

Non-classical Aspects in Proof Complexity

Non-classical Aspects in Proof Complexity

Habilitationsschrift

Olaf Beyersdorff

Leibniz Universität Hannover

2011

�

DieiDeutscheiNationalbibliothekiverzeichnetidieseiPublikationiinideriDeutschen
Nationalbibliografie;idetaillierteibibliografischeiDatenisindiimiInternetiuber

http://dnb.d-nb.deiabrufbar.
1.iAufl.i-iGottingen:iCuvillier,i2012

CUVILLIERiVERLAG,iGottingeni2012
Nonnenstiegi8,i37075iGottingen
Telefon:i0551-54724-0
Telefax:i0551-54724-21
www.cuvillier.de

AlleiRechteivorbehalten.iOhneiausdrucklicheiGenehmigung
desiVerlagesiistiesinichtigestattet,idasiBuchioderiTeile

darausiaufifotomechanischemiWegi(Fotokopie,iMikrokopie)
zuivervielfaltigen.
1.iAuflage,i20
GedrucktiaufisaurefreiemiPapier

BibliografischeiInformationideriDeutschen Nationalbibliothek

978-3- -036-0

i

:

:

:

:

:

:

:

12

 978-3-95404-036-0

Zugl.:i iUniv.,iDiss.,i2011

95404

Hannover,

Zusammenfassung

Die vorliegende Habilitationsschrift untersucht zwei neue nichtklassische Aspekte
in der Beweiskomplexität: Beweissysteme mit nicht-uniformer Information (Ad-
vice) und parametrisierte Beweiskomplexität. Wir erläutern zunächst den Hinter-
grund und die Motivation für unsere Untersuchungen und beschreiben anschlie-
ßend unsere erzielten Hauptresultate.

Aussagenlogische Beweiskomplexität

Die Beweiskomplexität ist ein aktives Forschungsgebiet, das in interdisziplinärer
Weise logische, kombinatorische und komplexitätstheoretische Methoden zur
Untersuchung formaler Beweise einsetzt. Neben der Untersuchung erststufiger
Kalküle hat sich der überwiegende Teil bisheriger Forschungsaktivität mit aussa-
genlogischen Beweisen beschäftigt. Die zentrale Frage der aussagenlogischen Be-
weiskomplexität kann folgendermaßen formuliert werden: wie lang ist der kürzeste
Beweis einer gegebenen aussagenlogischen Tautologie in einem spezifizierten Be-
weissystem? Wegen Anwendungen im automatischen Theorembeweisen ist dane-
ben auch die effiziente Konstruktion von Beweisen von großer Bedeutung.

Der Begriff eines aussagenlogischen Beweissystems wurde 1979 in einer weg-
weisenden Arbeit von Cook und Reckhow als eine in polynomieller Zeit berechen-
bare Funktion formalisiert, deren Wertebereich mit der Menge aller aussagenlogi-
schen Tautologien übereinstimmt [CR79]. Die Betonung wird in dieser Definition
auf das effiziente Verifizieren von Beweisen gelegt, wohingegen das Konstruieren
von Beweisen wesentlich schwieriger sein kann.

Der Zusammenhang zwischen der Beweislänge und zentralen komple-
xitätstheoretischen Fragen wurde bereits von Cook und Reckhow hergestellt
[CR79]. Ein Beweissystem heißt polynomiell beschränkt, falls das Beweissystem
polynomiell lange Beweise aller Tautologien erlaubt. Cook und Reckhow zeigten,
dass es genau dann ein polynomiell beschränktes aussagenlogisches Beweissys-
tem gibt, wenn die Klasse NP unter Komplementbildung abgeschlossen ist. Mit-
hin können superpolynomielle untere Schranken für die Beweislänge in konkreten
Beweissystemen als Etappe auf dem Weg zum Nachweis von NP ∕= coNP (und
damit auch P ∕= NP) verstanden werden.

iii

iv

Eine erste wichtige Station in diesem Programm war Hakens Nachweis expo-
nentieller unterer Schranken für das Pigeonhole Principle im Resolutionskalkül
[Hak85]. In den letzten zwei Jahrzehnten konnte dieses Ergebnis auf eine Reihe
weiterer Beweissysteme wie das Nullstellensatzsystem [BIK+96], Cutting Pla-
nes [BPR97, Pud97] oder den Polynomial Calculus [CEI96, Raz98] ausgedehnt
werden. Für all diese Beweissysteme sind exponentielle untere Schranken für die
Beweislänge für konkrete, zumeist kombinatorische Prinzipien beschreibende Tau-
tologienfolgen bekannt.

Im Zuge dieser Fortschritte wurden mehrere generische Ansätze und allgemei-
ne Techniken zum Nachweis unterer Schranken entwickelt: so die auf Kraj́ıček
zurückgehende Methode der effizienten Interpolation [Kra97], der erstmals von
Ben-Sasson und Wigderson benutzte Zusammenhang zwischen der Größe und
Breite von Beweisen [BSW01], sowie der von Kraj́ıček und Razborov verfolg-
te Einsatz kryptographischer Pseudozufallsgeneratoren in der Beweiskomplexität
[ABSRW04, Kra01, Kra04a, Kra07].

Beweissysteme und beschränkte Arithmetik

Eine wichtige Querverbindung führt von aussagenlogischen Beweissystemen in
die erststufige Logik zur beschränkten Arithmetik. Diese Theorien, eingeführt von
Cook [Coo75] und Buss [Bus86], sind schwache Fragmente der Peano-Arithmetik,
die gerade genug Ausdruckskraft besitzen, um effiziente Berechnungsmodelle for-
malisieren zu können. Die Beziehung zu aussagenlogischen Beweissystemen ergibt
sich durch die Übersetzung erststufiger arithmetischer Formeln in Folgen aussa-
genlogischer Tautologien. Eine erste Übersetzung geht ebenfalls auf Cook zurück
[Coo75], weitere stammen von Paris und Wilkie [PW85] sowie von Kraj́ıček und
Pudlák [KP90].

Mittels dieser Übersetzungen formalisieren Kraj́ıček und Pudlák [KP90] ei-
ne Korrespondenz zwischen aussagenlogischen Beweissystemen und Theorien be-
schränkter Arithmetik, wobei sich beide Komponenten bezüglich ihrer Ausdrucks-
kraft wechselseitig charakterisieren. Unter Benutzung dieser Korrespondenz zeig-
te Ajtai seine berühmte untere Schranke für Frege-Systeme beschränkter Tie-
fe [Ajt94], die zusammen mit nachfolgenden Verbesserungen [BIK+92, BPI93,
KPW95] eines der derzeit stärksten Resultate der Beweiskomplexität darstellt.
Auch obere Schranken sowie Simulationen zwischen Beweissystemen lassen sich
sehr elegant mittels der Korrespondenz zur beschränkten Arithmetik erzielen
[KP89, Pud91, KP98, Kra04b].

Neben der Beziehung zu aussagenlogischen Beweissystemen gibt es eine
enge Verbindung zwischen beschränkter Arithmetik und Komplexitätstheorie
[Kra95, CN10]. Die fruchtbaren Querbeziehungen zwischen Komplexitätstheorie,
Beweiskomplexität und beschränkter Arithmetik werden auch in vorliegender Ar-
beit deutlich, in der Techniken und Konzepte dieser drei Gebiete zum Einsatz
kommen.

v

Nichtklassische Modelle für Beweissysteme

Zur Analyse algorithmischer Probleme werden heute neben der Einteilung in
klassische Aufwandsklassen wie P und NP vielfach alternative Ressourcen wie
Randomisierung oder Quantenberechnungen sowie neue komplexitätstheoretische
Konzepte wie parametrisierte Komplexität herangezogen. In der Beweiskomple-
xität, in der bislang klassische Beweissysteme wie Resolution im Vordergrund
standen, wurden diese Betrachtungen im letzten Jahrzehnt von mehreren For-
schergruppen mit einer Reihe eindrucksvoller Resultate begonnen, befinden sich
aber insgesamt noch in einem frühen Stadium.

In vorliegender Habilitationsschrift leisten wir zu dieser Forschungslinie mit
der Untersuchung zweier wichtiger komplexitätstheoretischer Paradigmen, die in
jüngster Zeit viel Aufmerksamkeit erfahren haben, mehrere Beiträge.

Beweissysteme mit Advice

Im klassischen Modell von Cook und Reckhow werden Beweise in Polynomial-
zeit verifiziert. Eine interessante Frage ist, welche Ausdrucksstärke sich für Be-
weissysteme ergibt, die zur Verifikation stärkere Berechnungsressourcen nutzen.
Mit der Untersuchung von aussagenlogischen Beweissystemen mit Advice haben
Cook und Kraj́ıček kürzlich erste interessante Ergebnisse zu obiger Frage geliefert
[CK07]. Die Benutzung von Advice, die auf Karp und Lipton zurückgeht [KL80],
erlaubt der Basismaschine den Zugriff auf eine kontrollierte Menge nichtuniformer
Information. Im Fall von polynomiellem Advice entspricht dieses Modell polyno-
miell großen booleschen Schaltkreisen [Pip79]. In [CK07] untersuchen Cook und
Kraj́ıček erstmals Beweissysteme mit Advice und zeigen, dass auch diese Systeme
in enger Korrespondenz zu arithmetischen Theorien stehen.

In vorliegender Habilitationsschrift führen wir Cook und Kraj́ıčeks For-
schungslinie fort und entwickeln Bausteine zu einer allgemeinen Theorie von
Beweissystemen mit Advice. In Kapitel 4 widmen wir uns der Frage, für wel-
che Sprachen es polynomiell beschränkte Beweissysteme mit Advice gibt. Wie
in Cook und Reckhows klassischem Resultat [CR79] erhalten wir für diese Fra-
ge eine vollständige komplexitätstheoretische Charakterisierung. Insbesondere
ergibt sich eine überraschende Verbindung zur nichtdeterministischen Instanz-
Komplexität von Arvind, Köbler, Mundhenk und Torán [AKMT00], die ähnlich
wie die Kolmogoroff-Komplexität die Härte einzelner Instanzen – jedoch relativ
zu einer gegebenen Sprache – untersucht.

Möglichkeiten zur Vereinfachung des für den praktischen Einsatz unrealistisch
starken Advice-Modells analysieren wir in Abschnitt 4.3. Mit Hilfe einer neuen
Zähltechnik von Buhrman und Hitchcock [BH08] erreichen wir folgende Verein-
fachung: falls Advice nützlich im Sinne kürzerer Beweise ist, so lässt sich die
Advice-Menge reduzieren. Zudem zeigen wir, dass zum Beweis aussagenlogischer
Tautologien statt logarithmischem Advice auch ein dünnes NP-Orakel genügt,
wodurch die Nichtuniformität des Advice-Modells stark eingeschränkt wird.

vi

Ein überraschendes Resultat von Cook und Kraj́ıček [CK07] ist die Anga-
be eines optimalen aussagenlogischen Beweissystems, welches nur ein Advice-Bit
benötigt. Hinsichtlich dieses Optimalitätsresultats, das wir auf beliebige Spra-
chen erweitern, ist es interessant, ob sich das optimale Beweissystem zu einem
p-optimalen System verbessern lässt, d. h. ob sich die Simulationen auch effizient
berechnen lassen. In Abschnitt 4.4 gehen wir dieser Frage nach und geben sowohl
positive als auch negative Teilantworten. In Abschnitt 4.5 zeigen wir, dass die
Beziehungen zwischen optimalen Beweissystemen und vollständigen Problemen
für Promise-Klassen auch im Advice- bzw. Orakelmodell gültig bleiben.

Beweissysteme mit Advice und beschränkte Arithmetik

Das klassische Resultat von Karp und Lipton [KL80] über Kollapskonsequen-
zen aus der Annahme der Existenz polynomiell großer Schaltkreise für SAT, d. h.
SAT ∈ P/poly, hat eine ganze Reihe von Forschern zu raffinierten Verbesserungen
inspiriert [KW98, Cai07]. In [CK07] untersuchen Cook und Kraj́ıček die Frage,
welche Kollapskonsequenzen sich aus der zusätzlichen Annahme eines einfachen
Beweises für SAT ∈ P/poly ergeben. Insbesondere zeigen Cook und Kraj́ıček,
dass unter der Annahme der Beweisbarkeit von SAT ∈ P/poly in der Theorie PV
die Polynomialzeithierarchie auf die boolesche Hierarchie kollabiert, welches im
Vergleich zu den oben erwähnten klassischen Resultaten einen deutlich stärkeren
Kollaps darstellt. In [CK07] stellen Cook und Kraj́ıček die Frage, ob dieser Kol-
laps bereits die Annahme der Beweisbarkeit von SAT ∈ P/poly in PV charakte-
risiert. Diese Frage können wir in Kapitel 5 durch Formalisierung einer Technik
von Buhrman, Chang und Fortnow [BCF03] positiv beantworten.

In diesem Ergebnis machen wir ebenfalls von Beweissystemen mit Advice und
ihren Bezügen zur beschränkten Arithmetik Gebrauch. Zudem geben wir eine
natürliche Beschreibung für das optimale Beweissystem in Form eines erweiterten
Frege Systems mit Advice.

Parametrisierte Beweiskomplexität

Ein derzeit viel beachtetes Paradigma ist die parametrisierte Komplexität, die ei-
ne wesentlich feinere Sicht auf NP-vollständige Probleme erlaubt [FG06, Nie06].
In der parametrisierten Komplexität bestehen Instanzen aus der Eingabe 𝑥 zu-
sammen mit einem Parameter 𝑘. Ein Problem ist fixed-parameter tractable wenn
es in Zeit 𝑓(𝑘) ⋅𝑛𝑂(1) mit einer beliebigen Funktion 𝑓 gelöst werden kann. In die-
sem Modell erlauben viele klassisch harte Probleme wie etwa Vertex Cover mit
der Größe der Knotenüberdeckung als Parameter effiziente Lösungen für kleine
Parameterwerte.

Neben der Klasse FPT aller fixed-parameter lösbaren Probleme gibt es ei-
ne Vielzahl parametrisierter Komplexitätsklassen mit Problemen, die vermutlich

vii

nicht fpt-lösbar sind. Die prominentesten Klassen bilden die sogenannte Weft-
Hierarchie W[1] ⊆ W[2] ⊆ W[3] ⊆ . . . Ein zentrales Problem aus der Klasse
W[2] istWeighted CNF Sat, bei dem man für Instanzen (𝜑, 𝑘) mit einer CNF
𝜑 nach einer erfüllenden Belegung für 𝜑 mit Gewicht 𝑘 fragt (d. h. 𝑘 Variablen
werden auf 1 gesetzt). Viele kombinatorische Probleme wie die Suche nach einer
Clique der Größe 𝑘 lassen sich in natürlicher Weise in Weighted CNF Sat
beschreiben.

Parametrisierte Beweissysteme wurden kürzlich von Dantchev, Martin und
Szeider eingeführt [DMS07]. In diesem Modell steht mit einer fpt-Zeitschranke
nicht nur zur Beweisverifikation mehr Zeit zur Verfügung – auch die Beweislängen
lassen sich abhängig vom gewählten Parameter genauer im Spektrum zwischen
polynomiell und exponentiell einordnen. In der Arbeit [DMS07] konzentrieren sich
die Autoren auf parametrisierte Widersprüche, d. h. aussagenlogische Formeln 𝜑,
die nicht durch Belegungen mit Gewicht höchstens 𝑘 erfüllt werden. Da es sich
hierbei um das Komplement von Weighted CNF Sat handelt, ist die Klas-
se aller parametrisierten Widersprüche vollständig für coW[2]. Für die Sprache
aller parametrisierten Widersprüche konstruieren Dantchev et al. [DMS07] eine
parametrisierte Variante des Resolutionssystems.

Parametrisierte Komplexität führt zu einem genaueren algorithmischen
Verständnis klassisch schwieriger, insbesondere NP-vollständiger Probleme. Diese
Feinstruktur des Effizienten in die Beweiskomplexität zu übertragen ist eines der
Hauptziele unserer Untersuchungen in Kapitel 7. Aussagenlogische Beweissyste-
me lassen sich als nichtdeterministische Algorithmen für das Tautologieproblem
interpretieren. Mit der Untersuchung parametrisierter Beweissysteme gelangen
wir also wie in der Theorie der parametrisierten Komplexität zu einem genaueren
Verständnis der Abgrenzung zwischen Effizienz und Nicht-Effizienz für nichtde-
terministische Algorithmen.

Für die Beweiskomplexität kondensiert dieses genauere algorithmische
Verständnis in einer feineren Klassifizierung der Beweislängen. Dies wird auch in
unseren Ergebnissen in Kapitel 7 deutlich. Im Gegensatz zur klassischen Resoluti-
on erscheint parametrisierte Resolution als relativ starkes Beweissystem, da eine
Reihe klassisch harter Formeln fpt-beschränkte Beweise sogar in baumförmiger
parametrisierter Resolution besitzt. Dies zeigen wir, indem wir das Konzept
eines Kernels aus der parametrisierten Komplexität in die Beweiskomplexität
übertragen und für viele klassische Prinzipien, wie die Klasse aller CNFs be-
schränkter Breite, Kernelisierungen angeben. Konkrete Beispiele für klassisch
harte Formeln mit fpt-beschränkten Beweisen sind das Lineare Ordnungsprin-
zip, Pebbling Tautologien, Färbbarkeitsprinzipien oder Tseitin Tautologien.

Für Härteresultate in baumförmiger parametrisierter Resolution entwickeln
wir ein 2-Personen-Spiel, mit dessen Hilfe wir Beweislängen in baumförmiger
Resolution im parametrisierten Kontext abschätzen. Dieses Spiel entwickelt das
Prover-Delayer-Spiel von Pudlák und Impagliazzo [PI00] weiter. Für Pudlák und
Impagliazzos Methode ist es wichtig, dass die Beweisbäume möglichst große ba-

viii

lancierte Teilbäume enthalten – nur für diese wird die untere Schranke gezeigt.
Bei parametrisierten Widerlegungen sind die kürzesten Pfade aber immer von
der Länge 𝑘: es gibt also keine genügend großen balancierten Teilbäume. Daher
entwerfen wir in Kapitel 6 ein asymmetrisches Prover-Delayer-Spiel, das auch für
nichtbalancierte Beweisbäume einsetzbar ist. Zudem zeigen wir, dass unsere neue
Technik auch starke untere Schranken in anderen baumförmigen Beweissystemen
liefert.

Für allgemeine, d. h. nicht baumförmige, parametrisierte Resolution zeigen
wir in Abschnitt 7.8 für das Pigeonhole Principle die erste untere Schranke. Auch
hierzu benutzen wir einen spieltheoretischen Ansatz, der auf Pudlák [Pud00]
zurückgeht, sich jedoch grundlegend von obigem Spiel unterscheidet.

Im abschließenden Kapitel 8 stellen wir unsere Untersuchungen in einen
größeren Forschungszusammenhang. Hierbei geht es darum, erfolgreiche kom-
plexitätstheoretische Konzepte wie etwa Advice, Parametrisierungen, aber auch
Randomisierung, Quantenberechnungen oder Platzbedarf verstärkt zur beweis-
theoretischen Analyse einzusetzen. Wir glauben, dass weitere Forschung in dieser
Richtung sowohl die beidseitigen Beziehungen zwischen Komplexitätstheorie und
Beweiskomplexität stärken als auch fruchtbare Rückschlüsse für klassische Be-
weissysteme ermöglichen wird.

Contents

1 Introduction 1
1.1 Motivation, Models, and Main Results 2

1.1.1 Proof Systems with Advice 2
1.1.2 Parameterized Proof Systems 4

1.2 Organization of the Thesis and Published Parts 5

2 Proof Complexity 7
2.1 Proof Systems . 8
2.2 Simulations and Optimal Proof Systems 9
2.3 Two Examples of Proof Systems 10

3 Notions from Computational Complexity 13
3.1 Notation . 13
3.2 The Boolean Hierarchy . 14
3.3 Complexity Classes with Advice 14
3.4 Nondeterministic Instance Complexity 15
3.5 Promise Classes . 18

3.5.1 The General Concept of a Promise Class 19
3.5.2 Representations . 20

3.6 Optimal Proof Systems and Easy Subsets 21

4 Proof Systems that Take Advice 25
4.1 Proof Systems with Advice . 26
4.2 Polynomially Bounded Proof Systems with Advice 27

4.2.1 Results for Arbitrary Languages 27
4.2.2 Polynomially Bounded Proof Systems for TAUT 30

4.3 Simplifying the Advice in Propositional Proof Systems 33
4.3.1 Transferring Advice from the Proof to the Formula 33
4.3.2 Substituting Advice by Weak Oracles 35

4.4 Optimal Proof Systems . 38
4.4.1 Optimal Proof Systems with Advice 39
4.4.2 On p-optimal Proof Systems with Advice 41

4.5 Applications to Promise Problems 45

ix

x CONTENTS

4.5.1 Hard Problems under Advice 45
4.5.2 Hard Problems under a Tally NP-Oracle 46

5 Proof Systems with Advice and Bounded Arithmetic 49
5.1 A Strong Karp-Lipton Collapse Result in Bounded Arithmetic . . 50
5.2 Representing Complexity Classes by Bounded Formulas 51
5.3 The Karp-Lipton Collapse Result in VPV 53
5.4 Karp-Lipton Results in Stronger Theories 60
5.5 Classical Proof Systems with Advice 60

6 Prover-Delayer Games 65
6.1 Tree-Like Resolution and Decision Trees 66
6.2 The Prover-Delayer Game of Pudlák and Impagliazzo 67
6.3 The Asymmetric Prover-Delayer Game 68
6.4 Tree-like Resolution Lower Bounds for the Pigeonhole Principle . 70

7 Parameterized Proof Complexity 75
7.1 Fixed-Parameter Tractability . 76
7.2 Parameterized Proof Systems . 78
7.3 Parameterized Resolution . 81
7.4 A General Lower Bound for Parameterized Proof Systems 82
7.5 Tree-like Lower Bounds via Asymmetric Prover-Delayer Games . . 83
7.6 Kernels and Small Refutations . 85
7.7 Ordering Principles . 89
7.8 Hardness of the Pigeonhole Principle in Parameterized Resolution 95

7.8.1 Parameterized Proofs as Games 96
7.8.2 Delayer Strategies as Refutation Lower Bounds 97
7.8.3 The Lower Bound for the Pigeonhole Principle 98
7.8.4 An Alternative Probabilistic Proof 103

7.9 On the Automatizability of (Parameterized) Resolution 105

8 The Broader Picture 107
8.1 Other Models for Proof Systems 108

8.1.1 Probabilistic Proof Systems 108
8.1.2 Quantum Proof Systems 108
8.1.3 Space in Proof Complexity 110

8.2 Future Perspectives . 110

Bibliography 111

Index 123

Acknowledgments

This work was supported by many people. First of all
I am very grateful to Heribert Vollmer for his constant
support and advice during the preparation of this thesis.
I am also very indebted to Nicola Galesi who was my
host during a very inspiring visit to Sapienza University
Rome from October 2009 until April 2010 where part of
the research presented in this work was done.

There are many other people with whom I had the priv-
ilege to collaborate in the last years. In particular, I
thank Johannes Köbler, Jan Kraj́ıček, Massimo Lau-
ria, Arne Meier, Sebastian Müller, Zenon Sadowski, and
Michael Thomas for research collaboration and many
helpful and stimulating discussions on the topic of this
work.

A significant part of the research presented here was sup-
ported by DFG grant KO 1053/5 and by grant N. 20517
from the John Templeton Foundation.

xi

Chapter 1

Introduction

Wenn es eine Maschine mit [. . .] gäbe, hätte das Folge-
rungen von der größten Tragweite. Es würde offenbar be-
deuten, daß man trotz der Unlösbarkeit des Entscheidungs-
problems die Denkarbeit der Mathematiker bei ja-oder-nein
Fragen vollständig (abgesehen von der Aufstellung der Axio-
me) durch eine Maschine ersetzen könnte.1

Kurt Gödel

Proof complexity is the area of research within complexity theory whose main
aim is to understand and classify the complexity of theorem-proving procedures.
Proof complexity is a theory which provides a very promising approach based
mainly on mathematical logic, on model theory, and on combinatorics to some of
the main questions and problems in complexity theory, as for instance the exact
relationship between the classes P and NP.

Since its origins in the late sixties, computational complexity considered as its
main computational paradigm the classical computational model of the Turing
machine, invented by Alan Turing in the thirties [Tur36]. In the last 25 years,
complexity theory moved forward to expand the concept of computational model.
New models of computation were introduced, also looking at and exploring other
scientific disciplines as physics or advanced mathematics, like probability theory.
The new computational models studied frequently involve alternative resources
such as randomization, quantum computation, or even a limited amount non-
computable information. The investigation of the main questions of complexity
theory from the point of view of these new computational paradigms and models
was very fertile and fruitful in the last twenty years. For instance, quantum
algorithms have been proved to be strictly more efficient than classical algorithms
on very important problems. The use of randomization, among many other

1Kurt Gödel in a letter to John von Neuman in 1956 (reprinted in [Göd93]).

1

2 CHAPTER 1. INTRODUCTION

aspects, has provided us with the new theory of probabilistically checkable proofs
which represents one of the main attempts to tackle questions like P vs. NP.

Proof complexity is younger than complexity theory and so far its investiga-
tion has been essentially based only on the classical computational model of the
Turing machine. Only in the very last years some leading research groups have
initiated the study of proof complexity from the point of view of other models
of computation. This thesis focuses on developing and contributing to these re-
cent lines of research by considering two non-classical aspects from computational
complexity for theorem proving: proof systems with advice and parameterized
proof systems. In the following section we will give a brief overview of our main
results on these two models.

1.1 Motivation, Models, and Main Results

1.1.1 Proof Systems with Advice

Complexity classes with advice were introduced by Karp and Lipton [KL80].
The idea is here to enhance efficient computations with a limited amount of
non-uniform information: the advice. By using advice we leave the realm of
effective computability because the advice can be arbitrarily complex, even non-
computable. But we impose limits on the amount of advice that we are allowed
to use and in this way obtain interesting computational models such as Boolean
circuits [Pip79].

Recently, Cook and Kraj́ıček [CK07] introduced proof systems with advice
which—similarly as in the complexity approach mentioned above—may use a
limited amount of non-uniform information for the verification of proofs. Their
results show that, like in the classical Cook-Reckhow setting, these proof systems
enjoy a close connection to theories of bounded arithmetic. Moreover, Cook
and Kraj́ıček obtained the surprising result that with only one bit of advice, an
optimal proof system can be realized. The existence of such an optimal proof
system, i. e., the strongest possible system, is not known in the classical model.
Thus proof systems with advice appear to be a strictly more powerful model.

In this thesis we provide a rigorous development of the theory of proof systems
with advice and investigate the following fundamental questions for this new
model:

Q1: Given a language 𝐿, do there exist polynomially bounded
proof systems with advice for 𝐿?

Q2: For propositional proof systems, does advice help to shorten proofs?
Q3: Do there exist optimal proof systems with advice for 𝐿?

For question Q1, one of the major motivations for proof complexity [CR79],
we obtain a complete complexity-theoretic characterization. The classical Cook-
Reckhow Theorem states that NP = coNP if and only if the set of all tautologies

1.1. MOTIVATION, MODELS, AND MAIN RESULTS 3

TAUT has a polynomially bounded proof system, i.e., there exists a polyno-
mial 𝑝 such that every tautology 𝜑 has a proof of size ≤ 𝑝(∣𝜑∣) in the system.
Consequently, showing super-polynomial lower bounds to the proof size in propo-
sitional proof systems of increasing strength provides one way to attack the P vs.
NP problem. This approach, also known as the Cook-Reckhow program, has led
to a very fruitful research on the length of propositional proofs (cf. [Pud98]).

As in the Cook-Reckhow Theorem above, we obtain a series of results leading
to a complete characterization for Q1. In particular, we show a tight connection
of this problem to the notion of nondeterministic instance complexity. Simi-
larly as Kolmogorov complexity, instance complexity measures the complexity of
individual instances of a language [OKSW94]. In its nondeterministic version,
Arvind, Köbler, Mundhenk, and Torán [AKMT00] used this complexity mea-
sure to show that, under reasonable complexity-theoretic assumptions, there are
infinitely many tautologies that are hard to prove in every propositional proof
system. In the light of our investigation, this connection between nondetermin-
istic instance complexity and proof complexity is strengthened by results of the
following form: all elements of a given language 𝐿 have small instance complexity
if and only if 𝐿 has a proof system with advice such that every 𝑥 ∈ 𝐿 has a short
proof.

For question Q2 we concentrate on the most interesting case of propositional
proof systems. Unfortunately, proof systems with advice do not constitute a feasi-
ble model for the verification of proofs in practice, as the non-uniform advice can
be very complex (and even non-recursive). Approaching question Q2, we there-
fore investigate whether the advice can be simplified or even eliminated without
increasing the proof length. Our first result in this direction shows that proving
propositional tautologies does not require complicated or even non-recursive ad-
vice: every propositional proof system with up to logarithmic advice is simulated
by a propositional proof system computable in polynomial time with access to
a sparse NP-oracle. Thus in propositional proof complexity, computation with
advice can be replaced by a more realistic computational model.

While this result holds unconditionally, our next two results explore conse-
quences of a positive or negative answer to question Q2. Assume first that advice
helps to prove tautologies in the sense that proof systems with advice admit non-
trivial upper bounds on the lengths of proofs. Then we show that the same upper
bound can be achieved in a proof system with a simplified advice model. On the
other hand, if the answer is negative in the sense that advice does not help to
shorten proofs even for simple tautologies, then we obtain optimal propositional
proof systems without advice.

This brings us to our last question Q3. While the existence of optimal proof
systems in the classical model is a prominent open problem posed by Kraj́ıček
and Pudlák twenty years ago [KP89], question Q3 receives a surprising positive
answer: optimal proof systems exist when a small amount of advice is allowed.
For propositional proof systems this was already shown by Cook and Kraj́ıček

4 CHAPTER 1. INTRODUCTION

[CK07]. Using the proof technique from [CK07], we show that for every language
𝐿, the class of all proof systems for 𝐿 using logarithmic advice contains an optimal
proof system and investigate whether the optimality result can be strengthened
to it’s efficient version of p-optimality. In addition, we show that the connection
between optimal proof systems and promise classes also holds in the presence of
advice.

Propositional proof systems enjoy a close connection to bounded arithmetic
(cf. the monographs [Kra95, CN10] or the survey [Bey09]). Cook and Kraj́ıček
[CK07] use the correspondence between proof systems with advice and arith-
metic theories to obtain a very strong Karp-Lipton collapse result in bounded
arithmetic: if SAT has polynomial-size Boolean circuits, then the polynomial
hierarchy collapses to the Boolean hierarchy. In Chapter 5 we show that this
collapse consequence is in fact optimal with respect to the theory PV , thereby
answering a question of Cook and Kraj́ıček [CK07].

1.1.2 Parameterized Proof Systems

Parameterized complexity is widely considered one of the modern paradigms of
computational complexity which considerably advances our understanding of in-
tractable problems by offering a refined view on running times of algorithms.
In proof complexity, this investigation has started recently with the work of
Dantchev, Martin, and Szeider [DMS07]. There the authors introduce a gen-
eral framework for parameterized proof complexity and consider a parameterized
version of Resolution which is the best studied and most important propositional
proof system in terms of applications.

In parameterized proof complexity, our main objective is to reach a more
refined understanding of theorem proving by adapting concepts and techniques
from parameterized complexity to proof complexity. Proof systems can be un-
derstood as non-deterministic algorithms for the tautology problem. Therefore,
by considering parameterized proof systems we reach a better understanding of
the borderline between efficiency and non-efficiency for non-deterministic algo-
rithms. In proof complexity this condensates in a more refined classification of
proof lengths. This view is supported by previous results from [DMS07, Gao09]
and our investigation in this dissertation. For example, the hard case in the clas-
sical dichotomy for tree-like Resolution of Riis [Rii01] splits in the parameterized
context into two cases: tautologies with fpt-bounded proofs and tautologies for
which the shortest parameterized proof has size similar to exhaustive search, as
shown in [DMS07].

In Chapter 7 we show that in contrast to classical Resolution, Parameter-
ized Resolution appears to be a relatively powerful proof system as a number
of classically hard principles admit fpt-bounded proofs even in tree-like Param-
eterized Resolution. We show this by transferring the concept of a kernel from
parameterized complexity to proof complexity and constructing kernelizations

1.2. ORGANIZATION OF THE THESIS AND PUBLISHED PARTS 5

for many classically hard principles as the class of all CNF’s of bounded width.
Specific examples of formulas which are hard for classical Resolution, but pos-
sess fpt-bounded proofs even in tree-like Parameterized Resolution include the
linear ordering principle, pebbling tautologies, coloring principles, and Tseitin
tautologies.

For hardness results we introduce a powerful two-player game to model and
study the complexity of proofs in tree-like Parameterized Resolution. Our game
refines the Prover-Delayer game of Pudlák and Impagliazzo [PI00] and makes it
applicable in situations where the proof trees are very unbalanced. This technique
also yields improved lower bounds for non-parameterized proof systems as we
show in Chapter 6.

Although the Prover-Delayer game is a very general technique, it cannot be
used for dag-like proofs. In Section 7.8 we obtain the first lower bound for dag-
like Parameterized Resolution for the pigeonhole principle. For this lower bound
we again use a game-theoretic argument originating in Pudlák’s work [Pud00].

1.2 Organization of the Thesis and Published

Parts

This thesis is organized as follows. Chapters 2 and 3 contain background infor-
mation on proof complexity and computational complexity, respectively. These
two chapters are largely of preliminary nature. Apart from known definitions
and results, Sections 3.4 to 3.6 contain some new results on non-deterministic
instance complexity, promise classes, and optimal proof systems which we apply
in Chapter 4.

In Chapters 4 and 5 we investigate proof systems with advice, first from the
perspective of computational complexity (Chapter 4) and then with respect to
their relation to bounded arithmetic (Chapter 5).

In Chapter 6 we introduce a new technique for lower bounds in tree-like
proof systems—the asymmetric Prover-Delayer game—and apply it to classical
Resolution. Chapter 7 then contains our investigation of parameterized proof
complexity and in particular of Parameterized Resolution where we again use the
game of Chapter 6.

Chapter 8 concludes with a discussion of our two non-classical aspects that
we investigate here and puts this work into a broader context.

Part of the results from this thesis are already published in journals or in
conference proceedings. The relevant publications are

∙ [BKM11] containing Section 3.4 and most of Chapter 4;
∙ [BS11] containing Sections 3.5 and 3.6;
∙ [BM10b] containing Section 4.4.2 and all of Chapter 5;

6 CHAPTER 1. INTRODUCTION

∙ [BGL10] containing Chapter 6;
∙ [BGL11] and [BGLR11] containing most of the material in Chapter 7.

Chapter 2

Proof Complexity

Nach diesen Bemerkungen sei es dem Verfasser noch erlaubt,
einige Worte für sich anzuführen. Er hat sich bemüht, so
kurz zu schreiben, als es ihm möglich war und es diese Gat-
tung von Arbeiten erfordert. Es wäre zu wünschen, daß man
sich dieses Gesetz der Kürze bei allen Büchern über das Al-
tertum, die doch nicht unser ganzes Leben beschäftigen sol-
len, vorhalten möchte. Die meisten antiquarischen Schrift-
steller gleichen durch ihre Weitschweifigkeit den Flüssen, die
anschwellen, wenn man ihres Wassers nicht bedarf, und tro-
cken bleiben, wo eben Wasser nötig wäre.1

Johann Joachim Winckelmann

One of the starting points of propositional proof complexity is the seminal
paper of Cook and Reckhow [CR79] where they formalized propositional proof
systems as polynomial-time computable functions which have as their range the
set of all propositional tautologies. In that paper, Cook and Reckhow also ob-
served a fundamental connection between lengths of proofs and the separation of
complexity classes: they showed that there exists a propositional proof system
which has polynomial-size proofs for all tautologies (a polynomially bounded proof
system) if and only if the class NP is closed under complementation. From this
observation the so called Cook-Reckhow program was derived which serves as one
of the major motivations for propositional proof complexity: to separate NP from
coNP (and hence P from NP) it suffices to show super-polynomial lower bounds
to the size of proofs in all propositional proof systems.

Although the first super-polynomial lower bound to the lengths of proofs had
already been shown by Tseitin in the late 60’s for a sub-system of Resolution
[Tse68], the first major achievement in this program was made by Haken in 1985

1Winckelmann in der Vorrede der Beschreibung der geschnittenen Steine des seligen Baron
Stosch (Florenz, 1760)

7

8 CHAPTER 2. PROOF COMPLEXITY

when he showed an exponential lower bound to the proof size in Resolution for
a sequence of propositional formulas describing the pigeonhole principle [Hak85].
In the last two decades these lower bounds were extended to a number of fur-
ther propositional systems such as the Nullstellensatz system [BIK+96], Cutting
Planes [BPR97, Pud97], Polynomial Calculus [CEI96, Raz98], or bounded-depth
Frege systems [Ajt94, BIK+92, BPI93, KPW95]. For all these proof systems we
know exponential lower bounds to the lengths of proofs for concrete sequences of
tautologies arising mostly from natural propositional encodings of combinatorial
statements.

For proving these lower bounds, a number of generic approaches and general
techniques have been developed. Most notably, there is the method of feasible
interpolation developed by Kraj́ıček [Kra97], the size-width trade-off introduced
by Ben-Sasson and Wigderson [BSW01], and the use of pseudorandom generators
in proof complexity [ABSRW04, Kra01, Kra04a].

Despite this enormous success many questions still remain open. In particular
Frege systems currently form a strong barrier [BBP95], and all current lower
bound methods seem to be insufficient for these strong systems. A detailed survey
of recent advances in propositional proof complexity is contained in [Seg07].

Let us mention that the separation of complexity classes is not the only moti-
vation for studying lengths of proofs. In particular for strong systems like Frege
and its extensions there is a fruitful connection to bounded arithmetic which
adds insight to both subjects (cf. [Kra95]). Further, understanding weak systems
as Resolution is vital to applications as the design of efficient SAT solvers (see
e. g. [PS10] for a more elaborate argument). Last not least, propositional proof
complexity has over the years grown into a mature field and many researchers
believe that understanding propositional proofs and proving lower bounds—
arguably the hardest task in complexity—is a very important and beautiful field
of logic which is justified in its own right.

2.1 Proof Systems

We start with a general semantic definition of proof systems:

Definition 2.1.1 A proof system for a language 𝐿 is a (possibly partial) sur-
jective function 𝑓 : Σ∗ → 𝐿. For 𝐿 = TAUT, 𝑓 is called a propositional proof
system.

In the classical framework of Cook and Reckhow [CR79], proof systems are
additionally required to be computable in polynomial time. As we are relaxing
this definition in subsequent chapters we have chosen the more general seman-
tic definition above where the computational resources to compute 𝑓 are not
specified.

2.2. SIMULATIONS AND OPTIMAL PROOF SYSTEMS 9

We review important notions concerning proof systems. A string 𝑤 with
𝑓(𝑤) = 𝑥 is called an 𝑓 -proof of 𝑥. Proof complexity studies lengths of proofs,
so we use the following notion: for a function 𝑡 : ℕ→ ℕ, a proof system 𝑓 for 𝐿
is 𝑡-bounded if every 𝑥 ∈ 𝐿 has an 𝑓 -proof of size ≤ 𝑡(∣𝑥∣). If 𝑡 is a polynomial,
then 𝑓 is called polynomially bounded. We recall the classical theorem of Cook
and Reckhow on polynomially bounded proof systems:

Theorem 2.1.2 (Cook, Reckhow [CR79]) A language 𝐿 has a polynomially
bounded proof system if and only if 𝐿 ∈ NP.

2.2 Simulations and Optimal Proof Systems

Proof systems are compared according to their strength by simulations as intro-
duced in [CR79] and [KP89]. If 𝑓 and 𝑔 are proof systems for 𝐿, we say that 𝑔
simulates 𝑓 (denoted 𝑓 ≤ 𝑔), if there exists a polynomial 𝑝 such that for all 𝑥 ∈ 𝐿
and 𝑓 -proofs 𝑤 of 𝑥 there is a 𝑔-proof 𝑤′ of 𝑥 with ∣𝑤′∣ ≤ 𝑝 (∣𝑤∣). If such a proof
𝑤′ can even be computed from 𝑤 in polynomial time, we say that 𝑔 p-simulates
𝑓 and denote this by 𝑓 ≤𝑝 𝑔. If the systems 𝑓 and 𝑔 mutually (p-)simulate each
other they are called (p-)equivalent, denoted by 𝑓 ≡(𝑝) 𝑔. A proof system for 𝐿
is (p-)optimal if it (p-)simulates all proof systems for 𝐿.

Whether or not there exist optimal propositional proof system is open. Posed
by Kraj́ıček and Pudlák [KP89], this question has remained unresolved for more
than twenty years. Sufficient conditions were established by Kraj́ıček and Pudlák
[KP89] by NE = coNE for the existence of optimal and E = NE for p-optimal
propositional proof systems, and these conditions were subsequently weakened
by Köbler, Messner, and Torán [KMT03]. Necessary conditions for the existence
of optimal proof systems are tightly linked to the following question for promise
complexity classes lacking an easy syntactic machine model:

Problem 2.2.1 Do there exist complete problems for a given promise class C?

Like the first question of the existence of optimal proof systems also Problem 2.2.1
has a long research record, dating back to the 80’s when Kowalczyk [Kow84] and
Hartmanis and Hemachandra [HH88] considered this question for NP∩ coNP and
UP. This research agenda continues to recent days where, due to cryptographic
and proof-theoretic applications, disjoint NP-pairs have been intensively studied
(cf. [GSS05, GSSZ04, GSZ07, Bey07] and [GSZ06] for a survey). Very recently,
Itsykson has shown the surprising result that AvgBPP, the average-case version
of BPP, has a complete problem [Its09].

Understanding these questions better through characterizations is an impor-
tant problem with consequences to seemingly unrelated areas such as descriptive
complexity: very recently, Chen and Flum [CF10] have shown that the exis-
tence of an optimal propositional proof system is equivalent to the open problem

10 CHAPTER 2. PROOF COMPLEXITY

whether 𝐿≤ is a P-bounded logic for P. Other recent research concentrated on
modified versions of Q1, where a number of surprising positive results have been
obtained. Cook and Kraj́ıček [CK07] have shown that optimal propositional
proof systems exist under non-uniform information (advice), and even one bit of
advice suffices (we will discuss this result in detail in Section 4.4). In another di-
rection, Hirsch and Itsykson [HI10, Hir10] considered randomized proof systems
and showed the existence of an optimal system in the class of all automatizable
heuristic proof systems (cf. Chapter 8). Still another positive result was very re-
cently obtained by Pitassi and Santhanam [PS10] who show that there exists an
optimal quantified propositional proof system under a weak notion of simulation.

2.3 Two Examples of Proof Systems

We give two important examples of propositional proof systems which we will
need later on: Resolution and Frege systems.

We start with Resolution. A literal is a positive or negated propositional
variable and a clause is a set of literals. The width of a clause is the number
of its literals. A clause is interpreted as the disjunctions of its literals and a
set of clauses as the conjunction of the clauses. Hence clause sets correspond to
formulas in CNF. The Resolution system is a refutation system for the set of all
unsatisfiable CNF. Resolution uses as its only rule the Resolution rule

{𝑥} ∪ 𝐶 {¬𝑥} ∪𝐷
𝐶 ∪𝐷

for clauses 𝐶,𝐷 and a variable 𝑥. The aim in Resolution is to demonstrate
unsatisfiability of a clause set by deriving the empty clause. If in a derivation
every derived clause is used at most once as a prerequisite of the Resolution
rule, then the derivation is called tree-like, otherwise it is dag-like. The size of
a Resolution proof is the number of its clauses where multiple instances of the
same clause are counted separately. Undoubtedly, Resolution is the most studied
and best-understood propositional proof system (cf. [Seg07]).

Our second example are Frege systems. Frege systems derive formulas using
axioms and rules. In texts on classical logic these systems are usually referred
to as Hilbert-style systems, but in propositional proof complexity it has become
customary to call them Frege systems [CR79].

A Frege rule is a (𝑘 + 1)-tuple (𝜑0, 𝜑1 . . . , 𝜑𝑘) of propositional formulas such
that

{𝜑1, 𝜑2, . . . , 𝜑𝑘} ∣= 𝜑0 .

The standard notation for rules is

𝜑1 𝜑2 . . . 𝜑𝑘
𝜑0

.

2.3. TWO EXAMPLES OF PROOF SYSTEMS 11

A Frege rule with 𝑘 = 0 is called a Frege axiom.
A formula 𝜓0 can be derived from formulas 𝜓1, . . . , 𝜓𝑘 by a Frege rule

(𝜑0, 𝜑1 . . . , 𝜑𝑘) if there exists a substitution 𝜎 such that

𝜎(𝜑𝑖) = 𝜓𝑖 for 𝑖 = 0, . . . , 𝑘 .

Let ℱ be a finite set of Frege rules. An ℱ-proof of a formula 𝜑 from a set of
propositional formulas Φ is a sequence 𝜑1, . . . , 𝜑𝑙 = 𝜑 of propositional formulas
such that for all 𝑖 = 1, . . . , 𝑙 one of the following holds:

1. 𝜑𝑖 ∈ Φ or
2. there exist numbers 1 ≤ 𝑖1 ≤ ⋅ ⋅ ⋅ ≤ 𝑖𝑘 < 𝑖 such that 𝜑𝑖 can be derived from
𝜑𝑖1 , . . . , 𝜑𝑖𝑘 by a Frege rule from ℱ .

ℱ is called implicationally complete if for all formulas 𝜑 and all sets of formulas
Φ, Φ ∣= 𝜑 if and only if there exists an ℱ -proof of 𝜑 from Φ. If ℱ is implicationally
complete we call ℱ a Frege system.

Without proof we note that the following set of axioms taken from [Bus98]

𝑝1 → (𝑝2 → 𝑝1)
(𝑝1 → 𝑝2)→ (𝑝1 → (𝑝2 → 𝑝3))→ (𝑝1 → 𝑝3)
𝑝1 → 𝑝1 ∨ 𝑝2
𝑝2 → 𝑝1 ∨ 𝑝2
(𝑝1 → 𝑝3)→ (𝑝2 → 𝑝3)→ (𝑝1 ∨ 𝑝2 → 𝑝3)
(𝑝1 → 𝑝2)→ (𝑝1 → ¬𝑝2)→ ¬𝑝1
¬¬𝑝1 → 𝑝1
𝑝1 ∧ 𝑝2 → 𝑝1
𝑝1 ∧ 𝑝2 → 𝑝2
𝑝1 → 𝑝2 → 𝑝1 ∧ 𝑝2

together with the modus ponens rule

𝑝 𝑝→ 𝑞

𝑞

is an example of a Frege system.
This definition leaves much freedom to design individual Frege systems, but

if we are only interested in the lengths of proofs there is only one Frege system
𝐹 as already noted by Cook and Reckhow [CR79].

Theorem 2.3.1 (Cook, Reckhow [CR79]) Let ℱ1 and ℱ2 be Frege systems.
Then ℱ1 ≡𝑝 ℱ2.

Now we describe an extension of Frege systems as introduced in [CR79]. Let
ℱ be a Frege system. An extended Frege proof of a formula 𝜑 from a set of
formulas Φ is a sequence (𝜑1, . . . , 𝜑𝑙 = 𝜑) of propositional formulas such that for
each 𝑖 = 1, . . . , 𝑙 one of the following holds:

12 CHAPTER 2. PROOF COMPLEXITY

1. 𝜑𝑖 ∈ Φ or
2. 𝜑𝑖 has been derived by an ℱ -rule or
3. 𝜑𝑖 = 𝑞 ↔ 𝜓 where 𝜓 is an arbitrary propositional formula and 𝑞 is a new
propositional variable that does not occur in 𝜑, 𝜓 and 𝜑𝑗 for 1 ≤ 𝑗 < 𝑖.

The introduction of the extension rule 3 allows the abbreviation of possibly com-
plex formulas by variables. Hence using this rule for formulas which appear very
often in an ℱ -proof can substantially reduce the proof size.

As in Theorem 2.3.1 it follows that all extended Frege systems are polynomi-
ally equivalent. Therefore we only speak of the extended Frege system and denote
it by 𝐸𝐹 . It is clear that 𝐸𝐹 simulates Frege systems, but whether 𝐸𝐹 is indeed
a strictly stronger system is an open problem.

Chapter 3

Notions from Computational
Complexity

Men sometimes speak as if the study of the classics would
at length make way for more modern and practical studies;
but the adventurous student will always study classics, in
whatever language they may be written, and however an-
cient they may be. For what are the classics but the noblest
recorded thoughts of man? They are not only oracles which
are not decayed, and there are such answers to the most
modern inquiry in them as Delphi and Dodona never gave.
We might as well omit to study Nature because she is old.

Henry David Thoreau, Walden

Throughout this work we will use standard notions from computational com-
plexity as they can be found in the textbooks [BDG88], [Pap94], or [AB09]. In
the following we will only review those concepts and complexity classes which we
will use in this dissertation, but which might not fall into the “canon” of well
known complexity classes like P and NP. In Sections 3.1 to 3.3 we will just fix
notation and recall definitions and known results, but starting from Section 3.4
we will also prove new results which we use in subsequent chapters.

3.1 Notation

Throughout the following we fix the alphabet Σ = {0, 1}. Σ𝑛 denotes the set of
strings of length 𝑛 and (Σ𝑛)𝑘 the set of 𝑘-tuples of Σ𝑛. Let 𝜋𝑖 :

∪
𝑛∈ℕ(Σ

∗)𝑛 → Σ∗

be the projection to the 𝑖𝑡ℎ string of some finite tuple and let 𝜋∗
𝑖 : Σ

∗ → {0, 1}
be the projection to the 𝑖𝑡ℎ bit of a string. As usual we enumerate the bits of a
string starting with 0 and thus for example 𝜋∗

0(𝑎0𝑎1𝑎2) = 𝑎0.

13

14 CHAPTER 3. NOTIONS FROM COMPUTATIONAL COMPLEXITY

Let ⟨⋅⟩ be a polynomial-time computable function, mapping tuples of strings
to strings. Its inverse will be denoted by enc.

A set 𝐴 ⊆ Σ∗ is sparse if there exists a polynomial 𝑝 such that for each 𝑛 ∈ ℕ,
∣𝐴 ∩ Σ𝑛∣ ≤ 𝑝(𝑛). A sparse set 𝐴 is called tally if 𝐴 ⊆ {1𝑛 ∣ 𝑛 ∈ ℕ}. The class of
all sparse and tally sets are denoted by Sparse and Tally, respectively.

3.2 The Boolean Hierarchy

The Boolean hierarchy BH is the closure of NP under union, intersection, and
complementation. The levels of BH are denoted BH𝑘, where BH2 is also known
as Dp. The Boolean hierarchy coincides with PNP[𝑂(1)] consisting of all languages
which can be solved in polynomial time with constantly many queries to an NP
oracle. For each level BH𝑘 it is known that 𝑘 non-adaptive queries to an NP-oracle
suffice, i.e., BH𝑘 ⊆ P

NP[𝑘]
𝑡𝑡 (cf. [Bei91]). If we allow 𝑂(log 𝑛) adaptive queries we

get the presumably larger class PNP[log].
Complete problems BL𝑘 for BH𝑘 are inductively given by BL1 = SAT and

BL2𝑘 = {⟨𝑥1, . . . , 𝑥2𝑘⟩ ∣ ⟨𝑥1, . . . , 𝑥2𝑘−1⟩ ∈ BL2𝑘−1 and 𝑥2𝑘 ∈ SAT}
BL2𝑘+1 = {⟨𝑥1, . . . , 𝑥2𝑘+1⟩ ∣ ⟨𝑥1, . . . , 𝑥2𝑘⟩ ∈ BL2𝑘 or 𝑥2𝑘+1 ∈ SAT} .

Observe that ⟨𝑥1, . . . , 𝑥𝑘⟩ ∈ BL𝑘 if and only if there exists an 𝑖 ≤ 𝑘, such that 𝑥𝑖
is satisfiable and the largest such 𝑖 is odd.

3.3 Complexity Classes with Advice

Complexity classes with advice were introduced by Karp and Lipton [KL80]. In
this computational model, efficient computations are augmented with a limited
amount of non-uniform information: the advice. Using advice we can solve very
complex, even non-computable problems. To obtain interesting computational
models we impose limits on the amount of advice that we are allowed to use.

For each function ℎ : ℕ→ Σ∗ and each language 𝐿 we let

𝐿/ℎ = {𝑥 ∣ ⟨𝑥, ℎ(∣𝑥∣)⟩ ∈ 𝐿 } .

If C is a complexity class and 𝐹 is a class of functions, then

C/𝐹 = {𝐿/ℎ ∣ 𝐿 ∈ C, ℎ ∈ 𝐹 } .

Usually the family of functions 𝐹 is defined by some bound on the length of the
values in terms of the argument. Thus, for example, NP/𝑂(1) denotes the class
of languages recognized by NP machines with advice functions ℎ where ∣ℎ(𝑛)∣ is
bounded by a constant (cf. [BDG88]).

3.4. NONDETERMINISTIC INSTANCE COMPLEXITY 15

Apart from constant advice, specific choices of interesting advice bounds are
logarithmic advice, defined as

C/log = {𝐿/ℎ ∣ 𝐿 ∈ C, ∣ℎ(𝑛)∣ ≤ 𝑐 log 𝑛 for some constant 𝑐 }

and polynomial advice

C/poly = {𝐿/ℎ ∣ 𝐿 ∈ C, ∣ℎ(𝑛)∣ ≤ 𝑝(𝑛) for some polynomial 𝑝 } .

It is clear that complexity classes with advice always contain non-recursive
problems and hence every non-uniform class contains very complicated languages.
It is, however, a very interesting and prominent open problem in computational
complexity to determine which portion of classical complexity classes are con-
tained in non-uniform classes, in particular, whether deterministic non-uniform
classes contain nondeterministic classes like NP or coNP. One of the first and
most prominent results in this direction is the theorem of Karp and Lipton:

Theorem 3.3.1 (Karp, Lipton [KL80]) If NP ⊆ P/poly, then the polynomial
hierarchy PH collapses to its second level Σp

2.

This theorem has inspired a number of researchers to search for better collapse
consequences. We will come back to this issue and explain the results in detail
in Chapter 5.

Another important result of this kind, which we will use at several places in
this work, is the following theorem:

Theorem 3.3.2 (Buhrman, Chang, Fortnow [BCF03]) For every constant
𝑘 ≥ 1, coNP ⊆ NP/𝑘 if and only if PH ⊆ BH2𝑘 .

3.4 Nondeterministic Instance Complexity

While Kolmogorov complexity studies the hardness of individual strings, the
notion of instance complexity was introduced by Orponen, Ko, Schöning, and
Watanabe [OKSW94] to measure the hardness of individual instances of a given
language. The deterministic instance complexity of [OKSW94] was later gener-
alized to the nondeterministic setting by Arvind, Köbler, Mundhenk, and Torán
[AKMT00].

As required for Kolmogorov complexity and instance complexity, we fix a
universal Turing machine 𝑈(𝑀,𝑥) which executes nondeterministic programs 𝑀
on inputs 𝑥. In the sequel, we refrain from always mentioning 𝑈 explicitly. Thus
we simply write statements like “𝑀 is a 𝑡-time bounded Turing machine” with
the precise meaning that 𝑈 always spends at most 𝑡(𝑛) steps to simulate 𝑀 on
inputs of length 𝑛. Likewise, to “simulate a machine𝑀 on input 𝑥” always means
executing 𝑈(𝑀,𝑥).

16 CHAPTER 3. NOTIONS FROM COMPUTATIONAL COMPLEXITY

A nondeterministic Turing machine 𝑀 is consistent with a language 𝐿 (or
𝐿-consistent), if 𝐿(𝑀) ⊆ 𝐿. We can now give the definition of nondeterministic
instance complexity from [AKMT00].

Definition 3.4.1 (Arvind et al. [AKMT00]) For a set 𝐿 and a time bound
𝑡, the 𝑡-time-bounded nondeterministic instance complexity of 𝑥 with respect to
𝐿 is defined as

nic𝑡(𝑥 : 𝐿) = min{ ∣𝑀 ∣ : 𝑀 is an 𝐿-consistent 𝑡-time-bounded nondeter-

ministic machine, and 𝑀 decides correctly on 𝑥 } .
Similarly as in the deterministic case in [OKSW94], we collect all languages

with prescribed upper bounds on the running time and nondeterministic instance
complexity in a complexity class.

Definition 3.4.2 Let 𝐹1 and 𝐹2 be two classes of functions. We define

NIC[𝐹1, 𝐹2] = {𝐿 : there exist 𝑠 ∈ 𝐹1 and 𝑡 ∈ 𝐹2 such that for all 𝑥 ∈ Σ∗

nic𝑡(𝑥 : 𝐿) ≤ 𝑠(∣𝑥∣)} .
A particularly interesting choice for the classes 𝐹1 and 𝐹2 is to allow polyno-

mial running time, but only logarithmic descriptions for the machines. This leads
to the class NIC[log, poly] which plays a central role in Section 4.2. Similarly as
in the deterministic case (cf. [OKSW94]), the next proposition locates this class
between the nonuniform classes NP/log and NP/poly.

Proposition 3.4.3 NP/log ⊆ NIC[log, poly] ⊆ NP/poly.

Proof. For the first inclusion, let 𝐿 ∈ NP/log. Let 𝑀 be a nondeterministic
Turing machine with logarithmic advice that decides 𝐿 and let 𝑎𝑛 be the advice
given to 𝑀 for inputs of length 𝑛. We define a collection of programs 𝑀𝑛,𝑎𝑛 for
𝐿 as follows. On input 𝑥 the machine 𝑀𝑛,𝑎𝑛 first checks whether the length of
the input is 𝑛. For this we need to code the number 𝑛 into 𝑀𝑛,𝑎𝑛 . If ∣𝑥∣ ∕= 𝑛,
then 𝑀𝑛,𝑎𝑛 rejects. Otherwise, 𝑀𝑛,𝑎𝑛 simulates 𝑀 on input 𝑥 with advice 𝑎𝑛
which is also coded into 𝑀𝑛,𝑎𝑛 . Essentially, the machines 𝑀𝑛,𝑎𝑛 are constructed
by hardwiring 𝑛 and 𝑎𝑛 into 𝑀 , and thus the size of 𝑀𝑛,𝑎𝑛 is logarithmic in 𝑛.
Therefore 𝐿 ∈ NIC[log, poly].

For the second inclusion, let 𝐿 ∈ NIC[log, poly]. Then there exist a constant
𝑐 and a polynomial 𝑝 such that for all 𝑥 we have nic𝑝(𝑥 : 𝐿) ≤ 𝑐 log ∣𝑥∣ + 𝑐.
We construct a nondeterministic Turing machine𝑀 with polynomial advice that
accepts exactly 𝐿. The advice of 𝑀 for length 𝑛 consists of all nondeterministic
Turing machines 𝑀1, . . . ,𝑀𝑚 of size at most 𝑐 log 𝑛+ 𝑐 which are consistent with
𝐿. Note that for each input length 𝑛, there are only polynomially many machines
of the appropriate size ≤ 𝑐 log 𝑛+ 𝑐. Hence polynomial advice suffices to encode
the whole list 𝑀1, . . . ,𝑀𝑚. On input 𝑥, the machine 𝑀 simulates each 𝑀𝑖 on

3.4. NONDETERMINISTIC INSTANCE COMPLEXITY 17

𝑥 for at most 𝑝(∣𝑥∣) steps. If any of the 𝑀𝑖 accepts, then 𝑀 accepts as well,
otherwise it rejects.

We claim, that 𝐿(𝑀) = 𝐿. For, if 𝑥 ∈ 𝐿, then there is a nondeterministic
𝐿-consistent Turing machine 𝑀𝑖 such that 𝑀𝑖(𝑥) accepts and ∣𝑀𝑖∣ ≤ 𝑐 log ∣𝑥∣+ 𝑐.
Thus, also 𝑀(𝑥) accepts. If, on the other hand, 𝑀 accepts 𝑥, then so does some
𝑀𝑖 which is consistent with 𝐿. Therefore, 𝑥 ∈ 𝐿 because 𝐿(𝑀𝑖) ⊆ 𝐿. ⊓⊔

In fact, the inclusions in Proposition 3.4.3 are proper as we will show in
Theorem 3.4.5 below. For the proof we need the following notion:

Definition 3.4.4 (Buhrman, Fortnow, Laplante [BFL01]) For a time
bound 𝑡, the nondeterministic decision complexity of 𝑥, denoted CND 𝑡(𝑥), is
the minimal size of a 𝑡-time-bounded nondeterministic Turing machine 𝑀 with
𝐿(𝑀) = {𝑥}.

As already noted in [AKMT00], the CND measure provides an upper bound
to the nic measure, i.e., for any language 𝐿 and time bound 𝑡 there is a constant
𝑐 > 0 such that nic𝑡(𝑥 : 𝐿) ≤ CND 𝑡(𝑥) + 𝑐 for all 𝑥 ∈ Σ∗. By a simple counting
argument, it follows that for any length 𝑛 there exist strings 𝑥 of length 𝑛 with
CND(𝑥) ≥ 𝑛, where CND(𝑥) is the minimal size of a nondeterministic Turing
machine 𝑀 with 𝐿(𝑀) = {𝑥} (i.e., the time-unbounded CND measure).

Inspired by a similar result in [OKSW94], we now prove the following separa-
tions:

Theorem 3.4.5

1. For every constant 𝑐 > 0, NP/𝑛𝑐 ∕⊇ NIC[log, poly].

2. NIC[log, poly] ∕⊇ P/lin.

Proof. For the first item, let 0 < 𝑐 < 𝑑 be natural numbers. Diagonalizing
against all NP machines and all advice strings, we inductively define a set 𝐴
with 𝐴 ∈ NIC[log, poly], but 𝐴 ∕∈ NP/𝑛𝑐. Let (𝑁𝑖)𝑖∈ℕ be an enumeration of all NP
machines, in which every machine occurs infinitely often. In step 𝑛 we diagonalize
against the machine 𝑁𝑛 and every advice string of length ≤ 𝑛𝑐 which 𝑁𝑛 might
use for length 𝑛. Let 𝑥1, . . . , 𝑥2𝑛 be the lexicographic enumeration of all strings
in Σ𝑛 and let 𝑆𝑛 = {𝑥1, . . . , 𝑥𝑛𝑑} ⊆ Σ𝑛. For each string 𝑤 of length at most 𝑛𝑐,
let 𝐴𝑤 = {𝑥 ∈ 𝑆𝑛 : 𝑁𝑛(𝑥) accepts under advice 𝑤}. Since there are only 2𝑛𝑐

such
sets, but 2𝑛

𝑑
subsets of 𝑆𝑛, there must be one which is not equal to any 𝐴𝑤. For

every 𝑛, let 𝐴𝑛 be one such set, and let 𝐴 =
∪
𝑛𝐴𝑛. By construction, 𝐴 ∕∈ NP/𝑛𝑐.

We still have to show 𝐴 ∈ NIC[log, poly]. For each string 𝑠, let 𝑠 be the
substring of 𝑠 which has all leading zeros deleted. For each 𝑛 and each 𝑎 ∈ 𝐴𝑛,
let 𝑀𝑛,�̃� be the following machine: on input 𝑥, the machine 𝑀𝑛,�̃� checks whether
∣𝑥∣ = 𝑛 and 𝑥 = �̃�. If this test is positive, then 𝑀𝑛,�̃� accepts, otherwise it rejects.
The machine 𝑀𝑛,�̃� is of size 𝑂(log 𝑛), as both 𝑛 and �̃� are of length 𝑂(log 𝑛)

18 CHAPTER 3. NOTIONS FROM COMPUTATIONAL COMPLEXITY

(Observe that the first 𝑛𝑑 elements in the lexicographic order of Σ𝑛 have no 1’s
appearing before the last log 𝑛𝑑 bits). Thus 𝐴 ∈ NIC[log, poly].

For the second item, let 𝐴 be a set that contains exactly one element 𝑥 per
length with CND(𝑥) ≥ ∣𝑥∣. Obviously, 𝐴 ∈ P/lin because 𝐴 contains exactly one
string per length and this element can be given as advice. On the other hand,
𝐴 ∕∈ NIC[log, poly]. Assume on the contrary, that 𝐴 ∈ NIC[log, poly]. Then there
are a constant 𝑐 and a polynomial 𝑝, such that for each 𝑥 ∈ 𝐴, there is an 𝐴-
consistent 𝑝-time-bounded machine𝑀𝑥 of size ≤ 𝑐 log ∣𝑥∣+𝑐 which accepts 𝑥. We
modify 𝑀𝑥 to a machine 𝑀

′
𝑥 such that 𝐿(𝑀

′
𝑥) = {𝑥} and ∣𝑀 ′

𝑥∣ ≤ 𝑐′ log ∣𝑥∣+ 𝑐′ for
some constant 𝑐′. This machine𝑀 ′

𝑥 works as follows: on input 𝑦, the machine𝑀
′
𝑥

first checks whether ∣𝑦∣ = ∣𝑥∣. If not, it rejects. Otherwise, it simulates 𝑀𝑥(𝑦).
Thus for all 𝑥 ∈ 𝐴, CND(𝑥) ≤ 𝑐′ log ∣𝑥∣+ 𝑐′, contradicting the choice of 𝐴. ⊓⊔

From Theorem 3.4.5 we infer that both inclusions in Proposition 3.4.3 are
strict:

Corollary 3.4.6 NP/log ⊊ NIC[log, poly] ⊊ NP/poly.

3.5 Promise Classes

Complexity classes are usually defined by a machine model on which resource
bounds are imposed. A complexity class is syntactic if the machines can be
appropriately standardized such that there exists an easy test which verifies that
all these standardized machines define indeed languages from the complexity class
(cf. [Pap94]). Promise classes (also called semantic classes) are the counterpart
of syntactic classes because here we are lacking an easy syntactic machine model.
Randomized classes like BPP or RP, the class of all proof systems for a given
language, or disjoint NP-pairs are examples of promise classes.

Our basic model of computation are polynomial-time Turing machines and
transducers. Tacitly we assume these machines to be suitably encoded by strings.
We also assume that they always have a polynomial-time clock attached bounding
their running time such that this running time is easy to detect from the code of
the machine.

For a language 𝐿 and a complexity class C, the set of all C-easy subsets of 𝐿
consists of all sets 𝐴 ⊆ 𝐿 with 𝐴 ∈ C. A class C of languages has a recursive
P-presentation (resp. NP-presentation) if there exists a recursively enumerable
list 𝑁1, 𝑁2, . . . of (non-)deterministic polynomial-time clocked Turing machines
such that 𝐿(𝑁𝑖) ∈ C for 𝑖 ∈ ℕ, and, conversely, for each 𝐴 ∈ C there exists an
index 𝑖 with 𝐴 = 𝐿(𝑁𝑖). We remark that in this definition, for our purpose it
would also suffice to replace 𝐴 = 𝐿(𝑁𝑖) by the weaker requirement 𝐴 ⊆ 𝐿(𝑁𝑖).

3.5. PROMISE CLASSES 19

3.5.1 The General Concept of a Promise Class

Following the approach of Köbler, Messner, and Torán [KMT03], we define
promise classes in a very general way. A promise 𝑅 is described as a binary pred-
icate between nondeterministic polynomial-time Turing machines 𝑁 and strings
𝑥, i.e., 𝑅(𝑁, 𝑥) means that 𝑁 obeys promise 𝑅 on input 𝑥. A machine 𝑁 is called
an 𝑅-machine if 𝑁 obeys 𝑅 on any input 𝑥 ∈ Σ∗. Given a promise predicate
𝑅, we define the language class C𝑅 = {𝐿(𝑁) ∣ 𝑁 is an R-machine } and call it
the promise class generated by 𝑅. Instead of 𝑅-machines we will also speak of
C𝑅-machines. Similarly, we define function promise classes by replacing 𝐿(𝑁)
by the function computed by 𝑁 (cf. [KMT03]). For functions we use the fol-
lowing variant of many-one reductions (cf. [KMT03]): 𝑓 ≤ 𝑔 if there exists a
polynomial-time computable function 𝑡 such that 𝑓(𝑥) = 𝑔(𝑡(𝑥)) for all 𝑥 in the
domain of 𝑓 .

In this general framework it is natural to impose further restrictions on
promise classes. One assumption which we will make throughout this work is
the presence of universal machines, i.e., we only consider promise conditions 𝑅
such that there exists a universal machine 𝑈𝑅 which, given an 𝑅-machine 𝑁 ,
input 𝑥, and time bound 0𝑚, efficiently simulates 𝑁(𝑥) for 𝑚 steps such that 𝑈𝑅
obeys promise 𝑅 on ⟨𝑁, 𝑥, 0𝑚⟩.

Occasionally, we will need that C-machines can perform nondeterministic
polynomial-time computations without violating the promise. We make this
precise via the following notion from [KMT03]: for a complexity class A and
a promise class C defined via promise 𝑅, we say that A-assertions are useful for
C if for any language 𝐴 ∈ A and any nondeterministic polynomial-time Turing
machine 𝑁 the following holds: if 𝑁 obeys promise 𝑅 on any 𝑥 ∈ 𝐴, then there
exists a language 𝐶 ∈ C such that 𝐶 ∩ 𝐴 = 𝐿(𝑁) ∩ 𝐴. A similar definition also
applies for function classes. Namely, A-assertions are useful for a function class C
if for any language 𝐴 ∈ A and any polynomial-time clocked Turing transducer 𝑁
it holds: if 𝑁 obeys promise 𝑅 on any input 𝑥 ∈ 𝐴, then there exists a function
𝑓 ∈ 𝐶 such that 𝑁(𝑥) = 𝑓(𝑥) for any 𝑥 ∈ 𝐴. In the following we will only
consider promise classes C for which P-assertions are useful. If also NP-assertions
are useful for C, then we say that C can use nondeterminism.

The set of all proof systems for a language 𝐿 is an example for a promise
function class, where the promise for a given function 𝑓 is rng(𝑓) = 𝐿. We
define a larger class PS (𝐿) where we only concentrate on correctness but not on
completeness of proof systems. This is made precise in the following definition.

Definition 3.5.1 For a language 𝐿, the promise function class PS (𝐿) contains
all polynomial-time computable functions 𝑓 with rng(𝑓) ⊆ 𝐿.

20 CHAPTER 3. NOTIONS FROM COMPUTATIONAL COMPLEXITY

3.5.2 Representations

In order to verify a promise, we need appropriate encodings of promise conditions.
In the next definition we explain how a promise condition for a machine can be
expressed in an arbitrary language.

Definition 3.5.2 A promise 𝑅 is expressible in a language 𝐿 if there exists a
polynomial-time computable function corr : Σ∗ × Σ∗ × 0∗ → Σ∗ such that the
following conditions hold:

1. Correctness: For every Turing machine 𝑁 , for every 𝑥 ∈ Σ∗ and 𝑚 ∈ ℕ, if
corr(𝑥,𝑁, 0𝑚) ∈ 𝐿, then 𝑁 obeys promise 𝑅 on input 𝑥.

2. Completeness: For every 𝑅-machine 𝑁 with polynomial time bound 𝑝, the
set

Correct(𝑁) = {corr(𝑥,𝑁, 0𝑝(∣𝑥∣)) ∣ 𝑥 ∈ Σ∗ }
is a subset of 𝐿.

3. Local recognizability: For every Turing machine 𝑁 , the set Correct(𝑁) is
polynomial-time decidable.

We say that the promise class C generated by 𝑅 is expressible in 𝐿 if 𝑅 is ex-
pressible in 𝐿. If the elements corr(𝑥,𝑁, 0𝑚) only depend on ∣𝑥∣, 𝑁 , and 𝑚, but
not on 𝑥, we say that C is expressible in 𝐿 by a length-depending promise.

This definition applies to both language and function promise classes. One of
the most important applications for the above concept of expressibility is to
choose 𝐿 as the set of propositional tautologies TAUT. Expressing promise
conditions by propositional tautologies is a well known approach with a long
history. For propositional proof systems, leading to the promise function class
PS (TAUT), propositional expressions are constructed via the reflection principle
of the proof system (cf. [Coo75, KP89]). Propositional expressions have also
been used for other promise classes like disjoint NP-pairs and its generalizations
[Bey07, BKM09]. Typically, these expressions are even length depending. We
remark that Köbler, Messner, and Torán [KMT03] have used a related approach,
namely the notion of a test set, to measure the complexity of promise conditions.

As a first example, consider the set of all P-easy subsets of a language 𝐿. The
next lemma shows that this promise class is always expressible in 𝐿.

Lemma 3.5.3 For every language 𝐿, the P-easy subsets of 𝐿 are expressible in
𝐿.

Proof. Let 𝑁 be a deterministic polynomial-time Turing machine with running
time 𝑝. We define the function corr(𝑁, 𝑥, 0𝑚) as

corr(𝑥,𝑁, 0𝑚) =

{
𝑥 if 𝑁(𝑥) accepts in ≤ 𝑚 steps

𝑥0 otherwise

3.6. OPTIMAL PROOF SYSTEMS AND EASY SUBSETS 21

with some fixed element 𝑥0 ∕∈ 𝐿. ⊓⊔
Using expressibility of a promise class in a language 𝐿, we can verify the

promise for a given machine with the help of short proofs in some proof system
for 𝐿. This leads to the following concept:

Definition 3.5.4 Let C be a promise class which is expressible in a language
𝐿. Let further 𝐴 be a language from C and 𝑃 be a proof system for 𝐿. We
say that 𝐴 is representable in 𝑃 if there exists a C-machine 𝑁 for 𝐴 such that
𝑃 ⊢∗ Correct(𝑁). If these 𝑃 -proofs of corr(𝑥,𝑁, 0𝑝(∣𝑥∣)) can even be constructed
from input 𝑥 in polynomial time, then we say that 𝐴 is p-representable in 𝑃 .

Furthermore, if every language 𝐴 ∈ C is (p-)representable in 𝑃 , then we say
that C is (p-)representable in 𝑃 .

Intuitively, representability of 𝐴 in 𝑃 means that we have short 𝑃 -proofs of
the promise condition of 𝐴 (with respect to some C-machine for 𝐴). Given a proof
system 𝑃 for 𝐿 and a promise class C which is expressible in 𝐿, it makes sense to
consider the subclass of all languages or functions from C which are representable
in 𝑃 . This leads to the following definition:

Definition 3.5.5 For a promise class C expressible in a language 𝐿 and a proof
system 𝑃 for 𝐿, let C(𝑃) denote the class of all 𝐴 ∈ C which are representable
in 𝑃 .

Note that for each 𝐴 ∈ C there exists some proof system 𝑃 for 𝐿 such that
𝐴 ∈ C(𝑃), but in general C(𝑃) will be a strict subclass of C which enlarges for
stronger proof systems.

3.6 Optimal Proof Systems and Easy Subsets

In this section we search for characterizations for the existence of optimal or
even p-optimal proof systems for arbitrary languages 𝐿 and apply these results
to concrete choices for 𝐿. We start with a criterion for the existence of p-optimal
proof systems.

Theorem 3.6.1 Let 𝐿 be a language such that PS (𝐿) is expressible in 𝐿. Then
𝐿 has a p-optimal proof system if and only if the P-easy subsets of 𝐿 have a
recursive P-presentation.

Proof. Let 𝑓 be a p-optimal proof system for 𝐿 and let 𝐴 be a polynomial-time
computable subset of 𝐿. We can define a proof system 𝑓𝐴 for 𝐿 as follows:

𝑓𝐴(𝑥) =

⎧⎨⎩
𝑓(𝑦) if 𝑥 = 0𝑦

𝑎 if 𝑥 = 1𝑎 and 𝑎 ∈ 𝐴
𝑏 otherwise

22 CHAPTER 3. NOTIONS FROM COMPUTATIONAL COMPLEXITY

where 𝑏 is a fixed element in 𝐿. Because 𝑓 is p-optimal, 𝑓𝐴 is p-simulated by 𝑓
via some polynomial-time computable function 𝑡𝐴.

As this can be done for all P-easy subsets 𝐴 of 𝐿, we get a recursive P-
presentation of 𝐿 as follows. Let (𝑡𝑖)𝑖∈ℕ be an enumeration of all deterministic
polynomial-time clocked Turing transducers. For 𝑖 ∈ ℕ consider the following set
of algorithms 𝑀𝑖:

1 Input: 𝑥
2 IF 𝑓(𝑡𝑖(1𝑥)) = 𝑥 THEN accept ELSE reject

Apparently, these algorithms 𝑀𝑖 can be computed by deterministic polynomial-
time Turing machines. Further, each 𝑀𝑖 only accepts inputs from 𝐿 because if
𝑀𝑖 accepts 𝑥, then we have an 𝑓 -proof for 𝑥.

Now for each P-easy subset 𝐴 of 𝐿, some machine computing the above func-
tion 𝑡𝐴 appears in the enumeration 𝑡𝑖, and therefore 𝐴 is accepted by 𝑀𝑖 for
the appropriate index 𝑖 such that 𝑡𝑖 computes 𝑡𝐴. Therefore 𝑀𝑖 is a recursive
P-presentation of the class of all P-easy subsets of 𝐿.

For the converse direction, let (𝑀𝑖)𝑖∈ℕ be a recursive P-presentation of the
P-easy subsets of 𝐿. We construct a p-optimal proof system 𝑃opt for 𝐿 as follows.
Inputs for 𝑃opt are tuples

⟨𝜋, 𝑃, 0𝑚, 𝑖, 0𝑛⟩ .
On such an input, 𝑃opt first checks whether 𝑃 is the encoding of a Turing trans-
ducer with a polynomial-time bound attached. If this is not the case, then 𝑃opt

outputs some fixed element 𝑥0 ∈ 𝐿. Otherwise, 𝑃opt spends 𝑛 steps to compute
the machine𝑀𝑖 from the enumeration𝑀1,𝑀2 . . . If 𝑛 steps do not suffice to con-
struct 𝑀𝑖, we output again 𝑥0 ∈ 𝐿. Otherwise, 𝑃opt computes corr(𝜋, 𝑃, 0𝑚) and
checks whether 𝑀𝑖 accepts corr(𝜋, 𝑃, 0𝑚) in 𝑛 steps. Again, if 𝑀𝑖 does not stop
in ≤ 𝑛 steps, then we output 𝑥0. If 𝑃 and 𝜋 pass the test, then 𝑃opt simulates 𝑃
on input 𝜋 and outputs 𝑃 (𝜋).

Apparently, 𝑃opt can be computed in polynomial time. For each Turing trans-
ducer 𝑁 with running time 𝑝 and each input 𝑥 with 𝑁(𝑥) ∈ 𝐿, the element
corr(𝑥,𝑁, 0𝑝(∣𝑥∣)) is contained in some polynomial-time computable subset of 𝐿.
Therefore, 𝑃opt is a proof system for 𝐿, because by the correctness and complete-
ness conditions from Definition 3.5.2, the range of 𝑃opt is exactly 𝐿.

To prove the p-optimality of 𝑃opt , let 𝑃 be a proof system for 𝐿. Because by
assumption PS (𝑃) is expressible in 𝐿, the set Correct(𝑃) is a P-easy subset of 𝐿
(by the local recognizability condition from Definition 3.5.2). Hence there exists
an index 𝑖 such that 𝑀𝑖 decides Correct(𝑃). Let 𝑐 be a constant such that 𝑀𝑖

can be computed from 𝑖 in time 𝑐 and let 𝑝 and 𝑞 be polynomial time bounds for
𝑃 and 𝑀𝑖, respectively. Then 𝑃 is easily seen to be p-simulated by

𝜋 �→ ⟨𝜋, 𝑃, 0𝑝(∣𝜋∣), 𝑖, 0𝑞(∣corr(𝜋,𝑃,0𝑝(∣𝜋∣))∣)+𝑐⟩
which completes the proof. ⊓⊔

3.6. OPTIMAL PROOF SYSTEMS AND EASY SUBSETS 23

By a similar argument we can provide two characterizations for the existence
of optimal proof systems.

Theorem 3.6.2 Let 𝐿 be a language such that PS (𝐿) is expressible in 𝐿. Then
the following conditions are equivalent:

1. There exists an optimal proof system for 𝐿.

2. The NP-easy subsets of 𝐿 have a recursive NP-presentation.

3. The P-easy subsets of 𝐿 have a recursive NP-presentation.

Given these general results, it is interesting to ask for which languages 𝐿 the
set PS (𝐿) of all proof systems for 𝐿 is expressible in 𝐿. Our next lemma provides
sufficient conditions:

Lemma 3.6.3 Let 𝐿 be a language fulfilling the following two conditions:

1. Natural numbers can be encoded by elements of 𝐿, i.e., there exists an in-
jective function Num : ℕ → 𝐿 which is both computable and invertible in
polynomial time.

2. 𝐿 possesses an AND-function, i.e., there exists a function AND : Σ∗×Σ∗ →
Σ∗ which is both polynomial-time computable and polynomial-time invertible
such that for all 𝑥, 𝑦 ∈ Σ∗, AND(𝑥, 𝑦) ∈ 𝐿 if and only if 𝑥 ∈ 𝐿 and 𝑦 ∈ 𝐿.

Then PS (𝐿) is expressible in 𝐿.

Proof. We have to define the function corr according to Definition 3.5.2. Given
a string 𝑥, an encoding of a polynomial-time computable Turing transducer 𝑁 ,
and a number 𝑚 ∈ ℕ, we first simulate 𝑁(𝑥) for ≤ 𝑚 steps. Let 𝑦 be the output
of 𝑁(𝑥), if the simulation succeeded. Otherwise, we choose a fixed string 𝑦 ∕∈ 𝐿.

Next we interpret the binary encoding of 𝑁 as a natural number (which we
again denote by 𝑁) and compute Num(𝑁). We then define the function corr as

corr(𝑥,𝑁, 0𝑚) = AND(𝑦,AND(Num(𝑁),Num(𝑚))) .

Clearly, corr is polynomial-time computable. To verify the conditions of Def-
inition 3.5.2 for corr , we observe that correctness and completeness of corr fol-
low because the string 𝑤 := AND(Num(𝑁),Num(𝑚)) is contained in 𝐿 for all
𝑁,𝑚 ∈ ℕ, and therefore AND(𝑦, 𝑤) ∈ 𝐿 if and only if 𝑦 ∈ 𝐿.

Local recognizability for corr follows as AND and Num are invertible in poly-
nomial time and therefore for each polynomial-time Turing transducer 𝑁 , the set
Correct(𝑁) is in P. ⊓⊔

Using this lemma we can show 𝐿-expressibility of PS (𝐿) for many interesting
choices of 𝐿:

24 CHAPTER 3. NOTIONS FROM COMPUTATIONAL COMPLEXITY

Proposition 3.6.4 For any of the following languages 𝐿, the set PS (𝐿) is ex-
pressible in 𝐿:

∙ SAT𝑖 for 𝑖 ∈ ℕ (the satisfiability problem for quantified propositional for-
mulas with 𝑖 quantifier alternations, starting with existential quantifiers),

∙ TAUT𝑖 for 𝑖 ∈ ℕ (quantified propositional tautologies with 𝑖 quantifier al-
ternations, starting with universal quantifiers),

∙ QBF (quantified propositional tautologies),

∙ the graph isomorphism problem GI, its complement GI, and the complement
GA of the graph automorphism problem.

Proof. We have to check the conditions from the previous lemma. For languages
consisting of formulas like SAT𝑖, TAUT𝑖, or QBF, the AND-function is provided
by the Boolean connective ∧. The function Num can be defined for example by

𝑛 �→ (𝑝 ∨ ¬𝑝) ∧ ⋅ ⋅ ⋅ ∧ (𝑝 ∨ ¬𝑝) (𝑛 times) ,

where 𝑝 is a fixed propositional variable.
For GI, Num(𝑛) can be implemented by a pair (𝐾𝑛, 𝐾𝑛) of cliques of size

𝑛. For GI we take (𝐾𝑛, 𝐾𝑛+1), and for GA we take an easy rigid graph with 𝑛
vertices. It is well known that GI has an AND-function (cf. [KST93]). For the
AND-functions of GI and GA we can take the OR-functions of GI and GA (cf.
[KST93]). ⊓⊔

For GI, which like any problem in NP has an optimal proof system, we obtain
the following characterization on the existence of a p-optimal proof system.

Corollary 3.6.5 GI has a p-optimal proof system if and only if there exists a
recursive P-presentation of all polynomial-time computable subsets of GI.

Let us remark that in Lemma 3.6.3, instead of an AND-function we could
also use a padding function for 𝐿. In this way we obtain a similar result as
Corollary 3.6.5 for GA (which is not known to possess an AND-function).

Chapter 4

Proof Systems that Take Advice

Altes Fundament ehrt man, darf aber das Recht nicht auf-
geben, irgendwo wieder einmal von vorn zu gründen.

Johann Wolfgang Goethe

Propositional proof complexity studies the question how difficult it is to prove
propositional tautologies. In the classical Cook-Reckhow model, proofs are ver-
ified in deterministic polynomial time [CR79]. While this is certainly the most
useful setting for practical applications, it is nevertheless interesting to ask if
proofs can be shortened when we provide more resources for their verification.
In this direction, Cook and Kraj́ıček [CK07] have recently initiated the study of
proof systems which use advice for the verification of proofs. Their results show
that, like in the classical Cook-Reckhow setting, these proof systems enjoy a close
connection to theories of bounded arithmetic (cf. Chapter 5).

In this chapter we aim at a rigorous development of the theory of proof sys-
tems with advice. In our investigation we particularly focus on the following
fundamental questions for this new model:

Q1: Given a language 𝐿, do there exist polynomially bounded
proof systems with advice for 𝐿?

Q2: For propositional proof systems, does advice help to shorten proofs?
Q3: Do there exist optimal proof systems with advice for 𝐿?

The organization of the chapter is as follows. In Section 4.1 we introduce
our general model for proof systems with advice. Sections 4.2, 4.3, and 4.4
contain our results on questions Q1, Q2, and Q3, respectively. In Section 4.5 we
demonstrate that the connection between the existence of optimal proof systems
and the existence of complete sets for promise classes as shown in [KMT03, BS11]
also holds in the stronger advice model.

25

26 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

4.1 Proof Systems with Advice

Our general model of computation for proof systems 𝑓 with advice is a poly-
nomial-time Turing transducer with several tapes: an input tape containing the
proof 𝜋, possibly several work tapes for the computation of the machine, an out-
put tape where we output the proven element 𝑓(𝜋), and an advice tape containing
the advice. We start with a quite flexible definition of proof systems with advice
for arbitrary languages, generalizing the notion of propositional proof systems
with advice of Cook and Kraj́ıček [CK07].

Definition 4.1.1 For a function 𝑘 : ℕ → ℕ, a proof system 𝑓 for 𝐿 is a proof
system with 𝑘 bits of advice, if there exist a polynomial-time Turing transducer
𝑀 , an advice function ℎ : ℕ → Σ∗, and an advice selector function ℓ : Σ∗ → 1∗

such that

1. ℓ is computable in polynomial time,

2. 𝑀 computes the proof system 𝑓 with the help of the advice ℎ, i.e., for all
𝜋 ∈ Σ∗, 𝑓(𝜋) =𝑀(𝜋, ℎ(∣ℓ(𝜋)∣)), and

3. for all 𝑛 ∈ ℕ, the length of the advice ℎ(𝑛) is bounded by 𝑘(𝑛).

We will abbreviate the phrase “proof system with 𝑘 bits of advice” by ps/𝑘. For
a class 𝐹 of functions, we denote by ps/𝐹 the class of all ps/𝑘 with 𝑘 ∈ 𝐹 .

We say that 𝑓 uses 𝑘 bits of input advice if ℓ has the special form ℓ(𝜋) = 1∣𝜋∣.
On the other hand, in case ℓ(𝜋) = 1∣𝑓(𝜋)∣ for all 𝜋 in the domain of 𝑓 , then 𝑓 is
said to use 𝑘 bits of output advice. By this definition, proof systems with input
advice use non-uniform information depending on the length of the proof, while
proof systems with output advice use non-uniform information depending on the
length of the proven formula.

We note that proof systems with advice are a quite powerful concept, as for
every language 𝐿 ⊆ Σ∗ there exists a proof system for 𝐿 with only one bit of
advice. In contrast, the class of all languages for which proof systems without
advice exist coincides with the class of all recursively enumerable languages.

The above definition of a proof system with advice allows a very liberal use
of advice, in the sense that for each input, the advice string used is determined
by the advice selector function ℓ. In Section 5.5 we will consider concrete proof
systems arising from generalizations of the extended Frege system EF which
indeed require this general framework with respect to the advice.

In the next proposition we observe that proof systems with input advice are
already as powerful as our general model of proof systems with advice.

Proposition 4.1.2 Let 𝑘 : ℕ→ ℕ be a monotone function, 𝐿 ⊆ Σ∗, and 𝑓 be a
ps/𝑘 for 𝐿. Then there exists a proof system 𝑓 ′ for 𝐿 with 𝑘 bits of input advice
such that 𝑓 and 𝑓 ′ are p-equivalent.

4.2. POLYNOMIALLY BOUNDED PROOF SYSTEMS WITH ADVICE 27

Proof. We choose a polynomial-time computable bijective pairing function ⟨⋅, ⋅⟩
on ℕ such that ⟨𝑛1, 𝑛2⟩ ≥ 𝑛1 + 𝑛2 for all numbers 𝑛1 and 𝑛2. Let 𝑓 be a ps/𝑘
for 𝐿 with advice function ℎ and advice selector ℓ. We define a proof system 𝑓 ′

for 𝐿 with input advice as follows: on input 𝜋′ of length 𝑛 the function 𝑓 ′ first
computes the two unique numbers 𝑛1 and 𝑛2 such that 𝑛 = ⟨𝑛1, 𝑛2⟩. It then
interprets the first 𝑛1 bits 𝜋

′
1 . . . 𝜋

′
𝑛1
of 𝜋′ as an 𝑓 -proof 𝜋 and checks whether

ℓ(𝜋) = 1𝑛2 . If this is the case, 𝑓 ′(𝜋′) = 𝑓(𝜋), otherwise 𝑓 ′ outputs a fixed element
𝑥0 ∈ 𝐿. Obviously, 𝑓 ′(𝜋′) is computable with advice ℎ(∣ℓ(𝜋)∣) = ℎ(𝑛2) whose
length is bounded by 𝑘(𝑛2) ≤ 𝑘(𝑛). This shows that 𝑓 ′ is a ps/𝑘 for 𝐿 with input
advice.

The p-simulation of 𝑓 by 𝑓 ′ is computed by the function 𝜋 �→ 𝜋′ = 𝜋1𝑚 where
𝑚 = ⟨∣𝜋∣, ∣ℓ(𝜋)∣⟩ − ∣𝜋∣. The converse simulation 𝑓 ′ ≤𝑝 𝑓 is given by

𝜋′ �→
{
𝜋 = 𝜋′

1 . . . 𝜋
′
𝑛1

if ∣𝜋′∣ = ⟨𝑛1, 𝑛2⟩ and ℓ(𝜋) = 1𝑛2

𝜋0 otherwise,

where 𝜋0 is a fixed 𝑓 -proof of 𝑥0. ⊓⊔

4.2 Polynomially Bounded Proof Systems with

Advice

For any language 𝐿, we now investigate the question whether 𝐿 has a polynomially
bounded proof system with advice. We obtain different characterizations of this
question, depending on

∙ whether we use input or output advice,

∙ which amount of advice the proof system may use, and

∙ the complexity of the proven language 𝐿.

In Section 4.2.1 we analyze the situation for arbitrary languages and in Sec-
tion 4.2.2 we obtain stronger results for languages in coNP.

4.2.1 Results for Arbitrary Languages

We first consider proof systems with output advice. Similarly as in the classical
result by Cook and Reckhow [CR79], we obtain the following equivalence:

Theorem 4.2.1 Let 𝐿 ⊆ Σ∗ be a language and let 𝑘 : ℕ→ ℕ be a function. Then
𝐿 has a polynomially bounded ps/𝑘 with output advice if and only if 𝐿 ∈ NP/𝑘.

28 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

Proof. For the forward implication, let 𝑃 be a polynomially bounded ps/𝑘 with
output advice for 𝐿 and let 𝑝 be a bounding polynomial for 𝑃 . We construct an
NP/𝑘 machine𝑀 which uses the same advice as 𝑃 and decides 𝐿. On input 𝑥, the
machine 𝑀 guesses a 𝑃 proof 𝑤 of size ≤ 𝑝(∣𝑥∣) and checks whether 𝑃 (𝑤) = 𝑥.
If so, 𝑀 accepts, otherwise 𝑀 rejects.

For the backward implication, let 𝑁 be an NP/𝑘 machine deciding 𝐿 with
advice function ℎ. We define a proof system 𝑃 for 𝐿 with 𝑘 bits of output advice.
Again, both 𝑃 and 𝑁 use the same advice. On input 𝜋 = ⟨𝑤, 𝑥⟩ the proof system
𝑃 checks whether 𝑤 is an accepting computation of 𝑁 on input 𝑥 with advice
ℎ(∣𝑥∣). If so, then 𝑃 (𝜋) = 𝑥. Otherwise, 𝑃 (𝜋) is undefined. ⊓⊔

Given this result, we can now concentrate on input advice. In view of The-
orem 4.4.1 below, input advice appears to be a stronger concept than output
advice (as we probably cannot expect a similar result as Theorem 4.4.1 for out-
put advice, cf. Corollary 4.2.5 and Proposition 4.2.8 below for results supporting
this claim). Surprisingly, the advantage of input advice seems to vanish when we
allow a polynomial amount of advice.

Theorem 4.2.2 Let 𝐿 ⊆ Σ∗ be any language. Then 𝐿 has a polynomially
bounded ps/poly with output advice if and only if 𝐿 has a polynomially bounded
ps/poly with input advice.

Proof. The forward direction is a simple application of Proposition 4.1.2.
For the backward implication, let 𝑓𝑖𝑛 be a ps/poly with input advice for 𝐿

bounded by some polynomial 𝑝. Let 𝑎𝑛 be the polynomially length-bounded
advice used by 𝑓𝑖𝑛 on inputs of length 𝑛.

We define a polynomially bounded ps/poly 𝑓𝑜𝑢𝑡 for 𝐿 with output advice as
follows. Inputs 𝑥 for 𝑓𝑜𝑢𝑡 are interpreted as pairs 𝑥 = ⟨𝜋, 𝑦⟩. If ∣𝜋∣ ≤ 𝑝(∣𝑦∣) and
𝑓𝑖𝑛(𝜋) = 𝑦, then 𝑓𝑜𝑢𝑡(𝑥) = 𝑦. Otherwise, 𝑓𝑜𝑢𝑡 is undefined. The computation of
𝑓𝑜𝑢𝑡 uses all advice strings for 𝑓𝑖𝑛 up to length 𝑝(∣𝑦∣) as advice. This still results
in polynomial-size output advice for 𝑓𝑜𝑢𝑡.

The system 𝑓out is correct, because 𝑓𝑖𝑛 is correct. It is complete, because
every 𝑦 ∈ 𝐿 has a proof 𝜋𝑦 with ∣𝜋𝑦∣ ≤ 𝑝(∣𝑦∣), implying that 𝑓𝑜𝑢𝑡(⟨𝜋𝑦, 𝑦⟩) = 𝑦.
Hence, 𝑓𝑜𝑢𝑡 is a polynomially bounded ps/poly with output advice. ⊓⊔

By Theorems 4.2.1 and 4.2.2, the existence of polynomially bounded ps/poly
with input advice for 𝐿 is equivalent to 𝐿 ∈ NP/poly. Next, we consider proof
systems with only a logarithmic amount of advice. In this case, we get a sim-
ilar equivalence as before, where the class NP/poly is replaced by the instance
complexity class NIC[log, poly].

Theorem 4.2.3 For every language 𝐿 the following conditions are equivalent:

1. 𝐿 has a polynomially bounded ps/1 with input advice.

4.2. POLYNOMIALLY BOUNDED PROOF SYSTEMS WITH ADVICE 29

2. 𝐿 has a polynomially bounded ps/log with input advice.

3. 𝐿 ∈ NIC[log, poly].

Proof. The implication 1 ⇒ 2 follows by definition.
To prove the implication 2 ⇒ 3, let 𝑓 be a polynomially bounded ps/log with

input advice and bounding polynomial 𝑝. For each 𝑥 we have to construct a
program 𝑀 which is consistent with 𝐿 and correctly decides 𝑥. If 𝑥 ∕∈ 𝐿, then
𝑀 can just always reject. If 𝑥 ∈ 𝐿, then there exists an 𝑓 -proof 𝜋 of 𝑥 of length
≤ 𝑝(∣𝑥∣). Let 𝑎 be the advice for 𝑓 on inputs of length ∣𝜋∣. To construct the
machine 𝑀 for 𝑥, we hardwire the values of ∣𝑥∣, ∣𝜋∣, and 𝑎 into 𝑀 . On input 𝑦
the machine 𝑀 checks whether ∣𝑦∣ = ∣𝑥∣. If not, it rejects. Otherwise 𝑀 guesses
an 𝑓 -proof 𝜋′ of length ∣𝜋∣ for 𝑦 and verifies that 𝑓(𝜋′) = 𝑦 using the advice 𝑎.
If this test is positive, then 𝑀 accepts, otherwise 𝑀 rejects. Clearly, 𝑀 accepts
exactly all elements from 𝐿 of length ∣𝑥∣ which have 𝑓 -proofs of length ∣𝜋∣. In
particular, 𝑀 accepts 𝑥. Additionally, 𝑀 is a polynomial-time nondeterministic
program of length at most 𝑐+log ∣𝑥∣+log ∣𝜋∣+ ∣𝑎∣ for some constant 𝑐. Therefore
𝐿 ∈ NIC[log, poly].

For the remaining implication 3⇒ 1, let us assume that there are a polynomial
𝑝 and a constant 𝑐, such that for every 𝑥, nic𝑝(𝑥 : 𝐿) ≤ 𝑐 ⋅ log(∣𝑥∣)+𝑐. We define a
polynomially bounded ps/1 𝑓 for 𝐿 with input advice as follows. Proofs in 𝑓 take
the form 𝜋 = ⟨𝑥, 𝑤, 1𝑀⟩, where ⟨⋅, . . . , ⋅⟩ is a polynomial-time computable and
length-injective tupling function. The advice for 𝑓 certifies whether or not 𝑀 is
a polynomial-time Turing machine that is consistent with 𝐿. If this is the case
and 𝑤 is an accepting computation of 𝑀 on input 𝑥, then 𝑓(𝜋) = 𝑥. Otherwise,
𝑓(𝜋) is undefined. Note that in the proof 𝜋 we described the machine 𝑀 in tally
form. Together with the length-injectivity of the tupling function this allows the
advice to refer to the machine𝑀 (but not to the input 𝑥 which is given in binary
notation).

Now, since 𝐿 ∈ NIC[log, poly], for every 𝑥 ∈ 𝐿 there is an 𝐿-consistent Turing
machine 𝑀𝑥 with running time 𝑝 which accepts 𝑥 and ∣𝑀𝑥∣ ≤ 𝑐 ⋅ log ∣𝑥∣+ 𝑐. Thus
every element 𝑥 ∈ 𝐿 has a polynomial-size 𝑓 -proof ⟨𝑥, 𝑤, 1𝑀𝑥⟩ where 𝑤 is an
accepting path of 𝑀𝑥(𝑥). ⊓⊔

In fact, we can prove a more general version of the preceding theorem, where
we replace polynomial upper bounds for the proof length by arbitrary upper
bounds. In this way we obtain:

Theorem 4.2.4 For any language 𝐿 and any function 𝑡 : ℕ→ ℕ, 𝑡 ∈ 𝑛Ω(1), the
following conditions are equivalent:

1. 𝐿 has a 𝑡𝑂(1)-bounded ps/1 with input advice.

2. 𝐿 has a 𝑡𝑂(1)-bounded ps/log with input advice.

30 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

Table 4.1: Languages with polynomially bounded proof systems

input advice output advice

ps/poly NP/poly NP/poly

ps/log NIC[log, poly] NP/log

ps/1 NIC[log, poly] NP/1

ps/0 NP

3. 𝐿 ∈ NIC[𝑂(log 𝑡), 𝑡𝑂(1)].

For a language 𝐿 we now consider the following three assertions:

A1: 𝐿 has a polynomially bounded ps/log with output advice.
A2: 𝐿 has a polynomially bounded ps/log with input advice.
A3: 𝐿 has a polynomially bounded ps/poly with output advice.

By our results so far, assertions A1, A2, and A3 are equivalent to the statement
that 𝐿 is contained in the classes NP/log, NIC[log, poly], and NP/poly, respec-
tively. As these classes form a chain of inclusions by Proposition 3.4.3, we get
the implications A1 ⇒ A2 ⇒ A3 for every 𝐿. Moreover, by Corollary 3.4.6, the
inclusions NP/log ⊊ NIC[log, poly] ⊊ NP/poly are proper. Hence we obtain:

Corollary 4.2.5 There exist languages 𝐿 for which A2 is fulfilled, but A1 fails.
Likewise, there exist languages 𝐿 for which A3 is fulfilled, but A2 fails.

Table 4.1 provides an overview of our results on question Q1 obtained so
far, showing which languages possess polynomially bounded proof systems with
advice. It is interesting to note that all language classes appearing in this table
form a chain of strict inclusions (cf. Corollary 3.4.6).

4.2.2 Polynomially Bounded Proof Systems for TAUT

From a practical point of view, it is most interesting to investigate what precisely
happens for 𝐿 = TAUT (or more generally for problems in coNP). Even though
by Corollary 3.4.6, NP/log and NIC[log, poly] are distinct, they do not differ inside
coNP, as the next theorem shows.

Theorem 4.2.6 Let 𝐿 ∈ coNP. Then 𝐿 ∈ NP/log if and only if 𝐿 ∈
NIC[log, poly]. Moreover, if 𝐿 ∈ NP/log, then the advice can be computed in
FPNP[log].

4.2. POLYNOMIALLY BOUNDED PROOF SYSTEMS WITH ADVICE 31

Proof. By Proposition 3.4.3 we only have to prove the backward implication.
For this let 𝐿 be a language from coNP. Assuming 𝐿 ∈ NIC[log, poly], there
exists a polynomial 𝑝 and a constant 𝑐 such that nic𝑝(𝑥 : 𝐿) ≤ 𝑐 log ∣𝑥∣ + 𝑐 for
all 𝑥 ∈ Σ∗. Let Π𝑛 be the set of all 𝑝-time bounded nondeterministic machines
𝑀 with ∣𝑀 ∣ ≤ 𝑐 log 𝑛 + 𝑐. Let further 𝑎𝑛 be the number of machines from Π𝑛

that are not consistent with 𝐿 ∩ Σ≤𝑛. As the cardinality of Π𝑛 is bounded by a
polynomial in 𝑛, the length of the number 𝑎𝑛 is logarithmic in 𝑛.

We now construct a nondeterministic Turing machine 𝑁 that uses 𝑐 log 𝑛 +
𝑐 + 1 bits of advice for inputs of length 𝑛 and decides 𝐿. The advice of 𝑁 for
input length 𝑛 will be the number 𝑎𝑛. On input 𝑥 of length 𝑛, the machine
𝑁 nondeterministically chooses 𝑎𝑛 pairwise distinct machines 𝑀1, . . . ,𝑀𝑎𝑛 ∈ Π𝑛

and strings 𝑥1, . . . , 𝑥𝑎𝑛 ∈ Σ≤𝑛. Next, 𝑁 verifies that 𝑥1, . . . , 𝑥𝑎𝑛 do not belong to
𝐿. As 𝐿 ∈ coNP, this can be done in nondeterministic polynomial time. Then 𝑁
checks whether for each 𝑖 = 1, . . . , 𝑎𝑛 the machine𝑀𝑖 accepts the input 𝑥𝑖. If any
of the tests so far failed, 𝑁 rejects. Otherwise, if all these tests were positive, we
know that every machine in Π𝑛 ∖{𝑀1, . . . ,𝑀𝑎𝑛} is consistent with 𝐿∩Σ≤𝑛. After
this verification has successfully taken place, 𝑁 simulates all remaining machines
𝑀 ∈ Π𝑛 ∖ {𝑀1, . . . ,𝑀𝑎𝑛} on input 𝑥. If one of these simulations accepts, then
also 𝑁 accepts 𝑥, otherwise 𝑁 rejects.

Since there are only consistent machines left after 𝑎𝑛 machines have been
deleted, 𝑁 never accepts any 𝑥 ∕∈ 𝐿. On the other hand, the assumption 𝐿 ∈
NIC[log, poly] guarantees that for every 𝑥 ∈ 𝐿 there is a machine in Π𝑛 which
is consistent with 𝐿 and accepts 𝑥. Therefore 𝑁 correctly decides 𝐿, and thus
𝐿 ∈ NP/log, as claimed.

For the additional claim in the theorem, we again use the above construction.
Starting from a language 𝐿 ∈ NP/log, we first obtain the collection of machines
by Proposition 3.4.3, witnessing 𝐿 ∈ NIC[log, poly]. This collection of machines
is then transformed again into an NP-machine with logarithmic advice by the
construction above. By this procedure we bring both the machine as well as the
advice into a well-defined normal form. Now it suffices to observe that using
binary search we can compute the advice 𝑎𝑛 with at most logarithmically many
queries of the form “Do there exist at least 𝑚 logarithmic-size machines which
are inconsistent with 𝐿 ∩ Σ≤𝑛?” As this is an NP question, the advice can be
computed in FPNP[log]. ⊓⊔

By Theorem 4.2.2 we already know that an arbitrary language 𝐿 has a poly-
nomially bounded ps/poly with input advice if and only if 𝐿 has a polynomially
bounded ps/poly with output advice. As a corollary to Theorem 4.2.6 we obtain
the same equivalence for logarithmic advice, but only for coNP languages.

Corollary 4.2.7 Let 𝐿 be a language from coNP. Then 𝐿 has a polynomially
bounded ps/log with input advice if and only if 𝐿 has a polynomially bounded
ps/log with output advice.

32 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

Table 4.2: Consequences of the existence of polynomially bounded proof systems

Assumption Consequence
if TAUT has a polynomially bounded . . . then PH collapses to . . .

ps/poly (input or output advice) SNP2 ⊆ Σp
3

ps/log (input or output advice) PNP[log]

ps/𝑂(1) (input advice) PNP[log]

ps/𝑂(1) (output advice) PNP[𝑂(1)] = BH

ps/0 (no advice) NP

Descending to constant advice, this equivalence seems to fail. Using Theo-
rem 3.3.2 we prove that the assertions of the existence of polynomially bounded
proof systems with input and output advice appear to be of different strength, as
otherwise the equivalence of two collapses of PH of presumably different strength
follows.

Proposition 4.2.8 Assume that TAUT having a polynomially bounded ps/1 with
input advice implies that TAUT has a polynomially bounded ps/1 with output
advice. Then PH ⊆ BH already implies PH ⊆ Dp.

Proof. If the polynomial hierarchy collapses to the Boolean hierarchy, then PH
in fact collapses to some level BH𝑘 of BH. By Theorem 3.3.2, this means that
coNP ⊆ NP/𝑘′ for some constant 𝑘′. Hence by Theorem 4.2.1, TAUT has a
polynomially bounded ps/𝑘′ 𝑃 with output advice. By a result of Cook and
Kraj́ıček [CK07] (cf. also Theorem 4.4.1 below), this proof system 𝑃 is simulated
by a proof system 𝑃 ′ which only uses 1 bit of input advice. As 𝑃 is polynomially
bounded, this is also true for 𝑃 ′. By our assumption, TAUT also has polynomially
bounded ps/1 with output advice. By Theorem 4.2.1 this implies coNP ⊆ NP/1
and therefore PH ⊆ Dp by Theorem 3.3.2. ⊓⊔

We remark that in Proposition 4.2.8 we have to state the result for TAUT
or some other coNP-complete set, but do not obtain the same statement for any
coNP language.

So far we have provided different characterizations of question Q1 whether
polynomially bounded proof systems with advice exist. At this point it is natural
to ask, how likely these assumptions actually are, i.e., what consequences follow
from the assumption that such proof systems exist. For TAUT we obtain a series
of collapse consequences of presumably different strength as shown in Table 4.2.

The first line in Table 4.2 follows from Theorems 4.2.1 and 4.2.2 and a result
of Cai, Chakaravarthy, Hemaspaandra, and Ogihara [CCHO05], who have shown

4.3. SIMPLIFYING THE ADVICE 33

that coNP ⊆ NP/poly implies PH ⊆ SNP2 . For the second line, the distinction
between input and output advice is again irrelevant (Corollary 4.2.7). Here we use
a result of Arvind, Köbler, Mundhenk, and Torán [AKMT00], who showed that
TAUT ∈ NIC[log, poly] implies PH ⊆ PNP[log]. Finally, the constant-advice case
(lines 3 and 4) follows from Theorem 3.3.2 in conjunction with Theorems 4.2.1
and 4.2.3. In comparison, the classical Cook-Reckhow Theorem states that TAUT
has an advice-free polynomially bounded proof system if and only if PH ⊆ NP
(line 5).

4.3 Simplifying the Advice in Propositional

Proof Systems

In this section we again concentrate on propositional proof systems and prove
results which contribute to an answer to question Q2. Apart from TAUT, our re-
sults proved here generalize to other languages, but different properties of TAUT
play a role in these generalizations.

4.3.1 Transferring Advice from the Proof to the Formula

There are two natural ways to enhance proof systems with advice by either sup-
plying non-uniform information to the proof (input advice) or to the proven
formula (output advice). Intuitively, input advice is the stronger model: proofs
can be quite long and formulas of the same size typically require proofs of differ-
ent size. Hence, supplying advice depending on the proof size is not only more
flexible, but also results in more advice per formula. This view is also supported
by previous results: there exist optimal proof systems with input advice [CK07]
(see also Theorem 4.4.1 below), whereas for output advice a similar result cannot
be obtained by current techniques (cf. 4.4.2 below). Further evidence is provided
by the existence of languages that have polynomially bounded proof systems
with logarithmic input advice, but do not have such systems with output advice
(Corollary 4.2.5).

In our next result we show how input advice can be transformed into output
advice. We obtain this simplification of advice under the assumption of weak, but
non-trivial upper bounds to the proof size. More precisely, from a propositional
proof system which uses logarithmic input advice and has sub-exponential size
proofs of all tautologies, we construct a system with polynomial output advice
which obeys almost the same upper bounds. The result holds for TAUT and
more generally for all languages 𝐿 which have a polynomial-time computable
AND-function:

Definition 4.3.1 A language 𝐿 possesses a linear AND-function if there exists
a function AND which is both polynomial-time computable and polynomial-time

34 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

invertible such that for all 𝑥1, . . . , 𝑥𝑛 ∈ Σ∗, AND(𝑥1, . . . , 𝑥𝑛) ∈ 𝐿 if and only
if 𝑥𝑖 ∈ 𝐿 for all 𝑖 = 1, . . . , 𝑛. We further require that ∣AND(𝑥1, . . . , 𝑥𝑛)∣ ≤
𝑑 ⋅∑𝑛

𝑖=1 ∣𝑥𝑖∣ for some constant 𝑑.

For the proof of the next result we use a new technique by Buhrman and
Hitchcock [BH08] who show that sets of sub-exponential density are not NP-hard
unless coNP ⊆ NP/poly.

Theorem 4.3.2 Let 𝐿 be a language with a linear AND-function. Let further
𝑡(𝑛) ∈ 2𝑂(

√
𝑛) and let 𝑓 be a 𝑡(𝑛)-bounded proof system for 𝐿 with polylogarithmic

input advice. Then there exists an 𝑠(𝑛)-bounded proof system 𝑔 for 𝐿 with poly-
nomial output advice where 𝑠(𝑛) ∈ 𝑂(𝑡(𝑑 ⋅ 𝑛2)) and where 𝑑 is the constant from
Definition 4.3.1.

Proof. Let 𝑡(𝑛) ≤ 2𝑐⋅√𝑛 for some constant 𝑐 and let 𝑓 be a 𝑡(𝑛)-bounded propo-
sitional proof system with polylogarithmic input advice. We say that 𝜋 is a
conjunctive 𝑓 -proof for a string 𝑥 ∈ 𝐿 if there exist strings 𝑦1, . . . , 𝑦𝑛 with
∣𝑦𝑖∣ = ∣𝑥∣ = 𝑛 such that 𝑓(𝜋) = AND(𝑦1, . . . , 𝑦𝑛) and 𝑥 is among the 𝑦𝑖. For
a number 𝑚 ≥ 1, we denote by ♯𝑛𝑚 the number of strings 𝑥 ∈ 𝐿 ∩ Σ𝑛 which have
conjunctive 𝑓 -proofs of size exactly 𝑚. By counting we obtain

(♯𝑛𝑚)
𝑛 ≥ ∣{ (𝑥1, . . . , 𝑥𝑛) ∣ AND(𝑥1, . . . , 𝑥𝑛) has an 𝑓 -proof of size 𝑚 and

∣𝑥𝑖∣ = 𝑛 for 1 ≤ 𝑖 ≤ 𝑛 }∣ . (4.1)

As 𝑓 is 𝑡-bounded, every 𝑥 ∈ 𝐿 ∩ Σ𝑛 has a conjunctive 𝑓 -proof of size at most
𝑡(𝑑⋅𝑛2) where 𝑑 is the constant from the AND-function of 𝐿 as in Definition 4.3.1.
Let ♯𝑛 = max{ ♯𝑛𝑚 ∣ 𝑚 ≤ 𝑡(𝑑 ⋅ 𝑛2) }. Using (4.1) we obtain

∣𝐿 ∩ Σ𝑛∣𝑛 ≤
𝑡(𝑑⋅𝑛2)∑
𝑚=1

(♯𝑛𝑚)
𝑛 ≤ (♯𝑛)𝑛 ⋅ 𝑡(𝑑 ⋅ 𝑛2)

≤ (♯𝑛)𝑛 ⋅ 2𝑐⋅
√
𝑑⋅𝑛2

= (♯𝑛 ⋅ 2𝑐⋅
√
𝑑)𝑛 .

Thus, setting 𝛿 = 2−𝑐⋅
√
𝑑, we get ♯𝑛 ≥ 𝛿 ⋅ ∣𝐿 ∩ Σ𝑛∣. Therefore, by definition of

♯𝑛 there exists a number 𝑚𝑛,0 ≤ 𝑡(𝑑 ⋅ 𝑛2) such that ♯𝑛𝑚𝑛,0
≥ 𝛿 ⋅ ∣𝐿 ∩ Σ𝑛∣, i.e., a

𝛿-fraction of all strings from 𝐿 of length 𝑛 has a conjunctive 𝑓 -proof of size 𝑚𝑛,0.
Consider now the set 𝐿=𝑛

0 of all strings from 𝐿 of length 𝑛 which do not have
conjunctive 𝑓 -proofs of size 𝑚𝑛,0. Repeating the above argument for 𝐿

=𝑛
0 yields

a proof length 𝑚𝑛,1 ≤ 𝑡(𝑑 ⋅𝑛2) such that ♯𝑛𝑚𝑛,1
≥ 𝛿 ⋅ ∣𝐿=𝑛

0 ∣. Iterating this argument
we obtain a sequence 𝑚𝑛,0,𝑚𝑛,1, . . . ,𝑚𝑛,ℓ(𝑛), where

ℓ(𝑛) =

⌈
log ∣𝐿 ∩ Σ𝑛∣
log(1− 𝛿)−1

⌉
≤
⌈

𝑛

log(1− 𝛿)−1

⌉
,

such that every 𝑥 ∈ 𝐿 ∩ Σ𝑛 has a conjunctive 𝑓 -proof of size 𝑚𝑛,𝑖 for some
𝑖 ∈ {0, . . . , ℓ(𝑛)}.

4.3. SIMPLIFYING THE ADVICE 35

We will now define a proof system 𝑔 which uses polynomial output advice
and obeys the same proof lengths as 𝑓 . Assume that 𝑓 is computed by the
polynomial-time Turing transducer 𝑀𝑓 with advice function ℎ𝑓 . The system 𝑔
will be computed by a polynomial-time Turing transducer 𝑀𝑔 using the advice
function

ℎ𝑔(𝑛) =
〈
𝑚𝑛,0, ℎ𝑓 (𝑚𝑛,0), . . . ,𝑚𝑛,ℓ(𝑛), ℎ𝑓 (𝑚𝑛,ℓ(𝑛))

〉
.

The machine𝑀𝑔 works as follows: On input 𝜋
′,𝑀𝑔 first checks whether the proof

𝜋′ has the form
⟨𝑥, 𝑦1, . . . , 𝑦𝑛, 𝜋, 𝑖⟩ ,

where 𝑥, 𝑦1, . . . , 𝑦𝑛 are strings of length 𝑛 such that 𝑥 ∈ {𝑦1, . . . , 𝑦𝑛}, 𝜋 is a string
(an 𝑓 -proof), and 𝑖 is a number ≤ ℓ(𝑛). If this test fails, then 𝑔(𝜋′) is undefined.
Then𝑀𝑔 uses its advice to check whether ∣𝜋∣ = 𝑚𝑛,𝑖. If so, then𝑀𝑔 simulates𝑀𝑓

on input 𝜋 using advice ℎ𝑓 (𝑚𝑛,𝑖) (which is available through the advice function
ℎ𝑔). If the output of this simulation is AND(𝑦1, . . . , 𝑦𝑛), then 𝑀𝑔 outputs 𝑥,
otherwise 𝑔(𝜋′) is undefined.

By our analysis above, 𝑔 is a proof system for 𝐿 (it is correct and complete).
The advice only depends on the length 𝑛 of the proven string, so 𝑔 uses output
advice. To estimate the advice length, let ∣ℎ𝑓 (𝑚)∣ ≤ log𝑎𝑚 for some constant 𝑎.
Then

∣ℎ𝑔(𝑛)∣ ≤
ℓ(𝑛)∑
𝑖=0

(∣𝑚𝑛,𝑖∣+ ∣ℎ(𝑚𝑛,𝑖)∣) ≤ (ℓ(𝑛) + 1)
(
𝑛/𝛿 + log𝑎(2𝑛/𝛿)

)
= 𝑛𝑂(1) .

The size of a 𝑔-proof ⟨𝑥, 𝑦1, . . . , 𝑦𝑛, 𝜋, 𝑖⟩ for 𝑥 ∈ 𝐿 ∩ Σ𝑛 is dominated by ∣𝜋∣ ≤
𝑡(𝑑 ⋅ 𝑛2), and therefore 𝑔 is 𝑠(𝑛)-bounded for some 𝑠(𝑛) ∈ 𝑂(𝑡(𝑑 ⋅ 𝑛2)). ⊓⊔

In some sense, Theorem 4.3.2 transfers the results of Theorem 4.2.2 and Corol-
lary 4.2.7 to super-polynomial proof lengths. However, while Theorem 4.2.2 has
an easy proof and holds for all languages, the last construction is rather non-
trivial and uses the assumption that 𝐿 has a linear AND-function.

4.3.2 Substituting Advice by Weak Oracles

From a practical point of view, proof systems with advice are susceptive to crit-
icism: advice can be arbitrarily complex (even non-recursive) and thus verifying
proofs with the help of advice does not form a feasible model to use in practice.
Our next result shows that for propositional proof systems, logarithmic advice
can be replaced by a sparse NP-oracle without increasing the proof length.

Theorem 4.3.3 Let 𝐿 be a language from coNP. Then the following holds:

1. Every proof system for 𝐿 with logarithmic advice is simulated by a proof
system for 𝐿 computable in polynomial time with access to a sparse NP-
oracle.

36 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

2. Conversely, every proof system for 𝐿 computable in polynomial time with
access to a sparse NP-oracle is simulated by a proof system for 𝐿 with
logarithmic advice.

Proof. For the first claim, let 𝑓 be a proof system for 𝐿 computed by the
polynomial-time Turing transducer 𝑀𝑓 with advice function ℎ𝑓 where ∣ℎ𝑓 (𝑛)∣ ≤
𝑐⋅log 𝑛 for some constant 𝑐. Without loss of generality, we may assume that 𝑓 uses
input advice (Proposition 4.1.2). We choose a length-injective polynomial-time
computable pairing function ⟨⋅⟩ and consider the set

𝐴 =
{⟨1𝑛, 𝑎⟩ ∣ 𝑎 ∈ Σ≤𝑐⋅log𝑛 and for some 𝜋 ∈ Σ𝑛, 𝑀𝑓 (𝜋, 𝑎) ∕∈ 𝐿

}
,

where 𝑀𝑓 (𝜋, 𝑎) denotes the output of 𝑀𝑓 on input 𝜋 using advice 𝑎. Intuitively,
𝐴 collects all incorrect advice strings for 𝑀𝑓 on length 𝑛. By construction, 𝐴
is sparse. Further, 𝐴 ∈ NP because on input ⟨1𝑛, 𝑎⟩ we can guess 𝜋 ∈ Σ𝑛 and
nondeterministically verify 𝑀𝑓 (𝜋, 𝑎) ∕∈ 𝐿. Because 𝐿 ∈ coNP this verification is
possible in nondeterministic polynomial time.

We now construct a polynomial-time oracle Turing transducer𝑀𝑔 which under
oracle 𝐴 computes a proof system 𝑔 ≥ 𝑓 . Proofs in 𝑔 will be of the form ⟨𝜋, 𝜑⟩.
On such input, 𝑀𝑔 queries all strings ⟨1∣𝜋∣, 𝑎⟩, 𝑎 ∈ Σ≤𝑐⋅log ∣𝜋∣. For each negative
answer,𝑀𝑔 simulates𝑀𝑓 on input 𝜋 using 𝑎 as advice. If any of these simulations
outputs 𝜑, then𝑀𝑔 also outputs 𝜑, otherwise 𝑔(⟨𝜋, 𝜑⟩) is undefined. Because𝑀𝑔

performs at most polynomially many simulations of 𝑀𝑓 , the machine 𝑀𝑔 runs
in polynomial time. Correctness and completeness of 𝑔 follow from the fact that
𝑀𝑓 is simulated with all correct advice strings, and the original advice used by
𝑀𝑓 is among these (as also other advice strings are used, 𝑔 might have shorter
proofs than 𝑓 , though).

For the second claim, let 𝑓 be a proof system for 𝐿 computed by the oracle
transducer 𝑀𝑓 under the sparse NP-oracle 𝐴. Let 𝑀𝐴 be an NP-machine for
𝐴 and let 𝑝(𝑛) be a polynomial bounding the cardinality of 𝐴 ∩ Σ≤𝑛 as well as
the running times of 𝑀𝐴 and 𝑀𝑓 . With these conventions, there are at most
𝑞(𝑛) = 𝑝(𝑝(𝑛)) many strings in 𝐴 that 𝑀𝑓 may query on inputs of length 𝑛.

We now define a machine 𝑀𝑔, an advice function ℎ𝑔, and an advice selector
ℓ𝑔 which together yield a proof system 𝑔 ≥ 𝑓 for 𝐿 with logarithmic advice.
The advice function will be ℎ𝑔(𝑛) = ∣𝐴 ∩ Σ≤𝑝(𝑛)∣. As 𝐴 is sparse this results in
logarithmic advice. Proofs in the system 𝑔 are of the form

𝜋𝑔 =
〈
𝑎1, . . . , 𝑎𝑞(𝑛), 𝑤1, . . . , 𝑤𝑞(𝑛), 𝜋𝑓

〉
where 𝜋𝑓 ∈ Σ𝑛 (an 𝑓 -proof), 𝑎1, . . . , 𝑎𝑞(𝑛) ∈ Σ≤𝑝(𝑛) (elements from 𝐴), and
𝑤1, . . . , 𝑤𝑞(𝑛) ∈ Σ≤𝑞(𝑛) (computations of 𝑀𝐴). Given such a proof 𝜋𝑔, the ad-
vice selector chooses the advice corresponding to ∣𝜋𝑓 ∣, i.e., we set ℓ𝑔(𝜋𝑔) = ∣𝜋𝑓 ∣.
The machine 𝑀𝑔 works as follows: it first uses its advice to obtain the num-
ber 𝑚 = ℎ𝑔(∣𝜋𝑓 ∣) and checks whether 𝑎1, . . . , 𝑎𝑚 from the proof 𝜋𝑔 are pair-
wise distinct and for each 𝑖 = 1, . . . ,𝑚, the string 𝑤𝑖 is an accepting compu-
tation of 𝑀𝐴 on input 𝑎𝑖. If all these simulations succeed, then we know that

4.3. SIMPLIFYING THE ADVICE 37

𝐴∩Σ≤𝑝(𝑛) = {𝑎1, . . . , 𝑎𝑚}. Hence𝑀𝑔 can now simulate𝑀𝑓 on 𝜋𝑓 and give correct
answers to all oracle queries made in this computation. ⊓⊔

As a consequence, we get the following simplicity result stating that we can
bound the complexity of the non-uniform part (the advice) when proving coNP
languages:

Corollary 4.3.4 Every ps/log 𝑓 for a language in coNP is simulated by a ps/log
𝑔 whose advice function ℎ is computable in FPNP∩Sparse[log], i.e., ℎ is computable
in polynomial time with a logarithmic number of queries to a sparse NP-oracle.

Proof. The claim follows by first applying item 1 and then item 2 of Theorem 4.3.3
and observing that the advice function of the resulting proof system (denoted ℎ𝑔
in the proof above) is computable using binary search with logarithmically many
questions to the sparse NP-set { ⟨1𝑚, 1𝑛⟩ ∣ 𝑚 ≤ ∣𝐴 ∩ Σ≤𝑝(𝑛)∣ }. ⊓⊔

We remark that the condition 𝐿 ∈ coNP in Theorem 4.3.3 is only needed for
the first item whereas the second item holds for all languages. Further, by an
easy modification in the above proofs it follows that instead of a sparse NP-set
it also suffices to use a tally NP-set as the oracle. Let us remark that Balcázar
and Schöning [BS92] have shown a similar trade-off between advice and oracle
access in complexity theory: coNP ⊆ NP/log if and only if coNP ⊆ NP𝑆 for some
sparse 𝑆 ∈ NP. We complete the picture by showing that the simulations in the
previous theorem cannot be strengthened to a full equivalence between the two
concepts:

Proposition 4.3.5 For every nonempty language 𝐿 there exist proof systems
with constant advice which cannot be computed with access to a recursive oracle.

Proof. Let us first consider the case that 𝐿 is recursively enumerable and let 𝑓 be
a polynomial-time computable proof system for 𝐿. With each infinite sequence
𝑎 = (𝑎𝑖)𝑖∈ℕ, 𝑎𝑖 ∈ {0, 1}, we associate the proof system

𝑓𝑎(𝜋) =

{
𝑓(𝜋′) if either 𝜋 = 0𝜋′ or (𝜋 = 1𝜋′ and 𝑎∣𝜋∣ = 0)

undefined if 𝜋 = 1𝜋′ and 𝑎∣𝜋∣ = 1.

Because of the first line of its definition, 𝑓𝑎 is a complete proof system for 𝐿. As
different sequences 𝑎 and 𝑏 yield different proof systems 𝑓𝑎 and 𝑓𝑏, there exist
uncountably many different propositional proof systems with one bit of advice.
On the other hand, there are only countably many proof systems computed by
oracle Turing machines under recursive oracles. Hence the claim follows.

Now consider the case that 𝐿 is not recursively enumerable. Yet, 𝐿 has a
proof system with one bit of advice which is computed by the machine 𝑀

𝑀(𝑤) =

{
𝑥 if ℎ(∣𝑤∣) = 1 and 𝑤 = 1𝑥 (the string 𝑥 coded in unary)
undef. otherwise

38 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

where ℎ is the advice function for 𝑀 defined as

ℎ(𝑛) =

{
1 if 𝑛 = ∣1𝑥∣ and 𝑥 ∈ 𝐿
0 otherwise,

i. e., ℎ(𝑛) is the characteristic function of 𝐿 where the input is coded in unary.
On the other hand, if 𝐿 is not recursively enumerable, then 𝐿 does not have a
proof system which is computable in polynomial time under a recursive oracle.
Hence the claim also holds in this case. ⊓⊔

For polynomial instead of logarithmic advice, we obtain a similar result as
Theorem 4.3.3, but there are two differences. On the one hand, the result holds
for arbitrary languages, whereas Theorem 4.3.3 only holds for languages in coNP.
Also, we will now get a full equivalence between the two concepts (compare with
Proposition 4.3.5). On the other hand, the oracle will still be sparse, but we
cannot bound its complexity—it will be as complex as the original advice.

Proposition 4.3.6 Let 𝐿 be an arbitrary language and let 𝑓 be a proof system
for 𝐿. Then 𝑓 is a ps/poly if and only if 𝑓 can be computed in polynomial time
with access to a sparse oracle.

Proof. For the forward direction, let 𝑓 be a proof system for 𝐿 computed
by the polynomial-time Turing transducer 𝑀𝑓 with advice function ℎ𝑓 where
∣ℎ𝑓 (𝑛)∣ ≤ 𝑝(𝑛) for some polynomial 𝑝. We choose a length-injective polynomial-
time computable pairing function ⟨⋅⟩ and consider the set

𝐴 = { ⟨1𝑛, 𝑎⟩ ∣ 𝑎 is a prefix of ℎ𝑓 (𝑛) } .

Now, 𝑓 can be computed in polynomial time with oracle access to 𝐴 by first
computing the relevant advice using prefix search and then simulating 𝑀𝑓 .

Conversely, if 𝑓 is computed in polynomial time 𝑞(𝑛) under a sparse oracle 𝐵,
then 𝑓 is computable by a ps/poly with input advice using as advice an encoding
of the set 𝐵 ∩ Σ≤𝑞(𝑛). ⊓⊔

4.4 Optimal Proof Systems

We now come to question Q3 on the existence of optimal proof systems. We
recall from Section 2.2 that an optimal proof system for a language 𝐿 simulates
every other proof system for 𝐿.

4.4. OPTIMAL PROOF SYSTEMS 39

4.4.1 Optimal Proof Systems with Advice

While in the classical setting, the existence of optimal proof systems is a promi-
nent open question [KP89] (cf. Section 2.2 for a discussion), Cook and Kraj́ıček
[CK07] have shown that there exists a propositional proof system with one bit
of input advice which simulates all classical Cook-Reckhow proof systems. The
proof of this result easily generalizes to arbitrary languages 𝐿, thus yielding:

Theorem 4.4.1 For every language 𝐿 there exists a proof system 𝑃 with one bit
of input advice such that 𝑃 simulates all ps/log for 𝐿. Moreover, 𝑃 p-simulates
all advice-free proof systems for 𝐿.

Proof. Let ⟨⋅, . . . , ⋅⟩ be a polynomial-time computable tupling function on Σ∗

which is length injective, i.e., ∣⟨𝑥1, . . . , 𝑥𝑛⟩∣ = ∣⟨𝑦1, . . . , 𝑦𝑛⟩∣ implies ∣𝑥𝑖∣ = ∣𝑦𝑖∣ for
𝑖 = 1, . . . , 𝑛. We define the proof system 𝑃 as follows. 𝑃 -proofs are of the form
𝑤 = ⟨𝜋, 1𝑇 , 1𝑎, 1𝑚⟩ with 𝜋, 𝑇, 𝑎 ∈ Σ∗ and 𝑚 ∈ ℕ (here 1𝑇 and 1𝑎 denote unary
encodings of 𝑇 and 𝑎, respectively).

The proof system 𝑃 uses one bit ℎ(∣𝑤∣) of advice, where ℎ(∣𝑤∣) = 1 if and
only if the transducer 𝑇 with advice 𝑎 only outputs elements from 𝐿 for inputs
of length ∣𝜋∣. Note that by the length injectivity of ⟨⋅, . . . , ⋅⟩, the advice bit can
in fact refer to 𝑇 , 𝑎, and ∣𝜋∣. Now, if ℎ(∣𝑤∣) = 1 and 𝑇 on input 𝜋 with advice 𝑎
outputs 𝑦 after at most 𝑚 steps, then 𝑃 (𝑤) = 𝑦. Otherwise, 𝑃 (𝑤) is undefined.

In case 𝑄 is a proof system computed by some polynomial-time transducer 𝑇
without (i.e. zero bits of) advice, then 𝑄 is p-simulated by 𝑃 via the polynomial-
time computable function 𝜋 �→ ⟨𝜋, 1𝑇 , 1𝜀, 1𝑝(∣𝜋∣)⟩, where 𝑝 is a polynomial bound
for the running time of 𝑇 (and 𝜀 is the empty string). On the other hand, if 𝑇
uses advice ℎ(∣ℓ(𝜋)∣) of at most logarithmic length, then 𝑄 is simulated by 𝑃 via
the function 𝜋 �→ ⟨𝜋, 1𝑇 , 1ℎ(∣ℓ(𝜋)∣), 1𝑝(∣𝜋∣)⟩. ⊓⊔

It is a natural question whether we can improve this construction to obtain
proof systems with output advice that still have the same optimality conditions.
While we must leave this question open, our next result shows that it seems
unlikely to give an affirmative answer with currently available techniques, as oth-
erwise collapse assumptions of presumably different strength would be equivalent.
This result indicates that, by current knowledge, input advice for propositional
proof systems is indeed a more powerful concept than output advice.

Theorem 4.4.2 Let 𝑘 ≥ 1 be a constant and assume that TAUT has a ps/𝑘 with
output advice that simulates every ps/1 for TAUT. Then the following conditions
are equivalent:

1. The polynomial hierarchy collapses to BH2𝑘 .

2. The polynomial hierarchy collapses to BH.

3. coNP ⊆ NP/log.

40 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

4. coNP ⊆ NP/𝑘.

Proof. The equivalence of 1 and 4 was shown by Buhrman, Chang, and Fortnow
(Theorem 3.3.2), and clearly, item 1 implies item 2. It therefore remains to prove
the implications 2 ⇒ 3 and 3 ⇒ 4.

For the implication 2⇒ 3, let us assume PH ⊆ BH. We choose a Σp
2-complete

problem 𝐿, which by assumption is contained in BH𝑘′ for some number 𝑘
′. By

Theorem 3.3.2 this implies coNP ⊆ NP/𝑘′ and hence coNP ⊆ NP/log.
For the final implication 3⇒ 4, we assume coNP ⊆ NP/log. By Theorem 4.2.1

this guarantees the existence of a polynomially bounded system 𝑃 for TAUT
with 𝑂(log 𝑛) bits of output advice. By Theorem 4.4.1, 𝑃 is simulated by a
proof system 𝑃 ′ with only one bit of input advice. Hence also 𝑃 ′ is polynomially
bounded. Now we use the hypothesis of the existence of a proof system 𝑄 with 𝑘
bits of output advice which simulates all ps/1 for TAUT. In particular, 𝑃 ′ ≤ 𝑄
and therefore 𝑄 is a polynomially bounded ps/𝑘 with output advice. Using again
Theorem 4.2.1 we obtain coNP ⊆ NP/𝑘. ⊓⊔

With respect to the optimal proof system from Theorem 4.4.1 we obtain:

Corollary 4.4.3 The optimal ps/1 for TAUT from Theorem 4.4.1 is not equiv-
alent to a ps/1 with output advice, unless PH ⊆ BH implies PH ⊆ Dp.

Of course, rather than indicating that proof systems with constant output
advice cannot be optimal for the class of all ps/log, this corollary points towards
our current limitations to disprove such a result.

Combining Theorems 4.3.3 and 4.4.1, we can reformulate the optimality result
for coNP languages in the oracle model:

Corollary 4.4.4 Let 𝐿 ∈ coNP. Then there exists a proof system 𝑓 for 𝐿 which
simulates every polynomial-time computable proof system for 𝐿. The system 𝑓 is
computable in polynomial time under a sparse NP-oracle.

Our next result shows that if advice does not help to shorten proofs (even for
easy languages), then optimal propositional proof systems exist.

Theorem 4.4.5 If every polynomially bounded proof system for a coNP set that
uses one bit of output advice can be simulated by a proof system without advice,
then the class of all polynomial-time computable propositional proof systems con-
tains an optimal system.

Proof. Book [Boo74] showed that NE = coNE if and only if any tally set 𝐴 ∈ coNP
belongs to NP. The former, however, implies the existence of an optimal proof
system by a result of Kraj́ıček and Pudlák [KP89]. Therefore it suffices to show
that the assumption implies that any tally set 𝐴 ∈ coNP belongs to NP. Clearly,
any tally set 𝐴 ∈ coNP has a polynomially bounded proof system 𝑓 with one bit

4.4. OPTIMAL PROOF SYSTEMS 41

of output advice because we can define 𝑓(𝑥) = 1∣𝑥∣ if the advice ℎ(∣𝑥∣) equals 1
and leave it undefined otherwise. Here, the advice function ℎ is the characteristic
function of the set {𝑛 ∈ ℕ ∣ 1𝑛 ∈ 𝐴}. Now let 𝑔 be a proof system without
advice that simulates 𝑓 . Then it follows that 𝑔 is polynomially bounded and
hence 𝐴 ∈ NP. ⊓⊔

4.4.2 On p-optimal Proof Systems with Advice

In this section we will investigate the question whether there exist p-optimal
propositional proof systems with advice. With respect to p-optimality, there are
two natural options how to define this concept in the presence of advice: we
may also allow the simulation functions to take advice or we can consider advice-
free simulations. With respect to the first option, the proof of Theorem 4.4.1
immediately yields the following result:

Theorem 4.4.6 For every language 𝐿 there exists a proof system for 𝐿 with one
bit of input advice which p-simulates all proof systems for 𝐿 with 𝑘(𝑛) bits of input
advice for 𝑘(𝑛) = 𝑂(log 𝑛). The p-simulation is computed by a polynomial-time
algorithm using 𝑘(𝑛) bits of advice.

In the above theorem, in addition to the proof system also the simulation
functions are allowed to use advice. Our next result shows that for advice-free
simulation functions such a result does not hold. We just state the result for
propositional proof systems but the proof easily generalizes to other languages.

Proposition 4.4.7 Let 𝑘 : ℕ → ℕ be an arbitrary function. Then there does
not exist a ps/𝑘 for TAUT which 𝑝-simulates every ps/1 for TAUT with output
advice.

Proof. Let 𝑓 be a propositional proof system without advice. We will define
an uncountable family of propositional proof systems with one bit of output
advice. With each infinite sequence 𝑎 = (𝑎𝑖)𝑖∈ℕ with 𝑎𝑖 ∈ {0, 1}, we associate the
following proof system

𝑓𝑎(𝜋) =

⎧⎨⎩
𝑓(𝜋′) if 𝜋 = 0𝜋′

𝑓(𝜋′) ∧ ⊤ if 𝜋 = 1𝜋′ and 𝑎∣𝑓(𝜋′)∧⊤∣ = 1

𝑓(𝜋′) ∨ ⊥ if 𝜋 = 1𝜋′ and 𝑎∣𝑓(𝜋′)∨⊥∣ = 0.

Because of the first line of its definition, 𝑓𝑎 is a complete proof system. Further,
𝑓𝑎 uses one bit of output advice, as the length of 𝑓𝑎(𝜋) does not depend on the
advice bit (because 𝑓(𝜋′) ∧ ⊤ and 𝑓(𝜋′) ∨ ⊥ are of the same length). As all
advice bits from the sequence 𝑎 are coded into the proof system 𝑓𝑎 according to
lines 2 and 3 of its definition, different sequences 𝑎 and 𝑏 also yield different proof

42 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

systems 𝑓𝑎 and 𝑓𝑏. Therefore there exist uncountably many different ps/1 for
TAUT with output advice.

On the other hand, there are only countably many Turing machines which
can compute potential p-simulations between proof systems. Simulating two
different proof systems 𝑓𝑎 and 𝑓𝑏 by one fixed proof system 𝑔 requires two different
simulation functions. Hence the claim follows. ⊓⊔

Proposition 4.4.7 immediately yields that none of the classes of propositional
proof systems with advice can have a p-optimal proof system.

Corollary 4.4.8 Let 𝑘 : ℕ → ℕ be a function such that 𝑘(𝑛) > 0 for infinitely
many 𝑛 ∈ ℕ. Then the class of all ps/𝑘 for TAUT does not contain a p-optimal
proof system. Similarly, the class of all ps/𝑘 for TAUT with output advice does
not contain a p-optimal proof system.

The previous corollary contains strong negative information on the existence
of p-optimal proof systems with advice. In order to still obtain positive results
in the spirit of p-optimality, we make the following less restrictive definition.

Definition 4.4.9 Let 𝐿 be any language and let 𝑘 : ℕ → ℕ be any function.
Then the class of all ps/𝑘 for 𝐿 has a p-optimal machine if there exists a deter-
ministic polynomial-time Turing machine 𝑀 and a polynomial-time computable
advice selector function ℓ : Σ∗ → 1∗ such that for all ps/𝑘 𝑓 there exists an advice
function ℎ : ℕ → Σ∗ and a polynomial-time computable function 𝑡 such that for
all 𝜋 ∈ Σ∗

1. 𝑓(𝜋) =𝑀(𝑡(𝜋), ℎ(∣ℓ(𝑡(𝜋))∣)) (the p-simulation),

2. for all 𝑛 ∈ ℕ, ∣ℎ(𝑛)∣ ≤ 𝑘(𝑛) (the advice bound), and

3. 𝑀(𝜋, ℎ(∣ℓ(𝜋)∣)) ∈ TAUT (the correctness).

Let us provide some motivation for this definition. Proof systems with advice
essentially consist of three components: the uniform polynomial-time Turing ma-
chine, the uniform advice selector function, and the nonuniform advice. As we
cannot control the nonuniform component (which causes the absence of p-optimal
proof systems by Proposition 4.4.7), it makes sense to ask for a p-optimal system
where only the uniform part is fixed, but the nonuniform advice remains vari-
able. This constellation is precisely described by the above notion of a p-optimal
machine. In the remaining part of this section we will investigate the question
whether p-optimal machines exist for several measures of advice.

In the next definition we single out a large class of natural functions which
we will use as advice bounds in Theorem 4.4.11 below.

Definition 4.4.10 A monotone function 𝑘 : ℕ → ℕ is polynomially monotone
if there exists a polynomial 𝑝, such that for each 𝑚,𝑛 ∈ ℕ, 𝑚 ≥ 𝑝(𝑛) implies
𝑘(𝑚) > 𝑘(𝑛).

4.4. OPTIMAL PROOF SYSTEMS 43

Monotone polylogarithmic functions and monotone polynomials (non-
constant) are examples for polynomially monotone functions. If we consider
proof systems with a polynomially monotone amount of advice, then we obtain
p-optimal machines for each such class. This is the content of the next theorem
which we prove by the same technique as was used for Theorem 4.4.6.

Theorem 4.4.11 Let 𝐿 be any language and let 𝑘(𝑛) be a polynomially monotone
function. Then the class of all ps/𝑘 for 𝐿 has a 𝑝-optimal machine.

Proof. Fix 𝐿 and let 𝑘 be a function as above. Since 𝑘 is polynomially monotone
we can find a polynomial-time computable function ℓ : Σ∗ → 1∗ such that for
each 𝑥 ∈ Σ∗ we have 𝑘(∣ℓ(𝑥)∣) ≥ 𝑘(∣𝑥∣)+1. Moreover, we can choose the function
ℓ such that ℓ is injective on lengths, i.e., for all 𝑥, 𝑦 ∈ Σ∗, ∣ℓ(𝑥)∣ = ∣ℓ(𝑦)∣ implies
∣𝑥∣ = ∣𝑦∣. Let ∥⋅∥ be an encoding of deterministic polynomial-time clocked Turing
transducers by natural numbers. Without loss of generality we may assume that
every machine 𝑀 has running time ∣𝑥∣∥𝑀∥. Further, we need a polynomial-time
computable function ⟨⋅, ⋅, ⋅⟩ mapping triples of ℕ bijectively to ℕ.

We will construct a polynomial-time Turing machine 𝑃 which together with
the above advice selector function ℓ serves as a p-optimal machine for the class
of all ps/𝑘 for 𝐿. Let 𝑄 be a system from the class of all ps/𝑘 for 𝐿 with advice
function ℎ𝑄. By Proposition 4.1.2 we may assume that 𝑄 has input advice. First
we will define a polynomial-time computable function 𝑡𝑄 translating 𝑄-proofs
into 𝑃 -proofs and then we will describe how 𝑃 works. We set 𝑡𝑄(𝜋) = 𝜋1𝑚 where

𝑚 is determined from the equation 𝑚+ ∣𝜋∣ = ⟨∣𝜋∣ , 1∥𝑄∥, ∣𝜋∣∥𝑄∥⟩.
Now we define the machine 𝑃 : upon input 𝑥 we first compute the unique

numbers 𝑚1, 𝑚2, 𝑚3 such that ∣𝑥∣ = ⟨𝑚1,𝑚2,𝑚3⟩. Let 𝜋 = 𝑥1 . . . 𝑥𝑚1 be the first
𝑚1 bits of 𝑥. Then we determine the machine 𝑄 from the encoding ∣𝑚2∣ = ∥𝑄∥.
By the construction of ℓ, the machine 𝑃 receives at least one more bit of advice
than 𝑄. For the p-simulation of 𝑄, the machine 𝑃 uses the advice function
ℎ𝑃,𝑄(∣ℓ(𝑡𝑄(𝜋))∣) = Correct⌢ℎ𝑄(∣𝜋∣), where Correct is a bit certifying that under
the advice ℎ𝑄(∣𝜋∣), the machine 𝑄 encoded by ∣𝑚2∣ is indeed a correct proof
system for 𝐿 on proof length ∣𝜋∣. Because ℓ is injective on lengths, the bit Correct
can indeed refer to the correctness of 𝑄 on proof length ∣𝜋∣. Therefore, if the first
advice bit of 𝑃 is 1, 𝑃 simulates 𝑄 on input 𝜋 for 𝑚3 steps, where it passes the
last 𝑘(∣𝜋∣) advice bits of 𝑃 to 𝑄. Otherwise, if the first advice bit of 𝑃 is 0, 𝑃
outputs ⊤. Except for the first bit, 𝑃 receives the same advice as 𝑄. Further, the
machine 𝑃 p-simulates every ps/𝑘 𝑄 with input advice via the polynomial-time
computable function 𝑡𝑄. By Proposition 4.1.2, 𝑃 also p-simulates every general
ps/𝑘 for 𝐿. Thus, 𝑃 and ℓ yield a p-optimal machine. ⊓⊔

In a similar way we get:

Proposition 4.4.12 For each language 𝐿 and each constant 𝑘 ≥ 0 there exists
a machine 𝑃 using 𝑘+ 1 bits of input advice that p-simulates every proof system
for 𝐿 with 𝑘 bits of input advice.

44 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

Proof. The proof uses the same construction as in the proof of Theorem 4.4.11
where the last 𝑘 advice bits of the new machine 𝑃 are the advice bits for the
machine 𝑄 which we simulate if the first of the 𝑘 + 1 advice bits certifies that 𝑄
is correct, i.e., it only produces elements from 𝐿. ⊓⊔

Regarding the two previous results there remains the question whether for
constant 𝑘 the class of all general ps/𝑘 for a language 𝐿 also has a p-optimal
machine with exactly 𝑘 bits. Going back to the proof of Proposition 4.4.12, we
observe that the machine with 𝑘 + 1 advice bits, which p-simulates each ps/𝑘,
does not really need the full power of these 𝑘 + 1 bits, but in fact only needs
2𝑘 + 1 different advice strings. For 𝐿 = TAUT, assuming the existence of a p-
optimal proof system without advice, we can manage to reduce the amount of
the necessary advice to exactly 𝑘 bits, thus obtaining a p-optimal machine for
the class of all general ps/𝑘.

Theorem 4.4.13 Assume that there exists a p-optimal proof system for TAUT.
Then for each constant 𝑘 ≥ 1 the class of all ps/𝑘 for TAUT has a p-optimal
machine.

Proof. By Theorem 3.6.1 we know that the existence of p-optimal propositional
proof systems can be characterized as follows:

There exists a p-optimal propositional proof system if and only if there
exists a recursive enumeration 𝑀𝑖, 𝑖 ∈ ℕ, of deterministic polynomial-
time clocked Turing machines such that

1. for every 𝑖 ∈ ℕ we have 𝐿(𝑀𝑖) ⊆ TAUT and

2. for every polynomial-time decidable subset 𝐿 ⊆ TAUT there ex-
ists an index 𝑖 such that 𝐿 ⊆ 𝐿(𝑀𝑖).

Assume now that𝑀𝑖 is an enumeration of the easy subsets of TAUT as above.
For every proof system 𝑄 with 𝑘 bits of input advice we construct a sequence of
propositional formulas

Prf 𝑄𝑚,𝑛,𝑘(𝜋, 𝜑, 𝑎) ,

asserting that the computation of 𝑄 at input 𝜋 of length 𝑚 leads to the output 𝜑
of length 𝑛 under the 𝑘 advice bits of 𝑎. We also choose a propositional formula
Taut𝑛(𝜑) stating that the formula encoded by 𝜑 is a propositional tautology. As
𝑄 is a ps/𝑘 for TAUT, the formulas

Correct𝑄𝑚,𝑛,𝑘 = (∃𝑎)(∀𝜋, 𝜑)
(
Prf 𝑄𝑚,𝑛,𝑘(𝜋, 𝜑, 𝑎)→ Taut𝑛(𝜑)

)
are true quantified Boolean formulas for every 𝑛,𝑚 ≥ 0. Since the advice length
𝑘 is a constant, the quantifier (∃𝑎) can be replaced by a constant-size disjunction,
making it Π𝑞

1; by prenexing and stripping the universal quantifiers, we obtain a

4.5. APPLICATIONS TO PROMISE PROBLEMS 45

usual Boolean formula. Because the resulting formulas can be constructed in
polynomial time from 𝑄, there exists an index 𝑖 ∈ ℕ such that 𝑀𝑖 accepts the
set of propositional translations of {Correct𝑄𝑚,𝑛,𝑘 ∣ 𝑚,𝑛 ≥ 0}.

Now we construct a p-optimal machine 𝑃 with 𝑘 advice bits as follows: at
input 𝑥 we compute the unique numbers𝑚1, . . . ,𝑚5 such that ∣𝑥∣ = ⟨𝑚1, . . . ,𝑚5⟩.
As in the proof of Theorem 4.4.11, we set 𝜋 = 𝑥1 . . . 𝑥𝑚1 and ∥𝑄∥ = 𝑚2. The
machine 𝑃 then simulates 𝑄(𝜋) with its own 𝑘 advice bits for 𝑚3 steps. If
the simulation does not terminate, then 𝑃 outputs ⊤. Otherwise, let 𝜑 be the
output of this simulation. But before also 𝑃 can output 𝜑, we have to check
the correctness of 𝑄 for the respective input and output length. To do this, 𝑃
simulates the machine 𝑀𝑚4 on input Correct𝑄𝑚1,∣𝜑∣,𝑘 for at most 𝑚5 steps. If 𝑀𝑚4

accepts, then we output 𝜑, and ⊤ otherwise.
The advice which 𝑃 receives is the correct advice for 𝑄, in case that 𝑀𝑚4

certifies that such advice indeed exists. To show the p-optimality of 𝑃 , let
𝑄 be a ps/𝑘 for TAUT with input advice and let 𝑀𝑖 be the machine accept-
ing {Correct𝑄𝑚,𝑛,𝑘 ∣ 𝑚,𝑛 ≥ 0}. Then the system 𝑄 is p-simulated by the ma-
chine 𝑃 via the mapping 𝜋 �→ 𝜋1𝑚 where 𝑚 = ⟨∣𝜋∣, ∥𝑄∥, 𝑝(∣𝜋∣), 𝑖, 𝑝(ℓ)⟩ − ∣𝜋∣,
where 𝑝 is a polynomial bounding the running time of both 𝑀𝑖 and 𝑄, and
ℓ = max𝑖≤𝑝(∣𝜋∣)(∣Correct𝑄∣𝜋∣,𝑖,𝑘∣). ⊓⊔

4.5 Applications to Promise Problems

4.5.1 Hard Problems under Advice

Our next result shows that the relation between optimal proof systems and com-
plete sets for promise classes can be transferred to the advice setting. Thus we
derive from the optimal proof system with 1 bit of advice the following strong
information on complete problems in the presence of advice.

Theorem 4.5.1 Let C be a promise complexity class and let 𝐿 be a language
such that C is expressible in 𝐿 by a length-depending promise. Then C/1 contains
a problem (or function) using one bit of advice which is many-one hard for C.

Proof. We choose a polynomial-time computable and invertible tupling function
⟨⋅⟩ on Σ∗ which is injective on lengths, i.e., for all 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ Σ∗,
∣⟨𝑥1, . . . , 𝑥𝑛⟩∣ = ∣⟨𝑦1, . . . , 𝑦𝑛⟩∣ implies ∣𝑥𝑖∣ = ∣𝑦𝑖∣ for 𝑖 = 1, . . . , 𝑛.

We now define the problem (or function) 𝐴C with one advice bit which will
be many-one hard for C. Inputs are of the form

⟨𝑥, 0𝑁 , 0𝑚⟩
where 𝑥 is the input, 0𝑁 is the unary encoding of a Turing machine 𝑁 , and
0𝑚 is the time bound for 𝑁 . On such an input, 𝐴C first computes the string

46 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

corr(𝑥,𝑁, 0𝑚). Then 𝐴C uses its advice bit to verify whether or not corr(𝑥,𝑁, 0𝑚)
is in 𝐿 (for this step we could have also used the optimal proof system for 𝐿
with one bit of advice from Theorem 4.4.1). If corr(𝑥,𝑁, 0𝑚) ∈ 𝐿, then 𝐴C

simulates 𝑁 on input 𝑥 for at most 𝑚 steps and produces the corresponding
output (in case the simulation does not terminate it rejects or outputs some
fixed element). As ⟨⋅, . . . , ⋅⟩ is length injective and corr is length depending, the
element corr(𝑥,𝑁, 0𝑚) is uniquely determined by ∣⟨𝑥, 0𝑁 , 0𝑚⟩∣ and therefore the
advice bit of 𝐴C can in fact refer to corr(𝑥,𝑁, 0𝑚).

If 𝐴 is a problem (or function) from C and 𝑁 is a C-machine for 𝐴 with poly-
nomial running time 𝑝, then 𝐴 many-one reduces to 𝐴C via 𝑥 �→ ⟨𝑥, 0𝑁 , 0𝑝(∣𝑥∣)⟩.
Hence 𝐴C is many-one hard for C. ⊓⊔

Let us state a concrete application of this general result. There are many
reductions for disjoint NP-pairs (cf. [GSS05]). The strongest of these, defined in
[KMT03], is the following version of a many-one reduction. Let (𝐴,𝐵) and (𝐶,𝐷)
be disjoint NP-pairs. Then (𝐴,𝐵) strongly many-one reduces to (𝐶,𝐷) if there
exists a polynomial-time computable function 𝑓 such that 𝑓(𝐴) ⊆ 𝐶, 𝑓(𝐵) ⊆ 𝐷,
and 𝑓(𝐴 ∪𝐵) ⊆ 𝐶 ∪𝐷. As disjoint NP-pairs are expressible in TAUT by a
length-depending promise [Bey07], we obtain:

Corollary 4.5.2 There exist a disjoint pair (𝐴,𝐵) and a sequence (𝑎𝑛)𝑛∈ℕ with
the following properties:

1. 𝐴 and 𝐵 are computable in nondeterministic polynomial time with advice
𝑎𝑛 for inputs of length 𝑛.

2. The set {⟨𝑎𝑛, 0𝑛⟩ ∣ 𝑛 ∈ ℕ } is computable in coNP.

3. Every disjoint NP-pair is strongly many-one reducible to (𝐴,𝐵).

4.5.2 Hard Problems under a Tally NP-Oracle

We now show that for promise classes with a coNP-promise, instead of using
advice it also suffices to use a weak oracle to obtain similar results as in the
previous section.

Recall that a set 𝐴 ⊆ Σ∗ is sparse if there exists a polynomial 𝑝 such that for
each 𝑛 ∈ ℕ, ∣𝐴∩Σ𝑛∣ ≤ 𝑝(𝑛). A sparse set 𝐴 is called tally if 𝐴 ⊆ {1𝑛 ∣ 𝑛 ∈ ℕ}. We
denote the set of all sparse and tally sets by Sparse and Tally, respectively. Sparse
NP-sets appear to be very weak if used as oracles. For instance, TAUT ∕∈ NP𝑆

with a sparse NP-oracle 𝑆, unless the polynomial hierarchy collapses to its second
level [Kad89].

Theorem 4.5.3 Let C be a promise language (or function) class which is repre-
sentable in some language from coNP. Then exists a tally NP-oracle 𝐴 such that
C𝐴 contains a language (or function) which is many-one hard for C.

4.5. APPLICATIONS TO PROMISE PROBLEMS 47

Proof. As in the proof of Theorem 4.5.1 we choose a polynomial-time computable
tupling function ⟨⋅, . . . , ⋅⟩ which is injective on lengths.

The oracle set 𝐴 now contains all machines which violate the promise condi-
tion on some given length, i.e.,

𝐴 = { ⟨1𝑁 , 1𝑛, 1𝑡⟩ ∣ 𝑁, 𝑛, 𝑡 ∈ ℕ, 𝑁 is a nondeterministic Turing machine and

there exists some 𝑥 ∈ Σ𝑛 such that corr(𝑥,𝑁, 1𝑡) ∕∈ 𝐿 } ,

where 𝐿 is the coNP-set in which the promise of C is expressible.
By definition, the set 𝐴 is tally. Let us verify that 𝐴 ∈ NP. Because of

the length injectivity of the tupling function, a number 𝑚 ∈ ℕ already uniquely
determines the tuple ⟨1𝑁 , 1𝑛, 1𝑡⟩ with ∣⟨1𝑁 , 1𝑛, 1𝑡⟩∣ = 𝑚. Therefore, on input 1𝑚

we can first determine the entries 𝑁, 𝑛, 𝑡 and then verify that 𝑁 indeed encodes
a nondeterministic Turing machine. Next we guess a string 𝑥 ∈ Σ𝑛 and compute
corr(𝑥,𝑁, 1𝑡). As 𝐿 ∈ coNP, we can check corr(𝑥,𝑁, 1𝑡) ∕∈ 𝐿 in nondeterministic
polynomial time.

The hard set for C will now contain elements ⟨1𝑁 , 𝑥, 1𝑡⟩. On such input, we
first query the string ⟨1𝑁 , 1∣𝑥∣, 1𝑡⟩ to the oracle 𝐴. If the answer is negative,
then we simulate 𝑀 on input 𝑥 for at most 𝑡 steps and answer according to the
output of this simulation. If the answer is positive or if the simulation does not
terminate in 𝑡 steps, then we reject. It is easy to verify that this yields a hard
set (or function) for C. ⊓⊔

As disjoint NP-pairs have a coNP-promise (cf. [Bey07]), we obtain:

Corollary 4.5.4 There exists a strongly many-one hard disjoint NP-pair under
a tally NP-oracle, i.e., there exists a tally set 𝐴 ∈ NP and a disjoint pair (𝐶1, 𝐶2)
such that the following holds:

1. the components 𝐶1 and 𝐶2 are computable in NP𝐴 with only one query to
the oracle 𝐴, and

2. every disjoint NP-pair strongly many-one reduces to (𝐶1, 𝐶2).

It is known that there is a close connection between disjoint NP-pairs and
functions from NPSV, single-valued functions computable in nondeterministic
polynomial time (cf. [Sel94, BKM09, GSSZ04] for definitions and background
information). Using this correspondence we can formulate Corollary 4.5.4 differ-
ently as:

Corollary 4.5.5 There exists a tally NP-set 𝐴 and a function 𝑓 ∈ NPSV𝐴 such
that every function from NPSV is many-one reducible to 𝑓 .

From Theorem 4.5.4 we also get a sufficient condition for the existence of
complete disjoint NP-pairs:

48 CHAPTER 4. PROOF SYSTEMS THAT TAKE ADVICE

Corollary 4.5.6 If NP = NPNP∩Tally, then there exist ≤𝑠-complete disjoint NP-
pairs.

We can rephrase this corollary using the notion of low sets from [Sch83].
Recall that a set 𝐴 ∈ NP is low for the 𝑛th level Σp

n of the polynomial hierarchy if
(Σp

n)
𝐴 ⊆ Σp

n. Intuitively, if a set 𝐴 is low for Σ
p
n, then 𝐴 is useless as an oracle for

the class Σp
n. All sets 𝐴 ∈ NP which are low for Σp

n are collected in the 𝑛th level
Ln of the low hierarchy. Using this terminology, we can express Corollary 4.5.6
differently as:

Corollary 4.5.7 If NP ∩ Tally ⊆ L1, then there exist ≤𝑠-complete disjoint NP-
pairs.

Whether or not NP ∩ Tally ⊆ L1 is open, but Ko and Schöning [KS85] have
shown that NP ∩ Sparse ⊆ L2.

Chapter 5

Proof Systems with Advice and
Bounded Arithmetic

”
Seid doch nicht so frech, Epigramme!“ Warum nicht? Wir sind nur
Überschriften; die Welt hat die Kapitel des Buchs.

Johann Wolfgang Goethe, Venezianische Epigramme

There is a deep and fruitful connection between propositional proofs and weak
subsystems of Peano arithmetic, called bounded arithmetic (cf. Kraj́ıček’s mono-
graph [Kra95] and the new book of Cook and Nguyen [CN10] on the subject).
This connection also holds in the presence of advice and was the main motivation
of Cook and Kraj́ıček [CK07] for their investigation. The connection extends to
classical problems in computational complexity, and, in fact, between each two of
the three fields of propositional proof complexity, bounded arithmetic, and com-
putational complexity there exist strong relations, we refer again to [Kra95, CN10]
for a detailed account of these beautiful connections.

In this chapter we will first give an example of the link between computational
complexity and bounded arithmetic. This link works in both directions, as we
employ complexity-theoretic techniques in bounded arithmetic and obtain in this
way a result in bounded arithmetic (a Karp-Lipton collapse result as already
briefly mentioned in Section 3.3) which again sheds light on open problems in
computational complexity. In our analysis, there is an underlying connection to
proof systems with advice, but this is not very visible at first sight. We will
comment and explain on this connection at the end of this chapter in Section 5.5.

49

50 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

5.1 A Strong Karp-Lipton Collapse Result in

Bounded Arithmetic

The classical Karp-Lipton Theorem states that NP ⊆ P/poly implies a collapse
of the polynomial hierarchy PH to its second level [KL80]. Subsequently, these
collapse consequences have been improved by Köbler and Watanabe [KW98] to
ZPPNP and by Sengupta and Cai to Sp2 (cf. [Cai07]). This currently forms the
strongest known collapse result of this kind.

Recently, Cook and Kraj́ıček [CK07] have considered the question which col-
lapse consequences can be obtained if the assumption NP ⊆ P/poly is provable in
some weak arithmetic theory. This assumption seems to be stronger than in the
classical Karp-Lipton results, because in addition to the inclusion NP ⊆ P/poly
we require an easy proof for it. In particular, Cook and Kraj́ıček showed that if
NP ⊆ P/poly is provable in PV , then PH collapses to the Boolean hierarchy BH,
and this collapse is provable in PV . For stronger theories, the collapse conse-
quences become weaker. Namely, if PV is replaced by 𝑆1

2 , then PH ⊆ PNP[𝑂(log𝑛)],
and for 𝑆2

2 one gets PH ⊆ PNP [CK07]. Still all these consequences are presum-
ably stronger than in Sengupta’s result above, because PNP ⊆ Sp2. The situation
is summarized in Table 5.1.

Cook and Kraj́ıček [CK07] ask whether under the above assumptions, their
collapse consequences for PH are optimal in the sense that also the converse
implications hold. Here we give an affirmative answer to this question for the
theory PV . Thus PV proves NP ⊆ P/poly if and only if PV proves PH ⊆ BH.
To show this result we use the assertion coNP ⊆ NP/𝑂(1) as an intermediate
assumption. Surprisingly, Cook and Kraj́ıček [CK07] have shown that provability
of this assumption in PV is equivalent to the provability of NP ⊆ P/poly in PV .
While such a trade-off between nondeterminism and advice seems rather unlikely
to hold unconditionally, Buhrman, Chang, and Fortnow [BCF03] proved that
coNP ⊆ NP/𝑂(1) holds if and only if PH collapses to BH. Their proof in [BCF03]
refines the hard/easy argument of Kadin [Kad88]. We formalize this technique in
PV and thus obtain that coNP ⊆ NP/𝑂(1) is provable in PV if and only if PV
proves PH ⊆ BH. Combined with the mentioned results of Cook and Kraj́ıček
[CK07], this implies that PV ⊢ PH ⊆ BH is equivalent to PV ⊢ NP ⊆ P/poly.

Let us remark that this result can also be obtained in a less direct way by
combining results of Zambella [Zam96] with recent advances of Jeřábek [Jeř09].

Table 5.1: Stronger assumptions yield stronger Karp-Lipton collapses

PH collapses to BH ⊆ PNP[𝑂(log)] ⊆ PNP ⊆ Sp2

in the theory PV 𝑆1
2 𝑆2

2 𝑍𝐹𝐶

5.2. REPRESENTING COMPLEXITY CLASSES 51

The alternative argument proceeds as follows: By a result of Zambella [Zam96]
(cf. Theorem 5.3.2), if PV proves PH ⊆ BH, then Buss’ hierarchy of arithmetic
theories 𝑆2 collapses to PV . Recently, Jeřábek [Jeř09] proved that the assumption
𝑆2 = PV implies that PV ⊢ coNP ⊆ NP/𝑂(1). Using the above mentioned result
by Cook and Kraj́ıček [CK07] it follows that 𝑃𝑉 ⊢ NP ⊆ P/𝑝𝑜𝑙𝑦.

Comparing the two proofs, let us mention that Jeřábek’s proof yields a more
general result as it also holds for higher levels of the polynomial hierarchy (namely,
if 𝑇 𝑖

2 proves that the polynomial hierarchy collapses to the Boolean hierarchy
over Σp

i+1, then 𝑇
𝑖
2 proves Σ

p
i+1 ⊆ Δp

i+1/poly, cf. [Jeř09]). On the other hand,
Jeřábek’s result is reached via a new sophisticated and quite elaborate technique
called ”approximate counting by hashing”, whereas our direct proof for the base
case 𝑖 = 0 is conceptually much more straightforward (it also uses the mentioned
result of Zambella, though).

In addition, using Jeřábek’s result one can even obtain the consequence 𝑃𝑉 ⊢
NP ⊆ P/𝑝𝑜𝑙𝑦 under the assumption PV ⊢ PH ⊆ Σp

2, which at first sight seems to
be weaker than PV ⊢ PH ⊆ BH. This is so, because Zambella [Zam96] actually
establishes PV ⊢ PH ⊆ Σp

2 as a sufficient condition for the collapse 𝑆2 = PV .
Thus we conclude that PV proves PH ⊆ BH if and only if PV proves PH ⊆ Σp

2.
This is interesting, as such a result is not known to hold without reference to
bounded arithmetic.

In summary, combining our results with previous results from [CK07, Jeř09,
Zam96], we obtain that provability in PV of each of the following four things is
equivalent to the other three:

1. NP ⊆ P/𝑝𝑜𝑙𝑦,

2. coNP ⊆ NP/𝑂(1),

3. PH = BH, and

4. PH = Σ𝑝2.

5.2 Representing Complexity Classes by

Bounded Formulas

The relations between computational complexity and bounded arithmetic are
rich and varied, and we refer to [Kra95, CN10] for background information. Here
we will use the two-sorted formulation of arithmetic theories [Coo05, CN10]. In
this setting we have two sorts: numbers and finite sets of numbers, which are
interpreted as strings. Number variables will be denoted by lower case letters
𝑥, 𝑦, 𝑛, . . . and string variables by upper case letters 𝑋, 𝑌, . . . The two-sorted
vocabulary includes the symbols +, ⋅,≤, 0, 1, and the function ∣𝑋∣ for the length
of strings.

52 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

Our central arithmetic theory will be the theory VPV , which is the two-sorted
analogue of Cook’s PV [Coo75]. In addition to the above symbols, the language
of VPV contains names for all polynomial-time computable functions (where the
running time is measured in terms of the length of the inputs with numbers coded
in unary). The theory VPV is axiomatized by definitions for all these functions
as well as by the number induction scheme for open formulas.

Bounded quantifiers for strings are of the form (∀𝑋 ≤ 𝑡)𝜑 and (∃𝑋 ≤ 𝑡)𝜑,
abbreviating (∀𝑋)(∣𝑋∣ ≤ 𝑡 → 𝜑) and (∃𝑋)(∣𝑋∣ ≤ 𝑡 ∧ 𝜑), respectively (where
𝑡 is a number term not containing 𝑋). We use similar abbreviations for =
instead of ≤. By counting alternations of quantifiers, a hierarchy Σ𝐵𝑖 , Π𝐵

𝑖 of
bounded formulas is defined. The first level Σ𝐵1 contains formulas of the type
(∃𝑋1 ≤ 𝑡1) . . . (∃𝑋𝑘 ≤ 𝑡𝑘)𝜑 with only bounded number quantifiers occurring in
𝜑. Similarly, Π𝐵

1 -formulas are of the form (∀𝑋1 ≤ 𝑡1) . . . (∀𝑋𝑘 ≤ 𝑡𝑘)𝜑.
As we want to investigate the provability of various complexity-theoretic as-

sumptions in arithmetic theories, we need to formalize complexity classes within
bounded arithmetic. To this end we associate with each complexity class C a
class of arithmetic formulas ℱC. The formulas ℱC describe C, in the sense that
for each 𝐴 ⊆ Σ∗ we have 𝐴 ∈ C if and only if 𝐴 is definable by an ℱC-formula
𝜑(𝑋) with a free string variable 𝑋.

It is well known that Σ𝐵1 -formulas describe NP-sets in this sense, and this
connection extends to the formula classes Σ𝐵𝑖 and Π

𝐵
𝑖 and the respective levels

Σp
i and Πp

i of the polynomial hierarchy. Given this connection, we can model the
levels BH𝑘 of the Boolean hierarchy by formulas of the type

𝜑1(𝑋) ∧ ¬(𝜑2(𝑋) ∧ . . .¬(𝜑𝑘−1(𝑋) ∧ ¬𝜑𝑘(𝑋)) . . .) (5.1)

with Σ𝐵1 -formulas 𝜑1, . . . , 𝜑𝑘.
Another way to speak about complexity classes in arithmetic theories is to con-

sider complete problems for the respective classes. For the satisfiability problem
SAT we can build an open formula Sat(𝑇,𝑋), stating that 𝑇 codes a satisfying
assignment for the propositional formula coded by 𝑋. In VPV we can prove
that (∃𝑇 ≤ ∣𝑋∣) Sat(𝑇,𝑋) is NP-complete, in the sense that every Σ𝐵1 -formula 𝜑
is provably equivalent to (∃𝑇 ≤ 𝑡(∣𝑋∣) Sat(𝑇, 𝐹𝜑(𝑋)) for some polynomial-time
computable function 𝐹𝜑 and an appropriate number term 𝑡.

Using this fact, we can express the classes BH𝑘 in VPV equivalently as:

Lemma 5.2.1 For every formula 𝜑 describing a language from BH𝑘 as in (5.1)
there is a polynomial-time computable function 𝐹 : Σ∗ → (Σ∗)𝑘 such that VPV
proves the equivalence of 𝜑 and

(∃𝑇1, 𝑇3, . . . , 𝑇2⋅⌊𝑘/2⌋+1 ≤ 𝑡)(∀𝑇2, 𝑇4, . . . , 𝑇2⋅⌊𝑘/2⌋ ≤ 𝑡)

(. . . ((Sat(𝑇1, 𝜋1(𝐹 (𝑋))) ∧ ¬Sat(𝑇2, 𝜋2(𝐹 (𝑋))))

∨Sat(𝑇3, 𝜋3(𝐹 (𝑋)))) ∧ ⋅ ⋅ ⋅ ∧𝑘 ¬𝑘+1Sat(𝑇𝑘, 𝜋𝑘(𝐹 (𝑋))))

(5.2)

5.3. THE KARP-LIPTON COLLAPSE RESULT IN VPV 53

where ∧𝑘 = ∧ if 𝑘 is even and ∨ otherwise, ¬𝑘 = ¬ . . .¬ (𝑘-times), and 𝑡 is a
number term bounding ∣𝐹 (𝑋)∣. We will abbreviate (5.2) by 𝐵𝐿𝑘(𝐹 (𝑋)).

Similarly, we can define the class P
NP[𝑘]
𝑡𝑡 by all formulas of the type

(∃𝑇1 . . . 𝑇𝑘 ≤ 𝑡)(Sat(𝑇1, 𝐹1(𝑋)) ∧ ⋅ ⋅ ⋅ ∧ Sat(𝑇𝑘, 𝐹𝑘(𝑋)) ∧ 𝜑1(𝑋)) ∨ ⋅ ⋅ ⋅ ∨
(∀𝑇1 . . . 𝑇𝑘 ≤ 𝑡)(¬Sat(𝑇1, 𝐹1(𝑋)) ∧ ⋅ ⋅ ⋅ ∧ ¬Sat(𝑇𝑘, 𝐹𝑘(𝑋)) ∧ 𝜑2𝑘(𝑋))

(5.3)

where 𝜑1, . . . , 𝜑2𝑘 are open formulas, 𝐹1, . . . , 𝐹𝑘 are polynomial-time computable
functions, and 𝑡 is a number term bounding ∣𝐹𝑖(𝑋)∣ for 𝑖 = 1, . . . , 𝑘. In (5.3),
every combination of negated and unnegated Sat-formulas appears in the dis-
junction.

With these arithmetic representations we can prove inclusions between com-
plexity classes in arithmetic theories. Let A and B be complexity classes repre-
sented by the formula classes 𝒜 and ℬ, respectively. Then we use VPV ⊢ 𝒜 ⊆ ℬ
to abbreviate that for every formula 𝜑𝒜 ∈ 𝒜 there exists a formula 𝜑ℬ ∈ ℬ, such
that VPV ⊢ 𝜑𝒜(𝑋)↔ 𝜑ℬ(𝑋).

In the following, we will use the same notation for complexity classes and their
respective representations. Hence we can write statements like VPV ⊢ PH ⊆ BH,
with the precise meaning explained above. For example, using Lemma 5.2.1 it is
straightforward to verify:

Lemma 5.2.2 For every number 𝑘 we have VPV ⊢ BH𝑘 ⊆ P
NP[𝑘]
𝑡𝑡 .

Finally, we will consider complexity classes that take advice. Let 𝒜 be a class
of formulas. For a constant 𝑘 ≥ 0, VPV ⊢ 𝒜 ⊆ NP/𝑘 abbreviates that, for every
𝜑 ∈ 𝒜 there exist Σ𝐵1 -formulas 𝜑1, . . . , 𝜑2𝑘 , such that

VPV ⊢ (∀𝑛)
⋁

1≤𝑖≤2𝑘

(∀𝑋) (∣𝑋∣ = 𝑛→ (𝜑(𝑋)↔ 𝜑𝑖(𝑋))) . (5.4)

Similarly, using the self-reducibility of SAT, we can formalize the assertion
VPV ⊢ NP ⊆ P/𝑝𝑜𝑙𝑦 as

VPV ⊢ (∀𝑛)(∃𝐶 ≤ 𝑡(𝑛))(∀𝑋 ≤ 𝑛)(∀𝑇 ≤ 𝑛)(Sat(𝑇,𝑋)→ Sat(𝐶(𝑋), 𝑋))

where 𝑡 is a number term and 𝐶(𝑋) is a term expressing the output of the circuit
𝐶 on input 𝑋 (cf. [CK07]).

5.3 The Karp-Lipton Collapse Result in VPV

In this section we will prove that, in VPV , the Karp-Lipton collapse PH ⊆ BH
of Cook and Kraj́ıček [CK07] is optimal in the sense that VPV ⊢ NP ⊆ P/poly is
equivalent to VPV ⊢ PH ⊆ BH. We will use Theorem 3.3.2 of Buhrman, Chang,
and Fortnow [BCF03]. For convenience we state Theorem 3.3.2 again:

54 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

Theorem 5.3.1 (Buhrman, Chang, Fortnow [BCF03]) For every constant
𝑘 we have coNP ⊆ NP/𝑘 if and only if PH ⊆ BH2𝑘 .

While the forward implication of this result is comparatively easy and was
shown to hold relative to VPV by Cook and Kraj́ıček [CK07], the backward
implication was proven in [BCF03] by a sophisticated hard/easy argument. In
the sequel, we will formalize this argument in VPV , thereby answering a question
of Cook and Kraj́ıček [CK07], who asked whether VPV ⊢ PH ⊆ BH already
implies VPV ⊢ coNP ⊆ NP/𝑂(1).

The assumption of a provable collapse of PH to BH also allows us to use
stronger tools in our arguments than are known to be available in VPV .

Theorem 5.3.2 (Zambella [Zam96]) If PV ⊢ PH ⊆ BH, then PV = 𝑆2.

This enables us to use the bounded replacement principle and bounded mini-
mization properties which are presumably not available in VPV . The bounded
replacement principle implies that each Σ𝐵𝑖 class, defined in terms of alternating
bounded string quantifiers, is up to provable equivalence closed under bounded
number quantifiers (here we only need this for Σ𝐵1 , so we only require Σ

𝐵
1 or equiv-

alently Σ𝐵0 replacement, cf. [CN10]). The bounded minimization principle states
that if a bounded property is ever satisfied, then there exists a lexicographically
minimal satisfying element. We will frequently make use of these principles and
their consequences later on.

Assuming VPV ⊢ PH ⊆ BH, we claim that there is some constant ℓ such that
VPV ⊢ PH ⊆ BHℓ. This follows, because PH ⊆ BH implies PH = BH = Σp

2.
Therefore every problem in PH can be reduced to a fixed Σp

2-complete problem.
Since this problem is contained in some level BHℓ of BH, it can be reduced to an
appropriate BHℓ-complete problem as well. Thus PH ⊆ BHℓ.

Therefore, BHℓ is provably closed under complementation in VPV , i.e., there
exists a polynomial-time computable function ℎ such that

VPV ⊢ 𝐵𝐿ℓ(𝑋1, . . . , 𝑋ℓ)↔ ¬𝐵𝐿ℓ(ℎ(𝑋1, . . . , 𝑋ℓ)) . (5.5)

Given such a function ℎ, we define the notion of a hard sequence. This concept
was defined by Chang and Kadin [CK96] as a generalization of the notion of hard
strings from [Kad88]. Hard strings were first used to show that BH ⊆ Dp implies
a collapse of PH [Kad88].

Definition 5.3.3 Let ℎ be a polynomial-time computable function satisfying
(5.5). A sequence �̄� = (𝑥1, . . . , 𝑥𝑟) of strings is a hard sequence of order 𝑟 for
length 𝑛, if 𝑥1, . . . , 𝑥𝑟 are unsatisfiable formulas of length 𝑛, and for all (ℓ − 𝑟)-
tuples �̄� of formulas of length 𝑛, the formula 𝜋ℓ−𝑟+𝑖(ℎ(�̄�, �̄�)) is unsatisfiable for
each 𝑖 = 1, . . . , 𝑟.

A hard sequence �̄� of order 𝑟 for length 𝑛 is not extendable if, for every
unsatisfiable formula 𝑥 of length 𝑛 the sequence 𝑥⌢�̄� is not hard. Finally, a
maximal hard sequence is a hard sequence of maximal order.

5.3. THE KARP-LIPTON COLLAPSE RESULT IN VPV 55

Maximal hard sequences are obviously not extendable. Note that by definition,
the empty sequence is a hard sequence for every length.

To use this definition in VPV , we have to formalize the notions of hard
sequences, non-extendable hard sequences, and maximal hard sequences by
bounded predicates HS , NEHS , and MaxHS , respectively.

Definition 5.3.4 Let VPV ⊢ 𝐵𝐿ℓ(�̄�) ↔ ¬𝐵𝐿ℓ(ℎ(�̄�)) for some polynomial-
time computable function ℎ and every ℓ-tuple �̄� of strings.

For 𝑟-tuples 𝑋 of strings of length 𝑛, the following predicate HS ℓ(𝑋;𝑛, 𝑟)
expresses that 𝑋 is a hard sequence. HS ℓ(𝑋;𝑛, 𝑟) is defined as

(∀𝑖 < 𝑟)(∀𝑇 ≤ 𝑛)¬Sat(𝑇, 𝜋𝑖+1(𝑋)) ∧
(∀𝑈 ∈ (Σ𝑛)ℓ−𝑟)(∀𝑖 < 𝑟)(∀𝑇 ≤ 𝑛)(¬Sat(𝑇, 𝜋ℓ−𝑟+𝑖+1(ℎ(𝑈,𝑋)))) .

Similarly, we formalize non-extendable hard sequences by the following predi-
cate NEHS ℓ(𝑋;𝑛, 𝑟), defined as

HS ℓ(𝑋;𝑛, 𝑟) ∧ (∀𝑆 = 𝑛)¬HS ℓ(𝑆
⌢𝑋;𝑛, 𝑟 + 1) .

Finally, maximal hard sequences are expressed via the following bounded for-
mula MaxHS ℓ(𝑋;𝑛, 𝑟)

HS ℓ(𝑋;𝑛, 𝑟) ∧ (∀𝑆 ∈ (Σ𝑛)𝑟+1)¬HS ℓ(𝑆;𝑛, 𝑟 + 1) .

We remark that HS ℓ is a Π
𝐵
1 -predicate, while NEHS ℓ and MaxHS ℓ are Π

𝐵
2 -

formulas. Maximal hard sequences allow us to define the unsatisfiability of propo-
sitional formulas by a Σ𝐵1 -formula, as stated in the following lemma.

Lemma 5.3.5 Let ℎ be a polynomial-time computable function which for some
constant ℓ satisfies (5.5). Then VPV proves the formula

(∀𝑛)(∀𝑋 = 𝑛)(∀𝑟 < ℓ)(∀𝐻 ∈ (Σ𝑛)ℓ−𝑟−1) (MaxHS ℓ(𝐻;𝑛, ℓ− 𝑟 − 1)→
[(∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋)↔ (∃𝑇 ≤ 𝑛)(∃𝑈 ∈ (Σ𝑛)𝑟)Sat(𝑇, 𝜋𝑟+1(ℎ(𝑈,𝑋,𝐻)))]) .

Proof. We will argue in the theory VPV . Let 𝐻 ∈ (Σ𝑛)ℓ−𝑟−1 be given such that
MaxHS (𝐻;𝑛, ℓ− 𝑟 − 1) is fulfilled. Assume (∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋). Then

(∀𝑇 ≤ 𝑛)(∀𝑈 ∈ (Σ𝑛)𝑟)¬Sat(𝑇, 𝜋𝑟+1(ℎ(𝑈,𝑋,𝐻)))

implies ¬NEHS (𝐻;𝑛, ℓ− 𝑟− 1), which in turn implies ¬MaxHS (𝐻;𝑛, ℓ− 𝑟− 1).
Thus it holds that

(∃𝑇 ≤ 𝑛)(∃𝑈 ∈ (Σ𝑛)𝑟)Sat(𝑇, 𝜋𝑟+1(ℎ(𝑈,𝑋,𝐻))) . (5.6)

56 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

On the other hand, assume that (5.6) holds. Then we obtain

(∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋)

from 𝐵𝐿ℓ(𝑋1, . . . , 𝑋ℓ) ↔ ¬𝐵𝐿ℓ(ℎ(𝑋1, . . . , 𝑋ℓ)) in a straightforward calculation
showing that by the maximality of 𝐻, the formula 𝑋 cannot be satisfiable if
𝜋𝑟+1(ℎ(𝑈,𝑋,𝐻)) is. ⊓⊔

By the preceding lemma, given maximal hard sequences we can describe Π𝐵
1 -

formulas by Σ𝐵1 -formulas. Most of the proof of the main theorem (Theorem 5.3.8)
will go into the construction of such sequences. As we want to use a similar
technique as in Theorem 3.3.2, we will now only consider levels of the Boolean
hierarchy that are powers of 2. Thus we assume that ℓ = 2𝑘 for some 𝑘. It will
turn out that, assuming VPV ⊢ PH ⊆ BH2𝑘 , we can construct 2

𝑘 Σ𝐵1 -formulas,
whose disjunction decides the elements of a maximal hard sequence as in (5.4).

Therefore our aim is to give an NP/𝑘 definition of a maximal hard sequence.
We will give such a definition for a bitwise encoding of a maximal hard sequence
below.

Definition 5.3.6 Let ℎ be a polynomial-time computable function which for some
constant ℓ = 2𝑘 satisfies (5.5). We define the predicate HardSeqBitsℓ,1(⟨1𝑛, 𝑖⟩) by

(∃𝐻 ∈ (Σ𝑛)<ℓ)[MaxHS ℓ(𝐻;𝑛, ∣𝐻∣)∧
(∀𝑆 ∈ (Σ𝑛)<ℓ)(MaxHS ℓ(𝑆;𝑛, ∣𝑆∣)→ ⟨𝐻⟩ ≤𝑙𝑒𝑥 ⟨𝑆⟩) ∧ 𝜋∗

𝑖 (⟨𝐻⟩) = 1] .

Here ≤𝑙𝑒𝑥 denotes the lexicographic ordering on the strings.
Analogously we define HardSeqBitsℓ,0(⟨1𝑛, 𝑖⟩) with a 0 substituted for the 1 in

the last line of the above formula.

Informally, HardSeqBitsℓ,1(⟨1𝑛, 𝑖⟩) holds, if the 𝑖𝑡ℎ bit of the encoding of the
lexically smallest maximal hard sequence for length 𝑛 is 1. HardSeqBitsℓ,0(⟨1𝑛, 𝑖⟩)
holds, if the 𝑖𝑡ℎ bit of the encoding of the lexically smallest maximal hard sequence
for length 𝑛 is 0. Observe that we need the Π𝐵

2 minimization principle, as stated
after Theorem 5.3.2, to prove the existence of such a minimal 𝐻. Let 𝑠ℓ(𝑛) be
a number term such that sequences with at most ℓ elements from Σ𝑛 are coded
by strings of size ≤ 𝑠ℓ(𝑛) via the tupling function ⟨⋅⟩. We choose this function in
such a way that for all bit positions 1 ≤ 𝑖, 𝑗 ≤ 𝑠ℓ(𝑛) we get ∣⟨1𝑛, 𝑖⟩∣ = ∣⟨1𝑛, 𝑗⟩∣.
Thus the length of ⟨1𝑛, 𝑖⟩ only depends on 𝑛.
Lemma 5.3.7 For every 𝑘, 𝑛, and 𝑖, if VPV ⊢ PH ⊆ BH2𝑘 , then

VPV ⊢ HardSeqBits2𝑘,1(⟨1𝑛, 𝑖⟩) ∈ NP/𝑘 .

The same holds for HardSeqBits2𝑘,0.

5.3. THE KARP-LIPTON COLLAPSE RESULT IN VPV 57

Proof. We will only argue for HardSeqBits2𝑘,1 as the proof for HardSeqBits2𝑘,0 fol-
lows along the same lines. As HardSeqBits2𝑘,1 is definable by a bounded formula,
the assumption VPV ⊢ PH ⊆ BH2𝑘 together with Lemma 5.2.2 guarantees that

the predicate HardSeqBits2𝑘,1(⟨1𝑛, 𝑖⟩) is VPV -provably equivalent to the P
NP[2𝑘]
𝑡𝑡 -

formula

(∃𝑇1 . . . 𝑇2𝑘 ≤ 𝑡ℓ(𝑛))

[Sat(𝑇1, 𝐹1(⟨1𝑛, 𝑖⟩)) ∧ ⋅ ⋅ ⋅ ∧ Sat(𝑇2𝑘 , 𝐹2𝑘(⟨1𝑛, 𝑖⟩)) ∧ 𝜑1(⟨1𝑛, 𝑖⟩)] ∨
...

(∀𝑇1 . . . 𝑇2𝑘 ≤ 𝑡ℓ(𝑛))

[¬Sat(𝑇1, 𝐹1(⟨1𝑛, 𝑖⟩)) ∧ ⋅ ⋅ ⋅ ∧ ¬Sat(𝑇2𝑘 , 𝐹2𝑘(⟨1𝑛, 𝑖⟩)) ∧ 𝜑22𝑘
(⟨1𝑛, 𝑖⟩)] ,

(5.7)

for appropriate polynomial-time computable functions 𝐹1, . . . , 𝐹2𝑘 , open formulas
𝜑1, . . . , 𝜑22𝑘

, and the VPV -number term 𝑡ℓ(𝑛) = ∣𝐹1(⟨1𝑛, 1⟩)∣. By padding and
because ∣⟨1𝑛, 𝑖⟩∣ is already determined by 𝑛, we can choose the 𝐹𝑗 in such a way
that the size of the formulas 𝐹𝑗(⟨1𝑛, 𝑖⟩) is also determined by 𝑛. Thus every
formula 𝐹𝑗(⟨1𝑛, 𝑖⟩) is of size 𝑡ℓ(𝑛).

Our goal is to find Σ𝐵1 -formulas 𝜓
0
HSB ,1, . . . , 𝜓

2𝑘−1
HSB ,1, such that for every 𝑛 there

is a 𝑧, such that for every 𝑖, HardSeqBits2𝑘,1(⟨1𝑛, 𝑖⟩)↔ 𝜓𝑧HSB ,1(⟨1𝑛, 𝑖⟩). Let Φ be
the set of all formulas 𝐹𝑗(⟨1𝑛, 𝑖⟩) where 𝑖, 𝑛 ≥ 0 and 1 ≤ 𝑗 ≤ 2𝑘. Since we
have to evaluate the Sat-formulas only for arguments from Φ, by the proof of
Lemma 5.3.5 it suffices to consider only sequences 𝐻 with elements from Φ. The
parameter 𝑧 in the formulas 𝜓𝑧HSB ,1 will be the order of a maximal hard sequence
for length 𝑛, if we only allow formulas from Φ in the sequence.

Let now 𝑛 be given and let 𝐻 be a tuple of sequences with elements from Φ.
Assume further that 𝐻 contains a hard sequence of order 𝑧. Then we can give a
Σ𝐵1 -formula 𝜓

𝑧
HB ,1(⟨1𝑛, 𝑖⟩, 𝐻) that is VPV -equivalent to HardSeqBits2𝑘,1(⟨1𝑛, 𝑖⟩)

for every 𝑖 of suitable length by 𝜓𝑧HB ,1(⟨1𝑛, 𝑖⟩, 𝐻) =def

(∃𝐼 = 2𝑘)(∀𝑖𝐻 ≤ ∣𝐻∣)((∣𝜋𝑖𝐻 (𝐻)∣ = 𝑧 ∧ HS 2𝑘(𝜋𝑖𝐻 (𝐻);𝑛, 𝑧))→ [

(∃�̄� ∈ (Σ𝑡ℓ(𝑛))2𝑘−𝑧−1)(∀𝑗 < 2𝑘)(∃𝑇 ≤ 𝑡ℓ(𝑛))[

(𝜋∗
𝑗 (𝐼) = 1→ Sat(𝑇, 𝐹𝑗+1(⟨1𝑛, 𝑖⟩))) ∧

(𝜋∗
𝑗 (𝐼) = 0→ Sat(𝑇, 𝜋2𝑘−𝑧(ℎ(�̄� , 𝐹𝑗+1(⟨1𝑛, 𝑖⟩), 𝜋𝑖𝐻 (𝐻))))) ∧

𝜑ℓ(𝐼)(𝑋)]]) .

(5.8)

Here, ℓ is a polynomial-time computable function that takes 𝐼 to the number of
the respective line in (5.7). 𝐼 codes the satisfiability of that line, i.e., 𝜋∗

𝑗 (𝐼) =
1 if and only if 𝐹𝑗(⟨1𝑛, 𝑖⟩) is satisfiable. This is verified in lines 3 and 4 of
(5.8) by a maximal hard sequence. Line 5 then queries the appropriate 𝜑ℓ(𝐼).
The verification is due to Lemma 5.3.5, because we only consider maximal hard
sequences in line 4 (by line 1 and the assumption that 𝑧 is the proper advice).

58 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

Observe that HS 2𝑘 is Π
𝐵
1 and therefore, using replacement, 𝜓

𝑧
HB ,1 is equivalent

to a Σ𝐵1 -formula. Abusing notation we will identify 𝜓
𝑧
HB ,1 with its equivalent

Σ𝐵1 -formula.
Due to (5.8) we will focus on the definition of such a tuple 𝐻 of sequences, one

of which is maximal. First, observe that there are only few possible elements of
the sequences to be included in 𝐻. Namely, for each 𝑛 there are just polynomially
many propositional formulas coded by the 𝐹𝑗(⟨1𝑛, 𝑖⟩). Let 𝑝𝐹 (𝑛) be a polynomial
bounding this number. Thus, there exist at most 𝑞𝐹 (𝑛) = 2

𝑘 ⋅ 𝑝𝐹 (𝑛)2𝑘 sequences
of length at most 2𝑘 with elements among the 𝐹𝑗(⟨1𝑛, 𝑖⟩). Therefore, even if 𝐻
contains all such sequences, it will still be polynomial in size. So, we will just
give a definition of 𝐻 that guarantees that 𝐻 contains every sequence of order
less than 2𝑘. Then 𝐻 trivially contains every maximal hard sequence.

To this end let 𝜓𝑎𝑙𝑙(𝐻) =def

(∃𝑖𝜀 ≤ ∣𝐻∣)(𝜀 = 𝜋𝑖𝜀(𝐻)) ∧
(∀𝑖𝐻 ≤ ∣𝐻∣)(∀𝑖𝐹 ≤ 𝑝𝐹 (𝑛))

(∣𝜋𝑖𝐻 (𝐻)∣ < 2𝑘 → (∃𝑗 ≤ ∣𝐻∣)𝐹𝑝(𝑖𝐹)(⟨1𝑛, 𝑞(𝑖𝐹)⟩)⌢𝜋𝑖𝐻 (𝐻) = 𝜋𝑗(𝐻)) .

The formula 𝜓𝑎𝑙𝑙(𝐻) states in the first line, that 𝐻 includes the empty sequence
𝜀. The next two lines ensure that, if some sequence 𝑠 in 𝐻 does not have max-
imal length, then 𝐻 includes every sequence of the type 𝐹𝑗(⟨1𝑛, 𝑖⟩)⌢𝑠. Thus, 𝐻
contains every sequence of length less than 2𝑘, in particular every maximal hard
sequence. Here, 𝑝 and 𝑞 are polynomial-time computable functions, such that
𝐹𝑝(𝑖)(⟨1𝑛, 𝑞(𝑖)⟩) is an enumeration of

𝐹1(⟨1𝑛, 0⟩), . . . , 𝐹1(⟨1𝑛, 𝑠2𝑘(𝑛)⟩), . . . , 𝐹2𝑘(⟨1𝑛, 0⟩), . . . , 𝐹2𝑘(⟨1𝑛, 𝑠2𝑘(𝑛)⟩) .

By the arguments above, we can define HardSeqBits2𝑘,1(⟨1𝑛, 𝑖⟩) by using 𝜓𝑎𝑙𝑙(𝐻)
in addition to 𝜓𝑧HB ,1(⟨1𝑛, 𝑖⟩, 𝐻). Thus let 𝜓𝑧HSB ,1(⟨1𝑛, 𝑖⟩) =def

(∃𝐻 ∈ ((Σ𝑡ℓ(𝑛))≤2𝑘)𝑞𝐹 (𝑛)) 𝜓𝑎𝑙𝑙(𝐻) ∧ 𝜓𝑧HB ,1(⟨1𝑛, 𝑖⟩, 𝐻) .

Then it holds, that

VPV ⊢ (∀𝑛)
⋁

0≤𝑧<2𝑘

(∀𝑖 ≤ 𝑠2𝑘(𝑛))(HardSeqBits2𝑘,1(⟨1𝑛, 𝑖⟩)↔ 𝜓𝑧HSB ,1(⟨1𝑛, 𝑖⟩)))

which concludes the proof of the lemma. ⊓⊔

The above lemma provides the appropriate tools to prove the converse impli-
cation to the Karp-Lipton collapse result of Cook and Kraj́ıček [CK07].

Theorem 5.3.8 If VPV ⊢ PH ⊆ BH2𝑘 , then VPV ⊢ coNP ⊆ NP/𝑘.

5.3. THE KARP-LIPTON COLLAPSE RESULT IN VPV 59

Proof. Assuming VPV ⊢ PH ⊆ BH2𝑘 , there exists a polynomial-time computable
function ℎ, such that for tuples �̄� = (𝑋1, . . . , 𝑋2𝑘) we have VPV ⊢ 𝐵𝐿2𝑘(�̄�)↔
¬𝐵𝐿2𝑘(ℎ(�̄�)). Thus, by Lemma 5.3.5, given a maximal hard sequence for length
𝑛, we can define (∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋) by a Σ𝐵1 -formula. In Lemma 5.3.7 we
constructed such a sequence using 𝑘 bits of advice.

Let 𝜓𝑧HSB ,1 be the Σ
𝐵
1 -formula from the proof of Lemma 5.3.7 and let 𝜓𝑧HSB ,0

be its counterpart coding the zeros of the hard sequence.

By Lemma 5.3.7 the theory VPV proves the formulas

(∀𝑛)
⋁

0≤𝑧<2𝑘

(∀𝑖 ≤ 𝑠2𝑘(𝑛)) (HardSeqBits2𝑘,𝑗(⟨1𝑛, 𝑖⟩)↔ 𝜓𝑧HSB ,𝑗(⟨1𝑛, 𝑖⟩, 𝑌))

for 𝑗 ∈ {0, 1}. As in Lemma 5.3.7, 𝑧 is the order of a maximal hard sequence
for length 𝑛. Observe that 𝑧, acting as the advice, can be nonuniformly obtained
from 𝑛.

Provided the right 𝑧, there is a Σ𝐵1 -formula EasyUnSat𝑧(𝑋) that, for ev-
ery 𝑋 of length 𝑛, is VPV -equivalent to (∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋). This is due to
Lemma 5.3.5. The formula EasyUnSat𝑧(𝑋) is defined as

(∃𝐶 ≤ 𝑠2𝑘(∣𝑋∣)) (∀𝑖 < ∣𝐶∣)[
⋀

𝑗∈{0,1}
(𝜋∗

𝑖 (𝐶) = 𝑗 → 𝜑𝑧HSB ,𝑗(⟨1∣𝑋∣, 𝑖⟩, 𝑌)) ∧

(∃𝑇 ≤ ∣𝑋∣)(∃�̄� ∈ (Σ∣𝑋∣)2
𝑘−1−∣enc(𝐶)∣) Sat(𝑇, 𝜋2𝑘−∣enc(𝐶)∣(ℎ(�̄� , 𝑋, enc(𝐶))))] .

By the first line of this formula, 𝐶 is the encoding of some maximal hard sequence.
As in Lemma 5.3.5, 𝐶 is used to define ¬Sat by a Σ𝐵1 -formula (second line). Thus,
we have

VPV ⊢ (∀𝑛)
⋁

0≤𝑧<2𝑘

(∀𝑋 = 𝑛)[(∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋)↔ EasyUnSat𝑧(𝑋)] .

This concludes the proof. ⊓⊔

With this result we can now prove the optimality of the following Karp-Lipton
collapse result of Cook and Kraj́ıček [CK07]:

Theorem 5.3.9 (Cook, Kraj́ıček [CK07]) If VPV proves NP ⊆ P/poly,
then PH ⊆ BH, and this collapse is provable in VPV .

To show the converse implication, we use the following surprising trade-off
between advice and nondeterminism in VPV :

Theorem 5.3.10 (Cook, Kraj́ıček [CK07]) VPV ⊢ NP ⊆ P/poly if and only
if VPV ⊢ coNP ⊆ NP/𝑂(1).

60 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

We remark that the proof of Theorem 5.3.10 uses strong witnessing arguments
in form of the Herbrand Theorem and the KPT witnessing theorem [KPT91].
Thus it seems unlikely that a similar result holds without assuming provability
of NP ⊆ P/poly and coNP ⊆ NP/𝑂(1) in some weak arithmetic theory. Theo-
rem 5.3.9 can be obtained as a consequence of Theorem 5.3.10 and a complexity-
theoretic proof of coNP ⊆ NP/𝑂(1)⇒ PH ⊆ BH (cf. [BCF03, CK07]).

Combining Theorems 5.3.8, 5.3.9, and 5.3.10 we can now state the optimality
of the Karp-Lipton collapse PH ⊆ BH in VPV .

Theorem 5.3.11 The theory VPV proves NP ⊆ P/poly if and only if VPV
proves that the polynomial hierarchy collapses to the Boolean hierarchy.

5.4 Karp-Lipton Results in Stronger Theories

We continue with some discussion about Karp-Lipton collapse results in stronger
arithmetic theories. As already mentioned in the beginning, in addition to The-
orem 5.3.9, Cook and Kraj́ıček obtain two further results of this kind.

Theorem 5.4.1 (Cook, Kraj́ıček [CK07])

1. If 𝑆1
2 proves NP ⊆ P/poly, then PH ⊆ PNP[𝑂(log𝑛)], and this collapse is

provable in the theory 𝑆1
2 .

2. If 𝑆2
2 proves NP ⊆ P/poly, then PH ⊆ PNP, and this collapse is provable in

the theory 𝑆2
2 .

It remains as an open problem whether also PH ⊆ PNP[𝑂(log𝑛)] and PH ⊆ PNP

are optimal within 𝑆1
2 and 𝑆

2
2 , respectively. For 𝑆

1
2 this corresponds to the problem

whether coNP ⊆ NP/𝑂(log 𝑛) is equivalent to PH ⊆ PNP[𝑂(log𝑛)]. Buhrman,
Chang, and Fortnow [BCF03] conjecture

coNP ⊆ NP/𝑂(log 𝑛)⇐⇒ PH ⊆ PNP

(cf. also [FK05]). This seems unlikely, as Cook and Kraj́ıček [CK07] noted that
coNP ⊆ NP/𝑂(log 𝑛) implies PH ⊆ PNP[𝑂(log𝑛)]. However, it does not seem possi-
ble to extend the technique from [BCF03] to prove the converse implication. Is
even coNP ⊆ NP/poly ⇐⇒ PH ⊆ PNP true, possibly with the stronger hypothe-
sis that both inclusions are provable in 𝑆2

2? Currently, coNP ⊆ NP/poly is only
known to imply PH ⊆ SNP2 [CCHO05].

5.5 Classical Proof Systems with Advice

We will now come back to proof systems with advice and how they relate to
theories of bounded arithmetic. Assumptions of the form coNP ⊆ NP/𝑂(1) play

5.5. CLASSICAL PROOF SYSTEMS WITH ADVICE 61

a dominant role in the above Karp-Lipton results. These hypotheses essentially
ask whether advice is helpful to decide propositional tautologies. More precisely,
the assertion coNP ⊆ NP/𝑂(1) states that there exists a polynomially bounded
propositional proof system with constant (output) advice (cf. Theorem 4.2.1).
Moreover, as in Theorem 5.3.10, Cook and Kraj́ıček considered the provability
of the statement coNP ⊆ NP/𝑂(1) in theories of bounded arithmetic. This can
be rephrased as asking for a proof system for which the theory (VPV in case of
Theorem 5.3.10) proves the polynomial boundedness of the proof system. We will
see below that this proof system is in fact a variant of the extended Frege system
which uses constant advice. These connections to bounded arithmetic were the
prior motivation of Cook and Kraj́ıček [CK07] to investigate propositional proof
systems taking advice.

We will now describe the extended Frege systems with advice as defined by
Cook and Kraj́ıček [CK07]. The systems are inspired by the proof of Theo-
rem 5.3.10. In that proof, disjunctions stemming from the KPT-witnessing the-
orem [KPT91] were exploited to get a Σ𝐵1 -description of (∀𝑇 ≤ 𝑛)¬Sat(𝑇,𝑋).
Before we can define the proof systems, we need to define these disjunctions.

Let 𝜑(𝑋, 𝑌, 𝑍) be some open formula in the language of VPV . Let ∣𝑌 ∣ and
∣𝑍∣ be bounded by 𝑛 = ∣𝑋∣, via 𝑠(𝑛) and 𝑡(𝑛), respectively. Then ⟨𝜑⟩𝑛,𝑠(𝑛),𝑡(𝑛)
denotes the propositional translation of 𝜑 for inputs of the respective lengths.
We will assume, that the bounds on ∣𝑌 ∣ and ∣𝑍∣ are implicit in the formula and
therefore just write ⟨𝜑⟩𝑛.

The propositional disjunctions to be considered are of the form

⟨𝜑⟩𝑛(𝑝, 𝐶1(𝑝), 𝑞
1) ∨ ⟨𝜑⟩𝑛(𝑝, 𝐶2(𝑝, 𝑞

1), 𝑞2) ∨ . . .
∨⟨𝜑⟩𝑛(𝑝, 𝐶ℓ(𝑝, 𝑞1, . . . , 𝑞ℓ−1), 𝑞ℓ),

where 𝑝 is an 𝑛-tuple of propositional atoms, the 𝑞𝑖 are 𝑡(𝑛)-tuples of propositional
atoms, and the 𝐶𝑖 are circuits with 𝑠(𝑛) output bits and input bits as indicated.
We will refer to such a disjunction as an (𝑛, ℓ)-disjunction from 𝜑.

Definition 5.5.1 (Cook, Kraj́ıček [CK07]) Let 𝑘(𝑛) be any function and
ℓ(𝑛) =def 2

𝑘(𝑛). An extension EF𝜑,𝐹 of EF by 𝑘 advice bits is determined by
an open VPV -formula 𝜑(𝑋, 𝑌, 𝑍) and a polynomial-time computable function 𝐹
that, on input 1𝑛 and 1ℓ(𝑛), outputs an EF-proof of an (𝑛, ℓ)-disjunction from 𝜑.

For each 𝑛 the advice specifies the least 𝑖 ≤ ℓ(𝑛), such that the disjunction
𝐵𝑛,𝑖 of the first 𝑖 disjuncts of the (𝑛, ℓ)-disjunction from 𝜑 which is computed by
𝐹 is a tautology.

A proof of a propositional formula 𝐴 in EF𝜑,𝐹 is a triple (1𝑛, 1ℓ(𝑛),𝑊), with
𝑛 = ∣𝐴∣ where 𝑊 is an EF-proof of 𝐵′

𝑛,𝑖 → 𝐴. Here, 𝐵′
𝑛,𝑖 is some simple

substitution instance of 𝐵𝑛,𝑖 (i.e. it is only allowed to substitute atoms with
constants or atoms).

Cook and Kraj́ıček proved that one of these systems is polynomially bounded
if VPV proves coNP ⊆ NP/𝑂(1):

62 CHAPTER 5. ADVICE AND BOUNDED ARITHMETIC

Theorem 5.5.2 (Cook and Kraj́ıček [CK07]) If the theory VPV proves
coNP ⊆ NP/𝑂(1), then there exists an extended Frege system with advice as
in Definition 5.5.1 which is polynomially bounded.

We will now describe a general method of how one can define classical proof
systems that use advice. A priori it is not clear how systems like Resolution
or Frege can sensibly use advice, but a canonical way to implement advice into
them is to enhance these systems by further axioms which can be decided in
polynomial time with advice. We first consider again the extended Frege system
EF as the base system and give a definition of EF with advice which generalizes
Definition 5.5.1.

Definition 5.5.3 Let Φ be a set of tautologies that can be decided in polynomial
time with 𝑘(𝑛) bits of advice. We define the system EF + Φ/𝑘 as follows. An
EF + Φ/𝑘-proof of a formula 𝜑 is a pair ⟨𝜋, 𝜓0⟩, where 𝜋 is an EF-proof of an
implication 𝜓 → 𝜑 and 𝜓 is a simple substitution instance of 𝜓0 ∈ Φ (simple
substitutions only replace some of the variables by constants).

If 𝜋 is an EF +Φ/𝑘-proof of a formula 𝜑, then the advice used for the verifica-
tion of 𝜋 neither depends on ∣𝜋∣ nor on ∣𝜑∣, but on the length of the substitution
instance 𝜓 from Φ, which is used in 𝜋. As ∣𝜓∣ can be easily determined from 𝜋,
EF +Φ/𝑘 are systems of the type ps/𝑘 (in fact, this was the motivation for our
general Definition 4.1.1).

If we require that the length of 𝜓 in the implication 𝜓 → 𝜑 is determined by
the length of the proven formula 𝜑, then the advice only depends on the output
and hence we get a ps/𝑘 with output advice. This is the case for Cook and
Kraj́ıček’s extensions of EF defined in Definition 5.5.1. Thus, the definition of
extended Frege systems with advice of Cook and Kraj́ıček [CK07] is a special
case of Definition 5.5.3.

Our next result shows that the optimal propositional proof system from The-
orem 4.4.1 is equivalent to an extended Frege system with advice as in Defini-
tion 5.5.3.

Theorem 5.5.4

1. There exists a set Ψ ∈ P/1 such that EF + Ψ/1 is optimal for the class of
all ps/log for TAUT.

2. In contrast, none of the constant advice extensions of EF from Defini-
tion 5.5.1 simulates every propositional ps/1, unless items 1 to 4 from
Theorem 4.4.2 are equivalent.

Proof. For item 1 we choose the system 𝑃 using 1 bit of input advice which is
optimal for the class of all propositional ps/log according to Theorem 4.4.1. We
define the set Ψ ∈ P/1 as the collection of all formulas

RFN 𝑃
𝑚,𝑛,1 = Prf 𝑃𝑚,𝑛,1(𝜋, 𝜑, 𝑎)→ Taut𝑛(𝜑)

5.5. CLASSICAL PROOF SYSTEMS WITH ADVICE 63

which describe the correctness of 𝑃 , similarly as in the proof of Theorem 4.4.13.
In contrast to the formulas Correct𝑃𝑚,𝑛,𝑘 from the proof of Theorem 4.4.13, the cor-

rect advice bit 𝑎 is already substituted into the formula Prf 𝑃𝑚,𝑛,1(𝜋, 𝜑, 𝑎). There-
fore, the set

Ψ = {RFN 𝑃
𝑚,𝑛,1(𝜋, 𝜑, 𝑎) ∣ 𝑚,𝑛 ≥ 0}

is not necessarily in P, but only in P/1.
To show the optimality of EF +Ψ/1 it suffices to prove 𝑃 ≤ EF +Ψ/1. For

this let 𝜋 be a 𝑃 -proof of 𝜑. Substituting the propositional encodings of 𝜋 and
𝜑 into RFN 𝑃

∣𝜋∣,∣𝜑∣,1, we obtain the formula

Prf 𝑃𝑚,𝑛,1(𝜋, 𝜑, 𝑎)→ Taut𝑛(𝜑) .

Now Prf 𝑃𝑚,𝑛,1(𝜋, 𝜑, 𝑎) is a tautological formula, where all relevant variables have
been substituted by constants (only auxiliary variables describing the computa-
tion of 𝑃 remain free, but these variables are determined by 𝜋). Therefore, we
can derive Prf 𝑃𝑚,𝑛,1(𝜋, 𝜑, 𝑎) in a polynomial-size EF -proof, and modus ponens
yields Taut𝑛(𝜑). By induction on the formula 𝜑, we can devise polynomial-size
EF -proofs of

Taut𝑛(𝜑)→ 𝜑 .

Hence one further application of modus ponens gives the formula 𝜑, and thus we
have constructed a polynomial-size EF +Ψ/1-proof of 𝜑.

As the extensions of EF from Definition 5.5.1 use a constant amount of output
advice, the second item follows by Theorem 4.4.2. ⊓⊔

Comparing the definition of EF with advice from Definitions 5.5.3 and 5.5.1,
we remark that both definitions are parameterized by a set of tautologies Φ, and
hence they both lead to a whole class of proof systems rather than the extended
Frege system with advice. The drawback of our Definition 5.5.3 is, that even in
the base case, where no advice is used, we do not get EF , but again all extensions
EF + Φ with polynomial-time computable Φ ⊆ TAUT. It is known that each
advice-free propositional proof system is p-simulated by such an extension of EF
[Kra95]. In contrast, Cook and Kraj́ıček’s extended Frege systems with advice
lead exactly to EF , if no advice is used. On the other hand, even with advice
these systems appear to be strictly weaker than the systems from Definition 5.5.3,
as indicated by item 2 of Theorem 5.5.4.

Finally, we will outline how other classical proof systems like Resolution can
be equipped with advice. Let Φ = {𝜑𝑛 ∣ 𝑛 ≥ 0} be a sequence of tautologies in
conjunctive normal form. Then 𝜑𝑛 can be written as a set of clauses Δ𝑛. Assume
further that Φ can be decided in polynomial time with 𝑘(𝑛) bits of advice. A
Resolution system with advice Res + Φ is then defined as follows: Let 𝜓 be a
formula in disjunctive normal form and let Γ be the set of clauses for ¬𝜓. A
Res + Φ-proof of 𝜓 is a Resolution refutation of the set Δ ∪ Γ where Δ is some
simple substitution instance of Δ𝑛 for some 𝑛.

Chapter 6

Prover-Delayer Games

Auf wieviel verschiedene Arten kann man einen Vierlochknopf
annähen ? : nun kriegte ich Unterricht [. . .] einfach rundrum
(≫Daß also n Quadrat entsteht≪). Oder so, als Andreaskreuz.
Oder als 2 Parallele; als Z; als U; als – – ≫Na ? Na ?≪ – – Tja;
also nu wußt’ ich weißgott keine Möglichkeiten mehr : ≫Iss doch
ausgeschlossen !≪ : ≫Haha !≪ : bis sie s herablassend zeigte :
≫Als Gänsefüßchen ! ! – : ↖↑↗ !≪ und nähte ihren triumfierend
gleich als solches an : tatsächlich; man lernt nie aus !

Arno Schmidt, Seelandschaft mit Pocahontas

Proving lower bounds by games is a very fruitful technique in proof complexity
[PB94, Pud99, PI00, AD08]. In particular, the Prover-Delayer game of Pudlák
and Impagliazzo [PI00] is one of the canonical tools to study lower bounds in
tree-like Resolution [PI00, BSIW04] and tree-like Res(𝑘) [EGM04]. The Prover-
Delayer game of Pudlák and Impagliazzo arises from the well-known fact [Kra95]
that a tree-like Resolution proof for a formula 𝐹 can be viewed as a decision
tree which solves the search problem of finding a clause of 𝐹 falsified by a given
assignment. In the game, Prover queries a variable and Delayer either gives it
a value or leaves the decision to Prover and receives one point. The number of
Delayer’s points at the end of the game is then proportional to the height of the
proof tree. It is easy to argue that showing lower bounds by this game only works
if (the graph of) every tree-like Resolution refutation contains a balanced sub-tree
as a minor, and the height of that sub-tree then gives the size lower bound.

In this chapter we develop a new asymmetric Prover-Delayer game which
extends the game of Pudlák and Impagliazzo to make it applicable to obtain
lower bounds to tree-like proofs when the proof trees are very unbalanced. In
Chapter 7 we will use the new asymmetric game to obtain lower bounds in tree-
like Parameterized Resolution, a proof system in the context of parameterized
proof complexity recently introduced by Dantchev, Martin, and Szeider [DMS07].
The lower bounds we will obtain there for tree-like Parameterized Resolution are

65

66 CHAPTER 6. PROVER-DELAYER GAMES

of the form 𝑛Ω(𝑘) (𝑛 is the formula size and 𝑘 the parameter), but the tree-like
Parameterized Resolution refutations of the formulas in question only contain
balanced sub-trees of height 𝑘.

In this chapter we will first explain the original Prover-Delayer game of Pudlák
and Impagliazzo [PI00], introduce the refined asymmetric Prover-Delayer game,
and apply this new game to (non-parameterized) tree-like Resolution.

One of the best studied principles is the pigeonhole principle. Iwama and
Miyazaki [IM99] and independently Dantchev and Riis [DR01] show that the
pigeonhole principle requires tree-like Resolution refutations of size roughly 𝑛!
while its tree-like Resolution proofs only contain balanced sub-trees of height 𝑛.
Therefore the game of Pudlák and Impagliazzo only yields a 2Ω(𝑛) lower bound
which is weaker than the optimal bound 2Ω(𝑛 log𝑛) established by Iwama and
Miyazaki. In Section 6.4 we provide a new and easier proof of this lower bound
by our asymmetric Prover-Delayer game.

6.1 Tree-Like Resolution and Decision Trees

A Resolution refutation of 𝐹 can be depicted as a directed graph were vertices
are labeled with the clauses of the refutation and a Resolution step

𝐶 𝐷

𝐸

yields edges (𝐶,𝐸) and (𝐷,𝐸). As this graph is acyclic, we also refer to the
general Resolution system as dag-like Resolution. If the graph is a tree we call
the refutation tree like. When we allow only tree-like refutations we get the tree-
like Resolution system. In tree-like Resolution, each derived clause can be used
at most once as a prerequisite of the Resolution rule.

A tree-like refutation of a set of clauses 𝐹 can equivalently be described as a
Boolean decision tree. A Boolean decision tree for 𝐹 is a binary tree where inner
nodes are labeled with variables from 𝐹 and leafs are labeled with clauses from
𝐹 . Each path in the tree corresponds to a partial assignment where a variable 𝑥
gets value 0 or 1 according to whether the path branches left or right at the node
labeled with 𝑥. The condition on the decision tree is that each path 𝛼 must lead
to a clause which is falsified by the assignment corresponding to 𝛼. Therefore, a
Boolean decision tree solves the search problem for 𝐹 which, given an assignment
𝛼, asks for a clause falsified by 𝛼. It is easy to verify that each tree-like Resolution
refutation of 𝐹 yields a Boolean decision tree for 𝐹 and vice versa, where the
size of the Resolution proof equals the number of nodes in the decision tree. In
the sequel, we will therefore concentrate on Boolean decision trees when we prove
upper or lower bounds to tree-like Resolution.

6.2. THE GAME OF PUDLÁK AND IMPAGLIAZZO 67

6.2 The Prover-Delayer Game of Pudlák and

Impagliazzo

In this section we introduce the Prover-Delayer game of Pudlák and Impagliazzo
[PI00]. Let 𝐹 be a set of clauses in 𝑛 variables 𝑥1, . . . , 𝑥𝑛. In the game, Prover
and Delayer build a (partial) assignment to 𝑥1, . . . , 𝑥𝑛. The game is over as soon
as the partial assignment falsifies a clause from 𝐹 . The game proceeds in rounds.
In each round, Prover suggests a variable 𝑥𝑖, and Delayer either chooses a value
0 or 1 for 𝑥𝑖 or leaves the choice to the Prover. In this last case, if the Prover
sets the value, then the Delayer gets exactly 1 point. It is clear that Prover can
always win the game on unsatisfiable formulas, but the question is how many
points Delayer can earn before the end of this game.

The connection of this game to size of proofs in tree-like Resolution is given
by Theorem 6.2.1.

Theorem 6.2.1 (Pudlák, Impagliazzo [PI00]) Let 𝐹 be an unsatisfiable for-
mula in CNF. If 𝐹 has a tree-like Resolution refutation of size at most 𝑆, then
the Delayer gets at most log 𝑆 points in each Prover-Delayer game played on 𝐹 .

We omit the proof as Theorem 6.2.1 will be a special case of Theorem 6.3.1 below.
We illustrate the applicability of the game by showing a lower bound to the

pigeonhole principle. The weak pigeonhole principle PHP𝑚
𝑛 with 𝑚 > 𝑛 uses

variables 𝑥𝑖,𝑗 with 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛], indicating that pigeon 𝑖 goes into hole 𝑗.
PHP𝑚

𝑛 consists of the clauses⋁
𝑗∈[𝑛]

𝑥𝑖,𝑗 for all pigeons 𝑖 ∈ [𝑚]

and ¬𝑥𝑖1,𝑗 ∨¬𝑥𝑖2,𝑗 for all choices of distinct pigeons 𝑖1, 𝑖2 ∈ [𝑚] and holes 𝑗 ∈ [𝑛].
We prove that PHP𝑚

𝑛 with 𝑚 > 𝑛 is hard for tree-like Resolution. Showing the
lower bound by the Prover-Delayer game requires to find a suitable strategy for
the Delayer.

Theorem 6.2.2 Any tree-like Resolution refutation of PHP𝑚
𝑛 for 𝑚 > 𝑛 has size

2Ω(𝑛).

Proof. Let us say that a hole 𝑗 is occupied if there exists 𝑖 ∈ [𝑚] such that 𝑥𝑖,𝑗
was assigned to 1 in the game. We also assume that Prover never asks the same
variable twice.

Then Delayer uses the following strategy: If Prover asks variable 𝑥𝑖,𝑗, then
Delayer answers 0 if hole 𝑗 is already occupied, otherwise she leaves the decision
to Prover. As a first observation, the game never ends by falsifying a conflict clause
¬𝑥𝑖1,𝑗 ∨¬𝑥𝑖2,𝑗. Therefore the game stops at one of the big clauses

⋁
𝑗∈[𝑛] 𝑥𝑖,𝑗, i. e.,

68 CHAPTER 6. PROVER-DELAYER GAMES

for some 𝑖 ∈ [𝑚] all variables 𝑥𝑖,𝑗 with 𝑗 ∈ [𝑛] have been assigned to 0 by either
Prover or Delayer.

We claim that Delayer earns at least 𝑛 points in the game. If variable 𝑥𝑖,𝑗
was set to 0 by Prover, then Delayer earns 1 point for this. On the other hand,
if 𝑥𝑖,𝑗 was assigned 0 by Delayer, then according to Delayer’s strategy, there
was some other pigeon 𝑖′ ∕= 𝑖 sitting in hole 𝑗, i. e., 𝑥𝑖′,𝑗 was assigned to 1. This
decision was certainly made by Prover, as Delayer never sets a variable to 1 in her
strategy. Thus, in total Delayer earns a point for each variable 𝑥𝑖,𝑗 with 𝑗 ∈ [𝑛].
By Theorem 6.2.1 the lower bound follows. ⊓⊔

Let us note that the lower bound 2Ω(𝑛) is can be improved. As shown in
[IM99, DR01], the optimal lower bound for PHP𝑚

𝑛 in tree-like Resolution is 𝑛!
which is asymptotically equal to 2Ω(𝑛 log𝑛). This lower bound can be shown via a
refinement of the Prover-Delayer game—the asymmetric Prover-Delayer game—
which we introduce in the next section.

6.3 The Asymmetric Prover-Delayer Game

We now introduce the asymmetric Prover-Delayer game. Let 𝐹 be a set of clauses
in 𝑛 variables 𝑥1, . . . , 𝑥𝑛. In the asymmetric game, Prover and Delayer again
build a (partial) assignment to 𝑥1, . . . , 𝑥𝑛. The game is over as soon as the partial
assignment falsifies a clause from 𝐹 . The game proceeds in rounds. In each round,
Prover suggests a variable 𝑥𝑖, and Delayer either chooses a value 0 or 1 for 𝑥𝑖 or
leaves the choice to the Prover. In this last case, if the Prover sets the value, then
the Delayer gets some points. The number of points Delayer earns depends on the
variable 𝑥𝑖, the assignment 𝛼 constructed so far in the game, and two functions
𝑐0(𝑥𝑖, 𝛼) and 𝑐1(𝑥𝑖, 𝛼). More precisely, the number of points that Delayer will get
is

0 if Delayer chooses the value,
log 𝑐0(𝑥𝑖, 𝛼) if Prover sets 𝑥𝑖 to 0, and
log 𝑐1(𝑥𝑖, 𝛼) if Prover sets 𝑥𝑖 to 1.

Moreover, the functions 𝑐0(𝑥, 𝛼) and 𝑐1(𝑥, 𝛼) are chosen in such a way that for
each variable 𝑥 and assignment 𝛼

1

𝑐0(𝑥, 𝛼)
+

1

𝑐1(𝑥, 𝛼)
= 1 (6.1)

holds. Let us call this game the (𝑐0, 𝑐1)-game on 𝐹 .
The connection of this game to size of proofs in tree-like Resolution is given

by Theorem 6.3.1.

Theorem 6.3.1 Let 𝐹 be unsatisfiable formula in CNF and let 𝑐0 and 𝑐1 be two
functions satisfying (6.1) for all partial assignments 𝛼 to the variables of 𝐹 . If 𝐹

6.3. THE ASYMMETRIC PROVER-DELAYER GAME 69

has a tree-like Resolution refutation of size at most 𝑆, then the Delayer gets at
most log 𝑆 points in each (𝑐0, 𝑐1)-game played on 𝐹 .

Proof. Let 𝐹 be an unsatisfiable CNF in variables 𝑥1, . . . , 𝑥𝑛 and let Π be a tree-
like Resolution refutation of 𝐹 . Assume now that Prover and Delayer play a game
on 𝐹 where they successively construct an assignment 𝛼. Let 𝛼𝑖 be the partial
assignment constructed after 𝑖 rounds of the game, i. e., 𝛼𝑖 assigns 𝑖 variables a
value 0 or 1. By 𝑝𝑖 we denote the number of points that Delayer has earned after
𝑖 rounds, and by Π𝛼𝑖

we denote the sub-tree of the decision tree of Π which has
as its root the node reached in Π along the path specified by 𝛼𝑖.

We use induction on the number of rounds in the game to prove the following
claim:

∣Π𝛼𝑖
∣ ≤ ∣Π∣

2𝑝𝑖
for any round 𝑖.

To see that the theorem follows from this claim, let 𝛼 be an assignment con-
structed during the game yielding 𝑝𝛼 points to the Delayer. As a contradiction
has been reached in the game, the size of Π𝛼 is 1, and therefore by the inductive
claim

1 ≤ ∣Π∣
2𝑝𝛼

,

yielding 𝑝𝛼 ≤ log ∣Π∣ as desired.
In the beginning of the game, Π𝛼0 is the full tree and the Delayer has 0 points.

Therefore the claim holds.
For the inductive step, assume that the claim holds after 𝑖 rounds and Prover

asks for a value of the variable 𝑥 in round 𝑖+1. If the Delayer chooses the value,
then 𝑝𝑖+1 = 𝑝𝑖 and hence

∣Π𝛼𝑖+1
∣ ≤ ∣Π𝛼𝑖

∣ ≤ ∣Π∣
2𝑝𝑖

=
∣Π∣
2𝑝𝑖+1

.

If the Delayer defers the choice to the Prover, then the Prover uses the following
strategy to set the value of 𝑥. Let 𝛼𝑥=0

𝑖 be the assignment extending 𝛼𝑖 by setting
𝑥 to 0, and let 𝛼𝑥=1

𝑖 be the assignment extending 𝛼𝑖 by setting 𝑥 to 1. Now,
Prover sets 𝑥 = 0 if ∣Π𝛼𝑥=0

𝑖
∣ ≤ 1

𝑐0(𝑥,𝛼𝑖)
∣Π𝛼𝑖

∣, otherwise he sets 𝑥 = 1. Because
1

𝑐0(𝑥,𝛼𝑖)
+ 1

𝑐1(𝑥,𝛼𝑖)
= 1, we know that if Prover sets 𝑥 = 1, then ∣Π𝛼𝑥=1

𝑖
∣ ≤ 1

𝑐1(𝑥,𝛼𝑖)
∣Π𝛼𝑖

∣.
Thus, if Prover’s choice is 𝑥 = 𝑗 with 𝑗 ∈ {0, 1}, then we get

∣Π𝛼𝑖+1
∣ = ∣Π𝛼𝑥=𝑗

𝑖
∣ ≤ ∣Π𝛼𝑖

∣
𝑐𝑗(𝑥, 𝛼𝑖)

≤ ∣Π∣
𝑐𝑗(𝑥, 𝛼𝑖)2𝑝𝑖

=
∣Π∣

2𝑝𝑖+log 𝑐𝑗(𝑥,𝛼𝑖)
=
∣Π∣
2𝑝𝑖+1

.

This completes the proof of the induction. ⊓⊔
Apparently, we get the game of Pudlák and Impagliazzo [PI00] as a special

case of the our asymmetric game by setting 𝑐0(𝑥, 𝛼) = 𝑐1(𝑥, 𝛼) = 2 for all variables
𝑥 and partial assignments 𝛼.

70 CHAPTER 6. PROVER-DELAYER GAMES

6.4 Tree-like Resolution Lower Bounds for the

Pigeonhole Principle

Proving lower bounds in our new game, i. e., devising good Delayer strategies,
entails first of all to finding suitable functions 𝑐0 and 𝑐1. Functions 𝑐0 and 𝑐1 can
be interpreted in terms of information content of tree-like Resolution refutations.
The points which Delayer scores in one round should be proportional to the
fraction of the current refutation that Prover can avoid to check by deciding a
value for the variable. This is easily understandable in the case of the original
game: the only good strategy for Prover to set a variable is choosing the value that
allows him to proceed the game in the smallest of the two sub-trees of the current
refutation which is in fact of size smaller than 1/2 of the current refutation size.

We now use the asymmetric Prover-Delayer game to prove a better lower
bound for the pigeonhole principle than the exponential bound obtained via the
Pudlák-Impagliazzo game in Theorem 6.2.2. This lower bound is of the form
2Ω(𝑛 log𝑛) and was established by Iwama and Miyazaki [IM99] and independently
Dantchev and Riis [DR01]. We give a new proof based on our asymmetric Prover-
Delayer game which is conceptually simpler than the previous arguments.

Theorem 6.4.1 Any tree-like Resolution refutation of PHP𝑚
𝑛 has size 2Ω(𝑛 log𝑛).

Proof. Let 𝛼 be a partial assignment to the variables {𝑥𝑖,𝑗 ∣ 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛] }. Let

𝑝𝑖(𝛼) = ∣{ 𝑗 ∈ [𝑛] ∣ 𝛼(𝑥𝑖,𝑗) = 0 and 𝛼(𝑥𝑖′,𝑗) ∕= 1 for all 𝑖′ ∈ [𝑚] }∣ .

Intuitively, 𝑝𝑖(𝛼) corresponds to the number of holes which are still free but are
explicitly excluded for pigeon 𝑖 by 𝛼 (we do not count the holes which are excluded
because some other pigeon is sitting there). We define

𝑐0(𝑥𝑖,𝑗, 𝛼) =
𝑛
2
+ 1− 𝑝𝑖(𝛼)
𝑛
2
− 𝑝𝑖(𝛼) and 𝑐1(𝑥𝑖,𝑗, 𝛼) =

𝑛
2
+ 1− 𝑝𝑖(𝛼) .

For simplicity we assume that 𝑛 is divisible by 2. During the game it will never be
the case that Prover gets the choice when 𝑝𝑖(𝛼) ≥ 𝑛

2
. Therefore the functions 𝑐0

and 𝑐1 are always greater than zero when the Delayer gets points, thus the score
function is always well defined. Furthermore notice that this definition satisfies
(6.1).

We now describe Delayer’s strategy in a (𝑐0, 𝑐1)-game played on PHP𝑚
𝑛 . If

Prover asks for a value of 𝑥𝑖,𝑗, then Delayer decides as follows:

set 𝛼(𝑥𝑖,𝑗) = 0 if there exists 𝑖′ ∈ [𝑚] ∖ {𝑖} such that 𝛼(𝑥𝑖′,𝑗) = 1 or
if there exists 𝑗′ ∈ [𝑛] ∖ {𝑗} such that 𝛼(𝑥𝑖,𝑗′) = 1;

set 𝛼(𝑥𝑖,𝑗) = 1 if 𝑝𝑖(𝛼) ≥ 𝑛
2
and there is no 𝑖′ ∈ [𝑚] with 𝛼(𝑥𝑖′,𝑗) = 1, and

let Prover decide otherwise.

6.4. THE PIGEONHOLE PRINCIPLE IN TREE-LIKE RESOLUTION 71

Intuitively, Delayer leaves the choice to Prover as long as pigeon 𝑖 does not already
sit in a hole, hole 𝑗 is still free, and there are at most 𝑛

2
excluded free holes for

pigeon 𝑖.

Let us pause to give an intuitive explanation of why we choose the functions
𝑐0 and 𝑐1 and thus the points for Delayer as above. As a first observation, Delayer
always earns more when Prover is setting a variable 𝑥𝑖,𝑗 to 1 instead of setting it
to 0. This is intuitively correct as the amount of freedom for Delayer to continue
the game is by far more diminished by sending pigeon 𝑖 to some hole 𝑗 than
by just excluding that hole 𝑗 for pigeon 𝑖. In fact, our choice of scores can be
completely explained by the following information-theoretic interpretation: When
Prover sends a pigeon to a hole, Delayer should always get about log 𝑛 points on
that pigeon. For our Delayer strategy, sending pigeon 𝑖 to a hole either means that
Prover excluded 𝑛

2
holes for pigeon 𝑖 or was setting pigeon 𝑖 directly to a hole.

When we play the game, in each round Delayer should get some number of points
proportional to the progress Prover made towards fixing pigeon 𝑖 to a hole. For
instance, if Prover fixes 𝑖 to a hole in the very beginning by answering 1 to 𝑥𝑖,𝑗,
Delayer should get the log 𝑛 points immediately. On the other extreme, if Prover
has already excluded 𝑛

2
− 1 holes for pigeon 𝑖, then it does not matter whether

Prover sets 𝑥𝑖,𝑗 to 0 or 1 because after both answers pigeon 𝑖 will be forced to
a hole. Consequently, in the latter case, Delayer gets just 1 point regardless of
whether Prover answers 0 or 1. This is exactly what our score function provides.

If Delayer uses the above strategy, then the small clauses ¬𝑥𝑖1,𝑗 ∨ ¬𝑥𝑖2,𝑗 from
PHP𝑚

𝑛 will not be violated in the game. Therefore, a contradiction will always
be reached on one of the big clauses

⋁
𝑗∈[𝑛] 𝑥𝑖,𝑗. Let us assume now that the game

ends by violating
⋁
𝑗∈[𝑛] 𝑥𝑖,𝑗, i. e., for pigeon 𝑖 all variables 𝑥𝑖,𝑗 with 𝑗 ∈ [𝑛] have

been set to 0. As soon as the number 𝑝𝑖(𝛼) of excluded free holes for pigeon
𝑖 reaches the threshold 𝑛

2
, Delayer will not leave the choice to Prover. Instead,

Delayer will try to place pigeon 𝑖 into some hole. If Delayer still answers 0 to 𝑥𝑖,𝑗
even after 𝑝𝑖(𝛼) >

𝑛
2
, it must be the case that some other pigeon already sits in

hole 𝑗, i. e., for some 𝑖′ ∕= 𝑖, 𝛼(𝑥𝑖′,𝑗) = 1. Therefore, at the end of the game at least
𝑛
2
variables have been set to 1. W. l. o. g. we assume that these are the variables

𝑥𝑖,𝑗𝑖 for 𝑖 = 1, . . . ,
𝑛
2
.

Let us check how many points Delayer earns in this game. We calculate the
points separately for each pigeon 𝑖 = 1, . . . , 𝑛

2
and distinguish two cases: whether

𝑥𝑖,𝑗𝑖 was set to 1 by Delayer or Prover. Let us first assume that Delayer sets the
variable 𝑥𝑖,𝑗𝑖 to 1. Then pigeon 𝑖 was not assigned to a hole yet and, moreover,
there must be 𝑛

2
unoccupied holes which are already excluded for pigeon 𝑖 by

𝛼, i. e., there is some 𝐽 ⊆ [𝑛] with ∣𝐽 ∣ = 𝑛
2
, 𝛼(𝑥𝑖′,𝑗′) ∕= 1 for 𝑖′ ∈ [𝑚], 𝑗′ ∈ 𝐽 ,

and 𝛼(𝑥𝑖,𝑗′) = 0 for all 𝑗
′ ∈ 𝐽 . All of these 0’s have been assigned by Prover, as

Delayer has only assigned a 0 to 𝑥𝑖,𝑗′ when some other pigeon was already sitting
in hole 𝑗′, and this is not the case for the holes from 𝐽 (at the moment when
Delayer assigns the 1 to 𝑥𝑖,𝑗𝑖). Thus, before Delayer sets 𝛼(𝑥𝑖,𝑗𝑖) = 1, she has
already earned points for all 𝑛

2
variables 𝑥𝑖,𝑗′ , 𝑗

′ ∈ 𝐽 , yielding

72 CHAPTER 6. PROVER-DELAYER GAMES

𝑛
2
−1∑

𝑝=0

log
𝑛
2
+ 1− 𝑝
𝑛
2
− 𝑝 = log

𝑛
2
−1∏

𝑝=0

𝑛
2
+ 1− 𝑝
𝑛
2
− 𝑝 = log

(𝑛
2
+ 1
)

points for the Delayer. Let us note that because Delayer never allows a pigeon to
go into more than one hole, she will really get the number of points calculated
above for every of the variables which she set to 1.

If, conversely, Prover sets variable 𝑥𝑖,𝑗𝑖 to 1, then Delayer gets log(
𝑛
2
+1−𝑝𝑖(𝛼))

points for this, but she also received points for the 𝑝𝑖(𝛼) variables set to 0 before
by Prover. Thus, in this case Delayer earns on pigeon 𝑖

log(
𝑛

2
+ 1− 𝑝𝑖(𝛼)) +

𝑝𝑖(𝛼)−1∑
𝑝=0

log
𝑛
2
+ 1− 𝑝
𝑛
2
− 𝑝

= log(
𝑛

2
+ 1− 𝑝𝑖(𝛼)) + log

𝑛
2
+ 1

𝑛
2
− 𝑝𝑖(𝛼) + 1

= log
(𝑛
2
+ 1
)

points. In total, Delayer gets at least

𝑛

2
log
(𝑛
2
+ 1
)

points in the game. Applying Theorem 6.3.1, we obtain 2
𝑛
2
log(𝑛2+1) as a lower

bound to the size of each tree-like Resolution refutation of PHP𝑚
𝑛 . ⊓⊔

By inspection of the above Delayer strategy it becomes clear that the lower
bound from Theorem 6.4.1 also holds for the functional pigeonhole principle where
in addition to the clauses from PHP𝑚

𝑛 we also include ¬𝑥𝑖,𝑗1∨¬𝑥𝑖,𝑗2 for all pigeons
𝑖 ∈ [𝑚] and distinct holes 𝑗1, 𝑗2 ∈ [𝑛].

We remark that the choice of the score functions 𝑐0 and 𝑐1 in the proof of
Theorem 6.4.1 is by no means unique. It is even possible to obtain the same
asymptotic lower bound 2Ω(𝑛 log𝑛) by choosing simpler score functions 𝑐0, 𝑐1 which
do not depend on the game played so far, i. e., 𝑐0 and 𝑐1 just depend on 𝑛, but
are independent of the assignment 𝛼 and the queried variable 𝑥. Namely, setting

𝑐1 =
𝑛

log 𝑛
and 𝑐0 =

𝑐1
𝑐1 − 1 = 1 +

1

𝑐1 − 1 = Ω(𝑒
1

𝑐1−1) = 2Ω(log𝑛
𝑛

)

we obtain score functions which satisfy (6.1) and lead to the following modified
analysis in the proof of Theorem 6.4.1: if the Prover sets 𝑥𝑖,𝑗 to 1, then Delayer
earns at least log 𝑐1 = Ω(log 𝑛) points. Otherwise, she still earns at least

𝑛
2
log 𝑐0 =

6.4. THE PIGEONHOLE PRINCIPLE IN TREE-LIKE RESOLUTION 73

Ω(log 𝑛) points on pigeon 𝑖. Thus, in total Delayer earns 𝑛
2
⋅Ω(log 𝑛) points during

the game, yielding the lower bound.
Our first proof of Theorem 6.4.1 has the advantage that it yields more precise

and better bounds, namely exactly 2
𝑛
2
log(𝑛2+1) which is the same lower bound

obtained by Dantchev and Riis [DR01]. There might also be scenarios where
the adaptive definition of points according to our above information-theoretic
interpretation indeed yields better asymptotic bounds.

Chapter 7

Parameterized Proof Complexity

Kehr’ ich in mich selbst zurück, wie man doch so gern tut
bei jeder Gelegenheit, so entdecke ich ein Gefühl, das mich
unendlich freut, ja, das ich sogar auszusprechen wage. Wer
sich mit Ernst hier umsieht und Augen hat zu sehen, muß
solid werden, er muß einen Begriff von Solidität fassen, der
ihm nie so lebendig ward.1

Johann Wolfgang Goethe, Italienische Reise

Parameterized complexity is a very successful branch of computational com-
plexity where problems are analyzed in a finer way than in the classical approach
[DF99, FG06, Nie06]. Instead of expressing the complexity of a problem as a
function only of the input size, one parameter is part of the input instance, and
one investigates the effect of the parameter on the complexity. In this setting,
many classically intractable problems have efficient solutions for small choices of
the parameter, even if the total size of the input is large.

Parameterized proof complexity has been recently introduced by Dantchev,
Martin, and Szeider [DMS07]. After considering the notions of propositional pa-
rameterized tautologies and fpt-bounded proof systems, they laid the foundations
to study complexity of proofs in a parameterized setting. In particular, they
considered a parameterized version of Resolution which is the best studied and
most important propositional proof system. In contrast to classical Resolution,
Parameterized Resolution appears to be a relatively powerful proof system as a
number of classically hard principles admit fpt-bounded proofs even in tree-like
Parameterized Resolution as we will show in this chapter. In particular, we trans-
fer the concept of a kernel from parameterized complexity to proof complexity
and construct kernelizations for many classically hard principles as the class of

1Goethe in Rome on November 10, 1786. Chapters 6 and 7 of this dissertation were written
during a research stay at Sapienza University Rome.

75

76 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

all CNF’s of bounded width. For hardness results we use the asymmetric Prover-
Delayer game from the previous chapter to model and study the complexity of
proofs in tree-like Parameterized Resolution. Moreover, we obtain the first lower
bound to the general dag-like Parameterized Resolution system for the pigeon-
hole principle and study a variant of the DPLL algorithm in the parameterized
setting.

We start this chapter by providing some background information from pa-
rameterized complexity.

7.1 Fixed-Parameter Tractability

A parameterized language is a language 𝐿 ⊆ Σ∗ × ℕ. For an instance (𝑥, 𝑘), we
call 𝑘 the parameter of (𝑥, 𝑘). In parameterized complexity, the classical notion of
efficiency is replaced by the more liberal concept of fixed-parameter tractability.

Definition 7.1.1 A parameterized language 𝐿 is fixed-parameter tractable if 𝐿
has a deterministic decision algorithm running in time 𝑓(𝑘) ⋅ ∣𝑥∣𝑂(1) for some
computable function 𝑓 . The class of all fixed-parameter tractable languages is
denoted by FPT.

Many classically hard problems like vertex cover are fixed-parameter tractable
for natural choices of the parameter.

Parameterized languages are compared via fpt-reductions defined as follows:

Definition 7.1.2 A parameterized language 𝐿1 ⊆ Σ∗
1 × ℕ fpt-reduces to a pa-

rameterized language 𝐿2 ⊆ Σ∗
2 × ℕ if there is a mapping 𝑅 : Σ∗

1 × ℕ → Σ∗
2 × ℕ

such that

1. For all (𝑥, 𝑘) ∈ Σ∗
1 × ℕ, (𝑥, 𝑘) ∈ 𝐿1 if and only if 𝑅(𝑥, 𝑘) ∈ 𝐿2.

2. 𝑅 is computable by a fixed-parameter algorithm, i. e., there exists a com-
putable function 𝑓 such that 𝑅 is computable in time 𝑓(𝑘) ⋅ ∣𝑥∣𝑂(1).

3. There is a computable function 𝑔 such that whenever 𝑅(𝑥, 𝑘) = (𝑥′, 𝑘′), then
𝑘′ ≤ 𝑔(𝑘).

Besides FPT there is a wealth of complexity classes containing problems which
are not believed to be fixed-parameter tractable. The most prominent classes lie
in the weft hierarchy forming a chain

FPT ⊆ W[1] ⊆ W[2] ⊆ ⋅ ⋅ ⋅ ⊆ W[P] ⊆ para-NP .

The important classes for us will be W[1],W[2], its complements coW[1], coW[2],
and para-NP. So we will just define those and otherwise refer to the monograph
[FG06].

7.1. FIXED-PARAMETER TRACTABILITY 77

The classes of the weft hierarchy are usually defined as the closure of a canoni-
cal problem under fpt-reductions. These canonical problems are mostly weighted
versions of the satisfiability problem. The weight of an assignment 𝛼, denoted
𝑤(𝛼), is the number of variables that 𝛼 assigns to 1.

The canonical W[1]-complete problem is the following:

Problem: Weighted 𝑑-CNF Sat (complete for W[1])
Input : 𝐹 , a CNF where all clauses have at most 𝑑 literals.

Parameter : 𝑘, a non-negative integer.
Question: Does there exist a satisfying assignment for 𝐹 with weight equal

to 𝑘?

The unbounded width version of this problem is the canonical W[2]-complete
problem, defined as:

Problem: Weighted CNF Sat (complete for W[2])
Input : 𝐹 , a CNF.

Parameter : 𝑘, a non-negative integer.
Question: Does there exist a satisfying assignment for 𝐹 with weight equal

to 𝑘?

Instead of asking for a satisfying assignment 𝛼 with 𝑤(𝛼) = 𝑘 we can also ask
for 𝛼 with 𝑤(𝛼) ≤ 𝑘 and still get a W[2]-complete problem. This observation was
made by Dantchev et al. [DMS07], but they did not give a full proof. We present
a full proof for completeness.

Proposition 7.1.3 (Dantchev, Martin, Szeider [DMS07]) Deciding if an
arbitrary CNF 𝐹 has a satisfying assignment of weight at most 𝑘 is W[2]-complete.

Proof. We refer to this problem as the “relaxed” version ofWeighted CNF
Sat, which is in contrast referred as the “exact” version. Consider 𝑘 + 1 new
variables 𝑦1, . . . , 𝑦𝑘+1. The formula 𝐹 ∧ (𝑦1 ∨ 𝑦2 ∨ ⋅ ⋅ ⋅ ∨ 𝑦𝑘+1) has a satisfying
assignment of weight 𝑘+ 1 if and only if 𝐹 has a satisfying assignment of weight
at most 𝑘. Furthermore, translating back such assignment to an assignment for
𝐹 is a simple projection. This proves that the relaxed version is reducible to the
exact one, and thus the former is in W[2].

To prove completeness consider the following reduction from the exact version
to the relaxed one. Let (𝐹, 𝑘) be the input, where 𝐹 is a CNF in variables
𝑥1, . . . , 𝑥𝑛. Consider the following CNF 𝜓 which in addition to 𝑥1, . . . , 𝑥𝑛 uses
new variables 𝑦𝑖,𝑗 for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘]:

78 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

⋁
𝑖

𝑦𝑖,𝑗 for any 𝑗 ∈ [𝑘]

¬𝑦𝑖,𝑗 ∨ ¬𝑦𝑖′,𝑗 for any 𝑖 ∕= 𝑖′ ∈ [𝑛] and 𝑗 ∈ [𝑘]
¬𝑦𝑖,𝑗 ∨ ¬𝑦𝑖,𝑗′ for any 𝑖 ∈ [𝑛] and 𝑗 ∕= 𝑗′ ∈ [𝑘]
𝑦𝑖,1 ∨ 𝑦𝑖,2 ∨ . . . ∨ 𝑦𝑖,𝑘 ∨ ¬𝑥𝑖 for any 𝑖 ∈ [𝑛]
¬𝑦𝑖,𝑗 ∨ 𝑥𝑖 for any 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘]

Formula 𝜓 is satisfiable if and only if there is a set of 𝑘 indices in [𝑛] matched
with [𝑘]. Variable 𝑥𝑖 is true if and only if 𝑖 is in such set. Thus any satisfying
assignment for 𝜓 has weight 2𝑘. The reduction from the exact version to the
relaxed version of Weighted CNF Sat is given by (𝐹, 𝑘) �→ (𝐹 ∧ 𝜓, 2𝑘). This
proves that the relaxed version is W[2]-hard. ⊓⊔

In Theorem 7.6.2 below we show that for CNF’s of constant width the problem
of finding an assignment with weight at most 𝑘 is in FPT. ThusW[1]-completeness
really depends on the equality requirement (this observation was also made in
[DF99, CF08]).

Observe that using unbounded clauses is crucial in the previous proof, and
that this reduction does not work with bounded width CNF’s. In general,
any reduction from Weighted 𝑑-CNF Sat to its relaxed version would im-
ply W[1] ⊆ FPT and NP ⊆ DTIME(2𝑜(𝑛)) (for the latter implication see [DF99,
Corollary 17.7]).

Using the relaxed version of Weighted CNF Sat, we obtain a complete
problem for coW[2] as in the classical duality between tautologies and satisfiabil-
ity:

Definition 7.1.4 (Dantchev, Martin, Szeider [DMS07]) A parameterized
contradiction is a pair (𝐹, 𝑘) consisting of a propositional formula 𝐹 and 𝑘 ∈ ℕ

such that 𝐹 has no satisfying assignment of weight ≤ 𝑘. We denote the set of all
parameterized contradictions by PCon.

7.2 Parameterized Proof Systems

We start with the general definition of a parameterized proof system of Dantchev,
Martin, and Szeider [DMS07].

Definition 7.2.1 (Dantchev, Martin, Szeider [DMS07]) A parameterized
proof system for a parameterized language 𝐿 ⊆ Σ∗×ℕ is a function 𝑃 : Σ∗×ℕ→
Σ∗×ℕ such that rng(𝑃) = 𝐿 and 𝑃 (𝑥, 𝑘) can be computed in time 𝑂(𝑓(𝑘)∣𝑥∣𝑂(1))
with some computable function 𝑓 .

7.2. PARAMETERIZED PROOF SYSTEMS 79

In this definition, there are two parameters: one stemming from the parame-
terized language, but there is also a parameter in the proof. Verification of proofs
then proceeds in fpt-time in the proof parameter. We contrast this with the clas-
sical concept of Cook and Reckhow where proofs are verified in polynomial time:

Definition 7.2.2 (Cook, Reckhow [CR79]) A proof system for a language
𝐿 ⊆ Σ∗ is a polynomial-time computable function 𝑃 : Σ∗ → Σ∗ with rng(𝑃) = 𝐿.

This framework can also be applied to parameterized languages 𝐿 ⊆ Σ∗ ×ℕ.
Thus, in contrast to the parameterized proof systems from Definition 7.2.1, we
say that a proof system for the parameterized language 𝐿 is just a polynomial-
time computable function 𝑃 : Σ∗ → Σ∗ × ℕ with rng(𝑃) = 𝐿. The difference to
Definition 7.2.1 is that proofs are now verified in polynomial time. We will argue
in Theorem 7.2.6 that this weaker and simpler notion is in fact equivalent to the
notion of parameterized proof systems from Definition 7.2.1 when considering
lengths of proofs.

For lengths of proofs it is appropriate to adjust the notion of short proofs to
the parameterized setting. This was formalized by Dantchev, Martin, and Szeider
as follows:

Definition 7.2.3 (Dantchev, Martin, Szeider [DMS07]) A parameterized
proof system 𝑃 for a parameterized language 𝐿 is fpt-bounded if there exist com-
putable functions 𝑓 and 𝑔 such that every (𝑥, 𝑘) ∈ 𝐿 has a 𝑃 -proof (𝑦, 𝑘′) with
∣𝑦∣ ≤ 𝑓(𝑘)∣𝑥∣𝑂(1) and 𝑘′ ≤ 𝑔(𝑘).

Again, if we use polynomial-time computable proof systems for parameterized
languages, this definition simplifies a bit as follows:

Definition 7.2.4 A proof system 𝑃 for a parameterized language 𝐿 is fpt-
bounded if there exists a computable function 𝑓 such that every (𝑥, 𝑘) ∈ 𝐿 has a
𝑃 -proof of size at most 𝑓(𝑘)∣𝑥∣𝑂(1).

The main motivation behind the work of [DMS07] was that of generalizing the
classical approach of Cook and Reckhow to the parameterized case and working
towards a separation of parameterized complexity classes as FPT and W[P] by
techniques developed in proof complexity. In fact, we will obtain an analogous
result to the well-known Cook-Reckhow theorem.

For this we want to determine which parameterized languages admit fpt-
bounded proof systems. Recall that by the theorem of Cook and Reckhow [CR79],
the class of all languages with polynomially bounded proof systems coincides with
NP. To obtain a similar result in the parameterized world, we use the following
parameterized version of NP.

Definition 7.2.5 (Flum, Grohe [FG03]) The class para-NP contains all pa-
rameterized languages which can be decided by a nondeterministic Turing machine
in time 𝑓(𝑘)∣𝑥∣𝑂(1) for some computable function 𝑓 .

80 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

The following result is a direct analogue of the classical theorem of Cook and
Reckhow [CR79] for the parameterized setting. Moreover, it shows the equiv-
alence of our two notions for proof systems for parameterized languages with
respect to the existence of fpt-bounded systems.

Theorem 7.2.6 Let 𝐿 ⊆ Σ∗×ℕ be a parameterized language. Then the following
statements are equivalent:

1. There exists an fpt-bounded proof system for 𝐿.

2. There exists an fpt-bounded parameterized proof system for 𝐿.

3. 𝐿 ∈ para-NP.

Proof. For the implication 1 ⇒ 2, let 𝑃 be an fpt-bounded proof system for 𝐿.
Then the system 𝑃 ′ defined by 𝑃 ′(𝑦, 𝑘) = 𝑃 (𝑦) is an fpt-bounded parameterized
proof system for 𝐿.

For the implication 2 ⇒ 3, let 𝑃 be an fpt-bounded parameterized proof
system for 𝐿 such that every (𝑥, 𝑘) ∈ 𝐿 has a 𝑃 -proof (𝑦, 𝑘′) with ∣𝑦∣ ≤ 𝑓(𝑘)𝑝(∣𝑥∣)
and 𝑘′ ≤ 𝑔(𝑘) for some computable functions 𝑓, 𝑔 and some polynomial 𝑝. Let
𝑀 be a Turing machine computing 𝑃 in time ℎ(𝑘)𝑞(𝑛) with computable ℎ and
a polynomial 𝑞. Then 𝐿 ∈ para-NP by the following algorithm: on input (𝑥, 𝑘)
we guess a proof (𝑦, 𝑘′) with ∣𝑦∣ ≤ 𝑓(𝑘)𝑝(∣𝑥∣) and 𝑘′ ≤ 𝑔(𝑘). Then we verify that
𝑃 (𝑦, 𝑘′) = (𝑥, 𝑘) in time ℎ(𝑘′)𝑞(∣𝑦∣) which by the choice of (𝑦, 𝑘) yields an fpt
running time. If the test is true, then we accept the input (𝑥, 𝑘), otherwise we
reject.

For the implication 3 ⇒ 1, let 𝐿 ∈ para-NP and let 𝑀 be a nondeterministic
Turing machine for 𝐿 running in time 𝑓(𝑘)𝑝(𝑛) where 𝑓 is computable and 𝑝 is
a polynomial. Then we define the following proof system 𝑃 for 𝐿:

𝑃 (𝑥, 𝑘, 𝑤) =

{
(𝑥, 𝑘) if 𝑤 is an accepting computation of 𝑀 on input (𝑥, 𝑘)

(𝑥0, 𝑘0) otherwise

where (𝑥0, 𝑘0) ∈ 𝐿 is some fixed instance. Apparently, 𝑃 can be computed in
polynomial time. Moreover, 𝑃 is fpt-bounded as every (𝑥, 𝑘) ∈ 𝐿 has a 𝑃 -proof
of size 𝑂(𝑓(𝑘)𝑝(∣𝑥∣)). ⊓⊔

As in items 1 and 2 of Theorem 7.2.6, the two concepts of proof systems
for parameterized languages also turn out to be equivalent with respect to other
notions, for instance when defining parameterized simulations or considering the
existence of optimal proof systems.

7.3. PARAMETERIZED RESOLUTION 81

7.3 Parameterized Resolution

The classical proof system of Resolution was adapted by Dantchev, Martin, and
Szeider [DMS07] to a parameterized proof system, called Parameterized Reso-
lution. Parameterized Resolution is a refutation system for the set PCon of
parameterized contradictions (cf. Definition 7.1.4). Given a set of clauses 𝐹 in
variables 𝑥1, . . . , 𝑥𝑛 with (𝐹, 𝑘) ∈ PCon, a Parameterized Resolution refutation
of (𝐹, 𝑘) is a Resolution refutation of

𝐹 ∪ {¬𝑥𝑖1 ∨ ⋅ ⋅ ⋅ ∨ ¬𝑥𝑖𝑘+1
∣ 1 ≤ 𝑖1 < ⋅ ⋅ ⋅ < 𝑖𝑘+1 ≤ 𝑛} .

Thus, in Parameterized Resolution we have built-in access to all parameterized
clauses of the form ¬𝑥𝑖1 ∨ ⋅ ⋅ ⋅ ∨ ¬𝑥𝑖𝑘+1

. All these clauses are available in the
system, but when measuring the size of a derivation we only count those which
appear in the derivation. Note that parameterized resolution is actually a proof
system where verification proceeds in polynomial time.

As before, if refutations are tree-like we speak of tree-like Parameterized Res-
olution. Similarly as in classical tree-like Resolution (cf. Section 6.1), a tree-like
Parameterized refutation of (𝐹, 𝑘) can equivalently be described as a Boolean de-
cision tree. A Boolean decision tree for (𝐹, 𝑘) is a binary tree where inner nodes
are labeled with variables from 𝐹 and leafs are labeled with clauses from 𝐹 or
parameterized clauses ¬𝑥𝑖1 ∨ ⋅ ⋅ ⋅ ∨ ¬𝑥𝑖𝑘+1

. Each path in the tree corresponds to
a partial assignment where a variable 𝑥 gets value 0 or 1 according to whether
the path branches left or right at the node labeled with 𝑥. The condition on the
decision tree is that each path 𝛼 must lead to a clause which is falsified by the
assignment corresponding to 𝛼. It is easy to verify that each tree-like Parameter-
ized Resolution refutation of (𝐹, 𝑘) yields a Boolean decision tree for (𝐹, 𝑘) and
vice versa, where the size of the Resolution proof equals the number of nodes in
the decision tree.

The main result of Dantchev, Martin, and Szeider [DMS07] on Parameterized
Resolution is an extension of Riis’ gap theorem [Rii01]. For this result, first-order
sentences 𝜓 are translated into sequences ⟨𝐶𝑛,𝜓⟩𝑛∈ℕ of propositional formulas in
CNF. Riis’ gap theorem states that in tree-like Resolution, these translations of
unsatisfiable first-order formulas have either polynomial-size refutations or need
exponential-size refutations:

Theorem 7.3.1 (Riis [Rii01]) Let 𝜓 be a first-order sentence which fails in all
finite models. Then for the propositional translations ⟨𝐶𝑛,𝜓⟩𝑛∈ℕ of 𝜓, either of
the following holds:

1. 𝐶𝑛,𝜓 has tree-like Resolution refutations of size 𝑛𝑂(1);

2. There exists a constant 𝜀 > 0 such that every tree-like Resolution refutation
of 𝐶𝑛,𝜓 has size at least 2𝜀⋅𝑛.

82 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

Furthermore, case 2 holds if and only if 𝜓 has an infinite model.

Dantchev, Martin, and Szeider prove that in the parameterized setting, the
hard case in Riis’ dichotomy (case 2) splits into two sub-cases:

Theorem 7.3.2 (Dantchev, Martin, Szeider [DMS07]) Let 𝜓 be a first-
order sentence which fails in all finite models, but holds in some infinite model.
Then for the sequence of parameterized contradictions ⟨(𝐶𝑛,𝜓, 𝑘)⟩𝑛∈ℕ stemming
from the translations of 𝜓, either of the following holds:

2a. The parameterized contradictions (𝐶𝑛,𝜓, 𝑘) have tree-like Parameterized
Resolution refutations of size 2𝑂(𝑘) ⋅ 𝑛𝑂(1);

2b. There exists a constant 0 < 𝜀 ≤ 1 such that for every 𝑛 > 𝑘, every tree-like
Parameterized Resolution refutation of (𝐶𝑛,𝜓, 𝑘) has size at least 𝑛𝑘

𝜀
.

Furthermore, case 2b holds if and only if 𝜓 has an infinite model whose induced
hypergraph has no finite dominating set, where the hypergraph of a model 𝑀
contains the elements of 𝑀 as vertices and hyperedges are the tuples appearing
in some relation in the model.

This gap theorem states that in tree-like Parameterized Resolution, transla-
tions of first-order formulas either have fpt-bounded refutations or require refu-
tations of size similar to exhaustive search. Dantchev et al. provide examples of
principles for all the three cases 1, 2a, and 2b.

7.4 A General Lower Bound for Parameterized

Proof Systems

Before we analyze the complexity of of Parameterized Resolution in more detail,
we will explain a very general lower bound argument which works for all parame-
terized proof systems where the parameterized axioms are given explicitly in the
form ¬𝑥1 ∨ ⋅ ⋅ ⋅ ∨ ¬𝑥𝑘+1 as is the case in Parameterized Resolution. The lower
bound exploits the fact that we can easily build minimally unsatisfiable param-
eterized contradictions where we need all these parameterized clauses for their
refutation.

Proposition 7.4.1 Parameterized Resolution is not fpt-bounded.

Proof. Let 𝑛, 𝑘 ∈ ℕ. We use propositional variables 𝑥𝑖,𝑗 with 𝑖 ∈ [𝑘 + 1] and
𝑗 ∈ [𝑛]. Consider the following formulas Θ𝑘+1

𝑛 :

Θ𝑘+1
𝑛 :=

⋀
𝑖∈[𝑘+1]

⋁
𝑗∈[𝑛]

𝑥𝑖,𝑗 .

7.5. TREE-LIKE LOWER BOUNDS 83

We can think of these formulas as the collection of all the big clauses from the
pigeonhole principle, but now we use 𝑘 + 1 pigeons and 𝑛 holes. The formula
Θ𝑘+1
𝑛 asserts that each of the 𝑘+ 1 pigeons goes into some hole. Clearly, the for-

mulas (Θ𝑘+1
𝑛 , 𝑘) are parameterized contradictions. However, every Parameterized

Resolution refutation of (Θ𝑘+1
𝑛 , 𝑘) has to involve all 𝑛𝑘+1 parameterized axioms

of the following set

Π := {¬𝑥1,𝑗1 ∨ ⋅ ⋅ ⋅ ∨ ¬𝑥𝑘+1,𝑗𝑘+1
∣ 𝑗1, . . . , 𝑗𝑘+1 ∈ [𝑛] } ,

because for each proper subset Π′ ⊂ Π, the formula Θ𝑘+1
𝑛 ∪ Π′ is no classical

contradiction and thus cannot be refuted in Resolution. This shows that any
Parameterized Resolution refutation of (Θ𝑘+1

𝑛 , 𝑘) has size at least 𝑛𝑘+1. ⊓⊔

We remark that these lower bounds apply to all parameterized proof sys-
tems where the parameterized axioms are given explicitly. However, these lower
bounds are somewhat trivial and not very informative about the actual strength
of the systems. In the following sections we will therefore analyze the complex-
ity of natural principles in tree-like and dag-like Parameterized Resolution. Let
us remark though that Dantchev et al. [DMS07] also define parameterized proof
systems where the parameterized axioms are given in a more succinct implicit en-
coding. Lower bounds for these systems, in particular for implicit Parameterized
Resolution, are not yet known.

7.5 Tree-like Lower Bounds via Asymmetric

Prover-Delayer Games

Dantchev, Martin, and Szeider [DMS07] proved that tree-like Parameterized Res-
olution is not fpt-bounded. However, their lower bound technique only works for
formulas arising from propositional encodings of first-order principles having in-
finite models. To show hardness results in tree-like Parameterized Resolution for
other sequences of parameterized contradictions we use our asymmetric Prover-
Delayer game from Section 6.3. As in Section 6.3, we obtain the connection of
the asymmetric Prover-Delayer game to the size of proofs in tree-like Parameter-
ized Resolution. In fact, the asymmetric game is applicable to all tree-like proof
systems. We state the result for tree-like Parameterized Resolution. Its proof is
essentially the same as the proof of Theorem 6.3.1.

Theorem 7.5.1 Let (𝐹, 𝑘) be a parameterized contradiction and let 𝑐0 and 𝑐1 be
two functions satisfying 1

𝑐0(𝑥,𝛼)
+ 1

𝑐1(𝑥,𝛼)
= 1 for all partial assignments 𝛼 to the

variables of 𝐹 . If (𝐹, 𝑘) has a tree-like Parameterized Resolution refutation of
size at most 𝑆, then the Delayer gets at most log 𝑆 points in each (𝑐0, 𝑐1)-game
played on (𝐹, 𝑘).

84 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

We remark that for tree-like Parameterized Resolution it is indeed essential
that we use the asymmetric game instead of the original Pudlák-Impagliazzo
game. This is so because we aim for lower bounds of the form 𝑛Ω(𝑘) (𝑛 is the
formula size and 𝑘 the parameter), but, trivially, every tree-like Parameterized
Resolution refutation only contains balanced sub-trees of height 𝑘 as we can never
set more than 𝑘 variables to 1.

We illustrate the applicability of this technique for tree-like Parameterized
Resolution by proving the hardness of the pigeonhole principle PHP𝑛+1

𝑛 (cf. Sec-
tion 6.4). Again, proving the lower bound amounts to suitably choosing func-
tions 𝑐0 and 𝑐1 and defining a Delayer-strategy for the (𝑐0, 𝑐1)-game played on
(PHP𝑛+1

𝑛 , 𝑘).

Theorem 7.5.2 Any tree-like Parameterized Resolution refutation of
(PHP𝑛+1

𝑛 , 𝑘) has size 𝑛Ω(𝑘).

Proof. Let 𝛼 be a partial assignment to the variables {𝑥𝑖,𝑗 ∣ 𝑖 ∈ [𝑛 + 1], 𝑗 ∈ [𝑛]}.
Let 𝑧𝑖(𝛼) = ∣{𝑗 ∈ [𝑛] ∣ 𝛼(𝑥𝑖,𝑗) = 0}∣, i. e., 𝑧𝑖(𝛼) is the number of holes already
excluded by 𝛼 for pigeon 𝑖. We define

𝑐0(𝑥𝑖,𝑗, 𝛼) =
𝑛− 𝑧𝑖(𝛼)

𝑛− 𝑧𝑖(𝛼)− 1 and 𝑐1(𝑥𝑖,𝑗, 𝛼) = 𝑛− 𝑧𝑖(𝛼)

which apparently satisfies (6.1). We now describe Delayer’s strategy in a (𝑐0, 𝑐1)-
game played on (PHP𝑛+1

𝑛 , 𝑘). If Prover asks for a value of 𝑥𝑖,𝑗, then Delayer
decides as follows:

set 𝛼(𝑥𝑖,𝑗) = 0 if there exists 𝑖′ ∈ [𝑛+ 1] ∖ {𝑖} such that 𝛼(𝑥𝑖′,𝑗) = 1 or
if there exists 𝑗′ ∈ [𝑛] ∖ {𝑗} such that 𝛼(𝑥𝑖,𝑗′) = 1

set 𝛼(𝑥𝑖,𝑗) = 1 if there is no 𝑗′ ∈ [𝑛] with 𝛼(𝑥𝑖,𝑗′) = 1 and 𝑧𝑖(𝛼) ≥ 𝑛− 𝑘
let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon 𝑖 does not already
sit in a hole, but there are at least 𝑘 holes free for pigeon 𝑖, and there is no other
pigeon sitting already in hole 𝑗. If Delayer uses this strategy, then clauses from
PHP𝑛+1

𝑛 will not be violated in the game, i. e., a contradiction will always be
reached on some parameterized clause. To verify this claim, let 𝛼 be a partial
assignment constructed during the game with 𝑤(𝛼) ≤ 𝑘. Then, for every pigeon
which has not been assigned to a hole yet, there are at least 𝑘 holes where it
could go (and of these only 𝑤(𝛼) holes are already occupied by other pigeons).
Thus 𝛼 can be extended to a one-one mapping of exactly 𝑘 pigeons to holes.

Therefore, at the end of the game exactly 𝑘 + 1 variables have been set to
1. Let us denote by 𝑝 the number of variables set to 1 by Prover and let 𝑑 be
the number of 1’s assigned by Delayer. As argued before 𝑝 + 𝑑 = 𝑘 + 1. Let
us check how many points Delayer earns in this game. If Delayer assigns 1 to a

7.6. KERNELS AND SMALL REFUTATIONS 85

variable 𝑥𝑖,𝑗, then pigeon 𝑖 was not assigned to a hole yet and, moreover, there
must be 𝑛− 𝑘 holes which are already excluded for pigeon 𝑖 by 𝛼, i. e., for some
𝐽 ⊆ [𝑛] with ∣𝐽 ∣ = 𝑛 − 𝑘 we have 𝛼(𝑥𝑖,𝑗′) = 0 for all 𝑗′ ∈ 𝐽 . Most of these 0’s
have been assigned by Prover, as Delayer has only assigned a 0 to 𝑥𝑖,𝑗′ when some
other pigeon was already sitting in hole 𝑗′, and there can be at most 𝑘 such holes.
Thus, before Delayer sets 𝛼(𝑥𝑖,𝑗) = 1, she has already earned points for at least
𝑛− 2𝑘 variables 𝑥𝑖,𝑗′ , 𝑗′ ∈ 𝐽 , yielding at least

𝑛−2𝑘−1∑
𝑧=0

log
𝑛− 𝑧

𝑛− 𝑧 − 1 = log
𝑛−2𝑘−1∏
𝑧=0

𝑛− 𝑧
𝑛− 𝑧 − 1 = log

𝑛

2𝑘
= log 𝑛− log 2𝑘

points for the Delayer. Let us note that because Delayer never allows a pigeon
to go into more than one hole, she will really get the number of points calculated
above for every of the 𝑑 variables which she set to 1.

If, conversely, Prover sets variable 𝑥𝑖,𝑗 to 1, then Delayer gets log(𝑛 − 𝑧𝑖(𝛼))
points for this, but she also received points for most of the 𝑧𝑖(𝛼) variables set to
0 before. Thus, in this case Delayer earns on pigeon 𝑖 at least

log(𝑛− 𝑧𝑖(𝛼)) +
𝑧𝑖(𝛼)−𝑘−1∑

𝑧=0

log
𝑛− 𝑧

𝑛− 𝑧 + 𝑘 − 1
= log(𝑛− 𝑧𝑖(𝛼)) + log 𝑛

𝑛− 𝑧𝑖(𝛼) + 𝑘
= log 𝑛− log 𝑛− 𝑧𝑖(𝛼) + 𝑘

𝑛− 𝑧𝑖(𝛼)
≥ log 𝑛− log 𝑘

points. In total, Delayer gets at least

𝑑(log 𝑛− log 2𝑘) + 𝑝(log 𝑛− log 𝑘) ≥ 𝑘(log 𝑛− log 2𝑘)
points in the game. Applying Theorem 7.5.1, we obtain (𝑛

2𝑘
)𝑘 as a lower bound to

the size of each tree-like Parameterized Resolution refutation of (PHP𝑛+1
𝑛 , 𝑘). ⊓⊔

By inspection of the above Delayer strategy it becomes clear that the lower
bound from Theorem 7.5.2 also holds for the functional pigeonhole principle where
in addition to the clauses from PHP𝑛+1

𝑛 we also include ¬𝑥𝑖,𝑗1 ∨ ¬𝑥𝑖,𝑗2 for all
pigeons 𝑖 ∈ [𝑛+ 1] and distinct holes 𝑗1, 𝑗2 ∈ [𝑛].

7.6 Kernels and Small Refutations

The notion of efficient kernelization plays an important role in the theory of
parameterized complexity. A kernelization for a parameterized language 𝐿 is a
polynomial-time procedure 𝐴 : Σ∗ × ℕ→ Σ∗ × ℕ such that for each (𝑥, 𝑘)

86 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

1. (𝑥, 𝑘) ∈ 𝐿 if and only if 𝐴(𝑥, 𝑘) ∈ 𝐿 and

2. if 𝐴(𝑥, 𝑘) = (𝑥′, 𝑘′), then 𝑘′ ≤ 𝑘 and ∣𝑥′∣ ≤ 𝑓(𝑘) for some computable
function 𝑓 independent of ∣𝑥∣.

It is clear that if a parameterized language admits a kernelization, then the
language is fixed-parameter tractable, but also the converse is true (cf. [FG06]).
For parameterized proof complexity we suggest a similar notion of kernel for
parameterized contradictions:

Definition 7.6.1 A set Γ ⊆ PCon of parameterized contradictions has a kernel
if there exists a computable function 𝑓 such that every (𝐹, 𝑘) ∈ Γ has a subset
𝐹 ′ ⊆ 𝐹 of clauses satisfying the following conditions:

1. 𝐹 ′ contains at most 𝑓(𝑘) variables and

2. (𝐹 ′, 𝑘) is a parameterized contradiction.

Note that a sequence of parameterized contradictions with a kernel of size
𝑓(𝑘) admits fpt-bounded tree-like Resolution refutations of size at most 2𝑓(𝑘).
Nevertheless, there are CNF’s without a kernel, but with fpt-bounded refutations,
for example (𝑥1 ∨ 𝑥2 ∨ ⋅ ⋅ ⋅ ∨ 𝑥𝑛) ∧ ¬𝑥1 ∧ ¬𝑥2 ∧ ⋅ ⋅ ⋅ ∧ ¬𝑥𝑛.

We now give some examples of CNF’s with kernels:

Pebbling contradictions. Fix a constant 𝑙 and an acyclic connected di-
rected graph 𝐺 of constant maximum in-degree with a single sink vertex 𝑧. For
any vertex 𝑣 in 𝐺, let Pred(𝑣) be the set of immediate predecessors of 𝑣. For
any 𝑣 we use the propositional variables 𝑥𝑣1, . . . , 𝑥

𝑣
𝑙 . The pebbling contradiction

consists of the conjunction of the constraints⎛⎝ ⋀
𝑢∈Pred(𝑣)

(𝑥𝑢1 ∨ . . . ∨ 𝑥𝑢𝑙)
⎞⎠ −→ 𝑥𝑣1 ∨ . . . ∨ 𝑥𝑣𝑙

for any 𝑣 ∈ 𝑉 (𝐺) and constraints ¬𝑥𝑧1,¬𝑥𝑧2, . . . ,¬𝑥𝑧𝑙 . This means that for any
source vertex 𝑠 (which has an empty set of predecessors) one of the variables 𝑥𝑠𝑖
is true. By induction this holds for every vertex in 𝐺, in particular also for the
sink 𝑧 contradicting the last 𝑙 clauses. For constant 𝑙 and constant maximum
in-degree, the pebbling formula can be encoded as a CNF of polynomial size in
the number of vertices of 𝐺.

To see that the pebbling contradictions have a kernel, consider the first 𝑘 +
1 vertices in a topological ordering of 𝑉 (𝐺). The corresponding propagation
formulas form a parameterized contradiction, because these formulas enforce 𝑘+1
true variables. For graphs of constant maximum in-degree, these formulas have
𝑂(1) variables each, so their CNF encoding has size 𝑂(𝑘) and constitutes a kernel.

7.6. KERNELS AND SMALL REFUTATIONS 87

This is remarkable, because forms of pebbling tautologies are hard for tree-like
Resolution in the non-parameterized setting [BSIW04].

Colorability. Fix a constant 𝑐 and a graph 𝐺 which is not 𝑐-colorable. The
𝑐-coloring contradiction is defined on variables 𝑝𝑢,𝑗 where 𝑢 is a vertex of 𝐺 and
𝑗 is one of the 𝑐 colors. The CNF claims that 𝐺 is 𝑐-colorable: (1) for any vertex
𝑢 we have the clause

⋁
1≤𝑗≤𝑐 𝑝𝑢,𝑗 claiming that the vertex 𝑢 gets a color; (2) for

any edge {𝑢, 𝑣} in 𝐺 and any color 𝑗, the clause ¬𝑝𝑢,𝑗 ∨¬𝑝𝑣,𝑗 claims that no pair
of adjacent vertices gets the same color.

It is easy to see that the clauses of type (1) corresponding to any 𝑘+1 vertices
form a kernel and thus have a short refutation. This contrasts with the fact that
for random 𝐺 and 𝑐 ≥ 3 this formula is hard in Resolution [BCMM05].

Graph pigeonhole principle. Fix 𝐺 to be a bounded-degree bipartite
graph, with the set of vertices partitioned into two sets: 𝑈 of size 𝑛 + 1 (the
pigeons) and 𝑉 of size 𝑛 (the holes). PHP(𝐺) is a variant of the pigeonhole
principle where a pigeon can go only into a small set of holes as specified by the
edges of𝐺. If𝐺 is an expander, then the principle is hard for Resolution [BSW01].
PHP(𝐺) consists of the following clauses: (1) for 𝑢 ∈ 𝑈 we have

⋁
𝑣∈Γ(𝑢) 𝑝𝑢,𝑣;

(2) for any 𝑣 ∈ 𝑉 and any 𝑢1, 𝑢2 ∈ Γ(𝑣) we have the clause ¬𝑝𝑢1,𝑣 ∨ ¬𝑝𝑢2,𝑣. It is
clear that 𝑘 + 1 clauses of type (1) constitute a kernel.

Ordering principles. In Section 7.7 we will give different formulations of
the total ordering principle. We will see that the propositional translations of
the first-order formulation given in [DMS07] have easy refutations (as observed
in [DMS07]) because of the presence of a kernel. We emphasize that the same
ordering principle requires exponential-size tree-like Resolution refutations in the
non-parameterized setting [BG01].

Bounded-width CNF. The kernels in the previous examples are very ex-
plicit, but this is not always the case. Is it easy to find a kernel if it is known to
exist? The answer to this question has consequences regarding automatizability
of tree-like Parameterized Resolution. We see now a general strategy for finding
kernels and fpt-bounded refutations for parameterized contradictions of bounded
width. We first explain this technique for vertex cover and then generalize it for
bounded width CNF’s.

Gao [Gao09] suggested to use a standard DPLL algorithm to find refutations
of certain random parameterized 𝑑-CNF’s. Here we prove that bounded width
CNF’s have a kernel and hence are efficiently refutable in tree-like Parameterized
Resolution. The core of our quite simple argument is the interpretation of a
classical parameterized algorithm for vertex cover as a DPLL procedure.

A vertex cover for a graph 𝐺 is a set 𝐶 ⊆ 𝑉 (𝐺) such that for any {𝑢, 𝑣} ∈
𝐸(𝐺) either 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶. To determine whether 𝐺 has a vertex cover of
size at most 𝑘 there is a well-known [DF99, Chapter 3] fixed parameter tractable
algorithm (here the parameter is 𝑘). This algorithm is based on the following

88 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

observation: if a vertex is not in 𝐶, then all its neighbors must be in 𝐶. The
algorithm is a simple recursive procedure which focuses on an arbitrary vertex 𝑢,
and on its neighbors 𝑣1, . . . , 𝑣𝑙: if neither 𝐺 ∖ {𝑢} has a vertex cover of size 𝑘− 1
nor 𝐺 ∖ {𝑢, 𝑣1, . . . , 𝑣𝑙} has a vertex cover of size 𝑘− 𝑙, then 𝐺 has no vertex cover
of size 𝑘.

This is easily interpretable as a parameterized DPLL procedure on the 2-
CNF 𝐹𝐺 =

⋀
{𝑢,𝑣}∈𝐸(𝐺)(𝑥𝑢 ∨ 𝑥𝑣) where 𝑥𝑢 indicates whether 𝑢 ∈ 𝐶. The DPLL

procedure fixes an arbitrary variable 𝑥𝑢 and splits on it. When 𝑥𝑢 = 1, then the
DPLL algorithm proceeds with analyzing 𝐹𝐺 ↾𝑥𝑢=1 which is equal to 𝐹𝐺∖{𝑢}. When
𝑥𝑢 = 0, then 𝑥𝑣1 = 1, . . . , 𝑥𝑣𝑙 = 1 by unit propagation. Thus the DPLL proceeds
on formula 𝐹𝐺 ↾{𝑥𝑢=0,𝑥𝑣1=1,...,𝑥𝑣𝑙=1}= 𝐹𝐺∖{𝑢,𝑣1,...,𝑣𝑙}. If at any point the DPLL has
more than 𝑘 variables set to one, it stops and backtracks. In Theorem 7.6.2 we
extend this idea to a DPLL algorithm for bounded width formulas.

Theorem 7.6.2 If 𝐹 is a CNF of width 𝑑 and (𝐹, 𝑘) is a parameterized con-
tradiction, then (𝐹, 𝑘) has a tree-like Parameterized Resolution refutation of size
𝑂(𝑑𝑘+1). Moreover, there is an algorithm that for any (𝐹, 𝑘) either finds such
tree-like refutation or finds a satisfying assignment for 𝐹 of weight ≤ 𝑘. The
algorithm runs in time 𝑂(∣𝐹 ∣ ⋅ 𝑘 ⋅ 𝑑𝑘+1).

Proof. Assume (𝐹, 𝑘) is a parameterized contradiction. We want to find a refu-
tation for 𝐹 with parameter 𝑘 (i. e., at most 𝑘 variables can be set to true). We
first consider a clause 𝐶 = 𝑥1 ∨ 𝑥2 ∨ . . .∨ 𝑥𝑙 where 𝑙 ≤ 𝑑 with all positive literals.
Such clause exists because otherwise the full zero assignment would satisfy 𝐹 .

By induction on 𝑘 we will prove that (𝐹, 𝑘) has a parameterized tree-like
refutation of size at most 2 ⋅∑𝑘+1

𝑖=0 𝑑
𝑖 − 1. For 𝑘 = 0 the clauses {¬𝑥𝑖}𝑙𝑖=1 are

parameterized axioms of the system, thus 𝐶 is refutable in size at most 1 + 2𝑙 ≤
1 + 2𝑑.

Now consider 𝑘 > 0. For any 1 ≤ 𝑖 ≤ 𝑙, let 𝐹𝑖 be the restriction of 𝐹 obtained
by setting 𝑥𝑖 = 1. Each (𝐹𝑖, 𝑘 − 1) is a parameterized contradiction, otherwise
(𝐹, 𝑘) would not be. By inductive hypothesis (𝐹𝑖, 𝑘−1) has a tree-like refutation
of size at most 𝑠 = 2

∑𝑘
𝑖=0 𝑑

𝑖 − 1. This refutation can be turned into a tree-like
derivation of ¬𝑥𝑖 from (𝐹, 𝑘). Now we can derive all ¬𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑙 and refute
clause 𝐶. Such refutation has length 1 + 𝑙 + 𝑙𝑠 ≤ 1 + 𝑑+ 𝑑𝑠 = 2 ⋅∑𝑘+1

𝑖=0 𝑑
𝑖 − 1.

By inspection of the proof, it is clear that the refutation can be computed
by a simple procedure which at each step looks for a clause 𝐶 with only positive
literals, and builds a refutation of (𝐹, 𝑘) recursively by: building 𝑙 refutations of
(𝐹𝑖, 𝑘 − 1); turning them in 𝑙 derivations (𝐹, 𝑘) ⊢ ¬𝑥𝑖; and resolving against 𝐶.
This procedure can be easily implemented in the claimed running time.

So far we considered (𝐹, 𝑘) to be a parameterized contradiction. If that is not
the case, then the algorithm fails. It can fail in two ways: (a) it does not find a
clause with only positive literals; (b) one among (𝐹𝑖, 𝑘−1) is not a parameterized
contradiction. The algorithm will output the full zero assignment in case (a) and

7.7. ORDERING PRINCIPLES 89

{𝑥𝑖 = 1}∪𝛼 in case (b), where 𝛼 is an assignment witnessing (𝐹𝑖, 𝑘−1) ∕∈ PCon.
By induction we can show that on input (𝐹, 𝑘) this procedure returns a satisfying
assignment of weight ≤ 𝑘. ⊓⊔

We state two interesting consequences of this result.

Corollary 7.6.3 For each 𝑑 ∈ ℕ, the set of all parameterized contradictions in
𝑑-CNF has a kernel.

Proof. The refutations constructed in Theorem 7.6.2 contain 𝑂(𝑑𝑘) initial clauses
in 𝑂(𝑑𝑘+1) variables. These clauses form a kernel. ⊓⊔

The following corollary expresses some restricted form of automatizability (cf.
also the discussion in Section 7.9).

Corollary 7.6.4 If Γ ⊆ PCon has a kernel, then there exists an fpt-algorithm
which on input (𝐹, 𝑘) ∈ Γ returns both a kernel and a refutation of (𝐹, 𝑘).

Proof. Let Γ have a kernel of size 𝑓(𝑘). Then the kernel only contains clauses
of width ≤ 𝑓(𝑘). On input (𝐹, 𝑘) we run the algorithm of Theorem 7.6.2 on the
CNF formula consisting of all clauses of 𝐹 with width ≤ 𝑓(𝑘). This yields a
kernel together with its refutation. ⊓⊔

Tseitin tautologies. Fix a bipartite graph 𝐺 = (𝐿,𝑅,𝐸) such that the
degree of the vertices on the left side is constant and the degree of all vertices on
the right side is even. Fix now an arbitrary Boolean function 𝑓 : 𝐿→ {0, 1} such
that

∑
𝑢∈𝐿 𝑓(𝑢) ≡ 1 (mod 2). The Tseitin tautology for (𝐺, 𝑓) claims that there

is no way to define 𝑔 : 𝑅 → {0, 1} such that for any 𝑢 ∈ 𝐿, ∑𝑣∈Γ(𝑢) 𝑔(𝑣) ≡ 𝑓(𝑢)

(mod 2). This fact follows by a simple parity argument. The CNF formulation of
this claim uses variables 𝑥𝑣 for 𝑣 ∈ 𝑅. The CNF is constituted by the encoding
of the constraints

∑
𝑣∈Γ(𝑢) 𝑥𝑣 ≡ 𝑓(𝑢) (mod 2) for every 𝑢 ∈ 𝐿. Each linear

constraint requires exponential size to be represented in CNF, but this is not an
issue here because left-side vertices have constant degree. Hence Tseitin formulas
have bounded width. By Theorem 7.6.2 they have a kernel, but in contrast to
our previous examples this kernel is not very explicit.

Corollary 7.6.5 There are formulas (e. g. Tseitin tautologies) which are hard
for general Resolution but easy for tree-like Parameterized Resolution.

7.7 Ordering Principles

In this section we discuss Parameterized Resolution refutations for various or-
dering principles OP , also called least element principles. The principle claims
that any finite partially ordered set has a minimal element. There is a direct

90 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

propositional translation of OP to a family OP𝑛 of CNF’s. Each CNF OP𝑛 ex-
presses that there exists a partially ordered set of size 𝑛 such that any element
has a predecessor. We are also interested in the linear ordering principle LOP in
which the set is required to be totally ordered.

Dantchev, Martin, and Szeider [DMS07] show that a propositional formulation
of LOP has small refutations in tree-like Parameterized Resolution. They also
show that such efficient refutation does not exist for OP . We observe that their
formulation of LOP has short proofs because it contains very simple kernels. We
describe LOP∗, an alternative formulation of the linear ordering principle which
does not contain a kernel but nevertheless has (less trivial) fpt-bounded tree-like
refutations.

We now describe the three propositional formulations of the ordering princi-
ples. For a model with 𝑛 elements, OP𝑛, LOP𝑛, and LOP∗

𝑛 are three CNF’s over
variables 𝑥𝑖,𝑗 for 𝑖 ∕= 𝑗 and 𝑖, 𝑗 ∈ [𝑛].

OP: the general ordering principle has the following clauses:

¬𝑥𝑖,𝑗 ∨ ¬𝑥𝑗,𝑖 for every 𝑖, 𝑗 (Antisymmetry)

¬𝑥𝑖,𝑗 ∨ ¬𝑥𝑗,𝑘 ∨ 𝑥𝑖,𝑘 for every 𝑖, 𝑗, 𝑘 (Transitivity)⋁
𝑗∈[𝑛]∖{𝑖}

𝑥𝑗,𝑖 for every 𝑖 (Predecessor)

LOP: is the same as OP with the addition of totality constraints:

𝑥𝑖,𝑗 ∨ 𝑥𝑗,𝑖 for every 𝑖, 𝑗 (Totality)

LOP∗: is a different encoding of LOP where we consider only variables 𝑥𝑖,𝑗
for 𝑖 < 𝑗. The intended meaning is that 𝑥𝑖,𝑗 is true whenever 𝑗 precedes 𝑖 in the
ordering, and false if 𝑖 precedes 𝑗. The reader may think 𝑥𝑖,𝑗 to indicate if 𝑖 and 𝑗
are an inversion in the permutation for the indexes described by the total order.
In particular the full true assignment represents the linear order (𝑛, 𝑛 − 1, 𝑛 −
2, . . . , 2, 1) while the full false assignment represents (1, 2, . . . , 𝑛 − 2, 𝑛 − 1, 𝑛).
This representation will help in the proof of Theorem 7.7.1.

LOP∗
𝑛 is obtained by substituting in LOP𝑛 any occurrence of 𝑥𝑗,𝑖 for 𝑗 > 𝑖 with

¬𝑥𝑖,𝑗. In this way all totality and antisymmetry clauses vanish, and transitivity
translates according to relative ranks of the involved indexes.

¬𝑥𝑖,𝑗 ∨ ¬𝑥𝑗,𝑘 ∨ 𝑥𝑖,𝑘 for all 𝑖 < 𝑗 < 𝑘 (Transitivity 1)

𝑥𝑖,𝑗 ∨ 𝑥𝑗,𝑘 ∨ ¬𝑥𝑖,𝑘 for all 𝑖 < 𝑗 < 𝑘 (Transitivity 2)⋁
𝑗<𝑖

¬𝑥𝑗,𝑖 ∨
⋁
𝑖<𝑗

𝑥𝑖,𝑗 for all 𝑖 (Predecessor)

Both OP and LOP are the canonical propositional translations of the first-
order formulations of the general and total ordering principle, respectively. In

7.7. ORDERING PRINCIPLES 91

[DMS07] the upper bound for LOP and the lower bound for OP are proved by the
model-theoretic criteria from Theorem 7.3.2 on the first-order logic formulations.

We remark that in the non-parameterized setting, neither OP , LOP , nor
LOP∗ have short tree-like Resolution refutations [BG01], but all of them have
general Resolution refutations of polynomial size [St̊a96]. It is interesting that in
the parameterized setting LOP and LOP∗ become easy for tree-like, while OP
remains hard. Thus, OP provides a separation between tree-like and dag-like
Parameterized Resolution.

It is easy to see that LOP has short tree-like refutations in Parameterized
Resolution: notice that the totality clauses for any 𝑘 + 1 pairs of indexes form
a parameterized contradiction of 2𝑘 + 2 variables at most, and so they are a
kernel. Unfortunately, LOP is easy to refute for uninteresting reasons: the ker-
nel is very simple. The alternative formulation LOP∗ does not have a kernel
because all clauses of bounded width are satisfiable by the all zero assignment
which represents a total order. Nevertheless LOP∗ admits fpt-bounded tree-like
refutations.

Theorem 7.7.1 The formulas LOP∗
𝑛 have fpt-bounded tree-like refutations in

Parameterized Resolution.

Proof. Let (LOP∗
𝑛, 𝑘) be the given instance and assume w. l. o. g. that 𝑘 ≤ 𝑛. We

are going to derive LOP∗
𝑘+1 from LOP∗

𝑛 in polynomial length. This concludes the
proof of the theorem because LOP∗

𝑘+1 has 𝑂(𝑘
2) variables and consequently has

a tree-like refutation of length 2𝑂(𝑘2).
The idea of the refutation is that for any total order either the least element

is among 1, . . . , 𝑘 + 1 or there is an element less than all of them. This means
that there are at least 𝑘 + 1 inversions with respect to the canonical order (i. e.,
𝑘 + 1 variables are set to 1). To obtain LOP∗

𝑘+1 we have to derive⋁
1≤𝑗<𝑖

¬𝑥𝑗,𝑖 ∨
⋁

𝑖<𝑗≤𝑘+1

𝑥𝑖,𝑗

for any 1 ≤ 𝑖 ≤ 𝑘 + 1. W. l. o. g. we discuss the case 𝑖 = 1 which requires simpler
notation, the other 𝑘 cases are analogous.

Our goal then is to derive
⋁

1<𝑗≤𝑘+1 𝑥1,𝑗. For any 𝑙 > 𝑘 + 1 consider the
following clauses: the first is an axiom of Parameterized Resolution, the others
are transitivity axioms.

¬𝑥1,𝑙 ∨ ¬𝑥2,𝑙 ∨ . . . ∨ ¬𝑥𝑘+1,𝑙 (7.1)

𝑥1,2 ∨ 𝑥2,𝑙 ∨ ¬𝑥1,𝑙 (7.2)

𝑥1,3 ∨ 𝑥3,𝑙 ∨ ¬𝑥1,𝑙 (7.3)

...

𝑥1,𝑘+1 ∨ 𝑥𝑘+1,𝑙 ∨ ¬𝑥1,𝑙 (7.4)

92 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

By applying Resolution between clause (7.1) and the transitivity clauses we obtain

𝑥1,2 ∨ 𝑥1,3 ∨ . . . ∨ 𝑥1,𝑘+1 ∨ ¬𝑥1,𝑙 (7.5)

We just proved that if 1 is the least index among the first 𝑘 + 1, then no index
above 𝑘 + 1 can be less than 1, otherwise there would be at least 𝑘 + 1 true
variables. The predecessor constraint for 1 contains the literal 𝑥1,𝑙 for every 𝑙;
thus applying Resolution between that and clause (7.5) for every 𝑙 > 𝑘+1 yields⋁

1<𝑗≤𝑘+1 𝑥1,𝑗.
We obtained the predecessor axiom for index 1 in LOP∗

𝑘+1 by a derivation
of size 𝑂(𝑘𝑛). With 𝑘 + 1 such deductions we obtain LOP∗

𝑘+1. As the whole

refutation of LOP∗
𝑛 has length 𝑂(𝑘

2𝑛) + 2𝑂(𝑘2), it is fpt-bounded. ⊓⊔
The following theorem has been first proved in [DMS07]. Their proof is based

on the model-theoretic criterion from Theorem 7.3.2. We give a combinatorial
proof based on Prover-Delayer games.

Theorem 7.7.2 Any tree-like Parameterized Resolution refutation of (OP𝑛, 𝑘)
has size 𝑛Ω(𝑘).

Proof. Let 𝛼 be an assignment to the variables of OP . The Delayer will keep the
following information:

∙ 𝐺(𝛼) = (𝑉 (𝛼), 𝐸(𝛼)) the graph obtained taking as edges the (𝑖, 𝑗)’s such
that 𝛼(𝑥𝑖,𝑗) = 1;

∙ 𝐺∗(𝛼) the transitive closure of 𝐺(𝛼) and 𝐺𝑇 (𝛼) the transpose graph of
𝐺(𝛼).

In particular, for any vertex 𝑗 in 𝐺(𝛼), the Delayer considers the following infor-
mation

∙ 𝑧𝑗(𝛼) = ∣{𝑖 ∈ [𝑛] ∣ 𝛼(𝑥𝑖,𝑗) is not assigned}∣,
∙ Pred 𝑗(𝛼) = {𝑖 ∈ [𝑛] ∣ 𝛼(𝑥𝑖,𝑗) = 1}, and
∙ PPred 𝑗(𝛼) the subset of Pred 𝑗(𝛼) of those edges set to 1 by the Prover .

Loosely speaking the Delayer, taking as few decisions as possible, wants to
force: (1) the game to end on a parameterized clause, and (2) the Prover to decide
only one predecessor for each node. To reach the former, in some cases she will
be forced to decide a predecessor of a node 𝑗 to avoid that after few more trivial
queries the game ends on a predecessor clause. To get (2) she will be forced to
say that some node can’t be predecessor of some node 𝑗. In both cases we will
prove that Delayer will keep her number of decisions bounded.

Let 𝛼 be the assignment built so far in the game and let 𝑥𝑖,𝑗 be the variable
queried by Prover. Delayer acts as follows:

7.7. ORDERING PRINCIPLES 93

1. if (𝑖, 𝑗) ∈ 𝐸(𝛼)∗, then answer 1;
2. if (𝑖, 𝑗) ∈ (𝐸(𝛼)∗)𝑇 , then answer 0;
3. if ∣Pred 𝑗(𝛼)∣ = 0 and 𝑧𝑗(𝛼) ≤ 𝑘 + 1, then answer 1;

4. if ∣PPred 𝑗(𝛼)∣ ≥ 1, then answer 0;
5. otherwise, she leaves the decision to the Prover.

To simplify the argument we assume that in the game, after each decision by
the Prover or after a decision by the Delayer according to Rule (3), the Prover
asks all variables corresponding to edges that are in 𝐺∗(𝛼) and (𝐺(𝛼)∗)𝑇 but not
in 𝐺(𝛼). This will not change our result since on these nodes Delayer does not
score any point.

Let 𝑃 𝜖(𝑡) be the set of edges set to 𝜖 ∈ {0, 1} by the Prover after stage 𝑡
ends. Let 𝐷𝜖(𝑡) be the set of edges set to 𝜖 ∈ {0, 1} by the Delayer. Finally, let
𝐷∗(𝑡) ⊆ 𝐷1(𝑡) be the set of edges set to 1 by the Delayer according to Rule (3) of
her strategy. 𝑃 𝜖

𝑗 (𝑡), 𝐷
𝜖
𝑗(𝑡), and 𝐷

∗
𝑗 (𝑡) are the subsets of the respective sets formed

by those edges having end-node 𝑗, i. e., edges of the form (𝑖, 𝑗) for some 𝑖.
Let 𝛼𝑡 be the assignment built after stage 𝑡 and let 𝛼

∗
𝑡 be the extensions of 𝛼𝑡

obtained by assigning all edges from 𝐺∗(𝛼𝑡) to 1 and all edges from (𝐺(𝛼𝑡)
∗)𝑇 to

0. We define 𝑁𝑗(𝑡) = { (𝑖, 𝑗) ∣ 𝑖 ∈ [𝑛], (𝑖, 𝑗) ∈ dom(𝛼∗
𝑡) ∖ 𝑃 0(𝑡) }.

Lemma 7.7.3 At each stage 𝑡 of the game, it holds:

1. ∣𝑃 1(𝑡)∣+ ∣𝐷∗(𝑡)∣ ≥√∣𝐸(𝛼𝑡)∣;
2. if ∣𝑃 1

𝑗 (𝑡)∣+ ∣𝐷∗
𝑗 (𝑡)∣ = 0, then ∣𝑁𝑗(𝑡)∣ ≤ 𝑘;

3. if 𝑤(𝛼𝑡) ≤ 𝑘, then 𝛼∗
𝑡 does not falsify any predecessor clause;

4. for each 𝑗 ∈ [𝑛], ∣𝐷∗
𝑗 (𝑡)∣ ≤ 1 and ∣𝑃 1

𝑗 (𝑡)∣ ≤ 1.

Proof. Condition (1) follows since ∣𝑃 1(𝑡)∣ + ∣𝐷1(𝑡)∣ = ∣𝐸(𝛼𝑡)∣, and ∣𝐸(𝛼𝑡)∣ ≤
∣𝐸∗(𝛼𝑡)∣ ≤ (∣𝑃 1(𝑡)∣+ ∣𝐷∗(𝑡)∣)2.

Condition (2): ∣𝑃 1
𝑗 (𝑡)∣ + ∣𝐷∗

𝑗 (𝑡)∣ = 0 implies that the vertex 𝑗 has no prede-
cessor. The only way to set a predecessor to a vertex which already has one is by
Rule (1), but a vertex without predecessors cannot get one by transitive closure.
Then an edge 𝑥𝑖,𝑗 is in dom(𝛼∗

𝑡) ∖ 𝑃 0(𝑡) if and only if 𝑖 is a successor of 𝑗 in
𝐺∗(𝛼𝑡). Hence there must be a directed tree rooted in 𝑗 and containing all such
successors. As 𝐺(𝛼𝑡)

𝑇 contains at most 𝑘 edges, there are at most 𝑘 successors
of 𝑗. Hence ∣𝑁𝑗(𝑡)∣ ≤ 𝑘.

Condition (3): consider a predecessor clause 𝐶𝑗 which is not satisfied by 𝛼𝑡.
Then there are at least 𝑘 + 1 variables 𝑥𝑖,𝑗 unset, since otherwise, according to
Rule (3) Delayer should have set one predecessor for 𝑗. If ∣𝑃 1

𝑗 (𝑡)∣ ≥ 1, then 𝐶𝑗

94 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

would be satisfied. Then by ∣𝑃 1
𝑗 (𝑡)∣ + ∣𝐷∗

𝑗 (𝑡)∣ = 0 and by condition (2) at most
𝑘 additional literals of 𝐶𝑗 are set to 0 by 𝛼

∗
𝑡 . The claim follows since there is at

least one unset literal in 𝐶𝑗.
Condition (4): the first time that a predecessor of some node 𝑗 is decided in

the game is either by a decision of the Prover or by a decision of the Delayer
according to Rule (3). Since Delayer applies Rule (3) only in the case no prede-
cessor has been yet decided, it follows that ∣𝐷∗

𝑗 (𝑡)∣ ≤ 1. Moreover, by Rule (4)
Delayer prevents the Prover to set more than one predecessor for each node, hence
∣𝑃 1

𝑗 (𝑡)∣ ≤ 1. ⊓⊔

Lemma 7.7.4 After the last stage 𝑓 of the game the following holds:

∙ a parameterized clause is falsified;

∙ ∣𝑃 1(𝑓)∣+ ∣𝐷∗(𝑓)∣ ≥ √𝑘 + 1.

Proof. For the first condition, we notice that Rules (1) and (2) in the Delayer’s
strategy guarantee that neither antisymmetry nor transitivity axioms will be
ever falsified during the game. Assuming that 𝛼𝑓 has weight strictly less then
𝑘 + 1, then by Lemma 7.7.3 (part 3), no predecessor clause is falsified. Hence
𝑤(𝛼𝑓) = 𝑘 + 1 and a parameterized clause is falsified.

The second property follows by Lemma 7.7.3 (part 1) and by ∣𝐸(𝛼𝑓)∣ ≥ 𝑤(𝛼𝑓)
which is equal to 𝑘 + 1 because of the first part of this lemma. ⊓⊔

Set 𝑐1(𝑥𝑖,𝑗, 𝛼) = 𝑧𝑗(𝛼) and 𝑐0(𝑥𝑖,𝑗, 𝛼) =
𝑧𝑗(𝛼)

𝑧𝑗(𝛼)−1
. For a given play of the game,

let 𝑡𝑖,𝑗 be the stage of the game when the variable 𝑥𝑖,𝑗 is set. Let sc𝑗(𝑡) be the
number of points scored by the Delayer up to stage 𝑡 for answers of the Prover to
the variables 𝑥1,𝑗, 𝑥2,𝑗, . . . , 𝑥𝑛,𝑗. Then the number of points scored by the Delayer
at the end of the game is

∑𝑛
𝑗=1 sc𝑗(𝑓).

Lemma 7.7.5 The following implications hold

1. If ∣𝑃 1
𝑗 (𝑓)∣ = 1, then sc𝑗(𝑓) ≥ log 𝑛− log(𝑘 + 1).

2. If ∣𝐷∗
𝑗 (𝑓)∣ = 1, then sc𝑗(𝑓) ≥ log 𝑛− log(2𝑘 + 1).

Proof. For the first claim, let (𝑖, 𝑗) ∈ 𝐷∗
𝑗 (𝑓) and let 𝑡𝑖,𝑗 be the stage when 𝑥𝑖,𝑗

was set. We claim that ∣𝑃 0
𝑗 (𝑡𝑖,𝑗)∣ ≥ 𝑛 − (2𝑘 + 1). W. l. o. g. we can assume that

the variables 𝑥𝑖′,𝑗 set to 0 by the Prover are the first ones with end-node 𝑗 to be
set to 0, because 𝑐0(𝑥𝑖′,𝑗, 𝛼) is strictly decreasing with respect to 𝑧𝑗(𝛼). Hence
the Delayer gets at least

2𝑘+2∑
𝑙=𝑛

log
𝑙

𝑙 − 1 = log 𝑛− log(2𝑘 + 1)

7.8. HARDNESS OF THE PIGEONHOLE PRINCIPLE 95

points on variables 𝑥1,𝑗, . . . , 𝑥𝑛,𝑗.
It remains to prove the claim that ∣𝑃 0

𝑗 (𝑡𝑖,𝑗)∣ ≥ 𝑛 − (2𝑘 + 1). According to
Rule (3) of the strategy, there are at least 𝑛 − (𝑘 + 1) variables 𝑥𝑖′,𝑗 set to 0
in 𝛼𝑡𝑖,𝑗 . Hence ∣𝑃 0

𝑗 (𝑡𝑖,𝑗)∣ + ∣𝐷0
𝑗 (𝑡𝑖,𝑗)∣ ≥ 𝑛 − (𝑘 + 1). Since at this stage 𝑖 is the

first predecessor of 𝑗 to be fixed, then the Delayer has not set variables 𝑥𝑖′,𝑗 to 0
according to Rule (4), but only by Rule (2). Moreover, for the same reason, if 𝑡′

is the stage preceding 𝑡𝑖,𝑗 we have that: ∣𝐷0
𝑗 (𝑡𝑖,𝑗)∣ = ∣𝐷0

𝑗 (𝑡
′)∣ = ∣𝑁𝑗(𝑡

′)∣ ≤ 𝑘, where
the last inequality holds by Lemma 7.7.3 (part 2). Then ∣𝑃 0

𝑗 (𝑡𝑖,𝑗)∣ ≥ 𝑛− (2𝑘+1).
We now show the second claim of the lemma. Let 𝑡𝑖,𝑗 be the stage in which

Prover sets some 𝑥𝑖,𝑗 to 1, and let 𝛼 be the partial assignment corresponding to
that stage. W. l. o. g. we assume that all variables in 𝑃 0

𝑗 (𝑡𝑖,𝑗) are set before any
variable in 𝐷0

𝑗 (𝑡𝑖,𝑗), because 𝑐0 is monotone decreasing in the size of the second
argument. Fix 𝑝 = ∣𝑃 0

𝑗 (𝑡𝑖,𝑗)∣. By Lemma 7.7.3 (part 2) we get ∣𝑁𝑗(𝑡
′)∣ ≤ 𝑘 where

𝑡′ is the stage preceding 𝑡𝑖,𝑗. Hence we know that 𝑧𝑗(𝛼) ≥ 𝑛− 𝑘− 𝑝. The amount
of points got by Delayer on vertex 𝑗 is at least

𝑛−𝑝+1∑
𝑙=𝑛

log
𝑙

𝑙 − 1 + log(𝑛− 𝑘− 𝑝) = log 𝑛− log
𝑛− 𝑝

𝑛− 𝑘 − 𝑝 ≥ log 𝑛− log(𝑘+1) .

⊓⊔

The Delayer scores
∑𝑛

𝑗=1 𝑠𝑐𝑗(𝑓). By Lemma 7.7.4 there are at least
√
𝑘 + 1

vertices such that either ∣𝐷∗
𝑗 (𝑓)∣ ≥ 1 or ∣𝑃 1

𝑗 (𝑓)∣ ≥ 1. For each vertex such events
are mutually exclusive by the definition of the rules. Then by Lemma 7.7.5
Delayer gets at least

√
𝑘 + 1(log 𝑛 − log(2𝑘 + 1)) points. By Theorem 7.5.1 we

get the lower bound. ⊓⊔

7.8 Hardness of the Pigeonhole Principle in Pa-

rameterized Resolution

In this section we answer a question raised by Dantchev, Martin, and Szeider
[DMS07, Section 4]: What is the complexity of the pigeonhole principle (PHP)
in dag-like Parameterized Resolution? Clearly this question becomes even more
interesting in the light of our previous upper bounds. Using a certain encoding of
the parameterized axioms—based on the same pigeonhole principle—one can get
efficient proofs of PHP in Parameterized Resolution (Proposition 17 in [DMS07]).
In contrast, we show that dag-like Parameterized Resolution is not fpt-bounded
by proving that PHP requires proofs of size 𝑛Ω(𝑘) (Theorem 7.8.2). Again for
this lower bound we use an interpretation of proofs in Parameterized Resolution
as games. Here we employ a slight modification of Pudlák’s game for Resolution
lower bounds as devised in [Pud00], although, as we argue below, the analysis for

96 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

the lower bound of PHP in Resolution does not suffice for proving lower bounds
in Parameterized Resolution. Our result on dag-like Parameterized Resolution
proofs for PHP represents the next step in the program proposed by the work
of [DMS07] that approaches the separation of FPT from W[2] as in the Cook-
Reckhow program of separating NP from coNP for classical proof complexity.

In studying lower bounds for Parameterized Resolution one is immediately
faced with the following observations that exclude some techniques used for prov-
ing lower bounds in classical Resolution. First, Weighted CNF Sat is not
resilient to restrictions in the sense that if we apply a restriction to a parame-
terized contradiction (𝐹, 𝑘) we obtain (𝐹 ′, 𝑘′) with 𝑘′ ≤ 𝑘. Then, either we use
restrictions with only 0’s which does not make sense, or we restrict 𝑘 too much.
The width lower bound method for Resolution [BP96, BSW01], which is based on
restrictions, can therefore be excluded from the bag of techniques to prove lower
bounds in Parameterized Resolution. Also one has to take into account that con-
stant width CNF’s have efficient tree-like Parameterized Resolution refutations.
This implies that any technique employed to prove lower bounds in Parameter-
ized Resolution for formulas of high initial width must not be preserved under
the use of extension variables which reduce the width of a formula to a constant.

We decide to study the complexity of the pigeonhole principle in Parame-
terized Resolution employing a refined analysis of the original proof by Haken
[Hak85], but using the interpretation of his method as a game given by Pudlák
in his work [Pud00].

7.8.1 Parameterized Proofs as Games

While the game of Pudlák [Pud00] is also played between Prover and Delayer, it
is very different from our asymmetric Prover-Delayer game of Section 6.3. In the
asymmetric game, Delayer is using one strategy which tries to force Prover on a
long path, thereby showing that the proof tree is large. In Pudlák’s game, the
Delayer uses a family of strategies (called “superstrategy” by Pudlák) with the
aim to force Prover through every part of the proof.

We will now explain how Pudlák’s game from [Pud00] can be adapted to show
lower bounds in Parameterized Resolution. Consider any Parameterized Resolu-
tion refutation of a parameterized contradiction (𝐹, 𝑘). An arbitrary assignment
falsifies the empty clause at the end of the refutation, and because of soundness
of the inference rule, one of its predecessor clauses must be falsified as well. The
argument can be repeated, finding a falsified predecessor for any falsified clause
in the refutation. This defines a walk in the refutation which starts at the empty
clause and goes back to one of the initial clauses or a parameterized axiom, touch-
ing just falsified clauses. In the case of (Parameterized) Resolution it is easy to
determine with a single variable query what predecessor is falsified: if 𝐴 ∨ 𝐵 is
inferred from 𝐴∨ 𝑥 and 𝐵 ∨¬𝑥, knowing the value of 𝑥 is sufficient to walk back
one step.

7.8. HARDNESS OF THE PIGEONHOLE PRINCIPLE 97

This allows to interpret a refutation as the following interactive process: a
Delayer claims to know an assignment with at most 𝑘 variables set to 1 and
which satisfies 𝐹 . The Prover queries the Delayer for variable values, can save
such values in memory and can forget some of them at will. The Prover wants to
expose Delayer lie by exhibiting either an initial or a parameterized clause which
is falsified by the assignment. Following Pudlák, we call the memory configuration
of the Prover at any step a record.

A Prover strategy is a finite directed acyclic graph with a single source marked
by the empty record. The strategy must (a) define which variable to query in the
next step; (b) define what values queried so far are kept in the record; (c) expose
the Delayer at any leaf record. The Prover complexity is the size of the strategy,
which is the number of distinct records that appear in all possible games (i. e., we
ignore the behavior of Prover on records which are not reachable from the initial
empty record).

There is a 1-1 correspondence between Prover strategies and parameterized
refutations of (𝐹, 𝑘). Namely, a parameterized refutation of (𝐹, 𝑘) can be used
by Prover to traverse it backwards from the empty clause up to the initial or
parameterized clauses, with the invariant that at each step he keeps in his record
the set of values which falsify the clause in the proof. Any inference of the
refutation translates to a step in such exploration as

𝐴 ∨ 𝑥 𝐵 ∨ ¬𝑥
𝐴 ∨ 𝐵

corresponds to
¬𝐴 ∧ ¬𝐵

𝑥=0

��������������
𝑥=1

�������������

¬𝐴 ∧ ¬𝑥 ¬𝐵 ∧ 𝑥

where Prover saves new information in his record (the value of 𝑥), but also deletes
some previous information (corresponding to ¬𝐴 or ¬𝐵). It is easy to see that
also the reverse translation from strategies into proofs is possible: the negation
of the records in a strategy translate into clauses, deletions into weakening, and
queries into inference steps.

7.8.2 Delayer Strategies as Refutation Lower Bounds

Because of this correspondence between refutations and Prover strategies, we
want to show that Prover always needs a high (𝑛Ω(𝑘)) number of records to ex-
pose the Delayer. Notice that a Prover strategy which never forgets information
reaches a falsified initial clause in less steps, but then a record occurs in less
games. Instead, a record appearing in different games typically contains little
information, thus a strategy of small size may require Prover to forget a lot of in-
formation. Indeed a Prover strategy which never forgets information corresponds

98 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

to a tree-like Parameterized Resolution refutation, which is a weaker proof system
than general Parameterized Resolution.

So far we argued that Prover strategies represent refutations. We now show
that a randomized Delayer strategy is the key to obtain lower bounds on the size
of such refutations. We may think of such a Delayer strategy as a collection of
single strategies (Pudlák [Pud00] calls this a “superstrategy”) which force Prover
to generate many records. Without loss of generality we also allow Delayer to
give up, which lets Prover win even before exposing Delayer. The key to lower
bounds is then given by the following fact:

Fact 7.8.1 Fix a Prover strategy 𝒫 which has a set of records 𝑅, and a random-
ized Delayer strategy 𝒟. If for each record 𝑟 ∈ 𝑅

Pr
𝒟
[Prover wins on record 𝑟] ≤ 1

𝑆

then ∣𝑅∣ ≥ 𝑆.

Proof. The probability that strategy 𝑃 wins against the Delayer is at most ∣𝑅∣
𝑆

by union bound, and is at least 1 by definition. This proves the claim. ⊓⊔
To show exponential lower bounds for general Resolution, Pudlák [Pud99]

analyses the probability that a given Prover record is compatible with a chosen
Delayer strategy, i. e., he bounds the probability that a record can appear during
some game. However, this analysis does not suffice to prove lower bounds in
Parameterized Resolution. Instead of compatibility, we therefore focus on the
stronger notion that a given record is winning in a game and we show that each
Prover record can only be winning against a small fraction of Delayer strategies.

7.8.3 The Lower Bound for the Pigeonhole Principle

Theorem 7.8.2 Any refutation of (PHP𝑛+1
𝑛 , 𝑘) in Parameterized Resolution re-

quires size 𝑛Θ(𝑘).

Proof. For the upper bound we can easily build a decision tree which explores all
𝑛𝑂(𝑘) assignments with weight at most 𝑘.

The lower bound is based on the game interpretation of a Resolution refuta-
tion. Any line in the refutation is a game position between Prover and Delayer.
We show that for any refutation (i. e., any Prover) there exists a randomized
Delayer strategy such that the probability of a game position to be a winning
position for the Prover is very small. The Prover wins with probability 1, so there
must be a lot of winning positions (i. e., lines in the refutation).

During the game the Prover record is represented as a matrix 𝑃 with 𝑛 + 1
rows and 𝑛 columns, with values in {0, 1, ∗}. An entry 𝑃 (𝑖, 𝑗) = 1 means that
Prover has recorded the information of pigeon 𝑖 going into hole 𝑗, and likewise

7.8. HARDNESS OF THE PIGEONHOLE PRINCIPLE 99

𝑃 (𝑖, 𝑗) = 0 means that pigeon 𝑖 is not in hole 𝑗. For 𝑃 (𝑖, 𝑗) = ∗, Prover does not
have any information. Thus the matrix 𝑃 corresponds to a partial assignment to
the variables 𝑥𝑖,𝑗. The Prover wins whenever this assignment falsifies either an
initial clause from PHP𝑛+1

𝑛 or a parameterized clause (i. e., there are at least 𝑘
ones on the record), or if the Delayer surrenders.

We specify the following sets of “forbidden holes” for a pigeon 𝑖,

𝐹 (𝑖) =

⎧⎨⎩ 𝑗 ∈ [𝑛]
∣∣∣∣ either 𝑃 (𝑖, 𝑗) = 0
or 𝑃 (𝑖′, 𝑗) = 1 for some 𝑖′ ∕= 𝑖
or 𝑃 (𝑖, 𝑗′) = 1 for some 𝑗′ ∕= 𝑗

⎫⎬⎭
and we say that pigeon 𝑖 has ∣𝐹 (𝑖)∣ forbidden holes on record 𝑃 (or just “on the
record” if 𝑃 is clear from the context).

The Delayer strategy. The Delayer chooses uniformly at random a partial
matching 𝛼 of 𝑛 − 2𝑘 pigeons to 𝑛 − 2𝑘 holes. In the game, if Prover asks
about a pigeon from dom(𝛼), then Delayer will always answer according to the
matching 𝛼. We denote dom(𝛼) = [𝑛 + 1] ∖ dom(𝛼) and rng(𝛼) = [𝑛] ∖ rng(𝛼).
These are the unassigned pigeons and holes for which Delayer has not made
a decision before the start of the game. During the game Delayer only cares
about the cells in 𝑃 indexed by dom(𝛼)× rng(𝛼), because only here Prover can
force her into a contradiction with an initial clause. We call 𝑃 ′ the minor of
𝑃 of size (2𝑘 + 1) × (2𝑘) on rows from dom(𝛼) and columns from rng(𝛼). The
Delayer keeps also another private matrix 𝐷 not known to the Prover, also of
size (2𝑘 + 1) × (2𝑘). This matrix essentially encodes the “next answer” for any
Prover question in dom(𝛼)× rng(𝛼).

The Delayer strategy is completely specified by how the Delayer answers to
the questions and how she computes 𝐷 at each step. The Delayer answers to the
Prover question 𝑥𝑖,𝑗 according to the following scheme:

1. For pigeons 𝑖 ∈ dom(𝛼), Delayer answers 1 if 𝛼(𝑖) = 𝑗 and 0 if 𝛼(𝑖) ∕= 𝑗.

2. For pigeons 𝑖 ∕∈ dom(𝛼) and holes 𝑗 ∈ rng(𝛼), Delayer answers 0.

3. For pigeons 𝑖 ∕∈ dom(𝛼) and holes 𝑗 ∕∈ rng(𝛼), Delayer answers 𝐷(𝑖, 𝑗).

The answers are both based on 𝛼 and 𝐷. The matrix 𝐷 is recomputed at each
step, according to the values of 𝑃 ′. Let 𝐺 = { 𝑖 ∈ dom(𝛼) : ∣𝐹 (𝑖) ∩ rng(𝛼)∣ ≥
𝑘 }, i. e., 𝐺 contains all pigeons not assigned by 𝛼 for which Prover has already
excluded more than 𝑘 of the remaining 2𝑘 holes left free by 𝛼. Because Delayer
does not want to allow Prover to easily reach a contradiction on the pigeons
from 𝐺 (for instance, Prover could just continue to query holes for some pigeon
𝑖 ∈ 𝐺), Delayer secretly assigns a hole to each pigeon in 𝐺. To achieve this,
Delayer defines 𝐷 as an arbitrary completion of 𝑃 ′ (i. e., ∗’s are replaced by
0/1), such that 𝐷 represents a partial matching which assigns exactly all pigeons
from 𝐺 to some set of holes from rng(𝛼). More precisely, 𝐷 is any matrix in

{0, 1}(2𝑘+1)×(2𝑘) which satisfies:

100 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

1. 𝐷 is a completion of 𝑃 ′, i. e., 𝐷(𝑖, 𝑗) = 𝑃 ′(𝑖, 𝑗) for 𝑃 ′(𝑖, 𝑗) ∕= ∗.
2. Exactly the pigeons in 𝐺 are matched, i. e.,

(a) For any 𝑖 ∈ 𝐺 there exists 𝑗 ∈ rng(𝛼) such that 𝐷(𝑖, 𝑗) = 1;

(b) For any 𝑖 ∈ dom(𝛼) ∖𝐺 and any 𝑗 ∈ rng(𝛼), 𝐷(𝑖, 𝑗) = 0.

3. 𝐷 is a matching, i. e.,

(a) For any 𝑖, 𝑖′ ∈ dom(𝛼), 𝑖 ∕= 𝑖′, and 𝑗 ∈ rng(𝛼), either 𝐷(𝑖, 𝑗) = 0 or
𝐷(𝑖′, 𝑗) = 0;

(b) For any 𝑖 ∈ dom(𝛼) and 𝑗, 𝑗′ ∈ rng(𝛼), 𝑗 ∕= 𝑗′, either 𝐷(𝑖, 𝑗) = 0 or
𝐷(𝑖, 𝑗′) = 0.

It is possible that such 𝐷 does not exist: in this case the Delayer surrenders.
Given the choice of 𝛼, the strategy of the Delayer is completely determined. Thus
we will also call 𝛼 the strategy of the Delayer.

Losing positions for the Delayer. The idea of the Delayer strategy is to
play honestly on a large fraction of the variables, while trying to cheat only on
the cells of 𝑃 ′. The Delayer always answers consistently with a partial matching,
so the only way for Prover to expose her is to either find 𝑘 assigned ones, or to
force her to give up. We characterize the particular kinds of records where the
game may end.

Claim 7.8.3 If the Prover wins, at that time in the game either 𝑃 contains at
least 𝑘 ones, or 𝐺 contains at least 𝑘 pigeons.

Proof. We first see that Prover never wins by falsifying a clause from PHP𝑛+1
𝑛 . By

definition of her strategy, Delayer always answers according to a partial matching
which matches all pigeons from dom(𝛼) ∪ 𝐺. Thus no conflict between pigeons
arises. Also 𝑃 can never falsify any of the big initial clauses

⋁
𝑗∈[𝑛] 𝑥𝑖,𝑗. This

is clear for pigeons 𝑖 ∈ dom(𝛼) because 𝛼 assigns some hole to 𝑖. But it also
holds for pigeons 𝑖 ∈ dom(𝛼) because after there are 𝑘 forbidden holes for 𝑖 from
rng(𝛼), Delayer secretly reserves a hole for 𝑖 in 𝐷. Thus, during the game there
can never be more than 𝑛 − 𝑘 forbidden holes for some pigeon without Delayer
having already reserved some hole for it.

It remains to show that if ∣𝐺∣ ≤ 𝑘, then Delayer can always find a 𝐷 as
required by the strategy, thus she does not surrender. Consider the private matrix
𝐷old computed by the Delayer at the previous step and denote 𝐺old to be set of
pigeons matched in 𝐷old . If in the previous step of the game Prover only deleted
some information from the record, then 𝐺 ⊆ 𝐺old and thus Delayer can compute
𝐷. Assume now that Prover increased the information on the record and therefore
𝐺 ⊇ 𝐺old . The elements in 𝐺∖𝐺old have exactly 𝑘 forbidden holes because in each
step of the game the number of forbidden holes per pigeon can increase at most

7.8. HARDNESS OF THE PIGEONHOLE PRINCIPLE 101

by one, and they where below the threshold 𝑘 at the previous step. Consider the
matching induced by 𝐷old . Each element of 𝐺 ∖ 𝐺old still has 𝑘 available holes,
thus even excluding the holes occupied by pigeons from 𝐺old , they still have at
least 𝑘 − ∣𝐺old ∣ available holes each. A simple greedy matching strategy will be
sufficient to match all pigeons from 𝐺∖𝐺old of which there are ≤ 𝑘−∣𝐺old ∣ many.

We conclude that the game ends either because 𝑃 contains at least 𝑘 ones, or
because the Delayer surrenders, which means ∣𝐺∣ > 𝑘. ⊓⊔

Intuition for the remaining part of the proof. The proof is a proba-
bilistic argument. For a random 𝛼, the probability that a clause in the refutation
corresponds to the final position in the interactive game is 1

𝑛Ω(𝑘) . Any game ends

somewhere, so there must be 𝑛Ω(𝑘) clauses.

The probability estimation is based on two observations: (a) if a game in-
teraction produces a record, this record is compatible with the 𝛼 chosen by the
Delayer; (b) if Delayer gives up, it means that 𝑃 ′ contains too much information
for the Delayer to continue cheating.

The record analysis is divided in three cases: in cases (I) and (II) we argue that
if a record contains a large amount of information, then there is little chance for a
random 𝛼 to be compatible with said record. In particular, case (I) corresponds
to the Prover exposing 𝑘 ones in the Delayer answers, and in case (II) Prover’s
record contains a huge amount of zeros. In both cases, Delayer succeeded in
forcing Prover to write down a good part from the matching 𝛼.

For case (III) we argue about a record with less than 𝑘 ones and small amount
of information. Such record must force the Delayer to give up. This means that
the small amount of information must be concentrated on 𝑃 ′. For random 𝛼
and random relative position of 𝑃 ′ with respect to 𝑃 , this happens with small
probability. Intuitively, in case (III) Prover is forced to “guess” at least dom(𝛼)
or rng(𝛼) which he can achieve only with small probability.

Prover probability of winning. We now show that in each game position
(i. e., in each line of the refutation), Prover has winning probability 1

𝑛Ω(𝑘) against

Delayer’s randomized strategy. This proves that any refutation contains 𝑛Ω(𝑘)

lines.

Observe that as a necessary condition for a record to be a winning position
for Prover, the record has to be compatible with the choice of 𝛼. This is because
Delayer always answers according to 𝛼 on pigeons from dom(𝛼), and thus there is
no way that information which is inconsistent with 𝛼 can be written in Prover’s
record. We will use this fact in the following steps.

We will consider three cases for a record: (I) the record contains exactly 𝑘
ones, (II) the record contains at least 𝑛2/3 + 2𝑘 + 1 pigeons which each have at
least 𝑘𝑛1/3 log 𝑛 forbidden holes, (III) the record has < 𝑘 ones and contains at
most 𝑛2/3 + 2𝑘 pigeons which have more than 𝑘𝑛1/3 log 𝑛 forbidden holes each.
Those three cases cover all possible records in the game. The result follows by

102 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

proving that in each case, the probability that a record is a winning position for
Prover is 1

𝑛Ω(𝑘) .

Case I. Prover has exactly 𝑘 ones on the record. On such records, the Prover
always wins, but only for those game plays that actually lead to Prover’s record.
A necessary condition for this is that 𝑃 is compatible with 𝛼. Let 𝑆 be the set
of pigeons with a 1 on the record. Then

Pr
𝛼
[𝑃 is winning against 𝛼] ≤ Pr

𝛼
[𝑃 is compatible with 𝛼] ≤

Pr
𝛼

[
∣𝑆 ∩ dom(𝛼)∣ < 𝑘

2

]
+Pr

𝛼

[
𝑃 is compatible with 𝛼

∣∣ ∣𝑆 ∩ dom(𝛼)∣ ≥ 𝑘

2

]
.

The probability that ∣𝑆∩dom(𝛼)∣ < 𝑘
2
is equal to the probability that the uniform

random set dom(𝛼) ⊂ [𝑛+ 1] of size 2𝑘 + 1 intersects the set 𝑆 ⊂ [𝑛+ 1] of size
𝑘 in at least 𝑘/2 positions. Let dom(𝛼) = {𝑖1, . . . , 𝑖2𝑘+1}. Then

Pr
𝛼

[
∣𝑆 ∩ dom(𝛼)∣ ≥ 𝑘

2

]
=

= Pr
𝑖1,...,𝑖2𝑘+1

[
∃ 1 ≤ 𝑙1 < . . . < 𝑙𝑘/2 ≤ 2𝑘 + 1 s.t. {𝑖𝑙1 , . . . , 𝑖𝑙𝑘/2} ⊆ 𝑆

]
≤

≤
∑

1≤𝑙1<...<𝑙𝑘/2≤2𝑘+1

Pr
𝑖1,...,𝑖𝑘/2

[
{𝑖𝑙1 , . . . , 𝑖𝑙𝑘/2} ⊆ 𝑆

]
≤
(
2𝑘 + 1

𝑘/2

)
⋅
(
𝑘
𝑘/2

)(
𝑛+1
𝑘/2

) ≤ 1

𝑛Ω(𝑘)
.

The probability of 𝛼 to be compatible with 𝑃 , given that ∣𝑆 ∩ dom(𝛼)∣ ≥ 𝑘
2
,

is bounded by the probability of guessing the matching in 𝑃 for the pigeons in
𝑆 ∩ dom(𝛼), that is

1

𝑛
⋅ 1

𝑛− 1 ⋅ ⋅ ⋅ ⋅ ⋅
1

𝑛− ∣𝑆 ∩ dom(𝛼)∣+ 1 ≤ 1

𝑛Ω(𝑘)
.

This completes Case I.

Case II. The Prover has a set 𝑆 of at least 𝑛2/3 + 2𝑘+ 1 pigeons with 𝑘𝑛1/3 log 𝑛
forbidden holes each on the record 𝑃 . At least 𝑛2/3 of them are in dom(𝛼). As
in Case I the probability of strategy 𝛼 to lose in position 𝑃 is bounded by the
probability of 𝛼 being compatible with 𝑃 . For compatibility it is necessary that a
random 𝛼 does not match any of the (at least) 𝑛2/3 pigeons in dom(𝛼) with any of
their corresponding forbidden holes. Let us consider the matching holes for such
pigeons as a randomly chosen sequence ℎ1 . . . ℎ𝑛2/3 . Assuming that ℎ1 . . . ℎ𝑙−1 are
compatible choices there are at most 𝑛 − 𝑘𝑛1/3 log 𝑛 − 𝑙 + 1 good choices for ℎ𝑙
over 𝑛− 𝑙 + 1 possible choices. Thus ℎ𝑙 is compatible with probability at most

𝑛− 𝑘𝑛1/3 log 𝑛− 𝑙 + 1
𝑛− 𝑙 + 1 = 1− 𝑘𝑛1/3 log 𝑛

𝑛− 𝑙 + 1 ≤ 1− 𝑘 log 𝑛

𝑛2/3
.

7.8. HARDNESS OF THE PIGEONHOLE PRINCIPLE 103

The probability of the whole sequence to be compatible is then bounded by(
1− 𝑘 log 𝑛

𝑛2/3

)𝑛2/3

≤ 1

𝑒Ω(𝑘 log𝑛)
≤ 1

𝑛Ω(𝑘)
.

Case III. Record 𝑃 does not contain 𝑘 ones, and the set 𝑆 of pigeons with
more than 𝑘𝑛1/3 log 𝑛 forbidden holes has size at most 𝑛2/3 + 2𝑘. If Prover wins
with record 𝑃 against strategy 𝛼, then Claim 7.8.3 implies ∣𝐺∣ > 𝑘. Thus the
probability of strategy 𝛼 to lose on record 𝑃 is at most the probability that in
dom(𝛼) there are 𝑘 pigeons with at least 𝑘 forbidden holes contained in rng(𝛼)
each. We split the analysis into two further sub-cases.

Case III. (a) Assume first that ∣𝑆 ∩ dom(𝛼)∣ ≥ 𝑘. Intuitively, in this case Prover
has managed to place a good number of pigeons (≥ 𝑘) with many forbidden holes
into dom(𝛼). For these pigeons from 𝑆 ∩ dom(𝛼), it will be easy for Prover to
exclude ≥ 𝑘 holes of rng(𝛼), and thus force these pigeons into 𝐺. But in total,
𝑆 only contains few pigeons (≤ 𝑛2/3 + 2𝑘), and this means that Prover has to
“guess” dom(𝛼) which is hard for him.

For the formal analysis, let 𝑖1, . . . , 𝑖2𝑘+1 denote the elements of dom(𝛼). They
form a uniformly chosen set of size 2𝑘 + 1 in [𝑛 + 1]. The probability that they
intersect 𝑆 in 𝑘 positions is at most

Pr
𝑖1,...,𝑖2𝑘+1

[∣𝑆 ∩ {𝑖1, . . . , 𝑖2𝑘+1}∣ ≥ 𝑘] ≤
∑

1≤𝑙1<𝑙2<...<𝑙𝑘≤2𝑘+1

Pr
𝑖𝑙1 ,...,𝑖𝑙𝑘

[{𝑖𝑙1 , . . . , 𝑖𝑙𝑘} ⊆ 𝑆] ≤
(
2𝑘 + 1

𝑘

)(𝑛2/3+2𝑘
𝑘

)(
𝑛
𝑘

) ≤ 1

𝑛Ω(𝑘)
.

Case III. (b) The other possibility is that ∣𝑆∩dom(𝛼)∣ < 𝑘. But then for 𝑃 to be
winning against 𝛼, there must exist at least one pigeon 𝑖 ∈ dom(𝛼) ∖𝑆 such that
∣𝐹 (𝑖)∩ rng(𝛼)∣ ≥ 𝑘. By union bound this is at most 2𝑘+1 times the probability
of such event for a fixed 𝑖 ∈ dom(𝛼) ∖ 𝑆. By 𝑗1, . . . , 𝑗2𝑘 we denote the elements
of rng(𝛼), they form a uniformly chosen set of size 2𝑘 in [𝑛]. Then

Pr
𝑗1,...,𝑗2𝑘

[∣𝐹 (𝑖) ∩ {𝑗1, . . . , 𝑗2𝑘}∣ ≥ 𝑘] ≤
∑

1≤𝑙1<𝑙2<...<𝑙𝑘≤2𝑘

Pr
𝑗𝑙1 ,...,𝑗𝑙𝑘

[{𝑗𝑙1 , . . . , 𝑗𝑙𝑘} ⊆ 𝐹 (𝑖)] ≤
(
2𝑘

𝑘

)(𝑘𝑛1/3 log𝑛
𝑘

)(
𝑛
𝑘

) ≤ 1

𝑛Ω(𝑘)
.

This completes the proof. ⊓⊔

7.8.4 An Alternative Probabilistic Proof

We now provide an alternative proof of the lower bound for the pigeonhole prin-
ciple in Parameterized Resolution (Theorem 7.8.2). While this second proof is

104 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

simpler than our first game-theoretic argument, it is less direct: it is essentially a
reduction from the lower bound for Parameterized Resolution to the lower bound
for the pigeonhole principle in classical Resolution, shown by Haken [Hak85].

Theorem 7.8.2 Any refutation of (PHP𝑛+1
𝑛 , 𝑘) in Parameterized Resolution re-

quires size 𝑛Θ(𝑘).

Proof. We will only prove the lower bound. Consider the number of parameter-
ized axioms explicitly used in the refutation. Without loss of generality we may
assume that this number is 𝑜(𝑛𝑘/5), otherwise the claim follows immediately.

Now choose uniformly at random a set of 𝑛 − √𝑛 pigeons and match them
with a set of 𝑛 − √𝑛 uniformly chosen holes. Such partial matching 𝑓 induces
the following natural partial assignment of the variables of PHP𝑛+1

𝑛 :

𝑥𝑖,𝑗 = 1 whenever 𝑖 ∈ dom(𝑓) and 𝑓(𝑖) = 𝑗

𝑥𝑖,𝑗 = 0 whenever 𝑖 ∈ dom(𝑓) and 𝑓(𝑖) ∕= 𝑗

𝑥𝑖,𝑗 = 0 whenever 𝑗 ∈ rng(𝑓) and there exist 𝑖′ ∕= 𝑖 such that 𝑓(𝑖′) = 𝑗

𝑥𝑖,𝑗 = ★ otherwise.

We claim that with non-zero probability such partial assignment satisfies all
parameterized axioms used in the refutation. Notice that we do not care if such
assignment falsifies unused parameterized axioms. Before proving this claim, we
show how the result follows from it.

The restricted refutation will not contain any parameterized axiom. Thus
it is a classical Resolution refutation for the restricted formula, which in turn is

equivalent (up to a re-indexing of pigeons and holes) to PHP
√
𝑛+1√
𝑛
. Such refutation

must be of size at least 2𝑛
𝑐
[BP96] for some 𝑐 > 0, thus asymptotically bigger

than 𝑛𝑘/5. This concludes the proof.

The missing part is to show that the probabilistic choice of the partial match-
ing realizes the desired properties with positive probability. Consider a parame-
terized axiom ¬𝑥𝑖1,𝑗1∨ . . .∨¬𝑥𝑖𝑘+1,𝑗𝑘+1

. If there are two equal indexes 𝑗𝑎 and 𝑗𝑏 for
𝑎 ∕= 𝑏, then such axiom is just a weakening of a standard clause of the pigeonhole
principle, so either the random matching assigns such hole 𝑗𝑎 and the axiom is
satisfied or no pigeon is matched with 𝑗𝑎. In the latter case the restricted axiom
is deducible from the pigeonhole principle axiom ¬𝑥𝑖𝑎,𝑗𝑎 ∨ ¬𝑥𝑖𝑏,𝑗𝑎 .

We can now focus on a parameterized axiom in which exactly 𝑘+ 1 holes are
represented: the probability that such axiom fails to be satisfied is the probability
that all 𝑥𝑖𝑙,𝑗𝑙 are either true or unassigned for 1 ≤ 𝑙 ≤ 𝑘+1. The probability that
a pigeon 𝑖𝑙 is unassigned is at most

√
𝑛

𝑛−√𝑛− 𝑘 − 1 ≤ (1− 𝑜(1))
1

𝑛1/2

7.9. ON THE AUTOMATIZABILITY OF RESOLUTION 105

whatever is the outcome for the other pigeons in the axiom. Thus the probability
that more than 𝑘/2 pigeon indexes in an axiom correspond to unassigned pigeons
is at most the probability that there exists a sets of 𝑘

2
pigeon indexes among the

𝑘+1 in the axiom which are collectively unassigned. This is at most (1−𝑜(1))(
𝑘

𝑘/2)
𝑛𝑘/4 .

For axioms with more than 𝑘/2 assigned indexes the probability of being
not satisfied is zero if two assigned indexes correspond to the same pigeon, thus
we may focus on 𝑘/2 different pigeon indexes: whatever happens to the other
pigeon indexes, any index 𝑖𝑙 has probability at most

1
𝑛−√

𝑛−𝑘/2 ≤ (1 − 𝑜(1)) 1
𝑛
to

be assigned to 𝑗𝑙. Thus the failure of being falsified is at most (1− 𝑜(1)) 1
𝑛𝑘/2 .

An axiom is not satisfied with probability at most (1 − 𝑜(1))(
𝑘

𝑘/2)
𝑛𝑘/4 = 𝑜(𝑛𝑘/5),

thus by counting there exists a partial matching which satisfies all the parame-
terized axioms used in the refutation. This concludes the proof. ⊓⊔

7.9 On the Automatizability of (Parameterized)

Resolution

Practitioners are not only interested in the size of a proof, but face the more
complicated problem to actually construct a proof for a given instance. Of course,
in the presence of super-polynomial lower bounds to the proof size this cannot
be done in polynomial time. Thus, in proof search the best one can hope for is
the following notion of automatizability:

Definition 7.9.1 (Bonet, Pitassi, Raz [BPR00]) A proof system 𝑃 for a
language 𝐿 is automatizable if there exists a deterministic procedure that takes
as input a string 𝑥 and outputs a 𝑃 -proof of 𝑥 in time polynomial in the size of
the shortest 𝑃 -proof of 𝑥 if 𝑥 ∈ 𝐿. If 𝑥 ∕∈ 𝐿, then the behavior of the algorithm
is unspecified.

For practical purposes automatizable systems would be very desirable.
Searching for a proof we may not find the shortest one, but we are guaranteed
to find one that is only polynomially longer. Unfortunately, most proof systems
appear to be not automatizable. For strong proof systems as Frege systems this
holds under cryptographic assumptions [KP98, BPR00]. But even weak systems
such as Resolution and Polynomial Calculus are not automatizable under plau-
sible assumptions from parameterized complexity [AR08, GL10].

These results yield the first connection between classical proof complexity
and parameterized complexity. Alekhnovich and Razborov [AR08] proved that if
(classical) Resolution was automatizable, then W[P] coincides with FPR, the ran-
domized version of FPT. Since separating FPT fromW[2] is a similar but probably
harder problem than proving W[P] ∕= FPR, proving lower bounds to successively

106 CHAPTER 7. PARAMETERIZED PROOF COMPLEXITY

stronger parameterized proof systems on one side, and strengthening the result
of Alekhnovich and Razborov on the other seems, in our view, a promising ap-
proach towards unconditional non-automatizability of (classical) Resolution and
other proof systems, which is an important problem in proof complexity.

The concept of automatizability can be easily extended to parameterized proof
systems and it appears to be an interesting problem to investigate. However, there
are some differences with respect to (classical) Resolution. Namely, a quasi-
polynomial approximation of the shortest proof is meaningless in the context
of Parameterized Resolution, because every (𝐹, 𝑘) ∈ PCon with ∣𝐹 ∣ = 𝑛 has
a refutation of size 𝑐 ⋅ (𝑛

𝑘+1

)
for some constant 𝑐. If 𝑘 ≤ log 𝑛 this is smaller

than 𝑛log𝑛; otherwise
(

𝑛
𝑘+1

) ≤ 2(𝑘+1)2 which is fpt with respect to 𝑘. Hence for
any (𝐹, 𝑘) ∈ PCon there exists a refutation of size 𝑓(𝑘)𝑞(𝑛) where 𝑓 is some
computable function and 𝑞 is some quasi-polynomial function. We are in the
situation discussed in [AR08], where we want to discriminate between poly-
nomial and quasi-polynomial efficiency. Another difficulty is that known non-
automatizability results in [BKPS02, ABMP01, AR08] all use formulas which are
interesting and meaningful on assignments of big weight.

Chapter 8

The Broader Picture

Schon jetzt erklären die Meister der Naturwissenschaften die
Notwendigkeit monographischer Behandlung und also das
Interesse an Einzelheiten. Dies ist aber nicht denkbar ohne
eine Methode, die das Interesse an der Gesamtheit offen-
bart. Hat man das erlangt, so braucht man freilich nicht in
Millionen Einzelheiten umherzutasten.

Johann Wolfgang Goethe

In this thesis we focused on two non-classical models for proof systems: com-
putation with non-uniform information and parameterized proof systems. How-
ever, modern computational complexity employs and successfully studies other
computational models such as randomization, quantum computing, oracle ac-
cess, or space complexity. In proof complexity these considerations were started
recently by several researchers.1

Proof systems with oracle access and their relation to proof systems with
advice were already briefly mentioned in Section 4.3.2. To place our results into
a broader perspective, we give below a small (and incomplete) account on recent
research on proof systems with randomization and quantum computation, and
on space complexity for proof systems. We conclude in Section 8.2 by outlining
some further directions for research on non-classical proof complexity.

1This increased interest in non-classical aspects in proof complexity was very visible in a
special session on proof complexity organized by Jan Kraj́ıček at the conference TAMC 2010
in Prague where all the five speakers of the session talked on non-classical aspects in proof
complexity: Stefan Dantchev on a new model for randomized proof systems, Edward Hirsch
on heuristic acceptors and optimal proof systems [Hir10], Iddo Tzameret on algebraic proof
systems [Tza10], Sebastian Müller on proof systems with advice [BM10a], and myself on proof
complexity of non-classical logics [Bey10].

107

108 CHAPTER 8. THE BROADER PICTURE

8.1 Other Models for Proof Systems

8.1.1 Probabilistic Proof Systems

Usually, the term “probabilistic proofs” is associated with interactive proof sys-
tems like IP or Babai’s Arthur-Merlin classes MA and AM. Besides from random-
ization, the power of these proof systems stems from using interaction between a
powerful prover and a polynomial-time verifier.

A non-interactive model of randomized proofs was very recently introduced
by Hirsch and Itsykson [HI10]. They define two concepts: heuristic acceptors and
heuristic proof systems. Acceptors are not really proof systems, but algorithms
which accept all elements from the language and do not stop on other inputs.
There is, however, a close relationship between acceptors and proof systems (cf.
[KP89]). There is a nice recent survey on optimal acceptors and optimal proof
systems by Hirsch [Hir10].

For the randomized approach, we have to consider a probability distribution.
A distribution 𝐷 is concentrated on some set 𝐴, if 𝜇𝐷(𝐴) = 1.

Definition 8.1.1 (Hirsch, Itsykson [HI10]) A pair (𝐷,𝐿) is a distributional
proving problem if 𝐷 is a family of probability distributions 𝐷𝑛 concentrated on
𝐿 ∩ {0, 1}𝑛.

Hirsch and Itsykson define a heuristic acceptor for a distributional proving
problem (𝐷,𝐿) as a randomized algorithm which always accepts inputs from 𝐿
and accepts inputs from �̄� only with small probability (see [Hir10] for the exact
definition). For this model they show an optimality result:

Theorem 8.1.2 (Hirsch, Itsykson [HI10]) Let 𝐿 be recursively enumerable
and 𝐷 be a polynomial-time samplable distribution. Then there exists an optimal
automatizer for (𝐷,𝐿).

The authors also consider heuristic proof systems and show interesting results
on these systems with respect to automatizability, i. e., the problem to construct
proofs for given formulas (see [Hir10]).

8.1.2 Quantum Proof Systems

Quantum computations are a new computational paradigm which links computer
science and physics in a historically unparalleled way. The physicist Richard
Feynman [Fey82] discovered in 1982 that classical computers cannot efficiently
simulate quantum-mechanic systems. Building on this observation, he was the
first to consider the construction of computers based on quantum-mechanic prin-
ciples. This motivation is further strengthened by the belief that ongoing minia-
turization of electronic circuits will inevitably bring us into the realm of quantum
effects as already foreseen by Keyes in 1988 [Key88].

8.1. OTHER MODELS FOR PROOF SYSTEMS 109

In 1985 Deutsch [Deu85] introduced a theoretical model for quantum comput-
ers and demonstrated that there are problems which can be solved more efficiently
on quantum machines than on classical computers. Undoubtedly the most im-
portant result in the area of quantum computing was established by Shor [Sho97]
who designed an efficient quantum algorithm for factoring natural numbers. This
result is very important as the security of almost all modern public-key cryptosys-
tems as RSA is based on the intractability of factoring.

A further remarkable result was shown by Grover [Gro96] who constructed
a quantum algorithm solving the search problem in an unstructured database
with 𝑛 elements in

√
𝑛 steps. Classical procedures need at least 𝑛 steps to search

the database, and even in the randomized model the expected time is still 𝑛
2
.

Such search problems are typical for NP complete problems such as propositional
satisfiability.

This speedup in search raises hopes that we can reduce lengths of proofs when
proving theorems. This was the motivation for Pudlák’s recent introduction
of quantum proof systems [Pud09]. Pudlák first introduces a general model of
quantum proof systems and then focuses on quantum Frege systems. Let us
start with the general concept.

Definition 8.1.3 (Pudlák [Pud09]) A quantum proof system consists of a set
𝐴 ⊆ Σ∗ (the set of valid proofs) and a family of circuits 𝐶𝑛 (the proof system)
such that

1. 𝐴 is decidable in polynomial time and 𝐶𝑛 is P-uniform (Efficiency);

2. for any proof 𝜋 ∈ 𝐴, 𝐶∣𝜋∣(𝜋) produces a superposition of strings of tautolo-
gies (Correctness);

3. for every tautology 𝜑 there exists 𝜋 ∈ 𝐴 such that 𝜑 occurs in the superpo-
sition of 𝐶∣𝜋∣(𝜋) (Completeness).

Regarding the completeness condition, it is also important that by measuring
𝐶∣𝜋∣(𝜋) we can obtain 𝜑 with a probability which is not too small. Hence quantum
proof systems also have probabilistic aspects.

The next concept which Pudlák introduces are quantum rules which are based
on unitary transformations. Using a finite set of quantum rules, Pudlák arrives at
the notion of quantum Frege systems. Comparing quantum Frege with classical
Frege systems, Pudlák obtains the surprising result that quantum Frege systems
do not have shorter proofs, i. e., every quantum Frege system is simulated by a
classical Frege system. On the other hand, it does not seem possible to extract
classical proofs from quantum Frege proofs, i. e., under cryptographic assumptions
quantum Frege systems are not p-simulated by classical Frege systems.

110 CHAPTER 8. THE BROADER PICTURE

8.1.3 Space in Proof Complexity

Besides running time—which corresponds to lengths of proofs—one further im-
portant measure is the space consumption of algorithms. Space complexity for
proof systems was intensively investigated in the context of Resolution [ET01,
ABSRW02, BSN08]. Here the minimal space to refute a set of clauses is of particu-
lar interest as it corresponds to the memory consumption of modern SAT solvers
which often combine DPLL algorithms with clause learning. Therefore, both
lower bounds for Resolution space [ABSRW02, BSG03, EGM04, ET03] as well as
optimal trade-offs between space and length, i. e., between memory and run-time
consumption, have been intensively studied [Nor06, NH08, BSN08, BSN09].

8.2 Future Perspectives

Analogously to what has been done in complexity theory, we believe that research
on alternative resources in proof complexity will also help to understand limita-
tions in theorem proving in the classical model. In particular, in understanding
how these new computational models might advance theorem proving and what
are their limits, the following main general questions seem interesting. Their aim
is to generalize to proof complexity the approach of non-classical models already
well studied in complexity theory:

1. Are theorems significantly easier to prove when proofs are verified by alter-
native resources?

2. How are these computational models related with respect to their strength
in proving theorems?

3. What is the tradeoff between the computational strength of the resources
and the efficiency in proving theorems?

4. Can theorem proving be automated and under which resources?

In general, we have to admit that our understanding of non-classical resources
in proof complexity is still at a very initial stage. We believe, however, that
further research into non-classical measures of proofs will both strengthen the
connections between computational and proof complexity and lead to new insights
for classical proof systems.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. Cambridge University Press, 2009.

[ABMP01] Michael Alekhnovich, Samuel R. Buss, Shlomo Moran, and Toniann
Pitassi. Minimum propositional proof length is NP-hard to linearly
approximate. The Journal of Symbolic Logic, 66(1):171–191, 2001.

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and
Avi Wigderson. Space complexity in propositional calculus. SIAM
Journal on Computing, 31(4):1184–1211, 2002.

[ABSRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and
Avi Wigderson. Pseudorandom generators in propositional proof
complexity. SIAM Journal on Computing, 34(1):67–88, 2004.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characteriza-
tion of resolution width. Journal of Computer and System Sciences,
74(3):323–334, 2008.

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole-principle. Combi-
natorica, 14(4):417–433, 1994.

[AKMT00] V. Arvind, Johannes Köbler, Martin Mundhenk, and Jacobo Torán.
Nondeterministic instance complexity and hard-to-prove tautolo-
gies. In Proc. 17th Symposium on Theoretical Aspects of Computer
Science, volume 1770 of Lecture Notes in Computer Science, pages
314–323. Springer-Verlag, Berlin Heidelberg, 2000.

[AR08] Michael Alekhnovich and Alexander A. Razborov. Resolution is not
automatizable unless W[P] is tractable. SIAM Journal on Comput-
ing, 38(4):1347–1363, 2008.

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there
hard examples for Frege systems? In P. Clote and J. Remmel,
editors, Feasible Mathematics II, pages 30–56. Birkhäuser, 1995.

111

112 BIBLIOGRAPHY

[BCF03] Harry Buhrman, Richard Chang, and Lance Fortnow. One bit of
advice. In Proc. 20th Symposium on Theoretical Aspects of Com-
puter Science, volume 2607 of Lecture Notes in Computer Science,
pages 547–558. Springer-Verlag, Berlin Heidelberg, 2003.

[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristo-
pher Moore. The resolution complexity of random graph k-
colorability. Discrete Applied Mathematics, 153(1-3):25–47, 2005.

[BDG88] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural
Complexity I. Springer-Verlag, Berlin Heidelberg, 1988.

[Bei91] Richard Beigel. Bounded queries to SAT and the Boolean hierarchy.
Theoretical Computer Science, 84:199–223, 1991.

[Bey07] Olaf Beyersdorff. Classes of representable disjoint NP-pairs. Theo-
retical Computer Science, 377(1–3):93–109, 2007.

[Bey09] Olaf Beyersdorff. On the correspondence between arithmetic theo-
ries and propositional proof systems – a survey. Mathematical Logic
Quarterly, 55(2):116–137, 2009.

[Bey10] Olaf Beyersdorff. Proof complexity of non-classical logics. In Proc.
7th Conference on Theory and Applications of Models of Compu-
tation, volume 6108 of Lecture Notes in Computer Science, pages
15–27. Springer-Verlag, Berlin Heidelberg, 2010.

[BFL01] Harry Buhrman, Lance Fortnow, and Sophie Laplante. Resource-
bounded Kolmogorov complexity revisited. SIAM Journal on Com-
puting, 31(3):887–905, 2001.

[BG01] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width
tradeoffs for resolution. Computational Complexity, 10(4):261–276,
2001.

[BGL10] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower
bound for the pigeonhole principle in tree-like resolution by asym-
metric prover-delayer games. Information Processing Letters,
110(23):1074–1077, 2010.

[BGL11] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameter-
ized complexity of DPLL search procedures. In Proc. 14th Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing, volume 6695 of Lecture Notes in Computer Science, pages 5–18.
Springer-Verlag, Berlin Heidelberg, 2011.

BIBLIOGRAPHY 113

[BGLR11] Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander
Razborov. Parameterized bounded-depth Frege is not optimal. In
Proc. 38th International Colloquium on Automata, Languages, and
Programming, volume 6755 of Lecture Notes in Computer Science,
pages 630–641. Springer-Verlag, Berlin Heidelberg, 2011.

[BH08] Harry Buhrman and John M. Hitchcock. NP-hard sets are exponen-
tially dense unless coNP ⊆ NP/poly. In Proc. 23rd Annual IEEE
Conference on Computational Complexity, pages 1–7, 2008.

[BIK+92] Paul W. Beame, Russel Impagliazzo, Jan Kraj́ıček, Toniann Pitassi,
Pavel Pudlák, and Alan Woods. Exponential lower bounds for the
pigeonhole principle. In Proc. 24th ACM Symposium on Theory of
Computing, pages 200–220, 1992.

[BIK+96] Paul W. Beame, Russel Impagliazzo, Jan Kraj́ıček, Toniann Pitassi,
and Pavel Pudlák. Lower bounds on Hilbert’s Nullstellensatz and
propositional proofs. Proc. London Mathematical Society, 73(3):1–
26, 1996.

[BKM09] Olaf Beyersdorff, Johannes Köbler, and Jochen Messner. Nonde-
terministic functions and the existence of optimal proof systems.
Theoretical Computer Science, 410(38–40):3839–3855, 2009.

[BKM11] Olaf Beyersdorff, Johannes Köbler, and Sebastian Müller. Proof sys-
tems that take advice. Information and Computation, 209(3):320–
332, 2011.

[BKPS02] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E.
Saks. The efficiency of resolution and Davis–Putnam procedures.
SIAM Journal on Computing, 31(4):1048–1075, 2002.

[BM10a] Olaf Beyersdorff and Sebastian Müller. Different approaches to proof
systems. In Proc. 7th Conference on Theory and Applications of
Models of Computation, volume 6108 of Lecture Notes in Computer
Science, pages 50–59. Springer-Verlag, Berlin Heidelberg, 2010.

[BM10b] Olaf Beyersdorff and Sebastian Müller. A tight Karp-Lipton collapse
result in bounded arithmetic. ACM Transactions on Computational
Logic, 11(4), 2010.

[Boo74] Ronald V. Book. Tally languages and complexity classes. Informa-
tion and Control, 26:186–193, 1974.

[BP96] Paul Beame and Toniann Pitassi. Simplified and improved resolu-
tion lower bounds. In Proc. 37th IEEE Symposium on the Founda-
tions of Computer Science, pages 274–282, 1996.

114 BIBLIOGRAPHY

[BPI93] Paul Beame, Toniann Pitassi, and Russel Impagliazzo. Exponential
lower bounds for the pigeonhole principle. Computational Complex-
ity, 3(2):97–140, 1993.

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds
for cutting planes proofs with small coefficients. The Journal of
Symbolic Logic, 62(3):708–728, 1997.

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation
and automatization for Frege systems. SIAM Journal on Comput-
ing, 29(6):1939–1967, 2000.

[BS92] José L. Balcázar and Uwe Schöning. Logarithmic advice classes.
Theoretical Computer Science, 99:279–290, 1992.

[BS11] Olaf Beyersdorff and Zenon Sadowski. Do there exist complete sets
for promise classes? Mathematical Logic Quarterly, 57(6):535–550,
2011.

[BSG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random for-
mulae in resolution. Random Structures and Algorithms, 23(1):92–
109, 2003.

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near op-
timal separation of tree-like and general resolution. Combinatorica,
24(4):585–603, 2004.

[BSN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious:
An optimal separation of space and length in resolution. In Proc.
49th IEEE Symposium on the Foundations of Computer Science,
pages 709–718, 2008.

[BSN09] Eli Ben-Sasson and Jakob Nordström. Understanding space in reso-
lution: Optimal lower bounds and exponential trade-offs. Technical
Report TR09-034, Electronic Colloquium on Computational Com-
plexity, 2009.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - reso-
lution made simple. Journal of the ACM, 48(2):149–169, 2001.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[Bus98] Samuel R. Buss. An introduction to proof theory. In Samuel R. Buss,
editor, Handbook of Proof Theory, pages 1–78. Elsevier, Amsterdam,
1998.

BIBLIOGRAPHY 115

[Cai07] Jin-Yi Cai. 𝑆𝑝2 ⊆ ZPPNP . Journal of Computer and System Sci-
ences, 73(1):25–35, 2007.

[CCHO05] Jin-Yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra,
and Mitsunori Ogihara. Competing provers yield improved Karp-
Lipton collapse results. Information and Computation, 198(1):1–23,
2005.

[CEI96] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the
Groebner basis algorithm to find proofs of unsatisfiability. In Proc.
28th ACM Symposium on Theory of Computing, pages 174–183,
1996.

[CF08] Yijia Chen and Jörg Flum. The parameterized complexity of maxi-
mality and minimality problems. Annals of Pure and Applied Logic,
151(1):22–61, 2008.

[CF10] Yijia Chen and Jörg Flum. On optimal proof systems and logics
for PTIME. In Proc. 37th International Colloquium on Automata,
Languages, and Programming, 2010.

[CK96] Richard Chang and Jim Kadin. The Boolean hierarchy and the
polynomial hierarchy: A closer connection. SIAM Journal on Com-
puting, 25(2):340–354, 1996.

[CK07] Stephen A. Cook and Jan Kraj́ıček. Consequences of the provability
of NP ⊆ P/poly. The Journal of Symbolic Logic, 72(4):1353–1371,
2007.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof
Complexity. Cambridge University Press, 2010.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the proposi-
tional calculus. In Proc. 7th Annual ACM Symposium on Theory of
Computing, pages 83–97, 1975.

[Coo05] Stephen A. Cook. Theories for complexity classes and their proposi-
tional translations. In Jan Kraj́ıček, editor, Complexity of Compu-
tations and Proofs, pages 175–227. Quaderni di Matematica, 2005.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency
of propositional proof systems. The Journal of Symbolic Logic,
44(1):36–50, 1979.

[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and
the universal quantum computer. Proc. of the Royal Society, 400:97–
117, 1985.

116 BIBLIOGRAPHY

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Com-
plexity. Springer-Verlag, Berlin Heidelberg, 1999.

[DMS07] Stefan S. Dantchev, Barnaby Martin, and Stefan Szeider. Param-
eterized proof complexity. In Proc. 48th IEEE Symposium on the
Foundations of Computer Science, pages 150–160, 2007.

[DR01] Stefan S. Dantchev and Søren Riis. Tree resolution proofs of the
weak pigeon-hole principle. In Proc. 16th Annual IEEE Conference
on Computational Complexity, pages 69–75, 2001.

[EGM04] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the
complexity of resolution with bounded conjunctions. Theoretical
Computer Science, 321(2–3):347–370, 2004.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution.
Information and Computation, 171(1):84–97, 2001.

[ET03] Juan Luis Esteban and Jacobo Torán. A combinatorial characteri-
zation of treelike resolution space. Information Processing Letters,
87(6):295–300, 2003.

[Fey82] Richard Feynman. Simulating physics with computers. Interna-
tional Journal of Theoretical Physics, 21:467–488, 1982.

[FG03] Jörg Flum and Martin Grohe. Describing parameterized complexity
classes. Information and Computation, 187(2):291–319, 2003.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer-Verlag, Berlin Heidelberg, 2006.

[FK05] Lance Fortnow and Adam R. Klivans. NP with small advice. In
Proc. 20th Annual IEEE Conference on Computational Complexity,
pages 228–234, 2005.

[Gao09] Yong Gao. Data reductions, fixed parameter tractability, and
random weighted d-CNF satisfiability. Artificial Intelligence,
173(14):1343–1366, 2009.

[GL10] Nicola Galesi and Massimo Lauria. On the automatizability of
polynomial calculus. Theory of Computing Systems, 47(2):491–506,
2010.

[Göd93] Kurt Gödel. Ein Brief an Johann von Neumann, 20. März, 1956.
In P. Clote and J. Kraj́ıček, editors, Arithmetic, Proof Theory,
and Computational Complexity, pages 7–9. Oxford University Press,
1993.

BIBLIOGRAPHY 117

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proc. 28th ACM Symposium on Theory of Computing,
pages 212–219, 1996.

[GSS05] Christian Glaßer, Alan L. Selman, and Samik Sengupta. Reduc-
tions between disjoint NP-pairs. Information and Computation,
200(2):247–267, 2005.

[GSSZ04] Christian Glaßer, Alan L. Selman, Samik Sengupta, and Liyu
Zhang. Disjoint NP-pairs. SIAM Journal on Computing,
33(6):1369–1416, 2004.

[GSZ06] Christian Glaßer, Alan L. Selman, and Liyu Zhang. Survey of dis-
joint NP-pairs and relations to propositional proof systems. In Oded
Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors, Es-
says in Theoretical Computer Science in Memory of Shimon Even,
pages 241–253. Springer-Verlag, Berlin Heidelberg, 2006.

[GSZ07] Christian Glaßer, Alan L. Selman, and Liyu Zhang. Canonical dis-
joint NP-pairs of propositional proof systems. Theoretical Computer
Science, 370(1–3):60–73, 2007.

[Hak85] Amin Haken. The intractability of resolution. Theoretical Computer
Science, 39:297–308, 1985.

[HH88] Juris Hartmanis and Lane A. Hemachandra. Complexity classes
without machines: On complete languages for UP. Theoretical Com-
puter Science, 58:129–142, 1988.

[HI10] Edward A. Hirsch and Dmitry Itsykson. On optimal heuristic ran-
domized semidecision procedures, with application to proof com-
plexity. In Proc. 27th Symposium on Theoretical Aspects of Com-
puter Science, pages 453–464, 2010.

[Hir10] Edward A. Hirsch. Optimal acceptors and optimal proof systems.
In Proc. 7th Conference on Theory and Applications of Models of
Computation. Springer-Verlag, Berlin Heidelberg, 2010.

[IM99] Kazuo Iwama and Shuichi Miyazaki. Tree-like resolution is super-
polynomially slower than dag-like resolution for the pigeonhole prin-
ciple. In Proc. 10th International Symposium on Algorithms and
Computation, volume 1741 of Lecture Notes in Computer Science,
pages 133–142. Springer-Verlag, Berlin Heidelberg, 1999.

[Its09] Dmitry Itsykson. Structural complexity of AvgBPP. In Proc. 4th In-
ternational Computer Science Symposium in Russia, volume 5675 of

118 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 155–166. Springer-Verlag,
Berlin Heidelberg, 2009.

[Jeř09] Emil Jeřábek. Approximate counting by hashing in bounded arith-
metic. Journal of Symbolic Logic, 74(3):829–860, 2009.

[Kad88] Jim Kadin. The polynomial time hierarchy collapses if the Boolean
hierarchy collapses. SIAM Journal on Computing, 17(6):1263–1282,
1988.

[Kad89] Jim Kadin. PNP[log𝑛] and sparse Turing-complete sets for NP. Jour-
nal of Computer and System Sciences, 39:282–298, 1989.

[Key88] R. W. Keyes. Miniaturization of electronics and its limits. IBM
Journal of Research and Development, 32:24–28, 1988.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between
nonuniform and uniform complexity classes. In Proc. 12th ACM
Symposium on Theory of Computing, pages 302–309. ACM Press,
1980.

[KMT03] Johannes Köbler, Jochen Messner, and Jacobo Torán. Optimal proof
systems imply complete sets for promise classes. Information and
Computation, 184(1):71–92, 2003.

[Kow84] Wojciech Kowalczyk. Some connections between representability of
complexity classes and the power of formal systems of reasoning. In
Proc. 11th Symposium on Mathematical Foundations of Computer
Science, volume 176 of Lecture Notes in Computer Science, pages
364–369. Springer-Verlag, Berlin Heidelberg, 1984.

[KP89] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the
consistency of first order theories and the complexity of computa-
tions. The Journal of Symbolic Logic, 54(3):1063–1079, 1989.

[KP90] Jan Kraj́ıček and Pavel Pudlák. Quantified propositional calculi
and fragments of bounded arithmetic. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, 36:29–46, 1990.

[KP98] Jan Kraj́ıček and Pavel Pudlák. Some consequences of cryptograph-
ical conjectures for 𝑆1

2 and 𝐸𝐹 . Information and Computation,
140(1):82–94, 1998.

[KPT91] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic
and the polynomial hierarchy. Annals of Pure and Applied Logic,
52:143–153, 1991.

BIBLIOGRAPHY 119

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. Exponential lower
bounds to the size of bounded depth Frege proofs of the pigeonhole
principle. Random Structures and Algorithms, 7(1):15–39, 1995.

[Kra95] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Com-
plexity Theory, volume 60 of Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, Cambridge, 1995.

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof sys-
tems and independence results for bounded arithmetic. The Journal
of Symbolic Logic, 62(2):457–486, 1997.

[Kra01] Jan Kraj́ıček. Tautologies from pseudo-random generators. Bulletin
of Symbolic Logic, 7(2):197–212, 2001.

[Kra04a] Jan Kraj́ıček. Dual weak pigeonhole principle, pseudo-surjective
functions, and provability of circuit lower bounds. The Journal of
Symbolic Logic, 69(1):265–286, 2004.

[Kra04b] Jan Kraj́ıček. Implicit proofs. The Journal of Symbolic Logic,
69(2):387–397, 2004.

[Kra07] Jan Kraj́ıček. A proof complexity generator. In Proc. 13th Inter-
national Congress of Logic, Methodology and Philosophy of Science,
Studies in Logic and the Foundations of Mathematics. King’s Col-
lege Publications, London, 2007.

[KS85] Ker-I Ko and Uwe Schöning. On circuit-size complexity and the low
hierarchy in NP. SIAM Journal on Computing, 14:41–51, 1985.

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph
Isomorphism Problem: Its Structural Complexity. Progress in The-
oretical Computer Science. Birkhäuser, Boston, 1993.

[KW98] Johannes Köbler and Osamu Watanabe. New collapse conse-
quences of NP having small circuits. SIAM Journal on Computing,
28(1):311–324, 1998.

[NH08] Jakob Nordström and Johan H̊astad. Towards an optimal separation
of space and length in resolution. In Proc. 40th ACM Symposium
on Theory of Computing, pages 701–710, 2008.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Ox-
ford Lecture Series in Mathematics and Its Applications. Oxford
University Press, 2006.

120 BIBLIOGRAPHY

[Nor06] Jakob Nordström. Narrow proofs may be spacious: separating space
and width in resolution. In Proc. 38th ACM Symposium on Theory
of Computing, pages 507–516, 2006.

[OKSW94] Pekka Orponen, Ker-I Ko, Uwe Schöning, and Osamu Watanabe.
Instance complexity. Journal of the ACM, 41(1):96–121, 1994.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[PB94] Pavel Pudlák and Samuel R. Buss. How to lie without being (easily)
convicted and the length of proofs in propositional calculus. In Proc.
8th Workshop on Computer Science Logic, volume 933 of Lecture
Notes in Computer Science, pages 151–162. Springer-Verlag, Berlin
Heidelberg, 1994.

[PI00] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algo-
rithms for SAT. In Proc. 11th Symposium on Discrete Algorithms,
pages 128–136, 2000.

[Pip79] Nicholas Pippenger. Relations among complexity measures. Journal
of the ACM, 26(2):361–381, 1979.

[PS10] Toniann Pitassi and Rahul Santhanam. Effectively polynomial sim-
ulations. In Proc. 1st Innovations in Computer Science, 2010.

[Pud91] Pavel Pudlák. Ramsey’s theorem in bounded arithmetic. In
E. Börger et al., editors, Computer Science Logic ’90, pages 308–312.
Springer, Berlin, 1991.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting planes
proofs and monotone computations. The Journal of Symbolic Logic,
62(3):981–998, 1997.

[Pud98] Pavel Pudlák. The lengths of proofs. In Samuel R. Buss, editor,
Handbook of Proof Theory, pages 547–637. Elsevier, Amsterdam,
1998.

[Pud99] Pavel Pudlák. On the complexity of propositional calculus. In Sets
and Proofs, Invited papers from Logic Colloquium’97, pages 197–218.
Cambridge University Press, 1999.

[Pud00] Pavel Pudlák. Proofs as games. American Math. Monthly, pages
541–550, 2000.

[Pud09] Pavel Pudlák. Quantum deduction rules. Annals of Pure and Ap-
plied Logic, 157(1):16–29, 2009.

BIBLIOGRAPHY 121

[PW85] Jeff Paris and Alec J. Wilkie. Counting problems in bounded arith-
metic. In Methods in Mathematical Logic, Proc. 6th Latin American
Symposium, pages 317–340, 1985.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus.
Computational Complexity, 7(4):291–324, 1998.

[Rii01] Søren Riis. A complexity gap for tree resolution. Computational
Complexity, 10(3):179–209, 2001.

[Sch83] Uwe Schöning. A low and a high hierarchy within NP. Journal of
Computer and System Sciences, 27:14–28, 1983.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bulletin
of Symbolic Logic, 13(4):417–481, 2007.

[Sel94] Alan L. Selman. A taxonomy of complexity classes of functions.
Journal of Computer and System Sciences, 48(2):357–381, 1994.

[Sho97] Peter Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Com-
puting, 26(5):1484–1509, 1997.

[St̊a96] Gunnar St̊almarck. Short resolution proofs for a sequence of tricky
formulas. Acta Informatica, 33(3):277–280, 1996.

[Tse68] G. C. Tseitin. On the complexity of derivations in propositional
calculus. In A. O. Slisenko, editor, Studies in Mathematics and
Mathematical Logic, Part II, pages 115–125. 1968.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc., 42:230–265, 1936.

[Tza10] Iddo Tzameret. Algebraic proofs over noncommutative formulas.
In Proc. 7th Conference on Theory and Applications of Models of
Computation, volume 6108 of Lecture Notes in Computer Science,
pages 60–71. Springer-Verlag, Berlin Heidelberg, 2010.

[Zam96] Domenico Zambella. Notes on polynomially bounded arithmetic.
The Journal of Symbolic Logic, 61(3):942–966, 1996.

Index

Π𝐵
𝑖 , 52

Σ𝐵𝑖 , 52
≡, 9
≡𝑝, 9
≤, 9
≤𝑝, 9
𝜋𝑖(⋅), 13
advice, 14
asymmetric Prover-Delayer game, 68

BH, 13
BL𝑘, 14
Boolean decision tree, 66, 79
Boolean hierarchy, 13
bounded quantifiers, 51

C(P), 21
can use nondeterminism, 19
coloring contradiction, 84
consistent with a language, 15
Cook-Reckhow program, 7
Cook-Reckhow Theorem, 8

D𝑝, 13

easy subsets, 18
EF, 11
enc, 13
equivalent proof systems, 9
expressible in a language, 19
extended Frege system, 11

with advice, 61, 62

fixed-parameter tractable, 74
FPT, 74
fpt-bounded, 77

fpt-reductions, 74
Frege

axiom, 10
quantum Frege system, 107
rule, 10
system, 10

graph pigeonhole principle, 84

hard sequence, 54
HardSeqBits, 56
HS, 55

input advice, 26

Karp-Lipton Theorem, 15
kernel, 83
kernelization, 83

LOP, 88

MaxHS, 55
modus ponens, 11

NEHS, 55
nic𝑡, 15
NIC[log,poly], 16
nondeterministic instance complexity,

15

OP, 88
optimal proof system, 9
ordering principles

LOP, 88
OP, 88

output advice, 26

PNP[log], 14

123

INDEX

p-equivalent proof systems, 9
p-optimal machine, 42
p-optimal proof system, 9
p-simulations, 9
para-NP, 77
parameterized contradiction, 76
parameterized proof system, 76
Parameterized Resolution, 78
PCon, 76
pebbling contradictions, 84
PHP, 67
pigeonhole principle, 67
polynomially bounded, 8
promise classes, 18
proof system, 8

parameterized, 76
propositional, 8
quantum, 107
with access to an oracle, 35
with advice, 26

Prover-Delayer game, 66
PS(L), 19
ps/k, 26
Pudlák game, 94
Pudlák-Impagliazzo game, 66
PV, 51

quantum proof system, 107

R-machine, 18
recursive P-presentation, 18
representable in a proof system, 20
Resolution

classical Resolution, 9
dag-like, 10
Parameterized, 78
rule, 10
tree-like, 10, 66

Riis’ gap theorem, 79

Sat, 52
simulations, 9
sparse, 13

tally, 13
Tseitin tautologies, 87

vertex cover, 85
VPV, 51

W[1], 74
W[2], 75
weight of an assignment, 74
width of a clause, 10

124

	Zusammenfassung
	Contents
	Acknowledgments
	Chapter 1Introduction
	Chapter 2Proof Complexity
	Chapter 3Notions from ComputationalComplexity
	Chapter 4Proof Systems that Take Advice
	Chapter 5Proof Systems with Advice andBounded Arithmetic
	Chapter 6Prover-Delayer Games
	Chapter 7ParameterizedPro of Complexity
	Chapter 8The Broader Picture
	Bibliography
	Index

