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Zusammenfassung

Die Wechselwirkung eines intensiven sub-pikosekunden Laserpulses (1015{1020 W=cm2) mit Materie

umfasst eine Vielzahl unterschiedlicher Wechselwirkungen. Die vorwiegend experimentelle Arbeit

konzentriert sich auf die ultraschnelle Ionisation und die Beobachtung von magnetischen Feldern

im Megagauss Bereich:

Ultraschnelle Ionisation: Die ansteigende Flanke eines intensiven Laserpulses verursacht ein schnelles

Anwachsen der Elektronendichte, so dass die kritische Elektronendichte rasch �uberschritten

wird und eine zun�achst transparente Glasplatte undurchsichtig wird. Im Rahmen dieser

Arbeit wird ein theoretisches Modell dieser Wechselwirkung basierend auf der optischen

Feldionisation (OFI) entwickelt. Die Computersimulationen zeigen, dass die Transmission

eines mit einem 60 fs Laserpuls der Wellenl�ange 800 nm erzeugten Plasmas in weniger als

10 fs um viele Gr�o�enordnungen abnimmt. Das schnelle Abnehmen der Transmission wird

haupts�achlich durch die Absorption des einfallenden Laserstrahls und nicht durch die an-

wachsende Re
exion hervorgerufen. Um diese theoretischen Ergebnisse zu �uberpr�ufen, wur-

de ein Pump{Probe-Experiment mit einem Titan-Saphir-Laser (800 nm; 1 mJ) am Institut

f�ur Optik und Quantenelektronik der Friedrich-Schiller-Universit�at in Jena durchgef�uhrt.

In diesem Experiment wurde mit 60 fs und 120 fs Laserpulsen, die auf eine Intensit�at von

1015 W=m2 fokussiert wurden, ein Plasma erzeugt. Ein kleiner Teil dieser Pulse wurde als Pro-

bepuls benutzt, um die Zeit{Frequenz-Funktion der Plasmatransmission zu messen. Durch

Vergleichen der Momente dieser Zeit{Frequenz-Funktionen mit den entsprechenden Mo-

menten, die anhand von FROG-Messungen berechnet wurden, konnten die theoretischen

Vorhersagen best�atigt werden, so dass dieser Schalter in zuk�unftigen Experimenten auch

zur Pulscharakterisierung von sehr kurzwelliger UV-Strahlung eingesetzt werden kann.

Magnetische Felder im Megagauss Bereich: Bei der Wechselwirkung eines sub-pikosekunden Laser-

pulses mit einem Plasma k�onnen starke magnetische Felder vor allem durch radialen W�ar-

metransport, durch pondermotorische Kr�afte und durch Str�ome schneller Elektronen ent-

stehen. Plasmakinetische (PIC) Simulationen zeigen, dass die st�arksten Felder azimutal

im Bereich hoher Dichte lokalisiert sind und exponentiell mit steigender Laserintensit�at

anwachsen. F�ur den Fall eines schr�agen Lasereinfalls werden die st�arksten Felder nur auf

einer Seite des Plasmas erzeugt. Diese Felder k�onnen z.B. mittels der Grenzfrequenz f�ur die

au�erordentliche Welle (x-wave cut-o�), dem Faraday- und dem Cotton-Moutone�ekt ge-

messen werden. Das Prinzip dieses Messverfahrens beruht auf der polarisationsabh�angigen

Ausbreitung eines Probepulses durch ein magnetisiertes Plasma. Indem man Hohe Harmo-

nische der Laserfundamentalen benutzt, die durch den intensiven Laserpuls im Inneren des

Plasmas erzeugt werden, kann man die Schwierigkeiten vermeiden, die sich bei Anwendung

eines externen Probepulses durch zu starke Brechung an dem Dichtegradienten des Plas-

mas ergeben. Die Experimente wurden mit dem CPA-Strahl des VULCAN-Lasers (1053 nm,

750 fs, 1020 W=cm2) am Rutherford-Appleton Laboratory in Gro�britannien durchgef�uhrt.

Die magnetischen Felder wurden mit drei VIS /UV-Polarimetern und zwei VUV/XUV-

Polarimetern untersucht. Beruhend auf der Beobachtung des X-Wave Cut-O� ergab sich

eine magnetische Feldst�arke von mindestens 350(�60) MG. Die Gleichungen f�ur den Cotton-

Mouton-E�ekt der f�unften Harmonischen weisen bereits auf eine Mindestfeldst�arke von �uber

400(�50) MG hin. Die VUV/XUV-Polarimetrie gibt sogar deutliche Hinweise auf Felder

gr�o�er als 700(�100) MG. Bis zu einer Laserintensit�at von 1020 W=cm2 konnten keine An-

zeichen einer S�attigung der magnetischen Feldst�arke gefunden werden. Au�erdem wurden

keine Felder in Richtung der Target-Normalen beobachtet. Alle diese experimentellen Er-

gebnisse stimmen gut mit den Ergebnissen der PIC-Simulationen �uberein.





Abstract

The interaction of an intensive sub-picosecond laser pulse (1015{1020 W=cm2) with matter com-

prises many di�erent phenomena. This mainly experimental work concentrates on the ultrafast

ionisation of a dielectric solid and the observation of megagauss magnetic �elds in laser produced

plasmas:

Ultrafast Ionisation: The rapidly increasing electron density, caused by the leading edge of an in-

tensive laser pulse, surpasses the critical electron density very quickly, so that an initially

transparent glass plate becomes opaque. In this work a theoretical model of this interac-

tion is developed on the basis of optical �eld ionisation (OFI). Computational simulations

show, that the transmissivity reduces by several orders of magnitude in less than 10 fs for

plasma producing laser pulses with 800 nm wavelength and 60 fs pulse-duration. This rapid

decrease in transmissivity is mainly due to the absorption of the incident laser beam and

not due to an increasing re
ectivity. To verify these theoretical �ndings a pump-probe

experiment was performed with a Titanium-Sapphire laser (800 nm; 1 mJ) at the Institute

for Optics and Quantum-Electronics at the Friedrich-Schiller-Universit�at in Jena. In this

experiment laser pulses with a duration of 60 fs and 120 fs have been focused to an intensity

of approximately 1015 W=m2 to produce a plasma. A small part of these pulses was used

as a probe pulse to measure the time{frequency function of the plasma transmissivity. By

comparing the momenta of these time{frequency functions with the respective momenta

calculated from FROG measurements the theoretical predictions have been veri�ed, so that

this switch can also be applied for characterising UV-pulses with a very short wavelength

in future experiments.

Megagauss Magnetic Fields: The sub-picosecond laser{plasma interaction can generate strong mag-

netic �elds mainly due to radial thermal transport, pondermotorive forces and fast electron

currents. Particle in cell (PIC) simulations were performed, showing that the strongest

�elds are azimuthal �elds growing exponentially with increasing laser-intensity in the high

density region of the plasma. In the case of oblique incidence the strongest �elds are present

at one side of the plasma only. These �elds can be measured by means of the x-wave cut-o�,

the Faraday- and the Cotton-Mouton e�ect, i.e. the polarisation dependent propagation of a

probe beam through the magnetised plasma. By using the high harmonics of the fundamen-

tal laser frequency, which are produced inside the plasma, one can overcome the di�culties

resulting from the application of an external probe pulse due to its strong refraction at

the density gradient of the plasma. The experiment was performed with the CPA-beam

of VULCAN (1053 nm, 750 fs, 1020 W=cm2) at the Rutherford-Appleton Laboratory, UK.

The magnetic �elds were observed with three VIS /UV polarimeters and two VUV/XUV

polarimeters. Based on the observation of x-wave cut-o�s the peak magnetic �eld was at

least 350(�60) MG. Whilst the equations of the Cotton-Mouton e�ect for the 5th harmonic

already suggested �elds above 400(�50) MG, the VUV/XUV polarimetry gave strong in-

dications of �elds even beyond 700(�100) MG. Up to 1020 W=cm2 no saturation of the �eld

strength was found and no magnetic �eld could be observed close to normal incidence. All

these results correspond well with the PIC simulations.





Contents

1 Introduction 1

2 Ultrafast Ionisation and Optical Gating 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A Time-Dependent Model of Optical Plasma Properties . . . . . . . . . . 6

2.2.1 The Ionisation Process . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 The Time-Dependent Optical Properties . . . . . . . . . . . . . . . 8

2.2.3 Results and Validity of the Model . . . . . . . . . . . . . . . . . . 10

2.3 Basics of Ultrafast Optical Gating . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Basics of Pulsed Gating . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Spectrally Resolved Pulsed Gating . . . . . . . . . . . . . . . . . . 14

2.3.3 Time{Frequency Distribution Functions . . . . . . . . . . . . . . . 16

2.3.4 Signal Reconstruction using the First and Second Momentum . . . 17

2.4 The Ultrafast Gating Experiment . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Performing The Experiment . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Discussion of the Experimental Results . . . . . . . . . . . . . . . 22

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 DC Megagauss Azimuthal Magnetic Fields 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Megagauss DC Magnetic Fields in Sub-Picosecond Laser Produced Plasmas 30

3.2.1 Mechanisms for DC Magnetic Field Generation . . . . . . . . . . . 30

3.2.2 PIC Simulations of Mega-Gauss DC Magnetic Fields . . . . . . . . 32

3.3 The Basic Idea of the Experiment . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Observing Magnetic Fields in Near Solid Density Plasmas . . . . . 34

3.3.2 High Harmonics as a Source for Observing Magnetic Fields . . . . 36

3.4 Observing Magnetic Fields in a Laser Produced Plasma . . . . . . . . . . 40

3.4.1 Electromagnetic Waves in a Magnetised Plasma . . . . . . . . . . . 40

3.4.2 The Solution of the Wave Equation . . . . . . . . . . . . . . . . . 42

3.4.3 The Dispersion Relation of the Faraday and Cotton-Mouton E�ect 44

3.4.4 Observing Magnetic Fields with the X-Wave Cut-O� . . . . . . . . 46

3.4.5 The M�uller Matrices of the Faraday and Cotton-Mouton E�ect . . 47

3.4.6 Observing Magnetic Fields with the M�uller Matrix . . . . . . . . . 49

3.5 The Experimental Setup for Producing and Observing Magnetic Fields . . 53

3.5.1 The General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 The VIS and UV Polarimeters . . . . . . . . . . . . . . . . . . . . 57

3.5.3 The VUV/XUV Polarimeters . . . . . . . . . . . . . . . . . . . . . 68



ii Contents

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Observation of Magnetic Fields by X-Wave Cut-O�s . . . . . . . . 75

3.6.2 The M�uller Matrix Approach . . . . . . . . . . . . . . . . . . . . . 79

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Summary and Outlook 89

A Mathematical De�nitions and Equations 91

B The Quasi Half Range Signal of a Gated Optical Pulse 99

C Measuring the Polarisation of Light 103

D M�uller Matrices of Optical Components 111

E Electromagnetic Waves in Magnetised Laser Produced Plasmas 119

Bibliography 125

Curriculum Vitae 135

Acknowledgement 137



Chapter 1

Introduction

Humans are familiar with plasmas since time immemorial: lightning, polar lights and


ames are popular examples of them. Furthermore, even more than 99 % of the appar-

ent universe is made up of plasma. But nevertheless it took until the 20th century until

extensive research in this area began. This is due to the technical di�culties in perform-

ing experiments with a plasma and the mathematical complexity involved in theoretical

studies. In particular even for a bottom-of-the-line plasma model one has to combine a

fully developed theory of electrodynamics and classical mechanics within the framework

of a many-particle-problem.

When W. Crookes noticed in 1879, that the properties of the medium in gas discharges

are di�erent from solid, liquid and gaseous materials, he called this the `fourth state of

matter' [36]. The important fact, that the charged particles in these discharges exhibits

a collective behaviour due to the long ranging Coulomb forces, was already known by

Lord Rayleigh in 1906 [133]. In 1929 L. Tonks and I. Langmuir [177] recognised that this

state of matter can be considered as a carrier for e.g. fast-electrons, molecules and ions of

gas impurities (similar to blood carrying around its various corpuscles). Thus they called

this state of matter a `plasma' [113], originating from the Greek word ������, meaning

mouldable substance. Nevertheless plasma-physics remained a small and unimportant

�eld in physics, until countries like Great Britain, France, the U.S.S.R. and the USA

started patronising it for their political interests in nuclear weapons and power-plants at

the beginning of the 1950s [18]. In particular the energy crisis in 1973 boosted the e�orts

in building a controlled thermonuclear fusion reactor, leading to many large scale mag-

netic con�ned fusion (MCF) experiments, like the very successful `Joint European Torus'

(JET), which started in 1983 [76]. The next step is the `International Thermonuclear fu-

sion Reactor', which shall demonstrate the feasibility of a commercial fusion reactor [76].

Despite these huge scale experiments plasma-physics has nowadays become indispensable

even in many �elds of applied physics like material science, semiconductor technology and

physical chemistry.

A new �eld within plasma physics arose shortly after the construction of the �rst Laser

by Maiman in 1960 [100]. As soon as people learned how to build more intense lasers

with a pulse duration in the nanosecond region, scientists reported optical breakdowns in

air and in solid materials [73], the �rst laser produced plasmas. Quite soon it was realised

that lasers emitting nanosecond pulses with a pulse energy of several kilojoules are an

ideal tool to study high density plasmas, the physics of nuclear weapons, thermonuclear

fusion (Inertia Con�nement Fusion (ICF)) and plasma instabilities [3, 35]. Consequently

a number of huge nanosecond laser systems with several dozens of beams, each delivering

a pulse energy beyond 1 kJ, have been built during the 1970s and 1980s: among the best
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known systems are PHEBUS at Limeil (France), GEKKO at Osaka (Japan), NOVA and

Shiva at Livermore (USA), OMEGA at Rochester (USA) and VULCAN at the Rutherford-

Appleton-Laboratories (United Kingdom) [91].

A technical milestone in laser plasma physics was accomplished with the idea of

chirped pulse ampli�cation (CPA) [101, 125, 163, 164] in 1985 by Mourou's group and

the development of the �rst turnkey short pulse oscillator by Sibbett and his group in

1990 [155]. Soon this short pulse oscillator and the CPA ampli�cation scheme were put

together to make up the �rst high-power `Table Top Terawatt' (T3) laser [83, 166]. In

contrast to the abovementioned nanosecond lasers with pulse energies usually beyond

several 10 kJ, these systems often emit pulses with not much more energy than a few

joules. But their pulse duration can be more than three orders of magnitude shorter, so

that their peak pulse intensity even surpass the peak intensity of the nanosecond systems.

The basic principle of these systems is to stretch a femtosecond pulse generated in a Kerr

mode-locked Titanium-Sapphire(Ti:Sa)-oscillator to several picoseconds. In general this

pulse is ampli�ed in a series of Ti:Sa-crystals, before it is recompressed again [12, 124].

Today these T3-systems are widely used around the world, because they are quite cheap

and rather easy to operate, so that it is convenient to perform experiments with them.

Among the largest operational CPA-systems at present are the VULCAN petawatt beam-

line at the Rutherford-Appleton-Laboratory (United Kingdom) and the LULI petawatt

beam-line at the �Ecole Polytechnique (France) with a pulse energy up to 500 J and a

pulse duration between 500{1000 fs [91].

These CPA-systems also enable a new fusion scheme, called the `fast igniter' [118, 168].

In this scheme a small sphere, made of a deuterium{tritium mixture, is heated and com-

pressed by nanosecond laser pulses shining onto it from all sides. Then a 100 ps laser pulse

drills a hole into the coronal plasma. At stagnation an additional pulse (containing sev-

eral 10 kJ in 10 ps) propagates through the hole into the interior, where it produces a vast

amount of energetic electrons. These electrons �nally ignite the plasma. Beyond this fu-

sion scheme many new phenomena can be explored with these CPA-systems: at intensities

below 1015 W/cm2 pump{probe experiments are a class of highly interesting experiments

for studying ultrafast transitions in matter. An example for this kind of experiments are

time resolved studies of processes like non-thermal melting and the excitation and decay

of phonons [47, 136, 152]. At intensities beyond 1016 W/cm2 many phenomena related to

the laser{plasma interaction can be studied [58, 59]. A few examples are the emission of

high order harmonics from a solid surface [13, 116, 175, 176, 182, 183, 191] or the K-�

emission, due to fast electrons [59, 160]. One mechanism accelerating the electrons are

plasma-waves [86]. Beyond 1018 W/cm2 signi�cant amounts of fast particles with energies

of several MeV [102] are produced. These particles initiate nuclear reactions, which can

produce 
-rays [53, 117], or �ssion the nucleus, which is particularly useful for nuclear

waste disposal [93, 145]. At laser intensities above 1021 W/cm2 even more phenomena,

like pair production, become experimentally accessible.

Most sub-picosecond experiments involving solid targets either concentrate on study-
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ing phenomena below the plasma formation limit, or they study the laser{plasma in-

teraction itself. In contrast to that the plasma formation process is only rarely studied

[9, 60, 149, 181, 184]. This is not a serious shortcoming for metals, because they can be

considered as a very cold plasma from the very beginning, due to their free electron gas.

But this does not hold true for dielectric media, which initially cannot be described as a

plasma. In this case the laser has to create a plasma by means of optical �eld ionisation at

�rst. As this process has been rarely studied for solid materials up to today, the �rst part

of this work concentrates on this topic. Probably the most interesting result is that the

transition from an initially transparent dielectric solid to the plasma state can be used

as an ultrafast switch, which allows pump{probe experiments with a temporal resolution

at the order of 10 fs for radiation whose wavelengths range from the vacuum ultraviolet

to the near infrared.

Soon after the initially dielectric surface is transformed to a plasma, the laser pulse

starts interacting with this plasma. One phenomena occurring during this interaction is

the generation of strong magnetic �elds inside the plasma. Up to now only measurements

of the magnetic �eld in the under-dense region have been performed [21, 22]. Knowledge

about the �elds in the over-dense region was only available through computational simu-

lations [103, 129, 189], predicting azimuthal �elds of several 100 MG. This shortcoming is

addressed in the second part of this work. In this part an experiment is discussed, which

observed for the �rst time azimuthal �elds well above 400 MG. With further increas-

ing laser intensities, these exciting results will not only be interesting from an academic

point of view, but they will also be the key to studying strongly magnetised high density

plasmas (such as those present at the surface of white dwarfs and neutron stars) in the

laboratory for the �rst time.





Chapter 2

Ultrafast Ionisation and Optical Gating

2.1 Introduction
As already mentioned beforehand, only a few experiments [9, 60, 149, 181, 184] focus

onto the formation of a solid density like plasma from a dielectric surface, i.e. the tran-

sition from a cold solid material to a hot high density plasma. In addition, despite a

publication from P. Blanc [19], there are no detailed experimental studies of plasma for-

mation at the surface of a solid on a timescale well below 100 fs to the best knowledge

of the author. Furthermore computer codes, used to simulate laser plasma interactions

at solid densities, require a pre-ionised initial state in general, because ionisation models

are only implemented to a very limited extent [17, 44, 45, 86, 132]. An exception are

specialised codes, such as those developed by Ruhl and Mulser [137]. Furthermore it

is remarkable, that there are not much more detailed studies of this process within an

ultrashort timeframe, because this process has been proposed to be used for pre-pulse

removal from ultrashort laser pulses. This application is known under the term plasma

mirror in the scienti�c literature [61, 77, 142, 170, 173, 181]. In addition it is rarely

discussed, that the phase transition from the solid state to a high density plasma can be

used as a transmission gate as well. In Michelmann et. al. [109, 110] this gate is applied

to characterise a 248 nm, 500 fs pulse. In the theoretical part of [110] we brie
y showed

(a more elaborate discussion is given in [174]), that the response time of this gate is not

much longer than 50 fs. Beyond these studies it is interesting to explore, if the plasma

switch is also applicable to pulses well below 100 fs or if the measured pulse properties

are in
uenced by the increasing electron density. In this case one can try to derive the

plasma properties from the measured pulse properties. These studies are the main scope

of the present chapter. In its �rst part this issue is approached from a theoretical point

of view by developing a macroscopic model describing the optical properties during the

plasma formation process at a dielectric surface [174]. Based on this model, not only the

optical properties of the transmission gate are calculated, but also valuable insight into

the feasibility of the plasma mirror for pulse cleaning on ultrashort timescales is obtained.

The experimental part of this chapter concentrates on the transmission properties of the

emerging plasma, which are �nally compared to the theoretical �ndings.

Even if the time resolution of measuring instruments increased quite a lot during

the last few decades, femtosecond time resolution is still achieved by measuring the

correlation between two signals. A widespread class of these correlation measurements

are pump{probe experiments [134], which have been used successfully during the last

years to study ultrafast melting, changing absorption, re
ectivity and transmission of

transparent semiconductors and insulators (see, e.g. [9, 47, 136, 149, 152, 180]) on a
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picosecond timescale. Even more recently, time-resolved x-ray re
ectivity measurements

have become a standard tool for studying phase transitions in solid state physics on

time-scales below 1 ps [47].

In our experiment the main laser pulse is split into a strong pump pulse, producing

the plasma, and a much weaker probe pulse. Both pulses are focused onto the same

area of an initially transparent target. As the probe pulse can be delayed in time with

respect to the pump pulse, one can measure the correlation between the probe pulse and

the optical properties of the plasma, respectively. This correlation can be used either

for studying the time-dependent optical properties of the plasma, if the properties of the

probe pulse are known, or for measuring the properties of the probe pulse, if the time

dependent optical properties of the plasma are known.

2.2 A Time-Dependent Model of Optical Plasma Properties
Concerning the plasma formation process one can distinguish two kinds of solid materials:

metals and dielectrics [138]. The free electron gas present in a metallic solid is already a

plasma with an electron temperature of some meV. Thus the electric �eld of the laser can

directly interact with the free electrons of this plasma, leading to collisional absorption,

also called inverse bremsstrahlung [73, 172]. This heats up the initially cold plasma and

increases the electron density even further by collisional ionisation. On the other hand,

in a dielectric solid there are practically no free electrons present, so that this mechanism

does not work initially. Instead of this, optical �eld ionisation (OFI) [50] initiates the

ionisation process. As soon as the increasing electron density surpasses the so called

critical electron density nec, an initially transparent dielectric material becomes opaque

at its surface. nec is given by

nec =
�0me

e2
!2
0 (2.1)

with the dielectric constant �0 in vacuum, the electron charge e, the electron mass me

and the angular frequency !0 of the laser �eld. A schematic overview of our macroscopic

plasma model describing this transition process is shown in Figure 2.1.

2.2.1 The Ionisation Process
To obtain a more detailed understanding of OFI it is useful to introduce the so called

Keldysh parameter � :=
q

Iioni
2Uq

, whereby Iioni is the ionisation potential and Uq is the

quiver energy:

Uq :=
e2

4me

r
�0

�0

Ipump

!2
0

(2.2)

with the laser intensity Ipump, the dielectric constant �0 and the magnetic permeability

�0. Then one can distinguish three di�erent domains of OFI: a low intensity domain

with ionisation mainly due to multi-photon absorption (� � 1), a high intensity domain

(� � 1) with tunnel ionisation and a transition region. In all three domains the OFI is

described fairly accurately with the Ammosov-Delone-Krainov(ADK) theory [5], which
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Figure 2.1: Physical model to calculate the time-

dependent transmission properties of a plasma

produced at an initially dielectric and transparent

solid in the early phase of plasma formation.

Figure 2.2: Optical �eld ionisation rates of Sili-

con from the multi-photon to the tunnel ionisation

regime.

is an elaboration of the Keldysh theory [78], based on the Schr�odinger equation and a

scattering matrix approach. The latter theory is used in our plasma formation model

(see Figure 2.1). In some cases this theory underestimates the ionisation rates as a com-

parison between calculated rates and experimental data shows [8, 50]. More serious are

the restrictions of Keldysh's and similar theories [55] to a single atom. Extending these

theories to a high density solid is a very extensive task, as one has to use a detailed quan-

tum mechanical model of the solid. In the end, one would derive even higher ionisation

rates, because the band structure of the solid almost always allows resonant absorption

of photons [78]. Consequently this increases the rapidity of the switch even more. In

summary, the Keldysh model is a fairly simple, but su�ciently sophisticated model to

estimate lower boundaries for the ionisation rates during the plasma formation on the

surface of a solid, if the ionisation potential, the incident laser frequency and intensity

are known (see Figure 2.2). From these calculated rates, the time-dependent electron

density ne can be calculated easily by summing up the di�erent transitions and taking

the occupation of states into account (see Figure 2.3). It is noteworthy, that we obtained

similar results, using the barrier suppression ionisation (BSI) model [7, 8].

The free electrons produced by OFI immediately gain a quiver energy up to Uq from

the electric �eld of the laser, so that they can contribute to the ionisation rate by col-

lisional ionisation. Consequently a binary encounter approximation of collisional ionisa-

tion, developed by Gryzinski [67], was included in the calculations. As can be seen from

Figure 2.3, this only increases the electron density ne signi�cantly at times, when ne is
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Figure 2.3: Time-dependent electron den-

sity with and without collisional ionisa-

tion. The time is normalised to tFWHM,

i.e. the FWHM of the pump pulse

(800 nm, 60 fs, 1015 W/cm2). Zero is at

the peak intensity of the pump pulse.
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Figure 2.4: Complex index of refraction versus time for constant electron temperatures at the surface of a

fused silica plate. The time is normalised to the FWHM of the pump pulse (800 nm, 60 fs, 1015 W/cm2),

zero is at the peak intensity of the pulse.

at least approximately as large as nec. A closer look shows that collisional ionisation

slightly reduces the transition time and shifts the transition point (i.e. the time when

ne(t) reaches nec) by a few femtoseconds. Thus, in summary, the transmission properties

are not changed substantially by collisional ionisation.

2.2.2 The Time-Dependent Optical Properties
The next major step is to calculate the time-dependent optical properties of a thin plasma

sheet, i.e. its complex index of refraction n. This can be accomplished using the Drude's

model [24] of a metallic surface:

n2 = �1 -
1

1+ f2
ne

nec
+ i

f

1+ f2
ne

nec
(2.3)

where �1 is the dielectric function [187] at in�nite frequency and f is a damping factor,

equal to the electron{ion collision frequency normalised to the angular frequency !0 of

the laser pulse. This damping factor can be estimated from Spitzer's theory [156]:

f =
4
p
2� e4

(4��0)2
p
me

ne

nec

Z2eff

T
3=2
e

ln�

!0

(2.4)

In the last equation Zeff is the average degree of ionisation, ln� is the Coulomb logarithm,

me is the electron mass and Te is the electron temperature. Because of the quickly
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increasing ionisation the plasma is far from thermal equilibrium, thus, strictly speaking,

a temperature is not de�ned. However, if the laser intensity is weak, then a reasonably

good estimate of Te is provided by the ionisation potential of the electrons, because one can

argue that the electrons need a kinetic energy of the same order as the ionisation potential

to prevent immediate recombination [114]. With increasing laser intensity the cycle

averaged quiver energy [130], that the electrons gain in the oscillating laser �eld, becomes

much larger than the ionisation potential, so that an estimate of Te is given by the quiver

energy. Note that the ADK theory limits the initial electron energy to 0.2 % of the quiver

energy [5, 108]. Furthermore it works out that the temporal evolution of the transmission,

derived from =(n(t)), depends only weakly on Te (left plot in Figure 2.4). Note that this

does not hold for the re
ection, derived from <(n(t)) (right plot in Figure 2.4). Thus

for modelling the transmission through the plasma a detailed knowledge of Te is of minor

importance, whilst it is important for calculating the re
ection.

To calculate the transmissivity and re
ectivity of the whole plasma, we consider a

thin homogeneous plasma layer with a thickness dx �rst. The transmission through this

layer is given by [24]:

T(t) = exp (-�(x; t)dx) (2.5)

with the absorption coe�cient �(t) and the speed of light c0:

�(t) = 2
!0

c0
=(n(t)) (2.6)

On the other hand the re
ectivity is given by Fresnel's equation [24], i.e. in the case of

normal incidence:

R(t) =
(<(n(t)) - 1)

2
+ (=(n(t)))

2

(<(n(t)) + 1)
2
+ (=(n(t)))

2
(2.7)

Hence the total transmission of the plasma layer is:

Ttot(t) � (1- R(t)) T(t) (2.8)

The reciprocal of Eq. (2.6) is called the skin depth lskin(t) and is equivalent to the

length over which the intensity of the radiation propagating through the plasma is ab-

sorbed by the free electron-gas to 1=e of its initial value. This absorption mechanism is

known as the skin e�ect, too.

In addition we de�ne the ionisation depth:

lioni(t) :=
Wne(t)

Ipump(t)
(2.9)

where Wne(t) is the power per volume, necessary to increase the ionisation according to

the Keldysh ionisation rates, and Ipump(t) is the pump pulse intensity. Thus lioni(t) is an

estimate of the plasma layer thickness, which can be ionised further, if the instantaneous

power of the laser is fully consumed by the ionisation.

As shown in Figure 2.5 for early times lioni(t) is much smaller than lskin(t), so that



10 Chapter 2. Ultrafast Ionisation and Optical Gating

the absorption of the probe pulse in the plasma can be neglected. In this case mainly the

intensity of the pump pulse limits the thickness of the ionised plasma layer. If the plasma

is almost opaque, then this situation starts turning upside down and lioni(t) � lskin(t)

begins to hold. Now the thickness of the plasma layer with an increasing ionisation is

determined by the skin depth. Consequently one can use the ionisation depth lioni(t) and

the skin depth lskin(t), whichever is smaller, to estimate the time dependent thickness of

the plasma layer with rapidly growing ionisation. The ionisation process becomes more

and more limited to a thinner layer at the target surface, because lioni(t) and lskin(t)

decrease with time. As one can neglect the hydrodynamic expansion of the plasma on

these ultrashort time-scales, it is straight forward to derive an electron density pro�le

along the axis of the incident laser beam. This pro�le has its peak density at the target

surface and steeply falls o� into the bulk. By numerical integration of Eq. (2.5) and

Eq. (2.7) over this density pro�le one �nally derives the re
ectivity and transmissivity of

the plasma.

2.2.3 Results and Validity of the Model
As already discussed in Subsection 2.2.1 on a longer time-scale collisional ionisation in-

creases the ionisation rates considerable. Furthermore, even at very early times processes

like multiple ionisation [46] and resonant multi-photon absorption [73] can increase the

rates beyond the values calculated with the Keldysh theory. Anyway, all of them increase

the rapidity of the switch even more and mainly advance the transition point by a few

femtoseconds with respect to the pump pulse maximum. It is important to note, that

other seemingly important processes can be neglected on time scales below hundred fem-

toseconds. Among them are the heating and ionisation of regions further away from the

target surface, as this occurs on the longer time scale of the non-linear heat wave prop-

agation. Using even an optimistic value of its propagation velocity of much more than

107 cm/s one easily calculates, that the duration for heating a depth of 1 µm requires at

least several hundred femtoseconds. Also heating by highly energetic electrons [86] is of

minor importance, because this requires higher laser intensities than the only moderate

intensity of up to 1015 W/cm2.

As shown in Figure 2.3 the electron density increases nearly exponentially with time,

which is almost independent of the material used within the calculations. Thus the par-

ticular ionisation potentials of the material are of minor importance and the exponential

increase is mainly determined by the laser pulse itself.

In Subsection 2.2.2 it was already discussed, that our model describes the re
ectivity

R(t) less precisely than the transmissivity. Even worse for calculating R(t) one has to

derive the dielectric constant �1 [187] included in <(n(t)) (see Eq. (2.3)) in addition.

This constant is strongly dependent on the structure of matter, which changes drastically

during the ionisation process. Thus our assumption, that �1 is constant, is a rough

description of the physical reality only. Nevertheless this coarse model gives valuable

insight into the re
ectivity of the plasma surface: initially there is a low but constant
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Skin Depth

Ionisation Depth

(a) 60 fs pulse, intensity: 1015 W/cm2

Skin Depth

Ionisation Depth

(b) 140 fs pulse, intensity: 4 � 1014 W/cm2

Figure 2.5: Calculated time dependent ionisation depth, skin depth, re
ectivity and transmissivity for a

plasma produced with two di�erent laser pulses (� = 800 nm). The time zero is at the peak intensity of

the pump pulse.

re
ectivity, decreasing to zero, while the ionisation process is beginning. During the

ionisation process the re
ectivity increases again. After reaching a maximum it starts

decreasing to zero once more, before it �nally approaches a constant value at the end

of the phase transition. This constant re
ectivity is reached in a period longer than the

duration of the laser pulse. This period and the �nal re
ectivity, which is well below unity,

depend on Te (see Figure 2.4 and Figure 2.5). Hence it is questionable if the so called
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Figure 2.6: Imaginary part of the the refraction in-

dex, representing the absorption of laser radiation

inside the plasma, versus the normalised electron

density for di�erent electron temperatures Te. The

electron density is normalised to the critical elec-

tron density of 800 nm radiation. For simplicity

�1 is set to unity.

plasma mirror is applicable for pulse cleaning on sub-hundred femtosecond time-scales.

The behaviour of the transmissivity T(t) is much more simple: as shown in the lower

plots of Figure 2.5, the transmission decreases by several orders of magnitude from a

highly transparent state to an opaque one within a few femtoseconds. This fast decrease

cannot be understood fully in terms of the approximately exponential increase of the

electron density only. In addition one has to pay attention to a peculiarity of =(n(t)),

as shown in Figure 2.6: if the normalised electron density nec is below unity, =(n(t))

is small, so that the absorption of radiation inside the plasma is negligible. As soon

as nec becomes larger than unity, the absorption increases dramatically. This ultrafast

change in the absorption is the reason for the rapidity of the gating process. As shown

in Figure 2.6, the height of the step increases with increasing Te. We found, that even

if Te is only a few electron volts, then the height of this step is still su�cient to assure

an ultrafast transition. Furthermore the simulations reveal a response time in the order

of a single oscillation of the pump pulse. In an experiment, which averages over several

laser pulses, this is quite naturally a lower limit for the response time, as the phase of the

fast oscillating carrier frequency of the laser pulse is not locked to the pulse envelope in

general. In addition Keldysh's theory is not a fully time-dependent quantum mechanical

ionisation model, so that the calculated ionisation rates may not be valid on the time-

scale of the carrier frequency. An upper limit for the response time of the gating process

is given by a simple energy consideration: if the ionisation depth is much smaller than

the skin depth, then the plasma is transparent, while in the opposite case it is opaque.

Thus the duration of the transition between these two extrema is an upper limit for the

response time. As seen from the upper two plots in Figure 2.5 this is roughly 1/5 of

the FWHM of the pump pulse. Consequently during an experiment one can expect a

response time well below 1/5 of the pump pulse's FWHM, but larger than the theoretical

limit of an oscillation period.

In the last paragraph only the absorption of the laser radiation inside the plasma was

discussed. But for calculating the total transmission Ttot(t) one has to pay attention to the

re
ectivity, too (compare Eq. (2.8)). Even, if one does not know the re
ectivity precisely,

one does not introduce a considerable error into the calculated transmissivity, because

the re
ectivity is only a few percent, while the plasma is transparent. Nevertheless as
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Figure 2.7: Simulated reconstruction of a strongly

chirped optical pulse (800 nm, 18 fs). Before recon-

struction the original pulse was convoluted with an

error function of slope �� representing the gating

function (compare Eq. (2.10)).

the re
ectivity reduces to zero in the early phase of the plasma formation, while the

absorption is still next to zero, one observes a few percent increase of the transmissivity

(see inset of Figure 2.5(a)). This increase was measured in the experiment described in

Section 2.4, too. With a peak pump pulse intensity of 1015 W/cm2, 4 � 1015 W/cm2 and

60 fs, 140 fs, respectively, the parameters of the simulation shown in Figure 2.5 match the

experimental conditions from Section 2.4.

2.3 Basics of Ultrafast Optical Gating
To verify the theoretical predictions from Section 2.2 one can perform a pump{probe ex-

periment as proposed in Section 2.1 thus measuring the correlation function between the

transmission properties of the plasma and the probe pulse. To re-obtain either the optical

transmission properties of the plasma or the parameters of the probe pulse from the mea-

sured correlation function, it is vital to have a good understanding of the mathematical

background behind these functions.

2.3.1 Basics of Pulsed Gating
The energy of a time-dependent optical signal, i.e. the probe pulse s(t), can easily be

measured with a time-integrating detector. On the other hand, it may be extremely

di�cult or even impossible to measure the fast vibrating electric �eld amplitude of the

probe pulse itself. This obstacle can be overcome by putting a fast shutter in front of the

time integrating detector. In our case this shutter is represented by the plasma, which is

created with di�erent delays � with respect to the probe pulse. In the following we will

call this application of the plasma the plasma switch. If its time-dependent transmission

is given by G(t) and the electric �eld of the probe pulse is s(t) again, then one can

measure their correlation:x

sf(�) =

Z1
-1

js(t)G(t- �)j
2
dt (2.10)

Ideally G(t) would be equal to a Dirac function, so that Eq. (2.10) reduces to sf(�) =

s2(�). This is experimentally di�cult to realise, because two nearly instantaneous tran-

xIn a more general case G(t - �) and s(t) are not a product, but G(t - �) is a functional on s(t):

G(t- �)fs(t)g
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sitions (one from closed to open and another one from opened to closed) are needed in a

rapid series. More simple is a switch using a single transition, e.g. from open to closed.

Ideally this transition is instantaneous, so that G(-t) would equal the Heaviside function

H(-t) (see Eq. (A.25)). A good approximation of H(t) is a time integrated Gauss func-

tion, also known as error function (see Eq. (A.24)), with a steep slope, i.e. short response

time ��. Our theoretical considerations in Subsection 2.2.3 show that the plasma switch

is fast with a response time below 1/5 of the duration of the pump pulse. Hence it is

sensible to assume that the plasma switch is a good experimental approximation for an

error function with a steep slope and thus for a step-like gating function.

As the temporal evolution of the signal s(t) is measured by shifting the gating function

across the signal, the temporal resolution is limited by the response time �� of the

gating function. For resolving all details of the signal one would expect �� to be much

shorter than the fastest variation of the signal (More precisely: the frequency 1
��

is much

larger than the highest frequency contained in the signal). Considering an optical or a

VUV/XUV pulse for instance, this requires �� to be much smaller than 1 fs as shown for

a pulse with a central wavelength of 800 nm and a pulse duration of 18 fs in Figure 2.7. In

this case Eq. (2.10) reduces to sf(�) =
R�
-1

s2(t)dt and s2(t) can be obtained by simply

deriving sf(�). Unfortunately such fast switches do not exist so far. Another principal

problem of these switches would be, that averaging over several pulses s(t) can wipe out

the fast oscillating carrier frequency easily, due to a small jitter of its absolute phase

relative to its envelope among adjacent pulses. Consequently it is probably impossible

with the plasma switch to measure the fast oscillating carrier frequency directly. For

measuring the pulse envelope exclusively, a gate with �� < 10 fs is su�ciently fast in the

case of an 18 fs pulse (see Figure 2.7). This is longer than 1/5 of the pulse duration, so

that measuring the pulse envelope should be easily accomplished with the plasma switch

(see Section 2.2). Furthermore, note, that if the gate is much slower than 20 fs, then one

cannot even directly measure the envelope for pulses shorter than 100 fs.

2.3.2 Spectrally Resolved Pulsed Gating
Despite all these limitations it is possible with a more sophisticated approach to measure

the properties of the fast oscillating carrier frequency. One may be tempted to obtain this

information by measuring the energy spectrum of the pulse, but this only tells us which

frequencies appear during the pulse and does not give us any information in which order

these frequencies appear. For example, if the fast oscillating carrier frequency is either

chirped from red to blue or from blue to red, then the energy spectra do not di�er. The

only way to distinguish between these two cases is a time-dependent Fourier analysis:

Instead of measuring the energy of the gated pulse as described by Eq. (2.10) one can

put a spectrometer behind the gate, thus measuring the energy spectrum of the gated

pulse, i.e. a time{frequency function:

sf(�;!) := jFt!! fs(t)G(t- �)gj
2 (2.11)
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with the Fourier transform Ft!! (see Appendix A.1). As the product s(t)G(t - �)

is a real function, the energy spectrum sf(�;!) is symmetric with respect to !, i.e.

sf(�;!) = sf(�;-!), so that one can limit sf(�;!) to positive frequencies only, i.e.

sf(�;!)j!<0 = 0. This frequency limited spectrum is called the half range energy spec-

trum (see Appendix B.1.2). In many cases algebra is simpli�ed even more by using the

quasi half range energy spectrum s+f (�;!) (see Appendix B.1.3), which is not exactly

zero for ! < 0, but can be considered to be zero at these points for all practical purpose.

Due to this s(t) and G(t-�) become complex functions, which have to satisfy additional

constraints given in Theorem B.3. As a reminder of this we shall write sc(t), Gc(t - �)

instead of s(t) and G(t- �) below. Furthermore in Appendix B.2 it is shown that these

constraints are satis�ed for all reasonable gating functions and all optical pulses, if written

as complex functions.

Using the quasi half range signal and the identities from Appendix A.1 and A.2 one

can rewrite Eq. (2.11) in a way which is more convenient for further discussion:

s+f (�;!) = Ft!!fF
+(�; t)g (2.12a)

F+(�; t) := �s(�; t) �� �G(�; t) (2.12b)

�s(�; t) := sc

�
�+

t

2

�
s�c

�
�-

t

2

�
(2.12c)

�G(�; t) := Gc

�
-�+

t

2

�
G�
c

�
-�-

t

2

�
(2.12d)

It is important to note that Eq. (2.12b) and thus Eq. (2.12a) are completely symmetric

concerning �s(�; t) and �G(�; t). Thus our two initial problems to calculate either the

gating function, if the probe pulse properties are known, or to calculate the probe pulse

properties, if the gating function is known, are completely identical from a mathematical

point of view. Consequently one can limit the discussion to the latter case without any

restrictions.

If G(t) = H(-t) e.g., then the derivative

PPDF(�;!) :=
@

@�
s+f (�;!) (2.13)

is called the Page distribution function (PDF): in 1951 C. Page argued [123], that in

this case Eq. (2.12a) can be interpreted as a time running energy spectrum representing

the total energy per frequency contained in the signal s(t) up to the time �. Thus the

derivative given by Eq. (2.13) is the time-dependent change of frequency contents and

can be considered as the instantaneous energy spectrum.

Obviously the Heaviside function is not the only possible gating function, so that one

can construct di�erent time-running energy spectra. Hence the question arises, how the

various gating functions di�er and if there is an outstanding one.
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2.3.3 Time{Frequency Distribution Functions
A more fundamental study of these time-running energy spectra shows, that they are part

of a set of joint time{frequency distribution function P(�;!) [52, 123, 179]. Quite natu-

rally one expects that these distribution functions hold two very fundamental constraints,

called the Marginals: Z1
-1

P(�;!)d! = jsc(�)j
2 (2.14)Z1

-1

P(�;!)d� = jesc(!)j2 (2.15)

That is to say, by integrating out one variable, one either obtains the envelope or the

energy spectrum of the pulse, respectively. Nevertheless it is still possible to construct

an in�nite number of these distribution functions with a bewildering manifoldness of

properties, each dedicated to a di�erent application, so that there is no generally out-

standing one. A comprehensive review, explaining the properties of the most important

time{frequency distribution functions, has been published by Cohen [33].

It was also noticed by Cohen [32] �rst, that all commonly used time{frequency distri-

bution functions can be generated from a rewritten Eq. (2.12):

P(�;!) = Ft!!F
-1
�!�Fu!�

�
�sc(�; t; �;!) sc

�
u+

t

2

�
s�c

�
u-

t

2

�

(2.16)

�sc is called the kernel [30], where the index sc denotes that the kernel can be a functional

of the signal sc. If the distribution function is time{frequency invariant (which applies

for all well known distribution functions) then �sc depends on � and t only:

�sc(�; t) := Fu!�

�
@

@u

�
Gc;sc

�
-u+

t

2

�
G�
c;sc

�
-u-

t

2

��

(2.17)

Again in the case of the PDF:

�PDF(�; t) :=
ei�jtj=2p
2�

(2.18)

Separating the time{frequency distribution function into a signal dependent and a gating

function dependent part has the huge advantage that the properties of the distribution

function can be studied independently from the signal by studying the kernel. An even

more modern approach goes one step further, using wavelet transforms and their intrinsic

two dimensionality to avoid the issue of manyfold kernels [4, 65, 121].

From Eq. (2.16) an inversion formula is easily derived, if the kernel is not a functional

of the signal sc(t):

M(t;�t) := sc(t) s
�
c(�t) = F-1

�!(t+�t)=2F�!�F
-1
!!t-�t

�
P(�;!)

�(�; t- �t)



(2.19)

If the kernel has only isolated zeros, then it is still possible to calculate M(t;�t) with

steady continuation, as shown by Nutall [33]. By setting �t = 0 one can use this equation

to calculate the original signal up to a constant phase from the measured time{frequency
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Figure 2.8: Derivative of a noisy signal: (left): original signal; (centre): direct derivative, i.e. di�erences

between adjacent samples; (right): derivative with a digital di�erentiator �lter.

distribution function. If one considers the case of a step-like gating function again, then

Eq. (2.19) reduces to:

cs+f (�; t) := p
2�

@

@�
F-1
!!t fs

+

f (�;!)g (2.20a)

M(t;�t) = sc(t) s
�
c(�t) = cs+f �t+ jt- �tj- (t- �t)

2
; t- �t

�
(2.20b)

The drawback of this seemingly simple method for deriving sc(t) from the measured

s+f (�;!) is, that all redundant information embodied in M(t;�t)j�t 6=0 is neglected, lead-

ing to an unnecessary erroneous and noisy reconstruction of sc(t). This is even worse

as the measured time{frequency function s+f (�;!) contains some noise, which is dra-

matically increased by the derivative in Eq. (2.20a). This problem can be reduced by

applying a digital di�erentiator �lter [122] to the measured signal instead of calculating

the derivative directly (see Figure 2.8). In our measurements the noise problem could

not be overcome completely and due to the inherent frequency �lter the measured signal

could be altered signi�cantly. Thus the direct reconstruction is not very feasible for most

practical applications.

More promising is an alternative approach based on Eq. (2.11) again. Instead of

calculating a reconstruction of sc(t) from the measured data, one assumes an arbitrary

synthetic and noiseless signal sc;a(t), which is adapted in such a manner that its related

time{frequency function (calculated with the help of Eq. (2.11)) �ts the original measured

data in a least-square sense. In many cases the signal sc;a(t) is subject to additional

constraints, satisfying Maxwell's equations for optical signals and a limited spectral width

etc., so that it is often possible to describe the signal by a mathematical model based on

a few parameters. Hence only a few free parameters are involved in the �tting procedure,

so that this approach is quite e�cient. This is the main idea behind pulse reconstruction

with frequency resolved optical gating (FROG) [178].

2.3.4 Signal Reconstruction using the First and Second Momentum
Despite these two approaches to re-obtain the original signal from the measured time{

frequency function an even more simple method exists in the case of step-like gating

functions. This approach is based on calculating the zeros and �rst conditional momen-

tum of the time{frequency function. Using Eq. (2.12) and the equations tabulated in

Appendix A.3.2, this calculation is straight forward.
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The zeros momentum is given by:
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Calculating the �rst momentum results in:
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To simplify the last two equations, note that the signal sc is a function R 7! C. Hence

one can write without any limitations sc(�t) := A(�t) ei'(�t) with A;' : R 7! R. With the

de�nition of �s(�; t) (see Eq. (2.12c)) one �nds:

M
(0)

s+
f

(�) =A2(�) �� �G(�; 0) (2.23a)

M
(1)

s+
f

(�) =
�
A2(�)' 0(�)

� �� �G(�; 0) (2.23b)

In the case of the PDF G(�t) = H(-�t), so that �G(�; 0) = H(�). Then the zeros and �rst

momentum are:
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A2(t) dt (2.24a)

M
(1)

s+
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(�) =

Z
!s+f (�;!) d! =

Z�
-1

A2(t)' 0(t) dt (2.24b)

The last two equations are the most important ones as they directly relate the measured

quantity s+f (�;!) with the envelope and phase of the original signal. These equations

will be used to analyse the experimental data presented in the next section.

2.4 The Ultrafast Gating Experiment
Eventually we turn our attention to the experiment, which was performed to justify the

theoretical predictions from Section 2.2. Before the measurements are presented and

discussed the experimental setup and its alignment are explained.

2.4.1 Performing The Experiment
An overview of the experimental setup is given in Figure 2.9. One immediately recognises

the typical pump{probe setup, where the laser pulse is split into a strong pump pulse

and a much weaker probe pulse. In our particular setup the pump pulse is delayed with

respect to the probe pulse.
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Figure 2.9: Setup of the ultrafast gating experiment

2.4.1.1 Experimental Setup

The Laser and Optical Chopper The laser used throughout this experiment is a commercial

1 kHz, 1 mJ Ti:Sa laser [11] with a pulse duration of 60 fs, a central wavelength around

800 nm and a default beam diameter of a bit less than 10 mm. This laser is situated at

the IOQ in Jena. During our experiment the repetition rate of the laser is reduced to a

few Hertz, so that there is su�cient time between two adjacent laser pulses to move the

target plate, on which the plasma spot is produced, to an area not a�ected by former

laser pulses.

The reduction of the repetition rate is accomplished by putting two synchronised

optical choppers into the optical path. The chopper plates are equipped with discs of

roughly 150 mm diameter, each of which contains a single hole of 10 mm diameter close

to the edge of the disc. Their minimal rotational speed is given by the constraint that

the chopper plates must rotate for at least one hole diameter between two adjacent laser

pulses. Using a series of two choppers, the laser's repetition rate can be chosen between

less than 1 Hz and some 100 Hz.

The Beam-Splitter Behind the optical choppers the laser beam is re
ected from two align-

ment mirrors used to align its height and pointing. The correct alignment of the beam

is determined by two apertures. The �rst one is positioned between the last alignment

mirror and the beam-splitter, the second one is setup in the transmitted beam right be-

hind the splitter. The beam-splitter itself consists of a 1 mm thick, slightly wedged fused

silica plate, re
ecting about 4 % of the beam from each of its two surfaces in somewhat

di�erent directions close to 45�. The transmitted pulse is the pump pulse, whilst the

pulse re
ected from the front surface is the probe pulse. The pulse re
ected from the

rear was originally focused onto a photodiode to control the incident energy of the laser

throughout the experiment.
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The Probe Pulse Right after the probe pulse is re
ected from the wedged beam-splitter,

it passes through an alignment aperture. By closing this aperture one can reduce the

beam's intensity inside the fused-silica plate so that its B-integral [2, 25] is still small

after propagating through the target plate. Behind this aperture the polarisation of the

probe pulse was rotated by 90� to be perpendicular to the polarisation of the pump pulse

with the help of a periscope. After this periscope the beam passes through the 10 mm

thick fused-silica entrance window of the target chamber before being focused onto the

front surface of the target by an achromatic calcium-
uoride lens with f = 250 mm focal

length.

The transmitted probe pulse is collected with a f = 50 mm fused-silica focusing lens.

This lens is set up to produce an 80 times magni�ed image of the probe pulse's focal

spot in a distance of 4 m away from the target surface. 25 cm behind this lens the pulse

leaves the vacuum chamber through another 10 mm thick fused-silica window and passes

a thin-�lm polariser. As the polarisation of the scattered light from the much stronger

pump pulse is perpendicular to the polarisation of the probe pulse, this polariser reduces

the impact of scattered light from the pump pulse on the measured probe pulse signal

considerably.

20 cm in front of the image plane the probe pulse is split into two beams by a 1 mm

thick glass plate. In the image planes of the two beams re
ected from the front and

rear surface of this plate a small photodiode (diameter less than 1 mm) is located for

measuring the energy in the centre of the probe pulse. The diode is mounted onto a xy-

translation stage, so that it can be easily centred on the image of the probe pulse. The tip

of an optical �bre, surrounded with a white screen, is positioned in the image plane of the

transmitted beam. The tip and the screen are both mounted onto a xy-translation stage,

so that the tip can be aligned to the centre of the image. To simplify this alignment, the

tip is observed with a CCD. The �bre itself is connected to an optical spectrometer with

a resolution of �/��=1600. The spectrometer itself is equipped with a 12 bit CCD.

The Pump Pulse This section describes the beam transmitted through the wedged beam-

splitter, i.e. the pump pulse. Right after this beam-splitter the pump pulse passes the

above mentioned alignment aperture before it is re
ected back with a collateral shift from

two mirrors mounted on a translation stage. This stage, also called the delay stage, has

35 mm range of motion and is driven by a stepper motor. The mirrors are aligned in such

a way that the incident and re
ected beam are exactly parallel. In addition, the direction

of motion of the stage is also parallel to the beams. Hence changes in the pointing and

lateral position of the back-re
ected beam are minimised over the stage's range of motion.

The path di�erence between the pump and probe pulse is chosen to be zero, if the delay

stage is roughly centred between its two �nal positions. The unidirectional positioning

accuracy of this stage has been increased to 160 nm per step, matching a time-delay of

1 fs.

After the delay stage another mirror right in front of the target chamber steers the
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pump pulse through the entrance window and the focusing lens onto the target. With

the help of this mirror it is possible to spatially overlap the pump and the probe pulse.

Due to the small beam-diameter of the laser (less than 10 mm) the focal spot of the pump

pulse has a di�raction limited FWHM of 25 µm. As the pump's energy is some 100 µJ

on target, the average focused intensity is about 1015 W/cm2.

Behind the target the remaining pump pulse is blocked with a knife-edge mounted

onto a remote controlled translation stage. During the experiment the knife-edge blocks

the transmitted pump pulse and most of its scattered light. But for alignment purposes

it is moved out of the beam, so that the pump and probe pulse can be imaged onto the

white screen around the tip of the optical �bre.

The Target The target is mounted on a remote controlled xyz-translation stage with a

special target holder. With the help of this target holder it is possible to align the target

precisely parallel to the xy-plane of the translation stage, so that one can move the target

along this plane for several centimetres without changing its focal position by more than

a few micrometers, which is much less than the focal depth (several 100 µm) of the laser

pulses. With the help of the z-motion it is possible to align the front surface of the target

precisely at the focal position. The x- and y-motions are controlled by a Labview [115]

programme to move the focal spot over the target surface in a wriggled line, so that each

laser pulse hits an unspoiled area of the surface.

The target itself consists of a 1 mm thick fused-silica glass plate. To check if the prop-

erties of the probe pulse are altered by non-linear interactions while propagating through

the target plate, a control experiment was carried out. In this experiment the fused-silica

plate was replaced with a 10 µm thick polyethylene foil, reducing the B-integral by ap-

proximately two orders of magnitude. Comparing the results of the two experiments no

di�erence was found, so that one can rule out any non-linear e�ect in
uencing the probe

pulse.

2.4.1.2 The Alignment Procedure

The alignment is carried out in two steps: a pre-alignment step, performed in air, and a

precision alignment step, performed after the target chamber was evacuated.

Pre-Alignment At �rst the knife-edge is moved out o� the pump pulse, the target is

removed, all apertures are opened completely and ND-�lters are placed in the pump and

probe beam, so that one can use a microscope objective and a CCD to observe 40 times

magni�ed images of the pump and probe beam's focal spots. Then the spatial overlap

between the pump and probe pulse is aligned by turning the mirror, which is steering

the pump pulse into the target chamber. Furthermore the lateral shift of these pulses

against each other is checked over the whole 35 mm range of motion of the delay stage.

This lateral shift is less than 50 µm. Thus this shift can be neglected for pulses shorter

than a few ps as this corresponds to a translation range of less than 1 mm.

Finally the microscope objective, the CCD and the ND-�lters are removed and the

aperture in the probe beam is nearly fully closed to avoid producing a plasma with this
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Pulse Type Pulse FWHM TH [fs] Linear Chirp c2 [fs
2 ] Quadratic Chirp c3 [fs

3 ]

Compressed 63 650 2.7 104

Uncompressed 138 2400 2.7 104

Table 2.1: Parameters of the two pulses used during the experiment right in front of the target: note that

the chirps are given in the spectral domain, whilst the pulse-duration is in the temporal domain, of course.

Thus the spectrum of the pulse is given by: fs+(!) = exp
�
-

T2H
16 ln 2

(!-!0)
2 +
P
1

j=2 i
cj
j!
(!-!0)

j
�
with

the central frequency !0 of the laser pulse [162].

beam. The aperture in the pump beam is closed so much, that the air plasma, produced

with the pump pulse, is just still visible. Then the probe pulse is used to observe the air

plasma produced with the pump pulse: if the probe pulse is arriving in advance of the

pump pulse, then it is not in
uenced by the raising air plasma; whilst, if it is delayed,

strong di�raction patterns (several cm in diameter) can be observed with an infrared

viewer on a white screen, located a few cm behind the target plane. Therewith one can

determine the temporal overlap between the two pulses within 100 fs. Note that the

electron density of the plasma produced in air is not su�ciently high to block the probe

pulse, so that the plasma switch experiment cannot be carried out with an air plasma.

Precision Alignment After installing the target again and evacuating the target chamber

the �nal alignment is performed to correct for any misalignments due to evacuating the

target chamber. At �rst all apertures are opened again and the focal position of the target

is determined by moving the z-motion of the target and optimising the x-ray emission

from the plasma produced with the pump pulse. This emission is measured with a silicon

photodiode (Hamamatsu S1336 [69]).

Then the intensity of the pump pulse is lowered by putting ND-�lters into the beam,

so that this beam produces tiny burn marks on the target surface only. These burn

marks are used to properly centre the probe pulse with respect to the plasma. This is

accomplished by blocking the pump pulse with the knife-edge and observing the image

of the probe pulse on the screen surrounding the tip of the optical �bre (see Figure 2.9).

The burn marks can be seen as a dark spot in the probe beam's image.

To align the temporal overlap between the two pulses all ND-�lters and the knife

edge are removed and all apertures are nearly completely closed. The aperture of the

probe pulse remains a bit more open to compensate for this beam being roughly 30 times

weaker than the pump pulse. Then the delay stage is moved, until an interference pattern

between the two beams becomes clearly visible in the image on the above mentioned

screen. Thus it is possible to determine the temporal overlap within a few 10 fs.

Finally all apertures are set to there initial diameters and the knife-edge is set up to

block the pump pulse and its scattered light as much as possible without blocking the

probe pulse.

2.4.2 Discussion of the Experimental Results
To demonstrate how the plasma switch is working in an experiment, a series of CCD

images with di�erent time delays between the pump and probe pulse is shown in Fig-
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Figure 2.10: Time series of the plasma cutting o� the probe pulse. Note, that this data set was obtained

during a previous test experiment carried out with a 550 fs, 10 mJ, 248 nm KrF*-laser.
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(a) Compressed pulse (see Table 2.1)
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(b) Uncompressed pulse (see Table 2.1)

Figure 2.11: Two-dimensional time{frequency functions of the experimental data: the time delay � between

the pump and probe pulse is given by the abscissa, whilst the relative frequency ! - !0 of the energy

spectra is given by the ordinate. !0 is the central frequency of the probe pulse.

(a) Compressed pulse (see Table 2.1) (b) Uncompressed pulse (see Table 2.1)

Figure 2.12: Zeroth and �rst conditional momentum of the time{frequency functions: the straight line

represents the momenta calculated from the FROG measurement, whilst the open circles represent the

momenta derived from the measured data shown above.
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(c) Simulation: ��=40 fs

Figure 2.13: Comparison between the measured time{frequency function of the uncompressed pulse (see Ta-

ble 2.1) and computer simulations based on the appropriate pulse parameters, but using di�erent response

times �� of the gating function. Figure 2.13(a) represents the ideal step function, showing a clearly visible

fringe pattern that is blurred in Figure 2.13(c).

ure 2.10. It is clearly seen that with increasing delay time less of the probe-pulse is cut-o�.

Note, that this data set was obtained during a previous test experiment carried out with

a 550 fs KrF*-laser. In contrast to that, the recent experiment is performed with two

di�erent Ti:Sa pulses: a compressed and an uncompressed one, generated by moving

the compressor gratings. The two pulses were characterised with a standard FROG setup

[43, 178] right behind the compressor gratings. Due to the huge bandwidth of these short

fs-laser pulses the di�erent frequency components of the pulse propagate with slightly

di�erent phase velocities through matter. Hence the initial pulse incures a group velocity

dispersion [24, 43], while propagating from the laser through air and optical elements to

the target. To account for this the appropriate pulse parameters at the target surface

have been calculated from the values measured at the laser using the programm LAB II

[89]. These calculated values are listed in Table 2.1. Furthermore it was assured, that

the uncompressed pulse had a positive chirp, i.e. its carrier frequency increases with

time. To measure the time{frequency function (see Subsection 2.3.2) of these pulses, the

energy spectrum of the gated probe pulse was measured for di�erent delays � between the

pump and probe pulse. For each delay 70 laser shots were accumulated to reduce energy


uctuations of the laser below 2.5 %. Other sources of error are the temporal jitter of

the transition point and the wavelength calibration of the spectrometer. But overall the

total error is not more than 5 %. The experimental results are shown in Figure 2.11 for

the compressed and uncompressed pulse, respectively.

Frequency Shifts If one plans to apply the plasma switch for characterising optical pulses,

it is most important to �nd out how this switch in
uences the properties of the trans-

mitted residual pulse. In any case an optical pulse propagating through a plasma with a

changing electron density acquires a frequency shift [92]. During the plasma formation

the electron density increases and the pulse is blue shifted, whilst it is red shifted in an

expanding plasma with a decreasing electron density. If this e�ect starts in
uencing the

transmitted residual pulse, then one expects that the increasing electron density during

the plasma formation shifts the central frequency of the pulse to a higher frequency.

Hence one would observe increasing central frequencies for decreasing delay times in the
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time{frequency function, i.e. the time{frequency function would show a negative or at

least reduced positive chirp. Nevertheless our compressed pulse still shows its originally

small positive chirp, as can be seen in Figure 2.11(a). Consequently, one can already

rule out a serious impact of frequency shifts onto the probe pulse. This is also an indi-

cation, that the ionisation process is so fast, that only a minor part of the probe-pulse is

in
uenced by the ionisation process, i.e. the ionisation process is much faster than the

FWHM of the pump-pulse.

The Response Time The ionisation model in Section 2.2 predicts, that a step function is a

good approximation for the gating function on a time scale of the pump's FWHM. Thus

the time{frequency functions in Figure 2.11 are supposed to be time{integrated PDFs (see

Subsection 2.3.2) of the probe pulse. To justify this assumption experimentally, one can

compare measured time{frequency functions with calculated ones. In Figure 2.13 this is

shown for the uncompressed pulse. The time{frequency functions have been calculated by

using Eq. (2.11) and are based on the pulse parameters given in Table 2.1. For modelling

the gating function error, functions with a response time �� of 1 fs (Figure 2.13(a))

and 40 fs (Figure 2.13(c)), respectively, have been applied. The simulation with �� =

1 fs shows distinct diagonal fringes, whilst these fringes are blurred in the simulation

with �� = 40 fs. As one can see these fringes in the measured time{frequency function

Figure 2.13(b), the response time of the gating function in the experiment must be below

40 fs. This is at least 4 times faster than the FWHM of the laser pulse, agreeing with the

prediction of our ionisation model from Section 2.2.

The Pulse Properties If the time{frequency functions in Figure 2.11 are time{integrated

PDFs, then their zeros and �rst conditional momentum are related with the envelope and

phase of the probe pulse by Eq. (2.24a) and Eq. (2.24b). In Figure 2.12 these momenta are

shown: the open circles represent the momenta derived from the measurements, whilst the

straight lines are the respective momenta calculated from the FROG measurements. By

comparing these two curves it becomes evident that the FROG and plasma switch mea-

surements agree well, despite a signi�cant deviation in Figure 2.12(a) lasting from 40 fs to

100 fs. This deviation has also been predicted by our ionisation model (see Section 2.2)

in terms of an increased transmissivity during the plasma formation process. Hence it

is obvious that this experiment is not limited to the determination of the properties of

an optical pulse, but that one can also determine the time-dependent optical properties

of the plasma, if the characteristics of the probe pulse are known. The good agreement

between the FROG and the plasma switch measurements shows that the gating function

of the plasma switch is well approximated by a step function for optical pulses down

to 60 fs. Furthermore note, that the agreement between the two measurements requires

frequency shifts to be of minor importance.

2.5 Summary
In this chapter a macroscopic model (see Figure 2.1) of the plasma formation at an

initially transparent dielectric solid was developed and implemented on a computer to
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describe the re
ectivity and transmissivity of a plasma produced with a sub-100 fs laser.

The results derived with this model have been experimentally veri�ed. In addition the

ultrafast transition of the initially transparent medium to an opaque state was used to

build an ultrafast switch.

The Computer Model The computer simulations show that a transparent medium can be

switched from a highly transparent state to an opaque one in less than 1/5 of the FWHM

of the pump pulse. The main reason for the ultrashort response time is a huge increase in

the absorption of the probe pulse as soon as the electron density approaches the critical

electron density (see Figure 2.6). Moreover this gating process is nearly independent

of the electron temperature. This does not hold true for the plasma mirror; its gating

properties strongly depend on the electron temperature (see Figure 2.4). In particular the

�nal re
ectivity can be far below 50 % and it lasts about the FWHM of the pump pulse

until this �nal value is reached. Furthermore the re
ectivity is a complicated function

of time: decreasing at the beginning of the phase transition, approaching a maximum

value during the transition, decreasing again and eventually slowly approaching its �nal

value. Thus the simulations suggest that the plasma mirror is only partly applicable for

removing pre-pulses from ultrashort laser pulses.

Mathematical Foundations To learn how to analyse the experimental data, the mathemat-

ical basis of spectrally resolved pump{probe experiments was discussed brie
y in Sec-

tion 2.3. Furthermore an inversion formula Eq. (2.19) for deriving the time-dependent

electric �eld of an optical pulse from the measured time{frequency distribution is pre-

sented. Also it works out that applying this equation is very di�cult because of the

derivative involved in calculating the distribution function from the respective time{

frequency function. Instead of this, an alternative approach is given, that is based on

calculating the zeros and �rst conditional momentum of the time{frequency function and

then deriving the pulse properties.

Experimental Setup The experimental setup shown in Figure 2.9 is a standard pump{

probe setup. The part of the probe pulse, which is transmitted through the plasma, has

been analysed with a spectrometer to measure the time{frequency function. To achieve a

time resolution below 1 fs, a stepper motor driven translation table was equipped with a

particular high resolution stepper motor. For future experiments the precision could be

enhanced even more by using a closed loop translation stage. For pulses around 10 fs a

piezo-actuator mounted on top of such a translation stage might be a good idea. During

the experiment the pulse repetition rate of most ultrashort pulse-lasers has to be reduced,

so that the target can be moved to a new unspoiled position between two adjacent pulses.

This can be accomplished without any modi�cations inside the laser by putting a series

of two synchronised optical choppers into the beam. Each chopper is equipped with a

special, single-holed chopper-plate, so that the pulse repetition rate can be reduced by

up to three orders of magnitude.
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Experimental Results In the experimental part of this chapter we focused on the ultrafast

plasma switch and its feasibility to characterise sub-100 fs pulses. The experiment was

performed with a 63 fs and a 138 fs laser pulse. The pulse properties were calculated from

the measured time{frequency function by using the zeros and �rst momentum (see the

right half of the circle in Figure 2.14 and Figure 2.12). These properties were compared

with values measured with FROG. As both sets of data agree with one another, the

assumption of a step like gating function is further justi�ed afterwards. Furthermore

we have been able to observe the theoretically predicted increase in transmission (see

Figure 2.5(a)) during the plasma formation (see Figure 2.12(a)). Thus all theoretical

predictions about the transmission properties have been experimentally veri�ed and the

transmission gate is very well applicable to characterise sub-100 fs pulses. On the other

hand, if the pulse properties are known and one measures the time{frequency function,

then one can calculate the optical properties of the plasma (see the left half of the circle in

Figure 2.14). This is less interesting for pulses with a duration of 63 fs, as the transition

is so fast, that it is still well approximated by a step function. But this is going to change

for visible and NIR laser pulses below 20 fs. Then one can use this approach to study the

ionisation process on a solid in even more detail.

Outlook An advantage of the plasma switch in comparison to other gating processes

is that it is applicable even in the VUV/XUV region. The only prerequisite is that

the critical electron density associated with the wavelength of the probe pulse is lower

than the maximum electron density inside the plasma. In addition, its response time

is considerably faster than other gating techniques, such as third order Kerr shutters

[43, 178]. In general the response time of a n-photon process is 2/n of the pump pulse's

FWHM. Thus even a �ve photon process would lead to a response time of approximately
1/2 of the pump pulse's FWHM for the Kerr gate in comparison to less than 1/5 in the

case of the plasma switch. Furthermore, in conjunction with well characterised extremely

short laser pulses, one can also study the ionisation process in detail.
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DC Megagauss Azimuthal Magnetic Fields

3.1 Introduction
The last chapter focused on the plasma formation in dielectric media, i.e. the rapidly

increasing electron density due to OFI. For these studies it is su�cient to consider laser

intensities up to a few 1015 W/cm2. If the laser intensity is increased further, then many

other phenomena occur [59]. Most of these are primarily based on the strong interaction

between free electrons, produced during the plasma formation, and the electromagnetic

�eld of the laser pulse. An example is the an-harmonic oscillation of electrons, generating

high harmonics of the laser fundamental [95, 96, 183]. This mechanism is relatively well

understood in the case of solid targets [175] and the harmonic radiation was successfully

used in this work to observe ultra-strong DCmagnetic �elds in high density laser produced

plasmas for the �rst time.

The earliest observation of magnetic �elds generated during the laser{plasma inter-

action was reported by Korobkin and Serov in 1966 [84]. They measured these �elds

by positioning a wire close to a gas breakdown produced with a nanosecond laser. The

�eld strength was derived from the voltage inducted into this wire by the rising magnetic

�eld (Langmuire probe). In 1971 Stampa et al. [158] carried out similar experiments,

reporting magnetic �elds around 1 kG and explained them in terms of thermoelectric

currents associated with large temperature gradients. The great disadvantage of these

Langmuire probes is, that they can sample only the area surrounding the laser plasma

interaction and not the plasma itself, because the probes would be destroyed during the

interaction. Thus, for measuring �elds in the interaction area itself, one has to use optical

probes. In 1975 Stampa et al. [159] reported on the measurement of multi-megagauss

magnetic �elds in a plane solid target experiment (focused laser intensity 1015 W/cm2)

using Faraday rotation of a linear polarised probe laser pulse. The �rst measurement of

magnetic �elds utilising the Zeeman splitting was carried out by McLean et al. in 1984

[107]. All of these experiments were performed with laser pulses having a pulse duration

of several 100 ps to several nanoseconds. The main force driving these experiments was

inertial con�nement fusion (ICF) research [71, 97], because the magnetic �elds can have a

signi�cant impact on the pellet compression process and on the ignition properties [157].

With the appearance of multi-terawatt fs-lasers around 1990, people started discussing

DC magnetic �elds in fs-laser produced plasmas. One of the �rst theoretical papers

about this subject published by Sudan et al. in 1993 [165] predicted �elds beyond several

100 MG. He explained the generation of these �elds with the pondermotorive force of

the laser pulse. In his 1997 paper Haines [68] suggested that the magnetic �eld strength

may be limited to an upper value due to the �nite plasma conductivity. The �rst multi-
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dimensional computer simulations with particle in cell codes (PIC) to study these �elds

were performed by Wilks et al. [189] in 1992, Pukhov et al. [129] and Mason et al. [103]

around 1997/98, predicting �elds up to a few 100 MG in the high density region of the

plasma. The �rst experimental observation of self generated magnetic �elds in fs-laser

produced plasmas was accomplished by propagating an external linear polarised probe

laser through the plasma and measuring the Faraday e�ect [21, 22]. Borghesi et al. found

two spatially separated toroidally magnetic �elds caused by di�erent mechanisms of �eld

generation. Due to the external optical probe this experiment was limited to sampling

the under-dense areas of the plasma, so that the observable �eld strength was limited

to a few megagauss (see Subsection 3.2.2). The observation of magnetic �elds beyond

100 MG, generated in the high density region of the plasma, was reported for the �rst

time in 2002 by our research team [171]. This chapter discusses this experiment in detail

and the results obtained. Furthermore, it goes beyond the 2002 publication by presenting

studies of the magnetic �eld with the help of VUV/XUV harmonics.

The �rst major part of this chapter gives a short introduction into the theory of

magnetic �eld generation and presents PIC simulations matching the experimental con-

ditions. These simulations are particularly useful in planning the experiment, because

they give an estimate of the expected magnetic �eld strength and its location. Following

this, the main idea of the experiment is explained and it is shown that high harmonics,

generated inside the plasma, are an ideal, intrinsic source of electromagnetic radiation

to observe the azimuthal DC magnetic �elds. The next part shows how to measure the

magnetic �eld strength in a plasma applying the cut-o� of the extraordinary wave and

the Cotton-Mouton e�ect, which are completely independent of each other from an ex-

perimental point of view. Then the experimental setup is explained. In addition to the

general setup, the VIS /UVx polarimeters and VUV/XUV] polarimeters, their calibra-

tion and the data analysis procedure are explained extensively. Finally the experimental

results are presented and discussed.

3.2 Megagauss DC Magnetic Fields in Sub-Picosecond Laser Pro-

duced Plasmas

3.2.1 Mechanisms for DC Magnetic Field Generation
As a plasma is a macroscopic, many-particle system consisting of freely moving neutral,

positive and negative charged particles, it is obvious that these particles can produce

currents inside the plasma. Due to the Maxwell's equations Eq. (C.1) these currents are

linked with a magnetic �eld. Any magnetic �eld applies the so called Lorentz force on

the moving charged particles, thus in
uencing their orbits. An example of this is the

well-known Pinch e�ect [148]. Not only self-generated magnetic �elds can in
uence the

motion of these particles, but also external �elds, which are indispensable for plasma

inclusion in Tokamaks and Stellerators [147].

xVIS /UV: Visible and ultraviolet radiation
]VUV/XUV: Vacuum ultraviolet and extreme ultraviolet
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(a) Thermoelectric Field (b) Pondermotorive Field

Figure 3.1: Orientation of the azimuthal magnetic �elds

In laser produced plasma experiments the magnetic �elds intrinsically grow, due to

intrinsic gradients in the temporal and spatial pro�le of the laser pulse. On a sub-

picosecond timescale one can neglect most forces pushing the ions, because they are

more than three orders of magnitude heavier than the electrons, so that their response

to these forces is much slower. Note, this does not mean that the ions do not move, as

e.g. pressure gradients cannot be neglected. This reduces the number of mechanisms

generating magnetic �elds in a fs-laser produced plasma to at least three di�erent main

processes [58]:

Radial Thermal Transport Referring to Stampa [158] non-parallel gradients of electron

temperature Te and density ne give rise to a so called thermoelectric magnetic �eld:

@~B

@t
= -

~rne � ~rTe
ene

(3.1)

Close to the original target surface ~rne is perpendicular to this surface, because ne

naturally decreases with increasing distance from the target. On the other hand ~rTe is
parallel, because Te increases with increasing laser intensity and the radial spatial pro�le of

the laser focus is roughly Gaussian. Thus, assuming cylindrical symmetry, the generated

magnetic �eld is azimuthal with a direction as shown in Figure 3.1(a). Generally it takes

a few picoseconds for ~rne to build up. Hence this �eld reaches its maximum of some

hundred megagauss (for a laser intensity about 1019 W/cm2) a few picoseconds after the

laser pulse maximum. Note that this �eld even exists in the under-dense plasma in front

of the target, but with much lower strength. This can lead to the pinching of the plasma,

altering its hydrodynamic expansion [16].

Pondermotorive Forces It is well-known that a laser pulse with a gradient in its time-

averaged spatial intensity pushes away the electrons along its propagation path. The

underlying force is called the pondermotorive force [86, 172]:

~Fp := -~rUp := -
e2

4me!
2
0

~r~E2 (3.2)

with the electron mass me, the electron charge e, the central laser frequency !0 and

the electric �eld ~E of the laser pulse. In contrast to the electrons, the ions remain at

rest on a sub-picosecond timescale, due to their much higher inertia. This results in
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charge separation, building up electric �elds, opposing the pushing. Finally a steady

state is reached [189]. But if the laser intensity increases with time, i.e. if there is an

increasing pondermotorive force, then the electrons are not only pushed away, but they

are accelerated by the laser pulse itself, so that they acquire a velocity. Consequently the

pondermotorive force is driving a current through the plasma resulting in magnetic �eld

generation. The �eld strength is [165]:

~r~B2 � ~rne � ~rI0 (3.3)

As already discussed above ~rne is perpendicular to the original target surface. On the

other hand ~rI0 is parallel to the surface and points to the principal axis of the incident

laser, because of the laser's radial intensity pro�le. Assuming cylindrical symmetry once

more the generated magnetic �eld is again azimuthal, located in the high density region of

the plasma and spread over one skin depth. But in contrast to the thermoelectric �eld its

direction is reversed (compare Figure 3.1(b)). As the �eld depends on the pondermotorive

force, it is present during the laser plasma interaction only. Furthermore it was shown that

these �elds can be close to 1 GG (for a laser intensity about 1019 W/cm2) [103, 165, 189].

Fast Electron Currents A third mechanism for magnetic �eld generation comes from cur-

rents of fast electrons generated by collective absorption mechanisms independently of the

pondermotorive force. These currents can be directed along the target surface [27, 57, 137]

and into the bulk [129]. But, as they are generated by the laser pulse, they are only

present during the laser{plasma interaction. Like all currents, they produce a magnetic

�eld quite naturally. Due to return currents, balancing the 
ux of fast electrons, the

magnetic �eld strength is much lower than in the case of pondermotorively generated

�elds. For a laser intensity of about 1019 W/cm2 Pukhov et al. found �elds not above

100 MG in their PIC simulations. Because of their low �eld strength, these �elds are less

relevant for our experimental studies.

3.2.2 PIC Simulations of Mega-Gauss DC Magnetic Fields
Before experimentally studying the magnetic �eld in a laser produced plasma it is useful

to have a rough understanding about its location and its possible strength for the given

laser parameters and target geometry. This understanding can be obtained by performing

particle in cell (PIC) [17, 86] simulations to model the experiment. In a PIC simulation a

plasma is modelled with a huge number of charged particles. These particles are moved

around by the electromagnetic forces from the incident laser pulse and the self-generated

electric and magnetic �elds. As a simpli�cation, collisions between the particles are

neglected, although more advanced versions have begun to include collisions.

Such simulations have been carried out with the OSIRIS framework [64, 70, 112], a

two to three dimensional collisionless PIC code for parallel computing developed at the

University of California and Los Angeles (UCLA). To simulate the present experiment,

periodic boundary constraints were chosen in the transverse direction and open boundary

constraints in the longitudinal direction. The transition from vacuum to plasma was given
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(a) Azimuthal Magnetic Field (B3) (b) Electron Density

Figure 3.2: OSIRIS PIC simulation of the VULCAN magnetic �eld experiment [171] (p-polarised laser

incident at 45�, wavelength 1053 nm, constant intensity of 1019 W/cm2 throughout the whole simulation

and a spatial Gaussian pro�le, plasma density 20 times over-critical with a step-like density pro�le). The

plots show the situation 80 fs after the simulation started. The white box frames the area with the strongest

magnetic �eld.

by a step-like density pro�le. To keep computing time on a reasonable level, the spatial

resolution was set to 122 cells per laser wavelength and the duration of the simulation

was limited to a few hundred femtoseconds. For the same reason, the plasma density was

limited to 20 times over-critical and 20 million particles were used. The p-polarised laser

beam with a wavelength of 1053 nm and with a spatial Gaussian pro�le was switched on

at the beginning of the simulation and had a constant intensity of 1019 W/cm2. Its angle

of incidence was 45� with respect to the target normal. To increase the precision of the

simulation, the movement of the ions was also included. As usual for PIC simulations, a

fully ionised hydrogen plasma was assumed.

If the laser was switched on at the begin of the simulation, then it lasted some 10 fs

until the magnetic �elds had built up. After this time the �eld strength stayed fairly

constant throughout the remaining time of the simulation. Thus the maps in Figure 3.2

show the magnetic �eld distribution and the electron density 80 fs after the laser pulse

was switched on.

In Figure 3.2(a) the B3 component of the magnetic �eld is plotted. This component is

perpendicular to the target normal and the incident laser beam. The B1 (parallel to the

target normal) and B2 (perpendicular to B1 and B3) �eld components have been found

to be less than 1/10 of the B3 component. Hence they are not shown, as they are of minor

importance. The maximal B3 �eld strength in this simulation is 750 MG (see the boxed

area in Figure 3.2(a)). This peak magnetic �eld is located in a small high density area

outside the focal spot. If one splits Figure 3.2(a) into a lower and an upper half-plane
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along the target normal through the centre of the focal spot, then this �eld is found in the

half-plane opposite to the half-plane including the incident laser beam. Thus it seems as

if the incident laser pulse compresses the magnetic �eld to a strong but very localised one,

whilst the �eld in the other half-plane is much weaker, but expanded over a larger area.

This is a very important result, namely, that one has to observe the magnetic �eld in the

half-plane along the target normal not containing the incident beam in order to measure

the strongest �elds in the plasma. Furthermore, note that the magnetic �eld strength in

the focal spot can be neglected in comparison to this �eld. However it is important to

note that hybrid 
uid models are more appropriate for calculating the magnetic �eld in

the high density areas than the collisionless PIC codes.

In the electron density map, shown in Figure 3.2(b), one clearly sees the curvature of

the critical density surface produced by the pondermotorive force of the laser pulse. The

ripples of this surface and the 
ares of electrons emitted from it are due to the strong non-

linear interaction of the laser with the electrons in this area. These strong an-harmonic

oscillations of the surface produce bright high order harmonic emission eventually.

In a real experiment pre-pulses of the laser and a pedestal on a nanosecond timescale

can produce an extensive pre-plasma with a long density gradient. Thus the density

pro�le in an experiment will be somewhat di�erent from the assumed step-like pro�le

used in the simulations. In time, the leading edge of the laser pulse pushes away the

electrons along the incident path of the laser due to the pondermotorive force, so that

eventually a steep density gradient is produced again. In Subsection 3.3.2 it is discussed,

that bright and localised emission of harmonics from a near solid density plasma requires a

steep density gradient. Furthermore in Subsection 3.3.1 it is shown that for successfully

measuring strong magnetic �elds with our experimental setup this kind of harmonic

emission is a prerequisite.

3.3 The Basic Idea of the Experiment

3.3.1 Observing Magnetic Fields in Near Solid Density Plasmas
As already mentioned in Section 3.1, the strength and the sign of the magnetic �eld

can be measured with the help of an electromagnetic probe beam propagating through

the magnetised plasma. In Section 3.4 we shall see that two completely independent

methods exist to measure the magnetic �eld. The �rst method is only dependent on

the wavelength of the electromagnetic probe beam. The second one requires that the

probe's initial state of polarisation is known, in addition. Furthermore a polarimeter is

needed to measure its �nal state of polarisation. The polarimeters, used throughout this

experiment, are described in Subsection 3.5.2.

In Figure 3.3(a) the experimental setup on principle is shown for the case of a visible

external probe beam. The probe is di�racted at the steep density gradients at the edges

of the plasma so that it cannot penetrate into the high density region of the plasma,

where the strongest magnetic �elds are present. Thus the probe is not a�ected by these

�elds and consequently they cannot be measured with this kind of probe. To overcome
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(a) Refraction of an external, visible probe beam at

the steep density gradient of the plasma. Note that

the probe beam does not enter the high density

region, where the ultra-strong magnetic �elds are

present.

(b) Plasma with an internal point-like source of ra-

diation. If the ultra-strong magnetic �elds are in

the line of sight from the radiation source to the

polarimeter, then they can be observed.

Figure 3.3: Schematic layout of experiments measuring the magnetic �eld strength with an external and an

internal probe beam, respectively.

this problem one has to reduce the refraction of the probe. This can be achieved by

using x-rays, which propagate through the densest areas of the plasma. But present

x-ray sources and optics still need further development to deliver su�ciently intense,

polarised, monochromatic and sub-picosecond x-ray pulses, coincident to the magnetic

�eld producing laser-pulse and a high spatial resolution at the same time in single shot

operations.

An alternative approach is shown in Figure 3.3(b): instead of using an external source

of electromagnetic radiation the source is located inside the plasma itself. If one can mea-

sure any radiation emitted from that source and if the strongly magnetised area of the

plasma is in the line of sight from that source to the polarimeter, then the observed

radiation can be in
uenced by the magnetic �eld. In summary, the use of an internal

source instead of an external one is an important reason why we succeeded in observing

magnetic �elds close to a gigagauss. Of course, this source must meet some prerequi-

sites: One obvious requirement of this source is that su�cient radiation to perform a

measurement is emitted in the direction given by the line of sight from the centre of the

source to the localised strong magnetic �eld. A second condition is that the source has

to be a point-like source. Otherwise there is always a chance to have a direct line of sight

from the polarimeter to a considerable part of the source bypassing the localised strongly

magnetised area, so that one only measures an averaged value for the �eld, which can

be much lower than the peak �eld strength. This geometrical constraint on the source

size is clari�ed in Figure 3.4(a). Thirdly, the wavelength of the electromagnetic radiation

has to be adequately short so that it can propagate through the magnetised high density

regions. Two other advantages of using short wavelength radiation are that simplifying

approximations for calculating the magnetic �eld strength (see Subsection 3.4.5) hold

and that with decreasing wavelength the calculated magnetic �eld strength is less de-

pendent on a precise knowledge of the electron density (compare Figure 3.8). Finally, to

calculate the magnetic �eld by means of M�uller matrices (see Subsection 3.4.6) the initial
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(a) 2nd.-harmonic: Because of the high density in
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(b) 4th.-harmonic: This harmonic observes the

strong magnetic �eld almost exclusively, because

its emission region is su�ciently small and it can

propagate through the high density region, where

the strong �eld is present, due to its shorter wave-

length.

Figure 3.4: Emission regions of di�erent harmonics and possible obstacles observing ultra-large DC magnetic

�elds: note that all harmonics are also produced in the centre of the laser{plasma interaction and that only

the diameter of the emission area decreases with increasing harmonic order. The criterion, if a harmonic can

propagate through a region with a certain density, is given by the critical electron density (see Eq. (2.1)).

polarisation state of the radiation has to be known. Ideally this state is linear polarised.

3.3.2 High Harmonics as a Source for Observing Magnetic Fields
The most obvious sources of electromagnetic radiation in a plasma produced at a solid are

the atomic line and continuum emission. But these sources expand over a huge volume

of the plasma, so that they are not point-like at all and, in addition, they are unpolarised

in general. High harmonics, on the other hand, are an alternative and promising source

of radiation as can be seen from some basic theoretical considerations.

3.3.2.1 Theoretical considerations

A simple and phenomenological, but intuitive model, to explain high harmonic radiation

from a plasma produced at a solid surface is the `moving mirror' model proposed by

Bulanov et al. [28] in 1994. An elaborate introduction is given by von der Linde et al.

[183] and Lichters [95]: in this model an electromagnetic wave with a central frequency

!0 interacts with the electrons inside the plasma, whilst the ions remain at rest, because

they are three orders of magnitude heavier than the electrons, and thus their interaction

with the electromagnetic wave is much weaker. For a near solid density plasma with

a steep density gradient this interaction is limited to a thin surface layer given by the

skin depth (this is the reciprocal of Eq. (2.6)). This layer begins to move back and forth

normal to the target surface with an angular frequency 2!0 due to the pondermotorive

force (see Eq. (3.2)x). In addition to this oscillation all electrons in this surface layer

perform an oscillation with ! in the direction of the electric �eld ~E. If the incident laser

beam is p-polarised, then ~E has a component normal to this surface. Consequently this

layer moves back and forth with both frequencies 2!0 and !0. On the other hand, in

x~Fp / ~r~E2 / ~r sin2(!0t- ~k �~x) / ~r sin(2!0t- ~k �~x)
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Laser s-pol. harmonics p-pol. harmonics

s-pol. fundamental odd weak, even

p-pol. fundamental forbidden even and odd

Table 3.1: Polarisation selection rules for harmonic generation [183].

the case of a s-polarised laser beam, this layer oscillates back and forth exclusively with

2!0, because ~E is now parallel to the surface. This consideration leads to the polarisation

selection rules for harmonic generation [183]: in the case of an incident p-polarised laser-

beam even and odd p-polarised harmonics are produced, whilst s-polarised harmonics

are forbidden. For an incident s-polarised beam mainly s-polarised odd harmonics are

produced. But as soon as the electron motion becomes relativistic, weak p-polarised even

harmonics are also generated (see Table 3.1). A rigid derivation of these selection rules is

given by Lichters et al. [95, 96]. Furthermore Lichters compares the theoretical results,

derived from the moving mirror model and a cold relativistic plasma 
uid model, with

PIC simulations and found them in good agreement.

In addition to the polarisation selection rules one can also derive the intensities of

the produced harmonics [183]. This calculation shows that the intensity of a certain

harmonic increases with increasing laser intensity and that the intensity of the generated

harmonics decreases with increasing harmonic order for a constant laser intensity. Hence

one can conclude that for a laser pulse with a spatial Gaussian pro�le the spatial pro�le

of the harmonic emission region is centred around the laser pulse maximum and that the

FWHM of the emission area decreases with increasing harmonic order (see Figure 3.4). It

is important to mention, that these basic considerations need considerable amendments,

if the laser intensity increases and the plasma surface becomes rippled due to spatial and

temporal non-linearities [175, 185].

A further extension of this simple model is the inclusion of a density pro�le as discussed

in [54, 175, 176]. In a plasma with a density pro�le the harmonics are generated in the

vicinity of the critical density surface, i.e. the surface where the electron density matches

the critical electron density (see Eq. (2.1)). The actual location of this surface depends on

the temporal and spatial pro�le of the laser pulse. If the oscillation of the electrons in the

electric �eld of the laser becomes relativistic, then the position of this surface is shifted

to a region with a higher density and the relativistic kinetic leads to the generation of

particular high harmonics. This relativistically altered critical density can be calculated

by multiplying the original nonrelativistic value with the relativistic 
-factor [58]:

necrel := nec 
 = nec

s
1+

e2

4�2�0m2
ec

5
I�2 (3.4)

3.3.2.2 Experimental Findings

In a real experiment pre-pulses of the laser and a nanosecond pedestal due to the ampli�ed

spontaneous emission can produce an extensive pre-plasma. In comparison to the main

pulse the strongest pre-pulse was smaller than 10-6 for the CPA-beam of the VULCAN:Nd
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glass laser (750 fs, 100 J, 1053 nm) [37{39]. As the focused intensity of this beam is up

to 1020W/cm2, the pre-pulses and the pedestal still produce a considerable under-dense

plasma with a scale length of several microns [140].

A pre-plasma reduces the intensities of the high harmonics emitted from the plasma

drastically as reported by Zepf et al. [191]. Nevertheless Norreys et al. [116] reported

bright high harmonic emission from a plasma produced with the Vulcan laser. They found

conversion e�ciencies of laser energy into harmonic radiation beyond 10-6 for harmonics

with an order lower than 68. Recently Teubner et al. [175] measured conversion e�cien-

cies above 10-4 for the 6th harmonic produced with a particular clean 395 nm fs-laser pulse

(i.e the pre-pulses and the pedestal of this fs-laser pulse were below the plasma formation

threshold). Furthermore, in the same paper Teubner et al. discussed modulations in the

intensity scaling of the emitted harmonics versus harmonic order. They showed that these

modulations vanish, if an extensive pre-plasma is present. Consequently one would not

expect to measure these modulations with the CPA-beam of VULCAN, because of its ex-

tensive pre-plasma. Nevertheless Watts et al. [185] reported on �nding these modulations

in the harmonic spectra emitted from a plasma produced with VULCAN.

These seemingly contradicting experimental results can be explained, if one assumes

mechanisms steepening the density pro�le at VULCAN again. Indeed at intensities be-

yond 1019W/cm2 the pondermotorive forces are so strong that signi�cant steepening of the

density pro�le [189] appears. This can also be seen clearly in the PIC simulation presented

in Figure 3.2. In addition the pondermotorive forces push away the electrons along the

path of the incident laser beam, thus forming a channel depleted of electrons. Due to the

lacking electron density along this path, the magnetic �elds do not alter the laser beam's

state of polarisation signi�cantly during its propagation (compare Eq. (3.28), Eq. (3.30)).

Hence it is reasonable to assume that the harmonics are produced by a p-polarised laser

pulse. Recalling the theoretical considerations from above, one can conclude that the

emitted high harmonics are also p-polarised.

Nevertheless, one can question the validity of the polarisation selection rules, if the

laser intensity is such high, that the critical density surface becomes rippled. Based on

experiments carried out by von der Linde, Balcou, Tarasevitch et al. [13, 169, 182],

this should happen if the laser parameters surpass I�2 < 1017 Wµm2/cm2 (I: intensity,

�: wavelength). To examine the in
uence of a rippled critical density surface on the

polarisation properties of the harmonics a glass target was sand-blasted and the roughened

surface was irradiated with a laser pulse not much beyond 1017 W/cm2 to avoid strong

magnetic �elds in
uencing the polarisation properties of the harmonics. The polarisation

properties of the 3rd harmonic were measured with the experimental setup described

in Subsection 3.5.2 and it was found that the radiation remained fully p-polarised in

accordance with the polarisation selection rules.

Nevertheless, if I�2 � 1017 Wµm2/cm2, then the critical density surface is not only

rippled, but pondermotorive forces also lead to hole boring (compare the PIC simulations

in Figure 3.2). Hence the critical density surface becomes curved and irregular, so that



3.3. The Basic Idea of the Experiment 39

the emission of high harmonics is no longer limited to the specular direction only [13, 169,

182]. Indeed, one can observe emission of harmonics into a solid angle of 2� as reported

by Norreys et al. [116] using the VULCAN CPA-beam.

In the same paper Norreys et al. discussed measurements, showing, that the conver-

sion e�ciency decreases with increasing harmonic order and that the harmonic intensity

increases for a particular harmonic with increasing laser intensity. Thus, as discussed

from a theoretical point of view beforehand, it seems as if higher harmonics need higher

intensities to be produced with a high photon 
ux. Due to the spatial pro�le of the laser

focus one can conclude that the higher harmonics are produced in an area increasingly

limited to the centre of the laser focus, so that the source area becomes more point-like

for these harmonics. In addition, harmonics with a higher order can propagate through

more dense regions of the plasma, because of their higher critical electron density (see

Eq. (2.1)). As one expects stronger magnetic �elds in areas with higher density (see

Subsection 3.2.2), these particular high harmonics are even more suited for measuring

stronger magnetic �elds (see Figure 3.4).

3.3.2.3 Summarising Discussion

The experimental and theoretical considerations discussed above suggest that the har-

monics produced with VULCAN's CPA-beam are generated around the principal axis

of the incident laser beam close to the critical density surface in a pondermotorively

steepened density pro�le. Even if these considerations do not hold exactly, the observed

magnetic �eld strength is always a lower limit of the strongest �elds present inside the

plasma. Thus, in the worst case the observed �elds are much lower than the peak mag-

netic �eld as will be discussed in Subsection 3.4.4 and in Subsection 3.4.6 extensively.

As most of the harmonics are produced in the temporal vicinity of the laser pulse

maximum, we shall not be able to measure the thermoelectric magnetic �eld, which

appears much later in time. But the pondermotorively generated magnetic �eld and the

magnetic �eld due to currents of fast electrons are present in the temporal vicinity of

the laser pulse maximum. In comparison to the pondermotorively generated �eld the

�eld due to currents of fast electrons is more than one order of magnitude weaker (see

Section 3.2), so that it can be neglected in comparison to the other �eld. Thus in this

experiment, most likely the pondermotorively generated magnetic �eld is observed.

However, even if the mechanisms producing high harmonics at VULCAN are not

completely understood so far and further research is needed for a complete understanding,

high harmonics are an ideal and easy to use source for observing magnetic �elds in

laser produced plasmas, because they meet all prerequisites from Subsection 3.3.1. The

theoretical considerations and experimental �ndings presented in the last two sections

suggest that the high harmonics are initially p-polarised even for laser intensities well

above 1017 W/cm2. But measurements of the magnetic �elds should not solely depend on

an experimental scheme requiring a well de�ned initial polarisation state. Nevertheless

such a scheme may give further valuable insight into the generation of harmonics and the
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Figure 3.5: Physical model to derive the M�uller matrix of a laser produced plasma. This matrix is used to

calculate the magnetic �eld strength inside the plasma. The Figure shows two possibilities to derive this

matrix: the di�erential equation (A) and the matrix (B) approach (see Appendix E.2 in addition).

magnetic �elds present in a laser produced plasma, if there are independent additional

methods to determine the magnetic �eld strength.

3.4 Observing Magnetic Fields in a Laser Produced Plasma

3.4.1 Electromagnetic Waves in a Magnetised Plasma
To measure the magnetic �eld strength with an electromagnetic wave, it is vital to obtain

a quantitative understanding of the interaction between the electromagnetic wave and the

magnetised plasma. A schematic sketch of a physical model describing this interaction is

shown in Figure 3.5. A more detailed discussion of this model is given in Appendix E:

Starting with the particle position equation and the equation of motion of a single

electron one can derive the Klimontovich{Dupree equation. The particle position equa-

tion is a time dependent function of space and velocity, which is always zero despite the

points where a particle of a certain species can be found (see Eq. (E.1)). Supplementing

the Klimontovich{Dupree equation with the Maxwell equations leads to a microscopic
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Figure 3.6: Direction of the mag-

netic �eld and of the electromag-

netic wave propagating through

the plasma in the coordinate sys-

tem O and O 0.

kinetic description of the plasma. The resulting equations can be reduced to a hierar-

chy of n-particle equations by averaging over a corresponding number of variables (see

Eq. (E.4) to Eq. (E.6b)) and introducing n-particle distribution functions (see [85] or Ap-

pendix E.1). To close this in�nite hierarchy of n-particle equations it is necessary to make

assumptions on all particle distribution functions with n larger than an arbitrary inte-

ger. Assuming that all particle distribution functions with n > 2 are zero, one neglects

all multi-particle collisions despite binary collisions, thus deriving the Landau equation.

With the de�nition of the density, pressure and velocity it is straight forward to calculate

the macroscopic 
uid equations (see Eq. (E.6a), Eq. (E.6b), Eq. (E.11), Eq. (E.12)). In

this 
uid model the electrons and each ion species make up an independent 
uid. But in

general it is a good approximation to use only one ion-species with an averaged degree

of ionisation. Thus one obtains the two 
uid model.

With the so called cold plasma assumption the complexity of this model is reduced

even more. This assumption requires, thatr
kTe

me

� !

k!
(3.5)

with the Boltzmann constant k, the electron temperature Te, the electron mass me and

the wave vector k! of the electromagnetic wave with frequency !. This is in particular

valid during the early phase of a laser produced plasma, because its thermal temperature

Te is only a few electron volts as brie
y discussed in Subsection 2.2.2. In addition Krall

[85] mentions, that this is generally a good assumption, if strong magnetic �elds are

present. Furthermore, if the magnetic �eld strength is below 3 GG and electromagnetic

radiation used to measure the �eld strength has a wavelength below 360 nm, one can

neglect the interaction between the electromagnetic wave and the ions, so that one has

to take into account the electrons only.

The remaining equations can be solved with a perturbation approach. The mathemat-

ical details are given in Appendix E.2. With the most general perturbation approach (case

A in Figure 3.5) one obtains a linear di�erential wave equation, which can be transformed

to a di�erential equation based on Stokes parameters (see Eq. (E.25)). With the more

specialised approach (case B in Figure 3.5) one derives a matrix wave equation, which is

more easy to solve. Using a coordinate system O, in which the static magnetic �eld ~B0 is

parallel to the z-axis and in which the propagation direction of the electromagnetic wave,

given by ~k, lies in the yz-plane (see Figure 3.6), one calculates:
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A ~E1 :=

0B@n
2 - �1 i�2 0

-i�2 n2 cos2 �- �1 -n2 sin � cos �

0 -n2 sin � cos � n2 sin2 �- �3

1CA
0B@E1xE1y

E1z

1CA = 0 (3.6a)

where � is the angle between the z-axis and the propagation direction ~k of the electro-

magnetic wave. Furthermore the dielectric constants are given by:

�1 = 1-
!2
pe

!2 -!2
ce

(3.6b) �2 =
!ce

!

!2
pe

!2 -!2
ce

(3.6c) �3 = 1-
!2
pe

!2
(3.6d)

where !ce :=
qe
me

��~B0�� is the cyclotron frequency of the electrons, !pe :=
q

q2ene
�0me

is the

electron plasma frequency, n := c0
j~kj

!
is the index of refraction and qe is the elementary

charge.

3.4.2 The Solution of the Wave Equation
To �nd the non-trivial solutions of the wave equation Eq. (3.6) the determinant of the

Matrix A is required to be zero. Solving det(A) = 0 for n and using the identity �21 -

�22 = �1�3 - (�3 - �1) leads to the so called Appleton-Hartree equation, representing the

dispersion relation:

n2� = 1-
�3(1- �3)

�3 -
1
2

�3-�1
1-�1

sin2 ��
r�

1
2

�3-�1
1-�1

sin2 �
�2

+ �3-�1
1-�1

�23 cos
2 �

= 1-

!2
pe

!2

�
1-

!2
pe

!2

�
�
1-

!2
pe

!2

�
- 1

2

!2
ce

!2 sin2 ��
r�

1
2

!2
ce

!2 sin2 �
�2

+
�
1-

!2
pe

!2

�2
!2
ce

!2 cos2 �

(3.7)

Obviously the dispersion relation given by Eq. (3.7) splits into two branches: a branch

with a low index of refraction n+ in case of a plus sign in front of the root and a branch

with a high index of refraction in case of a minus sign. These branches are also called

the fast and the slow branch, respectively, because of the phase velocity of the associated

waves. This di�erence in the phase velocity allows the measurement of the magnetic �eld

strength inside the plasma (see the following sections).

As discussed in Appendix C.1 the fundamental solutions of a linear wave equation

like Eq. (3.6a) are real time-harmonic vector waves with a propagation direction parallel

to the local wave-vector ~k(~r). Furthermore the electric �eld vectors of these fundamental

solutions are always given by a linear combination of two linear independent vectors. By

substituting n� into Eq. (3.6a) and solving the two emerging systems of linear equations

one calculates the two characteristic vectors ~E+ and ~E-. Thus any electromagnetic wave

propagating through a magnetised plasma can be written as:

~Ein(~r) = ein+
~E+(~r) + ein-

~E-(~r) (3.8)

with the parameters ein+ and ein- .
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The most fundamental feature of ~E+ and ~E- is, that their polarisation properties

do not alter while propagating through the magnetised plasma, if the plasma and the

magnetic �eld are homogeneous. Thus their electric �eld vectors after a propagation

distance �z are:

~E1�(�z; t) =
~E� e

i�z
n�!
c0 ei!t (3.9)

Hence the electric �eld of an arbitrary initial state of polarisation ~Ein after a propagation

distance �z is:

~Eout(�z; t) =
�
eout+

~E+ + eout-
~E-

�
ei!t =

�
ein+

~E+e
i�z

n+!

c0 + ein-
~E-e

i�z
n-!

c0

�
ei!t

(3.10)

This equation can easily be written as a 2� 2-matrix equation in the coordinate system

O (see Figure 3.6). After transforming this matrix to the coordinate system O 0, it is

straight forward to rewrite the 2� 2-matrix equation in terms of Stokes parameters (see

Appendix E.2 and Appendix C.2.3):

~Sout(�z) = MA(~B;�z) ~Sin (3.11)

The explicit calculation of MA(~B;�z) is discussed in a publication by Segre [146]. The

matrix MA(~B;�z) is also called the M�uller matrix (see Appendix D.1) of a magnetised

plasma. As the derivation is straight forward but lengthy, only the �nal result with

respect to the coordinate system O 0 (see Figure 3.6) is given:

MA(~B;�z) :=

0BBBBB@
1 0 0 0

0

2
k


2
0

cos(
0�z) +

2
?


2
0

-

k

0

sin(
0�z)

k
?

2
0

�
1- cos(
0�z)

�
0


k

0

sin(
0�z) cos(
0�z) -
?

0

sin(
0�z)

0

k
?

2
0

�
1- cos(
0�z)

�

?

0

sin(
0�z) 1-

2
?


2
0

�
1- cos(
0�z)

�

1CCCCCA
(3.12a)

with:

V :=
!2
pe

(n+ + n-)c0!3

h
1-!2

ce

�
sin2 �

!2-!2
pe
+ cos2 �

!2

�i (3.12b)


? := V
!2
ce!

2

!2 -!2
pe

sin2 � (3.12c) 
k := V 2!ce! cos � (3.12d)


0 :=
q

2

? +
2
k = V2!ce!

s�
!ce!

2(!2 -!2
pe)

sin2 �

�2

+ cos2 � (3.12e)

If the inhomogeneities in the plasma are not too large Eq. (3.12) remains valid, because

one can use the WKB-approximation (see [74, 146]) and substitute e.g. 
0�z with the

integral along the path ~r(z), i.e. with
R

0(~r(z)) k@=@z~r(z)k dz. Thus one can limit all

further discussion to thin homogeneous plasma layers, simplifying the notation.
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3.4.3 The Dispersion Relation of the Faraday and Cotton-Mouton E�ect
The fairly complex equations Eq. (3.7) and Eq. (3.12) are simpli�ed considerably, if �

equals either 0� or 90�. If � equals 0�, i.e. ~B0 k ~k, then the in
uence of the magnetised

plasma on the electromagnetic wave is known as the Faraday e�ect. If � equals 90�,

i.e. ~B0?~k, then the interaction is called the Cotton-Mouton e�ect. The analogy to the

Faraday e�ect is the circular anisotropy in an inhomogeneous optical medium and the

analogy to the Cotton-Mouton e�ect is the linear anisotropy. If � is neither 0� nor 90�,

one �nds a mixture between the Faraday and the Cotton-Mouton e�ect, whereby one

e�ect can become dominant over the other (see Subsection 3.4.5).

For now, we limit the discussion to the dispersion relation of the Faraday and Cotton-

Mouton e�ect. The corresponding M�uller matrices are presented later in Subsection 3.4.5.

3.4.3.1 The Faraday e�ect (~B0 k ~k)
In this case the Appleton-Hartree equation Eq. (3.7) reduces to:

n2� = �1 � �2 = 1-
!2
pe

!(!�!ce)
(3.13)

and one calculates the characteristic vectors

~E� = ~ex � i~ey (3.14)

where ~ex and ~ey are unit vectors in the x and y direction, respectively. The characteristic

vectors ~E� correspond to right and left circular polarised light. Because the Faraday

e�ect is of minor importance for the experiment presented in this work (compare Subsec-

tion 3.2.2, Subsection 3.4.5), it is referred to [29, 85, 161] for a more detailed discussion.

3.4.3.2 The Cotton-Mouton e�ect (~B0?~k)
The dispersion relation of the Cotton-Mouton e�ect is more complicated. In this case

the Appleton-Hartree equation reduces to:

n2+ = n2o = �3 = 1-
!2
pe

!2
(3.15a)

n2- = n2e =
�21 - �22
�1

=
(!2 -!2

1)(!
2 -!2

2)

!2 (!2 -!2
H)

= 1-
!2
pe

!2

!2 -!2
pe

!2 -!2
pe -!2

ce

(3.15b)

with [85]::

!1 =
!ce

2

0@s1+
4!2

pe

!2
ce

- 1

1A (3.16a) !2 =
!ce

2

0@s1+
4!2

pe

!2
ce

+ 1

1A (3.16b)

!H =
q
!2
pe +!2

ce (3.16c)

!1 and !2 are called cut-o� frequencies and !H is the upper hybrid frequency (see [29,

85, 161]). As the dispersion relation Eq. (3.15a) and the dispersion relation of an unmag-

netised plasma are identical, Eq. (3.15a) is called the ordinary branch, whilst Eq. (3.15b)

is called the extraordinary branch. Substituting these equations into Eq. (3.6a) gives the
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Figure 3.7: The dispersion relation of the Cotton-

Mouton e�ect for optical frequencies. The situa-

tion shown here corresponds to the 4th! cut-o�

in the experiment. I.e.: nec = 2.4 � 1021 cm-3,��~B0�� = 350 MG. c0 is the speed of light in vacuum.

Figure 3.8: Cut-o�s for the 1st to the 19th harmonic

of 1053 nm radiation from VULCAN in terms of

electron density and magnetic �eld (see Eq. (3.19)).

The density range inside the magnetised areas of

the plasma is coloured in gray.

characteristic vectors:

~E+ = ~Eo = ~ez (3.17a) ~E- = ~Ee = �~ex + i~ey (3.17b)
with

� =
Ex

Ey
=
�1

�2
=

�
!2 -!2

pe -!2
ce

�
!

!2
pe!ce

(3.18)

As � equals 90� in the Cotton-Mouton case, the ordinary and extraordinary wave (also

called the o-wave and the x-wave, respectively) propagate in the y-direction (see Fig-

ure 3.6). With Eq. (3.17) it is obvious, that the o-wave (~E+) is purely transverse. On the

other hand the x-wave (~E-) may have an additional longitudinal component. But this

longitudinal component is solely imaginary. The ratio between the real transversal and

the imaginary longitudinal component is given by Eq. (3.18).

The di�erent branches of the dispersion relations Eq. (3.15a) and Eq. (3.15b) are

shown in Figure 3.7 for optical frequencies. The ordinary branch is identical to the

dispersion relation in an unmagnetised plasma, i.e. n+ approaches unity for !!1 and

waves with frequencies below !pe are cut-o�, i.e. they cannot propagate through the

plasma.

The behaviour of the extraordinary branch is more complicated. But n- approaches

unity for ! ! 1 again, whilst a cut-o� already appears at !2, well above !pe. !2

shifts to higher frequencies, if the magnetic �eld strength is increased. Unfortunately,

there is still another branch, so that lower frequencies can propagate again. Its high

frequency limit !H is a resonance, where the incident energy of the electromagnetic wave

is consumed to stimulate strong oscillations of the electrons. At a frequency !1 well

below !pe this branch is �nally cut-o�, too, so that no extraordinary polarised radiation

with frequencies below !1 can propagate through the plasma.

In summary, extraordinary radiation with frequencies between !H- � and !2 is cut-

o� and cannot propagate through the plasma, whilst ordinary radiation can propagate.

Thus the plasma acts like a linear polariser in this frequency range.
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3.4.4 Observing Magnetic Fields with the X-Wave Cut-O�
In our experiment harmonic radiation (generated mainly around the critical density sur-

face in the centre of the laser produced plasma and propagating through the magnetised

areas of the plasma (see Subsection 3.3.1)) is used to observe the magnetic �eld strength:

if the frequency of a particular harmonic is in the x-wave cut-o� region, then the extraor-

dinary component of this harmonic, i.e. its p-polarised part, is cut-o�. As the harmonics

are mainly p-polarised (see Subsection 3.3.2), the observed harmonic intensity decreases

considerably if a cut-o� appears. This intensity drop can be increased even further by

putting a polariser, blocking the ordinary polarised radiation, in front of the detector.

Using this setup the measured signal can vanish completely, if a cut-o� appears (see

Figure 3.19). Hence, even if the radiation is completely unpolarised, the cut-o�s can be

used to estimate a lower boundary of the magnetic �eld strength inside the plasma. This

boundary can be calculated by solving Eq. (3.16b) for
��~B0�� and substituting !2 with

!Harm: ��~B0�� � me

e
!Harm -

e

�0

ne

!Harm

(3.19)

The only unknown quantity despite j~B0j in this equation is the electron density ne in the

magnetised area. Without knowing this density, Eq. (3.19) can be used to plot the lowest

magnetic �eld strength necessary for an x-wave cut-o� versus electron density, using the

harmonic order as a parameter (see Figure 3.8). From this �gure it is seen that one can

determine a lower limit of the magnetic �eld strength with a reasonable error even if the

electron density is known only within one order of magnitude as long as this density is

not too high.

Another important conclusion can be drawn from the observation of a complete x-

wave cut-o�: in Subsection 3.4.5 it is shown that even at angles � close to 90� the Faraday

e�ect can be dominant over the Cotton-Mutton e�ect. Thus it is initially unclear, if the

Faraday e�ect can be neglected in comparison to the Cotton-Mouton e�ect. If the Faraday

e�ect is important, then the characteristic vectors of the plasma are no longer linear, but

elliptically polarised (see Subsection 3.4.3). In this case one of the elliptically polarised

characteristic vectors is cut-o�, so that the polarisation state behind the magnetised area

is elliptically polarised. In consequence it is impossible, that the measured signal behind

a linear polariser vanishes completely. Hence, if this signal is fully extinguished, one has

to conclude that the characteristic vectors are linear polarised and thus the interaction

between the plasma and the electromagnetic wave is determined by the Cotton-Mouton

e�ect exclusively.

To derive Eq. (3.19) it was assumed, that the cold plasma approximation holds,

i.e. collisions are neglected and the temperature is approximated by zero (see Subsec-

tion 3.4.1). Consequently the in
uence of a �nite temperature on the x-wave cut-o�s

needs further attention: it is well known that additional branches appear in the disper-

sion relation, mainly at harmonics of !ce, if the temperature is not zero [85, 161]. Hence
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it might become impossible to observe the cut-o�s. But even if they can be observed, it

is still unclear, if the upper cut-o� frequency !2 is shifted by the �nite temperature. Re-

calling Eq. (3.5) and noticing that the index of refraction becomes zero at that frequency,

it is obvious that the cold plasma approximation holds next to the cut-o� frequencies

and thus this frequency is not supposed to depend on temperature strongly.

Furthermore relativistic e�ects alter the upper cut-o� frequency: if the motion of the

electrons in the magnetised area becomes su�ciently fast, then the electron mass and

density in all equations need to be multiplied by the relativistic 
-factor (see Eq. (3.4)).

As can be seen from Eq. (3.19) easily, in this case even higher magnetic �elds are re-

quired to cut-o� a certain harmonic. Thus, by neglecting relativistic e�ects, one only

underestimates the magnetic �eld strength inside the plasma.

In summary, observing the magnetic �eld strength with the x-wave cut-o�s is a very

robust method, always giving a lower boundary of the peak magnetic �eld strength.

3.4.5 The M�uller Matrices of the Faraday and Cotton-Mouton E�ect
Apart from the x-wave cut-o�s another completely independent method to determine the

magnetic �eld strength exists. It is even applicable when the �eld strength is too low to

produce a cut-o�. Its main disadvantage in comparison to the cut-o�s is that one has

to know the propagation length of the electromagnetic probe through the magnetised

area and its initial state of polarisation in addition to the electron density in the magne-

tised region. This method is based on measuring components of the M�uller matrix (see

Eq. (3.12)) in a magnetised plasma. Before discussing, how to measure single components

of the M�uller matrix and how to derive the magnetic �eld strength, we shall have a closer

look onto the M�uller matrix of the Faraday and Cotton-Mouton e�ect:

3.4.5.1 The Faraday e�ect (� := 0�)

In this case 
? equals 0 and Eq. (3.12) reduces to:

MF(~B) :=

0BBBB@
1 0 0 0

0 cos(
k�z) - sin(
k�z) 0

0 sin(
k�z) cos(
k�z) 0

0 0 0 1

1CCCCA (3.20a)

With the ordinary index of refraction no :=

q
1-

!
pe2

!2 one sees, that 
k holds:


k =
2!2

pe!ce

c0no!2

�r
1+

!2
pe!ce

(!+!ce)(!2-!2
pe)

+

r
1-

!2
pe!ce

(!-!ce)(!2-!2
pe)

��
1- !2

ce

!2

�
!�!ce
!�!pe� !2

pe!ce

c0

1

!2

(3.20b)

Eq. (3.20) can be derived far more simply, if one remembers that the characteristic vectors

of the Faraday e�ect are left (LCP) and right (RCP) circular polarised electromagnetic

waves (see Eq. (3.14)). Consequently one can think of the Faraday e�ect in terms of a
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circular anisotropy with a phase di�erence �� between the RCP and LCP wave after a

propagation distance �z of:

�� =
(n+ - n-)!�z

c0
(3.21)

Substituting �� into the M�uller matrix of a circular retarder Eq. (D.30) results in

Eq. (3.20).

3.4.5.2 The Cotton-Mouton e�ect (� := 90�)

In this case 
k equals 0 and Eq. (3.12) reduces to:

MC(~B) :=

0BBBB@
1 0 0 0

0 1 0 0

0 0 cos(
?�z) - sin(
?�z)

0 0 sin(
?�z) cos(
?�z)

1CCCCA (3.22a)

With the ordinary index of refraction no one sees, that 
? holds:
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!2
pe!

2
ce
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�
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pe!
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2
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(3.22b)

Similar to the Faraday e�ect, Eq. (3.22) can be derived by noticing that the characteristic

vectors of the Cotton-Mouton e�ect are the linear polarised states in the x- and y-direction

(see Eq. (3.17)). Consequently one can think of the Cotton-Mouton e�ect in terms of a

linear anisotropy with a phase di�erence �� between the two characteristic waves after

a propagation distance �z. Substituting �� into the M�uller matrix of a linear retarder

Eq. (D.16) results in Eq. (3.22).

3.4.5.3 Propagation close to perpendicular (� := 90� - �̂; �̂! 0)

At a �rst glance one might think that the interaction between the magnetised plasma

and the electromagnetic wave is always determined by the Cotton-Mouton e�ect, if the

propagation direction is close to perpendicular. But at a closer look one quickly recognises

that things are not so simple: in Eq. (3.12e) the termq�
a sin2(90� - �̂)

�
+ cos2(90� - �̂) =

q
(a cos2 �̂)2 + sin2 �̂ with a :=

1

2

!ce=!

1- !2
pe=!2

is approximated either by a or by �̂, depending on the ratio of a=�̂:
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The Faraday e�ect is dominant If a� �̂� 1, then one can approximate the corresponding

M�uller matrix with:

MFapp(
~B) := (3.23a)0BBBBB@

1 0 0 0

0
�
1- a2

�̂2

�
cos(
k�z) +
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k�z) 1- a2

�̂2
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1CCCCCA
whereby:


k =
!2
pe!ce sin �̂

c0

1

!2
(3.23b)

Comparing this result with the M�uller matrix of the Faraday e�ect one notes, that

Eq. (3.20a) is the zeros order approximation of Eq. (3.23a). Thus the Faraday e�ect

is dominant in this case.

The Cotton-Mouton e�ect is dominant On the other hand, if a� �̂, then one can approx-

imate the corresponding M�uller matrix with:

MCapp(
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In analogy to the Faraday e�ect one notes, that Eq. (3.22a) is the zeros order approxi-

mation of Eq. (3.24a). Consequently the Cotton-Mouton e�ect is dominant now.

If the propagation is close to perpendicular, then it is unclear in the �rst instance, if the

interaction between the electromagnetic wave and the magnetised plasma is determined

by the Faraday or the Cotton-Mouton e�ect. Thus one has to �nd a possibility to

determine which e�ect is the more important one in an experiment.

3.4.6 Observing Magnetic Fields with the M�uller Matrix
To understand how one can distinguish between the Faraday and Cotton-Mouton case

experimentally, how to measure components of the M�uller matrix and �nally derive the

magnetic �eld strength, it is useful to understand, that an arbitrary set of Stokes param-

eters ~Sin can be written as (see also Appendix C and Appendix D):

~Sin = ~Spol + ~Sunpol = Ipol Mrot(45
� - �)M2�(0

�) ~S45� + Iunpol~Su (3.25)
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~S45� are the Stokes parameters of a linear polarised electromagnetic wave with an azimuth

angle of 45� and an intensity of unity (see Eq. (C.8)). ~Su are the Stokes parameters of

a completely unpolarised wave with an intensity of unity (see Eq. (C.23)). M2�(0
�) is

the M�uller matrix of a wave plate with a linear anisotropy, introducing a phase-shift

of 2� between the x- and y-component of the electromagnetic wave (see Eq. (D.16)).

Mrot(45
� - �) rotates the coordinate system by 45� - �. With the help of Eq. (C.5) and

Eq. (C.13) one immediately recognises, that ~Spol are Stokes parameters with an intensity

I0, an ellipticity tan� and an azimuth angle �.

3.4.6.1 The General Case

Now consider the Cartesian coordinate system O 0 from Figure 3.6, which is also the

coordinate system of MA(~B) from Eq. (3.12): let � be the azimuth angle of Sin in O 0

and let � be the angle between the x-axis of O 0 and the x-axis of the polarimeters (see

Subsection 3.5.2), then the measured Stokes parameters ~Sout := Mrot(�)MA(~B)~Sin are

given by:

~Sout(~B) =
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This equation is valid for an arbitrary electromagnetic wave propagating through a

magnetised plasma. To calculate 
0(~B) and to prevent ambiguity it is required that


0(~B)�z < � holds. This means that the propagation length of the wave through the

magnetised plasma may not be too large and that the �eld may not be too strong. Any-

way, if this restriction does not hold for a certain electromagnetic wave, then it is possible

to use an electromagnetic wave with a shorter wavelength, because 
0�z decreases with

decreasing wavelength (see Eq. (3.12)).

In general Eq. (3.26) is too complicated to be applied successfully for analysing ex-

perimental data. Luckily, this equation is simpli�ed signi�cantly if one can assume that

either the Faraday or the Cotton-Mouton e�ect is dominant.
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3.4.6.2 The Faraday Case

In this case the �rst order approximation of Eq. (3.26) with respect to �̂ := 90� - � is

given by:

~Sout(~B) =

0BBBB@
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with 
k from Eq. (3.23b).

It is seen immediately that this equation is simpli�ed even more, if � = �. In this case

the magnetic �eld is most simply calculated using the ratio of the Stokes parameter S3

and S2. If 
k�z� � holds, then one �nds:

S3

S2
= tan(2(�- �) +
k�z) = tan(
k�z) � 
k�z =

!2
pe!ce sin �̂

c0

1

!2
�z / j~B0j

!2
ne�z

(3.28)

Consequently in the Faraday case, the measured values of 
k�z scale with the reciprocal

square of the wavelength. Even if � = � does not hold, it is possible to calculate 
k�z,

if one can determine �- � from the geometry of the experimental setup.

3.4.6.3 The Cotton-Mouton Case

In this case the �rst order approximation of Eq. (3.26) with respect to �̂ := 90� - � is

given by:

~SF(~B) =

2666664
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with 
? from Eq. (3.24b).

A very special case is � = 0 combined with an incident linear polarised electromagnetic

wave, i.e. � = 0. If �̂=a � 0 holds in addition, then Eq. (3.29) is independent of the

magnetic �eld, so that the measured Stokes parameters are not in
uenced by the Cotton-

Mouton e�ect and one observes the Faraday e�ect only (see Eq. (3.27)).

Calculating the magnetic �eld strength from the measured Stokes parameters in the

Cotton-Mouton case is more complicated than in the Faraday case. The equations can be

simpli�ed somewhat by setting � = � or � = 0. The easiest way to determine the �eld

strength is to use the fourth Stokes parameter and to assume that 
?�z � �, �̂=a � 0
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and � � 0 hold:
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Now the measured values of 
?�z scale with the reciprocal cube of the wavelength. To

calculate the ellipticity angle � one can use the parameters S1 or S2.

If the prerequisites from above do not hold, then it is possible by least square �tting

to calculate 
?�z, if at least any of the three quantities �, � and � is known. In general

� is determined by the experimental setup, as the direction of the magnetic �eld is pretty

much parallel to the surface of the target (see Subsection 3.2.2). � and � can be estimated

from the observation of harmonic radiation at low laser intensities when the magnetic

�elds are still very weak. If estimates for all three quantities are known, then Eq. (3.29)

is overdetermined and the size of the least square error is an indication of the validity of

these assumptions.

3.4.6.4 The s2=p2-Ratio

If one is going to use radiation in the VUV/XUV range or radiation with an even shorter

wavelength to determine the magnetic �eld strength (see Subsection 3.5.3), then addi-

tional di�culties arise. Despite the necessity to set up the polarimeter in vacuum and to

�nd a suitable radiation detector for this wavelength range, the most challenging problem

is to measure the complete set of Stokes parameters, because wave-plates for this wave-

length range are practically unavailable. But it is su�cient to measure the s2=p2-ratio for

observing the magnetic �eld, though this is a single quantity and one cannot check the

assumptions made about �, � and � any more.

In the Faraday and Cotton-Mouton case one can write S0 = Ipol + Iunpol and S1 =

(a cos(�
) + b)Ipol with constants �
;a; b 2 R. Thus one derives the s2=p2-ratio:
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whereby the righthand-side is the Taylor expansion of the lefthand-side and p is the

degree of polarisation (see Eq. (C.24)).

The Faraday E�ect In this case a = cos 2�, b = 0 and �
 = 2(� - �) + 
k�z (see

Eq. (3.27)) hold, so that with Eq. (3.23b) the s2=p2-ratio is:
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This equation is simpli�ed considerably, if � � �, � � 0 and p � 1:
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The Cotton-Mouton E�ect In this case a = cos 2� sin 2� sin 2�, b = cos 2� cos 2� cos 2�

and �
 = 
?�z (see Eq. (3.29)) hold, so that with Eq. (3.24b) the s2=p2-ratio is:
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This equation is simpli�ed considerably, if � � �, � � 0 and p � 1:

Is

Ip
�
�
sin(�+ �)

2

�2
 
!2
pe!

2
ce cos

2 �̂

2c0

1

!3
�z

!2

/
 
sin(�+ �) cos2 �̂

j~B20j

!3
ne�z

!2

(3.35)

At the beginning of this section the question, how one can distinguish between the

Faraday and Cotton-Mouton e�ect, was asked. Comparing Eq. (3.23b) with Eq. (3.24b)

or respectively Eq. (3.33) with Eq. (3.35) one recognises that one can distinguish between

the two e�ects by simply comparing how 
k and 
? scale with the wavelength: in the

Faraday case this scaling is / !-2 and in the Cotton-Mouton case it is / !-3.

3.5 The Experimental Setup for Producing and Observing Magnetic

Fields
In this section the experimental setup for generating and measuring ultra-strong magnetic

�elds in a laser produced plasma is discussed in detail. This experiment was performed at

the Rutherford-Appleton-Laboratory using the CPA-beam of VULCAN [37{39]. In the

�rst subsection an overview of the whole experimental setup is given. The next subsection

describes a polarimeter used for measuring the Stokes parameters of harmonic radiation

with a wavelength longer than 200 nm. The �nal section explains the VUV/XUV po-

larimeter, used to measure the s2=p2-ratio of VUV/XUV harmonics. Furthermore in each

of these two subsections the calibration of the respective polarimeter and the evaluation

of the measured data are discussed.

3.5.1 The General Setup
A schematic overview of the experiment is shown in Figure 3.9: The CPA-beam of VUL-

CAN was focused onto a glass target to produce the plasma. Then the harmonic ra-

diation generated during the laser{plasma interaction was collected and analysed with

polarimeters for the visible (VIS), UV and VUV/XUV range, so that one can calcu-

late the magnetic �eld strength using the equations discussed in Subsection 3.4.4 and

Subsection 3.4.6.
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Figure 3.9: Setup of the experiment performed with the VULCAN CPA-beam to produce and measure

ultra-strong magnetic �elds in near solid density laser produced plasma.

3.5.1.1 The Optical Setup

The CPA-beam-line of VULCAN [39] is based on one of its nanosecond ampli�er chains

[37]. But instead of amplifying a nanosecond pulse a stretched fs-pulse is ampli�ed

and then re-compressed. This ampli�cation scheme is called chirped pulse ampli�cation

(CPA) [163, 164].

The fs-seed pulse is produced in a commercial Kerr lens mode-locked Ti:Sa oscil-

lator (Tsunami, Spectra-Physics [154]) pumped with an Argon ion laser. This oscilla-

tor produces 120 fs pulses at 80 MHz with a pulse energy of 5 nJ and a wavelength of

1053 nmx. After these pulses are stretched to more than 500 ps in a double pass-stretcher

[12, 43, 125], a single pulse is selected from the continuous pulse train using two Pockel

cells in series. This single pulse is pre-ampli�ed in a chain of double-passed Nd:glass rod

ampli�ers, before it is seeded into one of the main VULCAN ampli�er chains. Finally

this pulse is re-compressed with a single-pass grating con�guration. The second grating is

already located in a vacuum chamber to prevent pulse distortion due to self-phase mod-

ulation in air. Right behind the second compressor-grating the CPA-beam of VULCAN

has a rectangular beam diameter of about 20 cm � 11 cm and a pulse duration of 750 fs

FWHM. By charging the capacitors, used for �ring the 
ash lamps in the disc ampli�ers,

to di�erent levels the energy of the laser pulse could be changed from 10 J up to the

xThe generation of pulses with a wavelength of 1053 nm is less e�cient than the generation of pulses

at 800 nm, but necessary because the disc ampli�ers operate at 1053 nm only
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maximal value of 100 J on target. By not charging these capacitors at all a special low

energy mode with roughly 1 J was available in addition. The intensity-ratio between the

strongest pre-pulse and the main pulse was measured to be smaller than 10-6 by using a

third order auto-correlator [37{39]. Furthermore, for alignment purposes a cw YLF-laser

was available, propagating through the whole ampli�er chain.

In the target chamber the laser beam is re
ected by two mirrors, which can be used to

change its lateral position and its pointing. Right after these mirrors the beam is focused

with a f/3 parabolic mirror to a Gaussian spot of . 10 µm diameter FWHM, leading to

a mean focused intensity of . 1020 W/cm2 in the focal spot. During the experiment the

diameter of the focal spot was checked regularly with a microscope objective coupled to

a CCD, whilst the target chamber was evacuated. For checking the focal spot size the

pulse energy was reduced to a few µJ . At the same time the precise alignment of the

cw 1064 nm alignment laser to the short pulse beam was veri�ed, too. In addition, for

each shot the pulse energy, the pulse duration, the spectrum, the near and far �eld were

measured, using a beam, leaking through one of the mirrors [39].

3.5.1.2 The Target

The targets are made of quadratic glass plates with a size of 1 cm and a thickness of

1.5 mm. They are glued to a post, which is clamped onto a goniometer table. This table

is mounted on a rotation stage. Hence the target could be tilted and rotated with respect

to the laser beam. Its alignment is performed by reducing the diameter of the alignment

laser beam to approximately 1 mm. Then the target is aligned to precisely re
ect the

laser back and eventually it is rotated to a 35� angle of incidence. The �nal position of

the re
ected alignment laser is marked on the wall of the target chamber to simplify the

alignment of succeeding targets.

To move the target surface precisely to the longitudinal position of the focus the

rotation stage is mounted on a three axes motor-driven translation stage, so that the

target could be positioned within 1 µm in all three dimensions of space. Furthermore a

metallic cross-wire with 5 µm wide lines is evaporated onto the target surface. Hence one

could easily align the target to the focal spot of the laser, whilst the target chamber is

evacuated by moving the translation stage until the alignment laser, generally transmitted

through the glass plate, is completely obscured by the centre of the cross-wire.

With this alignment scheme the target could be positioned within � 10 µm of the the

focal spot easily. After aligning the target surface to the focal spot of the laser the target

is moved a few microns in the vertical direction to make sure, that the laser hits the plane

glass surface and not the metallic cross-wire.

3.5.1.3 The Target Chamber

The steering mirrors, the focusing optics and the target mount are contained inside the

target chamber. This chamber has a cylindrical shape with its axis of symmetry parallel

to the 
oor. Its diameter is roughly 2 m and its depth is about 1 m. On each of its 
at

sides there is an access door with a diameter of approximately 1 m. On its curved side
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there are rectangular access ports with about 90 cm� 35 cm around the whole chamber.

Inside the chamber there is a table for setting up the experiment. This table is directly

bolted to the 
oor and decoupled from the chamber by 
exible vacuum feed-through, so

that the alignment cannot change by evacuating the target chamber.

The chamber itself is connected to a pumping system, which evacuates it to a pressure

of � 10-3 mbar within 15 min. To avoid damaging the open multi-channel plates (MCP),

which have been used for observing the VUV/XUV harmonics emitted from the laser

produced plasma, a pressure lower than . 10-6 mbar is needed in the target chamber

itself. To reach this pressure a liquid nitrogen trap is mounted to the target chamber in

addition. After the chamber has been pumped down to . 10-3 mbar this trap is �lled

with liquid nitrogen, so that the pressure reduces to . 10-6 mbar within a few minutes.

3.5.1.4 The Diagnostics

For measuring the magnetic �eld inside the plasma two di�erent types of diagnostics

are used: a chain of three VIS /UV polarimeters and two VUV/XUV polarimeters.

Despite one VUV/XUV polarimeter, which is set up close to normal incidence, all other

polarimeters are setup up as close to gracing incidence as possible at that side of the

plasma, where the strong magnetic �elds are present (compare Subsection 3.2.2).

The VIS /UV Polarimeters The harmonic radiation for the VIS /UV polarimeters is col-

lected and collimated with a 60 cm, 16� o�-axis parabola set up at a gracing incidence

angle of . 10� with respect to the target surface. The parabola and all mirrors re
ect-

ing the harmonic radiation are coated with an UV-enhanced Aluminium coating, each

delivering a re
ectivity of more than 90 % in a wavelength range from 200 nm- 500 nm.

Right after the parabola and a �rst turning mirror the radiation emerges from the vacuum

chamber through a window. To prevent any change of the polarisation state the angle of

incidence to this window is normal and it is made of UV grade fused silica, which is a non

crystalline, amorphous material with no intrinsic birefringence. With two UV-enhanced

mirrors the radiation is steered through two alignment apertures, limiting the beam diam-

eter to roughly 8 mm, onto the chain of polarimeters. The radiation for the �rst two UV

polarimeters is split o� from the collimated beam with UV-enhanced metallic ND-�lters

with an optical density of ND2.0 for the �rst and ND0.2 for the second beam-splitter.

Furthermore, in front of the polarimeters one to two bandpass interference �lters

are setup to select a certain harmonic. Their extinction ratio for radiation outside the

bandpass is better than 106 per �lter in a wavelength range from 180 nm - 1200 nm. It

is shown experimentally that the extinction is su�cient to extinguish any signal on all

channels of a polarimeter, if bandpass �lters for two di�erent harmonics are combined.

Additionally, to prevent any change of the harmonic's polarisation state, the interference

�lters are set up normal to the incident radiation.

The �rst polarimeter in this chain is designed to operate on the fourth and �fth

harmonic by changing the interference �lter. The second polarimeter observes the second

harmonic and the third polarimeter observes the third harmonic. Their design, their
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calibration and the evaluation of the Stokes parameters are discussed in Subsection 3.5.2.

It is important to note that due to a more clearly presentation the angles of incidence

onto the mirrors and beam-splitters in the schematic Figure 3.9 are much larger than they

have been in the real setup. In reality all angles were kept well below 20� to minimise

the di�erence in re
ection and transmission properties between the s- and p-polarised

component (see Subsection 3.5.2.2).

The VUV/XUV Polarimeters As mentioned beforehand one of the VUV/XUV polarime-

ters is observing the plasma at a gracing incidence angle of approximately 6�, so that this

polarimeter could observe harmonic radiation propagating through the most strongly

magnetised regions of the plasma. The second VUV/XUV polarimeter is set up at a

gracing incidence angle of roughly 80�, i.e. close to the target normal. Thus one could

observe the magnetic �eld strength in two di�erent directions. To measure the s2=p2-ratio

(see Subsection 3.4.6) of the harmonic radiation a so called polarisation splitter, splitting

the incident radiation in a s- and a p-polarised part, is setup in front of a cylindrical mir-

ror. This mirror refocuses the two polarisations vertically separated onto the entrance

slit of a VUV/XUV spectrometer (Acton Research, 502 VUV). The combination of the

polarisation splitters and the cylindrical mirrors are represented by rectangular boxes in

Figure 3.9, labelled VUV/XUV Polarisation Optics.

Self-evidently the whole VUV/XUV polarimeters are set up in vacuum, because ra-

diation with a wavelength shorter than 180 nm cannot propagate through air. Due to

the small entrance slits of the Acton spectrometers it is necessary to equip them with

separate turbo molecular pumps to guarantee a pressure better than 10-6 mbar for safely

operating the open multi-channel plates (MCP) [128]on a short-termx. To avoid ventilat-

ing and pumping down the open MCPs again and again a valve was put right in front of

the entrance slits of the Acton spectrometers, separating them from the target chamber.

A detailed discussion of the VUV/XUV polarimeter design and the evaluation of the
s2=p2-ratio is given in Subsection 3.5.3.

3.5.2 The VIS and UV Polarimeters
In Subsection 3.4.6 it was shown that the magnetic �eld strength inside a plasma can be

determined by measuring the polarisation state of an electromagnetic wave in front and

behind the magnetised plasma. As the polarisation state is most conveniently expressed

in terms of Stokes parameters (see Appendix C), this section describes how to set up

a polarimeter for measuring these parameters in a single-shot laser plasma experiment.

Furthermore the calibration of this instrument and the evaluation of the measured data

is discussed in detail.

3.5.2.1 Design of the Polarimeters

Measuring the Stokes Parameters The �rst major issue, which needs to be addressed, is

how to measure the Stokes parameters (Eq. (C.13)) of an electromagnetic wave. This

xFor long-term operation of open MCPs a pressure better than 10-8 mbar is recommended.
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can be accomplished by relating the Stokes parameters ~S to a series of pulse energy

measurements as discussed in Born et. al. [24] (see also Eq. (C.11)). In contrast to this

usual set of measurements we use a slightly di�erent set of pulse energies measurements,

which suits our experimental constraints better:

S0 : This parameter is the only one which can be measured directly. Recalling the

de�nition of the pulse energy measurement IE :�< ~E(t) � ~E�(t) > (see Eq. (C.9))

and the de�nition of the Stokes parameters Eq. (C.13), one immediately recognises,

that the pulse energy IE;0 holds:

IE;0 :=
�
~S
�
0
= S0 (3.36a)

Thus IE;0 can be measured with a calorimeter, a photodiode or a CCD as in our

experiment. Instead of measuring IE;0 one could put a polariser set to 90� in this

channel and measure IE;s :=
�
Mpol(90

�) ~S
�
0
= 1=2

�
S0 - S1

�
, alternatively.

S1 : This parameter can be measured as a linear combination of S1 and S0 by putting

an ideal linear polariser with its polarising axis set to 0� in front of the radiation

detector. With the M�uller matrix of this polariser Eq. (D.9a) and a = 1, b = 0 one

�nds that the measured energy equals:

IE;1 :=
�
Mpol(0

�) ~S
�
0
= 1=2

�
S0 + S1

�
(3.36b)

S2 : This parameter can be measured as a linear combination of S2 and S0 by putting

an ideal linear polariser with its polarising axis set to 45� in front of the radiation

detector. With its M�uller matrix Eq. (D.12) and a = 1, b = 0 one �nds:

IE;2 :=
�
Mpol(45

�) ~S
�
0
= 1=2

�
S0 + S2

�
(3.36c)

S3 : This parameter is more di�cult to measure, as it cannot be measured by just putting

a polariser in front of the radiation detector. But by putting a quarter wave-plate

with its principal axis set to an angle of 45� (see Eq. (D.24)) into the beam, one

can swap the Stokes parameters S1 and S3, so that the original parameter S3 can

be measured in the same manner as the parameter S1
x. Hence one �nds:

IE;3 :=
�
Mpol(0

�)M��=2(45
�) ~S
�
0
= 1=2

�
S0 � S3

�
] (3.36d)

xAlternatively, one could set the principal axis of the quarter wave-plate to 0� (see Eq. (D.23)), so

that S3 and S2 are swapped and one can measure S3 in the same manner as S2, i.e. the polariser is set to

45� (see Eq. (D.12)). This con�guration simpli�es the calibration matrix Eq. (3.44) for non-ideal optical

components a bit.
]If the plus or the minus sign is valid depends on whether the optical axis of the wave-plate is the fast

or the slow axis (See Appendix D.4).
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Figure 3.10: Electromagnetic wave

propagating through the front sur-

face of a beam-splitter.

Thus it is straight forward to calculate the Stokes parameters from the measured energies

IE;0, IE;1, IE;2, IE;3 in the case of an ideal polarimeter:

S0 = IE;0 (3.37a)

S1 = 2IE;1 - IE;0 (3.37b)

S2 = 2IE;2 - IE;0 (3.37c)

S3 = �(2IE;3 - IE;0) (3.37d)

Optical Properties of a Beam-Splitter Apart from polarisers and wave-plates mirrors and

beam-splitters are key components for building a polarimeter. Unfortunately these impor-

tant parts can alter the state of polarisation considerably, so that a closer understanding

of their optical properties is needed. The beam-splitters, used throughout the experi-

ment, are made of a thin metallic layer on a fused silica substrate. Thus, for modelling

these beam-splitters, we consider the interaction of an electromagnetic wave with a thin

metallic layer on an in�nitely thick substrate �rst (compare Figure 3.10):

The re
ection R, the transmission T and the phase changes �R, �T are given by [24]:

R := r r� T :=
N3 cos �3
N1 cos �1

t t� �R := arg(r) �T := arg(t) (3.38a)

with:

r :=
E0;R

E0;I
= ar

�
(M)1;1 + (M)1;2 p3

�
p1 -

�
(M)2;1 + (M)2;2 p3

��
(M)1;1 + (M)1;2 p3

�
p1 +

�
(M)2;1 + (M)2;2 p3

� (3.38b)

t :=
E0;T

E0;I
= at

2p1�
(M)1;1 + (M)1;2 p3

�
p1 +

�
(M)2;1 + (M)2;2 p3

� (3.38c)

whereby

pj :=

8<
:
Nj cos �j
cos�j
Nj

ar :=

8<
:
e0i

e�i
at :=

8<
:
1 for s-polarisation

N1

N3
for p-polarisation

Nj :=

r
�r;j

�r;j
sin�i+1 = sin�i

~ni
~ni+1

With the real refraction index nj and the attenuation �j the complex refraction index is:

~nj := nj + i�j =
p
�r;j�r;j (3.38d)

In the above equations j denotes the layer as shown in Figure 3.10. E0;I, E0;R and E0;T
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Figure 3.11: Re
ectivity, transmissivity and the respective phase-shift between s- and p-polarisation at a

thin metallic Al-layer (n =0.4, �=4) on a fused silica substrate (n=1.5) for radiation with a wavelength of

351 nm. The dashed line is for s-polarisation, whilst the continuous line is for p-polarisation.

are the amplitudes of the incident, re
ected and transmitted electric �eld, respectively.

�r;j is the dielectric constant and �r;j is the magnetic permeability of the respective layer.

The characteristic matrix M of the metallic layer is given by [24]:

M =

0@ cos
�
2�
�0

~n2d cos �2

�
- 2
p2
sin
�
2�
�0

~n2d cos �2

�
-ip2 sin

�
2�
�0

~n2d cos �2

�
cos
�
2�
�0

~n2d cos �2

� 1A (3.38e)

As the thickness of the beam-splitter's substrate is on the scale of some millimetres,

whilst the coherence length of a sub-picosecond pulse is well below 0.5 mm, the re
ection

and transmission of the electromagnetic wave on the front and rear side are independent

from each other. Thus the equations valid at the rear-side are obtained from Eq. (3.38)

by setting d=0, so that the characteristic matrix reduces to the identity matrix and

Eq. (3.38) describes a single boundary. The total re
ectivity is basically the sum of the

re
ectivities at the front and rear-side, the total transmissivity is calculated by multiply-

ing the transmissivities at both sides and the total phase change in transmission is the

sum of both phase changes. Furthermore, if one chooses d=0 again and n3 is the complex

refraction index of a metal, then Eq. (3.38) describes the re
ectivity of a metallic mirror.

Typical curves for the transmission and re
ection of s- and p-polarised light with a
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Figure 3.12: Schematic setup of a po-

larimeter for measuring the Stokes

parameters. For a more clearly

presentation the angles of incidence

onto the mirrors and beam-splitters

are drawn much larger in comparison

to the real setup, where they have

been kept close to normal.

wavelength of 351 nm at a thin metallic Al-surface on an in�nitely thick substrate are

shown in Figure 3.11. It is seen clearly, that the mirrors and beam-splitters alter the

state of polarisation drastically, if the angle of incidence � becomes large. If � is below

20�, which is still su�cient for a feasible setup, these changes remain fairly small even if

other materials and wavelengths are used.

Experimental Setup With the considerations from the last two paragraphs it is straight

forward to set up a polarimeter for measuring the Stokes parameters. Such an instrument

is shown in Figure 3.12: right after the radiation of a particular harmonic is selected with

an interference �lter the beam is split into four beams (each making up a polarimeter

channel) by using three UV-enhanced metallic neutral density �lters (ND 0.2, ND 0.3,

ND 0.4) and an UV-enhanced aluminium mirror. With regards to the last paragraph in

the real setup all angles of incidence are kept well below 20�. Fused silica lenses with

a focal length of 20 cm are employed to focus all channels to approximately 3 mm huge

spots onto a CCD.

The polarimeters observing the second and third harmonic are equipped with UV-

extended CCDs with a fused silica entrance window (Andor, DV 420-BU). The polarime-

ter for the fourth and �fth harmonic is �tted with a CCD coated with a CsI-layer on its

sensitive detector surface in addition (Andor, DV 420-BU2). The CCDs have 1024�256
pixels and 16 bit A/D-converters [6]. To use the full dynamic range of the CCDs neutral

density �lters are put into each polarimeter channel to balance the signal strength. This

is particularly important, because the Stokes parameters are given by small di�erences

between the measured signals (see Eq. (3.37)).

The polarisers are installed in front of the focusing lenses in the second, third and

fourth channel of each polarimeter. For the second and third harmonic two UV thin-�lm

polarisers are used in series on each channel. For the fourth and �fth harmonic MgF-

Rochon polarisers [72] with a separation angle between the ordinary and extraordinary

beam of 2.6� and 5.1� are used.
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Figure 3.13: Schematic diagram

of a spot with harmonic radia-

tion observed with a CCD. In ad-

dition the di�erent ellipses and

zones used to analyse the ac-

quired images are shown.

To align these polarisers the target is removed and the calibration laser (see Figure 3.9)

is set to s-polarisation by turning the half wave-plate to 45� (see Appendix D.4.2). Then

all polarisers are rotated until the observed signal is completely extinguished or reaches

a minimum at least. After that the quarter wave-plate is installed in the fourth channel

right in front of the polariser. To determine its axis it is rotated until the signal on the

fourth channel vanishes again. Finally the polariser on the third and the wave-plate on

the fourth channel are rotated by 45� to �nish the setup.

In consequence all angles are aligned within �1�, i.e. for a setup angle of 45� the

alignment errors are smaller than 2 %. Hence this misalignment can be neglected in

comparison to other sources of error and thus �̂n and ��n (see Subsection 3.5.2.2) in

Table 3.2 are approximately zero. To avoid ambient light in
uencing the measurements

a black cardboard cover is installed around each polarimeter.

Analysis of the CCD Images The acquired CCD images have been analysed with a pro-

gramme based on the numerical computing language Matlab [104]: at �rst an averaged

dark-image, consisting of 10 single images, is calculated. Then this averaged dark-image

is subtracted from all acquired images, so that any counts due to internal o�-sets of the

CCD are removed. The resulting image shall be called PD(x; y) with the pixel-row x

and pixel-column y. For further analysis each spot belonging to a polarimeter channel is

presented with a steep brightness curve on the screen, so that one can easily select four

points at the edge of the particular spot. After that a primary ellipse passing through

all four points (see Figure 3.13) is calculated. Then the same spot is plotted with a very


at brightness curve, so that secondary re
ections from the entrance window in front

of the CCD can be seen easily. Analogous to the primary ellipse one can determine a

secondary ellipse for each secondary re
ection.

After this last manual step ambient light by-passing the light protection cover, built

around each polarimeter, is removed from the measured image as far as possible: this is

accomplished by subtracting the ambient light correction image PA(x; y) from PD(x; y).

For each polarimeter channel a di�erent PA(x; y) is calculated from the respective ambient

light correction zone AA (see Figure 3.13). This zone includes all pixels in an area given

by the primary ellipse magni�ed by 1.25 to 1.55, but excluding the pixels enclosed in any

secondary ellipse. PA(x; y) is a plane given by the least square �t of f(x; y; PA(x; y)) 2
R
3j(x; y) 2 AAg to the two-dimensional surface f(x; y; PD(x; y)) 2 R3j(x; y) 2 AAg.

Eventually the image is corrected for secondary re
ections: as the harmonic spots

have steep edges and the number of counts per pixel inside the spots is pretty constant,
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one can calculate an average number of counts per pixel for each secondary re
ection

by summing up all counts in the zone with pure secondary re
ection and by dividing

this value with the number of pixels in this area. This averaged number of counts is

subtracted from all pixels inside the secondary ellipse.

Finally all points inside the integration zone, which equals the primary ellipse magni-

�ed by 1.1, are summed up, resulting in the measured signals IE;k; k 2 f0; 1; 2; 3g (compare

Eq. (3.36)).

3.5.2.2 Calibration of the Polarimeters

Calibration Matrix Naturally the relation between the measured values IE;k; k 2 f0; 1; 2; 3g

and the true Stokes parameters ~Sin is given by a matrix MCal (see Eq. (D.1)):

�
~IE
�
k
:=

3X
l=0

�
MCal

�
k;l

�
~Sin
�
l

(3.39)

In principle it is possible to determine all 16 elements of MCal experimentally and then

invertingMCal to calculate ~Sin from the IE;k. But this requires a very precise measurement

of all matrix elements and a thorough study about the inversion properties ofMCal. Hence

it is advantageous to keep MCal as simple as possible, i.e. the diagonal matrix elements

should be much larger than the outer-diagonal elements. To understand how this can be

achieved, it is necessary to write MCal in terms of easy to measure optical properties. For

this it is necessary to discuss the M�uller matrices of each single optical component �rst:

Non-Ideal Mirrors If an electromagnetic wave is re
ected from a mirror at oblique

incidence, then the re
ectivity between the s- and p-polarised component di�ers and

the two components acquire a mutual phase-shift as we have seen earlier already. The

di�erence in re
ectivity can be represented by the M�uller matrix of a non-ideal linear

polariser with the polarising axis set to 0� and re
ection coe�cients a, b of the electric

�eld (see Eq. (D.9a)). Ideally a and b are close to unity. The phase-shift �� can be

represented by the M�uller matrix of a wave-plate with a linear anisotropy and its principal

axis set to 0� (see Eq. (D.16)). Thus the M�uller matrix of a single mirror is given by:

MM

�
�a; �b; ��

�
:= M�a;�b

�
0�
�
M��

�
0�
�
= M��

�
0�
�
M�a;�b

�
0�
�

(3.40)

Then the M�uller matrix of a series of mirrors 1 to k with parallel and orthogonal re
ection

planes is given by:

MM

�
�a; �b; ��

�
:=MM

�
�a1 � � � � �ak; �b1 � � � � �bk; ��1 � � �+ ��k

�
:=M�a1;�b1

�
0�
�
M��1

�
0�
� � � �M�ak;�bk

�
0�
�
M��k

�
0�
�

(3.41)

Furthermore, it is important to note, that the M�uller matrix of an isotropic, non-

depolarising material (i.e. any material that does not show birefringence and does not

alter the degree of polarisation) is the identity matrix. Nevertheless, in the case of oblique

incidence onto the surface of such a material an electromagnetic wave is split into a s-

and a p-polarised component. Due to the discontinuity of the refraction index at this

boundary the two components of the wave have a di�erent transmission coe�cient and
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acquire a mutual phase-shift [24]. Thus the propagation of an electromagnetic wave

through and the re
ection at a plate made of such a material (e.g. fused silica windows,

neutral density or interference �lters) is described by Eq. (3.40), too.

Non-Ideal Wave-Plate In the case of an electromagnetic wave, propagating through

a non-ideal wave-plate with a nominal phase-shift � at a certain wavelength and its

principal axis set to a nominal angle � with respect to the p-polarisation plane of the

mirrors, the true phase-shift and angle are �+ �� and �+��, respectively. In some cases one

can compensate for the phase-mismatch �� of the wave-plate by tilting the plate around

its axis. But then, analogous to a glass plate, the transmission coe�cients parallel and

perpendicular to the wave-plate's axis become di�erent. Thus the wave-plate's M�uller

matrix is given by (see Eq. (D.11a), Eq. (D.18)):

MW

�
�a; �b; ��; ��;�;�

�
:= M�a;�b

�
�+ ��

�
M��

�
�+ ��

�
M�

�
�+ ��

�
(3.42)

where �a and �b are the transmission coe�cients of the electric �eld.

Non-Ideal Linear Polariser The non-ideal polariser is discussed in Appendix D.3. Never-

theless some real polarisers like a Rochon polariser have a pretty long propagation length

of the electromagnetic wave through a birefringent material, so that a mutual phase-shift

between the ordinary and extraordinary wave can appear. Thus they are described as

a combination of a wave-plate with a phase-shift �̂ and a non-ideal polariser with the

transmission coe�cients â, b̂ of the electric �eld (see Eq. (D.11a), Eq. (D.18)):

MP

�
â; b̂; �̂; �̂; �

�
:= M�̂

�
�+ �̂

�
Mâ;b̂

�
�+ �̂

�
; (3.43)

where � is the polariser axis with respect to the p-polarisation plane of the mirrors and

�̂ is the alignment error.

A Single Polarimeter Channel With the M�uller matrices of each optical component we

can calculate the M�uller matrix of a single polariser channel. If the initial set of Stokes

parameters is given by ~Sin, then the number of counts measured at the nth polarimeter

channel of the mth polarimeter is given by:�
~ImE;Meas

�
n
:=
�
Mm
Cal

�
n;j

�
~Sin

�
j

(3.44)

=
�
Mm
P

�
âmn ; b̂

m
n ; �̂

m
n ; �̂

m
n ; �

m
n

�
Mm
W

�
�amn ; �b

m
n ;

��m
n ;

��mn ; �
m
n ; �

m
n

�
Mm
M

�
�amn ; �b

m
n ;

��m
n

��
0;j

�
~Sin

�
j

This general equation reduces to the equation of the nth polarimeter channel, if the

respective values from Table 3.2 are substituted into it. The resulting matrix is called

the calibration matrix of the mth-polarimeter.

Setup for the Experimental Calibration To determine and justify the values printed on a

medium- or dark-gray background in Table 3.2 it is necessary to carry out an experimental

calibration. The experimental setup is shown in Figure 3.9: a 150 mJ Nd-Yag laser

with a pulse duration of 2 ns and a wavelength of 1064 nm [34] is frequency-multiplied

with appropriate frequency-multiplying crystals and separator mirrors to produce the

second third and fourth harmonic, normally generated inside the plasma. The energy
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Channel Parameters Polarisers Wave-Plates Mirrors

# �n �n �n ân b̂n �̂n �̂n �an �bn ��n
��n �an �bn ��n

0 0� 0� 0 1 1 0 0 1 1 0 0 �a0 �b0 ��0

1 0� 0� 0 1 0 0 0 1 1 0 0 �a1 �b1 ��1

2 45� 0� 0 1 0 0 0 1 1 0 0 �a2 �b2 ��2

3 0� 45� ��=2 1 0 0 0 �a3 �b3 ��3 0 �a3 �b3 ��3

Table 3.2: Parameters of the VIS /UV polarimeters. On the lefthand-side of the vertical double line the

parameters from Eq. (3.36) are given for each channel. Deviations from these values and further parameters

are listed on the right hand side (compare Eq. (3.44)). The values shown on a gray background depend

on the optical properties of the components and their precise alignment: light-gray: parameters cannot

in
uence the measurement; medium-gray: parameters generally contribute to minor errors only; dark-gray:

parameters can falsify the result considerably.

ratio between the p- and s-polarised component of the emitted radiation is roughly 10:1.

To increase this ratio to more than 1000:1 a Rochon polariser is installed in front of

the frequency-multiplying unit. Then most of the radiation is steered into the target

chamber with a semi-transparent mirror. The transmitted minor part of the beam is

focused onto an UV-enhanced Andor CCD and is used as a reference to measure the

initial pulse energy I0;Ref. With the mirrors M1 and M2 it is possible to align the beam

precisely through the alignment apertures of the polarimeter. The beam, steered into the

target chamber, propagates through a half wave-plate to adjust its plane of polarisation

(see Appendix D.4.2). Behind this wave-plate the beam is focused with a fused silica lens

f=60 cm to a spot at the position, where the laser produced plasma is supposed to be.

The target has been removed from the target mount to avoid any interaction between the

target plate and the calibration beam. Eventually, after being re
ected from the parabola

this beam is collimated again.

Experimental Calibration With the experimental setup discussed in the last paragraph one

can study the optical properties of each component used to build the polarimeter, thus

determining the parameters of Eq. (3.44). To become independent of the absolute value

of laser energy deposited onto the CCDs the measured values IE;k are divided by IE;Ref.

Polarisers To determine the quality of a linear polariser, one generally uses the extinc-

tion Ext, which is the ratio between the polarisers maximal and minimal transmissivity

for linear polarised radiation, i.e. Ext := â2=b̂2 with â, b̂ from Eq. (3.43). The extinction

of the Rochon polarisers used throughout the experiment is better than 400:1. Similar

extinctions are reached with a series of two UV thin-�lm polarisers, applied for the second

and third harmonic polarimeter. This extinction was independent from the angle of the

half wave-plate's principal axis. Hence the ellipticity of the calibration beam behind the

half wave-plate must be less than 0.05. During the calibration we found the extinction

of all polarisers to be much better than 150:1 by just setting the polarisers to the appro-

priate angles, using the scales on the polariser mounts. Consequently one can write with

Eq. (3.43):

MP

�
â; b̂; �̂; �̂; �

�
= âMP

�
1; b̂=â; �̂; �̂; �

� � âMP

�
1; 0; �̂; �̂; �

�
(3.45)
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In the case of Rochon polarisers â was found to be about 0.95, whilst for a series of

two thin-�lm polarisers â was as low as 0.20. Nevertheless if the polarisers are not

removed during the calibration of the mirrors and if they are set to s- and p-polarisation

respectively, then â can be incorporated into the s- and p-re
ectivity of the mirror because

of Eq. (3.44).

Wave-Plates The wave-plate (Appendix D.4) can be treated analogous to a mirror

with a phase-shift � + �̂ and re
ection coe�cients �a and �b of the electric �eld. In the

case of a wave-plate �a is the transmission of the electric �eld through the plate parallel

to the optical axis, i.e. the extraordinary wave. �b is the transmission of the electric �eld

perpendicular to the optical axis, i.e. the ordinary wave. Consequently the M�uller matrix

of the wave-plate MW can be fully included into MM from Eq. (3.44), if the wave-plate

is set to an angle of �=0�. But in our case � equals 45� and similar to a polariser (see

Eq. (3.45)) one can include only �a into MM. If the surfaces of the wave-plate are not

covered with a dielectric anti-re
ection coating, then with Eq. (3.38) the ratio �b=�a for

normal incidence is given by:

�b

�a
=

�
Ne=Nair + 1
No=Nair + 1

�2
No

Ne

�r�1�
�
ne + 1

no + 1

�2
no

ne
; (3.46)

whereby no and ne are the ordinary and extraordinary index of refraction, respec-

tively. During the calibration we found e.g. for 266 nm radiation that �a=.991(�20)
and �b=.946(�20).

A more serious error in using wave-plates is the mismatch of the wavelength: if a

wave-plate introduces a phase-shift �1 at a certain wavelength �1, but is used at a slightly

di�erent wavelength �2, then its phase-shift is �2. By using �j := 2� h
�j
�nj with �nj :=

(ne;j - no;j); j 2 f1; 2g and the thickness h of the plate [24] one can easily calculate the

phase di�erence:

�� := �2 - �1 = 2�

�
�n2

�2
-
�n1

�1

�
�1�1

2��n1
= �1

�n2=�n1�1 - �2

�2
� �1

�1 - �2

�2
(3.47)

For the 2nd, 3rd and 4th harmonic the nominal wavelength of the utilised quarter wave-

plates does not di�er from the respective central wavelength by more than 1 %. Only for

the 5th harmonic the deviation was 5 %. Beyond these systematic deviations no additional

non-ideal behaviour of the wave-plates is observed during the calibration, so that �� .

0.005� for the 2nd, 3rd and 4th harmonic and �� �0.025� for the 5th harmonic.

Mirrors The s- and p-polarised transmissivities of a series of non-ideal mirrors and

beam-splitters are simply measured by setting the half wave-plate in Figure 3.9 to 45�

(s-pol.) and 0� (p-pol.). As mentioned beforehand we also include â and �a into the

transmissivities of the mirrors by setting all polarisers and the quarter wave-plates to 90�

and 0�, respectively. Then the total transmissivity is given by dividing IE;k with IE;Ref. It

is important to note, that, in contrast to the properties of the polarisers and wave-plates

discussed in the last paragraphs, these values depend on the angles of incidence onto

the optical components and thus have to be measured again after modifying the setup.
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Figure 3.14: Enlargement of Figure 3.11 to estimate the optical properties of the mirrors and beam-splitters

used to build the polarimeter.

In Figure 3.14 the angle dependent s2=p2-ratios (i.e. re
ectivity and transmissivity of s-

polarised light divided by the respective quantity for p-polarised light) are calculated for

aluminium layers on fused silica substrates at a wavelength of 351 nm. Using these curves

one can estimate the s2=p2-ratio for an arbitrary polarimeter channel. The estimated

values for our experimental setup range from 0.7 to 1.4, which agrees with the measured
s2=p2-ratios.

The phase di�erence ��n introduced by the mirrors and beam-splitters can be neglected

for the zeroth and �rst polarimeter channel, because the zeroth channel does not include

any polariser, so that IE;0 is independent of ��0, and the �rst channel is supposed to

measure the p-polarised part of the radiation exclusively. Thus the in
uence of ��1 on the

measurements is limited by the misalignment angle �̂1 (see Eq. (3.43)). As this angle is

less than 1�, one can indeed neglect the in
uence of ��1. To measure ��n for the the 2nd

and 3rd polarimeter channel it is convenient to remove the quarter wave-plate at �rst.

Then one can determine ��n by setting the half wave-plate to roughly 45� and use the

polarisers already installed right in front of the focusing lenses (see Figure 3.12). Hence

one can measure the normalised angle dependent pulse energy IE;n(�;0)

IE;Ref
by rotating the

polariser (see Figure C.2 and Eq. (C.10)). From these measurements one can determine

the normalised principal axes a 0n, b
0
n of the polarisation ellipse and the transmission

coe�cient an, bn of the electric �eld in the s- and p-direction. Using Eq. (C.6b) one
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calculates:

��n � sin ��n =
a 0nb

0
n

anbn
(3.48)

From Figure 3.14 it is seen that ��3 - ��2 .0.015�, because the phase-shifts due to the

re
ection from the last beam-splitter in the chain are pretty much the same for both

channels. Assuming one polarimeter channel with a series of 5 mirrors, 5 beam-splitters

and 17� angle of incidence on average one estimates the total phase-shift to be less than
��n .0.12�. Indeed we measured phase-shifts around ��n .0.041�, which agrees with an

average angle of incidence of 10�.

Independently of these measurements it was veri�ed that the vacuum window did not

introduce any additional phase-shifts, even if the target chamber was pumped down.

Calculation of the Initial Stokes Parameters To calculate the Stokes parameters from the

measured values IE;k Eq. (3.44) is used. By substituting the values tabulated in Table 3.2

into MCal one obtains a simpli�ed calibration matrix:

M45�
Cal :=

0BBBB@
�A0
2

�B0
2

0 0
�a2
1

2

�a2
1

2
0 0

�A2
4

�B2
4

�C2 cos ��2
2

-
�C2 sin ��2

2

X30 X31 X32 X33

1CCCCA
(3.49a)

M0�
Cal :=

0BBBB@
�A0
2

�B0
2

0 0
�a2
1

2

�a2
1

2
0 0

�A2
4

�B2
4

�C2 cos ��2
2

-
�C2 sin ��2

2
�A3
4

�B3
4

�C3 cos�
2

-
�C3 sin�

2

1CCCCA
(3.49b)

with

X30 :=
�A3

�A3

8
-

�B3 �C3

4
sin ��3 X31 :=

�B3 �A3

8
-

�A3
�C3

4
sin ��3

X32 :=
�C3

4

�
�B3 cos ��3 + �C3 cos ��3 sin ��3

�
X33 := -

�C3

4

�
�B3 sin ��3 - �C3 cos ��3 cos ��3

�
and for all �Aj; �Aj; �Bj; �Bj; �Cj; �Cj, j 2 f0; 1; 2; 3g respectively:

Aj := a2j + b2j Bj := a2j - b2j Cj := aj bj � := ��+ �̂+ �=2

The quantities �a3, �b3, ��3, �an, �bn and ��n have been calculated or measured as described

above. M45�
Cal is the calibration matrix, if the wave-plate is set to an angle of 45�. M0�

Cal is

the matrix, if the wave-plate is set to angle of 0�. In this case the transmission properties

of the wave-plate are fully included in �a3 and �b3.

To avoid numerical instabilities a linear multidimensional �t was performed to calcu-

late the Stokes parameters instead of inverting Eq. (3.49a). The calculated initial Stokes

parameters are correct within a few percent. If the calibration matrix Eq. (3.49a) is

reduced to Eq. (3.36) by setting the corresponding matrix elements to zero, the errors

increase to approximately 15 %.

3.5.3 The VUV/XUV Polarimeters
As already mentioned beforehand for measuring magnetic �elds well beyond 500 MG it

is vital to use electromagnetic radiation with a shorter wavelength, namely VUV/XUV

radiation. This subsection describes the design, setup and calibration of a VUV/XUV
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Figure 3.15: Re
ectivity and Extinction versus wavelength, i.e. s
2
=p2-ratio, of the three mirror polarisation

splitter (Figure 3.16) for di�erent angles of gracing incidence �.

polarimeter, measuring the s2=p2-ratio. Furthermore it is explained, how the measured

data have been analysed to determine the magnetic �eld strength with Eq. (3.34).

3.5.3.1 Design of the Polarimeter

Building a VUV/XUV polarimeter is even more challenging than building a VIS /UV

polarimeter, because high quality VUV/XUV beam-splitters and wave-plates o� are not

available of the shelf. Hence one is dependent on using the re
ection properties of solid,

mostly metallic, surface to build such a polarimeter [48, 120].

Polarisation Splitter If VUV/XUV radiation is re
ected from a solid material, one ob-

serves similar angle of incidence dependent properties as with VIS /UV radiation. Thus

the s2=p2-ratio of re
ected VUV/XUV radiation shows a maximum at a certain angle of

incidence, too. Hence a series of mirrors set up to this angle of incidence formes a good

polariser [14]. Unfortunately this angle (measured as an angle of gracing incidence now,

i.e. between the target surface and the incident beam) is considerably larger than 0� and

the re
ectivity decreases dramatically with an increasing angle of gracing incidence. In

general, this becomes even worse, if the wavelength is reduced or the surface roughness

is increased [111]. Our mirrors have been made of a gold coated glass substrate with a

low surface roughness. By examining the gold surface with a high resolution electron mi-

croscope and by directly measuring the surface roughness with a pro�lometre we found,

that the surface roughness is determined by gold clusters with a diameter of up to 20 nm.

To achieve a reasonable re
ectivity we decided to use an angle of gracing incidence

considerably smaller than the ideal polarising angle, thus reducing the extinction-ratio of

the polariser. To compensate for this poor extinction-ratio we have been using a series of

three mirrors as shown in the inset of Figure 3.16. The interplay between the re
ectivity

and the degree of polarisation is clari�ed in Figure 3.15: the smallest angle (15�) of

gracing incidence onto the �rst mirror in this series of three mirrors gives the lowest

extinction, but has a high re
ectivity (up to 0.2), whilst the largest angle (25�) has the

lowest re
ectivity (lower than 0.08). A good compromise with a reasonable re
ectivity

and polarisation is an angle of 20�.
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Figure 3.16: Schematic drawing of the VUV/XUV polarimeter. The inset shows the polarisation splitter.

It is worth to mention that the phase-shift acquired upon the re
ection could be used

to build a wave-plate in the VUV/XUV range. But due to the angle dependence of the

phase-shift it is di�cult to align this wave-plate to a particular phase-shift. Furthermore

these wave-plates are far from ideal, as the s- and p-re
ectivity di�ers considerably.

To avoid these additional complications our VUV/XUV polarimeter measures the s-

and p-component of the incident electromagnetic wave only. This is accomplished with

two sets of three mirrors installed in a closed compartment, called polarisation splitter.

A schematic drawing of this splitter is shown in the inset of Figure 3.16. The plane of

incidence of the �rst set of mirrors coincides with the p-polarisation plane of the laser

and the incident plane of the second set coincides with the s-polarisation plane. Thus

the �rst set mainly re
ects s-polarised, whilst the second set mainly re
ects p-polarised

radiation.

Experimental Setup In our experiment we have been using two VUV/XUV polarimeters,

one observing the target with a gracing incidence angle of 6� and a second observing the

target with a gracing incidence angle of 80�. The angle of gracing incidence onto the �rst

mirrors of the former polarimeter is 20� and on the latter 15� (see Figure 3.9).

The schematic setup of a single VUV/XUV polarimeter is shown in Figure 3.16:

the partially polarised harmonic radiation, generated inside the laser produced plasma,

propagates through an alignment aperture with a diameter of 4 mm, located 215 mm

away from the plasma. Right in front of the polarisation splitter the beam-diameter

was su�ciently large to illuminate both entrance pupils (? � 1.5 mm) for the s- and p-

polariser completely (see inset of Figure 3.16). By tilting the last mirror in each polariser

set one can centre the beams onto a cylindrical mirror and align their direction against

each other. The cylindrical mirror is made of a 100 mm long, 10 mm wide and 1.5 mm

thick glass substrate with a low surface-roughness and a gold coating. Its curvature can
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be altered by adjusting a screw, pushing from behind at one end of the mirror, whilst the

opposite end is �xed. The whole mirror can be rotated, so that one can change the angle

of gracing incidence between 3� and 6�. With these degrees of freedom it is possible to

steer and focus the s- and p-polarised beams to two vertically separated lines onto the

entrance slit of an Acton VUV 502 spectrometer [1]. To avoid the s2=p2-ratio to become

dependent on the precise position of the two vertical lines on this entrance slit it is opened

to a width of more than 3 mm during the experiment.

With the help of a 1200 lines/mm blazed spherical Iridium grating the spectra of the

two beams are imaged into the image plane of the Acton spectrometer. The wavelength

in the centre of this image plane can be determined by rotating the grating with a remote

controlled stepper motor. The Acton spectrometer has been modi�ed by substituting the

exit slit with a special mount holding an open MCP [128]. The front surface of this MCP

coincides with the image plane of the spectrometer. Due to the diameter of the MCP the

spectral range is limited to approximately �40 nm around the central wavelength. The

phosphore screen of the open MCP is coupled by a �bre-optic taper to an intensi�ed 8

bit CCD with 768�288 pixels manufactured by Darkstar [127].

Analysis of the CCD Images The acquired CCD images have been analysed with the help

of a Matlab [104] programme. Again, the average over 10 dark images is calculated at

�rst. Then this averaged dark image is subtracted from all acquired images, so that any

counts due to internal o�-sets of the CCD are removed. The resulting image shall be

called PD(x; y) with the pixel-row x and pixel-column y.

For calculating the s- and p-polarised harmonic spectra the spectral traces have to be

integrated along lines with constant wavelength. This is not completely straight forward,

as these lines are not parallel to the pixel rows or columns of the CCD (see Figure 3.17).

Thus the direction of these coordinate lines is calculated as an average over an arbitrary

number of lines, selected interactively by the operator. Self-evidently, the operator draws

these lines parallel to the tilted spectral lines. After that, two nearly horizontal lines

determining the lower and upper integration boundary of a spectral trace have to be

chosen. With this input a map-image PM(x; y) is calculated. In PM(x; y) all pixels

outside the integration boundaries of the corresponding spectral trace are set to zero. All

other pixels are related to an arti�cial wavelength number na. This number is given by

the column number of the pixel closest to the intersection between the lower respectively

upper integration boundary line and the constant wavelength line, passing through the



72 Chapter 3. DC Megagauss Azimuthal Magnetic Fields

pixel under consideration. Then the counts of all pixels with the same na are summed

up to de�ne a preliminary spectral trace Spfs;pg
(na). In addition the function NSfs;pg(na),

giving the total number of pixels belonging to na, is de�ned.

To correct for ambient light two nearly horizontal lines, limiting the ambient light

correction zone above respectively below the spectral trace, have to be selected. Again

a map-�le is calculated by using the intersection between the constant wavelength line,

passing through the pixel under consideration, and the lower respectively upper integra-

tion boundary of the spectral trace. Again all pixels outside the ambient light correction

zone are set to zero in this map-�le. Using this map-�le the trace of ambient light

Apfs;pg
(na) and the total number NAfs;pg(na) of pixels belonging to a certain na are cal-

culated in analogy to Spfs;pg
(na) and NSfs;pg(na). Thus it is straight forward to calculate

the ambient light corrected spectral trace:

Stfs;pg
(na) := Spfs;pg

(na) -
NSfs;pg(na)

NAfs;pg(na)
Apfs;pg

(na) (3.50)

As the wavelength in the centre of the image is known roughly, one can guess the

harmonic order of the closest harmonic. Furthermore the wavelength di�erence between

two successive harmonics is also known. Hence one can calculate a linear relation between

the arti�cial wavelength number and the real spectral wavelength �, easily. For further

analysing the data it is more advantageous to plot the spectra versus kn := �0
�n
, i.e. the

harmonic order, where �0 is the central wavelength of the laser. Then the abscissae

of all harmonic maxima are next to integers. Hence these maxima are easily found by

performing a maximum search around the appropriate integer values. Then a wavelength

�r between this maximum and the next maximum on the righthand-side is determined by

the wavelength next to �0 for which the number of counts falls below a certain percentage

of the counts at the harmonic maximum. If no such �r is found, then the minimum

between the two maxima is used as �r. Then the same procedure is performed at the

lefthand-side of the maximum to determine (�l). After that the counts between �l and

�r are summed up to the total number of counts for a certain harmonic. This analysis

is performed for the s- and p-polarised trace, so that the measured s2=p2-ratio for every

harmonic can be calculated. With the calibration Eq. (3.52), discussed in the next section,

it is very simple to calculate the initial s2=p2-ratio right behind the plasma.

3.5.3.2 Calibration of the Polarimeter

In the VUV/XUV range it is even more necessary to calibrate the polarimeters, for

measuring the s2=p2-ratio of the radiation, because in this wavelength range the optical

components are in general even less ideal than in the VIS /UV range.

Calibration Equation From Figure 3.16 it can be seen, that all components of the employed

VUV/XUV polarimeter are re
ective elements with the plane of incidence either in the

s- or p-polarisation plane. Thus the relation between the incident Stokes parameters and

the Stokes parameters in front of the detector is given by Eq. (3.41). Consequently the

equation between the incident Iin;fs;pg and the measured Imeas;fs;pg s- and p-polarised pulse
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energies can be written as: 
Imeas;s

Imeas;p

!
:=

 
ms ss sa mp sp sa

ms ps pa mp pp pa

! 
Iin;s

Iin;p

!
(3.51)

with the re
ectivities mfs;pg for the cylindrical mirror and the Acton grating in common,

the re
ectivities sfs;pg for the s-polarising mirror set of the polarisation splitter and pfs;pg

for the p-polarising mirror set. All re
ectivities are for s- and p-polarised light respec-

tively. Whilst mfs;pg, sfs;pg and pfs;pg depend on the optical properties of the re
ective

elements only, sa and pa are geometry factors, representing the area of the entrance pupil

for the s- and p-polarised part of the beam, respectively. By using Eq. (3.51) it is easy

to calculate the initial s2=p2-ratio in front of the polarisation splitter:

�
s2=p2

�
in
= K

�
s2=p2

�
meas

- L

1-M
�
s2=p2

�
meas

(3.52a)

with:

K :=
1

R

pp

ss

mp

ms

L := R
sp

pp
M :=

1

R

ps

ss
R :=

sa

pa
(3.52b)

If the optical properties of all gold mirrors are the same and the s- and p-polarising parts

of the polarisation splitter are symmetric then

pp

ss
� 1

sp

pp
� ps

ss
R � 1

These relations can be used to simplify Eq. (3.52). Ideally L and M should be close to

zero, whilst K should be close to unity.

Experimental Setup The calibration was performed with a high harmonic laser plasma

source located at the FORTH facility in Greek. The harmonics are produced in a gas-jet

with a kHz-Ti:Sa laser delivering pulses with a pulse energy of a few mJ and a pulse

duration below 100 fs. To rotate the polarisation plane of the incident laser beam a half

wave-plate (Appendix D.4.2) is installed in front of the lens, which focuses the beam into

the gas-jet. The remaining experimental setup is precisely the same as in Figure 3.16,

only the solid target is replaced by the gas-jet and the VUV/XUV polarimeter are aligned

along the axis of the incident laser beam.

A basic prerequisite for performing the calibration is, that the applied radiation must

have a de�ned state of polarisation; ideally this is linear polarisation. Luckily the polar-

isation of gas harmonics is determined by the polarisation of the laser, i.e. if the laser

is linear polarised, then the high harmonics are linear polarised too and both polarisa-

tion planes coincides. This was veri�ed for the lower harmonics, i.e. harmonics with a

wavelength larger than 150 nm, again by replacing the polarisation splitter with a Rochon

polariser and the Darkstar CCD with an Andor CCD. If the polarising axis of the Rochon

polariser was in the polarisation plane of the laser, one could observe the harmonic spec-

trum. If the polarising axis was perpendicular, then the harmonic spectrum vanished.

This result was independent from the setup angle of the half wave-plate's axis.
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Results Calibrating the polarimeter means to determine the constants K, L, M from

Eq. (3.52). This can be achieved by setting the axis of the half wave-plate to di�erent

angles �=2 and measuring (s2=p2)meas(�) versus �. In our case (s2=p2)in(�) = tan2 �, so

that Eq. (3.52) can be written as:

(s2=p2)meas(�) =
tan2 �+ KL

M tan2 �+ K
(3.53a)

By developing this function into a Taylor series one �nds with �� su�ciently small and

ci real constants:

(s2=p2)meas( 0
� + ��) = L+ c1��

2 +O(4) (3.53b)

(s2=p2)-1meas(90
� + ��) =M+ c2��

2 +O(4) (3.53c)

(s2=p2)-1meas(45
� + ��) =

M+ K

1+ KL
+ c3��+ c4��

2 + c5��
3 +O(4) (3.53d)

As can be seen from these equations L and M can be determined quite precisely, because

they are the minimum of the respective curves, whilst K is more di�cult to measure.

Fortunately K is only a scaling constant in Eq. (3.52), so that it is of minor importance,

if one is only interested in the relative changes of the s2=p2-ratio, i.e. the increase of

the magnetic �eld. Indeed in our calibration experiment the values of K are subject to

considerable errors. In contrast to that the M and L values can be determined more

precisely. They are shown in Figure 3.18. In addition to our measurements calculated

curves derived by using Eq. (3.38) are shown. The complex indices of refraction for

gold is taken from two di�erent references [98, 186], both based on measurements with

synchrotron radiation. In comparison to the deviation between these calculated curves

our measurements are in agreement with them. But it is rather obvious, that for future

experiments a 16 bit detector should be used to have a larger dynamic range and that a

calibration based on the well de�ned conditions at a synchrotron radiation source should

be carried out in addition.

3.6 Experimental Results
As already discussed in Section 3.4 the magnetic �eld strength can be measured in two

independent ways: either by means of x-wave cut-o�s or by means of M�uller matrices.
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(a) 4th harmonic

(b) 5th harmonic

Figure 3.19: Typical CCD images showing the exis-

tence of a 4th harmonic cut-o� of the extraordinary

wave (i.e. p-polarisation), whilst the 5th harmonic

is not cut-o�. The focused intensity was approxi-

mately 1 � 1020 W/cm2.

Figure 3.20: Ratio between the x-wave (p-

polarisation) and total harmonic emission of the 3rd

(triangles) and 4th (circles) harmonic for di�erent

pulse energies. The x-wave cut-o�s are clearly visi-

ble at intensities greater than 8 � 1019 W/cm2.

To derive the �eld strength from the x-wave cut-o�s only the electron-density has to

be known within one order of magnitude, if the density is not too high. To derive the

�eld strength from the elements of the M�uller matrix the initial polarisation state of

the electromagnetic wave in front of the magnetised plasma and its propagation distance

through the magnetised area also have to be known.

In this subsection the experimental results of the magnetic �eld experiment performed

with the CPA-beam of VULCAN are presented: at �rst the measurements of the �eld

strength based on the x-wave cut-o�s (see Subsection 3.4.4) are shown, then the ob-

servation of magnetic �elds with the M�uller matrix approach (see Subsection 3.4.6) is

discussed. Finally VUV/XUV harmonic measurements are presented. These measure-

ments are vital for measuring magnetic �elds beyond 500 MG and for examining �elds in

the high density regions of the plasma.

3.6.1 Observation of Magnetic Fields by X-Wave Cut-O�s
Observing the magnetic �eld strength inside the plasma with the x-wave cut-o� is a very

striking experiment, because a quick look onto the data already reveals the �eld strength:

in Figure 3.19 the p-polarised (i.e. extraordinarily polarised) spot of the 4th harmonic

is gone, whilst the respective spot of the 5th harmonic is present. Thus with the help

of Table 3.3 one can determine limits for the magnetic �eld strength immediately, if the

electron density in the magnetised area along the propagation path of the harmonics

is known. To determine this density additional considerations concerning the harmonic

source geometry are necessary.

3.6.1.1 In
uence of Electron Density and Source Geometry on the Observed Field Strength

As already discussed in Subsection 3.3.2 the leading edge of the main laser pulse imme-

diately pushes away the free electrons of the pre-plasma along its path of incidence, so

that a channel depleted of electrons is formed. Hence any magnetic �elds present inside
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Harmonics Cut-O� for Cut-O� for Cut-O� for Cut-O� for

of nec=8 � 1021 cm-3
nec=4 � 1021 cm-3

nec=1 � 1021 cm-3
nec=1 � 1020 cm-3

# nm in MG in MG in MG in MG

2 527 72 153 198

3 351 35 170 271 302

4 264 204 305 381 406

5 211 346 427 488 509

6 176 475 542 593 610

7 151 596 653 697 711

8 132 712 762 800 812

9 117 824 869 903 915

10 105 935 976 1006 1020

11 96 1044 1081 1108 1121

12 88 1152 1186 1211 1222

13 81 1259 1290 1313 1323

14 75 1365 1394 1415 1424

15 70 1470 1497 1518 1524

16 66 1575 1600 1619 1625

17 62 1680 1704 1721 1732

18 59 1784 1806 1824 1834

19 55 1888 1909 1925 1935

Table 3.3: Minimal magnetic �eld strength required to cut o� the extraordinary wave of a certain harmonic

at a given electron density. The values are calculated with Eq. (3.19).

this channel cannot alter the polarisation state of the incident main pulse seriously. Fur-

thermore the pondermotorive forces, generated by the p-polarised main pulse, steepens

the density gradient at the target surface again, even drilling a hole into the over-dense

plasma (see Subsection 3.2.2), so that e�cient harmonic generation can take place at the

relativistically corrected critical electron density surface (see Subsection 3.3.2 and [191]).

The harmonic radiation, produced around to the bottom of this hole, might propagate

through magnetised plasma areas at the side-walls of the hole with densities such high,

that the harmonics are already cut o� at a rather low magnetic �eld strength (Figure 3.8).

But there is always some harmonic radiation produced in regions further away from the

bottom of the hole and from the axis of the incident laser pulse, where the relativis-

tically corrected electron density is much lower. Due to the electron density gradients

pointing away from the centre of the laser{plasma interaction, the harmonics generated

in these outer regions will not propagate through plasma areas with an electron density

considerably higher than the density in their region of origin.

The peak intensity of the focused VULCAN laser pulse is about 1.5 � 1020 W/cm2, so

that the relativistically corrected electron density (see Eq. (3.4)) varies from necrel :=

8 � 1021 cm-3 (
 . 8) at the bottom of the hole to nec := 1 � 1021 cm-3 (
 � 1) in the

periphery of the laser{plasma interaction. Consequently, one can only observe complete

x-wave cut-o�s, if the harmonics produced at nec are also cut-o�. Hence an electron
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density not much beyond nec is appropriate for a good estimate of the minimal magnetic

�eld strength present inside the plasma (compare in addition Figure 3.8). To avoid

overestimating the peak magnetic �eld strength all further considerations are based on

an electron density of ne = 2 � 1021 cm-3. This is roughly the relativistically corrected

critical electron density for 1019 W/cm2. Furthermore, the error bars of the magnetic

�eld strength cover a density range from 1 � 1020 cm-3 to 4 � 1021 cm-3.

Using Table 3.3, one immediately recognises, that the 4th harmonic cut-o� requires

a lower limit of the peak magnetic �eld of 350(�60) MG. If the plasma should become

relativistic in the magnetised region for any reason, then this value only underestimates

the peak magnetic �eld strength (see Subsection 3.4.4). On the other hand so far no

5th harmonic cut-o� has been observed. Thus the strongest magnetic �eld in the plasma

could be lower than approximately 470(�50) MG. But it is important to note that this

upper limit is not totally conclusive, as there are several reasons why a cut-o� cannot

be observed: at �rst this might be due to the none-zero temperature inside the plasma

(see end of Subsection 3.4.4). Another reason is that the magnetic �elds can be very

localised in comparison to the emission volume of the 5th harmonic, so that most of

the radiation bypasses this area and the observed decrease in the p-polarised harmonic

intensity becomes negligibly small. Even worse, the �eld may be exclusively present in a

region with such a high electron density, that the 5th harmonic cannot propagate through

this area and is not in
uenced by this �eld consequently.

3.6.1.2 In
uence of the Laser Intensity on the Cut-O�s

To answer the question, at which laser intensity a certain harmonic is cut-o�, the mea-

sured CCD images (compare Figure 3.19) have been analysed with the programme de-

scribed in Subsection 3.5.2.1. Furthermore Eq. (3.49a) has been used to derive the

Stokes parameters of the harmonics right behind the plasma. Eventually the p-polarised

component of the harmonic emission normalised to the total harmonic emission, i.e.

0:5 (1+ S1=S0) is plotted versus the average focal laser intensity in Figure 3.20 for the

3rd and 4th harmonic. It is clearly seen that the 3rd harmonic is already cut-o� at

8.5 � 1019 W/cm2, whilst the 4th harmonic is cut of at intensities above 9.5 � 1019 W/cm2

only. This is in agreement with theoretical considerations stating that the magnetic �eld

strength should increase with increasing laser intensity (see Section 3.1 and [68]). If the

intensity is increased further, then the normalised p-component in Figure 3.20 starts

growing again, because the volume emitting a particular harmonic increases too, so that

a part of the harmonic radiation can bypass the magnetised plasma now (see Figure 3.4).

This is particularly bad in the case of the 2nd harmonic, which is emitted from a volume

so large that the cut-o� is never complete in general. The gentle decrease of the nor-

malised p-component of the 3rd and 4th harmonic for intensities below 8.5 � 1019 W/cm2

in Figure 3.19 is due to the increasing Cotton-Mouton e�ect (see Subsection 3.4.3): with

increasing laser intensity the ellipticity of the harmonic radiation increases, i.e. their

s-polarised component grows whilst their p-polarised component decreases.
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3.6.1.3 Complete Cut-O�s and Magnetic Field Properties

As already mentioned above, we observed complete x-wave cut-o�s in our experiments.

From the observation of these complete cut-o�s important conclusions about the proper-

ties of the magnetic �eld can be drawn:

� In Subsection 3.4.2 it is shown (see in addition Appendix E.2), that the two charac-

teristic vectors of an electromagnetic wave propagating through a magnetised plasma

become elliptically polarised as soon as the magnetic �eld has a component parallel to

the propagation direction. In this case a cut-o� would allow only one elliptically po-

larised characteristic vector to propagate through the magnetised plasma, so that the

polarisation state behind the plasma is always elliptically polarised. Hence the signal

behind a linear polariser can never vanish completely. As we have observed complete

cut-o�s, the characteristic vectors have to be linear polarised. Consequently the mag-

netic �eld is perpendicular to the propagation direction of the electromagnetic wave,

i.e. one can neglect the Faraday e�ect in comparison to the Cotton-Mouton e�ect.

� If the harmonics already have an ordinary component with respect to the magnetic �eld

in front of the magnetised plasma, then the signal IE;0 on the zeroth polariser channel

cannot vanish even in the case of a complete cut-o�. As IE;0 never became zero in

our experiments, the initial harmonic polarisation always had an ordinary component.

Thus IE;1 can only vanish, if the respective polariser is aligned perpendicular to this

ordinary component. Consequently the axis of the �rst polarimeter channel and hence

the whole polarimeter is aligned perpendicular to the polarisation direction of the

ordinary wave, i.e perpendicular to the magnetic �eld. Consequently � from Eq. (3.29)

(i.e. the angle between the polarisation direction of the x-wave and the polarimeter

axis) is approximately zero.

� Recalling that the target is aligned in such a manner, that its normal vector is parallel to

the p-polarisation plane of the polarimeter and that the magnetic �eld is perpendicular

to this plane (see last item), it is clear, that the magnetic �eld is also parallel to

the target surface. This agrees with the theoretical prediction from Subsection 3.2.2,

showing that the magnetic �eld strength normal to the target is less than 10 % of the

azimuthal �eld strength.

� Depolarisation due to density gradients, i.e. a gradient of the refractive index [94, 126]

along the propagation path of the harmonics, can alter their polarisation state too. In

general this polarisation mechanism leads to elliptically polarised harmonics. Hence one

cannot observe a complete cut-o� if this e�ect is large behind the x-wave cut-o� region

of the plasma. In addition the density gradients are pointing away from the centre

of the laser plasma interaction, so that the propagation direction of the harmonics is

rather parallel to these gradients and thus the depolarisation e�ect is reduced even

more. This consideration is also true for the incident laser beam where this e�ect is

particularly small, due to the reduced electron density along its path of incidence. It

is also noteworthy that the depolarisation decreases with decreasing wavelength.
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3.6.2 The M�uller Matrix Approach
If one cannot observe the x-wave cut-o�s, then the magnetic �eld strength can be deter-

mined with the M�uller matrix approach. But applying this method some pre-conditions

have to be met.

3.6.2.1 Pre-Conditions

At �rst it is vital to know the polarisation state of the laser harmonics before they enter the

highly magnetised plasma region. Already in Subsection 3.3.2 theoretical considerations

have been made, showing that the harmonic radiation is supposed to have the same

polarisation state as the laser, i.e. in the present experiment the harmonics should be

linear polarised. Experimentally verifying this theoretical predictions is not straight

forward, because one can only measure the harmonic radiation after its propagation

through the plasma, i.e. when it is already in
uenced by magnetic �elds and possibly

further e�ects. But, if one reduces the pulse energy of VULCAN to roughly 1 J, then the

magnetic �eld strength reduces considerably in comparison to full energy shots as shown

by PIC simulations similar to Subsection 3.2.2. Thus the observed polarisation state of

the harmonics should not di�er much from the original polarisation state. The in
uence

of these relatively weak magnetic �elds onto the polarisation of the harmonics can be

reduced even more, if higher order harmonics are used, because the Cotton-Mouton e�ect

scales with !-3 (see Subsection 3.4.5). For the 4th harmonic the ellipticity was already

less than 0.028� and the azimuth angle (i.e. the rotation of the major principle axis of

the harmonics against the p-polarisation plane of the polarimeter) was 15(3)�. The degree

of polarisation was over 90 %. Similar results, independent from the laser pulse energy,

were obtained by measuring the polarisation state of harmonics, propagating along a

line of sight from the centre of the laser{plasma interaction in a direction close to the

target normal. This agrees with the PIC simulations in Figure 3.2, predicting only weak

magnetic �elds along this line of sight even for high laser intensities.

Despite magnetic �elds, the polarisation state of the harmonic radiation can also

be altered by depolarisation due to density gradients. As already discussed in Subsec-

tion 3.6.1.3 this e�ect is presumably small and can be neglected, so that in summary all

measurements and theoretical considerations support the assumption of initially linear

polarised harmonics.

Another open, but important question is the extension of the magnetised plasma

volume. As spatially resolved measurements of the magnetic �eld distribution inside

a laser produced plasma are still under way [62], one has to estimate the propagation

length of the harmonics through the strongly magnetised areas of the plasma. Optical

probing of the under-dense pre-plasma region [117] suggests to assume a density scale

length of 1 µm. This is also supported by the extension of the magnetised region in the

PIC simulation in Subsection 3.2.2.

Before discussing the experimental results, the parameters necessary for calculating

the �eld strength, using the equations given in Subsection 3.4.6, are brie
y summarised

again:
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Figure 3.21: Magnetic �eld strength calcu-

lated from the measurement of Stokes parame-

ters for various harmonics (initially linear po-

larised; azimuth angle 15(5)�; angle between

the magnetic �eld and the polarimeter axis

� 0(3)�; electron density 2 � 1021 cm-3; prop-

agation length 1 µm).

Angle of Magnetic Field: In Subsection 3.6.1.3 it was discussed, that due to the align-

ment of the target and the existence of complete cut-o�s, the angle between the

p-polarisation plane of the polarimeter and the magnetic �eld must be approxi-

mately zero, i.e. � � 0(3)�.

Initial Polarisation State: The harmonics' initial state of polarisation has been found to be

linear polarised, with an azimuth angle of 15(3)� relative to the polarimeter axis,

thus �- � � � � 15(3)�.

Electron Density: Coming back to the discussion about the appropriate electron density in

the magnetised plasma region form above, we again assume that ne = 2 � 1021 cm-3.

Propagation Length: So far one is limited to estimate the propagation length from computa-

tional simulations and measurements of the plasma scale length. These simulations

and measurements suggest a scale lenght of �z � 1 µm.

The precision of the measurements will increase if future experiments lead to a better

knowledge of the appropriate electron density in the magnetised volume and the extension

of this volume. Nevertheless relative measurements of the magnetic �eld strength, i.e. the

comparison between the �eld strength derived from di�erent harmonics, do not depend

on these parameters, as they mutually cancel each other in this case. Hence relative

magnetic �eld measurements are already a very powerful tool to study magnetic �elds in

laser produced plasmas.

3.6.2.2 Observation of Magnetic Fields with VIS /UV Polarimetry

With the polarimeters described in Subsection 3.5.2 the VIS /UV harmonics, i.e. the

2nd to the 5th harmonic, have been studied. To derive the Stokes parameters behind

the plasma from the data acquired with these polarimeters the calibration equation

Eq. (3.49a) has been used. The particularities of the polarimeter calibration and the

image analysis procedure are explained in Subsection 3.5.2. By knowing the Stokes pa-

rameters behind the plasma one can derive the magnetic �eld strength with Eq. (3.29),

if one pays attention to the pre-requisites discussed in Subsection 3.6.2.1. The outcome

of this calculation is shown in Figure 3.21 for the di�erent harmonics. The error bars

mainly include the calibration errors of the polarimeters whilst systematic errors like

wrong assumptions about the estimated parameters in Eq. (3.29) are not included.



3.6. Experimental Results 81

At �rst one recognises that the observed magnetic �eld strength increases with in-

creasing harmonic order. This can be most easily understood if one remembers that the

strongest magnetic �elds in the PIC simulations (see Subsection 3.2.2) are observed in

areas with a high density and that probably the low order harmonics cannot propagate

through these high density areas (compare Figure 3.4(a)). In addition this can also be

a geometric e�ect: as higher intensities are needed to produce higher order harmonics

more e�ciently (see Subsection 3.3.2), the source size of the higher order harmonics is

smaller than the source size of the lower order harmonics, due to the approximately

Gaussian spatial pro�le of the laser pulse. Thus the line of sight from the polarimeter to

the emission region of a harmonic with a rather high order may pass through the highly

magnetised area exclusively, whilst the line of sight for a harmonics with a lower order

may partially bypass the highly magnetised area, so that one observes a lower averaged

magnetic �eld strength.

At a second glance one recognises that the magnetic �eld strength derived with the

M�uller matrix approach does not reach the value at which the respective x-wave cut-

o� appears. This could be due to assuming wrong values for the electron density or

the extension of the magnetised plasma region. However the �eld strength calculated

with the M�uller matrix approach does not di�er much from the values calculated with

the cut-o�s. Hence the assumptions about the parameters from Subsection 3.6.2.1 seem

to be realistic. In addition, even if the assumptions about these parameters should be

wrong, then this still does not explain why the �eld strength already becomes constant

for intensities well below the x-wave cut-o� intensity (compare Figure 3.20). The main

reasons for this constant �eld strength are less obvious, because they are related to the

derivation of Eq. (3.29) and its succeeding equations: for deriving these equations it is

required that 
?�z � �. Furthermore one often uses an approximation of 
? instead

of the exact expression Eq. (3.22b) for simplicity. This does not hold any more, if the

magnetic �eld strength approaches the cut-o� strength. Hence the derived magnetic

�eld strength already saturates for intensities well below the cut-o� intensity and does

not reach the �eld strength calculated from the respective x-wave cut-o�. On the other

hand, if the magnetic �eld strength is well below the respective cut-o� level and the laser

intensity is low, so that the source size does not become too large, then one expects to

observe the same �eld strength for di�erent harmonics. In fact this is observed for the

3rd and 4th harmonic at intensities below 1018 W/cm2 (see Figure 3.21). In contrast to

that, the �eld strength calculated from the 2nd harmonic is even lower, because it is very

easily generated in a huge plasma volume, so that it mainly propagates through weakly

to unmagnetised plasma areas.

An even closer look shows that the �eld strength observed with the 2nd and 3rd

harmonic begins to decrease again shortly before the laser intensity reaches the cut-

o� level. This can be understood if one realises, that the magnetic �eld strength is

mainly calculated from the Stokes parameter S3 (see Eq. (3.30)) and that this parameter

represents the ellipticity (see Eq. (C.5)). If there are already some regions inside the



82 Chapter 3. DC Megagauss Azimuthal Magnetic Fields

(a) Pulse energy on target: 18 J; Intensity: 1.4 � 1019 W/cm2

(b) Pulse energy on target: 100 J; Intensity: 8 � 1019 W/cm2

Figure 3.22: The originally acquired

spectral traces for a low and a high

energy shot. The high energy shot

clearly shows an increase of the s-

polarised component in comparison

to the low energy shot.

plasma, where the �eld strength necessary for producing a cut-o� is surpassed, then

only the s-polarised part of the harmonic radiation is transmitted through these areas.

This linear polarised part reduces the mean ellipticity of the total emission, eventually

leading to a lower observable �eld strength. In contrast to that, the geometric e�ect from

Subsection 3.6.1.2 (i.e. that with increasing laser intensity the source size becomes larger

and can surpass the size of the plasma region in which the magnetic �elds produces a

cut-o�) can lead to an increased ellipticity again. However these values are not plotted

in Figure 3.21 anymore.

An important conclusion drawn from these studies is, that all values of the magnetic

�eld strength calculated with the M�uller matrix approach are a lower boundary of the

�eld strength derived from the respective cut-o�. Hence the M�uller matrix approach

gives reasonable lower boundaries of the peak magnetic �eld strength inside the plasma,

if the necessary parameters are chosen carefully.Applying this approach to the Stokes pa-

rameters observed for the 5th harmonic shows that the peak magnetic �eld is presumably

above 400(�50) MG, which agrees well with the results derived from the x-wave cut-o�s

in Subsection 3.6.1.1.

3.6.2.3 Observation of Magnetic Fields with VUV/XUV Polarimetry

Recalling that our experimental studies suggest that the observed magnetic �eld strength

increases with increasing harmonic order, VUV/XUV harmonics will presumably dis-

cover even stronger magnetic �elds. Thus during our experiment two VUV/XUV po-

larimeters have been employed to study the magnetic �elds by observing the VUV/XUV

harmonics. One polarimeter was looking onto the plasma at an angle of gracing inci-

dence of 4�, whilst the second was observing the plasma in a direction close to normal,

i.e. at 80� with respect to the target surface (see Figure 3.9). These polarimeters are

described in detail in Subsection 3.5.3. In Figure 3.22 typical CCD-images acquired with

the gracing incidence polarimeter are shown for a low (18 J) and a high (100 J) energy

shot. These spectral traces have been analysed with the Matlab programme described

in Subsection 3.5.3 to derive the measured s2=p2-ratio. The initial s2=p2-ratio right behind

the plasma has been calculated by using the calibration equation Eq. (3.49a) and the

re
ectivity data of a gold surface from [186] (see Figure 3.18). This ratio can be used

to derive the magnetic �eld strength (see Subsection 3.4.6.4), because the cyclotron fre-
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(a) Pulse energy: 18 J; Intensity: 1.4 � 1019 W/cm2 (b) Pulse energy: 100 J; Intensity: 8 � 1019 W/cm2

Figure 3.23: Magnetic �eld strength measured with VUVXUV polarimetry for a low and a high energy shot.

The observation angle of the polarimeter was approximately 4� with respect to the target surface.

quency !ce (see Eq. (3.6)) is much smaller than the vibration frequency of su�ciently

high VUV/XUV harmonics.

In Figure 3.23 the value for the magnetic �eld strength is calculated for a low and a

high energy shot from the measured s2=p2-ratio, assuming that the Cotton-Mouton e�ect

dominates the interaction between the harmonic radiation and the magnetic �eld, i.e.

Eq. (3.35) is valid. Within the experimental errors, growing with increasing harmonic

order and being mainly caused by the 8 bit dynamic range of the Darkstar CCDs, the

calculated value for the magnetic �eld strength can be considered constant at roughly

10 a.u. for the low energy shot. This is completely di�erent for the high energy shot,

where we observe a jump of the calculated �eld strength value from 14.5 a.u. to 25 a.u.

between the 10th and 11th harmonic. From the 7th to the 10th and from the 11th to the

13th harmonic the calculated �eld strength remains constant. It is important to mention,

that between the low and high energy shot only the target was replaced and the laser

energy was increased, so that any changes due to the alignment can be ruled out and one

can compare the two plots directly. In addition, for some high energy shots this jump

appeared between the 9th and 10th harmonic, so that it cannot be due to the optical

properties of the polarimeter. Furthermore the second polarimeter (set to an angle of 80�

with respect to the target surface) has never observed any di�erence between low and

high energy shots for any harmonic. Hence this phenomena must be caused by a physical

process related to the laser{plasma interaction, depending on the focused laser intensity

and the angle of observation.

The PIC simulations in Subsection 3.2.2 predict azimuthal magnetic �elds, which de-

pend on the focused laser intensity and should be observable with a gracing incidence

polarimeter only. These predictions agree well with our experimental �ndings. Further-

more an azimuthal magnetic �eld in conjunction with our experimental setup requires

that mainly the Cotton-Mouton e�ect alters the polarisation state of the harmonics. As

already discussed in Subsection 3.4.6.4 the Cotton-Mouton e�ect scales with !-3 (see

Eq. (3.35)), whilst the Faraday e�ect scales with !-2 (see Eq. (3.33)). Hence magnetic
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�eld values calculated form the s2=p2-ratio, by assuming the dominance of the Cotton-

Mouton e�ect and thus using Eq. (3.35), should only remain constant for several di�erent

harmonics if this assumption holds. Indeed this agrees with Figure 3.23, where the the

magnetic �eld values remain constant from the 7th to the 10th and from the 11th to the

13th harmonic.

In Figure 3.23 the magnetic �eld strength value, given in arbitrary units, increases

between the 10th and the 11th harmonic by a factor of �1.75. This is a strong indication
of a peak magnetic �eld beyond 700(�100) MG inside the plasma: From the x-wave cut-

o� we know that the peak magnetic �eld is greater than 350(�60) MG. Measurements

performed with the 5th harmonic, based on the M�uller matrix approach, even suggests

�elds beyond 400(�50) MG. Thus it is reasonable to assume that the 7th to the 10th

harmonic are also in
uenced by a magnetic �eld of at least 400(�50) MG. Consequently

the 11th to the 13th harmonic must be in
uenced by a �eld of at least 700(�100) MG. It is

important to note that the increase of the magnetic �eld strength derived from its height

does not depend on the electron density ne and the propagation length �z in Eq. (3.35),

because we are comparing the polarisation properties of two successive harmonics, which

propagate along similar paths as discussed in the next paragraph. Furthermore a �eld

strength of 700(�100) MG could give raise to a cut-o� of the 8th harmonic, but to observe

this cut-o�, the extinction-ratio of the polarisation splitters (see Figure 3.15) has to be

increased even more.

Finally, it is interesting to note that the critical electron density for the 11th harmonic

is nec = 1.1 � 1023 cm-3, so that this harmonic can penetrate through very dense areas

of the plasma and one can observe magnetic �elds from the interior of the target and

not only from areas close to the target surface. This cannot explain the jump between

the 10th and 11th harmonic completely, as the di�erence in the critical electron density

between these two harmonics is only 4 %. Consequently a more likely explanation is the

di�erence in source size, as already discussed above (see e.g. Subsection 3.3.2). For a

more detailed understanding of this exciting discovery further studies and an improved

VUV/XUV polarimeter are indispensable.

3.7 Summary
In this chapter the generation and observation of magnetic �elds in sub-picosecond laser

produced plasmas were discussed. There are three main sources for the generation of

magnetic �elds in sub-picosecond laser produced plasmas: radial thermal transport, pon-

dermotorive forces and fast electron currents.

As the �eld due to radial thermal transport needs several picoseconds to build up, it is

presumably still rather weak during the direct laser{plasma interaction (i.e. at times when

the high harmonic radiation is produced). Hence, most likely, we have been observing the

pondermotorively generated �eld, because it is much stronger than the �eld due to fast

electron currents. Its strength was studied with three di�erent experimental techniques:

cut-o�s, VIS /UV polarimetry and VUV/XUV polarimetry. We observed a �eld strength
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of about 400(�50) MG and found strong indications of �elds up to 700(�100) MG.

PIC Simulations To get more insight into the location and strength of the magnetic �eld

inside the plasma PIC simulations have been performed with the programme OSIRIS [64,

70, 112] from the University of California at Los Angeles (UCLA). For normal incidence

of the laser beam the strongest magnetic �eld lines had an azimuthal shape. But in the

case of oblique incidence, this �eld was compressed to an even higher �eld strength in

the half plane along the target normal not containing the incident beam. In the half

plane containing the incident beam, the �eld was much lower but expanded over a larger

region. This important result clari�es that the strong magnetic �elds could be observed

from one side of the plasma only. Furthermore, these computational simulations show

strongly localised magnetic �elds up to 700(�100) MG in the high density regions of the

plasma. Thus 
uid hybrid models would be more accurate for detailed theoretical studies

[41].

Fundamentals of the Experiment A convenient way to study these �elds is spectroscopy

with radiation produced either inside the plasma or from an external source. The latter

is rather di�cult for visible and UV radiation because of the refraction at the steep

density gradients at the plasma edges (see Figure 3.3). This improves for radiation with

a shorter wavelength like x-rays. But the present performance of x-ray optics and sub-

picosecond x-ray sources makes such experiments still very di�cult. Hence an internal

source of radiation, like high harmonics of the laser, seems to be more appropriate (see

Subsection 3.3.1). Theoretical considerations and experimental �ndings suggest, that

these harmonics are an ideal source for studying magnetic �elds. Namely, they are a

bright and quite localised source with presumably the same polarisation as the laser,

radiating into a solid angle of 2� at VULCAN (see Subsection 3.3.2).

Observation of Magnetic Fields If an electromagnetic wave propagates through a magne-

tised plasma, one can distinguish between parallel (Faraday e�ect) and perpendicular

(Cotton-Mouton e�ect) propagation (see Subsection 3.4.3) with respect to the magnetic

�eld. The latter is most important for our experiment, as the harmonics propagate from

the centre of the laser{plasma interaction through the azimuthal magnetic �eld. However

in this case the p-polarised component of the electromagnetic wave can only propagate

if the magnetic �eld strength is below a certain level (x-wave cut-o�), depending on the

wavelength of the wave. This cut-o� can be used to determine the �eld strength, even if

the electron density is only known within one order of magnitude (see Subsection 3.4.4).

Furthermore it is only complete if the magnetic �eld is perpendicular to the propagation

direction of the wave. For wavelengths beyond the cut-o�s one can determine the mag-

netic �eld strength from the components of the plasma's M�uller matrix, if the polarisation

state of the harmonics in front and behind the magnetised plasma region is known (see

Subsection 3.4.6). In addition one has to know the extension of the magnetised plasma

region and its electron density. Furthermore, one can distinguish between the Faraday

and Cotton-Mouton e�ect, because the former scales with !-2 whilst the latter scales
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Figure 3.24: Overview of the observed mag-

netic �eld strengths versus laser-intensity dur-

ing the experiment: the crosses are the �eld

strength calculated from PIC simulations (see

Subsection 3.2.2), the horizontal lines repre-

sent the x-wave cut-o�s and the other points

are based on the M�uller matrix approach with

VIS, UV, VUV and XUV polarimetry. It can

be seen that the �eld strength grows exponen-

tially with the laser intensity.

with !-3. If the cut-o� frequency is much lower than the harmonic frequency, then one

can calculate the magnetic �eld strength from the s2=p2-ratio.

Experimental Setup An overview of the whole experimental setup is shown in Figure 3.9.

To measure the x-wave cut-o�s and the components of the M�uller matrix two VUV/XUV

polarimeters and three VIS /UV polarimeters were employed.

VIS /UV Polarimeters By setting up the VIS /UV polarimeters (see Figure 3.12) it

was assured, that all angles of incidence onto the optical elements were kept below 20� to

avoid an unnecessarily large phase-shift between the re
ected s-polarised and p-polarised

parts of the harmonic radiation. To calculate the Stokes parameters of the laser har-

monics directly behind the plasma, the number of counts for each polarimeter channel

was calculated (see Subsection 3.5.2.1) and then multiplied by the calibration matrix

Eq. (3.49). The calibration matrix was determined by calibrating the instrument with a

pulsed, highly linear polarised and frequency multiplied Nd:YAG laser (see Figure 3.9).

Single-Shot VUV/XUV Polarimeters The VUV/XUV polarimeters are shown in Fig-

ure 3.16 and have been employed for the �rst time in connection with a laser produced

plasma. To derive the s2=p2-ratio directly behind the plasma the spectral traces have been

integrated (see Subsection 3.5.3.1) and then the calibration equation Eq. (3.52) was used.

The parameters of this calibration equation have been derived from tabulated measure-

ments of the complex refraction index of gold [98, 186]. These calculated parameters

roughly correspond with our own calibration measurements performed at the FORTH

facility in Greece with laser produced gas harmonics.

Experimental Results As already discussed above the magnetic �eld strength was deter-

mined with two independent methods: the x-wave cut-o�s and the M�uller matrix ap-

proach.

X-Wave Cut-O�s This is a very striking method for studying strong magnetic �elds in

a laser produced plasma, if the electron density is not so high, that the cut-o� frequencies

shift to lower frequencies (see Figure 3.8). The horizontal lines in Figure 3.24 represent

the cut-o� levels. In our experiment we repeatedly reproduced cut-o�s for the 2nd, 3rd

and 4th harmonic, but none of the 5th. As we can estimate, that the 4th harmonic

propagates at least partially exclusively through plasma areas with an electron density
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below 2 � 1021 cm-3 (see Subsection 3.6.1.1), the peak magnetic �eld strength in our plasma

must be larger than 350(�60) MG. As we observed complete x-wave cut-o�s of the 3rd

and 4th harmonic, the Faraday e�ect can be of minor importance only and the observed

magnetic �eld must be an azimuthal �eld indeed.

M�uller Matrix Approach This method depends on deriving some components of the

M�uller matrix by measuring the Stokes parameters of the harmonic radiation behind the

plasma. Hence it is limited to magnetic �elds lower than the �eld strength that would

produce an x-wave cut-o� of the harmonic under consideration.

VIS /UV Polarimetry: The magnetic �eld strength calculated from a certain har-

monic already becomes constant at laser pulse intensities much lower than the intensity

needed to produce a magnetic �eld, cutting o� the respective harmonic (see Figure 3.24).

This is due to the approximations generally used to calculate the �eld strength (see Sub-

section 3.4.6). Consequently the calculated values underestimate the real peak magnetic

�eld strength in general. If the �eld strength inside the plasma is much lower than the

�eld needed to cut-o� certain harmonics and the electron density is not too high, then

one derives similar values for the �eld strength from each of these harmonics, as we found

e.g. for the 3rd and 4th harmonic at intensities below 1018 W/cm2. In contrast to that,

the �eld strength derived from the 2nd harmonic is too low again, because the source size

of this harmonic is presumably so large, that most radiation does not propagate through

strongly magnetised areas. As the source size decreases and the critical electron density

related to a certain harmonic grows with increasing harmonic order, it is not surprising,

that we observed �elds beyond 400 MG using the 5th harmonic (see Figure 3.4).

VUV/XUV Polarimetry: For su�ciently high VUV/XUV harmonics, it is possi-

ble to derive the �eld strength from the s2=p2-ratio (see Subsection 3.4.6.4). Analysing the

measurements from the gracing incidence polarimeter (see Figure 3.9) we found a jump

in the magnetic �eld strength between the 10th and 11th harmonics (see Figure 3.23).

Assuming that the harmonics up to the 10th are mainly in
uenced by �elds of at least

400(�50) MG (see Subsection 3.6.1 and Subsection 3.6.2.2), then the harmonics from

the 11th onwards should be in
uenced by �elds not lower than 700(�100) MG (compare

Subsection 3.6.2.3). Propagation through a region with a particular density and high

magnetic �eld cannot explain this jump, because the critical electron density between

the 10th and 11th harmonics does not di�er by more than 4 %. As the source size de-

creases with increasing harmonic order, it is much more likely, that for harmonics from the

11th onwards, all radiation propagates through a plasma area with a stronger and more

localised magnetic �eld (see Figure 3.4). In addition the �eld strength for successive har-

monics remained constant, which is an indication, that indeed the Cotton-Mouton e�ect

determines the interaction of the harmonics and the magnetised plasma. Furthermore,

the polarimeter set up close to normal incidence did not observe any magnetic �elds,

consistent with the PIC simulations in Figure 3.2.
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Outlook The double logarithmic plot in Figure 3.24 shows the observed magnetic �eld

strength versus laser intensity. The crosses in this plot represent the �eld strength cal-

culated with the PIC simulations described in Subsection 3.2.2. It is seen clearly that

the calculated values grow exponentially with the laser intensity. The same increase of

the �eld strength is supported by our experimental data (all other dots in the diagram).

Obviously we have not been able to �nd any saturation of the magnetic �eld strength

as proposed by Haines [68]. Hence the question, as to whether or not the magnetic �eld

strength saturates, will remain open at least until detailed experimental studies can be

performed with petawatt lasers, where one can expect �elds beyond 1 GG. However the

�elds measured in our experiment already have a strength of several hundred megagauss,

which is more than 10 times stronger than any magnetic �eld observed in a laser produced

plasma so far. As this was the �rst experimental observation of such strong �elds in a

laser produced plasma, it is important to con�rm our experimental �ndings with further

experiments, based on alternative approaches as the Zeeman e�ect for example [141, 151].
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Summary and Outlook

In this work two important aspects of the interaction between an intensive sub-picosecond

laser pulse and a dielectric solid have been studied. In the �rst major part the ultrafast

ionisation and plasma formation at a dielectric surface was examined in detail. For

this experiment moderate laser intensities around 1015 W/cm2 with pulses as short as

60 fs have been used. One of the most striking results which we obtained was that the

ionisation process can transform an initially transparent surface into an opaque plasma in

less than 10 fs. Thus this mechanism is one of the fastest gates known, which gives rise to

interesting applications as brie
y discussed below. Furthermore we discovered that the

decrease in transmissivity is much faster than the increase in re
ectivity, which is due to

the quickly increasing absorption of the laser beam inside the plasma.

The next major part of this work presents the �rst observation of magnetic �elds

beyond several 100 MG in the high density regions of a plasma produced at a dielectric

solid with a femtosecond laser. For this experiment one of the strongest CPA lasers

available was employed. Its 750 fs pulses were focused to intensities up to 1020 W/cm2.

A serious obstacle for measuring these magnetic �elds is the strong refraction of an ex-

ternal electromagnetic probe beam in the entire VIS{XUV range at the edges of the

plasma. We could overcome this problem by studying the polarisation properties of the

laser harmonics produced inside the plasma itself. With this new approach we observed

magnetic �elds up to 400(�60) MG with VIS /UV polarimetry. VUV/XUV polarimeter

measurements, which we performed in addition, gave strong indications of �elds beyond

700(�100) MG. Supplementary summaries concerning the experimental procedures and

more details about the scienti�c results are given in Section 2.5 for the ionisation exper-

iment and in Section 3.7 for the magnetic �eld observation.

One exciting extension of the present ultrafast ionisation experiment is the use of an

even shorter laser pulse with a duration of approximately 10 fs. In this case the ionisation

process presumably becomes dependent on the absolute phase of the laser pulse, so that

one might be able to study the in
uence of this absolute phase onto the ionisation process.

This will be a challenging experiment, because most likely one will have to integrate over

several laser pulses, so that absolute phase-locking between adjacent pulses is required

[144]. The pump{probe setup (see Figure 2.9) used in the ionisation experiment could

also be combined with the polarimeters employed in the magnetic �eld experiment to

study the depolarisation of electromagnetic waves and the magnetic �elds [139] in the

under-dense regions of the plasma with high temporal resolution. For future studies

of the magnetic �eld in the very high density region of the plasma x-ray polarimetry

[143] will play an increasingly important role, because only x-rays can propagate through

these high density areas of the plasma without being absorbed and refracted too much.
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Furthermore, recent advances in the development of very high-power lasers [31] allow

repetition rates of approximately 1 Hz, so that one can integrate over several laser shots

and thus might be able to use an external x-ray probe beam. In addition to that, modern

high resolution x-ray optics [40, 51] can enable the observation of the spatial distribution

of the magnetic �eld inside the laser produced plasma [63].

Studying the magnetic �elds inside the plasma is only a �rst step: in the present

experiment we already observed very strong magnetic �elds, which were only about one

order of magnitude lower than the magnetic �elds of the fast oscillating carrier frequency

of the laser-pulse. As the upcoming generation of petawatt lasers allows even higher

intensities and we did not �nd any saturation of the magnetic �eld strength so far, these

lasers can presumably generate even stronger magnetic �elds. Thus the magnetic pressure

eventually reaches values at which the spherical symmetry of the hydrogen atoms deforms

to cylindrical symmetry. In this case the atomic transitions are determined by the Landau

quantisation [90], and one should observe a drastic change in the atomic line-emission

spectra. By pre-compressing tiny spheres of matter with VULCAN's nanosecond beams

to densities several orders of magnitude larger than solid density, one can even study

extremely dense and strongly magnetised matter, which is similar to the surface of white

dwarfs and neutron stars [150]. Hence these experiments could become key experiments

in testing, improving and developing astrophysical models of compact cosmic objects.

This will signi�cantly contribute to a �eld of science known as laboratory astrophysics.



Appendix A

Mathematical De�nitions and Equations

A.1 The Normalised Fourier Operator
From a mathematical point of view the relationship between the temporal and spectral

representation of an optical signal is given by the Fourier transform. Unfortunately for

historical reasons di�erent de�nitions of this transform are widely used. Much worse,

it can be quite di�cult with some of these de�nitions to de�ne the Fourier transform

of even simple signals like an in�nite and constant light wave. All these di�culties

can be overcome by introducing the normalised Fourier operator, de�ned over a set of

distributions. To avoid any confusion with other de�nitions, this appendix gives a short

overview of this approach and lists the properties of the normalised Fourier operator.

A.1.1 De�nitions
To de�ne the normalised Fourier operator it is necessary to introduce the normalised

Fourier integral �rst. In accordance with its common de�nition we write [26, 49, 188]:

De�nition A.1 Let f : R 7! C be a Lebesgue-Integrable function of time (i.e. f 2
L1(R;C)), then the integral Eq. (A.1) exists and ef(!), with the angular frequency !,

is called the Fourier integral of f(t):

ef(!) := Ft!!f(t) :=
1p
2�

Z1
-1

f(t) e+i!t dt (A.1)

In general the inverse transformation of Eq. (A.1) does not exist. To ensure its existence

f(t) is required to be in L1(R;C) \ L2(R;C), where L2 represents the space of Lebesgue
square-integrable functions.

To de�ne the Fourier transform of a distribution [49] we introduce regular distribu-

tions [56]:

De�nition A.2 Let be f 2 L1(R;C) \ L2(R;C) and let be �(t) a test function (i.e. an

in�nitely di�erentiable function with compact support), then F is called a regular

distribution:

Ff�(t)g :=

Z1
-1

f(t)�(t)dt : 8 test functions �(t) (A.2)

De�nition A.3 The Fourier transform of F is given by:

(Ft!!F)f�(t)g :=

Z1
-1

ef(!)�(!)d! : 8 test-functions �(t) (A.3)

Ft!! is called the normalised Fourier operator.

By using a series of regular distributions one can de�ne the Fourier operator of an arbi-

trary distribution [56]:
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De�nition A.4 Let F1 be a distribution and let fFng be an arbitrary series of regular

distributions, so that Fn converges uniformly against F1, then the Fourier transform

of F1 is given by:

(Ft!!F1gf�(t)) := lim
n!1

fFt!!Fngf�(t)g : 8 test functions �(t) and 8 fFng (A.4)

Furthermore, if the fn related to Fn converge against f1 : R 7! C, then F1 is the

related distribution to f1 and eF1 is the related Fourier transform.

Due to Def. (A.2) and Def. (A.3) each signal s 2 L1(R;C) \ L2(R;C) and its Fourier

transform can be represented as a distribution, so that one does not need to distinguish

between the related distribution and the original signal. In addition, working with these

distributions simpli�es calculations considerably, because one can Fourier transform many

distributions, whilst their appropriate physical signals cannot be Fourier transformed.

An example of this is an in�nite sinusoidal oscillation: its Fourier transform does not

exist in general, but the Fourier transform of its related distribution is the non-regular

�-distribution.

A.1.2 Properties
Let be a; b 2 C and let be f; g distributions. The de�nitions of operators used below are

given in Appendix A.3.1.

A very basic property of the Fourier operator is its relation to the parity operator :

F2 := F!!t � Ft!! � Pt (A.5)

Thus the inverse Fourier operator F-1
t!! is de�ned by:

F-1
t!! := F-1

t!! �Pt �Pt = Ft!! �Pt (A.6)

Another very fundamental property is the linearity :

Ft!! fa f(t) + bg(t)g = aFt!!f(t) + bFt!!g(t) (A.7)

More sophisticated is Parseval's theorem :

Ft!! jh(t)j
2
= jFt!!h(t)j

2
; h(t) 2 L2(R;C) (A.8)

The Fourier Transform of the complex conjugate f�(t) of f(t) holds:

Ft!! ff(t)�g � �F-1
t!!f(t)

	�
(A.9)

Furthermore the translation theorem states:

Ft!! fTt af(t)g = eia! Ft!!f(t) (A.10a)

Tt a fFt!!f(t)g = Ft!!

�
e-iat f(t)

	
(A.10b)



A.2. The Convolution Operator 93

The scaling theorem is given by:

Ft!!

�
Stlaf(t)

	
=

1

jaj
Ft!!=af(t) (A.11a)

S!la fFt!!f(t)g =
1

jaj
Ft!!

�
Stl1=af(t)

	
(A.11b)

Another prominent property of the Fourier operator is the convolution theorem (see

Appendix A.2):

Ft!! ff(t) �t g(t)g =
p
2� (Ft!!f(t)) (Ft!!g(t)) (A.12a)

Ft!! ff(t)g(t)g =
1p
2�

(Ft!!f(t)) �! (Ft!!g(t)) (A.12b)

Equally important are the derivation theorem :

Ft!! fDtf(t)g = -i!Ft!!f(t) (A.13a)

D! fFt!!f(t)g = Ft!! fit f(t)g (A.13b)

and the integration theorem :

Ft!! fItf(t)g =

�
i

!
+ � �(!)

�
Ft!!f(t) (A.14a)

It fFt!!f(t)g = Ft!!

��
-i

t
+ � �(t)

�
f(t)



(A.14b)

A.2 The Convolution Operator

A.2.1 De�nition
In the time domain the gating of an optical signal is represented by multiplying the

original signal with a gating function. As this multiplication becomes a convolution in

the spectral domain it is useful to de�ne a convolution operator for studying the gating

process in the spectral domain. Similar to the de�nition of the Fourier operator one has

to de�ne the convolution of functions �rst:

De�nition A.5 Let f; g 2 L1(R;C) be two functions, then the convolution �t is:

f(t) �t g(t) :=
Z1
-1

f(�)g(t- �) d� (A.15)

Then the convolution operator of distributions is de�ned in a similar manner to the

Fourier operator (see Appendix A.1).

A.2.2 Properties
Let be a; b 2 C and let f; g; h be distributions. The de�nitions of operators used below

are given in Appendix A.3.1.

The most fundamental properties of the convolution operator are its symmetry :

f(t) �t g(t) = g(t) �t f(t) (A.16)
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and its linearity

f(t) �t [ag(t) + bh(t)] = a [f(t) �t g(t)] + b [f(t) �t h(t)] (A.17)

The convolution operator and parity operator hold:

Ptff(t) �t g(t)g = (Ptff(t)g) �t (Ptfg(t)g) (A.18)

and the complex conjugate holds:

ff(t) �t g(t)g� = f�(t) �t g�(t) (A.19)

The convolution operator and Fourier operator hold:

Ft!! ff(t) �t g(t)g =
p
2� (Ft!!f(t)) (Ft!!g(t)) (A.20a)

Ft!! ff(t)g(t)g =
1p
2�

(Ft!!f(t)) �! (Ft!!g(t)) (A.20b)

The convolution operator and derivation operator hold:

Dtff(t) �t g(t)g = (Dtff(t)g) �t g(t) = f(t) �t (Dtfg(t)g) (A.21)

The convolution operator and translation operator hold:

Tt aff(t) �t g(t)g = (Tt aff(t)g) �t g(t) = f(t) �t (Tt afg(t)g) (A.22)

The convolution operator and scaling operator hold:

Stlaff(t) �t g(t)g = a (Stlaff(t)g) �t (Stlafg(t)g) (A.23)

A.3 De�nitions and Properties of Operators, Distributions and

Functions
This section lists some de�nitions and properties of various operators, distributions and

functions used within this work. Most of them are not uniquely de�ned or they are rarely

tabulated in the literature.

A.3.1 De�nitions

A.3.1.1 Functions

We de�ne the error function erf(t):

erf(t) :=
2p
�

Z t
0

exp
�
-t2
�
dt (A.24)

and the Heaviside function H(t):

H(t) := lim
a!1

1

2
(1+ erf(a t)) (A.25)
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A.3.1.2 Distributions

The delta distribution � [49, 56] is given by:

�f�(t)g =

Z1
-1

�(t)�(t)dt

:= lim
a !1

ap
�

Z1
-1

exp
�
-(a t)2

�
�(t)dt : 8 test functions �(t)

(A.26)

Test functions are in�nitely di�erentiable functions with compact support.

A.3.1.3 Operators

Always let f : R 7! C be an appropriate function in the following.

The parity operator :

Ptff(t)g := f(-t) (A.27)

The translation operatorTt a is de�ned by:

Tt aff(t)g := f(t- a) (A.28)

The scaling operator Stla is de�ned by:

Stlaff(t)g := f(a t) (A.29)

The integration operator It is de�ned by:

Itff(t)g :=

Z t
1

f(t̂)dt̂ (A.30)

The derivation operator is de�ned by: xDt is de�ned by:

Dtff(t)g := lim
t̂!t

f(t̂) - f(t)

t̂- t
(A.31)

Furthermore D
(m)
t is the mth derivative.

A.3.2 Properties

A.3.2.1 Fourier Transforms

Ft!! exp
�
-t2
�
=

1p
2
exp

�
-
!2

4

�
(A.32)

Ft!!H(t) =
1p
2�

�
i

!
+ � �(!)

�
(A.33)

Ft!! �(t) =
1p
2�

(A.34)

Ft!! erf(t) =

r
2

�

��
i

!
+ ��(!)

�
exp

�
-
!2

4

�
-
p
��(!)

�
(A.35)

xThe derivation operator of a distribution is de�ned analogous to the Fourier transform (see Ap-

pendix A.1).
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Ft!!



D

(m)
t �(t)

�
=

8<
:
(-1)

m
2 !m if m is even; m 2 N,

(-1)
m+1
2 i!m if m is odd; m 2 N.

(A.36)

Ft!! fP(t)g =
p
2�P (-iD!) �(!) (A.37)

where P(t) represents a polynomial.

A.3.2.2 Derivatives

DtH(t) = �(t) (A.38)

fDt �(t)g�(t) =

�
d

dt
�(t)

�
t=0

: 8 test functions �(t) (A.39)

A.3.2.3 Convolutions

Let f : R 7! C be a function, holding some very general constraints, then:

�(t)g �t f(t) = f(t) (A.40)�
d

dt
�(t)

�
�t f(t) = d

dt
f(t) (A.41)

A.4 Gaussian Pulses
The Gaussian pulse is given by:

Ga(I0; Th; t) := I0 e
-
�
2
p
ln 2
Th

t
�2

(A.42)

with the peak amplitude I0 and the full width half maximum Th.

The integral of Ga(I0; Th; t) over [-t0; t0] is given by

Z t0
-t0

Ga(I0; Th; t) dt =

r
�

4 ln 2
erf

 
2
p
ln 2

Th
t0

!
I0Th (A.43)

The integral of Ga(I0; Th; t) over the FWHM Th is given by:

ETh(I0; Th) :=

Z Th=2
-Th=2

Ga(I0; Th; t) dt =

r
�

4 ln 2
erf
�p

ln 2
�
I0Th � 0:8100 I0Th (A.44)

The integral of Ga(I0; Th; t) over R is given by:

E1(I0; Th) =

Z1
-1

Ga(I0; Th; t) dt :=

r
�

4 ln 2
I0Th � 1:0645 I0Th (A.45)

Thus the ratio of ETh(I0; Th) to E1(I0; Th) is given by:

ETh(I0; Th)

E1(I0; Th)
= erf

�p
ln 2
�
� 0:7610 (A.46)

In dealing with squared Gaussian pulses it is useful to note that:�
Ga(I0; Th; t)

�2
= Ga

�
I0;

Thp
2
; t

�
(A.47)
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The Fourier transform of a Gaussian pulse is:

Ft!!fGa(I0; Th; t)g = Ga

�
I0Thp
8 ln 2

;
8 ln 2

Th
;!

�
(A.48)





Appendix B

The Quasi Half Range Signal of a Gated Optical

Pulse

In this Appendix it is shown that the convolution of any reasonable gating function and

a complex quasi band-limited pulse is always a quasi half range signal. Basically this

means that sf(�;!) from Eq. (2.11) is a quasi half range signal in any case. For showing

this one has to de�ne the quasi half range signals of a real physical signal.

B.1 Quasi Half Range Signals

B.1.1 Quasi Identical Signals
Sometimes it is convenient to use a signal slightly di�erent from the original signal as

this can simplify the algebra considerably. Thus a quantitative measure is needed to

assess the deviation between them. Following ideas of Bedrosian [15], Rihaczek [135] and

Nuttall [119] to use the relative energy di�erence between two signals f1; f2; : R 7! C as a

measure of their deviation, we de�ne:

De�nition B.1 Let f1; f2; : R 7! C be two signals, then f1 and f2 are called quasi identical

signals, if R ���ef1(!) - ef2(!)���2 d!R ���ef1(!) + ef2(!)���2 d! �
R
jf1(!) - f2(!)j

2
d!R

jf1(!) + f2(!)j
2
d!

< � (B.1)

with the maximum permissible deviation � & 0.

If this inequality holds, then f1 and f2 can be considered identical for all practical pur-

pose. The identity between the time and frequency domain expressions hold because of

Parseval's theorem Eq. (A.8).

An important product theorem of quasi identical signals is readily derived from this

de�nition:

Theorem B.1 Let f1; f2; g1; g2 : R 7! C be arbitrary signals with f1, f2 and g1, g2 quasi

identical in pairs, then (f1 g1) and (f2 g2) are quasi identical signals.

B.1.2 Half Range Signals
As all physical signals s(t) are real signals, i.e. s : R 7! R, their spectrum es(!) :=

Ft!!fs(t)g shows a well known ordinate symmetry: The positive and negative frequencies

are correlated via the complex conjugate �. Accordingly one can represent such a signal

with the positive part of its spectrum solely. Hence, using the Heaviside function H, we

de�ne the half range spectrum fs+(!):
fs+(!) := 2H(!)Ft!!

�
s(t)

	
(B.2)
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The factor two rises from the conservation of energy, namely Parseval's theorem Eq. (A.8).

In addition note, that the support sup(fs+(!)) of a half range spectrum is always a subset

of R+

0 .

The inverse Fourier transform of fs+(!) is a complex function called the half range

signal s+(t) of s(t). With some basic algebra one can show that:

s+(t) := F-1
!!t

�fs+(!)	 = s(t) + iHt

�
s(t)

	
(B.3)

with the Hilbert transform :

Htfs(t)g := -
1

�

Z1
-1

s
�
t̂
�

t- t̂
dt̂ (B.4)

Working with half range signals is advantageous because a single-sided spectrum is

more intuitive than a two-sided. In addition, dealing with vibrations is more convenient

in a complex representation.

An important theorem about half range signals is the product theorem :

Theorem B.2 Let f; g : R 7! C be two arbitrary signals and let there exist !a 2 R, so
that sup(ef(!)) � f! 2 Rj! � !ag and sup(eg(!)) � f! 2 Rj! � -!ag, then f(t)g(t)

is a half range signal.

This is easily shown by using the convolution theorem of the Fourier transform and the

constraints concerning the support of f and g

B.1.3 Quasi Half Range Signals
Unfortunately some important physical signals cannot be represented as a half range

signal easily. A well known example of this is a Gaussian light pulse. Luckily a simple

mathematical expression exists, which is quasi identical to its precise half range signal.

Thus it is advantageous to introduce quasi half range signals :

De�nition B.2 An arbitrary signal s : R 7! C is called a quasi half range signals, if its

spectrum es(!) and the half range spectrum es(!)H(!) are quasi identical.

Using Theorem B.1 one easily extended Theorem B.2 to quasi half range signals:

Theorem B.3 Let f; g : R 7! C be two arbitrary signals and let there exist !a 2 R, so
that ef(!), ef(!)H(! - !a) and eg(!), eg(!)H(! + !a) are quasi identical in pairs,

then f(t)g(t) is a quasi half range signal.

Now this last theorem is applied to show that gated pulses are quasi half range signals in

general.

B.2 Gated Optical Signals

B.2.1 Quasi Band-Limited Optical Signals
In complex notation any optical signal can be written as:

sc(t) = A(t) ei(!0t+'(t)) (B.5)
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Figure B.1: Schematic spectrumfG�(!- �!) of a gating function and

an optical pulse esc( �!): it is seen

clearly, that the two spectra do not

overlap much for ! � 0, if the gat-

ing function is shifted across the op-

tical pulse.

A(t) is called the envelope of the signal, !0 represents the angle frequency of the fast

oscillating carrier frequency and '(t) is the phase modulation of !0. This signal is called

a quasi band-limited optical signal if there exists a signal sc;b : R ! C, so that sc;b(t)

is quasi identical to sc(t) and max[sup(gsc;b(t))] -min[sup(gsc;b(t))] < !0. This is true in

general if A 0(t)
A(t)

� !0 and ' 0(t) � !0 hold, whereby the apostrophe denotes the �rst

derivative.

Even if Eq. (B.5) is quasi band-limited, it is not necessarily a half range signal as one

can see by Fourier transforming sc(t) and assuming that A(t) is a Gaussian. Regardless,

if Eq. (B.5) is a quasi band-limited signal, it is easily shown with Def. (B.1) that there

exists an !s 2 R+, so that the spectrum esc(!) of sc(t) and esc(!)H(! -!s) are quasi

identical signals (Compare Figure B.1). Consequently sc(t) is a quasi half range signal.

B.2.2 The Gating Function
Before we can discuss the convolution of a gating function and an optical pulse, we have

to examine the spectral properties of an arbitrary gating function. We assume that the

gating function G� : R 7! C is di�erentiable in terms of generalised functions and that

the gate is triggered at a time �. Then one can write with the derivative G 0
�(t):

fG�(!) = Ft!!

�Z t
-1

G 0
�(T) dT



= Ft!!

�Z1
-1

H(-(T - t))G 0
�(T) dT



= (B.6)

Ft!! fG 0
�(t) �t H(t)g =

p
2� eH(!)fG 0

�(!) (B.7)

It is obvious, that all gating functions G�(t) approach a constant value for t! �1 in such

manner,that limt!�1G 0
�(t) converges against zero and that

R
jG 0

�(t)j
2 dt =

R
jfG 0

�(!)j
2 d!

exists and is �nite. Thus there exists a constant c 2 R
+ for all !g 2 R

+, so that

jfG 0
�(!)j < c for all ! < !g. Consequently:Z-!g

-1

jfG�(!)j
2 d! � c2

Z-!g

-1

jeH(!)j2 d! = c2
Z-!g

-1

1

!2
d! (B.8)

With this equation and the de�nition Def. (B.1) it is straight forward to show, that the

spectrum eG�(!) of G�(t) and eG�(!)H(!+!g) are quasi identical signals.

B.2.3 The Gated Pulse
It was shown in the last two subsections, that the spectrum esc(!) of all quasi band-

limited optical pulses is quasi identical to esc(!)H(!-!s) and that the spectrum fG�(!)

of an arbitrary gating function is quasi identical to fG�(!)H(!+!g), whereby !s and !g
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are real constants. Citing Theorem B.3 and choosing an appropriate common constant

!c for !s and !g it becomes clear, that the gated optical pulse sc(t)G(t- �) is a quasi

half range signal. This situation is depicted in Figure B.1 in the spectral domain. If one

considers for instance a 30 fs pulse with 800 nm central wavelength and an error function

like gating function with a transition time of 5 fs, then the relative deviation between

the spectrum of the gated pulse and its quasi half range spectrum is much smaller than

10-10.



Appendix C

Measuring the Polarisation of Light

One part of the experiment for measuring the magnetic �eld strength in a laser produced

plasma (Chapter 3) is based on the measurement of polarisation changes. Thus a detailed

understanding about measuring the polarisation state of an electromagnetic wave is vital

for understanding the experiment. Hence this appendix gives a short introduction into

the polarisation of light and explains the de�nition of Stokes parameters (see in addition

[24, 72, 167]). Representing polarisation states in terms of Stokes parameters is hugely

advantageous as they have a simple geometrical interpretation and can be measured easily.

C.1 The Polarisation of Electromagnetic Waves
The fundamental equations of electromagnetic phenomena are the the Maxwell equations

[75, 105], which can be written as:

r� ~E(~r; t) +
_
~B(~r; t) = 0 (C.1a)

r� ~B(~r; t) - c-20
_
~E(~r; t) = �0J (C.1b)

r �
~E(~r; t) =

1

�0
Q (C.1c)

r �
~B(~r; t) = 0 (C.1d)

In general Q and J are di�erential operators incorporating charges, currents and the

properties of the surrounding medium into the Maxwell equations. In the most simple

case (i.e. in vacuum) Q and J equals zero. Admitting charges and currents Q and J
represent the usual charge and current density. If the movement of charges and the 
ow

of currents is determined by the �elds ~E and ~B in addition, then the Maxwell equations

Eq. (C.1) are called self-consistent. In this caseQ and J can become di�erential operators

depending on ~E and ~B, too. This is usually true in the case of a plasma, where Q and J
include properties like the shielding of charges and currents.

Nevertheless, as long as the the Maxwell equations remain linear equations, the time

harmonic real vector wave is a solution of these equations and can be written in complex

notation:

Ej(~r; t) := aj(~r)e
i(!t-gj(~r)) ; aj; gj : R

3 7! R ; j 2 f1; 2; 3g (C.2)

x

y

z
Ex

Ey

���

ay

ax

k

Figure C.1: Sketch of a left handed

electromagnetic wave propagating

along the z-axis.
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Figure C.2: Electric �elds Ex (dashed line) and Ey (dotted line) for di�erent sets of parameters ax, ay,

� (see Eq. (C.3)) and their respective polarisation ellipses in the xy-plane. LHP denotes left handed

polarisation, RHP right handed polarisation and LP linear polarisation. The arrows related to � denote

the acceleration of Ey with respect to Ex. The thin continuous line is the square root of the angle dependent

intensity behind a linear polariser.

Even more general solutions of Eq. (C.1) can be obtained by Fourier synthesis of di�erent

time harmonic vector waves. The local propagation direction of the wave's phase is given

by the wave vector ~k(~r). Furthermore it is important to note, that in anisotropic media

the electric �eld vector ~E(~r; t) is in general no longer perpendicular to ~k(~r). Anyhow

its component in the k-direction is proportional to its component perpendicular to ~k(~r),

if the Maxwell equations stay linear. Thus one can introduce local Cartesian coordi-

nates with the z-axis parallel to ~k(~r) and fully represent the electric �eld ~E(~r; t) with

its x- and y-component in this coordinate system. Then at a �xed point ~r0 in space a

quasi band-limited electromagnetic wave (see Appendix B.2) is described by the two �eld

components:

Ex;r0(t) = ax(t) e
i (!(t)t+�x(t)) (C.3a)

Ey;r0(t) = ay(t) e
i (!(t)t+�y(t)) (C.3b)

ax(t), ay(t), �x(t), �y(t) and!(t) are real time-dependent functions. ax(t) and ay(t) are

the amplitudes, �x(t) and �y(t) are the phases and !(t) is called the angular frequency.

The phase di�erence �(t) := �y(t)-�x(t) between the two waves is far more important

than the absolute phases �x(t) and �y(t), because this di�erence mainly determines the

polarisation properties.

For now assume ax(t), ay(t), �x(t), �y(t) and !(t) to be constant, i.e. Eq. (C.3)

is a strictly monochromatic wave. Such a wave is shown in Figure C.1. If one plots

Ex;r0(t) and Ey;r0(t) for di�erent sets of ax, ay and � in the xy-plane, then one obtains

Figure C.2. The amplitudes ax and ay determine the smallest rectangle surrounding the

polarisation ellipse (see Figure C.3), whilst the parameter � determines its precise shape:

if � equals 0 or �, then the light is linear polarised and if � equals -�
2

or �
2
, then it is
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Figure C.3: The parameters � and � of an elliptically

polarised wave. ax; and ay are the amplitudes of

the wave along the x- and y-axis.

Figure C.4: The Poincar�e Sphere: RCP denotes right

circular polarised light and LCP left circular po-

larised light.

circular polarised. The sign of � determines the handiness of the electromagnetic wave.

If the wave propagates out of the paper plane and � is positive, then its sense of rotation

is clockwise and the wave has right handed polarisation (RHP). In other words: if � is

negative, then the electric �eld vector's sense of rotation is counter-clockwise and the

wave has left handed polarisation (LHP). If � is positive, then ~Ey is accelerated with

respect to ~Ex, otherwise it is retarded (see Figure C.1). Whilst ax(t) and ay(t) can be

measured with a linear polariser (see Appendix D.3) quite easily, � is much more di�cult

to measure. For measuring all three quantities it is advantageous to introduce the Stokes

parameters.

C.2 Stokes Parameters and Polarisation Measurements

C.2.1 The Reduced Set of Stokes Parameters and the Poincar�e Sphere
From a geometrical point of view the polarisation state is characterised by the electric �eld

vector's sense of rotation sgn�, by the polarisation ellipse's diameters of its major 2ax 0

and minor 2ay 0 principal axis and by the azimuth angle � (see Figure C.3). This angle is

measured from the x-axis to the major principal axis of the ellipse, so that � 2 [0�; 180�].

Instead of using sgn� and the diameters of the two principal axes, one can introduce an

intensity I0
x and an ellipticity angle �:

I0 := a2x 0 + a2y 0 ; I0 2 [0;1] (C.4a)

tan� := sgn�
ay 0

ax 0
; � 2 [-45�; 45�] (C.4b)

Consequently 2� and 2� can be regarded as the two tangential coordinates of a spher-

ical coordinate system and the intensity I0 as the radial coordinate. Thus the set

f(I0; 2�; 2�)j; � 2 [0;�]; � 2 [-�
4
; �
4
]g of spherical coordinates de�nes a sphere, called the

Poincar�e sphere (see Figure C.4): linear polarised states (LP) are located in the equatorial

plane, whilst the right (RCP) and left (LCP) circular polarised states are located at the

xI0 corresponds to IE;pol in Eq. (C.25)
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north and south pole, respectively. Orbits on the Poincar�e sphere with a constant lati-

tude represent polarisation states with a constant ellipticity, whilst orbits with a constant

longitude represent states with a constant azimuth angle.

The Cartesian representation of the spherical coordinate (I0; 2�; 2�) is called the re-

duced set of Stokes parameters [24]:

~�S =

0B@�S1
�S2
�S3

1CA := I0

0B@cos 2� cos 2�cos 2� sin 2�

sin 2�

1CA (y)
=

0B@ a2x - a2y

2 ax ay cos�

2ax ay sin�

1CA (z)
=

0B@ Ex E
�
x - Ey E

�
y

Ex E
�
y + E�x Ey

i E�x Ey - i Ex E
�
y

1CA (C.5)

It is quite tedious and technical to proof the equality (y). The details are given in [24]:

the starting point is to rotate the real part of Eq. (C.3) by an angle � and equate this

with the expression of an ellipse in the rotated coordinate system Ox 0y 0 from Figure C.3: 
ax 0 cos(!t+ �0)

�ay 0 sin(!t+ �0)

!
=

 
cos(�) sin(�)

- sin(�) cos(�)

! 
ax cos(!t)

ay cos(!t+�)

!
where �0 is a constant phase. From this equation one can derive some auxiliary equations:

a2x 0 + a2y 0 = a2x + a2y

(C.6a)

�ax 0ay 0 = axay sin�

(C.6b)

tan 2� =
2axay

a2x - a2y
cos�

(C.6c)
With them and the trigonometric equation sin 2� = 2 tan�

1+tan2 �
one �nally proofs the equality

(y). The equality (z) in Eq. (C.5) is derived directly from the de�nition of Ex and Ey in

Eq. (C.3).

Applying the de�nition Eq. (C.5), one can write down the reduced set of Stokes

parameters of the above mentioned states of linear and circular polarisation:

Reduced Set of Stokes Parameters of a Circular Polarised Electromagnetic Wave: In this case

the two principal axes are identical. Thus the angle � is of arbitrary size, whilst the

angle �=�45�. Consequently:

~�SRCP
LCP

=

0B@cos
�
2
cos 2�

cos �
2
sin 2�

� sin �
2

1CA =

0B@0 cos 2�

0 sin 2�

�1

1CA =

0B@ 0

0

�1

1CA (C.7)

Reduced Set of Stokes Parameters of a Linear Polarised Electromagnetic Wave: In this case

�=0� and � is �xed, de�ning the axis of polarisation. Thus one �nds:

~�S� =

0B@cos 0 cos 2�cos 0 sin 2�

sin 0

1CA =

0B@1 cos 2�

1 sin 2�

0

1CA =

0B@cos 2�sin 2�

0

1CA (C.8)

C.2.2 Measuring the Reduced Set of Stokes Parameters
Deriving the Stokes parameters by directly measuring the fast vibrating electromagnetic

�eld proofs to be very di�cult, as the response time of virtually all detectors is much

larger than the duration of this vibration. In contrast to that the averaged intensity
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of the electromagnetic wave can be measured rather easy. In our case of laser plasma

interactions with a lifetime of the plasma much shorter than the response time of the

detector it is even more convenient to measure the pulse energy:

IE := 2
D
<
�
~E(t)

�
�<
�
~E(t)

�E (y)
=
D
~E(t) � ~E�(t)

E
=

Z1
-1

~E(t) � ~E�(t) dt (C.9)

where ~E(t) is the time-dependent complex half range signal of the electric �eld (see

Appendix B.1.2). Note that the equality (y) only holds, if one can neglect the fast

vibrating terms of <
�
~E(t)

�
�<
�
~E(t)

�
. This is only possible, if the laser pulse comprises

many oscillations, which is valid in our experiments.

For measuring the polarisation properties of light, one might be tempted to measure

the polarisation ellipse directly, using a linear polariser set up at di�erent angles � (see

Appendix D.3). As can be seen from Figure C.2 the square root of this angle dependent

energy does not correspond with the polarisation ellipse itself. Although one can deter-

mine the length and direction of the major and minor principal axis, it is impossible to

determine the electric �eld vector's sense of rotation. To overcome this problem one has

to introduce a phase retardation � of e.g. the y-component in front of the polariser (see

Appendix D.4). Then the measured energy of the electric �eld in the �-direction is given

by [24]:

IE(�; �) = < E(t; �; �)E�(t; �; �) >=< Ex(t)E
�
x(t) > cos2 �+ < Ey(t)E

�
y(t) > sin2 �

+
sin 2�

2

�
< Ex(t)E

�
y(t)e

-i� > + < Ey(t)E
�
x(t)e

i� >
�

(C.10)

with E(t; �; �) := Ex(t) cos�+ Ey(t)e
i� sin�. Applying Eq. (C.10) one easily notes, that:

< Ex(t)E
�
x(t) > = IE( 0

�; 0) (C.11a)

< Ey(t)E
�
y(t) > = IE(90

�; 0) (C.11b)

< Ex(t)E
�
y(t) > = 1=2

�
IE(45

�; 0) + IE(135
�; 0)

�
+ i=2

�
IE(45

�; �=2) + IE(135
�; �=2)

�
(C.11c)

< E�x(t)Ey(t) > = 1=2
�
IE(45

�; 0) + IE(135
�; 0)

�
- i=2

�
IE(45

�; �=2) + IE(135
�; �=2)

�
(C.11d)

Thus one can de�ne measurable, averaged Stokes parameters in analogy to Eq. (C.5):

~Savg : =

0B@ < Ex(t)E
�
x(t) > - < Ey(t)E

�
y(t) >

< Ex(t)E
�
y(t) > + < E�x(t)Ey(t) >

i < E�x(t)Ey(t) > -i < Ex(t)E
�
y(t) >

1CA =

0B@ < ax(t)
2 > - < ay(t)

2 >

2 < ax(t)ay(t) cos�(t) >

2 < ax(t)ay(t) sin�(t) >

1CA
=

0B@ IE( 0
�; 0) - IE( 90

�; 0)

IE(45
�; 0) + IE(135

�; 0)

IE(45
�; �=2) + IE(135

�; �=2)

1CA (C.12)

If ax(t), ay(t) and �(t) from Eq. (C.3) are time-independent (this is true in particular, if
~E(t) is strictly monochromatic), then one can drop the averaging brackets and Eq. (C.12)

is identical to Eq. (C.5). In the next paragraph we shall consider, what happens if
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Eq. (C.12) is not strictly monochromatic.

C.2.3 The Four Stokes Parameters and the Polarisation of Light
To discuss the polarisation of light in the case of not strictly monochromatic light we

extend the de�nition of Eq. (C.12) and introduce the full set of four Stokes parameters:

~S :=

0BBBB@
S0

S1

S2

S3

1CCCCA =

0BBBB@
hEx E�xi+



Ey E

�
y

�
hEx E�xi-



Ey E

�
y

�

Ex E

�
y

�
+


Ex E

�
y

��
-i
�

Ex E

�
y

�
-


Ex E

�
y

���
1CCCCA =

0BBBB@


a2x
�
+


a2y
�


a2x
�
-


a2y
�

2 hax ay cos�i
2 hax ay sin�i

1CCCCA (C.13)

It is worth to note that S0 is exactly the de�nition of the pulse energy from Eq. (C.9).

A mathematically more advanced de�nition of the four Stokes parameters uses the Pauli

spin matrices �i [99]:

Sj :=
D
~ET�j~E

�
E

; j 2 f0; 1; 2; 3g (C.14)

where ~E is limited to the x- and y-component of the electric �eld and ~ET is the transpo-

sition of ~E. The Pauli spin matrices �j are:

�0 =

 
1 0

0 1

!
�1 =

 
1 0

0 -1

!
�2 =

 
0 1

1 0

!
�3 =

 
0 i

-i 0

!
(C.15)

As the Pauli spin matrices are a basis of C2 7! C
2, they can be used to represent the 2�2

propagation matrix of an electromagnetic wave in terms of Stokes parameters. Further-

more they are particularly useful for theoretical considerations.

A very important property of the Stokes parameters is a superposition theorem for N

independent light waves ~E1, ..., ~EN propagating in the same direction:

Sges;j =
D
~ETges�j

~E�ges

E
=

* 
NX
n=1

~ETn

!
�j

 
NX

m=1

~E�m

!+
=

*
[1;N]X
n;m

�
~ETn�j

~E�m

�+

=

NX
n=1

D
~ETn�j

~E�n

E
+

[1;N]X
n6=m

D
~ETn�j

~E�m

E
(y)
=

NX
n=1

Sj;n (C.16)

with j 2 f0; 1; 2; 3g. The equality (y) holds, because < ~ETn�j
~E�m >= 0 for independent

�elds ~En and ~Em, n 6= m. In particular harmonic waves

~E!fm;ng
(t) := ~a

�
!fm;ng

�
ei!fm;ngt ; ~a

�
!fm;ng

�
: R! C

2 (C.17)

with!m 6= !n are independent. Hence it is obvious how to extend the theorem Eq. (C.16)

to an in�nite number of harmonic waves:

Sges;j =

�ZZ1
-1

~aT (!m)�ja
� (!n) e

i (!m-!n)t d!m d!n

�
=

Z1
-1

S(!) d! (C.18)
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Figure C.5: The electric �eld (bright line: Ex, dark line: Ey) and its distribution in the xy-plane in the

case of partially polarised light. It is clearly seen that with decreasing polarisation the original polarisation

ellipse becomes more blurred.

Completely Unpolarised Light: Now we shall consider light for which the energy IE(�; �)

from Eq. (C.9) is constant for all � and �. This requires that:

< Ex E
�
x > - < Ey E

�
y(t) > =< a2x > - < a2y > = 0

^ < Ex E
�
y > =< (axbx) e

-i� > = 0 (C.19a)

Using Eq. (C.13) and Eq. (C.9) one can show that this is equivalent to:

~STunpol := (IE;unpol; 0; 0; 0) (C.19b)

and to

S21 + S22 + S23 = 0 (C.19c)

Light which holds any equality of Eq. (C.19) is called completely unpolarised light. This

kind of light is commonly encountered in nature.

Completely Polarised Light: If the Stokes parameters hold:

~S0 =

q
S21 + S22 + S23 (C.20)

then the light is called completely polarised and one can write:

~STpol :=

�q
S21 + S22 + S23; S1; S2; S3

�
(C.21)

In this case S0 is determined by the other three Stokes parameters, so that the reduced

set of Stokes parameters already describes this kind of light completely. An example of

polarised light is the radiation emitted from most lasers.

Partially Polarised Light: Light is called partially polarised, if

0 <

q
S21 + S22 + S23 < S0 (C.22)
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By using Eq. (C.16) it is obvious, that an arbitrary polarisation state ~Sarb can be repre-

sented by a unique decomposition into a polarised ~Spol and an unpolarised ~Sunpol part.

Thus any set of Stokes parameters can be written as:

~Sarb = ~Spol + ~Sunpol =

0BBBB@
p
S21 + S22 + S23

S1

S2

S3

1CCCCA+

0BBBB@
IE;unpol

0

0

0

1CCCCA (C.23)

Then the degree of polarisation is given by [24]:

P =
IE;pol

IE;arb
=

p
S21 + S22 + S23

S0

x

(C.24)

with

IE;arb = IE;pol + IE;unpol (C.25)

In Figure C.5 it is shown, that the tip of the electric �eld vector does not describe a polar-

isation ellipse for partially polarised light. But one observes a probability distribution of

the electric �eld vector in the Ex-Ey-plane. The width of this distribution increases with

a decreasing degree of polarisation until the vectors are scattered over the whole plane in

the case of unpolarised light. Hence the Stokes parameters can completely represent the

state of polarisation.

xIE;pol corresponds to I0 in Eq. (C.4).
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M�uller Matrices of Optical Components

D.1 De�nition of the M�uller matrix and the Coherency Vector

If ~S 2 R4 are the Stokes parameters of an initial polarisation state and this state prop-

agates through a polarisation altering system, then one obtains a �nal state ~S 0 2 R
4.

Hence the transition from ~S to ~S 0 can be represented by a matrix M 2 R4 � R4. This

matrix is called the M�uller matrix:

~S 0 := M ~S ; ~S; ~S 0 2 R4 ; M 2 R4 � R4 (D.1)

Calculating the M�uller matrix of an optical system directly can be di�cult, as the rela-

tionship between the optical properties of the system and the Stokes parameters is often

more complicate than the relationship between the electric �eld and the optical prop-

erties. This di�culty can be overcome by introducing the coherency vector ~� , which is

easily calculated from the electric �eld vector ~E:

~� :=

0BBBB@
< Ex E

�
x >

< Ey E
�
y >

< Ex E
�
y >

< E�x Ey >

1CCCCA (D.2)

With this vector one can write in analogy to Eq. (D.1):

~� 0 = M�
~� ; ~� ;~� 0 2 R4 ; M� 2 R4 � R4 (D.3)

with the coherency vector ~� in front and ~� 0 behind the optical system.

Luckily it is very simple to calculate the coherency vector ~� from the Stokes parameters
~S and vice versa:

~� = Mc
~S (D.4)

with a transfer matrix Mc and its inverse M-1
c :

Mc =
1

2

0BBBB@
1 1 0 0

1 -1 0 0

0 0 1 i

0 0 1 -i

1CCCCA (D.5a) M-1
c =

0BBBB@
1 1 0 0

1 -1 0 0

0 0 1 1

0 0 -i i

1CCCCA (D.5b)

D.2 Rotation Matrix for the Stokes Parameters

Let ~S be the Stokes parameters in a coordinate system Oxy and let ~S 0 be the parameters

of the same polarisation state in a coordinate system Ox 0y 0 rotated by an angle � with
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cos
( )
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E

Figure D.1: Sketch of the coordinate sys-

tems Oxy and Ox 0y 0 . The later is rotated

by an angle � relative to the former.

respect to Oxy around the z-axis (see Figure D.1), then the M�uller matrix Mrot(�) trans-

forming ~S into ~S 0 is:

Mrot(�) =

0BBBB@
1 0 0 0

0 cos 2� sin 2� 0

0 - sin 2� cos 2� 0

0 0 0 1

1CCCCA
(D.6a)

M-1
rot(�) =

0BBBB@
1 0 0 0

0 cos 2� - sin 2� 0

0 sin 2� cos 2� 0

0 0 0 1

1CCCCA
(D.6b)

This is shown easily by calculating the coherency vector ~� 0(see Eq. (D.2)) from the

rotation-matrix of the electric �eld: 
E 0x

E 0y

!
=

 
cos� sin�

- sin� cos�

! 
Ex

Ey

!
(D.7)

With the addition theorems one immediately �nds the rotation matrix M�rot(�) of the

coherency vector, i.e. � 0 = M�rot(�)� . Using Eq. (D.5) it is straight forward to calculate

Mrot(�) := M-1
C M� (�)MC.

D.3 Non-Ideal Linear Polarisers
Polarising axis set to �=0�: If an electromagnetic wave propagates through a non-ideal

linear polariser with its polarising axis (i.e. the direction of its highest transmission)

parallel to the x-axis, then let a 2 [0; 1] be its transmissivity parallel to the x-axis and

let b 2 [0; 1] be the transmissivity along the y-axis. Thus the electric �elds in front (~E)

and behind (~E 0) the polariser are associated by the following equation: 
E 0x

E 0y

!
=

 
a 0

0 b

! 
Ex

Ey

!
; a; b 2 [0; 1] (D.8)

With Eq. (D.8) it is simple to calculate the coherency vector � 0 = M�a;b(0
�)� (see

Eq. (D.2)). By using Eq. (D.5) it is straight forward again to calculate the respective

M�uller matrix:

Ma;b(0
�) =

0BBBB@
a2+b2

2
a2-b2

2
0 0

a2-b2

2
a2+b2

2
0 0

0 0 ab 0

0 0 0 ab

1CCCCA
(D.9a)

M-1
a;b(0

�) =
1

(ab)2

0BBBB@
a2+b2

2
-a2-b2

2
0 0

-a2-b2

2
a2+b2

2
0 0

0 0 ab 0

0 0 0 ab

1CCCCA
(D.9b)
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In the case of an ideal linear polariser with its polarising axis parallel to the x-axis the

Ey-component of the electromagnetic wave is blocked completely (i.e. b = 0), whilst the

Ex-component is transmitted entirely (i.e. a = 1).

If the spectrum of the electromagnetic wave is so wide, that a and b depend on the

wavelength !, then due to Eq. (C.16) the Stokes parameters behind the polariser are

given by:

~S 0
Eq. (C.18)

=

Z1
-1

~S 0(!) d! =

Z1
-1

Ma(!);b(!)(�) ~S(!) d! (D.10)

Polarising axis set to an arbitrary angle �: If � is the angle from the x-axis to the polarising

axis of the linear polariser, then the M�uller matrix can be derived from Eq. (D.9) with

the help of the rotation matrices from Eq. (D.6):

Ma;b(�) = Mrot(-�)Ma;b(0
�)Mrot(�)

=

0BBBB@
A B cos 2� B sin 2� 0

B cos 2� A cos2 2�+ C sin2 2� D sin 2� cos 2� 0

B sin 2� D sin 2� cos 2� A sin2 2�+ C cos2 2� 0

0 0 0 C

1CCCCA (D.11a)

M-1
a;b(�) = Mrot(-�)M

-1
a;b(0

�)Mrot(�)

=
1

C2

0BBBB@
A -B cos 2� -B sin 2� 0

-B cos 2� A cos2 2�+ C sin2 2� D sin 2� cos 2� 0

-B sin 2� D sin 2� cos 2� A sin2 2�+ C cos2 2� 0

0 0 0 C

1CCCCA (D.11b)

with

A :=
a2 + b2

2
B :=

a2 - b2

2
C := ab D :=

(a- b)2

2
a > b 2 [0; 1]

In addition to Eq. (D.9) there are three other cases, which can be important for building

a polarimeter. These cases are derived from Eq. (D.11a):

Polarising axis set to �=45�: With Eq. (D.11a) and �=45� one calculates the M�uller ma-

trix:

Ma;b(45
�) =

0BBBB@
a2+b2

2
0 a2-b2

2
0

0 ab 0 0
a2-b2

2
0 a2+b2

2
0

0 0 0 ab

1CCCCA (D.12)
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Polarising axis set to �=90�: With Eq. (D.11a) and �=90� one calculates the M�uller ma-

trix:

Ma;b(90
�) =

0BBBB@
a2+b2

2
-a2-b2

2
0 0

-a2-b2

2
a2+b2

2
0 0

0 0 ab 0

0 0 0 ab

1CCCCA (D.13)

Polarising axis set to �=135�: With Eq. (D.11a) and �=135� one calculates the M�uller

matrix:

Ma;b(135
�) =

0BBBB@
a2+b2

2
0 -a2-b2

2
0

0 ab 0 0

-a2-b2

2
0 a2+b2

2
0

0 0 0 ab

1CCCCA (D.14)

D.4 Phase Shifting Devices with a Linear Anisotropy
Generally, phase shifting devices with a linear anisotropy have a prominent direction

called the principal or optical axis. An arbitrarily polarised electromagnetic wave propa-

gating through such a device is split into two characteristic waves: an ordinary one with

its electric �eld perpendicular to the optical axis and an extraordinary one with its

electric �eld vector parallel to the optical axis. As these two characteristic waves propa-

gate with di�erent phase velocities, they acquire a phase shift against each other, so that

an incident linear polarised electromagnetic wave can become elliptically polarised (see

Figure C.2), as its electric �eld vector splits into components parallel and perpendicular

to the optical axis. In general these elements (commonly called wave plates) are thin

discs of uniaxial crystals with their optical axis parallel to the surface of the plate. They

are called zero order wave plates, if the acquired phase shift is in [�; �].

D.4.1 Wave Plates with an Arbitrary Linear Phase Shift
Principal axis set to �=0�: Consider a wave plate with its optical axis parallel to the x-

axis and an electromagnetic quasi monochromatic (i.e. spectral width �! � !) wave

propagating through the plate (i.e. along the z-axis). Furthermore assume that the

phase of the wave's Ex-component is accelerated by � with respect to the Ey-component.

Then the electric �elds in front (~E) and behind (~E 0) the wave plate are associated by the

following equation:  
E 0x

E 0y

!
=

 
ei� 0

0 1

! 
Ex

Ey

!
; � 2 R (D.15)
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Using Eq. (D.15) it is easy to calculate the coherency vector � 0 = M��(0
�)� (see Eq. (D.2)).

Then with Eq. (D.5) it is straight forward to calculate the respective M�uller matrix:

M�(0
�) =

0BBBB@
1 0 0 0

0 1 0 0

0 0 cos� - sin�

0 0 sin� cos�

1CCCCA (D.16)

If the wave is not quasi monochromatic, then the Stokes parameters behind the wave-

plate are derived by using Eq. (C.16):

~S 0
Eq. (C.18)

=

Z1
-1

~S 0(!) d! =

Z1
-1

M�(!)(�) ~S(!) d! (D.17)

Principal axis set to an arbitrary angle �: If � is the angle from the x-axis to the principal

axis of the wave plate, then the M�uller matrix can be derived from Eq. (D.16) with the

help of the rotation matrices from Eq. (D.6):

M�(�) = Mrot(-�)M�(0
�)Mrot(�)

=

0BBBB@
1 0 0 0

0 cos2 2�+ sin2 2� cos� sin 2� cos 2�(1- cos�) sin 2� sin�

0 sin 2� cos 2�(1- cos�) sin2 2�+ cos2 2� cos� - cos 2� sin�

0 - sin 2� sin� cos 2� sin� cos�

1CCCCA
(D.18)

After deriving the general M�uller matrix of a wave plate with an arbitrary phase shift

� we discuss two special cases: the �/2-wave plate and the �/4-wave plate.

D.4.2 Half Wave Plates
The half wave plate introduces an additional phase shift of � = �� between Ex- and

Ey-component. Again the angle from the x-axis to the principal axis of the wave plate is

�. With Eq. (D.18) one calculates its M�uller matrix:

M�(�) =

0BBBB@
1 0 0 0

0 cos 4� sin 4� 0

0 sin 4� - cos 4� 0

0 0 0 -1

1CCCCA (D.19)

If the Stokes parameters ~S propagate through a half wave plate, then the resulting set

of Stokes parameters ~S 0 is given by:

~S 0 := M�(�)~S = M�(�)I0

0BBBB@
1

cos 2� cos 2�

cos 2� sin 2�

sin 2�

1CCCCA = I0

0BBBB@
1

cos 2(-�) cos 2(2�-�)

cos 2(-�) sin 2(2�-�)

sin 2(-�)

1CCCCA (D.20)



116 Appendix D. M�uller Matrices of Optical Components

whereby two addition theorems have been used. Consequently for ~S! ~S 0:

�! -� (D.21a)

�! -�+ 2� (D.21b)

holds. In other words: if left circular polarised light (LCP) propagates through a half

wave plate, then it becomes right circular polarised (RCP) and the other way round,

independently of the angle �. On the other hand, if linear polarised light propagates

through the wave plate, then it remains linear polarised, but its polarisation plane is

rotated to -�+ 2�.

D.4.3 Quarter Wave Plates
The quarter wave plate introduces an additional phase shift of � = ��=2 between the Ex-

and Ey-component. Again � is the angle from the x-axis to the principal axis of the wave

plate.

Principal axis set to an arbitrary angle �: One easily calculates its M�uller matrix, using

Eq. (D.18):

M��=2(�) =

0BBBB@
1 0 0 0

0 cos2 2� sin 2� cos 2� � sin 2�

0 sin 2� cos 2� sin2 2� � cos 2�

0 � sin 2� � cos 2� 0

1CCCCA (D.22)

Principal axis set to �=0�: With Eq. (D.22) and �=0� one calculates the M�uller matrix:

M��=2(0
�) =

0BBBB@
1 0 0 0

0 1 0 0

0 0 0 �1
0 0 �1 0

1CCCCA (D.23)

Principal axis set to �=45�: With Eq. (D.22) and �=45� one calculates the M�uller matrix:

M��=2(45
�) =

0BBBB@
1 0 0 0

0 0 0 �1
0 0 1 0

0 �1 0 0

1CCCCA (D.24)

Principal axis set to �=90�: With Eq. (D.22) and �=90� one calculates the M�uller matrix:

M��=2(90
�) =

0BBBB@
1 0 0 0

0 1 0 0

0 0 0 �1
0 0 �1 0

1CCCCA (D.25)
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D.5 Phase Shifting Devices with a Circular Anisotropy
Phase shifting devices with a circular anisotropy are similar to phase shifting devices with

a linear anisotropy. The only di�erence is that the two characteristic waves propagating

with di�erent velocities are not linear polarised any more, but left and right circular

polarised. If ELCP is a left circular polarised wave and ERCP is a right circular polarised

one, then  
E 0RCP

E 0LCP

!
= k

 
ei� 0

0 1

! 
ERCP

ELCP

!
; � 2 R (D.26)

holds (compare Eq. (D.15)). With the coordinate transformation: 
Ex

Ey

!
=

 
1 1

-i i

!
| {z }

 
ERCP

ELCP

!
(D.27)

=: A (D.28)

one calculates:  
E 0x

E 0y

!
= AMA-1

~E =
1

2

 
ei� + 1 i

�
ei� - 1

�
-i
�
ei� - 1

�
ei� + 1

! 
Ex

Ey

!
(D.29)

Using Eq. (D.29) one derives the coherency vector � 0 = M�circ;�� (see Eq. (D.2)). Then

with Eq. (D.5) it is straight forward to calculate the M�uller matrix:

Mcirc;� =

0BBBB@
1 0 0 0

0 cos� - sin� 0

0 sin� cos� 0

0 0 0 1

1CCCCA (D.30)

If again the wave is not quasi monochromatic, then the Stokes parameters behind the

wave-plate are given by:

~S 0
Eq. (C.18)

=

Z1
-1

~S 0(!) d! =

Z1
-1

Mcirc;�(!)
~S(!) d! (D.31)





Appendix E

Electromagnetic Waves in Magnetised Laser

Produced Plasmas

There exists a huge variety of di�erent wave phenomena in plasmas [29, 85, 161]. But

for the recent experiment, measuring the azimuthal magnetic �eld in a laser produced

plasma, mainly electromagnetic waves propagating through a magnetised plasma are

important. To gain a quantitative understanding of how the magnetic �eld interacts with

the electromagnetic wave, the �rst subsection of this Appendix gives a short introduction

into the relevant theoretical plasma model. This model is used to derive the dielectric

tensor and the wave equation, that describes the propagation of an electromagnetic wave

through the magnetised plasma. A schematic overview of the whole derivation is shown

in Figure 3.5 on page 40.

E.1 Basic Plasma Equations
To study the properties of a plasma one can start either with a microscopic or a macro-

scopic plasma model. Whilst in general the microscopic quantities are more di�cult to

measure than the macroscopic ones, from a theoretical point of view the microscopic

model is the more fundamental one, as the macroscopic models can be derived from

the former. Nevertheless, if it comes down to solve the resultant di�erential equations,

approximations are necessary, sometimes reducing the microscopic model to a pure macro-

scopic one, as in our case. Starting with the microscopic description is still advantageous

as this allows introducing more accurate approximations, if necessary.

In classical mechanics a many-particle system is fully described by the locations ~x�i(t)

and the velocities ~v�i(t) of all particles �i, where � is the particle species and i the particle

number. Thus a microscopic system is completely speci�ed by a set of equations called

the particle position equations [85]:

N�(~x;~v; t) :=
X

1�i� �N�

�(~x- ~x�i(t)) �(~v- ~v�i(t)) �
X

1�i� �N�

�(~X- ~X�i(t)) (E.1)

where the point-like particles are represented by the �-distribution (see Eq. (A.26)).
~X := (~x;~v) and �N� is the total amount of particles from species �, i.e. the integral

of Eq. (E.1) over the whole phase space. Note that N�(~x;~v; t) implicitly depends on
~X� := (~X�1 ; :::;

~X� �N�
). Combining Eq. (E.1) with the non-relativistic equation of motion

of a single particle leads to an equation for the time development of the system, called

the Klimontovich-Dupree equation [82]:

@N�(~x;~v; t)

@t
+ ~v �

@N�(~x;~v; t)

@~x
+

q�

m�

�
~EM + v� ~BM

� 0
�

@N�(~x;~v; t)

@~v
= 0 (E.2)
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with the charge q� and the massm� of particle species � and the microscopic electric and

magnetic �eld ~EM and ~BM, respectively. The prime indicates that the �elds due to the ith

particle are omitted for calculating the forces pushing around this particle. Alternatively

one can describe the system with the Liouville equation and the Hamilton function, which

is more general from a theoretical point of view [153]. In any case the Maxwell equations

are needed in addition to calculate the electric and magnetic �eld self-consistently. ~Eext

and ~Bext represents the external electric and magnetic �eld:

r �
~EM =

1

�0

X
�

q�

Z
N�(~x;~v; t) d~v+r �

~Eext (E.3a)

r� ~BM =
1

c20

@

@t
~EM + �0

X
�

q�

Z
~v N�(~x;~v; t) d~v+r� ~Bext (E.3b)

There are so many particles in a plasma that these seemingly simple equations are

far too complicate for any practical purpose already. To simplify them one introduces

the many-particle distribution function FN, so that FN(~X�; ~X�; :::; t) d~X� �d~X� � � � is the
probability that at time t all particles have values around ~X�; ~X�; ::: in the range of

d~X�; d~X�; ::: [85]. The function FN can easily be reduced to the n-particle distribution

function f(n) by integrating over all but n-variables. With an arbitrary function G,

implicitly depending on (~X�; ~X�; :::), and the de�nitionD
G

(~X�;~X�;:::)
(~x;~v; t)

E
:=

Z
FN(~X�; ~X�; :::) N(~X�;~X�;:::)

(~x;~v; t) d~X� �d~X� � � � (E.4)

it is simple to show, that hN�(~x;~v; t)i = �n�f
(1)
� (~x;~v; t) holds. �n� :=

�N�

V
is the average

density of particle species � and V is the Volume of the system. Averaging Eq. (E.2) to

Eq. (E.3b) with Eq. (E.4) gives:

@f
(1)
� (~x;~v; t)

@t
+ ~v �

@f
(1)
� (~x;~v; t)

@~x
+

q�

�n�m�

��
~EM + ~v� ~BM

� 0
�

@N�(~x;~v; t)

@~v

�
= 0 (E.5)

r �
~E =

1

�0

X
�

q��n�

Z
f(1)� (~x;~v; t) d~v+r �

~Eext
Eq. (E.8)
=

1

�0

X
�

q�n� +r �
~Eext (E.6a)

r� ~B =
1

c20

@

@t
~E+ �0

X
�

q��n�

Z
~v f(1)� (~x;~v; t) d~v+r� ~Bext

Eq. (E.8)
=

Eq. (E.9)
r �

1

c20

@

@t
~E+ �0

X
�

q�n�~V� +r� ~Bext
(E.6b)

The triangular brackets in Eq. (E.5) can be expanded into a series of equations con-

sisting of n-particle distribution functions f(1); f(2); f(3); ::: etc. Using the Mayer expansion

[66, 106] f(n) can be written as a linear combination of products of one-particle distribution

functions with additional cross-correlation terms g(n). The resultant scheme of hierar-

chical equations is called the BBGKY-hierarchy, as this was discovered by Bogolyubov
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[20, 42], Born and Green [23], Kirkwood [79{81] and Yvon [190] independently. This

in�nite set of equations can be closed only by making a reasonable assumption for the

higher order cross-correlation functions. In the most simple case one even neglects binary

collisions (i.e. g(n) = 0 ; 8n � 2) obtaining the Vlasov equations. If g(2) is not zero, but

all higher order cross-correlations are zero, one obtains the Landau approximation [153].

If interactions with three particles are partially included, then the approximation is called

the Balescou-Lenard equation. For our purpose the Landau equation is su�cient. Using

Eq. (E.5) one calculates:

@f
(1)
�

@t
+ ~v �

@f
(1)
�

@~x
+

q�

m�

�
~E+ ~v� ~B

�
�

@f
(1)
�

@~v
=

@f
(1)
�

@t

�����
C

(E.7)

where @f
(1)
�

@t

���
C
is a symbolic expression representing the temporal change of f

(1)
� due to fast


uctuating microscopic inter-particle forces like collisions.

From Eq. (E.7) one can derive a pure macroscopic description of the plasma. But before-

hand a few more de�nitions are needed:

The density of the particle species � is given by:

n�(~x; t) :=

Z
�n�f�(~x;~v; t) d~v ; (E.8)

their average velocity is:

~V�(~x; t) :=
�n�

n�(~x; t)

Z
~v f�(~x;~v; t) d~v ; (E.9)

and the pressure tensor is:

P�;(i;j)(~x; t) := �n�m�

Z
(~v- ~V�)(i)(~v- ~V�)(j) f�(~x;~v; t) d~v (E.10)

By integrating Eq. (E.7) over the velocity space one obtains the continuity equation [85]:

@

@t
n� +r �

�
n�~V�

�
= 0 (E.11)

After multiplying Eq. (E.7) with the momentum m�~v, again integrating over the velocity

space and applying Eq. (E.11), one obtains the momentum transfer equation [85]:

n�m�

�
@

@t
+ ~V� �r

�
~V� - n�q�

�
~E+ ~V� � ~B

�
+r �P�

= �n�m�

Z
~v
@f�

@t

����
C

d~v � n�m�

X
�

(~V� - ~V�) h���i
(E.12)

with the mean collision frequency h���i.
Our macroscopic description of the plasma is known as the 
uid model and is made

up of the continuity equation Eq. (E.11) and the momentum transfer equation Eq. (E.12)

supplemented by the averaged Maxwell equations, in particular Eq. (E.6a) and Eq. (E.6b).

Its macroscopic variables are the pressure, the density and the mean velocity of each

species. Strictly speaking, in a 
uid-plasma the electrons and each ionisation stage are
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independent 
uids. As we are interested in averaged quantities only and the ion mass is

not much dependent on the ionisation stage, one can assume a single kind of ions with an

averaged degree of ionisation, thus reducing the whole system to a two 
uid system made

up of electrons and one ion species, coupled through collision and Maxwell equations.

E.2 Small Amplitude Waves in a Magnetised Plasma
The 
uid equations (Eq. (E.11), Eq. (E.12), Eq. (E.6a), Eq. (E.6b)) are still too complicate

to be solved. Luckily, our focus is not on the plasma itself, but on an electromagnetic

wave propagating through the plasma. Hence let the quantities ~E0, ~B0, ~V�;0 and n�;0 be

the solutions of the 
uid equations in an unperturbed plasma. Then an electromagnetic

small amplitude wave propagating through the plasma perturbs the above mentioned

quantities only slightly, so that one can write:

ypert = y0 + y1 e
i~k �~x e-i!t (E.13)

where the index one marks the small perturbations and the index zero the unperturbed

quantities. y can be any of the following quantities n�; ~V�; ~E; ~B. Substituting these

expressions into the 
uid equations and neglecting second and higher order terms, e.g.

n�;1, ~V�;1, etc., simpli�es the equations considerably. With the so called cold plasma

assumption their complexity is reduced even more. This assumption requires, thatr
kTe

me

� !

k!
(E.14)

with the wave vector k! of the electromagnetic wave. This is particularly valid during

the early phase of a laser produced plasma, because its thermal temperature is only a few

electron volts in the beginning as brie
y discussed in Subsection 2.2.2.

Consequently, P� � 0, @f
(1)
�

@t

���
C
� 0 and ~V�;0 � 0 hold. Note that ~V�;0 is an averaged

quantity, so that the oscillation of the electrons due to the laser pulse is averaged out.

Furthermore Krall [85] mentions, that P � 0 Pa is a particular good assumption, if strong

magnetic �elds are present. With these simpli�cations it is straight forward to calculate:

Continuity equation:

-i!n�;1 + n�;0 ~k �
~V�;1 = 0 (E.15)

Momentum transfer equation:

-i!~V�;1 =
q�

m�

�
~E1 + ~V�;1 � ~B0

�
(E.16)

Maxwell equations:

~k� ~B1 = -
!

c20

~E1 - i�0
X
�

q�n�;0 ~V�;1 (E.17a)

~k� ~E1 = ! ~B1 (E.17b)
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Figure E.1: Direction of the magnetic �eld

and of the electromagnetic wave propa-

gating through the plasma.

Eq. (E.16) is a linear equation in ~V�;1 and ~E1. Hence it can be written as:

q�n�~V�;1 = ��(~B0) ~E1 (E.18)

where ��(~B0) is the conductivity tensor of the particle species �. Now it is simple to

derive the wave equation from Eq. (E.17a) and Eq. (E.17b):

~k� ~k� ~E1 = -
!2

c20

 
1+

i

!�0

X
�

��(~B0)

!
~E1 = -

!2

c20
�r(~B0) ~E1 (E.19)

This equation can be rewritten:�
f~k;~kg- j~kj21+

!2

c20
�r(~B0)

�
�
~E1 = 0 (E.20)

where 1 is the unit dyadic and f~k;~kg ~E1 := ~k (~k �
~E1).

By solving the linear equation Eq. (E.16) for ~V�;1 and then substituting this result into

Eq. (E.18), one obtains an equation which is again substituted into Eq. (E.19), leading to

the equation of the dielectric tensor �r(~B0). The straightforward but lengthy calculation

is simpli�ed much by assuming that ~B0 is parallel to the z-axis and that ~k lies in the yz-

plane. Hence � := ](~B0;~k) is the angle between the z-axis and the propagation direction
~k of the electromagnetic wave (see Figure E.1). Thus the dielectric tensor �r(~B0) is given

by:

�r(~B0) :=

0B@ �1 -i�2 0

+i�2 �1 0

0 0 �3

1CA (E.21)

In the case of a two 
uid plasma, i.e. ions of the same species with an average ionisation

and free electrons, one derives:

�1 =1-
!2
pe

!2 -!2
ce

-
!2
pi

!2 -!2
ci

� 1-
!2
pe

!2 -!2
ce

(E.22a)

�2 =
!ce

!

!2
pe

!2 -!2
ce

-
!ci

!

!2
pi

!2 -!2
ci

� !ce

!

!2
pe

!2 -!2
ce

(E.22b)

�3 =1-
!2
pe

!2
-
!2
pi

!2
� 1-

!2
pe

!2
(E.22c)

where the cyclotron frequency of the electrons and ions is given by !ce :=
qe
me

��~B0�� and
!ci :=

qi
mi

��~B0��, respectively. In a similar manner the plasma frequency of the electrons

and ions is given by !pe :=
q

q2ene
�0me

and !pi :=

q
q2
i
ni

�0mi
, respectively. In many cases

the middle part of Eq. (E.22) can be simpli�ed by neglecting the in
uence of the ions,
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resulting in the righthand side of Eq. (E.22). This is particularly true for magnetic �elds

below 3 GG and laser harmonics with a wavelength below 360 nm. Thus in the actual

experiment the ions do not in
uence the interaction between the magnetic �eld and the

harmonic radiation signi�cantly. Hence, using the coordinate system from Figure E.1,

Eq. (E.21) and the index of refraction n := c0
j~kj

!
, the wave equation Eq. (E.20) can be

written as:

A ~E1 :=

0B@n
2 - �1 i�2 0

-i�2 n2 cos2 �- �1 -n2 sin � cos �

0 -n2 sin � cos � n2 sin2 �- �3

1CA
0B@E1xE1y

E1z

1CA = 0 (E.23)

This matrix solution is represented by case B in Figure 3.5. Case A represents a far more

general approach, in which Eq. (E.13) is replaced with

ypert = y0 + y1(~x; t) (E.24)

to derive the wave equation. The huge drawback of this approach is that all calculations

become more di�cult. Finally, after a coordinate transformation to a system with its

z-axis parallel to the propagation direction of the electromagnetic wave, the three com-

ponent vector ~E can be reduced to the two components perpendicular to the z-direction.

Then one can expand the remaining 2�2 di�erential matrix equation in terms of Pauli

spin matrices. Applying the de�nition of the Stokes parameters by Pauli spin matrices

(see Eq. (C.15)) one calculates the di�erential propagation equation in terms of Stokes

parameters. This di�erential equation even describes dissipative propagation [87, 88]. If

one can neglect damping, then this equation is reduced to:

d~S

dz
= ~
(z)� ~S (E.25)

where ~S is a reduced set of Stokes parameters (see Eq. (C.5)). A closer look at Eq. (E.25)

shows, that this di�erential equation describes an in�nitesimal rotation around ~
(z).

Consequently one can visualise the solutions of Eq. (E.25) as circles on a Poincar�e sphere

(see Figure C.4). A more detailed discussion beyond the scope of this work is given in

[10, 87, 88, 146].
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