

Iterative Design Space Exploration and
Robustness Optimization for Embedded Systems

Von der Carl-Friedrich-Gauß-Fakultät

Technische Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von: Dipl.-Inform. Arne Hamann

geboren am: 3. August 1978

in: Eckernförde

eingereicht am: 25. Juli 2008

mündliche Prüfung am: 6. Oktober 2008

Vorsitzender: Prof. Dr.-Ing. Lars Wolf

Referent: Prof. Dr.-Ing. Rolf Ernst

Korreferent: Prof. Dr.-Ing. Lothar Thiele

Bibliografische Information der Deutschen bliothek
Die Deutsche bliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.
1. Aufl. - Göttingen : Cuvillier, 2008

Zugl.: (TU) Braunschweig, Univ., Diss., 200

978-3-86727-819-5

© CUVILLIER VERLAG, Göttingen 2008
Nonnenstieg 8, 37075 Göttingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist
es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg
(Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage, 2008
Gedruckt auf säurefreiem Papier

978-3-86727-819-5

Nationalbi
Nationalbi

8

Iterative Design Space Exploration and
Robustness Optimization for
Embedded Systems

ARNE HAMANN
Institute of Computer and Communication Network Engineering
Department of Electrical Engineering and Information Technology
Technical University of Braunschweig
Braunschweig, Germany

Abstract

An embedded system is a micro computer system that is embedded
into another technical device that itself does not appear as a computer.
Embedded systems can be found everywhere and are going to be even
more pervasive in the near future. Examples are telecommunication
devices, consumer electronics, automotive systems, building technology,
etc. Embedded systems have a very high influence on the system in-
dustry. Nowadays, modern products cannot be realized in a competitive
manner without embedded micro computer systems.

In order to meet growing productivity demands and cost pressure,
embedded systems need to be designed very efficiently. Obviously, due
to the increasing complexity and distributed nature of modern systems
this is by far no easy task. One key factor to increase the development
process efficiency of complex distributed embedded systems is reuse.
Concepts like the platform-based design style and standardization efforts
on the software level (e.g. the AUTOSAR initiative in the automotive
domain) allow to conceive whole product families and variants based on
the same set of reusable components and sub-systems. However, while
reuse helps to increase design efficiency at the functional level, it does not
solve another key embedded systems challenge that arises with system
complexity and sub-system integration: the control of non-functional
properties, such as timing, power consumption, or dependability.

The benefits of controlling non-functional properties early in the de-
sign flow are clear. First, it helps the designer to take the right design
decisions before proceeding to implementation, and thus to decrease the
design risk and costs. Second, it assists the designer in conceiving sys-
tems with performance head-room for future extensions, updates, and
bug-fixes. Achieving this is not trivial, since system performance is frag-
ile with respect to modifications to the specification. Even slight changes
of properties, such as execution demands, communication volumes, data
rates, etc., can have severe impact on system performance. As a conse-
quence, it is desirable that the system exhibits some sort of “robustness”
towards changes.

A promising starting point to overcome these challenges are formal
performance verification methods that are capable of accurately deter-
mining required performance data based on abstract application and
execution platform models of a given embedded system. However, until
now these methods have been mainly applied to characterize and solve
isolated performance issues like, for instance, timing analysis of single
ECUs, bus bottleneck detection, or bus configuration. A systematic and
continuous approach allowing to control and optimize non-functional
system properties is still missing.

This thesis introduces several techniques allowing to control and op-
timize non-functional system properties during the design flow and the
lifetime of an embedded system.

iv ABSTRACT

The first contribution is a flexible exploration framework that takes
into account the iterative nature of performance verification during
modern concurrent design flows. The proposed framework allows per-
forming partial explorations and provides the possibility to dynami-
cally extend and restrict the search space without loosing previously
obtained results. It can, therefore, be iteratively applied to succes-
sively explore given systems taking into account data availability and
responsibilities along the supply chain.

The second contribution is the definition of expressive system ro-
bustness metrics for different assumptions and design scenarios. The
proposed metrics are based on sensitivity analysis. In particular, ro-
bustness metrics for system properties with and without performance
dependencies are distinguished.

Especially the robustness metrics for the dependent case are compu-
tationally expensive, since multi-dimensional sensitivity analysis is
necessary to capture interdependencies between involved properties.
In order to circumvent this complexity problem, a scalable stochastic
sensitivity analysis approach is developed that is capable of efficiently
approximating robustness characteristics by formulating sensitivity
analysis as multi-criterion optimization problem. This represents the
third contribution of this thesis.

As the fourth contribution of this thesis, it is shown how the stochas-
tic sensitivity analysis can be used to efficiently approximate the pro-
posed robustness metrics with upper and lower robustness bounds.
Furthermore, methods are developed that utilize the derived bounds
to significantly speed up robustness optimization.

It is known that already for small systems different state-of-the-art
performance analysis approaches exhibit remarkable differences in
terms of accuracy. As a consequence, it can be stated that the ex-
pressiveness of the techniques proposed in this thesis highly depends
on the choice of the right abstraction, i.e. analysis engine, for the
considered system. For this reason, the last contribution of this the-
sis concerns solving the problem of providing accurate and expressive
performance predictions for general embedded systems. Rather than
searching for a unified more complex analysis model, it is proposed to
exploit the so-called compositional performance analysis methodology
to couple modular performance analysis techniques. In so doing, the
advantages offered by the individual models of computation can eas-
ily be integrated into a cross-domain analysis that allows modeling
and analyzing each system component with the best fitting method.

Kurzfassung

Eingebettete Systeme sind Mikrocomputersysteme, die in andere tech-
nische Geräte, welche selbst nicht als Computer erscheinen, eingebet-
tet sind. Eingebettete Systeme sind allgegenwärtig und werden in der
Zukunft eine immer wichtigere Rolle spielen. Beispiele sind Telekom-
munikationsgeräte, Verbraucherelektronik, Automobilsysteme, Gebäu-
detechnik, usw. Eingebettete Systeme haben einen hohen Einfluss auf
die Systemindustrie. Ohne eigebettete Systeme können moderne Pro-
dukte heutzutage nicht mehr wettbewerbsfähig hergestellt werden.

Um dem immer steigenden Produktivitätsanforderungen und Kos-
tendruck erfolgreich zu begegnen, müssen eingebettete System sehr ef-
fizient entwickelt werden. Aufgrund der steigenden Komplexität und
dem verteilten Aufbau moderner Systeme ist dies jedoch bei weitem
keine einfache Aufgabe. Eine Schlüsseltechnologie, um die Effizienz von
Entwicklungsprozessen für eingebettete Systeme zu steigern, ist Wie-
derverwendung. Konzepte wie plattformbasierter Entwurf sowie Stan-
dardisierungsinitiativen auf der Softwareebene (z.B. die AUTOSAR Ini-
tiative im Automobilsektor) erlauben es, ganze Produktfamilien und
Varianten basierend auf den gleichen Komponenten und Subsystemen
zu realisieren. Nichtsdestotrotz, während durch Wiederverwendung die
Entwicklungseffizienz auf funktionaler Ebene gesteigert wird, bleibt eine
weitere zentrale Herausforderung, welches durch Systemkomplexität und
Subsystemintegration bedingt ist, bestehen: die Kontrolle nichtfunk-
tionaler Eigenschaften wie z.B. Timing, Energieverbrauch oder Verläss-
lichkeit.

Die Vorteile nichtfunktionale Eigenschaften bereits früh im Entwurfs-
prozess zu kontrollieren sind klar. Erstens hilft es dem Entwickler die
richtigen Entwurfsentscheidungen zu treffen, bevor er in die Implemen-
tierungsphase übergeht, wodurch das Entwurfsrisiko sowie Kosten ge-
senkt werden. Zweitens unterstützt es den Entwickler, Systeme mit Per-
formancereserven für Erweiterungen, Updates und Bug-fixes auszule-
gen. Dies zu erreichen ist allerdings nicht trivial, da Systemperfor-
mance sehr sensitiv bzgl. Spezifikationsänderungen ist. Bereits kleine
Änderungen an Systemeigenschaften wie z.B. Ausführungszeiten, Kom-
munikationsvolumina, Datenraten, etc., können schwerwiegenden Ein-
fluss auf die Systemperformance haben. Aus diesem Grund ist es er-
strebenswert, dass das System eine gewisse Art von “Robustheit” ge-
genüber solchen Änderungen aufweist.

Ein vielversprechender Ausgangspunkt, um diesen Herausforderungen
zu begegnen, sind formale Ansätze zur Performanceverifikation, welche
basierend auf abstrakten Modellen der Applikation und der Ausführungs-
plattform in der Lage sind, die benötigten Performancedaten eines einge-
betteten Systems akkurat zu bestimmen. Bis zum heutigen Tag wurden
diese Methoden jedoch hauptsächlich zur Charakterisierung und Lösung
isolierter Performanceproblematiken, wie z.B. Timinganalyse einzelner

vi KURZFASSUNG

ECUs, Flaschenhalserkennung, Buskonfiguration, etc. , eingesetzt. Ein
durchgängiger und systematischer Ansatz zur Kontrolle und Optimierung
nichtfunktionale Systemeigenschaften fehlt immer noch.

Diese Dissertation führt mehrere Techniken ein, die es erlauben, nicht-
funktionale Systemeigenschaften im Entwurfsprozess und während der
gesamten Lebenszeit eines Systems zu kontrollieren und zu optimieren.

Der erste Beitrag ist ein flexibles Explorationsframework, welches
die iterative Natur von Performanceverifikation in modernen neben-
läufigen Entwicklungsprozessen berücksichtigt. Das vorgeschlagene
Framework erlaubt es, partielle Explorationsläufe durchzuführen und
bietet die Möglichkeit den Suchraum dynamisch zu erweitern oder
einzuschränken, ohne bereits erhaltene Ergebnisse zu verlieren. Es
kann daher iterativ eingesetzt werden, um sukzessiv ein gegebenes
System unter Berücksichtigung von Datenverfügbarkeit und Verant-
wortlichkeiten entlang der Zulieferkette zu explorieren.

Der zweite Beitrag ist die Definition von ausdrucksvollen Robust-
heitsmetriken für unterschiedliche Annahmen und Entwurfsszenar-
ien. Die vorgeschlagenen Metriken basieren auf Sensitivitätsanalyse,
wobei insbesondere Metriken für Systemeigenschaften mit und ohne
Abhängigkeiten bzgl. Systemperformance unterschieden werden.

Die Robustheitsmetriken für den letzteren Fall sind dabei besonders
rechenintensiv, da multi-dimensionale Sensitivitätsanalyse notwendig
ist, um die gegenseitigen Abhängigkeiten zwischen den betrachteten
Systemeigenschaften zu erfassen. Um dieses Komplexitätsproblem zu
umgehen, wird eine skalierbare stochastische Sensitivitätsanalyse ent-
wickelt, welche in der Lage ist, Robustheitscharakteristiken effizient
zu approximieren, indem sie Sensitivitätsanalyse als multi-kriterielles
Optimierungsproblem umformuliert. Dies stellt den dritten Beitrag
dieser Dissertation dar.

Der vierte Beitrag dieser Dissertation zeigt wie die stochastische Sen-
sitivitätsanalyse eingesetzt werden kann, um die vorgeschlagenen Ro-
bustheitsmetriken effizient mit oberen und unteren Robustheitsschrank-
en zu approximieren. Des Weiteren, werden Methoden entwickelt,
welche diese Schranken einsetzen, um die Exploration der Robust-
heitsmetriken signifikant zu beschleunigen.

Es ist bekannt, dass moderne Ansätze zur Performanceanalyse bereits
für kleine Systeme beachtliche Unterschiede bzgl. Analysegenauigkeit
aufweisen können. Aus diesem Grund hängt die Aussagekraft der in
dieser Dissertation präsentierten Methoden stark von der Wahl der
geeigneten Abstraktion, d.h. Analysemethode, für das jeweilige be-
trachtete System ab. Der letzte Beitrag dieser Dissertation beschäftigt

vii

sich daher mit der Problematik, akkurate und aussagekräftige Per-
formancevorhersagen für beliebige eingebettete Systeme zu liefern.
Anstatt nach einem einheitlichen, komplexeren Analysemodell zu su-
chen, wird vorgeschlagen die sogenannte kompositionelle Performance-
analysemethodik auszunutzen, um modulare Performanceanalysetech-
niken zu koppeln. Auf diese Weise können die Vorteile der einzelnen
Berechnungsmodelle leicht zu einer domänenübergreifenden Analyse
kombiniert werden, welche es erlaubt, jede Systemkomponente mit
der jeweils besten Methode zu modellieren und zu analysieren.

Danksagung

An dieser Stelle möchte ich mich herzlich bei meinem Mentor Prof.
Dr. Rolf Ernst bedanken. Er leitete mich mit zahlreichen aufschlussreich-
en Diskussionen, in die er seine umfangreichen Kenntnisse, seine große
Erfahrung sowie sein sicheres Gespür für geeignete und praxisrelevante
Forschungsrichtungen einbrachte, sicher durch meine Promotion.

Weiterer Dank gebührt Herrn Prof. Dr. Lothar Thiele, mit dessen
Team an der ETH Zürich sich während meiner Promotion interessante
Forschungskooperationen ergeben haben, die zu dieser Arbeit beigetra-
gen haben, und der sich bereit erklärt hat den Part des Korreferenten
zu übernehmen. Vielen Dank auch an Herrn Prof. Dr. Lars Wolf für die
Leitung meiner Promotionskommission.

Insgesamt habe ich die Arbeit im SymTA/S Projekt am IDA sehr
genossen, was daran lag, dass ich mit vielen sehr netten und talentierten
Leuten zusammenarbeiten durfte. Das IDA stellte damit, nicht nur für
die fachliche Arbeit, sondern auch für zahlreiche gemeinsame Freizeitak-
tivitäten, ein perfektes Umfeld dar. Insbesondere ist da natürlich mein
Bürokollege und DFG Projektmitstreiter Razvan Racu zu nennen. Nicht
minder zu erwähnen sind jedoch auch Rafik Henia, Simon Schliecker,
Sean Whitty, Steffen Stein, Kai Richter, Marek Jersak, Matthias Ivers,
Henning Sahlbach, Jörn Braam, Judita Kruse, Sven Heithecker, Amilcar
Lucas, Jonas Diemer, Jonas Rox und Maurice Sebastian. Vielen Dank
für die schönen Jahre am IDA.

Großer Dank geht auch an meine Frau Cécile. Sie hat sich mit viel
Liebe und Hingabe um unsere kleine Familie gekümmert und mir damit
den Freiraum gegeben, der für die Verfassung dieser Arbeit nötig war.
Diese Arbeit ist daher zu einem großen Teil auch ihr Verdienst.

Besonderer Dank gilt meinen Eltern, Angelika und Wolfgang, die
mich während des gesamten Studiums in allen erdenklichen Weisen un-
terstützt haben, und die immer für mich da waren als ich sie brauchte.
Bessere Eltern kann man sich nicht wünschen.

Zu guter Letzt möchte ich noch meinen Schwiegereltern Jacques und
Jacqueline Barrère sowie Jeanne Peyresaubes danken, die mir in Süd-
frankreich immer einen ruhiges und angenehmes Arbeitsumfeld mit ent-
sprechend guter Verpflegung zur Verfügung gestellt haben, in dem auch
ein großer Teil dieser Arbeit verfasst wurde.

Contents

1 INTRODUCTION 1
1.1 Design flow today 2

1.1.1 Basic concepts 2
1.1.2 The Y-model 4
1.1.3 The V-model 4

1.2 Increasing design efficiency through reuse and modularity 6
1.3 Motivation 8
1.4 Contributions 11
1.5 Overview 13

2 PERFORMANCE MODEL FOR EXPLORATION AND
ROBUSTNESS OPTIMIZATION 15
2.1 Formal methods for performance verification 15
2.2 State-of-the-art system performance model 17

2.2.1 System parameters 18
2.2.2 System performance properties 19
2.2.3 Performance metrics and constraints 22

2.3 Example system 23
2.4 Design Space Exploration 23

2.4.1 Exploration methods 25
2.4.2 Requirements for design space exploration 28
2.4.3 Application scenario for iterative design

space exploration 30
2.5 Design Robustness 32

2.5.1 Effects of system property variations 33
2.5.2 Evaluating design robustness 36

xii Contents

2.5.3 Use cases for design robustness 38
2.5.4 Design scenarios and assumption for robustness

evaluation and optimization 39

3 ITERATIVE DESIGN SPACE EXPLORATION
FRAMEWORK 43
3.1 Multi-objective evolutionary algorithms 44
3.2 Compositional search space encoding 46
3.3 Component interaction optimization 49

3.3.1 Traffic shaping with d−-EAFs 50
3.3.2 Example 52

3.4 Design space exploration loop 55
3.5 User-controlled design space exploration 57
3.6 Chromosomes for timing and performance exploration 60

3.6.1 Priority chromosome 61
3.6.2 TDMA chromosome 63
3.6.3 Traffic shaping chromosome 69

3.7 Optimization objectives for timing and
performance exploration 71
3.7.1 Example metrics 71
3.7.2 Partitioning of the fitness landscape 73

3.8 Case study 74
3.8.1 Multi-processor platform example 74
3.8.2 Exploring the example system 76

3.9 Extension for automated search space modification 79
3.9.1 Integration into the exploration framework 80
3.9.2 Concept 81

3.10 Automated search space modification for
priority chromosomes 82
3.10.1 Analyzer 82
3.10.2 Decision maker 84
3.10.3 Narrow curves 86
3.10.4 Evaluation 88

4 DESIGN ROBUSTNESS OPTIMIZATION 93
4.1 Preliminaries 95

4.1.1 Sensitivity analysis 95
4.1.2 Hypervolume 102

4.2 Robustness metrics 105

Contents xiii

4.2.1 Independent system properties 108
4.2.2 Dependent system properties 110
4.2.3 Robustness gain through reconfigurability 114

4.3 Stochastic multi-dimensional sensitivity analysis 116
4.3.1 Analysis idea 116
4.3.2 Search space encoding 117
4.3.3 Initial population 118
4.3.4 Bounding the search space 119
4.3.5 Crossover operators 122
4.3.6 Mutation operators 125
4.3.7 Limiting the search resolution 133
4.3.8 Approximation quality and convergence behavior 134

4.4 Exploring robustness 144
4.4.1 Independent system properties 144
4.4.2 Dependent system properties 144

4.5 Case study 156
4.5.1 Two-dimensional robustness optimization 156
4.5.2 Three-dimensional robustness optimization 163

5 COMBINED PERFORMANCE ANALYSIS OF EMBEDDED
SYSTEMS 171
5.1 Compositional performance analysis 172

5.1.1 Local component analysis 173
5.1.2 Compositional system level analysis loop 174
5.1.3 Starting point generation 175

5.2 Symbolic Timing Analysis for Systems SymTA/S 175
5.2.1 Composition using standard event models 176
5.2.2 Output event model calculation 176

5.3 Modular Performance Analysis MPA 177
5.3.1 Arrival curves 177
5.3.2 Service curves 178
5.3.3 System level performance analysis 178
5.3.4 Computational efficiency 180

5.4 Coupling SymTA/S and MPA 180
5.4.1 Event model conversion 181
5.4.2 Starting point generation 185

5.5 Experiments 186
5.5.1 Path latency analysis 187

xiv Contents

6 CONCLUSIONS 191

List of Figures 195
List of Tables 200

Bibliography 201

Chapter 1

INTRODUCTION

An embedded system is a micro computer system that is embedded
into another technical device that itself does not appear as a computer.
Embedded systems can be found everywhere. Examples are telecom-
munication devices, consumer electronics, automotive systems, building
technology, etc. Embedded systems have a very high influence on the
system industry. Nowadays, modern products cannot be realized in a
competitive manner without embedded micro computer systems.

Embedded systems have to fulfill a large variety of requirements to
be fully functional and accepted. One important requirement that is
imposed on embedded systems is dependability. Dependability is im-
portant since embedded systems are often safety-critical. Examples are
aircrafts, cars, and trains. The notion of dependability covers several im-
portant aspects reaching from reliability and availability to safety and
security.

Another important requirement is efficiency. There are many differ-
ent metrics for efficiency that are applied to embedded systems. One
important metric, that is often also related to dependability, is run-time
efficiency. For instance, the environment may impose certain timing
constraints on the system, meaning that the system must not only pro-
duce correct results, but in addition must deliver these timely. In this
case we speak about an embedded real-time system. In this thesis we
focus on complex embedded systems that are subject to such real-time
constraints. However, there are a large variety of additional efficiency
metrics that are important, including energy consumption, code-size,
weight, cost, etc.

Today, many embedded system applications are implemented using
distributed architectures, consisting of several hardware nodes intercon-

2 Introduction

nected in a network. Thereby, each hardware node consists of a proces-
sor, memory, interfaces to I/O and to the network. The networks are ar-
bitrated by specialized communication protocols that depend on the ap-
plication area. For example, in the automotive electronics area commu-
nication protocols such as CAN [15, 1], Flex Ray [33], and TTP [120, 60]
are common.

1.1 Design flow today
In this section we give a short overview of modern design flows for

embedded systems. This overview is not meant to be exhaustive. It
rather introduces the basic concepts and imposed requirements, which
are then discussed using two popular example design flows: the Y-model
known from hardware-software co-design, and the V-model utilized in
the automotive industry. Based on these two design flows we will later
motivate the techniques and contributions presented in this thesis.

1.1.1 Basic concepts
A coarse-grain overview of the embedded design flow is shown in Fig-

ure 1.1 (compare e.g. [26]).

Fig. 1.1: Embedded Systems Design Flow - Coarse-grain overview

First of all the functionality that shall be realized by an embedded
system must be specified. This is generally done using different spec-
ification languages with specialized models of computation. Examples
are state charts [44], the ESTEREL programming language [9], data
flow process networks [66], etc. Thereby, the choice of the utilized spec-
ification language very much depends on the type of application that
shall be realized. State charts, for instance, are well suited for design-

Design flow today 3

ing reactive applications (e.g. safety in the car: ABS, airbag, etc.),
whereas data flow process networks best fit transformative applications
(e.g. video processing, digital signal processing, etc.). However, usually
not all needed components are designed from scratch. Some components
may be re-used from previous designs (legacy code), or are purchased as
intellectual property (IP) from external suppliers.

Often the developed specifications represent executable models of the
desired system functionality. These so-called executable specifications
enable the designer to perform early system optimization and design
space exploration. For instance, data flow process networks are well
suited to optimize buffer requirements and throughput of filtering appli-
cations. Generally, design space explorations based on such executable
specifications help the designer to choose between functional alterna-
tives, perform hardware-software partitioning, take scheduling decisions,
etc.

The specification phase is usually performed without explicit consid-
eration of the target architecture. This is attractive, since it allows the
designer to focus on functional correctness ignoring the verification of
the concrete implementation. However, once the executable specifica-
tions satisfy functional requirements, the focus shifts to target archi-
tecture design and implementation. Often parts of the architecture are
fixed. Reasons include the need to utilize standard components (proces-
sor, memory, bus, RTOS, etc.), and maximum cost and size constraints
per unit. During the implementation phase the main challenge is to
ensure functional correctness, while successfully integrating all compo-
nents onto the target architecture under the constraints imposed by the
limited service capacity of the available resources.

At the current state-of-the-art, none of the above mentioned design
steps can be guaranteed to be correct. Therefore, usually a test-bench
is developed in parallel to validate the correctness of the intermediate
or final design representations and implementations. Typically, various
properties need to be validated to ensure the correctness of the developed
system, including performance, dependability, energy consumption, etc.

In case the designers encounter difficulties during implementation,
i.e. for instance non-compliance of the resulting system with required
performance properties, they need to get back to the exploration or
specification phase to find better alternative implementations. In the
worst-case parts of the functionalities need to be re-designed, or the
target architecture must be modified.

4 Introduction

1.1.2 The Y-model
As a popular representative of an iterative design flow with successive

refinements we now shortly discuss the Y-model known from hardware-
software co-design [30]. A simplified version of the Y-model is shown in
Figure 1.2.

Fig. 1.2: Y-model known from HW/SW co-design

As in the generic embedded system design flow discussed above, the
first step in the Y-model design flow consists in specifying platform-
independent models for the intended functionality. Based on these mod-
els, object code is compiled and mapped on the target architecture. The
resulting intermediate implementation is then tested and evaluated with
respect to timing, power consumption, cost, etc., using simulation and
analysis. Based on these metrics the designer decides about architecture
and/or code adaptations. This process is iteratively repeated until a
satisfactory design is found. Obviously, to evaluate a large number of
different architectures, and thus to potentially obtain a better final im-
plementation, it is desirable to achieve short turn-around times for one
iteration.

The risk that is linked to the design flow according to the Y-model is
relatively small, since the designer can react in each iteration to perfor-
mance problems and solve them.

1.1.3 The V-model
The Y-model defines a very efficient design flow for hardware-software

co-design. However, to be fully applicable an important prerequisite is
that one design team controls most of the design parameters. Therefore,
it only partly fits design tasks with shared responsibilities requiring sub-
system integration. This is, for instance, an important issue in the auto-
motive industry. Different sub-systems are independently developed and

Design flow today 5

delivered by multiple external suppliers, and the OEM1 has to integrate
these into the car under a huge amount of constraints, including perfor-
mance, safety, reliability, and consumer demands. In order to overcome
this huge integration problem the so-called V-model [75] is used in the
automotive industry. Figure 1.3 shows a basic version.

Fig. 1.3: V-model utilized in the automotive industry [75]

The V-model is based on the traditional top-down system engineer-
ing approach. First, the requirements imposed on the overall system
are specified. Based on these requirements the OEM performs system
design. This consists in the definition of the overall structure of the
system functionalities and their interactions. Afterwards, the system is
partitioned into several components, which are independently designed
and tested by external suppliers according to given specifications. Once
component design is finished the OEM’s task is to integrate the deliv-
ered components into the final system, which mainly consists of network
integration and a large amount of testing.

However, besides this idealized design flow an automotive system is
usually not developed from scratch. In most cases an existing board
net is taken as baseline for development. In other words, by reusing
existing components time, work, and money can be saved. The V-model
is, therefore, often supplemented by bottom-up methods. This does not
compromise the V-model, since design has still to go through all the
stages.

The basic V-model shown in Figure 1.3 also contains iterative refine-
ments. However, these iteration are performed relatively late on proto-

1Original Equipment Manufacturer

6 Introduction

types or real implementations. Consequently, iterative refinements are
far more time intensive compared to the Y-model, and thus very ex-
pensive. Complex OEM-supplier dependencies additionally complicate
design iterations.

In order to circumvent this problem the V-model was extended by the
concept of virtual design (compare e.g. [34] and [104]). Figure 1.4 shows
the extended V-model.

Fig. 1.4: V -model extended with the concept of virtual design [34, 104]

The extended V-model differs from the basic V-model in that it con-
tains a second (smaller) V that is used to iteratively refine a virtual
system model. Design iterations based on such abstract virtual models
are usually far less time consuming and allow, therefore, to efficiently
explore the design space. This is of great help for the system architect to
choose an optimal system architecture (i.e. topology, number of nodes,
number of buses, etc.) as well as an efficient function mapping.

1.2 Increasing design efficiency through reuse
and modularity

In the development process of complex distributed embedded systems,
reuse is recognized as key factor to meet growing productivity demands
and cost pressure. In the ideal case whole product families and variants
are based on the same set of reusable components allowing the designers
to concentrate on basic differences between the products.

One important trend to achieve a high level of reusability is the so-
called platform-based design. Nowadays, embedded system architectures
are usually not designed from scratch. Instead so-called platforms are

Increasing design efficiency through reuse and modularity 7

used. Platforms are programmable MpSoCs (multi processor system-on-
chip) consisting of (multiple) cores, co-processors, specialized hardware
components, buses, bridges, interfaces, etc. Platforms are often tailored
for specific application domains. Examples are the Nexperia platform
for multimedia and mobile digital audio applications from NXP [78], or
the Tricore TC1796 platform from Infineon [110] used in the automotive
domain (Figure 1.5).

Fig. 1.5: Block diagram of the Infineon Tricore TC1796 micro-controller
for automotive applications [110]

The platform-based design style is a so-called meet-in-the-middle ap-
proach. It combines the power of top-down methods with the efficiency
of bottom-up styles [101]. Platform-based design can drastically reduce
time to market while decreasing development and production costs [19].
ST Microelectronics estimates that each platform can lead to four or five
products per year and, frequently, ten or more products over the lifetime
of the platform [19].

In parallel there exist also efforts to standardize important system
functionalities to ensure modularity, maintainability, reusability, scala-
bility, and transferability on the software level. The Artist roadmap [14]
identifies software as one key factor to successfully integrate compo-
nents and sub-systems into complete systems. Classical middleware ap-
proaches such as CORBA [21] and COM/DCOM [20] are good examples
for successful approaches to software modularization. Another promi-
nent example known from the automotive industry is the AUTOSAR
initiative [5]. The core idea of AUTOSAR is the definition of a run-time
environment (RTE) executing so-called software components that com-

8 Introduction

municate over a Virtual Function Bus (VFB). According to this concept,
two functionalities can exchange data without knowing the exact com-
munication path by using abstract communication ports of the RTE.
Consequently, software can be developed independently of the real ECU
topology in the car. The communication paths are defined relatively
late in the design process. Obviously, such middleware concepts facili-
tate software portability and reusability.

1.3 Motivation
The platform-based design style and the standardization efforts on

the software level help to increase design efficiency at the functional
level. Example scenarios include the integration of several functionalities
from different suppliers on the same node, or the distribution of (safety-
critical) functionalities over several nodes. However, these concepts do
not solve another key embedded systems challenge: the control of per-
formance and other non-functional constraints, such as timing, power
consumption, or dependability during the design process and over the
service life of the product.

For instance, several components are often dependent on each other,
and their integration can lead to complex and hard to predict perfor-
mance degradation effects, which increase the design risk since they are
often discovered late during the integration phase. In automotive sys-
tems, for example, the active front steering (AFS) interacts with other
functionalities like the active roll stabilization (ARS). Also, not every
functionality has its own sensors, data like individual wheel speeds are
broadcasted over the bus and shared by many functionalities.

It is desirable to control the impact of sub-system integration on non-
functional system properties, both during the design flow and during
the lifetime of the product. The benefits are clear. The control of non-
functional properties helps the system architect, on the one hand, to
take the right design decisions before proceeding to implementation, and
thus to decrease the design risk. On the other hand, it also assists the
designer in conceiving systems with performance head-room for reuse,
future extensions, updates, and bug-fixes. However, in modern design
flows conformance to non-functional requirements is difficult to ensure,
which is mainly due to the increasing size and complexity of modern
systems, and the concurrent design [65] between OEM and suppliers
involving dozens of parallel activities that need to be coordinated. As a
consequence performance verification is still a major issue during design.

One possible approach to simplify sub-system integration is the so-
called conservative design. Its principle consists in eliminating all cou-
pling effects by strictly separating functionally independent sub-systems

Motivation 9

spatially and timely. The separation is achieved by assigning fixed mem-
ory spaces as well as static shares of communication and computational
resources to each sub-system. Obviously, this strategy eliminates all
complex timing effects and solves the integration problem. However, the
resulting systems are not very efficient in terms of resource utilization
and, thus, system efficiency and cost, since the statically assigned re-
sources are not released for other functionalities in case of disuse. While
this might be acceptable for highly safety critical systems, like for in-
stance in avionics, such over-design is not an alternative in most other
industrial sectors, including consumer electronics or automotive systems.

A promising starting point to overcome integration challenges while
ensuring system efficiency are state-of-the-art performance analysis method-
ologies that have been proposed in the last decade [79, 77, 115, 84, 43,
113, 50, 46]. The different approaches operate at different levels of ab-
straction and allow a step-wise refinement of the utilized application and
execution platform models. Figure 1.6 shows how performance verifica-
tion can be applied along the V-model.

Fig. 1.6: Performance verification along the V-model

During the specification phase system performance is characterized
based on data estimates. Even though this information might be coarse-
grain and partly incomplete at the beginning, it can be utilized to derive
first performance approximations helping the system architect to take ar-
chitectural or mapping decisions (e.g. number of ECUs, bus bandwidth,
etc.). Later, during component design and integration, these estimations
can be refined step-by-step to obtain more accurate performance data.

Since the mentioned methods are based on rather abstract perfor-
mance models and are able to analyze even large systems in a short

10 Introduction

time, they are perfectly suited for design space exploration. Design
space exploration on top of these methods represents a valuable tool for
the system architect to take good design decisions and systematically
control system performance throughout the whole design process.

However, even though formal performance analysis methods are ca-
pable of deriving accurate performance data and are perfectly suited for
design space exploration, their integration into real-world design flows is
rather difficult. As a consequence, formal techniques have been mainly
(successfully) applied to characterize and solve isolated performance is-
sues like, for instance, timing analysis of single ECUs [97], bus bottleneck
detection [98], or bus configuration [16]. A systematic and continuous
performance verification flow spanning the whole design process allowing
to control and optimize system performance is not trivial to accomplish.
There are several reasons for this.

The first reason is that system performance is not composable in the
general case. In other words, the system integrator (OEM) cannot auto-
matically conclude that the integrated system satisfies its performance
constraints from the fact that all supplied components are compliant to
their specifications. The reason are complex performance dependencies
that can often only be discovered during integration. One possibility to
overcome this problem is to continuously verify and control performance
during the design process across all involved design teams. However,
in real-world design flows with OEM-supplier dependencies the required
information exchange is problematic due to IP (intellectual property)
protection issues. In fact, each of the involved design teams controls
different parts of the system and is reluctant to share realization details.

There exist first approaches to solve this problem. The authors of [98],
for instance, propose that each involved design team individually per-
forms component-level analysis and communicates relevant results to
functionally dependent system parts along the supply chain. By itera-
tively repeating such local analysis steps, OEM-supplier spanning timing
analysis can be realized. Note that the performance data that needs to
be exchanged mainly describes the dynamic communication behavior of
the involved components (e.g. message jitters and frame offsets), and
represents uncritical information with respect to IP protection. How-
ever, to fully exploit the benefits of formal methods in the context of
concurrent design flows, such practical solution approaches for perfor-
mance verification must be complemented with a flexible design space
exploration framework of similar structure that supports iterative par-
tial exploration steps at component level. The introduction of such an
exploration framework is one of the aims of this thesis.

Contributions 11

Nevertheless, even with systematic and continuous performance ver-
ification and exploration flows at hand there is a second problem that
complicates performance control during design and in the field: the sensi-
tivity of system performance to modifications of specified system proper-
ties, such as execution times, communication volumes, data rates, CPU
clock rates, etc. It is, for instance, known that minor local execution
time or data rate changes can have drastic impact on performance met-
rics, such as task response times, buffer sizes, end-to-end latencies, at
system level [42, 121]. During design property modifications might occur
due to changes or refinements of the specification, software components,
or target architecture. During the system’s service life similar effects
might occur as a result of software updates, bug-fixes, changes in the
environment, or the integration of new components. In order to prevent
performance degradation effects it is desirable that the system exhibits
robustness against such property modifications. Obviously, this kind of
robustness can considerably reduce the risk during design, and facilitate
maintainability as well as extensibility in the field.

The impact of property modifications on system performance can be
characterized with sensitivity analysis [122, 88, 90]. Sensitivity analy-
sis is, therefore, a good starting point for methods increasing system
robustness. However, in order to systematically optimize and control
system robustness, it must be considered as explicit design goal. The in-
troduction of efficient robustness optimization methods is another main
objective of this thesis.

1.4 Contributions
In this section we give a brief overview of the major contributions

of this thesis. Figure 1.7 shows the proposed modules for design space
exploration and robustness optimization and their interdependencies.
The proposed modules are highlighted in black, whereas modules that
we build upon are highlighted in white.

Design Space Exploration Framework. The first contribution of
this thesis is a flexible exploration framework that takes into account
the iterative nature of performance verification during modern parallel
design flows. The proposed framework allows performing partial explo-
rations and provides the possibility to dynamically extend and restrict
the search space without loosing previously obtained results. It can,
therefore, be iteratively applied to successively explore given systems
taking into account data availability and responsibilities along the sup-
ply chain. This flexibility ensures that design space exploration can be
systematically performed along the whole design flow. Thereby, the in-

12 Introduction

Fig. 1.7: Overview: Proposed Design Space Exploration and Robustness
Optimization Framework

volved design team can refocus exploration on the available search space
at any design stage. For instance, during specification nearly all system
parameters are free and can still be modified, including the applica-
tion mapping. Later, parts of the mapping might be fixed or priorities
of messages and frames that are exchanged over the bus are partially
assigned. Note that incremental design space exploration is also very
efficient in terms of performance. In case of search space modifications,
exploration does not need to start from the beginning. Good results
from previous runs can be used as (heuristic) starting point to achieve
quicker convergence towards the solution space.

Robustness Metrics. Apart from its application to performance and
timing optimization in modern parallel design flows, the proposed design
space exploration framework is also used to realize efficient robustness
optimization methods, the second contribution of this thesis.

Expressive robustness metrics for different assumptions and design
scenarios are defined. The proposed metrics are based on sensitivity
analysis. Thereby, robustness metrics for system properties with and
without performance dependencies are distinguished. In the case of
independent properties, the value of one property does not have any
influence on the admissible values of other properties. In the case of
dependent properties, the modification of one property value leads to
restrictions for dependent properties, i.e. their flexibility with respect to
modifications decreases.

Stochastic Sensitivity Analysis. Especially the robustness met-
rics for the dependent case are computationally expensive, since multi-
dimensional sensitivity analysis is necessary to capture interdependen-
cies between involved properties. In order to circumvent this complexity

Overview 13

problem, a scalable stochastic sensitivity analysis approach is developed
that is capable of efficiently approximating robustness characteristics by
formulating sensitivity analysis as multi-criterion optimization problem.
This represents the third contribution of this thesis.

Approximation of the Robustness Metrics and Robustness Op-
timization. As the fourth contribution of this thesis, it is shown how
the stochastic sensitivity analysis can be used to efficiently approxi-
mate the proposed robustness metrics with upper and lower robustness
bounds. Furthermore, methods are developed that utilize the derived
bounds to significantly speed up robustness optimization by quickly iden-
tifying promising system parameter configurations, whose in-depth ro-
bustness evaluation can be performed subsequently to the optimization
process.

Combined Performance Analysis. The design space exploration
framework and robustness optimization techniques presented in this the-
sis are orthogonal with respect to the underlying performance analysis
engine. However, in [83] several state-of-the-art performance analysis ap-
proaches were compared, and it was pointed out, that already for small
systems the results yielded by the different approaches exhibit remark-
able differences in terms of accuracy. As a consequence, it can be stated
that the expressiveness of the techniques proposed in this thesis highly
depends on the choice of the right abstraction, i.e. analysis engine, for
the considered system.

In the last part of this thesis we, therefore, want to contribute in solv-
ing the problem of providing accurate and expressive performance pre-
dictions for general distributed real-time systems. Rather than search-
ing for a unified more complex analysis model, we propose to exploit the
properties of the so-called compositional performance analysis method-
ology to couple modular performance analysis techniques. In so doing,
the advantages offered by the individual models of computation can eas-
ily be integrated into a cross-domain analysis that allows modeling and
analyzing each system component with the best fitting method.

1.5 Overview
This thesis is structured as follows:

Chapter 2 gives an overview of formal methods for performance
and timing verification. We introduce a state-of-the-art performance
model that is used by modern performance analysis methodologies.
Based on this performance model, we discuss in detail main require-

14 Introduction

ments for an efficient iterative design space exploration framework
and system robustness optimization techniques, the two main contri-
butions of this thesis.

Chapter 3 introduces the basic concepts of the proposed design
space exploration framework. This includes the compositional search
space encoding scheme, the integration of systematic techniques for
component interaction optimization, the exploration loop adaptively
controlling the search process, and the user-controlled exploration
methodology. Furthermore, we discuss realization details for the ap-
plication of the framework to timing and performance optimization.
Note that the framework is additionally used to cover stochastic sen-
sitivity analysis and robustness optimization (Chapter 4). Finally, we
present a heuristic extension for automated search space modification,
and show its application to the optimization of priority assignments
on priority scheduled system components.

Chapter 4 discusses robustness optimization techniques. We intro-
duce robustness metrics for different application scenarios and as-
sumptions, and show how these can be efficiently integrated into
design space exploration. In particular, we discuss how the more
complex robustness metrics can be approximated using a scalable
stochastic sensitivity analysis.

Chapter 5 describes the compositional performance analysis method-
ology. We shortly present the performance analysis tools SymTA/S
and MPA that are based on this methodology, and discuss how both
approaches can be coupled by exploiting their common formal basis.
By means of a complicated example we demonstrate the seamless
analysis interaction and accuracy benefits over using the individual
tools alone.

Chapter 6 concludes this thesis by summarizing the contributions.

Chapter 2

PERFORMANCE MODEL FOR
EXPLORATION AND ROBUSTNESS
OPTIMIZATION

In this chapter we discuss the application of formal methods during
the design of complex embedded systems. In particular, we introduce
a state-of-the-art performance model that is used by modern formal
performance analysis methodologies. Examples for performance metrics
that can be determined by such methods include CPU and network
loads, task and message latencies, and memory consumption.

Based on the introduced model we discuss the main requirements
for design space exploration and robustness optimization, the two main
topics that we address in this thesis. Note that the technical realization
details are discussed in the subsequent chapters.

2.1 Formal methods for performance verification
State of practice in performance verification is cycle-true simulation of

functions and target architecture, as well as test using prototype hard-
ware. However, with increasing system complexity these approaches are
more and more challenged in delivering reliable performance informa-
tion, since the identification and coverage of performance corner-cases
in the test-bench is unrealistic for sufficiently large distributed systems.
One of the main reason is that system-level corner cases cannot be easily
derived or constructed from component corner-cases. This is mainly due
to transient run-time effects with hard to predict anomalous behavior
of the target architecture. Another drawback of these standard meth-
ods is that they cannot be used for early design space exploration, since
they are very time consuming and need executable code, which is only
available at late design stages. Consequently, alternative methods are
needed if we want to systematically control system performance along
the design flow.

16 Performance model for exploration and robustness optimization

A promising alternative is formal performance verification. The con-
cept of virtual design discussed in Section 1.1.3 is the first step to intro-
duce and utilize formal methods during embedded systems design. Short
iterations on virtual system models allow to perform early design space
exploration and can, therefore, help to prevent or solve performance
problems. However, methods that have found their way into industrial
practice are still rather simplistic and not systematic enough to really
control and optimize system performance across the entire design flow
and in the field.

In the automotive industry, for instance, one popular analytical mod-
els that is used for bus dimensioning is the so-called bus load model.
The model consists in calculating the average network load, also called
utilization, by multiplying the frequency of each frame with its length
(including protocol overhead), building the sum over all frames, and di-
viding the result by the network throughput. The OEM can extract
the necessary information from the so-called K-matrix (communication
matrix) that summarizes all relevant information and communication
dependencies in the board network of a car. In order to ensure pre-
dictability the OEM then defines a maximum bus utilization limit that
must not be exceeded. Clearly, low bus utilization means (on average)
less traffic on the bus and, consequently, also (on average) shorter trans-
mission times. The other way around, increasing the average load re-
sults in better resource utilization and is, therefore, interesting in terms
of cost efficiency. For this reason, the maximum bus utilization limit
varies among the OEMs between 30% and more than 60%1. However,
the bus load model should be used carefully, since even at low utiliza-
tions it cannot be theoretically proven that all deadlines are met or that
no buffer overflows.

A more systematic approach to communication verification and bus
dimensioning that has found its way into industrial practice is based on
formal scheduling analysis methods from the real-time community. Tin-
dell et al., for instance, showed how classical research into fixed priority
pre-emptive scheduling could be adapted for scheduling messages on the
CAN bus [119, 118]. Even though it is now known that the original CAN
analysis from Tindell is flawed and may yield optimistic worst-case re-
sponse times for some messages [22], the proposed techniques were suc-
cessfully used in the configuration and analysis of the CAN buses for
the Volvo S80 [16], and led to the development of a commercial tool by
Volcano Communications Technologies [76].

1According to personal communication.

State-of-the-art system performance model 17

However, with the advent of more sophisticated embedded systems
containing complex bridged networks, local analysis techniques that only
look at single buses or processors are not sufficient anymore. In order to
adequately verify and control system performance, methods that system-
atically discover system-level corner-cases and anomalous behavior of the
target platform are needed. In the last decade several promising analy-
sis methodologies capable of analyzing entire complex embedded systems
were proposed. Examples include so-called holistic approaches [115, 43,
84] tailored for specific system architectures and application models, and
flexible compositional approaches such as SymTA/S [50, 87] and Real-
Time Calculus (RTC) [17, 126].

In the next section the performance model that is used by these
system-level analysis methodologies is introduced. This model repre-
sents an adequate abstraction to address performance problems and will
be used as basis of the methods proposed in this thesis. Note that since
all proposed methods are orthogonal with respect to the underlying per-
formance analysis engine, it is assumed that a black-box analysis engine
is available delivering the necessary performance data based on the in-
troduced performance model. Nevertheless, in Chapter 5 the coupling
of SymTA/S and RTC is discussed. In this context the basic formal
concepts of these approaches will be explained.

2.2 State-of-the-art system performance model

An embedded system consists of hardware and software components
interacting with each other to realize a set of functionalities. For per-
formance verification purposes embedded systems can be modeled with
a high level of abstraction. The smallest unit modeling performance
characteristics of software components is called task. Equivalently, mes-
sages that are sent by tasks over some communication infrastructure are
modeled by so-called communication channels. The hardware platform
is modeled by computational and communication resources. Tasks are
mapped on computational resources in order to execute, whereas com-
munication channels are associated to communication resources for mes-
sage transmission. For the sake of brevity, we refer to computation and
communication resources in the following as CPU and bus, respectively.

Usually, multiple tasks or communication channels share the same
resource. As a consequence, two or more tasks/channels may request
the resource at the same time. In order to arbitrate request conflicts,
each resource is associated with a scheduler that grants the resource to
competing tasks/channels according to some scheduling policy. Other
active tasks/channels have to wait.

18 Performance model for exploration and robustness optimization

Tasks are activated and executed due to activating events. Activating
events can be generated in a multitude of ways, including timer expira-
tion, external or internal interrupts, and task chaining according to the
global application structure.

In task chaining, events can be communicated between functionally
dependent tasks in different ways. Classically, it is assumed that each
task has one input FIFO. A task reads activating events from this FIFO
and writes events into input FIFOs of dependent tasks. Thereby, it is
assumed that activating events are removed from the input FIFO at
the end of execution. Besides this basic model, some approaches have
recently been extended to allow for more complex semantics involving
several inputs. Examples are AND- and OR-activations [54], or even
arbitrary boolean activations [41].

Another possibility is communication over registers [133]. In this case,
events from the sending task are stored in a register. The receiving task
(periodically) polls this register and reads the event that is currently
stored. Obviously, such kind of communication poses interesting ques-
tions concerning data age and system reaction time, since events can
get lost or be read several times. For instance, in case that the polling
interval is shorter than the time between successive write accesses to the
register, the receiving task might read the same event multiple times,
and thus might operate on old data (over sampling). Furthermore, the
receiving task can miss some events, i.e. if the polling interval is chosen
to large (under sampling).

Note that in both cases mentioned above, tasks might read activating
events at any time during execution. Events are, therefore, assumed to
be available during the whole execution.

System performance is influenced on the one hand by system param-
eters that can be assigned by the designer, and on the other hand by
intrinsic platform- and application specific system properties. In the fol-
lowing we give a precise characterization of these parameters and prop-
erties.

2.2.1 System parameters

Def. 2.2.1 (System parameter) A system parameter represents
a configurable characteristic of a system component.

The system parameters are, by their definition, all parameters of hard-
ware and software components that can be configured by the designer.
This includes the parameters of the utilized scheduling algorithms, like:

task priority assignment in case of priority based scheduling,

State-of-the-art system performance model 19

time slot and turn length definition as well as time slot sequence in
case of time-driven scheduling

task dispatching order in case of static scheduling

In some cases the timing of messages sent over buses might be config-
urable to some extend. The CAN protocol [15, 1], for instance, allows
the specification of offsets for individual frames. In practice, such off-
sets are used to balance the bus load by defining phase relations between
frames sent by different CPUs. As an effect of this load balancing, col-
lisions between two or more concurrently transmitted frames might be
prevented leading to potentially shorter transmission times.

Additionally, it might be possible for the designer to manipulate the
timing properties of buffering components. For instance, messages can
be deliberately delayed in a buffer to reduce transient load peaks [96].
This mechanism is called traffic shaping. Thereby, the effects of traffic
shaping depends on the maximum time a message might be delayed. In
this thesis we consider this traffic shaping delay as an additional system
parameter.

Obviously, system parameters do not contain any stand-alone infor-
mation about system performance. However, they strongly influence it
and represent, therefore, the search space for performance optimization
methods and design space exploration.

2.2.2 System performance properties
In order to apply performance analysis on the abstract task and

resource model introduced above, certain performance-related system
properties need to be specified.

Def. 2.2.2 (System performance property) System perfor-
mance properties represent intrinsic characteristics of components
directly or indirectly influencing system performance.

System performance properties are classified, based on their scope, in
different categories. In this thesis we consider:

I. Platform related performance properties characterizing the
hardware architecture.

The CPU speed represents the basic performance characteristic of a
processor and is expressed in cycles per second.

The bus throughput represents the basic performance characteristic
of a bus and is expressed in bytes per second.

20 Performance model for exploration and robustness optimization

II. Timing properties of tasks and communication channels.

1. Timing properties of tasks, determined by the software implementa-
tion and by the actual configuration of the hardware architecture.

The worst-case execution time (WCET) or worst-case execution
demand is the maximum time a task executes assuming exclusive
access to a specific CPU at nominal speed.

The best-case execution time (BCET) or best-case execution de-
mand is the minimum time a task executes assuming exclusive
access to a specific CPU at nominal speed.

2. Timing properties of the communication channels, determined by the
communication volume and by the performance of the communication
link.

The worst-case communication time (WCCT) or worst-case com-
munication demand is the maximum time a communication chan-
nel requires to transfer a message over a specific bus assuming
exclusive access at nominal throughput.

The best-case communication time (BCCT) or best-case commu-
nication demand is the minimum time a communication channel
requires to transfer a message over a specific bus assuming exclu-
sive access at nominal throughput.

The above mentioned best-case and worst-case bounds represent the
basic concept for modeling timing properties of tasks and channels. Note
that for a more fine granular description of the timing behavior, and
thus the calculation of more realistic response times, many approaches
have extended this basic interval model to cover data dependent task
behavior [54, 127]. For instance, the execution demand of data process-
ing tasks is typically influenced by size and type of the processed data
packets (e.g. MPEG-2 video streams [55]).

III. Timing properties of the activation model. These proper-
ties describe the arrival of workload, i.e. activating events, at the task
inputs. Instead of considering each activation individually, as simulation
does, formal performance verification abstracts from individual activat-
ing events to event streams. Note that different methods utilize different
stream models to describe the timing of activating events. Generally,
event streams can be described using the upper and lower event arrival
curves η+ and η−.

State-of-the-art system performance model 21

Def. 2.2.3 (Upper Event Arrival Curve) The upper event
arrival curve η+(Δt) specifies the maximum number of events that
occur in the event stream during any time interval of length Δt.

Def. 2.2.4 (Lower Event Arrival Curve) The lower event
arrival curve η−(Δt) specifies the minimum number of events that
occur in the event stream during any time interval of length Δt.

Note that arrival curves describe the properties of single event streams.
However, to realistically model complex systems and to increase analysis
precision, some approaches contain additional concepts to model time
correlations between several event streams. One possibility is the usage
of so-called relative offsets describing earliest event arrival times rela-
tive to given timing references (i.e. the periodical arrival of an external
event at the system input). Examples for approaches exploiting such
information can be found in [47, 48, 95, 81].

One popular and computationally efficient abstraction for represent-
ing event streams are so-called standard event models [96]. Standard
event models capture key properties of event streams using three param-
eters: activation period P , activation jitter J , and minimum distance d.
Periodic event models have one parameter P stating that each event ex-
actly arrives periodically every P time units. This simple model can be
extended with the notion of jitter, leading to periodic with jitter event
models that are described by two parameters P and J . Events generally
occur periodically, but can jitter around their exact position within the
jitter interval J . If the jitter is larger than the period, then two or more
events can occur at the same time, leading to bursts. To describe bursty
event models, periodic with jitter event models can be extended with the
d parameter capturing the minimum distance between successive events
within bursts.

Figure 2.1 illustrates the upper event arrival curve η+ of a bursty
event stream. Basically, it is split into two different regions. Small time
intervals are dominated by bursty behavior, where the system load is
only limited by the minimum event distance d−. Larger observation
intervals reveal the periodic nature of the event stream.

Both regions, i.e. the periodic region and the region dominated by the
burst, can be separately described with equations. The η+ function of
the stream, illustrated by the black curve in Figure 2.1, is the minimum
of them:

η+
in(Δt) = min

(⌈
Δt

d−

⌉
,

⌈
Δt + J

P

⌉)
. (2.1)

22 Performance model for exploration and robustness optimization

Fig. 2.1: Event arrival curve of a bursty event stream

For more details how η+ and η− are defined for standard event models
please refer to [96].

2.2.3 Performance metrics and constraints
Based on the presented model, formal performance verification method-

ologies like SymTA/S [50, 87] and Real-Time Calculus (RTC) [17, 126]
can derive performance metrics for a given system including:

best-case and worst-case task response times

best-case and worst-case message transmission times

buffer sizes (e.g. activation backlog)

end-to-end latencies (delay of a stimulus along a task chain)

power consumption

jitter of stimuli

In order to function correctly an embedded system has often to fulfill
constraints with respect to these performance properties. In this thesis
we consider the following constraints:

End-to-end deadlines (maximum delay of a stimulus along a task
chain)

Maximum jitter constraints (e.g. performance contracts at compo-
nent outputs)

Maximum buffer sizes (e.g. global or local buffer budget)

Maximum power consumption

Design Space Exploration 23

2.3 Example system
In this section we introduce a small example system based on the per-

formance model discussed in the previous section. The setup is shown
in Figure 2.2. The system contains four different CPUs connected by a
bus. Three applications are mapped on the architecture. A video appli-
cation (solid chain) gathers data from a camera controlled by the micro
controller uC, performs preprocessing on the DSP, and post-processing
on the PPC core. The second application (dashed chain) reads data
from a sensor, which is first processed on the ARM core and then for-
warded to the PPC core, which, in turn, controls an actor. The third
application (dotted chain) is a streaming application that runs on the
ARM processor core and uses the DSP for data processing.

All three applications have constrained end-to-end latencies which
need to be satisfied for the system to function correctly (Table 2.1c).
The video application must produce new frames in time, the steering
application has to react timely to new sensor input.

The CPUs (PPC, uC, DSP , and ARM) are all scheduled according
to the static priority preemptive policy, and the interconnecting bus is
arbitrated by the CAN protocol. Core communication and core execu-
tion times as well as priorities of all tasks and exchanged messages are
given in Tables 2.1a and 2.1b, respectively. The periods of incoming data
at the system inputs (Cam, Sens, and Sin) are specified in Table 2.1d.

The load situation on the four involved CPUs and the interconnecting
bus is shown in Table 2.1e. As can be observed, the worst-case system
load is rather moderate, except for the video stream processing DSP
running at over 90% of its maximum capacity.

2.4 Design Space Exploration
During design each implementation decision influences system perfor-

mance, and needs, therefore, to be constantly evaluated and compared
against performance constraints and optimization goals. Ideally, many
functionally equivalent implementation alternatives are analyzed during
design to identify an optimal solution. This process is called design space
exploration. Design space exploration represent a major tool to control
and optimize system performance during embedded systems design.

The introduction of an efficient design space exploration framework
that fits into real-world design flows is one main goal of this thesis. How-
ever, note that the methods presented in this thesis are mainly tailored
and applicable to the platform-based design style. For this reason ar-
chitecture exploration techniques are not considered. Consequently, the
main aspect of this thesis, in terms of design space exploration, lies on

24 Performance model for exploration and robustness optimization

Fig. 2.2: Example system

platform configuration, including the assignment of scheduling parame-
ters, etc. This search space can be efficiently extended by introducing
application mapping as additional degree of freedom. However, since
the underlying search space does not influence the applicability of the
proposed methods, this issue will not be further discussed.

One important aspect that is considered in this thesis is the fact that
nowadays distributed embedded systems are often not designed by a sole
manufacturer. In the automotive industry, for instance, different sub-
systems, or even subsystem parts, representing different functionalities
of the car, e.g. ABS, ESP, ASR, etc., are designed and delivered by ex-
ternal suppliers. The car manufacturer’s (OEM) task is to integrate the
different subsystems into the global system, which consists to a major
part in network integration.

In order to handle complex OEM-supplier dependencies, automotive
systems are developed according to the V-model. Obviously, two of the
main challenges for an efficient design space exploration methodology
in this context are 1) to handle the complexity and heterogeneity of
modern system components, as also has been pointed out by the Artist
roadmap [14], and 2) to support the parallel design style involving mul-
tiple design teams.

Design Space Exploration 25

Channel CCT Priority

C0 [10.4, 12.4] 5

C1 [12, 14.4] 3

C2 [20, 26.4] 2

C3 [15.2, 22.4] 6

C4 [10.4, 14.4] 1

C5 [15.2, 26.4] 4

(a) Core communication times (CCT)

Task CET Priority

T5 [30.9, 43.1] 2

T2 [15.8, 27.4] 1

T3 [36.9, 46.3] 2

T0 [20.1, 48.5] 1

T4 [13, 86] 2

T7 [40.3, 44.5] 1

T1 [27.1, 154.9] 2

T6 [14.2, 63.6] 1

T8 [11.5, 291.2] 3

(b) Core execution times (CET)

Path Deadline

Sens → Act 850

Cam → Vout 1000

Sin → Sout 1000

(c) End-to-end constraints

Input Period P
Sens 450

Cam 100

Sin 900

(d) Input event models

Resource Load

PPC 49.19%

uC 57.08%

DSP 90.94%

ARM 73.84%

BUS 59.29%

(e) Average worst-case re-
source loads

Table 2.1: System parameters, performance related system properties,
end-to-end timing constraints, and worst-case resource loads

The remainder of this section is structured as follows. First, we dis-
cuss the applicability of previous design space exploration approaches to
modern parallel design flows with shared responsibilities (Section 2.4.1).
Based on this discussion, we then motivate requirements for the de-
sign space exploration framework that we introduce in this thesis (Sec-
tion 2.4.2). Finally, we explain several practical application scenarios
(Section 2.4.3). Note that the concrete technical realization of the de-
sign space exploration framework is discussed in Chapter 3.

2.4.1 Exploration methods
Many previous approaches to design space exploration perform a fully-

automatic closed search over a very huge design space including many
parameters, e.g. [25]. However, as already mentioned, in industrial prac-
tice it is rarely the case that a single design team is in control of all system
parameters. A global closed exploration is, therefore, only partly appli-
cable, and thus of limited use. This fact has only found little attention
in many previous exploration approaches. Instead, many contributions

26 Performance model for exploration and robustness optimization

mainly attempt to solve the complexity problem that comes along with
the huge considered design space.

Obviously, for real-world sized embedded systems exhaustive search
is infeasible. Therefore, many approaches try to reduce the search space
to limit the computational effort. Commonly applied techniques, for in-
stance, incorporate (problem specific) local search techniques for one or
several parameters [107, 132], or exploit (assumed) parameter indepen-
dencies to cluster the search space into several parts that are explored
separately [37, 82]. However, the necessary parameter dependency model
highly depends on the application structure and the target platform, and
might be difficult to determine for large embedded systems with com-
plex timing dependencies. Also, system parameters might only offer few
independencies prohibiting an efficient clustering of the search space. In
such a case, exhaustive exploration becomes infeasible and needs to be
replaced by more sophisticated methods.

Another problem that reduces the applicability of these exploration
techniques in the context of parallel design flows, is that independent
parameter sets possibly span several domains of responsibility. From a
structural point of view hierarchical exploration schemes seem, therefore,
more appropriate. The main idea of these approaches is to hierarchically
combine local optima obtained through sub-component exploration to
(hopefully) good global solutions [2, 108]. Even though such hierarchical
exploration schemes better fit the structure of complex design flows with
OEM-supplier dependencies, they have the major drawback of not suf-
ficiently considering component and performance dependencies, which
especially occur in complex distributed embedded systems. In such sys-
tems, optimal sub-component configurations rarely compose to optimal
system configurations.

Another alternative that has been proposed is the manual restriction
of the search to promising design space regions [45]. For such approaches
to be applicable, very good knowledge of the system and its performance
dependencies is necessary. Even though, such knowledge might be avail-
able for specific aspects in a design, it is arguable that these techniques
alone are sufficient to efficiently explore complex distributed embedded
systems. Nevertheless, the possibility to manually restrict or expand the
search space to focus the exploration effort is definitely an important
aspect that shall be considered by an efficient exploration framework.
However, to fully benefit from manual search space restrictions and ex-
pansions they must be applicable in a dynamic manner. Only then, is it
possible to perform several successive exploration runs with search space
modification in every step. This concept enables the designer to iden-

Design Space Exploration 27

Fig. 2.3: Black-box performance analysis

tify step-by-step interesting design sub-spaces, worthy to be searched
in-depth or even completely.

As counterpart to full automation, also manual exploration approaches
have been investigated [36]. During manual exploration the main chal-
lenge consists in efficiently choosing the right design points based on
performance estimations. Obviously, in the context of concurrent design
flows such an approach is difficult to apply. However, one possibility
is to exploit knowledge from previous designs (if available) as starting
point for design space exploration. Then, however, the question remains
how to manually proceed to the next design point. Therefore, manual
exploration alone does not seem to be sufficient to cover complex dis-
tributed systems. Nevertheless, the integration of known design points
into automated exploration seems promising, and shall be supported by
an efficient exploration framework.

Another property common to many exploration approaches and opti-
mization methods is their specialization to specific application and ex-
ecution platform models. Examples include classical results for uni-
processor scheduling, like for instance the rate-monotonic priority as-
signment strategy assuming independent tasks with deadlines equal to
the period [71]. Also many priority assignment algorithms for the multi-
processor case are specific to restricted models, usually assuming inde-
pendent tasks and homogeneous processors [3, 73]. Even though, such
tailored methods can be efficiently applied under specific circumstances
to determine optimized system configurations, they are only partly ap-
plicable in situations where the application or execution platform models
slightly deviate from the initial assumptions.

Certainly, exploration and optimization approaches shall be based
on state-of-the-art performance verification techniques. However, they
must not be intrinsically tied to specific models, since these might be
extended or modified due to new research results. The separation of
performance analysis and exploration strategy can be achieved best by
considering performance analysis as a black box, delivering required sys-
tem performance properties for given system parameter configurations
(see Figure 2.3).

28 Performance model for exploration and robustness optimization

In the past years many performance analysis approaches have been
proposed, e.g. [79, 131, 77, 115, 84, 43, 113, 50, 46]1. Each of these
methods has demonstrated high modeling accuracy and simplicity for
certain areas but less applicability for others. In order to increase the
expressiveness of analysis results it is, thus, desirable that each system
part is analyzed by the method with the best fitting model of computa-
tion. Of course, mixed performance analysis requires coupling mech-
anisms between the involved methods. Several analysis and simula-
tion models have recently been coupled. Examples include interfaces
between SymTA/S and RTC-MPA [61], between SymTA/S and syn-
chronous data-flow graphs (SDF) based analysis techniques [103], or
between RTC-MPA and the MPARM simulator [62]. In each of these
works, the advantage of coupling different techniques in terms of anal-
ysis accuracy and expressiveness was recognized and pointed out using
expressive examples. Design space exploration in general should also
exploit these advantages and be applicable across analysis borders.

2.4.2 Requirements for design space exploration
Based on the above discussed observations we now formulate key re-

quirements for the design space exploration framework developed in this
thesis:

1. The design space exploration framework shall fit modern design flows
and designer needs. This particularly imposes following requirements:

The framework shall support partial explorations in order to ac-
count for iterative refinements between several involved design
teams (e.g. OEM-supplier dependencies) and incremental system
specifications.

The search space shall be composable and configurable in a flex-
ible and fine granular manner.

The framework shall allow reusing partial solutions from previous
explorations.

2. The design space exploration framework shall be independent of the
underlying performance analysis engine. Note that in this thesis we
base our experiments and case studies on state-of-the-art analysis
engines like SymTA/S [87] and RTC-MPA [126], but we do not want
to rely on their specific properties. Therefore, we impose following
requirements:

1Some of these approaches with relevance to this work will be discussed later.

Design Space Exploration 29

The analysis engine used by the framework for evaluation pur-
poses shall be replaceable.

The framework shall be flexible enough to allow domain spanning
design space explorations across several analysis engines.

Another important requirement that we impose on the design space
exploration framework is that it shall support Pareto-optimization of
several concurrent optimization objectives. The information that is
yielded by Pareto-optimization is very valuable for the designer, since
it enables her to exactly evaluate and compare different solution alter-
natives in a way that cannot be provided by uni-objective approaches.
Consider, for instance, the solutions shown in Figure 2.4 representing
different trade-offs between system performance and cost as they might
be obtained by some Pareto-optimization.

Fig. 2.4: Design trade-offs: performance vs. cost

First of all, Pareto-optimization might yield several optimal solutions
that cannot directly be compared. This is the case for the solutions 1,
2, 3, and 4. Optimal in the Pareto-sense means that improvement in
one optimization criterion automatically leads to deterioration in other
optimization criteria. For instance, if system performance shall be im-
proved and, therefore, e.g. solution 2 is adopted rather than solution 3,
then also system cost is increased.

In Pareto-optimization, it is to the designer which solution is chosen
from the set of Pareto-optimal trade-offs. However, the knowledge of all
possibilities is very valuable for this choice. Consider, for instance, solu-
tions 1 and 2. Both solutions are optimal as explained above. However,

30 Performance model for exploration and robustness optimization

if we take a closer look at the differences, we observe that solution 1
offers a small performance increase compared to solutions 2 at the price
of considerably increased overall system cost. With this knowledge at
hand the designer would likely opt for solution 2. Similar reflections hold
if solutions 3 and 4 are compared. Uni-objective optimization possibly
yields solutions 1 or 4, neglecting that there exist nearby design points
representing much more interesting trade-offs.

2.4.3 Application scenario for iterative design
space exploration

In the automotive industry it is common practice that the OEM del-
egates the development of complex system features to different indepen-
dently working suppliers. Thereby, the more complex system features,
like for instance ABS, ESP, etc., exchange messages with multiple sen-
sors and actuators connected and controlled by several distributed ECUs
over a shared network with dynamic behavior (e.g. priority-driven CAN
protocol).

Of course, suppliers responsible for the development and implementa-
tion of such functionalities are not aware of the globally generated net-
work load. For performance verification it is, therefore, often assumed
that different components are mutually independent. In this simpli-
fied case the delay of exchanged messages can easily be determined and
taken into account for performance verification. However, in the final
system several independently developed distributed functionalities are
integrated onto the same communication infrastructure. Obviously, the
assumption of independency does not hold in this case, since messages
from different functionalities interfere on the communication infrastruc-
ture leading to dynamic blocking effects and, thus, increased transmis-
sion delays.

In order to smoothen such integration effects the OEM usually limits
the maximum admissible network load. The idea behind this strategy
is that low network load implies less exchanged messages and frames1,
(hopefully) translating into less collisions and shorter transmission de-
lays. However, the main drawback of this approach is that limiting
the network load is inefficient in terms of system cost and total system
communication delay.

An alternative to control integration effects is systematic optimiza-
tion of the communication infrastructure, whose optimization potential

1In the CAN [15, 1] terminology data packets that are exchanged between tasks are called
messages. In the communication layer of the CAN protocol several of these messages from
different tasks are packed into frames for transmission over the bus.

Design Space Exploration 31

is usually not fully exploited. The main reason for this is that it is
difficult to perform optimization along the supply chain: suppliers are
responsible for the configuration of their ECUs, whereas the OEM con-
trols the configuration of the communication infrastructure.

As already discussed above, isolated exploration and optimization of
single components is of limited use, since system level performance in-
terdependencies are not captured. Also closed global exploration is not
feasible, since neither OEM nor single suppliers control all necessary
model parameters, and are reluctant to share design details due to IP-
protection issues. As a consequence, system optimization and explo-
ration can be tackled best in an iterative process. In the following we
shortly discuss, as one example, how system communication behavior
can be iteratively explored and optimized. In this specific example OEM
and suppliers only need to exchange few uncritical communication re-
lated performance data: message jitters and frame offsets.

Figure 2.5 visualizes an iterative exploration process between OEM
and suppliers including message jitter and frame offset optimization.
Note that a similar optimization scenario is proposed in [98].

Fig. 2.5: Optimization of the communication infrastructure in a parallel
design flow between OEM and several suppliers

Case 1: Message jitter optimization The OEM can optimize the
bus arbitration (e.g. priorities, time slots, etc.) such that large send jit-
ters, leading to transient load peaks, can be tolerated without resulting
in message loss (depending on the application, the transmission delay of
a message must usually be significantly smaller than its period). The
maximum sustainable send jitters for the individual messages can then
be communicated to the suppliers as target requirements for local ECU
optimization. The other way around, the OEM can optimize the bus to

32 Performance model for exploration and robustness optimization

ensure optimal message receive jitter properties that might be crucial
e.g. for timing sensitive control algorithms. Of course, both scenar-
ios are interdependent, and can thus be addressed best in an iterative
exploration approach.

Case 2: Frame offset optimization. Frame offsets are mostly ECU
specific, and thus unknown to the OEM in early design phases. At the
same time system performance is strongly influenced by these offsets,
since they can be effectively used for load balancing on the communi-
cation infrastructure [98]. Obviously, each supplier can only decide in
a very limited scope on reasonable frame offsets. Therefore, the OEM
as integrator should be in charge to globally explore and optimize frame
offsets.

The following iterative frame offset optimization process is possible.
In the first step, all suppliers separately optimize frame offsets that are
relevant for their ECUs. In the second step, the OEM as network inte-
grator collects all frame offsets and performs global optimization taking
into account specific supplier requirements (e.g. receive message jitters).
The optimized frame offsets are then communicated back to the suppli-
ers. Finally, in the third step, each supplier performs local ECU opti-
mization (e.g. scheduling parameters) taking into account the optimized
timing properties of incoming messages.

Obviously, this frame offset optimization process is interdependent
with message jitter optimization (case 1). Optimized frame offsets can
lead to looser jitter requirements or tighter jitter guarantees. Frame
offset optimization needs, therefore, to be successively refined once more
detailed information about communication timing is available.

2.5 Design Robustness
In the field of embedded system design, robustness is usually associ-

ated with reliability and resilience. Therefore, many approaches to fault
tolerance against transient and permanent faults with different assump-
tions and for different system architectures can be found in literature,
e.g. [67, 38, 86]. These approaches increase system robustness against
effects of external interferences (radiation, heat, etc.) or partial system
failure and are, therefore, crucial for safety critical systems.

In this thesis a different notion of robustness for embedded systems is
introduced and discussed: robustness to variations of system properties.
Informally, a system is called robust if it can sustain system property
modifications without severe consequences for system performance and
integrity. In contrast to fault tolerance requiring the implementation
of specific methods such as replication or re-execution mechanisms [53]

Design Robustness 33

to ensure robustness against faults, robustness to property variations
is a meta problem that does not directly arise from the expected and
specified functional system behavior. It rather represents an intrinsic
system property that depends on the system organization (architecture,
application mapping, etc.) and its configuration (scheduling, etc.).

Accounting for property variations early during design is key, since
even small modifications in systems with complex performance depen-
dencies can have drastic non-intuitive impact on the overall system be-
havior, and might lead to severe performance degradation effects [90].
Since performance evaluation and exploration do not cover these effects,
it is clear that they are insufficient to systematically control performance
along the design flow and during system lifetime. Therefore, explicit ro-
bustness evaluation and optimization techniques that build on top of
performance evaluation and exploration are needed. They enable the
designer to introduce robustness at critical positions in the design, and
thus help to avoid critical performance pitfalls.

The remainder of this section is structured as follows. First, we
demonstrate by means of small but realistic examples that marginal
property variations can have severe consequences for system perfor-
mance (Section 2.5.1). Afterwards, we give a short survey of related
work, and discuss how robustness can adequately be evaluated for com-
plex distributed embedded systems (Section 2.5.2). We then explain
in detail different situations where system robustness to property varia-
tions is highly desirable and crucial (Section 2.5.3). Finally, we motivate
assumptions and design scenarios that we want to cover with the ro-
bustness evaluation and optimization techniques presented in this thesis
(Section 2.5.4). Note that formal definitions and the concrete technical
realization are discussed in Chapter 4.

2.5.1 Effects of system property variations
System properties variations put at risk system performance, since

they invalidate the assumption under which the system was originally
dimensioned and configured. That variations of system properties can
have severe influences on system performance that cannot be locally
predicted shall be demonstrated by means of several small experiments
on the example system introduced in Section 2.3. In these experiments
we monitor the influence of several system properties on the end-to-end
latencies of the constrained sub-applications.

Note that the deadlines in the given examples are synthetic and in-
tentionally placed at unfavorable locations. Consequently, the intention
of the examples is not to claim that deadlines are always jeopardized
by drastic system performance degradation effects, but rather to show

34 Performance model for exploration and robustness optimization

that such situations might occur and are hard to discover due to abrupt
stepwise latency increases (compare Figures 2.6, 2.7, 2.8, and 2.9) that
cannot be predicted locally.

Worst-Case Execution Time In the first experiment we are inter-
ested in the impact of worst-case execution time (WCET) variations of
the task T8. Figure 2.6 shows the results. The WCET of T8 does not
have any influence on the latencies of Sens → Act and Cam → Vout,
since T8 has the lowest priority on ARM . However, the situation looks
different for Sin → Sout. A small increase of the originally assumed
WCET by less than 1% (to 294.1 time units) leads to an end-to-end
latency increase of 7.4% (from 898.9 to 965.4 time units). Afterwards,
the end-to-end latency of Sin → Sout slowly increases, until it makes
another unexpected jump at 320.3 time units leading to deadline viola-
tion and, thus, system failure. At this point an overall WCET increase
of T8 by approximately 10% lead to an end-to-end latency increase for
Sin → Sout by more than 27.5% (from 898.9 to 1146.5 time units).

Fig. 2.6: Impact of WCET variations on the performance of the system
described in Figure 2.2

Period and Jitter In the second experiment we investigate variations
of timing properties at system input Sens. Figures 2.7 and 2.8 visualize
the impact of period and jitter variations, respectively.

Reducing the workload generated through Sens by increasing its ac-
tivation period has only little positive impact on the system’s timing
behavior. However, the given system is very sensitive to decreasing the

Design Robustness 35

period separating two consecutive events1. Already a minor decrease
from 450 to 435 time units (3.3%) leads to an end-to-end latency in-
crease for Sin → Sout from 898.9 to 1037.3 time units and, thus, to
deadline violation.

The presence of jitter at the input Sens also leads to severe system
performance degradation. The reason is that jitter induces transient load
peaks in the worst-case. The most affected sub-application is Sin → Sout.
Already a small input jitter of 30 time units, corresponding to 6.7% of
the period, leads to an abrupt increase of the end-to-end latency to
1037.3 time units, which exceeds the imposed deadline. Cam → Vout

seems to be less sensitive at first glance. Up to a jitter of 350 time units
the end-to-end latency only slightly increases from 810.8 to 873.2 time
units (7.7%). However, increasing the jitter by another 10 time units
results in a sudden jump of the end-to-end latency to 1035.1 time units.

Fig. 2.7: Impact of period variations on the performance of the system
described in Figure 2.2

Resource Speed In the last experiment we examine the impact of
service capacity variations of the ARM processor. Figure 2.9 shows
the end-to-end latency of Sin → Sout as a function of the clock rate. We
observe that a small service capacity decrease of 5% results in an end-to-
end latency increase from 898.8 to 1163.9 time units (29.5%) exceeding
by far the imposed deadline.

1Shorter periods are often used to increase system reaction time.

36 Performance model for exploration and robustness optimization

Fig. 2.8: Impact of jitter variations on the performance of the system
described in Figure 2.2

Fig. 2.9: Impact of service capacity variations on the performance of the
system described in Figure 2.2

2.5.2 Evaluating design robustness
Determining design robustness in complex distributed embedded sys-

tems is far more complicated than determining the remaining service
capacity that is locally available on computational resources. One rea-
son is that the influence of property variations on global constraints, such
as end-to-end deadlines, is not easy to capture. Additionally, complex
backward pressure effects further complicate this problem.

Many previous approaches to robustness optimization assume simplis-
tic application models that do not cover these effects, and are, therefore,
only partly applicable to complex distributed embedded systems. For
instance, in [57] and [39] the authors address the allocation problem for

Design Robustness 37

tasks with environment-dependent workload requirements. Accordingly,
the work aims at finding task allocations leading to systems that are ro-
bust to workload variations. The considered application model assumes
homogeneous multiprocessor systems with rate monotonic scheduling
(RMS) and independent strictly periodic tasks with deadlines equal to
the periods. In this context, system robustness can be easily derived and
optimized using well known utilization bounds for the assumed simple
application model. In the above mentioned work the utilization bound
for one-processor RMS from Liu and Layland [71], and for n-processor
RMS from Baker et al. [80] are used.

A more realistic approach to system robustness optimization appli-
cable to more complex situations is presented in [7]. The authors con-
sider several predefined modification scenarios, e.g. changed execution
demands or additional tasks, that a given system shall be able to ac-
commodate with no or little reconfiguration effort. The approach, while
technically sound, is only partially appropriate to systematically evalu-
ate and optimize system robustness. The reason is that, in general, prop-
erty variations can only hardly be anticipated and exactly quantified. In
this context each considered scenario only represents one possible design
point out of many, which is not sufficient if we consider the fragility of
system performance [90]. Consequently, the approach is mainly appli-
cable to minimize the system reconfiguration effort for clearly defined
change scenarios between different system states. This is, for instance,
the case for system mode transitions [27].

In order to systematically assess robustness with respect to unfore-
seeable system property variations sensitivity analysis is needed. State-
of-the-art sensitivity analysis approaches [93, 91] capture global effects
of property variations, and are capable of determining system feasibil-
ity limits. Typical application scenarios for sensitivity analysis include
the determination of maximum sustainable data rates, or minimum re-
quired bus throughputs. Consequently, sensitivity analysis represents a
valuable tool for system dimensioning [92].

Sensitivity analysis has already been successfully used for the evalua-
tion and optimization of specific system robustness aspects. In [74], for
instance, the authors present a sensitivity analysis technique calculat-
ing maximum input rates that can be processed by stream processing
architectures without violating on-chip buffer constraints. The authors
propose to integrate this technique into automated design space explo-
ration to find architectures with optimal stream processing capabilities,
i.e. high robustness against input rate increases.

In this thesis we systematically utilize sensitivity analysis for general
robustness evaluation and optimization purposes. More precisely, in-

38 Performance model for exploration and robustness optimization

stead of consuming available slack for system dimensioning, and thus
cost minimization, slack is distributed such that the system’s capability
of sustaining property variations is maximized. Using sensitivity analysis
as basis for robustness evaluation and optimization has two important
advantages compared to previous approaches:

1. State-of-the-art modular sensitivity analysis techniques capture com-
plex global effects of local system property variations. This ensures
the applicability of the proposed robustness evaluation and optimiza-
tion techniques to realistic performance models, and increases the
expressiveness of the results.

2. Rather than providing the system behavior for some isolated dis-
crete design points, sensitivity analysis characterizes continuous de-
sign sub-spaces with identical system states. It covers, thus, all pos-
sible system property variation scenarios.

2.5.3 Use cases for design robustness
In the following we discuss situations and scenarios where robustness

of hardware and run-time system against property variations is expected
and crucial to efficiently design complex embedded systems.

Unknown quality of performance data First of all, robustness
is desirable to account for data quality issues in early design phases,
where data that is required for performance analysis (e.g. task execution
times, data rates, etc.) is often estimated or based on measurements.
As a result of the unknown input data quality, also the expressiveness
and accuracy of performance analysis results are unknown. Since even
small deviations from estimated property values can have severe conse-
quences for the final system performance, it is obvious that robustness
against property variations leverages the applicability of formal analysis
techniques during design. Clearly, the design risk can be considerably
reduced by systematically optimizing the system for robustness.

Maintainability and extensibility Secondly, robustness is impor-
tant to ensure system maintainability and extensibility. Since major
system changes in reaction to property variations are usually not pos-
sible during late design phases or in the field, it is important to choose
system architectures and configurations offering sufficient robustness for
future modification and extensions as early as possible. For instance, the
huge number of feature combinations in modern embedded systems has
lead to the problem of product and software variants. Using robustness
optimization techniques systems can be designed, at the outset, to ac-

Design Robustness 39

commodate additional features and changes. Obviously, this can reduce
the design effort for the supplier. Other situation where robustness can
increase system maintainability and extensibility include late feature re-
quests, product and software updates (e.g. new firmware), bug-fixes,
and environmental changes.

Reusability and modularity Finally, robustness is crucial to ensure
component reusability and modularity. Even though these issues can
be solved on the functional level by applying middleware concepts, they
are still problematic from the performance verification point of view (see
Section 1.3). The reason is that system performance is not composable,
prohibiting the straightforward combination of individually correct com-
ponents in a cut-and-paste manner to whole systems. In this context,
robustness to property variations can facilitate the reuse of components
across product generations and families, or simplify platform porting.

2.5.4 Design scenarios and assumption for
robustness evaluation and optimization

In the past years, system robustness to changes of performance prop-
erties was usually addressed intuitively and manually during the design
flow. The main reason for this informal approach was the lack of reliable
methods capable of assessing performance characteristics of complex dis-
tributed embedded systems. Consequently, it is not surprising that only
little related work can be found in the literature of embedded systems
design. However, with the advent of sophisticated performance analysis
methodologies, such as SymTA/S [50] or RTC-MPA [126], the situation
has changed. Based on the performance analysis results delivered by
these methods it has become possible to define expressive and reliable
quantitative robustness metrics that can be adequately used to improve
the design process. In this thesis, a formal basis for robustness optimiza-
tion is proposed covering the following design scenarios:

Static design robustness The first considered design scenario as-
sumes that system parameters are fixed early during design and cannot
be modified later (e.g. at late design stages or in the field) to compensate
for system property modifications. This scenario shall be called static
design robustness (SDR).

The SDR metric shall express the robustness of parameter configu-
rations with respect to the simultaneous modification of several given
system properties. Since the exact extent of system property variations
can generally not be anticipated, it is desirable that as many as possible
modification scenarios can be sustained by the system. This shall be

40 Performance model for exploration and robustness optimization

transparently expressed by the SDR metric: the more different modifi-
cation scenarios represent feasible system states for a specific parameter
configuration, the higher the corresponding SDR value. Additionally,
the SDR metric shall include the possibility to attach different relevance
levels to the included system properties through weighting. Criteria for
the designer to assign these weights include the estimated probability of
future changes and the impact on the overall system performance. Note
that SDR optimization yields a single parameter configuration possessing
the highest robustness potential for the considered system properties.

Dynamic design robustness The SDR metric assumes static sys-
tems with fixed parameter configurations. However, in this thesis also
the influence of dynamic system behavior on robustness shall be evalu-
ated. In other words, potential designer or system counteractions shall
be included into robustness evaluation. This scenario shall be called
dynamic design robustness (DDR).

The DDR metric shall express the robustness of given systems with re-
spect to the simultaneous modifications of several system properties that
can be achieved through reconfiguration. Consequently, it is relevant
for the design scenario where parameters can be (dynamically) modified
during design or in the field. Obviously, the DDR metric depends on the
set of possible parameter configurations C (“counteractions”) that can
be adopted through reconfiguration. For instance, it might be possible
to react to property variation by scheduling parameters adaptation (e.g.
adaptive scheduling strategies [72], network management techniques [31],
etc.) or application remapping.

Application scenarios for the DDR metric include the evaluation of
dynamic systems and, more generally, the assessment of the design risk
connected to specific components. More precisely, already early during
design the DDR metric can be used to determine bounds for property
values of specific components ensuring their correct functioning in the
global context. This information effectively facilitates feasibility and
requirements analysis and greatly assists the designer in pointing out
critical components requiring special focus during specification and im-
plementation. Another use case concerns reconfigurable systems. The
DDR metric can be used to maximize the dynamic robustness head-
room for crucial components. Obviously, by early choosing a system
architecture offering high DDR for crucial system parts, the designer
can significantly increase system stability and maintainability.

Like the SDR metric, also the DDR metric shall include the pos-
sibility to attach different relevance levels to the included properties
through weighting. Note that DDR optimization yields multiple param-

Design Robustness 41

eter configurations, each possessing partially disjoint robustness prop-
erties. For instance, one parameter configuration might exhibit high
robustness for some system properties, whereas different parameter con-
figurations might offer more robustness for other system properties. In
case of system property variations, an appropriate feasible parameter
configuration can be adopted. For adaptations during system runtime,
pre-calculated parameter configurations can be stored in a lookup table
from which appropriate operating points can be dynamically chosen.

Robustness gain through reconfiguration Based on the notions of
static and dynamic design robustness, metrics expressing the robustness
increase that can be achieved through reconfigurability shall be derived.
Given such metrics, the benefit (in terms of system robustness) of design-
ing reconfigurable components is explicitly measurable. Consequently, it
can help system architects to decide whether or not investing engineering
effort into creating reconfiguration mechanisms is worthwhile. More gen-
erally, by adjusting the available reconfiguration space C these metrics
can be used to identify critical components for which reconfigurability
is particularly advantageous, i.e. leading to significant robustness gain.
In this manner, engineering effort for conceiving robust systems can be
efficiently focused.

Conceptual difference between SDR and DDR Figures 2.10a
and 2.10b visualize the conceptual difference between the notions of
static and dynamic design robustness by means of a small example. Fig-
ure 2.10a shows the feasible region of two properties p1 and p2, i.e. the
region containing all feasible property value combinations, of a given pa-
rameter configuration. This corresponds to the static robustness, where
a single parameter configuration with high robustness needs to be cho-
sen. Figure 2.10b visualizes the dynamic robustness. In the considered
case there exist two additional parameter configurations in the under-
lying reconfiguration space with interesting robustness properties. Both
new parameter configurations contain feasible regions that are not cov-
ered by the first parameter configuration. The union of all three feasible
regions corresponds to the dynamic robustness.

42 Performance model for exploration and robustness optimization

(a) Static robustness - feasible region of a
single system configuration

(b) Dynamic robustness - combined feasi-
ble regions of several system configura-
tions

Fig. 2.10: Conceptual difference between static and dynamic design ro-
bustness for two considered system properties subject to maximization

Chapter 3

ITERATIVE DESIGN SPACE EXPLORATION
FRAMEWORK

In this chapter we introduce an iterative and composable design space
exploration framework that can be easily extended and configured to
cover a large variety of optimization tasks in the context of distributed
embedded real-time systems. The main goal of the framework is to en-
able systematic design space exploration of performance criteria along
modern concurrent design flows spanning several domains of responsi-
bility (see discussion in Section 2.4). However, the presented framework
will also be used in this thesis to cover multi-dimensional sensitivity
analysis and robustness optimization (see Chapter 4).

The remainder of this chapter is structured as follows. First, it is mo-
tivated why we utilize multi-objective evolutionary algorithms as basis
for the proposed design space exploration framework (Section 3.1). Af-
terwards, the basic concepts of the design space exploration framework
are discussed. This includes the compositional encoding scheme that is
used to compose and manipulate the search space at component level
(Section 3.2), the integration of systematic techniques for component
interaction optimization (Section 3.3), the exploration loop steering and
adaptively controlling the exploration process (Section 3.4), as well as
the user-controlled exploration methodology (Section 3.5). Then, real-
ization details for covering timing and performance optimization with
the exploration framework are discussed (Sections 3.6 and 3.7), and
demonstrated by means of a small but realistic case study (Section 3.8).
Finally, a framework extension for automated search space modification
is presented (Section 3.9), and applied to the optimization of priority
assignments on priority scheduled system components (Section 3.10).

44 Iterative Design Space Exploration Framework

3.1 Multi-objective evolutionary algorithms
Evolutionary algorithms (EA) [6] are modern optimization tools that

can be used to efficiently solve a large variety of optimization problems.
In the following some basic notions that are often utilized in the context
of EAs are explained:

Population: Set of individuals that are simultaneously considered by
the evolutionary algorithm and that interact during reproduction.

Individual : Structure representing one candidate solution annotated
with fitness values.

Chromosome: Chain of elements encoding the values of a solution.
Common structures include binary strings and real numbers. Usually,
individuals consists of a single chromosome.

Gene: One element of a chromosome.

Fitness: A set of real values indicating the quality of an individual
as a solution to the given optimization problem.

Generation: One iteration of the optimization method.

Parents: Individuals that are used during the reproduction process,
i.e. the creation of new candidate solutions.

Offsprings: Individuals created through reproduction of parent indi-
viduals.

Variation / Reproduction: Process of creating offspring individuals
from parent individuals through crossover and mutation.

The optimization principle used by evolutionary algorithms is inspired
by the concept of natural selection and evolution, and can be explained
in simplified form as follows. At the beginning of the optimization pro-
cess a (random) population of individuals, each representing a unique
candidate solution, is generated. The individuals are evaluated with
respect to their quality as solution to the given optimization problem.
Based on the calculated fitness values, specific individuals are chosen as
parents for reproduction, and hence get the chance to pass their genes to
offsprings that are added to the population. Other parents, usually those
with poor fitness values, are removed from the population. The whole
process is repeated with the modified population. Using this principle,
the quality of obtained solutions is increased gradually from generation
to generation.

Multi-objective evolutionary algorithms 45

Many real-world problems consist of the simultaneous optimization of
several conflicting optimization objectives. One example in the context
of embedded system design is the aim of simultaneously minimizing cost
while maximizing performance. Obviously, in such cases there exist no
single optima but several so-called Pareto-optimal solutions representing
trade-offs between several optimization objectives that cannot be com-
pared to each other without providing further preference information
(e.g. weighting). More precisely, given a set V of k-dimensional vectors
v ∈ R

k, the vector v ∈ V Pareto-dominates the vector w ∈ V iff for all
elements 0 ≤ i < k it holds that vi ≤ wi and for at least one element
l it holds that vl < wl. A vector is called Pareto-optimal iff it is not
Pareto-dominated by any other vector in V .

The determination (or approximation) of the Pareto-optimal solution
set for a given optimization problem is called multi-objective optimiza-
tion. Accordingly, evolutionary algorithms that are capable of perform-
ing multi-objective optimization are called multi-objective evolutionary
algorithms (MOEA) [23]. Note that the discussion of MOEAs is not
subject of this thesis. They are rather used as tools to solve the opti-
mization problems that are formulated in this thesis. For this reason,
we utilize the PISA framework (platform- and programming-language-
independent interface for search algorithms) [12] making state-of-the-art
MOEAs (e.g. SPEA2 [136], IBEA [135], NSGA2 [24], etc.) readily avail-
able.

There are several reasons why MOEAs have been chosen to solve the
optimization problems formulated in this thesis.

1. MOEAs are very flexible and allow the realization of a composable
encoding scheme that enables (1) the dynamic control of the search
process and (2) the straight-forward extension to cover new compo-
nents and optimization parameters (see Section 3.2). Many other
optimization techniques including (meta) heuristics do not offer such
flexibility.

2. MOEAs are independent of the underlying fitness landscape. This
is of particular importance for the optimization problems addressed
in this thesis. The reason is that the underlying performance anal-
ysis engines (that are considered as black-boxes in this thesis) are
still subject to research, and thus improvement. In particular, the
scope of the performance models is constantly extended and more
and more dynamic effects are considered. Examples are intra- and
inter-context information [81, 55, 47], scenario aware analyses [49],
mixed synchronous and asynchronous time-table activations, complex

46 Iterative Design Space Exploration Framework

activation semantics [41, 54], hierarchical event models [100], shared
memory accesses [102], etc.

Many optimization techniques, particularly heuristics, must be ex-
plicitly tailored to specific performance models, and hence need to be
adapted in case of model extensions or analysis improvements. By
contrast, optimization approaches based on MOEAs automatically
adapt to the underlying performance model, and thus directly profit
from extension and improvements without further adaptations.

3. As opposed to many other optimization techniques, MOEAs are capa-
ble of performing Pareto-optimization. As discussed in Section 2.4.2,
Pareto-optimization is very valuable for the designer, since it allows
determining and comparing different design trade-offs in a way that
cannot be provided by uni-objective approaches. The capability of
performing Pareto-optimization was, therefore, identified as one of
the key requirements for the proposed design space exploration frame-
work.

3.2 Compositional search space encoding
Figure 3.1 shows the compositional search space encoding concept

that is used for the proposed exploration framework. The system is seen
component wise for design space exploration. Modifiable parameters
of different physical or logical components are encoded separately by
specialized chromosomes. Thereby, each chromosome consists of three
parts:

1. The encoding of the underlying problem parameters using arbitrarily
complex data structures (e.g. permutations for priority optimization,
real numbers for TDMA slot optimization, etc.).

2. Problem-aware variation operators guiding the search process for the
system part represented by the chromosome (i.e. crossover and mu-
tation).

3. Chromosome specific parameter restrictions (e.g. fixed TDMA turn-
lengths, etc.) and repair algorithms enforcing these restrictions on
the underlying data structures1.

Chromosomes represent encodings and local exploration strategies
for specific underlying components. Additionally, they carry variation

1The variation operators used in the framework do not directly respect parameter restrictions.
Conformity is reached after variation by applying repair algorithms.

Compositional search space encoding 47

operators necessary for recombination with other chromosomes of the
same types. Chromosomes are coupled through so-called exploration
interfaces to the underlying performance models that are responsible
for translating the encoded information into concrete parameter assign-
ments. This concept simplifies the applicability of the exploration frame-
work across different analysis engines and performance models.

For system exploration, several chromosomes can be combined to com-
pose the desired search space. In the example given in Figure 3.1, for
instance, four chromosomes are used to define the search space. Three
chromosomes are connected to the resources CPU1, CPU2, and BUS
and represent scheduling parameter assignments for mapped tasks and
communication channels, respectively. The fourth chromosome models
a traffic shaper optimizing the communication behavior of T4 over the
BUS (see Section 3.3).

Fig. 3.1: Compositional search space encoding scheme

We have chosen to split the overall system exploration into several en-
tities, i.e. chromosomes, controlling the exploration on local components
for several reasons:

1. The effort of checking generated design alternatives for validity is
reduced. The reason is that constructively correct encodings for small
subsets of design parameters are much easier to establish. Based on
valid component encodings, many design alternatives that are invalid

48 Iterative Design Space Exploration Framework

due to local properties and restrictions are not constructed. This
considerably reduces the set of possible invalid design alternatives,
and thus greatly improves the exploration process.

2. Due to the compositional structure, the exploration framework can
be easily extended with new chromosomes to cover additional model
parameters and system components. This is important, since the
underlying formal performance analysis engines are constantly refined
and extended to handle new scheduling policies and bus protocols
such as e.g. Flexray [85].

Furthermore, the flexibility of the compositional encoding scheme
allows applying the exploration framework to a large variety of opti-
mization problems in the context of distributed embedded real-time
systems. For example, using chromosomes varying system proper-
ties rather than system parameters, the exploration framework can
be used to efficiently cover multi-dimensional sensitivity analysis and
system robustness optimization (see Chapter 4).

3. Modeling sub-optimization problems by separate chromosomes allows
integrating problem-specific knowledge into local search strategies,
which increases overall exploration efficiency. Examples for problem-
aware encodings and variation operators can be found in Section 3.6.2
(TDMA chromosome) and Section 4.3 (multi-dimensional sensitivity
analysis).

4. The compositional encoding scheme permits fine-granular search space
definition at component level. Additionally, chromosomes can be dy-
namically added and removed from the search space without loosing
previously obtained results. These features enable user-controlled
iterative design space exploration with dynamic search space mod-
ifications that perfectly suits modern design flows with shared re-
sponsibilities and successive model refinements (see discussion in Sec-
tion 2.4). Furthermore, user-controlled design space exploration can
be exploited to manually guide the search process to promising search
space regions containing interesting design alternatives. Note that
user-controlled design space exploration is discussed in Section 3.5.

5. The compositional structure of the framework enables design space
exploration across several analysis domains. More precisely, search
space definition through chromosome composition is transparent to
the fact that different system parts are analyzed by different analysis
engines.

Component interaction optimization 49

3.3 Component interaction optimization
A key property that is exploited by the proposed design space explo-

ration framework is the adaptation of event timing in streams connecting
functionally dependent components (expressed through the adaptation
of an event model [99]).

Generally, there are several reasons to do this. It may be that sched-
ulers or scheduling analyses for particular components require certain
event stream properties. For example, rate-monotonic scheduling [71]
requires strictly periodic task activations. Alternatively, IP components
may require specific input event stream properties. External system
outputs may also impose event model constraints, e.g. bounded min-
imum distances d− between output events or maximum jitters. Such
constraints may be, for instance, the result of performance contracts
with external subsystems [116].

Event stream adaptation can also be done for the sole purpose of
traffic shaping [99]. Traffic shaping can be used to reduce transient
load peaks resulting in more regular system behavior. In this thesis
two types of event adaptation functions (EAF) are discussed: periodic
EAFs, producing periodic event streams from periodic with jitter input
event streams, and d−-EAFs enforcing a configurable minimum distance
between output events.

Since the manipulation of event streams via event stream adapta-
tion weakens performance dependencies between connected components
its applicability to system optimization is very promising. An extreme
measure would be to use periodic EAFs on all event stream in a system,
enforcing strictly periodic interactions between all components. Clearly,
this completely decouples all performance dependencies, reducing the
global optimization problem to several local component optimizations.
However, since periodic EAFs induce high latencies on the underlying
event streams and require large buffers, such a measure would surely
lead to unacceptably high end-to-end latencies and exorbitant buffering
costs in the resulting system. Therefore, mainly d−-EAF are useful for
system optimization and exploration. Compared to periodic EAFs pro-
viding full synchronization, they allow to trade the grade of component
performance decoupling and peak load reduction versus increased delays
and buffer sizes along the shaped event stream.

Note that there exist additional traffic shaper types that can be used
for component interaction optimization with the method proposed in
this thesis. One example are so-called greedy shapers [124]. However,
this thesis focuses on traffic shaping with d−-EAFs. Therefore, these
approaches are not further discussed in the following.

50 Iterative Design Space Exploration Framework

In the next section the concept of traffic shaping with d−-EAFs pro-
posed by Richter [96] for standard event models (see Section 2.2) is ex-
plained. Compared to full synchronization, d−-EAFs provide promising
peak load reduction and load balancing capabilities with smaller buffers
and delays. Larger d− values result in more balanced system load and
better schedulability, while they increase delays and buffering require-
ments along task chains (or paths). In Section 3.3.2, the optimization
potential of traffic shaping will be demonstrated by means of a small but
realistic example. Note that the concrete realization of the chromosome
that is used to integrate traffic shaping into design space exploration is
discussed in Section 3.6.3.

3.3.1 Traffic shaping with d−-EAFs
As discussed in Section 2.2.2, a bursty event stream is defined by

three parameters, an average period P , a jitter J , and a minimum event
distance d− during bursts. Figure 2.1 gave an example for a bursty
event stream, and in Equation 2.1 an upper bound on arriving events in
a given time interval Δt was derived.

Additional bounds on minimum event distances can be enforced using
time-out buffers, called traffic shapers, that are inserted in the system
between two functionally dependent components. The time-out mech-
anism buffers arriving events such that two successive events are not
released earlier in time than d−time out.

According to the extended real-time calculus approach of Thiele et
al. [111], the shaper defines a sporadic upper-bound service curve [112]:

η+
time out(Δt) =

⌈
Δt

d−time out

⌉

The shapers output arrival curve can be calculated from both, input
arrival curve η+

in(Δt) and shaper service curve η+
time out(Δt). In case of

traffic shapers the real-time calculus equations can be simplified to

η+
shaped(Δt) = min

(
η+
timeout(Δt), η+

in(Δt)
)

= min
(⌈

Δt

d−timeout

⌉
,

⌈
Δt

d−in

⌉
,

⌈
Δt + J

P

⌉)
.

Obviously, the larger value of d−in and d−time out dominates the other, al-
lowing to further simplify the η+

shaped(Δt) function. In case of d−time out ≤
d−in, the shaper does not represent an additional constraint. In other
words, the shaper is “inactive”, no events are buffered and the out-

Component interaction optimization 51

put arrival curve equals the input arrival curve. Clearly, the case of
d−time out > d−in is more interesting. Input events are buffered and the
shaper “flattens” the burst slope of the output arrival curve according
to d−time out:

η+
shaped(Δt) = min

(⌈
Δt

d−time out

⌉
,

⌈
Δt + J

P

⌉)

Figure 3.2 illustrates this behavior. The arrival curve with minimum
distance d−in covers the service curve defined by d−time out. The block
arrows indicate buffering.

Fig. 3.2: Event arrival curve of output event stream

The vertical distance between arrival and service curve captures the
so-called backlog [112], i.e. the number of buffered events at a given
point in time:

backlog(Δt) = η+
in(Δt) − η+

time out(Δt)

Correspondingly, the horizontal distance between the curves, i.e. the
arrow lengths in Figure 3.2, represents the buffering delay. The cal-
culations are slightly more sophisticated than for the backlog, and can
be best formalized using the function δ−(n) describing the minimum
distance between n successive events in a given stream [96]1. For the
bursty arrival curve and the sporadic service curve, the corresponding
δ−(n) functions are defined as follows:

1Roughly speaking, δ−(n) is the inverse of η+(Δt).

52 Iterative Design Space Exploration Framework

δ−in(n) = max
(
(n − 1)d−in, (n − 1)P − J

)
and δ−time out(n) = (n−1)d−time out

Hence, the buffering delay is given by:

delay(n) = δ−time out(n) − δ−in(n)

Note that the sought-after maxima backlogmax = maxΔt>0 backlog(Δt)
and delaymax = maxn≥2 delay(n) can be calculated through linearization
of the discrete η+ and δ− functions. Details can be found in [96]. For
the purposes of this thesis, the following qualitative explanation shall be
sufficient. It should not surprise that the worst-case buffering and delay
situations appear at the end of the input burst. At that time, the most
events are stored “waiting” for being processed until the buffer is empty
and the behavior returns to “non-bursty”. And clearly the last event of
the input burst has to wait longest.

3.3.2 Example
To illustrate the benefit of controlling component interaction with

traffic shaping, the example system shown in Figure 3.1 is considered.
The system consists of two CPUs connected via a BUS, all scheduled
according to the static priority preemptive policy. Best-case and worst-
case execution times as well as external activating event models are given
in Tables 3.1a and 3.1b, respectively. In order to function correctly, the
system has to satisfy the path latency constraints listed in Table 3.2.

It can be easily verified that there exist no priority assignments leading
to feasible systems satisfying the imposed latency constraints. However,
the situation looks different if traffic shaping is added to the search space.

Let us, for instance, consider the following priority assignment:

CPU1: T2 > T1

BUS: C2 > C3 > C1

CPU2: T4 > T5 > T3

Without traffic shaping this parameter configuration leads to con-
straint violations for both paths: 1630 time units for Src1 → T3 and
680 time units for Src2 → T5. However, system behavior can be tremen-
dously improved by performing traffic shaping with d−-EAFs.

Let us, for instance, take a look at C1’s worst-case response time with
and without traffic shaping at the output of T4. Figure 3.3a visualizes
the worst-case scheduling scenario of C1 without traffic shaping in the
system. Figure 3.3b shows the improved worst-case scheduling scenario

Component interaction optimization 53

computation task core execution time

T1 [20,20]
T2 [40,40]
T3 [30,30]
T4 [25,25]
T5 [25,25]

communication task core communication time

C1 [10,10]
C2 [20,20]
C3 [15,15]

(a) Core execution and communication times

input event model

Src1 periodic, PSrc1 = 100

Src2 periodic, PSrc2 = 100, JSrc2 = 400

(b) Input event models

Table 3.1: System parameters for the system depicted in Figure 3.1

constraint # path maximum latency

1 Src1 → T3 800

2 Src2 → T5 600

Table 3.2: Path latency constraints for the system depicted in Figure 3.1

of C1 with a d−-EAF at the output of T4 extending the minimum dis-
tance of successive events from 25 to 50 time units. Note that the given
activating event models for C1, C2, and C3 are intermediate analysis
results that are obtained using the SymTA/S analysis engine [87].

We observe that the inserted d−-EAF leads to the reduction of C1’s
worst-case response time from 305 to 70 time units. This is due to two
effects. First of all, the d−-EAF relaxes the activation burst of C2, lead-
ing to more freedom for the lower priority tasks C1 and C3 to execute.
This results in less preemption, and thus earlier completion of C1 and
C3. Secondly, the activation jitters of C1 and C3 are reduced. The
reason is that the positive shaping effects on the BUS are propagated
through improved output timing behavior, i.e. less response time jitter,
to the neighboring components. In the considered case, for instance, the
activation jitter of T2 on CPU1 is reduced. The lower priority task T1
is profiting from this in terms of a shorter worst-case response time, and
produces, in turn, less output jitter. In the considered case the output

54 Iterative Design Space Exploration Framework

(a) Without traffic shaping

(b) With d−-EAF at the output of T4

Fig. 3.3: Worst-case scheduling scenarios for task C1

jitter of T1, and thus the input jitter of C1, is reduced from 360 to 80
time units due to the shaping effects at the output of T4.

Figure 3.4 visualizes the global impact of traffic shaping at the output
of T4 on the constrained end-to-end paths Src1 → T3 and Src2 → T5.
Possible d− values lie between 25 and 100 time units, given by the best-
case execution time and the activating period of T4, respectively.

We observe that the latency of the path Src1 → T3 falls with grow-
ing d−. This is not surprising, since all tasks along the path have the
lowest priority on their resources, and are thus highly profiting from the
inserted traffic shaper. For the path Src2 → T5 the situation looks dif-
ferent. First, the end-to-end latency falls, reaching a minimum for d−
values between 40 and 45 time units. Afterwards, the end-to-end latency
increases again. The reason for this behavior is, that traffic shaping does
not only improve system timing behavior by relaxing peak loads, but
also introduces buffering delays. However, up to a d− value of 69 time
units the positive shaping effects dominate the buffering delay, leading
to smaller latencies compared to the original parameter configuration
without traffic modulation. Altogether, d−-EAFs enforcing d− values

Design space exploration loop 55

Fig. 3.4: Example illustrating the influence of traffic shaping on system
performance

between 50 and 57 time units lead to feasible parameter configurations
satisfying the given end-to-end latency constraints.

3.4 Design space exploration loop
Figure 3.5 visualizes the design space exploration loop performed by

the proposed framework. The Optimization Controller is the central el-
ement. It is connected to the Analysis Engine and to the Evolutionary
Optimizer. The Analysis Engine checks the validity of given individu-
als and provides data for the Objectives to calculate the fitness values
subject to optimization.

The Evolutionary Optimizer is responsible for the problem-independent
part of the optimization problem, i.e. elimination of poor individuals
and selection of interesting individuals for variation. Currently, SPEA2
(Strength Pareto Evolutionary Algorithm 2) [136], IBEA (Indicator-
Based Evolutionary Algorithm) [135], and FEMO (Fair Evolutionary
Multi-objective Optimizer) [64] are used for this part. They are coupled
via the PISA interface (Platform and Programming Language Indepen-
dent Interface for Search Algorithms) [12] with the exploration frame-
work. Note that the selection and elimination strategy, i.e. the strategy
to walk through the search space and to approximate the Pareto-optimal
solution set in case of multi-criterion optimization, depends on the uti-
lized optimizer. FEMO, for instance, eliminates all Pareto-dominated
individuals after each processed generation and pursuits a fair sampling

56 Iterative Design Space Exploration Framework

strategy, i.e. each parent individual participates in the creation of the
same number of offsprings. This leads to a uniform search in the neigh-
borhood of elitist individuals.

The problem-specific part of the optimization problem is coded in the
chromosomes and their variation operators, i.e. crossover and mutation.
Note that specific chromosomes and optimization objectives for timing
and performance exploration of distributed embedded systems are dis-
cussed in Sections 3.6 and 3.7, respectively.

Fig. 3.5: Design space exploration loop

Before exploration can be started Chromosomes representing the de-
sired search space as well as Objectives subject to optimization have to
be selected and configured. Chromosomes representing the search space
are included into evolutionary exploration, while all other parameters
remain immutable.

After specification of the optimization task, the Analysis Engine is
initialized with the immutable part of the search space, and the selected
chromosomes are used as blueprints to create the initial population (step
0). In other words, each individual consists of specific chromosome in-
stances (phenotypes). Note that each chromosome is responsible for
creating initial values for the parameters it represents. By default, chro-
mosomes create random initial parameters to distribute the initial in-
dividuals uniformly in the search space. However, sometimes it may
be favorable to initialize chromosomes with heuristically determined pa-
rameters.

User-controlled design space exploration 57

Afterwards, for each non-evaluated individual in the population the
following is done (step 1):

Step 1.1: The individual’s chromosome instances are applied to the
Analysis Engine and the system is analyzed.

Step 1.2 + 1.3: Each Objective requests necessary system properties
to calculate its fitness value.

Step 1.4: The individual is annotated with the calculated fitness
values.

Once all individuals have been analyzed they are communicated along
with their fitness values to the Optimization Controller (step 2) that
forwards this information to the Evolutionary Optimizer (step 3). Based
on the fitness values the Evolutionary Optimizer creates two lists, a list
of individuals selected for deletion and a list of individuals selected for
variation, and sends them back to the Optimization Controller (step
4). Afterwards the Optimization Controller manipulates the population.
First, individuals selected for deletion are removed from the population
(step 5). Second, individuals selected for variation are used to create new
individuals through recombination (i.e. mutation and crossover, step 6).
Finally, all created individuals are added to the population (step 7). This
completes the processing of one generation, and the whole loop begins
again.

Note that after each completed generation the user has the possibility
to modify the search space (steps 8 and 9). This subject is discussed in
the following section.

3.5 User-controlled design space exploration
In Section 3.3 it was discussed how component interactions and depen-

dencies can be optimized using traffic shaping. Traffic shaping improves
system behavior by weakening performance dependencies between com-
ponents and reducing the global impact of transient load peaks. Con-
sequently, the system becomes more predictable, and thus easier to op-
timize and explore. However, traffic shaping might not be sufficient
as control mechanism for efficient design space exploration. Especially
when facing large systems with many parameters, design space explo-
ration can hardly cover the complete search space in adequate time, even
with efficient stochastic search techniques. Consequently, it is crucial to
find appropriate sub-search spaces containing good solutions.

As already discussed in Section 2.4.1, the idea of restricting the search
space to speed up exploration is nothing new, and some previous ap-
proaches contain mechanisms to do so. Common techniques try to

58 Iterative Design Space Exploration Framework

automatically partition the search space into (independent) parts and
perform hierarchical exploration, i.e. local exploration on single com-
ponents and subsequent recombination of locally Pareto-optimal solu-
tions to hopefully good global solutions [37, 2]. Limitations of such
approaches include that the search space might contain only few in-
dependencies, and that it might be difficult to identify these without
further aid. More precisely, to safely identify parameter independencies
in complex systems exploration techniques are needed. This directly
leads to a circular reasoning, exploration needs information that shall
be provided by exploration. Consequently, dynamic parameter depen-
dencies are often heuristically ignored [108], which can easily lead to the
incapacity of the underlying exploration algorithm to find good solutions
to the optimization problem.

The design space exploration framework presented in this chapter
pursues another strategy to increase exploration efficiency. Instead of
performing closed automated exploration over all system parameters or
taking a-priori heuristic assumption about the search space structure,
the control over the search process is transferred to the user. Thereby,
the exploration concept consists of performing several successive partial
explorations with search space modifications after every step in reac-
tion to previously obtained results. Using this iterative exploration ap-
proach, interesting design sub-spaces, worthy to be searched in-depth or
even completely, can be identified efficiently. Note that apart from effi-
ciency reasons, another important motivation to integrate mechanisms
for user-controlled partial explorations into the proposed framework is
that it shall be applicable to modern parallel design flows with shared
responsibilities (e.g. OEM-supplier dependencies) and iterative refine-
ments (see discussion in Section 2.4.3).

There are two possibilities to dynamically modify the search space
during exploration:

1. Adding or removing restrictions on parameters represented by chro-
mosomes already included into the search space. This possibility
corresponds to step 8 in Figure 3.5.

2. Extending (restricting) the search space by adding (removing) chro-
mosomes to (from) the search space. This possibility corresponds to
step 9 in Figure 3.5.

An important precondition to enable iterative design space explo-
ration is that search space modifications during exploration can be per-
formed without losing results from previous iterations. Therefore, the
following operations are performed in case of dynamic search space mod-
ifications:

User-controlled design space exploration 59

First, exploration is paused once the processing of the current gen-
eration has been finished. Afterwards, all individuals contained in the
population are adapted to account for the search space modification. De-
pending on the type of modification different measures must be taken:

1. Adding parameter restrictions to chromosomes already included in
the search space: the parameter restrictions are added to the cor-
responding chromosomes and the repair algorithms are applied. All
individuals with at least one modified chromosome are marked as not
analyzed and their fitness values are set to undefined.

2. Removing parameter restrictions from chromosomes already included
in the search space: the parameter restrictions are removed from the
corresponding chromosomes. No further adaptations are necessary.

3. Adding new chromosomes to the search space: chromosome instances
are added to each individual in the population. By default, the new
chromosome instances are initialized with (valid) random parameters.
All individuals are marked as not analyzed and their fitness values
are set to undefined.

4. Removing chromosomes from the search space: for each removed
chromosome one specific instance must be chosen as common basis
for further exploration. The concrete parameter values represented
by the selected chromosome instances are applied to the analysis
engine and added to the immutable search space part. All instances
of the removed chromosomes are deleted from the individuals in the
population. All individuals are marked as not analyzed and their
fitness values are set to undefined.

Once the search space modification has been completed, all individuals
that are marked as not analyzed are evaluated and their fitness values are
recalculated. Afterwards, the exploration is resumed with the modified
search space.

Figure 3.6 shows an example exploration with two search space mod-
ifications.

The search space of the example exploration consists of nine chro-
mosomes C1 to C9. However, the first exploration step is performed
considering only C2, C5, and C8. Let us assume that after some gen-
erations the designer observes that the quality of obtained results is
unsatisfactory and that fitness improvement is stagnating. In such a
case, it makes sense to extend the search space. Accordingly, the de-
signer adds additional parameters represented by C1, C3, and C7 to the
search space, and starts a second exploration step. After exploring the

60 Iterative Design Space Exploration Framework

Fig. 3.6: User-controlled design space exploration including nine chro-
mosomes with search space modifications. Increasing indexes indicate
potential modifications, i.e. the discovery of different chromosome in-
stances as solution alternatives, between two exploration steps.

extended search space for some time, the designer examines the obtained
results and observes that many obtained design alternatives show only
little differences with respect to the search space part represented by C1
and C5. Consequently, the designer removes C1 and C5 from the search
space and starts a third, more focused, exploration step.

Of course, the search space modifications performed in the above de-
scribed exploration example are heuristic and based on partial knowledge
of the fitness landscape. However, search space restrictions can always
be reversed if exploration results are unsatisfactory.

Manual search space manipulation on a coarse-grain level, i.e. based
on chromosomes representing parameters of whole system components,
is practical and feasible. However, more fine-grain search space manip-
ulation is tedious and can only hardly be performed manually. Fine-
grain in this context means defining parameter restrictions for specific
chromosomes like, for instance, priority precedence relations on priority-
scheduled resources. For this reason, an extension of the proposed explo-
ration framework for automated search space modification will be pre-
sented in Section 3.9. The application of this extension to automated
search space modification for priority scheduled resources is discussed in
Section 3.10.

3.6 Chromosomes for timing and performance
exploration

In this section we introduce chromosomes that can be used in con-
junction with the proposed exploration framework to optimize timing
and performance of distributed embedded real-time systems. Three ex-
emplary chromosomes for different search space parts are discussed: the
priority chromosome for priority optimization on priority scheduled re-
sources (Section 3.6.1), the TDMA chromosome for time slot and turn-

Chromosomes for timing and performance exploration 61

length optimization on TDMA scheduled resources (Section 3.6.2), and
the shaper chromosome for optimizing interactions and performance de-
pendencies between functionally dependent system components using
d−-EAFs (Section 3.6.3). For details about the underlying performance
model refer to Section 2.2.

Note that timing and performance optimization represent only one ap-
plication domain for the proposed exploration framework. In Chapter 4
its application to multi-dimensional sensitivity analysis and robustness
optimization will be discussed.

3.6.1 Priority chromosome
In this section we introduce search space encoding (Section 3.6.1.1)

and exploration methods (Sections 3.6.1.3 and 3.6.1.2) that are used by
our framework for optimizing priority assignments on priority scheduled
resources in complex distributed embedded systems.

3.6.1.1 Search space encoding

Priority assignments optimization is a discrete permutation problem.
In the context of evolutionary optimization such permutation problems
are well studied, and thus efficient coding techniques and variation opera-
tors achieving good optimization results are known (for a small overview
see [129]).

There exist several exact models of evolutionary algorithms based on
binary string representations. However, the proposed chromosome en-
codes priority assignments directly as permutation. Accordingly, the
priority assignment on a resource is encoded as a list containing the rel-
ative priority ordering (in descending order) of the mapped tasks (Defi-
nition 3.6.1).

Def. 3.6.1 (Priority Assignment VR) The priorities of n tasks
t1, . . . , tn mapped on resource R are encoded as n-dimensional
vector VR, where VR[i] ∈ [1, n] corresponds to the index of the
task with the i-th highest priority.
The function Prio(i, VR) returns the priority of ti in the priority
assignment VR, with 1 corresponding to the highest priority.

Example: the priority vector VR = (2, 3, 1, 4) represents the following
priority assignment: t2 > t3 > t1 > t4. Correspondingly, the priority of
t1 is Prio(1, VR) = 3.

Starting from a random set of priority assignments, the ordering prob-
lem given by the permutation encoding is solved by using a simple mu-

62 Iterative Design Space Exploration Framework

tation operator and several crossover operators from literature. These
operators are introduced in the following sections.

3.6.1.2 Crossover operators
In this section two standard crossover operators used by evolutionary

algorithms for solving scheduling related permutation problems are in-
troduced: Uniform Order-Based Crossover (UX) [109], and Precedence
Preservative Crossover (PPX) [10]. Both crossover operators are applied
with the same probability during exploration. In experimental results
these operators turned out to be effective in solving priority assignment
problems in complex distributed embedded systems. Note that this is
not self-evident, since ordering problems can be deceptive and might mis-
lead evolutionary algorithms. For a discussion of how ordering problems
can be deceptive refer to [58].

Uniform Order-Based Crossover (UX). UX [109] combines order
information from two parent priority assignments to create one offspring.
The offspring is created in two steps. First, tasks at randomly selected
crossover points are directly copied from the first parent. Second, the
remaining tasks are filled into the empty positions in order of appearance
in the second parent. Example:

Parent 1 : 2 1 5 4 3 6
Parent 2 : 3 6 2 5 4 1
Cross Pts : * * *
Offspring : 2 6 5 4 3 1

UX is considered the best crossover operator for scheduling problems.
However, it might destroy precedence relation between task priorities
that are common in both parents. In the given example, for instance,
both parents assign a higher priority to t3 compared to t6. In the gen-
erated offspring, however, this relation is destroyed. Since precedence
relations represent very important characteristics of the search space
structure for priority optimization problems, a second crossover opera-
tor preserving precedence relation is utilized by the proposed priority
chromosome.

Precedence Preserving Crossover (PPX). In contrast to UX,
PPX [10] maintains all common priority precedence relations during
crossover. It uses a binary crossover mask to select the order in which
tasks are drawn from the parents priority assignments to create the off-
spring. 0 and 1 indicate that the first and second parent are selected,
respectively.

Chromosomes for timing and performance exploration 63

In each drawing step the priority assignment of the selected parent is
scanned linearly for the first task which has not yet be drawn. This task
is appended to the offspring’s priority assignment.

Parent 1 : 2 1 5 4 3 6
Parent 2 : 3 6 2 5 4 1
Mask : 1 0 0 1 1 0
Offspring : 3 2 1 6 5 4

PPX ensures that all precedence relations between priorities in the
generated offspring come from the same parent. Consequently, prece-
dence relations which are common to both parents are preserved in the
offspring’s priority assignment.

3.6.1.3 Mutation operator
The crossover operators presented in the previous section implement

strategies to preserve interesting commonalities of the parent individuals
during variation. In other words, they filter out interesting search space
structures and lead to the convergence of the evolutionary search.

Of course, it is possible that the variety of the population is insufficient
to find good solutions only by using crossover operators. Additionally,
the exploration may get stuck in local optima, without the possibility to
reach globally better solutions. Therefore, mutation operators are used
to enable the evolutionary algorithm to break out of local optima, and
to reach parts of the search space not yet explored.

The mutation operator used by the proposed priority chromosome
switches the priorities of two randomly selected tasks.

3.6.2 TDMA chromosome
The search space of all time slot assignments for tasks mapped on

TDMA scheduled resources is very large, even if the arithmetic precision
is limited. Turn-length variation, which is often necessary to find good
solutions, adds another search dimension. Since it is unrealistic to try
all possible time slot assignments and turn-lengths, a good strategy to
walk through the search space is indispensable.

In the following arithmetic real-coded variation operators tailored for
time slot and turn optimization on TDMA scheduled resources are in-
troduced. Thereby, the optimization strategy is split into two aspects:
optimizing the admitted loads of the mapped tasks as well as optimizing
the turn-length. Both factors together define the quality of a TDMA
time slot assignment.

According to the two problem aspects four variation operators are pro-
posed. One crossover and one mutation operator varying only admitted

64 Iterative Design Space Exploration Framework

loads while ensuring that turn-lengths remain constant, as well as one
crossover and one mutation operator varying only turn-lengths without
modifying admitted loads. The crossover and mutation operators are
described in Sections 3.6.2.3 and 3.6.2.4, respectively.

3.6.2.1 Search space encoding
One approach frequently used for continuous optimization problems

like TDMA time slot optimization in the context of evolutionary al-
gorithms, is discretizing the desired search space into a power of 2 and
using a binary string representation with binary variation operators, like
i.e. single-point crossover.

However, for the realization of the TDMA chromosome it was decided
to use a real number encoding of the problem variables and arithmetic
variation operators to guide the search space. This is suitable for the
given problem because it gives much more control over the generated
alternatives, and allows to implement problem-aware variation operators
guaranteeing the validity of generated time slot assignments.

In the following it is assumed that the time slot assignments for a
TDMA scheduled resource R with the mapped tasks T0, . . . , Tk−1 is
subject to optimization. Thereby, the time-slots of the involved tasks
are represented by the real numbers slot0, . . . , slotk−1. Accordingly, the
TDMA turn-length is implicitly given by the time slots sum: turn =∑k−1

i=0 sloti. Note that during exploration the maximum arithmetic pre-
cision is bounded (which is not reflected in the given algorithms). Typ-
ical search precisions range between allowing only integer values and
rounding to two digits after the decimal point.

3.6.2.2 Creation of the initial population
For the creation of the initial population an initial TDMA turn-length

turninit is specified. Note that choosing a sub-optimal initial turn-length
for the initial population is uncritical, since the proposed variation oper-
ators are capable of adapting the turn-length in the course of optimiza-
tion. Nevertheless, by choosing a good initial turn-length the chromo-
some converges faster towards the solution space.

In the following we refer to a specific time slot assignment as in-
dividual and to the set of individuals maintained during evolutionary
optimization as population.

Let the worst-case execution time of Ti be denoted by WCETi, and its
average arrival rate (i.e. for instance the period in case of periodic tasks)
by ratei. In order to create only valid (i.e. resource not overloaded, etc.)
initial individuals, it has to be ensured that the maximum load loadmax;i

of each task Ti does not exceed its admitted load loadadm;i:

Chromosomes for timing and performance exploration 65

loadadm;i ≥ loadmax;i ⇔ sloti
turninit

≥ WCETi

ratei

⇔ sloti ≥
WCETi

ratei
∗ turninit

This implies for Ti a minimum time slot

slotmin;i =
WCETi

ratei
∗ turninit.

Algorithm 1 is used to create the initial population. It uniformly gen-
erates individuals in the search space of all valid time slot assignments
with turn-length turninit. To do so, it randomly distributes the initial
turn to the tasks T0, . . . , Tk−1, while respecting the above mentioned
minimum time slot lengths to prevent the creation of invalid individu-
als. Note that the algorithm assumes that the maximum load of the
scheduled task set does not exceed 100%. Accordingly, a trivial load
check needs to be performed before the TDMA time slot optimization
is started.

Algorithm 1 Create valid initial individual
Require: initial turn-length turninit and minimum time slots

slotmin;0, . . . , slotmin;k−1 for the tasks T0, . . . , Tk−1

Ensure: random valid time slot assignment slot0, . . . , slotk−1 for the
tasks T0, . . . , Tk−1

1: free ← turninit

2: set ← {0, 1, . . . , k − 1}
3: while (set 	= ∅) do
4: choose random r ∈ set
5: set ← set \ r
6: if (set = ∅) then
7: slotr = free
8: else
9: slotmax ← free −

∑
x ∈ set slotmin;x

10: slotr ← random(slotmin;r, slotmax)
11: free ← free − slotr
12: end if
13: end while

66 Iterative Design Space Exploration Framework

3.6.2.3 Crossover operators

In this section crossover operators for optimizing TDMA time slot
assignments are described. They implement a heuristic binary search
related optimization strategy to ensure convergence of the search pro-
cess towards solutions lying “between” individuals considered by the
evolutionary algorithm.

Admitted load crossover. Algorithm 2 describes the crossover op-
erator varying only admitted loads while ensuring that turn-lengths re-
main constant. It takes two parent individuals as input and creates two
offsprings.

First, the admitted task loads of the generated offsprings are placed
evenly (i.e. at 1

3 and 2
3) in the admitted load intervals defined by the two

parents. Afterwards, the time slots of offsprings 1 and 2 are calculated to
fit the turn-lengths imposed by parent 1 and 2, respectively. Note that
the admitted load crossover operator automatically generates offsprings
that are valid (in terms of the minimum admitted load condition) if the
parent individuals are valid.

This is easy to understand. Each time slot calculated for a given task
Ti in any offspring o corresponds to an admitted load loadadm;o;i that is
larger or equal than the minimum admitted load

min(loadadm;p1;i, loadadm;p2;i)

defined by the corresponding parents p1 and p2. Consequently, since
all parents are assumed to be valid, also all generated offsprings auto-
matically satisfy the minimum admitted load condition.

Figure 3.7a gives an example for the admitted load crossover opera-
tor. The two offsprings are created by modifying the time slots of the
three considered tasks T0, T1, and T2 according to the above described
algorithm. Note that the time slot of task T2 is not modified for both
offsprings. The reason is that T2 possesses an admitted load of 30% in
both parents.

Turn crossover. The crossover operator varying the turn-length is
described by Algorithm 3. Given two parent individuals it first calculates
the average turn-length. Afterwards, offspring 1 and 2 are created by
adapting the time slots of parent 1 and 2 to fit the average turn-length
without modifying the admitted loads.

Since the turn crossover operator does not modify the admitted loads
of the involved tasks, the validity of offsprings that are generated from

Chromosomes for timing and performance exploration 67

valid parents is automatically ensured. Figure 3.7b visualizes the turn
crossover operator by means of an example.

Algorithm 2 Admitted load crossover
Require: time slots slotp1;0, . . . , slotp1;k−1 of parent p1 and time slots

slotp2;0, . . . , slotp2;k−1 of parent p2

Ensure: time slots sloto1;0, . . . , sloto1;k−1 of offspring o1 and time slots
sloto2;0, . . . , sloto2;k−1 of offspring o2

1: turnp1 ←
∑k−1

i=0 slotp1;i

2: turnp2 ←
∑k−1

i=0 slotp2;i

3: for i ← 0 to k-1 do
4: loadadm;p1;i ← slotp1;i/turnp1

5: loadadm;p2;i ← slotp2;i/turnp2

6: difference ←| loadadm;p1;i − loadadm;p2;i |
7: if loadadm;p1;i < loadadm;p2;i then
8: sloto1;i ← (loadadm;p1;i + difference/3) ∗ turnp1

9: sloto2;i ← (loadadm;p2;i − difference/3) ∗ turnp2

10: else
11: sloto1;i ← (loadadm;p1;i − difference/3) ∗ turnp1

12: sloto2;i ← (loadadm;p2;i + difference/3) ∗ turnp2

13: end if
14: end for

Algorithm 3 Turn crossover
Require: time slots slotp1;0, . . . , slotp1;k−1 of parent p1 and time slots

slotp2;0, . . . , slotp2;k−1 of parent p2

Ensure: time slots sloto1;0, . . . , sloto1;k−1 of offspring o1 and time slots
sloto2;0, . . . , sloto2;k−1 of offspring o2

1: turnp1 ←
∑k−1

i=0 slotp1;i

2: turnp2 ←
∑k−1

i=0 slotp2;i

3: turnnew = (turnp1 + turnp2)/2;
4: for i ← 0 to k-1 do
5: sloto1;i = slotp1;i/turnp1 ∗ turnnew;
6: sloto2;i = slotp2;i/turnp2 ∗ turnnew;
7: end for

68 Iterative Design Space Exploration Framework

(a) Admitted load crossover (b) Turn crossover

Fig. 3.7: Crossover operators of the TDMA chromosome

3.6.2.4 Mutation operators
The crossover operators presented in the previous section lead to the

discovery of (locally) optimal solutions lying “between” individuals con-
sidered during evolutionary exploration. Of course, it is possible that
the variety of the initial population is insufficient to find good solutions
only by using these crossover operators. Additionally, the exploration
may get stuck in local optima. For this reason, two mutation operators
enabling the evolutionary search to break out of local optima and to
reach new parts of the search space are introduced.

Mutate admitted load. The mutation operator varying only admit-
ted loads while ensuring that turn-lengths remain constant is described
by Algorithm 4. It takes one parent individual as input and creates one
offspring. After initialization, two tasks are randomly chosen. The first
task gives a part of its disposable time slot, i.e. the time slot part it can
dispense without overloading the resource, to the second task. Thereby,
the percentage of the disposable time slot that is dispensed is randomly
chosen in the interval]0, dmax ≤ 1], where dmax is configurable. Fig-
ure 3.8a visualizes the admitted load mutation operator by means of an
example.

Mutate turn. Algorithm 5 describes the mutation operator varying
the turn-length. First, the target turn-length is chosen by increasing
or decreasing the turn-length of the parent individual by a percentage
randomly chosen in the interval]0, dmax ≤ 1], where dmax is configurable.
The offspring’s time slots are then calculated to fit the target turn-length
without altering the admitted loads imposed by the parent’s time slot
assignment. Figure 3.8b visualizes the turn mutation operator for a
turn-length reduction of 20%.

Chromosomes for timing and performance exploration 69

Algorithm 4 Mutate admitted load
Require: time slots slotp;0, . . . , slotp;k−1 of parent p and maximum %

of disposable time slot dispensed dmax

Ensure: time slots sloto;0, . . . , sloto;k−1 of offspring o

1: turnp ←
∑k−1

i=0 slotp;i

2: for i ← 0 to k-1 do
3: sloto;i ← slotp;i

4: end for
5: repeat
6: r1 ← random(0, k − 1)
7: r2 ← random(0, k − 1)
8: until r1 	= r2

9: slotdisposable = slotp;r1 − loadmax;r1 ∗ turnp

10: dapplied ← random(0, dmax)
11: sloto;r1 = sloto;r1 − dapplied ∗ slotdisposable

12: sloto;r2 = sloto;r2 + dapplied ∗ slotdisposable

Algorithm 5 Mutate turn
Require: time slots slotp;0, . . . , slotp;k−1 of parent p and max. % by

which turn is cut or extended dmax

Ensure: time slots sloto;0, . . . , sloto;k−1 of offspring o

1: turnp ←
∑k−1

i=0 slotp;i

2: bool ← random(true, false)
3: dapplied ← random(0, dmax)
4: if bool then
5: turnnew ← turnp + dapplied ∗ turnp

6: else
7: turnnew ← turnp − dapplied ∗ turnp

8: end if
9: for i ← 0 to k-1 do

10: sloto;i ← slotp;i/turnp ∗ turnnew;
11: end for

3.6.3 Traffic shaping chromosome
Traffic shaping chromosomes represent d−-EAFs performing traffic

shaping on event streams connecting functionally dependent compo-
nents. Like demonstrated in Section 3.3.2, traffic shaping can be effi-
ciently used to control component dependencies and interactions, and

70 Iterative Design Space Exploration Framework

(a) Admitted load mutation (b) Turn mutation

Fig. 3.8: Mutation operators of the TDMA chromosome

hence represents a valuable tool for performance optimization in the
context of complex distributed embedded systems.

3.6.3.1 Search space encoding
The traffic shaping chromosome is realized using a real number rep-

resentation of the minimum distance d− and arithmetic real-coded vari-
ation operators. During exploration the range of allowed d− values is
bounded by a configurable interval [dmin, dmax]. Additionally, the arith-
metic precision can be configured. Typical search precisions range be-
tween allowing only integer values and rounding to two digits after the
decimal point.

For convenience reasons, the search interval bounds can be configured
using metrics that are more comprehensible than the rather abstract d−
values:

Possibility 1: Specifying the maximum buffering delay that may be
produced by the traffic shaper is more comprehensible for timing
constrained systems.

Possibility 2: Specifying the maximum buffer size of the traffic shaper
is more comprehensible if global buffer budgets have to be respected.

Note that specified maximum buffering delays and maximum buffer
sizes can be easily translated into corresponding d− values for the search
intervals that are internally used for optimization (see Section 3.3.1).

3.6.3.2 Variation operators
The search strategy of the variation operators is similar to that of the

TDMA chromosome, with the difference that only one problem dimen-
sion needs to be considered. Starting from random d− values, the search
is conducted by one crossover and one mutation operator.

The crossover operator takes as input two parent individuals and cre-
ates two offsprings. The d− values of the first and the second offspring
are placed at 1

3 and 2
3 , respectively, in the d− interval defined by the

Optimization objectives for timing and performance exploration 71

two parents. This strategy leads to the discovery of of (locally) optimal
d− values lying “between” individuals considered during evolutionary
exploration.

The purpose of the mutation operator is to prevent the search getting
stuck in local optima and to reach parts of the search space that are
inaccessible by only using the crossover operator. It creates one offspring
by increasing or decreasing the d− value of the parent individual by a
percentage randomly chosen in the interval]0, percentagemax], where
percentagemax is configurable.

3.7 Optimization objectives for timing and
performance exploration

In this section several example metrics for optimizing timing and
performance of distributed hard real-time systems are proposed (Sec-
tion 3.7.1). Additionally, the concept of fitness landscape partitioning is
discussed (Section 3.7.2).

3.7.1 Example metrics
In the following example metrics that can be used by the proposed

exploration framework for timing and performance optimization are in-
troduced using the following notations:

Ri - worst-case response time of the i-th task or
worst-case end-to-end latency along the i-th path

Di - deadline of the i-th task or path
ωi - constant weight > 0 of the i-th task or path
k - number of tasks or

number of constrained tasks/paths in the system

Note that in the following timing properties are used as an example.
However, corresponding metrics can easily be derived to optimize jitters,
buffer requirements, power consumption, etc.

A basic metric for expressing the quality of given individuals with
respect to timing is the weighted sum of completion times:

k∑
i=1

ωi ∗ Ri

Even though this metric can be used to minimize task response times
or end-to-end latencies along paths, its practical relevance for systems
with timing constraints is limited. In such cases, metrics taking deadlines
into account are more appropriate.

The lateness of a task (a path) is defined as the amount of time by
that it misses its deadline. Consequently, negative values denote that

72 Iterative Design Space Exploration Framework

the task (the path) completes before the expiration of its deadline. In
the case of constrained systems, lateness can be used to define expressive
global metrics for the timing properties of given individuals. Following
example metric can be used to minimize the (weighted) average lateness:

k∑
i=1

ωi ∗ (Ri − Di)

The given metric expresses the average timing behavior of individ-
uals with respect to timing constraints. However, since met deadlines
compensate linearly for missed deadlines, the metric might mislead the
evolutionary search, and hence hinder the discovery of individuals fulfill-
ing all timing constraints. Consequently, metrics with higher penalties
for missed deadline and less rewards for met deadlines can be more ap-
propriate for systems with hard real-time constraints. Following metric
penalizes violated deadlines exponentially, and can be used to optimize
systems with hard real-time constraints:

k∑
i=1

cRi−Di
i , ci > 1 constant

A further refinement can be obtained by expressing lateness relatively
to the deadline. This is more appropriate for systems containing tim-
ing constraints with significant differences in absolute values. Following
metric penalizes relative deadline misses exponentially:

k∑
i=1

c
Ri−Di

Di
∗100

i , ci > 1 constant

The above discussed metrics integrate timing properties of given indi-
viduals into single values. Using these metrics is appropriate to quickly
find good functioning system parameter configurations. However, inte-
grated metrics do not provide information about trade-offs between sev-
eral timing properties. For this purpose the proposed metrics need to
be applied on subsets of tasks or paths (including single ones). Together
with the Pareto-optimization capabilities of the proposed exploration
framework, system optimization can be carried out considering multi-
ple sets of significant timing properties to discover interesting design
trade-offs.

Note that the discussed metrics only represent examples of how tim-
ing properties and constraints can be used for optimization purposes.
Clearly, depending on the use-case different metrics might be more ap-

Optimization objectives for timing and performance exploration 73

propriate. Examples include metrics based on mean operators (arith-
metic, geometric, harmonic, etc.).

3.7.2 Partitioning of the fitness landscape
The primary criterion when optimizing systems with hard-real time

constraints is feasibility, i.e. adherence to performance constraints. Only
after this superordinate categorization has been accomplished a more
fine-granular differentiation with respect to given optimization objectives
makes sense. Accordingly, it must be ensured that feasible individuals
are always assigned better fitness values than infeasible individuals.

However, using the metrics proposed in the previous section allowing
the integration of two or more constraints into single fitness values, this
might not always be guaranteed, even if exponential penalties are applied
for constraint violations. For instance, infeasible individuals marginally
violating single constraints might be assigned better fitness values than
feasible individuals marginally fulfilling all constraints.

This issue is visualized in Figure 3.9a for an optimization objective
subject to minimization. As can be seen, the fitness landscape of the un-
derlying optimization problem does not precisely separate feasible from
infeasible individuals, i.e. there exist infeasible individuals that are as-
signed better fitness values than feasible individuals. Obviously, during
exploration such inconsistent fitness landscape might mislead the evolu-
tionary search.

Fig. 3.9: Partitioning of the fitness landscape for exploring and opti-
mizing hard real-time systems. Green and red sections indicate regions
of the fitness landscape containing feasible and infeasible individuals,
respectively.

In order to safely separate feasible and infeasible individuals the fit-
ness landscape must be partitioned as visualized in Figure 3.9b. Fitness
landscape partitioning consists in penalizing infeasible individuals with

74 Iterative Design Space Exploration Framework

an offset ensuring that feasible individuals are always assigned better,
i.e. in this case smaller, fitness values. Note that in Figure 3.9b it was
assumed that the maximum feasible fitness value is known. Obviously,
this value can be safely chosen as offset. However, if the maximum fea-
sible fitness cannot be determined, a sufficiently large offset needs to be
chosen manually to safely distinguish feasible from infeasible individuals.

3.8 Case study
In this section the applicability of the proposed framework and user-

controlled design space exploration is demonstrated by means of a small
but realistic example. The studied multi-processor system is presented
in Section 3.8.1, and the design space exploration process is discussed in
Section 3.8.2.

3.8.1 Multi-processor platform example
Figure 3.10 visualized a multi-processor platform consisting of a micro-

controller (uC), a RISC1 CPU (RISC), and dedicated hardware (HW),
all connected via a bus (BUS). The HW acts as interface to an ex-
ternal physical system. It runs one task (sys if) that issues actuator
commands to the physical system and collects routine sensor readings.
sys if is controlled by the controller task ctrl that evaluates sensor data
and calculates necessary actuator commands. ctrl is activated by a peri-
odic timer (tmr) and by the arrival of new sensor data (AND-activation
in a cycle).

The physical system is additionally monitored by 3 smart sensors (s1

- s3) sporadically producing data as reaction to irregular system events.
This data is registered by the OR-activated monitor task (mon) on the
uC that decides how to update the control algorithm. This information
is sent to the task upd on the RISC CPU writing the updated controller
parameters into shared memory.

The RISC CPU additionally executes the task (fltr) that filters the
data stream arriving at input sig in, and sends the processed data via
output sig out. All communication (with the exception of shared-memory
on the RISC CPU) is carried out by the communication tasks c1 - c5
over the on-chip BUS.

Computation and communication tasks have the core execution and
communication times listed in Table 3.3. The event models at the system
inputs are specified in Table 3.4. In order to function correctly, the
system has to satisfy the path latency constraints and the maximum

1Reduced Instruction Set Computing.

Case study 75

jitter constraint at sig out listed in Tables 3.5a and 3.5b, respectively.
In the following it is assumed that the RISC CPU as well as the BUS
are scheduled according to the static priority preemptive policy.

Fig. 3.10: Multi-processor example system

computation task core execution time

mon [10,12]
sys if [15,15]
fltr [12,15]
upd [5,5]
ctrl [20,23]

communication task core communication time

c1 [4,4]
c2 [4,4]
c3 [4,4]
c4 [8,8]
c5 [4,4]

Table 3.3: Core execution and communication times

input event model

s1 sporadic, Ps1 = 1000

s2 sporadic, Ps2 = 750

s3 sporadic, Ps3 = 600

sig in periodic, Pin = 60

tmr periodic, Ptmr = 70

Table 3.4: Input event models

76 Iterative Design Space Exploration Framework

constraint # path maximum latency

1 si → upd 70

2 sig in → sig out 60

3 cycle (e.g. ctrl → ctrl) 140

(a) Path latency constraints

constraint # output event model jitter

4 sig out Jsig out,max = 22

(b) Maximum jitter constraint

Table 3.5: System timing constraints

3.8.2 Exploring the example system
In this section, the given multi-processor example is explored in sev-

eral exploration steps. First, local optimization of the BUS is performed
altering only the priorities of the communication channels. Afterwards,
the search space is extended by allowing traffic shaping with d−-EAFs at
reasonable positions in the system. During these two exploration steps,
the following priority assignment for the tasks running on the RISC CPU
is assumed: upd > fltr > ctrl. In the final exploration step, the priority
assignment on the RISC CPU is included into the search space. Opti-
mization objectives during all exploration steps are the minimization of
the path latencies (si → upd and sig in → sig out), the cycle latency
(ctrl → ctrl), and the output jitter at sig out (Jsig out).

Optimizing the BUS. The first exploration step consists in local
optimization of the BUS. Although there are only five communication
channels on the BUS, it is not intuitive which priority assignments lead
to systems meeting all timing constraints. Local exploration of the BUS
will provide a first feeling about the systems behavior, and thus a deeper
understanding of its performance dependencies. Table 3.6 shows the
obtained solutions.

BUS tasks RISC tasks si → upd sig in → sig out ctrl → ctrl Jsig out

1 c5,c4,c1,c2,c3 upd,fltr,ctrl 55 42 120 18

2 c5,c4,c2,c1,c3 upd,fltr,ctrl 59 42 112 18

3 c5,c2,c4,c1,c3 upd,fltr,ctrl 59 46 108 22

4 c4,c5,c2,c3,c1 upd,fltr,ctrl 63 42 96 18

5 c5,c2,c4,c3,c1 upd,fltr,ctrl 63 46 92 22

Table 3.6: First exploration step: Pareto-optimal solutions obtained
through local optimization on the BUS

Case study 77

As can be seen, there exist five Pareto-optimal priority assignments
for the communication channels on the BUS representing different trade-
offs between the explored optimization objectives. Furthermore, it can
be observed that the channels c4 and c5 have high priorities, whereas
channel c3 has the lowest or second lowest priority in all obtained solu-
tions.

Traffic shaping. In the second exploration step the optimization po-
tential of selective traffic shaping (see Section 3.3) in the given system is
investigated. More precisely, the search-space is extended by a d−-EAF
manipulating the minimum distance of successive data packets sent by
mon over the BUS. It makes sense to perform traffic shaping at this lo-
cation, since the OR-activation of mon leads in the worst-case to bursts
at its output. That is, if all three sensors trigger at the same time, mon
will send three packets over the BUS with a minimum distance of 10
time units, which corresponds to its best-case core execution time. This
transient load peak affects the overall system performance in a negative
way. However, a d−-EAF can increase the minimum distance d− be-
tween successive data packets to weaken the global impact of this burst.
Exploration over d− values enforced by the inserted d−-EAF is subject
of this exploration step.

In the previous exploration step it was observed that in all obtained
solutions the communication channel c3 was assigned the lowest or sec-
ond lowest priority, and even in the latter case the cycle constraint
(ctrl → ctrl) was easily met. This knowledge is exploited in the sec-
ond exploration step to narrow the search space by fixing the priority
of c3 to the lowest on the BUS. This reduces the number of possible
priority assignments from 5! = 120 to 4! = 24.

Table 3.7 lists the additional Pareto-optimal solutions obtained using
a d−-EAF at the output of mon extending the minimum distance of
successive data packets to integer values between 11 and 25 time units.
Note that feasible parameter configurations that are Pareto-dominated
by the results obtained in the first exploration step are not listed.

BUS tasks RISC tasks d− si → upd sig in → sig out ctrl → ctrl Jsig out

6 c1,c5,c4,c2,c3 upd,fltr,ctrl 13 51 45 120 21

7 c1,c5,c4,c2,c3 upd,fltr,ctrl 14 53 45 116 21

8 c1,c5,c4,c2,c3 upd,fltr,ctrl 16 57 45 112 21

9 c5,c1,c4,c2,c3 upd,fltr,ctrl 17 63 41 112 17

10 c1,c5,c4,c2,c3 upd,fltr,ctrl 20 65 40 104 16

Table 3.7: Second exploration step: Additional Pareto-optimal solutions
obtained by performing traffic shaping at the output of mon

78 Iterative Design Space Exploration Framework

As can be observed, traffic shaping at the output of mon leads to
several new interesting solutions. New priority assignments on the BUS
are found that, combined with certain d− values enforced by the inserted
d−-EAF, lead to better timing properties for the constrained paths si →
upd and sig in → sig out as well as the jitter constraint Jsig out.

Only two different priority assignments on the BUS, c5 > c1 > c4 >
c2 > c3 and c1 > c5 > c4 > c2 > c3, occur in the solutions listed in
Table 3.7. In order to better understand the global impact of growing d−
values enforced by the inserted d−-EAF, a closer look is taken at these
two priority assignments. Tables 3.8a and 3.8b visualize the results.
Rows containing Pareto-optimal solutions are emphasized.

d− si → upd sig in → sig out ctrl → ctrl Jsig out

10 49 50 162 26

11 51 50 162 26

12 53 46 120 22

13 55 46 120 22

14 57 46 116 22

15 59 46 116 22

16 61 46 112 22

17 63 41 112 17

18 65 41 112 17

19 67 41 112 17

20 69 41 104 17

(a) BUS priorities: c5 > c1 > c4 > c2 > c3

d− si → upd sig in → sig out ctrl → ctrl Jsig out

10 45 54 162 30

11 47 54 162 30

12 49 50 120 26

13 51 45 120 21

14 53 45 116 21

15 55 45 116 21

16 57 45 112 21

17 59 45 112 21

18 61 45 112 21

19 63 45 112 21

20 65 40 104 16

21 67 40 104 16

22 69 40 104 16

(b) BUS priorities: c1 > c5 > c4 > c2 > c3

Table 3.8: System performance with traffic shaping at the output of mon

Extension for automated search space modification 79

As can be observed, the end-to-end latency of the constrained path
si → upd is increasing with growing minimum distance d−. This is not
surprising, since the inserted d−-EAF is introducing buffering delays
for the data packets transmitted by mon. The maximum d− values
not leading to path constraint violations for the priority assignments
c5 > c1 > c4 > c2 > c3 and c1 > c5 > c4 > c2 > c3 are 20 and 22,
respectively. However, while the d−-EAF leads to increased end-to-end
latencies for the path si → upd, the rest of the system is profiting from
the weakened burst.

Including the RISC CPU. In the third and last exploration step
the priority assignment on the RISC CPU is included into the search
space. Since it was observed in the previous exploration steps that the
cycle constraint ctrl → ctrl is uncritical, the two lowest priorities on the
BUS are statically assigned to the communication channels c2 and c3.
Furthermore, the priority of the task ctrl is fixed to the lowest on the
RISC CPU.

Table 3.9 summarizes the new Pareto-optimal parameter configura-
tions found. Note that parameter configurations that are Pareto-dominated
by results obtained in the previous exploration steps are not listed.

BUS Tasks RISC Tasks d− si → upd sig in → sig out ctrl → ctrl Jsig out

11 c5,c4,c1,c2,c3 fltr,upd,ctrl 10 70 27 120 3

12 c1,c5,c4,c2,c3 fltr,upd,ctrl 12 64 35 120 11

13 c5,c1,c4,c2,c3 fltr,upd,ctrl 12 68 31 120 7

14 c1,c5,c4,c2,c3 fltr,upd,ctrl 14 68 35 116 11

Table 3.9: Third exploration step: Additional Pareto-optimal solutions
obtained by including the RISC CPU into the search space

The obtained solutions represent new interesting design trade-offs
with low jitters at sig out. This quality did not exist in any of the
previously obtained system parameter configurations. However, the low
jitter at sig out is bought with high end-to-end latencies along the con-
strained path si → upd.

3.9 Extension for automated search space
modification

In Section 3.5 it was discussed how dynamic search space modifica-
tions can be performed without losing previously obtained results. Fur-
thermore, it was explained and demonstrated how this can be exploited
to realize an iterative user-controlled exploration approach. However,
analyzing exploration results manually at fine-grain level to decide about

80 Iterative Design Space Exploration Framework

search space modifications is time consuming and tedious, especially for
large systems with many parameters.

For this reason, an extension for automated search space modification
is developed in this section. The introduced extension allows to integrate
chromosome specific automated search space modification strategies into
the proposed design space exploration framework. During exploration
these strategies dynamically analyze the search space structure, extract
advantageous parameter dependencies, and restrict or widen the search
space accordingly.

3.9.1 Integration into the exploration framework
The function of the extension is visualized in Figure 3.11. It is embed-

ded in the exploration process after the variation process, and modifies
the search space exactly once after completion of each generation.

Fig. 3.11: Design space exploration loop with extension for automated
search space modification

Like already mentioned, automated search space modification strate-
gies are chromosome dependent. For instance, heuristic strategies find-
ing interesting priority assignments for priority scheduled components
are fundamentally different from those assigning reasonable time slots in
time-triggered domains. Therefore, automated search space modification
(step 8) is applied separately for different chromosomes. More precisely,
if the population consists of the individuals [i1, . . . , im], where individual
ik, 1 ≤ k ≤ m, consists of n chromosome instances [ck

1, . . . , c
k
n], then step

8 is performed once for each set of chromosome instances [c1
k, . . . , c

m
k],

1 ≤ k ≤ n.

Automated search space modification for priority chromosomes 81

3.9.2 Concept

Concrete search space modifications strategies consist of three differ-
ent parts: the Analyzer, the Decision Maker, and the Narrow Curve.

The Analyzer analyzes the structure of the search space covered by
given chromosome instance sets during exploration (step 8.1). It extracts
information that is useful to evaluate the quality of specific system pa-
rameter values. As mentioned above, this search space structure analysis
is performed chromosome-wise on the population.

The Decision Maker takes as input the search space structure in-
formation extracted by the Analyzer (step 8.2). It is responsible for
interpreting this information and makes concrete decisions on promising
search space modifications (step 8.3).

Narrow Curves bound the maximum level of influence taken by search
space modification strategies on the exploration process. More precisely,
they define when and to what extend the search space might be restricted
during exploration. It is important to bound the level of intervention,
since heavy search space restrictions early in the exploration process
might destroy diversity and lead to the convergence of the search towards
local optima. Narrow Curves are defined as follows:

Def. 3.9.1 (Narrow Curve) A narrow curve is a function
N : N × N × [0, 1] → [0, 1]. Its parameters are (1) the index
of the currently processed generation gc, (2) the total number of
generations gt processed during evolutionary exploration, and (3)
the target percentage pt denoting the maximum search space re-
duction allowed at arbitrary times during exploration. N (gc, gt, pt)
corresponds to the maximum percentage by which the search space
may be restricted in generation gc.

In case that the Decision Maker restricts the search space too heavily,
the utilized Narrow Curve frees parameters until the imposed maximum
percentage criterion is satisfied (step 8.4). Afterwards, the search space
modification decisions are applied (step 8.5), and will be enforced dur-
ing the subsequent variation process (step 9). Note that search space
modification decisions are only taken into account during the variation
process of a single generation. For the subsequent generation new search
space adaptations are calculated.

In the next section, concrete Analyzer, Decision Maker, and Narrow
Curve algorithms for automated search space modification on priority
scheduled resources are introduced and evaluated.

82 Iterative Design Space Exploration Framework

3.10 Automated search space modification for
priority chromosomes

In this section an automated search space modification strategy for
priority chromosomes is presented. Three essential parts will be dis-
cussed: the Analyzer (Section 3.10.1), the Decision Maker (Section 3.10.2),
and the Narrow Curves (Section 3.10.3). For a better overview, the infor-
mation flow between the involved algorithms is visualized in Figure 3.12.

Fig. 3.12: Search space modification for priority chromosomes

In Section 3.10.4 it will be shown that the proposed automated search
space modification strategy considerably improves exploration speed and
quality of obtained results compared to “plain” exploration.

3.10.1 Analyzer
The analyzer used by the proposed automated search space modifi-

cation strategy for priority chromosomes analyzes precedence relations
between priorities of tasks mapped on the same resources. The algorithm
used to extract that information is presented in Section 3.10.1.2. It uses
so-called precedence matrices which are introduced in Section 3.10.1.1.

3.10.1.1 Priority precedence matrices
For a given priority assignment VR (compare Definition 3.6.1) of tasks

mapped on the resource R, the priority precedence matrix MR is defined
as follows:

Automated search space modification for priority chromosomes 83

Def. 3.10.1 (Priority Precedence Matrix MR) For a re-
source R with n mapped tasks t1, . . . , tn and the priority assign-
ment VR, the priority precedence matrix MR is of the following
form:

MR =

⎛
⎜⎝

Φ11 · · · Φ1n
...

. . .
...

Φn1 · · · Φnn

⎞
⎟⎠

where Φij (= MR[i][j]) is defined as follows:

Φij =

⎧⎨
⎩

0 : i = j
1 : Prio(i,VR) < Prio(j,VR)

−1 : otherwise

Note that Φij = 1 (Φij = −1) denotes that ti has a higher (lower)
priority than tj . The precedence matrix for a given priority assign-
ment can be derived with a simple algorithm that will be referred to as
getPriorityPrecedenceMatrix in the following.

3.10.1.2 Search space structure

For each priority scheduled resource R included into automated search
space modification a so-called search space structure matrix SR is intro-
duced:

Def. 3.10.2 (Search space structure matrix SR) Given a
population P with individuals I1, . . . , Im and a resource R with
the mapped tasks t1, . . . , tn.
The search space structure matrix SR integrates precedence infor-
mation of all specific priority assignments V1

R, . . . ,Vm
R of t1, . . . , tn

belonging to the individuals I1, . . . , Im, and is defined as follows:

SR =

⎛
⎜⎝

Ψ11 · · · Ψ1n
...

. . .
...

Ψn1 · · · Ψnn

⎞
⎟⎠

where Ψij ∈ [0, 1] (= SR[i][j]) denotes the percentage of ti having
a higher priority than tj in the priority assignments V1

R, . . . ,Vm
R .

The straightforward Algorithm 6 calculates the search space structure
matrix for a given resource and population.

84 Iterative Design Space Exploration Framework

Algorithm 6 getSearchSpaceStructure

Require: Priority assignments V1
R, . . . ,Vm

R for resource R with mapped
tasks t1, . . . , tn of all individuals I1, . . . , Im in current population P

Ensure: Search space structure matrix SR
1: for all (i, j) with i, j ∈ [1, n] do
2: SR[i][j] ← 0
3: end for
4: for k ← 1 to m do
5: MR ← getPriorityPrecedenceMatrix(Vk

R)
6: for all (i, j) with i, j ∈ [1, n] do
7: if MR[i][j] ← 1 then
8: SR[i][j] ← SR[i][j] + 1
9: end if

10: end for
11: end for
12: for all (i, j) with i, j ∈ [1, n] do
13: SR[i][j] ← SR[i][j] ÷ m
14: end for

3.10.2 Decision maker
The Decision Maker uses the search space structure information ex-

tracted by the Analyzer (Algorithm 6) to decide about search space
modifications.

Algorithm 7 is used to calculate priority precedence relations that
shall be fixed during the subsequent variation process. Note that during
variation first the standard variation operators of the priority chromo-
some are applied. Afterwards, repair algorithms are used to enforce the
priority precedence relations fixed by the Decision Maker.

All priority precedence relations occurring more often than the given
threshold T are considered as promising and are, therefore, fixed by Al-
gorithm 7. Note that under certain circumstances the calculated prece-
dence matrix MR describing parameter restrictions can contain incon-
sistencies, i.e. cyclic priority precedence relations between tasks leading
to infeasible priority assignments.

For example

MR =

⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠

Automated search space modification for priority chromosomes 85

Algorithm 7 getReducedSearchSpace
Require: Search space structure matrix SR for resource R with mapped

tasks t1, . . . , tn, threshold T ∈]0.5, 1]
Ensure: Precedence matrix MR representing parameter restrictions for

R
1: for all (i, j) with i, j ∈ [1, n] do
2: MR[i][j] ← 0
3: end for
4: for all (i, j) with i, j ∈ [1, n] do
5: if SR[i][j] > T then
6: MR[i][j] ← 1
7: MR[j][i] ← −1
8: end if
9: end for

represents the following cyclic priority precedence relation: Prio(1, VR) >
Prio(2, VR) > Prio(3, VR) > Prio(1, VR).

Theorem 3.10.1 states under which conditions a precedence matrix
MR calculated according to Algorithm 7 is guaranteed to be free of
such cyclic priority precedence relations.

Theorem 3.10.1 (Consistency of MR) Assuming that the
search space structure matrix SR was generated based on valid
priority assignments, then the priority precedence matrix MR cal-
culated by Algorithm 7 does not contain cyclic priority precedence
relations of the length n or shorter if the threshold T is chosen
greater or equal than n−1

n . Mathematically spoken, if T ≥ n−1
n

then ∀k ∈ [2, n] and ∀(i1, . . . , ik) ∈ [1, n]k with ix 	= iy ⇔ x 	= y it
holds that

MR[i1][i2] = MR[i2][i3] = . . . = MR[ik−1][ik] = 1
⇒ MR[ik][i1] 	= 1

Proof: Proof through contradiction. It is assumed that MR contains
a cyclic priority precedence relation chain of length n:

MR[i1][i2] = MR[i2][i3] = . . . = MR[in−1][in] = MR[in][i1] = 1

According to the assumption it holds for i ∈ {1, . . . , n}:

Ψi,i+1 ≥ n − 1
n

86 Iterative Design Space Exploration Framework

Consequently, the share of priority assignments for that MR[i][i + 1] = 1
does not hold can be bounded as follows:

Ψi+1,i < 1 − n − 1
n

=
1
n

Accordingly, the maximum share of priority assignments for that at least
one precedence relations of the assumed cyclic chain does not hold is
bounded by the following inequality:

Ψn,1 +
n−1∑
i=1

Ψi+1,i <

n∑
i=1

1
n

= n ∗ 1
n

= 1

Hence, there exist at least one priority assignment that satisfies the
assumed cyclic precedence relation. The assumption that the SR was
generated based on valid priority assignments is violated. �

For instance, Theorem 3.10.1 states that if the threshold T = 0.5
is chosen then direct cyclic priority precedence relations between two
arbitrary processes cannot occur in MR.

Note that for the experiments in Section 3.10.4 T = 0.8 was chosen,
ensuring that MR is free of cyclic priority precedence relations up to
the length of 5. Even though the systems used for the experiments
contained resources with up to 10 mapped processes, i.e. theoretically
allowing cyclic priority precedence relations with lengths superior to 5,
no inconsistent priority matrices were generated by Algorithm 7 during
the performed experiments.

3.10.3 Narrow curves

As already mentioned, Narrow Curves are utilized to bound the in-
fluence of search space modification strategies on the design space ex-
ploration process. In this section two different Narrow Curves are pre-
sented: the Alternating Linear Narrow Curve (Section 3.10.3.1) and the
Sinus Narrow Curve (Section 3.10.3.2). Their effect on the search pro-
cess is evaluated and discussed in Section 3.10.4.

In case that the Decision Maker fixed more priority precedence re-
lations than allowed by the utilized Narrow Curve, some entries of the
priority precedence matrix MR need to be removed. A simple algorithm
freeing excess precedence relations is presented in Section 3.10.3.3.

Automated search space modification for priority chromosomes 87

3.10.3.1 Alternating linear narrow curve Nalt

The maximum allowed percentage by which the search space may be
restricted alternates between being set to 0 during z generations, and
increasing linearly during l generations:

N z,l
alt(gc, gt, pt) =

{
0 : (gc − 1)%(z + l) < z

n(gc)
n(gt)

× pt : otherwise

where n(x) = l ∗
⌊

x
z+l

⌋
+ max(0, x%(z + l) − z).

The basic idea behind this alternating behavior of Nalt is to prevent
exploration from converging to quickly towards local optima by allowing
the reinsertion of diversity into the population during the periods where
the search space modification is disabled.

Figure 3.13a visualizes Nalt for z = l = 5 and pt = 0.8.

3.10.3.2 Sinus narrow curve Nsin

The maximum allowed percentage by which the search space may
be restricted, increases and decreases according to the 2π periodic sinus
function. The additional parameter passes indicates how often the sinus
slope from 0 to π is traversed during exploration:

N passes
sin (gc, gt, pt) =

∣∣∣∣∣∣sin
⎛
⎝π × gc⌊

gt

passes

⌋
⎞
⎠
∣∣∣∣∣∣× pt.

Nsin also alternates between periods allowing more and periods al-
lowing less search space restrictions. However, overall Nsin pursues a
much more aggressive search space restriction policy compared to Nalt,
and thus intervenes more into the “standard” evolutionary exploration
process.

Figure 3.13b visualizes Nsin for passes = 3 and pt = 0.8.

3.10.3.3 Obeying the narrow curve

Algorithm 8 takes as input the priority precedence matrix MR calcu-
lated by the Decision Maker (Algorithm 7). If necessary it randomly re-
moves priority precedence relations to ensure that the percentage search
space reduction satisfies the given Narrow Curve N .

In the first line, the number of priority precedence relations corre-
sponding to completely fixed priority assignments is determined. Ac-
cordingly, the number of allowed priority precedence relations is cal-
culated in line 2. In lines 3 − 8 the actual number of fixed priority

88 Iterative Design Space Exploration Framework

(a) Nalt with z = l = 5 and pt = 0.8

(b) Nsin with passes = 3 and pt = 0.8

Fig. 3.13: Examples for an alternating linear and a sinus narrow curve

precedence relations contained in MR is determined, and in lines 9− 16
excess priority precedence relations are randomly removed.

3.10.4 Evaluation
In this section the effectiveness of the proposed priority search space

modification strategy for priority chromosomes is evaluated. For this
purpose, the exploration success rates, i.e. the average time needed to
find the first feasible system parameter configuration (in terms of pro-
cessed generations), of standard exploration (see Section 3.6.1) and ex-
ploration with automated search space modification are compared. For
the experiments with automated search space modification two differ-
ent narrow curves are evaluated, N 5,5

alt and N 5
sin with target percentage

pt = 80%, and the threshold T = 80% is applied for the Decision Maker.

Automated search space modification for priority chromosomes 89

Algorithm 8 obeyNarrowCurve
Require: Precedence matrix MR representing parameter restrictions

for resource R with mapped tasks t1, . . . , tn, narrow curve N , current
generation gc, total number of generations gt, target percentage pt

Ensure: Reduced precedence matrix M′
R with at most N (gc, gt, pt) per-

cent fixed parameters
1: paramtotal ← n2 ÷ 2 − n
2: paramallowed ← paramtotal ×N (gc, gt, pt)�
3: paramfix ← 0
4: for all (i, j) with i, j ∈ [1, n] do
5: if MR[i][j] = 1 then
6: paramfix ← paramfix + 1
7: end if
8: end for
9: while paramfix > paramallowed do

10: choose random i, j ∈ [1, n]
11: if MR[i][j] = 1 ∨ MR[i][j] = −1 then
12: paramfix ← paramfix − 1
13: MR[i][j] ← 0
14: MR[j][i] ← 0
15: end if
16: end while

For evaluation randomly generated distributed systems containing 50
tasks with complex functional dependencies mapped on 5 to 10 priority
scheduled resources are used. The systems are constrained with max-
imum end-to-end latencies (deadlines) along several task chains. Note
that all experiments are performed twice, once for the generated systems
with original constraints and once for the same systems with constraints
tightened by 10%.

To guide exploration towards feasible system parameter configura-
tions the following scheduling metric is used as optimization objective
(compare Section 3.7).

90 Iterative Design Space Exploration Framework

Def. 3.10.3 (Scheduling metric) For a given system S with
parameter configuration c and constrained task chains C1, . . . , Cn,
the scheduling index is denoted as IS,c and defined as follows:

IS,c =
n∑

i=1

1.1100×Ri−Di
Di

where Ri and Di denote the end-to-end latency and the deadline
of the task chain Ci, respectively.

Original deadlines. The results obtained for systems with original
constraints using a sample size of 200 and confidence level 95% are vi-
sualized in Figure 3.14a. Note that for this experiment confidence level
95% means that, by repetition, in 95% of the cases the average explo-
ration success rates obtained by 200 exploration runs (samples) will lie
inside the confidence intervals indicated by the thin black lines drawn
at the top of the bars, and in 5% of the cases they will lie outside.

As can be seen, exploration with automated search space modification
largely outperforms standard exploration. The difference is especially re-
markable during the first 15 generations. At this point exploration with
automated search space modification using N 5

sin found feasible system
parameter configurations in nearly 90% of all runs (confidence interval
size 4.25%), whereas standard exploration yields an exploration success
rate of only 34% (confidence interval size 6.58%).

Furthermore, it can be observed that automated search space modifi-
cation with N 5

sin yields significant better exploration success rates com-
pared to N 5,5

alt in the first 18 generations. However, after that point the
obtained results converge to an exploration success rate of 98.5% after
30 generations (confidence interval size 1.69%).

Deadlines tightened by 10%. In the second experiment, the same
systems as in the first experiment are used. The only difference is that
all end-to-end latency constraints are tightened by 10%. Obviously, this
measure renders the optimization task more difficult.

The results using a sample size of 200 and confidence level 95% are
visualized in Figure 3.14b.

As can be seen, the difference between standard exploration and ex-
ploration with automated search space modification is even more signifi-
cant than in the first experiment. Standard exploration does not succeed
in finding feasible system parameter configurations until generation 15
(exploration success rate 0.5% with confidence interval size 1%). By
then, exploration with automated search space modification using N 5

sin

Automated search space modification for priority chromosomes 91

already exhibits an exploration success rate of 25% (confidence interval
size 6%).

The difference between the two evaluated narrow curves N 5,5
alt and

N 5
sin is particularly interesting. Like in the first experiment, N 5

sin leads to
significantly better exploration success rates during the first generations.
However, later during exploration N 5,5

alt outperforms N 5
sin, and ultimately

yields a significantly better exploration success rate after 30 generations
(60% with confidence interval size 6.8% vs. 46% with confidence interval
size 6.9%).

(a) Systems with original constraints (200 samples, confidence level of 95%)

(b) Same systems with constraints tightened by 10% (200 samples, confidence level of 95%)

Fig. 3.14: Exploration success with and without automated search space
modification using different narrow curves. One generation corresponds
to the evaluation of 25 individuals.

92 Iterative Design Space Exploration Framework

Conclusion. The conducted experiments show that the proposed au-
tomated search space modification approach for priority chromosomes
significantly increases exploration efficiency. Thereby, the efficiency gain
increases with the difficulty of the optimization task. Hence, automated
search space modification during exploration of complex distributed em-
bedded systems is feasible and effective.

Additionally, the experiments indicate that the choice of the utilized
narrow curve can have major influence on exploration efficiency with
automated search space modification. It is, for instance, reflected in
the obtained results that Nsin pursues a much more aggressive search
space restriction policy compared to Nalt. At first, Nsin leads to signifi-
cant better exploration success rates. However, for difficult optimization
tasks Nalt turns out to be more efficient in the long run. The reason is
that the aggressive search space restriction policy of Nsin might destroy
diversity in the population early during exploration leading to conver-
gence in local optima. Contrarily, Nalt is more unhurried in restricting
the search space, resulting in less exploitation of search space restric-
tions in the beginning but longer lasting and more sustainable efficiency
improvements.

Chapter 4

DESIGN ROBUSTNESS OPTIMIZATION

In this chapter the robustness optimization problem that was moti-
vated in Section 2.5 is addressed. Remember, that in this thesis robust-
ness is not meant, as it is commonly assumed, in the sense of reliability
and fault tolerance. Informally, a system is called robust if it can sus-
tain modifications of system properties, such as worst-case execution
times, data rates, etc., without experiencing severe system performance
degradation, e.g. drastically increased response times or heavily reduced
throughput.

Consequently, the robustness optimization task for a given system
consists in finding parameter configurations that maximize system ro-
bustness with respect to modifications of a given system property set.
To solve this problem, expressive robustness metrics as well as efficient
robustness optimization techniques are needed.

Figure 4.1 visualizes the global robustness evaluation and optimization
approach that is pursued in this chapter.

The robustness optimization problem for given metrics is solved using
an iterative exploration approach. First, the optimizer generates a set
of candidate parameter configurations. Afterwards, the robustness eval-
uator determines robustness characteristics for each parameter configu-
ration that are used by robustness metric calculation for robustness as-
sessment. Finally, the results are communicated to the optimizer, where
they are used to decide about new candidate parameter configurations.
This process is iteratively repeated until satisfactory parameter config-
urations are found. Note that the exploration framework presented in
Chapter 3 is used for this part of the robustness optimization approach.

Some of the robustness metrics that are discussed in this chapter
are computationally expensive, and can, therefore, not directly be inte-

94 Design Robustness Optimization

Fig. 4.1: Robustness evaluation and optimization

grated into the proposed robustness optimization loop. Consequently,
the concerned robustness metrics must be approximated to be efficiently
explored. In order to do so, robustness evaluation can be formulated as
optimization problem that is solved using stochastic techniques. This
approach allows to efficiently approximate the sought-after robustness
metrics with conservative upper and lower bounds.

This possibility is reflected in Figure 4.1. The robustness evaluator
iteratively issues requests to the analysis engine to determine robust-
ness characteristics that are necessary for robustness metric calculation.
Depending on the underlying metric this consists either in the exact
determination or in the approximation of required robustness charac-
teristics. Correspondingly, robustness metric calculation then derives
either exact robustness metric values or approximating upper and lower
robustness bounds.

The remainder of this chapter is organized as follows. In Section 4.1,
basic techniques and notions that are needed to define and evaluate
expressive robustness metrics are introduced: sensitivity analysis and
hypervolume calculation. Afterwards, in Section 4.2, robustness metrics
for the application scenarios and assumptions discussed in Section 2.5.4
are introduced. In the last part of this chapter, Section 4.4, it is shown
how the proposed metrics can be efficiently integrated into robustness
optimization. Thereby, the more complex robustness metrics are ap-

Preliminaries 95

proximated using a scalable stochastic sensitivity analysis method that
is presented in Section 4.3.

4.1 Preliminaries
In this section the formal fundament that is needed to define and eval-

uate expressive robustness metrics is introduced. First, sensitivity anal-
ysis is discussed and formally defined. As motivated in Section 2.5.2, the
robustness optimization approach proposed in this chapter is based on
sensitivity analysis. Secondly, the notion of hypervolume is introduced.
The hypervolume metric is used to assign scalar values to robustness
characteristics derived by sensitivity analysis in the multi-dimensional
case.

4.1.1 Sensitivity analysis
In this section sensitivity analysis of embedded systems is discussed

and formally defined. Note that below given definitions are valid for sen-
sitivity analysis in monotone search spaces. For the performance model
used in this thesis (see Section 2.2), most system properties influence sys-
tem performance monotonically, e.g. worst-case execution times, activa-
tion jitters, and activation periods. In order to consider non-monotone
system properties, like, for instance, resource speeds, the given defini-
tions need to be extended. One possibility is the decomposition of the
search space into piecewise monotone sub-spaces exploiting knowledge
about so-called scheduling anomalies. Note that for dimensions greater
two the decomposition of the search space into monotone sub-spaces can
become very complex and, at present, there exists no complete theory
covering this issue. Therefore, more research into this subject is neces-
sary to pursue this approach. This work is out of the scope of this thesis,
and will, therefore, not be further discussed. However, it shall be noted
that a good starting point is the work in [90] covering the detection of
scheduling anomalies for the two-dimensional case.

Another alternative to cover non-monotone search spaces is to prevent
the appearance of scheduling anomalies. In the utilized performance
model scheduling anomalies occur due to modifications of task best-case
execution times (BCET). There are two reason for that. First, so-called
load anomalies may occur due to BCET modifications. For instance, if a
data processing task executes more rapidly (i.e. with a lower BCET) it
potentially generates higher transient load peaks on the communication
infrastructure (e.g. in the case of bursts) with negative effects on overall
system performance. Second, BCETs directly influence so-called task
offsets describing earliest task activation times with respect to timing

96 Design Robustness Optimization

references. Modern analysis approaches, that are also used for experi-
ments in this thesis, exploit these offsets to rule out overly conservative
analysis assumptions (e.g. all tasks are activated at the same time), and
thus calculate tighter response times [47, 48, 95, 81, 117]. Obviously,
response times very much depend on the relative phasing between tasks.
Certain offset combinations lead to specific task phasing situations re-
sulting in shorter response times. However, this behavior is not linear
and exhibits anomalous behavior, since increasing as well as decreasing
relative phases between tasks might lead to either better or worse re-
sponse times [55]. To conclude, if the BCETs of all tasks is set to zero,
then scheduling anomalies are prevented at the cost of more conservative
performance analysis results.

Sensitivity analysis systematically captures the impact of system prop-
erty variations on system feasibility.

Def. 4.1.1 (System feasibility) A system S with parameter
configuration c is feasible if all imposed performance constraints,
including maximum end-to-end latencies, maximum buffer sizes,
etc., are satisfied.

System feasibility is influenced, on the one hand, by property values
of system components (e.g. worst-case execution times, input data rates,
etc.), and, on the other hand, by the system’s parameter configuration
(e.g. scheduling parameter assignments, etc.). Obviously, only certain
system property value combinations lead to feasible systems for a given
fixed parameter configuration. For instance, increasing worst-case exe-
cution times might lead to deadline violations or resource overload.

Sensitivity analyses calculate the exact boundaries between feasible
and infeasible system states with respect to modifications of a large
variety of system properties, including worst-case execution times, com-
munication volumes, input data rates, processor and communication link
performance, etc.

There is a large body of work addressing this issue. Classical ap-
proaches (e.g. [71, 69, 68, 63, 59, 106, 105, 4]) consider very restricted
application and execution platform models (e.g. single components, fully
periodic systems with deadlines equal to the period, etc.), and derive
so-called feasibility tests or schedulability tests to characterize system
feasibility. Using these tests, the border between feasible and infeasible
system states can be determined based on quantitative evaluations of re-
source utilizations (utilization bound). More recent approaches include
system properties variations into schedulability considerations [122, 88].
However, also these techniques, the first that are called sensitivity anal-
yses, are based on simplistic application and execution platform models.

Preliminaries 97

Consequently, the results yielded by these methods are of limited use
for robustness evaluation and characterization of larger heterogeneous
embedded systems.

To be relevant and expressive, sensitivity analyses must be indepen-
dent of the underlying performance model. Modern sensitivity analy-
sis approaches [93, 91] fulfill this requirement, and can be applied to
arbitrary state-of-the-art formal analysis engines, e.g. [50, 17], which
increases their applicability to real-world design flows of complex em-
bedded systems.

The following formal definitions are based on an abstract system eval-
uation function capable of verifying system feasibility.

Def. 4.1.2 (System evaluation function) Let Sc denote the
system S with parameter configuration c and P = {p1, . . . , pn} a
set of system properties. The system evaluation function evalSc

checks whether or not Sc is feasible if the property values �v =
(v1, . . . , vn) are applied to the properties P.

evalSc(P,�v) =

⎧⎪⎨
⎪⎩

true, if Sc is feasible with values �v for the
properties P

false, otherwise.

Note: The abstract system evaluation function can be implemented
using an arbitrary state-of-the-art analysis engine. Examples
include SymTA/S [50, 96] and RTC-MPA [17, 123].

One-dimensional sensitivity analysis. Given an abstract system
evaluation function, minimum and maximum feasible values for arbitrary
system properties can be calculated using, for instance, the approach
in [93]. Calculating these extreme values for single system properties is
called one-dimensional sensitivity analysis. For sensitivity analysis two
different system property types are distinguished:

98 Design Robustness Optimization

Def. 4.1.3 (System property type) Let Sc denote the system
S with parameter configuration c. The type of a given system
property p subject to sensitivity analysis is categorized as follows:

1. p is subject to minimization if a decrease of its initial value
v(p) potentially leads to the deterioration of the system perfor-
mance. Following properties hold for p:

evalSc(p, v(p)) = true ⇒ ∀x > v(p) : evalSc(p, x) = true

evalSc(p, v(p)) = false ∧ ∃x : evalSc(p, x) = true
⇒ x > v(p)

2. p is subject to maximization if an increase of its initial value
v(p) potentially leads to the deterioration of the system perfor-
mance. Following properties hold for p:

evalSc(p, v(p)) = true ⇒ ∀x < v(p) : evalSc(p, x) = true

evalSc(p, v(p)) = false ∧ ∃x : evalSc(p, x) = true
⇒ x < v(p)

Examples for system properties subject to maximization are worst-
case execution times and activation jitters. Examples for system prop-
erties subject to minimization are activation periods and resource speeds.
For the two different system property types, one-dimensional sensitivity
analysis can be formalized according to Definition 4.1.4.

Def. 4.1.4 (Initial and extreme property values) Let Sc

denote the system S with parameter configuration c. For a given
system property p the initial property value is denoted as v(p).
The extreme property value for p is denoted as v+

Sc
(p) and defined

as follows:

1. If p is subject to minimization:

v+
Sc

(p) = min {x ∈ R+ | evalSc(p, x) = true}

2. Otherwise, if p is subject to maximization:

v+
Sc

(p) = max {x ∈ R+ | evalSc(p, x) = true}

Preliminaries 99

Note: v+
Sc

(p) can be calculated using sensitivity analysis algorithms,
e.g. [93, 122, 11].

Sensitivity analysis can be applied to feasible and infeasible
systems. Accordingly, v+

Sc
(p) can be greater (smaller) than

v(p) for system properties subject to minimization (maxi-
mization). However, for the robustness metrics proposed in
this chapter sensitivity analysis is always performed on fea-
sible systems, since infeasible systems can obviously not be
associated with any robustness properties.

Multi-dimensional sensitivity analysis. To extend sensitivity anal-
ysis to the multi-dimensional case, i.e. taking into account interdepen-
dencies between multiple system properties, one-dimensional sensitivity
analysis can be used to delimit the space containing the sought-after
boundary between feasible and infeasible system property value combi-
nations:

Def. 4.1.5 (Bounding hypercube) Let Sc denote the system
S with parameter configuration c. For a given set of system prop-
erties P = {p1, . . . , pn} the n-dimensional bounding hypercube
HSc(P) ⊂ R

n
+ is defined as follows:

HSc(P) =
[
min
(
v(p1),v+

Sc
(p1)
)
, max

(
v(p1),v+

Sc
(p1)
)]

× . . .×[
min
(
v(pn),v+

Sc
(pn)
)
, max

(
v(pn),v+

Sc
(pn)
)]

The exact boundary between feasible and infeasible system prop-
erty value combination in the multi-dimensional case is called sensi-
tivity front. It can be formally characterized using the notion of Pareto-
optimality:

100 Design Robustness Optimization

Def. 4.1.6 (Pareto-optimality) Given a set V of n-dimensional
vectors in R

n, the vector �v = (v1, . . . , vn) ∈ V Pareto-dominates
the vector �w = (w1, . . . , wn) ∈ V iff for all elements 1 ≤ i ≤ n we
have

1. minimization problem: vi ≤ wi and for at least one element l
we have vl < wl.

2. maximization problem: vi ≥ wi and for at least one element l
we have vl > wl.

A vector is called Pareto-optimal iff it is not Pareto-dominated by
any other vector in V .

Notations: �v �+ �w denotes �v Pareto-dominates �w in the sense of
a maximization problem.

�v �− �w denotes �v Pareto-dominates �w in the sense of
a minimization problem.

Ω+(V) represents the set of vectors in V which are
Pareto-optimal in the sense of a maximization prob-
lem.

Ω−(V) represents the set of vectors in V which are
Pareto-optimal in the sense of a minimization prob-
lem.

Note: Given the notion of Pareto-optimality a simple algorithm
can be derived checking if a given n-dimensional vector v is
Pareto-optimal with respect to a collection of reference vec-
tors V . In the following, such an algorithm is referred to as
dominatedBy(v, V, max), where max ∈ {true, false} indi-
cates whether Pareto-optimality is meant in the sense of a
maximization or minimization problem.

Checking Pareto-optimality is of linear computational com-
plexity with respect to the cardinality of the reference vector
set V .

The formal characterization of the sensitivity front is given in Defini-
tion 4.1.7, which generalizes Definition 4.1.4.

Preliminaries 101

Def. 4.1.7 (Sensitivity front) Let Sc denote the system S with
parameter configuration c. For a given set of system properties
subject to maximization P = {p1, . . . , pn} the sensitivity front
is defined as the set of all feasible property value combinations
which are not Pareto-dominated (in the sense of a maximization
problem) by any other working property value combination:

Fsens
Sc

(P) = {�x ∈ HSc(P) |evalSc(P,�x)∧ 	 ∃�y ∈ HSc(P) :
(evalSc(P,�y) ∧ �y �+ �x)}

Note: For system properties subject to minimization Pareto-
domination must be considered in the sense of a minimization
problem.

In case the involved system properties are of different types,
the Pareto-dominance relation must be adapted to reflect the
mixed minimization/maximization problem.

In case Sc is not feasible with the initial values for the con-
sidered properties P the resulting sensitivity front might be
equal to the empty set.

The sensitivity front separates the continuous spaces of system prop-
erty value combinations leading to feasible and infeasible systems. Fig-
ure 4.2 visualizes two-dimensional example sensitivity fronts for system
properties subject to maximization and minimization.

(a) Properties subject to maximization (b) Properties subject to minimization

Fig. 4.2: Two-dimensional example sensitivity fronts

102 Design Robustness Optimization

4.1.2 Hypervolume

Some of the introduced robustness metrics in this chapter are based
on the notion of hypervolume. Hypervolume measures the portion of
space covered, in the sense of Pareto-dominance (see Definition 4.1.6),
by a given vector set.

As can be observed in Figure 4.2, feasible regions are obtained if
multi-dimensional sensitivity analysis is applied to two or more system
properties. Hypervolume is meaningful as starting point for robustness
metrics in the multi-dimensional case, since it is sensitive to improvement
in space covered by such feasible regions. More precisely, feasible regions
including (i.e. dominating) other feasible regions lead to strictly greater
hypervolume values.

First,absolute hypervolume (Section 4.1.2.1) is introduced. After-
wards, the weighted percentage hypervolume is derived (Section 4.1.2.2).

4.1.2.1 Absolute hypervolume

According to Definition 4.1.8 two different types of hypervolumes are
distinguished: the inner and the outer hypervolume.

Def. 4.1.8 (Absolute inner and outer hypervolumes) Let
H =

[
b1,b1

]
× . . . ×

[
bn,bn

]
⊂ R

n
+ denote a n-dimensional hyper-

cube, and V = {�v1, . . . , �vm} a set of n-dimensional vectors with
∀i�vi ∈ H.

1. The inner hypervolume of V in H is denoted as λ−
H(V) and is

defined as the volume of the space in H containing all vectors
�w which are Pareto-dominated by at least one vector �v ∈ V:

λ−
H(V) = vol {�w ∈ H | ∃�v ∈ V : �v �+ �w}

2. The outer hypervolume of V in H is denoted as λ+
H(V) and is

defined as the difference between the volume of the hypercube
H and the volume of the space in H containing all vectors w
Pareto-dominating at least one vector v ∈ V:

λ+
H(V) = vol(H) − vol {�w ∈ H | ∃�v ∈ V : �w �+ �v}

Note: Formal definitions of the abstract vol operator based on the vol-
ume of polytopes or hypercubes can be found in [137] and [32],
respectively.

Preliminaries 103

Figures 4.3a and 4.3b visualize the difference between inner and outer
hypervolume in the two-dimensional case: the inner hypervolume cor-
responds to the space covered by the lower step function, whereas the
upper hypervolume corresponds to the space covered by the upper step
function.

(a) Absolute inner hypervolume (b) Absolute outer hypervolume

Fig. 4.3: Absolute inner and outer hypervolumes

The inner hypervolume is usually used as measure to compare the
efficiency of evolutionary multi-objective algorithms [32, 138]. How-
ever, recently it was also used as selection criterion for multi-objective
search [28, 135]. Especially for the second point it is required that hy-
pervolume can be calculated efficiently. Therefore, several efficient algo-
rithms for hypervolume calculation were proposed in the last years [128,
35, 134].

Given an algorithm for calculating the inner hypervolume λ−(V), the
outer hypervolume λ+(V) can be calculated according to Algorithm 9.

First, the hypercube bounding V is calculated (lines 1 − 8). After-
wards, the origin of the vectors in V is translated to the extreme point
of the bounding hypercube (lines 9 − 13). Note that the inner hyper-
volume of the translated vector set corresponds to the space containing
all vectors dominating at least one vector in the initial set V. Finally,
λ+(V) is calculated by subtracting the inner hypervolume of the trans-
lated vector set from the hypervolume of the bounding hypercube (lines
14 − 18).

4.1.2.2 Weighted percentage hypervolume
In this section the so-called weighted percentage hypervolume, which

is based on the notion of absolute hypervolume, is introduced.
For the weighted percentage hypervolume the coordinates of the con-

sidered vectors are translated to the percentage increase with respect to

104 Design Robustness Optimization

Algorithm 9 λ+(V)
Require: Set of n dimensional Pareto-optimal vectors V
Ensure: Outer hypervolume λ+ of V

1: for i ← 1 to n do
2: min[i] ← ∞
3: max[i] ← −∞
4: for all v ∈ V do
5: min[i] ← min (min[i], v[i])
6: max[i] ← max (max[i], v[i])
7: end for
8: end for
9: for all v ∈ V do

10: for i ← 1 to n do
11: v[i] ← max[i] − v[i]
12: end for
13: end for
14: λ+

tmp ← 1
15: for i ← 1 to n do
16: λ+

tmp ← λ+
tmp × (max[i] − min[i])

17: end for
18: λ+(V) ← λ+

tmp − λ−(V)

the origin of the bounding hypercube. This is necessary for obtaining
expressive and comparable results in case that coordinate values in dif-
ferent dimensions are of different orders of magnitude. Additionally, it
is possible to attach importance levels to each dimension, i.e. the space
covered in one dimension might be considered more important than that
covered in other dimensions.

Def. 4.1.9 (Weighted percentage hypervolumes) Let H =[
b1,b1

]
× . . . ×

[
bn,bn

]
⊂ R

n
+ denote a n-dimensional hypercube,

and V = {�v1, . . . , �vm} a set of n-dimensional vectors with ∀i�vi =
(vi1, . . . , vin) ∈ H. Given a set of weights W = {w1, . . . , wn} with
∀iwi ≥ 1, the inner and outer weighted percentage hypervolumes
of V are defined as follows:

λ̃−
H(V,W) = λ−

H̃W
(ṼW) and λ̃+

H(V,W) = λ+
H̃W

(ṼW)

Robustness metrics 105

Thereby:

H̃W =
[
0, f1(

b1−b1
b1

)
]
× . . . ×

[
0, fn(bn−bn

bn
)
]

ṼW = {�v∗1, . . . , �v∗m}, with �v∗i =
(
f1(

vi1−b1
b1

), . . . ,fn(vin−bn
bn

)
)

fi(x) = x ×
(
x × wi−1

10 + 1
)

Note: The f function can be replaced by other weighting functions.
However, an adequate weighting function for λ̃− and λ̃+ must
grow faster than linear. The reason is that linear functions do
not change the proportion between two compared hypervolumes
even if they cover different amounts of space in different dimen-
sions.

Figure 4.4a visualizes the absolute inner hypervolumes for two ex-
ample vector sets. The corresponding inner percentage hypervolumes
without weighting are visualized in Figure 4.4b. As can be observed,
both vector sets cover exactly the same amount of space. However, the
vector set represented by the squares covers more space in x-dimension,
whereas the vector set represented by the diamonds covers more space
in y-dimension. This is reflected by the metric if weighting is applied.
Figure 4.4c visualizes the percentage hypervolumes with weight 3 for
the x-dimension. As expected the vector set represented by the squares
is assigned a higher weighted percentage hypervolume compared to the
vector set represented by the diamonds. The other way around, if the y-
dimension is weighted 3 it can be observed in Figure 4.4d that the vector
set represented by the diamonds results in a higher weighted percentage
hypervolume.

4.2 Robustness metrics
In this section meaningful robustness metrics that can be included

into design space exploration to conceive robust systems are introduced.
The proposed metrics are based on sensitivity analysis techniques (see
Section 4.1.1). Basically, two different robustness metrics types are dis-
tinguished:

1. Independent system properties: In Section 4.2.1 robustness metrics
for system properties that are independent with respect to system
performance are proposed. Thereby, independent denotes that the
modification of one system property does not influence the permis-
sible modification space of other system properties. The proposed
metrics are based on one-dimensional sensitivity analysis.

106 Design Robustness Optimization

(a) Absolute inner hypervolumes for two vec-
tor sets

(b) Percentage inner hypervolumes without
weighting

(c) Percentage inner hypervolumes with
weight 3 for x-dimension and no weighting
for y-dimension

(d) Percentage inner hypervolumes with no
weighting for x-dimension and weight 3 for
y-dimension

Fig. 4.4: Examples for weighted percentage hypervolume

2. Dependent system properties: In Section 4.2.2 robustness metrics for
system properties that are dependent with respect to system perfor-
mance are proposed. Thereby, dependent denotes that the modifi-
cation of one system property decreases the maximum permissible
modification space for dependent system properties. In order to be
meaningful, the robustness metrics must include dependencies be-
tween involved properties. Obviously, slack values determined by
one-dimensional sensitivity analysis are not sufficient to characterize
system robustness in this case. The proposed metrics are, therefore,
based on multi-dimensional sensitivity analysis.

Figures 4.5a and 4.5b visualize the difference between independent
and dependent system properties in the two-dimensional case. If one-
dimensional sensitivity analysis is applied, the same slack values are
obtained for the given system property pairs (p1, p2) and (p3, p4). Con-
sequently, their robustness would be considered equal. However, intu-
itively it is clear that the robustness of (p1, p2) is higher, since the feasible

Robustness metrics 107

region that can be determined using two-dimensional sensitivity analysis
covers far more valid system property value combinations.

In some situations, e.g. in the case of indirect dependencies, it might
not be possible for the designer to a-priori determine whether or not the
considered system properties exhibit dependencies with respect to sys-
tem performance. This fact might only be discovered during robustness
analysis. Therefore, a tool that implements the proposed robustness op-
timization methods should not a-priori separate both cases, but rather
allow the designer to dynamically change her initial assumptions. For in-
stance, she might start assuming dependent behavior and later, as more
information become available, possibly switch to the metrics tailored for
the independent case.

Furthermore, the proposed robustness metrics for dependent system
properties can be combined with those for independent system proper-
ties. For instance, several sets of dependent system properties might
exhibit no interdependencies. In such a case it makes sense to individu-
ally assess the robustness of the dependent system properties sets, and to
combine the results using the metrics for independent system properties.

Note that in both cases, i.e. for independent and dependent system
properties, robustness metrics covering static as well as dynamic system
behavior are discussed (compare Section 2.5.4). Additionally, metrics
quantifying the benefit of conceiving reconfigurable system components
are derived (Section 4.2.3).

(a) Independent properties p1 and p2 (b) Dependent properties p3 and p4

Fig. 4.5: Example feasible regions for independent and dependent system
properties subject to maximization (two-dimensional case)

108 Design Robustness Optimization

4.2.1 Independent system properties

The robustness metrics presented in this section are tailored for inde-
pendent system properties. This comes with the advantage that the pro-
posed metrics can be computed very efficiently, since only one-dimensional
sensitivity analysis needs to be conducted for each considered system
property. However, the downside is that the metrics cannot be applied
to situations where system properties influence each other.

The proposed metrics allow to flexibly weight and adjust the impact of
the involved system properties. In addition to classical weighting mech-
anisms, the concepts of the generalized mean are integrated into the
proposed metrics. Furthermore, rather than using absolute slack values,
the proposed metrics are based on the notion of percentage slack de-
scribing the permissible modification space of system properties relative
to their initial values in percent.

Def. 4.2.1 (Percentage slack) Let Sc denote the system S with
parameter configuration c. The percentage slack of a given system
property p is defined as follows:

pslackSc
(p) =

| v+
Sc

(p) − v(p) |
v(p)

× 100

Static design robustness. The SDR metric is given in Definition 4.2.2.
The influence of the involved system properties p1, . . . , pn can be config-
ured by adjusting the corresponding weights w1, . . . , wn. Additionally,
the SDR metric is strongly influenced by the parameter k. Note that
the way in which k can be utilized to adapt the behavior of the SDR
metric to different use-cases is discussed below.

Def. 4.2.2 (Static design robustness) Let Sc denote the sys-
tem S with parameter configuration c and P = {p1, . . . , pn} a set
of system properties. Given a set of weights W = {w1, . . . , wn}
with ∀iwi > 0 and w =

∑n
i=1 wi, and a real number k, the static

design robustness of Sc with respect to P is defined as follows:

SDRSc(P,W, k) =

{
w
√∏n

i=1 pslackSc
(pi)wi , k = 0

k

√
1
w ×
∑n

i=1

(
wi × pslackSc

(pi)k
)

, otherwise

Robustness metrics 109

Dynamic design robustness. The DDR metric for a single system
property is given in Definition 4.2.3. It is defined as the percentage slack
of the parameter configuration (included in the set of possible parameter
configurations C) that allows the maximum variation for the considered
system property.

Def. 4.2.3 (Dynamic design robustness) The dynamic design
robustness of a given system S with respect to a system property
p considering a set of possible parameter configurations C (recon-
figuration space) is defined as follows:

DDRS,C(p) = max
c∈C

pslackSc
(p)

The dynamic design robustness metric integrating the robustness po-
tential of several system properties that can be achieved through recon-
figurability is given in Definition 4.2.4.

Def. 4.2.4 (Aggregated dynamic design robustness) Let
S denote a given system, and P = {p1, . . . , pn} a set of system
properties. Given a set of possible parameter configurations C for
S (reconfiguration space), a set of weights W = {w1, . . . , wn} with
∀iwi > 0 and w =

∑n
i=1 wi, and a real number k, the aggregated

dynamic design robustness of S with respect to P is defined as
follows:

ADDRS,C(P,W, k) =

{
w
√∏n

i=1 DDRS,C(pi)wi , k = 0
k

√
1
w ×
∑n

i=1 (wi × DDRS,C(pi)k) , otherwise

The proposed ADDR metric is based on the DDR values of the in-
volved system properties, and includes classical weighting mechanisms.
Furthermore, the ADDR metric is influenced by the k parameter in the
same manner as the SDR metric.

Influence of the parameter k. The SDR and ADDR metrics can
be configured to favor system properties with either low or high slack
values by modifying the parameter k. Figure 4.6 visualizes the impact
of k for two hypothetical system properties (both weighted 1) with slack
values v1 and v2.

It can be observed that decreasing and increasing values for k increase
the impact of system properties with small and large slacks, respectively.
In particular, low k values lead to decreased metric values for parameter

110 Design Robustness Optimization

Fig. 4.6: Influence of the parameter k on the metric values

configurations with unbalanced robustness properties, i.e. parameter
configurations buying large slack for single system properties with small
slacks for other system properties. In other words, with low k values the
metrics tend to maximize slacks of system properties with low robustness
potentials, leading to a more balanced distribution of globally available
performance head-room. Contrarily, choosing high k values leads to
slack maximization for the most robust system properties.

Special cases for the choice of k (not including the effects of weighting):

k → −∞: minimum of the involved slacks

k = 0: geometric mean of the involved slacks

k = 1: arithmetic mean of the involved slacks

k → ∞: maximum of the involved slacks

4.2.2 Dependent system properties
The robustness metrics discussed in the previous section quantify the

robustness of several system properties. However, since the underlying
sensitivity analysis is one-dimensional, possible performance interdepen-
dencies are ignored. In case that the considered system properties are
independent or influence each other only marginally those metrics are
meaningful. However, in case of dependent system properties it is nec-
essary to include their performance dependencies into the robustness
metrics.

In this section robustness metrics capable of capturing performance
dependencies between considered system properties are introduced. The
proposed metrics are based on multi-dimensional sensitivity analysis

Robustness metrics 111

(Section 4.1.1), and the notion of weighted percentage hypervolume (Sec-
tion 4.1.2.2).

Static design robustness. The static design robustness in the case
of dependent system properties is formalized by Definition 4.2.5.

Def. 4.2.5 (Static design robustness for dependent system
properties) Let Sc denote the system S with parameter config-
uration c and P = {p1, . . . , pn} a set of dependent system prop-
erties. Given a set of weights W = {w1, . . . , wn} with ∀iwi ≥ 1,
the static design robustness of Sc with respect to P is defined as
follows:

If the properties P are subject to maximization

SDRdep
Sc

(P,W) = λ̃−
HSc (P)(F

sens
Sc

(P),W)

Otherwise, if the properties P are subject to minimization

SDRdep
Sc

(P,W) = λ̃−
HSc (P)

({
(b1, . . . , bn)

}
,W
)
−λ̃+

HSc (P)(F
sens
Sc

(P),W)1

Depending on the considered system properties type, either the inner
or the outer weighted percentage hypervolume is applied to the sensitiv-
ity front of the given parameter configuration to quantify its robustness.

Consider, for instance, the two-dimensional situation depicted in Fig-
ure 4.7. On the left-hand side the points defining the sensitivity front for
two system properties p1 and p2 are visualized. In case that both sys-
tem properties are subject to maximization, the region that can safely
be included into robustness evaluation is equal to the region that is
Pareto-dominated by the sensitivity front in the sense of a maximiza-
tion problem. In the shown two-dimensional case, this corresponds to
the region below the lower step function, and more generally, in the n-
dimensional case, to the inner hypervolume covered by the sensitivity
front inside the bounding hypercube.

In the contrary case, i.e. if p1 and p2 are subject to minimization,
the region that can be safely considered for robustness assessment is
equal to the region that is Pareto-dominated by the sensitivity front in
the sense of a minimization problem. In the two-dimensional case, this
region corresponds to the intersection between the bounding hypercube
and the region below the upper step function. In the general case, the

1b1, . . . , bn denote the extreme points of the bounding hypercube HSc (P)

112 Design Robustness Optimization

outer hypervolume covered by the sensitivity front must be subtracted
from the hypervolume of the bounding hypercube.

Fig. 4.7: Static design robustness (SDR) for dependent system properties
in the two-dimensional case

Dynamic design robustness. In the dynamic case the robustness
properties of several parameter configuration, representing the possible
reconfiguration space, have to be included into the robustness metric.
The so-called dynamic sensitivity front integrates the multi-dimensional
sensitivity fronts of several parameter configurations. Its formal charac-
terization is given in Definition 4.2.6.

Def. 4.2.6 (Dynamic sensitivity front) Let S denote a given
system, and P = {p1, . . . , pn} a set of system properties. Given a
set of possible parameter configurations C for S (reconfiguration
space), the dynamic sensitivity front is defined as follows1:

If the properties P are subject to maximization

F̃sens
S,C (P) = Ω+(

⋃
c∈C

Fsens
Sc

(P))

Otherwise, if the properties P are subject to minimization

F̃sens
S,C (P) = Ω−(

⋃
c∈C

Fsens
Sc

(P))

1For the definition of Ω+ and Ω− see Definition 4.1.6.

Robustness metrics 113

The dynamic sensitivity front is contained in the dynamic
bounding hypercube that is defined as follows:

H̃S,C(P) =
⋃
c∈C

HSc(P)

An interpretation of the dynamic sensitivity front is discussed in the
example below.

Based on the dynamic sensitivity front, dynamic design robustness
can be formalized according to Definition 4.2.7.

Def. 4.2.7 (Dynamic design robustness for dependent
system properties) Let S denote a given system, and P =
{p1, . . . , pn} a set of system properties. Given a set of possible
parameter configurations C for S (reconfiguration space), and a
set of weights W = {w1, . . . , wn} with ∀iwi ≥ 1, the dynamic
design robustness of S with respect to P is defined as follows:

If the properties P are subject to maximization

DDRdep
S,C(P,W) = λ̃−

H̃S,C(P)
(F̃sens

S,C (P),W)

Otherwise, if the properties P are subject to minimization

DDRdep
S,C(P,W) = λ̃−

H̃S,C(P)

({
(b1, . . . , bn)

}
,W
)
−λ̃+

H̃S,C(P)
(F̃sens

S,C (P),W)1

An example of how the dynamic design robustness for dependent sys-
tem properties is evaluated in the two-dimensional case is illustrated in
Figure 4.8.

On the left-hand side, two sets of points defining the sensitivity fronts
of p1 and p2 for two different parameter configurations c1 and c2 are
visualized. The dynamic bounding hypercube is obtained by building
the union of the hypercubes bounding the two given sensitivity fronts.

In case that p1 and p2 are subject to maximization, the dynamic
sensitivity front is defined by the Pareto-optimal points (in the sense of
a maximization problem) contained in the union set of the two given
sensitivity fronts. The dynamic sensitivity front can be interpreted as
follows: for each point (i.e. property value combination of p1 and p2)
that is Pareto-dominated by the dynamic sensitivity front in the sense
of a maximization problem, there exist at least one feasible parameter
configuration. Hence, the region covered by the dynamic sensitivity

1b1, . . . , bn denote the extreme points of the dynamic bounding hypercube H̃S,C(P)

114 Design Robustness Optimization

Fig. 4.8: Dynamic design robustness (DDR) for dependent system prop-
erties in the two-dimensional case including two parameter configura-
tions c1 and c2

front can be safely included into robustness evaluation. In the shown
two-dimensional case, this corresponds to the region below the lower
step function, and more generally, in the n-dimensional case, to the
inner hypervolume covered by the dynamic sensitivity front inside the
dynamic bounding hypercube.

In the opposite case, i.e. if p1 and p2 are subject to minimization,
the dynamic sensitivity front is defined by those points of the two given
sensitivity fronts that are Pareto-optimal in the sense of a minimization
problem. Accordingly, there exist at least one feasible parameter con-
figuration for each point (i.e. property value combination of p1 and p2)
that is Pareto-dominated by the dynamic sensitivity front in the sense
of a minimization problem. In the two-dimensional case, this region
corresponds to the intersection between the dynamic bounding hyper-
cube and the region below the upper step function. In the general case,
the outer hypervolume covered by the dynamic sensitivity front must be
subtracted from the hypervolume of the dynamic bounding hypercube.

4.2.3 Robustness gain through reconfigurability
In this section metrics are derived that quantify the robustness gain

achievable through system reconfigurability or dynamic system behav-
ior compared to the static case, where parameters remain fixed during
system lifetime. Given these metrics, the benefit of designing reconfig-
urable system components is explicitly measurable. Consequently, they
can help system architects to decide if it is worthwhile investing engi-
neering effort in creating reconfiguration mechanisms. More generally,

Stochastic multi-dimensional sensitivity analysis 115

by adjusting the reconfiguration space C, system components for which
reconfigurability is particularly advantageous, i.e. leading to significant
robustness gains, can be identified. Obviously, by this means the engi-
neering effort to conceive robust systems can be efficiently focused.

Like in the previous sections the cases of independent and dependent
system properties are distinguished.

Independent system properties. Given the formal definitions of
static design robustness (Definition 4.2.2) and aggregated dynamic de-
sign robustness (Definition 4.2.4) for independent system properties, the
robustness gain through reconfigurability is defined as follows.

Def. 4.2.8 (Robustness gain for independent system prop-
erties) Let S denote a given system, and P = {p1, . . . , pn} a set
of independent system properties. Given a set of possible parame-
ter configurations C for S (reconfiguration space), a set of weights
W = {w1, . . . , wn} with ∀iwi > 0, and a real number k, the robust-
ness gain through system reconfigurability is defined as follows:

GS,C(P,W, k) = ADDRS,C(P,W, k) − max
c∈C

{SDRSc(P,W, k)}

Dependent system properties. For dependent system properties
the formal characterization of the robustness gain that can be achieved
through system reconfigurability is given in Definition 4.2.9. It is based
on the formal definitions of static design robustness (Definition 4.2.5)
and dynamic design robustness (Definition 4.2.7) for dependent system
properties.

Def. 4.2.9 (Robustness gain for dependent system prop-
erties) Let system S denote a given system, and P = {p1, . . . , pn}
a set of dependent system properties. Given a set of possible pa-
rameter configurations C for S (reconfiguration space), and a set
of weights W = {w1, . . . , wn} with ∀iwi ≥ 1, the robustness gain
through system reconfigurability is defined as follows:

Gdep
S,C (P,W) = DDRdep

S,C(P,W) − max
c∈C

{SDRdep
Sc

(P,W)}

116 Design Robustness Optimization

4.3 Stochastic multi-dimensional sensitivity
analysis

In this section a method for multi-dimensional sensitivity analysis
based on stochastic exploration techniques is introduced. The main rea-
son why this method is developed as an alternative to existing exact
analysis approaches [93, 91] is that its precision is continuously scal-
able. More precisely, the method yields upper and lower bounds for the
sought-after sensitivity front that are iteratively refined during explo-
ration. Note that for the determination of exact sensitivity fronts the
presented stochastic approach does not have advantages in terms of com-
putational complexity compared to exact approaches [93, 91]. However,
in many cases upper and lower bounds that are sufficient for robustness
exploration are easier to determine than exact sensitivity fronts. In Sec-
tion 4.4.2 it will be shown how these bounds can be used to efficiently
approximate and explore the robustness metrics for dependent system
properties presented in Section 4.2.2.

Besides its applicability for robustness optimization, sensitivity anal-
ysis can be used for further problems in the field of embedded system
design (e.g. system dimensioning). For a detailed discussion of sensitiv-
ity analysis refer to [89].

Note that the definitions and algorithms given in this section assume
that the considered system properties are subject to maximization. How-
ever, the method can be modified in a straight-forward manner to also
cover system properties that are subject to minimization. Additionally,
it is important to mention that the proposed method assumes monotone
search spaces. This is not a limitation of the approach. However, in
order to cover non-monotone search spaces further measures have to be
taken (for a discussion see Section 4.1.1).

4.3.1 Analysis idea
In this section multi-dimensional sensitivity analysis is formulated as

multi-objective optimization problem, which is solved using the explo-
ration framework and evolutionary search techniques presented in Chap-
ter 3. Consequently, the analysis is based on a stochastic process, hence
it is called stochastic multi-dimensional sensitivity analysis.

Classical applications for design space exploration in the field of em-
bedded systems design assume the variation of parameter configurations,
including scheduling, mapping, etc., to optimize criteria such as timing,
power consumption, and buffer sizes. To cover multi-dimensional sen-
sitivity analysis, design space exploration needs to be used differently.
Rather than varying parameter configurations during exploration, sys-

Stochastic multi-dimensional sensitivity analysis 117

tem properties subject to sensitivity analysis are modified, i.e. worst-
case core execution times, CPU clock rates, input data rates, etc. Thereby,
the optimization objectives consist in, depending on the considered sys-
tem property types, either the maximization or the minimization of the
property values under the condition that the system stays feasible, i.e.
all system constraints (e.g. end-to-end deadlines) must be satisfied.

For instance, in the case of three-dimensional WCET sensitivity anal-
ysis for three tasks, the search space is composed of their WCET as-
signments, and the optimization objectives consist in the simultaneous
maximization of the latter. If Pareto-optimization is applied to this
multi-objective optimization problem, the obtained Pareto-front corre-
sponds to the sought-after sensitivity front representing the boundary
between feasible and non-feasible system property combinations.

It is important to mention, that the sensitivity front coverage is con-
trolled by problem independent selector algorithms [12]. For all experi-
ments conducted in this thesis SPEA2 [136] is used as selector. Another
promising selector for stochastic multi-dimensional sensitivity analysis
is IBEA [135].

Generally, it is possible to use different methods to quickly find points
on the sensitivity front (e.g. gradient methods, binary search, etc.).
However, in this case the problem of efficiently covering the whole sen-
sitivity front still needs to be addressed. The efficient approximation of
Pareto-sets is essential part of modern MOEAs like SPEA2 and IBEA,
that dynamically focus the exploration effort on insufficiently covered
parts of the sensitivity front using various metrics. SPEA2, for instance,
ensures diversified approximation of the sensitivity front through Pareto-
dominance-based selection and density approximation. Note that the
same approximation quality is usually not reached using simpler strate-
gies (e.g. equidistant sampling), since parts of the sensitivity front with
high variance might require more sampling points than, for instance,
constant regions.

4.3.2 Search space encoding

A system property value combination considered during stochastic
multi-dimensional sensitivity analysis is encoded as vector containing
one real number entry for each considered property. In the following we
refer to such a vector as individual.

For instance, in the case of a three-dimensional sensitivity analysis for
the system properties p1, p2 and p3, an individual A is represented as
three dimensional vector, i.e. A = (a1, a2, a3).

118 Design Robustness Optimization

In the following it is assumed that stochastic multi-dimensional sen-
sitivity analysis is performed for n system properties P = {p1, . . . , pn}
on a system S with fixed parameter configuration c (denoted as Sc).

4.3.3 Initial population
Algorithm 10 describes the creation of the initial population. In the

first part (lines 1 to 4) one-dimensional sensitivity analysis [93] is used
to calculate the available slack for each considered system property. The
one-dimensional slack values represent the extreme points of the sought-
after sensitivity front, and thus describe the bounding hypercube con-
taining all valid system property value combinations. This information
is used throughout the whole exploration to considerably reduce the
generation of invalid individuals .

In the second part of the algorithm (lines 5 to 10) the rest of the
initial population is randomly generated. Thereby, the individuals are
uniformly distributed in the search space bounded by the hypercube that
was calculated in the first part of the algorithm.

Figure 4.9 shows an example Pareto-front after the creation of the
initial population. Note that this example is used throughout this sec-
tion to visualize the basic concepts of the stochastic multi-dimensional
sensitivity analysis, including the search space bounding strategy (Sec-
tion 4.3.4), and different variation operators (Sections 4.3.5 and 4.3.6).

Algorithm 10 Initial population
Require: individual to be analyzed (p1, . . . , pn), the initial property

values v(p1), . . . , v(pn), the initial population size α > n
Ensure: Initial population I

1: for i ← 1 to n do
2: v+

Sc
(pi) ← computeSlack(pi)

3: I ←
(
v(p1), . . . , v+

Sc
(pi), . . . , v(pn)

)
4: end for
5: while (|I| < α) do
6: for i ← 1 to n do
7: ri ← random(min(v(pi), v+

Sc
(pi)), max(v(pi), v+

Sc
(pi)))

8: end for
9: I ← (r1, . . . , rn)

10: end while

Stochastic multi-dimensional sensitivity analysis 119

Fig. 4.9: Initial Population

4.3.4 Bounding the search space
In this section the search space bounding strategy that is used to effi-

ciently focus the exploration effort, and thus improving analysis speed,
is presented. During stochastic sensitivity analysis so-called bounding
Pareto-fronts are maintained and updated (Definition 4.3.1). Thereby, it
is ensured during the whole approximation process that the sought-after
exact sensitivity front lies between the bounding working Pareto-front
and the bounding non-working Pareto-front. This property is exploited
by the variation operators presented in the following sections to pre-
vent exploration from generating and evaluating individuals not directly
improving approximation quality.

Def. 4.3.1 (Bounding Pareto-fronts) Let Sc denote the sys-
tem S with parameter configuration c. For a given set of system
properties subject to maximization P = {p1, . . . , pn} the bounding
working and non-working Pareto-fronts are defined as follows:

1. The bounding working Pareto-front Fw
Sc

(P) is defined as a set
of vectors �fw

1 , . . . , �fw
n with the following properties:

(a) ∀i
�fw
i ∈ HSc(P)

(b) Ω+(Fw
Sc

(P)) = Fw
Sc

(P)

(c) ∀i∃�x ∈ Fsens
Sc

(P) : �x �+
�fw
i

120 Design Robustness Optimization

2. The bounding non-working Pareto-front Fnw
Sc

(P) is defined as
a set of vectors �fnw

1 , . . . , �fnw
n with the following properties:

(a) ∀i
�fnw
i ∈ HSc(P)

(b) Ω−(Fnw
Sc

(P)) = Fnw
Sc

(P)

(c) ∀i∃�x ∈ Fsens
Sc

(P) : �x �− �fnw
i

The sets Fw
Sc

(P) and Fnw
Sc

(P) are dynamically updated during explo-
ration after each processed generation, i.e. directly after offspring eval-
uation. More precisely, for each feasible (infeasible) individual i created
during variation it is checked whether it is Pareto-optimal with respect
to the individuals contained in Fw

Sc
(P) (Fnw

Sc
(P)). If this is the case, i

is added to Fw
Sc

(P) (Fnw
Sc

(P)) and all individuals Pareto-dominated by i
in the sense of a maximization (minimization) problem are removed.

The region that is contained between the bounding Pareto-fronts
Fw
Sc

(P) and Fnw
Sc

(P) is called relevant region. It is easy to understand,
that the sought-after exact sensitivity front lies inside the relevant re-
gion. Consider, for instance, the situation for two system properties
subject to maximization visualized in Figure 4.10.

Fig. 4.10: Relevant region for two system properties subject to maxi-
mization

An individual lying below the bounding working Pareto-front cannot
be part of the sensitivity front, since at least one individual on the
bounding working Pareto-front has higher, and thus better, values for
all considered system properties. Also, an individual lying above the
bounding non-working Pareto-front cannot be part of the sensitivity

Stochastic multi-dimensional sensitivity analysis 121

front, since there exist at least one infeasible individual on the bounding
non-working Pareto-front, which has smaller values for all considered
system properties. Consequently, the individual in question is infeasible
as well.

Note that if the stochastic sensitivity analysis runs long enough, the
bounding Pareto-fronts Fw

Sc
(P) and Fnw

Sc
(P) ultimately converge into the

sought-after sensitivity front. The convergence behavior of the stochastic
sensitivity analysis approach is discussed in Section 4.3.8.

The variation operators guiding the exploration process, which are
presented in the following sections, use Algorithm 11 to ensure that
generated offsprings are placed inside the relevant region, and thus di-
rectly improve approximation quality. Obviously, this leads to decreased
exploration time for the same approximation quality. Note that by con-
figuring the input variable max, Algorithm 11 can be used either for
system properties subject to minimization (max = false) or maximiza-
tion (max = true).

Algorithm 11 isInRR

Require: k-dimensional vector v, bounding working Pareto-front
Fw
Sc

(P), bounding non-working Pareto-front Fnw
Sc

(P), type of con-
sidered properties max ∈ {true, false}

Ensure: true: if v lies inside the relevant region, false: otherwise
1: workingOK ←!dominatedBy(v,Fw

Sc
(P), max)

2: nonWorkingOK ←!dominatedBy(v,Fnw
Sc

(P), !max)
3: return workingOK && nonWorkingOK

In practice, the variation operators are repeated until the generated
offspring is situated inside the relevant region. This approach was chosen
to preserve the randomized nature of the variation operators. Note that
the process is stopped after a maximum number of tries if no valid off-
spring is generated. In this case the last generated offspring is returned.
Of course, using this best effort strategy it is not guaranteed that all
generated offsprings are situated inside the relevant region. However,
generated invalid offspring do not need to be evaluated1, which increases
exploration speed compared to approaches that do not exploit knowledge
about bounding Pareto-fronts (see Section 4.3.8).

In the following sections crossover and mutation operators responsible
for improving the approximation quality of the sought-after sensitivity

1System evaluation has a much higher computational complexity compared to the proposed
variation operators consisting of few basic arithmetic operations.

122 Design Robustness Optimization

front are presented. For a better comprehension, the different varia-
tion operators are applied subsequently on the initial population that
was determined in Section 4.3.3 for the example sensitivity front visu-
alized in Figure 4.9). This process is visualized in Figures 4.12, 4.13,
and 4.14. Note that the initial situation, i.e. after the creation of the
random initial population, is visualized in Figure 4.12a, whereas the fi-
nal approximation, i.e. the resulting bounding Pareto-fronts after the
variation process, is visualized in Figure 4.14b.

4.3.5 Crossover operators
In this section, two crossover operators that are used to locally refine

the approximation of the sought-after sensitivity front are presented.
The first operator is based on standard randomized techniques and gen-
erates uniformly distributed offsprings in the neighborhood of the parent
individuals. The second operator is adapted to the problem structure,
and hence heuristic in nature. Note that the benefit (in terms of approx-
imation quality and convergence speed) of using the proposed problem-
dependent heuristic variation operators is discussed in Section 4.3.8.

Random crossover. The random crossover operator takes as input
two parent individuals A1 and A2 and creates two offspring individuals
B1 and B2. Random crossover is a problem-independent variation op-
erator pursuing a very simple recombination strategy: the two parent
individuals span a hypercube in which the two offspring individuals are
randomly placed. This simple strategy leads to the local refinement of
the sensitivity front approximation in the parent individuals’ neighbor-
hood.

A pseudo-code representation of the random crossover operator is
given in Algorithm 12. Note that random crossover uses Algorithm 11 to
ensure that the generated offspring individuals are placed inside the rel-
evant region (line 8). More precisely, the crossover process is repeated
until either both offspring individuals are situated inside the relevant
region or the maximum number of attempts itermax is reached.

Figure 4.13a visualizes the functionality of the random crossover op-
erator based on the example used throughout this section.

Generalized mean crossover. In contrast to the generic random
crossover operator, the generalized mean crossover operator is more fo-
cused and tailored to approximate various possible characteristics of the
sought-after multi-dimensional sensitivity front. It is, therefore, heuris-
tic in nature. The generalized mean crossover operator takes as input
two parent individuals A1 and A2 from which it generates two offspring

Stochastic multi-dimensional sensitivity analysis 123

Algorithm 12 Random crossover
Require: parent individuals A1 = (a11, . . . , a1n) and A2 =

(a21, . . . , a2n), type of considered properties max (boolean), bound-
ing working Pareto-front Fw

Sc
(P), bounding non-working Pareto-

front Fnw
Sc

(P), maximum number of attempts to reach relevant region
itermax

Ensure: offspring individuals B1 = (b11, . . . , b1n) and B2 =
(b21, . . . , b2n)

1: for i ← 1 to 2 do
2: iter ← 0
3: repeat
4: iter ← iter + 1
5: for j ← 1 to n do
6: bij ← random(min(a1j , a2j), max(a1j , a2j))
7: end for
8: until isInRR(Bi,Fw

Sc
(P),Fnw

Sc
(P), max) or iter > itermax

9: end for

individuals B1 and B2 by using the generalized mean function (Defini-
tion 4.3.2).

Def. 4.3.2 (Generalized mean) For positive numbers
x1, . . . , xn the k-th mean is defined as follows:

Mk(x1, . . . , xn) = k

√√√√ 1
n

n∑
i=1

xk
i

Special cases: k → −∞ : min (x1, . . . , xn); k = −1: harmonic
mean; k → 0: geometric mean; k = 1: arithmetic mean; k = 2:
quadratic mean; k → ∞ : max (x1, . . . , xn).

A pseudo-code representation the generalized mean crossover is given
in Algorithm 13.

During crossover the generalized mean function is applied coordinate-
wise on the vector representations of the parent individuals (line 7).
For a better adaptation to the problem structure, the values calculated
according to the generalized mean formula are slightly modified (lines
8-11). The aim of this modification is to obtain a n-dimensional curve
connecting the parent individuals. This can be achieved, for instance, by
mirroring the calculated values at the bisector in each dimension for that
the first parent has a higher coordinate value compared to the second

124 Design Robustness Optimization

Algorithm 13 Generalized mean crossover
Require: parent individuals A1 = (a11, . . . , a1n) and A2 =

(a21, . . . , a2n), kmin and kmax with kmax ≥ kmin, type of considered
properties max (boolean), bounding working Pareto-front Fw

Sc
(P),

bounding non-working Pareto-front Fnw
Sc

(P), maximum number of
attempts to reach relevant region itermax

Ensure: offspring individuals B1 = (b11, . . . , b1n) and B2 =
(b21, . . . , b2n)

1: for i ← 1 to 2 do
2: k ← random(kmin, kmax)
3: iter ← 0
4: repeat
5: iter ← iter + 1
6: for j ← 1 to n do
7: bij ←Mk(a1j , a2j)
8: if a1j > a2j then
9: temp ← min (a1j , a2j) + |a1j−a2j |

2
10: bij ← temp − (bij − temp)
11: end if
12: end for
13: until isInRR(Bi,Fw

Sc
(P),Fnw

Sc
(P), max) or iter > itermax

14: end for

parent. Figure 4.11 visualizes the difference between the original and
the modified generalized mean function in the two-dimensional case.

The variation strategy of the generalized mean crossover operator
is based on the assumption that both parent individuals are situated
close to the sought-after sensitivity front. Using the modified general-
ized mean function a connecting curve between the parent individuals A
and B is created that, depending on the chosen k value, approximates
different possible sensitivity front characteristics:

If k = 1 is chosen the arithmetic mean between A and B is obtained.
This corresponds to a linear characteristic of the sensitivity front,
which can, for instance, be observed in the case of load dependent
system properties.

If k < 1 is chosen a convex characteristic of the sensitivity front is
approximated.

If k > 1 is chosen a concave characteristic of the sensitivity front is
approximated.

Stochastic multi-dimensional sensitivity analysis 125

Fig. 4.11: Coordinate-wise generalized mean including the modified ver-
sion used by Algorithm 13 between two points, A and B, for different
k. For the visualized case, the modified generalized mean is obtained by
mirroring the original points at the bisector in the y-dimension (A has a
higher coordinate value than B). For the x-dimension no modifications
have to be performed (A has a lower coordinate value than B).

Like the random crossover operator also the generalized mean crossover
operator uses Algorithm 11 to ensure that the generated offspring indi-
viduals are situated inside the relevant region (line 13). Figure 4.13b
visualizes the functionality of the random crossover operator based on
the example utilized throughout this section.

4.3.6 Mutation operators
The described crossover operators lead to the local convergence of the

bounding Pareto-fronts towards the sought-after sensitivity front. In
other words, they approximate the sensitivity front “between” individu-
als considered during evolutionary exploration. Of course, it is possible
that the variety of the initial population is insufficient to cover the whole
sensitivity front by only using the proposed crossover operators. Addi-
tionally, exploration may get stuck in sub-regions of the front. For these
reasons mutation operators are introduced in this section enabling the
approximation process to break out of sub-regions and to cover unex-
plored parts of the sensitivity front.

Two different mutation operators are proposed. The first operator is
fully randomized and generates offsprings that are uniformly distributed
in the neighborhood of the parent individual. Thereby, its Euclidean

126 Design Robustness Optimization

range is dynamically adapted to match the convergence progress of the
approximation process. The second operator is heuristic in nature. It
exploits knowledge about the bounding Pareto-fronts (see Section 4.3.4)
and directly supports their convergence.

Adaptive range mutation. The adaptive range mutation operator
takes as input one parent individual A and generates one offspring in-
dividual B. The basic idea, borrowed from standard evolutionary vari-
ation operators, is to randomly place the offspring individual in the
region surrounding the parent individual. However, due to the nature
of the problem formulation and the utilized search space bounding tech-
nique (see Section 4.3.4), minimum and maximum Euclidean ranges can
be derived that adaptively bound this region according to the global
approximation progress. Both ranges are based on distance measures
between the bounding working and the bounding non-working Pareto-
fronts (Definition 4.3.3).

Def. 4.3.3 (Average and maximum front distances) Given
the bounding working Pareto-front Fw

Sc
(P) and the bounding non-

working Pareto-front Fnw
Sc

(P), the average and maximum front
distances Davg and Dmax are defined as follows:

Davg =

∑
v∈Fw

Sc
(P) minw∈Fnw

Sc
(P) ‖v − w‖2

|Fw
Sc

(P)|

Dmax = max
v∈Fw

Sc
(P)

{
min

w∈Fnw
Sc

(P)
‖v − w‖2

}

Following rules are applied for the generation of the offspring individ-
ual:

1. The Euclidean distance between the offspring individual and the par-
ent individual must be greater than Davg. This ensures a minimum
improvement of the approximation quality through the offspring in-
dividual.

2. The Euclidean distance between the offspring individual and the par-
ent individual must be smaller than Dmax. This reasonably limits
the mutation range dependent on the current global approximation
progress.

A pseudo-code representation of the adaptive range mutation operator
is given in Algorithm 14.

Stochastic multi-dimensional sensitivity analysis 127

Algorithm 14 Adaptive range mutation
Require: parent individual A = (a1, . . . , an), average and maximum

front distances Davg and Dmax, type of considered properties max
(boolean), bounding working Pareto-front Fw

Sc
(P), bounding non-

working Pareto-front Fnw
Sc

(P), maximum number of attempts to
reach relevant region itermax

Ensure: offspring individual B = (b1, . . . , bn)
1: iter ← 0
2: repeat
3: iter ← iter + 1
4: B ← A
5: dist ← random(Davg,Dmax)
6: order[] ← shuffle(1, . . . , n)
7: for i ← 1 to n do
8: exact ← 0
9: for j ← 1 to i-1 do

10: exact ← exact + (aorder[j] − border[j])2

11: end for
12: exact ←

√
dist2 − exact

13: if i < n then
14: x ← random(0, exact)
15: else
16: x ← exact
17: end if
18: bool ← random(true, false)
19: if bool then
20: border[i] ← min(aorder[i] + x, v+

Sc
(pi))

21: else
22: border[i] ← max(aorder[i] − x, v(pi))
23: end if
24: end for
25: until isInRR(B,Fw

Sc
(P),Fnw

Sc
(P), max) or iter > itermax

According to the above defined rules, the generated offspring indi-
vidual is placed with minimum distance Davg inside the n-dimensional
sphere defined by Dmax around the parent individual. This is achieved
with some simple computations.

First, the offspring individual is created as a copy of the parent indi-
vidual and a random target distance dist between offspring and parent
individuals is chosen in the interval [Davg,Dmax] (lines 4-5). This target
distance is achieved by iteratively adding (subtracting) random values to

128 Design Robustness Optimization

(from) the offspring individual’s coordinates in random order. Thereby,
the maximum absolute difference applicable to an arbitrary coordinate bk

is updated in every iteration by solving the equation dist =
√

b2
1, . . . , b

2
n,

taking into account already performed modifications (lines 8-12). After-
wards, a random value is chosen between 0 and the calculated maximum
value (line 14) and added (subtracted) from (to) the corresponding co-
ordinate (lines 18-23). In the last iteration the remaining coordinate is
modified by the maximum admissible value to achieve the desired target
distance between offspring and parent individuals (line 16).

Note that in some cases the offspring individual might not be placed
correctly inside the n-dimensional sphere defined by Dmax, but instead
on the edge of the bounding hypercube. The reason for this behavior is
that the adaptive range mutation operator ensures that the minimum
and maximum values for each property, which are calculated during the
creation of the initial population, are respected (lines 20 and 22).

Like the previously presented operators, also adaptive range mutation
uses Algorithm 11 to ensure that the generated offspring individual is
situated inside the relevant region (line 25).

Figure 4.14a visualizes the functionality of the adaptive range muta-
tion operator based on the example utilized throughout this section.

Front convergence mutation. The front convergence mutation op-
erator is heuristic in nature, and exploits that the sought-after sensitiv-
ity front is contained between the bounding working and the bounding
non-working Pareto-fronts (see Section 4.3.4). Like the adaptive range
mutation operator it takes as input one parent individual A to create
one offspring individual B.

The front convergence mutation operator distinguishes two cases to
directly increase the convergence speed of the bounding Pareto-fronts:

If the parent individual is feasible, the front convergence mutation op-
erator selects the k closest individuals on the bounding non-working
Pareto front Fnw

Sc
(P).

If the parent individual is infeasible, the front convergence mutation
operator selects the k closest individuals on the bounding working
Pareto front Fw

Sc
(P).

In both cases one of the selected individuals is randomly chosen, and
the offspring individual is randomly placed on the straight line connect-
ing the parent individual with the chosen individual. Since in most cases
the parent individual is situated close or directly on one of the bounding
Pareto-fronts, the created offspring individual is placed with high prob-

Stochastic multi-dimensional sensitivity analysis 129

ability inside the relevant region, and thus directly supports the local
convergence of the two bounding Pareto-fronts.

A pseudo-code representation of the front convergence mutation op-
erator is given by Algorithm 15.

Algorithm 15 Front convergence mutation
Require: parent individual A = (a1, . . . , an), number of considered

closest individuals k, type of considered properties max (boolean),
bounding working Pareto-front Fw

Sc
(P), bounding non-working

Pareto-front Fnw
Sc

(P), maximum number of attempts to reach rel-
evant region itermax

Ensure: offspring individual B = (b1, . . . , bn)
1: if evalSc(P,A) then
2: F ← Fnw

Sc
(P)

3: else
4: F ← Fw

Sc
(P)

5: end if
6: Mapdist ← ∅
7: for all f = (f1, . . . , fn) ∈ F do

8: d ←
√∑n

j=1(fj − aj)2

9: Mapdist ← (d, f)
10: end for
11: sortByKeys(Mapdist)
12: iter ← 0
13: repeat
14: iter ← iter + 1
15: r ← random(1, k)
16: f = (f1, . . . , fn) ← getValues(Mapdist)[r]
17: factor ← random(0, 1)
18: for i ← 1 to n do
19: bi ← min(ai, fi) + factor× | ai − fi |
20: end for
21: until isInRR(B,Fw

Sc
(P),Fnw

Sc
(P), max) or iter > itermax

First, the algorithm checks whether or not the parent individual is
feasible to select the appropriate target Pareto-front F (lines 1-5). Note
that the computationally expensive evaluation function eval (see Defi-
nition 4.1.2 in Section 4.1.1) does not need to be executed at this point.
The reason is that the parent individual was already evaluated in one of
the previous generations. The call of eval can, thus, be replaced by a
simple lookup in a table containing the status of all already evaluated

130 Design Robustness Optimization

(a) Situation after creation of the initial population for the considered example
sensitivity front (compare Figure 4.9 in Section 4.3.3)

(b) Front convergence mutation applied two times to the same (feasible) parent
individual. First, the three (configurable) closest individuals on the non-working
Pareto-front are selected. Then, for both applications of the mutation operator,
one of the selected individuals is randomly chosen, and the offspring individual
is randomly placed on the straight line connecting the parent individual with the
chosen individual.

Fig. 4.12: Variation operators of stochastic sensitivity analysis (part 1)

Stochastic multi-dimensional sensitivity analysis 131

(a) Random crossover. The two offspring individuals are randomly placed in the
bounding box (visualized in gray) defined by the two parent individuals.

(b) Generalized mean crossover. The black solid line connecting the two parent in-
dividuals represents the set of possible offspring individuals. More precisely, each
different k (compare Definition 4.3.2) represents a different offspring individual
lying on this line.

Fig. 4.13: Variation operators of stochastic sensitivity analysis (part 2)

132 Design Robustness Optimization

(a) Adaptive range mutation applied two times to the same parent individual.
Offspring individuals are randomly placed inside the area visualized in Gray.
Note that this area is delimited by the average and maximum distances (Davg and
Dmax) between the bounding working and non-working Pareto-fronts (compare
Definition 4.3.3).

(b) Final approximation of the example sensitivity front after application of the
variation operators as visualized in Figures 4.12b, 4.13a, 4.13b, and 4.14a

Fig. 4.14: Variation operators of stochastic sensitivity analysis (part 3)

Stochastic multi-dimensional sensitivity analysis 133

individuals. If the parent individual is feasible Fnw
Sc

(P) is selected as
target Pareto-front, in the opposite case Fw

Sc
(P) is selected.

Afterwards, the Euclidean distances between the parent individual
and all individuals contained in F are calculated and stored in Mapdist

(lines 6-10). Thereby, the calculated distances are used as keys and the
considered individuals represent the mapped values. Note that if several
individuals in F have the same distance to the parent individual, only
the last checked individual is stored in Mapdist.

Finally, Mapdist is sorted by keys (line 11), one of the closest k in-
dividuals is randomly chosen (lines 15-16), and the offspring individual
is randomly placed on the straight line connecting the parent individual
with the chosen individual (lines 17-20).

Like the previously presented operators, also front convergence muta-
tion uses Algorithm 11 to ensure that the generated offspring individual
is situated inside the relevant region (line 21).

Figure 4.12b visualizes the functionality of the front convergence mu-
tation operator based on the example utilized throughout this chapter.

4.3.7 Limiting the search resolution
The sought-after exact sensitivity front is defined in a continuous

space. Obviously, to efficiently approximate the sensitivity front with
the proposed stochastic technique, the search resolution must be lim-
ited. One effect that may occur with unrestricted search resolution is
the clustering of generated individuals in a small area of the search
space, with only small difference in property values. Obviously, this has
negative effects on diversity, and thus approximation quality.

Figure 4.15 visualizes the chosen approach for adjusting the search
resolution.

Before stochastic sensitivity analysis is started a search resolution r
must be chosen. This resolution defines the number of possible different
property values in each dimension. Hence, the number of possible indi-
viduals in the search space during n-dimensional sensitivity analysis is
equal to rn. Based on the chosen resolution and the search ranges defined
by the initial and extreme property values in each dimension (compare
Definition 4.1.4 in Section 4.1.1), a particular step width is calculated
for each dimension: sn = |v+(pn)−v(pn)|

r . These step widths define the set
of valid individuals that may be generated during stochastic sensitivity
analysis (marked with dots in Figure 4.15). The proposed variation op-
erators do not directly respect this discretization of the search space.
However, after variation, all generated invalid individuals (marked with

134 Design Robustness Optimization

Fig. 4.15: Adjusting the search resolution of the stochastic sensitivity
analysis

crosses in Figure 4.15) are adjusted to match the closest valid individual
(in the sense of Euclidean distance).

Note that smaller resolutions lead to quicker searches with lower anal-
ysis precisions, whereas higher resolutions increase analysis precisions at
the expense of higher analysis run-times. Typical search resolutions
range from 50 to 500.

4.3.8 Approximation quality and convergence
behavior

In this section the approximation quality and convergence behavior
of the stochastic sensitivity analysis approach are discussed. The goal
of this discussion is to get an idea of the required run-time for the ap-
proach to calculate sensitivity front approximations (i.e. working and
non-working bounding Pareto-fronts) that are sufficiently precise for ro-
bustness optimization. In this context sufficiently precise also means
that it does not make sense to run stochastic sensitivity analysis with
high precision during robustness exploration, since in that case the eval-
uation of each candidate parameter configuration would take too long
to efficiently explore the parameter configuration space.

Stochastic multi-dimensional sensitivity analysis 135

4.3.8.1 Approximation quality measure

The approximation quality measure that is used to evaluate the ap-
proximation behavior of the proposed stochastic sensitivity analysis ap-
proach is based on the notion of normalized hypervolume (Definition 4.3.4).

Def. 4.3.4 (Normalized inner and outer hypervolumes)
Given a n-dimensional hypercube H =

[
b1,b1

]
× . . .×

[
bn,bn

]
⊂ R

n
+

and a set of n-dimensional vectors V = {�v1, . . . , �vm} with ∀i�vi ∈ H,
the inner and outer normalized hypervolumes of V in H are defined
as follows:

λ̄−
H(V) = λ−

H̄(V̄) and λ̄+
H(V) = λ+

H̄(V̄) , where

H̄ = [0, 1] × . . . × [0, 1] and V̄ =
{

�v1 − b1

b1 − b1

, . . . ,
�vn − bn

bn − bn

}

Normalized hypervolume can be obtained by first translating the co-
ordinates of the considered points, and then computing the absolute
hypervolume as described in Section 4.1.2.1.

The approximation quality at a given moment during stochastic sen-
sitivity analysis is defined as the normalized hypervolume of the space
between the bounding Pareto-fronts Fw

Sc
(P) and Fnw

Sc
(P).

Def. 4.3.5 (Approximation quality) Let Sc denote the system
S with parameter configuration c and P = {p1, . . . , pn} a set of
system properties. Given a bounding working Pareto-front Fw

Sc
(P)

and a bounding non-working Pareto-front Fnw
Sc

(P) obtained at an
arbitrary point during exploration, the approximation quality of
the sought-after sensitivity front Fsens

Sc
(P) is defined as follows:

1. If the properties P are subject to minimization

QSc(Fw
Sc

(P),Fnw
Sc

(P)) = λ̄+
HSc (P)(F

nw
Sc

(P)) − λ̄−
HSc (P)(F

w
Sc

(P))

2. If the properties P are subject to maximization

QSc(Fw
Sc

(P),Fnw
Sc

(P)) = λ̄+
HSc (P)(F

w
Sc

(P)) − λ̄−
HSc (P)(F

nw
Sc

(P))

136 Design Robustness Optimization

Note: The normalized hypervolume of the bounding hypercube
HSc(P) containing the sought-after sensitivity front is equal
to 1. Consequently, the co-domain of the approximation qual-
ity measure is equal to the interval [0,1], with lower values
corresponding to better approximation qualities.

The approximation quality corresponds to the portion of
space that has not yet been categorized. For robustness ex-
ploration approximation qualities around 10% are sufficient.

4.3.8.2 Initial considerations
In order to get a first idea of the approximation behavior of the

stochastic sensitivity analysis, two experiments on the example system
presented in Section 2.3 are performed. The first experiment consists of
the worst-case execution / communication time sensitivity analysis for
the task T2 and the communication channel C3, whereas in the second
experiment the jitter sensitivity analysis for the system inputs Cam and
Sin is performed. In both cases the increasing approximation quality
during exploration is investigated, both visually and metrically. The
results are shown in Figure 4.16. Due to the search space bounding
strategy discussed in Section 4.3.4 not all individuals generated dur-
ing stochastic sensitivity analysis need to be evaluated. Therefore, the
number of generated and evaluated individuals is stated separately in
the following. Note that in the first and second experiments the size of
one generation is equal to 20 and 10 individuals, respectively.

In the first experiment, the approximation after 5 generations (∼ 100
evaluated individuals) is coarse but nevertheless sufficient for robustness
optimization, which is reflected by the approximation quality metric
value of 7.8% (Figure 4.16a). 5 generations later (∼ 180 evaluated in-
dividuals) the approximation quality has been improved, both visually
and metrically (3.9%, Figure 4.16b). Finally, after 15 generations (∼
270 evaluated individuals) the two bounding Pareto-fronts have nearly
converged, and the approximation quality has been increased to 2.2%
(Figure 4.16c).

In the second experiment, the stochastic sensitivity analysis converges
much faster compared to the first experiment. After 5 generations (∼ 35
evaluated individuals) almost the final approximation quality obtained
in the first experiment is reached (2.7%, Figure 4.16d). After 10 genera-
tions (∼ 50 evaluated individuals) the two bounding Pareto-fronts have
virtually converged, translating into an approximation quality metric
value of 1.2% (Figure 4.16e). This value is only slightly improved after
15 generations (∼ 55 evaluated individuals) to 1.1% (Figure 4.16f).

Stochastic multi-dimensional sensitivity analysis 137

These first experiments indicate that the stochastic sensitivity anal-
ysis’ approximation speed highly depends on the characteristics of the
sought-after sensitivity front. In fact, the differences that were observed
can easily be explained. In general, constant sensitivity front regions are
far easier to approximate than non-constant regions. The reason is that
constant regions can be precisely approximated with only few points,
whereas the exact approximation of non-constant regions requires many
(potentially infinite) points. For instance, the sensitivity front obtained
for the jitter analysis of Cam and Sin corresponds to a step function
consisting of several constant regions. Obviously, each step can be pre-
cisely approximated using a single (!) point. Contrarily, the sensitivity
front obtained for the WCET analysis of T2 and C3 is composed of
linear regions. To approximate these linear regions adequately many
points are needed, which directly explains the observed differences in
approximation quality and speed.

Note that this effect is comparable to the so-called smart step tech-
nique proposed by Racu et al. in [91, 89] to speed up exact sensitivity
analysis for monotone sensitivity front regions. In the two-dimensional
case, for instance, the smart step technique exploits that the sensitivity
front is constant between two points in one dimension, if they have the
same values in the other dimension. Obviously, if two such points are
found no further search needs to conducted between them, leading to
greatly improved analysis speed.

Generally, sensitivity front characteristics can easily be predicted.
Sensitivity analyses of system properties like input periods or input jit-
ters usually yield sensitivity fronts consisting of several connected con-
stant regions (e.g. step functions in the two-dimensional case). Contrar-
ily, sensitivity analyses of system properties like worst-case execution
times or CPU clock rates usually lead to sensitivity fronts with contin-
uous non-constant regions (e.g. linear dependencies). Input period and
jitter sensitivity analysis is, therefore, potentially less time consuming
than worst-case execution time and CPU clock rate sensitivity analysis.

4.3.8.3 Convergence behavior

In this section, experiments are performed to characterize the conver-
gence behavior of the proposed stochastic sensitivity analysis. Thereby,
according to the discussions in the previous section, two cases are dis-
tinguished: sensitivity fronts consisting of constant regions and sensitiv-
ity fronts consisting of continuous non-constant regions. Note that the
analysis’ convergence behavior for sensitivity fronts with mixed charac-
teristics lies between these two investigated cases.

138 Design Robustness Optimization

(a) WCCT C3 and WCET T2: after 100
generated individuals, with ∼ 100 evalu-
ations (approximation quality: 7.8%)

(b) WCCT C3 and WCET T2: after 200
generated individuals, with ∼ 180 evalu-
ations (approximation quality: 3.9%)

(c) WCCT C3 and WCET T2:after 300
generated individuals, with ∼ 270 evalu-
ations (approximation quality: 2.2%)

(d) Jitter Cam and Sin: after 50 gener-
ated individuals, with ∼ 35 evaluations
(approximation quality: 2.7%)

(e) Jitter Cam and Sin: after 100 gener-
ated individuals, with ∼ 50 evaluations
(approximation quality: 1.2%)

(f) Jitter Cam and Sin: after 150 gener-
ated individuals, with ∼ 55 evaluations
(approximation quality: 1.1%)

Fig. 4.16: Examples visualizing gradually increasing approximation
quality during exploration with search resolution 100. The experiments
are based on the example system presented in Section 2.3.

Stochastic multi-dimensional sensitivity analysis 139

Furthermore, the effectiveness of the proposed heuristic variation op-
erators and the search space bounding strategy are evaluated. Therefore,
all experiments are performed with three different setups for stochastic
sensitivity analysis:

1. Usage of “standard” variation operators: random crossover (Sec-
tion 4.3.5) and random mutation (similar to adaptive range muta-
tion, Section 4.3.6, with the difference that the mutation range is
not adaptively steered by the analysis’ convergence status but kept
constant at 0.2 times the diagonal length of the bounding hypercube,
Definition 4.1.5).

2. Usage of the proposed heuristic variation operators: random and
general mean crossover (Section 4.3.5) as well as adaptive range and
front convergence mutation (Section 4.3.6).

3. Usage of the proposed heuristic variation operators and search space
bounding (Section 4.3.4) with 20 tries to reach the relevant region.

In order to determine and compare the convergence behavior of the
stochastic sensitivity analysis for all three setups, the bounding Pareto-
fronts are maintained during all experiments. However, only for the
experiments with search space bounding they are exploited to increase
analysis efficiency.

Note that SPEA2 [136] is used as selector to steer the coverage of
the sensitivity front during exploration, and that the search resolution
is limited to 100 (compare Section 4.3.7). All experiments are performed
using a sample size of 200 and confidence level 99%.

Two-dimensional case. The results for the approximation of two-
dimensional sensitivity fronts are visualized in Figure 4.17. As can be
observed, the efficiency gains obtained by applying heuristic variation
operators and search space bounding are highly significant.

For instance, in the case of sensitivity fronts without constant re-
gions (Figure 4.17a), the approximation quality after 7 generations (200
individuals) using standard variation operators is 15.22% (confidence in-
terval 0.4%). In comparison, the approximation quality using heuristic
variation operators is 9.47% at this point (confidence interval 0.3%), and
with search space bounding even 4.83% (confidence interval 0.1%). Us-
ing standard variation operators, a comparable approximation quality is
not reached until generation 40.

In the case of sensitivity fronts consisting of constant regions (Fig-
ure 4.17b), the stochastic sensitivity analysis converges much faster.
This was expected. For instance, using heuristic variation operators and

140 Design Robustness Optimization

search space bounding, an approximation quality of approximately 2% is
reached after 7 generations (80 individuals). For sensitivity fronts with-
out constant regions a similar approximation quality is only achieved
after 16 generations (425 individuals).

Three-dimensional case. Also in the three-dimensional case the ef-
ficiency gains obtained by applying heuristic variation operators and
search space bounding are highly significant. The detailed results are
visualized in Figure 4.18.

Furthermore, the results show that three-dimensional sensitivity anal-
ysis is computationally more expensive than two-dimensional sensitivity
analysis. For instance, in the case of sensitivity fronts without constant
regions (Figure 4.18a), an approximation quality of 10%, which is largely
sufficient for robustness exploration, is obtained after 9 generation (1000
individuals). In the two-dimensional case the same approximation qual-
ity is reached after 4 generations (125 individuals). It can, thus, be con-
cluded that in the three-dimensional case approximately 8 times more
individuals need to be considered to obtain approximation qualities that
are adequate for robustness exploration.

For the approximation of sensitivity fronts consisting of constant re-
gions the difference is higher (Figure 4.18b). In the two-dimensional
case an approximation quality below 10% is achieved after 2 generations
(30 individuals). In the three-dimensional case 13 times more individu-
als need to be considered to obtain the same approximation quality (12
generations, 390 individuals).

4.3.8.4 Analysis speed

In the previous section the progressively increasing approximation
quality was measured as a function of individuals considered during
stochastic sensitivity analysis. However, due to the applied search space
bounding technique not every generated individual needs to be evalu-
ated. For instance, the variation operators may fail in some situations
to generate offsprings that lie inside the relevant region.

In order to evaluate the computational complexity (i.e. the analysis
time) of the proposed stochastic sensitivity analysis, the actual number
of individuals that were evaluated during the above conducted experi-
ments was measured. The results are visualized in Figure 4.19.

As can be see observed, the number of evaluated individuals in the
experiments with search space bounding is considerably lower compared
to the experiments without search space bounding. The differences are
particularly remarkable at late exploration stages. The reason is that
with progressing approximation, i.e. with converging bounding Pareto-

Stochastic multi-dimensional sensitivity analysis 141

(a) Approximation of sensitivity fronts w/o constant regions (200 samples, confidence level
99%)

(b) Approximation of sensitivity fronts consisting of several constant regions (200 samples,
confidence level 99%)

Fig. 4.17: Convergence behavior and approximation quality of the
stochastic sensitivity analysis in the two-dimensional case

142 Design Robustness Optimization

(a) Approximation of sensitivity fronts w/o constant regions (200 samples, confidence level
99%)

(b) Approximation of sensitivity fronts consisting of several constant regions (200 samples,
confidence level 99%)

Fig. 4.18: Convergence behavior and approximation quality of the
stochastic sensitivity analysis in the three-dimensional case

Stochastic multi-dimensional sensitivity analysis 143

fronts, it is getting increasingly more difficult for the variation operators
to generate individuals that are lying inside the relevant region. For
instance, in the case of two-dimensional sensitivity fronts consisting of
constant pieces (Figure 4.19b) the bounding Pareto-fronts have nearly
converged (in average) after approximately 10 generations. At this point,
it is very hard for the variation operators to generate individuals that
are lying inside the relevant region (i.e. improve approximation quality).
Consequently, most of the generated individuals are lying outside the
relevant region, and thus do not need to be analyzed.

(a) Two dimensional case: sensitivity
fronts w/o constant regions, 200 sam-
ples, confidence level 99%

(b) Two dimensional case: sensitivity
fronts consisting of several constant re-
gions, 200 samples, confidence level 99%

(c) Three dimensional case: sensitivity
fronts w/o constant regions, 200 sam-
ples, confidence level 99%

(d) Three dimensional case: sensitivity
fronts consisting of several constant re-
gions, 200 samples, confidence level 99%

Fig. 4.19: Analysis speed-up through search space bounding

144 Design Robustness Optimization

4.4 Exploring robustness
In this section it is discussed how the robustness metrics presented in

Section 4.2 can be efficiently explored. First, the case of independent
system properties is addressed (Section 4.4.1). Second, the more involved
case of dependent system properties is discussed (Section 4.4.2).

4.4.1 Independent system properties
The robustness metrics for independent system properties presented

in Section 4.2.1 are based on one-dimensional sensitivity analysis infor-
mation. Since one-dimensional sensitivity analysis is computationally
efficient (e.g. the analysis of Racu et al. based on binary search tech-
niques [93]) the static robustness metric (SDR) can directly be calculated
during exploration. In other words, it is proposed to use the exploration
framework presented in Chapter 3 to traverse the parameter configu-
ration space, and to integrate the SDR metric directly as optimization
objective. Since the exploration framework is capable of performing
multi-criterion optimization, SDR can be Pareto-optimized with other
optimization objectives, such as timing, power, etc.

The dynamic case is a little bit more involved. To exactly determine
the dynamic design robustness DDRS,C(p) of a system S with respect to
a given system property p, exhaustive search in the given reconfiguration
space C is necessary. Contrary to the static case, where exact metric val-
ues can be explicitly calculated, the determination of the dynamic design
robustness DDRS,C(p) is, therefore, an optimization problem itself.

In order to approximate the dynamic design robustness of S with re-
spect to p, it is proposed to use the exploration framework proposed
in Chapter 3 to traverse the reconfiguration space C. Thereby, the ro-
bustness of each considered parameter configuration is evaluated using
one-dimensional sensitivity analysis. By this means, exploration yields
parameter configurations with high robustness for p representing lower
bounds for the sought-after dynamic design robustness DDRS,C(p). Note
that for the approximation of the aggregated dynamic design robustness
ADDRS,C(P) a separate exploration needs to be performed for each sys-
tem property in P.

4.4.2 Dependent system properties
The static and dynamic robustness metrics for dependent system

properties introduced in Section 4.2.2 are based on multi-dimensional
sensitivity analysis information. Since the exact calculation of multi-
dimensional sensitivity fronts might be computationally expensive, the
direct integration of the exact metrics into exploration is of limited prac-

Exploring robustness 145

ticability, especially for more than three system properties. In order to
circumvent this complexity problem, efficient approximation techniques
for the static (Section 4.4.2.1) and the dynamic robustness metrics (Sec-
tion 4.4.2.2) are proposed in this section.

The proposed methods are based on the stochastic multi-dimensional
sensitivity analysis presented in Section 4.3. The main reason for ap-
plying this analysis to system robustness optimization is its capabil-
ity of deriving upper and lower system sensitivity bounds with scal-
able computational effort. The proposed approximation techniques use
these bounds to efficiently approximate the static and dynamic robust-
ness metrics during exploration. These approximations are adequate to
guide exploration towards interesting parameter configurations, whose
detailed robustness analysis can be performed afterwards.

Note that for simplicity, the given definitions assume that the con-
sidered system properties are subject to maximization. However, the
exploration techniques can easily be adapted to cover system properties
that are subject to minimization.

4.4.2.1 Static case

In the static case the robustness exploration task consists in finding
the parameter configuration for a given system S that maximizes the
static design robustness with respect to a set of dependent system prop-
erties P weighted according to W.

To tackle this problem, a nested design space exploration approach is
proposed. The outer exploration loop variates free system parameters
(e.g. scheduling parameters), whereas the inner exploration loop eval-
uates the robustness of each candidate parameter configuration Sc us-
ing stochastic multi-dimensional sensitivity analysis (Section 4.3). More
precisely, the bounding working Pareto-front Fw

Sc
(P) and the bounding

non-working Pareto-front Fnw
Sc

(P) are used to derive upper and lower
robustness bounds for each evaluated parameter configuration Sc.

Def. 4.4.1 (Static Robustness Bounds) Let Sc denote the
system S with parameter configuration c and P = {p1, . . . , pn} a
set of dependent system properties. Given the bounding working
and non-working Pareto-fronts Fw

Sc
(P) and Fnw

Sc
(P) as well as the

set of weights W = {w1, . . . , wn}, the static design robustness
SDRdep

Sc
(P,W) is bounded by the minimum guaranteed robustness

R−
Sc

and the maximum possible robustness R+
Sc

:

146 Design Robustness Optimization

R−
Sc

(P,W) ≤ SDRdep
Sc

(P,W) < R+
Sc

(P,W), where

R−
Sc

(P,W) = λ̃−
HSc (P)(F

w
Sc

(P),W)

R+
Sc

(P,W) = λ̃+
HSc (P)(F

nw
Sc

(P),W)

Figures 4.20a and 4.20b visualize the minimum guaranteed and the
maximum possible robustness (without weighting).

(a) Minimum guaranteed robustness R−
Sc

(b) Maximum possible robustness R+
Sc

Fig. 4.20: Static robustness bounds R−
Sc

and R+
Sc

derived from the
bounding Pareto-fronts obtained through stochastic sensitivity analysis
of two system properties for the parameter configuration Sc

Exploring robustness 147

Exploration control. In order to find all parameter configurations
with high robustness, despite variations in the evaluation results of the
underlying stochastic multi-dimensional sensitivity analysis, it is pro-
posed to perform a multi-objective exploration of the minimum guar-
anteed robustness R− and the maximum possible robustness R+ in the
outer exploration loop. In so doing, exploration yields, on the one hand,
parameter configurations with large guaranteed robustness and, on the
other hand, parameter configurations with possibly large robustness po-
tential, which needs to be confirmed or disapproved by more detailed
analysis.

Note that for this specific optimization problem two parameter config-
urations need to be considered as non-comparable if the intervals defined
by their minimum guaranteed and maximum possible robustness bounds
intersect. Clearly, in this case it cannot be decided without further
analysis which parameter configuration possesses the higher real robust-
ness, and hence needs to be considered as better. Unfortunately, Pareto-
dominance does not exhibit the desired behavior for interval semantics.
Consequently, the notion of optimality that is used by the selector algo-
rithm1 steering the outer exploration loop needs to be modified. More
precisely, instead of Pareto-dominance the notion of interval-dominance
must be used to decide about optimality.

Def. 4.4.2 (Interval-dominance) Given two intervals A, B ⊂
R+, the interval A = [a1, a2] dominates the interval B = [b1, b2]
(notation A � B), iff it holds that:

a1 ≥ b2

Figure 4.21 visualizes the differences between the notions of Pareto-
dominance in the sense of a maximization problem and interval-dominance.

Three different situations are distinguished for the intervals defined
by the robustness bounds of the given parameter configurations c1 and
c2: a) the intervals do not intersect, b) the intervals intersect, and c)
one interval includes the other interval. In case a) it can be definitely
stated that c2 has a higher robustness than c1. Obviously, interval-
dominance reflects this fact. However, also Pareto-dominance considers
c1 as sub-optimal, since both, its minimum guaranteed and its max-
imum possible robustness, are lower. In case b) and c) it cannot be
decided whether c1 or c2 have higher robustness, since the intervals de-

1We use SPEA2 [136]. Compare Chapter 3.

148 Design Robustness Optimization

Fig. 4.21: Difference between Pareto-dominance and interval-dominance

fined by the given lower and upper robustness bounds overlap. In case
c), Pareto-dominance correctly evaluates the situation, since c1 has a
higher minimum guaranteed robustness and c2 has a higher maximum
possible robustness. However, in case b) Pareto-dominance leads to a
wrong interpretation. Pareto-dominance states that c1 is sub-optimal,
even though both parameter configurations cannot be compared.

Scalability. Clearly, the real robustness of any evaluated parameter
configuration Sc is guaranteed to be contained in the interval defined
by R−

Sc
and R+

Sc
. Consequently, the precision of the underlying robust-

ness approximation can be safely scaled. At high precisions, exploration
takes longer but yields more accurate results. Contrarily, lower preci-
sions allow for better search space coverage at the cost of less precise
results. Hence, more sub-optimal parameter configurations might be
misinterpreted as potentially interesting. However, despite that, the
minimum guaranteed and the maximum possible robustness metrics are
very good indicators for identifying interesting parameter configurations
during exploration, even with low precision. The detailed analysis of
these parameter configurations can be postponed, and performed after
exploration.

4.4.2.2 Dynamic case
The optimization task in the dynamic case consists in finding all pa-

rameter configurations that exhibit partially disjoint robustness char-
acteristics for the considered dependent system properties, and hence
contribute to the sought-after dynamic design robustness. Like in the
static case, the robustness of each considered parameter configuration is

Exploring robustness 149

evaluated with the stochastic sensitivity analysis proposed in Section 4.3.
The main difference to the static case is how exploration is controlled.

During exploration so-called dynamic bounding Pareto-fronts are main-
tained and successively updated:

The dynamic bounding working Pareto-front integrates the informa-
tion that is contained in the bounding working Pareto-fronts of all
evaluated parameter configurations, i.e. for each system property
value combination below the dynamic bounding working Pareto-front
there exists at least one feasible parameter configuration.

The dynamic bounding non-working Pareto-front integrates the in-
formation contained in the bounding non-working Pareto-fronts of
all evaluated parameter configurations, i.e. for each system property
value combination below the dynamic bounding non-working Pareto-
front there exists at least one parameter configuration for that infea-
sibility has not yet been proven.

In the following, formal definitions of the dynamic bounding Pareto-
fronts are introduced, and lower and upper bounds for the sought-after
dynamic design robustness of a given system are derived. Additionally,
it is shown how the dynamic bounding Pareto-fronts are successively up-
dated and refined using an iterative exploration approach with adaptive
fitness assignment.

The dynamic bounding Pareto-fronts are contained in the dynamic
bounding hypercube (Definition 4.4.3).

Def. 4.4.3 (Dynamic bounding hypercube) Let S be a
given system, P = {p1, . . . , pn} a set of system properties, and
C = {c1, . . . , cm} a set of evaluated parameter configurations for
S. Given the bounding hypercubes HSc1

(P), . . . ,HScm
(P) for the

parameter configurations in C obtained by stochastic sensitivity
analysis, the dynamic bounding hypercube is defined as follows:

H̃S,C(P) =
m⋃

i=1

HSci
(P)

Dynamic bounding working Pareto-front. The calculation of the
dynamic bounding working Pareto-front is straight-forward. At a given
time during exploration, it is defined by the Pareto-optimal (in the sense
of a maximization problem) vectors in the union set of the bounding

150 Design Robustness Optimization

working Pareto-fronts of all evaluated parameter configurations. Defini-
tion 4.4.4 gives a formal characterization.

Def. 4.4.4 (Dynamic bounding working Pareto-front) Let
S be a given system, P = {p1, . . . , pn} a set of system prop-
erties, and C = {c1, . . . , cm} a set of evaluated parameter con-
figurations for S. Given the bounding working Pareto-fronts
Fw = {Fw

Sc1
(P), . . . ,Fw

Scm
(P)} for the parameter configurations in

C obtained by stochastic sensitivity analysis, the dynamic bound-
ing working Pareto-front is defined as follows:

F̃w
S,C(P) = Ω+(

m⋃
i=1

Fw
Sci

(P)) = Ω+({�x| ∃F ∈ Fw : �x ∈ F})

Figure 4.22 visualizes how three given bounding working Pareto-fronts
are integrated into the dynamic bounding working Pareto-front.

(a) Bounding working Pareto-fronts of three
different parameter configurations

(b) Dynamic bounding working Pareto-front
integrating the three given bounding work-
ing Pareto-fronts

Fig. 4.22: Calculation of the dynamic bounding working Pareto-front

Dynamic bounding non-working Pareto-front. The calculation
of the dynamic bounding non-working Pareto-front is more involved.
Figure 4.23 visualizes how the bounding non-working Pareto-fronts of
three given parameter configurations are integrated into the dynamic
bounding non-working Pareto-front.

Exploring robustness 151

The sought-after Pareto-front must cover all system property value
combinations, whose infeasibility has not yet been proven for at least
one evaluated parameter configuration. This is true for all value com-
binations, which are covered by at least one of the involved bounding
non-working Pareto-fronts.

For the correct determination of the dynamic bounding non-working
Pareto-front the approach applied for the dynamic bounding working
Pareto-front is not valid. This is visualized in Figure 4.23.

Figure 4.23a shows the bounding non-working Pareto-fronts of three
evaluated parameter configurations. Figure 4.23b visualizes two different
attempts for deriving the dynamic bounding non-working Pareto-front.

The red dotted line connects all Pareto-optimal vectors (marked with
a square) with an upper step function. This corresponds to the Pareto-
front that is obtained if the same approach as for the dynamic bounding
working Pareto-front is applied. However, a comparison with the real
dynamic bounding non-working Pareto-front, visualized by the solid red
line, reveals that this algorithm is not correct. In fact, the red dotted
line does not cover several regions highlighted in gray, which corresponds
to an underestimation, and it incorrectly covers the region hatched in
gray, which corresponds to an overestimation of the sought-after dynamic
bounding non-working Pareto-front.

As one possibility, the dynamic bounding non-working Pareto-front
is correctly characterized by the set of all Pareto-optimal vectors that
Pareto-dominate (in the sense of a maximization problem) no vector
in at least one of the considered bounding non-working Pareto-fronts.
For the example shown in Figure 4.23b these vectors are marked with a
cross. As can be seen, they correctly define the limits of the sought-after
dynamic bounding non-working Pareto-front. Definition 4.4.5 gives a
formal characterization.

Def. 4.4.5 (Dynamic bounding non-working Pareto-front)
Let S be a given system, P = {p1, . . . , pn} a set of system
properties, and C = {c1, . . . , cm} a set of evaluated parameter
configurations for S. Given the bounding non-working Pareto-
fronts Fnw = {Fnw

Sc1
(P), . . . ,Fnw

Scm
(P)} for the parameter config-

urations in C obtained by stochastic sensitivity analysis, the dy-
namic bounding non-working Pareto-front is defined as follows:

F̃nw
S,C(P) = Ω+({�f ∈ H̃S,C(P)|∃F ∈ Fnw : (∃�x ∈ F : �f �+ �x)})

152 Design Robustness Optimization

(a) Bounding non-working Pareto-fronts of
three different parameter configurations

(b) Dynamic bounding non-working Pareto-
front integrating the three given bounding
non-working Pareto-fronts

Fig. 4.23: Calculation of the dynamic bounding non-working
Pareto-front

Dynamic robustness bounds. Like in the static case, the dynamic
bounding Pareto-fronts F̃w

S,C(P) and F̃nw
S,C(P) can be used to derive

bounds for the dynamic design robustness of the analyzed system (Def-
inition 4.4.6).

Definition 4.4.6 formally characterizes the dynamic minimum guar-
anteed robustness R̃−

S , representing a lower bound, and the dynamic
maximum possible robustness R̃+

S , representing an upper bound for the
sought-after dynamic design robustness.

Def. 4.4.6 (Dynamic Robustness Bounds) Let S denote a
given system, P = {p1, . . . , pn} a set of system properties, and C
a set of evaluated parameter configurations for S. Given the dy-
namic bounding working and non-working Pareto-fronts F̃w

S,C(P)
and F̃nw

S,C(P), as well as the set of weights W = {w1, . . . , wn},
the dynamic design robustness DDRdep

S,C(P,W) is bounded by the
dynamic minimum guaranteed robustness R̃−

S and the dynamic
maximum possible robustness R̃+

S :

R̃−
S (P,W) ≤ DDRdep

S,C(P,W) < R̃+
S (P,W), where

R̃−
S (P,W) = λ̃−

H̃S,C(P)
(F̃w

S,C(P),W)

R̃+
S (P,W) = λ̃−

H̃S,C(P)
(F̃nw

S,C(P),W)

Exploring robustness 153

Note that R̃−
S represents a globally valid lower bound for the sought-

after dynamic design robustness of the analyzed system, i.e. its real
dynamic design robustness is larger or equal to R̃−

S . However, R̃+
S only

represents an upper dynamic robustness bound for the set of evaluated
parameter configurations C. Note that this is not a limitation of the
approach, since, in general, a globally valid upper bound cannot be
determined without evaluating all possible parameter configurations.

Exploration control. In the previous paragraphs it was discussed
how upper and lower dynamic design robustness bounds can be derived
using the stochastic sensitivity analysis presented in Section 4.3. In the
remainder of this section it is explained how exploration is controlled.

In order to efficiently approximate the dynamic design robustness an
iterative exploration approach is proposed. Basically, each iteration rep-
resents an independent exploration that runs for a predefined number
of generations. However, the dynamic bounding Pareto-fronts are main-
tained and updated across all iterations. This iterative exploration ap-
proach has been chosen to implement an adaptive fitness assignment
strategy. The reason why adaptive exploration control is necessary to
efficiently approximate the dynamic design robustness of a given system
is discussed in the following.

Adaptive fitness assignment. One possibility for controlling the
explorative dynamic design robustness approximation consists in using
the minimum guaranteed robustness (compare Definition 4.4.1 in Sec-
tion 4.4.2.1) of the evaluated parameter configurations as fitness values.
That this straight-forward method is not necessarily effective shall be
demonstrated by means of an example. Figure 4.24 shows intermediate
results obtained during dynamic design robustness approximation for
two system properties P1 and P2.

It is assumed that already several iterations have been performed. The
intermediate dynamic bounding working Pareto-front is shown by the
dashed line. In the current iteration, two new parameter configurations,
C1 and C2, are evaluated. The corresponding bounding working Pareto-
fronts are highlighted in light blue and green, respectively.

As can be seen, C1 has a higher minimum guaranteed robustness than
C2. However, the bounding working Pareto-front of C1 is completely
covered by the dynamic bounding working Pareto-front. Consequently,
C1 does not improve approximation quality. The situation looks different
for C2. Even though C2 has a smaller minimum guaranteed robustness
than C1, it directly improves the dynamic bounding working Pareto-front

154 Design Robustness Optimization

Fig. 4.24: Adaptive fitness assignment strategy during dynamic design
robustness approximation

at the depicted state of exploration. It is, thus, preferable to assign a
higher fitness value to C2 than to C1.

This small example indicates that plain robustness properties are not
adequate to control the explorative approximation of the dynamic design
robustness. For this reason, it is proposed to use the approximation
improvements achieved by the considered parameter configurations as
fitness values. In Figure 4.24 the fitness of C2 corresponding to this
strategy is represented by the hatched area. Definition 4.4.7 formalizes
the proposed adaptive fitness value.

Def. 4.4.7 (Adaptive fitness value) Let S denote a given
system, and P = {p1, . . . , pn} a set of system properties weighted
according to W = {w1, . . . , wn}. Given the bounding working
Pareto-front Fw

Sc
(P) of the parameter configuration c obtained by

stochastic sensitivity analysis, and the current dynamic bounding
working Pareto-front F̃w

S,C(P), the fitness of c is defined as follows:

fitness(c) = λ̃−
H(Ω+(F̃w

S,C(P)∪Fw
Sc

(P)),W)−λ̃−
H̃S,C(P)

(F̃w
S,C(P),W)

, where H = H̃S,C(P) ∪HSc(P)

Note that during iterative exploration the dynamic bounding work-
ing Pareto-front, which represents the baseline for the adaptive fitness
assignment strategy, is updated after each iteration. In this manner,
exploration is adaptively controlled and constantly re-focused on search

Exploring robustness 155

space areas with the most approximation improvement potential. In
other words, parameter configurations that have been evaluated in pre-
vious iterations are assigned low fitness values1 in subsequent iterations,
since their robustness characteristics are already included in the dynamic
bounding Pareto-fronts.

Pseudo-code representation. For a better overview and understand-
ing of the iterative exploration approach that is proposed for approxi-
mating the dynamic design robustness of a system S with respect to a
set of dependent system properties P and a reconfiguration space C, a
pseudo-code representation of the specific actions that need to be per-
formed before, during, and after each iteration is given in the following.
Note that it is assumed that the exploration runs for a predefined num-
ber of iterations. Therefore, no explicit stop condition is specified.

Initialization of the iterative exploration

1. Initialize dynamic bounding hypercube

H̃S,C(P) = ∅

2. Initialize dynamic bounding working and non-working Pareto-
fronts

F̃w
S,C(P) = ∅ and F̃nw

S,C(P) = ∅

3. Initialize the sets containing all bounding working and non-working
Pareto-fronts of parameter configurations that have been evalu-
ated

Γw = ∅ and Γnw = ∅

During an exploration iteration: for each evaluated parameter con-
figuration c do the following

1. Perform a stochastic multi-dimensional sensitivity analysis (Sec-
tion 4.3) for c to obtain the bounding working and non-working
Pareto-fronts Fw

Sc
(P) and Fnw

Sc
(P)

2. Add Fw
Sc

(P) to Γw and Fnw
Sc

(P) to Γnw

3. Update the dynamic bounding hypercube

H̃S,C(P) = H̃S,C(P) ∪HSc(P)

1The stochastic sensitivity analysis does not yield deterministic results.

156 Design Robustness Optimization

4. Use the current dynamic bounding working Pareto-front F̃w
S,C(P)

to calculate the fitness of c according to Definition 4.4.7

After each exploration iteration do the following

1. Update the dynamic bounding working Pareto-front F̃w
S,C(P) by

integrating all working Pareto-fronts stored in Γw according to
Definition 4.4.4

2. Update the dynamic bounding non-working Pareto-front F̃nw
S,C(P)

by integrating all non-working Pareto-fronts stored in Γnw accord-
ing to Definition 4.4.5

Illustrative example. Figure 4.25 gives an example for the dynamic
robustness approximation approach presented in this section.

Figure 4.25a shows the initial approximations of the dynamic bound-
ing Pareto-fronts. Two new parameter configurations are evaluated in
the pending exploration iteration. The approximations of the bounding
Pareto-fronts for these two parameter configurations, obtained through
stochastic multi-dimensional sensitivity analysis, are visualized in Fig-
ures 4.25b and 4.25d, respectively. The derived fitness values are illus-
trated in Figures 4.25c and 4.25e. Figure 4.25f shows the updated dy-
namic bounding Pareto-fronts at the end of the performed exploration
iteration.

4.5 Case study
In this section robustness optimization is performed for the exam-

ple system introduced in Section 2.3. Thereby, several two- and three-
dimensional static and dynamic robustness optimization problems for
dependent system properties are investigated.

In all experiments the search space consists of the priority assign-
ments on computational resources (i.e. ARM, DSP, uC, and PPC) as
well as on the interconnecting CAN bus. For the dynamic cases it is
examined in which parts of the system it is particularly advantageous
to introduce reconfiguration mechanisms. Note that for these consider-
ations the configurations with optimal static robustness properties are
taken as baseline.

4.5.1 Two-dimensional robustness optimization
First, the two-dimensional WCCT robustnesses of the communication

channel pairs belonging to the three sub-applications, i.e. Sens → Act,
Cam → Vout, and Sin → Sout, are investigated. Additionally, the two-
dimensional WCCT/WCET robustness of communication channel C3

Case study 157

(a) Dynamic bounding Pareto-fronts
before current exploration iteration

(b) Bounding Pareto-fronts of first
evaluated parameter configuration

(c) Fitness of first evaluated parame-
ter configuration

(d) Bounding Pareto-fronts of second
evaluated configuration

(e) Fitness of second evaluated pa-
rameter configuration

(f) Dynamic bounding Pareto-fronts
after current exploration iteration

Fig. 4.25: Dynamic design robustness approximation example

158 Design Robustness Optimization

and task T1 is optimized. For all experiments the involved tasks and
communication channels are weighted 1.

The experiments were performed on an Intel Core Duo T2400 (2*1.83
GHz). The outer exploration loop varied scheduling parameters and was
executed during 20 generation each consisting of 25 different parameter
configurations. In the inner loop the robustness properties of discov-
ered feasible parameter configurations were evaluated using stochastic
sensitivity analysis with resolution 200 during 5 generation with 25 in-
dividuals each. Thereby, the average analysis time for a single individ-
ual was 150 ms. Additionally, two one-dimensional sensitivity analyses
needed to be performed for each evaluated parameter configuration to
determine the bounding box containing the sought-after sensitivity front.
Consequently, the robustness evaluation of a single feasible parameter
configuration took approximately 20 seconds (using both cores of the
T2400). Note that infeasible parameter configuration do not possess
any robustness properties, and thus did not need to be evaluated.

During exploration on average about 100 feasible parameter configura-
tions were found and needed to be evaluated, translating into an overall
robustness optimization time of between 30 and 35 minutes. Note that
the run-time is independent of whether static or dynamic robustness
properties are considered.

In the following the robustness optimization results are discussed. All
considered parameter configurations are listed in Table 4.1.

CAN ARM DSP uC PPC

1 C0 > C4 > C5 > C2 > C3 > C1 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
2 C4 > C5 > C2 > C0 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
3 C4 > C0 > C5 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
4 C4 > C2 > C5 > C0 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
5 C0 > C5 > C4 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
6 C4 > C0 > C5 > C2 > C3 > C1 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
7 C4 > C5 > C0 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T0 > T3 T2 > T5
8 C4 > C5 > C0 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
9 C0 > C4 > C5 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5

Table 4.1: Considered system parameter configurations, i.e. priority
assignments, during two-dimensional robustness optimization

Communication channels C0 and C1. The robustnesses of the
original parameter configuration and the parameter configurations ex-
hibiting optimal SDR properties (configuration #1) are visualized in
Figure 4.26a. The robustness of the original parameter configuration is
equal to

Case study 159

SDRdep
org ({C0, C1}) = 1.0583.

Through static robustness optimization it can be increased by more
than factor 7:

SDRdep
#1 ({C0, C1}) = 7.7244.

In the dynamic case, i.e. assuming reconfigurability of the communi-
cation channel priorities on the interconnecting CAN bus, two additional
configurations (#2 and #3) are found increasing robustness by 10.55%
to

DDRdep
{CAN}({C0, C1}) = 8.539.

The space of feasible property value combinations for the dynamic
case is visualized in Figure 4.26b. Additional experiments reveal that
no further dynamic robustness improvement can be achieved by adding
other resources to the reconfiguration space.

Communication channels C2 and C3. The overall WCCT robust-
ness of the communication channels C2 and C3 is far smaller compared
to C0 and C1. The original parameter configuration possesses only little
robustness:

SDRdep
org ({C2, C3}) = 0.1682.

By means of static robustness optimization parameter configuration
#2 exhibiting optimal SDR properties is discovered:

SDRdep
#2 ({C2, C3}) = 0.66.

This corresponds to a robustness increase of almost 300 % compared
to the original configuration. The spaces of feasible property value com-
binations for the original and the optimized parameter configurations
are visualized in Figure 4.27a.

Again, robustness can be further increased by assuming reconfigura-
bility on the CAN bus. As can be seen in Figure 4.27b two additional
parameter configurations exist (#4 and #5) increasing robustness by
15.79 % to

DDRdep
{CAN}({C2, C3}) = 0.7642.

Like in the previous case, reconfigurability on other resources does
not lead to an additional robustness increase.

160 Design Robustness Optimization

(a) Static design robustness - configuration #1 has optimal SDR
properties

(b) Dynamic design robustness - reconfigurability on CAN

Fig. 4.26: Two-dimensional static and dynamic WCCT robustness of
communication channels C0 and C1

Communication channels C4 and C5. The original configuration
possesses a robustness of

SDRdep
org ({C4, C5}) = 0.459

with respect to WCCT variations of the communication channels C4
and C5. This rather low robustness can be increased through static
robustness optimization by more than factor 7. The robustness of the
optimal configuration # 6 is equal to

Case study 161

(a) Static design robustness - configuration #2 has optimal SDR
properties

(b) Dynamic design robustness - reconfigurability on CAN

Fig. 4.27: Two-dimensional static and dynamic WCCT robustness of
communication channels C2 and C3

SDRdep
#6 ({C4, C5}) = 3.3164.

The spaces of feasible property value combinations for the original and
the optimized parameter configurations are visualized in Figure 4.28.

Note that in contrast to the first two experiments the WCCT robust-
ness of C4 and C5 cannot be improved through dynamic system be-
havior. In other words, the static and dynamic design robustness with
respect to WCCT variations of the communication channels C4 and C5
are equivalent:

162 Design Robustness Optimization

Fig. 4.28: Two-dimensional static and dynamic WCCT robustness of
communication channels C4 and C5. Dynamic robustness is equal to
static robustness.

SDRdep
#6 ({C4, C5}) = DDRdep

{CAN,ARM,DSP,uC,PPC}({C4, C5}).

Communication channel C3 and task T1. In the last two-dimensional
experiment the WCCT/WCET robustness of communication channel C3
and task T1 is optimized. The robustnesses of the original parameter
configuration and the parameter configurations exhibiting optimal SDR
properties (configuration #3) are visualized in Figure 4.29a. The ro-
bustness of the original configuration is very low:

SDRdep
org ({C3, T1}) = 0.0503.

However, by means of static robustness optimization configuration #3
is found increasing robustness by more than factor 6:

SDRdep
#3 ({C3, T1}) = 0.3226.

Robustness can be further increased if dynamic system behavior is
assumed. For instance, reconfigurability of the communication channel
priorities on the CAN bus leads to the discovery of three additional
configurations (#4, #8, and #9) increasing robustness by 5%:

DDRdep
{CAN}({C3, T1}) = 0.339.

Unlike in the previous experiments additional robustness improvement
can be achieved through reconfigurability on uC. Altogether, a robust-

Case study 163

ness increase of nearly 10 % is obtained through reconfigurability on the
CAN bus and uC:

DDRdep
{CAN,uC}({C3, T1}) = 0.3531.

The space of feasible property value combinations for the dynamic
case is visualized in Figure 4.29b. As can be seen, the low robustness
is mainly due to T1. Therefore, reconfigurability on uC is particularly
interesting since it increases the dynamic robustness in the dimension of
T1.

4.5.2 Three-dimensional robustness optimization
In this section two three-dimensional robustness optimizations sce-

narios are discussed. First, the robustness of task T1 together with
incoming and outgoing communication channels C0 and C1 is investi-
gated. Second, the robustness of the tasks belonging to the application
Cam → Vout, i.e. T3, T4, and T5, is optimized. For both experiments
the involved tasks and communication channels are weighted 1.

Like in the two-dimensional case the experiments were performed on
an Intel Core Duo T2400 (2*1.83 GHz). The outer loop varying schedul-
ing parameters was left untouched (20 generation with 25 individuals
each). However, the inner loop performing stochastic sensitivity analy-
sis of feasible parameter configurations needs to run longer for accurate
robustness assessment in the three-dimensional case. Therefore, a gener-
ation count of 10 each consisting of 100 individuals was chosen. Thereby,
the average analysis time per individual was 150 ms. Hence, together
with three one-dimensional sensitivity analyses that are necessary to de-
termine the bounding cube (3*5 seconds), the overall evaluation time
for one feasible parameter configuration added up to approximately 90
seconds (using both cores).

During exploration on average about 100 feasible parameter config-
urations were found and needed to be evaluated, translating into an
overall robustness optimization time of approximately 2 hours and 30
minutes. Note that the run-time is independent of whether static or
dynamic robustness properties are considered.

Task T1 with incoming and outgoing communication channels
C0 and C1. Figure 4.30 visualizes the robustness of the original pa-
rameter configuration. Its robustness is rather low:

SDRdep
org ({C0, C1, T1}) = 0.0336.

164 Design Robustness Optimization

(a) Static design robustness - configuration #3 has optimal SDR
properties

(b) Dynamic design robustness - reconfigurability on CAN and
uC (configuration #7 is obtained through reconfigurability on
uC)

Fig. 4.29: Two-dimensional static and dynamic WCCT / WCET robust-
ness of communication channel C3 and task T1

However, it can be substantially increased by means of robustness op-
timization. The parameter configurations that were discovered during
static and dynamic robustness optimization of task T1 with communi-
cation channels C0 and C1 are listed in Table 4.2.

Parameter configuration #2 possesses optimal static robustness prop-
erties:

SDRdep
#2 ({C0, C1, T1}) = 1.3138.

Case study 165

Fig. 4.30: Three-dimensional WCCT/WCET robustness of communica-
tion channels C0 and C1 as well as task T1 - original configuration

CAN ARM DSP uC PPC

1 C0 > C4 > C5 > C2 > C3 > C1 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
2 C4 > C0 > C5 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
3 C4 > C0 > C5 > C2 > C3 > C1 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
4 C4 > C2 > C5 > C0 > C1 > C3 T6 > T1 > T8 T7 > T4 T0 > T3 T2 > T5
5 C4 > C5 > C0 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T0 > T3 T2 > T5
6 C4 > C5 > C0 > C2 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
7 C4 > C5 > C0 > C2 > C3 > C1 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5
8 C4 > C5 > C2 > C0 > C1 > C3 T6 > T1 > T8 T7 > T4 T3 > T0 T2 > T5

Table 4.2: Considered system parameter configurations, i.e. priority
assignments, during three-dimensional WCCT/WCET robustness opti-
mization of communication channels C0 and C1 as well as task T1

This corresponds to a robustness increase by factor of 40 compared to
the original parameter configuration. The space of valid property value
combinations covered by configuration #2 is visualized in Figure 4.31a.

If reconfigurability is included into robustness considerations this value
can be further increased. In the first step it is, therefore, assumed that
the communication channel priorities on the CAN bus are reconfigurable.
This measure leads to a dynamic robustness increase of nearly 10% com-
pared to the static case:

166 Design Robustness Optimization

DDRdep
{CAN}({C0, C1, T1}) = 1.4369.

Further experiments reveal that an additional dynamic robustness
improvement is possible by adding uC to the reconfiguration space:

DDRdep
{CAN,uC}({C0, C1, T1}) = 1.4898.

This corresponds to a dynamic robustness increase of 13.4% compared
to the static case. The overall dynamic robustness, i.e. assuming recon-
figurability on the CAN bus and uC, is visualized in Figure 4.31.

Tasks T3, T4, and T5. Figure 4.32 visualizes the space of feasible
property value combinations covered by the original parameter configu-
ration. Its robustness is equal to

SDRdep
org ({T3, T4, T5}) = 0.0193.

Through robustness optimization it is tried to find parameter configu-
ration with better robustness properties. The parameter configurations
that were discovered during static and dynamic robustness optimization
of tasks T3, T4, and T5 are listed in Table 4.3.

CAN ARM DSP uC PPC

1 C0, C4, C2, C5, C3, C1 T6, T1, T8 T7, T4 T3, T0 T2, T5
2 C2, C0, C5, C4, C3, C1 T6, T1, T8 T7, T4 T3, T0 T2, T5
3 C2, C4, C5, C0, C3, C1 T6, T1, T8 T7, T4 T0, T3 T2, T5

Table 4.3: Considered system parameter configurations, i.e. priority
assignments, during three-dimensional WCET robustness optimization
of tasks T3, T4, and T5

Parameter configuration #2 possesses optimal static robustness prop-
erties:

SDRdep
#2 ({T3, T4, T5}) = 0.0452.

This corresponds to a robustness increase of 134% compared to the
original parameter configuration. The space of valid property value com-
binations covered by configuration #2 is visualized in Figure 4.33a.

Again, it is tried to further increase robustness through reconfigura-
tion mechanisms. Reconfigurability of the communication channel pri-
orities on the CAN bus leads to a dynamic robustness increase of more
than 10% compared to the static case:

Case study 167

(a) Static design robustness - configuration #2 has optimal
SDR properties

(b) Dynamic design robustness - reconfigurability on CAN
and uC (configurations #4 and #5 are obtained through
reconfigurability on uC)

Fig. 4.31: Three-dimensional static and dynamic WCCT/WCET robust-
ness of communication channels C0 and C1 as well as task T1

168 Design Robustness Optimization

Fig. 4.32: Three-dimensional static and dynamic WCET robustness of
tasks T3, T4, and T5 - original configuration

DDRdep
{CAN}({T3, T4, T5}) = 0.04996.

Like in the previous experiment an additional dynamic robustness
improvement is possible by adding uC to the reconfiguration space:

DDRdep
{CAN,uC}({T3, T4, T5}) = 0.0532.

This corresponds to a robustness increase of 17.7% compared to the
static case. The overall dynamic robustness, i.e. assuming reconfigura-
bility on the CAN bus and uC, is visualized in Figure 4.33b.

Compared to the previous experiments it can be concluded that only
low robustness can be achieved for the application Cam → Vout, even if
dynamic system behavior is assumed. The main reason is the fragility of
task T4 running on the DSP. Its original WCET of 86 time units cannot
be increased further than 92.15 time units, which corresponds to a slack
of little more than 7% (compare Figure 4.33b).

Case study 169

(a) Static design robustness - configuration #2 has optimal
SDR properties

(b) Dynamic design robustness - reconfigurability on CAN
and uC (configuration #3 is obtained through reconfigura-
bility on uC)

Fig. 4.33: Three-dimensional static and dynamic WCET robustness of
tasks T3, T4, and T5

Chapter 5

COMBINED PERFORMANCE ANALYSIS
OF EMBEDDED SYSTEMS

Over the last decade, many analytical methods for performance anal-
ysis of embedded systems were proposed, examples can be found in [79,
131, 77, 115, 84, 43, 113, 50]. Most of them are specialized and dedicated
to specific domains, whereas others try to be general enough to serve
for several application scenarios. However, the heterogeneity of nowa-
days embedded systems challenges state-of-the-art performance analysis
methods with respect to analysis capabilities and accuracy. To solve this
problem, modular design approaches have been proposed that allow to
compose analyses of different resource sharing strategies. They share a
similar overall analysis methodology but use different models of compu-
tation. They have demonstrated high modeling accuracy and simplicity
for certain areas but are less appropriate for others.

This fact is pointed out in [83], where different state-of-the-art modu-
lar performance analysis approaches are compared, including SymTA/S
(Symbolic Timing Analysis for Systems) [50], MPA (Modular Perfor-
mance Analysis) [126] based on RTC (Real-Time Calculus) [17], UP-
PAAL [8, 46], and MAST (Modeling and Analysis Suite for Real-Time
Applications) [43]. The authors show that even for small heterogeneous
distributed systems the different approaches exhibit remarkable differ-
ences in terms of analysis accuracy. Thereby, none of the compared
approaches performs best in all cases. It can, therefore, be concluded
that the choice of an appropriate abstraction fitting the characteristics of
the analyzed system is important to obtain tight and expressive analysis
results.

In this chapter we want to contribute in solving the problem of pro-
viding accurate performance predictions for general distributed real-time
systems. Rather than searching for a unified more complex model, we

172 Combined Performance Analysis of Embedded Systems

propose to exploit a compositional system level analysis methodology to
couple different modular performance analysis techniques.

As an example the coupling of SymTA/S and MPA is demonstrated.
The strength of SymTA/S is its flexibility in modeling activation and
execution dependencies allowing to precisely analyze complex real-world
operating systems and bus protocols. Examples are ERCOSEK [29, 70]
and CAN [1, 15] known from the automotive domain. MPA offers a very
intuitive and efficient way to capture scheduling hierarchies [125], which
requires substantial modeling effort using the SymTA/S approach. By
coupling both approaches the advantages offered by both models of com-
putation can be combined, allowing to model and analyze components
in complex distributed system with the best fitting method. As will be
seen in the experimental Section 5.5 this leads to tighter analysis results
compared to monolithic analyses.

The remainder of this chapter is structured as follows. First, the com-
positional performance analysis methodology is briefly discussed (Sec-
tion 5.1). Afterwards, the two modular performance analysis approaches
that are couple in this chapter are introduced: SymTA/S (Section 5.2)
and MPA (Section 5.3). Then, it is explained in detail how both ap-
proaches can be combined by exploiting their common formal basis (Sec-
tion 5.4). Finally, the seamless analysis interaction and accuracy benefits
over using the individual approaches alone are demonstrated by means
of a complicated example with dependencies and feedback (Section 5.5).

Note that the method and the results presented in this chapter have
been developed to equal parts together with Simon Künzli (ETH Zürich),
and that the approach was originally published in [61].

5.1 Compositional performance analysis
In the past years compositional performance analysis approaches [50,

17, 114, 52] have received increasing attention in the real-time and em-
bedded systems research communities. Compositional performance anal-
yses exhibit great flexibility and scalability for timing and performance
analysis of complex distributed embedded real-time systems. Their basic
idea is to integrate local performance analysis techniques, e.g. schedul-
ing analysis techniques known from real-time research, into system level
analyses. This composition is achieved by connecting the component’s
inputs and outputs by stream representations of their communication
behavior.

The possibility to compose existing local performance analysis tech-
niques to system level analyses represents a major advantage over holistic
analysis approaches [115, 43, 84]. Holistic approaches represent analysis
techniques for fixed system architectures. They have, therefore, diffi-

Compositional performance analysis 173

culties to scale to larger systems with new components. More dras-
tically, in case of system changes it is possible that holistic analyses
are no longer applicable without major adaptations. However, holistic
approaches may make it easier to take global performance effects into
account. Even though, compositional approaches have been recently
extended to consider global performance dependencies such as relative
offsets and relative jitters [48], specialized holistic approaches might yield
tighter analysis results in some cases.

The flexibility of compositional performance analysis even spans dif-
ferent approaches based on different models of computation. For in-
stance, in this chapter it is demonstrated how two state-of-the-art com-
positional performance analysis methods, namely SymTA/S [50, 87]
and Real-Time Calculus (RTC) [17, 126], can be coupled using a bi-
directional conversion algorithm for their internal stream representa-
tions. The possibility to couple different methods represents another big
advantage of the compositional performance analysis methodology. It
allows to combine the strengths of several methods, that are often tai-
lored for specific system architectures or application domains, without
the need to search for a unified more complex model.

The remainder of this section is structured as follows. First, the con-
cept of local component analysis in the context of compositional per-
formance analysis is discussed (Section 5.1.1). Afterwards, the compo-
sitional system level analysis loop solving the system level performance
analysis problem for distributed systems is explained (Section 5.1.2). In
cases that two or more components are circularly dependent, system-
level analysis cannot be performed without generating a so-called start-
ing point. This issue is discussed in Section 5.1.3.

5.1.1 Local component analysis
The main idea of the compositional performance analysis methodol-

ogy consists in integrating local component analyses into system level
analysis. Note that the basic performance model that is used by many
performance analysis approaches at component level has been introduced
in Section 2.2.

Based on the underlying resource sharing strategy as well as stream
representations of the incoming workload modeled through so-called ac-
tivating event models, local component analyses systematically derive
worst-case scenarios to calculate worst-case (sometimes also best-case)
task response times (BCRT, WCRT), i.e. the time between task ac-
tivation and task completion, for all tasks sharing the same resource.
Thereby, local component analyses guarantee that all observable re-

174 Combined Performance Analysis of Embedded Systems

sponse times fall into the calculated [best-case, worst-case] interval.
These analyses are therefore called conservative.

Note that different approaches use different models of computation
to perform local component analyses. SymTA/S, for instance, is based
on the algebraic solution of so-called response time formulas using the
sliding window technique proposed by Lehoczky [68], whereas the Real-
Time Calculus utilizes arrival curves and service curves to characterize
workload and processing capabilities of components, and determine their
real-time behavior [112]. These concepts are based on the network cal-
culus. For details please refer to [13].

Additionally, local component analyses determine the communication
behavior at the outputs of the analyzed tasks by considering the effects
of scheduling. Therefore, it is usually assumed that tasks produce output
events at the end of each execution. Like the input timing behavior, also
the output timing behavior is captured by event models. The way in
which these output event models are derived depends on the underlying
analysis technique.

5.1.2 Compositional system level analysis loop
The basic idea of the compositional system level analysis is visualized

in Figure 5.1, see e.g. [50, 96, 17, 113].

Fig. 5.1: Compositional system level analysis loop

Compositional system level analysis alternates local component anal-
ysis as explained in Section 5.1.1 and output event model propagation.

More precisely, in each global iteration of the compositional system
level analysis, local analysis is performed for all component to derive re-
sponse times and output event models. Afterwards, the calculated out-
put event models are propagated to the connected components, where

Symbolic Timing Analysis for Systems SymTA/S 175

they are used as activating event models for the subsequent global iter-
ation.

Obviously, this iterative analysis represents a fix-point problem. If
after an iteration all calculated output event models stay unmodified,
convergence is reached and the last calculated task response times are
valid. This holds for analysis techniques that do not contain states in
their analytical model, otherwise not only unchanged output event mod-
els, but also steady internal state has to be considered as convergence
criterion (e.g. for the models presented in [18]). In cases where no
convergence is reached, no statement can be made about the analyzed
system.

5.1.3 Starting point generation
In order to successfully apply compositional system level analysis, the

input event models of all components need to be known or must be
computable by local component analysis. Obviously, for systems con-
taining feed-back between two or more components this is not the case,
and thus system level analysis cannot be performed without additional
measures. The concrete strategy to overcome this problem depends on
the component types and their input event models. One possibility is
the so-called starting point generation that was proposed in the context
of the SymTA/S approach [50, 96], but that is also applicable to other
compositional performance analysis approaches such as MPA.

The starting point generation consists in propagating external event
models along all task chains in the system without considering the effects
of scheduling, until initial activating event models are available for all
tasks. This approach is safe since, on the one hand, scheduling cannot
change the period of an event stream, and, on the other hand, scheduling
can only increase the jitter contained in an event stream [115]. Since
increased jitter leads in the worst-case (best-case) to potentially more
(less) events in any given time interval Δt, the initial assumption of
ignoring scheduling effects is safe.

5.2 Symbolic Timing Analysis for Systems
SymTA/S

At component level SymTA/S uses formal analysis techniques based
on the busy window technique proposed by Lehoczky [68]. Currently,
SymTA/S offers local analysis techniques for fixed priority scheduling
(preemptive and non-preemptive), TDMA, Round Robin [94], EDF [71],
CAN [15], Flexray [33], and various OSEK variants [70] such as ER-
COSEK [29]. In this section it is briefly explained how SymTA/S couples

176 Combined Performance Analysis of Embedded Systems

local component analyses according to the compositional performance
analysis methodology.

5.2.1 Composition using standard event models
The SymTA/S approach [96, 54, 50] utilizes so-called standard event

models to describe the timing behavior at component inputs and out-
puts. These models represent the necessary abstraction to perform local
component analyses as described in Section 5.1.1, and enable their easy
composition according to the compositional system level analysis loop
discussed in Section 5.1.2. Standard event models are characterized by
three parameters:

The activation period P denotes the average interval between two
consecutive task activations.

The activation jitter J denotes the maximum task activation delay
relative to its activation period.

The minimum inter-arrival distance d denotes the minimum time
between two consecutive activations of the same task.

Note that standard event models have already been discussed in Sec-
tion 2.2.

5.2.2 Output event model calculation
The compositional performance analysis methodology defines very

clear component interfaces. One of the key requirements is that com-
ponents must be capable of determining their output communication
behavior, i.e. output event models, considering the effects of scheduling.

The SymTA/S standard event models allow to specify very simple
rules to obtain output event models during local component analysis.
Note that in the simplest case, i.e. if tasks produce exactly one output
event for each activating event, the output event model period equals
the activation period. A discussion about how output event model pe-
riods are determined for more complex semantics, e.g. considering rate
transitions, can be found in [54].

The output event model jitter Jout is calculated by adding the differ-
ence between maximum and minimum response times, the response time
jitter, to the activating event model jitter Jin [96]:

Jout = Jin + (tresp,max − tresp,min)

Note that if the calculated output event model jitter is larger than the
period, this information alone would indicate that early output events

Modular Performance Analysis MPA 177

could occur before late previous output events. In reality, output events
cannot follow closer than the minimum response time of the producer
task. To reflect this, the calculated output event model can be refined
using the minimum distance parameter d.

An important aspect of the output event model calculation of SymTA/S
is that not only worst-case but also best-case response times are calcu-
lated. The accurate calculation of best-case response times leads to
smaller output jitters limiting transient load peaks on connected com-
ponents, which, in turn, leads to tighter response times [130, 40].

Note that recently a more exact output jitter calculation algorithm
for local component analysis based on standard event models was pro-
posed [51]. The approach exploits that the task activation arriving with
worst-case jitter does not necessarily experience the worst-case response
time.

5.3 Modular Performance Analysis MPA
In [112], Thiele et al. proposed Real-Time Calculus (RTC), a mathe-

matical framework for system-level performance analysis of distributed
embedded systems. Like SymTA/S (see Section 5.2) also the RTC ap-
proach is based on the principles of the compositional performance anal-
ysis methodology presented in Section 5.1. However, the underlying
analysis method [17, 113] is based on different formal models. RTC uti-
lizes arrival curves and service curves to characterize workload and pro-
cessing capabilities of components. System level analysis is performed by
connecting arrival and service curves according to the system topology
and utilized scheduling policy.

The concepts of RTC are implemented in a toolbox, called MPA [126]
(Modular Performance Analysis). Using MPA, it is possible to determine
worst-case bounds for on-chip memory requirements, overall throughput,
and delay. MPA supports complex task activation schemes, including
OR and AND, and several scheduling policies, such as fixed priority
preemptive, EDF, GPS, and TDMA. Since resource capabilities are first
class citizens of the RTC analysis method (see Section 5.3.2), hierarchical
scheduling methods can be easily modeled and analyzed by arbitrarily
combining the above mentioned basic schemes [125]. In the following
sections the basic principles of the RTC/MPA approach are explained.

5.3.1 Arrival curves
For a given event stream, let R(s, t) denote the number of events that

arrive in the time interval [s, t[. The upper arrival curve, denoted by
αu(Δ), gives an upper bound on the number of events in any interval Δ.

178 Combined Performance Analysis of Embedded Systems

Similarly, a lower bound on the number of events is given by the lower
arrival curve αl(Δ). R, αu and αl are related as follows:

∀s : αl(Δ) ≤ R(s, s + Δ) ≤ αu(Δ)

Arrival curves describe timing properties of a whole class of event
streams, for example the average rate, burstiness, long-term, and short-
term behavior. Upper and lower arrival curves can also be given for the
standard event models that are used by SymTA/S (Figure 5.2).

Fig. 5.2: Arrival curves for standard event models

5.3.2 Service curves
Similar to the description of workload with arrival curves, the RTC

methodology uses so-called service curves to model processing capability
of resources.

Let C(s, t) denote the amount of processing units (e.g. in terms of
time units) available on a resource in the time interval [s, t[. The upper
service curve, denoted by βu(Δ), gives an upper bound on the amount
of available processing units in any time interval Δ. A corresponding
lower bound is given by the lower service curve βl(Δ). C, βu and βl are
related as follows:

∀s : βl(Δ) ≤ C(s, s + Δ) ≤ βu(Δ)

5.3.3 System level performance analysis
Given the upper arrival curve αu describing the worst-case workload

as well as the lower service curve βl describing the minimum available
processing capability of the executing resource, the RTC approach de-
fines an elegant algebra to derive the worst-case response time as well
as the worst-case buffering requirements (execution backlog) of a given
task.

Additionally, the RTC methodology defines formulas to calculate the
remaining processing capabilities of the executing resource, and the out-

Modular Performance Analysis MPA 179

put arrival curve describing the stream of processed events. The detailed
formulas can be found in [17]. However, at this point a graphical inter-
pretation shall be given of how worst-case response times and backlog
can be calculated using the RTC approach (Figure 5.3).

Fig. 5.3: Determination of worst-case response time and backlog using
the RTC approach

In order to extend single task analysis to component analysis, schedul-
ing needs to be considered. The RTC approach models scheduling by
connecting involved processes by service curves according to the uti-
lized resource sharing policy. For instance, static priority scheduling is
modeled by connecting the highest priority task with the initial service
curve of the executing resource. The output service curve, describing
the remaining service capability after the highest priority task is served,
is then granted to the task with the second highest priority. The re-
maining tasks are connected in the same way until the lowest priority
task is served. Using different strategies to connect tasks competing for
resource access, RTC can be applied to various additional scheduling
policies including EDF, GPS, and TDMA.

This way of modeling scheduling dependencies is one of the strengths
of the RTC approach. For instance, hierarchical resource sharing strate-
gies can be elegantly modeled using server components [125]. However,
this advantage also comes with restrictions. For example, some schedul-
ing characteristics are not inherently supported by the RTC approach,
and might require considerable modeling effort and additional opera-
tions. Examples are operating system overhead, cooperative task be-
havior, and event correlations.

According to the compositional performance analysis approach, local
component analyses based on the RTC approach can be composed with
high flexibility and scalability. This is done by building so-called schedul-

180 Combined Performance Analysis of Embedded Systems

ing networks. Tasks are connected according to the global application
structure by event streams described using arrival curves. System level
performance analysis can then be performed according to the composi-
tional system level analysis loop described in Section 5.1.2.

5.3.4 Computational efficiency
For arbitrarily complex arrival and service curves the determination of

worst-case response times and worst-case backlogs according to the RTC
formulas visualized in Figure 5.3 is computationally expensive. The rea-
son is that finding the maximum distances (horizontally and vertically)
between both curves is not a trivial task, and that, therefore, many
alternatives (all jump discontinuities) need to be checked.

However, for computational efficiency, arrival and service curves can
be represented by finite aperiodic and periodic parts, see [123, 126].
The former describes the short term bursty behavior, whereas the latter
describes the long term periodic behavior. Figure 5.4 shows an upper
arrival curve with an aperiodic part of length Δ0, and a periodic part
with period k that is repeated infinitely often. Note that this specific
representation of arrival and service curves significantly decreases the
computational complexity of the RTC formalisms for their implementa-
tion in the MPA toolbox [126].

Fig. 5.4: Arrival curve with aperiodic and periodic part

5.4 Coupling SymTA/S and MPA
In this section, the necessary operations to integrate SymTA/S and

MPA into a combined performance evaluation approach are described.
Figure 5.5 visualizes the concept that is utilized to couple both meth-
ods. On system level SymTA/S components and MPA components are

Coupling SymTA/S and MPA 181

distinguished. The former are analyzed by SymTA/S, whereas the latter
are analyzed by MPA. Note that each component may consist of several
functionally dependent tasks. However, each component is assumed to
represent a single computational or communication resource.

Fig. 5.5: Coupling of SymTA/S and MPA analyzed system components

As previously mentioned, SymTA/S uses standard event models to
couple local component analyses according to the compositional per-
formance analysis approach, whereas MPA uses arrival curves for this
purpose. Obviously, for seamlessly analyzing SymTA/S and MPA com-
ponents within the compositional analysis loop, conversion algorithm
between both stream representations are needed. Additionally, starting
point generation rules need to be defined for the combined approach to
resolve cyclic component interdependencies. These topics are discussed
in the following sections.

5.4.1 Event model conversion
In this section, it is described how MPA arrival curves can be obtained

from SymTA/S standard event models and vice versa.
The translation from SymTA/S standard event models to MPA arrival

curves is lossless and straightforward, since standard event models can
directly be mapped to arrival curves. For example, a periodic event
model with jitter can be represented by staircase functions with step
width equal to the period P , and a gap between the upper and lower
arrival curve that is equal to two times the jitter J . For a graphical
representation and other examples see Figure 5.2.

The opposite direction is more involved. In the following a general
method is described for deriving standard event models (i.e. its param-
eters P , J , and d) from arbitrary arrival curves αu and αl with o > 0,
i.e. a non-zero average rate. For arrival curves with o = 0 the approx-
imation with standard event models does not make sense, and purely

182 Combined Performance Analysis of Embedded Systems

bursty approximations are more appropriate. Note that the proposed
translation is not lossless but provides a safe approximation.

Step 1: Period. The period P is calculated to fit the periodic part
of the upper MPA arrival curve αu. This can simply be achieved by
dividing the duration k of the periodic part by the number of events
that occur during one period (called offset in Figure 5.4).

P =
k

αu(Δ0 + k) − αu(Δ0)

Figure 5.6 visualizes this first step of the event model conversion al-
gorithm for example lower and upper arrival curves.

Fig. 5.6: First step of the event model conversion algorithm: determi-
nation of the period P

Step 2: Jitter. The determination of the jitter J is the most com-
plicated part of the approximation algorithm. The already calculated
period P defines a strictly periodic standard event model that matches
the long term periodic behavior of the input arrival curves αu and αl.
However, jitter must be added to this periodic stream for it to completely
cover the input arrival curves, and thus to represent a conservative ap-
proximation. Two different cases must be considered.

First, the periodic event stream with the period P is shifted to the
left, until the upper input arrival curve αu is completely covered.

J1 = min{J0 : �Δ + J0

P
� ≥ αu(Δ), ∀Δ ∈ [0, Δ0 + k]}

Secondly, the periodic event stream with the period P is shifted to
the right, until the lower input arrival curve αl is completely covered.

Coupling SymTA/S and MPA 183

J2 = min{J0 : max
(

0, Δ − J0

P
�
)

≤ αl(Δ), ∀Δ ∈ [0, Δ0 + k]}

Figure 5.7 visualizes the two candidate jitter J1 and J2 for the sought-
after standard event model.

Fig. 5.7: Second step of the event model conversion algorithm: determi-
nation of the two candidates jitters J1 and J2

Note that for coverage tests only the jump discontinuities of the cor-
responding input arrival curve between 0 and Δ0 +k need to be checked.
In both cases the shifting of the periodic stream is achieved by succes-
sively adding jitter. The larger jitter can safely be used as parameter
for the approximating standard event model.

J = max{J1, J2}
Figure 5.8 visualizes the approximation of the given arrival curves

after the second step of the conversion algorithm.

Step 3: Minimum distance. In case that the jitter J is larger or
equal than the period P , the minimum distance parameter d can be
determined to refine the so far calculated approximating standard event
model. Note that this refinement is not strictly necessary, since the
given arrival curves are already conservatively approximated after the
first two steps of the conversion algorithm. However, it reduces the
conservatism of the approximation by relaxing the initial burst of the
calculated standard event model.

Since the minimum distance parameter d only affects the maximum
number of events, it is obvious that d can be chosen corresponding to
the steepest slope of the upper input arrival curve αu. Consequently, d

184 Combined Performance Analysis of Embedded Systems

Fig. 5.8: Second step of the event model conversion algorithm: approx-
imation of the arrival curves using period P and jitter J

corresponds to the minimum distance that can be observed between two
arbitrary events in αu.

d = min{d0 : αu(d0) = 2}
Note that from an algorithmic point of view it is not necessary to

check the whole arrival curve αu to determine d. Since arrival curves are
subadditive functions, the minimum distance between two events can be
observed at the beginning of the aperiodic part of αu.

Figure 5.9 visualizes the final approximation of the given arrival curves
by a standard event model.

Fig. 5.9: Third step of the event model conversion algorithm: refinement
of the approximation using the minimum distance parameter d

Coupling SymTA/S and MPA 185

5.4.2 Starting point generation
As mentioned in Section 5.1.2, a so-called starting point needs to be

generated under certain circumstances to successfully apply composi-
tional system level performance analysis. An analysis starting point is
needed, for instance, if several components of the analyzed system are
cyclically interdependent, i.e. one component cannot be analyzed with-
out the analysis results of another component, and vice versa. Concrete
starting point generation strategies depend on the considered compo-
nents.

The starting point generation explained in Section 5.1.3 is separately
applicable to both presented compositional analysis approaches. How-
ever, since SymTA/S and MPA internally use different event stream
representations, it has to be explained how the starting point generation
works between both analysis domains.

Without loss of generality, it is assumed that components analyzed by
MPA are integrated into the starting point generation in the SymTA/S
domain. One possible simple starting point generation strategy, that
allows to consider components analyzed by MPA as black-boxes, is vi-
sualized in Figure 5.10.

Fig. 5.10: Starting point generation for combined analysis approach.
Standard event models used by SymTA/S are propagated over a com-
ponent analyzed by MPA.

The proposed strategy consists in propagating the largest period P
occurring at the inputs of the MPA component to all its outputs, and to
assume an initial jitter J and an initial minimum distance d of zero. This
black-box approach leads to a safe starting point since the application
model utilized by MPA cannot lead to period increases1, and thus the
load induced in any given time interval Δt by the standard event model
that is initially assumed at all outputs of the MPA component represents
a conservative lower bound (compare Section 5.1.3). During system-level

1The only period changing application property used in MPA is the OR task activation. OR
activation, however, leads to period decrease [56].

186 Combined Performance Analysis of Embedded Systems

analysis, the load generated of the MPA component at all its outputs
will only increase due to the effects of scheduling, or once the event
streams connected to the inputs of the MPA component are propagated
internally to the corresponding outputs.

Note that for components analyzed by performance analysis approaches
supporting, for instance, rate transitions, such a black-box approach is
not possible, and the responsibility for the starting point generation
must be delegated to the components themselves.

5.5 Experiments
In this section the distributed example system shown in Figure 5.11

is considered to demonstrate the efficiency and benefits of the proposed
combined performance analysis approach.

Fig. 5.11: Distributed example system

The system consists of two computational resources interconnected
via a round robin arbitrated bus. CPU1 executes four tasks, that are
scheduled according to a hierarchical scheduling policy with TDMA re-
source sharing at the top level. T1 and T2 are dispatched by a priority
scheduled server and share 60% of the CPU’s service capacity. T3 and
T4 are each assigned 20% of the available CPU time. Since the resource
sharing policy of CPU1 is hierarchical, MPA is best fitted to analyze
this part of the system.

CPU2 executes four tasks, that are scheduled by the priority based
ERCOSEK operating system. The specialty on CPU2 is the coopera-
tive behavior of T7 and T8. Generally, T7 has a higher priority than

Experiments 187

T8. However, due to the cooperative policy T7 can interrupt T8 only at
specific points in time. In the given example system, T8 can be inter-
rupted by T7 only after 2, 3, 4, 6, or 11 time units during its execution.
More details about ERCOSEK can be found in [29]. The ERCOSEK
scheduled CPU2 as well as the round robin arbitrated BUS are best
analyzed using the specialized analysis libraries of SymTA/S.

Note that for correct operation the system has to satisfy three end-to-
end latency constraints: the maximum latency along the paths S2 → S5
and S3 → S6 must be less than 400 time units, whereas the maximum
latency along the path S1 → S4 must not exceed 200 time units.

5.5.1 Path latency analysis
In this section system level analysis of the given distributed example

system is performed. First, the system is analyzed using SymTA/S and
MPA alone. Afterwards, the obtained results are compared with the
combined performance analysis approach.

Analysis using SymTA/S alone. Since SymTA/S does not directly
support hierarchical scheduling policies, the timing behavior of the tasks
running on CPU1 needs to be approximated to analyze the example
system. Figure 5.12 shows one possible approximation using standard
SymTA/S components.

Fig. 5.12: Approximation of the hierarchical scheduling on CPU1 with
SymTA/S modeling techniques

The FP server is modeled by the fixed priority scheduled CPU1.1. To
account for the reduced service capacity of the FP server, that is due to
the TDMA resource sharing at the top hierarchy level, the high priority
task X is introduced. X is activated every 10 time units and executes 4

188 Combined Performance Analysis of Embedded Systems

time units. Consequently, it reduces CPU1.1’s service capacity by the
amount of resources claimed by T3 and T4. The timing behavior of the
TDMA-scheduled tasks T3 and T4 is approximated by CPU1.2. The
TDMA slot allocated to the FP server is modeled by the additional task
Y .

Using this approximation, the following path latencies are obtained
by the SymTA/S analysis:

S1 → S4 S2 → S5 S3 → S6

SymTA/S alone 170 376 422
Constraint 200 400 400
Status

√ √ ×

As can be seen the timing constraint for the path S3 → S6 is violated,
and hence SymTA/S evaluates the given example system as infeasible.
Note that in the considered case the approximation of the hierarchical
scheduling on CPU1 with SymTA/S is quite straightforward. How-
ever, in the general case, i.e. considering more complicated hierarchical
resource sharing policies with several levels of hierarchy, similar approx-
imations are far more complicated and result in large overestimations of
the timing behavior.

Analysis using MPA alone. MPA is currently not able to analyze
ERCOSEK scheduled resources. Consequently, the timing behavior of
the ERCOSEK scheduled resource CPU2 needs to approximated to an-
alyze the given example system with MPA alone.

It was chosen to approximate the timing behavior of CPU2 using a
standard preemptive fixed priority scheduler. The tasks T5 and T6 are
assigned the highest and second highest priority, respectively. In order
to approximate the best-case and worst-case response times of the higher
priority cooperative task T7, it is assigned a higher and a lower prior-
ity compared to T8, respectively. By this means, the possible partial
blocking of T7 by the lower priority task T8, that is due to the coop-
erative policy, is replaced by full blocking. Obviously, this represents a
conservative approximation.

Using this approximation, the following path latencies are obtained
by the MPA analysis:

S1 → S4 S2 → S5 S3 → S6

MPA alone 170 430 412
Constraint 200 400 400
Status

√ × ×

As can be seen the timing constraints for the paths S2 → S5 and
S3 → S6 are violated, and hence MPA evaluates the example system as

Experiments 189

infeasible. Note that this simple and not overly pessimistic approxima-
tion with MPA was only possible because of the simple ERCOSEK task
configuration chosen for the illustrative example. Only the timing effects
of two cooperative tasks (T7 and T8) needed to be considered. However,
in general the scheduling effects on ERCOSEK resources can be far more
complicated disabling a reasonable approximation by MPA. Examples
are so-called “Time Tables” specifying phase offsets between periodic
tasks. Furthermore, “Alarms” use dynamic time-out mechanisms, and
can be issued and disabled at any point in time. Finally, scheduling-
related OS routines can request a significant amount of execution time
at various priority levels.

Analysis using the combined approach. In the last experiment
the proposed mixed performance analysis approach is applied. The hier-
archical scheduled CPU1 is analyzed by MPA, whereas the round robin
arbitrated BUS as well as the ERCOSEK scheduled CPU2 are analyzed
by SymTA/S.

The combined analysis approach yields the following path latencies:

S1 → S4 S2 → S5 S3 → S6

MPA alone 170 376 389
Constraint 200 400 400
Status

√ √ √

Using the combined analysis approach it is discovered that the ex-
ample system perfectly satisfies all imposed path latency constraints,
and can, thus, be considered as feasible. This is remarkable since both,
SymTA/S and MPA, rejected the given design as discussed in the first
two experiments. Altogether, the worst-case latencies predicted by the
combined approach are more than 10% tighter than the results achieved
by the single methods for some end-to-end paths. Considering the small
size and the simplicity of the given example system this represents a
remarkable analysis accuracy improvement.

Chapter 6

CONCLUSIONS

Embedded systems can be found everywhere and are going to be even
more pervasive in the near future. In order to meet growing productivity
demands and cost pressure, embedded systems need to be designed very
efficiently. Obviously, due to the increasing complexity and distributed
nature of modern systems this is by far no easy task. One key factor
to increase the development process efficiency of complex distributed
embedded systems is reuse. Concepts like the platform-based design
style and standardization efforts on the software level allow to conceive
whole product families and variants based on the same set of reusable
components and sub-systems. However, while reuse helps to increase
design efficiency at the functional level, it does not solve another key
embedded systems challenge that arises with system complexity and
sub-system integration: the control of non-functional properties, such as
timing, power consumption, or dependability.

This thesis introduced several techniques allowing to control and op-
timize non-functional system properties during the design flow and the
lifetime of an embedded system.

First of all, a flexible exploration framework was introduced. The
proposed framework allows performing partial explorations and provides
the possibility to dynamically extend and restrict the search space with-
out loosing previously obtained results. The main motivation to realize
the high degree of flexibility was that nowadays distributed embedded
systems are usually not designed by a sole manufacturer who controls
all design parameters. In the automotive industry, for instance, it is
common practice that the OEM delegates the development of complex
system features to different independently working suppliers. In this
context neither OEM nor single suppliers control all necessary model pa-

192 Conclusions

rameters, and are reluctant to share design details due to IP-protection
issues. As a consequence, system optimization and exploration can be
tackled best in an iterative process, where only few uncritical perfor-
mance information need to be exchanged between the involved design
teams that independently optimize the system parts they are respon-
sible for. Such an approach is enabled by the proposed compositional
exploration framework.

In the second part of this thesis system robustness was discussed. In
the field of embedded system design, robustness is usually associated
with reliability and resilience. However, in this thesis a different kind of
robustness was considered: robustness to variations of system properties.
Informally, a system is called robust if it can sustain system property
modifications without severe consequences for system performance and
integrity. It was shown that accounting for property variations early dur-
ing design is key, since even small modifications in systems with complex
performance dependencies can have drastic non-intuitive impact on the
overall system behavior, and might lead to severe performance degra-
dation effects. Since performance evaluation and exploration do not
cover these effects, it is clear that they are insufficient to systematically
control performance along the design flow and during system lifetime.
Therefore, explicit robustness evaluation and optimization techniques
that build on top of performance evaluation and exploration were intro-
duced in this thesis. They enable the designer to introduce robustness
at critical positions in the design, and thus help to avoid critical perfor-
mance pitfalls.

In order to systematically assess and optimize system robustness, met-
rics for different assumptions and design scenarios were proposed. The
proposed metrics are based on sensitivity analysis. Thereby, robustness
metrics for system properties with and without performance dependen-
cies were distinguished. In the case of independent properties, the value
of one property does not have any influence on the admissible values
of other properties. In the case of dependent properties, the modifica-
tion of one property value leads to restrictions for dependent properties,
i.e. their flexibility with respect to modifications decreases. Especially
the robustness metrics for the dependent case are computationally ex-
pensive, since multi-dimensional sensitivity analysis is necessary to cap-
ture the interdependencies. To circumvent this complexity problem, a
scalable stochastic sensitivity analysis method was developed that is ca-
pable of efficiently approximating system robustness characteristics by
formulating sensitivity analysis as multi-criterion optimization problem.
Using this technique, it was shown how the proposed robustness metrics

193

can efficiently be approximated with upper and lower robustness bounds
leading to a significant exploration speed-up.

It is known that already for small systems different state-of-the-art
performance analysis approaches exhibit remarkable differences in terms
of accuracy. As a consequence, it can be stated that the expressiveness
of the methods that were proposed in this thesis highly depends on the
choice of the right abstraction, i.e. analysis engine, for the considered
system. For this reason, the problem of providing accurate and expres-
sive performance predictions for general embedded systems was tackled
in the last part of this thesis. Rather than searching for a unified more
complex analysis model, it was proposed to exploit the so-called com-
positional performance analysis methodology to couple modular perfor-
mance analysis techniques. By this means, it was demonstrated how
the advantages offered by the individual models of computation can eas-
ily be integrated into a cross-domain analysis that allows modeling and
analyzing each system component with the best fitting method.

List of Figures

1.1 Embedded Systems Design Flow - Coarse-grain overview 2
1.2 Y-model known from HW/SW co-design 4
1.3 V-model utilized in the automotive industry [75] 5
1.4 V -model extended with the concept of virtual de-

sign [34, 104] 6
1.5 Block diagram of the Infineon Tricore TC1796 micro-

controller for automotive applications [110] 7
1.6 Performance verification along the V-model 9
1.7 Overview: Proposed Design Space Exploration and

Robustness Optimization Framework 12
2.1 Event arrival curve of a bursty event stream 22
2.2 Example system 24
2.3 Black-box performance analysis 27
2.4 Design trade-offs: performance vs. cost 29
2.5 Optimization of the communication infrastructure

in a parallel design flow between OEM and several
suppliers 31

2.6 Impact of WCET variations on the performance of
the system described in Figure 2.2 34

2.7 Impact of period variations on the performance of
the system described in Figure 2.2 35

2.8 Impact of jitter variations on the performance of
the system described in Figure 2.2 36

2.9 Impact of service capacity variations on the per-
formance of the system described in Figure 2.2 36

196 List of Figures

2.10 Conceptual difference between static and dynamic
design robustness for two considered system prop-
erties subject to maximization 42

3.1 Compositional search space encoding scheme 47
3.2 Event arrival curve of output event stream 51
3.3 Worst-case scheduling scenarios for task C1 54
3.4 Example illustrating the influence of traffic shaping

on system performance 55
3.5 Design space exploration loop 56
3.6 User-controlled design space exploration including

nine chromosomes with search space modifications. 60
3.7 Crossover operators of the TDMA chromosome 68
3.8 Mutation operators of the TDMA chromosome 70
3.9 Partitioning of the fitness landscape for exploring

and optimizing hard real-time systems. 73
3.10 Multi-processor example system 75
3.11 Design space exploration loop with extension for

automated search space modification 80
3.12 Search space modification for priority chromosomes 82
3.13 Examples for an alternating linear and a sinus nar-

row curve 88
3.14 Exploration success with and without automated

search space modification using different narrow curves. 91
4.1 Robustness evaluation and optimization 94
4.2 Two-dimensional example sensitivity fronts 101
4.3 Absolute inner and outer hypervolumes 103
4.4 Examples for weighted percentage hypervolume 106
4.5 Example feasible regions for independent and de-

pendent system properties subject to maximiza-
tion (two-dimensional case) 107

4.6 Influence of the parameter k on the metric values 110
4.7 Static design robustness (SDR) for dependent sys-

tem properties in the two-dimensional case 112
4.8 Dynamic design robustness (DDR) for dependent

system properties in the two-dimensional case in-
cluding two parameter configurations c1 and c2 114

4.9 Initial Population 119

List of Figures 197

4.10 Relevant region for two system properties subject
to maximization 120

4.11 Coordinate-wise generalized mean including the mod-
ified version used by Algorithm 13. 125

4.12 Variation operators of stochastic sensitivity analy-
sis (part 1) 130

4.13 Variation operators of stochastic sensitivity analy-
sis (part 2) 131

4.14 Variation operators of stochastic sensitivity analy-
sis (part 3) 132

4.15 Adjusting the search resolution of the stochastic
sensitivity analysis 134

4.16 Examples visualizing gradually increasing approxi-
mation quality during exploration with search res-
olution 100. 138

4.17 Convergence behavior and approximation quality
of the stochastic sensitivity analysis in the two-
dimensional case 141

4.18 Convergence behavior and approximation quality
of the stochastic sensitivity analysis in the three-
dimensional case 142

4.19 Analysis speed-up through search space bounding 143
4.20 Static robustness bounds R−

Sc
and R+

Sc
derived from

the bounding Pareto-fronts obtained through stochas-
tic sensitivity analysis of two system properties for
the parameter configuration Sc 146

4.21 Difference between Pareto-dominance and interval-
dominance 148

4.22 Calculation of the dynamic bounding working Pareto-
front 150

4.23 Calculation of the dynamic bounding non-working
Pareto-front 152

4.24 Adaptive fitness assignment strategy during dy-
namic design robustness approximation 154

4.25 Dynamic design robustness approximation example 157
4.26 Two-dimensional static and dynamic WCCT ro-

bustness of communication channels C0 and C1 160
4.27 Two-dimensional static and dynamic WCCT ro-

bustness of communication channels C2 and C3 161

198 List of Figures

4.28 Two-dimensional static and dynamic WCCT ro-
bustness of communication channels C4 and C5. 162

4.29 Two-dimensional static and dynamic WCCT / WCET
robustness of communication channel C3 and task T1 164

4.30 Three-dimensional WCCT/WCET robustness of com-
munication channels C0 and C1 as well as task T1
- original configuration 165

4.31 Three-dimensional static and dynamic WCCT/WCET
robustness of communication channels C0 and C1
as well as task T1 167

4.32 Three-dimensional static and dynamic WCET ro-
bustness of tasks T3, T4, and T5 - original config-
uration 168

4.33 Three-dimensional static and dynamic WCET ro-
bustness of tasks T3, T4, and T5 169

5.1 Compositional system level analysis loop 174
5.2 Arrival curves for standard event models 178
5.3 Determination of worst-case response time and back-

log using the RTC approach 179
5.4 Arrival curve with aperiodic and periodic part 180
5.5 Coupling of SymTA/S and MPA analyzed system

components 181
5.6 First step of the event model conversion algorithm:

determination of the period P 182
5.7 Second step of the event model conversion algo-

rithm: determination of the two candidates jitters
J1 and J2 183

5.8 Second step of the event model conversion algo-
rithm: approximation of the arrival curves using
period P and jitter J 184

5.9 Third step of the event model conversion algorithm:
refinement of the approximation using the mini-
mum distance parameter d 184

5.10 Starting point generation for combined analysis ap-
proach. Standard event models used by SymTA/S
are propagated over a component analyzed by MPA. 185

5.11 Distributed example system 186
5.12 Approximation of the hierarchical scheduling on

CPU1 with SymTA/S modeling techniques 187

List of Tables

2.1 System parameters, performance related system prop-
erties, end-to-end timing constraints, and worst-
case resource loads 25

3.1 System parameters for the system depicted in Figure 3.1 53
3.2 Path latency constraints for the system depicted

in Figure 3.1 53
3.3 Core execution and communication times 75
3.4 Input event models 75
3.5 System timing constraints 76
3.6 First exploration step: Pareto-optimal solutions

obtained through local optimization on the BUS 76
3.7 Second exploration step: Additional Pareto-optimal

solutions obtained by performing traffic shaping at
the output of mon 77

3.8 System performance with traffic shaping at the
output of mon 78

3.9 Third exploration step: Additional Pareto-optimal
solutions obtained by including the RISC CPU
into the search space 79

4.1 Considered system parameter configurations, i.e.
priority assignments, during two-dimensional ro-
bustness optimization 158

4.2 Considered system parameter configurations, i.e.
priority assignments, during three-dimensional WCCT/
WCET robustness optimization of communication
channels C0 and C1 as well as task T1 165

200 List of Tables

4.3 Considered system parameter configurations, i.e.
priority assignments, during three-dimensional WCET
robustness optimization of tasks T3, T4, and T5 166

Bibliography

[1] ISO 11898-1. Road Vehicles interchange of digital information controller area
network (CAN) for high-speed communication. ISO Standard-11898, Interna-
tional Standards Organisation (ISO), November 1993.

[2] S.G. Abraham, B.R. Rau, and R. Schreiber. Fast Design Space Exploration
Through Validity and Quality Filtering of Subsystem Designs. Technical Re-
port HPL-2000-98, Hewlett-Packard Laboratories, 2000.

[3] B. Andersson, S.K. Baruah, and J. Jonsson. Static-Priority Scheduling on
Multiprocessors. In Proc. of the IEEE International Real-Time Systems Sym-
posium (RTSS), London, England, December 2001.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-
Time Scheduling: The Deadline Monotonic Approach. In Proc. of the 8th IEEE
Workshop on Real-Time Operating Systems, pages 133–137, 1991.

[5] AUTOSAR Automotive Open System Architecture, http://www.autosar.org.

[6] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press,
1996.

[7] I. Bate and P. Emberson. Incorporating Scenarios And Heuristics To Improve
Flexibility In Real-Time Embedded Systems. In Proc. of the IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), San Jose,
USA, April 2006.

[8] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In Proc. of the International Conference on the
Quantitative Evaluation of Systems (QEST), Riverside, CA, USA, September
2006.

[9] G. Berry and G. Gonthier. The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 2002.

[10] C. Bierwirth, D.C. Mattfeld, and H. Kopfer. On permutation representa-
tions for scheduling problems. In Proc. Parallel Problem Solving from Nature
(PPSN), Berlin, Germany, September 1996.

202 Bibliography

[11] E. Bini, M. Di Natale, and G. C. Buttazzo. Sensitivity Analysis for Fixed-
Priority Real-Time Systems. In Proc. of the Euromicro Conference on Real-
Time Systems (ECRTS), Dresden, Germany, July 2006.

[12] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. Pisa - a platform and
programming language independent interface for search algorithms. In Proc.
of the Conference on Evolutionary Multi-Criterion Optimization (EMO), Faro,
Protugal, April 2003.

[13] J.Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Springer, 2001.

[14] Bruno Bouyssounouse and Joseph Sifakis. Embedded Systems Design: The
ARTIST Roadmap for Research and Development, volume 3436 of Lecture
Notes in Computer Science. Springer, 2005.

[15] R. Bosch GmbH. CAN Specification V2.0B,
http://www.semiconductors.bosch.de/en/20/can/3-literature.asp.

[16] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - A Revolu-
tion in On-Board Communications. Volvo Technology Report, 1:9–19, 1998.

[17] S. Chakraborty, S. Künzli, and L. Thiele. A General Framework for Analysing
System Properties in Platform-Based Embedded System Designs. In Proc. of
the IEEE/ACM Design, Automation and Test in Europe Conference (DATE),
Munich, Germany, 2003.

[18] S. Chakraborty, L. X. Phan, and P. S. Thiagarajan. Event Count Automata:
A State-Based Model for Stream Processing Systems. In Proc. of the IEEE In-
ternational Real-Time Systems Symposium (RTSS), pages 87–98, Washington,
DC, USA, 2005.

[19] J.M. Chateau. Flexible Platform-Based Design. CommsDesign, February 2001.

[20] Microsoft Corporation. The Component Object Model,
http://www.microsoft.com/com/default.mspx .

[21] CORBA/IIOP specification V3.0.3 ,http://www.omg.org/technology/
documents/corba spec catalog.htm.

[22] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller Area Network
(CAN) Schedulability Analysis: Refuted, revisited and revised. Real-Time Sys-
tems, 35(3):239–272, 2007.

[23] K. Deb. Multi-objective optimization using evolutionary algorithms. John
Wiley, Chichester, 2001.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[25] R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Genetic Algorithm
for Hardware-Software Co-synthesis of Hierarchical Heterogeneous Distributed

Bibliography 203

Embedded Systems. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 17(10):920–935, October 1998.

[26] T. Ehlers, M. Harms, J.U. Varchmin, M. Mutz, and M. Horstmann. STEP-X:
Strukturierter Entwicklungsprozess für eingebettete Systeme im Automobil-
bereich. In 23. Tagung Elektronik im Kfz, Stuttgart, June 2003.

[27] P. Emberson and I. Bate. Minimising Task Migration And Priority Changes In
Mode Transitions. In Proc. of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), Seatlle, WA, USA, April 2007.

[28] M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using the Hy-
pervolume Measure as Selection Criterion. In Proc. of the Conference on Evo-
lutionary Multi-Criterion Optimization (EMO), Guanajuato, Mexico, March
2005.

[29] ETAS GmbH. ERCOSEK V4.1 user’s guide, http://en.etasgroup.com/ .

[30] R. Ernst. Codesign of Embedded Systems: Status and Trends. IEEE Design
& Test of Computers, April 1998.

[31] J. Filipiak. Real Time Network Management. North-Holland, 1991.

[32] M. Fleischer. The Measure of Pareto Optima: Applications to Multi-objective
Metaheuristics. Lecture Notes in Computer Science, 2632:519–533, 2003.

[33] FlexRay consortium. FlexRay specification V2.1, http://www.flexray.com.

[34] B. Florentz and P. M. Hofmann. Ein Model Driven Architecture Ansatz für
die Softwareentwicklung im Automotive-Bereich. In 24. Tagung Elektronik im
Kfz, Haus der Technik, Essen, June 2004.

[35] C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez. An Improved Dimension-
Sweep Algorithm for the Hypervolume Indicator. In Proc. of the IEEE
Congress on Evolutionary Computation (CEC), Vancouver, BC Canada, July
2006.

[36] D. Gajski, F. Vahid, S. Narayan, and J. Gong. System-level Exploration with
SpecSyn. In Proc. of the ACM/IEEE Design Automation Conference (DAC),
San Francico, CA, USA, June 1998.

[37] T. Givargis, F. Vahid, and J. Henkel. System-level Exploration for Pareto-
optimal Configurations in Parameterized System-on-a-chip. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 10(4):416–422, 2002.

[38] O. Gonzalez, H. Shrikumar, J.A. Stankovic, and K. Ramamritham. Adaptive
Fault Tolerance and Graceful Degradation under Dynamic Hard Real-Time
Scheduling. In Proc. of the IEEE International Real-Time Systems Symposium
(RTSS), San Francisco, CA, USA, December 1997.

[39] D. Gu, F. Drews, and L. Welch. Robust Task Allocation for Dynamic Dis-
tributed Real-Time Systems subject to Multiple Environmental Parameters.
In Proc. of the IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), Columbus, Ohio, USA, June 2005.

204 Bibliography

[40] J. C. Palencia Gutiérrez, J. J. Gutiérrez Garćıa, and M. González Harbour.
Best-Case Analysis for Improving the Worst-Case Schedulability Test for Dis-
tributed Hard Real-Time Systems. In Proc. of 10th Euromicro Workshop on
Real-Time Systems, June 1998.

[41] W. Haid and L. Thiele. Complex Task Activation Schemes in System Level
Performance Analysis. In Proc. of the IEEE/ACM International Conference on
HW/SW Codesign and System Synthesis (CODES-ISSS), Salzburg, Austria,
September 2007.

[42] A. Hamann, R. Racu, and R. Ernst. A Formal Approach to Robustness Max-
imization of Complex Heterogeneous Embedded Systems. In Proc. of the
IEEE/ACM International Conference on HW/SW Codesign and System Syn-
thesis (CODES-ISSS), Seoul, South Korea, October 2006.

[43] M. González Harbour, J. J. Gutiérrez Garćıa, J. C. Palencia Gutiérrez, and
J. M. Drake Moyano. MAST: Modeling and Analysis Suite for Real-Time
Applications. In Proc. Euromicro Conference on Real-Time Systems (ECRTS),
page 125, Washington, DC, USA, 2001.

[44] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8(3):231–274, June 1987.

[45] G.J. Hekstra, G.D. La Hei, P. Bingley, and F.W. Sijstermans. TriMedia CPU64
Design Space Exploration. In Proc. of the International Conference on Com-
puter Design (ICCD), Austin, Texas, USA, October 1999.

[46] M. Hendriks and M. Verhoef. Timed Automata Based Analysis of Embedded
System Architectures. In Proc. of the Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS), Island of Rhodes, Greece, April 2006.

[47] R. Henia and R. Ernst. Context-Aware Scheduling Analysis of Distributed
Systems with Tree-shaped Task-Dependencies. In Proc. of the IEEE/ACM
Design, Automation and Test in Europe Conference (DATE), Paris, France,
March 2005.

[48] R. Henia and R. Ernst. Improved Offset-Analysis Using Multiple Timing-
Reference. In Proc. of the IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), Munich, Germany, March 2006.

[49] R. Henia and R. Ernst. Scenario Aware Analysis For Complex Event Models
And Distributed Systems. In Proc. of the IEEE Real-Time Systems Symposium
(RTSS), Tucson, Arizona, USA, December 2007.

[50] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. Sys-
tem Level Performance Analysis - The SymTA/S Approach. IEE Proceedings
Computers and Digital Techniques, 152(2):148–166, March 2005.

[51] R. Henia, R. Racu, and R. Ernst. Improved Output Jitter Calculation for
Compositional Performance Analysis of Distributed Systems. In Proc. Work-
shop on Parallel and Distributed Real-Time Systems (WPDRTS), Long Beach,
CA, USA, March 2007.

Bibliography 205

[52] T. Henzinger and S. Matic. An Interface Algebra for Real-Time Components.
In Proc. of the IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2006.

[53] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design Optimization of Time- and
Cost-Constrained Fault-Tolerant Distributed Embedded Systems. In Proc. of
the IEEE/ACM Design, Automation and Test in Europe Conference (DATE),
Munich, Germany, March 2005.

[54] M. Jersak. Compositional Performance Analysis for Complex Embedded Ap-
plications. PhD thesis, Technical University of Braunschweig, 2004.

[55] M. Jersak, R. Henia, and R. Ernst. Context-Aware Performance Analysis
for Efficient Embedded System Design. In Proc. of the IEEE/ACM Design,
Automation and Test in Europe Conference (DATE), Paris, France, March
2004.

[56] M. Jersak, K. Richter, and R. Ernst. Performance analysis for complex embed-
ded applications. International Journal of Embedded Systems, Special Issue on
Codesign for SoC, 1(1/2):33–49, 2005.

[57] D. Juedes, F. Drews, L. Welch, and D. Fleeman. Heuristic resource allocation
algorithms for maximizing allowable workload in dynamic, distributed real-
time systems. In Proc. of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Santa Fe, New Mexico, USA, April 2004.

[58] H. Kargupta, K. Deb, and D. Goldberg. Ordering Genetic Algorithms and De-
ception. In Proc. of Parallel Problems Solving from Nature (PPSN), Brussels,
Belgium, September 1992.

[59] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and Analysis of
Fixed Priority Schedulers. Software Engineering, 19(9):920–934, 1993.

[60] H. Kopetz. Real-time Systems-Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, 1997.

[61] S. Künzli, A. Hamann, R. Ernst, and L. Thiele. Combined Approach to
System Level Performance Analysis of Embedded Systems. In Proc. of the
IEEE/ACM International Conference on HW/SW Codesign and System Syn-
thesis (CODES-ISSS), September 2007.

[62] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining Simulation and
Formal Methods for System-Level Performance Analysis. In Proc. of the
IEEE/ACM Design, Automation and Test in Europe Conference (DATE), Mu-
nich, Germany, 2006.

[63] T.-W. Kuo and A.K. Mok. Load Adjustment in Adaptive Real-Time Systems.
In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages 160–171,
1991.

[64] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running time
analysis of multi-objective evolutionary algorithms on a simple discrete opti-
mization problem. In Proc. Parallel Problem Solving From Nature (PPSN),
Granada, Spain, September 2002.

206 Bibliography

[65] S. Edwards L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of
Embedded Systems: Formal Models, Validation, and Synthesis. Proceedings of
the IEEE, 85(3):366–390, 1997.

[66] E. A. Lee and Th. M. Parks. Dataflow Process Networks. Proceedings of the
IEEE, May 1995.

[67] P.A. Lee, T. Anderson, J.C. Laprie, A. Avizienis, and H. Kopetz. Fault Tol-
erance: Principles and Practice. Springer Verlag, Secaucus, NJ, USA, 1990.

[68] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), 1990.

[69] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In Proc. of the IEEE Real-
Time Systems Symposium (RTSS), pages 166–171, IEEE Computer Society
Press, 1989.

[70] J. Lemieux. Programming in the OSEK/VDX Environment. CMP Books,
2001.

[71] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, January
1973.

[72] C. Lu, J.A. Stankovic, S.H. Son, and G. Tao. Feedback Control Real-Time
Scheduling: Framework, Modeling, and Algorithms. Real-Time Systems Jour-
nal, 23(1-2):85–126, 2002.

[73] L. Lundberg. Analyzing Fixed-Priority Global Multiprocessor Scheduling. In
Proc. of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), San Jose, CA, USA, September 2002.

[74] A. Maxiaguine, S. Künzli, S. Chakraborty, and L. Thiele. Rate Analysis for
Streaming Applications with On-chip Buffer Constraints. In Proc. of the
IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-
DAC), Yokohama, Japan, January 2004.

[75] Industrieanlagen-Betriebsgesellschaft mbH (IABG). V-Modell ’97 Spezifika-
tion: Entwicklungsstandard für IT-Systeme des Bundes - Vorgehensmodell.
www.v-modell.iabg.de, 2002.

[76] Mentor Graphics. Vehicle Network Design.
http://www.mentor.com/products/vnd.

[77] A. Nandi and R. Marculescu. System-level Power/Performance Analysis for
Embedded Systems Design. In Proc. 38th conference on Design automation
(DAC), pages 599–604, New York, NY, USA, 2001.

[78] NXP Nexperia platform, http://www.nxp.com.

[79] C. Norström, A. Wall, and W. Yi. Timed Automata as Task Models for
Event-Driven Systems. In Proc. 6th International Conference on Real-Time

Bibliography 207

Computing Systems and Applications (RTCSA), page 182, Washington, DC,
USA, 1999.

[80] D.-I. Oh and T. P. Baker. Utilization Bounds for N-Processor Rate Monotone
Scheduling with Static Processor Assignment. Real-Time Systems, 15(2):183–
192, 1998.

[81] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for tasks with static
and dynamic offsets. In Proc. of the IEEE Real-Time Systems Symposium
(RTSS), Madrid, Spain, December 1998.

[82] M. Palesi and T. Givargis. Multi-objective Design Space Exploration Us-
ing Genetic Algorithms. In Proc. of the International Symposium on Hard-
ware/Software Codesign (CODES), Estes Park, Colorado, May 2002.

[83] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. Henia,
R. Racu, R. Ernst, and M. González Harbour. Influence of Different Sys-
tem Abstractions on the Performance Analysis of Distributed Real-Time Sys-
tems. In Proc. ACM Conference on Embedded Systems Software (EMSOFT),
Salzburg, Austria, October 2007.

[84] T. Pop, P. Eles, and Z. Peng. Holistic Scheduling and Analysis of Mixed
Time/Event-Triggered Distributed Embedded Systems. In Proc. of the Inter-
national Symposium on Hardware/Software Codesign (CODES), pages 187–
192, New York, NY, USA, 2002.

[85] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing Analysis of the
FlexRay Communication Protocol. In Proc. Euromicro Conference on Real-
Time Systems (ECRTS), Dresden, Germany, July 2006.

[86] K. Poulsen, P. Pop, V. Izosimov, and P. Eles. Scheduling and Voltage Scaling
for Energy/Reliability Trade-offs in Fault-Tolerant Time-Triggered Embedded
Systems. In Proc. of the IEEE/ACM International Conference on HW/SW
Codesign and System Synthesis (CODES-ISSS), Salzburg, Austria, October
2007.

[87] SymTA/S Project. http://www.symta.org. Institute of Computer and Com-
munication Network Engineering, Technical University of Braunschweig, Ger-
many.

[88] S. Punnekkat, R. Davis, and A. Burns. Sensitivity Analysis of Real-Time Task
Sets. ASIAN, pages 72–82, 1997.

[89] R. Racu. Performance Characterization and Sensitivity Analysis of Real-Time
Embedded Systems. PhD thesis, Technical University of Braunschweig, 2008.

[90] R. Racu and R. Ernst. Scheduling Anomaly Detection and Optimization for
Distributed Systems with Preemptive Task-Sets. In Proc. of the IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), San
Jose, USA, April 2006.

208 Bibliography

[91] R. Racu, A. Hamann, and R. Ernst. A Formal Approach to Multi-Dimensional
Sensitivity Analysis of Embedded Real-Time Systems. In Proc. of the Eu-
romicro Conference on Real-Time Systems (ECRTS), Dresden, Germany, July
2006.

[92] R. Racu, A. Hamann, and R. Ernst. Automotive System Optimization using
Sensitivity Analysis. In Proc. of the International Embedded Systems Sympo-
sium (IESS), Irvine, CA, USA, May 2007.

[93] R. Racu, M. Jersak, and R. Ernst. Applying Sensitivity Analysis in Real-Time
Distributed Systems. In Proc. of the 11th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), San Francisco, California,
March 2005.

[94] R. Racu, L. Li, R. Henia, A. Hamann, and R. Ernst. Exact Response Time
Analysis of Tasks Scheduled under Preemptive Round Robin. In Proc. of
the IEEE/ACM International Conference on HW/SW Codesign and System
Synthesis (CODES-ISSS), Salzburg, Austria, 2007.

[95] O. Redell. Analysis of Tree-Shaped Transactions in Distributed Real Time Sys-
tems. In Proc. of the Euromicro Conference on Real-Time Systems (ECRTS),
Catania, Italy, June 2004.

[96] K. Richter. Compositional Performance Analysis using Standard Event Models.
PhD thesis, Technical University of Braunschweig, 2004.

[97] K. Richter and R. Ernst. Real-Time Analysis as a Quality Feature: Automotive
Use-Cases and Applications. In Proc. of the Embedded World Conference,
Nuremberg, Germany, Feb 2006.

[98] K. Richter, M. Jersak, and R. Ernst. How OEMs and Suppliers can face the
Network Integration Challenges. In Automotive Designers Forum. IEEE/ACM
Design, Automation and Test in Europe Conference (DATE), Munich, Ger-
many, Mar 2006.

[99] K. Richter, R. Racu, and R. Ernst. Scheduling Analysis Integration for Het-
erogeneous Multiprocessor SoC. In Proc. of the 24th IEEE Real-Time Systems
Symposium (RTSS), Cancun, Mexico, December 2003.

[100] J. Rox and R. Ernst. Modeling Event Stream Hierarchies with Hierarchical
Event Models. In Proc. of the IEEE/ACM Design, Automation and Test in
Europe Conference (DATE), Munich, Germany, March 2006.

[101] A. Sangiovanni-Vincentelli. Defining Platform-based Design. EEDesign, March
2002.

[102] S. Schliecker, M. Ivers, and R. Ernst. Integrated Analysis of Communicating
Tasks in MPSoCs. In Proc. of the IEEE/ACM International Conference on
HW/SW Codesign and System Synthesis (CODES-ISSS), Seoul, Korea, Octo-
ber 2006.

[103] S. Schliecker, S. Stein, and R. Ernst. Performance Analysis of Complex Systems
by Integration of Dataflow Graphs and Compositional Performance Analysis.

Bibliography 209

In Proc. of the IEEE/ACM Design, Automation and Test in Europe Confer-
ence (DATE), Nice, France, 2007.

[104] J. Schlosser. Requirements for Automotive System Engineering Tools. In
Proc. of the IEEE International Conference on Computer Design: VLSI in
Computers and Processors, Los Alamitos, CA, USA, 2002.

[105] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[106] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode Change Proto-
cols for Priority-Driven Preemptive Scheduling. Real-Time Systems, 1(3):243–
264, 1989.

[107] W.T. Shiue and C. Chakrabarti. Memory exploration for Low Power, Em-
bedded Systems. In Proc. of the ACM/IEEE Design Automation Conference
(DAC), New Orleans, LA, USA, June 1999.

[108] G. Snider. Automated Design Space Exploration for Embedded Computer Sys-
tems. Technical Report HPL-2001-220, Hewlett-Packard Laboratories, 2001.

[109] G. Syswerda. Schedule Optimization Using Genetic Algorithms. In Handbook
of Genetic Algorithms, New York, 1990. Van Nostrand Reinhold.

[110] Infineon Technologies AG. TC1796 Users Manual, V1.0, 32 Bit Single-Chip
Microcontroller: System Units, June 2005.

[111] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert. Embed-
ded Software in Network Processors - Models and Algorithms. In Proc. of the
ACM Workshop on Embedded Software (EMSOFT), Lake Tahoe (CA), USA,
October 2001.

[112] L. Thiele, S. Chakraborty, and M. Naedele. Real-Time Calculus for Scheduling
Hard Real-Time Systems. In Proc. International Symposium on Circuits and
Systems, pages 101–104, Geneva, Switzerland, March 2000.

[113] L. Thiele, E. Wandeler, and S. Chakraborty. A Stream-Oriented Component
Model for Performance Analysis of Multiprocessor DSPs. IEEE Signal Pro-
cessing Magazine, 22(3):38–46, May 2005.

[114] L. Thiele, E. Wandeler, and N. Stoimenov. Real-Time Interfaces for Composing
Real-Time Systems. In Proc. ACM International Conference On Embedded
Software (EMSOFT), Seoul, Korea, 2006.

[115] K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed Hard
Real-Time Systems. Microprocessing & Microprogramming, 50(2-3):117–134,
April 1994.

[116] K. Tindell, H. Kopetz, F. Wolf, and R. Ernst. Safe automotive software devel-
opment. In Proc. of the IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), Munich, Germany, March 2003.

210 Bibliography

[117] K. W. Tindell. Adding Time-Offsets to Schedulability Analysis. Technical
Report YCS 221, University of York, 1994.

[118] K.W. Tindell, A. Burns, and A. J. Wellings. Calculating controller area net-
work (can) message response times. Control Engineering Practice, 3(8):1163–
1169, Aug 1995.

[119] K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time communi-
cations: Controller Area Network (CAN). In Proc. of the IEEE International
Real-Time Systems Symposium (RTSS), San Juan, Puerto Rico, Dec 1994.

[120] TTA group. TTP specification V1.1, http://www.ttagroup.org/
technology/specification.htm.

[121] M. Verhoef, E. Wandeler, L. Thiele, and P. Lieverse. System Architecture
Evaluation Using Modular Performance Analysis - A Case Study. In Proc. of
the 1st IEEE/ACM International Symposium on Leveraging Applications of
Formal Methods (ISOLA), Pafos, Cyprus, Oct 2004.

[122] S. Vestal. Fixed-Priority Sensitivity Analysis for Linear Compute Time Mod-
els. IEEE Transactions on Software Engineering, 20(4), april 1994.

[123] E. Wandeler. Modular Performance Analysis and Interface-Based Design for
Embedded Real-Time Systems. PhD thesis, Swiss Federal Institute of Technol-
ogy, September 2006.

[124] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance Analysis of Greedy
Shapers in Real-Time Systems. In Proc. of the IEEE/ACM Design, Automa-
tion and Test in Europe Conference (DATE), Munich, Germany, 2006.

[125] E. Wandeler and L. Thiele. Interface-Based Design of Real-Time Systems
with Hierarchical Scheduling. In Proc. of 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 243–252, San Jose,
USA, April 2006.

[126] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[127] E. Wandeler and L. Thiele. Workload Correlations in Multi Processor Hard
Real-Time Systems. Journal of Computer and System Sciences (JCSS),
73(2):207–224, March 2007.

[128] L. While, P. Hingston, L. Barone, and S. Huband. A Faster Algorithm for
Calculating Hypervolume. IEEE Transactions on Evolutionary Computation,
10(1):29–38, February 2006.

[129] D. L. Whitley and N. Yoo. Modeling Simple Genetic Algorithms for Permuta-
tion Problems. In Foundations of Genetic Algorithms III, pages 163–184, San
Francisco, CA, 1995. Morgan Kaufmann.

[130] T. Yen and W. Wolf. Performance Estimation for Real-Time Distributed Em-
bedded Systems. IEEE Transactions on Parallel and Distributed Systems,
9(11), November 1998.

Bibliography 211

[131] T.-Y. Yen and W. Wolf. Performance Estimation for Real-Time Distributed
Embedded Systems. In Proc. International Conference on Computer Design
(ICCD), pages 64–71, Washington, DC, USA, 1995.

[132] Q. Zhuge, Z. Shao, B. Xiao, and H.M.S. Edwin. Design Space Minimization
with Timing and Code Size Optimization for Embedded DSP. In Proc. of
the IEEE/ACM International Conference on HW/SW Codesign and System
Synthesis (CODES-ISSS), Newport Beach, CA, USA, October 2003.

[133] D. Ziegenbein. A Compositional Approach to Embedded System Design. PhD
thesis, Technical University of Braunschweig, 2003.

[134] E. Zitzler. Hypervolume metric calculation:.
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c, 2001.

[135] E. Zitzler and S. Künzli. Indicator-Based Selection in Multiobjective Search.
In Proc. 8th International Conference on Parallel Problem Solving from Nature
(PPSN VIII), volume 3242 of Lecture Notes in Computer Science, Heidelberg,
Germany, September 2004. Springer.

[136] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. In Proc.
Evolutionary Methods for Design, Optimisation, and Control, pages 95–100,
Barcelona, Spain, 2002.

[137] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Compar-
ative Case Study and the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

[138] E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V. Grunert da Fon-
seca. Performance Assessment of Multiobjective Optimizers: An Analysis and
Review. IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.

