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Abstract

In structured top-down design methodologies for the devel opment of complex mixed-signal
systems on chip, it is highly desirable to apply automated bottom-up modeling methods.
These modeling methods are suited to generate behavioral models of analog blocks at the
transistor level with the aim of speeding up simulations at higher abstraction levels. The ap-
plication of such bottom-up generated modelsin mixed-mode simulationsis essential to ver-
ify correct functionality at system or full-chip level. Without the application of behavioral
models, verification at the system level is extremely costly in terms of computational effort
for most modern designs— if not impossible.

Symbolic analysis offers promising approaches for automated, highly accurate, and flexible
bottom-up modeling methods. These methods perform an automated model reduction that is
applied to the circuit’s network equations and resultsin simplified but still complex differ-
ential algebraic equation (DAE) systems. Based on the DAEs, behavioral modelsfor differ-
ent modeling languages can be generated. These models can subsequently be used to replace
their corresponding transistor-level subsystem in order to enhance the simulation perfor-
mance. Even though the applied model reduction algorithms are highly efficient, the result-
ing models' performance is often unsatisfactory — sometimes even slower than at the
transistor-level —making the application of such modelsimpossible.

The objective of this work was to analyze and improve the simulation efficiency of such
complex analytical models. This has been achieved by an adaptation of the behavioral mod-
els and the applied simulation algorithms, thus enhancing the simulation performance with-
out loss of accuracy. The method is based on a highly efficient model compilation aswell as
on optimization strategies to reformul ate the models' DAEs with respect to the applied sim-
ulation agorithms. Thus, the simulation performance has been significantly improved by
factors of up to two orders of magnitude. An important step towards efficient future use of
symbolic methods for bottom-up model generation of analog circuits has been taken.

Keywords: Analog Behavioral Modeling, Symbolic Analysis, Model Compilation



Kurzfassung

In einer strukturierten top-down Designmethodik zur Entwicklung komplexer mixed-signal
Systeme ist der Einsatz einer automatisierten bottom-up Modellgenerierung von hoher
Wichtigkeit. Derartige Modellierungsmethoden sind zur Erzeugung von Verhaltensmodel-
len anal oger Blocke auf Transistorlevel mit dem Ziel der Simulationsbeschleunigung auf ho-
heren Abstraktionsebenen geeignet. Die Anwendung der erzeugten Verhaltensmodelle in
mixed-mode Simulationen ist zur Verifikation auf System- oder Full-Chip-Ebene unerl &%3-
lich. Ohne den Einsatz von Verhaltensmodellen ist die Verifikation moderner Mikrochips
auf Systemebene extrem rechenzeitaufwandig — wenn nicht sogar unméglich.

Die symbolische Analyse erdffnet vielversprechende Ansétze zur automatischen, hoch ge-
nauen und flexiblen bottom-up Modellierung. Diese Methode basiert auf automatisierten
Modellreduktionstechniken, die auf die Netzwerkgleichungen der Schaltung angewendet
werden. Die daraus resultierenden vereinfachten aber noch immer auf3erst komplexen nicht-
linearen Algebrodifferential gleichungen (ADGL) kénnen zur Erzeugung von V erhaltensmo-
dellen in verschiedenen Model lierungssprachen eingesetzt werden. Die erzeugten Modelle
kdnnen anschlief3end zur Ersetzung des entsprechenden Teilsystems auf Transi storebene zur
Simulationsbeschleunigung verwendet werden. Trotz sehr hoher Effizienz der Model Ireduk-
tionsalgorithmen kann oft nur eine unbefriedigende Simulationsperformanz erzielt werden.
Teilweise sind die Modelle sogar weniger performant as die Realisierung auf Transistor-
ebene. Dadurch wird ein effizienter Einsatz der erzeugten Modelle derzeit verhindert.

Ziel dieser Arbeit war die Analyse und Verbesserung der Simulationsperformanz komplexer
analytischer Verhaltensmodelle. Dafuir wurde eine Anpassung zwischen den Verhaltens-
modellen und den angewendeten Simul ationsal gorithmen zur Verbesserung der Performanz
ohne weiteren Verlust von Genauigkeit durchgefiihrt. Diese Anpassung basiert auf der Ent-
wicklung eines effizienten M odellcompilers und Algorithmen zur automati schen Umformu-
lierung der ADGL im Hinblick auf die Simulationsalgorithmen. Dadurch konnte die
Performanz deutlich um bis zu zwei GréRenordnungen verbessert werden. Auf diese Weise
ist ein wichtiger Schritt in Hinblick auf die zukiinftige Nutzung symbolischer Methoden zur
Modellerzeugung fur analoge Schaltungen erzielt worden.

Stichworte: Analoge Verhaltensmodellierung, Symbolische Analyse, Modellkompilie-
rung
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1 Introduction

In the semiconductor industry one of the key factors for staying competitive is to continu-
ously improve efficiency. In 1965, Gordon E. Moore predicted a rapid exponential growth
of the number of transistorsthat can beintegrated on achip. His prediction became common-
ly known as “Moore's Law”. Since then, the semiconductor industry’s growth rates have
proven Moore's early extrapolation. The semiconductor market continuously creates de-
mand for more complex integrated circuits at ever lower cost. This trend pushes the semi-
conductor companies to improve their efficiency in all fields. Cost efficiency in production
is achieved by shrinking transistor sizes and increasing productivity of the semiconductor
fabs. Higher system integration leads to complex systems being integrated on a single chip
in order to improve the assembly cost for customers. Last but not least, the design efficiency
has to keep track with the rapid development of technology. Resourcesto develop a chip are
limited and the project cycle times play acrucial rolein timely bringing profitable products
to the market. Thus, the lever to become more efficient within a chip’s design phase are de-
sign methodology and design automation.

Design efficiency is mostly driven by Electronic Design Automation (EDA). The EDA in-
dustry is closely connected to the semiconductor companies as the fulfillment of Moore's
law would not have been possible without alarge degree of automation in chip design. The
design is based on a design flow, which is composed of alarge variety of speciaized tools
to support the process steps from specification to production. While the design of digital sys-
temsis largely automated and dominated by a clearly defined design methodology, analog
designs are mostly left to the experience of specialized design engineers. Even though the
analog subsystems of a chip areincreasingly becoming more important, analog designisin-
sufficiently supported by automated design tools. New design methodol ogies are necessary
to improve efficiency and prevent costly redesigns due to the late detection of errors.

Design and Verification of Microelectronic Circuits

Traditionally, mixed-signal design was performed by bottom-up design. Starting from the
design and verification of individual circuit blocks, the obtained componentswereintegrated
into the system and verified at transistor level. This design methodology posed severa prob-
lems such as high simulation effort, disadvantages for architectural changes, risk of commu-
nication errors, and late recognition of errors. In order to tackle these problems, top-down
design methodologies are increasingly applied [41, 42]. They enhance the efficiency and
quality of the design process due to their well-structured refinement from an architecture to
atransistor level realization. Each leve is thoroughly partitioned, designed, and refined to



2 Introduction

the next level followed by averification step. Thereby, the system is step-wise designed from
an agorithmic description at the system level down to a transistor level realization of all
blocks.

Verification is the process of proving the compliance of a circuit with its specification. For
microel ectronic systems, verificationis of major importance asthereisno possibility for pro-
totyping, and redesigning after the production start causes enormous costs. The most com-
mon verification method is circuit simulation, which —in a strict sense — does not prove but
only validate the circuit. Circuit simulation tools are intended to numerically predict the be-
havior of acircuit’s electrical quantities without having an actua redlization of it. They are
based on parameterized device models to describe the behavior of the basic electrical com-
ponents of the circuit. Netlists are used to list the circuit’s components and describe their in-
terconnecting network. The simulation of electrical systems can be performed at different
abstraction levels:

* Digital simulation — time- and value-discrete simulation method based on boolean
logic that is capable of simulating large digital circuits with considerable computing
resources (millions of transistors within a day).

» Analog smulation — continuous value simulation method with adaptive time steps for
analog circuits that yields accurate results for currents and voltages, strongly restricted
by computing power (thousands of transistors within a day).

» Mixed-signal smulation — a combination of the previously mentioned methods that
adaptively uses one of the methods for digital or analog partitions of the circuit (hun-
dred-thousands of transistors within a day).

* Device simulation — highly accurate field solver to calculate physical behavior of asin-
gle or very few semiconductor devices that requires large amounts of computing power
(few transistors within weeks, inappropriate for circuit simulation).

The examplesfor the simulation time give arough idea of the typical capability of each sim-
ulation type. A comparison of the simulation methods shows that the accuracy of the simu-
lation results and the necessary simulation times are conflicting interests. The term accuracy
within the simulation-context specifies the degree of conformity of the calculated to the mea-
sured values. In order to achieve a high accuracy within simulation, new devices as well as
new technologies require the characterization of the devices to achieve suitable parameter
sets for the corresponding simulation models. The determination of the device parametersis
based on measured characteristics to calibrate the device models' behavior. Due to limited
computing resources, performance is often the limiting factor that requires the application of
less accurate simulation methods. For circuit simulation, analog simulation is considered to
be the most accurate and feasible solution. Device simulators are not suited for circuit sim-
ulation due to the required amount of computing power, even though they would be more
accurate.

Figure 1.1 visualizes the relationship between accuracy and performance of a simulation.
Considering computing resources and efficiencies as constants, an increased accuracy of the
models used within the simulation proportionally increases the simulation effort. Thereby,
the simulation time increases and performance is affected. The only possibility to enhance
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performance without loosing accuracy is to increase computing resources (as e.g. applied in
parallel computing) or to improve efficiency of the model or the simulator. The scaling of
the simulation effort with the model accuracy is influenced by the model efficiency, which
is determined by the realization and formulation of the model. The efficiency of the simula-
tor determines the necessary simulation time for a defined simulation effort with a given
amount of computing resources. Depending on the application, a suitable trade-off between
accuracy and simulation time has to be found. In order to make thistrade-off as profitable as
possible, the efficiency of the model as well as the simulator must be optimized. Enhancing
simulation efficiency istypically impossible for the user of asimulator. Improving the mod-
el’s efficiency is possible for the creator of the model but requires some internal knowledge
of the simulation a gorithms and should ideally be done automatically by the simulation en-
vironment.

Performance-wise, the verification of large mixed-signal systems on chip level is the most
crucial issuein circuit verification. Simulating the entire chip with anal og accuracy isamost
always not afeasible solution due to the extremely high computational effort. Using adigital
simulator is impossible due to the analog subsystems of the chip that cannot be simulated
with digital simulation algorithms. In most cases, even the application of amixed-signal sim-
ulator does not reduce the computation time to target (typically over-night simulation).

Behavioral Modeling

The use of behavioral modelsis a strategy to speed-up simulations. It becomes increasingly
important for top-down as well a bottom-up design methodol ogies. A behavioral model isa
functional description of aspecific circuit that is suited to predict the relevant behavior of the
corresponding circuit with reduced simulation effort. According to Figure 1.1, thisreduction
of the simulation effort comes along with reduced accuracy of the simulation results. Typi-
caly, thisis achieved by neglecting physical effects of the circuit implementation that are
considered irrelevant for the application of the model. Subsequently, the behavioral model
can be used to replace its circuit-counterpart in order to speed-up the verification in larger
contexts. The strategy to simulate a system partly represented by its circuit netlist and partly
by behavioral models is called multi-level or mixed-mode simulation [11]. By simulating
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varying combinations of circuits and behavioral models, the functionality of the whole sys-
tem or of specific components within the system context can be verified.

The most common types of behavioral models are:

* Electrically equivalent circuits (macro models) — simplified circuits to model the ter-
minal characteristics of the original circuit [9, 10, 67]. Historically, this is the first
approach of behaviora modeling as the models can be simulated with an ordinary cir-
cuit simulator.

 Equation-based models — behavioral models based on mathematical systems which
are typically redized in an Analog Hardware Description Language (AHDL) and
require a corresponding simulator interface [4, 33, 48].

* Look-up tables — behavioral models based on sampling points stored within data
tables. In conjunction with an interpolation method, it is possible to “look up” output
characteristics of the model dependent on the input values [78, 86]. This model typeis
desirable for modeling applications where no equation-based description is available.

For detailed comparisons and discussions on modeling approaches and classifications of be-
havioral models please refer to [3, 58, 66]. Modeling approaches can be classified into em-
pirical and analytical methods. The former only uses observations, e.g. measurements or
simulation data, to reproduce a circuit’s behavior. This has disadvantages as the model does
not reflect physical propertiesof thecircuit. Analytical modeling methods are based on phys-
ical laws and interrel ationships of the modeled circuit. Therefore, a precise analysis and un-
derstanding of the circuit is necessary. Analytical modeling methods are superior to
empirical methods asthey provideinsight into the model’ s behavior and offer the possibility
of adapting the model to circuit changes. Analytical models are equation-based, but not all
equation-based models are analytical.

As manual modeling is time-consuming, error-prone, and requires a high level of modeling
knowledge, an automated modeling technique is highly desirable. Especialy for bottom-up
modeling with theintention of deriving abehavioral model from an already implemented cir-
cuit block, several automated modeling approaches exist:

» Characterization — a library of parameterized model templates allows modeling of
specific circuit classes. The parameters for the selected model are determined by char-
acterization of the circuit [19, 37].

* Neural networks — behavioral models based on neural networks that are trained with
simulation or measurement data[17, 52, 53].

» Symbolic analysis — an approach to generate equation-based models using a computer
algebra system in combination with network analysis algorithms [3, 5, 27, 31, 65, 87].

Thiswork focuses on automated bottom-up generation of equation-based behavioral models
for nonlinear analog circuit blocks through symbolic analysis as introduced in [3]. The ap-
proach is based on the automated derivation of symbolic network equations from a circuit
within a computer algebra system. The core of a symbolic analysis system is its model re-
duction algorithm — the process of simplifying equations until a user-specified accuracy-cri-
terion is reached. This method is very useful for bottom-up modeling as it approximates the



circuit with its own network equations. The resulting simplified set of equations can be used
as core of an equation-based behavioral model. The suggested modeling method has several
advantages over other approaches:

 Automated modeling process

» Model accuracy specified in advance

* Very high accuracy attainable with limited modeling effort
 Applicableto all circuit classes (limited to analog block size)

* Resulting models parameterized with dominant circuit parameters
* Insight into the model equations

Chapter 2 will discuss symbolic analysisand its application for behavioral modelingin more
detail. An introduction to the relevant simulation algorithms for nonlinear dynamic systems
and to behavioral simulation methods will follow in Chapter 3.

Motivation

Even though highly efficient model reduction techniques exist, the generated behavioral
models contain equation systems of exceptionally high complexity. Unfortunately, the sim-
ulation performance of the generated models is often significantly lower than the perfor-
mance of the corresponding netlist-based simulation, making their use impossible.
Example 1.1 illustrates this problem.

Example 1.1: Performance Problem

In [100], the behavioral model generation for a complementary folded-cascode operational
amplifier was published. The operational amplifier consists of 19 MOS-transistors (modeled
with BSIM3v3 [89]). This analog block was intended to be modeled through symbolic an-
aysisto achieve abehavioral model with a10 % error bound of the amplifier’s output volt-
age. Initially, the equation setup resulted in a complex equation system of 1177 equations —
with the majority being highly nonlinear. Through automated model reduction, the equation
system was reduced to 29 equations only — still fulfilling the required error margin. Thesim-
ulation time for the generated behavioral model was enhanced by a factor of 16. Still, the
simplified model’s simulation performance was 4 times worse than the performance
achieved through the netlist-based simulation of the origina circuit.
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Figure 1.2: Simulation Time vs. Accuracy for Modeling through Symbolic Analysis

Figure 1.2 qualitatively depicts the current situation with respect to the accuracy perfor-
mance trade-off for this modeling approach. The reference in terms of accuracy and simula-
tion time for all bottom-up modeling methods is the netlist-based simulation (black square
in Figure 1.2), as the model is intended to replace (and speed-up) this representation of the
circuit block. It is supposed to be the most accurate smulation type for the modeled circuit
block. Based on the netlist, symbolic analysis offers the possibility to generate a behaviora
model containing equivalent network equations as used simulator-internally for the netlist-
based simulation (unsimplified model). This model has the same accuracy as the netlist-
based simulation but typically a significantly higher simulation effort, resulting in an over-
head in simulation time. Starting from thisunsimplified model, aplurality of simplified mod-
els along a decreasing tragjectory can be achieved through model reduction. The trajectory
reflects the trade-off between accuracy and simulation time for different degrees of model
reduction. The shape of the curve was chosen exemplarily. In practice, it highly depends on
the structure of the model equations and the applied model reduction agorithms. Hence, the
trajectory may be of arbitrary shape but should be monotonic decreasing.

The feasible region for a practically useful model is limited by the user-specified minimum
accuracy and the requirement to speed-up the simulation (upper feasible region boundary).
A simplified model closeto the lower accuracy boundary minimizes simulation time. Dueto
the reduction in accuracy, a certain speed-up compared to the reference simulation time is
achieved. In the case of Example 1.1, no feasible compromise between simulation time and
accuracy could be found as the upper boundary did not comply with the accuracy require-



ments. A certain amount of accuracy reduction is necessary to compensate for the overhead
in simulation time and to speed-up the model to reach the reference simulation time. There-
by, the efficiency of the modeling approach significantly degrades— this amount of accuracy
reduction is“wasted” without achieving a speed-up compared to the reference simulation.

Objectives of this Work

Within Chapter 4, analyses with respect to the behavioral models' simulation performance
will be presented. They show that the overhead is far from being negligible —in most cases
the unsimplified model isin the order of one to two magnitudes slower than the netlist-based
simulation. The main objectives of the performance analyses are the quantification of the
overhead, the investigation for the root causes of the inefficiency, and the determination of
influencing factors that account for the overhead.

Certainly, further reducing the model’ s accuracy to compensate for the initially bad perfor-
mance of the unsimplified models is not a satisfying solution. The main objective of this
work is to maximize performance through efficiency improvements of both the models and
the simulation process. The overhead should be reduced to a minimum in order to make this
modeling approach competitivein terms of simulation performance and to effectively usethe
powerful model reduction algorithmsfor speeding-up the behavioral models compared to the
netlist-based simulation.

Based on the results of the performance analyses, Chapter 5 will present approaches to en-
hance the behavioral simulation efficiency. Automated optimization methods to increase the
model efficiency by reducing the simulation effort at constant accuracy are presented in
Chapter 6. Both measures are strongly related to each other as optimal efficiency requires an
adaptation between the behavioral model structure as well as the applied simulation algo-
rithms.






2 Behavioral Modeling Through Symbolic Analysis

Traditionally, circuits are analyzed by simulation. While numerical methods are useful for
rapidly checking a circuit’s functionality and characteristics, they are not well suited to gain
insight into and understanding of a circuit. Especialy for debugging, optimization, dimen-
sioning, and modeling of analog circuits, amore detailed analysisis of great advantage. The
use of symbolic analysis methods [27, 71] provides understanding of interdependencies be-
tween variables and parameters of the circuit. These methods are based on symbolic equa-
tions that analytically describe the system. A symbolic analysis system is used to set up
equations, perform algebraic manipulations, anayze the equations, and apply model reduc-
tion based on acomputer algebra system. In contrast to numerical methods, al variablesand
parameters of the equations are contained in symbolic form. By applying numerical values
for symbolic parameters and inputs of the system, numerical analyses are easily possible. A
weakness of symbolic methods is the extremely high complexity of the equations. In order
to cope with the high complexity, symbolic model reduction techniques are applied to
achieve asimplified equation system.

Symbolic analysis of linear systemswas previously presented in [31]. It isfor example used
to perform stability analyses, derive symbolic transfer functions, and perform symbolic pole-
zero analyses. Nonlinear symbolic methods typically focus on modeling applications for
time-domain ssimulations [5, 26, 58, 82, 83]. This chapter will give an introduction to an an-
alytical modeling method for nonlinear analog circuits based on symbolic analysis. A mod-
eling flow based on the toolbox Analog Insydes [2] will be applied. It uses the computer
algebra system Mathematica [49, 84]. Thetool is suited to analyze systems of different phys-
ical domains including electrical [6, 36, 81, 100], mechanical [8], thermodynamic [55], as
well as feedback-control systems[7].

Figure 2.1 depicts a typical bottom-up modeling flow for analog circuits. Starting from the
circuit’s netlist, an analytical behavioral model based on the circuit equations is generated.
Therefore, symbolic circuit equations are set up using symbolic device models. They are
equivalent to the equations used within circuit simulators and are hence considered to be as
accurate as the netlist-based simulation of thecircuit. By applying nonlinear model reduction
algorithms, asimplified equation system of user-defined accuracy isachieved. It can be used
asthe core of abehavioral model by exporting it to a simulator-compatible model represen-
tation. After introducing some basic definitions for analytical modeling, the major processes
within the flow will be discussed in more detail and demonstrated through an example appli-
cation.
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/ Circuit Netlist /

Netlist Import

Analog Insydes

) Symbolic Device Models )—>| Equation Setup |

Circuit Equations /
100 % accurate l

| Model Reduction |

of user-defined accuracy l
Simplified Egs. /

Model Export

VHDL-AMS
Verilog-A
T™L Behavioral Model /

Figure 2.1: Bottom-Up Modeling Process

2.1 Fundamentals of Analytical Modeling

Electrical circuits are built from components and their interconnecting network. A compo-
nent within the network can be either a so-called primitive or a subcircuit that itself hierar-
chically consists of components. Primitives are the basic building blocks (e.g. resistors,
transistors, voltage sources) that provide a corresponding device model within the simulator.
They embody the physical relationship between the primitive' s ports by branch-constitutive
equations. A behavioral model within an electrical network can be considered as a user-spec-
ified primitive. Each component and primitive has a certain number of ports to connect to
other components. A connection between two or more portsis called anode or anet. A con-
nection between two nodes is denoted as a branch. Primitives may provide parameters to
adapt their behavior (e.g. resistance, geometrical properties). Netlists are used to store the
network structure and make it accessible for simulators. A netlist hierarchically contains a
set of subcircuit declarations and a set of parameterized instances of components as well as
the connectivity information. For further details on the terminology of networks see [88].

Analog circuits are continuous systems since all quantities of the network (voltages, branch
currents, node potentials) are considered to betime- and value-continuous, in contrast to dig-
ital systemsthat only use discrete val ues and time points. For modeling purposes, signal flow
systems and conservative systems are distinguished. Within signal flow systems, a port has
a certain orientation (input or output) and a specified type (voltage or current port). Thus, a
signal-flow port is non-reactive — meaning an input of a component does not influence the
electrical quantities of connected nodes and vice versa for outputs. Signal-flow systems are
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typically used for digital simulation or in mixed-mode simulation at higher abstraction levels
(e.g. system levd).

Definition 2.1 - Conservative System

In a conservative (electrical) system, each port is associated with a node potential (across
quantity) and a port current (through quantity or flow). The node potential is shared with all
connected nets. The sum of all port currents into a connected node must sum to zero. The
system embodies Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).

A restriction to signal-flow systems does not hold

. Component o
O-bll— i true for most analog circuits. Thus, all components
f(ui,ztp) €O are modeled conservatively (Definition 2.1). Inputs
O and outputs can not be distinguished in conservative
2 4 systems. In electrical systems, the across quantities
up| [uz p us of acomponent aretypically interpreted astheinde-
pendent input variables whereas through quantities
are thought to be the system’'s outputs. In other
_?_ Ground words, the port currents of acomponent are thought

= to be cal culated from the node potentials of its ports.
Internal variables are denoted as free quantities and

may only relate the across and through quantities of the component to each other.

Apart from this network-related definition of port directions, graphical design tools catego-
rize portsinto inputs, outputs, and bidirectional ports. For analog circuitry, thisdistinctionis
only of informative value for circuit designers as analog simulators handle al ports as con-
servative ports. Figure 2.2 shows an exemplary conservative system with three ports bound
to the across quantities u; , 3 with corresponding through quantities iq 5 5. In combination
with the internal variables z and the parameters p, the equations f represent the behavior of
the component.

Figure 2.2: Conservative System

Uy Uz
- —_—
Component 1 Component 2

i Node Flow

O—{ f(uninp) 40— —OP» f(unizp) —O

Port
‘ i Potential 4

P1 p2

; Ground

Figure 2.3: Interconnected Components
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Figure 2.3 gives an example for two interconnected components. The node potentia is
shared between both components. The port currents of theinner ports have to be enforced by
the network equations to be of equal absolute value and reverse sign (due to KCL).

Definition 2.2 - Differential Algebraic Equations (DAE)
Let f(x, X,t) = O bea system of differential algebraic equations where

xe IR variable vector
te IR continuous time
f: R'xIR> IR equations.
The variables x can be partitioned into
Xairr € IR differential variables
Xalgebr € IR algebraic variables
so that

FO& %, 1) = F(Xgisp Rait Xargeprs 1) = 0

with subsystems
faite(Xait> Xaift> Xargeors 1) = 0 differential equations
falgebr(xdiffy Xalgebrs t) = 0 algebraic equations

fairr: IR x IR— IR™"

faigenr : IR x IR—> IR™™
| |

Continuous systems in the time-domain are described by nonlinear differential algebraic
equations (DAE, Definition 2.2). Solving a DAE system in most cases requires the applica-
tion of numerical methods to simultaneously determine a solution for the system’ svariables.
The next chapter will discuss the most common numerical methods. Most simulation meth-
ods require afirst-order system. Any DAE system of higher order can be reduced to afirst-
order system by introducing auxiliary variables and equations (see Appendix B.1.1). Al-
though not mentioned within Definition 2.2 and any upcoming sections, DAE systems may
contain symbolic parameters.

Definition 2.3 introduces DAE systems with sequential structure. This concept simplifies
modeling and will be of significant advantage for numerical analyses. Sequential equations
have to be of an explicit formulation for their according sequential variable and may only
depend on simultaneous variables x as well as on previously determined sequential vari-
ables y . The explicit formulation as well as the sequential ordering enable an efficient pro-
cessing of this equation type.
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Definition 2.3 - DAE System with Sequential Structure
Thefirst-order DAE system f(y, y, X, X, t) = 0 with

ye IR sequential variables
xe IR smultaneous variables
f= {fsew fsim}

fooq: IR IR"x IR— IR’ sequential equations
fgm: IR x IR x IR— IR" simultaneous equations

is a DAE systemwith sequential structure, if f,, isof theform

Yi =fseq’i(y1...yi_1, Vi Vion X X t) fori = 1...n.

Asthe systemwith sequential structureretainsitsfirst order, there exists a decomposition of
the system so that

yalgebr = fseq, algebr(yalgebn X) algebralc Sequential SUbSyaern
Yaitt = Tseq ditt(Yaigeors Yaigenr Yaite X X, 1) differential sequential subsystem
fsim(yalgebra yalgebra Yaitt X, X, t) =0 simultaneous SUbsygem

The decomposed system ensures the absence of any (implicit) second order derivatives and
ther efore ensures the solvability of the system with Newton’s method.

Example 2.1: Sequential Equations (Foucault Pendulum)

Take as an example the differential equations describing the motion of aFoucault Pendulum
asshownin (2.1).

X171t ] = - gxlt] N ZW(I)S[I am X2t + 2wSn(lam x1[t) x2’ [t

X2/[t] = peu 2wQos [l am x1'[t ] + 2uantanzzi e W @
N I |

X1[t], x2[t) variables (coordinates of the pendulum bob)

w, lam, g, | parameters (rot. frequency, longitude, gravity, pendulum length)

This DAE system was exemplarily transformed to first-order and rewritten in a sequential
form as shown in (2.2a) and (2.2b). Both DAE systems are equivalent.

yl[t] =2wx4([t]

yg E XS3HE|I aJm " (sequential equations) (2.24)
Y =
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y2[t] = ,% +Cos(lam yl{t] +x1[t]y3[t]

X4t = 7% -2wQos[lam x3[t]+x2[t1y3[t]  (simultaneous equations)  (2.2b)
X3[t] = x1[t]

X4[t] = Xx2'[t)

(2.28) represents a set of sequential equations. The first and second equations only depend
on x4[t] and x3[t], which are s multaneous variables. The third sequential equation only de-
pends on the sequentia variable y1[t], which was already defined by the first sequential
equation. Thus, the equation set fulfills the requirements for sequential equations.

The equations (2.2b) can not be handled as sequential equations asthey either contradict with
their dependent variables (Egs. 1 and 2) or would result in asecond order system (Egs. 3 and
4). Partitioning the sequentia equations into algebraic and differential sequential equations
yields only one differential sequential equation (second equation of (2.2a)) as this equation
depends on a differential variable.

2.2 Setup of Symbolic Network Equations

In order to illustrate the modeling process, an example circuit including a diode will be used
(seeFigure 2.4). VIN isasinusoidal voltage source whereas VGND and VOUT serve ascur-
rent probes. The circuit was set up as simple as possible but contains different relevant fea-
tureslike dynamics, nonlinearity, sequential equations, and acasedifferentiation toillustrate
the modeling and simulation process.

The basis for symbolic analysis is the automatic setup of symbolic circuit equations for the
design to be analyzed or modeled. Therefore, Analog Insydes provides interfaces to import
several common netlist formats as well as a direct integration into the Cadence Design
Framework |1 (availablefrom [2]). The network equations are set up based on the circuit de-

DO

IN ISACIL] ouT
o > N
RL

co == RO
o ouT2
z0
(O]
VIN l()VIN 0l<>VGND 0l<>VOUT
Y ISVIN[t] Y ISVGNDIt] Y ISVOUTIt]

Figure2.4: Schematic of the Diode Example
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sign and alibrary of symbolic device models. The symbolic device model library contains a
variety of commonly used device modelsin afully symbolic realization. The contained equa-
tions are eguivalent to the internal implementation of circuit simulators. In addition to these
accurate device models, a selection of simplified device models is available. These models
are supplied in different abstraction level s (fromideal to accurate modeling). Hence, the user
is able to change the device model for all or only selected devices of the design to achieve a
first abstraction.

The basis for all (analytical) simulation methods are systems of equations describing the
physical laws and characteristics of the simulated devices. In circuit analysis, the describing
equations of a conservative electrical system are based on the element congtitutive relations
(current-voltage relations of the primitives of the network) as well as on the conservation
laws (KCL/KVL) to enforce physically correct behavior within the network. The equations
are derived from a graph that represents the structure of the electrical network [14]. It con-
sists of nodes and branches (edges) that represent directed connections between two nodes.
Two simplifying assumptions are made to enable network analysis. On the one hand, all
primitives aretreated aslumped el ements neglecting their geometry and any field effects. On
the other hand, al connections are assumed to be perfect conductors.

Kirchhoff’s Current Law (2.3) states that the currents of all branches connected to a network
node sum to zero. This congtitutes the principle of charge conservation. In addition, Kirch-
hoff’s Voltage Law (2.4) assures the principle of energy conservation. The directed sum of
the branch voltages around a closed loop within the network must be zero.

>ipk=0 Kirchhoff’s Current Law (2.3
k=1
DUk =0 Kirchhoff’s Voltage Law (2.4
k=1

There are several graph-theoretical methods to derive network equations from atopology of
an eectrical network [14, 50, 74]. The most common formulation is the Modified Nodal
Analysis (MNA). By applying MNA, acompact system of network equations based on node
potentials u,, and branch currents i, through voltage sources as well asinductorsis set up.
The nodal equations (2.5) can be achieved by applying KCL to each node of the network.
Without the additiona equations for voltage-controlled branches (2.6), voltage sources and
inductors could not be handled (the pure Nodal Analysis). This analysis method can be effi-
ciently automated and leads to compact equation systems. Therefore, it isused in SPICE-like
circuit simulators.

fnodal(un’ Ib) =0 (25)

fvbranch(una ib) =0 (2.6)

Besides MNA, the Sparse Tableau Analysis (STA) will be used for some performance anal-
yses in thiswork. The resulting equationsin STA are based on branch voltages u,, aswell



16 Behavioral Modeling Through Symbolic Analysis

as branch currents i, . The equation systemin STA consists of nodal equations (2.7) (relat-
ing branch currents to each other via KCL), voltage loop eguations (2.8) (enforcing KVL),
aswell as branch constitutive equations (2.9).

fnodal(ib) =0 (2.7)
fIOOp(ub) =0 (2.8)
fbce(ib’ ub) =0 (29)

Both formulations obtain equivalent systems of equations. MNA obtains more compact net-
work equations than STA:

* MNA: N

eqs = Nnodes + stources + Ninductors
* STA: Neqs =2 Nbranches

In symbolic analyses, the resulting system of DAEs typically consist of the network equa-
tions as well as internal equations of the device models. The DAEs can be partitioned into
sequentia and simultaneous equations and variables (Definition 2.3). The declaration of se-
quentia equations is essential for an efficient numerical solution of the problem as a large
percentage of the internal equations is typically given in an explicit formulation. Device
modelslike BSIM3 contain ahigh percentage of internal sequential equations and result only
inasmall number of simultaneous equations. Solving theseinternal equations simultaneous-
ly causes significant numerical problems and resultsin low performance as the dimension of
the equation system is quite high. Asthe complexity of the circuit equationsin symbolic for-
mulation is tremendously increasing with the circuit’s size and the complexity of the device
models, the achieved DAEs are often extremely complex and impossible to set up manually.

Example 2.2: Network Equations for the Diode Example

Setting up the network equationsin MNA for the diode example (cf. Figure 2.4) resultsina
DAE system of 3 sequential eguations (2.10a) and 8 simultaneous equations (2.10b). The
equations (2.10a) and the 5th equation of (2.10b), which isan internal nodal equation of the
diode, were added by the symbolic diode model. Within (2.10b), Equations 1 to 4 are nodal
equations, whereas Equations 6 to 8 are voltage equations resulting from the voltage sources.

vd(t] = -% +VBIN[t] - VBAUT [t |

( ~0.00333167q (Bv+vd[t ) ( 0. 00181069 qvd|t | \ \
id[t] ::AEAL*(E 3 BV + Lfl+e K J ISJ+GVINvd[t] (2.10q)
cj [t] = AREACIOI f [vdm <0.25, — 1 _ 251926 (0.3335+0. 666vd[t])}

(1. -2 vd(t1)0.333”
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1 $VAD[t ] + mo{t]ﬁ)\ﬂnﬁ[t] + Q0 (VBAD [t] - VBQUT'[t]) = O
I$AC[t ] + ISVIN[t] == 0
J1$ACI ] + f\wD[t']q;\MIl'[t] L WBQITIt VARt | (-VBAD [t ] +VBQUT' [t]) == O

R
I $VAUT [t ] + w =0 (2.10b)
I$AC[t] = id[t]+1.15x108id [t] +cj [t]vd [t]

VBIN[t]=VN

VBAUT2(t ] == 0

VBAD[t ] == 0

The corresponding variables of the system are given in (2.114) to (2.11c). The vector of si-
multaneous variables consists of (2.11b) and (2.11c).

vdrty, idity, cjt] (sequential variables) (2119
VBAD[t ], VBIN[t ], VBCQUT[t], BauT2(t] (node potentials, simultaneous) (2.11b)
ISACIt ], I$VIN[t], I$VAUT[t ], 1$VAND[t] (currents, Simultaneous) (2.11¢c)

Additionally, the DAE system contains symbolic parameters and constants as listed in
(2.12):

AREA BV, @, CJQ GMN IBV, IS k, g RO, R, RS, IN (parameters) (2.12)

The netlist for the Titan simulator is given in Appendix A.2. It also contains the numerical
values for the parameters of the network elements.

2.3 Model Reduction Techniques

Based on these symbolic network equations, different applications like symbolic analysis or
model generation can be performed. A major process is the model reduction in order to get
agrip on the complexity problem. The intention of model reduction isto generate a compat-
ible DAE system with reduced accuracy and complexity from agiven DAE system that does
not exceed a user-specified maximal error boundary. The term model reduction (or symbolic
approximation) refersto aclass of mixed symbolic/numerical methods for the simplification
of symbolic equation systems[4, 58, 81, 82]. These methods iteratively perform simplifica-
tions within the symbolic DAEs under continuous error control by numerical methods.

In order to perform the numerical error control, a user-specified simulation setup including
atestbench isrequired to determine the model’ s operating conditions. Furthermore, different
error-criteria (e.g. for output voltages of interest) have to be specified. The process starts
with anumerical reference analysis of the DAE system that isto be simplified. The calculat-
ed data serves as reference sol ution against which the deviations of theiteratively performed
approximation steps are measured. Subsequently, the iterative approximation processis car-
ried out.
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The performed simplifications within the DAEs are of the following types:

* Algebraic simplifications: Elimination and substitution of variables that do not cause
an error, but reduce the DAE systems complexity [82].

 Branch simplification: Branches of piecewise-defined functions, which are not rele-
vant during the ssimulation, are removed from the equations [65, 82].

* Switch simplification: Built-in (binary) parameters within the device models allow to
neglect certain physical effects within the device [60].

» Term substitution: Terms that are detected to be (hearly) constant during simulation
will be substituted by their numerical mean value[3, 82].

» Term deletion: Summands within equations with a contribution below the error-mar-
gin are hierarchically removed from the system of equations[3, 82].

After each simplification, a numerical analysis is performed to control the resulting
error [64]. Simplifications that violate the user-specified error-margins are discarded. This
process requires a considerable computational effort for error control. To reduce the number
of necessary numerical analyses a ranking process to determine an advantageous order of
simplifications and a clustering process to perform multiple simplifications within one iter-
ation are applied in theinitialization phase of the algorithm [57, 64, 82]. Thus, a significant
improvement in terms of simulation effort could be achieved. Furthermore, the index of the
resulting DAEsismonitored during the model reduction processto ensure stability and solv-
ability. Another approach is to monitor convergence and simulation time after each simpli-
fication step to ensure that the model’s performance is enhanced [58]. A comprehensive
overview of the model reduction algorithms of Analog Insydesisgivenin[83].

Astheresulting error is controlled during model reduction, the algorithm is one of very few
methods that permits satisfying a predefined user-specified accuracy. Furthermore, highly
accurate models can be generated as the approximation starts from a 100 % accurate Ansatz,
the network equationsitself. Asthe equations’ complexity decreases despite the resulting er-
ror growing with the degree of model reduction, the problem of finding a suitable trade-off
between complexity and accuracy of the model remains. Experiments show that for reason-
able error margins the complexity can be reduced by afactor of 10 to 100.

Example 2.3: Simplified Network Equation(s) of the Diode Example

Applying the nonlinear model reduction to the network equations of the diode with the in-
tention to achieve a model only representing the output voltage (10 % absolute error) in
terms of the input voltage for the given simulation setup yields

0.001810699 (M N-VEQJT [t 1) VBQAUT [t )
K Il

RO

The resulting equation (2.13) is quite trivial and is 100 % accurate (rf. to Appendix A.2 for
waveforms). As the testbench did not drive the diode into the break-through region and the

AREAe IS =0. (213)
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input source’s frequency was too low to cause dynamic effects, (2.13) only represents the
static equilibrium of the diode current and the current through the internal resistor.

2.4 Model Generation

The final process step in the bottom-up modeling flow is the generation of the behavioral
model for the target simulator based on the simplified DAE system. Behavioral models can
be realized in an Analog Hardware Description Language (AHDL) or a hard-coded imple-
mentation. Theformer approach ismore flexible asit usesa standardized AHDL . Languages
like Accellera Verilog-AMS|[88], IEEE VHDL-AMS [90], and Saber MAST are well-
known and widely used. The modelsimplemented in an AHDL can be integrated into many
different simulation environments and are hence flexible in terms of simulator dependency
and reusability. They can be easily distributed and stored in libraries for later reuse. The sim-
ulation efficiency of AHDL-based models mainly depends on the processing by the target
simulator’s model compiler.

Hard-coded models are implemented using a programming language (e.g. C/C++ or FOR-
TRAN) and are compiled for a specific simulator. They use proprietary interfaces provided
by the simulator and are thus not easily portable for other simulators. Typically, amuch high-
er simulation efficiency can be achieved by hard-coded models [58]. The downside of these
modelsisthat the effort to manually devel op such modelsis quite high and the implementa-
tion requires knowledge about the simulator-internal processing.

Analog Insydes’ model export function supports several output formats alowing to create
models for amost every behavioral simulator. The probably most relevant ones are Ver-
ilog-A and VHDL-AMS. Although both languages are standardized, behavioral models are
not always portable between simulators. The main reasons are unsupported features of mod-
eling languages (requiring a different modeling strategy) or inabilities to cope with certain
model contents (e.g. due to bad convergence or low performance). The user’ s choice for one
of the AHDLs is typically dominated by environmental requirements (simulator, corporate
regulations) and personal preferences.

Nevertheless, the combination of an AHDL and a specific simulator has a magjor influence
on robustness and performance (as will be discussed in Chapters 4 and 6) and should there-
fore be thoroughly taken into consideration. In order to consider simulator-specific proper-
ties and to generate a model optimized for the target simulator, the model generation in
Analog Insydes has been extended by several aternative modeling strategies to optimize the
AHDL-generation for a specific simulator (see Appendix B.1.2 for details).
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The generated behavioral models consist of the following modeling features:

* Model declaration / connectivity: Ports, definition of through/across quartities,
model name, parameters.

* Sequential equations/ variables: Explicit DAEsincluding branch statements and
derivatives.

» Simultaneous equations/ variables: Implicit DAESs including initial values, toler-
ances, branch statements, and derivatives.

Compared to the powerful modeling constructs supported by the AHDL s, these requirements
areonly very basic features of the modeling languages. However, even these features are not
sufficiently supported by current versions of some commercial simulators. VHDL-AMS
simulators do not support a satisfactory method to model sequential equations whereas Ver-
ilog-AMS lacks from adirect and efficient way to model simultaneous equations.

Example 2.4: Model Generation for the Diode Example

Finally, the DAEs of the unsimplified model have been exported to VHDL-AMS and Ver-
ilog-A (the behavioral model for the simplified equation would not be very informative). The
AHDL codes and the according simulation results are presented in Appendix A.2.
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3 Algorithms for Circuit and Behavioral Simulation

A basic knowledge about simulation algorithmsis essential for creating efficient smulation
models. Within this chapter, relevant aspects will be highlighted. The focusis on numerical
analysis methods for nonlinear dynamic systems as this is the most typical application for
behavioral models.

One of the first analog circuit simulators was SPICE (published 1973). Since then, analog
simulators have been continuously improved and many commercia simulators have been
developed, most of them still being more or less similar to the original SPICE. The underly-
ing algorithms have been published in several books [14, 39, 74, 75]. This chapter will pro-
vide abrief introduction to nonlinear dynamic simulation algorithms and is mostly based on
Vlach [74].

The presented performance analyses within Chapter 4 and all improvementsto the behavior-
al simulation process (Chapter 5) are based on the simulator Titan® [24]. This SPICE-like
analog circuit simulator supports behavioral simulation using the Titan Modeling Language
(TML) [16]. The Titan simulator was chosen as a platform for this work as it provides deep
insight into the internal processing and thereby makes detailed analyses of the simulation
performance possible. Furthermore, the inhouse-development of the simulator allowed for
realizing prototypical enhancements to the model compilation.

3.1 Solving Linear Equation Systems

Solving linear equation systems numerically is a standard problem for almost all continuous
simulation methods. In circuit simulation, all analysis types are based on reducing the prob-
lem to a series of linear equation systems that is iteratively solved and refined. Hence, the
linear solver is the most basic component within circuit simulators. Consider alinear equa-
tion system

Ax = b (3.1

where A isan nx n matrix of constants, b isan n -vector of constants, and x isthe vector
of unknowns of dimension n . The solution vector x of this equation system could be direct-
ly derived through

x = A'b. (3.2)

L Titanis an inhouse-simulator of Qimonda AG (formerly Infineon Technologies AG)
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However, the computation of (3.2) requires either the matrix-inversion of A or the applica
tion of Cramer’sruleto solvefor x , with A typically being amatrix of high dimension. Both
methods are expensive in terms of computational effort. Alternatively, Gaussian elimination
can be used to transform A into an upper-triangular form which can be subsequently solved
for x starting with the last equation (backward substitution). Gaussian elimination requires
n’/3 operations, while backward substitution requires n’/2 operations.

SPICE-likesimulatorsaretypically using an LU decomposition to solve (3.1). Therefore, the
matrix A isdecomposed into alower triangular matrix L and an upper triangular matrix U
with onesin the main diagonal so that

A=LU. (3.3)

The decomposition is quite similar to the Gaussian elimination. If A isanon-singular ma
trix, an LU decomposition exists. It requires approximately n’/3 operations. After decom-
posing A (e.g. with Crout’s method), the decomposed system

LUX = b (34)

is achieved. By introducing an auxiliary (intermediate) solution vector z, the problem can
be rewritten as shown in (3.5) and solved through backward substitution.

Ux =z (3.5)
By substituting (3.5) into (3.4), the calculation for the forward substitution is derived:
Lz=b (36)

Dueto the propertiesof L (lower triangular, non-zero main diagonal elements), (3.6) can be
easily solved for z through forward substitution by procedurally calculating

z, = b/l ; and 3.7
i—-1
z = [bi— > |i,ij)/|i,i fori =23, ...,n. (38
j=1
By using z, the backward substitution (3.5) solvesfor x through
X, = z, and 39
X =2z— % u x fori =n-1n-2_..,1. (3.10)

=i+l
Both forward and backward substitution are of complexity O(n%) . Through efficient imple-
mentation of the LU decomposition and the forward-backward substitution, some vectors
may share the same storage (asthey are only sequentially needed in intermediate steps). The
matrices L and U can be stored within one matrix data structure (asthe diagonal of U con-
sists of ones only and hence does not need to be stored).
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The forward substitution requires “good” pivot elements |;; for two reasons. First of all, the
pivot elements have to be non-zeros to be able to calculate (3.7) and (3.8). Furthermore, the
numerical precision of the process depends on the absolute value of the pivot elements that
should preferably be large. The former problem leads to a non-solvable system (due to sin-
gular matrix A ) whereas the latter may result in serious accuracy problems (due to the bad
conditioning of A).

In order to avoid such problems, the linear equation system is pre-ordered by pivoting algo-
rithms. During pivoting, the equation system isreordered by successive permutation of rows
and/or columns. Thus, advantageous pivot elements can be achieved and singularity of the
matrix is prevented.

Another important aspect of linear solversisthe ability to deal with very large equation sys-
tems. Therefore, it is essential to make use of the high sparsity of the matrices. As electrical
systems are typically loosely coupled, the matrices are primarily populated by zeros. The
sparsity Spa of amatrix providesinformation on the ratio of non-zero entries compared to
the number of total entries of the matrix and is calculated as follows:

spa = (1 Nonzze) @11
Dim

Typica values for the sparsity of electrical systems are between 80 and 99 %. The linear
solver isableto make use of the sparsity in order to avoid operationsincluding structural zero
entries. Furthermore, specialized sparse data structures are used to reduce the storage for
sparse matrices (refer to [68] for details). By using sparse algorithms, the computational
complexity has been significantly reduced close to linear complexity (approximately
O(Dim"**®) depending on the sparsity). However, sparse solvers also lead to additional
considerations to improve their efficiency. Without a specialized preordering of the sparse
matrix, former zero entries of the matrix are likely to become non-zeros during the LU fac-
torization, so-called fill-ins. In order to keep the sparsity of the matrix as high as possible,
preordering strategies with respect to the necessary fill-ins are applied. For this purpose, Ti-
tan uses the Markowitz preordering that has the property to permute rows and columns pair-
wise, which preserves the pivot elements and thus does not interfere with previously applied
pivoting strategies.

Pivoting strategies are computationally expensive. Especially when solving a series of struc-
turally equal or similar linear equation systems, as it is the case in circuit simulation, reor-
dering might not be performed for each of the linear equation systems. In fact, an initial
preordering (static pivoting) based on the structural information of the nonlinear equation
systemis sufficient to achieve (structurally) non-zero pivot elements and to determine an ad-
vantageous ordering for aminimal number of fill-ins. This saves the overhead of reordering
the linear system for each iteration. Dynamic pivoting strategies perform the reordering for
each of the linear systems (or adaptively whenever necessary). Therefore, they can cope
much better with numerically bad pivot elements that can not be considered in static pivoting
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strategies. Especially in behavioral simulation, this feature becomes important as the equa-
tion system is numerically less optimized than in netlist-based simulations.

Table 3.1: Overview of Solvers Available in Titan

Sparse | Pivoting
Solver Solver? | Srategy Comment
default solver for netlist-based simulation, very
Titan yes static | efficient, robustness critical for badly conditioned
matrices
dvnamic default solver for behavioral models, very robust,
LAPACK no Y "|inefficient for high dimensional systems due to
column | .7 . .
missing sparse a gorithms [45]
dvnamic M Ultifrontal M assively Parallel sparse direct
MUMPS yes a)(; tivé Solver [56], very robust, not as efficient as the
P Titan solver due to pivoting overhead

Titan uses three different linear solvers as shown in Table 3.1. For all netlist-based simula-
tions the highly optimized Titan solver is applied. It depends on an initially good pivoting
whichistypically availablein netlist-based simulations. Due to the static pivoting approach,
the solver can not cope with numerically bad pivot elements as may result from behavioral
models. The LAPACK and MUMPS solvers are especialy relevant for behavioral simula-
tions. Both apply dynamic pivoting strategies, enabling them to cope with numerically com-
plicated behavioral models by dynamically reordering within each iteration. The choice and
performance of the solvers will be discussed in more detail in Section 3.5 and Section 4.5.

3.2 DC Analysis

Calculating an operating point or a DC solution for an electrical network is the basis for al-
most al analysistypes. The DC analysisrequiresthe solution of anonlinear algebraic system
of equations to determine the DC node voltages of the network. Especially active devices
may contain highly nonlinear branch constitutive equations that could cause numerical prob-
lems. Performing the DC analysisis based on Newton's method to determine the roots of a
nonlinear equation system f(x) = 0 numerically. Newton's method iteratively refines the
solution for the nonlinear equation system. This method is widely used and has quadratic
convergence, if theinitial solution x is sufficiently close to the solution.

In order to approximate the nonlinearities within the equation system, a Taylor series expan-
sion at the current solution x,, for the vector of unknowns x is performed:

f(x) =0zf(xn)+g—fx X(x,1+1—xn)+... (3.12)

X =X
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As X, issupposed to be close enough to the solution of f(x), the Taylor seriesis truncated
to alinear approximation by neglecting terms of an order higher than one. In order to achieve
this property, a good initial value X, is necessary. The iteration sequence for Newton's
method is obtained by reformulation of (3.12):

‘]n : (Xn+1_xn) = ‘Jn : AXn = _f(xn) (3-13)
where
_of . .
Jn = 5= Jacobian matrix
ax x=x,

AX, = X,.1—X, Newton correction
—f(x,) Reddua

As an explicit solution of (3.13) for Ax,, would require the calculation of the (expensive)
inverse of the Jacobian matrix, the linearized systems are solved by LU decomposition and
forward-backward substitution as explained in Section 3.1. Subsequently, arefined solution
vector is calculated from

Xn+1= XptA-AX, (3.14)

where A € IR isadamping factor with 0 <A < 1. This(global) damping factor is controlled
by the simulator to improve convergence and damp unreasonable large Newton corrections.
While A # 1, Newton's method is continued to avoid false convergence.

The processiteratively converges towards the sol ution of the equation system and isrepeated
until the desired accuracy has been achieved. Therefore, convergence criteria are used to
compare the current solution to the specified tolerances of the system. The residua vector
and the Newton correction are of specific interest as their error norm should be compliant
with the tolerances:

“f(Xn+1)“ <E€apst Erel Hf(Xn)H (3.15)
HAXnH <E€apst Erel HAXn—1H (3.16)

Due to bad initia values, local minima, oscillations, or highly nonlinear functions, conver-
gence problems might cause Newton's method to fail. In this case, most simulators provide
homotopy methods to find a DC solution (al so known as continuation methods). Homotopy
methods are based on gradually modifying asimplified problem whose solution is known or
easy to calculate towards the origina problem. Therefore, a homotopy parameter is intro-
duced to scal e the sel ected property of the circuit. Starting with the simplest problem, the DC
solution is determined and used asan initial value for the next (more complex) problem. The
simplification is completely deactivated and the original system is solved with agood initial
value.
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There are different types of “simplifications” for homotopy methods (e.g. source stepping,
gmin stepping, pseudo-transient analysis), none of them being generally applicable or in all
cases successful. Therefore, different homotopy methods are sequentially executed until one
of them finishes the DC analysis. All present homotopy methods are based on topological
changes within the network. Source stepping for instance introduces a scaling factor for al
sources within the network as homotopy parameter. It isinitialy set to zero. Thus, the DC
solution is known and al node voltages are zero. Successively, the scaling factor is swept
from zero to oneto achieve the solution of the original system. Some DC convergence diffi-
culties resulting from bad initial values can be overcome by applying homotopy methods.
For other analysis types, the DC values are typically used as an initia solution. Thus, non-
convergence within DC analysisis especialy critical asit disables any subsequent analysis
that is based on the operating point (e.g. AC, Transient).

3.3 Transient Analysis

Transient analysis calculates the circuit’s response in the time domain over atime interval.
The nonlinear dynamic behavior of circuits is therefore described by a nonlinear system of
DAEs (see Section 3.4 on how to derive the DAES):

f(x, x,t) = 0 (3.17)

The analysis starts with an initial DC analysis at time zero to determine a consistent initial
valuefor the system’ s unknowns. Starting from the DC solution, the system isdiscretized in
time by numerical integration. Therefore, avariable step size h isused and the resulting non-
linear equations are solved at each time point. Furthermore, time dependent sources are up-
dated within each time point. The most commonly used integration methods are the
backward Euler formula (3.18) and the trapezoidal rule (3.19). Implicit linear multistep
(LMS) formulae are used for higher order integration methods to achieve “ smoother” wave-
forms and increased stability.

X = (%=X, ) (318)

2
X‘::_Xr—l+h_(x‘:_xr—l) (319

The index t indicates the actua index of the timepoint, the length of the timestep is
h, = t,—t._, . Both backward Euler formulaand trapezoidal rule are implicit and only re-
quire values of the previous timestep (first-order). Backward Euler is applied within the first
timestep (as x,_, istypicaly not known), trapezoidal rule or LM S methods of higher order
are applied for subsequent timesteps. Whereas backward Euler isvery stable and hence tends
to unintentionally damp oscillations, trapezoidal ruleisweakly instable and may result in nu-
merical oscillation (“ringing”, propagation of integration errors). A comprehensive discus-
sion regarding stability and properties of integration methods can be found in [39, 74].
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Different integration methods can be formulated in acommon form
X = OLX + T (3:20)

where o, isacoefficient (e.g. 1/h,) and r, contains summarized values of previoustime-
points. The differentia variables are approximated by finite differences by applying numer-
ical integration to (3.17) and the DAE system is transformed into a sequence of nonlinear
equation systems:

fT(XT) = f(X‘Eﬂ a"EXT + r‘E’ t‘[) (3'21)

These systems are solved by iteratively applying Newton’s method (subscript T is omitted
for simplicity):

‘]n ) AXn = (‘Jstat, nt O(n‘den,n) . AXn = _f(xn) (3-22)
where
_of ) . .
Jstatn = 5% (static Jacobian matrix)
X=X,
_of ) ) .
Jaynn = 3% (dynamic Jacobian matrix)
X =X,

n

Asthe numerical integration resultsin alocal discretization error, which is dependent on the
length of the timestep, the timestep control has an important influence on the accuracy of the
solution. Hence, the stepsize is chosen in such a way that the error per step is below a user-
specified tolerance. Considerations on the theory of DAE systems and their solvability (re-
lated to the index of DAES) are extensively discussed in [22, 23, 72, 73].

Convergence problems in transient analysis are not as problematic asin DC analysis. This
results from starting with a good DC solution and subsequently taking only small timesteps.
The solution of atimestepistypically closeto the solution of the previoustimestep and hence
can be determined within few Newton iterations. Furthermore, the numerical integration
tends to “smooth” some numerical problems and thereby enhances convergence. Primary
sources of dynamic convergence problems are unphysically steep signal edgesin time (e.g.
independent sources), numerical oscillation by instable integration methods, and discontinu-
ities within models. Furthermore, oscillator circuits might require initial conditions (initial
value for charges or fluxes) to “disturb” the equilibrium and thereby initiate the oscillation.

Several specialized simulation methods exist that are used to enhance robustness as well as
performance of transient simulations and to cope with special requirements of specific circuit
classes. As these methods are not within the scope of this work, only a short overview will
be given:
» Multirate Methods— are of advantage for systemsincluding widely differing time con-
stants. They are based on multirate integration methods that use loca time steps
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(instead of adaptive global timesteps). Thus, latencies within subsystems can be effi-
ciently utilized [24].

» FastM OS — enables the smulation of very large mixed-signal systems with consider-
ably high speed-up compared to conventional transient analysis (factor of 10-1000).
The method is based on severa simplifications (MOS table models, RC reduction) and
uses automatic partitioning methods to deploy multirate methods and hierarchical iso-
morphism (calculate similar subsystems only once). The speed-up is achieved by solv-
ing parts of the circuit with adaptively reduced accuracy. The speed-accuracy trade-off
can be controlled by simulator options. Hence, FastM OS engines could replace bottom-
up modeling methods as they automatically reduce accuracy for enhanced performance
without requiring complex modeling processes. However, these algorithms suffer from
missing transparency of the error bound. Asit is hardly possible to determine the accu-
racy of the results, this method suffers reliability. [92] provides a good overview of the
related algorithms.

Multilevel Newton M ethods— offer the possibility to parallelize the calculation of sub-
systems on different CPUs. Therefore, loosely coupled systems are identified and
solved in paralel [11, 77]. Afterwards, the subsystems' contributions to the higher level
system are combined and solved. Finding a suitable partitioning of the circuit's topol-
ogy for high parallelismis an essentia process step [25].

RF Algorithms — are specialized simulation methods to anayze radio-frequency cir-
cuits. There are two established methods: harmonic balance and shooting methods.
These simulation methods are highly effective for analyzing base-band signals in RF
systems. [40] provides a good introduction.

* Affine Arithmetic Simulation — provides an innovative semi-symbolic approach to
take parameter variations into account. The resulting affine expressions provide a
bounded result that still reflects the correlations and causes of uncertainties [28, 29, 32].

3.4 Setup of Network Equations for Circuit Simulation

Within Section 2.2, the setup of network equations with the background of symbolic analysis
has been introduced. The derivation of the network equations within acircuit simulator dif-
fersfrom the symbolic setup, as the simulator does not use symbolic equation sets but rather
sets up the (numerical) linearized systems directly.

Equation Formulations

As circuit simulation requires a preferably compact equation system, the modified nodal
analysis (MNA) is used in most simulators. One of the main advantageous of MNA isthat it
enables an automated system setup by direct inspection. The linearized equation system is
derived incrementally by superposing the contributions (“ stamps”) of all network elements.
Finally, the (numerical) Jacobian matrix and the residual vector resulting from direct inspec-
tion of the network elements are transferred to the linear solver. Thelinear system is updated
by the device models within each Newton iteration.
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The MNA equation system is shown in Equation (3.23). Its variables are the node potentials
u, and the branch currents i, through voltage sources as well asinductors. Y denotes the
nodal admittance matrix, B, C, and D are coefficient matrices containing coupling coeffi-
cients of the network, e.g. resulting from voltage sources, controlled sources, or inductors.
igc i1Sthe node-current excitation vector and ug,. represents branch voltage contributions.

-l
CD [ Ugrc

In contrast to MNA, the equation system in STA isrepresented by (3.24), where A denotes
the nodal incidence matrix of the network and B aloop incidence matrix of maximum rank.
The branch constitutive equations are represented by Y, Z, and ug, .

Aol T, 0
0B -M= 0 (3:24)

Yz DY fug.
As the dimension of the network equationsin STA is typically much higher than in MNA,
this method is not used in common circuit simulators. It results in very sparsely populated
Jacobian matrices.

An extension to the standard MNA used in circuit simulation is the charge-flux oriented
equation formulation. It introduces additional variables for the charges of capacitors and the
fluxes of inductors to ensure charge conservation. The latter problem results from differen-
tial variables in nonlinear equations (e.g. i = C(u) - u) with the capacitor being modeled
nonlinearly. By using this equation formulation, charge conservation is not guaranteed thus
possibly resulting in the propagation of integration errors (accumulating voltage offsets due
to “lost” charges) [85]. A reformulation of the element relation resultsin g = C(u) - u and
i = g. Thisformulation requires an additional variable g, but yields alinear equation for
i . Considering the charge-flux based MNA, anonlinear DAE system of the form

fao, x, 1) = [ DFA| _ g (3.25)
fo(x, t)

is achieved where f, and f, describe the static part of the network equations while g rep-
resents charges and fluxes [24].

Device Models

Device models are the basis for deriving MNA equations within circuit simulators. Besides
the tremendous effort to achieve exact model equations to describe modern semiconductor
devices, mgjor effort is spent on optimizing the device models for high smulation perfor-
mance and numerical robustness.
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Figure 3.1: Simulation Cycle
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Figure 3.1 givesan impression of the simulation cycle and the interaction between simulator
kernel and compiled models. The simulator kernel providesasol ution vector for the system’s
unknowns to the mode! routine. Within the model, the Jacobian matrix and the residual for
the next iteration are cal culated and returned to the simulator. This stamp of the model isin-
tegrated into the linearized system by direct inspection. Afterwards, a new solution vector is
determined through the linear solver.

Typical properties of device models are;
* Determination of port currents by means of port voltages
» Admittance formulation of the equations
* Few internal nodes as they increase the dimension of the linear system
* Large amount of internal procedurally calculated equations
« Charge conservation by calculating charges first and then determining the port currents
from charge derivatives
» Branches defined to a common reference node (e.g. bulk) leading to n,,,.s— 1 branches

» Hard-coded derivatives to determine the Jacobian matrix entries

Common “tricks’ to enhance performance and robustness of highly complex device models
have been discussed in [15]:

* Limiting functions to avoid numerical problems (e.g. pn-junction limiting)

* Avoiding discontinuities in functions and their first-order derivatives, e.g. by smoothing
functions

* Prevention of division by zero through guarding by conditional statements
* Pre-evaluation of common subexpressions to avoid multiple evaluation,
* Approximated derivatives to reduce complexity
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Most of these strategies (except the ones related to the Jacobian matrix) may also be applied
to behavioral models, always assuming the behavioral simulator supports the required mod-
eling features.

Instead of tediously implementing device models in standard programming languages (typ-
icaly C/C++), there are approaches to automatically compile device models realized in an
AHDL for asimulator specific interface [35, 44]. These device model compilerswill be dis-
cussed in more detail in Chapter 5. Within [79], an approach to automatically adapt device
models to the design was presented (adaptively neglecting certain effects). Furthermore, ta-
ble models provide an effective measure to avoid the highly complex cal culations within de-
vice models and thus speed-up simulations.

3.5 Behavioral Model Compilation

Almost every up-to-date circuit simulator provides an interface for at least one of the major
AHDLSs. Whereas mixed-signal simulators support analog as well as digital features of the
modeling languages, common circuit simulators only support the purely analog features.
This provides the possibility to extend the simulator by user-specified models, e.g. custom-
ized device models or any type of (analog) behavioral models. Most simulation environ-
ments generate compiled intermediates from AHDL -based models in order to combine the
high performance of hard-coded models with the flexibility achieved by a standardized mod-
eling language. Only very few simulators interpret the AHDL -based models, as the perfor-
mance is typically lower than for compiled models.

Hence, behavioral simulation requires amodel compiler to translate the model into a shared
library that can be accessed by the simulator kernel. Therefore, aspecia interface to thesim-
ulator kernel (e.g. CMI [91]) is necessary to enable the communication between model and

Model (TML) Netlist
TML Parser Netlist Processor

| Model Compilation | Internal Netlist

©)
=
=
Intermediate
v

| Compiler

h 4
Shared Object Library —>| | Simulation Kernel | |

Figure 3.2: Architecture for the Model Compilation (TML)
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simulator kernel. In principle, the (compiled) behavioral models are structurally very similar
to built-in device models. However, they may differ significantly in the formulation of the
modeled DAE system as AHDL -based models are much more general in their formulation.

Titan provides amodel interface for the Titan Modeling Language (TML). TML isa(mainly
analog) subset of VHDL-AMS, some digital features are covered by a digital simulator ker-
nel. As mixed-signal simulation is not within the scope of thiswork, the focuswill be on the
purely analog features. Models written in TML are compiled through the Titan Model Com-
piler (tmc) and dynamically linked with the simulator kernel [16, 47, 69]. Figure 3.2 visual-
izes the architecture of the model compilation process. The communication between the
models and the kernel is realized via shared memory.

During the model compilation, the TML code is parsed, stored into an intermediate format,
elaborated, and subsequently exported as an intermediate code. The Jacobian matrix is de-
rived by automatic differentiation of the contained simultaneous statements. Finally, the in-
termediate code is compiled into a shared library by a standard compiler.

Thr.
_ Nodal Potentials _ Currs Quarl‘ Free Quantities

§ Au n 'fnodal(u I"I1ib!ithl’)
5
\ Aib _ 'fibranch(un,ibyithr)
Aithr

‘f(un;xfreeyithr)
AXfree

Behavioral Model

Figure 3.3: Structure of a Linearized System for Behavioral Simulation

Figure 3.3 shows the structure of the linear system for a behavioral smulation in Titan. The
vector of unknowns consists of the node potentia's, the currents through voltage sources and
inductors, the through quantities (port currents of the behavioral model) i, , and the free
quantities (model internal variables) X;, .. . The subsystem for the netlist-based elements of
the simulation (upper half) consists of its Jacobian matrix J;, , the Newton correction for
node potentials and currents, the residual for nodal and voltage equations, and the contribu-
tions of the models' port currents to the nodal equations (J,, ). The model equations result
in another subsystem consisting of its internal Jacobian matrix J,,.4 » the influences of (se-
lected) node potentials (across quantities or port potentials) J,, , and the residual vector for
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themodel equations (simultaneous statements). Both systems are coupled through the across
and through quantities of the model.

Titan uses different solvers for the subsystems resulting from the structural description (by
direct inspection of the netlist elements) and the subsystem of the models' equations. Please
refer to Section 3.1 for adescription of the solvers. The subsystem resulting fromthecircuit’s
topology is solved by the Titan solver. By default, the LAPACK solver isused for behavioral
models. Asthe LAPACK solver is adense solver with dynamic pivoting, it isvery robust but
should preferably be applied only for low dimensional problems. For hand-written models,
these preconditions hold as they typically consist only of very few equations that might be
numerically critical. Alternatively, the MUMPS solver can be applied to combine high ro-
bustness (dueto adaptive dynamic pivoting) and sparse agorithms. Finally, it isalso possible
to solve the behavioral models' equations using the standard Titan solver. Asthis solver only
performs static pivoting, a specialized preordering and processing of the model equations
based on topological information is necessary to ensure solvability, convergence, and accu-
racy.

Example 3.1: Linear Equation System for the Foucault Pendulum Example

In Example 2.1 (cf. page 13), a sequential DAE system for the Foucault pendulum was in-
troduced. Within this example, the linearized equation system as used in Newton's method
for the DAE system is presented. (3.26) shows the static Jacobian matrix of the system,
whereas (3.27) represents the dynamic Jacobian matrix of the equation system. The system
contains three sequential equations resulting in alower triangular subblock in the upper left
corner of the Jacobian matrix. The last two equations represent dummy equations for mod-
eling the second order derivatives of the system (refer to Appendix B.1.1 for the algorithm).

1 00 0 0 0 _2\”
0 10 0 0 0 0 |

cEnlen g g 0 0 0 o

~@sflam 1 -xiit] 2-y3it) 0 0 0 } (stat. Jacobian) (3.26)
0 0 -x2[t] O 4-y31t] 2wos(lam 0 }

0 00 0 0 1 0 |

L0 00 0 0 0 1)

0000 O O O

0000 O -1 o‘

0000 0 0 Of .
0000 O O O (dyn. Jacobian) (3.27)
0000 O O 1}

000 10 0 O

0000 -10 0

The corresponding right-hand side of the linearized equation system with a backward Euler
integration method applied is shown in (3.28).
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Typicaly, today’ s highly complex device models still ead to areasonably high performance
even though they contain hundreds of equations. In contrast, quite simple behavioral models
that consist of afew equations only might already show astonishingly low performance. The
reason for the high performance of device modelsistheir specialized realization to achieve
a high degree of adaptation to the simulation algorithms for extremely good performance.
Furthermore, their interface to the simulator kernel is highly optimized. However, most of
the optimizations applied to device models could also be applied to behavioral models. As
the next chapter will indicate, model compilerstill lag behind device modelsinterms of per-

formance.
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4 Performance Analyses

This chapter presents a systematic approach for analyzing the simulation performance of an-
alytical behavioral models. Its main intention is to track the root causes for avoidable com-
putational effort and analyze the behavioral smulation efficiency. In general, performance
measurements are influenced by various parameters, and interpretations of the results can
easily lead to misinterpretation. Thus, benchmarks, operating conditions, and drawn conclu-
sions have to be selected and treated very accurately. Section 4.1 gives an impression what
kind of problems have to be taken into account and how statistics for all performance anal-
yses have to be conducted in order to guarantee a solid basis for an improvement of the be-
havioral smulation performance. The analyses require a common terminology and some
basics on computer architecture. Used terms and definitions are consistent with Hennessy/
Patterson [27]. Their book provides comprehensive information on computer architecture.

Measuring Performance

Performance is the reciprocal of the execution time of a program. The most basic definition
of execution time is the elapsed time T, , the latency to conclude a task (also known as
wall-clock time, response time). Unfortunately, the elapsed time aso accounts for file I/O,
multithreading, and operating system activities. Therefore, it isabad metric for aprogram’s
performance as it strongly depends on the usage and load of the computer system. The CPU
time Tepy oNly takes into account the time the processor is executing the program and is
therefore much more appropriate for comparing performance.

The CPU time depends on the number of instructions evaluated during a computation (in-
struction count 1C), the cycles per instruction to calculate the instruction (CPI ), and the
clock cycletime Tgjoex = 1/fcpy - Assuming only instructions of the same type (or an av-
erage CPI figure), Tepy is determined by (4.1a), in the more general case of i different
instructions by (4.1b).

Tepy = 1C-CPI - Tejoek (4.19)

Tepy = [Z IC; - CPIiJ “Teiock (4.1b)

i=1

When measuring performance, it is common practice to compare the performance of differ-
ent programs or computational tasks. The resulting figure of comparing the achieved perfor-
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mance (e.g. of a new program or hardware) to a reference’s performance is commonly
denominated as speed-up S and is defined as follows:

_ Performance,e, _ Tcpy. rer
Performance.  Tcpu, new

4.2)

Inversely to speed-up, whichistypically anumber greater than one, the term slow-down will
be used (being the reciprocal of speed-up, st ). The overall speed-up S, Obtained by im-
proving some portion (Fractiong,panceq ) Of @ cOmputational task by afactor of S, anced 1S
determined by Amdahl’s Law:

Tepu, ret 1
Sotal = 7 = = Fraction (43
CPU, new (1_FraCti0nenhanced) + enhanced

Senhanced

According to Amdahl’s Law performance improvements should be accompanied by exact
measurements to achieve maximum speed-up with limited effort. Only reasonable fractions
of the over-all computational effort are worth the effort to enhance their performance.

Another important characteristic of the performance of aprogram isthe accessto datawithin
the memory. During the evaluation of aprogram datais fetched from the memory, processed
by the CPU, and the results are stored back to the memory. In order to avoid high latency at
limited cost (fast memory is expensive), up-to-date memory architectures consist of one to
three cache levels located between the CPU and the main memory. The cache level closest
to the CPU (first level cache or L1 cache) provides the fastest access but has the lowest ca
pacity due to its high cost. The strategies and mechanisms how to load/store data are quite
complex and, more important, cannot be influenced by the user. Regardless of that, it is ad-
visable to improve the interaction between CPU and memory by taking care of datalocality.
Given amemory architecture with only one cache level, the (average) accesstimeto fetch a
datum from the cache is determined by

TAccess:THit + MissRate - TPenaIty with TPenaIty » THit .

The miss rate denominates the ratio of unsuccessful cache accesses (data has to be |oaded
from the underlying memory level) and total accesses. Unfortunately, accesses to the lower
levels of the cache architecture take significantly longer (Tpenairy ) than to the first level
cache (Pentium 4—L1: 2 clock cycles, L2: 22 clock cycles, Memory: >> 22). Asdataisload-
ed and stored block wise between the hierarchy levels, it is advantageous to access data se-
quentialy instead of randomly. The closer the data of an expression is stored within the
memory theless cache misses occur during expression evaluation (datalocality). Intheworst
case (completely random distribution of the data), each cache access would trigger a cache
miss (miss rate of 100 %) resulting in an evaluation that is easily more than 10 times slower
than in the optimal case.
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4.1 Analysis Environment and Objective

In order to equitably analyze simulation performance, a clearly defined reference and simu-
lation environment is necessary. As the simulation performance of bottom-up generated
modelsisto be analyzed, the most appropriate reference is the netlist-based simulation of the
original circuit the model was derived from. Previous research has mostly been evaluating
the efficiency of the model reduction algorithms by measuring the speed-up of simplified
models compared to unsimplified models [3, 58, 82]. The achieved speed-up has typically
been between two and three orders of magnitude, but strongly depends on the targeted accu-
racy of the resulting model. The primary target of this modeling approach isto speed-up the
over-all simulation. Hence, the speed-up has to be compared to the performance of the orig-
ina netlist-based simulation.

The major objective of thisresearchis

to effectively increase the perfor-
mance of behavioral simulations by
improving the simulation efficiency
(in contrast to reducing the models

Titan
Design Framework Il

Netlist Import
Analog Insydes

) Symbolic Device Models )—>| Equation Setup | accuracy). An approach based on un-
simplified behavioral modelswascho-

sen in order to assess the simulator’s

efficiency in processing behaviora

100%accurate | 0 p——— — — ——— models without distorting the compar-
model equations = r Model Reduction JI ison by model reduction. Therefore,
(ﬁ?égflﬁz?;qgf é _ _l _____ the model reduction during modeling

e /’_ smpifedas. /| Was omitted as depicted in Figure 4.1.

The goal wasto set up and solve equa

tions being mathematically equivalent
to the netlist-based simulation in order
to have a clearly defined reference for
accuracy and performance. In princi-
ple, both problems are of equivaent
complexity, athough the problem’s
conditioning is completely different.
The models were directly generated
from the circuit netlist. In order to make this strategy as accurate as the circuit smulation
itself, symbolic device models corresponding to the simulator internal device models are
used within Analog Insydes.

Thus, the comparison between netlist-based simulation and unsimplified behavioral models
results in a slow-down factor representing the overhead spent on processing the same (or at
least very similar) problem with the more general approach of behavioral simulation. The
SPICE-like topological way of solving this problemis very efficient asit is based on highly
specialized device models. Therefore, the performance of the circuit simulation represents

Figure 4.1: Bottom-Up Modeling Process for
Performance Analyses
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the optimum for the behavioral simulation performance under the assumption of unsimpli-
fied behavioral models.

Beyond doubt, there will always remain a non-negligible sow-down as the behavioral sm-
ulation has to solve a much more general problem without utilizing structural knowledge
(e.g. from topology). Furthermore, the nonlinear element relations have to be solved in al-
most the same way as the network equations. A “smart preprocessing” as usualy done by
device models in order to simplify the solving process is hardly possible (Chapter 6 will ad-
dress this problem).

Measurements and Criteria

When performing simulations, the resulting waveforms and their analysisin termsof the cir-
cuit’s performance matter most. Within the scope of analyzing the simulation performance,
the resulting waveforms are only of subordinate interest as they merely verify that the un-
simplified behaviora model has the same solution as the netlist-based simulation. In fact,
some important characteristics of the simulation aslisted in Table 4.1 are of greater interest:

Table 4.1: Characteristics of the Simulation Process

Symbol Characteristic Information on
Dim Dimension of the linear system Matrix size
Spa Sparsity of the Jacobian matrix Number of non-zero elements
Tiran CPU time for transient analysis Over-all performance
Tioad Tsolve | Profiling data Distribution of computational effort
Nstep Number of time steps Differences in time-step control
Niter Total number of Newton iterations | Convergence

These criteria provide a solid basis as benchmarks to compare behavioral versus netlist-
based simulations. Based on those characteristics other figures of merit are derived (see
Table 4.2). Above al, the number of Newton iterations is of major importance for the anal-
yses. Only one Newton iteration per time step indicates perfect convergence whereas the
maximum number of iterations per step is limited by a ssimulator option. The normalized
measurements for the CPU time provide a basis for comparing different simulators or bench-
mark circuits without considering their individual behavior in terms of performed time steps
and necessary number of iterations. By normalizing the total CPU time over iterations, the
pure efficiency in loading and solving the contained equations for one iteration is denoted.
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Table 4.2: Derived Characteristics of the Simulation Process

Symbol Characteristic Information on

Niter/step Average iterations per time step Convergence

Normalized performance without
consideration of time-step control

Normalized performance without
consideration of convergence

Storage and processing of the Jaco-
bian matrix

Tian/step | CPU time per time step

Tiranviter CPU time per iteration

Nronzero Number of nonzero elements

Simulation Setup

All analyses have been performed with nonlinear dynamic models and transient smulations
in order to select the most general simulation method. A direct comparison of the results of
the netlist-based and behavioral simulations requires equal simulation environments for the
experiments. Therefore, the following prerequisites were defined:

» Same simulator, testbench, transient inputs and analysis setup
* Default simulator options (if not mentioned)
» CPU time of each experiment must be measured on the same processor

» CPU time is determined by a mean value of 10 simulations (in order to eiminate load
variation)
* Characteristics extracted from simulator protocol files

The default smulator was Titan, asit facilitates for in-depth analyses of the simulation per-
formance. Nevertheless, the better part of the drawn conclusions is also valid for other
SPICE-like behavioral simulators (as Section 4.8 will show). The proposed enhancements
introduced in Chapter 5 and Chapter 6 could also be applied to other simulators likewise.

As analog simulators are very sensitive to accuracy options (influencing convergence and
number of time steps), particular attention was paid to equitably set those options equivalent
to the default accuracy options of Titan's netlist-based simulation. These defaults aimed at
providing a high level of accuracy.

Furthermore, the numerical behavior (performance, robustness) of the analyzed simulators
differs from platform to platform (Solaris, Linux, 32/64bit), from version to version (not al-
way's getting better), from simulator to simulator, and even from model compiler to model
compiler (VHDL-AMS, Verilog-A for the same A/MS simulator). Thus, an absolute com-
parison of performances measured under different operating conditions cannot be drawn. It
isimpossible to guarantee identical conditions for all possible environments. Hence, the fo-
cus was to ensure optimal conditions or perform relative comparisons (e.g. not comparing
different simulators absolutely to each cther).
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An open problem (to be solved by ssimulator developers) is the time-step control for behav-
ioral models. The AHDL s provide language features to limit the number of time stepsfor the
simulator kernel from within a behaviora mode. Unfortunately, the automatic time-step
control tendsto select time steps that weretoo large for these types of models. Therefore, the
step size has been limited by an adequate maximum step size to achieve comparabl e results
between netlist-based and behavioral simulation.

Applied Model Generation Process

The principles of generating behavioral models with Analog Insydes have aready been
pointed out in Section 2.4. As the following sections and analyses will show, it is essential
(interms of simulation efficiency and numerical robustness) to providea*“good” formulation
of the describing model equations within the chosen modeling language. Unfortunately, the
optimal formulation aso depends on the simulator. This conflicts with the approach of pro-
viding simulator-independent models. Hence, the model generation in Analog Insydes was
extended by simulator-specific “flavors’ of the AHDL sleading to avariety of different mod-
eling aternatives for DAEs (see Appendix B.1 for detailed descriptions of the modeling
methods).

The bottom-up modeling flow as shown in Figure 4.1 was automated within a new Analog
Insydes function teking as input the circuit netlist and various modeling options
(Wi tePinconpati bl eMddel , see Appendix B.1 for details). The modeling process gener-
ates a fully pin-compatible and 100 % accurate behavioral model (no model reduction per-
formed) for a selected subcircuit of the circuit netlist. Like in SPICE device models, only a
small portion of a device' s equations has to be treated simultaneously, the major portion of
the equationsis provided in asequentia structure. In order to use these sequential equations,
additional information is returned by symbolic device models for handling sequential equa
tions separately (reducing the number of simultaneous equations, see Section 4.7).

Asfar as supported by the modeling language and the simul ator, initial valueswere provided
to improve DC convergence (derived from an internal operating-point cal culation). Specific
tolerances for the contained equations and quantities were specified as appropriate in order
to ensure accurate processing of the DAES. Modeling options that (non-intentionally) influ-
ence the number of resulting equations by adding auxiliary variables to the system of DAE
require particular attention. Within the following analyses, the number of model equations
will always be stated by the number of effective equations (resulting from the equation pro-
cessing). In some cases, the model export to an AHDL requires to introduce auxiliary vari-
ables for order reduction or handling of conditional statements as well as sequential
equations. For details on methods resulting in such auxiliary variables please refer to
Appendix B.

Furthermore, the connectivity between the behavioral model and the circuit (resp. testbench)
results in additional variables (port currents). Thus, the dimension of the linearized system
as reported by the simulator may differ from the number of effective equations contained
within the model. If possible, the number of auxiliary variables is kept to a minimum. The
over-al dimension of the models results in the following number of equations:



4.1 Anaysis Environment and Objective 41

* TML DI mmodel = NSimEqs + Nports + Nderiv + [Ncondition]
* VerilOg'A Di mmodel = NSimEqs + 2Np0rts + Nderiv
* VHDL-AMS Dimmodel = NSimEqs+ NSquqs+ 2Nports+ Nderiv

Analyzed Circuits (Benchmarks)

In general, any analog circuit that can be modeled with the discussed Analog Insydes based
modeling flow is suitable as benchmark for analyzing simulation performance. For practical
reasons, the modeling processis limited by the following factors:

* Available symbolic device models within Analog Insydes (a matter of spent effort in
order to implement further device models; the possibility to automatically set up sym-
bolic device models from imported Verilog-A code has been shown).

» Number of model equations (correl ated with the number of transistors and the complex-
ity of the used device models) should not exceed 1500 equations as the complexity of
the DAE systems rises significantly. Thereby, various problems might be caused, from
computation times for model generation to unacceptably high compilation times for the
behavioral models. Using a hierarchical modeling approach provides a generally advis-
able solution to this limitation.

For the presented analyses, a selection of analog circuit blocks with different characteristics
has been chosen. The intention was to select circuits of different sizes and different device
models to cover awide range of future applications. All measurements have been performed
with transient analyses. The testbenches and input stimuli have been designed to show non-
linear as well as dynamic characteristics of the circuits and models. For most examples, pe-
riodic stimuli sourceswere chosen to provide a measurable amount of CPU time over several
periods. Table 4.3 providesan overview of the analyzed circuits. For all BSIM3-modeled de-
vices, the parameter set of Infineon’s 130 nm CMOS technology was used.

A short summary of used circuit designs and their testbenches:

» cfcamp — a complementary folded-cascode operational amplifier in degenerative feed-
back (unity gain buffer), pulse input voltage (500 kHz frequency, 0.45V amplitude,
0.75V DC), 19 BSIM3 instances

* emitter —acommon emitter configuration with periodic piece-wise linear input

» multiplier —asmall circuit “multiplying” two input voltages, 8 Gummel-Poon instances

» nand2 — a NAND gate, input stimuli trigger all states (1.5V supply voltage, 1.5 GV/s
dew rate), 4 BSIM3 instances

» opamp741 — the uA741 operational amplifier in degenerative feedback (unity gain
buffer), pulse wave input voltage (220 kHz frequency, 200 mV amplitude, 2 MV/s dew
rate), 26 Gummel-Poon instances

* sgrt —acircuit implementing a sgrt-function from current input to current output, peri-
odic piece-wise linear source
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Table 4.3: Overview of the Analyzed Circuits

Example Transistors | Device Model Ports Equations | Parameters
cfcamp 19 BSIM3v3 6 1328 1621
cfcamp_mosl 19 MOS Leve 1 6 134 155
emitter 1 Gummel-Poon 4 5 9
multiplier 6 Gummel-Poon 8 94 104
nand2 4 BSIM3v3 5 247 371
opamp741 26 Gummel-Poon 5 357 354
sart 4 Gummel-Poon 4 17 19

Asindicated in Table 4.3, the analyzed circuit blocks are of relatively small size. Neverthe-
less, the generated models of the circuits are of high complexity. The corresponding sche-
matics, testbenches, and waveforms can be found in Appendix A.

4.2 Basic Performance Measurements

Based on the assumption that unsimplified behavioral models simulated with a behavioral
simulation method pose an equivalent problem to netlist-based simulation (as based on the
same equations), nearly equal simulation performance should be possible. The intention of
thefirst presented analysisis to demonstrate and quantify the performance problem of such
analytica behaviora models. Therefore, several behavioral models have been directly com-
pared to their corresponding netlist-based simulation. Figure 4.2 shows the slow-down of the
behaviora simulation compared to the netlist-based simulation. Here, the discrepancy be-
tween the performance of both simulation methods increases significantly up to a factor of
192 for the uA741 operational amplifier. Even for very small models (like the emitter cir-
cuit), a non-negligible difference in simulation performance remains. It is obvious that the
performance problem increases with the complexity of the modeled circuits.

|op§)amp74l 192.3
© 469
multiplier 36.5

[ sart 4.3

Benchmark Circuit

emitter 2.4

0.0 50.0 100.0 150.0 200.0 250.0
Slow Down [1]

Figure 4.2: Slow Down Factors (Circuit vs. Unsimplified Behavioral Model)
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Table 4.4: Results of Basic Performance Measurements

Example Type Dim Spa Nstep Niier Tyan | SlowDown

) Circuit 11 720% | 6901 | 16851 | 0.252s
emitter 24
Model 19 83.33% | 6901 | 16023 | 0.603s

t Circuit 10 |58.03%| 2509 | 9625 |0.178s 43
* Model 29 |8839% | 2509 | 6804 |0.757s '

o Circuit 28 | 75.72%| 1181 | 2361 |0.102s
multiplier 36.5
Model 113 | 96.12% | 1181 2801 |3.727s

Circuit 23 |70.87% | 1007 | 2022 |0.099s
cfcamp_mosl 46.9
Model 149 | 9751 % | 1007 2042 | 4.642s

Circuit 58 88.89% | 1669 | 3753 | 0.403s
opamp741 192.3
Model 368 [99.01% | 1391 | 4856 | 775s

Table 4.4 summarizes the simulation results also giving information on the number of time
steps as well as iterations. As the internal equations of the used device models result in ad-
ditional equations within the linearized system, the dimension of the behavioral models is
noticeable higher than that of the corresponding circuit simulation. This also results in a
much higher sparsity of those systems. The number of time steps does only reveal different
behavior of the time-step control for the opamp741. In terms of convergence, the examples
sgrt and opamp741 are particularly interesting. The convergence of sgrt improves (whichis
untypical) whereas the opamp741 faces (noncritical) convergence problems (3.5 instead of
2.25 iterations per time step) in the behavioral simulation.

In summary, the performance problems are neither caused by problems of the time-step con-
trol nor by (serious) convergence problems. Theroot causesfor the performance problem are
amatter of the processing of the models’ equations and will be subject to further investiga-
tions within the following sections. Nevertheless, convergence is a critical issue for such
complex behavioral models. All behavioral models created by using the symbolic BSIM3
model did reveal serious problemsin DC convergence and could therefore not be simulated
under these specific conditions. This problem has been solved by taking advantage of se-
quential equations and will be discussed within later sections.

For thetime being, the above stated comparison givestheimpression that the analytical mod-
eling method by symbolic analysisisinadequate for enhancing simulation performance. The
performance comparison reveals an enormous overhead. Still, the main difference between
both compared simulation setups is their problem conditioning, a matter of modeling effi-
ciency. Therefore, amajor improvement of the behavioral simulation performance should be
attainable. Figure 4.3 exemplarily shows the current situation and the target performance.
The bottom-up generated behavioral models have to achieve a major speed-up compared to
the origina circuit simulation in order to apply this modeling method in an appropriate and
acceptable way.
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Figure4.3: Motivation for Efficiency Improvements

The slow-down of an unsimplified behavioral model is significantly higher than 10 (for rea-
sonable size examples) and increases considerably with the dimension of the model. For the
analyzed examples, the slow-down increases up to ~200. Although the model reduction al-
gorithms for symbolic analysis have been proven to reach highly efficient reduction rates,
the reduced models are rarely faster than the netlist-based simulation. The relatively great
effort of the model reduction is primarily spent on compensating for the bad simulation per-
formance of the unsimplified model. The following research and improvements will show
that amajor part of this inefficiency can be eliminated by adapting the interface between the
behavioral models and the simulators. This adaptation does not reduce the accuracy of the
behavioral models. Its approach is rather to improve the conditioning of the problem (by re-
formulation and restructuring of the behavioral models) and to handle such complex behav-
ioral models more efficiently within the model compiler. The target is to reduce the slow-
down to a minimum (at most a factor of 5 sower than the reference simulation). Starting
from this optimized model, nearly the full effectiveness of the existing model reduction al-
gorithms can be used to speed-up the generated model s thus making them an attractive solu-
tion for bottom-up model generation.

4.3 Distribution of the Computational Effort

Profiling is atechnique to analyze where computational effort was spent during the evalua-
tion of a program. Common profiling toolslike gprof work on instrumented code containing
additional code to count function calls and to sum-up the spent CPU time by function. The
resulting tables all ow stati stics on how often each function was executed and how much CPU
time was actually spent onit. Asthe results are quite comprehensive and the usage of profil-
ing tools requires specific binaries (including the instrumentation), it is too complicated
within this scope to completely profile a circuit simulator. Nevertheless, built-in time mea-
surementsfacilitate analyzing the major process steps during asimulation. Such built-in pro-
filing methods have been used to examine the distribution of the computational effort in
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behaviora simulations and identify possible bottlenecks and shortcomings in terms of sim-
ulation performance.

Main contributors to the total CPU time spent for atransient analysis (T, ,, ) are the loading
process and the solving of the linearized system. During the loading process, the linearized
system is determined by the contained models. This involves the evaluation of the Jacobian
matrix (Tj,con ) @ Well asthe evaluation of all expressions determining the right-hand side
(Ttunc) Of the linearized system. Furthermore, any checks for convergence and numerical
problems (Tecks ), NUMerical integration, and interfacing between models and linear solver
(Tstamp ) CONtribute to the CPU time of the loading process (Tgaq ). Tmise accumulates addi-
tional overhead during the loading process.

The amount of CPU time spent on solving the linear equation system (T, ) can be sub-
classified into the CPU time for the LU decomposition (T, ypecomp ) @d the forward-back-
ward substitution to determine the solution (Tgggy,s) from the decomposed system.
Equations (4.4) to (4.6) summarize the classification of the main contributors to the over-all
CPU time. T, a@ccounts for any supplementary processes during the transient analysis
(initidization, time-step control, etc.) and is typicaly negligible small compared to T4
and Tsolve .

Ttran = Tload + Tsolve + Toverh = Tload + Tsolve (44)
Tload = Tfunc + Tj acob + Tchecks + Ts[amp + Tmi sc (45)
Tsolve = TLUDecomp + TFBSubst (4-6)

Table 4.5: Over-All Distribution of the CPU Time

Exampl € Ttr an TI oad Tsol ve Tover h
o absolute | 3.727s | 249s | 1.17s | 0.06s

multiplier -
relative | 100% | 66.8% | 31.5% | 1.7%
absolute | 4.642s | 3.28s | 1.26s | 0.11s

cfcamp_mosl -
relative | 100% | 70.6% | 27.1% | 2.4%
absolute | 77.5s |49.36s|27.84s| 0.33s

opamp741

relative | 100% | 63.7% | 359% | 0.4%

Within circuit simulations, the approximate ratio of Tyy,q 10 Te e 1S 80 % to 20 %.
Table 4.5 indicates the distribution of CPU time in behaviora simulation, taking three be-
havioral models of different dimensions (113 to 368) and types (MOS Level 1 and Gummel-
Poon transistor model) as example. As already mentioned, T, only contributes with less
than 2.5 % and will thus be neglected for following analyses. As can be seen in Figure 4.4,
the distribution for loading and solving is quite consistent within the different models, and
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opamp741 35.9%

cfcamp_mos1 27.1%

multiplier 31.5%
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Figure 4.4: Profiling Results (Over-All)

theratioiscloseto what would be expected for any circuit simulation. The over-all CPU time
is dightly less dominated by the loading process.

Figure 4.5 visualizes the distribution of the computational effort spent on loading. Astonish-
ingly, the evaluation of theright hand side (T;,,,. ) hastheleast influenceon T,,,4 (3109 %)
even though it consists of highly complex nonlinear expressions. Table 4.6 reveals the con-
tributors and their distribution within the loading process in detail. Above all the processes
handling the Jacobian matrix (Tjacon» Tstamp» Tcnecks) FeQUIre alarge amount of CPU time
and thereby appear to beideal for further investigation and enhancements.

Finally, Figure 4.6 and Table 4.7 show the distribution of the CPU timefor solving. The LU
decomposition dominates the solving process with roughly 80 % (similar to circuit simula-
tion). Asthelinear solver isafundamental component of the simulator, it was not considered
to be enhanced within thiscontext. Still, Titan provides different linear solversfor behavioral
models that will be introduced and compared within Section 4.5. Apparently, loading and
solving are equally contributing to the overhead observed in behavioral simulation. Thus, it
is desirable to speed up both processes.

opamp741

45%
8%

cfcamp_mos1

40%
10%

multiplier

42%
8%

0.0% 20.0% 40.0% 60.0% 80.0%  100.0%
‘IFunc mJacob mChecks mStamp OMisc ‘

Figure 4.5: Profiling Results (Loading)



4.3 Distribution of the Computational Effort 47

Table 4.6: Distribution of the CPU Time for Loading

Examp|e Tload Tfunc Tjacob Tchecks Tstamp Tmisc
multiplier absolute | 249s | 0.17s | 0.68s | 04s | 1.05s | 0.2s
ultipli
P relative | 100% | 6.7% | 27.2% | 159% | 423% | 7.9%
absolute | 3.28s | 0.29s | 087s | 0.49s | 1.29s | 0.34s
cfcamp_mosl -
relative | 100% | 89% | 26.5% | 14.8% | 39.5% | 10.3%
absolute | 49.36s| 1.51s | 11.63s | 10.09s| 22.23s| 3.89s
opamp741 -
relative | 100% | 3.1% | 236% | 204% | 45% | 7.9%
opamp741 15.6%

cfcamp_mos1

multiplier 16.5%

0.0% 20.0% 40.0% 60.0% 80.0%  100.0%

m LU O Subst

Figure 4.6: Profiling Results (Solving)

Table 4.7: Distribution of the CPU Time for Solving

Exa-mpl € Tsol ve TLU Decomp TF BSubst
o absolute 117s 0.98s 0.19s
multiplier -
relative 100 % 83.5% 16.5%
absolute 126s 1.03s 0.23s
cfcamp_mosl -
relative 100 % 81.8% 182 %
absolute 27.84s 235s 433s
opamp741 -
relative 100 % 84.4% 15.6 %
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4.4 Computational Complexity of Behavioral Models

In the next step, influencing factors on both loading and solving are analyzed. Therefore,
models with different characteristics but equal complexity (same accuracy) will be com-
pared. In general, the amount of computational effort should be proportional to the complex-
ity of the behaviord model. However, there are no sufficient metrics to measure the
computational complexity of amodel. Various characteristics may be used as indicators for
amodel’s complexity. The most obvious is the number of model equations. The complexity
of the contained eguations can be judged by the number of terms contained, unfortunately
there is no normal form for nonlinear expressions making this metric an inexact criterion.
Within Section 4.7 an approach to classify models by their expression complexity will be
presented (based on theinstruction count 1C ). The number of resulting non-zeros within the
Jacobian matrix is also an important characteristic influencing the computational complexi-
ty. Finally, conditioning and sorting equations and variablesis essential for the linear solver.

To overcome this dilemma an approach based on the following assumptions was chosen:
Different model formulations generated from the same circuit should be of equal computa-
tional complexity for the behavioral simulator. Hence, the following equation formulations
have been used to set up behavioral models for three selected examples:

* Network equations set up by Modified Nodal Analysis (MNA)

* Network equations set up by Sparse Tableau Analysis (STA)

* MNA equations processed by the function ConpressNonlinear Equations that
removes some internal variables and equations by al gebraic processing (Compr)

* MNA equations and substitution of all explicit equations (sequential equations from
device models) (Subst)

) opanl'np741 i mlultiplier
sta 60.54 ' 42.81 | sta 3-5;|- '1-71
mna - 49.36 27.84 mna - 2.49 1.17
compr - 32.69 . compr - 1.75 (:).97
0.00 50.IOO 10(;.00 0.00 2.l00 4.l00 6.l00

@ Loading g Solving CPUtime [s] |m@Loading @Soling ‘ CPU time [s]

Figure4.7: T, ., for Different Model Formulations (opamp741, multiplier)
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Table 4.8: Results of the Complexity Analyses

Example Type Dim Spa | Nnonzero | Ttran st
Circuit 28 75.72% | 190 0.102s n/a
o Compr 94 92.95 % 623 277s 27.1
multiplier
MNA 113 | 96.12% | 496 3.73s 36.5
STA 136 | 9691% | 571 534s 52.4
Circuit 23 70.87% | 154 0.099s n/a
Subst 62 9R2.74% | 279 511s 51.6
cfcamp_mosl Compr 113 95.97% | 514 264s 26.7
MNA 149 | 9751% | 552 464s 46.9
STA 161 | 97.82% | 565 547s 55.3
Circuit 58 88.89% | 374 0.403s n/a
Compr 294 984% | 1387 524s 130.2
opamp741
MNA 368 |99.01% | 1347 775s 192.3
STA 416 | 99.15% | 1469 | 103.7s 257.3

By setting up the network equationsin different formulations (MNA/STA) and algebraic post-
processing of the obtained DAEs (Compr/Subst), the resulting models widely differ in their
dimension and sparsity. While the STA models consist of alarge number of equations (each
of low complexity), the Compr and Subst models are of much lower dimension but contain
highly complex expressions. Dueto the extraordinary expression complexity, the Subst mod-
el type only converged in one of the presented examples (cfcamp_mosl).

The simulation results are shown in Table 4.8. While the number of time steps and Newton
iterations do not differ at all, the CPU time significantly varies over the basically equivalent
model formulations. Figure 4.7 visualizesthe CPU time needed for the different model types
of multiplier and opamp741. Asindicated in the chart, the most compact formulation (Com-
pr) achieves the best simulation performance. The distribution of solving/loading does not
scale over the dimension of the models.

In Figure 4.8, the results for the cfcamp_mosl example are shown. While the upper three
model types perform as expected from the previously shown examples, the Subst model type
performs badly, although it is the most compact model formulation. According to its number
of equations it should have performed much better. While in the other cases the dimension
of the models dominates the simulation performance, the complexity of the contained ex-
pressions dominates in this example. Section 4.6 will investigate this phenomenon further
and provide a metric for estimating the complexity of expressions. It islikely that a break-
even point between the contradicting properties of the number of equations and their com-
plexity exists.
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Figure4.8: T, ,, for Different Model Formulations (cfcamp_mosLl)

In order to analyze the proportionality between model dimension and CPU time in more de-
tail, statistics on multiple examples with different model formulations have been generated.
These statistics purely focus on theinternal processing time per iteration. They include emit-
ter, multiplier, sgrt, opamp741, and cfcamp_mosl each modeled in MNA, STA, and Compr
model style. As the examples use completely different simulation setups, models, and test-
benches, a normalized metric for the CPU time was applied. Therefore, the CPU time for
each simulation was normalized to CPU time per iteration:

T = Ttran

tran/iter Niter
Thus, any influence of the simulation time, convergence, and time step control has been
eliminated. Figure 4.9 shows the coherence between the dimension of the used models and
the CPU time (separately for loading, solving, and total CPU time). The CPU times scale
with nearly quadratic complexity over the dimension of this selection of completely different
models. Thisresult shows that the simulation performance greatly depends on the dimension
of the DAEs. Any internal differences like different equation types and different evaluation

complexity do currently not influence the simulation performance observably. Hence, (4.7)
is suited to estimate the CPU time for any TML mode!:

2,265

Trran = 30Ns- Dim™ " N 4.7)
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Figure4.9: Scaling of T, 4n/iter OVEr Dim for Various Models and Formulations

Thereason for this strong dependency on the dimension of the simulated problemsisthefact,
that Titan did not apply sparse algorithms for behavioral models. Asthe dimension of hand-
written modelsistypically very low, there was no need for introducing a sparse handling for
the behavioral models. However, an approach to provide sparse solvers was taken and will
be discussed within the following section.

For models of such high dimension as analyzed within this scope, a sparse handling isindis-
pensable. As long as no sparse algorithms are available, the only objective to speed up the
behavioral simulation is to find a model formulation as compact as possible while still en-
abling convergence and not exceeding a maximum expression complexity. The computa-
tional complexity of the symbolic expressions does not play an important role in this case.
The CPU time for the function evaluation is completely hidden by the dominating influence
of the dense data structure and processing.

Table 4.9 gives an overview of the proportionalities of different fractions of the CPU time
for dense and sparse algorithms. The complexity of the expressions needed to evaluate the
RHS and the Jacobian matrix is indicated by the number of evaluation cycles Ngy,icycies
which will be discussed in more detail below. In general, all CPU times linearly depend on
the number of Newton iterations performed during simulation. Note that all components of
the simulation have to be evaluated with the same number of iterations!. Hence, an appar-
ently “non-relevant” behavioral model with poor convergence may dramatically decrease

L Multi-level Newton-Raphson methods solve thisissue [34]
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the over-all simulation performance of alarge simulation setup by requiring alarge number
of iterations. The same s true for time steps.

Table 4.9: Proportionalities of CPU Time and Model Characteristics

Dense Algorithms Sparse Algorithms
; > Dim® 1,2..1,5
Solvmg Tsolve~ Nitera Dim"... 3 Tsolve~ Niter’ Dim> =™ Spa
Function . ]
Evaluation Tfunc - Niter’ Dim, NEvaICycIes Tfunc - Niter’ Dim, NEvaICycIes
Jacobian .
Evauation Tjacob ~ Niters DIM’, Neyaicyeles Tiacob ~ Niter Nyonzero Nevaicyeles
Checks, )
Stamping Tehecks Tstamp ~ Njter, Dim Tenecks TStamp ~ Niter, N”°”Zer°

When using dense a gorithms the main contributors scale polynomially over the dimension,
whereas sparse algorithms provide an efficient method to reduce this proportionality to a
close to linear scaling. The exponent in the sparse case depends on the sparsity and condi-
tioning of the Jacobian matrix, and typically varies from 1.2 to 1.5. For the processing steps
during loading, the relevant characteristic is the number of non-zero entries in the Jacobian
matrix, which can be calculated as follows:

Nnonzem = (1_Spa) : Dimz

4.5 Performance of Linear Solvers

Linear solvers are based on a trade-off between performance, accuracy, and numerical ro-
bustness. Asaready discussed in Section 3.5, Titan uses different solversfor the subsystems
resulting from the structural description (by direct inspection of the netlist elements) and the
subsystem of the model equations. By default, the dense LAPACK solver was used for be-
havioral models as they were usually of low dimension but numerically critical to handle.
The other solvers are optionally available. The intention of this section is to demonstrate a
comparison of the performance of the available solvers. The simulation resultswill be exem-
plarily demonstrated by the emitter model with a low dimension of only 19 and the
opamp741 model, which is of reasonable high dimension (368). Table 4.10 lists the perfor-
mance measurements for both examples simulated with the three available solvers.
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Table 4.10: Distribution of the CPU Time for Different Linear Solvers

Exampl e Solver Niter Niter/step Ttran Tload Tsolve Ssolve

0.6s 0.34s | 0.13s
LAPACK 16023 2.32 1
100% | 55.9% | 20.7 %

] 05s 0.32s | 0.03s
emitter Titan 15841 2.3 4.33
100% [ 64.2% | 6.4%

19s 041s | 1.35s
MUMPS | 16037 2.32 0.096
100% | 21.4% | 70.9%

77.52s | 49.36s| 27.84s
LAPACK 4856 3.49 1
100% | 63.7% | 35.9%

65.82s | 64.79s| 0.7s
opamp741 Titan 6467 4.65 39.77
100% | 984% | 1.1%

59.01s | 52.34s| 6.36s
MUMPS 4856 3.49 4.38
100 % | 88.7% | 10.8 %

For the emitter model the choice of the linear solver does not influence the convergence of
the smulation. Asthe model is of low dimension, the Titan solver speeds up the solving pro-
cess by afactor of (only) 4.33. The application of the MUMPS solver significantly reduces
the simulation performance (presumably by the overhead caused by initializing the solver
and needlesdly performing dynamic pivoting). Unlike in the emitter example, the solving
performance for the opamp741 shows a substantial improvement of afactor of 39.77 (Titan
solver) respectively 4.4 (MUMPS solver). Due to an unfavorable pivoting of the Jacobian
matrix, the Titan solver needed 6467 instead of 4856 iterations, which in turn decreased the
loading performance. Hence, the MUMPS solver would be the optimal solution for the
opamp741, but would be of major disadvantage for the emitter circuit. It isworth mentioning
that the ratio between loading and solving (98 % to 1 %) for the opamp741 simulated with
the Titan solver indicates that there was still a problem during loading. Other simulations
confirm these results.

The robustness of the Titan solver in combination with a sub-optimal ordering of the model
equations did cause severe convergence problems for some applications. This could be
solved for future applications by performing a sufficient preordering of the models' equa-
tionsto ensure afavorabl e conditioning of the Jacobian matrix. In general, the application of
asparse solver isessential for systems of high dimension. Should convergence problems oc-
cur, the MUMPS solver is the preferred solution. In terms of performance, the precondition-
ing of the models (to improve robustness) and application of the standard Titan solver would
most likely lead to the best results. The default LAPACK solver is not suited for behavioral
models of higher dimension. Here, a sparse solver (Titan or MUMPS) should be applied.
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4.6 Loading Performance

While the smulation efficiency of the solving process could be resolved by applying an ap-
propriate sparse linear solver, the loading process (especially in combination with the Titan
solver) consumes nearly the complete CPU time (98 %). Research proved that the loading
process of the compiled behavioral models was not realized in a sparse manner. In order to
eliminate any side effects and to only measure the performancein terms of loading and linear
solving two types of linear networks were set up:

 Chain networks of resistors with each node additionally connected to ground (see
Figure 4.10) - tridiagonal Jacobian matrix, high sparsity

» Complete networks with each node connected to each other by a resistor (see
Figure 4.11) - fully populated Jacobian matrix, no sparsity

As the networks are static linear, the simulation performance is not influenced by dynamic
effects or linearization i ssues. The Jacobian matrices of netlist and behavioral simulation are
identical (apart from the additional port currents for the behavioral models, which are negli-
gible).

ouT

Figure 4.10: Schematic for Chain Networks

Ny Ni.1

IN ouT

N, N3

T

Figure4.11: Schematic for Complete Networks
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For the complete networks all benefits
from sparse handling strategiesaredis-
abled as the matrices are (nearly) fully
populated. The scaling of the simula-
tion performance over dimension and
sparsity can be observed by varying
the number of nodes (20 to 100) of
both network types. As indicated by
the previous analyses, the Titan solver
was applied to enhance the solving
performance. Despite the linear nature
of the problems, transient simulations
with limited step size and sinusoidal
input sources have been performed to
achieve a large number of iterations
(for accurate CPU time measure-
ments).

Figure 4.12 showsthe CPU time per it-
eration over the dimension of the com-

plete networks and their corresponding behavioral models. As expected, the CPU time scales
with apotential function of an exponent larger than 2. Although sparse algorithms do not &f -
fect this network type and the linearized systems are (nearly) identical, the behavioral simu-
lations are by a factor of 2 slower than the corresponding netlist-based simulations. As
Figure 4.13 verifies, this overhead in behavioral simulation is solely caused by the loading
process, whereas solving is of exactly the same performance.
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As far as chain networks are con-
cerned, the overhead of the behavioral
simulation is much more serious as
Figure 4.14 shows. Due to efficient
sparse algorithms the CPU time of the
netlist-based simulation scales close
tolinear. In contrast to that, the behav-
ioral simulation scales with an expo-
nent of 1.6 causing a rapidly
increasing discrepancy between both
simulation types. Comparing the dis-
tribution between loading and solving
(see Figure 4.15) evidences the appli-
cation of the Titan solver: the solving
process scales linearly and the dis-
crepancy between both types is ac-
ceptable.

The loading process shows dramatic
inefficiency. For the behavioral mod-
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Figure4.14: Scaling of Ty 4. iter OVEr Dim
for the Chain Networks

els, the exponent of the potentia fitting function is 1.73. Asthe sparsity of the modelsis not
utilized within this realization, a major improvement of the loading performance by intro-
ducing a sparse processing should be expected. Some effective measures to reduce the over-
head to a minimum will be presented in Section 5.2.
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4.7 Expression Evaluation

The loading process primarily consists of alarge number of expression evaluations in order
to determine the residual as well as the Jacobian matrix for the next iteration of the linear
solver. The spent CPU time within these processes (Tyyne and Tj,c0p ) IS influenced by the
clock cycles required for the evaluation of the nonlinear expressions and the time to access
the necessary datawithin thememory. Whileit isrelatively easy to predict the computational
effort for the expression evaluation itself, memory accesses are highly dependent on data
structures and memory organization. Above all, datalocality is of great importance as it de-
termines the cache miss rate. The miss penalty for data that has to be fetched from the main
memory instead of being available within the cache is (depending on the computer architec-
ture) 10 to 16 times higher than asuccessful cache access. Unfortunately, the cache missrate
is hard to predict. The realization of the sparse data structure for the loading process (cf.
Section 5.2) will demonstrate the importance of data locality.

Two metrics have been introduced in order to estimate the computational complexity of a
system of DAE: the number of clock cycles for function evaluation (Ngy, cycies) @nd the
number of memory accesses (Nyemaccess)- The instruction counts 1C; for al contained
arithmetic functions of the equation set as well as the instruction count for the symbolic Ja-
cobian matrix were determined within the model generator based on the function Cost [70].
Some basi ¢ expression optimizations that woul d be performed by acompiler (strength reduc-
tion, cf. [1]) have aready been taken into account within [70] (eg. X" —Xx-X,
X’ — & ") Afterwards, the sum of the instruction counts for each function weighted by
an estimated cycles per instruction figure CPI; (cf. Table4.11) has been determined by
(4.8). The resulting figure Ng,, cycies do€S Not take into account CPU architecture specific
properties and non-ideal behavior of instruction level paralelism (ILP, cf. [30]). It should
therefore only be considered as arough indicator for the evaluation complexity.

n
NEvaICycIesz z ICi : CI:)li (48)

i=1

Table 4.11: Cycles per Instruction

Instruction CPI
addition, subtraction, multiplication 1
division, square root
exponentia function, logarithm, sinus, cosine, etc. 8
power 17

The number of memory accesses (to the data memory) during the expression evaluation was
derived from the total count of the referenced variables and parameters within the equations
and their Jacobian matrix. No distinction was made between read and write accesses.
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(4.9) showsthe (measurable) influencing factorsfor the expression evaluation. There are ad-
ditional dependencies on computer architecture, cache missrate, pipelining, etc. that can nei-
ther be measured nor estimated easily.

Tfunc + Tjacob - NEvaICycIes’ NMemAccess7 Nitersa (4-9)

In order to estimate the influence of the expression evaluation on the loading performance
two model types will be compared, the unsimplified modelsin MNA formulation and their
corresponding modelswith all parameters replaced by their numerical default values. There-
by, the expression complexity changes remarkably as some subexpressions, that only consist
of parameters, can be pre-eval uated within the modeling tool instead of being evaluated dur-
ing simulation. At the same time, the structure and numerical properties of the DAE system
do not change. As mentioned within the previous sections, the missing sparse handling dur-
ing loading heavily influences the loading process. As this effect dominates the loading pro-
cess, the influence of the expression complexity cannot be clearly diagnosed. Therefore, the
statistics were processed with the sparse implementation that will be presented within
Section 5.2.

Table 4.12 lists the estimated clock cycles Neyg cycies fOr the function and Jacobian evalua
tion as well as the estimated number of memory accesses Nyemaccess @Nd their respective
reduction by replacing the parameters with their numerical values for three examples. The
two right-most columns display the achieved speed-up in theresidual’ s and Jacobian’ s eval -
uation. Apparently, the removal of the parameters efficiently reduces the expression com-
plexity and the number of necessary memory accesses (by roughly 40 %). The reduced
complexity of the expressions positively affects the simulation performance. It resultsin a
speed-up of roughly 25 % for the function and the Jacobian evauation. The discrepancy to
the optimal speed-up of 40 % most likely originates from influencing factors of the computer
architecture that could not be taken into account. The good correspondence between CPU
time and expression complexity in this experiment is evidence for considering the function
evaluation for further optimization.

Table 4.12: Complexity of the Expression Evaluation

Example Parameters NEval Cycles Ratio NMemAccess Ratio Sunc %acob
- 104 7946 2846

multiplier 68.2 % 514%| 123 | 1.16
0 5419 1462
155 7300 4203

cfcamp_mosl 62 % 634% | 125 | 1.33
0 4532 2667
354 17085 7136

opamp741 64.5% 56.2% | 122 | 1.34
0 11020 4012
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4.8 Comparison of Commercial Simulators

It is not in the scope of this research to compare different simulators. Nevertheless, a com-
parison with three major commercial simulators was made to ensure that the presented re-
sults and performance problems are not a Titan specific problem. For legal reasonsall results
will be presented anonymously. As Titan is probably the most famous moon of Saturn, three
more satellites of Saturn will be used as pseudonyms for those simulators:

» Dione - acircuit simulator with Verilog-A support
* Rhea - amixed-signal simulator supporting VHDL-AMS and Verilog-AMS
* Thetys - another mixed-signal simulator supporting VHDL-AMS and Verilog-AMS

Results simulated with different simulators must not be absolutely compared as it is
generally impossible to guarantee fair conditions among different simulators. Therefore,
each simulator was relatively compared to itself by determining the slow-down between its
behaviora and circuit simulation. The accuracy options have been chosen to achieve similar
settings as the Titan defaults (which are reasonably accurate). All measurements have been
extracted from the simulator’s log files (apart from the number of iterations that were not
reported by al simulators). In order to be able to evauate the convergence for those
simulators a Verilog-A model measuring the number of iterations was used (see
Appendix A.8).

The basic analyses were performed under the same conditions asfor Titanin Section 4.2. For
Rhea and Thetys, the model with the better simulation performance (VHDL-AMS or Ver-
ilog-A) was used within the statistics. Figure 4.16 shows the slow-down factors of the be-
havioral simulation compared to the circuit simulation of each simulator for the examples
cfcamp_mosl and opamp741. The factors have been calculated from three different mea-
sures, the absolute CPU time spent for the transient analyses, the CPU time normalized to
the number of time steps, and finally the normalized CPU time per iteration. Even though the

cfcamp_mosl opamp741
46.4 g7
Titan 46.9 ! . Titan 230.8
46.9 ! ! 192.3
36 173 :
.. Dione 9.8 : : : .. Dione 32.9
=1 . : : o
2 14.9 : : : 2 36.7
= 1 : : : =
E 15.6 £ 27.5
@ Rhea 180 : : @ Rhea []30.9
18.8 : : : 35.0
84.2 : 2773 ! ;
Thetys 126.0: Thetys 448.5
] 149.2 [426.6
0.0 50.0 100.0 150.0 0.0 125.0 250.0 375.0 500.0
D absolute @mper time step m per iteration ‘ Slow Down [1] ‘Dabsolute [ per time step @ per iteration ‘ Slow Down [1]

Figure 4.16: Simulator Comparison for cfcamp_mosl and opamp741
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Figure 4.17: Convergence Comparison for cfcamp_mosl (left) and opamp741 (right)

simulators show agreat variety of different performances, no simulator reaches the expecta-
tions of being below five times slower than its netlist-based simulation. Moreover, the per-
formance problem seemsto increase for all simulators with arising dimension of the models
(as further analyses will demonstrate). It is worth mentioning that Titan was still measured
using its default dense algorithms and solver for simulating the models at this state.

By comparing the number of necessary time stepsin Figure 4.17, arather similar behavior
intime-step control can be seen. Dione and Thetys suffer from serious convergence problems
in behavioral simulation for the used models. As presented for Titan in Section 4.6, these
simulators were also analyzed about their scaling over the problem dimension. Although
VHDL-AMS would have been the better solution to model the linear networks, Rhea had to
be measured with Verilog-A models due to large memory consumption during the VHDL-
AMS models' compilation (resulting in a compiler error). Figure 4.18 (dense) and 4.19
(sparse) give aqualitative overview of the simulation resultsfor the anayzed simulators. For
the complete networks, the netlist-based simulations show remarkable differences between
the compared simulators. The performance of the behavioral models is significantly worse
than that of the netlist-based simulations.

The analysis of the chain networks reveals that all simulators use sparse techniques (linear
scaling). The performance of the circuit simulations is similar for al simulators. Still, the
overhead in processing the behavioral model is considerably large for Dione and Rhea. The
gradient of the linear approximation functions for those simulators differs by a factor of 8
and 6.66 respectively compared to the netlist-based simulation. Thetyshasavery small over-
head between both simulation modes. Its behavioral simulation performance is nearly as
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Complete Networks
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Figure 4.18: Simulator Comparison on the
Scaling of Ty, 4 iter OVEr Dim for the Complete Networks

good asthe performance of the netlist-based simulations. Titan was not included in this anal -
ysisasit has shown asuper-linear scaling in previous analysi s due to the missing sparse han-
dling of the behaviora models.

The significant overhead between the netlist-based simulation and the corresponding behav-
ioral simulation isacharacteristic all ssmulators have in common. This discrepancy can only
be caused by the internal processing of the models within the loading process. Other differ-
ences between the simulation modes like convergence, time-step control, and linear solving
issues (including sparse algorithms) have been eliminated by the experiment’s setup. It is
highly desirablein order to reduce thisinefficiency to enhance the behavioral simulation per-
formance. Apart from the relatively high dimension of the models, their structure and their
contained equations represent one of the most basic models possible. For any more compli-
cated model the performance problems would most probably get worse. For a more detailed
overview of the corresponding charts and fitting functions please refer to Appendix C.1.
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Chain Networks
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4.9 Taking Advantage from Sequential Equations

A promising approach to reduce the dimension of alinearized system that has to be solved
during s mulation isto take advantage of sequential equations (see Section 2.1 for definition
and example). As device models typically contain a high ratio of explicit equationsit is ob-
vious to model those equations in a manner that they do not have to be solved with iterative
methods. Therefore, the modeling language has to support some kind of procedura evalua-
tion (as discussed in Section 2.4) and the simulator has to deal efficiently with this method.

So far, al model equations have been modeled simultaneously and hence had to be solved
simultaneously. As Analog Insydes supports sequential equations and Verilog-A offers use-
ful possibilitiesto model the sequential equations (using procedural assignments), the advan-
tage of solving these equations procedurally will be analyzed within this section.
Unfortunately, TML and Titan did not provide the possibility to generate and simulate be-
haviora models with sequential structure. This issue has been solved and will be presented
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within Chapter 5. For now, the analyses have been performed by using the simulator Dione
and Verilog-A models. Theinformation which equations can be handled sequentialy is pro-
vided by the symbolic device models.

Table 4.13: Results of Sequential Simulations with Dione

Example Type Dim NSquqs NSimEqs Niter Nstep Ttran

Circuit 30 n‘a n‘a 1052 1027 | 0.137s
cfcamp

. Mo .639 s

(MOSL) Seq. Model 69 87 49 2142 1053 | 0.639
Sim. Model 156 0 136 4333 1568 | 2.044s
Circuit 57 n/a n/a 2117 1569 | 0.188s
opamp741 Seg. Model 243 177 127 4646 1786 | 4.878s
Sim. Model 420 0 304 4479 1748 | 6.891s
Circuit 20 n/a n/a 5195 4417 | 0.75s

(g;a'l\;‘g) Seq Model | 190 | 1205 | 123 | 8160 | 3691 | 63s

Sim. Model | 1395 0 1328 (no convergence)

Table 4.13 shows the number of (effective) sequential and simultaneous equations aswell as
the simulation results for three examples with three different simulation types each: the
netlist-based simulation (circuit), the behavioral model with use of sequential equations (seq.
model), and the simultaneous behaviora model (ssm. model). The dimension of the linear
system that is processed by the simulator kernel is the sum of the simultaneous equations,
equations resulting from netlist elements of the testbench, and auxiliary variables (as dis-
cussed in Section 4.1).

1395

cfcamp
(BSIM3)

243

opamp741
(BJT)

cfcamp (MOS1)

0 500 1000 1500

‘Dcircuit msequential @ simultaneous ‘ Dim [1]

Figure 4.20: Dimension of the Linear Systems
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Figure 4.20 showsthe dimensions of theresulting linear systems. By handling alarge portion
of the equations sequentially, the dimension was effectively reduced, but is still significantly
larger than for the netlist-based simulation. As can be seen from the number of iterations and
time steps, handling equations sequentially (instead of simultaneously) improved conver-
gence and time-step control for cfcamp_mosl, but led only to minor changesin terms of con-
vergence for the opamp741.
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Figure 4.21: Simulation Performance of
the Sequential Models

Asshownin Figure 4.21, the simulation performance increased by theintroduction of the se-
quentia equations, but is still far from being competitive to the netlist-based simulation. For
large examples like the cfcamp (modeled with BSIM3), no convergence could be achieved
without sequential equations. Even with consideration of sequential equations, the perfor-
mance is very low (slow-down of factor 84).

Modeling and solving explicit equations in a sequential manner typically improves conver-
gence and reduces the CPU time (approximately proportionally to the reduced dimension of
thelinear system). The CPU timeismainly determined by the number of simultaneous equa-
tions whereas the number of sequential equationsisonly of secondary effect. Therefore, itis
advantageous to formulate as many equations as possiblein an explicit form (see Section 6.1
for an optimization strategy).
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5 Compilation of Analytical Behavioral Models
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Within this chapter, enhancements to

increase the behavioral simulation ef-
ficiency of Titan will be presented.
Above al, the model compilation has
been effectively improved whereas
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kernel (linear solver, time-step con-

— ; trol, etc.) have been of lower priority.

The general architecture of (most) be-
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commercialy available model com-

pilers. These compilers seem to rather focus on trandlating an AHDL into their intermediate

language without performing optimizations. While the code generation will be addressed

within this chapter, possible optimizations of the DAEs will be presented in Chapter 6. Op-

timizations as well as model compilation have been integrated into Analog Insydes and can

thus be combined modularly. Figure 5.1 shows the modeling flow, highlighting the new
model compilation for Titan.

As aready mentioned, the compilation of analytical behavioral models has many anaogies
with compiling device models. Within device model compilers, device modelsrealizedin an
AHDL are trandated for a simulator specific interface (typically C/C++). Approaches to
achieve a high-performance compiled model are quite similar. Different from (behavioral)
model compilers, the objective of optimizing the model realization is of high priority within
device model compilers, asit is essential to generate amodel that is of at least equal perfor-

Model Export
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mance as a manual implementation. Device model compilers’ performances closeto the tar-
geted “human-optimized” implementation have been reported in [13, 76, 80].

The problems with compiling analytical behavioral models are of a more general nature.
Typicaly, these models are of much higher dimension and have to be processed completely
automatically. In contrast to that, device model compilationismore specialized (e.g. requires
admittance formulation, uses physical and topological knowledge, etc.). It is often based on
hand-optimized Verilog-A models, and may be accompanied by manual enhancements of
the resulting model. Experiments with the adms compiler [44] revealed that this strategy is
(not yet) applicable to general DAE-based behavioral models.

The intention of the enhancements applied to the Titan AMS environment was to improve
both the simulation performance and the numerical robustness. Main objectives were

» the redlization of a sparse loading,

 anew high-performance handling of sequential equations,

» the avoidance of restrictions resulting from modeling languages, and

» the reduction of the overhead of the former model compiler (as only very limited fea-
tures of TML were needed).

The latter aspect addresses a specialized compilation method for the analytical models to
achieve aclose and direct interaction between the compiled models and the simulator kernel,
which will be described within Section 5.3.

5.1 Tuning Simulator Options for Performance

Before presenting any enhancementsto the simulator, some basic issues that might be influ-
enced by simulator optionswill be addressed. The numerical solution of DAE systemsis par-
ticularly sensitive to parameters influencing the behavior of the linear solver, the
convergence criteria, and theintegration methods. In [39], acomprehensive discussion of the
most important simulator options is presented. Within this context, only some brief informa-
tion on how to enhance simulation performance will be given.

The most effective method to reduce the CPU time of simulationsis to keep the number of
Newton iterations N;,, assmall aspossible, because nearly all contributorsto the CPU time
scaleover N;,, .- Therefore, it isimportant to avoid unnecessary large numbers of time steps
as each time step requires at least one (more likely two) Newton iterations. Main causes for
this might be

» asmall time-step limit,

* alow iteration limit per time-step,

* over-accurate integration tolerances,
* unphysical fast signal edges, or

* break points (e.g. resulting from fine-granular PWL-sources, break-statements, or syn-
chronization issues with digital components in mixed-signal simulations).
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However, reducing the number of time steps not necessarily reducesthe CPU timein alinear
way: Small time-steps typically improve the convergence within each step (as the solution
for the time step is closer to the previous solution). Taking fewer time steps might conse-
quently impair convergence.

Other important aspects influencing the number of Newton iterations are accuracy options
and tolerances of models. Choosing too restrictive accuracy options might result in serious
convergence problems or even non-convergence. Careless or unintentional |oosening of tol-
erances holds the risk of wrong simulation results and non-convergence. The default simu-
lator settings might be too liberal for very sensitive circuits (e.g. bandgap). A general advice
on accuracy options cannot be given. In doubt, special attention should be paid to the corre-
sponding simulator options and tol erances specified within the model. The tolerancesin be-
havioral models should be selected according to the physical meaning of the model’s
variables.

Saving values during simulation should also be handled with care. Asthefilel/O to storethe
waveforms during simulation reguires a considerable amount of time, only variables of par-
ticular interest should be sel ected to save. Saving current values should al so be used carefully
as monitoring a current not only resultsin alonger processing time but, more important, in
additional equations within the linear system. This results from the fact that the branch cur-
rent to monitor is most likely not an unknown of the linear system (in MNA formulation),
and therefore an additional voltage source with zero voltageisintroduced within the network
to obtain the necessary current variable.

For Titan, the linear solver should be changed to one of the sparse solvers (as discussed in
Section 4.5). This improves the simulation performance for models of “higher dimension”
(from approximately 10 equations) significantly.

5.2 Sparse Loading

For complex behavioral models resulting in Jacobian matrices of high dimension but with a
low ratio of non-zero entries, sparse loading becomes a serious issue (for details see
Section 4.6). Above all, the handling of the Jacobian matrix (storage, evaluation, copying)
turned out to be worth an increased effort to utilize sparsity. As Titan generates afully sym-
bolic Jacobian matrix by automated derivation of the model’s equations, a large number of
complex expressions to determine the Jacobian’s non-zeros is necessary. Nevertheless, the
CPU timeis not dominated by the evaluation of these highly complex nonlinear expressions.
In fact, cache effects dramatically slow down the performance during the expression evalu-
ation. These cache effects are caused by a low data locality due to the dense storage of the
matrix. The sparse realization avoids processing and storage of structural zero entries of the
Jacobian matrix. Moreover, storing the Jacobian matrix in a sparse data structure results in
an improved data locality and effectively reduces the cache miss rate.
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Saad [68] provides a good introduction to sparse @
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sponding changesin the processing of the Jacobian ©c =
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Memdense = Di m2 . 64 Bit (Dense Storage) (Sparse Storage)
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For matrices of typical dimensions (likedepictedin

Figure 5.3 for the opamp741), the effect on memory consumption and data locality is enor-
mous. This matrix contains 1214 nonzeros at a dimension of 317 (sparsity of 98.8 %, mem-
ory reduced from 785 kB to 14 kB). Although very basic, the COO format is absolutely
sufficient as an intermediate storage within the loading process as neither fill-ins nor reor-
derings are necessary. Thanks to its simplicity, the handling of this sparse data structure re-
sultsin aminimal effort for initialization and administrative overhead.

t e

37 |

1 100 200 317

Figure 5.3: Structure of the Jacobian Matrix for opamp741
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Figure 5.4: CPU Time for Loading Using the new Sparse Loading (opamp741)

b ‘ S ‘
© X

. -

12} X

9] o

(=% [Te)

]

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

‘lFunc Ml Deriv @ Check O Stamp OMisc ‘ CPU Time Distribution (loading) [%]

Figure 5.5: Distribution of the CPU Time During Loading

Table 4.6 on Page 47 contains the preceding profiling results for the loading process of the
opamp741 example. By repeating the analysis with the sparse |oading method a significant
improvement of the performance could be observed. Figure 5.4 shows the improvement of
the sparse processing during loading. The eval uation of the Jacobian matrix, any checks per-
formed on the Jacobian matrix, and the process of copying the intermediate Jacobian to a
shared memory for thelinear solver have been sped up by individua factorsof 20to 30. The
complete loading process was sped up by a factor of 7. Merely the function evaluation for
determining the residual (Func) and the processing overhead (Misc) were not affected.
Hence, the distribution of the CPU time changed as shown in Figure 5.5. The processing
overhead now clearly dominates the loading process. Applying the sparse solver and realiza-
tion of the sparse loading resulted in a total speed-up of a factor of 10 for the opamp741.
Table C.1in Appendix C.2 contains the corresponding profiling results.

Figure 5.6 (left) depicts the CPU time per Newton iteration over the dimension of the chain
networks (see Section 4.6) analyzed with the new sparse loading implementation. The CPU
time for the behavioral simulation is now of linear complexity, too. Unfortunately, the ratio
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Figure 5.6: Performance of Chain Networks with Sparse Algorithms (left) and
Overhead of Sparse Loading for Dense Matrices (right) with TML Compiler

of the gradients of the fitting functions between behavioral and netlist-based simulation is
still significantly larger than one (6.66). This means that the performance of the behavioral
simulation, even in the best case of same convergence, is of at least a factor of roughly 7
slower than its netlist-based equivalent. The main reason for thisistheloading process (with
a gradient ratio of 16) while the ratio of 1.55 for the solving process is acceptable (for the
corresponding charts refer to Appendix C.2.4). Thus, the total discrepancy between both
simulation modes caused by overhead within the loading of behavioral models will still be
relevant for models of higher dimension.

Figure 5.6 (right) showsthe behavioral simulationsfor the complete networkswith and with-
out sparseloading. As sparse |oading has no effect on the complete networks, the difference
between both graphs represents the additional overhead by initializing and processing the
sparse data structure which is negligible. Hence, the improved |oading algorithm should be
advantageous even for Jacobian matrices of very low dimension or sparsity, and may there-
fore be used as default loading mechanism.

5.3 Concepts for a New Model Compiler

Fundamental prerequisites for the efficient processing of high-dimensional models are the
application of sparse storage and algorithms aswell as adirect interface to the smulator ker-
nel. Asthe previous section has demonstrated, the best performance that could be achieved
under optimal conditions with the standard modeling interface (TML) of Titan would still be
of at least afactor of 6.66 slower than a netlist-based simulation of equal dimension. Hence,
amore efficient and specialized approach to achieve the targeted simulation efficiency was
indispensable. Main objectives were the reduction of the overhead resulting from the gener-
ality of the TML compiler and a more direct interface to the simulator kernel. Therefore, a
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specialized model compiler to generate high-performance models for the so-called Z-Ele-
ment Model Specification (ZMS) was devel oped. This new C-based interface wasintegrated
into Titan to provide amodern and flexible interface as a basis for future device models.

In order to be able to gener-
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NVLIL

ate highly specialized com-
- - analytical behavioral models
and to avoid any restrictions
of the AHDLSs, code genera-
tionwasrealized within Ana-
log Insydes. Here, a system

of DAEs processed within

the modeling tool can be ex-
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standard C-compiler, and

subsequently  dynamically

v linked with the simulator
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The interaction between the

model and the simulator ker-

Figure5.7: Architecture for the Model Compilation (ZMS) ngl is redlized through a
Astheinterface was till in an early phase of development (outside the scope of this work),
some features of Titan (like the Titan solver) have not yet been adapted to be compliant with
ZMS. Therefore, al simulations of compiled models had to be performed with the MUMPS
or LAPACK solver (instead of the more efficient Titan solver). Unfortunately, this reduced
the performance of the solving process. This limitation is only a matter of development ef-
fort. Hence, another major improvement of the linear solver’s performance can be expected
by using the Titan solver. Astheloading process (which isin the responsibility of the model
compiler) does not interfere with the Titan solver, the presented results can easily be adapted
Within the following sections the key features of the new compiler [99, 102] and the gener-
ated modelswill be discussed. Figure 5.8 shows a summary of the realized features with ba-
sic requirements at the bottom of the pyramid and specialized processings on the top. The
basis for al models compilersis to be at least capable of handling simultaneous DAE sys-
tems. In order to enhance convergence, limiting and damping methods as well asinitia val-
ues are well-known methods. Tolerances are essential for determining the accuracy of the
model, but are also related to convergence and simulation performance. A sequential han-
dling was introduced in order to reduce dimension and simulation time [101]. Finally, sev-

piled models for the
Equation Setup Internal Netlist
for Titan, compiled by a
shared memory.
to the most performant solver.
eral optimization strategies aim at increasing the simulation efficiency. In Chapter 6, such
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strategies and algorithmsto optimize the equati ons before generating the C-based model will
be introduced and applied in combination with the compiled model generation.

Cache,
Preloading

Performance
Sequential Sequential
Handling Equations

Convergence ) !_imiting / Damping,
Initial Values, Tolerances
Basis/ Simultaneous Equations \

Figure 5.8: Feature Pyramid for ZMS Compiler

5.4 Compiling Simultaneous DAEs

Basically, all compiled models have to perform very similar process steps, the main differ-
ence being the efficiency of their realization. The models' tasks are to

* provide structural information (connectivity, topology, matrix structure, equation and
variable types, etc.),

* handle parameters (default values, parameter changes, range checks),
* provideinitial valuesfor the variables,

* perform numerical integration,

* provide and update the Jacobian matrix and the residua,

« prevent and handle numerical problems (floating point exceptions),

» define options and tolerances for the solver (natures),

« check for convergence.

During the initialization, the model provides the simulator kernel with structural informa-
tion. Thisinformation is used to manage common data structures, to process netlist entries,
and to perform topology checks. Parameter settings from the netlist to configure the model
are stored within the shared memory. Furthermore, the model provides the simulator kernel
with initial valuesfor the variables. All other process steps have to be performed within each
iteration. The most important and time-consuming task is the eval uation of the Jacobian ma-
trix and the residual for Newton's method.

Titan solves a system of DAEs by iteratively applying
J-AX = (o + 0gyn) - AX = —F(X). (5.2)

The static and dynamic Jacobian matrices are determined within the model compilation by
calculating the partial derivatives of the DAE system:
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e it

Jstat - aXdiff aXalgebr - Fstat, 11 Jstat, 12} (52&)
afamebr afa|gebr ‘Jstat, 21 ‘]stat, 22
OXgitr  OXalgebr
afdiff afdih‘
den = axdiff axalgebr = den, 1n ﬂ (52b)
afalgebr afalgebr 0 0
aXdiff a).(algeb[

As the compiler is based on the Mathematica algebra system, the symbolic derivation is
available without the additional effort of implementing automatic derivation methods. The
resulting matrices are determined by evaluating the symbolic matrices with the actual solu-
tion vector. They are stored in coordinate storage form within the shared memory. Theresid-
ual calculation requires the evaluation of the DAE system with the actual Newton solution.
Prior to that, the necessary dynamic values are determined through numerical integration,
which is performed viaacall to the simulator kernel’s numerical integration function. Time
step length, integration method, and storage of previous values of differential variables are
handled by the simulator kernel.

5.5 Compiling Sequential DAEs

In common circuit simulators, the majority of equations contained in a device model is
solved internally in the device model in order to compose a compact stamp that is inserted
into the simulator’ s Jacobian matrix. The model-internal equations are presolved in a proce-
dural manner without applying iterative methods. The main intention is to keep the dimen-
sion of the linear system as low as possible. The concept of sequential equations is used to
preprocess behavioral modelsin asimilar way and thereby reduce the dimension of the linear
system.

Modeling DAE systems with sequential structure provides an effective measure to improve
performance and robustness of the model (compared to a fully simultaneous processing).
Theexplicit formulation and procedural order of the sequential subsystem provide the means
to solve the sequential equations directly and locally from the previous solution of the simul-
taneous variables. Thus, the sequentia variables are less sensitive to numerical problems,
they do not have to be solved by alinear solver, and they do not cause aresidual. As soon as
the sequential variables are solved, the residual for the simultaneous equations can easily be
determined by using the solution vector of the sequential variables. The conventional New-
ton method is applied in order to solve the simultaneous equations. Thus, the reduced dimen-
sion of the linear system enhances the solver’s performance.
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Figure5.9: Matrix Structure of a Sequential DAE System for Titan

Asaconseguence of the approach to solve the sequential equationslocally, changesin New-
ton’ smethod are necessary: applying the chain rule during the determination of the Jacobian
matrix for the s multaneous equationsin particular istime-consuming. Asthe structure of the
Jacobian matrix is known to have alower diagonal block with unit elements at the main di-
agonal (dueto the sequential equation structure), thisbeneficial structure wasused to achieve
an efficient processing of the chain rule.

Figure 5.9 visualizes the structure of the Jacobian matrix for a Titan simulation including a
model of sequential DAE structure. The gray parts of the matrix show the resulting Jacobian
matrix that will be used within the linear solver whereas the white part will belocally solved
within the model. The dark gray arearepresents the stamp of the behavioral model. The sub-
matrix J.;, resultsfrom the netlist elements of the testbench and isset up by direct inspection
from device models. The model equations (sequential aswell as simultaneous ones) result in
the submatrix J where J,; is of lower diagonal structure. Finally, the submatrices J,,
(node potentials of model ports) and J;,, (port currents contributing to nodal equations) rep-
resent the connectivity between both subsystems.

Subsequently, asequential Newton’ smethod is described that takes advantage of the sequen-
tial structure of a DAE system. Let f(y, x,t) = 0 beaDAE system with sequential struc-
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ture. The vector of unknowns consists of the sequential variables y and the simultaneous
variables x . Setting up the linearized system yields the following equation system:

J- AH - Ji Ji AH - _ fseq(yyx) (5.3)
X Jon I X fsm(Y; X)
Due to the lower diagona structure of J,, , it is possible to solve the sequential subsystem

for Ay inan explicit form (J,; isregular and can beinverted efficiently due to its diagonal
structure). The Newton correction for the sequential variablesyields

Ay = =371 (Faeq(¥s X) + JpAX) . (5.4)

By substituting Ay into the simultaneous subsystem a linear system of reduced dimension
isachieved. It hasto be solved for the Newton correction of the simultaneous variables Ax :

_J21J11(fseq(ya X) + JpAX) + IpAX = —fg(y, X) (5.59)

(2 _leJﬁle)AX = Fgm(y, X) + le‘]ﬁfseq(y, X) (5.5b)

As the sequential variables y can be determined through direct solution of the sequential
equations with the previous solution vector of x through

Vi = feeqi(Y1---Yi—, X) for i =1..n, (5.6)

their residua feq(Y, X) is zero. Hence the residual of the reduced system can easily be de-
termined with the knowledge of y. Consequently, Newton's method has to be applied to
solve

JAX = —fgm(X) (5.7)
with the reduced Jacobian matrix J' obtained by the following Schur complement:
J = 322_321311312 (5.8)

J' represents the Jacobian matrix for the simultaneous subsystem taking into account addi-
tional contributionsto the original Jacobian matrix resulting from the evaluation of the chain
rule for the sequential equations.

Function Evaluation

The function evaluation within the sequential Newton method basically requirestwo process
steps. The evaluation of the sequential equations with the previous solution of the simulta-
neous variables yields the solution vector for the sequential variables. The residual for the
simultaneous equations has to be determined using the previous simultaneous solution and
the current solution of the sequential equations.
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However, the evaluation of the sequential equations contains differential variables that re-
quire a numerical integration before the equations can be processed. The evauation of the
(simultaneous) residual might require another numerical integration. Calling the integration
function twice within one iteration implies the risk of implicit second order derivatives that
would result in amajor inconsistency of Newton’s method. In order to prevent this problem,
the sequential subsystem itself is partitioned into a static and a dynamic subsystem.
Definition 5.1 provides the algorithm for the partitioning.

Definition 5.1 - Partitioning Sequential Variablesinto Algebraic/Differential Variables

As stated in Definition 2.3, the sequential variables y of a first-order DAE system with se-
quential structure can be partitioned into algebraic (Y, qenr ) and differential sequential
variables (ygit ) and corresponding equations. Thealgorithmisinitialized by yqiq; = & . By
applying

yalgebr = YN Vit

Yaisr = {yalgebr‘fseq(ydiff, X, X)}

in a fixed point iteration, the required partitioning for the sequential variables is obtained.
All sequential variablesthat are defined by a sequential equation containing at least one dif-
ferential simultaneous variable or a previously defined differential sequential variable are
handled as differential sequential variables. As each sequential variable corresponds to a
sequential equation, the partitioning for the equationsisimplicitly achieved.

[ ]
The partitioning ensures that an expression does not contain more than one differentiation

for each variable, either within the sequentia or the simultaneous equations. The function
evaluation is performed as shown below:

yalgebr = fseq, algebr(yalgebr’ X) (5-93)
(Yaigeor» X) = Numerical I ntegration(Yagepr> X) (5.9b)
Yaitt = fseq, ditt(Yaigebrs Yaigebrs Yaites X» X) (5.90)
RHS = _fsim(yalgebn yalgebr’ Yaitt> X, X) (5-9d)

Thenumerical integration isnow required only once and second order derivatives are impos-
sible to achieve. The residual for solving the simultaneous equations using the linear solver
is computed using the previously calculated solution for the sequential variables.

Determination of the Reduced Jacobian Matrix

The Schur complement is the main reason for overhead when utilizing the sequential struc-
ture of the DAE system. Therefore, it has to be implemented efficiently in order to reduce
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the additional effort within theloading process. Itsimplementation will be discussed in detail
asit isone of the key features of the new compilation approach.

The computation of the Schur complement makes use of so-called structural matrices (see
Definition 5.2 and Figure 5.10). A structural matrix contains referencesby index to the struc-
tural non-zero elements of a symbolic matrix. It will be used to simplify the processing of
the Schur complement.

Definition 5.2 - Structural Matrix

M
The structural matrix S is derived from a matrix of
exprue0 | StuctM) symbolic expressions M by
~M 0 .
0 |expraofe | S = struct(M) with
o™
22

struct:{ MIi,jle {0} = I[i,]j]

Figure5.10: Structural Matrix 0—0

There are several solutions to evaluate the chain rule during the Jacobian matrix setup. The
resulting J' matrix is the same for all approaches. Neverthel ess, the implementation signif-
icantly determinestheir efficiency:

» Symbolic Schur Complement: All sequential variables within the simultaneous equa-
tions are substituted by their determining sequential equations. Subsequently, a fully
symbolic J' matrix is set up by symbolic derivation. This approach resultsin an expres-
sion set of tremendous complexity with a large degree of redundancy. The complexity

of the expressions aone disables this procedure even for low dimensional DAE sys-
tems.

Numerical Schur Complement: The full Jacobian matrix J is set up by symbolic der-
ivation during the model compilation (as for both following methods). After evaluating
this matrix numerically within each iteration, the reduced Jacobian J' is calculated
from Equation (5.8). This approach requires one matrix inversion and two matrix multi-
plications without utilizing the structural knowledge of the problem (high sparsity,
lower diagonal structure).

Semi-Symbolic Schur Complement: This method combines the strengths of both
numerical and symbolic processing. Therefore, the structural Jacobian matrix
S = struct(J) isset up and the Schur complement is calculated symbolically from S
to derive S'. Findly, evaluating J and S results in the reduced Jacobian matrix J'.
Hence, the Schur complement takes advantage of structural zeros within J . Unfortu-

nately, the necessary symbolic matrix operations still result in an extraordinary high
complexity (disabling the approach even for medium size matrices).



78 Compilation of Analytical Behavioral Models

* Semi-Symbolic Schur Complement by an Elimination Method: In order to reduce
the complexity of the previous approach, a method with low redundancy (no repetition
of performed calculations) and maximal usage of structural properties of the matrices
(use of structural zeros and ones) is proposed. Instead of calculating the Schur comple-

ment based on S, the submatrix S,; = struct(J,,) iseliminated with the diagonal ele-
ments of submatrix S;; = struct(J,;) that are structuraly one. The performed
elimination steps are “recorded” and represent a procedurally evaluated transformation
to calculate S' from the submatrices of S. Thus, the high complexity of a fully sym-

bolic S matrix can be avoided. An advantage of the transformation process is that it
contains alarge number of very simple expressions (instead of asmall number of highly
complex expressions for the previous method).
Due to its advantageous properties, the latter approach was chosen. For simplicity, the sep-
aration of J into static and dynamic portions has been neglected so far. In fact, the Jacobian
matrix results from:

afseq afseq afseq afseq

J = Jstat + a‘]dyn - aXseq aXsim +q aXseq aXsim (510)
afsim afsim afsim afsim
aXseq aXsim aXseq a).(sim

The Schur complement has to be computed for the complete Jacobian matrix J , but the re-
sulting model is supposed to return Jq,, and Jg,, Separately. Therefore, the structural ma-
trices are set up for both the static and dynamic Jacobian matrices:

Sgar = Struct(Jgar) (5.119)
Syyn = struct(Jgyn) (5.11b)

Before processing the Schur complement, the structural matrix S isinitialized by
S = Syar + *Sqyn (5.12)

with the symbol o representing the integration variable. After calculating the Schur com-
plement

S = 8,-Sy Sﬁ Sp, (5.13)
the resulting matrix is partitioned into static and dynamic contributions as follows:

S.stat = S"(X =0 (514&)

Sayn = S|, -1~ Ssta (5.14b)
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Figure5.11: Stage 1 (Ieft) and Stage 2 (right) of the Elimination Process

The Schur complement is performed by a two-stage elimination process. Within the first
step, the submatrix S,; iseliminated columnwise using the diagonal elementsto achieve an
identity matrix. The elimination starts with the first column. During the processing, the sub-
matrix S;, isgradually changedto S';, . Figure 5.11 (left) exemplarily shows a single step
of the proposed elimination method. In order to eliminate theentry A, an elimination stepis
added to the transformation rules:

C=C-AB (5.15)

During the elimination, fill-ins (former structural zero elements) are generated within the
submatrix S,, . Within asecond stage, the entries of the submatrix S,, are eliminated using
the derived identity matrix. Figure 5.11 (right) shows the elimination scheme for this stage.
The elimination is performed row wise and results in the desired chain rule contributions
within submatrix S,, . The fill-ins resulting from this elimination process have to be taken
into account to initialize data structures correctly and to provide consistent structural infor-
mation to the simulator kernel. Finaly, the gray part of the matrix in Figure 5.11 (right) is
provided as reduced Jacobian matrix. The elimination typically results in alarge number of
transformation steps to perform. Still, asingle elimination step is of very limited complexity.

Example 5.1: Schur Complement for Jacobian Matrix of the Foucault Pendulum

This example demonstrates the different methods to cal culate the Schur complement. Asthe
dimension of the Foucault pendulum’s DAE system is pretty low, the example visualizesthe
methods but does not make the complexity problemsvisible. The Jacobian matrix (5.16) was
previoudly derived in Example 3.1 (Page 33).

The numerical vaues within the example are determined by calculating the first Newton it-
eration of the DC analysis. The used vaues are:

y1-0., y2- -0.4905, y3-0., x150.5, x2-50., x3-0., x4 0. (initial values)
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g-9.81, | - 10, w- 0.1, lam- % (design point, parameter values)

! 00 0 0 0 2w
10 10 0 0 0 o |
|- Sodan g g 0 0 0 o |
|-Cosflam 1 -x1pt]| 9-y3it] 0 0 o | (5.16)
|0 0 -x2[t]1]0 2-y3(t] 2wsilam 0 |
|0 00 0 0 1 o |
(0 00 0 0 0 1)

Symbolic Schur Complement

For the symbolic Schur complement, the linearized system is determined directly from the
fully simultaneous system. This equation system is achieved by substituting all occurrences
of asequential variable by its symbolic definition within the sequential equation. Afterwards,
the resulting simultaneous DAE system is derived for its variables to generate the static Ja
cobian matrix (5.17).

‘rlg_ 2w9n[|lam X41t] 0 0 —2WO)S[| am - 2w9n[|lam x1[t] \‘
g 2wdn(lam x4[t) 2w nfl am x2[t ]
} 0 T B 2wQos[lam - D B } (5.17)
{\0 0 1 0 }
(0 0 0 1 )

Compared to the Jacobian matrix of the sequential DAE system (5.16), (5.17) containsacon-
siderable amount of redundant expressions. This effect becomes more and more important
with an increasing dimension of the DAE system. In order to determine the numerical result,
the reduced symbolic Jacobian matrix (5.17) is eval uated with the numerical valuesresulting
in (5.18).

981 -0. 148492

: )
981 . 141421 O. |
y | (5.18)
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Numerical Schur Complement

For the numerical method, (5.16) is evaluated with the numerical values before calculating
the Schur complement. The resulting Jacobian matrix (5.19) is of block lower-triangular
structure as the first three equations are sequential equations.

(1 00 0 0 0 0.2
|0 10 0 0 0 0 |
}7 1 o901 |o 0 0 0 }
| 104/ 2 |
}-/—1. 1 -0.5[/0.981 0 0 0 } (5.19)
\2
0 00 |o 0.981 0.141421 0 |
|0 00 0 0 1 o |
10 00 0 0 0 1)
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Subsequently, the Schur complement is calculated from the submatrices of (5.19):

1
(0.981 0 0 oy [~75 1 05 1 001 000 02
|0 0.981 0.141421 0| | " | o 10| o)
| (-lo 0 o ) 0000
{0 0 1 0" b2 o 1] | \
lo 0 0 1) |9 00 1 "2 j ‘eooo J
o 00 )
(0.981 0. 0. ~0. 148492
_lo. 0.981 0.141421 0.
- io. 0. 1. 0. } (5:20)
(0. 0. 0. 1. J

The resulting Jacobian (5.20) isthe same again. For matrices of higher dimension, the matrix
inverse aswell asthe matrix multiplications are problematicin terms of computational effort.

Semi-Symbolic Schur Complement

Combining both numerical and symbolic approaches, the semi-symbolic Schur complement
is based on the structura matrix of the symbolic Jacobian matrix (5.16) of the sequential
DAE system. The structural matrix (5.21) consists of referencesto the numerica valuesthat
have previously been calculated as shown in (5.19). For better readability, the indexing has
been printed using standard matrix indices. In fact, the matrices are stored in COO matrix
format containing only the non-zero entries of the matrix.

(1 0 0 0 0 0 GIl, 71
|0 1 0 0 0 0 0 \
|G3, 11 0 1 0 0 0 0 |
T4, 1] G4 2] G4, 31| G4 47 0 0 0 | (5.21)
lo 0 G5, 31| 0 G5, 5] G5 6] 0 \
o 0 0 0 0 Gi6, 6] 0 |
(0 0 0 0 0 0 G[7, 71)

In this method, the Schur complement is calculated by symbolically processing the subma-
trices of (5.21):

(G4, 41 0 0 0 \
0 G5, 5] G5 6] 0 |
0 0 Gi6, 6] 0 |
(0 0 0 GI7, 71)
-1
{85[4, 1) 85[4, 2] g[g, 2]} 1 0 0, 000 G171
lo o o o 10/ . 0000 \
lo 0 0 j le’ 101/ (o000 J
(G4, 41 0 0 -G1, 7] (G4, 1] -G[3, 1] G[4, 3])
_ o G5, 5 Gi5 6] Gil, 71Gi3, 1] G5 3] | (5.22)
|0 0 G6, 6] 0 ; '
(0 0 0 Gl7, 7] J

Theresulting Schur complement of the structural matrix (5.22) is subsequently evaluated us-
ing the numerical values of (5.21), and leads to the same result. The entries within the last
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column insinuate the growing complexity of the expressions within this method. Further-
more, the multiplication of G[1,7] and G[3,1] is performed twice.

Semi-Symbolic Schur Complement by Elimination

Finally, the preferred method presents the semi-symbolic Schur complement by elimination.
The starting point isthe structural matrix (5.21). The processing aims at transforming it into
anew matrix with the lower-left submatrix being eliminated to zeros. Afterwards, the trans-
formed lower-right submatrix is evaluated with the numerical valuesin order to achieve the
numerical Jacobian matrix of the simultaneous subsystem.

(5.23) shows the sequence of elimination steps that are necessary to transform the matrix. At
first, the entry G[3,1] is eliminated in order to achieve a unity matrix within the upper-left
submatrix. Afterwards, the entries of the lower-left matrix are eliminated resulting in fill-ins
in G[4,7] and G[5,7].

-G[1, 71 G
= -G[1, 7] G
-G[3, 7] G +G4, 7] (5'23)
- -G[3, 716G
Asit can be seen within the elimination sequence, the multiplication of G[1,7] and G[3,1] is
now only performed once to determine G[3,7]. Subsequently, G[3,7] is used twice to deter-

mine other matrix entries. Thus, the chain rule was evaluated with very low effort.
[]

Supplementary Performance Enhancements

Further enhancements to the performance of the Schur complement realization have been
achieved through strategies known from compiler design: constant propagation, constant
folding, and pre-evaluation of loop-invariant expressions (see[1] for details on compiler de-
sign). Since these optimizations have already been achieved on arelatively high level of ab-
straction (instead of relying on the C-compilations optimization), even structural changes
within the matrices can be taken into account.

Constant propagation identifies constants assigned to avariable and removes the correspond-
ing variable by replacing al occurrences of the variable with the constant’s value (saving
evaluation time and memory). As the Jacobian matrix J contains arelatively large number
of constant non-zero entries (especially ones) and simple expressions containing only para-
meters (e.g. 1/R), these entries have been recursively propagated into the transformation
rules of the Schur complement and the J,, or Jqy,, matrices. Combined with constant fold-
ing (pre-evaluation of expressions containing only constants) the Schur complement can be
simplified efficiently.

Afterwards, the pre-evaluation of loop-invariant expressions saves unnecessary frequent
evaluations of expressions within a loop. This strategy is adapted as so-called preloading
within simulators. The constant entries of the reduced Jacobian matrices J'y,, and J'y,,, are
loaded only once within theinitialization of the model instead of being processed repeatedly
within each iteration. Furthermore, there is typicaly a remarkable amount of sequential
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equations which can also be pre-evaluated instead of being recalculated within each itera-
tion. These sequentia equations that contain solely constants and parameters are only eval-
uated within the initial iteration of each analysis. Thus, the computational effort within each
iteration is reduced.

Asthe expression evaluation for simultaneous equations and the reduced Jacobian matrices
do not contain any interdependencies, they can be evaluated in any order. Hence, the order
of the datawithin the memory should be optimally adapted to the expression evaluation with
regard to cache effects. Storing data within arrays restrains the C-compiler from optimizing
the memory allocation with respect to expression evaluation and cache effects. In some cas-
es, an array structureis inevitable (storage of vectors and matrices within the shared memo-
ry). Local data (e.g. the internal Jacobian matrix) is preferably held in separate variables
although the matrix structure would typically advise an array storage to achieve optimal re-
sults from C-compiler optimizations.

5.6 Improving Convergence

Tolerances

Tolerances are of fundamental importance to the accuracy and the convergence of Newton's
method since they determine the level of accuracy to which the linearized systems are
solved. During simulation, tolerances for equations and variables are used to check for con-
vergence (refer to Section 3.1). In netlist-based simul ations, thetolerances can relatively eas-
ily be specified, since the linear system typically consists of noda equations (sums of
currents) and afew voltage equations (voltage sources, inductors) only. For behavioral mod-
els, thetolerances are specified by the user and should match the physical meaning of avari-
able or equation (e.g. charge, force, temperature).

Determining tolerances in general DAEs without prior knowledge of the physical meaning
of variablesis not possible without |oss of generality. For future applications, the Analog In-
sydes based modeling flow should be extended by a general strategy to keep track of toler-
ances for al contained symbols and equations. As the DAEs are set up from atopology and
device models, the physical meaning can be provided by the device models and stored within
an additional data structure. This information has to be managed and updated whenever an
equation is subject to algebraic processing. Therefore, reformulations, simplifications car-
ried out by model reduction, substitutions, and many other processings do not only have to
change the DAE system but they also have to update the information on tolerances of the
equations.

Without keeping this additional physical information from device models, the proposed con-
sequent handling of tolerances is not yet available. Compromises and heuristics have to be
applied to determine reasonable accuracy settings. Hence, internal naming conventions for
the variables in Analog Insydes have been used to (heuristically) determine the physical
meaning of variables.
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Table5.1: Tolerances used within Compiled Models

Tolerance absolute | relative
Residual 10 105
Variables 106 105
Differential Variables 102 10

Table 5.1 summarizesthe tolerance settings that have been used for the C-based models. Due
to the general nature of the problem (to find reasonable tolerances for ageneral DAE system)
these settings are a good trade-off.

Initial Values

Inappropriate initial values of the variables are a common source of convergence problems
in DC analysis. As Newton’'s method converges better in proximity of the solution, a good
and consistent initial value is of major importance for DC analysis. Possible problemsin DC
analysis are non-convergence, numerical problems (e.g. division by zero), and convergence
towards a“wrong” operating point (if multiple solutions are available). By default, simula-
tors start from zero, if no user-specified initial value (e.g. nodeset) is available. Especially
for equation sets that are not (manually) optimized for convergence, thus not internally pre-
venting numerical problems (e.g. by case differentiation), bad initial values are aseriousis-
sue.

The numerical problems result from nonlinear operations causing floating point exceptions
during the evaluation (e.g. division by zero, infinity, not a number). Unfortunately, once a
single variable is assigned a floating exception value, the exceptions propagate through the
equation system causing irrecoverable inconsistencies. Therefore, it is essentia to avoid any
floating exceptions (e.g. by limiting functions, damping, initial values). A special case of
such floating exceptionsisdivision by zero. It primarily happenswithinthefirst DC iteration
(dueto variablesinitialized with zero) and can not be handled by limiting functions. Damp-
ing strategies are not suitable either as a workaround of this problem, as they depend on a
previous successful solution, whichisnot applicablewithin thefirst DC iteration. Inany sub-
sequent iteration, division by zero is most unlikely to be a problem since variables are very
unlikely to reach an exact value of zero within Newton’s method?.

Consistent initial valuesfor the internal variables of amodel provide an effective measureto
avoid this problem. They prevent numerical problems and support convergence by starting
theiteration close to the expected solution. An additional problem that occurs with DC con-
vergence in behavioral simulation is the low effectiveness of homotopy methods for large
behavioral models. As most homotopy methods are based on topological information (e.g.

1 Zero vaues during the iterative solution might result from conditional statements or functions like e.g. max(),
min(), sign(), unitstep(). These functions should be used with care within models and (if possible) return avalue
close to zero instead of an exact zero.
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slowly ramping up sources, inserting capacitors at nodes) they have limited effect on behav-
ioral models. The methods can only influence the ports of amodel but not the internal equa-
tion set.

Within the model compiler consistent initial values are determined by using the DC operat-
ing point available within Analog Insydes. Thus, initial values for most variables are avail-
able and are applied within the model initialization. Theseinitial valuesarea DC solution to
the simulation, provided that the testbench the model is integrated in is the same as for the
modeling process. If this precondition is not met, the values provide at least some basic con-
sistency between the variables. Any variable without aniinitial valueisinitialized with apos-
itive random number close to zero instead of exactly zero. The random values also avoid
zeros resul}ing from differences of variables that were initialized with the same value (e.g.
(Vi-Vo) ™).

Limiting Functions

Theintention of limiting functionsisto prevent floating point exceptions by local correction
of functions that could cause such problems. The main objective is to extend the domain of
nonlinear functions to the complete range of possible argumentsin order to prevent domain
exceptions (e.g. square root or logarithm of negative numbers). Furthermore, the co-domain
of the limited functions should not exceed the possible range of floating point numbers.
Thus, most of the root causes for floating exceptions within the model evaluation can be pre-
vented.

The origina functions are replaced by the limiting functions. They return limited values
when being used outside of their area of validity. The limited value must not be accepted as
a solution for the function. The intention is rather to overcome short-term problems and to
force the limiting functions to converge back to the area of validity. In order to avoid false
convergence, the model activates a limiting flag when using a limiting function outside its
areaof validity. Thisflag instructs the simulator kernel to continue the iteration until no lim-
iting functions are active anymore.

Dueto the fact that behavioral models may contain automatically generated or manually cre-
ated equation sets, limiting functions for behavioral models are more important and more
complicated asfor device models. Within device models, limiting functions are typically ap-
plied with regard to physical knowledge of the device (e.g. pn-junction limiting), which is
impossible for general models. Furthermore, device models are optimized for convergence
by experts whereas behavioral models may also have been created by unexperienced users.
Important issues related to the definition of limiting functions are:

 Determining the area of validity and the bounds for the activation of the limiting func-

tion
* Determining a simple and sufficient continuation function (mostly linear)
* Creating convergence back to the area of validity

» Taking care of the continuity of the piece-wise defined limiting functions (values and, if
possible, first-order derivatives)
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* Limiting the derivatives of the limiting function (to keep function and derivative consis-
tent)

« Avoiding to return exact zero numbers (also for derivatives)
308

Tygi ca (double precision) floating point numbers have arange of approximately 10 ™ to
10%® (dependi n% on architecture and number format). Numbers with an absolute value
smaller than 10 (except 0) cause an underflow, numbers of an absolute val ue greater than
10°® resultin overflows. Apart from the theoretically possible range of floating point num-
bers, values of high orders of magnitude result in serious problems for linear solvers due to
ill-conditioned systems. Therefore, the numerics of the problem adviseto limit functions al-
ready at considerably lower orders of magnitude (e.g. 10* ). All nonlinear functions should
cover thewhole domain and have a co-domain that does not exceed the predefined maximum
value. Problematic functions in terms of the domain are square root and logarithm. In terms
of overflow/underflow especially exponential and power functions are critica (exp, pow).

Local damping strategies areaspecial case of hard-coded limiting functions. These functions
adaptively determine properties (e.g. bounds, gradient, value) of the limiting functions by
past values of the function’s arguments. Thus, amore specific and efficient limiting with re-
gard to the function’s application is possible. As this strategy would require the storage of
past values of the expressions that are used as arguments for all of the concerned functions,
it is not efficiently applicable for behavioral modeling.

5.7 Results

The performance of the model s generated by the new ZM S-based compiler will be presented
within this section. Due to the missing integration of Titan's default sparse solver for the
ZMSinterface, al following simulations have been performed with the MUMPS solver. As
this solver’s intention is to process systems of much higher dimension, it is of suboptimal
performance for these smulations (although it is much more efficient than the default
LAPACK solver). As previously mentioned, the ZMS interface should be enhanced to be
compatible with the Titan solver that has shown to achieve ahigh solving performance (refer
to Section 4.5). In order to evauate the efficiency of the model compilation, the presented
statistics and charts will focus on the CPU time for the loading process. The overall perfor-
mance for future applications with the Titan solver can be preestimated by adding the pre-
sented |oading performance and the solving performance that was achieved using the TML-
compilation and the Titan solver.

First of al, the analyses of CPU time over model dimension for the linear networks have
been repeated with the compiled modelsin order to check the sparse loading and to estimate
the overhead between both simulation modes. Figure 5.12 shows the loading performance
for the complete and the chain networks. The charts for total and solving performance can
be found in Appendix C.2. The loading performance of the chain networks was efficiently
improved to aratio of only 1.2. Thus, the overhead was reduced to only 20 % (compared to
afactor of 16 for the sparse loading using TML). For the complete networks, the loading is
even faster than for the equivalent netlist-based simulations (due to the efficient prel oading
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Figure 5.12: Loading Performance for Complete (left) and Chain Networks (right)
for Titan with ZM S-Based Models

applied within the compiled models). As the network is completely linear, all entries of the
Jacobian matrix can be preloaded within the model initialization. Hence, the model evalua-
tion within each iteration merely consists of the residual calculation.

In Table 5.2, the performance of the compiled models is compared to the TM L-based model
compilation (already including sparseloading). Asthe dimension indicates, thelocal solving
of sequential equations significantly reduces the dimension but does not achieve dimensions
competitive to the netlist-based simulation. This problem will be addressed by optimization
methods presented within the next chapter. The loading performance (T,,.q) could be effi-
ciently enhanced by the ZM S compilation. The slow-down (S‘Olad ) of the CPU time for the
loading process demonstrates that the processing within the compiled modelsis only afactor
of 2 to 3 slower than the circuit simulation (for the Gummel-Poon and MOS Level 1 based
models).

Figure 5.13 visualizes the slow-down factors for these models compared to the TML-based
simulation. The compiled models achieved major speed-ups between 3 and 12. Compared to
the performance that was originally reached by TML models without sparse loading (slow-
down of 210 for opamp741), the CPU time wasimproved by factorsof 10 to 70. Considering
the sequential structure, it is now also possible to smulate models based on the symbolic
BSIM3 model. Due to the prevention of numerical problems (floating point exceptions)
through the sequential equations, convergence could be achieved for the highly complex cf-
camp and nand2 examples. Indeed, the slow-down for these modelsisstill considerably high
(cfcamp: 55, nand: 28).
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Table 5.2: Performance Measurements (ZM S Compilation)

Example Type Dim Niter/step Tload S_(;Lad
Circuit 28 2.0 0.046 s 1
o Seg. Model (ZMS) | 47 2.95 0.159 s 3.46
multiplier
Model (ZMS) 95 2.97 0.178 s 3.87
Model (TML) 113 2.37 0.634 s 15.85
Circuit 58 2.25 0.178 s 1
Seg. Model (ZMS) | 137 3.05 0.502 s 2.82
opamp741
Model (ZMS) 314 31 0.568 s 3.19
Model (TML) 368 3.49 5.805s 32.61
Circuit 23 201 0.069 s 1
Seq. Model (ZMS) | 62 3.24 0.134s 1.94
cfcamp_mosl
Model (ZMS) 149 371 0.188 s 2.72
Model (TML) 149 2.03 0.49s 7.1
Circuit 21 212 0.469 s 1
cfcamp
Seg. Model (ZMS) | 83 2.87 26.02s 55.48
Circuit 11 2.09 0.075s 1
nand2
Seq. Model (ZMS) | 27 3.25 2.092s 27.89

Comparing the results of the simultaneous and the sequential processing by the ZMS-com-
piler, the speed-up by applying the sequential solving method does not yet look satisfying.
Chapter 6 will show, that the advantages of the sequential Newton method will have a dis-
tinct effect on the simulation performance as soon as they are used in conjunction with DAE
optimization techniques.

The presented work aimed at the integration of a high-performance model compilation into
the symbolic analysis toolbox. Compared to TML-based models, it has significantly en-
hanced the simulation performance to a level that is aready quite competitive to netlist-
based simulations (slow-down for opamp741 reduced from 210to 3). Aboveall, the efficient
handling of the equation systems led to a major speed-up. By applying a loca sequential
solving method, the dimension of the linearized equation system has been reduced signifi-
cantly. The realized sequential Newton method enables several optimizations of the DAE
systems that would have been ineffective without this specialized processing of the equation
system.
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6 Optimization of DAEs for Numerical Methods

As demonstrated in Chapter 4, the
formulation of behavioral models de-
termines the simulation performance
to alarge degree. Within this chapter,
algorithms to optimize the mode! effi-
ciency by algebraic transformations
of the DAE systemswill be presented.
Figure 6.1 shows the bottom-up mod-
eling flow including the model opti-
mization. The term “optimization”
within this context does not refer to
the mathematical meaning of optimi-
zation methods, but to its meaning
within computer science and compiler
design, improving the efficiency of a
system. The intention is to automati-
caly optimize the eguation sets
through algebraic reformulation (se-
mantics-preserving transformations)
with respect to the simulation algo-
rithms. All agorithms have been inte-
grated into Analog Insydes and can be
applied to general DAES. Thus, aflex-
ible and modular application of the
equation optimization is possible.

Compiler Optimizations

Design Framework I

Titan

Circuit Netlist

Analog Insydes

Netlist Import

) Symbolic Device Models )—>|

Equation Setup

Circuit Equations

lr Model Reduction J

(omitted)
|
|
|
T
|
|
|

Equation Optimization

C for Titan (ZMS)

Model Export

Compiled Model

Figure 6.1: Bottom-Up Modeling Process with

Model Optimization

Unlikein C-compilers, the reformulations are performed on a high abstraction level and are
supported by an agebra system. Therefore, the variety of possible optimizations is much
larger. A global optimization of the equation set is possible (e.g. structural changes of the
equation system). Nevertheless, the strategies are very similar to those known from compiler
design. [1] provides a comprehensive introduction to compilers and optimization strategies.
Typica compilers perform machine-independent and machine-dependent code optimiza-
tions within a two-stage approach. The latter can only be performed with a detailed knowl-
edge of thetarget platform in order to take advantage of its strengths. Similarly, adistinction
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between simulator-dependent (Chapter 5) and simulator-independent optimizations
(Chapter 6). The following list contains a description of code optimizations that can be ap-
plied in a generalized form to DAE systems (refer to [1] for details):

« Data-flow analysis — Performing analyses of the interdependencies between expres-
sions to optimize for parallelism and optimal evaluation order. A similar approach has
been applied in order to identify sequential equations (for procedural evaluation) within
a simultaneous eguation set.

» Common-subexpression elimination — Recognition and pre-evaluation of repeatedly
used subexpressions in order to avoid redundant computational effort. This optimiza-
tion was applied to DAEs to reduce their complexity.

» Copy propagation — Recognition of constant assignments (e.g. X = 1) and copy State-
ments (e.g. X = y), removal of the assignment, and propagation of the assigned value.
Within DAEs, redundant equations can be removed by the same means.

» Srength reduction — Replacement of an expensive operation by an equivalent cheaper
one (e.g. X=X x). Optimizations of this type could be performed directly on the
(high) level of DAEs, but it is left to the C-compilation as it can easily be carried out
there.

* Inline expansion — Replacement of a function call to a“simple” function by inserting
the function’s contents. Thus, the overhead of the function call is avoided and data
locality can be improved. Similarly, sequential equations cause overhead when being
processed. If the sequential equation itself is “cheap” to evaluate, it is advantageous to
substitute all occurrences of the assigned sequential variable by the sequential equation.

* Dead-code elimination — Removal of expressions which compute values that are never
used.

* Algebraic simplification — Application of algebraic properties to ssimplify expressions
(e.g. algebraic identities x+0—x, x-1-—Xx). This optimization is implicitly
achieved by the used algebra system. For implementational reasons, a special treatment
of algebraic simplifications within if-statements was necessary (due to Hol dRest
attribute of Mathematica).

* Constant folding — Pre-evaluation of constant expressions at compilation time to save
computationd effort at runtime. This optimization is also covered by the algebra system
that automatically evaluates constant expressions. Again, if-statements require the func-
tion Fol dConst ant s (due to Hol dRest attribute of Mathematica).

* Loop-invariant expressions — Evaluating loop-invariant expressions outside the loop.
This kind of optimization was used in a generalized way within Chapter 5 (preloading
of constant entries of the Jacobian matrix).

In addition to the optimizations applied during model generation, the C-compiler’s optimi-
zations are applied during the compilation of the C-based model and have turned out to
achieve further performance improvements. These optimizations probably speed-up the ex-
ecution by an optimized evaluation order (instruction level parallelism) and improved stor-
age mechanisms (like cache optimization and register alocation).
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Similar approaches to the new optimization methods performed within Analog Insydes are:

* Modelica modeling language — This object-oriented modeling language for multi-
physics systems provides optimizations dealing with semi-symbolic systems
[20, 51, 54]. The equations are automatically reformulated and hence the application is
very convenient for users.

* (Behavioral) model compilers— Performing the optimizations within the model com-
piler would be the most obvious and user-friendly method. Unfortunately, current ver-
sions of commercial model compilers seem to either apply no optimizations or they do
not efficiently deal with complex analytical models (refer to Section 4.8).

* Device model compilers — The efficient compilation of device models requires a high
level of optimization. The device model compiler MCAST for instance, has been
reported to provide various optimization techniques [80] whereas ADM S [44] does not.

As Analog | nsydes supports the model export for awide variety of languages (VHDL-AMS,
Verilog-A, MAST, ZMYS), the optimizations have been proven to be efficient for different
simulators. Optimizing models with respect to a specific simulator would yield the best re-
sults but requires a specific knowledge of the target simulator’s algorithms and interferes
with the paradigm of simulator-independent models. These simulator-dependent optimiza-
tionstherefore have to be performed within the model compilers (as presented for Titan with-
in the previous chapter).

The overall target of the DAE optimizations focuses on two properties of the equation set
with regard to the necessary simulation effort: the achievement of a DAE system of sequen-
tial structure that consists of a minima number of simultaneous equations and is of low re-
dundancy.

As discussed in Section 4.4, different (equivaent) formulations for network equations are
available. Within the proposed bottom-up modeling flow (cf. Figure 6.1), the network equa-
tions are the basis for the model optimization and code generation. Hence, it is highly desir-
able to choose an initial formulation of the network equations that is advantageous for the
following process steps. Due to its compact formulation, the MNA setup is the preferred so-
Iution. STA unnecessarily enlarges the dimension of the equation set whereas a compressed
equation set is of disadvantage due to redundant expressions.

Section 6.4 will present an example for the equation optimization. The results of the optimi-
zation strategies will be summarized within Section 6.5. For the usage of the new Analog In-
sydes functions please refer to Appendix B.2.

6.1 Recognition of Sequential Equations

In[58], an algorithm for taking advantage of sequential equations was presented. The recog-
nition was done during the MNA-like set up of the circuit equations using a bottom-up mod-
eling strategy. Within this section, a general algorithm to identify sequential equations from
asystem of DAEswill be presented [94]. This approach isalso suitable for manua modeling
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and is more general in terms of recognition. It was realized through a new function
| denti f ySequenti al Equati ons.

The algorithm’s objective is to determine a partitioning and ordering of the equations of a
system of DAES being compliant with Definition 2.3 (on Page 13) and having as many se-
quential equations as possible. An additional criterion for agood partitioning isto handle as
many nonlinear equationsas possiblein aprocedura way. Thishelpsto prevent convergence
problems during the iteration of the remaining simultaneous system.

The resulting Jacobian matrix of the DAE system is

of block lower-triangular (BLT) structure as visual- Seq. Variables \?;TS

ized in Figure 6.2. The dimension of the lower-trian- i
gular submatrix J,; is typicaly significantly larger 1

than the dimension of J,, . The modeling language @

Modelica also provides an algorithm for BLT-trans- 2

formation of nonlinear equation systems [20] that u%

originates from [18]. In [63], an algorithm for block g

triangularization of a sparse matrix for direct meth- @

ods was presented. The identification process for Jll 1 le

DAEs does not only affect the reordering of thema- ¢ g i

trix, but also the reformulation of the equationsand @ W Jo Jo

ensuring the solvability of the resulting DAEs. Figure6.2: Block Lower-Triangular
During the identification process, the equations and Matrix Structure

the variables of the original system are successively

permuted and separated into sequential and simultaneous subsets. Figure 6.3 shows the flow
chart for the identification of sequential equations. Initialy, the algorithm starts with all
equations and variables unclassified. Optionally, it is possibleto start with auser-defined ini-
tial set of simultaneous variables simplifying the identification process and/or an initial set
of sequential equations which will be kept during the processing. Asiit is advantageous to
identify as many nonlinear equations as possible, the unclassified equations are preordered
giving the nonlinear equations a higher priority.

The agorithm itself is based on the analysis of dependency matrices having the same struc-
ture as the Jacobian matrix and indicating for each equation which variables are referenced.
The identification searches the set of unclassified equations recursively for additional se-
quentia equations. Therefore, the equations have to fulfil three criteria:

« to fit into the lower-diagonal block structure,
* to be explicitly solvable for the corresponding sequential variable,
» and not to result in (implicit) second-order derivatives.

For thefirst criterion, the dependencies of the equation are checked. In order to be compliant
with the lower-diagonal structure, the equation must neither contain any unclassified vari-
ables (except the one, it will be solved for) nor derivatives of unclassified variables. For en-
suring that a new sequential equation is explicitly solvable for its sequential variable a
pattern-matching method is applied. For practical reasons (convergence) it has been restrict-
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95

input: f(y,y, X, X,t) = 0 with f = (fseq, fsim) , Sequential variables y,
simultaneous variables x , and initial simultaneous variables X;,; ,
where y, fsq, and X;,;; might be &

—

init: ordered set of sequential varisblesy = @ (or y = y optional)
set of simultaneous variables X = X, With X, "y = @
set of unclassified variables X, = (YU X) = Xinit YY)

ordered set of unclassified equations f,; = (fseq U i) — fseq
sort funel to give nonlinear equations priority over linear ones

ordered set of sequential equations ?seq = @ (or fseq = feeq Optional)

Ynew = @

foreach f of .

f function of X U YU {Vnew € Xuncl} ?
no

yes
f explicitly solvablefor y,,, ?
no yes
f agebraic or Y, notused?
no yes
g’ = glu{ynew}; Yew = Ynew Y { Ynew?
Solve f for Ynew ?seq = ’fseq U {f}
Xuncl = Xuncl _{ynew}; funcl = funcl _{f}
no Ynew = @ and Xuncl =07 yes

find an Xpey € Xune With most occurrencesin f

X = XU {Xnew} ; Xuncl = Xunel = { Xnew?

until X, = <

fsim = func| ) f= (fseqa fsim)

return f(f(, X, y, )7, t)=0

Figure 6.3: Flow Chart of the Identification of Sequential Equations
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ed to apply the symbolic solving only in linear and weakly nonlinear contexts. Optionally, it
can also be applied to symbolically solve nonlinear equations (as long as their solution is
unique). Finally, the new sequential eguation must not imply second-order derivatives.
Therefore, it is checked to be either an algebraic equation or that its sequentia variable does
not appear in adynamic context. Equations meeting all requirementsare symbolically solved
to be of explicit form and subsequently added to the sequential subsystem.

Theidentification processis executed in afixed-point iteration until no new sequential vari-
ablesarefound. Unlessall variables have been classified, it isnecessary to declare one of the
remaining variables as simultaneous variable, asthiswill aimost always allow to solve some
more unclassified equations sequentialy. Every time the identification loop is stuck, the al-
gorithm heuristically determines avariable to be kept simultaneously. Thelarger the number
of dependent unclassified equationsfor avariable, the better isthis variable suited to be treat-
ed simultaneously since this reduces the number of unknowns for as many remaining equa-
tions as possible. Afterwards, another identification cycle starts.

Once all variables have been classified, the identification process terminates. All remaining
equations are declared to be simultaneous equations. Example 6.1 illustrates the identifica
tion process step by step for an arbitrary system of nine equations (numbered 1 to 9) depend-
ing on the variablesA to I.

©, 0t ©® WY
ABCDEFGHI EGCDAFBHI EGCDAFB I H
1 51 4 511 &
2 I 8 [T 3 8 [T 3
3 < 3 [ ] 3 [
41 0 ez »4 I T 2 H_l I
>5 & 1 L[]z =1 REE
6 H § > 0 g 9 O
7 7 7 7 B
>3 I >2 [T1 I 4 1 I
9 -9 ] 6
<4——unclassified—— <segp-<¢—unclassified—» <seqp-<—unclassified—»
@ Y ® ®
EGDCAFB I H EGDCBFA I H EGDCBFA I H
511 A 5|1 T 511
8 [T 8 8 [T 8 [T
1 1 v 1 1 ¢ 1 1 M«
2 4 7 | | I 7 1 'E
3 [ | s 4 1 H 4 1 | I
9 | |z >0 | | A 9 1
>7 ) 2 3 2 3
>4 2 3 5 3 HEE
P voo6 mmnf
<seq»<unclas»<simy <“—seG—P€uP<siny ——seq—P€sim>»
[] structural zero [ tinear Entry [l Nonlinear Entry [X] Identified to Solve for

Figure 6.4: Example for the Sequential Identification Algorithm
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Example 6.1: Identification of Sequential Equations

Figure 6.4 illustrates the algorithm in six steps. Each diagram represents the dependency ma-
trix of the equations on the corresponding variables. Light gray boxes represent linear non-
zero entries of the Jacobian matrix whereas dark gray boxes mark nonlinear dependencies.
The white boxes depict structural zero entries. The arrows indicate rows or columns which
have been identified to be swapped within the next process step. The used equations and sets
of variables are visualized at the right and bottom sides of the matrices. The crossesindicate
entries to be identified as sequential variables. These entries are moved to the correct posi-
tion by row and column swapping and the corresponding equation is reformulated into an
explicit formulation. Hence, the diagonal entry becomes one (ensuring good pivot elements).

Within the exampl e, six equations and variables have been identified to be sequentially solv-
able (see Diagram 6). To emphasize some specia behavior, two transitions will be discussed
in detail: In Diagram 2, the algorithm is stuck since no equation depends on less than two
unclassified variables. In order to solve this problem, one variable with as many dependen-
cies on unclassified equations is declared to be solved simultaneously. Choosing variable H
as simultaneous variabl e enables the algorithm to identify Equation 1 with variable D. At the
stage of Diagram 5, both Equation9 or 2 could be used as sequential equations for
variable F. As Equation 2 contains F in a nonlinear context, it is more useful to select
Equation 9.

A future aspect related to the discussed BLT transformation is the automatic partitioning of
the sequential equations into multiple lightly coupled subsystems. This structure would be
of advantage to further improve the Schur-complement or to even parallelize the evaluation
of the subsystems.

6.2 Common Subexpression Elimination

Reducing the redundancy within DAEs through common subexpres-

sion elimination [94] is another promising approach. In order to apply / \
common subexpression elimination (CSE) to general DAEs, two ma- plus 0
jor process steps are performed: / \

» Recognition of common subexpressions within the DAEs l /di"

* Substitution by additional sequential equations and variables minus AN R
The recognition of common subexpressionsisbased on abstract syntax AN
trees (AST) [1]. An AST isafinite, labeled, directed treewherethein- Vi \2
ternal nodes are labeled by operators, and the leaf nodesrepresent the  Figure 6.5: AST
operands (in this case variables, parameters, and constants). They are Example

used as intermediate data structures in parsers to represent the syntac-
tical hierarchy of source code. Figure 6.5 shows an exemplary expression tree for the follow-
ing equation:
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I+ VlTVZ =0 (6.2)
The flow chart for the CSE algorithm is shown in Figure 6.6. In an initial step, an abstract
syntax tree for each equation within the DAE system is set up. Theresulting forest F of syn-
tax trees isthe basis for the recognition of common subexpressions. Asthereisno canonical
form for nonlinear expressions, and since the recognition only matches identical subtrees
E..m Within F, some basic algebraic transformations are applied in order to (heuristically)
normalize the expressions and thereby enhance the recognition rate. All operands of commu-
tative operations are aphabetically sorted with the first operand normalized to a positive
sign.

Example 6.2: Normalization of Subexpressions
Consider as an example the expressions E, and E, :

minus

div |
— — div
E,: VlTVZ with mi,é \R and E,: —VZTVl with /N
/ \ minus R
Vi V2

V/ \V

Mathematically, both expressions are equivalent. However, their syntax trees are not identi-
cal, thus disabling the CSE. The normalization reformulates E, to theform of E; .

After performing the discussed normalization, the algorithm extracts all subtrees E, of a
user-defined minimal depth out of F . Eliminating subexpressions of very low depth (e.g. 2)
causes more overhead by handling the additional equations than it saves effort during eval-
uation. Therefore, the default value for the minimal depth is 3. A duplicate search in Eg,,

yields the common subexpressions E,,,, of the DAE system.

Instead of eliminating these subexpressions directly and recursively proceeding the CSE
(which would yield alarge number of very simple expressions), the expressions E.,,, are
iteratively expanded by onelevel of hierarchy, unlessthe number of their occurrenceswithin
F decreases. Thus, a reasonable number of subexpressions of maximal depth is recognized
without compromising efficiency.

The second step is the substitution. For each expression of E_,,, an additional sequential
equation and a new sequential variable are introduced. Subsequently, the occurrences of the
subexpressions are substituted by the newly introduced variable. In order to keep the sequen-
tial structure of the DAEs, each new sequential equation is inserted before its first usage
within the equation set. Additional equations which have only been used within the simulta-
neous equations are appended at the end of the sequential equation set.
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set up forest F, of ASTsfor the equationsin f(y,y, x, x,t) = 0

normalize subtrees of F, (heuristicaly); i = 0

determine all subtrees E,,, of minimal depthin F;

determine common subexpressions E_,,, by duplicate searchiin Eg,

expand E_,,, by onelevel of hierarchy

unless occurrences of E.,,, within F; decrease

foreach E of E,,

introduce new sequential variable y,,,

substitute E — y,,,, Within f(y,y, X, X, t) = 0

introduce new sequential equation Y., = E

yes Ynew Usedin feq ? no

insert y,., = E beforefirst insert y,, = E at end of
sequential equation sequential subsystem
depending on Y, ey

i++; determine F; for updated DAEs

until F; = F,_,

Figure 6.6: Flow Chart of the Common Subexpression Elimination

Although this strategy increases the number of sequential equations, the computational effort
is reduced by avoiding multiple evaluations of common subexpressions. The elimination is
performed globally (on the complete DAE system) and is applied in afixed-point iteration
to detect so-called deep subexpressions recursively (subexpressions that contain previously
eliminated subexpressions).

The new Analog Insydes function Opt i m zeCommonSubexpr essi ons also contains an alter-
native algorithm for detecting common subexpressions. The algorithm was introduced with-
in [70] and is also suited for recognizing common subexpressions. In contrast to the
previously presented algorithm, it also extracts expressions of depth 2 (e.g. —V; ) thus caus-
ing an unacceptable overhead. Therefore, additiona postprocessing through inline expan-
sion of cheap subexpressions is necessary.
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Theresultsof both algorithmsare of similar quality with respect to the evaluation cost. While
the algorithm of Sofroniou yields alarge number of common subexpressions with quite low
complexity each (and causes additional effort for inline expansion), the proposed algorithm
leads to a reasonable number of more complex subexpressions (through expansion of the ex-
pressions).

Even though the number of sequential equationsis only of secondary interest, each sequen-
tial equation causes some computational overhead (Schur-complement, storage). Thereisa
trade-off between the caused overhead and the complexity of the sequential equation aswell
as the number of references to the sequential variable. If a sequential equation is cheap in
terms of evaluation cost and its sequential variableisrarely used, it is more efficient to sub-
stitute the sequential variable with its defining equation (inline expansion). The intention of
the function Substit ut eSequenti al Equations is to perform an inline expansion of
“cheap” sequential equations. It is based on three criteria: the depth of the sequentia equa-
tion, its evaluation cost, and the number of referencesto the sequentia variable. Any sequen-
tial equation that violates one of the requirements, is removed through inline expansion.

Up to now, CSE has only been applied to DAE systems to enhance the function evaluation.
When generating compiled models, another possibility in order to further increase the mod-
els efficiency arises. Even if al common subexpressions within an equation set have been
eliminated before the model generation, the Jacobian matrix of the DAE containsmost likely
new common subexpressions. These common subexpressions can not be prevented when
generating AHDL models, since thereis no possibility to influence theinternal Jacobian ma-
trix. In contrast to that, the generation of compiled models offers the possibility to perform
the CSE on both the DAE system aswell as on its Jacobian matrix. Thisfeature wasintegrat-
ed into the ZMS model generation. Thus, redundancy resulting from common subexpres-
sions during the loading process can be reduced efficiently. Furthermore, the evaluation of
the function as well as the Jacobian matrix entries are nested such that each equation, its de-
rivatives, and its common subexpressions are evaluated in a sequence. Thus, data locality is
increased and evaluation performance enhanced.

A specialized application of CSE is the recognition and extraction of loop-invariant expres-
sions. As these expressions only contain constants and parameters they do not have to be
evaluated within each iteration. In fact, such loop-invariant expressions can be calculated
once within the models' initialization phase and can be reused within subsequent iterations.
This feature can be used within all AHDLs and compiled models that support an initializa-
tion function®. A dlightly modified version of the CSE algorithm (integrated into the same
function) allows to extract such loop-invariant expressions into additional sequential equa-
tions. Therefore, the criteria for the recognition have been modified: The expressions do not
necessarily have to be common expressions, a single appearance is sufficient, and they must
not contain any variables. During the model generation sequential equations consisting only
of constants and parameters are moved to the initialization function.

L eg. for Verilog-A: @(initial_step)
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6.3 Elimination of Redundant Equations

Superfluous equations and variables within the DAEs are further causes for redundancy.
Two cases have to be distinguished:

* Trivial equations that equate two symbols (copy/constant propagation)
* Unused sequential equations (dead-code elimination)

While the first case happens frequently due to the MNA-setup of the DAEs, the latter is an
unlikely case that will only become relevant when optimizing poorly formulated equations
(relevant for import and optimization of ADHL-based models).

The recognition of trivial equationsis based on pattern matching. All equations that contain
only two symbols in an additive context (eg. var, = var,, var, = —param,
var,—var, = 0) arechecked for removal. Depending on the type of the symbols (constant,
parameter, seq./sim. variable, differential variable) and the type of the equation (sequential
or simultaneous), severa decisions have to be made:

* Isthe equation really redundant?

« Can the equation be removed?

» Which of the symbols should be removed?

After deciding to remove an equation and one of the contained variables, the corresponding
“copying” variable and its derivatives are substituted with the “copied” symbol (constant,
parameter, variable).

Although the problem itself appearsto be trivial, there are some hazards:

* seqvar, = seqvar, —can only beremoved, if it isasequential equation. In asmulta-
neous context, it represents a simultaneous equation with both left- and right-hand side
being defined by a sequential equation.

* var, = param — parametersin Analog Insydes can be functions of time (e.g. for inde-
pendent transient sources). Inthis case, var,; can only be replaced, if it isnot adynamic
variable.

- var, = var, —substitution of var, would possibly increase the order of the DAE sys-
tem.

« Variables can be protected by the user in order to prevent their substitution.

The elimination method is applied iteratively in order to eliminate multiple copy propaga-
tions, too.

Eliminating unused sequential equations performs a search for each of the sequential vari-
ables. A sequential variable that is not used in any equation (except its defining sequential
equation), is removed together with its definition. The elimination of redundant equationsis
performed by the new Analog Insydes functions RemoveTr i vi al Equat i ons and Renove-

Redundant Equat i ons.
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6.4 Example Application

The optimization algorithms will be illustrated by 12 4 6 8 w1mu
means of the diode circuit that was introduced in
Example 2.2 (on Page 16). Even though the exampleis
very simple, the most rel evant optimizations can be suf-
ficiently applied to the network equations of the diode
circuit. The sequence of the optimization processis ar-
bitrary. The optimizations may interfere with each oth-
er. Initialy, the equation set consists of 3 sequentia
equations and 8 simultaneous equations. The evaluation
Cost Ngyaicycles IS @pproximately 288 including 129
memory accesses ( NMemAccess )

1 2 4 6 8 10 1

Table 6.1 summarizes the properties of the DAEs for  Figure 6.7: Jacobian Structure of
different stages of the optimization process. Figure 6.7 the Diode Example (Initial)
visualizes the structural matrix of the initial DAE sys-

tem as resulting from the MNA setup of the network equations. The system’ s sparsity isrel-
atively high and the lower-diagonal subblock is only of dimension three.

Common Subexpression Elimination

The CSE agorithm is able to identify three common subexpressions resulting from resistor
and capacitor branch currents that each appear within two nodal equations. The correspond-
ing sequential equations have been appended at the end of the sequential equation set that is
shown in Equation (6.2a), since they are only referenced within the simultaneous equations.
All occurrences of the former common subexpressions have been substituted by the newly
introduced sequential variables. Thus, the evaluation cost was reduced by 17 %.

vd[t] = ,%M&I N[t ] - VSQUT[t ]

( ~0.00333167q (Bv+vd(t ])

. 0.00181069qvd|t | \ \
|d[t]::-AFEALe k 1BV -

-l+e*k7JISJ+G\ANVd[t]

B

cj [t] = AREACIOIf {vd[t] < 0. 25, Tz v 038 2.51926 (0.3335+0. 666 vd|t ] )} (6.29)

SeqBxprl(t] == Q (VSAD [t ] - VBQAJT'[t ])
SeqExpr2[t | - VBGRD[t ]'i)\&OJI'[t]
%qupr:g[t] - w

1 $VAD[t ] + SeqExpr 1t ] + SeqExpr2[t] =0
ISAC[t ]+ ISMN[t] =0

-1 $AC[t | - SeqBExpr1(t ] - SeqExpr2(t] + SeqExpr3(t] == 0
1$VOUT [t ] - SeqExpr3[t] =0

I$ACIt ] =id[t]+1.15x108id/[t] +cj [t]vd[t]
VBIN[t]=MUN

VBAUT2([t ] == 0

VBAD[t ] == 0

(6.2b)
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Recognition of Sequential Equations

From Equation (6.2b) it is obvious, that a major part of the simultaneous equations can be
solved sequentially. Applying the BLT transformation in order to identify further sequential
equations yields a reduction of six simultaneous equations. This results in the equation set
(6.38) and (6.3b).

VBAD[t ] = 0
VBINt] ==MN
VBAUT2(t ] == 0
ISVIN[t ] == -I $AC[t )

vd[t] = -%MHSIN[H ~ VBQUT[t ]

SeqExpr2(t] = VBRIt ]'i)\tBCUI'[t]

SeqBxpr 3[t ] - AT SO (6.39)
( ~0.003331679 (Bv+vd[t 1) 0.00181069qvd |t \

id[t]:-AHEALe k |B\/—{—l+e Kk ]}ISwG\ANvd[t]

1 $VAUT [t ] == SeqExpr3[t ]
0 1
cj [t] = AREACIOI f [vdm <0.25, 5 gtoam 2 51926 (0.3335.0.666 vd |t | >}

SeqBxprl(t] == Q (VSAD[t] - VBQAJT'[t ])
1 $VAD[t ] == -SegExpr1[t ] - SeqExpr2[t ]

Only two equations (out of previously eight) have to be solved simultaneoudly:

I $AC[t ] - SeqBExpr1[t] - SeqExpr2[t] + SeqExpr3(t] =0

I$ACIt ] == id[t]+1.15x108id/[t] +cj [t]vd[t] (6.3b)

1z 3 a4 5 6 (8 Y Removal of Trivial Equations

-
-

Still, the sequential equations (6.3a) contain several

? trivia equations causing redundancy. Removing these
I ¢ equations reduces the dimension of the sequential equa-

N

w

IS

4 tion set by five. Equations (6.4a) and (6.4b) show the fi-
. s nal stage of the optimization process for the diode
6 s example. The structure of the Jacobian matrix for the
7 ; optimized DAEsis shown Figure 6.8.

8 s Compared to theinitial equation set, theresulting DAEsS
. o (last column of Table 6.1) have been reduced to a di-
T s 3 4 5 & 7 & 9 mension of only two simultaneous equations (-75 %),
Figure6.8: Jacobian Structure of  the evaluation cost has been reduced by 25 %, and the
the Diode Example (Optimized)  number of memory accesses has been reduced by 17 %.
Within the following section, the algorithms will be ap-
plied to problems of realistic dimension. For the upcoming examples, performance measure-
ments will also be compared in order to demonstrate the enhancement of the simulation
performance.

©
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vd(t ] ::VIN-%-V&SOJF[H
SeqExpr2(t] == - \m%m
SeqBExpr3(t] = %

i d[t - {e’ 0.00333167q (Bv+vd[t]) BV {_1 e 0. 00181069 qvd|t | } | S} .aM Nvd[t | (643)
oj [t] = AREACIOI |vd(t] < 0.25, —— b —rmpy, 251026 (0.3335+0.666vdt ) |
SeqBxpr1(t] == -Q0 VBQUT' [t ]
1 $VAD[t ] == -SeqBxpr1(t] - SeqExpr2(t |
-1 $AC[t ] - SeqBExprl(t] -SeqExpr2[t] + SeqExpr3(t] =0 (6.4b)
I$AC[t] = id[t]+1.15x108id'[t] +cj [t]vd[t] ’
Table 6.1: Optimization Process for the diode Example
Property | Initial = CSE = BLT = RTE Final
Seq. Egs. 3 6 +3) | 12 (+6) 7 (-5) 7 (+133%)
Sim. Egs. 8 8 2 (-6) 2 2 (-75%)
Nevaicycles 288 239 (49) | 238 (-1) | 215 (-23) | 215 (-25%)
Nuemaccess 129 136 (+7) | 136 106 (-30) | 106 (-18 %)

6.5 Results

Within this section theresults of the DAE optimizationswill be presented on the basis of four
example circuits. For each of the circuits, four model types in different intermediate stages
of the optimization process will be compared:

eSm — the simultaneous mode! of the circuit after applying the RTE algorithm

* seq — the sequentiad model including the sequential equations resulting from the
symbolic device models after applying the RTE agorithm

* bit — the optimized sequential model after applying the BLT algorithm

* blt/cse — the optimized sequential model after applying BLT and CSE a gorithms

Before reviewing the simulation performance of the models, the efficiency of the optimiza-
tion algorithms will be discussed on the basis of the models' characteristics. Table 6.2 sum-
marizes the optimization results for the presented models. The key figures are the number of
simultaneous equations, in order to show the efficiency of the BLT algorithm, aswell asthe
evaluation complexity, showing the effect of the CSE.
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Table 6.2: Optimization Results (Model Characteristics)

Example Type NSquqs NSimEqs NEval Cycles
blt/cse 72 25 4801
blt 64 25 7882
multiplier
seq 48 38 7874
sim 0 86 7946
blt/cse 339 61 12002
blt 243 61 16788
opamp741
seq 177 127 16895
sm 0 304 17085
blt/cse 339 6 30889
bt 265 6 57268
nand2
seq 254 17 57285
sm 0 271 57683
blt/cse 1707 16 153722
bt 1375 16 275111
cfcamp
seq 1313 78 275135
sm 0 1391 277032

Figure 6.9 depictsthe dimension of theresulting linear systemsfor the different model types.
The high dimensions of the simultaneous models are very efficiently reduced by utilizing the
sequential equation structures. After having applied the presented BLT algorithm, the di-
mension of the modelsisvery close or even equal to the dimension that is achieved in netlist-
based simulations. This provides the basis for high simulation performance. Above all, the
BSIM3-based models show an enormous reduction of the model dimension by using the se-
quential equations (cfcamp: from 1396 to 21). Solving these models simultaneously would
result in an enormous overhead due to the large number of equations.
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Figure 6.9: Optimization of the Dimension by Utilizing Sequential DAE Structures

The achieved reduction of redundant common subexpressions through the CSE algorithm is
demonstrated in Figure 6.10. It shows the evaluation complexity before (seq) and after the
application of the common subexpression elimination (blt/cse). For the Gummel-Poon based
models, areduction by 30 % to 40 % was achieved. For the BSIM3-based models, the CSE
is of even higher efficiency. Their evaluation complexity was reduced by more than 45 %.

57285
30889

nand2

275135
153722 :

16895
12002

7874
4801
T
0 50000 100000 150000 200000 250000 300000

mblt/cse mseq EvalCost [1]

Figure 6.10: Effect of Common Subexpression Elimination on Ng, cycles

multiplier opamp741 cfcamp
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Table 6.3: Simulation Performance of the Optimized ZMS-Models
Example Type | Dim | Niter/siep Tioad Soad Toove? | Soaive
circuit 28 20 0.046 s 1 0.261s 1
blt/cse 28 29 0.128s 2.78 0.333s 1.28
multiplier blt 28 29 0.152s 33 0.349s 134
Sseq 47 2.95 0.159s 3.46 0.57s 2.18
sim 58 2.97 0.178s 3.87 1.09s 418
circuit 58 2.25 0.178s 1 0.758 s 1
blt/cse 68 3.05 0.339s 19 1.366s 18
opamp741 blt 68 3.05 0.487s 274 1342s 177
seq 137 3.05 0.502s 2.82 2405s | 317
sm 314 31 0.577s 3.24 5.058s | 6.67
circuit 1 2.09 0.075s 1 0.206 s 1
blt/cse 1 321 0.869 s 11.59 0.344 s 1.67
nand2
blt 11 321 2.051s 27.35 0.324s 157
seq 27 3.25 2.092s | 27.89 0554s | 2.69
circuit 21 212 0.469 s 1 0.494 s 1
blt/cse 21 2.87 6.543s 13.95 1.197s 242
cfcamp
bit 21 2.87 24.67s 52.6 183s 37
seq 83 2.87 26.02s | 55.48 3.707 s 75

a  CPU timesfor solving are disproportionately high due to the application of the MUMPS solver, cf. Section 5.3

Within Table 6.3 the simulation performance of the ZM S-based modelsis presented. Apply-
ing the optimization strategies improved the loading performance by 20 % to 75 % although
the convergence of the modelsis by roughly 50 % worse compared to the circuit simulation.
The performance improvements (16 % to 74 %) due to the application of CSE becomes ap-
parent when examining the loading time. The BLT transformation efficiently speeds up the
solving time of the MUMPS solver by 39 % to 50 %. Similar speed-ups are to be expected
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for future application of the Titan solver after its integration with the ZMS interface.
Figure 6.11 depicts the loading performance of the optimized models normalized to the cor-
responding performance of the circuit smulation. The slow-down of the optimized models
for opamp741 was reduced to afactor of 1.9 only. For the BSIM-based models, factorsof 11
to 14 have been achieved. Taking into account the large number of equations (345, 1723),
the high complexity of the model equations, and the fact that no model reduction was ap-
plied, thisis a great achievement.

no convergehce :
2%.89
27:35

nand2

11.59

no convergence .
55.48
52.60

cfcamp

13.95 |

3.24
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2.74

1.90

opamp741

387
3.46
3.30

2.78

multiplier

T T T T T T 1

0.00 10.00 20.00 30.00 40.00 50.00 60.00

‘Dblt/cse mblt @mseq m@sim ‘ Slow-Down (Loading) [1]

Figure 6.11: Loading Performance after Optimizations

Finally, Figure 6.12 shows the slow-down factors for the solving process of the optimized
models. The proportionality of the CPU time for solving the linearized equation systems to
the reduced dimension (refer to Figure 6.9) can be recognized very clearly. If the conver-
gence of the behavioral simulations could be further improved, the solving performance
would be even closer to the performance of the netlist-based simulation. Results achieved by
using the optimization methods in conjunction with Verilog-A models have been published
in[94, 97].
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Figure 6.12: Solving Performance after Optimizations
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7 Conclusion

Automated bottom-up modeling strategies are of great importance for modern structured
top-down design flows. Symbolic analysis offers good opportunities for automated deriva-
tion of accurate behavioral models of analog circuit blocks. Thiswork dealt with a bottom-
up modeling flow based on the symbolic analysis toolbox Analog Insydes. The advantages
of the tool’s modeling strategy make it highly attractive for the creation of analytical behav-
iora models. Despite highly efficient model reduction algorithms, the simulation perfor-
mance of the generated behavioral models used to be unacceptably low.

Objectives

Thiswork aimed at performing an in-depth analysis of the behavioral simulation efficiency
of the generated models using the Titan simulator to identify the root causes for such low
performance. Furthermore, asignificant enhancement of the simulation performance without
further loss of accuracy was targeted in order to make the bottom-up modeling approach
through symbolic analysis competitive. The basic assumption wasthat performance suffered
from missing consideration of the applied simulation algorithms and the ability of simulators
to efficiently deal with such complex behavioral models.

Problem Analysis

A detailed comparison of the performance of netlist-based and behavioral simulations was
presented. It was based on unsimplified behavioral models generated without the application
of model reduction. Thus, the simulation performance of the netlist-based simulation should
be equal or at least very similar to the behavioral model’ s performance as both problems are
of identical complexity. The results of the performance analyses lead to the conclusion that
the simulation performance of complex analytical behavioral modelsis suboptimal duetoin-
efficienciesin processing the behavioral models’ equation sets. The slow-down compared to
an equivalent netlist-based simulation ranges from 2.5 (for small models) up to 200 (for an
operational amplifier). Currently, the speed-up achieved by the model reduction hasto com-
pensate for theinitially low behavioral simulation performance of the unsimplified models.
Such inefficiencies prevented the application of the modeling approach through symbolic
analysis.

The analyses presented within Chapter 4 have shown that the simulation efficiency suffers
from suboptimal model formulation as well as from shortcomings in the behavioral simula-
tion algorithms due to the extraordinary high complexity of the models. In particular, the
missing sparse handling for behavioral models led to a major slow-down for higher dimen-



112 Conclusion

sional models. Furthermore, the dimension of the linearized equation systems of the models
was significantly higher than that of the equivalent netlist-based simulation resulting in an
increased simulation effort. Finally, the processing of the models turned out to be less effi-
cient than in circuit simulations. Although convergenceis essential for behavioral models, it
is not the key to solving the discussed performance problems.

Achievements

Within Chapters 5 and 6, various approaches for improvements of the behavioral simulation
performance by “simulator-friendly” modeling and major enhancements of the model com-
pilation have been presented. These agorithmslead to significant improvements of the sim-
ulation efficiency by reformulating and restructuring the DAE systems without loss of
accuracy. Most important are the identification of sequential equations and the elimination
of common subexpressions. The former is very well suited to reduce the number of simulta-
neous equations by transforming the DAE system to a sequentia structure with a maximum
number of sequential equations. The latter focuses on areduced eval uation complexity of the
equation set by extracting common subexpressions. Furthermore, some strategies to reduce
redundancy within the eguation sets have been discussed. All optimization techniques pre-
sented so far have been integrated into an automated modeling and optimization flow. Asfar
asthe simulator is concerned, ahighly efficient model compilation for Titan was devel oped.
It incorporates an efficient sparse handling as well as aloca solving method significantly
reducing the dimension of the linearized equation system.

Theimprovements achieved within this work will be summarized on the basis of arepresen-
tative modeling example (opamp741). Initialy, the unsimplified behavioral model in TML
had an astonishingly low simulation performance. Compared to its netlist-based counterpart,

B0 prrm e e
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40 4= Bl RNt

CPU-Time [s]

EJE SN DU | I N W

20 4------ 3 DU N V.

04 b NN 0.64
Sparse
Loading

TML (default) TML (sparse solver) TML (sparse loading)

mLoading @Solving 10x Speed-Up

Figure 7.1: Performance Improvement through Sparse Algorithms (for opamp741)
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the behavioral simulation performance was a factor of 192 |ess efficient. Figure 7.1 shows
theimprovements of the simulation performance that have been realized using TML models.
The origin of the low performance could mostly be attributed to the missing application of
sparse agorithms and sparse data structures. Through the application of the sparse Titan
solver, the solving performance has been sped-up by a factor of 40 at the expense of inferior
convergence due to pivoting problems (+30 % iterations). Additionally, the integration of a
sparse data structure and processing within the Titan model compiler enhanced the efficiency
of the loading process by a factor of 10. In total, the sparse handling for the TML models
resulted in a speed-up of 10 for the opamp741.

As a conseguence of the still unsatisfying performance, a model compiler based on a new
modeling interface of Titan (ZMS) has been developed and integrated into Analog Insydes.
It aims at increased processing efficiency and a more direct communication between the
model and the simulator kernel. Thereby, the simulation performance has been improved fur-
ther as depicted in Figure 7.2. The bar to theleft of the chart represents the best performance
that was achieved using TML models (cf. right bar of Figure 7.1). The simulation perfor-
mance using the new ZM S-based models of the fully simultaneous DAE system (ZMS sim)
of the amplifier has sped-up the loading process by afactor of 12. An unresolved issue of the
ZM S-based models is the missing adaptation of the ZM S interface and the most performant
linear solver (Titan solver). Hence, the model s have been simulated using the MUMPS solver
(dashed bars within the chart) which performed suboptimal compared to the Titan solver

CPU-Time [s]
e

ZMS
Compiler

! ! I -
: : Local 2'41‘OpF|m|- |
}zatlons 1

1

TML (sparse ZMS (sim) ZMS (seq) ZMS (opt) Circuit
loading)

mLoading @Soling 8x Speed-Up (14x) 2x Slow-Down

Figure 7.2: Performance Improvement through ZMS Compilation (for opamp741)
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(cf. Section 4.5). Asthisisonly amatter of development effort, the solving performance us-
ing the Titan solver has been pre-estimated (light gray contributions within the chart). For
the fully simultaneous model s, the solving performance hasto be at least equal to the solving
performance using the TML models. Thisisdueto the fact that the resulting linearized equa
tion systems are (nearly) identical. Based on this assumption, the simulation performance
would be enhanced by afactor of 6 through the generation of compiled ZMS models. For the
following levels of improvement, this basic appraisal for the Titan solver was scaled by the
same speed-up factors as achieved for the MUMPS solver, being a conservative estimate.

Moreover, alocal solving method was applied to efficiently reduce the dimension of thelin-
earized equation systems to be solved by the simulator. This approach is based on utilizing
the sequentia structure of DAE systems. Sequential equations are solved locally within the
compiled model so that only the remaining simultaneous equations have to be solved by the
linear solver. Dueto an efficient implementation of the necessary processing steps, this mea-
sure speeds-up the solving performance proportionally to the dimension of the simultaneous
subsystem of the models' DAE systems. The loading performance is also enhanced due to
the reduced amount of data, which is transferred between model and simulator kernel and
increased data locality. For the opamp741, the local solving method doubled the simulation
performance (for MUMPS); using the Titan solver a speed-up of 1.5 islikely.

Enabled by the possibility of solving sequential equationslocally, several optimization strat-
egies for DAE systems have been developed and integrated into Analog Insydes. They aim
at improving the models' efficiency by reformulating equations and restructuring the DAE
systems. The recognition of sequential equations reduces the dimension of the simultaneous
subsystem and thus speeds-up simulation. Furthermore, a new agorithm for common-sub-
expression elimination within DAE systems reduces redundancy within the function evalu-
ation of the model. Last but not least, particular attention was paid to data locality, efficient
data structures, loop-invariant expressions, and redundant information within the equation
system. Through the application of these optimization strategies, another speed-up of 42 %
was achieved for the opamp741. These optimization strategies have a so been applied to ex-
tremely complex models of up to 1700 equations based on a symbolic BSIM 3 device model.
For the latter, speed-ups of up to factor 4 have been achieved through the optimizations.

Finally, the models' simulation performance has been improved to a competitive level. For
the opamp741, a slow-down of only factor 2 compared to the netlist-based simulation re-
mains. Compared to the initial situation of aslow-down of factor 192, the efficient process-
ing of the model equations resulted in a total speed-up of nearly 100 without reducing the
model’ s accuracy. The model reduction algorithms can easily compensate for the remaining
overhead. By combining the discussed approaches with the efficient model reduction strate-
gy, asignificant speed-up of the behavioral simulation in comparison to the circuit simula
tion was achieved [93]. Hence, the modeling flow may obtain increasing acceptance for
automated bottom-up generation of highly efficient analytical models.
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Future Aspects

Future aspects for the application of the presented model compilation could be the integra-
tion of the Titan solver in order to achieve competitive performance within the solving pro-
cess. This requires a preordering strategy within Titan to guarantee the solvability of the
equation system and to achieve ahigh level of accuracy. The pivoting algorithm has aready
been successfully applied to TML models and should be adaptable to ZM S-based models.
With regard to model optimization, future aspects are preordering strategies for the simulta-
neous equationsto perform astatic pivoting before exporting the model. Thus, the condition-
ing of the DAE system could already be enhanced during model generation, reducing therisk
of badly conditioned systemsand numerical problems during simulation. Furthermore, Mod-
elicaprovides an optimization strategy called “tearing” to decouple subsystems by introduc-
ing additional variables [21]. By using this strategy within Analog Insydes, the effectiveness
of sequential equations could be improved due to possible parallel processing of lightly cou-
pled subsystems.

By integrating import functionality for AHDL-based behavioral models into Analog Insy-
des, an even wider range of use cases would be possible. Figure 7.3 shows a proposed mod-
eling flow visualizing some promising applications of the tool. As proof of concept, a
prototypical function ReadVeri | ogA (rf. to Appendix B.3.8 for details) was realized. It was
evaluated to read in a Gummel-Poon transistor model realized in Verilog-A. This function
would be advantageous for extending the symbolic device modéel library of Analog Insydes
by additional up-to-date device models.

Circuit Netlist / / Behavioral Model /

—_—— T ———
Netlist Import Model Import —
Analog Insydes _——— 1_ I

) Symbolic Device Models Equation Setup Model Equations /

Circuit Equations
Model Reduction
Simplified Egs.

Equation Optimizatio

Model
Reduction

Model
Optimization

Translation,
Device Model

/—vﬁ Compilation
{ Model Export }

h 2 v
/ AHDL Model / / Compiled Model /

Figure 7.3: Future Applications of the Modeling Flow
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The automated import of models would enable several new applications:

* Device model compilation — compilation of device models realized in an AHDL (typ-
ically Verilog-A) to simulator specific compiled models
(e.g. ZMSfor Titan)

» Model optimization — application of the optimization strategies to existing
models

» Model simplification — application of the model reduction algorithms to DAE
systems extracted from AHDL -based models

* Model transglation — trandating models from one AHDL to another (this
would require extensive examination of language spe-
cific issues)

Furthermore, an extension of the general model compilation strategy for other simulators
compiled model interfaces is desirable. As this does typicaly not require fundamental
changes within the equation processing but mainly structural and syntax changes within the
generated models, such extensions are possible with limited effort. First approaches towards
using Cadence CMI [91] have successfully been taken.
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A Modeling Examples

A.1 cfcamp
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Figure A.1: Schematic of the cfcamp Circuit
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Figure A.3: Simulation Results of the cfcamp Circuit
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A.2 diode

* %

** TITAN Netlist for the diode circuit

* K

** Model parameters for diode
. MODEL D1N4148 D(|S=2. 68e-9 N=1.84 | KF=0. 041 | BV=100e- 6 BV=100 RS=0. 6 CJO=4e- 12
VJ=0.5 M=0.333 FC=0.5 TT=11.5e-9 XTI =3)

** Subcircuit Declaration
. SUBCKT DI ODERC A C G
DO A C D1N4148 AREA=1
C0 G C C=' 100p'
RO C G R=' 10K
. ENDS

** DUT Instantiation
X2 IN OUT G\D DI ODERC

** Test bench

VIN IN O SIN (0 5 100)
VOUT QUT2 0 DC'0" AC'0 'O
VGND G\ND O DC'0" AC'0 'O
RLOAD QUT QUT2 200Meg

** Sinulation statements

. SAVE results FORVAT=scopeb
.OP

.TRAN le-4 1

. QUTPUT TRAN LEVEL=0 V(*)

. END

diode
(V) : TIME(s)
V(IN)

V(0ouT)

T T T T T
0.0 0.0025 0.05 0.0075 0.01 0.0125 0.015
TIME(s)

Figure A.4: Simulation Results of the diode Circuit
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-- VHDL- AMS nodel of the diode circuit (entity)

LI BRARY i eee;
USE i eee. mat h_real . ALL;
USE i eee. el ectrical _systens. ALL;

ENTI TY di odeRC | S

GENERI C (
AREA : REAL : ;
BV : REAL : . 0;
(@] . REAL := 0.1E-9;
CJO : REAL := 0.4E-11;
GM N := 1. 0E-12;
| BV 1= 0. 1E-3;
ISS : REAL := 0.268E-8;
RO : REAL := 10.0E3;
RS := 0.6;
k REAL : = 0.138062E-22;
q REAL := 0.160219E-18
)
PORT (

TERMNAL A, C, G: ELECTRI CAL

END ENTI TY di 0deRC,
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-- VHDL- AM5 nodel of the diode cont’d (architecture dae)

ARCHI TECTURE dae OF di odeRC | S
QUANTI TY VA ACRGCSS | $A THROUGH A;
QUANTI TY VC ACRGCSS | $C THROUGH C;
QUANTI TY VG ACRGCSS | $G THROUGH G

-- Simul taneous Vars

QUANTITY V$C  : REAL;
QUANTITY V$G @ REAL;
QUANTITY id © REAL;
QUANTI TY vd . REAL;
QUANTI TY cj : REAL;

QUANTI TY id$dl : REAL;
QUANTI TY vd$dl : REAL;
QUANTI TY V$C$d1l : REAL;
QUANTI TY V$GBd1l : REAL;

-- If-functions
FUNCTI ON i f funcl(
vd : REAL) RETURN REAL IS
VARI ABLE res : REAL;
BEG N
IF vd < 0.25 THEN
res := 1.0/((1.0-2.0*vd)**(0.333));
ELSE
res :
END | F;
RETURN res;
END;

0. 251926E1*( 0. 3335+0. 666*vd) ;

BEG N

-- Sinmul taneous Equations
| $A+] $C+C0* (V$CHd1+VSGHd1) +( - VEC+V$G) / (RO) == 0.0 TOLERANCE "Current";
| $G+CO* (V$CSd1- V$GHd1) +( VSC- VG / RO == 0.0 TOLERANCE " Vol t age";
i d+0. 115E- 7*i d$d1+l $A+cj *vd$dl == 0.0 TOLERANCE "Current"”;
- VA+vd+V$C+l $A* RS/ AREA == 0.0 TOLERANCE " Vol t age";
i d- GM N*vd- AREA* (1 SS* (- 1. O+exp( 0. 181069E- 2*vd* q/ k) )
-1 BV*exp((-0.333167E-2)*(Bv+vd)*q/k)) == 0.0 TOLERANCE "Current";
cj - AREA*CJO*i ffuncl(vd) == 0.0 TOLERANCE "Current";
VC-V$C == 0.0 TOLERANCE " Vol t age";
VG V$G 0.0 TOLERANCE " Vol t age";
id$dl id dot TOLERANCE "Current";
vd$dl vd' dot TOLERANCE "Current";
V$C$d1l == V$C dot TOLERANCE "Current";
V$GPd1l == V$G dot TOLERANCE "Current";

END ARCHI TECTURE dae;
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Il
/'l Verilog-A nodel of the diode circuit
Il

“include "constants. h"
“include "discipline. h"

/1 Declaration for discipline DAEVar
nat ure daevar

abstol = 1n;

units ="",

access = X;
endnat ure

nat ure daevar _fl ow

abstol = 1n;

units ="",

access =Y,
endnat ure

di sci pl i ne DAEVar
potential daevar;
fl ow daevar _fl ow,
domai n conti nuous;

enddi sci pl i ne

nodul e di odeRC( A, C, G);
inout A, C, G;
electrical A, C, G

/] paraneters

paraneter real AREA = 0. 1El,
paraneter real BV = 0. 1E3;
paraneter real CO = 0.1E-9;
paraneter real CIO = 0.4E-11,
paraneter real GM N = 1.0E-12;
paraneter real 1BV = 0.1E 3;
paraneter real 1SS = 0.268E-8;
paraneter real RO = 0. 1E5;
paraneter real RS = 0.6;

paraneter real k = 0.13806226E- 22;
paraneter real g = 0. 16021918E- 18;

/'l procedural variables

real vd;
real id,
real cj;

/1 sinultaneous vari abl es
DAEVar V_C,

DAEVar V_G

DAEVar |
DAEVar i 1

DAEVar vd_d1;

DAEVar V_C di;
DAEVar V_G di;
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/1
/1 Verilog-A nodel of the diode circuit
/1

anal og begin

/1 Enpty contributions (for topology checker)
Y(I_A) <+ 0*X(I_A);
Y(V_O <+ 0*X(V_O;
Y(V_Q <+ 0*X(V_Q;

/1 Procedural Equations
vd = -RS*X(1 _A)/ AREA- X(V_C) +V(A);
id = GM N*vd+AREA* (- | SS+l i mexp( (0. 18106E- 2*vd*q)/k))
-1 BV*limexp((-0.33316E-2*(Bv+vd)*q)/k));
AREA*CJOf(vd < 0.25 ? 1/pow(1l -2*vd, 0.333) :
0. 251926E1*( 0. 3335 + 0.666*vd));

ci

/1 Sinultaneous Equations

Y(I_A) <+ -id-0.115E-7*X(id_d1) +X(I_A)-cj*X(vd_d1);
Y(V_O) <+ X(V_O-V(O);

Y(V_O <+ X(V_Q-V(G;

X(id_dl) <+ ddt(id);

X(vd_d1) <+ ddt(vd);

X(V_C d1) <+ ddt(X(V_0));

X(V_G d1) <+ ddt(X(V_Q);

/1 Branch Equations
1(A) <+ -X(I_A);
1(Q) <+ -X(I_A)+(X(V_O-X(V_G)/Ro+CO*(X(V_C d1)-X(V_G dl1));
1(Q <+ (X(V_Q-X(V_O))/RO+C0*(X(V_G d1)-X(V_C d1));
end
endnodul e
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A.3 emitter
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Figure A.5: Schematics of the emitter Circuit and its Testbench
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Figure A.6: Simulation Results of the emitter Circuit
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A.4 multiplier

Vee
—&

R240x []]FbM élﬁ-‘w

Voutn
\ 4

subst=(substt) | = &
A =
Q N
£ 28 Sof 4 290
89

subst=(subst!) ubst=(subst!

subst=(subst!)

Vinp{
Vinn{

s ol T
'TQ2N22211 11Q2N22211
ubst=(subst!)

subst=(subst!,

1

idc= 1%011
ocm=
ocp=0

g Figure A.7: Schematic of the multiplier Circuit
~
)
4
o [N
_13§ sI
s = Inp B Vinp 1 g
= o
$ ﬁT? Inn1 > Voutp Outp
cEea Vinn1
NS00
£ Inp2]| . . M U ‘t
B Vinp2 Voutn 4 Qutn
<
Inn2| | °
B Vinn2 S Xmult
o%
Q
>
=
o =
8 S 2
= E E
= [
VVee VGnd VSubst
vde=5 vdc=0 vdc=0
acm=0 acm=0 acm=0
acp=0 acp=0 acp=0
gnd=(gnd!) gnd=(gnd!) gnd=(gnd!)

Figure A.8: Testbench for the multiplier Circuit



126

Appendix A
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(V) : TIME(s)

0.0

V)

-0.04

-0.06

0.0.

(V) : TIME(s)

(v)

=3.0.

V(OUTP)-V(OUTN)

0.0

2.5u

5u 7.5u

T T
10u 12.5u

TIME(s)

T
15u

T
17.5u

20u

Figure A.9: Simulation Results of the multiplier Circuit

A.5 nand2
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Figure A.11: Simulation Results of the nand2 Circuit
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Figure A.12: Schematic of the opamp741 Circuit
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A.8 stepmonitor

This Verilog-A model provides a basic solution for monitoring the convergence within a
transient analysis for simulators supporting the $debug and $strobe functions. Including a
reference of stepmonitor within the netlist (no connections) results in an additional logfile
named <netlist>.stepmonitor containing information about the timesteps (length, absolute
time, number of Newton iterations) and afinal statistics (total steps, total iterations, average
iterations per time step).

Note: The model extensively uses file-1/0 to perform this statistics and therefore seriously
slows down the smulation performance. Any performance measurements have to be per-
formed in separate simulation runs without the stepmonitor instance.

/1

/1 stepnonitor Verilog-A nodel
/1

“include "constants. h”
“include "discipline.h"

nodul e st epnonitor;

integer LOGFILE, WRI TEFILE, READFILE, DUMMWY; /1 File pointers

i nteger eof; /1 EOF dependends on simversion..
i nteger stepno, totaliterno;
real told, tstep, tabs;

integer iters, dumy, readline, alternate;
anal og begin

@initial _step("tran")) begin

eof = 0; dummy = 0;

stepno = 0; iters = 0; totaliterno = 0;
told = 0.0; alternate = 0; tabs = 0.0;

/'l Opening files
LOGFI LE = $fopen("spectre_conv.log", "w');
$f st robe( LOGFI LE, "=== stepnonitor logfile ==="

/1 Touch the files needed for iteration debuggi ng
DUMWY = $fopen(".iterstep0”, "w');
$f st robe( DUMWY, "0");
$f cl ose( DUMWY) ;
DUMWY = $fopen(".iterstepl”, "w');
$f st robe( DUMWY, "0");
$f cl ose( DUMWY) ;

if (eof == 0) begin
/1 Determne the eof-val ue
READFI LE = $fopen("%C', "r");
readl i ne = $f scanf (READFI LE, "%", dummy);
if (readline == 0) eof = 1; /1 Spectre 5.1.
el se eof = -1; /1 Spectre 6.1.
$strobe("eof is: %", eof);
$f cl ose( READFI LE) ;

end

end
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/1
/1 stepnonitor Verilog-A nodel cont’d
/1
/1 Analysis within each tinestep
if (analysis("tran") && !analysis("ic")) begin
/1 Open alternating files to determne iterations per tinestep
if (alternate <= 0) alternate=1;
el se al ternate=0;
/] Determine iteration nunber fromlast file
iters = -1;
readline = 0;
if (alternate <= 0)
READFI LE = $fopen(".iterstepl”, "r");
el se
READFI LE = $fopen(".iterstep0", "r");
/1 Count the lines within file
whil e ($fscanf (READFILE, "%d", dunmy) != eof) begin
iters = iters + 1;
end
$f cl ose( READFI LE) ;
totaliterno = totaliterno + iters;
$f strobe(LOGFI LE, "%d:\tabstime = %\ttstep = %\titers = %", stepno,

tabs, tstep, iters);

/1 Cal cul ate steplength and export step debuggi ng
stepno = stepno + 1;

tabs = $abstine;

tstep = tabs - told;

told = tabs;

/1 Count iterations to file
if (alternate <= 0)
WRI TEFI LE = $fopen(".iterstep0”, "w');
el se
WRI TEFI LE = $fopen(".iterstepl”, "w');
$f debug(WRI TEFI LE, stepno);
$f cl ose(WRI TEFI LE) ;
end

/1 Triggers logfile export at last timestep
@final _step("tran")) begin
/1 Finale statistics

$f strobe(LOGFI LE, "=== Overall Statistics ===");
$f st robe(LOGFI LE, "Total iterations: %", totaliterno);
$f strobe(LOGFI LE, "Total steps: %", stepno);

$f strobe(LOGFI LE, "lterations/step: %", (1.0*totaliterno)/stepno);

/1 Cose all files
$f cl ose( LOGFI LE) ;
$f cl ose(WRI TEFI LE) ;
end
end
endnodul e
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B Analog Insydes

This appendix provides additional information on new or enhanced functions within Analog
Insydes. Thefirst subsection coverstopicsrelated to model generation, the second subsection
provides usage information on the DAE optimization functions, and the last subsection in-
troduces some auxiliary functions.

B.1 Modeling Functions

B.1.1 Model Order Reduction
A DAE system
f(Xgite> Xaitt> Xaigebr- ) = O
can be transformed into an equivalent system

f(Xdiff’ Xdiff’ Xalgebr’ Xsub» t) = 0 with

X € IR substitution variables
by adding dummy eguations f,, of theform
fsun(Raits Xsup) = Xsub—Xgitr = O

and substitution of Xy — X4, Withinthe differential equations f ;. Recursive application
issuited for order reduction of higher order DAE systemsto first-order. The structure of the
Jacobian matrix changes to

afdiff afdiff afdiff
aXdiff aXalgebr aXsub ‘]stat, 11 ‘Jstat, 12 ‘]stat, 13 000

= E))N(f - afalgebr afalgebr 0 - Jstat, 21 ‘]stat, 22 0 *el000 with
aXdiff aXalgebr 0 0 1 -100
-1 0 1

N Ngitt + Nagebr Rzndlff + Ny gebr
Jje R x| .
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The described method is realized in Analog Insydes through the function ToFi r st Or der -
Syst emand is applied to the DAE systems before the model generation.

B.1.2 WriteModel

During thiswork, theoriginal Wi t eMbdel function hasbeen extended and enhanced by sev-
eral modeling languages (TML, ZMS, CMI) and features. Especially the idea of providing
different modeling strategies for certain features as well as the generation of simulator-spe-
cific models have been integrated into the modeling function. Thus, the function is able to
generate specific “flavors’ of the AHDL s adapted to the simulators needs. The latter depend
on supported language features as well as performance and robustness aspects. The model
export is used as follows:

WiteMdel [

modelfile, (* Output file for model *)

entityname, (* Entity / module name of model *)

DAEObject, (* DAEODbject to model *)

ports, (* List of model ports*)

connections, (* Connection information for ports/ variables*)

(* Mandatory “options’ *)

Mbdel i ngLanguage -> "VHDL-AMS'|"Verilog-A"["'TML"["ZMS’|...,

Si nul at or -> "Titan”|...,

Options (* Additiond options*)
]

Table B.1: New Options of Wi t eModel
Option Values Description
Internally performs CSE on Jacobian matrix and
CE Tr ue] Fal se functions (valid only for Titan ZMS models)
Darpi ng Tr ue| Fal se Replace; severa nqnllnear functlons by damp-
E— ing functions (e.g. limexp, limsqrt)

I Strat egy e Table B2 Distinguishes the modeling strategy for condi-

tional statements

Triesto heuristically determine tolerances of

I nsertTol erances Automat i ¢| variables and equations (if applicable to model-
True| Fal se |,
ing language)
Applies preloading strategies within the model
Prel oadi ng True| Fal se |export (applicable for Verilog-A and Titan
ZMS)

Distinguishes the modeling strategy for sequen-

Sequential Strategy | seeTableB.3 tial equations
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Table B.1 provides the new options of Wit eMbdel that have been introduced to generate
simulator-specific models. Unfortunately, the modeling methods are limited by the support
of certain language features on the simulator side. Whereas simultaneous equations can be
very intuitively modeled in VHDL-AMS, the language is of major disadvantage for sequen-
tial equations. The (most desirable) simultaneous procedural statement is not yet supported
by any of the (to the author available) simulators. Using analog functions to realize sequen-
tial equations requires the sequential variable to be afree quantity (unnecessarily) increasing
the number of unknowns of the resulting system of equations (otherwise, derivatives of se-
quential variables would not be possible). This makes modeling of sequentia equations ut-
terly impossible in VHDL-AMS as it is not possible to reduce the dimension of the linear
system.

In contrast to that, modeling sequential equationsis very comfortablein Verilog-A. Though
modeling simultaneous equations requires some effort as there is no direct representation of
an equality in Verilog-A. Therefore, their modeling is realized through an indirect branch
contribution. Unfortunately, this seems to significantly limit the simulation performance.

Initial values and tolerances are not supported by some simulators. In order to enable the
modeling of conditional statements and sequential equations, several modeling strategies
have been introduced. Tables B.2 and B.3 introduce the implemented modeling strategies.

Table B.2: Option Vauesfor | f Str at egy

Option Value Description

Use of the ternary operator to model conditional statements
(applicable for Verilog-A only)

Generation of afunction for each conditional statement and
Function subsequent calls of the function from within the equation set
(applicable for MAST, Verilog-A, VHDL-AMS)

Introduction of an additional variable and equation per condi-
tional statement, substitution of all conditional statements by
the newly introduced variable (applicable for TML and
VHDL-AMS)

Condi ti onal Qper at or

Si mul t aneousCondi ti on

Replacement of conditional statements by a sum of two
Uni t Step inverse unitstep functions multiplied with either of the branch
equations (applicable for TML and VHDL-AMS)

The probably most comfortable modeling strategy for conditional statements is the ternary
operator of Verilog-A. Anyway, there are several restrictions on what language features
might be used within the ternary operator and functions. The Si nul t aneousCondi t i on op-
tion has the disadvantage of introducing additiona variables. Finally, Uni t St ep might cause



136 AppendixB

numerical problemsto do “unannounced” discontinuities, but experiments have shown good
convergence using this festure.

Table B.3: Option Values for Sequent i al Str at egy

Option Value Description

None All equations are modeled simultaneously

Generation of afunction, an additional free quantity, and an
Function simultaneous statement for each sequential equation (applica
ble for VHDL-AMYS)

Modeling of sequential equations by direct assignments (Ver-
Sequenti al Assi gnnent  |ilog-A: procedural statement, VHDL-AMS: simultaneous pro-
cedural statement)

Themodeling strategies for sequential equations are acrucial point when generating VHDL -
AMS models as was described above. The option’s vaue Sequent i al Assi gnnent would
be the best modeling strategy, but is currently not supported by simulators. The strategy ac-
tivated by the option value Funct i on does not enhance the performance of the simulation as
no reduction of the models' dimension can be achieved.

B.1.3 WritePincompatibleModel

Wit ePinconpati bl eMddel isawrapper function for Wit eMbdel . It is intended to bot-
tom-up generate behavioral models starting from a circuit netlist. The function contains a
complete behavioral modeling flow to import the circuit, extract the subblock to be modeled,
setup the circuit equations, optimize them for numerical methods, reduce the complexity (a
future issue), and finally export a behavioral model in one of the available analog hardware
description languages. Asthe process alows adiversity of different modeling strategies and
settings, Wi t ePi nconpat i bl eMbdel triesto determine the best settings for your simulator
automatically. The function’s usage:

Wit ePinconpati bl eMobdel [

netlistfile, (* Netlist to generate model from *)

instancename, (* Instance name of subcircuit to model*)
modelfile, (* Output file for model *)

entityname, (* Entity / module name of model *)

(* Mandatory “options’ *)

Model i ngLanguage -> "VHDL-AMS'|"Verilog-A"["'TML"["ZMS’|...,
Si nul at or -> "Titan”|...,

G rcuitSinul ator -> "Titan"|" AnalogArtist”,

Options (* Additiond options*)
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The combination of Mbdel i ngLanguage and Si nul at or allows to generate modelsin vari-
ous modeling languages and to adapt the optimization as well as modeling strategies to the
specified target simulator (names not provided due to anonymous presentation).

Table B.4: Additional Options of Wi t ePi nconpat i bl eModel

Option Values Description
; . “ - " Selection of aformulation of
Equat i onFormul ati on MNA”"["STA the network equations
ConmonSubexpr essi ons True| Fal se Apply CSE
Conpr essMbdel Equat i ons True| Fal se Cqmpr%s model equagons
—_— using Conpr essEquat i ons
Discard all information on
Mar KAl | Si mul t aneous True| Fal se sequential equations (all equa-
tions modeled simultaneously)
RenoveTri vi al Equati ons True| Fal se Redupe_ redundancy by remov-
— ing trivial equations
Sequential Identification True| Fal se Apply BLT
Sequent i al Substitution True| Fal se Subsututesall sequential equar
E— tions
. Substitutes all parameters with
Subst it ut ePar anet er s True| Fal se their numerical default values
Perform a DC analysis and pro-
Provi del ni ti al Guess True| Fal se vide results asinitial valuesfor
the model
Lisfile File name Import the logfile of Titan to

extract DC/AC values

<Subf uncti on>0pt i ons

List of options for spe-
cific subfunctions

These options allow to pass
user-specified optionsto al of
the magjor subfunctions within
the modeling process (e.g.

Wit eMbdel Opti ons)

The option Wi t eMbdel Opti ons is particularly helpful to select a non-default modeling
strategy within the bottom-up modeling flow. It enables the user to customize the model ex-
port as the provided options are passed to Wi t eMbdel .
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B.2 DAE Optimization Functions

B.2.1 IdentifySequentialEquations

| denti f ySequenti al Equat i ons[DAEObject, Options] performs BLT on a given DAE-
Object and returns an optimized DAEObject with additional sequential equations.

TableB.1: Optionsof | denti f ySequent i al Equat i ons

Option Values Description
Switches between two different
ChooseMet hod “Versionl”["Version2” [algorithms. Version2 is more
performant.
Keep or discard original
KeepSequent i al Equat i ons True| Fal se sequential equations of the
input DAEObject
I ni _t| al Si mul t aneous- List of variables Keeps this variables simulta-
Vari abl es neous
K eeps pivot elementswithin the
KeepPi vot El ement sFor Si neqgs True| Fal se simultaneous equeations, typi-

cally thisis not necessary

Does not recognize sequential
equations that couple indepen-
dent sequential blocks (sup-
ported only by Versionl)

KeepDecoupl edSequent i al -

Bl ocks True| Fal se

B.2.2 OptimizeCommonSubexpressions

Opt i ni zeConmonSubexpr essi ons[DAEObject, Options] performs a common subexpres-
sion elimination on the DAEObject. It finds common subexpressions and extracts these ex-
pressions into additional sequential equations to avoid unnecessary multiple evaluation of
COMMON expressions.
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Table B.2: Options of Opt i m zeConmonSubexpr essi ons

Option Values Description

Switches between two different algo-
rithms. Versionl is more performant

and yields alower number of deeper

expressions.

ChooseMet hod “Versionl'|"Version2”

Ext r act Par anet ri c- Additionally extracts expressions only

EXpr essi ons True| Fal se gonsstlng of parameters (for prel oad-
ing)

ExpandSubexpr essi ons True| Fal se Expa_nds thefour_ld common Sbex-

— pressions to maximum depth

M nCost Integer (default: 3)  [Minimum cost of a subexpression

M nDept h Integer (default: 3)  [Minimum depth of a subexpression

M nUsage Integer (default: 2) Minimum pumber of referencesto a
subexpression

The latter three options may result in discarding a found expression. A common subexpres-
sion has to be compliant with al three conditions. When used together with
Ext ract Par anet ri cExpr essi ons- >True, M nUsage does not apply.

B.2.3 RemoveRedundantEquations

RemoveRedundant Equat i ons[DAEChj ect , Options] removes sequentia equations that are
not needed within the equation structure. The option Pr ot ect edVar i abl es alows to pro-
vide alist of variables that are protected from being removed.

B.2.4 RemoveTrivialEquations

RemoveTri vi al Equat i ons[DAECh] ect, Options] removes redundant (trivial) equations
and thereby reduces the dimension of the DAE system. The option Pr ot ect edVari abl es
alowsto provide alist of variables that are protected from being substituted.

B.2.5 SubstituteSequentialEquations

Subst it ut eSequenti al Equat i ons[DAEChj ect , Options] conditionally replaces sequen-
tial variables by their determining sequential equation. Sequential equations violating one of
the conditions (options M nCost , M nUsage, M nDept h) are substituted. With default op-
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tions, the function reduces the dimension to the number of simultaneous variables. Use care-
fully, as the resulting equation sets might be of enormous complexity.

Table B.3: Options of Subst i t ut eSequent i al Equat i ons

Option Values Description
KeepPar anet ri cExpr essi ons True| Fal se ]f:rgr;e‘g; Egr :T;;t?iﬁtzpreﬁ ons
M nCost Integer (default: 1) l\i/loinnimum cost of a sequential equa-
M nDept h Integer (defauit: 1) ZAqL”;tri':)“nm depth of & sequentia
M nUsage Integer (defavit: 1) ggﬂerm‘lg C‘;rr?:bfifem referencestoa
Prot ect edVari abl es List of variables ;:;g@ﬁ?ﬂ?@‘%ﬂ ;Jbé:;[ﬂ‘f‘etd are

B.3 Supplementary Functions

This section introduces some new supplementary functions related to the modeling and op-
timization process.

B.3.1 AlgebraicDifferentialPartitioning

Al gebrai cDifferential Partitioni ng[ DAEGhj ect] performsapartitioning of the equa-
tion set of aDAEObject into algebraic and differential subsystems.

B.3.2 CheckDAEConsistency
CheckDAEConsi st ency[ DAEChj ect] performs a set of basic consistency checks to make
sure a DAEObject does contain avalid DAE system. The function checks:

* Block sizes

* Equation / Variable numbers

* Structure of sequential equations (explicit formulation, lower-diagonal block)

* Independency of sequentia subsystems

* First-order system

B.3.3 DAEStatistics

The function DAESt at i st i cs[ DAEChj ect] generates detailed statistics on a DAE system:
* Basic Statistics Number of equations and variables, differential variables, etc.
* Sequential Statistics ~ Number of seg. and sim. vars. / egs., sparsity, nonzeros
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» Nonlinear Statistics Number of function calls to nonlinear functions
* Evaluation Cost Evaluation cost for functions and their Jacobian matrix
» Memory Accesses Memory accesses for functions and their Jacobian matrix

B.3.4 DisplayEquations / DisplayEquationCosts

Di spl ayEquat i ons[ DAEChj ect] shows a well-formatted list of the DAE system (also in-
cluding the partitioning into seq. and sim. equations). D spl ayEquat i onCost s aso in-
cludes cost, depth, and usage of the equations.

B.3.5 DisplayLinearSystem / DisplayLinearSystemStructure

Di spl ayLi near Syst enf DAEhj ect] generates a symbolic 12 o
representation of the linearized system of the DAEs (with - l
Backward Euler applied to resolve differential variables). ’

Di spl ayLi near Syst enfst r uct ur e[ DAEChj ect, Options] «

returns aplot of the structural nonzero entries of thesystem's . f \
Jacobian matrix (as shown within the figure). The boolean [

options Di spl ayBl ockBorders and Di spl aySeparators °
alow to turn of auxiliary lines to separate the subsystems. © u

o e

©

E B

B.3.6 EvaluationCost T2 4 s 8 wmau

The function Eval uat i onCost [ DAECh] ect , Options] estimates the effort necessary for the
numerical evaluation of the functions resp. the Jacobian matrix of the DAEObject. The op-
tions allow to measure in different modes and display the result in different metrics. The es-
timated CPI figures can be customized by using the option Funct i onCost s.

Table B.1: Options of Eval uat i onCost

Option Values Description
“Function”| Account for function only, Jacobian
Measur eNbde » Jacobia’ PAI” |matrix only, or both
Netri ¢ “FunctionCalls’| Display resultsin calls per function, flops
“Flops’|" TotalFlops”  |per function, or total flops
Funct i onCost s List of function- >cost  |Customize the function costs

B.3.7 OptimizeEquations

Opti m zeEquat i ons[ DAEChj ect] applies various optimization strategiesto the DAE sys-
tem and returns an optimized system of equations.
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B.3.8 ReadVerilogA (Prototype)

Thefunction ReadVer i | ogAl modelfilename] isa prototypical approach to import the equa-
tions of aVerilog-A model into Analog Insydesfor further processing. Asit does not contain
aVerilog-A parser, the process relies on the adms model compiler [44] to convert the Ver-
ilog-A model to aMathematica conform syntax. Thisintermediatefileis afterwards import-
ed and postprocessed to obtain a DAEObject. The postprocessing requires comprehensive
reformulations of procedural statements to obtain valid sequential equations. To hame only
the major problemsthere are:

* Syntax conversion

* Unbalanced conditiona statements

* Nested conditional statements

 Multiple procedural assignments to the same variable

* Redundant egquations

* Conversion of branch representation to network equations

The function has been successfully applied to import a Verilog-A implementation of the
Gummel-Poon model. Based on the imported equation set, a symbolic device model for An-
alog Insydeswas generated. The future application of thisfunction includes several different
use cases: Generation of Analog Insydes device models, model trangation (e.g. Verilog-A to
VHDL-AMS), model optimization, as well as device model compilation (e.g. Verilog-A to
Titan ZMS). In order to enable such promising applications, further enhancements have to
be done to provide further necessary features. However, the prototypical application to the
Gummel-Poon model has been the proof-of-concept for the Verilog-A import functionality.
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C Additional Statistics

C.1 Loading Performance

This section contains the charts for the complete and chain network experiments for the sm-
ulators Dione, Rhea, Thetys (for the corresponding results for Titan refer to Section 4.6).

C.1.1 Dione (Verilog-A)
Complete Networks
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Figure C.1: CPU Time for Complete (left) and Chain Networks (right) for Dione
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C.1.2 Rhea (Verilog-A)
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Figure C.2: CPU Time for Complete (Ieft) and Chain Networks (right) for Rhea
This statistics for Rhea could not be performed with the VHDL-AMS front-end of the sm-

ulator as the compiler crashes due to insufficient memory for the majority of the generated
models.

C.1.3 Thetys (VHDL-AMS)
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Figure C.3: CPU Time for Complete (Ieft) and Chain Networks (right) for Thetys
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C.2 Sparse Loading Performance
C.2.4 Titan (TML)

Table C.1: Evaluation of the Sparse Loading for opamp741

Exampl € Niter/step Ttran Sran Tload Soad Tsolve Ssolve
absolute | 3.49 7752s 49.36 s 27.84s
model (dense) .
relative n/a 100 % 63.6 % 35.9%
10.0 7.2 435
absolute | 4.64 7.73s 6.85s 0.64s
model (sparse) -
relative n/a 100 % 88.6 % 83%

Figure C.4: Additional chartsto show the distribution of the CPU timeto loading and solving
for the sparse implementation for Titan. Refer to Section 5.2 for further details.
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Figure C.4: CPU Time for Chain Networks with Titan (TML, incl. Sparse Loading).
CPU time for loading (left) and solving (right)

C.2.5 Titan (ZMS)

Figure C.5/ Figure C.6: Additional chartsto show the CPU time for the ZM S-based models
for Titan. Refer to Section 5.7 for further details and the charts for the loading performance.
The CPU timefor thetransient analysis (left chart) is dominated by the solving performance
(right chart), which is suboptimal due to application of the MUMPS solver (missing integra-
tion for the sparse Titan solver).
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AppendixC

Chain Networks
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Complete Networks
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