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Zusammenfassung

Zur Erfüllung zukünftiger Anforderungen hinsichtlich Kraftstoffverbrauch und Emis-
sionen werden direkteinspritzende Ottomotoren (DISI - Direct Injection Spark Igni-
tion) in Kombination mit Turboaufladung als vielversprechendes Motorenkonzept gese-
hen. Zyklische Schwankungen stellen eine entscheidende Herausforderung bei diesem
Brennverfahren dar und spielen eine Schlüsselrolle bei der Optimierung der Verbren-
nungsprozesses.

Die Modellierung der Strömungs- und Verbrennungsvorgänge mittels numerischer
Strömungssimulation in Kombination mit statistischer Turbulenzmodellierung (RANS –
Reynolds Averaged Navier-Stokes) stellt ein leistungsfähiges und zuverlässiges Werkzeug
in der Rahmen der Motorenentwickung dar. Basierend auf gemittelten Größen kann
dieser Ansatz per Definition instationäre Phänomene wie zyklische Schwankungen nicht
beschreiben. Die Grobstruktursimulation oder Large Eddy Simulation (LES) bietet die
Möglichkeit, turbulente Strukturen und zeitliche Schwankungen auflösen, und somit zyk-
lisches Schwankungen in der Simulation abzubilden. Aufgrund der hohen Anforderungen
an die Numerik, Diskretisierung, Gitterauflösung und Zeitschrittgröße ist der Berech-
nungsaufwand und Zeitbedarf bei dieser Methodik deutlich erhöht. Die Kombination
beider Modellierungsansätze führt zu hybriden RANS/LES-Modellen.

Gegenstand der Arbeit ist die Entwicklung eines hybriden Zwei-Skalen-
Turbulenzmodells zur Beschreibung zyklischer Schwankungen sowie die Demonstration
der Realisierbarkeit der Kopplung des Modelles an das G-Gleichungsmodell zur Beschrei-
bung der vorgemischten Verbrennung. Im Kapitel 2 werden die Grundgleichungen
turbulenter Strömungen vorgestellt. Kapitel 3 diskutiert die verschiedenen Ansätze zur
Turbulenzmodellierung sowie das Zwei-Skalen-Modell. In Kapitel 4 wird ein Überblick
über die Modellierung der vorgemischten Verbrennung für RANS und LES gegeben.
Die Numerik des verwendeten Strömungslösers AC-FluXwird in Kapitel 5 vorgestellt.
Die entwickelten Modelle und Methoden werden in Kapital 6 anhand von elementaren
Testfällen analysiert und auf die Simulation von zwei Modellmotorkonfigurationen
angewandt; abschließend wird die Kopplung des hybriden Turbulenzmodelles mit der
G-Gleichung analysiert und bewertet.
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1 Introduction

For the conversion of chemical energy to thermal energy to mechanical energy, combus-
tion represents up to now the most important process with fossil fuels being the most
important source of energy. The internal combustion (IC) engine has been developed in
the late 19th century, and regarding fuel efficiency, economy, and emissions the device
has been significantly improved since. Although many alternative concepts like electrical
or hybrid power trains or fuel cells are investigated and developed, the dominant device
in the near and intermediate future is expected to be the IC-engine.

Over the past decades, one of the major drivers for the improvement and optimisa-
tion of the IC engine has been the enforcement of stricter emission regulations in the
US as well as in Europe and in Japan. To be able to achieve the legislative restric-
tions new technologies and especially new combustion concepts have been developed.
On the aftertreatment side the development of catalyst systems and particle filters have
significantly reduced the output of emissions. However the improvement lead to a de-
crease in fuel efficiency and actually does not address the cause of the emissions. For
the fulfillment of future requirements concerning fuel consumption and emission stan-
dards, two combustion concepts are considered as being the most promising approach:
turbo-charged diesel and stratified spark ignition (SI) engines with high pressure direct
injection (DI) systems.

While DISI-engine are supposed to have a much higher potential in terms of fuel
consumption economy compared to the classical homogeneous combustion concepts,
combustion stability and emission are the major topics of concern. Cyclic variability
represents a critical issue in DISI-engines, as cycle-to-cycle variations are substantial to
the combustibility of the air/fuel mixture at the time of the discharge of the spark plug
leading to partial burning or even misfire. These incomplete combustion cycles lead to
a significant increase in emissions, especially unburned hydrocarbon emissions, and a
significant reduction in terms of fuel efficiency, therefore rendering it highly undesirable.
Thus the cycle-to-cycle variations of the gas motion have been identified as playing a key
role for the further optimisation of combustion process and thus the complete device.
While the impact onto the combustion process is immediately visible, the cause for the
cyclic variability is not yet fully understood, although generally attributed to turbulence
effects.

Computational fluid dynamics (CFD) in combination with Reynolds averaged Navier-
Stokes (RANS) turbulence modeling closures has been established as a very efficient and
reliable tool for the description and analysis of the flow and combustion processes inside
IC engine. Additionally, the application of CFD allows insights into various physical
processes which are difficult to study experimentally. Even further, in the design and
development process in an industrial context, CFD is applied for instance in the optimiza-
tion of intake and engine geometries, leading to a significant reduction of development
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cost as well as turnaround time. Based on common Reynolds averaged Navier-Stokes
(RANS) turbulence modeling, this approach is by definition limited to the description of
(statistical) mean values. In case highly transient and unsteady features such as cycle-
to-cycle variations are investigated, this approach is not capable to capture this kind of
phenomenon.

The ability to predict cyclic variations is given by the alternative turbulence modelling
approach, namely large eddy simulation (LES)1. In contrast to the statistical approach
of RANS, the LES approach describes the filtered turbulent flow field, i.e. a significant
amount of the turbulent spectrum is resolved and a smaller range of turbulent length
scales needs to be modeled. The numerical cost however, caused by resolving smaller
temporal and spatial scales, requires higher-order numerical schemes, smaller time steps
and higher resolutions of the computational grids, lead to a significant increase of CPU-
time and memory consumption compared to RANS.

An alternative modelling approach is the combination of both models in a hybrid
RANS/LES approach, obtaining the attractive features of both methods. These methods
provide the opportunity to use LES in regions, where its performance is known to be
essentially superior to RANS. In other regions, where the accuracy and the averaged
information on turbulent properties is sufficient, RANS can be used in order to save
CPU-time. In contrast to pure RANS temporal fluctuations can be resolved in the LES
regions in hybrid methods giving these approaches the potential to predict cycle-to-cycle
variations or other turbulent flows of highly unsteady nature.

The structure of the work is as follows. A summary of the governing equations for
chemically reacting flows in given in chapter 2. Chapter 3 presents an introduction to
turbulence and turbulence modelling. The statistical approach based on Reynolds aver-
aging is introduced in 3.2, where also an overview of RANS models and model hierarchy
in given. The LES technique based on a filtering approach as well as popular LES models
are discussed in section 3.4, followed by he motivation for hybrid approaches combining
elements of both RANS and LES and a discussion of hybrid models in section 3.5. In
section 3.5.2 a new hybrid two-scale VLES model is presented. The chapter closes with
a discussion of methods for the generation of turbulent initial and boundary conditions
(artificial turbulence), section 3.6. Chapter 4 gives an overview of premixed laminar and
turbulent combustion in sections 4.1 and 4.2. Additionally modelling approaches for tur-
bulent premixed combustion in the RANS context based on the progress variable 4.3 and
on a level set approach (G-equation) 4.4 are discussed as well as combustion modelling
in the LES context with an overview of LES-based combustion models for pre-mixed
turbulent combustion. The adaptation of the G-equation to the hybrid two-scale VLES
approach finalises the chapter. The numerics of the CFD solver employed in this work
are presented in section 5. The application, evaluation and discussion of the developed
techniques and modelling approaches is done in chapter 6, starting with an analysis of

1The application of direct numerical simulation (DNS) is not considered as an option in terms of
industrial applicability.
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initialisation methods and influence of numerical schemes on the turbulent spectra in
homogeneous, isotropic turbulence 6.1. The results of the simulation of a simplified en-
gine configuration and multi-cycle simulation of a 4-valve model engine are discussed in
sections 6.2 and 6.3 respectively. In order to demonstrate the feasibility to describe the
effects of turbulence onto the flame propagation, the chapter closes with the numerical
study of flame propagation in cylindrical vessel under high swirl condition 6.4. Summary
and conclusions are given in chapter 7.



2 Physics of fluids

2.1 Fundamental equations of fluid mechanics

The description of fluid flow is based on equations describing the conservation of mass,
momentum and energy. Considering the fluid as a continuum leads to the fundamental
transport equation of fluid mechanics, the Navier-Stokes equation1.

For compressible fluids in Cartesian coordinates the continuity equation, i.e. the con-
servation of mass, reads

∂ρ

∂t
+

∂

∂xi

(ρUi) = 0 , (2.1)

where ρ denotes the fluid density and Ui the xi–velocity component. The conservation
of momentum is described by

∂ρUi

∂t
+

∂

∂xj

(ρUiUj) = − ∂p

∂xi

+
∂σij

∂xj

+ ρgi (2.2)

with the viscous shear stress tensor σij described by the Stokes relation

σij = μ

(
∂Ui

∂xj

+
∂Uj

∂xi

)
︸ ︷︷ ︸

2 Sij

−2

3
μ

∂Uk

∂xk

δij (2.3)

p denotes the pressure and gi represents external body forces per unit mass, as for
instance gravitational acceleration. The rate of strain tensor Sij is defined as

Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
(2.4)

A modified definition is usually employed for compressible flows in which the trace of
the tensor is zero:

S∗
ij =

1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− 1

3
δij

∂Uk

∂xk

. (2.5)

Using equation (2.5) the viscous shear stress tensor σij can also be written in compact
form as σij = 2 μ S∗

ij. The transport equation for the total enthalpy h and species mass
fraction Yα read

∂ρh

∂t
+

∂ρUih

∂xi

=
∂p

∂t
+ Uj

∂p

∂xj

+
∂

∂xj

(
λ

cp

∂h

∂xj

)
+ σij

∂Ui

∂xj

(2.6)

∂ρYα

∂t
+

∂ρUiYα

∂xi

=
∂

∂xi

(
μ

Scα

∂Yi

∂xi

)
+ ω̇α (2.7)

1C.L.M.H. Navier was the first to derive these equations in 1823 despite his lack of understanding the
full physics; in 1845 G.G. Stokes was the first to obtain a rigorous derivation of the Navier-Stokes
equations.
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where the diffusive transport in both equations is modelled using a gradient approach,
namely Fourier’s law for the enthalpy equation and Fick’s law for the species mass
fraction

Jα
i = − μ

Scα

∂Yα

∂xi

. (2.8)

Scα denotes the Schmidt number, relating the diffusive transport of mass fractions to
the dynamic viscosity. Note that equation (2.6) does not contain any source terms due
to chemical reaction, since the total enthalpy h includes the chemical heat of formation.

The only terms which needs closure in equation (2.7) are the chemical reaction rates
ω̇α. Each reaction rate contains the rates of progress τr of any elementary reaction r
multiplied by the stoichiometric coefficient ν of species α in that reaction:

ω̇α =
∑

r

ναrτt =
∑

r

(
νb

αr − νf
αr

)
τr . (2.9)

The rate of progress is given by the forward (f) and backward (b) rate constants Kr and
the product of the molar concentrations [X]β of the educt species:

τr = Kf
r

∏
β

[X]
νf

αβ

β − Kb
r

∏
β

[X]
νb

αβ

β . (2.10)

where the forward rate constants are usually modelled by a generalised Arrhenius ap-
proach

Kf
r = ArT

nr exp

(
− Er

RmT

)
, (2.11)

while in most cases the backward reaction is linked to Kf
r by the equilibrium constant

Kc,r via

Kc,r =
Kf

r

Kb
r

. (2.12)

Further details can be found in the standard literature, for example [36]. The link
between pressure, temperature, species distribution and density is done by means of the
ideal gas law

p

ρ
=
∑

α

Yα

Wα

RT , (2.13)

where R is the ideal gas constant and Wα the molecular weight of species α. Using the
mean molecular weight W defined as

W =

(∑
α

Yα

Wα

)−1

, (2.14)

equation (2.13) reduces to

p =
ρ

W
RT , (2.15)
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2.2 Non-dimensional form

While for practical applications the dimensional form of the governing equation as given
in the previous section is employed, the dimensionless variant is of importance for the-
oretical and fundamental studies. The non-dimensional variables are obtained by nor-
malisation of the independent and dependent variables by reference values (indicated by
the index R)

x∗
i =

xi

lR
, t∗ =

t · UR

lR
;

ρ∗ =
ρ

ρR

, U∗
i =

Ui

UR

, p∗ =
p

ρRU2
R

, T ∗ =
T

TR

;

here, lR, UR, ρR and TR represent a reference length, velocity, density and temperature
respectively. Additional reference quantities required for the normalisation of the gov-
erning equations are the reference speed of sound cR, the reference specific heat capacity
at constant pressure cpR, the reference dynamic viscosity μR, and finally the reference
heat conductivity λR. Introducing the normalised variables into the governing equa-
tions (2.1), (2.2) and (2.6), and dropping the superscripts the following set of equations
is obtained2:

∂ρ

∂t
+

∂

∂xi

(ρUi) = 0 , (2.16)

∂ρUi

∂t
+

∂

∂xj

(ρUiUj) = − ∂p

∂xi

+
1

Re

∂σij

∂xj

, (2.17)

∂ρh

∂t
+

∂ρUih

∂xi

= Ma2 ∂p

∂t
+ Ma2 Uj

∂p

∂xj

+
1

Pr Re

∂

∂xj

(
λ

cp

∂h

∂xj

)
+

Ma2

Re
σij

∂Ui

∂xj

.

(2.18)

In the non-dimensional from of the conservations equation three characteristic numbers
appear, namely the Reynolds number Re, the Mach number Ma, and the Prandtl number
Pr, which are defined as

Re =
ρ l u

μ
=

l u

ν
, Ma =

u

c
, Pr =

cp μ

λ
, (2.19)

where the index R indicating reference quantities has been omitted for brevity. These
non-dimensional numbers allow to characterise and to classify the state of flow.

The Mach number Ma, defined as the ratio of the fluid velocity u to the (local) speed
of sound c, see equation (2.19), is a measure for the compressibility of the flow. For small

2Here, the external body forces have been omitted for brevity.
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model air plane l = 1 m,u = 1 m/s Re = 7 · 104

cars u = 3 m/s Re = 6 · 105

air planes u = 30 m/s Re = 2 · 107

atmospheric flows Re ≈ 7 · 1020

internal combustion engine Re = 6 · 104

Table 2.1: Sample of characteristic Reynolds numbers.

Ma-numbers (Ma < 0.3), the flow can be considered as incompressible, which implies
that the enthalpy equation is decoupled from the momentum and continuity equations.
This effect can be seen in the enthalpy equation (2.18), considering the limit Ma → 0,
as in this limit, the enthalpy becomes independent of pressure.

The Reynolds number Re represents the ratio of inertia to viscous forces and is the
most important dimensionless number in fluid dynamics. By means of the Reynolds
number a criterion for determining the state of a fluid flow (laminar/turbulent) can be
derived. Qualitatively speaking laminar flow occurs at low Reynolds numbers where
viscous forces are dominant, while turbulent flow occurs at high Reynolds numbers, at
which the inertia forces dominate the fluid motion. In table 2.1 typical values of the Re
number for some aerodynamic flows are given.

For gaseous fluids the Prandtl-number Pr is of the order of unity.



3 Description and modelling of turbulent flows

In engineering applications almost all flows can be characterised as being turbulent. The
accurate description of these flows, however, is by no means easy, a fact which is already
apparent when a definition for turbulence is sought after. Usually the phenomenon is
described by listing its characteristic features:

• turbulent flows are irregular; therefore a purely deterministic approach to turbu-
lence becomes impractical, as it appears not to be feasible to describe the turbulent
motion in all details as a function of space and time coordinate; however, the de-
termination of average values is regarded as possible;

• turbulent flows are diffusive, thus causing rapid mixing and increased rates of
momentum, heat and mass transfer;

• turbulent flows are rotational, thus turbulence is associated with vorticity;

• turbulent flows occur at high Reynolds numbers ; with increasing Reynolds number
the complexity and the range of existing scales increase; from a numerical point of
view the wide separation between the largest and the smallest scales of turbulence
is the source for severe problems;

• turbulent flows are dissipative, removing (kinetic) energy from the mean flow via
the energy cascade, see page 10;

• turbulence is a continuum phenomenon and thus can be treated by means of con-
tinuum mechanics, see page 11;

• turbulence is a feature of fluid flows, and not of fluids; this implies that the main
characteristics of turbulent flows are not controlled by the molecular properties of
the particular fluid;

• turbulence is in inherently three dimensional and transient.

3.1 Turbulence fundamentals

The motion of fluids is governed by the Navier-Stokes equations, cf. equations (2.1)–
(2.2), for both laminar and turbulent flow. Supplemented by appropriate initial and
boundary conditions these equations form a deterministic set of equations based on the
principles classical mechanics. As pointed out by Pope [94] in any physical flow there
are perturbations and uncertainties in the initial and boundary conditions to which the
turbulent flow field displays an acute sensitivity. However this sensitivity occurs at
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Figure 3.1: Time histories from the Lorenz equations (3.1)–(3.3).

high Re-numbers as demonstrated by the classical pipe flow experiment conducted by
O. Reynolds [97] in the late 19th century. Considering the dimensionless momentum
equations (2.17), the Re-number dependency indicates that the non-linear term, i.e. for

incompressible flows 1
Re

∂2Ui

∂x2
j
, is responsible for the observed behaviour. This behaviour

is well known for coupled ordinary differential equations as well as in the context of
dynamical systems [39].

A classical example of the sensitivity to disturbances in the initial conditions for a
coupled system of non-linear differential equations is the Lorenz system [66], described
by:

ẋ = σ · (y − x) (3.1)

ẏ = ρ · x − y − x · z (3.2)

ż = −β · z + x · y (3.3)

with parameters σ, β, and ρ, and where the dot denotes the temporal derivative. This
system has been employed for modelling the motion of particles subject to atmospheric
forces. The time histories for x(t) obtained by numerical integration for two slightly
different initial conditions x0 and x̂0 with Δx = x̂0 − x0 = 10−6 are given in figure 3.1
along with the difference Δx. Initially both solutions are indistinguishable, but starting
around t = 30 a discrepancy becomes clearly visible, and at around t = 35 both signals
become fully uncorrelated. In the example the initial condition has been disturbed by
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10−6 which is well below the accuracy available experimentally in practical applications
as well as within the numerical accuracy due to accumulated round-off errors. Still this
small deflection is sufficient to lead to an unpredictable behaviour of the system.

Similar to the Navier-Stokes equations, which have a stable (laminar) solution at
sufficiently low Re-number and a chaotic turbulent solution at high Re-number, the
coefficients of the Lorenz system determine the qualitative behaviour of the system. For
values of ρ > 24.74 with fixed values for σ and β, the system reaches a stable steady
state while for larger values the previously discussed behaviour arises. This implies that
even if a direct numerical simulation1 was feasible, a major hurdle would be defining
precise initial and boundary conditions. As demonstrated at high(er) Re number the
flow is unstable as even small perturbations may excite the already existing small scales,
leading to quasi unpredictable results.

While the behaviour of the system in physical space is characterised by its random
nature, an analysis of the system in phase space reveals a more deterministic structure.
Here an important attractor can be observed which determines the long-term properties
of the system. While the temporal evolution of the individual solutions components
exhibits the previously discussed erratical behaviour, the motion in phase space displays
a strict pattern, which resembles a butterfly object with two wings, known as the Lorenz
attractor. This observation loosely corresponds to the structure of velocity correlations,
section 3.2.2.

The scales of turbulent motion. Turbulent fluid motion is characterised by a wide
range of scales which descriptively can be thought of as eddies of different sizes. The time
and length scale associated with these turbulent eddies are represented by frequencies
and wavelengths which are obtained by a Fourier analysis of the turbulent flow history.
The size of the eddies is limited by the characteristic size of the flow on the upper
side, for instance the diameter for pipe flows, while the size of the smallest eddies is
determined by effects of viscous dissipation. Richardson [100] introduced the idea of the
energy cascade by assuming that the large turbulent eddies are unstable and break up
transferring their energy to smaller and smaller eddies, until the molecular viscosity is
effective in dissipating the kinetic energy. Thus energy is added at the largest scales
while being dissipated at the smallest. During the break-up process, all directional
information is lost, the smallest (turbulent) scales can therefore assumed to be isotropic.
This assumption is known as Kolmogorov’s hypothesis of local isotropy. The rate at which
the small scales receive energy from the larger scales is equivalent to the dissipation rate
ε. The statistics of the small scale motion is therefore uniquely determined by the
viscosity ν and the dissipation rate ε. Based on these two parameter unique length,
time and velocity scales can be formed being characteristic for the small scale motion.

1DNS - a simulation where the complete spectrum of turbulent fluctuations is simulated without any
turbulence model.
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These scales are called the Kolmogorov length, velocity, and time scales:

length scale: ηk = (ν3/ε)1/4 (3.4)

time scale: τk = (ν/ε)1/2 (3.5)

velocity scale: vk = (νε)1/4 (3.6)

The Reynolds number associated with the Kolmogorov scales is unity

Rek =
ηk vk

ν
= 1 ,

which indicates that the viscous dissipation is important solely on the small scale tur-
bulence. For large scale turbulence with characteristic velocity and length scales u′ and
�t, the viscous effects are negligible2. The energy transfer therefore depends only on u′

and �t, leading by means of dimensional analysis to following scaling for the turbulent
rate of dissipation:

ε ∼ u′3

�t

. (3.7)

Introducing the turbulent Reynolds number Ret as Ret = u′ �t

ν
, the following correlation

between the Kolmogorov micro-scales and the integral scale can be derived:

ηk

�t

= (Ret)
−3/4 ,

τk

t
= (Ret)

−1/2 ,
vk

u′ = (Ret)
−1/4 ,

where t = �t/u
′ denotes the time scale for the large scale turbulence.

Validity of the Navier-Stokes equation for turbulent flows. As postulated above,
turbulence is a continuum phenomenon and therefore the Navier-Stokes equations are
valid. This validity can be shown by an estimation of the ratio of the mean free path
length λ on a molecular basis and the smallest turbulent scale, the Kolmogorov length
scale ηk. Based of kinetic theory of gases the viscosity of a fluid can be determined as
μ = ρcλ with c =

√
γRT being the speed of sound. The ratio λ/ηk then becomes

λ

ηk

=
ν/c

(ν3/ε)1/4
=

(νε)1/4

c
=

vk

c
,

where the Kolmogorov velocity scale vk = (νε)1/4, eqn. (3.6) has been introduced. Ex-
tending the previous equation with u′ and using the previously discussed relations be-
tween the integral and Kolmogorov scales, the ratio can be expressed in terms of the
turbulent Reynolds number Ret, the integral velocity scale u′ and the speed of sound c
as

λ

ηk

=
u′

c
Re

−1/4
t = Mat Re

−1/4
t .

2The thorough definition and discussion of the integral length scale �t will be done in section 3.2.2
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The turbulent Mach number Mat = u′/c is usually, i.e. in technical application, smaller
then unity, Mat ≤ 1. The Reynolds number and correspondingly also the turbulent
Reynolds number is much greater than unity, Re � 1, which leads to λ/ηk � 1. This
implies that the smallest turbulent scales ηk are significantly larger than the molecu-
lar length scale λ. The estimation therefore demonstrates that turbulence is indeed
continuum phenomenon and that the Navier-Stokes equations are valid for describing
turbulence flows.

Resolution requirements for Direct Numerical Simulation. In order to illustrate
numerical problems associated with the simulation of turbulent flows the mesh resolution
can be estimated. The smallest turbulent scale are of order O(Re−3/4) which implies that
the mesh spacing h is of the same order, h ≈ Re−3/4. Consequently in three dimensions
1/h3 mesh points are needed, i.e. N ≈ Re9/4 mesh points per time step. For atmospheric
flows with a Reynolds number of around 1020, see table 2.1, this leads to N ≈ 1045 nodes
– a value well beyond the capability of any computer system in the foreseeable future.
The consequence, already from the plain numerical point of view, is that not all scales
can be resolved, i.e. a reduction of the complexity, the range of scales, and the degrees
of freedom of the problem is required.

Averaging. As discussed in the previous sections the boundary conditions of the Navier-
Stokes equations are of an uncontrollable and unpredictable nature which allows to char-
acterise them as random forcing. Consequently in a stochastic sense the random distur-
bances produce random responses. In such settings the calculation of average quantities
makes more sense than the determination of instantaneous point values. Furthermore
from an engineering point-of-view the focus lies usually not in the local time-history of
fluctuating quantities but in mean values.

In turbulent-flow experiments and simulations several kinds of averaging techniques
are employed to define mean quantities. For statistically stationary flows the time aver-
age (over a sufficiently large time interval T ) is defined by

〈U(t)〉T :=
1

T

t+T∫
t

U(t′)dt′ . (3.8)

The averaging interval T must be sufficiently large compared to the typical time scale
of the fluctuations [34]. On the other hand, in case equation (3.8) should be used for
unsteady flows T must be sufficiently small enough to capture the mean flow fluctuations;
obviously this definition is not suitable for highly transient phenomena; however it is well
suited for a descriptive understanding. For flows that can be repeated or replicated, the
ensemble average is defined by

〈U(t)〉N :=
1

N

∑
N

U (n)(t) (3.9)
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where Un is the measurement of the nth realisation, and N is the total number of
realisations. N must be large enough to eliminate the effects of the fluctuations. The
ensemble can be considered as a virtual set of flows in which all controllable variable are
identical. Both definitions resemble experimental techniques and represent the classical
approach employed in standard text-books. For in the limits of T,N → ∞, i.e. for large
averaging intervals and large number of ensemble members/realisations, the ergodicity
theorem [103] shows that both definitions are equivalent.

Considering the random nature of the turbulent quantities the flow field can treated by
means of statistical tools. In particular a random variable U is completely characterised
by its probability density function (pdf), denoted by f(U). The mean or expectation of
the random variable U is then defined as the first moment by

〈U〉 :=

∞∫
−∞

V f(V ) dV , (3.10)

with represents the probability-weighted average of all possible values of U . This statisti-
cal approach, also referred to as Reynolds averaging, is discussed in detail in section 3.2.

In flows in which the central features of turbulence are inherently dynamic, the previ-
ous averaging operations erase the features sought after. These features can be retained
by using a local, spatial average of the flow variables. Interestingly, in a pioneering pa-
per [98], O. Reynolds used a spatial average over a mesh cell (for example a box about
x = (x1, x2, x3) with equal sides of length delta) of the form

u(x, t) =
1

δ3

x1+δ/2∫
x1−δ/2

x2+δ/2∫
x2−δ/2

x3+δ/2∫
x3−δ/2

u(y1, y2, y3, t)dy1dy2dy3 . (3.11)

Generalising the previous equation leads to the (spatial) filtering approach, formally
defined by the convolution integral

u(x, t) =

∫
G(x − x′)u(x′, t)dx′ , (3.12)

where G denotes a (spatial) filter kernel. This approach has been formally introduced by
Leonard [61] and forms the basis for Large Eddy Simulation (LES) approach, discussed
in section 3.4.

3.2 Statistical modelling

For engineering applications the focus of interest usually lies on just a few quantitative
properties of a turbulent flow, such as average forces on a surface (drag/lift coefficient)
or the degree of mixing between two incoming streams of fluids. Details of the flow
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structure, especially of small scale turbulent structures, are of minor interest in com-
parison to average or mean values. This motivates to express all quantities as a sum
of a mean and fluctuation part. In honour of the pioneering work on the statistical
approach to turbulence modelling, this approach is referred to as Reynolds averaging or
Reynolds decomposition. Characterising the fluctuating part as random quantities leads
to a statistical description of the flow, which will be briefly discussed in the following. A
thorough introduction of the statistical approach can be found in the classical textbooks
on turbulence, for instance [94,103].

3.2.1 The statistical description of turbulent flows

An instantaneous realisation of a velocity component U(x, t) at a specific point in space
and time in a turbulent flow field can be considered as be a random variable. The
independent scalar variable V is referred to as the sample-space variable corresponding to
U . The probability p that U is smaller than a given V defines the cumulative distribution
function (CDF)

Fu(V ) ≡ p{U < V } . (3.13)

The probability density function (pdf ) of U being equal to V is defined as the derivative
of the CDF,

fU(V ) ≡ d Fu(V )

d V
, (3.14)

satisfying the normalisation condition

∞∫
−∞

fU(V ) dV = 1 . (3.15)

The probability of finding U in a particular interval [Va, Vb] is given by the integral of
the pdf over that interval

p{Va ≤ U ≤ Vb} =

Vb∫
Va

fU(V ) dV . (3.16)

The mean or expectation of the random variable U is defined by

〈U〉 ≡
∞∫

−∞

V fU(V ) dV , (3.17)

which can also be referred to as the first moment of U . The fluctuation of U , denoted
as u is defined as the deviation from the mean,

u ≡ U − 〈U〉 . (3.18)
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Note that by definition the mean of the fluctuation is zero, i.e. 〈u〉 = 0. The second
moment of U , or the variance of U , is given by the mean square fluctuation,

〈
u2
〉

=

∞∫
−∞

(V − 〈U〉)2 f(V ) dV , (3.19)

The square root of the variance,
√

〈u2〉, defines the standard deviation, and is also
referred to a the root mean square or r.m.s. of U , denoted as u′ or urms.

The extension of the previous definitions to random fields is straight forward. Denoting
the one-point, one-time joint pdf3 of the field V, for instance the turbulent velocity field,
by f(V;x, t), the expectation and fluctuation are defined analogous to the scalar case,
(3.16) and (3.18), as

〈U (x, t)〉 =

+∞∫∫∫
−∞

V f(V;x, t) dV ; (3.20)

u (x, t) = U (x, t) − 〈U (x, t)〉 . (3.21)

In operator notation the averaging process can also be written as

〈U〉 = R{U} , u = U −R{U} (3.22)

where R denotes the Reynolds operator.

Favre-averaging. The previous approach, referred to as Reynolds decomposition in
the field of fluid dynamics, is used for incompressible flows. Introducing the Reynolds
averaged variables into the conservation equation for incompressible flows leads to the
Reynolds average Navier-Stokes (RANS) equations, see section 3.2.3. For the motion
of compressible media the introduction of the Reynolds averaged quantities leads to
additional correlation in the equations for the average quantities. Instead a density
weighted averaging, called Favre averaging, is employed [33]

Ũ =
〈ρU〉
〈ρ〉 . (3.23)

The corresponding Favre decomposition is given by

U(x, t) = Ũ(x, t) + u′′(x, t) , (3.24)

where the tilde denotes Favre averaging, and the Favre fluctuations are indicates by
double primes. Note that Favre averaging eliminates the fluctuations from the averaged

3The semicolon in f(V;x, t) indicates that f is a density with respect to the sample space variable on
the left of the semicolon, while f is a function with respect to the variables on the right side.
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equations and does not remove the effects of the density fluctuations on turbulence and is
therefore a mathematical simplification, not a physical one [127]. Introducing the Favre
operator F the Favre averaging can analogous to the Reynolds averaging, eqn. (3.22),
be written as

Ũ = F{U} , u′′ = U −F{U} . (3.25)

The properties of the Favre operator F are analogue to those of the Reynolds operator
R and are summarised in [3, 127].

3.2.2 Correlations and turbulent spectra

In order to describe the temporal evolution of a fluctuating function u(t) informa-
tion about the relation of values of u at different time is required. The correlation
〈u(t)u(t + τ)〉 between two values of u at different times is referred to as the autocorrela-
tion function. Normalisation of the autocorrelation by 〈u(t)2〉 defines the autocorrelation
coefficient ρ(τ)

ρ(τ) ≡ 〈u(t)u(t + τ)〉
〈u(t)2〉 = ρ(−τ) . (3.26)

For processes arising in turbulent flows the autocorrelation ρ(τ) can be expected to
diminish as time difference τ increases. Usually ρ(τ) decreases sufficiently fast enough
for the integral

T ≡
∞∫

0

ρ(τ) dτ (3.27)

to converge. The value of T is then a rough measure of the interval over which u′(t) is
correlated with itself; therefore T is referred to as the integral time scale.

The two-point, one time auto-covariance is the most simple statistic containing in-
formation about the spatial structure of a turbulent field. Usually referred to as the
two-point correlation it is defined as

Rij(r,x, t) ≡ 〈ui(x, t)uj(x + r, t)〉 , (3.28)

where r denotes the distance vector. Considering homogeneous turbulence the two-
point correlation Rij(r, t) is independent of the spatial coordinate and depends solely
on the distance between two spatial positions. As a consequence of isotropy, Rij can be
expressed in terms of two scalar functions f(r, t) and g(r, t) as

Rij

〈u′2〉 = g(r, t)δij + [f(r, t) − g(r, t)]
rirj

r2
(3.29)

where f(r, t) denotes the longitudinal, and g(r, t) the transversal autocorrelation func-
tion. Due to continuity there is a dependency between the two functions given by

g(r, t) = f(r, t) +
1

2
r

∂

∂r
f(r, t) . (3.30)
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Figure 3.2: Geometric interpretation of the longitudinal integral and Taylor length scale
[103].

This implies that in isotropic turbulence the longitudinal autocorrelation function com-
pletely determines the two-point correlation Rij. Note that for r = 0 both f and g are
equal to unity and tend asymptotically to zero for increasing r. Based on the autocor-
relation functions two distinct length scale can be defined. The first length scale is the
(longitudinal) integral length scale

L11(t) = �t =

∞∫
0

f(r, t)dr . (3.31)

L11 is characteristic of the larger eddies. The second scale is the (transversal) Taylor
micro-scale λg defined by

1

λ2
g

=
1

2
g′′(0, t) . (3.32)

where the double-prime indicates the second temporal derivative. It is always smaller
than the integral length scale (λg < L11) and their relation is determined by the Reynolds
number. Figure 3.2 shows the geometric interpretation of the length scales.

While the meaning of the integral length scale has already been discussed in section 3.1,
the physical interpretation of the Taylor micro-scale is still subject to discussion. For
high Reynolds numbers it can be shown the λg is intermediate in size between the
integral length scale �t and the Kolmogorov scale ηK . Recently two studies [67, 125])
independently indicated the Taylor length scale is a measure for the eddy size difference
at which the turbulent eddies are able to interact.

As Rij is independent of the spatial coordinate the information of the correlation
can be expressed in wave number space. The Fourier transform of Rij(r, t) defines the
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velocity spectrum tensor Φij(κ, t,κκκ) [123] as given by

Φij(κ, t) =
1

(2π)3

+∞∫∫∫
−∞

e−iκ·rRij(r, t) dr , (3.33)

and the inverse transform is

Rij(r, t) =

+∞∫∫∫
−∞

eiκ·rΦij(κ, t) dκ . (3.34)

The significance of the velocity spectrum becomes visible when considering the special
case of r = 0 in equation (3.34), which yields

Rij(0, t) = 〈uiuj〉 =

+∞∫∫∫
−∞

Φij(κ, t) dκ . (3.35)

Thus Φij(κ, t) is the contribution of velocity modes with wave number κ to the covariance
〈uiuj〉. By removing all directional information of the velocity spectrum tensor, the
energy spectrum function is obtained

E(κ, t) ≡
+∞∫∫∫
−∞

Φij(κ, t)δ(|κ| − κ) dκ (3.36)

=

∮
1

2
Φij(κ, t) dS(κ) , (3.37)

where S(κ) denotes a sphere with radius κ in wave number space whose centre lies at
the origin, and δ denotes the Dirac delta function4. The meaning of the energy spectrum
function becomes clearer after the integration of (3.36) over all wave numbers κ, leading
to ∞∫

0

E(κ, t)dκ =
1

2
Rii(0, t) =

1

2
〈uiui〉 . (3.38)

k = 1
2
〈uiui〉 represents the kinetic energy of the fluctuations. E(κ, t)dκ therefore repre-

sents the contribution from the modes in the interval κ ≤ |κ| ≤ κ + Δκ to the turbulent
kinetic energy. Thus E(κ) is the density of (turbulent) kinetic energy per unit wave
number κ.

4The Dirac delta function is defined as δ(x) =

{
0 , for x = 0 ,

∞ , for x = 0 .
A detailed discussion of the properties

of the Dirac delta function can be found for example in Appendix C of [94].
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Based on dimensional analysis, the Kolmogorov local isotropy and the scale similarity
hypothesis, the form of the Kolmogorov spectra can be determined. Rather than to
present a formal derivation, a less rigourous approach is employed in the following.
Assuming that the wave number κ can be related to the inverse of a eddy size �n as

κ = �−1
n , ηK ≤ �n ≤ � ,

the turbulent kinetic energy at that scale �n can be estimated via equation (3.7) by

v2
n ∼ (ε�n)

2/3 = ε
2/3κ−2/3 .

The density in wave number space is given by the derivative with respect to κ5, leading
to the well know −5/3 law for the energy spectrum in the inertial subrange.

E(κ) =
dv2

N

dκ
∼ ε

2/3κ−5/3

The same results can be obtained by dimensional analysis on basis of the energy cascade.
For high Reynolds numbers, a wide separation of scales can be assumed. The cascade
process is therefore independent of the statistics of the energy containing eddies as well
as of viscosity effects. This implies that a range of wave numbers exists where E(κ)
depends solely on ε and κ. On dimensional grounds the energy spectra then has the
form

E(κ) = CKε
2/3κ−5/3 , (3.39)

where CK is the Kolmogorov constant. In this range of wave numbers the transfer
of energy is dominated by inertia. The existence of this inertial subrange has been
verified by numerous experimental and numerical studies. Interestingly, nowadays a
direct numerical simulation is only then considered as trustworthy in case it is able to
reproduce the Kolmogorov spectra, eq. (3.39).

Generalisation of the Kolmogorov spectrum for wave number outside the inertial range
can be achieved by the following model spectrum,

E(κ) = Cε
2/3κ−5/3fL(κ�)fη(κη) , (3.40)

where fL and fη are two non-dimensional functions accounting for the shape of the
energy-containing and the dissipation range respectively. In the inertial range, both fL

and fη are essentially unity, so that the Kolmogorov spectrum is recovered.

3.2.3 Average transport equations

Instead of solving the instantaneous transport equations, transport equations for the
averaged flow properties are required. Consider the most general form of an evolution
equation for a time dependent variable φ which is given by

∂φ

∂t
= F (φ,x, t, . . . ) ,

5This is based in the assumption of the locality of the energy cascade.
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where F is an arbitrary complex right hand side. Introducing the Reynolds averaged
value 〈φ〉 = R(φ) and taking the temporal derivative leads to

∂ 〈φ〉
∂t

=
∂

∂t
R(φ) = R

(
∂φ

∂t

)
= R (F (φ,x, t, . . . )) ,

where the properties of the Reynolds operation, eqn. (3.22), have been employed. There-
fore, to obtain a transport equation for the averaged quantities it is sufficient to apply
the Reynolds operator onto the governing equations. This leads for the continuity (2.1)
and the momentum equations (2.2) to

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 ũj

∂xj

= 0 , (3.41)

∂ 〈ρ〉 ũi

∂t
+

∂ 〈ρ〉 ũiũj

∂xj

=
∂ 〈p〉
∂xi

+
∂

∂xj

(
σ̃ij − 〈ρ〉 ˜u′′

i u
′′
j

)
. (3.42)

In the momentum equation a new term arises,

τij = −〈ρ〉 ˜u′′
i u

′′
j , (3.43)

which is called the (Favre averaged) Reynolds stress tensor. These products of fluctu-
ating velocities stem from the non-linear convective part of the left hand side of the
momentum equations. Evidently these correlations play a crucial role in the equations
for the mean velocity field as a comparison with the instantaneous equation reveals:
without the Reynolds stresses both equations would be identical (as is the case for the
instantaneous and averaged continuity equation). This leads directly to the closure
problem of turbulence, as the Reynolds tensor τij cannot be readily expressed in terms

of mean quantities, for instance Ũi, 〈ρ〉, 〈p〉. Therefore the Reynolds averaged Navier-
Stokes equations are unclosed, which means that there exist more unknown quantities
to solve for than equations available. To close the Reynolds averaged Navier-Stokes
equations (3.41)–(3.42), a set of transport equations for the Reynolds stresses τij can
be derived by multiplying the Navier-Stokes equations by the fluctuating velocity and
then time average the product. Unfortunately, these Reynolds stress equations, given
below for the simplified transient, incompressible case (3.44), contain amongst others
triple correlation of the velocity fluctuations.

∂
〈
u′

iu
′
j

〉
∂t

+ 〈u〉k
∂
〈
u′

iu
′
j

〉
∂xk

= −〈u′
iu

′
k〉

∂ 〈u〉j
∂xk

−
〈
u′

ju
′
k

〉 ∂ 〈u〉i
∂xk

+

〈
p′

ρ

(
u′

i

∂xj

+
u′

j

∂xi

)〉
− ∂

∂xk

[〈
u′

iu
′
ju

′
k

〉
+

〈p′uj〉
ρ

δij +
〈p′ui〉

ρ
δij − ν

∂
〈
u′

iu
′
j

〉
∂xk

]

− 2ν

〈
∂u′

i

∂xk

∂u′
i

∂xk

〉
(3.44)
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This demonstrates the closure problem of turbulence. Due to the non-linearity of the
convective term in the Navier-Stokes equations additional, higher order correlations are
generated when higher moments are taken. This is not surprising, as the operations
are strictly of mathematical nature and no additional physical principles are introduced.
Therefore this procedure cannot lead to a closed system where the number of available
equations balances the number of unknowns. In order to close the equations, it is required
to express the Reynolds stresses in term of known quantities. The term“know quantities”
refers to flow properties for which a model expression or transport equation is available;

considering equations (3.41)– (3.42) this implies that an expression for ˜u′′
i u

′′
j in terms of

mean quantities ũi is sought after. The procedure of deriving the corresponding relations
is termed turbulence modelling.

3.3 RANS turbulence models

As a consequence of the averaging procedure the Reynolds averaged transport equations
contain unknown correlations due to the non-linearity of the convective term. To close
the equations additional algebraic or differential equations are required, i.e. a turbulence
model needs to be provided.

The following discussion will focus on constant-density flows, i.e. flows in which ρ is
independent of x and t, for the sake of brevity6. For incompressible flow the continuity
and momentum equations are given by

∂Uj

∂xj

= 0 ,

ρ
∂Ui

∂t
+ ρ

∂

∂xj

(UjUi) =
∂p

∂xi

+
∂σij

∂xj

.

with σij = 2μSij, and the strain-rate tensor is Sij = 1/2(∂Ui/∂xj + ∂Ui/∂xj). The corre-
sponding Reynolds averaged equations of motion in conservative form read

∂ 〈Uj〉
∂xj

= 0 , (3.45)

ρ
∂ 〈Ui〉

∂t
+ ρ

∂

∂xj

(〈Uj〉 〈Ui〉) =
∂ 〈p〉
∂xi

+
∂

∂xj

(2μ 〈S〉ij − ρ 〈uiuj〉) , (3.46)

with mean rate of strain given by 〈S〉ij = 1/2(∂〈U〉i/∂xj + ∂〈U〉i/∂xj). In order to close the
system of transport equations, an expression or model for the Reynolds stress tensor
−ρ 〈uiuj〉 is required.

The closure level is defined by the type (algebraic or differential) and the number
of auxiliary equations required to close the previous equations [127]. The most simple

6The extension to the compressible case will be briefly presented at the end of the section for case of
the standard k-ε model.
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approach is to approximate the unknown Reynolds stress by algebraic relations based
on the flow field variable in combination with prescribed functional expressions. Con-
sequently, these approaches are referred to as algebraic or zero-equation models, with
mixing length hypothesis based models being the most prominent. To improve the
prediction of turbulent flow properties and to account for history effects of the flow
structures, the concept of one-equation models has been developed, where a transport
equation for a characteristic turbulent property is solved. This approach dates back
to Prandtl [96], who developed a model based on the kinetic energy of the turbulent
fluctuation. While the addition of a transport equation leads to a more physical descrip-
tion of the turbulent flow, Prandlt’s approach still required the ad-hoc specification of a
turbulent length scale (see below), i.e. the model still was incomplete. By introducing
transport equation for a second turbulence parameter ω which serves as a reciprocal time
scale, Kolmogorov [56] introduced the first complete model of turbulence. Although not
instantly successful due to the limited computational power, this approach laid the basis
for the following alternative two-equation models. Here a transport equation for the tur-
bulent kinetic energy and a second turbulent property is solved. Instead of modelling the
τij indirectly via characteristic turbulent quantities, Rotta [102] succeeded in deriving a
plausible model equation for the Reynolds stress tensor. As the Reynolds stresses are
directly modelled, models based on this approach are called stress-transport models. The
modelling approach is usually termed second-order closure or second-moment closures.
In the following a model hierarchy based on number of additional pdes is presented and
the individual closure levels are discussed.

3.3.1 Linear eddy-viscosity models

The primary class of turbulence models is based on the linear eddy viscosity assump-
tion or eddy viscosity approximation introduced by Boussinesq [13]. The fundamental
assumption is that the turbulent stress tensor can be expressed in terms of the mean
rate of strain analogue to the viscous stresses for Newtonian fluids σij = 2μSij, except
that the molecular viscosity is replaced by the eddy viscosity μT , i.e.

τij = −ρ 〈uiuj〉 = 2μT 〈S〉ij −
2

3
ρkδij (3.47)

where k denotes the turbulent kinetic energy defined by the trace of the Reynolds stress
tensor

k =
1

2
〈uiui〉 . (3.48)

The final term in equation (3.47) ensures the validity of the approximation for i = j.
By means of the introduction of the eddy viscosity concept, the problem of turbulence
modelling has been moved from determining the six tensor components τij to finding an
approximation for the scalar quantity μT = ρνT . Introducing (3.47) into incompressible
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RANS equations (3.45)– (3.46) leads to

D 〈u〉i
Dt

=
∂

∂xi

(
〈p〉
ρ

+
2

3
k

)
︸ ︷︷ ︸

effective pressure

+
∂

∂xj

(
2 ( ν + νT )︸ ︷︷ ︸

effective viscosity

〈S〉ij
)

. (3.49)

The introduction of the Boussinesq approximation therefore leads to modelled equations
which have essentially the same structure as normal, i.e. laminar, equations. This form
is favourably from a practical point of view as the averaged equations thus reduce to a
form which is easily manageable and integrable into numerical codes for laminar flows.

However, the fundamental assumption that there exists a proportionality between
turbulent stresses and rate of strain, which is equivalent to the assumption that both
are aligned, does not hold in general, see for instance [94]. While for simple shear flows
the turbulent-viscosity hypothesis is reasonable, there are several classes of flows in which
the hypothesis is known to fail; an extension of the linear approach of (3.47) is discussed
at the end of this section.

Algebraic models

The most simple of all turbulence models are given by algebraic models, i.e. no additional
partial differential equation needs to be solved. Based on the Boussinesq approximation,
the Reynolds stress tensor is determined as the product of an eddy viscosity and the
mean rate-of-strain tensor. For a simple shear flow, in which the mean velocity only
depends on y coordinate, the Boussinesq approximation is given by

−〈uv〉 = νT
d 〈U〉
dy

. (3.50)

Based on dimensional analysis the eddy viscosity can be expressed as the product of a
velocity scale vm and a length scale �m:

νT = vm �m . (3.51)

Prandtl [95] introduced the term mixing length for �m, thus this modeling approach is
referred known as the Prandtl-mixing length model. The velocity scale vm is supposed
to be given by

vm = C · �m

∣∣∣∣d 〈U〉
dy

∣∣∣∣ ,

thus the kinematic eddy viscosity is given by

νT = �2
m

∣∣∣∣d 〈U〉
dy

∣∣∣∣ , (3.52)

where the constant C is adsorbed in the specification or model for the mixing length �m.
The formulation remains incomplete as the mixing length is different for each flow and
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must be specified or known in advance to obtain a solution. For a number of fundamental
flows it is possible to approximate the mixing length based on empirical relations, for
instance boundary layer flows (�m ∼ y, where y is the wall distance) or free shear flows
(�m ∼ δ, with δ being the mixing layer width).

One-equation model

Based on the instantaneous and the Reynolds averaged Navier-Stokes equation, a trans-
port equation for the Reynolds stresses τij can be derived. A corresponding equation for
the turbulent kinetic energy k is the obtained by taking the trace of the Reynolds stress
equation, see equation (3.48).

∂k

∂t
+ 〈Uj〉

∂k

∂xj

= τij
∂Ui

∂xj

− ε +
∂

∂xj

[
ν

∂k

∂xj

− 1

2

〈
u′

iu
′
iu

′
j

〉
− 1

ρ

〈
p′u′

j

〉]
(3.53)

The quantity ε is the dissipation, here defined as

ε = ν

〈
∂u′

i

∂xk

∂u′
i

∂xk

〉
; (3.54)

differs from the classical definition used in the previous section; however the difference
between these two is small and can be ignored [127].

The standard approximation to represent the turbulent transport of scalar quantities
in a turbulent field is, in analogy to molecular transport processes, that of gradient dif-
fusion. Modelling the pressure diffusion term and the turbulent transport term together,
assuming a behaviour of gradient-transport process, leads to

1

2
〈uiuiuj〉 +

1

ρ
〈puj〉 = −νT

σk

∂k

∂xj

, (3.55)

where σk is a closure coefficient. Based on dimensional reasoning, the dissipation rate
can be modeled as

ε = CDk
3/2/� , (3.56)

which leads to the following expression for the kinematic eddy viscosity:

νT = k1/2� = CDk2/ε . (3.57)

The final modelled equation is given by

∂k

∂t
+ 〈Uj〉

∂k

∂xj

= P − ε − ∂

∂xj

[
(ν +

νT

σk

)
∂k

∂xj

]
(3.58)

where P denotes the turbulent production defined as

P = τij
∂ 〈ui〉
∂xj

. (3.59)

This model approach has been derived independently by Kolmogorov [56] in 1942 and
Prandtl [96] in 1945, and is therefore referred to as the Prandtl-Kolomgorov k-equation
model.
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Two-equation models

The previously discussed one-equation model still requires the ad-hoc specification of the
distribution of the turbulent length scale �. An alternative to the ad-hoc specification
is to obtain the length scale from a scale-providing transport equation. The obtained
models are referred to as two equation models which are closed in the sense that they do
not require any additional input of field quantities (i.e. length scales) except for initial
and boundary conditions [2].

A natural choice would be the application of a model equation for the length scale
� itself as proposed by Rotta [102]. However the actual choice for the scale-providing
variable is rather arbitrary. The very first documented two-equation approach by Kol-
mogorov [56] employed the inverse of the turbulent turbulent time scale7, i.e. a turbulent
frequency ω = 1/τT = (k/ε)−1. Rotta [101] employed a model equation for the product
k � as closure approach.

The most widely used two-equation turbulence model, particularly for industrial ap-
plications, is based on the turbulent dissipation rate ε as the scale-providing variable.
The fundamental relations leading to the derivation a model equation for ε have been
originally been derived by Rotta [103]. However, the standard k–ε model is usually ac-
counted to work of Launder and Spalding [58,59]. Based on the turbulent kinetic energy
k and the turbulent dissipation rate ε the eddy viscosity can be expressed as

νt = Cμ
k3/2

ε
, (3.60)

where Cμ is a proportionality constant. In the characteristic velocity and time scales of

equation 3.60 are given by u′ =
√

k and � = k/ε respectively.
The exact transport equation for the turbulent dissipation rate ε is given by [127]:

∂ε

∂t
+ 〈Uj〉

∂ε

∂xj

= −2

[〈
∂ui

∂xk

∂uj

∂xk

〉〈
∂uk

∂xi

∂uk

∂xj

〉]
∂ 〈U〉i
∂xj

− 2ν

〈
uk

∂ui

∂xj

〉
∂2 〈U〉i
∂xk∂xj

−2ν

〈
∂ui

∂xk

∂ui

∂xm

∂uk

∂xm

〉
− 2ν2

〈
∂ui

∂xk∂xm

∂ui

∂xm∂xk

〉
+

∂

∂xj

[
ν

∂ε

∂xj

− ν

〈
uj

∂ui

∂xm

∂ui

∂xm

〉
− 2νρ

〈
∂p′

∂xm

∂uj

∂xm

〉]
.

(3.61)

In comparison to the exact equation for the turbulent kinetic energy the structure of
eq. (3.61) is far more complicated involving double and triple correlation. Furthermore
considering ε primarily as the energy-flow rate in the energy cascade, it is determined by
the large scale structures, while eq. (3.61) represents processes in the dissipation range,
i.e. the dissipation eddies [94,127]. Thus the transport equation for the dissipation rate
is commonly considered as an empirical model equation which is only loosly coupled to
the exact equation.

7Kolmogorov referred to ω as specific dissipation rate.
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The modelled tranport equation for the turbulent dissipation rate ε in the standard
formulation [59] reads

∂ε

∂t
+ 〈uj〉

∂ε

∂xj

=
∂

∂xj

[(
μ +

μT

σε

)
∂ε

∂xj

]
+ Cε1P

ε

k
− Cε2

ε2

k
(3.62)

with the constants given in table 3.1.

On basis of the Renormalisation Group Method (RNG) the k-ε equations have been
derived from the Navier-Stokes equations [130]. In the RNG k-ε model an additional
term in the ε equation appears which does not stem from the RNG analysis but represents
an ad hoc modelling approach. However, execpt for that term the ε equations in the
two models are identical, indicating that there is significant physical reasoning in the
postulated transport equation for the turbulent dissipation rate.

The second most popular choice for the scale providing quantities is the aforementioned
ω, primarily for aerodynamical applications. While the interpretation of ω is not unique,
the most simple approach is to regard it as the ratio of ε to k [127], indicating a close
relation to the k-ε approach. A combined k-ε and k-ω was proposed by Menter [77]
employing the ω equation in the near wall region, and tranforming it into the ε equation
away from the wall.

3.3.2 Extensions

Reynolds stress and related models

Differential second moment closures or Reynolds stress models (RSM) are based on a
direct modelling of Reynolds stresses, i.e. the transport equations for the Reynolds
stresses 〈uiuj〉 are closed and solved. Thus the eddy-viscosity approximation, one of the
major defects of the previously discussed modelling approach, is not needed. Although
conceptually advantageous, the RSM have not yet gained widespread popularity, which
can be accredited to modelling difficulties, numerical costs and instabilities, and only
modest improvement compared to more simple approaches.

The v′2 − f model represents a simplified variant of the Reynolds stress modelling
approach which allows for the consideration of non-local effects caused by anisotropy of
the Reynolds stress tensor. The base version of the model has been developed by Durbin
[30], which has subsequently been improved by the author and co-workers. Besides the
evolution equation for k and ε, an additional transport equation for the scalar quantity v′2

and for the elliptic operator f are solved. Physically the scalar v′2 can be interpreted as
wall normal Reynolds stress in the near wall region. That way the near wall anisotropy
is being accounted for in the modelling approach, while f captures non-local effects.
Based on Boussinesq approximation the turbulent viscosity is modelled via

νT = Cν v′2 k

ε
,
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where
√

v′2 represents the velocity scale. The transport equations for v′2 reads

∂v′2

∂t
+ 〈uj〉

∂v′2

∂xj

+ v′2 ε

k
= kf − ∂

∂xj

[(
ν +

νT

σκ

)
∂v′2

∂xj

]
,

and is based on the homogenous IP-model. The elliptic relaxation approach for the
evolution equation for f is given by

k3

ε2

∂2f

∂x2
j

− f =
k

ε
(C1 − 1)

(
v′2

k
− 2

3

)
− D2

Pk

k

with C1 = 1.4 and D2 = 0.3. The model has some popularity in turbomachinery
applications, especially in combination with transitional effects [110].

Non-linear eddy viscosity models

The idea of non-linear eddy viscosity model are related to the algebraic stress modelling
(ASM) approach. The Boussinesq approximation can be considered as the leading terms
in a Taylor series expansion of the Reynolds stresses in terms of the rate of strain Sij

and rotation tensors Ωij, the latter two given by

Sij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
and Ωij =

1

2

(
∂ũi

∂xj

− ∂ũj

∂xi

)
.

The general form of the non-linear eddy viscosity models is given by

τij = F(Sij, Ωij) =
10∑

n=1

G(n)T (n)
ij ,

where the tensors T (n)
ij are combinations of Sij and Ωij, and the coefficients G(n) depend

on the invariants S2
ii, Ω2

ii, S3
ii, Ω2

ijSji, and Ω2
ijS

2
ji [93, 94]. Most popular for engineering

applications so far have been cubic models, for example [23]. In the field on IC engine
simulation however, a major advantage could not be established [64], but increased
numerical efforts and stability problems have been reported.

Standard k-ε model for compressible flows

The previous section has been restricted to constant density flows. Based on a low-Ma
number asymptotic analysis of the exact turbulent transport equations and an order
of magnitude estimation for the individual terms El Tahry [31] derived a compressible
formulation of the standard k-ε model. The corresponding transport equations read:

∂〈ρ〉k
∂t

+
∂〈ρ〉kũj

∂xj

=
∂

∂xj

(
[μ +

μT

σk

]
∂k

∂xj

)
+ τT,ij

∂ũj

∂xi

− 〈ρ〉ε , (3.63)
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Cε1 Cε2 Cε3 Cμ σk σε

1.44 1.92 -0.33 0.09 1.0 1.3

Table 3.1: Constants of the standard k-ε model.

∂〈ρ〉ε
∂t

+
∂〈ρ〉εũj

∂xj

=
∂

∂xj

(
[μ +

μT

σε

]
∂ε

∂xj

)
+ Cε1P

ε

k
− Cε2〈ρ〉

ε2

k
+ Cε3〈ρ〉ε

∂ũj

∂xj

. (3.64)

The additional term Cε3〈ρ〉ε∂ũj

∂xj
, which appears in the transport equation for the Favre-

averaged turbulent dissipation rate 3.64, take the fluid compression into account. This
term is effective only in compressible flows and has originally been introduced to account
for effects of piston compression in reciprocating engines.

3.3.3 Closing remarks

Besides the continuity and momentum equations, for general compressible flows the
transport equations for species and enthalpy, see 2.1, have to be considered. Applying
the averaging procedure, section 3.2.3, leads to unclosed terms in the corresponding
equations similar to the Reynolds stresses in the momentum equations, which describe
the turbulent transport of the quantity considered. Usually these turbulent fluxes of the
general form 〈ρ〉 ũφ are analogously to the Boussinesq approximation for the Reynolds
stresses modelled by means of a gradient flux approximation:

〈ρ〉 ũ′′φ = ΓT
∂φ

∂x
,

where ΓT denotes the turbulent diffusivity of the quantity φ. By introducing the tur-
bulent Prandtl number Prt = νT /Γt the turbulent diffusivity is related to the turbulent
viscosity νT in analogy to the laminar Pr number. It is usually assumed the the turbulent
Pr-number is of order unity, i.e. O(Prt) ≈ 1.

3.4 Large Eddy Simulation

In order to understand the basic concepts of the large-eddy simulation technique recall
the characteristic properties of turbulent flow as discussed in section 3.1:

• turbulent flows are always transient and three-dimensional;

• measurement signals from turbulent flows seem random and chaotic; nevertheless
coherent structures occur;

• turbulent flows exhibit a non-linear, non-local, diffusive and dissipative character.
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Based on the fundamental studies by Kolmogorov [54, 55], the energy cascade concept
can be established. Here a turbulent flow field is considered as an ensemble of turbulent
eddies of different sizes. The largest eddies have a size of the order of the flow geometry
while the smallest eddies are limited by the Kolmogorov length scale ηk. Energy is
added to the largest scales by means of velocity gradients. This energy is transferred
to eddies of smaller and smaller sizes in a cascading process. This process describes
barely the net-energy balance, as the inverse transfer from smaller to larger elements,
i.e. backscatter effects, can locally occur. The energy is eventually dissipated by viscous
effects by eddies of size of the Kolmogorov length scale.

While large scale structures are directly affected by the (flow) geometry, the turbulence
on the small scale is due to the cascading process and the related non-linear effects virtu-
ally universal. Furthermore, the small scale turbulence can approximately be considered
as being locally isotropic, which implies that their statistical properties are independent
of a transformation of the frame of reference and, even more important, independent of
the large scale structures. Experimental studies of high Reynolds number flows support
this theory, see for instance the collection provided in [104]. Note however that the con-
cise picture of the energy cascade refers to the net energy transfer only, and especially
the interaction between large and small scale structures is neglected.

large scale structures small scale structures

• created by mean flow • stem from large scale structures
• depend on boundary and specific

geometrical conditions of the flow
problem

• universal

• display coherent structures • random, stochastic
• non-homogeneous and anisotropic • (almost) homogeneous, isotropic
• long-lasting, energy-containing • short-lived, energy-depleted
• diffusive • dissipative
→ difficult to model → more simple to model
→ universal model not possible → universal model more likely

Table 3.2: Comparison of the characteristic properties of large and small scale structures
in a turbulent flows [15].

Table 3.2 summarises the characteristic properties of turbulent flows with respect
to large and small scale motions. Using a RANS modelling approach all scales of a
turbulent flow field must be modelled by an appropriate (statistical) turbulence model.
Due to the characteristics of the large scales, and here especially their dependence on
the flow problem under consideration, it is doubtful whether a general model is feasible.
On the other hand, a direct numerical simulation, i.e. a direct solution of all turbulent
scales without the need for modelling, is restricted by the Reynolds number limit, see
section 3.1.
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Based on the assumption of isotropy of the small scales, the Large Eddy Simulation
approach can be summarised as follows:

• directly simulate the motion of the large scales (the large eddies)

• while the small scale structures are modelled.

The advantage of the LES approach is based on the assumption of the isotropy of the
small scales. As the large scale are directly computed only a part of the turbulent
spectrum requires modelling. Due to the characteristic properties of the smallest scale
the modelling process can be expected to be much easier. This is reflected by the fact
that LES models employed today are simple viscosity models8. In comparison to DNS,
the LES approach avoids the vast computational cost of explicitly representing the small-
scale motions; therefore the computational restriction to low-Reynolds number flows is
eased.

The realisation of the LES approach is based on a decomposition of the turbulent flow
field into large and small scales. Formally, this scale separation is performed by means
of a filtering operation [61]. Ideally the scale separation takes place in the inertial range
of the turbulent spectra, thus allowing a clear-cut partition between energy-containing
and dissipative scales. Note however that the existence of a distinct inertial range is
only guaranteed at sufficiently high Reynolds numbers

Conceptually in LES there are four distinct steps which will be discussed in the fol-
lowing sections:

1. a filtering operation to decompose the turbulent field into a resolved and a resid-
ual component; the resolved velocity field – which is three-dimensional and time-
dependent – represents the motion of the large eddies;

2. the equation for the evolution of the filtered quantities are derived from the in-
stantaneous conservation equations; these filtered equations have/are of the same
form as the standard equations but, similar to the RANS equation, contain an
additional term arising from the residual motion;

3. the filtered equation are closed by modelling the residual stress tensor (in case of
the momentum equations);

4. supplied by appropriate initial and boundary conditions the model filtered equa-
tions are solved numerically, leading to an approximation to the large-scale motions
in a single realisation of the turbulent flow.

8Simple refers here to the fundamental form of the modelling approach with additional transport
equation being considered as more complex.
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3.4.1 Filtering

Formally similar to the RANS averaging procedure, each instantaneous flow variable
φ(x, t) is decomposed into a resolved, large scale part φ(x, t) and a non-resolved, small
scale part φ′(x, t). In contrast to a statistical approach, in LES a spatial (in physical
space) or low-pass (in spectral space) filtering operation is performed. This filtering is
mathematically represented in physical space as a convolution product.

The resolved part of filter-scale part φ(x, t) of a space-time variable φ(x, t) is defined
formally by the the convolution product

φ(x, t) =

+∞∫∫
−∞

φ(ξ, t′)G(x − ξ, t − t′)dt′d3ξ , (3.65)

in which the convolution kernel G is characteristic of the filter used, which is associated
with the cutoff scales in space and time, Δ and τ c, respectively. This relation is denoted
symbolically by

φ = G � φ . (3.66)

The corresponding definition in the Fourier or spectral space is given by

φ̂(k, ω) = φ̂(k, ω) Ĝ(k, ω) , (3.67)

where k and ω are the spatial wave number vector and time frequency respectively. The
function Ĝ is the transfer function associated with the kernel G. The spatial cutoff
length Δ is associated with the cutoff wave number kc via kc = π/Δ, and the time
τ c with the cutoff frequency ωc. The unresolved part of φ(x, t), denoted by φ′(x, t) is
defined operationally by

φ′(x, t) = φ(x, t) − φ(x, t) (3.68)

= φ(x, t) −
+∞∫∫
−∞

φ(ξ, t′)G(x − ξ, t − t′)dt′d3ξ , (3.69)

or equivalently in compact symbolic notation

φ′(x, t) = (1 − G) � φ ; (3.70)

the corresponding form in spectral space is given by

φ̂′(k, ω) = φ̂(k, ω) − φ̂(k, ω) (3.71)

=
(
1 − Ĝ(k, ω)

)
φ̂(k, ω) . (3.72)
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In the LES literature it is common to refer to φ′ as sub-grid quantity, which indicates
the close coupling of the filter operation to the numerical grid. Instead of this misleading
term, in the following the more exact term sub-filter quantity is employed, as φ represents
the part of φ being removed by the filter operation.

The filter function G in the definition of the resolved part φ, (3.65), has yet not been
specified. In order to be able to manipulate the Navier-Stokes equations after applying
a filter to obtain transport equations for the resolved part of the flow field, the filter has
to verify the following properties [105]:

1. Conservation of constants, which is equivalent to the requirement, that the filter
kernel is normalised:

a = a ⇔ G � 1 = 1 (3.73)

the property is of fundamental importance, as only for a normalised filter kernel
the conservation properties of the governing, unfiltered equations are retained;

2. linearity, which is automatically satisfied by filters of convolution type, as products
of convolution verifies this condition independently of the filter kernel G:

φ + ψ = φ + ψ (3.74)

3. commutation with derivation

∂φ

∂s
=

∂φ

∂s
s = x, t . (3.75)

The filters that verify these properties are not, in the general case, Reynolds operators
(see section 3.2), i.e.

φ = G � G � φ = G2 � φ = φ = G � φ , (3.76)

φ′ = G � (1 − G) � φ = 0 , (3.77)

A final important property of the filter kernel G is given in the limit of vanishing filter
width Δ → 0. In this situation the filtered variable φ has to tend towards the un-filtered
value φ.

lim
Δ→0

φ(x, t) = φ(x, t) (3.78)

This property implies that for Δ → 0 also the sub-filter variable φ′ tends towards zero,
see (3.68), and the un-filtered variable is reobtained.

The classical convolution filters which are usually employed in LES for performing the
spatial scale separation with their corresponding transfer functions in spectral space are
given in table 3.3. Namely, these are the box or top-hat filter, the Gaussian filter9, and
the spectral or sharp cut-off filter. A graphical representation of convolution kernels G
and the transfer function Ĝ is given in figure 3.3. The most common filter is the box
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filter function G(r) transfer function Ĝ(k)

box or top-hat filter 1
Δ

H(1
2
Δ − |r|) sin(kΔ/2)

kΔ/2

Gaussian filter
(

γ

πΔ
2

)1/2

exp
(

−γ|r|2
Δ

2

)
exp

(
−Δ

2
k2

4γ

)
spectral or sharp cut-off filter sin(kcr)

kcr
, with kc = π

Δ
H(k − |kc|)

Table 3.3: Classical filter and transfer functions; r = x − ξ.
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Figure 3.3: Filter and transfer function for the three classical LES filter.
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filter which represents a local, spatial averaging. This filter is implicity used in (low
order) finite volume discretisation, where an integration over a computational cell leads
to a filtered representation of the field variables. The spectral cut-off filter eliminates all
Fourier coefficients belonging to wave numbers above a cut-off, thus performing a strict
separation of resolved and unresolved scales.

0 2 4 6 8 10
-1

0

1

2

3

4

U, U⎯

⎯u’, u’

x

Δ

Figure 3.4: Sample of the velocity field U(x) and the corresponding filtered field U(x)
(bold line), using a Gaussian filter with Δ ≈ 0.35; additionally shown is
the residual field u′(x) and the filtered residual field u′(x) (bold line) at the
bottom; taken from [94].

Apart from integral filters previously discussed, it is possible to apply other techniques
in order to smooth the solution; amongst these are for example differential filter or higher
order filter. Details can be found in [39], [105].

In the previous discussion it was implicitly assumed that the filter is homogenous and
isotropic. For practical applications these assumptions are too restrictive. Furthermore
the variation of the filter cut-off length (filter width) is desirable with respect to the
ability to adopt the filtering operation to the (local) structure of the solution. Employing
non-uniform filters, it cannot be assured that filtering and derivation commute, i.e.

∂φ

∂s
= ∂φ

∂s
.

9Usually, γ is generally taken to be equal to 6.
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The application of non-uniform filters to the conservation equation gives rise to a num-
ber of additional closure terms which are referred to in literature as commutation errors.
By employing a modified formulation of the filter, Ghosal and Moin [40] demonstrated

that the commuatation error is of second order, O(Δ
2
). Considering the case that the

solution of the filtered transport equation is done by means of numerical schemes of
second order, which is the case for most engineering applications, the commutation error
and the numerical discretisation error are of same order and can therefore be neglected.

In numerical simulations the filter length Δ is assumed to be proportional to the grid
spacing Δx:

Δ = β · Δx . (3.79)

The mesh length scale Δx is usually based on the volume of a mesh cell [39]:

Δx = (ΔV )
1/3 (3.80)

For the simulation of turbulent channel flow, Bardina et al [6] suggested the following
expression:

Δx = (Δx2 + Δy2 + Δz2)
1/2 (3.81)

Finally, a more conservative approach is to use the maximum length scale of the com-
putational cell:

Δx = max(Δx, Δy, Δz) (3.82)

The latter options are practical only for Cartesian meshes, or for curvilinear grid employ-
ing appropriate transformations of the grid spacings. In general, considering practical
applications demanding unstructured meshes, equation (3.80) presents the only feasible
solution.

By linking the filter width and the grid spacing, grid dependency is implied by defini-
tion. As the mesh length scale and correspondingly the filter width are local quantities
the structures which can be resolved are directly linked to the mesh properties of a cer-
tain region. For uniform meshes the smallest resolvable structures are of the order to
two cell sizes which gives a lower limit for the constant β of equation (3.79); a more
thorough analysis [20] shows that generally the proportionality constant β is of order
O(β) = 2 . . . 4. However if due to low order numerical schemes the amount of numerical
dissipation introduced is significant, the value of β needs to be increased to compensate
these effects.

3.4.2 Filtered transport equations

In analogy to the derivation of the Reynolds averaged Navier-Stokes equations, sec-
tion 3.2.3, a filter is applied to the general conservation equations for obtaining a trans-
port equation for the filtered quantities. Considering the generalized form ∂φ

∂t
= F (φ,x, t)

with F representing convection, diffusion, and source terms, the filtering operation is
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motivated via the symbolic filtering notation, cf. (3.66), and the application of the
differential operator, leading to

φ = G � φ ⇒ ∂φ

∂t
=

∂G � φ

∂t
= G �

∂φ

∂t
= G � F (φ,x, t) ,

where it is assumed that differentiation and filtering commute.
Applying the filter G to the momentum equations and assuming commutation with the

derivative, leads to the transport equation for the filtered velocity ui. As in the statistical
approach, the filtering of the non-linear convective term leads to the appearance of an
unclosed term, namely uiuj. Recall that in contrast to the RANS averaging approach

φ′ = 0 and φ = φ. Employing the Leonard or triple decomposition of the filtered
non-linear term allows the definition of the sub-filter stress τ ij

uiuj = (ui + u′
i)(uj + u′

j) (3.83)

= uiuj + uiu′
j + uju′

i︸ ︷︷ ︸
Cij

+ u′
iu

′
j︸︷︷︸

Rij

(3.84)

= uiuj + uiuj − uiuj︸ ︷︷ ︸
Lij

+ uiu′
j + uju′

i︸ ︷︷ ︸
Cij

+ +u′
iu

′
j︸ ︷︷ ︸

Rij︸ ︷︷ ︸
τ ij

, (3.85)

where Lij denotes the Leonard tensor, Cij the cross stress tensor, and Rij the Reynolds
sub-filter stress tensor. The Leonard stresses describe the interaction between large
scale motions (eddies) generating small scale turbulence. The interaction between large
and small scales is represented by the cross stress tensor Cij. This term is responsible
for energy transfer between the scales in both directions, i.e. from large to small scale
(energy cascade) but also vice versa from small to large scale, usually referred to as
(backscatter), with a mean transfer towards the smaller structures. The last term Rij,
the sub-filter Reynolds stress tensor, reflects the interactions between the small scale
motions, generating large scale turbulence. Just as the cross stress tensor, Rij is involved
in backscatter effects.

For compressible flows, a mass-weighted or Favre filter is introduced for analogue
reasons as in the RANS context, see equation (3.23):

φ̃ =
ρφ

ρ
=

G � (ρφ)

G � φ
= Gρ � φ , (3.86)

where Gρ denotes the Favre filter operator corresponding to the filter G; for simplicity
the same notations as in the RANS case are employed here, but in the present section,
the ·̃ denotes Favre filtering instead of (statistical) averaging. The turbulent residual or
sub-filter stress tensor thus reads [78]

ρ τ̃ij = ρũiuj − ρũiũj = ρ (Lij + Cij + Rij) (3.87)
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The final filtered equation have the same form as the statistically averaged RANS equa-
tion with the avergaging operator 〈·〉 replaced by the filter operator ·; therefore they are
omitted here for brevity.

3.4.3 Sub-Filter Scale Models

Analogous to the Reynolds stresses the sub-filter stresses τij require modelling. In LES
a length scale is already given by the filter width. Sub-filter turbulence can be assumed
to be rather isotropic therefore the models can be much simpler. Usually the solution of
an additional pde is avoided, and algebraic relations based on mean field quantities are
more popular. Thus a model hierarchy based on additional pde’s as in the RANS case
does not exist for the LES modelling approach.

Similar to the discussion of RANS turbulence models in section 3.3, the following will
focus on incompressible flows; the extension to compressible flows is straight forward.
Additionally mainly eddy viscosity approaches are considered representing the majority
of sub-filter models, which is reasonable due to the fundamental modelling assumption of
local isotropy. Thus the sub-filter stress tensor is modelled analogous to the Boussinesq
assumption as

τij = −2μtSij , (3.88)

where Sij is the filtered rate-of-strain tensor Sij = 1/2(∂ui/∂xj + ∂ui/∂xj).

Smagorinsky model and variants

The earliest published LES model dates back to the work of Smagorinky [111] in the early
1960s. Due to its simplicity it is still the most widely used LES model and forms the basis
for a large class of modelling approaches. The classical or constant coefficient Smagorin-
sky model employs a mixing-length approach similar to the mixing-length model by
Prandtl [95] for the description of the sub-filter scale viscosity, i.e.

μt = ρ ls us , (3.89)

where ls is the Smagorinsky length scale and us the corresponding velocity scale. The
length scale correlates to filter width which seperates the large and the small scale
structures, thus

ls = CsΔ , (3.90)

where Cs is the Smagorinsky coefficient. The velocity scale is related to the filtered
rate-of-strain via

us = lsS = CsΔ (2 Sij Sij)
1/2. (3.91)

Combining the previous equations finally leads to

μt = ρ (CsΔ)2 S (3.92)
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The Smagorinsky coefficient Cs is a free parameter which needs to be adjusted to the flow
configuration under consideration. For simple geometries values between 0.1 (turbulent
mixing layer) and 0.25 (turbulent channel flow) are commonly used. For homogeneous,
isotropic turbulence Lilly [65] derived an approximation for Cs based on the Kolomogorov
energy spectrum as

Cs =
1

π

(
2

3αk

)3/4

≈ 0.165 ,

where a value of Kolomogorov constant αk = 1.6 has been used.
Besides the necessity to adjust the Smagorinsky coefficient, the correlation of the

turbulent stresses as modelled by the Smagorinsky model to DNS data is usually poor.
Additionally, the model is not capable of describing backscatter effects. Nevertheless it
still represents the most popular LES model, which can be accounted to its simplicity,
ease of implementation, and numerical stability.

In order to overcome the problem of tuning the Smagorinsky coefficient, Germano et
al [37] proposed a dynamic procedure for determining the value of the model parameter.
The basic idea of the procedure is to estimate the sub-filter quantities on basis of the
smallest resolved scales. By applying an additional test filter G̃, being wider than the
grid-scale filter G, an explicit relation between the sub-test-filter stresses, which can be
computed from the resolved field, and the sub-filter stress can be derived; this relation
is usually referred to as the Germano identity. This relation then allows to derive an
equation for determining a local value of the Smagorinsky parameter. While the dynamic
procedure has first been applied to the Smagorinsky model, the general algorithm is
applicable for any type of model. The dynamic Smagorinsky model, i.e. the Smagorinsky
model with a dynamic determination of the model parameter, can currently be regarded
as the standard model in most LES applications of moderate complexity.

Structure-function model

Chollet and Lesieur [19] developed an eddy-viscosity model in spectral space based on
theoretical studies on three-dimensional, isotropic turbulence. Here the eddy-viscosity
is expressed in terms of the energy spectra in the region of the cut-off wave length. The
transfer of this model to physical space is based on the second order structure function
as defined by

F2 = 〈||ui(xi, t) − ui(xi − ri, t)||2〉||ri||=Δ . (3.93)

Here || · || denotes the norm of the vector, 〈·〉 spacial averaging, Δ the distance between
two grid points, and ri the distance vector. The final relation for the sub-filter eddy
viscosity then reads

νt = CSF αK Δ F
1/2
2 , (3.94)

with CSF = 0.105, and αK being the Kolmogorov constant. A number of enhancements
of the model have been developed in order to improve the behaviour in the near wall
region and during transition processes. In the selective structure function (SSF) model
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[63] the eddy-viscosity is deactivated in regions, where the flow is not three-dimensional
enough, based on the angle between the vorticity vector at a node and the average value
over the neighbouring nodes of the computational mesh. The filtered structure function
(FSF) model [29, 63] applies a high-pass filter to the resolved field before the structure
function is evaluated.

Bardina similarity model

The fundamental task of the sub-filter scale model is to establish a relationship between
the large and the small scales. Bardina et al [6] assumed that the structures of the small
and the large scales near the spectral cut-off, i.e. the smallest resolved and the largest
non-resolved structures, are similar. The smallest resolved structures can be recovered
by means of an additional filtering operation, allowing to approximate the sub-filter
stress tensor as

τij = Cb(uiuj − uiuj) . (3.95)

The correlation of the modelled sub-filter stresses to DNS data showed an excellent
agreement. Additionally, the model approach naturally accounts for backscatter effects.
Unfortunately the model shows only a very weak energy dissipation, making it numeri-
cally unstable. Therefore it is commonly combined with a more-dissipative, for example
the Smagorinsky model. These mixed models have the form

τij = Cb(uiuj − uiuj)︸ ︷︷ ︸
Bardina

− 2 (CsΔ)2 S Sij︸ ︷︷ ︸
Smagorinsky

. (3.96)

Approximate inverse modelling

The so-called inverse modelling approach [38] or approximate deconvolution method [120]
is based on the inversion of the filter operation. Thus the turbulent stress tensor can
be directly approximated using the filtered field. Usually, the filter cannot be directly
inverted, thus an approximation of the inverse filter is required. Different approaches
exist for the formal inversion of the filter G, see [39] for an more detailed overview of
the topic.

The main drawback of the approach lies in the demands on the numerical schemes as
high-order schemes are required, which makes the realisation of the approach difficult for
practical applications. Furthermore the inversion of the convolution filter operation (de-
convolution) is badly conditioned [15], so that Speziale [118] questions the realisability
of the inverse filtering approach for complex turbulent flows.

One equation eddy viscosity model

Most modelling approaches for LES focus an algebraic relations or functional expressions
for the determination of the sub-filter stress tensor. The focus of present reasearch ac-
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tivities focuses much more on dynamic and scale-similarity modelling which is motivated
by the local character of the filtering operation.

Employing an eddy-viscosity type approach for the approximation of the sub-filter
stress tensor, a length and a velocity scale is required, see equation (3.89). While the
length scale is given by the filter length, (3.90), the definition of the velocity scale is
not unique. The approach followed by the Smagorinsky model, in which the velocity
scale is obtained on basis of Δ and the resolved strain-rate Sij, (3.91), is strictly valid
only in the limit that production and dissipation of energy in the sub-filter scale are
in equilibrium [74]. The implication of this requirement is that the filter cut-off is
situated in the dissipation scale of the turbulent spectrum, which poses severe restrictions
on the required mesh resolution and makes it actually impractical for flows at higher
Re-numbers. Alternatively the velocity scale can in analogy to RANS modelling be
determined on basis of the sub-filter kinetic energy, as suggested by Schumann [108].

A model that uses a transport equation for the kinetic energy of the sub-filter mode
given by

kr = q2
sgs =

1

2
u′

iu
′
i (3.97)

has been developed independently by a number of authors. Following the formulation
by [131], the modelled evolution equation for kr reads

∂kr

∂t
+

∂

∂xj

(ujkr) =
∂

∂xj

[
(ν + νt)

∂kr

∂xj

]
+ Pr − Cε

k
3/2
r

Δ
(3.98)

with

νt = CkΔk
1/2
r , Pr = 2νtSijSij .

The model coefficients Ck and Cε have been determined as Ck = 0.1 and Cε = 1.0.
Instead of prescribing the values of the model coefficient, a localized dynamic approach
can be applied [75].

The derivation of the kr-equation is similar to its RANS counterpart, the Prandtl-
Kolmogorov k-equation. Note that in the dissipation term, the integral length scale is
replaced by the filter width, which leads to a simple algebraic expression for the sub-filter
dissipation:

εr = Cε
k

3/2
r

Δ
.

While most of the LES models explicitly avoid to introduce an additional transport
equation due to the filtering operation being local in space, the employment of the kr-
equation might have a number of practical advantages from an IC engine simulation
point-of-view. The modelling approach eases the mesh requirement as the filter cut-off,
which is here assumed to be directly connected to the mesh spacing, can be allowed
to be inside the inertial range, but not necessarily inside the dissipation range. Based
on the local value of kr the sub-filter turbulence intensity needed for sub-filter mixing
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and combustion modelling can easily be obtained. The transport of an additional sub-
filter quantity might have advantages for grid movement where interpolation is necessary
during the course of the simulation. In this case the sub-filter information is transported
via an additional scalar quantity and not extracted from the resolved velocity field, which
is difficult to be transferred undisturbed from one mesh to another [113].

3.5 Hybrid modelling

The grid resolution requirements for an LES, especially for the LES of wall bounded
flows, are significantly higher than those for a RANS simulation of the same flow config-
uration as considerably smaller length scales and flow structures are resolved. Addition-
ally the numerical requirements are rather restrictive considering practical applications,
leading to uncertainties in the interpretation of the numerical result; thus the question
arises whether the observed turbulence is physical or just a result of numerical instabili-
ties. On the other hand, the mesh resolution in wall distant regions is usually sufficient
for resolving a significant amount of the turbulent spectrum.

In order to reduce the cost a feasible solution is to combine LES with another technique
which provides the relevant low-frequency solution at low costs. A natural choice is to
use a hybrid combination of a RANS approach, for example in attached boundary layer
regions, coupled to an LES model. This hybrid approach, first introduced by Spalart
et al for the simulation of airfoils [115], has become more and more popular in recent
years allowing the simulation of high-Re number flows and in complex geometries, which
are (yet) not feasible with pure LES. The potential of the approach can be seen by an
analysis on Hanjalic et al [46], who studied the usage of a hybrid model for a channel
flow simulation; here the hybrid model required only 1% of the cells which are needed
for a corresponding LES. An earlier estimation by Spalart et al [115] for the simulation
of an airliner wing lead to the conclusion that an LES might be feasible in four decades
while the hybrid approach employable today.

For LES the near wall region requires a significantly higher mesh resolution, almost
similar to DNS, in order to capture the anisotropy of the turbulent flow structures. Hy-
brid modelling usually employs the RANS submode in this region, allowing the usage of
standard wall function approaches. For wall bounded flows the problem of wall modelling
is avoided, which actually is still one of the major topics of LES modelling today.

3.5.1 Overview of hybrid modelling approaches

Two main modelling approaches can be distinguished [46,105] for combining RANS and
LES, namely the zonal decomposition and the universal modelling.

The zonal decomposition divides the computational domain into pre-defined sub-
domains and applies the corresponding model to the particular zone. The grid resolution
in the domains can be adjusted to the model, even the suppression of one or two spatial
dimensions in RANS sub-domains is feasible. While the decomposition allows for an
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explicit specification of the model in each domain, this also requires pre-knowledge of
the flow structures. Additionally, in [46] a great sensitivity of the results to the location
of the interfaces is reported. For complex or changing geometries, this behaviour makes
the application very difficult.

In the case of universal modelling, a generalised turbulence model defined as a com-
bination of a RANS and a typical sub-filter model is employed. The combination of the
two models is expected to introduce more physics into the sub-filter model in regions
where the filter cut-off is located in the low frequency part of the spectrum, outside or
at the beginning of the inertial range, i.e. in regions where the modellings assumptions
of LES are not valid. The mode of the model (RANS, LES, blended) is determined via
predefined, model-specific local criteria like mesh resolution or wall distance.

Detached eddy simulation

The most successful hybrid model so far has been proposed by Spalart et al [115],
termed Detached Eddy Simulation or DES. The original version started from the Spalart-
Allmaras RANS one-equation model [114] as sub-filter model with a slight modification
of the destruction term, incorporating the filter size as an additional parameter. The
fundamental ideas is to employ the RANS based model in attached boundary layers,
while in detached regions transient effects are resolved via an LES approach10. An
extension of the approach has been performed by Strelets [121] starting from the two-
equation model by Menter [76]; a more detailed discussion of the two model approaches
can be found in [113].

Willems two-scale method

Willems [128] proposed in 1996 an approach which is based on the so-called two-scale
approach. The transport equations for all flow quantities are solved at the filter scale
Δ, while the equation for the turbulent kinetic energy and turbulent dissipation rate are
solved at the integral scales �t, and then down-scaled to the filter scale. As the ε is scale
invariant, the dissipation rate at the integral length scale is equal to the dissipation at
the filter level. Based on isotropic scaling relations the turbulent kinetic energy at the
filter level kf reads:

kf = kt

(
Δ

�t

)2/3

(3.99)

with kt being the solution on the integral scales. Note that equation (3.99) is only valid

for Δ
�t

< 1, i.e. if the filter width is smaller than the integral length scale. As the filter
width and the mesh spacing are tightly coupled, see equation (3.90), this implies that
the scaling can only be performed if the mesh is fine enough to resolve structures of

10Note: the RANS model has been developed specifically for the simulation of airfoils.
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the size of the integral length scale. On coarser meshes the pure RANS formulation is
retained, leading to the following formulation for the turbulent eddy viscosity:

νt = νT (1 − f(Δ, �t))
2 with f(Δ, �t) = min

[
0.0, 1.0 −

(
Δ

�t

)2/3
]

. (3.100)

where νT refers to the RANS based viscosity, νT = cν
k2/ε. Independently Magnient [69]

arrived in 2001 independently at the same model; also LNS (Limited Numerical Scales)
approach shows strong similarities to the Willems model. The modelling approach by
Willems has two interesting limits. For very small filter sizes, Δ → 0, the sub-filter
viscosity tends to zero and the solution corresponds to a DNS. In the opposite limit of
large filter width, the model leads to the RANS solution with νt = νT .

Speciale’s rescaling and the LNS methods

Similar to the approach followed by Willems, Speziale [118, 119] proposed a general
rescaling function for the turbulent stresses of the form

τ ij = F · τij ,

where the scaling function F depends on the ratio of the filter width and the Kolmogorov
length scale. The turbulent stress τij stems from the solution of an arbitrary RANS
model, which should be able to deal with anisotropy and disequilibrium, such as Reynolds
stress models. The scaling function suggested by Speciale is given by

F =
[
1.0 − exp (−βΔ/ηk)

]n
.

where the proposed model constants are given by β = 0.001 and n = 1; however it is
expected that the model is very sensitive to these parameter.

The rescaling approach has been extended by Batten et al [7] in the framework of the
Limited-Numerical-Scales method. The method can be applied to any combination of
RANS and LES models which allow the specification of a length and velocity scale. In
the LNS case the scaling function reads

F =
min [lsus, �tu

′]
�tu′ ,

where ls, us and �t, u
′ denote the characteristic length and velocity scales of the LES and

RANS sub-models respectively.

3.5.2 Two-level modelling

For the simulation of internal combustion engines the previously discussed models show
a limited practicability. The DES approach has been developed for aeronautical ap-
plication; the criteria for switching between the RANS and LES mode is determined
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solely on basis of the wall distance and thus restricts the RANS regions per se to wall re-
gions. Speciale recommends the usage of higher order RANS models, i.e. Reynolds stress
model, for the rescaling approach, which have been shown to be numerically problematic.
Additionally the model formulation is based on the Kolmogorov length scale ηk, which
defines the lower limit of the energy spectrum and thus cannot be well approximated by
a RANS model.

Combing elements of the previously introduced approaches leads to a reformulation
of the two-scale approach and will be discussed in the following. The fundamental
approach follows the ideas proposed by Willems [128], and is based on the previous
mentioned observation that in practical applications the mesh resolution locally allows
to resolve a significant part of the turbulent spectrum beyond the integral length scale.
This implies that not all of the available information about the local, transient turbulent
flow structures are deployed. Thus, speaking in term of spectral space, the Willems
model starts from the integral length scale and tries to capture the effect of smaller
scales depending on the local mesh resolution.

The new, extended approach is based on the structural analogy of the evolution equa-
tions for the (RANS) turbulent kinetic energy, eq. (3.53), and the (LES) sub-filter kinetic
energy, eq. (3.98). Similar to the approach followed by Willems [128], for a filter width Δ
of the order of the integral length scale the filtered field is assumed to tend towards the
statistical average. On the other hand for decreasing filter widths the solution approaches
the limit of a DNS. This behaviour can be realised via an adequate expression for the
sub-filter dissipation rate εr. In contrast to the two-equation approach by Willems [128],
the new hybrid model employs three transport equations: two equations on the integral
level corresponding to a RANS model approach, namely the transport equations for k
and ε, and one equation for the sub-filter kinetic energy on the filter scale are solved.

On the integral level, the standard k-ε equations for the integral turbulent kinetic
energy k and the dissipation rate ε based on the formulation by El Tahry [31] are solved,
which read

∂ 〈ρ〉 k

∂t
+

∂ 〈ρ〉 ũjk

∂xj

=
∂

∂xj

(
[μ +

μT

σk

]
∂k

∂xj

)
+ P − ρε ,

∂ 〈ρ〉 ε

∂t
+

∂ 〈ρ〉 ũjε

∂xj

=
∂

∂xj

(
[μ +

μT

σε

]
ε

∂xj

)
+ C1P

ε

k
− C2 〈ρ〉

ε2

k
+ C3 〈ρ〉 ε

∂ũj

∂xj

,

where the turbulent eddy viscosity μT is given by μT = Cμ 〈ρ〉 k2

ε
and the turbulent

production P = τij
∂uj

∂xi
. For for the sub-filter kinetic energy kr, the one-equation model

by Yoshizawa et al. [131] is used, which is given by

∂ρkr

∂t
+

∂ρ ujkr

∂xj

=
∂

∂xj

[
(μ + μt)

∂kr

∂xj

]
+ Pr − ρεr .

Here the sub-filter dissipation εr and the sub-filter viscosity μt are given by

εr = cε
k

3/2
r

Δ
and μt = Ckρ

√
kr Δ
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The model equations are solved in the whole domain. Using the integral value of
the turbulent kinetic energy and the dissipation rate, the integral length scale �t can be
estimated via

�t =
k3/2

ε
.

By comparing the integral length scale to the filter width, which is coupled to the mesh
spacing via (3.79), a measure for the mesh resolution is obtained. For Δ < �t the mesh
is fine enough to resolve part of the turbulent spectrum beyond the integral length scale,
while in the opposite case for Δ < �t the largest turbulent structures are below the filter
cut-off and cannot be represented on the current grid. In the latter case the evolution
equation for the sub-filter kinetic energy kr migrates towards the equation for the integral
turbulent kinetic energy k by setting εr = ε. Thus two cases can be discerned:

Δ < �t : εr = cε
k
3/2
r

Δ
μt = Ckρ

√
kr Δ

Δ ≥ �t : εr = ε μt = μT

This way the model mode, i.e. whether the LES or the RANS model is used in determin-
ing the turbulent eddy viscosity which is actually the only turbulent input parameter
into the momentum equations, is identified by the ratio Δ/�t. For Δ/�t < 1 the mesh is
fine enough to fully resolve the integral length scale thus the LES mode of the model is
used , while for values larger than 1 the RANS mode is active.

The ε equation is solved in the whole domain, but in the LES region the algebraic
relation for the sub-grid dissipation εr is employed. The standard model constants for
the k-ε equations are used, while the constants for the LES model are chosen such,
that the turbulent eddy viscosity changes continuously between the two regimes. This
implies that for Δ = �t the sub-filter kinetic energy and the integral turbulent kinetic
energy as well as the modelled turbulent viscosities are equal, i.e. kr = k and μt = μT

respectively. Therefore, in order to ensure that compatibility, the modell parameter of
the one-equation model are set to Ck = 0.09 and Cε = 1.0.

3.5.3 Closing remarks

The hybrid RANS/LES models show good results for many applications in literature.
However there is a fundamental problem associated with the approach, which can be
referred to as the hybrid modelling defect. The transition region from RANS to LES,
which is often referred to as a grey area, plays a crucial role in many flow configurations.
The flow coming from the RANS domain and entering the LES region lacks information
about turbulent scales which are supposed to be resolved on the fine mesh of the LES
domain, i.e. the velocity fluctuations are (initially) underestimated. A similar effect
occurs in case of mesh and topology changes in the course of a simulation with changing
geometry, where the solution has to be interpolated between meshes of different resolu-
tions; that situation is considered in detail in section 6.1. Here the energy spectra has a
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hole at the mesh cut-off of the coarser grid, which has to be closed by the development
of transient turbulent structures. In case that the development of these turbulent struc-
tures is too slow after the RANS/LES interface, the (modelled) turbulence level in the
LES region is reduced and the turbulent stresses might be underpredicted. A potential
workaround is the introduction of turbulent fluctuations by means of interface forcing,
either from DNS [27, 28] or via synthesized fluctuations [8, 26]. The base techniques for
the generation of the fluctuations are similar to those for the generation of turbulent
initial conditions, which are discussed in the following section.

Being based on the hybridization of the classical Reynolds averaging and the filtering
approach, the hybrid modelling approaches escape the usual theoretical frame work
presented in sections 3.2 and 3.4. Employing a hybrid model, the resulting flow fields
can neither be interpreted in terms of statistical averages nor as a filtered solution.
The consistent physical interpretation of results especially in the interface region is non-
trivial.

3.6 Artificial turbulence

The (filtered) Navier-Stokes equations supplemented by the enthalpy and species trans-
port equations (2.1)–(2.2) form a coupled, non-linear system of partial differential equa-
tions which is valid for arbitrary flows. A unique solution of this system is only possible
by the specification of initial and boundary conditions characterising particular flow
configuration. Mathematically speaking the system represents an initial-boundary value
problem.

In the case of laminar flow the specification of initial and boundary conditions by
prescribing for instance constant values for the velocity, pressure and enthalpy fields is
usually possible at low or moderate cost. Also temporally constant values are usually
sufficient for RANS simulations of turbulent flows. A simple example is the case of
inflow conditions for a plane mixing layer. For a RANS simulation the specification of
the mean inflow velocity profiles, for instance via the 1/7th distribution, and constant
values for the turbulent quantities 〈k〉 and 〈ε〉 for each stream is sufficient.

The situation is fundamentally more complex for direct numerical simulations as well
as for large-eddy simulations. Here the spectrum of the turbulent length scale is directly,
for LES at least partially, computed. This leads to the requirement of a realistic descrip-
tion of the flow field both at the initial simulation time (initial solution) as well inflow
conditions (boundary conditions). While for open systems, as for instance mixing and
boundary layers, the question of inflow conditions is most critical, the focus for system
whose temporal evolution is of interest, with the most simple and prominent case be-
ing decaying homogeneous turbulence, the initial conditions play inevitably a decisive
role [34]. Therefore physical sensible, and in the case of inflow conditions unsteady, data
subject to characteristic correlations of the velocity components are required.

The distinction between turbulent initial and boundary or inflow conditions can be
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Figure 3.5: Influence of conventional inflow boundary conditions on the simulation of a
plane jet. Comparison between inflow with zero fluctuations, random fluc-
tuations and fluctuations from an external channel flow DNS; from [53].

overcome by means of the Taylor hypothesis [122] or the frozen-turbulence approxima-
tion [94, 123]. This hypothesis allows the approximation of spatial correlations by tem-
poral correlations and vice versa. For the problem of creating turbulent inflow conditions
the following approach based of the Taylor hypothesis can be used (see also [51,53,107]):
in a first step a turbulent field with the desired turbulent characteristics is created, then
slices from the field are extracted and used as inflow data. The problem of generating
turbulent inflow data can thus be traced back to the creation of the corresponding single
realisation of a turbulent field; therefore the following sections will focus on the creating
of turbulent initial conditions.

The common approach to generate pseudo-turbulent velocity fields superimposes a
field of random fluctuations u′

i to the mean velocity field 〈ui〉. The most simple way is to
apply random noise, i.e. the signal on each node (computational cell) is just determined
as a random number. Investigations by Klein et al [53] using this data as inflow condi-
tions for a plane mixing layer revealed that the turbulence generated by this method is
immediately damped to zero right after the inflow plane. The velocity fluctuations on
the centreline of the jet are given in figure 3.5. Results obtained for the noise inflow-
condition are compared to data for a steady laminar conditions and for pre–computed
turbulence: the noise conditions yields a proper fluctuation level on the inflow, but is
then dissipated immediately. This effect is explained by the lack of energy in the low-
wave number range of the random-number turbulence since random noise possesses an
energy spectrum of the form E(κ) = const.

3.6.1 Fourier transform approach

To overcome the problem associated with the employment of pure white noise, namely
the lack of energy on the small and too much energy on the high wave numbers, Lee et
al [60] applied an inverse Fourier transformation using an energy spectrum of real turbu-
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lence. For illustation purpose a one dimensional example will be used in the following;
a more thorough discussion and numerical details are given in [12,16].

The Fourier transformation of a signal uk in physical space to a signal ûn in wave
number space can be approximated by the discrete Fourier transformation

uk =
1

N

N−1∑
n=0

ûn exp

(
2π

N
jkn

)
, (3.101)

where N is the number of Fourier modes used in the approximation, ûn = |ûn| exp(jΦn)
are the complex Fourier coefficient for mode n, where Φn denotes the phase angle. The
energy of the transformed signal ûn is given by

N−1∑
n=0

E(n) :=
1

N

N−1∑
n=0

|Un|2 =
N−1∑
n=0

|ui|2 (3.102)

yielding a connection between the absolute value of ûn and the energy spectrum E(n) ∼
|ûn|2. With a random phase angle Φn the inverse Fourier transform leads to a signal
featuring the prescribed spectrum E(n).

As this method is based on Fourier transformation the implementation is complex
and involved. For efficiency reasons fast Fourier transform (FFT) needs to be applied
which places a severe restriction to the number of grid points and topology; equidis-
tant, Cartesian grids are required, thus the application is limited to simple, rectangular
geometries. For complex geometries the initialisation on a regular mesh followed by
an interpolation onto the actual grid offers a possible workaround; however due to the
employed interpolation the initialised spectrum will be disturbed.

3.6.2 Diffusion process

To overcome some of the difficulties associated with the Fourier transform approach,
Klein et al [53] developed a method based on digital filters to generate pseudo-turbulent
velocity data. Although this method has been developed having applicability and sim-
plicity in mind, an equidistant mesh-spacing is still required. Keeping the fundamental
idea of filtering, a new approach has been developed in [51], where instead of an ex-
plicit digital filter a diffusion process is applied for converting white noise into a signal
featuring the required length-scales.

The starting point is a three-dimensional random (velocity) field which is normalised
to fulfil 〈ui〉 = 0 and 〈uiui〉 = 1, and scaled by the root of the local cell volume. The
resulting field has a typical length scale of half a cell width and does not feature any
sensible autocorrelation. In the next step a diffusion operator, eq. (3.103), is applied to
the field removing the small structures of the order of the mesh size while leaving the
larger structures unaffected.

∂ui

∂t
=

∂

∂xj

(
ν

∂ui

∂xj

)
(3.103)
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The removal of the small scale structures by diffusion is due to the steep velocity gradient
in the random field as the diffusion of momentum is proportional to the rate of strain:
τij = 2μSij. It is interesting to note that the application of the diffusion operator is
equivalent to the convolution with a Gaussian filter, thus the process yields an auto-
correlation function of Gaussian shape. The (integral) length scale �t of the velocity
field increases with the diffusion time and can be estimated as

�t =
√

2πνtdiff , (3.104)

where tdiff denotes the time of diffusion application [51, 107]. The fluctuating field ob-
tained by this procedure can finally be scaled to yield the desired integral turbulent
kinetic energy. The spectrum of the pseudo-turbulence corresponds to the case of ho-
mogeneous isotropic turbulence. In case an anisotropic field is sought after, performing
a transformation as proposed by Lund et al [68] yields the desired Reynolds stresses.

As this method works completely in physical space it can be applied to arbitrary
geometries and on arbitrary meshes. The implementation and integration into existing
CFD codes is straightforward.

3.6.3 Synthesized turbulence

A time-space turbulent velocity field can be simulated using random Fourier modes [57].
Billson [10] applied this technique to generate synthesized turbulence in the framework
of the Stochastic Noise Generation and Radiation (SNGR) method [4,5, 9].

A turbulent velocity field can be constructed as a sum of Fourier modes

us(x) = 2
N∑

n=1

ûncos(κn · x + ψn)σn (3.105)

where ûn, ψn and σn are the amplitude, phase and direction of the nth Fourier mode.
The direction σn obeys the normalisation condition and has the length |σn| = 1.

The orientation of the wave number vector κn is chosen randomly on a sphere with
radius κn = |κn| to ensure the isotropy of the generated velocity field. Assuming incom-
pressibility the continuity equation gives the following relation

κn · σn ≡ 0 for all n ; (3.106)

this implies that the wave number vector κn and the spatial direction σn of the nth mode
are perpendicular.

The space angles φn, αn, φn and the phase ψn are chosen randomly with probability
functions given in table 3.4. The probability function of θ, p(θ) = 1/2 sin(θ) is chosen
such that the distribution of the direction κn is uniform on the surface of a sphere, i.e.
the probability of a randomly selected direction is the same for all surface elements dA.
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p(φn) = 1/(2π) 0 ≤ φn ≤ 2π
p(ψn) = 1/(2π) 0 ≤ ψn ≤ 2π
p(θn) = (1/2) sin(θ) 0 ≤ θn ≤ π
p(αn) = 1/(2π) 0 ≤ αn ≤ 2π

Table 3.4: Probability distributions of random variables.

The amplitude ûn of each mode in equation (3.105) is determined on basis of the
energy spectra via

ûn =
√

E(κn) Δκn , (3.107)

where Δκn is a small interval in the spectrum located at κn. A model spectrum E(κn) is
required to simulate the shape of the energy spectrum for isotropic turbulence. Following
[10] a modified von Kármán-Pao spectrum is chosen in the present work which is given
by

E(κ) = α
u′2

κe

(κ/κe)
4

[1 + (κ/κe)2]17/6
exp [−2(κ/κη)

2] ; (3.108)

here κ is the wave number, κη = 2π/ηk is the wave number corresponding to the Kol-
mogorov length scale (Kolmogorov wave number), ν is the kinematic molecular viscosity
and ε is the turbulent dissipation rate. u′2 is the r.m.s. value of the velocity fluctuations
corresponding to the turbulent kinetic energy, i.e. u′2 = 2/3 〈k〉. κe corresponds to the
wave number containing the most energy containing eddies at the peak of the spectrum
and is related to the integral length scale �t via κe = 2π/�t. The numerical constant
α determines the kinetic energy of the spectrum. The integral of the energy spectrum,
equation (3.108), over all wave numbers must be equal to the total turbulent kinetic
energy

〈k〉 =

∫ ∞

0

E(κ)dκ , (3.109)

which can be used to determine the constant α. The algorithm has been implemented
as follows which slightly diverges from the one proposed in [25]:

1. for each mode n create a set of random angles φn, αn, and θn, and a random phase
ψn;

2. create a set of randomly oriented unit vectors ekappa,n for each Fourier mode; these
vectors correspond to normalised wavenumber vectors eκ,n = κn/|κn|;

3. determine the spatial direction vectors σN by means of the orthogonality con-
strained imposed by the spectral continuity equation (3.106);

4. define the spectra by determining the characteristic wave numbers κe and κη;
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5. define the highest (resolved) wave number based on the mesh resolution κmax =
κc = π/Δ; the smallest wave number κmin is set to zero; [25] suggests to define the
smallest wave number κ1 = κe/p with p > 1.

6. determine the numerical constant α of the modified von Kármán-Pao spectrum (3.108)
by means of (3.109), where the upper limit of the integration is taken to be the
Kolmogorov wave number κη;

7. divide the wavenumber space κmax−κmin into N equally spaced modes of size Δκ;

8. the amplitude ûn of each mode is obtained from (3.107)

9. calculate the velocity fluctuations by summing up the contributions from each wave
number using (3.105).



4 Premixed combustion

Technical processes in gaseous combustion can be subdivided in terms of mixing, i.e.
premixed, non-premixed or partially premixed combustion. Two classical examples for
premixed and non-premixed combustion are given by spark-ignition and Diesel engines
respectively. In spark-ignition engines, fuel and oxidiser are mixed by turbulence for
a sufficiently long period until the electric spark ignites the mixture. On the other
side in Diesel engines liquid fuel is injected into compressed hot air; the fuel evaporates
and partially mixes with the air before auto-ignition occurs. For partial pre-mixing
combustion an example is given by the modern spark ignition direct injection (SIDI)
engine.

4.1 Laminar premixed combustion

Analogue to the situation encountered in fluid flow, that laminar flow conditions are
rarely met in practical applications, most flames of practical interest are characterised
by an significant level of turbulence. In the case of premixed combustion, turbulence
enhances the transport of unburnt mixture towards the flame. Therefore the structure
of turbulent flames cannot be expected to be the same as for laminar flames. However,
a turbulent flame is generally considered to consist of an ensemble of flamelets, i.e. of
elementary laminar flames transported and stretched/deformed by the flow structures.

In many combustion devices the turbulent scales of the flow are significantly larger
than the chemical time and length scales. Due to that scale separation effect, the com-
bustion process can, as a first order approximation, be regarded as being decoupled
from and thus not being influenced by the turbulence. When the largest scales of the
premixed flame and the smallest scales of the turbulence begin to interfere, turbulent
straining effects start to interact with the chemistry. Up to a certain magnitude and by
introducing asymptotic second-order expansion taking curvature effects on the laminar
flame structure into account, the flame can still be attributed to the flamelet regime.

4.1.1 Structure of premixed flames

The simplest flame configuration is a planer premixed flame propagating in one direction.
Neglecting wall effects a flame in a duct can be taken as an idealised example. For this
flame only one-dimensional equations normal to the flame front are employed and the
continuity equation reduces to a constant expression for the mass flow rate through the
flame front:

ρu = const. =
(
ρs0

L

)
= ρus

0
L,u . (4.1)
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Here, the index u indicates the unburnt state and the laminar burning velocity s0
L,u

denotes the velocity of the flame relative to the unburnt mixture. The expression (ρs0
L)

is also referred to as the mass burning rate.
The first theoretical analysis of the structure of premixed flames have been performed

by Zeldowitsch and Frank-Kamenetzki [132] in 1938. Even though their assumption
of a global one step kinetics is simplifying, conclusions of fundamental importance can
be drawn and used for combustion modelling. A global one step reaction assumes the
conversion of fuel and oxidiser are directly into products; therefore the chemical reaction
can symbolically be written as

F + νiOx → P , (4.2)

where F , Ox and P denote the fuel, oxidiser and combustion products respectively.
Intermediate species are not considered. The propagation of the premixed flame front
is induced by the transport of thermal energy from the reaction zone, where the heat
release occurs, into the unburnt mixture. Therefore, the head of the premixed flame
front is referred to as the preheat zone. The temperature of the unburnt gas increases
exponentially towards the reaction zone. The point at which the thermal energy of the
mixture reaches the activation energy threshold marks the beginning of the reaction
zone. Considering a stationary, planar flame front, the flame structure as depicted in
figure 4.1 is obtained.

Figure 4.1: Structure of a lean premixed flame assuming a global one-step kinetics and
large activation energy [86].

By means of an asymptotic analysis, Peters [83] derived an expression for the mass
burning rate which primarily depends on the ratio of the thermal conductivity λb to the
heat capacity cp and the combustion time scale tc:

(ρusL)2 =
λb

cp

ρu

tc
, (4.3)
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where the combustion time scale tc is given by

tc =
ρucp(Tb − Tu)

2E2

2BρbR2T 4
b A

exp

(
E

RTb

)
. (4.4)

Here, E denotes the activation energy, B is the rate coefficient, and A is (approxi-
mately) constant, depending on physical properties of the fuel and oxidiser, see [83].
Equation (4.4) implies that the combustion time scale primarily depends on ratio of
the burnt (Tb) and unburnt (Tu) temperatures, the rate coefficient B and the activation
energy E of the reaction mechanism. Note that the chemical time scale is not influenced
by diffusion effects.

Based on equation (4.3) two physical processes can be identified to be responsible
for the flame propagation. The first is the chemical reaction, imposing a chemical time
scale. The second process is the (diffusive) transport of thermal energy into the preheat
zone. An increase of the burning velocity sL can therefore achieved either by decreasing
the chemical time scale tc, or by increasing λb/cp.

For multi-step reaction mechanisms the main observations are still valid. An asymp-
totic analysis of stoichiometric methane/air flame using a four step mechanism [82, 87]
leads to the subdivision of the flame structure into three regions (cf. figure 4.2):

1. the non-reacting preheat zone as in the one-step asymptotic;

2. the inner layer in which hydro-carbon fuel is completely consumed and interme-
diate species are formed; and

3. the oxidation layer in which the intermediates are oxidised.

The resulting expression for the mass burning rate has the same form as equation (4.3)
with the expression for the chemical time scale being more involved than equation (4.4).
The ratio λb/cp has to be evaluated at temperature T0, which is the characteristic tem-
perature for the inner layer. Denoting the spatial position of the inner layer by x0, the
flame diffusivity D0 and the laminar flame thickness �f can be defined as

D0 = sL,u �f =
1

ρu

λ

cp

∣∣∣∣∣
x0

. (4.5)

The exact position x0 for the evaluation of the inner layer quantities is assumed to be
at the location of the maximal heat release, see figure 4.2. The inner layer thickness �δ

is approximately one order of magnitude smaller than the flame thickness �f .
In three dimensions the flame front can be curved and is subjected to strain by the flow

field. These effects have an influence onto the flame structure and modify the laminar
burning velocity sL. It can be shown [21,72] that for a one-step, large activation energy
reaction and with the assumption of constant properties the burning velocities sL can
be approximated as

sL = s0
L − DLκ − LS . (4.6)
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Figure 4.2: Structure of a stoichiometric methane-air, consisting of the preheat zone, the
inner reaction layer and the oxidation layer [86].

where the strain of the flame S is defined as

S = − (n · u · n)
∣∣
x0

, (4.7)

and the flame curvature is given by

κ = ∇ · n ; (4.8)

x0 defines the inner layer position, s0
L is the burning velocity of the unstrained flame, L

the Markstein length, and
DL = s0

LL (4.9)

the Markstein diffusivity. Neglecting the effects of strain and assuming a Markstein
number of unity the previous equation can be simplified to

sL(κ) = s0
L − Dκ . (4.10)

The result of this simplification shows that for a concave flame front (κ < 0) the burn-
ing velocity increases, while sL decreases for a convex front (κ > 0) with respect towards
the unburnt gas. This implies that curvature effects tend to smooth out perturbations
of the front towards a flattened flame by diffusive effects.

4.1.2 The level-set approach for laminar flame propagation

The G-equation model has been introduced by Williams [129] and is based on the flamelet
modelling assumption. Here a level set method is used to describe the evolution of the
flame surface as an interface between unburnt and burnt gases. The level set function G
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Figure 4.3: A schematic representation of the flame front as an iso-scalar surface
G(rf , t) = G0 [83].

is a scalar field defined such that the iso-surface G = G0 defines the flame front position;
G < G0 indicates unburnt mixture, while G > G0 lies on the burnt side, see figure 4.3.
The flame front position is given by the inner layer position, i.e. G = G0 where T = T0.

The instantaneous and local G-equation can be derived by considering the instanta-
neous flame surface. The derivation is described in detail for instance in [32,47,85,129],
but is sketched briefly in the following. The implicit representation of a level set function
G is given by

G(rf , t) − G0 = 0 , (4.11)

where rf = rf (x, t) denotes the flame front position. Differentiating equation (4.11)
leads to

∂G

∂t
+

d rf

d t
· ∇G = 0 . (4.12)

The displacement velocity of the flame front is given by

d rf

d t
= u + sL · n , (4.13)

where u denotes the local fluid velocity, sL the laminar burning velocity and n is the
flame normal vector directed from the burnt side into the unburnt, i.e. pointing into the
flame propagation direction. The flame normal vector can be expressed via the gradients
of G as

n = − ∇G

|∇G| . (4.14)

Combining the previous equations yields the instantaneous G-equation:

∂G

∂t
+ u · ∇G = sL |∇G| (4.15)
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The previous equation has been derived from equations (4.11) and (4.13); both de-
scribe the flame surface, thus equation (4.15) is also valid at the surface position only,
i.e. at G = G0. For G = G0 outside the flame surface, a suitable definition needs to be
given. While the interpretation of G outside the flame surface is somewhat arbitrary, it
is commonly defined to be a distance function which leads to the distance constrained

|∇G| = 1 . (4.16)

Equation (4.15) does not account for effects due variable density due to combustion.
Introducing the modified laminar burning velocity (4.10) into (4.15) and multiplying
with the local density leads to

ρ
∂G

∂t
+ ρu · ∇G = (ρs0

L)u |∇G| − ρDκ |∇G| (4.17)

where (ρs0
L)u is the mass burning rate of an unstretched flame with respect to the

unburnt.

4.2 Physics of turbulent flame propagation

Premixed turbulent combustion often occurs in thin flame fronts. The propagation of
these fronts, and hence the heat release, is governed by the interaction of transport and
chemistry within the front. In laminar fronts this strong coupling is reflected in the
scaling of the laminar burning velocity sL ∼

√
D/tc, see equations (4.3) and (4.5). In

turbulent premixed flames, the flame front strongly interacts with turbulent structures,
leading to a significant increase of the mass consumption and flame thickness.

4.2.1 Regimes in premixed combustion

Figure 4.4 depicts different regimes of premixed turbulent combustion in terms of velocity
and length scale ratios according to Peters [85]. For scaling purposes it is assumed that
the diffusivities for all scalars are equal, the Schmidt number Sc = ν/D is unity and the
flame thickness �F and the flame time tF are given by

�f =
D

sL

tF =
D

s2
L

. (4.18)

Based on the turbulent intensity v′ and the turbulent length scale �, the turbulent
Reynolds number Ret and the turbulent Damköhler number Da can be defined as

Re =
v′�

sLlF
and Da =

sL�

v′lF
. (4.19)
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Additionally two turbulent Karlovitz numbers can be defined based in the Kolmogorov
time length and velocity scales. The first one is defined as

Ka =
tF
tη

=
l2F
η2

=
v2

η

s2
L

(4.20)

measures the ratio of the flame and the Kolmogorov scales. As second Karlovitz number
Kaδ based on the inner layer thickness lδ may be introduced as

Kaδ =
l2δ
η2

= δ2Ka (4.21)

with lδ being the inner layer thickness, and δ denotes the ration of the inner layer
thickness to the flame thickness lδ = δ lF .

The Damköhler number can be interpreted as the ratio of the turbulent time scales τt

to the chemical time scale τc:

Da =
τt

τc

.

It is interesting to consider two limits of the Damköhler number. Small Damköhler
numbers, Da � 1, indicate that the characteristic turbulent time scale are much smaller
than those of the chemical kinetics. This implies that the turbulent structures are small
compared to the flame thickness and can penetrate the flame. The turbulent mixing
process becomes important even in the interior of the flame, as the determining process,
the chemical reaction, are comparatively slow. That type of reaction resembles of a
homogeneous reactor and is referred to as distributed combustion, as a single flame sheet
cannot be established. In the opposite limit for large Damköhler number, i.e. Da � 1,
the chemical reaction is infinitely fast compared to the characteristic turbulent time
scales. The turbulent structures are larger than the flame thickness and cannot penetrate
the flame front. Thus the flame has a laminar-like structure, and, correspondingly, this
regime is called the flamelet regime.

Figure 4.4 shows the premixed combustion regimes for fully turbulent flames in terms
of the normalised turbulence intensity v′/sL and the normalised length scale �/�F . The
laminar flames regime is separated from the turbulent regimes by the Ret = 1, which is
equivalent to v′/sL = (�/�t)−1.

In the wrinkled flamelet regime, where v′ < sL, the turn-over velocity v′ of the large
turbulent eddies is not large enough to compete with the advancement of the flame front
with the laminar burning velocity sL. Laminar flame propagation is dominating over
flame front corrugation by turbulence.

The line v′/sL = 1 separates the wrinkled flamelet regime from the corrugated flamelet
regime. Here the largest turbulent eddies are able to interact with the advancing flame
front. This regime is characterised by the inequalities Re > 1 and Ka < 1. Considering
equation (4.20) the latter inequality indicates the �F < ηK , i.e. the entire flame structure
is embedded within eddies of the size of the Kolmogorov scale, where the flow is quasi-
laminar; thus the flame structure is not perturbed by turbulence. In both the wrinkled
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Figure 4.4: The combustion regime diagramme according to Peters [85].

flamelet and the corrugated flamelet regime the thickness of the flame can be regarded as
small in comparison with the size of the characteristic turbulent eddies interacting with
the flame. Therefore the flame structure in both regimes is internally not influenced by
the turbulence, which implies that equation (4.17) can by employed for the description
of the flame propagation. The turbulence in these two regime is referred to as large scale
turbulence.

In the thin reaction zone the smallest eddies of the Kolmogorov size ηK start to in-
teract with the laminar flame structure. The boundary, separating this regime from the
corrugated flamelets regime is determined by the turbulent Karlovitz number Ka = 1.
The eddies are still larger than the inner layer thickness �δ and can therefore not pene-
trate into that layer. With the relation ε ∼ v′3/� and the definition for the Kolmogorov
length scale ηK , equation (3.4), for constant values of Ka the following relationship can
be obtained: (sL

v′

)3

∼ �F

�
. (4.22)

In this regime it is assumed that equation (4.17) is valid including curvature effects term
on the right-hand side. The turbulence in this regime can be characterised as small scale
turbulence.

Beyond the line Kaδ = 1 the turbulent eddies can perturb the reaction zone with
the consequence that locally chemistry breaks down due to enhanced heat loss to the
preheat zone. Consequently the turbulent flame is torn apart and partially quenched.
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Figure 4.5: An idealised stationary turbulent premixed flame in a duct.

At such turbulence level a flamelet structure cannot exist. The regime is referred to a
the broken reaction zones.

4.2.2 The turbulent burning velocity

The turbulent burning velocity represents the key element to capture the physics of the
propagating premixed flame front.

The turbulent burning velocity sT is the displacement speed with which the mean flame
front propagates normal to itself through the turbulent flow field and represents the key
element to capture the physics of the propagating premixed flame front. Consider the
stationary turbulent premixed flame in a duct as depicted in figure 4.5. Due to continuity
the mass flux ṁ through the cross section A of the duct with velocity sT is constant.
This mass flux must be equal to the mass flux through the instantaneous flame front
area AT moving with the laminar burning velocity sL, thus

ṁ = ρusLAT = 〈ρ〉u sT A , (4.23)

where both sL and sT are evaluated with respect to the unburned gas. Assuming constant
unburnt densities the burning velocity ration is proportional to the surface area ratio

sT

sL

=
AT

A
. (4.24)

The flame surface can be averaged or filtered on any intermediate scale within the inertial
rage resulting in a filtered flame surface area At. According to equation (4.23) the mass
flux through the filtered surface has to be equal to ṁ, thus

sLAT = sT A = stAt . (4.25)

This demonstrates that the product stAt is inertial scale invariant, thus stAt can be
calculated at any scale within the inertial subrange, defining sLAT of the instantaneous
flame front. Equation (4.25) therefore justifies the application of LES-type model to
turbulent premixed combustion as the evaluation of stAt at the threshold length scale
(filter width Δ) is equal to sLAT .
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The cross section area A describes the area that can be observed from a viewpoint
perpendicular to turbulent flame front. This front is perturbed, wrinkled and convo-
luted by turbulence to generate the enhanced flame front AT . The ratio between the
instantaneous area and the so-called mean flame front defines the flame surface area
ratio σ:

σ =
AT

A
= σt + 1 . (4.26)

The turbulent flame surface area ratio σt denotes the increase of flame surface due to
turbulence effects. For a laminar flame σ = 1, and correspondingly σt becomes σt = 0.
After averaging σ or σt respectively, the turbulent burning velocity is obtained as

sT = σ̃sL = (1 + σ̃t)sL . (4.27)

4.3 Progress variable approach

The formulation of a model for turbulent flame propagation based on the progress vari-
able approach is quite attractive as the calculation of burnt and unburnt mass fractions
in flow problems can be performed easily. Additionally the source term in the transport
equation for the progress variable can easily be linked to the heat release.

The progress variable c is a scalar quantity which can be viewed either as a normalised
temperature or as a normalised product mass fraction of the product species Yp and the
maximum product mass fraction in the burnt gas Yp,b:

c =
T − T u

T b − T u
or c =

Yp

Yp,b

. (4.28)

Analogous to equation (2.7), the transport equation for c can be derived as

∂ρc

∂t
+

∂ρuic

∂xi

=
∂

∂xk

(
ρDc

∂c

∂xk

)
+ ω̇c , (4.29)

where ω̇c is the reaction rate of the premixed flamelet for a given c. Favre averaging
leads to a transport equation for the mean progress variable c̃ which reads

〈ρ〉 ∂c̃

∂t
+ 〈ρ〉 ũi

∂c̃

∂xi

=
∂

∂xk

(
μt

Prt

∂x̃

∂xk

)
+ 〈ω̇c〉 , (4.30)

where the turbulent transport term has been modelled by a gradient-diffusion, turbulent
viscosity approach, and laminar diffusion has been neglected. For the mean reaction
rate 〈ω̇c〉 a closure model is required. Popular closure examples include the Eddy Break-
Up model (EBU), originally developped by Spalding [116, 117], the Bray-Moss-Libby

model [14], as well as closures based in the flame surface density Σ = dAT

dV
, for instance

the Coherent Flame Model [70] (CFM); an overwiew of the latter approach can be found
for instance in [92,99].
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4.4 The level-set approach for turbulent flames

The level set approach for laminar flames has been presented in section 4.1.2. As pointed
out by Peters [85] and Oberlack et al [80], the straightforward extension of the laminar
G-equation (4.15) to turbulent flows by applying the classical averaging methods to
determine the location of the mean flame front cannot be employed. Unlike conserved
quantities, the G-field has a physical meaning only at G = G0, thus G is not defined
in the whole flow field. Employing a classical averaging procedure requires not only an
extension of the G-field to G = G0, but would also depend of the chosen extension,
i.e. different extensions would yield different mean flame front position [126]. Thus an
alternative approach is required for the definition of the mean flame front for turbulent
flames.

A suitable averaging procedure based on the probability density of locating the flame
front at a given location has been introduced by Oberlack et al. [80] for incompressible
fluids. A volumetric averaging is employed to determine the position of the volumetri-
cally averaged flame front by

〈〈xf〉〉 ≡
+∞∫∫∫
−∞

xfP (xf )dxf . (4.31)

Here xf is an instantaneous realisation of the flame front, and P (xf ) is the probability of
finding the flame front at xf . As pointed out by Ewald [32], for compressible flows, the
previous definition is less accurate due to density gradients across the turbulent flame
brush, which induces a movement of the mean flame front position. This movement is
avoided by employing a mass weighted averaging procedure:

〈ρ〉 x̃f ≡ 〈〈ρxf〉〉 ≡
+∞∫∫∫
−∞

ρ(x̃f |x̃f
)xfP (xf )dxf . (4.32)

4.4.1 Transport equations for the mean flame front position and flame brush
thickness

In contrast to the laminar field G, for the turbulent case the scalar G̃ is considered and
the mean flame front position is defined analogous to the laminar case where

G̃ = G0 , (4.33)

i.e. where x = x̃f . Employing a similar approach as discussed in section 4.1.2 yields the
(unclosed) equation for the mean flame front position [32]:

〈ρ〉 ∂G̃

∂t
+ 〈ρ〉∇G̃ · ũ + 〈ρ〉 ˜∇g u′′ + ∇G̃ · 〈〈ρ (sL(κ)n)〉〉 = 0 . (4.34)
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Here g denotes the Euclidean norm of the distance vector between the instantaneous
and the average flame front g = xf − x̃f , given by g ≡ −sign(G)|g|. In equation (4.34)
two unclosed terms appear: the third term represents turbulent transport, and the last
term on the l.h.s. is the turbulent flame propagation term.

The variance of G̃ is a measure for the fluctuations of the instantaneous flame front
about their mean position. Therefore, the turbulent flame brush thickness lf,t is defined
as the square root of variance

lf,t ≡

√
G̃′′2

|∇G̃|
. (4.35)

The averaging operator yielding the variance is valid on the mean flame front only. In
analogy to (4.32) it can be defined as

〈ρ〉 G̃′′2 ≡
〈〈

ρg2
〉〉

≡
+∞∫∫∫
−∞

ρ(x̃f |x̃f
)g2P (xf )dxf . (4.36)

An equation for the variance G̃′′2 may be derived by first decomposing g2 as g2 = G̃′′2 =
g′′. Considering the substantial derivative and employing the chain rule of differentiation,

after some algebra the following equation for G̃′′2 is obtained:

〈ρ〉 ∂G̃′′2

∂t
+〈ρ〉 dxf

dt
·∇G̃′′2+〈ρ〉 ˜∇g′′ · u′′+〈〈ρ∇g′′ · (sLn)〉〉 = 2 〈〈ρg · u′′〉〉+2 〈〈ρg · (sLn)〉〉 .

(4.37)
The last two terms on the left hand side describe turbulent transport effects. The

production of G̃′′2 due to turbulence is described by the first term on the right hand
side, while the last term describes the destruction of variance either due to kinematic
restoration or due to scalar dissipation, depending on the magnitude of the local flamelet

curvature. Note that the scalar G̃′′2 is not advected by the mean flow velocity but by
the propagation velocity of the mean flame front position as shown by the second term
on the right hand side.

The transport equations for the G̃, eqn. (4.34), and G̃′′2, eqn. (4.37), are both only

defined at G̃ = G0. An extension into the whole computational domain and flow field is
still required and is discussed in the next section.

4.4.2 Modelling closures for G̃ and G̃′′2

The closure of the equations for G̃ and G̃′′2 are only briefly discussed in the following;
more details are given in [32,47,85].

The last term on the left hand side of the equation for the mean flame front po-
sition, equation (4.34), is the turbulent flame propagation term expressing the flame
propagation by the turbulent burning velocity:

〈〈ρsL(κ)n〉〉 = (ρsT )ñ . (4.38)
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In this context ñ denotes the normal of the mean flame front, defined in analogy to (4.14)

as ñ = −∇G̃/|∇G̃|. For a closure of the turbulent transport term ˜∇g u′′, information from
outside of the mean flame front position must not be taken into account due to the
level set character of the G̃ field. Therefore the classical approach of gradient diffusion
type approach is not feasible. Introducing the curvature of the mean flame front κ̃ as
κ̃ = ∇ · ñ the turbulent transport is modelled as a curvature term [32,85]

˜∇g u′′ = D′
tκ̃|∇G̃| . (4.39)

Here D′
t is the effective turbulent diffusivity of the curvature term which must be ap-

proximated appropriately.

Concerning the closure of the equation for G̃′′2, the two turbulent transport terms on
the left hand side of eqn. (4.37) are modelled together by a mean gradient transport
hypothesis approach

−〈ρ〉 ˜∇g′′ · u′′ − 〈〈ρ∇g′′ · (sLn)〉〉 = ∇||
(
〈ρ〉Dt∇||G̃′′2

)
, (4.40)

where the || subscript indicates that only gradient in the mean flame front tangential
direction are considered; this is to ensure that only information from the flame front

position is taken into account. Similarly, the turbulent production term in the G̃′′2-
equation is closed by a classical gradient transport assumption as

2 〈〈ρg · u′′〉〉 = 2 〈ρ〉Dt

(
∇G̃

)2

, (4.41)

where the turbulent diffusivity is related to the turbulent viscosity via the turbulent
Schmidt-number Sct

Dt ≡
μt

ρSct

. (4.42)

In principal, the destruction or flame brush reducing term of the G̃′′2-equation has to
be modelled differently for the corrugated flamelet regime and the thin reaction zone.
In the former this term is dominated by kinematic restoration, while in the latter the
scalar dissipation rate plays the central role. Following [84], a unified approach for both
regimes can be derived which reads

2 〈〈ρg · (sLn)〉〉 = −cs 〈ρ〉 G̃′′2 ε

k
, (4.43)

where the constant has the value cs = 2.0. Compiling all model closures into (4.34) and

(4.37), the transport equation for G̃ and G̃′′2 become

〈ρ〉 ∂G̃

∂t
+ 〈ρ〉∇G̃ · ũ = −〈ρ〉D′

t 〈κ〉
∣∣∇G̃

∣∣ + (ρ sT )
∣∣∇G̃

∣∣ , (4.44)

〈ρ〉 ∂G̃′′2

∂t
+〈ρ〉 dxf

dt
·∇G̃′′2 = ∇||

(
〈ρ〉Dt∇||G̃′′2

)
+2 〈ρ〉Dt

(
∇G̃

)2

−cs 〈ρ〉 G̃′′2 ε

k
. (4.45)
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4.4.3 Modelling closure for the turbulent burning velocity

In order to close the transport equation for the G̃-equation (4.44), an approximation for
the turbulent burning velocity is required. According to equation (4.27) the turbulent
surface area ration σ̃t links the turbulent burning velocity sT to the laminar burning
velocity sL via

sT = (1 + σ̃t) sL .

A modelled equation for σ̃t has been derived by Peters [84], based on the transport

equations for k, ε, and G̃′′2. The resulting model equation for both the corrugated
flamelets and the thin reaction zone reads

〈ρ〉 ∂σ̃t

∂t
+ 〈ρ〉 ũ · ∇σ̃t = ∇|| ·

(
〈ρ〉Dt∇||σ̃t

)
+ c0 〈ρ〉

−˜u′′u′′ : ∇ũ

k
σ̃t + c1 〈ρ〉

Dt(∇G̃)2

G̃′′2
σ̃t (4.46)

− c2 〈ρ〉
s0

Lσ̃2
t

(G̃′′2)1/2
− c3 〈ρ〉

Dσ̃3
t

G̃′′2
.

The left hand side represents local change and convection. The first term on the right
hand side is the turbulent transport of σ̃t modelled by a gradient transport assumption.
The second term models the production of flame surface area ratio due to velocity
gradients of the mean flow, where the constant c0 = cε1−1 = 0.44 stems from the modelled
ε equation. The last three terms represent turbulent production, kinematic restoration,
and scalar dissipation of the flame surface area ratio, respectively. The model constants
are summarised in table 4.1.

Considering a steady planar flame, the transient and the convective term on the right
hand side, as well as the turbulent transport term on the left hand side of equation (4.46)
vanish. Neglecting the production term due to velocity gradients leads to an equilibrium
turbulent production, kinematic restoration, and scalar dissipation of the flame surface
area ratio. The balance of the three terms leads to a quadratic equation for σ̃t

c1
Dt(∇G̃)2

G̃′′2
− c2

s0
Lσ̃t

(G̃′′2)1/2
− c3

Dσ̃2
t

G̃′′2
u = 0 . (4.47)

Only the positive root of the previous equation has a physical meaning. The solution
of eq. (4.47) however does not account for transient flame development effects. By
introducing the ratio �� between the turbulent flame brush thickness �f,t and a turbulent
length scale as a measure for the development status of the turbulent flame, in [32] a
modified expression for σ̃t has been derived. As turbulent length scale, the algebraic
flame brush thickness is employed, which can be derived by considering a steady state
solution of equation (4.45). The final expression for σ̃t reads

σ̃t = − b2
3

4b1

√
3cμcs

Sct

lf,t

lf
l∗q +

√
− b4

3

16b2
1

3cμcs

Sct

lf,t

lf
l∗2q +

csb2
3

2sLlf
l2f,t

ε

k
, (4.48)
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c1 c2 c3 b1 b3 cs cμ Sct

4.63 1.01 4.63 2.0 1.0 2.0 0.09 0.7

Table 4.1: Model constants for the σt-equation [85] and the G-equation model [32].

where the constants are given in table 4.1.

4.5 LES combustion modelling

Technical combustion devices often require rapid mixing and short combustion times,
yet must ensure proper flame stabilisation. These conflicting requirements commonly
lead to devices characterised by very complicated flow patterns, such as swirling flows,
breakdowns of large-scale vortical structures, and recirculation regions. The accuracy
required for predictions, for example, of pollutants in such flows typically cannot be
achieved using Reynolds-averaged Navier-Stokes (RANS) simulations. Starting the late
1990s, LES as a tool for predictive simulations of turbulent reactive flows has gained a
significant interest.

The main reason why LES is thought to provide substantial advantages for modeling
turbulent combustion is that the scalar mixing process is of paramount importance
in chemical conversion [90]. Non-reactive and reactive system studies show that LES
predicts the scalar mixing process and dissipation rates with considerably improved
accuracy compared to RANS, especially in complex flows.

Different models have been proposed for LES of premixed turbulent combustion, most
of which are variants of the flamelet concept (Colin et al. [22], Kim & Menon [52],
Pitsch & Duchamp de Lageneste [91]). Other models that have been proposed include
the thickened flame model (Colin et al. [22]) and the linear eddy model (Chakravarthy &
Menon [17]). However, most of the combustion models for LES of turbulent combustion
are similar to RANS models and are based on similar modelling assumption.

4.5.1 Regime diagram for LES

The regime diagram used to characterise turbulence/flame interactions in premixed tur-
bulent combustion has already been discussed in section 4.2.1. The different regimes
are presented in terms of v′/sL and �/�F , where v′ and � are the characteristic ve-
locity fluctuation and length scale of the large turbulent scales, and lF is the laminar
flame thickness. All these parameters are physical quantities, independent of the turbu-
lence and combustion models used. The different combustion regimes are distinguished
by means of the turbulent Reynolds number Ret, the Karlovitz number Ka, and the
turbulent Damköhler number Da.

In LES, these numbers can be defined based on the characteristic sub-filter quantities
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Figure 4.6: Regime diagramme for LES and DNS of premixed turbulent combustion
according to Pitsch [89].

as

ReΔ =
u′

ΔΔ

sL�F

, DaΔ =
sLΔ

u′
Δ�F

, and Ka =
l2F
η2

K

=

(
u′3

Δ�F

s3
LΔ

)1/2

. (4.49)

It is important to note that changes in the filter size result in changes of the sub-
filter Reynolds and Damköhler numbers, while the Karlovitz number is independent
of the filter width. This implies that changes in the filter width proceed at constant
values of the Karlovitz number. An LES regime diagram for characterising sub-filter
turbulence/flame interactions in premixed turbulent combustion was proposed by Pitsch
& Duchamp de Lageneste [91], and recently extended by Pitsch [89]. This diagram is
shown in Figure 4.6, which allows to identify the influence of the filter size while clearly
distinguishing between changes in the turbulence/chemistry interaction and numerical
effects. In contrast to the RANS regime diagrams, Δ/�F and the (square root of the)
Karlovitz number Ka are used as the axes of the diagram, as the latter is independent of
the filter size. Thus the effect of changes in filter size can easily be assessed at constant
Ka number.

Analogue to the RANS regime diagram, three regimes with essentially different inter-
actions of turbulence and chemistry can be identified: the corrugated flamelet regime,
the thin reaction zones regime, and the broken reaction zones regime, which already
have been discussed in section 4.2.1.

The effect of changing the LES filter width can be assessed by starting from any one
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of these regimes at large Δ/�F . With decreasing filter width, the sub-filter Reynolds
number, ReΔ, eventually becomes smaller than one, which implies that the filter size
is smaller than the Kolmogorov scale. Consequently no sub-filter modelling for the
turbulence is required and the turbulent structures are fully resolved, which corresponds
to a DNS of the flow. However, the entire flame including the reaction zone is only
resolved if the filter width is smaller than the inner layer width, i.e. Δ < δ; in this case
a flame DNS is performed.

In the corrugated flamelets regime, if the filter is decreased below the Gibson scale
�G, which is the smallest scale of the sub-filter flame-front wrinkling, the flame-front
wrinkling is completely resolved. In the corrugated flamelet regime, where the flame
structure is laminar, the entire flame remains on the sub-filter scale, if Δ/�F is larger
than one.

In the thin reaction zones regime, the preheat region is broadened by the turbu-
lence. Peters [84] estimated the broadened flame thickness from the assumption that
the timescale of the turbulent transport in the preheat zone has to be equal to the chem-
ical timescale, which for laminar flames leads to the burning velocity scaling given in the
beginning of this section. From this, the ratio of the broadened flame thickness �m and
the filter size can be estimated as [89]

�m

Δ
=

(
u′�F

sLΔ

)3/2

= Ka
�F

Δ
= Da

−3/2
Δ .

Hence, the flame is entirely on the sub-filter scale as long as DaΔ > 1, and is partly
re-solved otherwise. It is important to realise that the turbulence quantities, espe-
cially u′

Δ, and hence most of the non-dimensional numbers used to characterise the
flame/turbulence interactions, are fluctuating quantities and can significantly change in
space and time.

4.5.2 Thickened flame model

A simplistic approach based on the theories of laminar flames is the (artificially) thick-
ened flame approach. The flame speed sL and the flame thickness �f can be expressed
as

sL ∼
√

D0B , �f ∼ D0

sL

=

√
D0

B
,

where B denotes the rate-coefficient and D0 is the thermal diffusivity, see equations
(4.3)–(4.5) and section 4.1.1. Increasing the thermal diffusivity D0 by a constant factor
α and decreasing the pre-exponential constant B by the same factor the flame thickness
is increased while the (laminar) flame speed is unaffected. By adopting the factor α,
the thickened flame with increased thickness of α �F can be resolved on a given mesh.
However, this manipulation leads to a change in the interaction between turbulence and
chemistry as indicated by the Damköhler number Da, see equation (4.19) and 4.2.1,
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which is decreased by the factor α. Thus the physics of flame propagation is severely
modified from a transport-controlled combustion mode towards a chemically dominated
progression [91] which does not reflect the underlying physical and chemical processes.
In order to compensate these effects correction factors based on DNS, referred to as
efficiency functions, have been developed [22]. A dynamic version for the determination
of the multiplicative constant has been proposed in [18].

4.5.3 Progress variable approaches

Filtering of the transport equation for the progress variable c leads to a balance equation
for the filtered progress variable c̃, which is given by [92]

∂ρc̃

∂t
+

∂ρ(ũic̃)

∂xi

+

sub-filter scale transport︷ ︸︸ ︷
∂ρ(ũic − ũic̃)

∂xi

=
∂

∂xk

(
ρDc

∂c

∂xk

)
︸ ︷︷ ︸

molecular diffusion

+ ω̇c︸︷︷︸
filtered reaction rate

= ρsd |∇c| .
(4.50)

The flame front displacement term ρsd |∇c| can be modelled as [11]

ρsd |∇c| ≈ ρusLΣ .

Here Σ represents the sub-filter scale flame surface density. Denoting the ratio between
the sub-filter scale flame surface and its projection into the flame propagation direction
by Ξ, Σ can be approximated as

Σ = Ξ |∇c| .
In order to close the equations, models of Σ and Ξ are required, most of which are
formally identical to those developed in the RANS context. A detailed discussion of
different modelling approaches are given in [99]. However, the modelling approaches
employed to close equation (4.50) make extensive use of correction of efficiency functions
whose form stems from ad-hoc assumption and whose coefficient have been tuned by
means of DNS data.

4.5.4 Level-set formulation for LES

As discussed in section 4.4 and previously pointed out be Peters [85] and Oberlack [80],
for the derivation of a G-equation describing the ensemble or time-averaged flame lo-
cation, the traditional averaging techniques cannot be employed. As the G-field has
physical significance only G = G0, only the G0 iso-surface may be of relevance during
the averaging procedure, while the remaining G-field, which can be arbitrarily defined,
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must not be employed. Instead, an averaging procedure based on the probability den-
sity function of finding G = G0 has been proposed by Peters [85], and extended by
Oberlack [80].

Similar, in LES the classical filtering approach and the filter-kernels employed for
filtering the velocity and scalar fields cannot be used to obtain a filtered G-equation.
Hence a filter kernel is required that only employs information from the instantaneously
resolved flame surface. Pitsch [89] has developed an averaging technique which is based
on a parametric representation of the flame surface given by

xf = xf (Λ, t)

where Λ = (λ, μ) are curvilinear coordinates along the flame surface. The essential step
is the introdcution of the spatial filter H(Λ−Λ′, t), which moves along the G0 iso-surface.
This filter function differs substantially from those conventionally applied filter kernel
for scalar quantities as the coordinates employed in the filter function are flame surface
coordinates. The spatial filtering operation for the definition of the filtered flame front
position can then be defined as

xf (Λ, t) =

∫
F

xf (Λ
′, t)H(Λ − Λ′, t)dΛ′ . (4.51)

which is sketched in figure 4.7 for the two dimensional case. The filtering operation
(4.51) yields a corresponding filtered flame front position xf (Λ) for each point xf (Λ) on
the instantaneous flame front.

The application of the spatial filter H leads to the transport equation for filtered flame
front location1 G̃0. This transport equation reads [88,89,91]

ρ
∂G̃

∂t
+ ρũ · ∇G̃ + ∇ ·

(
ρũ′G′

)
= (ρsL)

∣∣∇G
∣∣− (ρD) κ

∣∣∇G
∣∣ .

The line of arguments and modelling for the closure of the previous equation are similar
to the ones employed by Peters [84, 85] in the context of statistical modelling. This
can be attributed to the assumption that the flame is completely on the sub-filter scale.
Accordingly the modelled equations exhibit a structural similarity to RANS context, see
equation (4.44). Following [91] the G̃-equation reads

ρ
∂G̃

∂t
+ ρũ · ∇G̃ = ρst

∣∣∇G̃
∣∣− ρDtκ̃

∣∣∇G̃
∣∣ . (4.52)

ρst

∣∣∇G̃
∣∣ = (ρsL)σt (4.53)

where st denotes the turbulent, sub-filter burning velocity and σt is the sub-filter flame
surface area ratio analogous to the RANS definitions employed in section 4.4; additional
details on closure and modelling assumptions are given in [88].

1As mentioned in [89] G̃ is not defined as the filtered instantaneous G-field but as a level set represen-
tation of the filtered flame front location.
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Figure 4.7: Instantaneous and filtered flame front position. The rectangle indicates the
filter box, which is attached to the instantaneous front at the location indi-
cated by the small circle. The large circle indicates the corresponding filtered
flame front position. The dashed rectangle shows the filter at a different λ-
position [89].

4.6 VLES/G-equation coupling

The G-equation model has been formulated and discussed in the RANS and LES context
in sections 4.4 and 4.5.4 respectively. Similar to the transport equations for the turbu-
lent kinetic energy k and the turbulent sub-filter kinetic energy kr = q2, the structure of
both the RANS and LES model equations are identical, see equations (4.44) and (4.52)
respectively. This affinity motivates the coupling of the hybrid two level model, section
3.5.2, to the G-equation approach for the modelling of premixed turbulent combustion
and renders the coupling straight forward. Moreover, a simple scaling analysis demon-
strates that the model equations, formulated for the RANS approach, can be employed
in the VLES context if the turbulent diffusivity, the integral turbulent kinetic energy,
and the integral turbulent dissipation are replaced by the corresponding sub-filter quan-
tities, i.e. turbulent sub-filter diffusivity, the sub-filter kinetic energy, and the sub-filter
dissipation, respectively. In that case, the integral turbulent burning velocity needs to be
understood as a sub-filter burning velocity and the variance as a the sub-filter variance.

Based on (4.45) and neglecting temporal and spatial derivatives, a steady-state alge-

braic solution for G̃′′2 can easily be derived [32] as

G̃′′2 =
2

cs

Dt(∇G̃)2k

ε
∼ �2

t ,

where Dt ∼ k2/ε, �t ∼ k
3/2/ε and the distance constrained |G̃| = 1 has been used.
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Replacing the RANS viscosity with the sub-filter scale viscosity given by νt = Ck

√
kr Δ

and correspondingly the sub-filter dissipation via εr = Cε
k
3/2
r

Δ
, a similar estimation can

be made for the LES mode of the hybrid model, which directly leads for the filtered
variance to

G′′2 ∼ Δ
2
.

The identical result is obtained for the RANS approach int the limit �t → Δ.
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In order to describe the relevant spatial structures of a (turbulent) flow the spatial dis-
cretisation of the conservation equations is of fundamental importance. Considering
unsteady phenomena, and here especially turbulent flows, the correct description of the
evolution of the flow fields can only be achieved by appropriate temporal and spatial
schemes. While for laminar flows the numerical dissipation due to the employed discreti-
sation scheme has a limited influence onto the results, for turbulent flows the choice of
numerical scheme has a significant impact on the quality, accuracy, and reliability of the
numerical solution [15]. The influence of the numerics on the development of homoge-
neous isotropic turbulence is demonstrated in section 6.1 for both temporal and spatial
discretisation schemes and resolution, i.e. time step size and grid spacing. Therefore
to assess the results of the numerical simulation of a turbulent flow, knowledge of the
underlying numerical schemes is of essential importance.

The present section discusses the fundamental principle for the transformation of the
continuous differential equations governing the conservation of mass, momentum, and
energy as presented in section 2.1 into a discrete formulation by means of the Finite
Volume Method as employed by the AC-FluX code. Starting point is the generalised
form of the conservation equations, which is integrated over a finite time and finite
volume representing a discrete time step and a computational cell respectively. The
approximations of the obtained integrals require the values of the dependent variables at
locations other than computational nodes (cell centres); these unknowns are formulated
depending on known values at the cell centres. This results in a sparse linear equation
system of form Ax = b with x representing the (eventually sought-after) cell-centre
values.

The following discussion focuses on the derivation of the discrete formulation of the
conservation equations and will not explicitly formulate the matrix coefficients but stop
when the individual terms have been formulated in terms of cell centred variables. More
details can be found in [35] as well as in classical text book [34,81,124].

The solution of the level-set equation is discussed in section 5.3.

5.1 Discretisation of the conservation equations

The starting point is the set of basic conservations equations (coupled pde’s) introduced
in Section 2.1. The basic derivation sequence is as follows. For each individual pde:

1. integrate the pde over a discrete time step and a control volume corresponding
to a finite–volume cell; this gives rise to terms to be evaluated at the bounding
surfaces of the control volume (cell faces);
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2. introduce discrete approximations to derivatives and interpolation rules for evalu-
ating quantities at locations other than their primary locations (e.g., for obtaining
cell–face values from cell–centre values);

3. organise the terms in the discretised volume–integrated form of each individual
pde into a form suitable for numerical computation.

Then for the coupled set of pde’s a strategy for advancing the coupled set of nonlinear
pde’s over a computational time-step is required. Here, AC-FluX uses an iterative
segregated pressure–based approach discussed in section 5.2.

5.1.1 Development for a single pde

The conservation equation for a general scalar φ, or more exact, for the Favre-average of
a general scalar φ̃ can readily be deduced from the principal pde’s given in section 2.1;
here φ represents velocity ui, internal energy e, enthalpy h, mass fraction Yα, turbulent
kinetic energy k, or turbulent dissipation rate ε. The differential form of the general
conservation equation is given below employing index notation, eq. (5.1a), as well as
vector notation, eq. (5.1b).

∂(〈ρ〉 φ̃)

∂t︸ ︷︷ ︸
local change

+
∂
(
〈ρ〉ũiφ̃

)
∂xi︸ ︷︷ ︸

convective term

=
∂

∂xi

(
Γφ̃

∂φ̃

∂xi

)
︸ ︷︷ ︸

diffusive term

+ Sφ̃︸ ︷︷ ︸
source term

(5.1a)

∂(〈ρ〉 φ̃)

∂t
+ ∇ ·

(
〈ρ〉 ũ φ̃

)
= ∇ ·

(
Γφ̃ ∇T φ̃

)
+ Sφ̃ (5.1b)

Here Γφ̃ is the diffusion coefficient associated with φ, and Sφ̃ represents the remaining
terms of the parent equations considered as ‘sources’; ui represents the relative velocity
between the fluid and the local coordinate velocity1. For ease of notation a simplified
notation is applied in the following omitting the Favre-averaging (̃·) and mean value
symbols (〈·〉) as well as the index of Γφ̃.

In the Finite Volume framework these equations are integrated over a finite volume Ω
(cell) with surface ∂Ω = A around some point P (cell centre) within Ω. Employing the
Gauss theorem for transforming the volume integral into a surface integral leads to the
following form:

∂

∂t

∫
Ω

(ρφ)dV +

∫
A

(ρuφ) dS =

∫
A

(Γ grad φ) dS +

∫
Ω

SφdV . (5.2)

1For simplicity’s sake the local coordinate velocity will not be considered here.
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The previous equations are valid for an arbitrary time varying volume Ω = VP with
surface A = AP around some point P in the field. Recall that u thus denotes the relative
velocity between the fluid and the (potentially moving) surface AP . If the volume VP

represents the volume of a computational cell and AP the corresponding overall surface
of that cell where the surface of the cell consists of considerably plane cell faces with cell
face area Sf (f = 1, number of cell faces), i.e. AP =

∑
f Sf , then equation (5.2) becomes

∂

∂t

∫
VP

(ρφ)dV

︸ ︷︷ ︸
temporal change

+
∑

f

∫
Sf

(ρuφ) dS

︸ ︷︷ ︸
:=

∑
f

Cf (convective fluxes)

=
∑

f

∫
Sf

(Γ grad φ) dS

︸ ︷︷ ︸
:=

∑
f Df (diffusive fluxes)

+

∫
VP

SφdV .

The first term on the left hand side describes the local change of ρφ in the control volume.
In a source free environment (Sφ = 0), the change is due to the convective and diffusive
flux across the surface of the control volume, denoted by Cf and Df respectively. These
fluxes need to be evaluated at the cell faces. The approximations of these terms, i.e. the
temporal derivative and the fluxes Cf and Df , are discussed in the following subsections.

Temporal discretisation To be faithful to the nature of time, essentially all methods
commonly used advance in time in a step-by-step or “marching” method; here based
on value of the dependent variable φ at some time tn the value at the next time level
tn+1 = tn + Δt is sought after, where Δt is a small time increment. These methods are
similar to the ones used for solving initial value problems. In the context of commercial
and industrial applicability, implicit time integration schemes2 are usually employed.
Restricting the discussion to two-level methods, involving the values of the unknown at
two time steps, the most popular choices are backward or implicit Euler, and the Crank-
Nicolson scheme. Characteristic for implicit schemes is the requirement of the value of
φ(t) at some point other that t = tn at which the solution is known. Therefore these
approaches lead to implicit systems which can only be solved iteratively.

The conservation equation for the general scalar φ can be cast into the form of a first
order differential equation, i.e. as an initial value problem of the following form:

dφ

dt
= f

(
t, φ(t)

)
, φ(tn) = φn . (5.3)

Here, f indicates the convective and diffusive transport as well as source terms; tn
indicates some initial point in time where φ(tn) is known. Integration of equation (5.3)
over the time interval [tn, tn+1] leads to∫ tn+1

tn

dφ

dt
dt = φn+1 − φn =

∫ tn+1

tn

f
(
t, φ(t)

)
dt . (5.4)

2The popularity of implicit scheme stems form the fact that they generally have superior stability
properties and less restrictive constrains on the size of the maximal allowed step size.
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This integration is exact, but the right side cannot be evaluated without knowledge of
the solution, thus some approximation of the integral is necessary. If the integral on
the right hand side of equation (5.4) is estimated via final point tn+1 the implicit or
backwards Euler method (5.5) is obtained, which is of first order in time3.

φn+1 = φn + f(tn+1, φ
n+1)Δt (5.5)

Using a straight line interpolation between the initial and final points for construction
an approximation to the integral yields the trapezoid rule or Crank-Nicolson scheme,
eq. (5.6).

φn+1 = φn +
1

2

(
f(tn, φ

n) + f(tn+1, φ
n+1)Δt

)
(5.6)

As all explicit scheme the semi-explicit Crank-Nicolson scheme is only conditionally sta-
ble, which means that the size of the time step is limited by geometrical and physical
properties (CFL number4). On the other hand, the fully implicit scheme is uncondi-
tionally stable thus allowing (in principle) arbitrary step sizes. Although numerically
more expensive the stability properties of the implicit Euler scheme makes it extremely
attractive for the simulation of practical flows in complex geometries. The dependency
of the explicit scheme on time step restriction due to CFL restrictions, i.e. indirectly due
to the mesh spacing, lead to a significant increase in computational cost, especially when
the mesh quality is low. On the other hand, when considering the case of LES, besides
the numerical time restrictions, the time scale of the resolved turbulent structures limit
the maximal time-step size. Therefore in the field of RANS, implicit time integration
is usually favoured, while for LES (and DNS) explicit schemes are employed [15]. In
section 6.1, the influence of the numerical scheme of the evolution of the flow field is
demonstrated.

5.1.2 General form of the discretised equations

As discussed in the previous section, in AC-FluX’s finite–volume formulation, the gov-
erning pde’s are integrated over a control volume that corresponds to a computational
cell. Considering pure hexahedral meshes, each computational cell has six principal
neighbours (one through each face). The linearised discretised equation for a cell–centred
dependent variable φ then can be written in the following form that is consistent with
the standard notations used in the literature:

A0,φφP −
∑

f

Af φφf = Su φ + Sp,φφ . (5.7)

3The order of a numerical scheme is a measure of the error reduction when increasing the resolution;
first order implies that when the time step is reduced by a factor of 2, the same is valid for the
numerical error, while second order implies that the error is reduced by a factor of 4; note that this
only refers to the error reduction, but not to the absolute values; thus a low order scheme can, for
a given resolution, be more exact than a high order scheme.

4CFL-number: Courant-Friedrich-Levy number, ratio of the numerical time-step to the convective
time scale: CFL = |u|Δt/Δx.
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The diagonal coefficients A0 φ, off–diagonal coefficients A1 φ → A6 φ, and source term
components Su φ and Sp φ are independent of φ (the equations are linear). This structure
accommodates cases where one or more cell faces lie on boundaries; in that case, the
corresponding neighbour value φf is a boundary–face value rather than a cell–centre
value. A conventional source–term linearision has been employed, where the total source
term Sφ is decomposed into two contributions:

Sφ = Su φ + Sp φφ , (5.8)

where Sp φ is strictly non–positive. Sp φ then can be combined with the diagonal coefficient
A0 φ to increase the robustness of the linear system solution procedure by increasing the
diagonal dominance of the matrix:

Ap φ ≡ A0 φ − Sp φ . (5.9)

Other benefits of source–term linearision are discussed by Patankar [81]. The general
form of the linearised discretised equation is then:

Ap φφp −
6∑

f=1

Af φφf = Su φ . (5.10)

The coefficient matrix is sparse (seven non–zero elements per row); it is symmetric in
the case of the pressure correction equation and non–symmetric in general for the other
equations. It is not necessarily diagonally dominant. In cases where a cell has more than
six neighbour cells and/or faces (adaptive meshes, sliding interfaces) additional non–zero
entries appear in the coefficient matrix; these are dealt with in a fully implicit manner
in the linear equation solvers. Robust preconditioned conjugate gradient (for symmetric
systems) or bi–conjugate gradient (for non–symmetric systems) iterative linear equation
solvers are used to solve the resulting implicit sparse linear equation sets.

5.2 Computation of the pressure field

AC-FluX employs an iteratively implicit pressure–based sequential (segregated) solu-
tion procedure to solve the coupled system of governing pde’s presented in Section 2.1.
Sequential or segregated means that the pde’s are solved sequentially rather than si-
multaneously; coupling is achieved via an iterative updating procedure. The proce-
dure accommodates incompressible and/or compressible flows and steady and/or tran-
sient flows. It is applicable for essentially arbitrary Mach numbers, although for Mach
numbers much greater than unity the efficiency of the approach decreases significantly.
AC-FluX’s pressure algorithm is patterned after SIMPLE (Semi–Implicit Method for
Pressure–Linked Equations, [81]) and PISO (Pressure–Implicit Split Operator, [49]).
PISO originally was conceived as a predictor–corrector method to be used with a fixed
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number of passes through the equations on each time-step; however, a pure PISO method
generally is neither sufficiently efficient nor sufficiently robust for the highly distorted
computational meshes and complex three–dimensional time–dependent flows that char-
acterise practical engineering applications. The algorithm used in AC-FluX can be
thought of as a modified PISO scheme where the numbers of outer and inner iterations
both are variable; the algorithm reduces to a SIMPLE–like method in the case of a single
outer loop (momentum predictor) and a single inner loop (pressure/velocity corrector)
per time-step.

The following subsection 5.2.1 provides a general description of AC-FluX’s pressure
algorithm; details can be found in [35].

5.2.1 Pressure/velocity coupling

The essential steps in the pressure/momentum/continuity coupling to advance the solu-
tion over one computational time-step are:

1. Momentum predictor – compute a new velocity field using the current pressure
field; this velocity field does not satisfy continuity.

2. Pressure/velocity correctors – compute corrections to the pressure and velocity
fields to enforce continuity.

The momentum predictor and pressure corrector each require the solution of a sparse
implicit linear system that corresponds to a linearised discretised form of the governing
pde; the velocity corrector is explicit. Equations for additional quantities (e.g., inter-
nal energy/enthalpy, species) may be included in each pressure/velocity corrector step
to maintain tight coupling among the equations. At the end of the pressure/velocity
corrections, equations requiring a lesser degree of coupling are solved (e.g., turbulence
model equations). The process then is repeated as necessary, starting from the mo-
mentum predictor, to obtain a converged solution for the current time-step or global
iteration.

Three levels of iteration thus are employed on each time-step (each global iteration
for a steady solution algorithm): an outer loop or outer iteration, an inner loop or
inner iteration, and iterations within the linear equation solvers. An outer iteration
corresponds to a momentum predictor step and an inner iteration corresponds to a
pressure/velocity corrector step. The basic sequence is displayed in Figure 5.1.

5.3 Solution of the G-model equations

The solution of the G-equation model is based on the Level Set method, a technique
which can be used to describe the position of geometrical interfaces in space and their
evolution in time. A thorough introduction into the field of Level Set methods and related
topics can be found in [109]. In the present work, the implementation by Ewald [32]
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Figure 5.1: A schematic flowchart illustrating three levels of iteration. This flowchart
corresponds to a compressible case (internal energy/enthalpy equation in-
cluded in the inner iterations) using an energy/enthalpy predictor (versus
explicit corrector) for each inner iteration (adopted from [35]).
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has been employed and adopted in co-operation with the original author for the VLES
model approach.



6 Application

6.1 Homogeneous isotropic turbulence

Homogeneous isotropic turbulence (HIT) represents one of the most important as well
as fundamental turbulent flow configurations, especially from a theoretical point of view.
Numerous theoretical, experimental and numerical studies, cf. [1,54,103,123], have been
performed in order to develop an improved understanding of turbulence and turbulent
processes.

In this section this basic flow configuration is employed as a reference case for analysing
and evaluating the numerical properties on the employed CFD code and to study the
influence of numerical parameter and algorithms, necessary for the simulation of the
processes of an internal combustion engine. Additionally the initialisation strategies for
the generation of an approximate turbulent flow field as discussed in section 3.6 are
evaluated and compared.

The structure of the present section is the following. In the first part (6.1.1) a critical
comparison of initialisation strategies as discussed is made. The second part discusses
the numerical properties of the employed CFD code, analysing the influence of numerical
diffusivity, comparing the numerical to the viscous dissipation, i.e. appraise the spatial
discretisation schemes; the finishing two sections contain a single time step study for
assessing the quality and influence of temporal discretisation schemes, and finally the
remapping/interpolation of the initial flow field onto meshes of different mesh resolutions
is analysed.

6.1.1 Comparison of initialisation strategies

The discussion of the properties and behaviour of the Lorenz equations, eqs. (3.1)- (3.3),
revealed the significance of the choice of initial condition for the subsequent solution.
While in the context of RANS the specification of the integral turbulent kinetic energy
k̃ and the dissipation rate ε̃ (or alternatively the integral length scale �t) is sufficient
to characterise the turbulence of the flow field, for the large eddy simulation approach
appropriate turbulent velocity fluctuations need to be imposed onto the mean field.

For the initialisation of homogeneous isotropic turbulence three different strategies
have been discussed in section 3.6, namely (a) the Fourier transform based approach,
(b) the initialisation based on a diffusion process (artificial turbulence), and (c) the ap-
proach based on truncated Fourier series (synthesised turbulence). In the following these
approaches are evaluated with respect to and special focus on the general applicability.

The homogenous isotropic turbulence is initialised on a cubical domain. The edge
length of the domain is L = 32 mm, thus the smallest resolvable wave length κmin of
the turbulent spectrum is given by κmin = 2π/L = 196.35m−1. On the other end of the
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pressure p 1.013 · 105 Pa
temperature T 350 K
spectrum type von Kàrmàn-Pao spectrum
turbulent velocity scale u′ 15.0 m/s

most energetic length scale le 10.0 · 10−3 m
most dissipative length scale ld 1.05 · 10−5 m
turbulent dissipation ε 6.75 · 105 m2/s3

density ρ 1.881 kg/m3

dynamic viscosity μ 1519.6 · 10−6 kg/ms

(kinematic viscosity ν) (8.0787 · 10−4 m2/s)

Table 6.1: Initial condition for the initialisation of homogeneous isotropic turbulence.

spectrum, the largest resolvable wave number κmax is determined by the mesh spacing
via κmax = 2π/Δx where Δx denotes the grid spacing. Three Cartesian equidistant
meshes with increasing resolution are used leading to the mesh cut-off wave numbers
of κmax = 3142 1/m, 6283 1/m , and 12566 1/m as given in the last column of table 6.2.
This wave numbers correspond to the Nyquist frequency of the mesh, which can be
regarded as the cut-off wave number of an implicit sharp spectral filter. Cyclic boundary
conditions are used for each pair of opposite faces of the computational domain. The
application of the inverse Fourier transformation approach leads to the requirement and
is the motivation of the utilisation of Cartesian equidistant meshes.

The initialisation of the turbulent velocity field is based on the parameters as sum-
marised in table 6.1; these settings are analogue to those employed in [113] and have
been employed in the framework of the European project LESSCO21.

no of cells cell size mesh cut off

mesh 1 323 = 32 768 1.00 mm 3142 1/m

mesh 2 643 = 262 144 0.50 mm 6283 1/m

mesh 3 963 = 884 736 0.25 mm 12566 1/m

geometrical dimension 32 mm × 32 mm × 32 mm

Table 6.2: Mesh parameter for the HIT studies.

1These settings are inconsistent with respect to the Kolmogorov length scale (most dissipative scale)
and turbulent dissipation; based on the values for the turbulent dissipation and kinematic viscosity
given in table 6.1, a Kolmogorov length of η = 1.672 · 10−4 m2

/s3 is obtained; the chosen values were
taken in order to be able to compare the results with project partners during the LESSCO2 project;
the impact of the incorrectness ought to lead to negligible differences.
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Spatial inverse Fourier transform based initialisation. Following [12] the inverse
Fourier transform based initialisation is based on a von Kàrmàn-Pao spectrum of the
form

E(κ) =
1.5u′5

ε

(κ/κe)
4

[1 + (κ/κe)2]17/6
exp [−1.5α(κ/κη)

4/3] (6.1)

with α = 1.5. The initialised flow fields are afterwards analysed by means of Fourier
transform yielding the spectra shown in figure 6.1; the prescribed model spectra of
equation (6.1) is additionally given as reference.

The influence of the mesh onto the resolvable scales is clearly visible. The contributions
to the turbulent spectrum beyond the mesh cut-off wave length κc are suppressed as the
corresponding small scale structures cannot be represented on the employed meshes. The
cut-off wave length κc of the coarsest mesh and, due to the bisection of the mesh width,
2κc of mesh 2 are indicated by vertical lines. Up to the corresponding mesh cut-off all
spectra collapse. This indicates that the large scale structures corresponding to small
wave numbers are represented equally well on all meshes. However, while for the large
wave numbers the prescribed and initialised spectra coincide a slight deviation in the
small wave number region is noticeable; the two regions are separated by the maximum
of the spectra, i.e. referring to physical space the integral length scales.

The CPU requirements for the initialisation of the velocity fluctuation based in the
inverse Fourier transformation is given in table 6.3. Due to the high efficiency of the
implementation2 the CPU time for the Fourier transformations is small compared to the
remaining setup and analysis operations; for increasing mesh sizes the ratio of initialisa-
tion CPU time to total CPU is even strongly decreasing.

Diffusion process. While the inverse Fourier transform requires the usage of equidis-
tant Cartesian grids the application of the diffusion process based approach, section 3.6.2,
does in principle not pose any restriction onto the numerical mesh and the geometry.
Briefly sketched, the general procedure is the following. The velocity field is initialised
with uniformly distributed random numbers in the interval [−0.5 . . . 0.5] (white noise).
The diffusion process is realised by solving the momentum equations only omitting the
pressure correction step of the PISO algorithm; as the AC-FluX code employs a de-
ferred convective correction approach [34, 35] the numerical treatment of the diffusive
and convective term does not allow for decoupling of the two; however as continuity is
not enforced via the pressure correction step there is no influence of convection onto the
spectra [112]. The time step for the diffusion process has been Δt = 10−6s. The fluid
properties as specified in table 6.1 have been employed.

For the evaluation of the diffusion approach only the coarse mesh (323)was employed.
As listed in table 6.3 the CPU requirements on a P4/3GHz machine has been approxi-
mately 24 h, but could be reduced by optimising the time step size towards large time-

2The employed algorithms is based on subroutines originally developed for the AVBP code at IFP and
CERFACS [12].
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Figure 6.1: Comparison of initial spectra based on Fourier transform on different meshes;
kc refers to the mesh cut-off wave length of the coarsest grid; the mesh cut-off
of the finest mesh is not shown.

steps. The temporal integration has been performed using both the standard implicit
Euler and Crank-Nicolson scheme, while for the spatial discretisation for the diffusive
term the standard second order central differencing scheme has been employed [35]. In
order to achieve the same turbulent structure, as characterised by the integral length, the
diffusion time tdiff for the process has been determined via equation (3.104) as tdiff ≈ 20 ms

The development of the turbulent spectra is shown in figure 6.2 for both temporal
discretisation schemes with the second order Crank-Nicolson scheme on the left and the
implicit Euler scheme on the right hand side. The effect of the viscous dissipation on the
the spectra is clearly visible. As postulated in section 3.6.2, energy is withdrawn from the
small scales near the cut-off while the large(r) scales are rather much unaffected. This
removal of kinetic energy leads to the desired deformation of the turbulent spectrum.

The influence of the temporal integration scheme is clearly visible in figure 6.2; for
illustration purpose and as reference a line with the −5/3–inclination of the Kolmogorov
spectrum is given. The application of the implicit Euler scheme causes a too excessive
dissipation of turbulent energy from the small scales in the large wave number region.
Consequently a well defined shape cannot be established at the end of the diffusion
process. On the other hand employing the Crank-Nicolson scheme a stable −5/3 region is
established as well as a clearly distinguished peak in the spectrum around κ = 1000 m−1

corresponding to the integral length scale, cf. also figure 6.1, can be observed, thus the
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shape of the obtained spectrum leads to a good approximation of the desired form.
Although the principal approach and the integration into the CFD solver is quite

straightforward, the method required unexpectedly huge CPU times. This can partly
be accounted to the usage of extremely small time steps which have nevertheless shown
to be necessary for stability reasons. These stability problems have especially been
encountered for wall bounded domains [106,107].
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Figure 6.2: Time history of the spectrum of the diffusion process using different schemes
for time integration; left: Crank-Nicolson; right: implicit Euler.

Truncated Fourier series. Based on the modified von Kàrmàn-Pao spectrum, equa-
tion (3.108), the initialisation of the turbulent velocity field has been performed based
on the synthesized turbulence approach discussed in section 3.6.3. The parameters have
been set in accordance to the characteristic quantities and fluid properties given in ta-
ble 6.1.

The obtained spectra on the finest grid (mesh 3) of ten successive initialisations are
shown in figure 6.3 with the prescribed analytical spectrum given for reference. The
qualitative and quantitative agreement of the synthesised turbulent field with the ref-
erence is very good. In analogy to the inverse Fourier approach a pronounced mesh
cut-off can be seen. The individual realisations show minor random fluctuations in the
large wave number region which indicate the successful random initialisation of the flow
field, i.e. the approach allows for the generation of multiple realisations of the turbulent
velocity fluctuations based in the same basic spectrum. Similar to Fourier transform
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approach the energy of the large scale structures in the small wave number region is
slightly overestimated which demonstrated the connection between the two approaches,
i.e. both algorithms are founded on same physical arguments.

The CPU requirements for the initialisation are given in table 6.3. Compared to the
inverse Fourier transformation method the time is approximately one order of magnitude
larger for all employed mesh resolutions. The increase due to the mesh refinement scales
similar as for the Fourier case which is again an indication of the similarity between the
two approaches.
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Figure 6.3: Synthesised turbulent spectra created of 10 successive initialisation; dashed
line indicates analytical form of the model spectrum.

Appraisal. The inverse Fourier transform is the de facto standard approach for the
initialisation of turbulent velocity field, cf. [113]. However the application of the method
is restricted to simple geometries and meshes. Moreover, for efficiency considerations the
transformation algorithm is based on Fast Fourier Transform algorithm (FFT), which
imposes restrictions for the number of nodes in each spatial direction (2n). Nonetheless
the method has proved its usability for fundamental studies, for instance the decay of
isotropic turbulence [113]. While the numerical cost in term of CPU time is compar-
atively low and the algorithm is fast, the complexity of the implementation is quite
high.

The implementation and application of the diffusion approach is rather simple and
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straightforward3. The extreme sensitivity with regard to the employed time integration
scheme, leading to significant uncertainties in resulting shape of spectra, render the
application of the method problematic. The CPU requirements have been unexpectedly
high; a time step size optimisation has not been performed but the experienced instability
of the method, especially for problems in wall bounded domains, indicates that small
time steps are necessary. In contrast to the other approaches the diffusion approach
requires after-treatment and post-processing (i.e. scaling) of the obtained velocity field
in order to obtain the correct turbulent statistics.

The initialisation of a turbulent velocity field via the synthesized turbulence approach,
i.e. via a truncated Fourier series, combines the positive elements of both approaches.
The approach allows an excellent reproduction of the prescribed spectrum without any
restrictions concerning geometry, node number, or mesh type. As shown in 6.3, the
CPU requirements are moderate. The low complexity of the algorithm allows for a
straightforward implementation.

mesh 1 mesh 2 mesh 3

Fourier transform
field 0.6 8.9 42.5
total 9.1 195.7 1442.6

diffusion ∼ 24h – –

synthesized turbulence
field 111.5 892.3 3034.0
total 123.2 1116.9 4633.1

Table 6.3: CPU requirements in seconds for the initialisation on a P4/3.2GHz Linux PC.

6.1.2 Numerical studies

Numerical diffusivity. In the context of RANS simulations the usage of upwind based
schemes with a significant amount of numerical dissipation is usually favoured [15].
However, in case of LES care has to be taken that the influence of the numerical scheme,
and here especially the numerical diffusivity, does not cover and hide the effect of the
sub-filter model.

In the following the influence of numerical scheme on the velocity field is studied.
When the viscosity is set to zero, the kinetic energy of the flow/system should ideally
be conserved as the viscous dissipation is deactivated. Due to the energy cascade, the
turbulent kinetic energy is shifted from the large scales and accumulated on the small
scale of the spectrum which eventually leads to numerical instabilities and an explosion
on enstrophy Ω2 = ω · ω [62], unless energy is removed from the small scale by the
numerical scheme.

CFD codes for practical engineering application purposes generally use low order
schemes (order 1 to 2) for both the temporal and spatial discretisation. Thus they

3This might also be the case when full source code is not available as in the case of commercial codes.
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are inherently characterised by a significant amount of numerical diffusivity as well as
being considerably dissipative. For general purpose usage these properties are favourable
for stability reasons and therefore usually required4.

The influence of the temporal discretisation scheme on the resolved kinetic energy uiui

for inviscid and viscid flow configurations is shown in figure 6.4 for the AC-FluX code
for two different temporal integration schemes. Additionally shown are results obtained
by the commercial CFD solver AVL Fire V8 [112] and the compressible CFD research
code AVBP of CERFACS and Institut Français de Pétrole (IFP) obtained within the
framework of the LESSCO2 project. All simulation employed identical settings consid-
ering the spatial and temporal resolution, i.e. the same mesh, mesh 1 in table 6.2 with
323 cells, and a time step Δt of 1.4 · 10−6 s.

The two engine simulation codes, AC-FluX and Fire, both use central differences for
the convective terms, while the results of the AVBP code were obtained either employing
a Lax-Wendroff (LW) scheme or a Taylor-Galerkin third order low-dissipation scheme
(TTGC). Both engine codes exhibit a similar behaviour with the AC-FluX code be-
ing slightly favourably less dissipative. Due to the numerical background and field of
application (LES, DNS) the compressible solver AVBP shows an extremely low level
of numerical dissipation5; furthermore AVBP employs an explicit time discretisation
scheme.

The history of the kinetic energy with the inclusion of the viscous dissipation, i.e. em-
ploying a finite viscosity, is additionally shown in figure 6.4. The difference between the
two temporal integration schemes for the viscous case is small, with the Crank-Nicolson
scheme showing a slightly better performance than the implicit Euler integration. Com-
pared to the effects of the viscous dissipation the numerical dissipation is sufficiently
small to be neglected.

Enforcement of continuity - single PISO. The algorithms for creating the initial
homogeneous isotropic turbulent velocity field do not necessarily satisfy the continuity
equation due to numerical inaccuracies and grid cut-off effects, or inherently due to the
employed algorithm as in case of the diffusion process. In order to obtain a divergence
free velocity field a single time step has been performed using the PISO algorithm,
cf. 5.2.1. While the initial field is characterised by the desired prescribed spectrum, the
question arises how the spectrum changes due to enforcement of continuity.

The characteristic turbulent time scales can be determined based on the parameters
given in table 6.1, namely the Kolmogorov time scale τk = (ν/ε)1/2 with τk = 3.46·10−5s,
and for the large scale motion the corresponding integral time scale τt = �t/u

′ becomes
τt = 6.67 · 10−4s. In order to keep disturbances to the initialised spectrum on a minimal
level, the simulation time step should be smaller than the characteristic time scales, i.e.

4In an industrial context, results with a well known tendency (= too diffusive) are better than none
5This observation is not surprising, as the AVBP code and employed numerical schemes have been

extensively tuned to achieve a low level of numerical diffusivity and dissipation.
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Figure 6.4: Time history of the resolved kinetic energy for several spatial and temporal
schemes as well as CFD solver.

the Kolmogorov time scale τk.

In figures 6.5 and 6.6 the energy spectra obtained after advancing the solution a single
time step Δt on the 323 mesh are shown for a viscid and an inviscid case respectively.
The time integration scheme employed in both cases is the Crank-Nicolson scheme; to
improve readability the curves have been smoothed and a semi-logarithmic plot has been
used. Clearly, for time steps smaller than the Kolmogorove time scale τk the spectrum
does not change significantly. Small changes occur near the mesh cut off which indicates
that parts of the small scale structures are damped during the pressure correction process
of the PISO algorithm. However, as these scales are of the order of the mesh size and
cannot be correctly represented on the given mesh, their removal is desirable from a
physical point-of-view.

An increase of the time step size beyond the Kolmogorov time scale to values of the
order of the integral time scale τt reveals different behaviour. In that case the spectrum
differs from its initial value and a significant amount of energy is removed from the
large scales. In the inviscid case an accumulation of energy at the smallest scale can be
observed cause by the lack of viscous dissipation. These effects are not visible when the
chosen time step is sufficiently small. Employing the implicit time integration approach
similar effects are visible, although the difference between the viscid and inviscid cases
are much smaller due to the increase in numerical dissipation inherent to the numerical
scheme as discussed above.
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Figure 6.5: Influence of time step on spectrum after performing a single PISO step; for
time steps smaller the Kolomogrov time scale τk the spectra collapse.

Remapping - Inter- and extrapolation. Due to moving geometries the computational
mesh undergoes deformation by stretching, compression and shear which can lead to a
significant number of deformed cells. For engine simulations, the valve motion or the
piston movement during the compression and expansion phase are representative situa-
tions. Once the mesh quality falls below a certain level, the flow field has to be mapped
(interpolated) onto another grid with a possible change in mesh topology. For RANS
based simulations the largest structures are of the size of the integral length scale �t

which is usually sufficiently resolved on the employed meshes. Furthermore all quanti-
ties are per se resolution independent, thus a change of the mesh and correspondingly
the grid spacing does not lead to any issues apart from numerical questions regarding
mass and energy conservation.

Due to the tight coupling of the grid spacing with the filter width in LES on the other
hand, a change of the mesh resolution influences the resolved and resolvable turbulent
scales. An interpolation from a coarse to a fine mesh, which is typical for the remapping
after TDC6 during the expansion phase of an engine cycle, the problem of additional
resolution in wave number space arises; scales which could not be resolved on the coarse
mesh due to the grid cut-off can now be represented. The other way round, if the mesh
is coarsened part of the turbulent spectrum cannot be resolved anymore and the energy

6Top Dead Centre.
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Figure 6.8: Effects of the conservative remapping algorithm onto the turbulent spectrum
for coarse (323) to fine mesh mapping.

of the unresolved structures must be moved towards the resolved scales.

In order to investigate the impact of the remapping process of the turbulent velocity
field and the turbulent spectrum respectively, again the model spectrum, equation (6.1),
is initialised on two cubical meshes with 323 and 643 cells, and mapped onto meshes with
resolutions of 323, 403, 483, 643, 803, and 963 cells.

The effects for both grid coarsening and grid refinement onto the energy spectrum
are depicted in figures 6.7 and 6.8. For the case of grid coarsening a slight shift of
energy towards the small wave numbers, i.e. larger scales, on expense of the larger wave
numbers can be observed while the general shape of the spectrum remains sufficiently
unchanged.

The situation is different for the case of grid refinement. Here the scales beyond the
grid cut-off of the coarse mesh are suddenly resolved, although not physically correctly
initialised. The impact on the turbulent spectrum can be observed in figure 6.8. Similar
to the fine–coarse grid mapping a slight shift of energy to the large scales and smaller
wave numbers occurs. However due to lack of information about the structure and energy
content of the small scales on the coarse grid, there is a hole in the energy spectrum.
This gap is filled by energy taken from large scales and added to small, leading to the
creation of bumps beyond the grid cut-off of the original mesh. Local minima of these
artificial bumps are positioned at integer multiple of mesh cut-off, i.e. n κc, with maxima
in between at approximately n+1

2
κc; this aliasing effect is well known from spectral codes.
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After a time of approximately the Kolmogorov time scale τk the bumps and gaps are
filled and a smooth spectrum is obtained, see figure 6.9; note that this time step size is
unrealistic for real application where much larger time steps are used; therefore it can be
assumed that within a single time step of a numerical simulation the remapped spectra
is sufficiently smoothed.

6.2 Square piston engine

The flow in spark-ignition combustion engines is characterised by a tumbling motion,
i.e. a large scale vortex whose axis is perpendicular to the cylinder axis. The tumbling
motion is generated during the intake phase. During the compression a complex vortex
breakdown occurs resulting in the generation of a significant turbulence level. The
significance of this type of flow and the tumble motion in the context of IC-engines
is increasing, especially considering direct injection spark ignition engines (DISI). An
additional major issue for DISI engines is the problem of cycle-to-cycle variations of
cyclic variability, which is thought to be related to the turbulent break-down to the
tumble motion.

A simplified, quasi bi-dimensional model flow of the tumble compression has been
experimentally studied by Marc et al [71]. Although strongly simplified, the geometry
employed is representative of automotive cases in terms of tumble behaviour, volumetric
ratio and tumbling number [73]. Additionally the major practical obstacles of real engine
geometries are nicely removed, namely valve motion and geometrical complexity, while
still capturing the main characteristics of real engine simulation problems and physics.

The experimental setup consists of a square compression chamber with large optical
access. A square piston is animated with a sinusoidal motion. The intake system consists
of a plenum chamber at ambient pressure, is a flat channel which is connected to the
lower side of the compression chamber, and a guillotine device for closing the intake
channel in phase with the piston motion. Thus it is possible to realise four stroke like
cycle phases with intake, compression, expansion and exhaust. During the intake phase,
the intake jet flow is deflected by the moving piston and generates the tumbling vortex.

The compression engine has a square 100×100 mm2 piston and is equipped with a flat
head. The distance between the piston and the cylinder head at the end of the intake
stroke is 100 mm. The piston is driven at 206 rpm, which leads to a maximum piston
velocity of 1m/s. PIV and LDV7 measurements of the velocity fields in the symmetry
plane of the device have been performed.

6.2.1 Flow characterisation

The creation, establishment, and collapse of the tumble motion during the intake and
compression phase in the symmetry plane of the compression chamber shown in fig-

7Particle Image Velocimetry, Laser Doppler Velocimetry
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Figure 6.10: Sketch of the compression chamber [73].
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ure 6.12. During the intake stroke the tumble is created and stabilised by the incoming
air jet. During most of the compression phase the large scale vortex motion is rather
stable, but finally breaks down before TDC.

Figure 6.12: Instantaneous velocity field of the VLES in the symmetry plane of the
compression chamber during intake and compression stroke at 0◦, 90◦, 180◦,
270◦, and 360◦ CA after TDC.

Figure 6.13 shows the instantaneous and ensemble-averaged velocity field during the
intake stroke at 90◦ CA aTDC, i.e. during the creation of the tumbling motion. Sig-
nificant cycle-to-cycle variations concerning the position of the vortex in horizontal and
vertical direction are visible. Likewise the structure of the recirculation bubble at the
end of the intake jet varies from cycle to cycle, and the instantaneous flow differs con-
siderably from the averaged pattern. The flow is therefore characterised as being highly
transient and strongly influenced by turbulence.

6.2.2 Results

The cycle-to-cycle variations of the flow in the simulation and the experiment are anal-
ysed in the median plane, i.e. in the principal symmetry plane of the geometry. Addition-
ally the 1D profiles of the velocity and integral turbulent kinetic energy are considered
in the centre of the median plane, analogue to the analysis performed in [79, 113]. The
mesh employed in the current consists of approximately 210 000 cells.

Instantaneous profiles. Profiles of the instantaneous spanwise and axial velocity as
well as the (integral) turbulent kinetic energy for the RANS and the VLES calculation
during the intake stroke at 90◦CA for multiple cycles are presented in figure 6.14 and
6.15 respectively.

An interesting phenomenon can be observed in figure 6.14 for the RANS simulation,
where 2–3 cycles are required until as quasi steady-state is reached. Once that stable
state is reached, the profiles of the following cycles collapse. A significant deviation
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Figure 6.13: Experimental instantaneous (centre, right) and ensemble-averaged (left) ve-
locity field during the intake stroke at 90◦ CA aTDC.

from that stable state is visible only for initial cycle, afterwards only minor changes
are detectable. The initial variations are most prominent for the axial velocity and
the turbulent kinetic energy, while the profiles of the spanwise velocity change only
moderately. The direct implication of this observation concerns the simulation of intake
flows for IC engines, which are performed in order to describe the fuel mixing process
in GDI engines prior to ignition and combustion. A correct description of the flow
structures requires the simulation of multiple cycles which includes the complete intake
flow, compression, combustion, expansion and exhaust phase of the cycle; additionally
the complete engine geometry including (part of) the intake and exhaust ducts must be
modelled to accomplish this task with a reasonable level physical mapping.

Figure 6.15 presents the analogue analysis to figure 6.14 for the VLES case, but for
6 consecutive cycles instead of 4. Significant cycle to cycle variations are visible. The
variability is most clearly visible for the axial velocity and turbulent kinetic energy, less
distinct for the spanwise velocity component. This is in principal agreement with the
observation in the RANS case, where the initial solution of these quantities differed most
from the final stable state. A stable or quasi-steady state is not reached, but each indi-
vidual cycle differs significantly from the previous and a convergence cannot be observed.
The predicted flow is however not chaotic but these fluctuations happen around a stable
mean profile, most prominent in case of the spanwise velocity, see figure 6.15b.



98 6 Application

0.00

0.02

0.04

0.06

0.08

0.10

-5 0 5

y
[m

]

u, u [m/s]
(a) u-velocity

-5 0 5 10
w, w [m/s]
(b) w-velocity

0 2 4
k [m2/s2]

(c) turbulent kinetic energy

Figure 6.14: Instantaneous spanwise and axial velocity, and turbulent kinetic energy on
the centre line of the symmetry plane at 90◦CA for the first four cycles of
the RANS simulation.
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Ensemble averaged velocities. In figures 6.16 and 6.17, the ensemble averaged span-
wise and axial velocities at three different crank angle positions during intake and com-
pression stroke are shown. The neglection of blow-by effects leads to a shift of the vortex
centre. Correspondingly the simulation results for RANS as well as VLES are expected
to deviate from the experimental reference values. Additionally values directly at the
boundaries y = 0 and 0.1m are influenced and disturbed by post-processing artifacts and
not fully reliable. The following discussion therefore focuses on a qualitative comparison
of the simulation and the experiments.

At 90◦ CA aTDC, i.e. during the intake stroke, the profiles of the RANS and the
VLES calculations are similar. The agreement with the experiment in the lower part
of the compression chamber, say y < 0.02m, i.e. in the region of the jet entering the
chamber from the intake channel, is fairly well in case of the axial velocity, while the
spanwise velocity is over-predicted for the VLES but sufficient for the RANS simulation.
In the middle and upper part of the compression chamber a poor agreement has to be
noted during the early intake phase. During the intake phase the flow is dominated by
the intake jet. However, a coarse mesh has been employed in the intake channel, thus
the inflow conditions are dominated by the RANS model. The inflow velocity profile is
therefore smooth and any turbulent fluctuation must be generated in the shear layer.

During the compression phase at −90◦ CA bTDC both models show a different be-
haviour. Due to the dissipativeness of the k-ε model the spanwise velocity has almost
vanished in the RANS calculation, and correspondingly already during the compression
the model predicts a very early break down of the the tumble motion. The VLES ap-
proach on the other hand shows a better performance by qualitative reproducing the
experimental shape and still featuring a significant velocity level; the deviations from
the experimental reference can be attributed the discrepancies in the intake phase. The
difference between RANS and VLES calculation concerning axial velocity are not as
pronounced with VLES results showing a slightly better agreement. The interpretation
the results are difficult due to post-processing effects which are visible at the upper and
lower wall, where the velocity has to approach a value of zero (no-slip walls); the cause
for the magnitude of the error is not clear.

At TDC the RANS simulation predicts almost zero values for both axial and span-
wise velocities, while VLES and experiment both still show that the large scale vortex
structures partially still remain. Again the VLES approach leads to a good qualitative
agreement with the experiment.

The results can potentially be improved via two measures, which are expected to
have an impact mainly onto the VLES results: (1) considering blow-by effects and
(2) improving the intake channel mesh, which has been characterised by a very coarse
resolution for the present simulations.

Influence of initial turbulent conditions The influence of the turbulent initial condi-
tions onto the flow field and vortex structure are shown in figures 6.18– 6.19 for different
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Figure 6.16: ensemble averaged spanwise velocity at 90◦CA aTDC,−90◦CA bTDC, and
TDC; experiment (solid), VLES (dashed), and RANS (dotted).
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Figure 6.17: ensemble averaged axial velocity at 90◦CA aTDC,−90◦CA bTDC, and
TDC; experiment (solid), VLES (dashed), and RANS (dotted).
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crank angles during intake, compression, and expansion phase. Two different initialisa-
tion strategies for the velocity fields have been employed: on the left hand side a resting
field with zero velocity has been used, while on the right hand side turbulent fluctuations
based on the synthesised turbulence approach, cf. section 3.6.3, have been imposed.

At the beginning of the intake cycle −270◦ CA bTDC hardly any difference between
the flow pattern of the two initialisation strategies is visible. This behaviour is to be
expected since (1) the mean profiles for both cases are identical (resting flow), and (2)
the flow structure is dominated by intake jet flow. However, while the large scale motions
are identical, the recirculation zones at the end of the intake jet (bottom right) show
already slight differences in strength and size. At the end of the intake stroke the vortex
centres of the large scale structures are mildly shifted, with the synthesised turbulence
based solution being higher in the spanwise direction. The small offset becomes more
and more pronounced during the compression phase, resulting in significant differences
in the flow pattern at TDC. During the expansion phase, these changes in the overall
flow pattern are still visible until the opening of the guillotine device in the outlet phase.

These results indicate the sensitivity of turbulent flows toward initial and inflow con-
ditions, as discussed in section 3.1 for the case of the Lorenz model equations and in
section 3.6 for the inflow boundary conditions for the simulation of a plane jet; in the
present case however the complexity of the geometry is considerably higher. But also
considering the additional complexity, small disturbances in initial conditions lead to
significant different flow structure pattern. These findings support the assumption that
turbulence and turbulence effects are one of the major sources for cyclic variability and
cycle-to-cycle variations in gasoline engines. The impact of these initially small difference
is immense, eventually leading to engine knock and misfires.

6.3 Multi-cycle engine simulations

The phenomenon of cyclic variability represent one of the major challenges of modern
SI-engine design. A RANS-based modelling approach is ansatz-inherently not capable
of covering these effects describing only a statistical average process. On the other hand,
for practical flows in IC engines, the application of LES leads to unacceptable demands
on mesh resolution and size, time step size and correspondingly memory requirements
and CPU time. As demonstrated in the previous section the two-level modelling VLES
approach allows for effectively characterising the flow in reciprocating model engine.
In order to access the potential of the hybrid modelling approach, the VLES model is
applied to the simulation of a four valve SI model engine with flat piston design depicted
in figure 6.20; table 6.4 summarises the essential specifications of the engine set-up.
The chosen operation point has been chosen arbitrarily as experimental reference data
have not been available, but can be considered as being typical for part load conditions;
however in the present investigation the focus lies on the feasibility of the description of
cycle-to-cycle variations by means of the VLES approach, thus the actual conditions are
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Figure 6.18: Qualitative comparison of the velocity field in the compression chamber at
crank angles of , −270◦, −180◦, and −90◦ CA bTDC (top to bottom); left:
zero velocity, right: synthesised turbulence.
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Figure 6.19: Qualitative comparison of the velocity field in the compression chamber at
crank angles of 0◦,180◦,270◦ CA aTDC (top to bottom); left: zero velocity,
right: synthesised turbulence.



104 6 Application

Figure 6.20: Model four valve SI engine during intake flow; on the cutplane velocity
vectors and the amplitude of the vorticity; the bullet in the cylinder-head
indicate the monitoring position used later on.

not of particular importance. For the simulation of multiple complete 720◦ cycles three
different meshes of low-to-moderate size of approximately 150 000 cells are employed.
The simulation intervals of the individual meshes are given in table 6.4. The resolution of
the meshes is even for standard RANS simulation at the lower edge of current standards.
However the mesh resolution allows already to cover a considerable part of the turbulent
spectrum, and the effects of the VLES approach will become more prominent with
increasing mesh size and improved resolution. As the focus of the study is placed on a
fundamental level, a number of simplifications have been employed in order to reduce the
numerical cost and the mesh generation complexity. During the course of the simulation
only the relevant geometrical elements have been considered, i.e. for example during the
compression stroke only the piston volume, neglecting the intake and exhausts ports.
While the intake valves and the valve motion are completely modelled, a simplified model
of the exhaust valves has been employed as the error introduced here can be considered
as being of lower order. After each topology switch, the solution is interpolated onto
the new mesh and the newly appearing volumes are re-initialised with constant values.
Additionally constant pressure boundary conditions have been applied at the in- and
outlet.

The ratio between the filter width Δ and the integral length scale �t during the late
intake phase and the compression stroke is depicted in figure 6.21. Additionally the
position of Δ/�t is shown, i.e. the line separating the RANS and LES regimes; the peaks
near the piston surface of the isoline can be attributed to postprocessing effects. Similar
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stroke 86 mm
bore 92 mm
engine speed 2000 rpm
intake valve closure 580◦

370◦ – 580◦

simulation intervals 580◦ – 890◦

890◦ – 1090◦

Table 6.4: Engine characteristics.

to zonal hybrid models the near-wall regions are modelled employing the RANS mode
while the core region of the piston the LES mode prevails, although this is not inevitably
the case. In the region of high shear beyond the valve curtains, during the intake phase,
i.e. at larger valve lifts which are not depicted here, the turbulent length scale becomes
too small to be resolvable on the employed mesh. In these jet-like regions the model
automatically uses the RANS mode of the model, accounting for the insufficient mesh
resolution. The major part of the cylinder volume lies within the range Δ/�t < 1, which
denotes the LES mode of the model. Although a rather coarse mesh is used in the present
study, the cell sizes are sufficiently small to resolve the turbulent spectrum beyond the
integral length scale. While during the intake flow a significant part of the simulation
volume employs the RANS mode, the compression phase is dominated by the LES sub-
model. Extrapolating the results by considering the subsequent events of fuel injection,
ignition and combustion, the modelling and description of these processes is decisively
influenced by the improved representation of the turbulent flow field, thus allowing to
investigate flow phenomena which are not describable on a pure RANS base.

These findings are supported by the transient analysis of the turbulent kinetic energy
and the axial velocity in the spark plug region. The history of the turbulent kinetic
energy and the axial velocity near the spark plug (the bullet in figure 6.20) are shown
in figure 6.22 for ten full cycles employing the hybrid VLES model. The first three
cycles of the simulation reveal significant variations of the flow pattern. After this initial
transitional phase stochastic variations of the flow field around an average value can
be detected in the following cycles indicating the cycle-to-cycle variability phenomenon.
The largest variations in the profiles can be detected during the compression stroke
around −100◦ to −50◦ before top dead centre, i.e. during the essential phase for the
air-fuel mixing process.
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Figure 6.21: Length scale ratio during intake and compression stroke; thick line cor-
responds equal sizes of the filter width and the integral length scale, i.e.
Δ/�t = 1, with �t = Cμ

k2/ε.

6.4 Cylindrical disk

In the present section the two-level VLES/G-equation model is evaluated on basis of
experiments in a cylindrical vessel carried out by Hamamoto et al. [41, 42]. The setup
has been extensively analyzed numerically in the context of RANS G-equation approach
by Ewald [32]. A homogeneous stoichiometric propane-air mixture is subjected to an
axisymmetric swirling flow, in which by variation of the ignition timing during the swirl
decay the effect of different swirl intensities are studied. Similar to the previous section
the focus of the present investigation lies on the feasibility of the two-level approach to
describe the essential features of the combustion process, which are not realisable on
basis of RANS modelling approach. The experimental setup is documented in various
publications [41–45, 50] and [32]. Figure 6.23 gives a schematic representation of the
apparatus employed during the experimental studies. The combustion chamber is a
cylindrical vessel, with a diameter of d = 125 mm and a width of h = 35 mm. A swirling
fuel-air mixture is produced by charging the mixture tangentially through a swirl valve.
After removal of the valve the mixture is centrally ignited; different swirl intensities can
be realised by shifting the ignition time after intake valve closure.

The initialisation of the flow field follows the setup developed and employed by [32],
including parametrisation of the ignition model; table 6.5 summarizes the initial con-
ditions for the flow field. An ignition time of 10 ms after swirl valve closure has been
chosen for the following analysis.

The original computational mesh, consisting of approximately 60 000 computational
cells, has been locally refined around the flame front in the course of the simulation
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Figure 6.22: History of the turbulent kinetic energy (left) and the axial velocity (right)
over multiple cycles indicating cycle-to-cycle variation of the in-cylinder flow
structures.

p 243 kPa
T 335K

ω 5.05 m/s
r

tanh r
0.013 m

, r =
√

x2 + y2

ũ ω(ez × x) , ez = (0, 0, 1)T

k 5.0 m2/s2

�m min(8 · 10−3 m, κywall) , κ = 0.419

ε c
3/4
μ

k
3/2

�m

φ 1.0

G̃ � 0 m

G̃′′2 0 m2

Table 6.5: Initial condition for the mean quantities of the cylindrical test case [32].

via an adaptive mesh refinement algorithm. Similar to the model engine simulations,
the base mesh resolution is rather coarse. This approach, although successfully applied
in the RANS context, is not easily applicable within the framework of the two-scale
modelling approach due to the employed coupling of the filter width with the local mesh
spacing. Instead a slightly smoothed mesh consisting of approximately 120 000 cells is
employed.

Pre-ignition, cold flow results. The initialisation of the flow field is based on the pre-
viously discussed settings from [32]. To account for turbulent effects in the VLES mode,
additionally synthesised velocity fluctuations have been superimposed on the (smooth)
RANS field according to the approach of section 3.6.3. After a decay time of 10 ms, i.e.
at time of ignition, the resulting velocity fields on a vertical cut through the geometry are
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Figure 6.23: Schematic diagramme of the experimental apparatus [50].

depicted in 6.24 for the case of the two VLES runs with independent turbulent initialisa-
tions. Figure 6.25 shows the velocity field for two VLES simulations employing varying
filter factors8 of β = 3.0 (top) and 10.0 (centre), and for the standard RANS approach
(bottom). For all cases the identical numerical set-up has been employed. Although
the RANS simulation also used the same initial turbulent velocity field as the VLES
run with β = 3.09, the model yields a smooth field without any significant fluctuations
remaining from the turbulent initialisation. This implies that due to its dissipativeness
the model damps all fluctuations. On the other hand, the fields obtained employing
VLES approach exhibit a significant level of turbulence at time of ignition, and large
scale structures remain despite the rather long decay time. Additionally, the turbu-
lent initialisation approach yields locally distinct flow fields at time of ignition, while
the mean structure remains equal. However, as can deduced from the depiction, only
qualitatively large scale structures are resolved. This can be attributed to the coarse
mesh whose resolution does not allow to resolve finer turbulent structures, as well as
additionally an implicit filtering of the field caused by the low order numerical schemes
and algorithms of the employed code.

The spatial distribution of the integral turbulent kinetic energy k for a VLES and a
RANS based simulation at start of ignition on two cut planes, a vertical and a horizontal,
is visualised in figure 6.26; in both pictures the same colour scale has been employ for
colourizing the cutplanes. Although the flow field, and the turbulent production (and
dissipation terms) are significantly different due to the underlying modelling approaches

8For the definition of the filter factor see (3.79).
9Actually this approach is physically not reasonable, even contradicting the modelling approach, but

has been chosen for obtaining consistent initial conditions for all simulation runs.
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Figure 6.24: VLES velocity field on a vertical cut through the combustion chamber at
time of ignition (t = 10 ms) of two distinct initialisations (β = 3) based on
the synthesized turbulence approach.
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Figure 6.25: Velocity field on a vertical cut through the combustion chamber at time of
ignition (t = 10 ms); top and centre: VLES (β = 3.0 and 10.0, respectively),
bottom: RANS (initialisation based on VLES setup with β = 3.0).
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Figure 6.26: Integral turbulent kinetic energy k on two cuts through the combustion
chamber at time of ignition (t = 10 ms); the same colour map is employed
for both cases; left: VLES (β = 3.0), right: RANS (initialisation based on
VLES setup with β = 3.0)

as shown in figure 6.25, the distribution and magnitude of the integral turbulent kinetic
energy is consistent between the two cases and agrees well.

Combustion results. After the ignition, the initial flame growth and development oc-
curs on the scales well below the resolution of the mesh. Here the G-equation based
ignition model [32] has been used to describe the inception phase. As discussed in [32]
curvature effects play an essential role in the development of the flame kernel, possibly
yielding flame kernel quenching. This indicates that the ignition phase and the early
stages of the flame expansion have a significant influence on the later flame propagation
and flame development. While the original ignition model has been used in the present
study, a novel and enhanced version is currently being developed [24].

Figure 6.27 depicts flame front at t = 4 ms after start of ignition for two successive
turbulent initialisation. The flame deformation due to resolved large scale structures of
the underlying turbulent flow field is clearly visible, i.e. different turbulent initialisations
yield differing flame shapes. However the increase of flame surface area due to turbulent
wrinkling effects is severely underestimated, thus the flame propagation resembles those
of a RANS-base turbulent modelling approach. The main cause can be attribute to
the low order numerics of the level set solver, which are essentially upwind based in
the employed implementation. This leads to an underestimation of the flame wrinkling
and thus the surface production. Correspondingly the flame surface is significantly
underresolved which cannot be compensated by an increase of the turbulent burning
velocity (as in the RANS case). As discussed in section 4.2.2 the product stAt is inertial
scale invariant. However as the resolved flame surface At is too small, the mass burning
rate ṁB is significantly underpredicted.

The aforemention observation is not only valid for the phase of the free flame propaga-
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Figure 6.27: Deformed flames at t = 4 ms after start of ignition for two distinct turbulent
initialisations as defined via the G = G0 iso-surface; additionally shown are
two orthogonal cutplanes through the centre of the geometry colourised by
the local velocity magnitude.

tion. The ignition model has not been adopted to VLES modelling principles. The initial
flame expansion and transition from ignition model to 3D flame propagation decisively
influences the following combustion process and cannot be compensated or corrected in
the later phase. Therefore a comparison to experimental references is presently omitted,
and the focus is laid on the feasibility of the coupling approach.

Aggressive mesh refinement In order to validate the principle approach of coupling
the two-level VLES model with the G-equation, an aggressive local mesh refinement is
applied. Here the mesh around flame surface G = G0 is locally adopted by splitting
the original cells up to a refinement level of 3; the refinement level indicates the number
of newly introduced cells. By this mesh adaptation the discretisation error and the
corresponding related numerical diffusivity of the low order discretisation scheme can be
reduced. The set-up of local refinement algorithm has been used in agreement with the
RANS setup employed in [32], thus being able to unambiguously identify the effects of
the two-level model onto the flame structure.

The mesh refinement is restricted locally to the region around the flame surface
G = G0. A special treatment for sub-filter kinetic energy has not been implemented
but is required due to the coupling of the filter width and the mesh spacing: in case of
mesh refinement a part of the sub-filter kinetic energy has to be transferred as (resolved)
turbulent fluctuation into the flow field, and vice versa in the case of mesh coarsening.
The former could be realised similar to the employed turbulent initialisation approach
via interface forcing, i.e. by the addition of additional turbulent velocity fluctuations in
region of increase mesh resolution, cf. for instance [26]. Consequently the results ob-
tained via the (aggressive) mesh refinement approach cannot be expected to be physical,
but should be interpreted as a demonstration of the dependency of the flame shape and
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flame wrinkling on the mesh resolution and numerics.
The development of the flame after ignition is depicted in figure 6.28. Initially, due to

the employed ignition model, a spherical flame is formed. In the following the turbulent
flow fields leads to a wrinkling and folding of flame front. This wrinkling continues
until the flame reaches the upper and lower walls. Afterwards the front slowly becomes
smoother, however a significant level of convolution remains.

The observed behaviour differs significantly from those in the RANS context. Employ-
ing a pure RANS modelling approach leads a smooth, almost spherical flame propaga-
tion, which is slightly deformed due to geometrical constriction by the upper and lower
wall. As a statistical average flame is considered, this behaviour is reasonable. The
VLES approach however allows for incorporating transient and local turbulent effects,
influencing the flame propagation.

In order to overcome the discussed numerical challenges, there is the necessity for
improving level set solver from a numerical point of view. Here the refined Level Set
Approach developed by M. Herrmann, cf. for instance [48], seems the most promising
approach. In this approach the Level Set solver is completely decoupled from the Finite
Volume code and solves the flame propagation on an independent (Cartesian) mesh
employing both higher order numerical methods as well as a significantly higher mesh
resolution; the results are then exchanged via inter- and extrapolation between the grids.
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(a) t = 1.4ms (b) t = 2.4ms (c) t = 5.0ms

(d) t = 9.0ms (e) t = 12.6ms

Figure 6.28: The flame front (G = G0) and the probability Iunb at different times after
ignition.



7 Summary and conclusion

Cyclic variability represents one of the key issues and challenges for the optimisation
of combustion process in DISI-engines. In the present work a two-level VLES model,
based on a hybrid RANS-LES modelling approach, has been developed. The model has
demonstrated its capability to capture cycle-to-cycle variation which cannot be modelled
by statistical RANS-based turbulence models. The feasibility of coupling the two-level
model to the G-equation combustion has been analysed and successfully demonstrated.

In the context of RANS simulations the influence of the numerical dissipation of the
applied algorithm is usually negligible due to the high level of the turbulent viscosity1.
In the industrial application, additionally low order numerical schemes for both spatial
and temporal discretisation are commonly employed for stability reasons. Considering
LES and VLES however, the only part of the turbulent spectrum is modelled and the
turbulent structures are partially resolved. Thus the turbulent eddy viscosity is sig-
nificantly smaller. In order to be able resolve smaller temporal and spatial structures,
higher order schemes are required. Central schemes of at least second order have been
demonstrated to be desirable as these introduce a minimum amount of numerical dissi-
pation and dispersion [15,20,113]. It has been demonstrated that this proposition is not
only valid in the context of spatial but also of temporal discretisation.

The evolution of a turbulent flow field is strongly influenced by the initial turbulent
conditions. While standard techniques based on the application of FFTs for transforming
a desired spectrum from spectral to physical space have been developed for academic
studies, these classical approaches cannot be directly applied to complex engineering
geometries. An alternative, novel approach base on truncated Fourier series has been
demonstrated to be suitable for generating turbulent fluctuations on arbitrary geome-
tries. This method has been shown to be numerically efficient, stable, and to yield the
desired turbulent spectrum with a sufficiently high accuracy.

The simulation of complex moving geometries, as in IC engines, requires the interpo-
lation of the solution onto a different meshes in the course of the simulation. It has been
shown that this interpolation sufficiently conservers the original turbulent spectrum. In
the case of extrapolation onto a mesh with a higher resolution, aliasing effects arise. This
effect is caused by a lack of information on the smallest wave lengths, which are resolved
on the fine grid, but are missing on the coarse mesh. However it has been demonstrated
that after a time step of the order of the Kolmogorov time scale the spectra has been
automatically adopted and regenerated itself, and has been sufficient smoothed. These
numerical studies demonstrated that the numerical schemes and methods implemented
in the engine simulation code are suitable for (V)LES type simulations.

1Strictly speaking, this refers to models based on the Boussinesq approximation only, which represent
the majority of commonly applied models



116 7 Summary and conclusion

The two-scale hybrid RANS-LES model has been applied to the simulation of two
distinct model engines. The first engine represents a rapid compression machine (RCM)
with a square piston geometry, and the second is a model four valve SI engine with a flat
piston design. For the RCM detailed measurements of the flow field are available. The
results of the two scale model agree well with the measurements and show a significant
improvement in comparison to the standard RANS approach. The results of multi-cycle
simulations of the 4-valve SI engine demonstrated the capability of the two scale model
to capture the effects of cycle-to-cycle variation, even though a low resolution mesh has
been employed in the calculations.

Finally the two-scale model has been coupled to the G-equation model for simula-
tion the ignition and combusiton process in a cylindrical constant volume vessel. The
feasibility of the concept has been successfully demonstrated. The numerical methods
implemented in the level set solver have been to diffusive to yield physically sound results
as the turbulence–flame interaction, i.e. flame wrinkling and convolution, needs to be
improved.

However the influence of the turbulent initialisation on the flame propagation and
flame deformation has been successfully demonstrated. Employing aggressive mesh re-
finement around the flame front, and thus reducing the influence of the low order schemes
of the level set solver by minimising the discretisation error, visualises the potential of the
combined VLES/G-equation approach in the context of premixed combustion modelling.
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[101] J. Rotta. Über eine Methode zur Berechnung turbulenter Scherströmungen. Aero-
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