency
ε(ν) = 1/χ(ν), where ν = |ϕ| · |ψ| is the volume of ϕ and ψ and χ is the function

88

5.4 Concluding remarks

defined by χ(n)χ(n) = n. Note that χ(n) ∼ logn/ log log n = o(log n).
If the frequency of the splitting variable in ϕ is less than ε(ν), the FK-algo-

rithm B uses (5.11) as input of the first recursive call and uses the more sophis-
ticated version of the second call to solve (5.12). If elsewise the frequency of the
splitting variable in ψ is less than ε(ν), the FK-algorithm B uses (5.12) as input
of the first recursive call and then solves (5.11) using the improved decomposition.
If otherwise the splitting variable is more frequent than ε(ν) in both, ϕ and ψ,
the FK-algorithm B just branches as FK-algorithm A. Note that condition (5.10)
is not necessary any more as we do not have to guarantee a sufficiently frequent
splitting variable.

As for the easy cases in line 3, note that if min{|ϕ|, |ψ|} ≤ 1 we have a similar
argumentation as for FK-algorithm A. If the formulas are not empty, one contains
just one term and the other then has to contain singleton terms for each variable.
Otherwise, it is easy to give a witness for non-equivalence according to the situa-
tion. Similarly, if the minimum is 2, a brute force multiplication of the two terms
and a following comparison to the other normal form is sufficiently efficient.

As for the worst-case analysis, Fredman and Khachiyan give a better upper
bound on the running time than for FK-algorithm A.

Proposition 5.3.2 ([FK96]). FK-algorithm B runs in time no(log n).

The main tool in the analysis is that the new branching guarantees better
bounds on the size of the inputs of recursive calls than in the analysis of FK-
algorithm A.

As for the practical performance, none of the so far published experimental
studies of Monet algorithms includes FK-algorithm B as the assumption is that,
despite the theoretically worse running time, FK-algorithm A will perform better
than FK-algorithm B in experiments [BMR03, KBEG06].

As we will show in Section 6.2, this assumption has to be adjusted, as in fact
FK-algorithm B turns out to be competitive even in practical experimentation.

5.4 Concluding remarks

We have proven superpolynomial lower bounds for the DL-, the BMR-, the KS-,
and the HBC-algorithm in terms of the size of the input and output. The bounds
show that, like the underlying Berge-multiplication algorithm, these algorithms
are not output-polynomial.

We are not aware of any other nontrivial lower bounds for algorithms generat-
ing the transversal hypergraph, although we conjecture that none of the known
algorithms is output-polynomial. Extending the existing lower bounds to other
algorithms does not seem to be so straightforward.

Consider for instance Takata-multiplication, an improvement of Berge-multipli-
cation suggested by Takata [Tak07]. Roughly speaking, the idea is not to process
the edges one after the other but to partition them and multiply them using some

89

Chapter 5 Algorithms

more sophisticated partitioning scheme. Very recently, Elbassioni proved a quasi-
polynomial upper bound on the running time of Takata-multiplication [Elb06b].
But giving a superpolynomial lower bound for Takata-multiplication requires the
construction of new hypergraphs. Takata’s hypergraphs Gi and our hypergraphs
G′

i are solved too fast by Takata-multiplication.
There are also no nontrivial lower bounds known for FK-algorithms A and B.

Though Gurvich and Khachiyan [GK97] note that it should be possible to give
a superpolynomial lower bound for FK-algorithm A using formulas associated to
hypergraphs very similar to the Gi, the proof is still open. Giving a lower bound for
FK-algorithm B—considered to be the fastest known Monet algorithm—seems
to be even more involved.

90

Chapter 6

Algorithm Engineering

As for evaluating the practical performance of Monet algorithms, there have been
several experimental studies [BMR03, DL05, KBEG06, KS05, LJ03, TT02, US03].
Unfortunately, all have some lack of coverage. None of the published studies
includes the FK-algorithm B by Fredman and Khachiyan [FK96], the Monet

algorithm with the best known worst-case performance (cf. Section 5.3). Actually,
the folklore assumption in the literature is that the operations performed by FK-
algorithm B to ensure recursion on smaller sub-problems compared to the less
involved FK-algorithm A just complicate the implementation and do only pay off
theoretically [BMR03, KBEG06]. Thus, unfortunately, the practical performance
of FK-algorithm B has not been systematically examined. Hence, it is not clear
at all, which of the currently known algorithms is the best choice on which kind
of instances.

In this chapter, we start working on closing this gap. In contrast with the
folklore assumption, we experimentally show FK-algorithm B to be competitive
and even superior to FK-algorithm A on many instances.

The chapter is organized as follows. In Section 6.1 we briefly discuss some
details of the implementation of the FK-algorithms. The experimental setting
and the corresponding results are stated in Section 6.2. Some concluding remarks
follow in Section 6.3.

6.1 A few implementation details

The FK-algorithms were implemented using Java. We decided to represent vari-
able sets—like terms and assignments—as bitmaps, which is just a sequence of
bits where bit i is set iff xi is contained in the corresponding term. This allows us
to process operations on formulas as logical operations on bitmaps, which can be
performed very fast if using some Java predefined data type. Hence, our choice
for internally representing bitmaps is the long data type—one of the primitive
Java data types. Note that we can use only 63 of the 64 bits of a long variable
(the remaining bit being the reserved sign bit). This restricts us to formulas with
at most 63 variables. Hence, we compared several other possibilities of represent-
ing bitmaps. Namely, we tried using BigInteger, BitSet, and an own structure
composed of an Array of sufficiently many long’s. Somehow surprisingly, the best

91

Chapter 6 Algorithm Engineering

overall performance for formulas with more than 63 variables was achieved by our
own array of long’s structure that beats the Java proprietary data types in our
pretests. For formulas with less than 63 variables, not that surprisingly, a single
long turns out to be the best choice.

Now that we know how to represent variable sets, we still have to internally
represent complete normal forms. In our pretests we compared implementations
of the FK-algorithms using the classes Array and Vector to store a set of bitmaps.
An advantage of Array is the faster access compared to Vector. In contrast,
Vector might have advantages in the process of making inputs irredundant as in
an Array implementation we have to manually close “gaps” in the array caused
by redundant terms. Our pretests favored the Array implementation.

Hence, in our implementations a formula is stored as an Array of bitmaps—that
itself are stored as long’s respectively Array’s of long’s according to the number
of variables.

Both FK-algorithms use an irredundantization procedure in line 1. But note
that, when making the DNF/CNF of a recursive call irredundant, not the whole
DNF/CNF has to be considered as the terms that included the splitting variable
cannot be redundant in the resulting formulas. Redundancy can only appear in
the formulas ϕ0 ∨ ϕ1 and ψ0 ∧ ψ1 and there only terms in ϕ1 and ψ1 have to be
checked for redundancy. Hence, in our implementations, irredundantization is al-
ways carried out before a recursive call. This significantly speeds up computation.
Note that in case of FK-algorithm B we can also save some processing time in
irredundantization of the many calls replacing the second call of FK-algorithm A.
If we set the variables of a monomial m of ϕ0 to true only monomials of ϕm

1 may
be redundant. Analogously, in case of setting the variables of a clause c of ψ0 to
false only clauses of ψc

1 may be redundant.

In our implementations we also slightly adopt the choice of the splitting variable
to speed up computation. As for FK-algorithm A we do not check which variables
are sufficiently frequent but choose a variable with the highest frequency in either
ϕ or ψ. As for FK-algorithm B we always choose a variable with the smallest
frequency in either ϕ or ψ to reach the improved branching whenever possible.
But we do not really compute the “threshold” frequency as there is no closed form
for the function χ. Instead of computing ε(ν) via χ, we compute the frequencies
of our splitting variable xi and set yϕ = 1/εϕ

i . When we now have to check
whether εϕ

i ≤ ε(ν) we instead perform the equivalent check y
yϕ
ϕ ≥ ν that can be

implemented more easily. An analogous check is performed for εψ
i .

6.2 Experimental results

To ensure comparability, we use test instances that were also used in previous
studies [KBEG06, KS05]. We only slightly changed the known test bed in the
sense that we added some additional instances not used before. Namely, we have
so-called DTH instances that we derive by a role exchange from the TH instances.

92

6.2 Experimental results

Finally, we use a class of instances that are “hard” for several other Monet algo-
rithms in the sense of theoretical lower bound analysis [Tak07, Hag07a] (cf. Chap-
ter 5). The DNFs of our test instances are defined as follows (equivalent CNFs
were previously computed by a brute force multiplication using the DL-algo-
rithm [DL05] if necessary):

Matching (M(v)): v variables (v is even) x1, . . . , xv and monomials (xi−1 ∧ xi)
for 2 ≤ i ≤ v, i is even (in a graph this would form an induced matching).
Hence, the DNF has v/2 monomials and the CNF has 2v/2 clauses.

Dual Matching (DM(v)): roles of DNF and CNF of the respective M(v) instance
are exchanged. Hence, the CNF is very small.

Threshold (TH(v)): v variables (v is even) x1, . . . , xv and monomials (xi∧xj) for
1 ≤ i < j ≤ v, j is even. This yields v2/4 monomials and v/2 + 1 clauses.

Dual Threshold (DTH(v)): roles of DNF and CNF of the respective TH(v) in-
stance are exchanged.

Self-Dual Threshold (SDTH(v)): the monomials of SDTH(v) are obtained from
the TH and DTH instances as follows: {{xv−1, xv}} ∪ {{xv−1} ∪ m : m ∈
TH(v−2)}∪{{xv}∪m : m ∈ DTH(v−2)}. The effect is that the equivalent
CNF has the same set of terms. The number of terms is (v−2)2/4+v/2+1.

Self-Dual Fano-Plane (SDFP(v)): v variables and (k − 2)2/4 + k/2 + 1 mono-
mials, where k = (v − 2)/7. The construction starts with the DNF ϕ0 that
contains the monomials {x1, x2, x3}, {x1, x5, x6}, {x1, x7, x4}, {x2, x4, x5},
{x2, x6, x7}, {x3, x4, x6}, and {x3, x5, x7}, representing the set of lines in a
Fano plane. Now let ϕ = ϕ1∨· · ·∨ϕk, where ϕ1, . . . , ϕk are k disjoint copies
of ϕ0. Denote by ψ the equivalent CNF of ϕ; its 7k clauses are obtained by
taking one monomial from each of the k copies of ϕ0. We obtain the mono-
mial set of SDFP(v) as {{xv−1, xv}} ∪ {{xv−1} ∪m : m ∈ ϕ} ∪ {{xv} ∪ c :
c ∈ ψ}.

Takata: these DNFs are “hard” for several Monet algorithms and are used in
proving lower bounds [Tak07, Hag07a] (cf. Chapter 5). The starting point
is ϕ1 = x1. The DNF ϕi is then obtained by multiplying out ϕi = (α∨ β)∧
(γ ∨ δ), where α, β, γ, and δ are disjoint copies of ϕi−1. This gives 22(2i−1)

monomials in the DNF and 22i−1 clauses in the equivalent CNF.

The experimentation was done on an AMD Athlon 64 3700+ with 2.2 GHz
and 1GB of RAM running a Debian/GNU Linux 4.0 with kernel version 2.6.18.
As for compiling and interpreting the bytecode we used the JDK and JRE by Sun
in version 1.5.0.10 in the 64 bit variant. Table 6.1 summarizes our experimental
results on equivalent input instances. In the table, we show the total CPU time,
in seconds. Times are normalized over five runs for each instance. Figures 6.1

93

Chapter 6 Algorithm Engineering

v = 20 v = 24 v = 28 v = 30 v = 32 v = 34 v = 36 v = 38 v = 40

M FK-A 0.94 2.25 14.14 45.28 108.58 264.68 677.69 1888.78 5396.90

FK-B 0.54 1.36 6.25 19.94 68.43 245.36 944.16 3538.28 15107.78

v = 20 v = 24 v = 28 v = 30 v = 32 v = 34 v = 36 v = 38 v = 40

DM FK-A 0.88 3.78 19.36 45.10 107.20 267.32 684.25 1970.00 5962.20

FK-B 0.53 1.45 6.46 19.67 69.70 256.71 905.17 3575.83 14130.80

v = 40 v = 60 v = 80 v = 100 v = 120 v = 140 v = 160 v = 180 v = 200

TH FK-A 0.68 1.73 1.47 1.93 2.89 4.52 6.85 10.64 16.79

FK-B 0.04 0.30 0.51 0.61 0.94 0.90 1.19 1.71 2.00

v = 40 v = 60 v = 80 v = 100 v = 120 v = 140 v = 160 v = 180 v = 200

DTH FK-A 0.48 1.29 1.48 2.09 3.06 4.66 6.67 10.23 13.92

FK-B 0.04 0.30 0.48 0.65 0.96 0.93 1.47 1.56 2.04

v = 42 v = 62 v = 82 v = 102 v = 122 v = 142 v = 162 v = 182 v = 202

SDTH FK-A 1.28 1.39 1.72 3.06 5.13 9.24 16.84 27.08 41.33

FK-B 0.30 0.51 0.83 1.16 1.41 2.49 4.81 7.35 10.81

v = 16 v = 23 v = 30 v = 37

SDFP FK-A 0.47 2.42 15.40 801.17

FK-B 0.10 1.44 6.52 113.68

Table 6.1: Performance of the FK-algorithms. Running time in seconds.

 0.1

 1

 10

 100

 1000

 10000

 20 22 24 26 28 30 32 34 36 38 40

T
im

e
[s

]

Number of variables

FK A
FK B

Figure 6.1: Running times on M(v)

 0.01

 0.1

 1

 10

 40 60 80 100 120 140 160 180 200

T
im

e
[s

]

Number of variables

FK A
FK B

Figure 6.2: Running times on TH(v)

to 6.4 graphically show our results on several of the test instance classes. Note
that the time axes are scaled logarithmically.

In Table 6.1 there are no results for the Takata instances or for non-equivalent
inputs. As for the Takata instances, the reason is their exponential growing term
set. The Takata DNFs ϕ1 or ϕ2 and their equivalent CNFs are just too small
to give meaningful running times. Furthermore, storing ϕ4 would require more
than 40GB in a usual data format so that we decided to only test ϕ3 and its
equivalent CNF. This instance is solved by FK-algorithm B in 753.62 seconds
whereas FK-algorithm A did not finish within 5 hours (18,000 seconds).

As for non-equivalent inputs, we tested both FK-algorithms on non-equivalent
inputs that we consider to be “hardest”. Namely, leaving out just one term of the
DNF or CNF results in “nearly” equivalent instances. Consequently, the running
times of our implementations are then just a little faster than the ones we report
for the respective equivalent inputs. Not surprisingly, leaving out more terms
or using some completely different CNFs speeds up computation as then larger
and larger parts of recursion tree are not traversed. Hence, the running times in
Table 6.1 are somehow the “worst” for the respective instance classes with the
FK-algorithms traversing the whole recursion tree.

94

6.3 Conclusion

 0.01

 0.1

 1

 10

 100

 1000

 16 23 30 37

T
im

e
[s

]

Number of variables

FK A
FK B

Figure 6.3: Running times on SDFP(v)

 0.1

 1

 10

 42 62 82 102 122 142 162 182 202

T
im

e
[s

]

Number of variables

FK A
FK B

Figure 6.4: Running times on SDTH(v)

6.3 Conclusion

Comparing our results for FK-algorithm A and FK-algorithm B, we can conclude
that FK-algorithm B is competitive on all classes, except for large Matching or
Dual Matching instances. What exactly happens on these instances is an inter-
esting issue to be addressed in future research. Utz-Uwe Haus mentioned that
one reason might be internal sorting of the terms [Hau08]. Anyway, in contrast to
the folklore assumption, our experiments show that FK-algorithm B should not
a priori be excluded from experimental studies of Monet algorithms any more.

As for the computational variants of the FK-algorithms—given the DNF, com-
pute the CNF—the relative behavior stays the same. But the running time in-
creases dramatically and, compared to a Java implementation of the DL-algorithm,
our implementations of the computational variants of the FK-algorithms are rather
slow.

A future task that should be addressed in algorithm engineering for Monet

is the creation of a comprehensive, systematic experimental evaluation of all the
known approaches for the computational variant of Monet on a broad range
of instances. We started working towards such a study, but it is still work in
progress—e. g., many algorithms pending to be implemented on our platform.
Hence, only the results for the FK-algorithms, that are of interest independently
of other results, have been included in this thesis.

Other interesting future tasks for the FK-algorithms include the improvement
of our implementations of the computational variants and a practical examination
of the application of some more sophisticated recursion stopping rules that may
cause an earlier interruption of the branching process.

95

Chapter 7

Fixed-Parameter Tractability

In this chapter we analyze the parameterized complexity of Monet. This means
that we analyze versions of Monet that have some parameters as input in addition
to the DNF ϕ and the CNF ψ. Briefly, a parameterized problem with parameter
k is fixed-parameter tractable if it can be solved by some algorithm running in
time O(f(k) · poly(n)), where f is a function depending on k only, n is the size of
the input, and poly(n) is any polynomial in n. The class FPT contains all fixed-
parameter tractable problems. For a more general survey on fixed-parameter
tractability and parameterized complexity we refer to the monographs of Downey
and Fellows [DF99], and Niedermeier [Nie06].

We show that Monet is in FPT for the parameters number v of variables in
ϕ and ψ, number m of monomials in ϕ, a parameter q describing the variable
frequencies in ϕ, and a parameter bounding the unions of transversals or edges of
ϕ’s associated hypergraph. Note that some of the results of [EGM03, Mak03] can
be also interpreted as parameterized results, e. g., for the number of monomials as
parameter. Below we shall improve these running times.

The chapter is organized as follows. In Sections 7.1 to 7.3 we give the FPT

results for the parameters v, m, and q. Section 7.4 then is devoted to results
based on using the Apriori technique (similar to the HBC-algorithm discussed
in Section 5.2) whose outcome is an FPT result for the computational variant
of Monet in its transversal hypergraph formulation, where parameters bound
unions of edges or transversals. Some concluding remarks follow in Section 7.5.

7.1 Number of variables as parameter

A first super-näıve fixed-parameter tractability result for the number v of variables
is at hand by simply checking all of the possible 2v assignments for an instance
(ϕ, ψ) of size n. This yields an O(2v · n) time algorithm for Monet. To con-
siderably improve this time bound, we use the notion of the maximum latency
introduced by Makino and Ibaraki [MI97].

For a monotone formula α we denote by T (α) (resp. F (α)) the set of assign-
ments that satisfy α (do not satisfy α). We say that a Monet-instance (ϕ, ψ)
is well-formed if ϕ and ψ are not empty but T (ϕ) ∩ F (ψ) is. Testing whether
a given Monet-instance is well-formed can be accomplished in polynomial time.

97

Chapter 7 Fixed-Parameter Tractability

The first condition is obviously trivial and the second is equivalent to testing the
validity of ϕ→ ψ, which is an easy quadratic time procedure [DG96].

Definition 7.1.1 (maximum latency). Let (ϕ, ψ) be a well-formed Monet-in-
stance. By U we denote the set of assignments that are neither in T (ϕ) nor in
F (ψ), i.e., U = F (ϕ) ∩ T (ψ). The latency of (ϕ, ψ) is defined as

λ(ϕ, ψ) = min{|AU � t| : AU ∈ U, t is a term of ϕ or ψ},

where � denotes the symmetric difference. For well-formed Monet-instances with
v variables the maximum latency is defined as

Λ(v) = max { λ(ϕ, ψ) : ϕ and ψ have v variables}.

Makino and Ibaraki proved the following tight bound on the maximum latency.

Proposition 7.1.2 ([MI97]). Λ(v) = �v/4� + 1.

Finding an assignment AU ∈ U that does not satisfy ϕ but satisfies ψ is equiv-
alent to prove (ϕ, ψ) �∈ Monet. Hence, with Proposition 7.1.2 a well-formed
Monet-instance (ϕ, ψ) can be tested for equivalence by checking all the assign-
ments that differ in at most �v/4� + 1 variables from any term of ϕ and ψ. We
will use this idea in an algorithm that has a better running time than the first
super-näıve approach. For the analysis we will need the following combinatorial
observation.

Lemma 7.1.3. Let 0 < ε < 1
2
. Then we have

�εk�∑
i=1

(
k

i

)
∈ O

⎛
⎝

[(
1

ε

)ε

·
(

1

1 − ε

)1−ε
]k

· 1√
k

⎞
⎠ .

Proof. It is well-known (see, e. g., [GKP94]) that asymptotically

�εk�∑
i=0

(
k

i

)
= 2k·h(ε)− 1

2
log k+O(1),

where h(ε) = −ε log ε− (1− ε) log(1 − ε) is the entropy function. Expanding the
asymptotic equation yields the lemma.

Theorem 7.1.4. Let (ϕ, ψ) be a Monet-instance of size n having v variables.
Then (ϕ, ψ) ∈ Monet can be decided in time

O

([(
1

1
4

+ 1
v

) 1
4
+ 1

v
(

1
3
4
− 1

v

) 3
4
− 1

v

]v

· 1√
v
· n2

)
.

98

7.2 Number of monomials as parameter

v running time
≥ 5 O(1.991v · 1√

v
· n2)

≥ 10 O(1.911v · 1√
v
· n2)

≥ 20 O(1.843v · 1√
v
· n2)

≥ 50 O(1.792v · 1√
v
· n2)

≥ 100 O(1.774v · 1√
v
· n2)

≥ 1000 O(1.757v · 1√
v
· n2)

Table 7.1: Running time from Theorem 7.1.4 for special values of v

Proof. If the instance is not well-formed, it is rejected in quadratic time. Other-
wise, for v ≤ 4, we check all the at most 16 assignments in a brute-force manner
in constant time.

For v ≥ 5, we check all assignments that differ from any term of ϕ or ψ in at
most Λ(v) variables. This means that we check the (�v/4� + 1)-neighborhoods
of the terms of ϕ and ψ, which suffices as follows from Proposition 7.1.2. For
each such assignment A we test in O(n) time whether ϕ and ψ get the same
value. There are at most n terms in ϕ and ψ. Hence, the running time of an
algorithm checking all the necessary assignments can be bounded by O(s · n2),
where s denotes the number of assignments in a Λ(v)-neighborhood. We have

s =
∑�εv�

i=1

(
v
i

)
, where ε = 1

4
+ 1

v
. For v ≥ 5 we have ε < 1

2
. Hence, the estimation

of Lemma 7.1.3 can be applied and the theorem follows.

Table 7.1 contains the running time stated in Theorem 7.1.4 for special v in a
more readable format. Note that an estimation for v → ∞ yields a lower bound
of

Ω(1.7547v · 1√
v
· n2).

7.2 Number of monomials as parameter

We show that Monet is fixed-parameter tractable with the number m of mono-
mials in ϕ as parameter.

Theorem 7.2.1. Let (ϕ, ψ) be a Monet-instance of size n with m monomials in
ϕ. Then (ϕ, ψ) ∈ Monet can be decided in time O(2m·(m−log m+4) ·m3 + n2).

Proof. Note thatmmonomials can split the set of variables into at most 2m classes
of variables that appear in exactly the same monomials (actually there are at most
2m − 1 classes but this would only complicate the below estimations). Choosing
representatives for each class and replacing variables with these representatives
yields a modified DNF ϕ′ with m monomials and at most 2m variables. Hence,
the irredundant, equivalent CNF ψ′ of ϕ′ cannot have clauses that contain more

99

Chapter 7 Fixed-Parameter Tractability

than m variables. We compute ψ′ by adapting the KS-algorithm of Kavvadias
and Stavropoulos [KS05] (cf. Section 5.1.4) for hypergraph transversal generation.
The main idea of the KS-algorithm is to process a depth-first search in a search
tree that is built as follows. The root of the tree corresponds to a monomial
of ϕ′. If the subset of variables on the path from the root to the current node
(this subset forms a clause candidate) does not intersect all monomials of ϕ′, the
KS-algorithm expands it by picking a monomial that is not yet intersected and
generating edges for each so-called appropriate variable in this monomial. Briefly,
a variable is appropriate if adding it to the current candidate set does not result
in a set where another variable could be left out and still all monomials except
the last one are intersected. Checking a monomial for appropriate vertices can be
done in time O((2m · m)2) since a monomial contains at most 2m variables, the
current clause candidate set has size at most m, and the size of ϕ′ is bounded by
2m ·m. Expanding only by appropriate variables ensures that generated clauses
are minimal and that no repetitions occur [KS05].

If all monomials are covered, the KS-algorithm outputs the clause and starts
backtracking. In the worst case, the search tree that is traversed by the KS-
algorithm contains a node corresponding to each variable subset of size at most m
(written on the paths from the root to the nodes). There are

∑m
i=0

(
2m

i

) ≤ m ·(2m

m

)
such subsets. Using Stirling’s formula and the fact that for the Eulerian constant
we have e ≈ 2.718 < 4 we get

(
2m

m

) ≤ 2m·(m−log m+2). Since in the worst case
for each node the appropriate variables have to be determined, the KS-algorithm
needs O(2m·(m−log m+4) ·m3) time to compute the CNF ψ′.

From ψ′ we compute a CNF ψ′′ without representatives. This is done by system-
atically processing the representatives one after the other. Let y be the currently
processed representative that stands for the variables xi1 , . . . , xik . For each occur-
rence of y the respective clause is copied k times and in the j-th copy we replace
y by xij . Since ψ′ is irredundant, all the intermediate results of the computation
and ψ′′ are irredundant. Thus, we can immediately reject whenever an interme-
diate result gets larger than ψ. Hence, the time needed to compute ψ′′ is O(n)
as n is an upper bound on the size of ψ. When there is no representative left we
have to check whether ψ′′ and ψ are identical. This can be accomplished in time
O(n2).

Note that we have the same result with the number of clauses of ψ as parameter
since we could simply exchange the roles of DNF and CNF.

The running time has been subsequently improved in the transversal hyper-
graph formulation of Monet. The essential part of the improvement is a fixed-
parameter sub-transversal check. A subset S of vertices of a hypergraph H is a
sub-transversal of H iff there is a minimal transversal T ∈ Tr(H) such that T ⊇ S.
In general, testing if S is a sub-transversal is an NP-hard problem even if H is a
graph [BEGK00]. But in the case that |S| is bounded by a constant such a check
can be done in polynomial time. Note that we just cite the following results as
the main work was done by Khaled Elbassioni and Imran Rauf.

100

7.3 Variable degrees as parameter

Lemma 7.2.2 ([EHR08b]). Given a hypergraph H with m edges and a vertex
subset S of size |S| = s, checking whether S is a sub-transversal of H can be done
in time O((m/s)s · nm).

Using Lemma 7.2.2 in a backtracking algorithm that computes all the minimal
transversals starting from the empty set (that clearly is a sub-transversal) yields
the following.

Theorem 7.2.3 ([EHR08b]). Let G,H be two hypergraphs with |G| = m, |H| = m′,
and |V | = n. Then Tr(H) = G can be decided in time O(e(m/e) · n2m2m′).

Note that e(m/e) ≈ 1.45m and, thus, this improves the running time of Theo-
rem 7.2.1. An implication of Theorem 7.2.3, which we will need in Section 7.4, is
the following.

Corollary 7.2.4. For a hypergraph H, we can generate the first k minimal trans-
versals in time O(e(k/e) · k3n2m), where n = |V | and m = |H|.
Proof. The idea is to keep a partial list G of minimal transversals, initially empty.
If |G| < k, we use the backtracking method from Theorem 7.2.3 on G to generate
at most m + 1 elements of Tr(G). If it terminates with Tr(G) = H, then all
elements of Tr(H) have been generated. Otherwise, X ∈ Tr(G)\H is a witness for
(G,H) �∈ TransHyp, and so by symmetry X̄ contains a new minimal transversal
of H that extends G.

7.3 Variable degrees as parameter

For a Monet instance (ϕ, ψ) we denote by q the largest number of monomials
over all variables x that do not include x, i.e.,

q = max
x∈V

|{μ : x �∈ μ, where μ is a monomial of ϕ}|.

We show that Monet is fixed-parameter tractable with q as parameter.

Theorem 7.3.1. Let (ϕ, ψ) be a Monet-instance of size n and q as defined above.
Then (ϕ, ψ) ∈ Monet can be decided in time O(2q·(q−log q+4) · q3n+ n3).

Proof. For an irredundant, monotone normal form α we denote by αx=0 (resp.
αx=1) the normal form that is obtained by setting x to false (true) and removing
redundant terms. These irredundant forms αx=0 and αx=1 can be easily computed
in quadratic time.

Note that testing (ϕ, ψ) ∈ Monet is equivalent to testing (ϕx=0, ψx=0) ∈
Monet and (ϕx=1, ψx=1) ∈ Monet for any variable x from ϕ. Our fixed-
parameter algorithm exactly processes these tests. Note that setting x = 0 yields
a DNF ϕx=0 with at most q monomials. Hence, we can apply Theorem 7.2.1 and
decide (ϕx=0, ψx=0) ∈ Monet in time O(2q·(q−log q+4) · q3 + n2).

101

Chapter 7 Fixed-Parameter Tractability

For the second test we recursively call the algorithm with (ϕx=1, ψx=1) as input.
Note that ϕx=1 contains at most n − 1 variables. If ϕx=1 does not contain any
variable, the equivalence test is trivial. Hence, there are at most n − 1 recursive
calls which results in an overall running time of O(2q·(q−log q+4) · q3n+ n3).

Note that again the roles of DNF and CNF may be exchanged to get the state-
ment for variable frequencies in ψ as well. The algorithm runs in polynomial time
if q is a constant. This yields a new polynomial time special case of Monet.

Using the running time of Theorem 7.2.3, Theorem 7.3.1 has also been subse-
quently improved in the transversal hypergraph formulation of Monet (we just
cite the following results as the main work was done by Khaled Elbassioni and
Imran Rauf).

Theorem 7.3.2 ([EHR08b]). Let G,H be two hypergraphs with |G| = m, |H| = m′,
q = maxv |{H ∈ H : v �∈ H}|, and |V | = n. Then Tr(H) = G can be decided in
time O(e(q/e) · q2n3m′).

Again, note that e(q/e) ≈ 1.45q. Moreover, note that q can be seen as the
complementary degree of a vertex in a hypergraph. Applying Theorem 7.2.3,
there is also an FPT result for the maximum degree of a hypergraph. Let p be the
maximum degree of a vertex in hypergraph H, i. e., p = maxv |{H ∈ H : v ∈ H}|.
Theorem 7.3.3 ([EHR08b]). Let H be a hypergraph on |V | = n vertices in which
the degree of each vertex v is bounded by p. Then all minimal transversals of H
can be found in time O

((
min{2p, m′} · ep/e · p2n+m′) · n2mm′), where m = |H|

and m′ = |Tr(H)|.
The key idea in the proof of Theorem 7.3.3 is to order the vertices and at step i

only compute transversals of the edges containing vi and, apart from it, only
vertices with smaller index. The number of such edges clearly is bounded by p
and, thus, Theorem 7.2.3 can be applied.

7.4 Results based on the Apriori technique

Gunopulos et al. [GKM+03] showed that generating transversals of hypergraphs
H with edges of size at least n−c can be done in time O(2c ·poly(n,m,m′)), where
n = |V |, m = |H| and m′ = |Tr(H)|. This is a fixed-parameter algorithm for c
as parameter, which shows that the transversals can be generated in polynomial
time for c ∈ O(logn). The computation is done by an Apriori (level-wise) algo-
rithm [AS94]. Using the same approach, we generalize the result and show below
that we can compute all the minimal transversals in time O(2c · (m′)k ·poly(n,m))
or in time O(ek/e·nc+1·poly(m,m′)) if the union of any k distinct minimal transver-
sals has size at least n−c. Equivalently, if any k distinct maximal independent sets
of a hypergraph H intersect in at most c vertices, then all maximal independent
sets can be computed within the same time bound. Recall that an independent set

102

7.4 Results based on the Apriori technique

of a hypergraph H is a subset of its vertices which does not contain any hyperedge
of H.

And again using the same idea, we show that the maximal frequent sets of an
m× n database can be computed in O(2c · (nm′)2k−1+1 · poly(n,m)) time if any k
rows of it intersect in at most c items, where m′ is the number of such maximal
frequent sets.

Note that for c ∈ O(logn) we have output-polynomial algorithms for all four
problems.

7.4.1 The generalized Apriori algorithm

Let f : V → {0, 1} be a monotone Boolean function, that is, for which f(X) ≥
f(Y) whenever X ⊇ Y . We assume that f is given by a polynomial-time evalua-
tion oracle requiring maximum time Tf , given the input. The Apriori approach for
finding all maximal subsets X such that f(X) = 0 (maximal false sets of f), works
by traversing all subsets X of V , for which f(X) = 0, in increasing size, until all
maximal such sets have been identified. The procedure is given as Algorithm 24.

Lemma 7.4.1. If any maximal false set of f contains at most c vertices, then
Apriori given as Algorithm 24 finds all such sets in O(2c ·m′n · Tf) time, where
n = |V | and m′ is the number of maximal false sets.

Proof. The correctness of this Apriori style method can be shown straightfor-
wardly (cf. , e. g., [AS94, GKM+03]). To see the time bound, note that for each
maximal false set we check at most 2c candidates (all the subsets) before adding
it to C. For each such candidate we check whether it is a false set and whether it
cannot be extended by adding more vertices.

7.4.2 Intersections of maximal independent sets

Our results in this section are based on using an Apriori approach as described in
the previous section. We start with an easy result very similar to the algorithm
described in [GKM+03] for generating minimal transversals. The following lemma
can be seen as a proof of concept in using the Apriori technique.

Lemma 7.4.2. If any maximal independent set of a hypergraph H with n vertices
contains at most k vertices, all the m′ maximal independent sets can be computed
in time O(2k · poly(n,m,m′)), where |H| = m.

Proof. An appropriate procedure is given as Algorithm 25. Correctness is straight-
forward as is for the generalized Apriori.

The time needed by Algorithm 25 can be bound as follows. Note that for
each maximal independent set we check at most 2k candidates (all the subsets)
before adding it to I. For each such candidate we check whether it is independent
(clearly polynomial in m) and whether we cannot add another vertex and still

103

Chapter 7 Fixed-Parameter Tractability

Algorithm 24 The generalized Apriori algorithm

Input: a monotone Boolean function f : V → {0, 1}
Output: the maximal sets X ⊆ V such that f(X) = 0

1: C1 ← V
2: i← 1
3: while Ci �= ∅ do
4: for all X, Y ∈ Ci, |X ∩ Y | = i− 1 do
5: Z ← X ∪ Y
6: if f(Z) = 0 then
7: if f(Z ∪ {v}) = 1, for all v ∈ V \ Z then
8: C ← C ∪ {Z}
9: else

10: Ci+1 ← Ci+1 ∪ {Z}
11: i← i+ 1

12: output C

have independence (also polynomial, as there are at most n vertices that can be
added). Thus, the overall-running time is O(2k · poly(n,m,m′)).

We now want to get rid of the size bound on the independent sets and replace
it by a bound on the size of their intersections.

Let k and c be two positive integers. We consider hypergraphs H satisfying the
following condition:

(C1) Any k distinct maximal independent sets I1, . . . , Ik of H intersect in at most
c vertices, i. e., |I1 ∩ · · · ∩ Ik| ≤ c.

We shall derive below fixed-parameter algorithms with respect to either c or k.
We note that condition (C1) can be checked in polynomial time for c = O(1) and
k = O(logn). Indeed, (C1) holds if and only if every set X ⊆ V of size |X| = c+1
is contained in at most k−1 maximal independent sets of H. The latter condition
can be checked in time O(ek/e · nc+1 · poly(n,m, k)) as follows from the following
lemma.

Lemma 7.4.3. Given a hypergraph H with vertex set V and a subset S ⊆ V of
vertices, we can check in polynomial time whether S is contained in k different
maximal independent sets. Furthermore, k such sets can be generated in time
O(ek/e · poly(n,m, k)).

Proof. Clearly, this check is equivalent to checking if S does not contain an edge of
H and if the truncated hypergraph HS̄ = min

({H ∩ S̄ : H ∈ H}), has k maximal
independent sets, or equivalently k minimal transversals. By Corollary 7.2.4, this
can be done in O(ek/e · poly(n,m, k)) time.

104

7.4 Results based on the Apriori technique

Algorithm 25 Apriori for finding maximal independent sets of size at most k

Input: a hypergraph H on vertex set V
1: C1 ← V \ {v : {v} ∈ H}
2: i← 1
3: while Ci �= ∅ and i ≤ k do
4: for all a, b ∈ Ci, |a ∩ b| = i− 1 do
5: c← a ∪ b
6: if c is an independent set then
7: if no c ∪ {v}, v ∈ V \ c is an independent set then
8: I ← I ∪ {c}
9: else

10: Ci+1 ← Ci+1 ∪ {c}
11: i← i+ 1

12: output I

Algorithm 26 Algorithm generating intersecting maximal independent sets

Input: a hypergraph H on vertex set V
Output: the set of maximal independent sets of H

1: I ← ∅
2: use Apriori to find set of maximal k-independent set intersections X
3: for all X ∈ X do
4: for all Y ⊆ X do
5: for all v ∈ V \ Y do
6: if |Ind(H)[Y ∪ {v}]| ≤ k − 1 then
7: I ← I ∪ Ind(H)[Y ∪ {v}] (obtained using Corollary 7.2.4)

8: output I

Denote by Ind(H) the set of maximal independent sets of a hypergraph H and
for a subset S of H’s vertices, denote by Ind(H)[S] the maximal independent sets
containing S.

Theorem 7.4.4. If any k distinct maximal independent sets of a hypergraph H
intersect in at most c vertices, then all maximal independent sets can be computed
in time O(2c · (m′)k · poly(n,m)) or in time O(ek/e · nc+1 · poly(m,m′)), where
n = |V |, m = |H| and m′ = |Ind(H)|.

Proof. (i) c as a parameter: we first use Apriori to find the set X of all maximal
subsets contained in at least k distinct maximal independent sets of H. By (C1)
the size of each such subset is at most c. To do this we use Apriori with the
monotone Boolean function defined by f(X) = 0 if and only if X ⊆ I1 ∩ · · · ∩ Ik,
for k distinct maximal independent sets I1, . . . , Ik. The procedure is given as
Algorithm 26. By Lemmas 7.4.1 and 7.4.3, all the intersections in X can be found
in time 2c · ek/e · |X | · poly(n,m, k). Thus the total running time can be bounded

105

Chapter 7 Fixed-Parameter Tractability

by 2c · ek/e · (m′)k · poly(n,m, k) since |X | ≤ (m′)k. It remains to argue that any
maximal independent set I ∈ Ind(H) is generated by the procedure. To see this,
let Y be a maximal subset such that Y = I ∩ I1 ∩ · · · ∩ Ir, where I, I1, . . . , Ir, are
distinct maximal independent sets of H with r ≥ k−1, and let v ∈ I\(I1∩· · ·∩Ir).
Note that such v exists since I �⊆ I1 ∩ · · · ∩ Ir as I, I1, . . . , Ir are distinct maximal
independent sets. Then by maximality of Y , Y ∪{v} is contained in at most k−1
maximal independent sets, one of which is I, and hence will be considered by the
procedure in Step 7.

(ii) k as a parameter: Let I1 = {I ∈ Ind(H) : |I| ≤ c} and I2 = Ind(H) \ I1.
Elements of I1 can be found using our proof of concept Apriori procedure given as
Algorithm 25 (or by testing all subsets of size at most c for maximal independence).
Elements of I2 can be found by noting that each of them contains a set of size
c+1, and that each such set is contained in at most k− 1 elements of I2 by (C1).
Thus, for each set X of size c + 1, we can use Lemma 7.4.3 to find all maximal
independent sets containing X.

7.4.3 Unions of minimal transversals or edges

We now use the results on independent sets to generate all minimal transversals.

Theorem 7.4.5. Let H be a hypergraph on n = |V | vertices, and k, c be positive
integers.

(i) If any k distinct minimal transversals of H have a union of at least n − c
vertices, we can compute all minimal transversals in O(2c · (m′)k · poly(n,m)) or
O(ek/e · nc+1 · poly(m,m′)) time, where m = H and m′ = |Tr(H)|.

(ii) If any k distinct hyperedges of H have a union of at least n− c vertices, we
can compute all minimal transversals in time O(2c ·mk · poly(n,m′)) or in time
O(ek/e · nc+1 · poly(m,m′)), where m = H and m′ = |Tr(H)|.
Proof. Both results are immediate from Theorem 7.4.4. The first part (i) follows
by noting that each minimal transversal is the complement of a maximal indepen-
dent set, and hence any k maximal independent sets are guaranteed to intersect
in at most c vertices. The second part (ii) follows by maintaining a partial list
G ⊆ Tr(H), and switching the roles of H and G in (i) to compute the minimal
transversals of G using Theorem 7.4.5. Since condition (i) is satisfied with respect
to G, we can either verify H = Tr(G), or extend G by finding a witness for the
non-transversality (in a way similar to Corollary 7.2.4).

7.4.4 Intersections of maximal frequent sets or transactions

Consider the problem of finding the maximal frequent item sets in a collection of
m transactions on n items, mentioned in Section 3.8. Here, a transaction simply
is a set of items. An item set is maximal frequent for a frequency t if it occurs
in at least t of the transactions and none of its supersets does. Some basic FPT

results for this problem can be found in [HCW06].

106

7.5 Concluding remarks

As another application of the approach used in Theorem 7.4.4 to compute in-
tersecting maximal independent sets we obtain the following results.

Theorem 7.4.6. If any k distinct maximal frequent sets intersect in at most c
items, we can compute all maximal frequent sets in O(2c ·(nm′)k ·poly(n,m)) time,
where m′ is the number of maximal frequent sets.

Proof. The proof is analogous to that of Theorem 7.4.4. Just note that the set
of transactions forms a hypergraph and replace “independent” by “frequent.” To
complete the proof, we need the following procedure to find k maximal frequent
sets containing a given set. For 1 ≤ i ≤ k and frequent set X, let F1, . . . , Fi−1 be
the maximal frequent sets containing X and let Y be the set with the property
that X ∪ Y is frequent and ∀j < i, ∃y ∈ Y : y /∈ Fj . Then any maximal frequent
set containing X∪Y is different from F1, . . . , Fi−1 by construction and thus giving
us a new maximal frequent set. The running time of the above procedure can be
bounded by O(nk ·poly(n,m)). Combining it with Lemma 7.4.1 gives us the stated
running time.

Corollary 7.4.7. If any k distinct transactions intersect in at most c items, then
all maximal frequent sets can be computed in time O(2c · (nm′)2k−1+1 · poly(n,m)),
where m′ is the number of maximal frequent sets.

Proof. Note that if t ≥ k then every maximal frequent set has size at most c which
in turn implies O(2c ·poly(n,m) ·m′) time algorithm using straightforward Apriori
approach, so we may assume otherwise. Consider the intersection X of l distinct
maximal frequent sets and let |X| > c, we bound the maximum such l. Since the
intersection size is more then c, at most k − 1 transactions define these l distinct
maximal frequent sets and so l ≤ ∑k−1

j=t

(
k−1

j

) ≤ 2k−1.

7.5 Concluding remarks

There is at least one important open question besides improving the running times
of our FPT algorithms. Giving an FPT algorithm for Monet with respect to the
parameter size l of a largest monomial remains open. Note that there is an easy
search tree FPT algorithm for the two parameters size l of a largest monomial and
size k of a largest clause similar to a result in [GSS02].

However, assume Monet can be shown to be M[1]- or W[1]-hard for l. We have
FPT ⊆ M[1] ⊆ W[1], and FPT = M[1] iff the exponential time hypothesis fails,
i. e., n variable 3Sat can be solved in time 2o(n). Hence, M[1]- or W[1]-hardness
of Monet corresponds to Monet not being FPT under a reasonable assumption.
Thus, a f(l) · poly(n) running time for Monet would be quite unlikely, which
would be the very first argument against polynomiality of Monet. Hence, we
expect showing M[1]- or W[1]-hardness for parameter l to be a tough problem.

Finally, our conjecture is that Monet is FPT for l but this might turn out to
be equivalent to showing Monet ∈ P.

107

Chapter 8

Conclusion

In this thesis, we have examined the problem Monet—the Mo(notone) n(ormal
form) e(quivalence) t(est)—that asks to decide equivalence of a monotone dis-
junctive normal form ϕ and a monotone conjunctive normal form ψ. Monet can
be seen as a covering problem that asks to enumerate all (in some sense) minimal
solutions of some system. Hence, there is a huge number of similar questions
in problems from diverse applications. In this thesis we examined several issues
related to the problem Monet.

We first started by focussing on identification of restrictions of the inputs that
sufficiently simplify the problem in the sense of polynomial time solutions. Such
restrictions are the “easy” classes of Monet. For several of these easy classes we
have shown that they actually are solvable using only logarithmic space, which
improves the previously known polynomial time bounds. Among our results are
Monetcnm, where the DNF is allowed to contain only a constant number of mono-
mials; Monetcupp, where the DNF is allowed to contain only monomials of con-
stant size; and Monetclow, where each monomial of the DNF is only allowed not
to contain a constant number of variables. As for the more structural restrictions,
we have shown that Monet with a regular, a 2-monotonic, or an aligned DNF is
decidable in logarithmic space.

An open issue is to show more easy classes to be solvable with logarithmic
space algorithms. Our conjecture is that at least instances with β-acyclic or μ-
equivalent DNFs are also solvable in logarithmic space. Another issue is to prove
lower bounds for easy classes. Such lower bounds for special classes could be useful
when proving hardness of Monet. Note that we do not have any nontrivial lower
bound or hardness result for Monet yet.

In a second step, we have also analyzed algorithms for the general problem
Monet without any restrictions. Thereby, we have proven superpolynomial lower
bounds for the DL-, the BMR-, the KS-, and the HBC-algorithm in terms of the
size of the input and output. This means that none of these algorithms is fast in
the sense of output-polynomial running time.

An important open issue is to prove lower bounds for other Monet algorithms
as well. Our conjecture is that none of the known algorithms is fast in the sense
of (output-)polynomial time. However, transforming our results to other algo-
rithms seems not to be that straightforward. For instance, Takata’s multiplication

109

Chapter 8 Conclusion

method, which is an improvement of the Berge-multiplication, seems to require
the construction of new hard instances, as the instances we used for establishing
lower bounds—Takata’s hypergraphs Gi and our hypergraphs G ′

i—are solved too
fast. There are also no nontrivial lower bounds known for the FK-algorithms A
and B, of which variant B is considered to be the (theoretically) fastest known
Monet algorithm.

However, in practical settings the usual assumption was that FK-algorithm B
is far more involved to implement than FK-algorithm A and that this effort will
not pay off in practically better running times. Contrarywise, our experimental
results with the FK-algorithms show FK-algorithm B to be competitive on almost
all instances. Nevertheless, as for algorithm engineering of Monet algorithms,
the big open question is a comprehensive, systematic experimental evaluation of
all the known algorithms. We have just started working on this issue, so it is
still work in progress—e. g., many algorithms pending to be implemented on our
platform.

Finally, we have shown Monet to be fixed-parameter tractable with respect to
various parameters. Namely, Monet is fixed-parameter tractable for the param-
eters number v of variables in ϕ and ψ, number m of monomials in ϕ, a parameter
q describing the variable frequencies in ϕ, and a parameter bounding the unions of
transversals or edges of ϕ’s associated hypergraph. The important open problem
for the parameterized complexity of Monet is giving an FPT algorithm with re-
spect to the parameter size l of a largest monomial. Our conjecture is that Monet

is FPT for l but this might turn out to be equivalent to showing Monet ∈ P.

110

Bibliography

[AB00] Chandrabose Aravindan and Peter Baumgartner. Theorem proving
techniques for view deletion in databases. Journal of Symbolic Com-
putation, 29(2):119–147, 2000.

[AE06] Yossi Azar and Thomas Erlebach, editors. Algorithms - ESA 2006,
14th Annual European Symposium, Zurich, Switzerland, September
11-13, 2006, Proceedings, volume 4168 of Lecture Notes in Computer
Science. Springer, 2006.

[Afr06] Foto N. Afrati. On approximation algorithms for data mining applica-
tions. In Evripidis Bampis, Klaus Jansen, and Claire Kenyon, editors,
Efficient Approximation and Online Algorithms – Recent Progress
on Classical Combinatorial Optimization Problems and New Appli-
cations, volume 3484 of Lecture Notes in Computer Science, pages
1–29. Springer, 2006.

[AIP04] Fabrizio Angiulli, Giovambattista Ianni, and Luigi Palopoli. On the
complexity of inducing categorical and quantitative association rules.
Theoretical Computer Science, 314(1-2):217–249, 2004.

[AK03] Bernhard Anrig and Jürg Kohlas. Model-based reliability and diag-
nostics: A common framework for reliability and diagnostics. Inter-
national Journal of Intelligent Systems, 18(10):1001–1033, 2003.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in
P. Annals of Mathematics, 160(2):781–793, 2004.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu
Toivonen, and A. Inkeri Verkamo. Fast discovery of association rules.
In Advances in Knowledge Discovery and Data Mining, pages 307–
328. AAAI/MIT Press, 1996.

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1988.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for min-
ing association rules in large databases. In Jorge B. Bocca, Matthias
Jarke, and Carlo Zaniolo, editors, VLDB’94, Proceedings of 20th In-
ternational Conference on Very Large Data Bases, September 12-15,

111

Bibliography

1994, Santiago de Chile, Chile, pages 487–499. Morgan Kaufmann,
1994.

[Bay98] Roberto J. Bayardo Jr. Efficiently mining long patterns from
databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD
1998, Proceedings ACM SIGMOD International Conference on Man-
agement of Data, June 2-4, 1998, Seattle, Washington, USA, pages
85–93. ACM Press, 1998.

[BBE+07] Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gur-
vich, Kazuhisa Makino, and Gábor Rudolf. Generating minimal k-
vertex connected spanning subgraphs. In Guohui Lin, editor, Com-
puting and Combinatorics, 13th Annual International Conference,
COCOON 2007, Banff, Canada, July 16-19, 2007, Proceedings, vol-
ume 4598 of Lecture Notes in Computer Science, pages 222–231.
Springer, 2007.

[BCE+00] Endre Boros, Yves Crama, Oya Ekin, Peter L. Hammer, Toshihide
Ibaraki, and Alexander Kogan. Boolean normal forms, shellability,
and reliability computations. SIAM Journal on Discrete Mathemat-
ics, 13(2):212–226, 2000.

[BCG+96] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan,
and Christino Tamon. Oracles and queries that are sufficient for exact
learning. Journal of Computer and System Sciences, 52(3):421–433,
1996.

[BD96] Rachel Ben-Eliyahu and Rina Dechter. On computing minimal mod-
els. Annals of Mathematics and Artificial Intelligence, 18(1):3–27,
1996.

[BEG+02] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, Leonid
Khachiyan, and Kazuhisa Makino. Dual-bounded generating prob-
lems: All minimal integer solutions for a monotone system of linear
inequalities. SIAM Journal on Computing, 31(5):1624–1643, 2002.

[BEG+08] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, Kazuhisa
Makino, and Vladimir Oudalov. A complete characterization of Nash-
solvability of bimatrix games in terms of the exclusion of certain 2×2
subgames. In Edward A. Hirsch, Alexander A. Razborov, Alexei L.
Semenov, and Anatol Slissenko, editors, Computer Science - Theory
and Applications, Third International Computer Science Symposium
in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008, Proceedings,
volume 5010 of Lecture Notes in Computer Science, pages 99–109.
Springer, 2008.

112

Bibliography

[BEGK00] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. An efficient incremental algorithm for generating all max-
imal independent sets in hypergraphs of bounded dimension. Parallel
Processing Letters, 10(4):253–266, 2000.

[BEGK02a] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. Generating dual-bounded hypergraphs. Optimization
Methods and Software, 17(5):749–781, 2002.

[BEGK02b] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. Matroid intersections, polymatroid inequalities, and re-
lated problems. In Krzysztof Diks and Wojciech Rytter, editors,
Mathematical Foundations of Computer Science 2002, 27th Inter-
national Symposium, MFCS 2002, Warsaw, Poland, August 26-30,
2002, Proceedings, volume 2420 of Lecture Notes in Computer Sci-
ence, pages 143–154. Springer, 2002.

[BEGK03a] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. An inequality for polymatroid functions and its applica-
tions. Discrete Applied Mathematics, 131(2):255–281, 2003.

[BEGK03b] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. Extending the Balas-Yu bounds on the number of max-
imal independent sets in graphs to hypergraphs and lattices. Mathe-
matical Programming, 98(1-3):355–368, 2003.

[BEGK04] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. Computing many maximal independent sets for sparse
hypergraphs in parallel. Technical Report RRR 38-2004, RUTCOR,
Rutgers University, October 2004.

[BEGM07] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Kazuhisa
Makino. Generating vertices of polyhedra and related monotone gen-
eration problems. Technical Report RRR 12-2007, RUTCOR, Rut-
gers University, March 2007.

[BEM08] Endre Boros, Khaled M. Elbassioni, and Kazuhisa Makino. On
Berge multiplication for monotone Boolean dualization. In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Lan-
guages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, volume 5125 of
Lecture Notes in Computer Science, pages 48–59. Springer, 2008.

[Ben99] Claude Benzaken. From logical gates synthesis to chromatic bicritical
clutters. Discrete Applied Mathematics, 96-97:259–305, 1999.

113

Bibliography

[Ber89] Claude Berge. Hypergraphs, volume 45 of North-Holland Mathemat-
ical Library. North-Holland, 1989.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis.
On the desirability of acyclic database schemes. Journal of the ACM,
30(3):479–513, 1983.

[BG07a] José L. Balcázar and Gemma C. Garriga. Horn axiomatizations for
sequential data. Theoretical Computer Science, 371(3):247–264, 2007.

[BG07b] Endre Boros and Vladimir Gurvich. On complexity of algorithms
for modeling disease transmission and optimal vaccination strategy.
Technical Report RRR 16-2007, RUTCOR, Rutgers University, April
2007.

[BGH98] Endre Boros, Vladimir Gurvich, and Peter L. Hammer. Dual subim-
plicants of positive Boolean functions. Optimization Methods and
Software, 10(2):147–156, 1998.

[BGKM01] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa
Makino. Dual-bounded generating problems: Partial and multi-
ple transversals of a hypergraph. SIAM Journal on Computing,
30(6):2036–2050, 2001.

[BGKM03] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa
Makino. On maximal frequent and minimal infrequent sets in bi-
nary matrices. Annals of Mathematics and Artificial Intelligence,
39(3):211–221, 2003.

[BGKM04] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa
Makino. Dual-bounded generating problems: weighted transversals
of a hypergraph. Discrete Applied Mathematics, 142(1-3):1–15, 2004.

[BGM07] Endre Boros, Vladimir Gurvich, and Kazuhisa Makino. Minimal and
locally minimal games and game forms. Technical Report RRR 28-
2007, RUTCOR, Rutgers University, November 2007.

[BHHM07] Eric Berberich, Matthias Hagen, Benjamin Hiller, and Hannes Moser.
Experiments. Manuscript of a chapter of the book “Algorithm Engi-
neering” that will appear as a volume of Lecture Notes in Computer
Science, Springer-Verlag, January 2007.

[BHIK97] Endre Boros, Peter L. Hammer, Toshihide Ibaraki, and Kazuhiko
Kawakami. Polynomial-time recognition of 2-monotonic positive
Boolean functions given by an oracle. SIAM Journal on Comput-
ing, 26(1):93–109, 1997.

114

Bibliography

[BHL+05] Boualem Benatallah, Mohand-Said Hacid, Alain Léger, Christophe
Rey, and Farouk Toumani. On automating web services discovery.
The VLDB Journal, 14(1):84–96, 2005.

[BHP+06] Boualem Benatallah, Mohand-Said Hacid, Hye-Young Paik,
Christophe Rey, and Farouk Toumani. Towards semantic-driven,
flexible and scalable framework for peering and querying e-catalog
communities. Information Systems, 31(4-5):266–294, 2006.

[BHRT03] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey, and
Farouk Toumani. Request rewriting-based web service discovery. In
Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors, The
Semantic Web - ISWC 2003, Second International Semantic Web
Conference, Sanibel Island, FL, USA, October 20-23, 2003, Proceed-
ings, volume 2870 of Lecture Notes in Computer Science, pages 242–
257. Springer, 2003.

[BI95a] Jan C. Bioch and Toshihide Ibaraki. Complexity of identification and
dualization of positive Boolean functions. Information and Compu-
tation, 123(1):50–63, 1995.

[BI95b] Jan C. Bioch and Toshihide Ibaraki. Decompositions of positive self-
dual Boolean functions. Discrete Mathematics, 140(1-3):23–46, 1995.

[BI95c] Jan C. Bioch and Toshihide Ibaraki. Generating and approximat-
ing nondominated coteries. IEEE Transactions on Parallel and Dis-
tributed Systems, 6(9):905–914, 1995.

[BIM99] Jan C. Bioch, Toshihide Ibaraki, and Kazuhisa Makino. Minimum
self-dual decompositions of positive dual-minor Boolean functions.
Discrete Applied Mathematics, 96-97:307–326, 1999.

[Bio98] Jan C. Bioch. Dualization, decision lists and identification of mono-
tone discrete functions. Annals of Mathematics and Artificial Intel-
ligence, 24(1-4):69–91, 1998.

[BMR03] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. A
fast algorithm for computing hypergraph transversals and its appli-
cation in mining emerging patterns. In Proceedings of the 3rd IEEE
International Conference on Data Mining (ICDM 2003), 19-22 De-
cember 2003, Melbourne, Florida, USA [ICD03], pages 485–488.

[Bor94] Endre Boros. Dualization of aligned Boolean functions. Technical
Report RRR 9-94, RUTCOR, Rutgers University, March 1994.

[Bor06] Konrad Borys. On Generation of Cut Conjunctions, Minimal k-
Connected Spanning Subgraphs, Minimal Connected and Spanning

115

Bibliography

Subsets and Vertices. PhD thesis, Rutgers, The State University
of New Jersey, October 2006.

[BS87] Paola Bertolazzi and Antonio Sassano. An O(mn) algorithm for regu-
lar set-covering problems. Theoretical Computer Science, 54:237–247,
1987.

[BS88] Paola Bertolazzi and Antonio Sassano. A class of polynomially solv-
able set-covering problems. SIAM Journal on Discrete Mathematics,
1(3):306–316, 1988.

[BS05] James Bailey and Peter J. Stuckey. Discovery of minimal un-
satisfiable subsets of constraints using hitting set dualization. In
Manuel V. Hermenegildo and Daniel Cabeza, editors, Practical As-
pects of Declarative Languages, 7th International Symposium, PADL
2005, Long Beach, CA, USA, January 10-11, 2005, Proceedings, vol-
ume 3350 of Lecture Notes in Computer Science, pages 174–186.
Springer, 2005.

[Cad92] Marco Cadoli. The complexity of model checking for circumscriptive
formulae. Information Processing Letters, 44(3):113–118, 1992.

[CC07] Madalina Croitoru and Ernesto Compatangelo. Extending concep-
tual graphs for representing partial knowledge. In 7th IJCAI Interna-
tional Workshop on Nonmonotonic Reasoning, Action and Change,
Hyderabad, India, January 7-8, 2007, 2007.

[CCL03] Alain Casali, Rosine Cicchetti, and Lotfi Lakhal. Extracting seman-
tics from data cubes using cube transversals and closures. In Lise
Getoor, Ted E. Senator, Pedro Domingos, and Christos Faloutsos,
editors, Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 24 - 27, 2003, pages 69–78. ACM, 2003.

[CH07] Yves Crama and Peter L. Hammer. Boolean Functions: Theory, Al-
gorithms and Applications. Cambridge University Press, 2007. (forth-
coming).

[CKK02] Ricardo A. Collado, Alexander K. Kelmans, and Daniel Krasner.
On convex polytopes in the plane “containing” and “avoiding” zero.
Technical Report 33, DIMACS, July 2002.

[CM03] Nathalie Caspard and Bernard Monjardet. The lattices of closure
systems, closure operators, and implicational systems on a finite set:
A survey. Discrete Applied Mathematics, 127(2):241–269, 2003.

116

Bibliography

[Coo71] Stephen A. Cook. The complexity of theorem proving procedures. In
Proceedings Third Annual ACM Symposium on Theory of Computing,
May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM,
1971.

[Cra87] Yves Crama. Dualization of regular Boolean functions. Discrete
Applied Mathematics, 16(1):79–85, 1987.

[Cro06] Madalina Croitoru. Conceptual Graphs at Work: Efficient Reasoning
and Applications. PhD thesis, Department of Computing Science,
University of Aberdeen, 2006.

[Dam06] Peter Damaschke. Parameterized enumeration, transversals, and
imperfect phylogeny reconstruction. Theoretical Computer Science,
351(3):337–350, 2006.

[Dam07] Peter Damaschke. The union of minimal hitting sets: Parameter-
ized combinatorial bounds and counting. In Wolfgang Thomas and
Pascal Weil, editors, STACS 2007, 24th Annual Symposium on The-
oretical Aspects of Computer Science, Aachen, Germany, February
22-24, 2007, Proceedings, volume 4393 of Lecture Notes in Computer
Science, pages 332–343. Springer, 2007.

[DCS06] Nicolas Durand, Bruno Crémilleux, and Einoshin Suzuki. Visualiz-
ing transactional data with multiple clusterings for knowledge dis-
covery. In Floriana Esposito, Zbigniew W. Ras, Donato Malerba,
and Giovanni Semeraro, editors, Foundations of Intelligent Systems,
16th International Symposium, ISMIS 2006, Bari, Italy, September
27-29, 2006, Proceedings, volume 4203 of Lecture Notes in Computer
Science, pages 47–57. Springer, 2006.

[Dem80] János Demetrovics. On the equivalence of candidate keys with
sperner systems. Acta Cybernetica, 4:247–252, 1980.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complex-
ity. Monographs in Computer Science. Springer, 1999.

[DFH+01] Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew
Kitching, Giuseppe Liotta, Catherine McCartin, Naomi Nishimura,
Prabhakar Ragde, Frances A. Rosamond, Matthew Suderman, Sue
Whitesides, and David R. Wood. A fixed-parameter approach to
two-layer planarization. In Petra Mutzel, Michael Jünger, and Se-
bastian Leipert, editors, Graph Drawing, 9th International Sympo-
sium, GD 2001 Vienna, Austria, September 23-26, 2001, Revised
Papers, volume 2265 of Lecture Notes in Computer Science, pages
1–15. Springer, 2001.

117

Bibliography

[DG96] James P. Delgrande and Arvind Gupta. The complexity of minimum
partial truth assignments and implication in negation-free formulae.
Annals of Mathematics and Artificial Intelligence, 18(1):51–67, 1996.

[DH08] Arnaud Durand and Miki Hermann. On the counting complexity
of propositional circumscription. Information Processing Letters,
106(4):164–170, 2008.

[DHSW03] Jean-Guillaume Dumas, Frank Heckenbach, B. David Saunders, and
Volkmar Welker. Computing simplicial homology based on efficient
Smith Normal Form algorithms. In Michael Joswig and Nobuki
Takayama, editors, Algebra, Geometry, and Software Systems [out-
come of a Dagstuhl seminar], pages 177–206. Springer, 2003.

[DK88] Elias Dahlhaus and Marek Karpinski. A fast parallel algorithm for
computing all maximal cliques in a graph and the related problems
(extended abstract). In Rolf G. Karlsson and Andrzej Lingas, ed-
itors, SWAT 88, 1st Scandinavian Workshop on Algorithm Theory,
Halmstad, Sweden, July 5-8, 1988, Proceedings, volume 318 of Lec-
ture Notes in Computer Science, pages 139–144. Springer, 1988.

[DL05] Guozhu Dong and Jinyan Li. Mining border descriptions of emerging
patterns from dataset pairs. Knowledge and Information Systems,
8(2):178–202, 2005.

[DMP99] Carlos Domingo, Nina Mishra, and Leonard Pitt. Efficient read-
restricted monotone CNF/DNF dualization by learning with mem-
bership queries. Machine Learning, 37(1):89–110, 1999.

[Dom97] Carlos Domingo. Polynominal time algorithms for some self-duality
problems. In Gian Carlo Bongiovanni, Daniel P. Bovet, and
Giuseppe Di Battista, editors, Algorithms and Complexity, Third
Italian Conference, CIAC ’97, Rome, Italy, March 12-14, 1997, Pro-
ceedings, volume 1203 of Lecture Notes in Computer Science, pages
171–180. Springer, 1997.

[DT87] János Demetrovics and Vu Duc Thi. Keys, antikeys and prime
atrributes. Annales Universitatis Scientiarum Budapestinensis de
Rolando Eötvös Nominatae, Sectio computatorica, 8:35–52, 1987.

[DT95] János Demetrovics and Vu Duc Thi. Some remarks on generating
Armstrong and inferring functional dependencies relation. Acta Cy-
bernetica, 12(2):167–180, 1995.

[DT99] János Demetrovics and Vu Duc Thi. Describing candidate keys by
hypergraphs. Computers and Artificial Intelligence, 18(2):191–207,
1999.

118

Bibliography

[Duq91] Vincent Duquenne. The core of finite lattices. Discrete Mathematics,
88(2-3):133–147, 1991.

[EG91] Thomas Eiter and Georg Gottlob. Identifying the minimal transver-
sals of a hypergraph and related problems. Technical Report CD-TR
91/16, TU Wien, January 1991.

[EG95] Thomas Eiter and Georg Gottlob. Identifying the minimal transver-
sals of a hypergraph and related problems. SIAM Journal on Com-
puting, 24(6):1278–1304, 1995.

[EG02] Thomas Eiter and Georg Gottlob. Hypergraph transversal computa-
tion and related problems in logic and AI. In Sergio Flesca, Sergio
Greco, Nicola Leone, and Giovambattista Ianni, editors, Logics in
Artificial Intelligence, European Conference, JELIA 2002, Cosenza,
Italy, September, 23-26, Proceedings, volume 2424 of Lecture Notes
in Computer Science, pages 549–564. Springer, 2002.

[EGM03] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on
monotone dualization and generating hypergraph transversals. SIAM
Journal on Computing, 32(2):514–537, 2003.

[EHR08a] Khaled Elbassioni, Matthias Hagen, and Irman Rauf. A lower bound
for the HBC transversal hypergraph generation. Manuscript, January
2008.

[EHR08b] Khaled M. Elbassioni, Matthias Hagen, and Imran Rauf. Some fixed-
parameter tractable classes of hypergraph duality and related prob-
lems. In Martin Grohe and Rolf Niedermeier, editors, Parameter-
ized and Exact Computation, Third International Workshop, IWPEC
2008, Victoria, Canada, May 14-16, 2008. Proceedings, volume 5018
of Lecture Notes in Computer Science, pages 91–102. Springer, 2008.

[EIM99] Thomas Eiter, Toshihide Ibaraki, and Kazuhisa Makino. Bidual Horn
functions and extensions. Discrete Applied Mathematics, 96-97:55–
88, 1999.

[EIM02] Thomas Eiter, Toshihide Ibaraki, and Kazuhisa Makino. Recogni-
tion and dualization of disguised bidual Horn functions. Information
Processing Letters, 82(6):283–291, 2002.

[Eit91] Thomas Eiter. On Transversal Hypergraph Computation and Decid-
ing Hypergraph Saturation. PhD thesis, Technische Universität Wien,
1991.

[Eit94] Thomas Eiter. Exact transversal hypergraphs and application to
Boolean μ-functions. Journal of Symbolic Computation, 17(3):215–
225, 1994.

119

Bibliography

[EL03] Mark Steven Eker and Denis Patrick Lincoln. Modeling reaction
pathways. United States Patent 20030154003, July 2003.

[Elb02a] Khaled M. Elbassioni. An algorithm for dualization in products of
lattices and its applications. In Rolf H. Möhring and Rajeev Raman,
editors, Algorithms - ESA 2002, 10th Annual European Symposium,
Rome, Italy, September 17-21, 2002, Proceedings, volume 2461 of
Lecture Notes in Computer Science, pages 424–435. Springer, 2002.

[Elb02b] Khaled M. Elbassioni. Incremental Algorithms for Enumerating Ex-
tremal Solutions of Monotone Systems of Submodular Inequalities and
Their Applications. PhD thesis, Rutgers, The State University of New
Jersey, 2002.

[Elb02c] Khaled M. Elbassioni. On dualization in products of forests. In
Helmut Alt and Afonso Ferreira, editors, STACS 2002, 19th Annual
Symposium on Theoretical Aspects of Computer Science, Antibes -
Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285
of Lecture Notes in Computer Science, pages 142–153. Springer, 2002.

[Elb06a] Khaled M. Elbassioni. Finding all minimal infrequent multi-
dimensional intervals. In José R. Correa, Alejandro Hevia, and Mar-
cos A. Kiwi, editors, LATIN 2006: Theoretical Informatics, 7th Latin
American Symposium, Valdivia, Chile, March 20-24, 2006, Proceed-
ings, volume 3887 of Lecture Notes in Computer Science, pages 423–
434. Springer, 2006.

[Elb06b] Khaled M. Elbassioni. On the complexity of the multiplication
method for monotone CNF/DNF dualization. In Azar and Erlebach
[AE06], pages 340–351.

[Elb08] Khaled M. Elbassioni. On the complexity of monotone dualization
and generating minimal hypergraph transversals. Discrete Applied
Mathematics, 156(11):2109–2123, 2008.

[EM07] Thomas Eiter and Kazuhisa Makino. On computing all abductive
explanations from a propositional Horn theory. Journal of the ACM,
54(5), 2007.

[EMG08] Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational
aspects of monotone dualization: A brief survey. Discrete Applied
Mathematics, 156(11):2035–2049, 2008.

[Epp05] David Eppstein. All maximal independent sets and dynamic dom-
inance for sparse graphs. In Proceedings of the Sixteenth Annual

120

Bibliography

ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Van-
couver, British Columbia, Canada, January 23-25, 2005, pages 451–
459. SIAM, 2005.

[ER08] Khaled Elbassioni and Imran Rauf. Polynomial-time dualization of
r-exact hypergraphs with applications in geometry. Manuscript, June
2008.

[Fag83] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational
database schemes. Journal of the ACM, 30(3):514–550, 1983.

[Fer05a] Henning Fernau. Parameterized algorithmics: A graph-theoretic ap-
proach. Habilitationsschrift, Universität Tübingen, April 2005.

[Fer05b] Henning Fernau. Two-layer planarization: Improving on parameter-
ized algorithmics. Journal of Graph Algorithms and Applications,
9(2):205–238, 2005.

[FFJS04] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and
Markus Stumptner. Consistency-based diagnosis of configuration
knowledge bases. Artificial Intelligence, 152(2):213–234, 2004.

[FGBS96] John Franco, Giorgio Gallo, Hans Kleine Büning, and Ewald Speck-
enmeyer, editors. Workshop on Satisfiability, Siena, Italy, 1996.

[FK96] Michael L. Fredman and Leonid Khachiyan. On the complexity of
dualization of monotone disjunctive normal forms. Journal of Algo-
rithms, 21(3):618–628, 1996.

[FMP04] Frédéric Flouvat, Fabien De Marchi, and Jean-Marc Petit. ABS:
Adaptive borders search of frequent itemsets. In Roberto J. Bayardo
Jr., Bart Goethals, and Mohammed Javeed Zaki, editors, FIMI ’04,
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Min-
ing Implementations, Brighton, UK, November 1, 2004, volume 126
of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[FV04] Amir Fijany and Farrokh Vatan. New approaches for efficient solution
of hitting set problem. Technical Report 03-2736, Jet Propulsion
Laboratory, January 2004.

[FV05] Amir Fijany and Farrokh Vatan. New high performance algorith-
mic solution for diagnosis problem. Technical Report 04-3689, Jet
Propulsion Laboratory, March 2005.

[FVB+02] Amir Fijany, Farrokh Vatan, Anthony Barrett, Ed Baroth, and Ryan
Mackey. Novel model-based diagnosis approaches for advanced IVHM
systems. Technical Report 02-0898, Jet Propulsion Laboratory, April
2002.

121

Bibliography

[FVB+03a] Amir Fijany, Farrokh Vatan, Anthony Barrett, Mark James, and
Ryan Mackey. An advanced model-based diagnosis engine. Technical
Report 03-0852, Jet Propulsion Laboratory, May 2003.

[FVB+03b] Amir Fijany, Farrokh Vatan, Anthony Barrett, Mark James, Colin
Williams, and Ryan Mackey. Novel model-based diagnosis approaches
for advanced IVHM systems. Technical Report 02-3188, Jet Propul-
sion Laboratory, March 2003.

[FVBM02] Amir Fijany, Farrokh Vatan, Anthony Barrett, and Ryan Mackey.
New approaches for solving the diagnosis problem. Technical Report
IPN Progress Report 42-149, The Interplanetary Network Progress
Report, May 2002.

[Gar06] Gemma C. Garriga. Formal methods for mining structured objects.
PhD thesis, Universitat Politècnica de Catalunya, April 2006.

[GB85] Hector Garcia-Molina and Daniel Barbará. How to assign votes in a
distributed system. Journal of the ACM, 32(4):841–860, 1985.

[GHM05] Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Com-
plexity of DNF and isomorphism of monotone formulas. In Joanna
Jedrzejowicz and Andrzej Szepietowski, editors, Mathematical Foun-
dations of Computer Science 2005, 30th International Symposium,
MFCS 2005, Gdansk, Poland, August 29 - September 2, 2005, Pro-
ceedings, volume 3618 of Lecture Notes in Computer Science, pages
410–421. Springer, 2005.

[GHM08] Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Com-
plexity of DNF minimization and isomorphism testing for monotone
formulas. Information and Computation, 206(6):760–775, 2008.

[GK97] Vladimir Gurvich and Leonid Khachiyan. On the frequency of the
most frequently occurring variable in dual monotone DNFs. Discrete
Mathematics, 169(1-3):245–248, 1997.

[GK99] Vladimir Gurvich and Leonid Khachiyan. On generating the irredun-
dant conjunctive and disjunctive normal forms of monotone Boolean
functions. Discrete Applied Mathematics, 96-97:363–373, 1999.

[GK04a] Nicola Galesi and Oliver Kullmann. Polynomial time SAT decision,
hypergraph transversals and the hermitian rank. In Holger H. Hoos
and David G. Mitchell, editors, SAT 2004 - The Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing, 10-13 May 2004, Vancouver, BC, Canada, Revised Selected Pa-
pers, volume 3542 of Lecture Notes in Computer Science, pages 89–
104. Springer, 2004.

122

Bibliography

[GK04b] Daya Ram Gaur and Ramesh Krishnamurti. Average case self-duality
of monotone Boolean functions. In Ahmed Y. Tawfik and Scott D.
Goodwin, editors, Advances in Artificial Intelligence, 17th Confer-
ence of the Canadian Society for Computational Studies of Intelli-
gence, Canadian AI 2004, London, Ontario, Canada, May 17-19,
2004, Proceedings, volume 3060 of Lecture Notes in Computer Sci-
ence, pages 322–338. Springer, 2004.

[GK07] Daya Ram Gaur and Ramesh Krishnamurti. Self-duality of bounded
monotone Boolean functions and related problems. Discrete Applied
Mathematics, 2007. (to appear).

[GKM+03] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja,
Hannu Toivonen, and Ram Sewak Sharm. Discovering all most spe-
cific sentences. ACM Transactions on Database Systems, 28(2):140–
174, 2003.

[GKMT97] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, and Hannu
Toivonen. Data mining, hypergraph transversals, and machine
learning. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 12-14,
1997, Tucson, Arizona, pages 209–216. ACM Press, 1997.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics. Addison-Wesley, 1994.

[GL90] Georg Gottlob and Leonid Libkin. Investigation on Armstrong rela-
tions, dependency inference, and excluded functional dependencies.
Acta Cybernetica, 9(4):385–402, 1990.

[GLS02] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree de-
compositions and tractable queries. Journal of Computer and System
Sciences, 64(3):579–627, 2002.

[GM08] Daya Ram Gaur and Kazuhisa Makino. On the fractional chromatic
number of monotone self-dual Boolean functions. Discrete Mathe-
matics, 2008.

[GMS97] Dimitrios Gunopulos, Heikki Mannila, and Sanjeev Saluja. Discover-
ing all most specific sentences by randomized algorithms. In Foto N.
Afrati and Phokion G. Kolaitis, editors, Database Theory - ICDT
’97, 6th International Conference, Delphi, Greece, January 8-10,
1997, Proceedings, volume 1186 of Lecture Notes in Computer Sci-
ence, pages 215–229. Springer, 1997.

123

Bibliography

[God97] Parke Godfrey. Minimization in cooperative response to failing
database queries. International Journal of Cooperative Information
Systems, 6(2):95–149, 1997.

[Got04] Georg Gottlob. Hypergraph transversals. In Dietmar Seipel and
Jose Maria Turull Torres, editors, Foundations of Information and
Knowledge Systems, Third International Symposium, FoIKS 2004,
Wilhelminenburg Castle, Austria, February 17-20, 2004, Proceed-
ings, volume 2942 of Lecture Notes in Computer Science, pages 1–5.
Springer, 2004.

[GPS98] Goran Gogic, Christos H. Papadimitriou, and Martha Sideri. Incre-
mental recompilation of knowledge. Journal of Artificial Intelligence
Research, 8:23–37, 1998.

[GS83] Nathan Goodman and Oded Shmueli. Syntactic characterization of
tree database schemas. Journal of the ACM, 30(4):767–786, 1983.

[GSS02] Georg Gottlob, Francesco Scarcello, and Martha Sideri. Fixed-
parameter complexity in AI and nonmonotonic reasoning. Artificial
Intelligence, 138(1-2):55–86, 2002.

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A
correction to the algorithm in Reiter’s theory of diagnosis. Artifial
Intelligence, 41(1):79–88, 1989.

[Gur75] Vladimir Gurvich. Solution of positional games in pure strategies.
USSR Comput. Math. and Math. Phys., 15(2):74–87, 1975.

[Gur88] Vladimir Gurvich. Equilibrium in pure strategies. Soviet Mathemat-
ics Doklady, 38(3):597–602, 1988.

[Hae98] Rolf Haenni. Generating diagnoses from conflict sets. In Diane J.
Cook, editor, Proceedings of the Eleventh International Florida Ar-
tificial Intelligence Research Society Conference, May 18-20, 1998,
Sanibel Island, Florida, USA, pages 420–424. AAAI Press, 1998.

[Hag06] Matthias Hagen. Logarithmic space instances of monotone normal
form equivalence testing. Technical Report Reports on Computer
Science 06-10, Institut für Informatik, Friedrich-Schiller-Universität
Jena, June 2006.

[Hag07a] Matthias Hagen. Lower bounds for three algorithms for the transver-
sal hypergraph generation. In Andreas Brandstädt, Dieter Kratsch,
and Haiko Müller, editors, Graph-Theoretic Concepts in Computer
Science, 33rd International Workshop, WG 2007, Dornburg, Ger-
many, June 21-23, 2007. Revised Papers, volume 4769 of Lecture

124

Bibliography

Notes in Computer Science, pages 316–327. Springer, 2007. Journal
version accepted for publication at Discrete Applied Mathematics.

[Hag07b] Matthias Hagen. On the fixed-parameter tractability of the equiva-
lence test of monotone normal forms. Information Processing Letters,
103(4):163–167, 2007.

[Hau08] Utz-Uwe Haus. Personal communication, June 2008.

[HBC07] Céline Hébert, Alain Bretto, and Bruno Crémilleux. A data mining
formalization to improve hypergraph minimal transversal computa-
tion. Fundamenta Informaticae, 80(4):415–433, 2007.

[HCW06] Matthew Hamilton, Rhonda Chaytor, and Todd Wareham. The pa-
rameterized complexity of enumerating frequent itemsets. In Hans L.
Bodlaender and Michael A. Langston, editors, Parameterized and
Exact Computation, Second International Workshop, IWPEC 2006,
Zürich, Switzerland, September 13-15, 2006, Proceedings, volume
4169 of Lecture Notes in Computer Science, pages 227–238. Springer,
2006.

[Héb07] Céline Hébert. Extraction et usage de motifs minimaux en fouille
de données, contribution au domaine des hypergraphes. PhD thesis,
Université de Caen, September 2007.

[HHM09] Matthias Hagen, Peter Horatschek, and Martin Mundhenk. Exper-
imental comparison of the two Fredman-Khachiyan-algorithms. In
Proceedings of the Workshop on Algorithm Engineering and Experi-
ments, ALENEX 2009, New York, USA, January 3, 2009, 2009. To
appear.

[HKI08] Sven Hartmann and Gabriele Kern-Isberner, editors. Foundations of
Information and Knowledge Systems, 5th International Symposium,
FoIKS 2008, Pisa, Italy, February 11-15, 2008, Proceedings, volume
4932 of Lecture Notes in Computer Science. Springer, 2008.

[HKS08] Utz-Uwe Haus, Steffen Klamt, and Tamon Stephen. Computing
knock-out strategies in metabolic networks. Journal of Computa-
tional Biology, 15(3):259–268, 2008.

[HLRT02a] Mohand-Säıd Hacid, Alain Léger, Christophe Rey, and Farouk
Toumani. Computing concept covers: A preliminary report. In Pro-
ceedings of the 2002 International Workshop on Description Logics
(DL 2002). Toulouse, France, April 19-21, 2002, 2002.

[HLRT02b] Mohand-Said Hacid, Alain Léger, Christophe Rey, and Farouk
Toumani. Dynamic discovery of e-services. In Philippe Pucheral,

125

Bibliography

editor, 18èmes Journées Bases de Données Avancées, BDA ’02, 21-
25 octobre 2002, Evry, Actes (Informal Proceedings), 2002.

[HLRT03] Mohand-Säıd Hacid, Alain Léger, Christophe Rey, and Farouk
Toumani. An algorithm and a prototype for the dynamic discovery
of e-services. Technical Report RR03/05, LIMOS, July 2003.

[HM03] Wen-Lian Hsu and Ross M. McConnell. PC trees and circular-ones
arrangements. Theoretical Computer Science, 296(1):99–116, 2003.

[HMP04] Haym Hirsh, Nina Mishra, and Leonard Pitt. Version spaces and the
consistency problem. Artificial Intelligence, 156(2):115–138, 2004.

[HPP79] Peter L. Hammer, Uri N. Peled, and M. A. Pollatschek. An algo-
rithm to dualize a regular switching function. IEEE Transactions on
Computers, 28(3):238–243, 1979.

[HY05] Takashi Harada and Masafumi Yamashita. Transversal merge oper-
ation: A nondominated coterie construction method for distributed
mutual exclusion. IEEE Transactions on Parallel and Distributed
Systems, 16(2):183–192, 2005.

[IB07] Marcin Imielinski and Calin Belta. On the computation of minimal
cut sets in genome scale metabolic networks. In Proceedings of Amer-
ican Control Conference, ACC’07, New York, NY, USA, July 9-13,
2007, pages 1329–1334, 2007.

[ICD03] Proceedings of the 3rd IEEE International Conference on Data Min-
ing (ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA.
IEEE Computer Society, 2003.

[IK93] Toshihide Ibaraki and Tiko Kameda. A theory of coteries: Mutual
exclusion in distributed systems. IEEE Transactions on Parallel and
Distributed Systems, 4(7):779–794, 1993.

[IKM99] Toshihide Ibaraki, Alexander Kogan, and Kazuhisa Makino. Func-
tional dependencies in Horn theories. Artificial Intelligence, 108(1-
2):1–30, 1999.

[IKM03] Toshihide Ibaraki, Alexander Kogan, and Kazuhisa Makino. Inferring
minimal functional dependencies in Horn and q-Horn theories. Annals
of Mathematics and Artificial Intelligence, 38(4):233–255, 2003.

[Jär00] Jouni Järvinen. Difference functions of dependence spaces. Acta
Cybernetica, 14(4):619–630, 2000.

126

Bibliography

[JBPT06] Hélène Jaudoin, Boualem Benatallah, Jean-Marc Petit, and Farouk
Toumani. Towards a scalable algorithm for query rewriting using
views in presence of value constraints: Extended version. Technical
report, LIMOS, Aubiere cedex, France, 2006.

[JD00] Stefan Janaqi and Pierre Duchet. Generator-preserving contractions
and a min-max result on the graphs of planar polyominoes. Ars
Combinatoria, 55, 2000.

[JN06] Philippe Janssen and Lhouari Nourine. Minimum implicational ba-
sis for ∧-semidistributive lattices. Information Processing Letters,
99(5):199–202, 2006.

[Joh91] David S. Johnson. Open and closed problems in NP-completeness.
Lecture given at the International School of Mathematics “G. Stam-
pacchia”: Summer School “NP-Completeness: The First 20 Years”,
Erice (Sicily), Italy, June 2027, 1991.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yan-
nakakis. On generating all maximal independent sets. Information
Processing Letters, 27(3):119–123, 1988.

[KBB+06] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbas-
sioni, Vladimir Gurvich, and Kazuhisa Makino. Enumerating span-
ning and connected subsets in graphs and matroids. In Azar and
Erlebach [AE06], pages 444–455.

[KBB+08] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni,
Vladimir Gurvich, and Kazuhisa Makino. Generating cut conjunc-
tions in graphs and related problems. Algorithmica, 51(3):239–263,
2008.

[KBE+05] Leonid G. Khachiyan, Endre Boros, Khaled M. Elbassioni, Vladimir
Gurvich, and Kazuhisa Makino. On the complexity of some enumera-
tion problems for matroids. SIAM Journal on Discrete Mathematics,
19(4):966–984, 2005.

[KBE+07] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, Vladimir
Gurvich, and Kazuhisa Makino. Dual-bounded generating problems:
Efficient and inefficient points for discrete probability distributions
and sparse boxes for multidimensional data. Theoretical Computer
Science, 379(3):361–376, 2007.

[KBEG06] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir
Gurvich. An efficient implementation of a quasi-polynomial algorithm
for generating hypergraph transversals and its application in joint
generation. Discrete Applied Mathematics, 154(16):2350–2372, 2006.

127

Bibliography

[KBEG07a] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir
Gurvich. A global parallel algorithm for the hypergraph transversal
problem. Information Processing Letters, 101(4):148–155, 2007.

[KBEG07b] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir
Gurvich. On dualization of hypergraphs with bounded edge-
intersections and other related classes of hypergraphs. Theoretical
Computer Science, 382(2):139–150, 2007.

[KBEG08a] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir
Gurvich. Generating all minimal integral solutions to AND-OR sys-
tems of monotone inequalities: Conjunctions are simpler than dis-
junctions. Discrete Applied Mathematics, 156(11):2020–2034, 2008.

[KBEG08b] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir
Gurvich. On enumerating minimal dicuts and strongly connected
subgraphs. Algorithmica, 50(1):159–172, 2008.

[KG04] Steffen Klamt and Ernst Dieter Gilles. Minimal cut sets in biochem-
ical reaction networks. Bioinformatics, 20(2):226–234, 2004.

[Kha95] Roni Khardon. Translating between Horn representations and their
characteristic models. Journal of Artificial Intelligence Research,
3:349–372, 1995.

[Kha96] Roni Khardon. Learning to be Competent. PhD thesis, Center for
Research in Computing Technology, Harvard University, Cambridge,
Massachusetts, 1996.

[Kha00] Leonid Khachiyan. Transversal hypergraphs and families of poly-
hedral cones. In International Conference on Advances in Con-
vex Analysis and Global Optimization, Honoring the memory of C.
Carathéodory (1873-1950), June 5-9, 2000, Pythagorion, Samos,
Greece, Proceedings, pages 6–8, 2000.

[KISI00] Yeon-Dae Kwon, Yasunori Ishihara, Shougo Shimizu, and Minoru
Ito. Computational complexity of finding highly co-occurrent item-
sets in market basket databases. IEICE Transactions on Communi-
cations/Electronics/Information and Systems, E00-A(1):1–12, 2000.

[KKS93] Henry A. Kautz, Michael J. Kearns, and Bart Selman. Reasoning
with characteristic models. In Proceedings of the 11th National Con-
ference on Artificial Intelligence. Washington, DC, USA, July 11-15,
1993, pages 34–39. The AAAI Press/The MIT Press, 1993.

[Kla06] Steffen Klamt. Generalized concept of minimal cut sets in biochemical
networks. Biosystems, 83(2-3):233–247, 2006.

128

Bibliography

[KLM06] Oliver Kullmann, Inês Lynce, and João Marques-Silva. Categorisa-
tion of clauses in conjunctive normal forms: Minimally unsatisfiable
sub-clause-sets and the lean kernel. In Armin Biere and Carla P.
Gomes, editors, Theory and Applications of Satisfiability Testing -
SAT 2006, 9th International Conference, Seattle, WA, USA, August
12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer
Science, pages 22–35. Springer, 2006.

[KLM07] Naouel Karam, Serge Linckels, and Christoph Meinel. Semantic com-
position of lecture subparts for a personalized e-learning. In Enrico
Franconi, Michael Kifer, and Wolfgang May, editors, The Seman-
tic Web: Research and Applications, 4th European Semantic Web
Conference, ESWC 2007, Innsbruck, Austria, June 3-7, 2007, Pro-
ceedings, volume 4519 of Lecture Notes in Computer Science, pages
716–728. Springer, 2007.

[KM95] Jyrki Kivinen and Heikki Mannila. Approximate inference of func-
tional dependencies from relations. Theoretical Computer Science,
149(1):129–149, 1995.

[KMR92] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Charac-
terizing diagnoses and systems. Artificial Intelligence, 56(2-3):197–
222, 1992.

[KMR99] Roni Khardon, Heikki Mannila, and Dan Roth. Reasoning with ex-
amples: Propositional formulae and database dependencies. Acta
Informatica, 36(4):267–286, 1999.

[Koe05] Henning Koehler. Computing and representing the set of all canon-
ical covers. Technical Report 2005/27, Department of Information
Systems, Massey University, 2005.

[Koe08] Henning Koehler. Autonomous sets – A method for hypergraph de-
composition with applications in database theory. In Hartmann and
Kern-Isberner [HKI08], pages 78–95.

[KP04] Dogan Kesdogan and Lexi Pimenidis. The hitting set attack on
anonymity protocols. In Jessica J. Fridrich, editor, Information Hid-
ing, 6th International Workshop, IH 2004, Toronto, Canada, May
23-25, 2004, Revised Selected Papers, volume 3200 of Lecture Notes
in Computer Science, pages 326–339. Springer, 2004.

[KPS93] Dimitris J. Kavvadias, Christos H. Papadimitriou, and Martha Sideri.
On Horn envelopes and hypergraph transversals. In Kam-Wing Ng,
Prabhakar Raghavan, N. V. Balasubramanian, and Francis Y. L.
Chin, editors, Algorithms and Computation, 4th International Sym-
posium, ISAAC ’93, Hong Kong, December 15-17, 1993, Proceedings,

129

Bibliography

volume 762 of Lecture Notes in Computer Science, pages 399–405.
Springer, 1993.

[KR96] Roni Khardon and Dan Roth. Reasoning with models. Artificial
Intelligence, 87(1-2):187–213, 1996.

[KS03a] Dimitris J. Kavvadias and Elias C. Stavropoulos. Checking mono-
tone Boolean duality with limited nondterminism. Technical Report
TR2003/07/02, University of Patras, July 2003.

[KS03b] Dimitris J. Kavvadias and Elias C. Stavropoulos. Monotone Boolean
dualization is in coNP[log2 n]. Information Processing Letters,
85(1):1–6, 2003.

[KS05] Dimitris J. Kavvadias and Elias C. Stavropoulos. An efficient algo-
rithm for the transversal hypergraph generation. Journal of Graph
Algorithms and Applications, 9(2):239–264, 2005.

[KSG07] Steffen Klamt, Julio Saez-Rodriguez, and Ernst Dieter Gilles. Struc-
tural and functional analysis of cellular networks with CellNetAna-
lyzer. BMC Systems Biology, 1(2), 2007.

[KSS00] Dimitris J. Kavvadias, Martha Sideri, and Elias C. Stavropoulos.
Generating all maximal models of a Boolean expression. Information
Processing Letters, 74(3-4):157–162, 2000.

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Iso-
morphism Problem: Its Structural Complexity. Birkhäuser Verlag,
1993.

[Law66] Eugene L. Lawler. Covering problems: Duality relations and a
new method of solution. SIAM Journal on Applied Mathematics,
14(5):1115–1132, 1966.

[Li06] Dong Haoyuan Li. Mining sequential patterns with transversal hy-
pergraph computation. Master’s thesis, University of Montpellier II,
June 2006.

[LJ02] Li Lin and Yunfei Jiang. Computing minimal hitting sets with ge-
netic algorithm. In Markus Stumptner and Franz Wotawa, editors,
Proceedings of the 13th International Workshop on Principles of Di-
agnosis (DX-2002), May 2nd-4th, 2002, Semmering Austria, pages
77–80, 2002.

[LJ03] Li Lin and Yunfei Jiang. The computation of hitting sets: Review
and new algorithms. Information Processing Letters, 86(4):177–184,
2003.

130

Bibliography

[LLK80] Eugene L. Lawler, Jan Karel Lenstra, and A. H. G. Rinnooy
Kan. Generating all maximal independent sets: NP-hardness and
polynomial-time algorithms. SIAM Journal on Computing, 9(3):558–
565, 1980.

[LLT07] Dong (Haoyuan) Li, Anne Laurent, and Maguelonne Teisseire. On
transversal hypergraph enumeration in mining sequential patterns.
In 11th International Database Engineering and Applications Sympo-
sium (IDEAS 2007), Banff, Canada, September 2007, pages 303–307.
IEEE Computer Society, 2007.

[Lov92] László Lovász. Combinatorial optimization: Some problems and
trends. Technical Report 92-53, DIMACS, 1992.

[LPL00] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient dis-
covery of functional dependencies and Armstrong relations. In Carlo
Zaniolo, Peter C. Lockemann, Marc H. Scholl, and Torsten Grust,
editors, Advances in Database Technology - EDBT 2000, 7th Inter-
national Conference on Extending Database Technology, Konstanz,
Germany, March 27-31, 2000, Proceedings, volume 1777 of Lecture
Notes in Computer Science, pages 350–364. Springer, 2000.

[LS08] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing
minimal unsatisfiable subsets of constraints. Journal of Automated
Reasoning, 40(1):1–33, 2008.

[Mak02] Kazuhisa Makino. A linear time algorithm for recognizing regular
Boolean functions. Journal of Algorithms, 43(2):155–176, 2002.

[Mak03] Kazuhisa Makino. Efficient dualization of O(logn)-term monotone
disjunctive normal forms. Discrete Applied Mathematics, 126(2-
3):305–312, 2003.

[Man02] Heikki Mannila. Local and global methods in data mining: Ba-
sic techniques and open problems. In Peter Widmayer, Fran-
cisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan Eidenbenz, and Ricardo Conejo, editors, Automata, Lan-
guages and Programming, 29th International Colloquium, ICALP
2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of
Lecture Notes in Computer Science, pages 57–68. Springer, 2002.

[Man04] Thomas Manoukian. High performance algorithms for discovering
emerging patterns. Master’s thesis, Department of Computer Science
and Software Engineering, The University of Melbourne, Australia,
March 2004.

131

Bibliography

[Man05] Heikki Mannila. Finding frequent patterns from data. Slides of lec-
tures at International School “Eduardo R. Caianiello”, 10th Course
and Workshop of the PASCAL Network of Excellence, The Analysis
of Patterns, Centre “Ettore Majorana” for Scientific Culture, Erice,
Italy, October 28 - November 6, 2005, 2005.

[McC04] Ross M. McConnell. A certifying algorithm for the consecutive-ones
property. In J. Ian Munro, editor, Proceedings of the Fifteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004,
New Orleans, Louisiana, USA, January 11-14, 2004, pages 768–777.
SIAM, 2004.

[MFP04] Fabien De Marchi, Frédéric Flouvat, and Jean-Marc Petit. Adaptive
strategies for mining the positive border of interesting patterns: Ap-
plication to inclusion dependencies in databases. In Jean-François
Boulicaut, Luc De Raedt, and Heikki Mannila, editors, Constraint-
Based Mining and Inductive Databases, European Workshop on In-
ductive Databases and Constraint Based Mining, Hinterzarten, Ger-
many, March 11-13, 2004, Revised Selected Papers, volume 3848 of
Lecture Notes in Computer Science, pages 81–101. Springer, 2004.

[MGM06] Bob Mungamuru, Hector Garcia-Molina, and Subhasish Mitra. How
to safeguard your sensitive data. In 25th IEEE Symposium on Reli-
able Distributed Systems (SRDS 2006),2-4 October 2006, Leeds, UK,
pages 199–211. IEEE Computer Society, 2006.

[MI96] Kazuhisa Makino and Toshihide Ibaraki. Interior and exterior func-
tions of Boolean functions. Discrete Applied Mathematics, 69(3):209–
231, 1996.

[MI97] Kazuhisa Makino and Toshihide Ibaraki. The maximum latency and
identification of positive Boolean functions. SIAM Journal on Com-
puting, 26(5):1363–1383, 1997.

[MI98] Kazuhisa Makino and Toshihide Ibaraki. A fast and simple algorithm
for identifying 2-monotonic positive Boolean functions. Journal of
Algorithms, 26(2):291–305, 1998.

[MI99] Kazuhisa Makino and Toshihide Ibaraki. Inner-core and outer-core
functions of partially defined Boolean functions. Discrete Applied
Mathematics, 96-97:443–460, 1999.

[Mis02] Nina Mishra. Maximal frequent sets and the monotone CNF/DNF
problem. Lecture notes, Stanford, 2002.

132

Bibliography

[MK01] Kazuhisa Makino and Tiko Kameda. Transformations on regular non-
dominated coteries and their applications. SIAM Journal on Discrete
Mathematics, 14(3):381–407, 2001.

[MOI03] Kazuhisa Makino, Hirotaka Ono, and Toshihide Ibaraki. Interior and
exterior functions of positive Boolean functions. Discrete Applied
Mathematics, 130(3):417–436, 2003.

[MP97] Nina Mishra and Leonard Pitt. Generating all maximal independent
sets of bounded-degree hypergraphs. In Proceedings of the Tenth An-
nual Conference on Computational Learning Theory (COLT 1997),
July 6-9, 1997, Nashville, Tennessee, USA, pages 211–217. ACM,
1997.

[MP03] Fabien De Marchi and Jean-Marc Petit. Zigzag: a new algorithm for
mining large inclusion dependencies in database. In Proceedings of the
3rd IEEE International Conference on Data Mining (ICDM 2003),
19-22 December 2003, Melbourne, Florida, USA [ICD03], pages 27–
34.

[MR86] Heikki Mannila and Kari-Jouko Räihä. Design by example: An ap-
plication of Armstrong relations. Journal of Computer and System
Sciences, 33(2):126–141, 1986.

[MR87] Heikki Mannila and Kari-Jouko Räihä. Dependency inference. In
Peter M. Stocker, William Kent, and Peter Hammersley, editors,
VLDB’87, Proceedings of 13th International Conference on Very
Large Data Bases, September 1-4, 1987, Brighton, England, pages
155–158. Morgan Kaufmann, 1987.

[MR92a] Heikki Mannila and Kari-Jouko Räihä. Design of Relational
Databases. Addison Wesley, 1992.

[MR92b] Heikki Mannila and Kari-Jouko Räihä. On the complexity of inferring
functional dependencies. Discrete Applied Mathematics, 40(2):237–
243, 1992.

[MR94] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring func-
tional dependencies from relations. Data & Knowledge Engineering,
12(1):83–99, 1994.

[MS94] Robert J. McEliece and Kumar N. Sivarajan. Performance limits
for channelized cellular telephone systems. IEEE Transactions on
Information Theory, 40(1):21–34, 1994.

[MT96a] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets
and condensed representations (Extended abstract). In Proceedings

133

Bibliography

of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), pages 189–194, 1996.

[MT96b] Heikki Mannila and Hannu Toivonen. On an algorithm for finding
all interesting sentences. In Robert Trappl, editor, Proceedings of the
13th European Meeting on Cybernetics and Systems Research (EM-
CSR’96), Vienna, pages 973–978. Austrian Society for Cybernetic
Studies, April 1996.

[MT97] Heikki Mannila and Hannu Toivonen. Levelwise search and borders
of theories in knowledge discovery. Data Mining and Knowledge Dis-
covery, 1(3):241–258, 1997.

[MT98] Heikki Mannila and Hannu Toivonen. Knowledge Discovery in
Databases: The Search for Frequent Patterns. 1998.

[Mun89] Daniele Mundici. Functions computed by monotone Boolean formulas
with no repeated variables. Theoretical Computer Science, 66(1):113–
114, 1989.

[Mur71] Saburo Muroga. Threshold Logic and Its Applications. Wiley-
Interscience, New York, 1971.

[Nic02] Tara Nicholson. Diagnostic hypergraphs: when the problem is the
solution. In 1st North American Summer School for Logic Language
and Information. Stanford University, June 2002, pages 67–74, 2002.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[Pap97] Christos H. Papadimitriou. NP-completeness: A retrospective.
In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Automata, Languages and Programming, 24th
International Colloquium, ICALP’97, Bologna, Italy, 7-11 July 1997,
Proceedings, volume 1256 of Lecture Notes in Computer Science,
pages 2–6. Springer, 1997.

[PB88] J. Scott Provan and Michael O. Ball. Efficient recognition of ma-
troid and 2-monotonic systems. In Richard D. Ringeisen and Fred S.
Roberts, editors, Applications of Discrete Mathematics, Proceedings
of the third Conference on Discrete Mathematics, Clemson Univer-
sity, Clemson, South Carolina, May 14 - 16, 1986, volume 33 of
Proceedings in applied mathematics, pages 122–134. SIAM, 1988.

134

Bibliography

[PCPO02] Andreas Polyméris, Ricardo Contreras, Maŕıa Angélica Pinninghoff,
and Esteban Osses. Response-ability and its complexity. In Sec-
ond International Workshop Computational Models of Scientific Rea-
soning and Applications (CMSRA), Monte Carlo Resort, Las Vegas,
Nevada, USA, June 24-27, 2002, On-Line Proceedings, 2002.

[PDA93a] Lúıs Moniz Pereira, Carlos Viegas Damásio, and José Júlio Alferes.
Diagnosis and debugging as contradiction removal. In Logic Program-
ming and Non-monotonic Reasoning, LPNMR, Proceedings of the
Second International Workshop, Lisbon, Portugal, June 1993, pages
316–330, 1993.

[PDA93b] Lúıs Moniz Pereira, Carlos Viegas Damásio, and José Júlio Alferes.
Diagnosis and debugging as contradiction removal in logic programs.
In Miguel Filgueiras and Lúıs Damas, editors, Progress in Artifi-
cial Intelligence, 6th Portuguese Conference on Artificial Intelligence,
EPIA ’93, Porto, Portugal, October 6-8, 1993, Proceedings, volume
727 of Lecture Notes in Computer Science, pages 183–197. Springer,
1993.

[Pfa06] John L. Pfaltz. Using concept lattices to uncover causal dependen-
cies in software. In Rokia Missaoui and Jürg Schmid, editors, Formal
Concept Analysis, 4th International Conference, ICFCA 2006, Dres-
den, Germany, February 13-17, 2006, Proceedings, volume 3874 of
Lecture Notes in Computer Science, pages 233–247. Springer, 2006.

[Pfa07] John L. Pfaltz. Establishing logical rules from empirical data. In
Proceedings of 19th IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI 2007), Volume 2., pages 202–209, 2007.

[Pfe02] Marc E. Pfetsch. The Maximum Feasible Subsystem Problem and
Vertex-Facet Incidences of Polyhedra. PhD thesis, Technische Uni-
versität Berlin, October 2002.

[Pit02] Toniann Pitassi. Propositional proof complexity, lecture 1. Lecture
notes, September 2002.

[Pop04] Viara Nikolaeva Popova. Knowledge Discovery and Monotonicity.
PhD thesis, Erasmus University Rotterdam, 2004.

[PS85] Uri N. Peled and Bruno Simeone. Polynomial time algorithms for
regular set-covering and threshold problems. Discrete Applied Math-
ematics, 12(1):57–69, 1985.

[PS94] Uri N. Peled and Bruno Simeone. An O(nm)-time algorithm for
computing the dual of a regular Boolean function. Discrete Applied
Mathematics, 49(1-3):309–323, 1994.

135

Bibliography

[PT02] John L. Pfaltz and Christopher M. Taylor. Scientific discovery
through iterative transformations of concept lattices. In Proceedings
Workshop on Discrete Mathematics and Data Mining, 2nd SIAM
International Conference on Data Mining, April 11-13, Arlington,
Virginia, USA, 2002, pages 65–74, 2002.

[Qui53] Willard van Orman Quine. Two theorems about truth functions.
Boletin de la Sociedad Matemática Mexicana, 10:64–70, 1953.

[RB03] Kotagiri Ramamohanarao and James Bailey. Discovery of emerg-
ing patterns and their use in classification. In Tamás D. Gedeon and
Lance Chun Che Fung, editors, AI 2003: Advances in Artificial Intel-
ligence, 16th Australian Conference on Artificial Intelligence, Perth,
Australia, December 3-5, 2003, Proceedings, volume 2903 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2003.

[RC06] François Rioult and Bruno Crémilleux. Mining correct properties
in incomplete databases. In Saso Dzeroski and Jan Struyf, edi-
tors, Knowledge Discovery in Inductive Databases, 5th International
Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Re-
vised Selected and Invited Papers, volume 4747 of Lecture Notes in
Computer Science, pages 208–222. Springer, 2006.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[Rei03] Steffen Reith. On the complexity of some equivalence problems for
propositional calculi. In Branislav Rovan and Peter Vojtás, editors,
Mathematical Foundations of Computer Science 2003, 28th Interna-
tional Symposium, MFCS 2003, Bratislava, Slovakia, August 25-29,
2003, Proceedings, volume 2747 of Lecture Notes in Computer Sci-
ence, pages 632–641. Springer, 2003.

[RF07] Kotagiri Ramamohanarao and Hongjian Fan. Patterns based classi-
fiers. World Wide Web, 10(1):71–83, 2007.

[Rym92] Ron Rymon. Search through systematic set enumeration. In Proceed-
ings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR’92). Cambridge, MA, October 25-
29, 1992, pages 539–550. Morgan Kaufmann, 1992.

[Rym94a] Ron Rymon. An SE-tree-based prime implicant generation algorithm.
Annals of Mathematics and Artificial Intelligence, 11(1-4):351–366,
1994.

[Rym94b] Ron Rymon. On kernel rules and prime implicants. In Proceedings
of the 12th National Conference on Artificial Intelligence, Volume 1.

136

Bibliography

Seattle, WA, USA, July 31 - August 4, 1994, pages 181–186. AAAI
Press, 1994.

[Sey74] Paul D. Seymour. On the two-colouring of hypergraphs. The quarterly
journal of mathematics Oxford, 25(3):303–312, 1974.

[Sir04] Evren Sirin. Automated composition of web services using AI plan-
ning techniques. Master’s thesis, Department of Computer Science,
University of Maryland, 2004.

[SK90] Bart Selman and Henry A. Kautz. Model-preference default theories.
Artificial Intelligence, 45(3):287–322, 1990.

[SK96] Bart Selman and Henry A. Kautz. Knowledge compilation and theory
approximation. Journal of the ACM, 43(2):193–224, 1996.

[SKA01] Ilya Shmulevich, Aleksey D. Korshunov, and Jaakko Astola. Al-
most all monotone Boolean functions are polynomially learnable us-
ing membership queries. Information Processing Letters, 79(5):211–
213, 2001.

[SKU06] Ken Satoh, Ken Kaneiwa, and Takeaki Uno. Contradiction finding
and minimal recovery for UML class diagrams. In 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE
2006), 18-22 September 2006, Tokyo, Japan, pages 277–280. IEEE
Computer Society, 2006.

[SS98] Saswati Sarkar and Kumar N. Sivarajan. Hypergraph models for
cellular mobile communication systems. IEEE Transactions on Ve-
hicular Technology, 47(2):460–471, 1998.

[Sta01] Elias C. Stavropoulos. Recent complexity results on generation prob-
lems. Poster, 1st International Seminar on Mathematics of Comput-
ers and Decision Making, University of Patras, Greece, May 25–26,
2001, May 2001.

[STT98] Robert H. Sloan, Ken Takata, and György Turán. On frequent sets of
Boolean matrices. Annals of Mathematics and Artificial Intelligence,
24(1-4):193–209, 1998.

[SU03] Ken Satoh and Takeaki Uno. Enumerating maximal frequent sets
using irredundant dualization. In Gunter Grieser, Yuzuru Tanaka,
and Akihiro Yamamoto, editors, Discovery Science, 6th International
Conference, DS 2003, Sapporo, Japan, October 17-19,2003, Proceed-
ings, volume 2843 of Lecture Notes in Computer Science, pages 256–
268. Springer, 2003.

137

Bibliography

[SU05] Ken Satoh and Takeaki Uno. Enumerating minimally revised specifi-
cations using dualization. In Takashi Washio, Akito Sakurai, Katsuto
Nakajima, Hideaki Takeda, Satoshi Tojo, and Makoto Yokoo, editors,
New Frontiers in Artificial Intelligence, Joint JSAI 2005 Workshop
Post-Proceedings, volume 4012 of Lecture Notes in Computer Science,
pages 182–189. Springer, 2005.

[SU06] Ken Satoh and Takeaki Uno. Enumerating minimal explanations by
minimal hitting set computation. In Jérôme Lang, Fangzhen Lin, and
Ju Wang, editors, Knowledge Science, Engineering and Management,
First International Conference, KSEM 2006, Guilin, China, August
5-8, 2006, Proceedings, volume 4092 of Lecture Notes in Computer
Science, pages 354–365. Springer, 2006.

[Tak07] Ken Takata. A worst-case analysis of the sequential method to list
the minimal hitting sets of a hypergraph. SIAM Journal on Discrete
Mathematics, 21(4):936–946, 2007.

[Tam00] Hisao Tamaki. Space-efficient enumeration of minimal transversals
of a hypergraph. In Proceedings 75th SIGAL Conference of the In-
formation Processing Society of Japan (IPSJ-AL 75), pages 29–36,
2000. Extended paper available from the author.

[TB06] Roger Ming Hieng Ting and James Bailey. Mining minimal contrast
subgraph patterns. In Joydeep Ghosh, Diane Lambert, David B.
Skillicorn, and Jaideep Srivastava, editors, Proceedings of the Sixth
SIAM International Conference on Data Mining, April 20-22, 2006,
Bethesda, MD, USA. SIAM, 2006.

[Thi86] Vu Duc Thi. Minimal keys and antikeys. Acta Cybernetica, 7(4):361–
371, 1986.

[TIAS77] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa.
A new algorithm for generating all the maximal independent sets.
SIAM Journal on Computing, 6(3):505–517, 1977.

[Toi96a] Hannu Toivonen. Discovery of frequent patterns in large data collec-
tions. PhD thesis, University of Helsinki, Department of Computer
Science, 1996.

[Toi96b] Hannu Toivonen. Sampling large databases for association rules. In
T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nand-
lal L. Sarda, editors, VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996, Mum-
bai (Bombay), India, pages 134–145. Morgan Kaufmann, 1996.

138

Bibliography

[Tom88] Anthony Tomasic. View update translation via deduction and an-
notation. In Marc Gyssens, Jan Paredaens, and Dirk Van Gucht,
editors, ICDT’88, 2nd International Conference on Database The-
ory, Bruges, Belgium, August 31 - September 2, 1988, Proceedings,
volume 326 of Lecture Notes in Computer Science, pages 338–352.
Springer, 1988.

[Tor01] Vetle Torvik. Data Mining and Knowledge Discovery: A Guided Ap-
proach Based on Monotone Boolean Functions. PhD thesis, Louisiana
State University, Baton Rouge, LA, October 2001.

[Tri08] Thu Trinh. Using transversals for discovering XML functional depen-
dencies. In Hartmann and Kern-Isberner [HKI08], pages 199–218.

[TS05] Duc Vu Thi and Hoang Nguyen Son. On the dense families in the
relational datamodel. ASEAN Journal on Science and Technology
for Development, 22(3):241–249, 2005.

[TT01] Vetle I. Torvik and Evangelos Triantaphyllou. Inference of monotone
Boolean functions. In Chris A. Floudas and Panos M. Pardalos, edi-
tors, Encyclopedia of Optimization, volume 2, pages 472–480. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2001.

[TT02] Vetle I. Torvik and Evangelos Triantaphyllou. Minimizing the average
query complexity of learning monotone Boolean functions. INFORMS
Journal on Computing, 14(2):144–174, 2002.

[TY84] Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time al-
gorithms to test chordality of graphs, test acyclicity of hypergraphs,
and selectively reduce acyclic hypergraphs. SIAM Journal on Com-
puting, 13(3):566–579, 1984.

[TY07] Stéphan Thomassé and Anders Yeo. Total domination of graphs
and small transversals of hypergraphs. Combinatorica, 27(4):473–
487, 2007.

[Uno02] Takeaki Uno. A practical fast algorithm for enumerating minimal set
coverings. In Proceedings 83rd SIGAL Conference of the Information
Processing Society of Japan, Tokyo, 15 March, 2002, pages 9–16,
2002. In Japanese.

[US03] Takeaki Uno and Ken Satoh. Detailed description of an algorithm for
enumeration of maximal frequent sets with irredundant dualization.
In Bart Goethals and Mohammed Javeed Zaki, editors, FIMI’03,
Frequent Itemset Mining Implementations, Proceedings of the ICDM

139

Bibliography

2003 Workshop on Frequent Itemset Mining Implementations, 19 De-
cember 2003, Melbourne, Florida, USA, volume 90 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2003.

[Vin99a] Staal A. Vinterbo. A genetic algorithm for a family of set cover
problems. Technical report, Norwegian University of Science and
Technology, 1999.

[Vin99b] Staal A. Vinterbo. Predictive Models in Medicine: Some Methods
for Construction and Adaption. PhD thesis, Norwegian University of
Science and Technology, December 1999.

[VO00a] Staal A. Vinterbo and Lucila Ohno-Machado. A genetic algorithm ap-
proach to multi-disorder diagnosis. Artificial Intelligence in Medicine,
18(2):117–132, 2000.

[VØ00b] Staal A. Vinterbo and Aleksander Øhrn. Minimal approximate hit-
ting sets and rule templates. International Journal of Approximate
Reasoning, 25(2):123–143, 2000.

[WGR01] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson.
FastFDs: A heuristic-driven, depth-first algorithm for mining func-
tional dependencies from relation instances – Extended abstract. In
Yahiko Kambayashi, Werner Winiwarter, and Masatoshi Arikawa,
editors, Data Warehousing and Knowledge Discovery, Third Inter-
national Conference, DaWaK 2001, Munich, Germany, September
5-7, 2001, Proceedings, volume 2114 of Lecture Notes in Computer
Science, pages 101–110. Springer, 2001.

[Wil00] Marcel Wild. Optimal implicational bases for finite modular lattices.
Quaestiones Mathematicae, 23(2):153–161, 2000.

[Win62] Robert O. Winder. Threshold Logic. PhD thesis, Mathematics De-
partment, Princeton University, 1962.

[Wot01] Franz Wotawa. A variant of Reiter’s hitting-set algorithm. Informa-
tion Processing Letters, 79(1):45–51, 2001.

[Zan02] Bruno Zanuttini. Approximation of relations by propositional formu-
las: Complexity and semantics. In Sven Koenig and Robert C. Holte,
editors, Abstraction, Reformulation and Approximation, 5th Interna-
tional Symposium, SARA 2002, Kananaskis, Alberta, Canada, Au-
gust 2-4, 2002, Proceedings, volume 2371 of Lecture Notes in Com-
puter Science, pages 242–255. Springer, 2002.

140

Bibliography

[ZB06] Zhou Zhu and James Bailey. Fast discovery of interesting collections
of web services. In 2006 IEEE / WIC / ACM International Con-
ference on Web Intelligence (WI 2006), 18-22 December 2006, Hong
Kong, China, pages 152–160. IEEE Computer Society, 2006.

141

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Jena, den 18. Juli 2008

Matthias Hagen

Lebenslauf

Persönliche Daten

Name Matthias Hagen

Geburt 29.Oktober 1979 in Ilmenau

Bildungsweg

1994 – 1998 Gymnasium
”
Goetheschule“, Ilmenau,

mathematisch-naturwissenschaftliche Spezialklasse

Juli 1998 Abitur

1999 – 2004 Studium der Informatik,
Friedrich-Schiller-Universität (FSU) Jena

Juni 2004 Diplom

Akademische Laufbahn

seit Oktober 2004 Doktorand am Institut für Informatik der FSU

2004 – 2006 Landesgraduiertenstipendiat des Freistaates Thüringen

2004 – 2007 wissenschaftliche Hilfskraft an der FSU

Januar 2007 – wissenschaftliche Hilfskraft an der Eberhard-Karls-
März 2007 Universität Tübingen

Februar 2007 – wissenschaftlicher Mitarbeiter an der Universität Kassel
Dezember 2008

September 2007 – wissenschaftlicher Mitarbeiter an der FSU
Oktober 2008

seit November 2008 wissenschaftlicher Mitarbeiter an der Bauhaus-Universität
Weimar

