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Abstract

In structured top-down design methodologies for the development of complex mixed-signal
systems on chip, it is highly desirable to apply automated bottom-up modeling methods.
These modeling methods are suited to generate behavioral models of analog blocks at the
transistor level with the aim of speeding up simulations at higher abstraction levels. The ap-
plication of such bottom-up generated models in mixed-mode simulations is essential to ver-
ify correct functionality at system or full-chip level. Without the application of behavioral
models, verification at the system level is extremely costly in terms of computational effort
for most modern designs – if not impossible.

Symbolic analysis offers promising approaches for automated, highly accurate, and flexible
bottom-up modeling methods. These methods perform an automated model reduction that is
applied to the circuit’s network equations and results in simplified but still complex differ-
ential algebraic equation (DAE) systems. Based on the DAEs, behavioral models for differ-
ent modeling languages can be generated. These models can subsequently be used to replace
their corresponding transistor-level subsystem in order to enhance the simulation perfor-
mance. Even though the applied model reduction algorithms are highly efficient, the result-
ing models’ performance is often unsatisfactory – sometimes even slower than at the
transistor-level – making the application of such models impossible.

The objective of this work was to analyze and improve the simulation efficiency of such
complex analytical models. This has been achieved by an adaptation of the behavioral mod-
els and the applied simulation algorithms, thus enhancing the simulation performance with-
out loss of accuracy. The method is based on a highly efficient model compilation as well as
on optimization strategies to reformulate the models’ DAEs with respect to the applied sim-
ulation algorithms. Thus, the simulation performance has been significantly improved by
factors of up to two orders of magnitude. An important step towards efficient future use of
symbolic methods for bottom-up model generation of analog circuits has been taken.

Keywords: Analog Behavioral Modeling, Symbolic Analysis, Model Compilation



II

Kurzfassung

In einer strukturierten top-down Designmethodik zur Entwicklung komplexer mixed-signal
Systeme ist der Einsatz einer automatisierten bottom-up Modellgenerierung von hoher
Wichtigkeit. Derartige Modellierungsmethoden sind zur Erzeugung von Verhaltensmodel-
len analoger Blöcke auf Transistorlevel mit dem Ziel der Simulationsbeschleunigung auf hö-
heren Abstraktionsebenen geeignet. Die Anwendung der erzeugten Verhaltensmodelle in
mixed-mode Simulationen ist zur Verifikation auf System- oder Full-Chip-Ebene unerläß-
lich. Ohne den Einsatz von Verhaltensmodellen ist die Verifikation moderner Mikrochips
auf Systemebene extrem rechenzeitaufwändig – wenn nicht sogar unmöglich.

Die symbolische Analyse eröffnet vielversprechende Ansätze zur automatischen, hoch ge-
nauen und flexiblen bottom-up Modellierung. Diese Methode basiert auf automatisierten
Modellreduktionstechniken, die auf die Netzwerkgleichungen der Schaltung angewendet
werden. Die daraus resultierenden vereinfachten aber noch immer äußerst komplexen nicht-
linearen Algebrodifferentialgleichungen (ADGL) können zur Erzeugung von Verhaltensmo-
dellen in verschiedenen Modellierungssprachen eingesetzt werden. Die erzeugten Modelle
können anschließend zur Ersetzung des entsprechenden Teilsystems auf Transistorebene zur
Simulationsbeschleunigung verwendet werden. Trotz sehr hoher Effizienz der Modellreduk-
tionsalgorithmen kann oft nur eine unbefriedigende Simulationsperformanz erzielt werden.
Teilweise sind die Modelle sogar weniger performant als die Realisierung auf Transistor-
ebene. Dadurch wird ein effizienter Einsatz der erzeugten Modelle derzeit verhindert.

Ziel dieser Arbeit war die Analyse und Verbesserung der Simulationsperformanz komplexer
analytischer Verhaltensmodelle. Dafür wurde eine Anpassung zwischen den Verhaltens-
modellen und den angewendeten Simulationsalgorithmen zur Verbesserung der Performanz
ohne weiteren Verlust von Genauigkeit durchgeführt. Diese Anpassung basiert auf der Ent-
wicklung eines effizienten Modellcompilers und Algorithmen zur automatischen Umformu-
lierung der ADGL im Hinblick auf die Simulationsalgorithmen. Dadurch konnte die
Performanz deutlich um bis zu zwei Größenordnungen verbessert werden. Auf diese Weise
ist ein wichtiger Schritt in Hinblick auf die zukünftige Nutzung symbolischer Methoden zur
Modellerzeugung für analoge Schaltungen erzielt worden.

Stichworte: Analoge Verhaltensmodellierung, Symbolische Analyse, Modellkompilie-
rung
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1 Introduction

In the semiconductor industry one of the key factors for staying competitive is to continu-
ously improve efficiency. In 1965, Gordon E. Moore predicted a rapid exponential growth
of the number of transistors that can be integrated on a chip. His prediction became common-
ly known as “Moore’s Law”. Since then, the semiconductor industry’s growth rates have
proven Moore’s early extrapolation. The semiconductor market continuously creates de-
mand for more complex integrated circuits at ever lower cost. This trend pushes the semi-
conductor companies to improve their efficiency in all fields. Cost efficiency in production
is achieved by shrinking transistor sizes and increasing productivity of the semiconductor
fabs. Higher system integration leads to complex systems being integrated on a single chip
in order to improve the assembly cost for customers. Last but not least, the design efficiency
has to keep track with the rapid development of technology. Resources to develop a chip are
limited and the project cycle times play a crucial role in timely bringing profitable products
to the market. Thus, the lever to become more efficient within a chip’s design phase are de-
sign methodology and design automation.

Design efficiency is mostly driven by Electronic Design Automation (EDA). The EDA in-
dustry is closely connected to the semiconductor companies as the fulfillment of Moore’s
law would not have been possible without a large degree of automation in chip design. The
design is based on a design flow, which is composed of a large variety of specialized tools
to support the process steps from specification to production. While the design of digital sys-
tems is largely automated and dominated by a clearly defined design methodology, analog
designs are mostly left to the experience of specialized design engineers. Even though the
analog subsystems of a chip are increasingly becoming more important, analog design is in-
sufficiently supported by automated design tools. New design methodologies are necessary
to improve efficiency and prevent costly redesigns due to the late detection of errors.

Design and Verification of Microelectronic Circuits

Traditionally, mixed-signal design was performed by bottom-up design. Starting from the
design and verification of individual circuit blocks, the obtained components were integrated
into the system and verified at transistor level. This design methodology posed several prob-
lems such as high simulation effort, disadvantages for architectural changes, risk of commu-
nication errors, and late recognition of errors. In order to tackle these problems, top-down
design methodologies are increasingly applied [41, 42]. They enhance the efficiency and
quality of the design process due to their well-structured refinement from an architecture to
a transistor level realization. Each level is thoroughly partitioned, designed, and refined to
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the next level followed by a verification step. Thereby, the system is step-wise designed from
an algorithmic description at the system level down to a transistor level realization of all
blocks.

Verification is the process of proving the compliance of a circuit with its specification. For
microelectronic systems, verification is of major importance as there is no possibility for pro-
totyping, and redesigning after the production start causes enormous costs. The most com-
mon verification method is circuit simulation, which – in a strict sense – does not prove but
only validate the circuit. Circuit simulation tools are intended to numerically predict the be-
havior of a circuit’s electrical quantities without having an actual realization of it. They are
based on parameterized device models to describe the behavior of the basic electrical com-
ponents of the circuit. Netlists are used to list the circuit’s components and describe their in-
terconnecting network. The simulation of electrical systems can be performed at different
abstraction levels:

• Digital simulation – time- and value-discrete simulation method based on boolean
logic that is capable of simulating large digital circuits with considerable computing
resources (millions of transistors within a day).

• Analog simulation – continuous value simulation method with adaptive time steps for
analog circuits that yields accurate results for currents and voltages, strongly restricted
by computing power (thousands of transistors within a day).

• Mixed-signal simulation – a combination of the previously mentioned methods that
adaptively uses one of the methods for digital or analog partitions of the circuit (hun-
dred-thousands of transistors within a day).

• Device simulation – highly accurate field solver to calculate physical behavior of a sin-
gle or very few semiconductor devices that requires large amounts of computing power
(few transistors within weeks, inappropriate for circuit simulation).

The examples for the simulation time give a rough idea of the typical capability of each sim-
ulation type. A comparison of the simulation methods shows that the accuracy of the simu-
lation results and the necessary simulation times are conflicting interests. The term accuracy
within the simulation-context specifies the degree of conformity of the calculated to the mea-
sured values. In order to achieve a high accuracy within simulation, new devices as well as
new technologies require the characterization of the devices to achieve suitable parameter
sets for the corresponding simulation models. The determination of the device parameters is
based on measured characteristics to calibrate the device models’ behavior. Due to limited
computing resources, performance is often the limiting factor that requires the application of
less accurate simulation methods. For circuit simulation, analog simulation is considered to
be the most accurate and feasible solution. Device simulators are not suited for circuit sim-
ulation due to the required amount of computing power, even though they would be more
accurate.

Figure 1.1 visualizes the relationship between accuracy and performance of a simulation.
Considering computing resources and efficiencies as constants, an increased accuracy of the
models used within the simulation proportionally increases the simulation effort. Thereby,
the simulation time increases and performance is affected. The only possibility to enhance
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performance without loosing accuracy is to increase computing resources (as e.g. applied in
parallel computing) or to improve efficiency of the model or the simulator. The scaling of
the simulation effort with the model accuracy is influenced by the model efficiency, which
is determined by the realization and formulation of the model. The efficiency of the simula-
tor determines the necessary simulation time for a defined simulation effort with a given
amount of computing resources. Depending on the application, a suitable trade-off between
accuracy and simulation time has to be found. In order to make this trade-off as profitable as
possible, the efficiency of the model as well as the simulator must be optimized. Enhancing
simulation efficiency is typically impossible for the user of a simulator. Improving the mod-
el’s efficiency is possible for the creator of the model but requires some internal knowledge
of the simulation algorithms and should ideally be done automatically by the simulation en-
vironment.

Performance-wise, the verification of large mixed-signal systems on chip level is the most
crucial issue in circuit verification. Simulating the entire chip with analog accuracy is almost
always not a feasible solution due to the extremely high computational effort. Using a digital
simulator is impossible due to the analog subsystems of the chip that cannot be simulated
with digital simulation algorithms. In most cases, even the application of a mixed-signal sim-
ulator does not reduce the computation time to target (typically over-night simulation).

Behavioral Modeling

The use of behavioral models is a strategy to speed-up simulations. It becomes increasingly
important for top-down as well a bottom-up design methodologies. A behavioral model is a
functional description of a specific circuit that is suited to predict the relevant behavior of the
corresponding circuit with reduced simulation effort. According to Figure 1.1, this reduction
of the simulation effort comes along with reduced accuracy of the simulation results. Typi-
cally, this is achieved by neglecting physical effects of the circuit implementation that are
considered irrelevant for the application of the model. Subsequently, the behavioral model
can be used to replace its circuit-counterpart in order to speed-up the verification in larger
contexts. The strategy to simulate a system partly represented by its circuit netlist and partly
by behavioral models is called multi-level or mixed-mode simulation [11]. By simulating

Figure 1.1: Accuracy Performance Trade-Off

Computing
Resources

reciprocalrequiresdeterminesModel 
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Simulation 
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varying combinations of circuits and behavioral models, the functionality of the whole sys-
tem or of specific components within the system context can be verified.

The most common types of behavioral models are:

• Electrically equivalent circuits (macro models) – simplified circuits to model the ter-
minal characteristics of the original circuit [9, 10, 67]. Historically, this is the first
approach of behavioral modeling as the models can be simulated with an ordinary cir-
cuit simulator.

• Equation-based models – behavioral models based on mathematical systems which
are typically realized in an Analog Hardware Description Language (AHDL) and
require a corresponding simulator interface [4, 33, 48].

• Look-up tables – behavioral models based on sampling points stored within data
tables. In conjunction with an interpolation method, it is possible to “look up” output
characteristics of the model dependent on the input values [78, 86]. This model type is
desirable for modeling applications where no equation-based description is available.

For detailed comparisons and discussions on modeling approaches and classifications of be-
havioral models please refer to [3, 58, 66]. Modeling approaches can be classified into em-
pirical and analytical methods. The former only uses observations, e.g. measurements or
simulation data, to reproduce a circuit’s behavior. This has disadvantages as the model does
not reflect physical properties of the circuit. Analytical modeling methods are based on phys-
ical laws and interrelationships of the modeled circuit. Therefore, a precise analysis and un-
derstanding of the circuit is necessary. Analytical modeling methods are superior to
empirical methods as they provide insight into the model’s behavior and offer the possibility
of adapting the model to circuit changes. Analytical models are equation-based, but not all
equation-based models are analytical.

As manual modeling is time-consuming, error-prone, and requires a high level of modeling
knowledge, an automated modeling technique is highly desirable. Especially for bottom-up
modeling with the intention of deriving a behavioral model from an already implemented cir-
cuit block, several automated modeling approaches exist:

• Characterization – a library of parameterized model templates allows modeling of
specific circuit classes. The parameters for the selected model are determined by char-
acterization of the circuit [19, 37].

• Neural networks – behavioral models based on neural networks that are trained with
simulation or measurement data [17, 52, 53].

• Symbolic analysis – an approach to generate equation-based models using a computer
algebra system in combination with network analysis algorithms [3, 5, 27, 31, 65, 87].

This work focuses on automated bottom-up generation of equation-based behavioral models
for nonlinear analog circuit blocks through symbolic analysis as introduced in [3]. The ap-
proach is based on the automated derivation of symbolic network equations from a circuit
within a computer algebra system. The core of a symbolic analysis system is its model re-
duction algorithm – the process of simplifying equations until a user-specified accuracy-cri-
terion is reached. This method is very useful for bottom-up modeling as it approximates the
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circuit with its own network equations. The resulting simplified set of equations can be used
as core of an equation-based behavioral model. The suggested modeling method has several
advantages over other approaches:

• Automated modeling process

• Model accuracy specified in advance

• Very high accuracy attainable with limited modeling effort

• Applicable to all circuit classes (limited to analog block size)

• Resulting models parameterized with dominant circuit parameters

• Insight into the model equations

Chapter 2 will discuss symbolic analysis and its application for behavioral modeling in more
detail. An introduction to the relevant simulation algorithms for nonlinear dynamic systems
and to behavioral simulation methods will follow in Chapter 3.

Motivation

Even though highly efficient model reduction techniques exist, the generated behavioral
models contain equation systems of exceptionally high complexity. Unfortunately, the sim-
ulation performance of the generated models is often significantly lower than the perfor-
mance of the corresponding netlist-based simulation, making their use impossible.
Example 1.1 illustrates this problem.

Example 1.1: Performance Problem

In [100], the behavioral model generation for a complementary folded-cascode operational
amplifier was published. The operational amplifier consists of 19 MOS-transistors (modeled
with BSIM3v3 [89]). This analog block was intended to be modeled through symbolic an-
alysis to achieve a behavioral model with a 10 % error bound of the amplifier’s output volt-
age. Initially, the equation setup resulted in a complex equation system of 1177 equations –
with the majority being highly nonlinear. Through automated model reduction, the equation
system was reduced to 29 equations only – still fulfilling the required error margin. The sim-
ulation time for the generated behavioral model was enhanced by a factor of 16. Still, the
simplified model’s simulation performance was 4 times worse than the performance
achieved through the netlist-based simulation of the original circuit.

 �
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Figure 1.2 qualitatively depicts the current situation with respect to the accuracy perfor-
mance trade-off for this modeling approach. The reference in terms of accuracy and simula-
tion time for all bottom-up modeling methods is the netlist-based simulation (black square
in Figure 1.2), as the model is intended to replace (and speed-up) this representation of the
circuit block. It is supposed to be the most accurate simulation type for the modeled circuit
block. Based on the netlist, symbolic analysis offers the possibility to generate a behavioral
model containing equivalent network equations as used simulator-internally for the netlist-
based simulation (unsimplified model). This model has the same accuracy as the netlist-
based simulation but typically a significantly higher simulation effort, resulting in an over-
head in simulation time. Starting from this unsimplified model, a plurality of simplified mod-
els along a decreasing trajectory can be achieved through model reduction. The trajectory
reflects the trade-off between accuracy and simulation time for different degrees of model
reduction. The shape of the curve was chosen exemplarily. In practice, it highly depends on
the structure of the model equations and the applied model reduction algorithms. Hence, the
trajectory may be of arbitrary shape but should be monotonic decreasing.

The feasible region for a practically useful model is limited by the user-specified minimum
accuracy and the requirement to speed-up the simulation (upper feasible region boundary).
A simplified model close to the lower accuracy boundary minimizes simulation time. Due to
the reduction in accuracy, a certain speed-up compared to the reference simulation time is
achieved. In the case of Example 1.1, no feasible compromise between simulation time and
accuracy could be found as the upper boundary did not comply with the accuracy require-
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ments. A certain amount of accuracy reduction is necessary to compensate for the overhead
in simulation time and to speed-up the model to reach the reference simulation time. There-
by, the efficiency of the modeling approach significantly degrades – this amount of accuracy
reduction is “wasted” without achieving a speed-up compared to the reference simulation.

Objectives of this Work

Within Chapter 4, analyses with respect to the behavioral models’ simulation performance
will be presented. They show that the overhead is far from being negligible – in most cases
the unsimplified model is in the order of one to two magnitudes slower than the netlist-based
simulation. The main objectives of the performance analyses are the quantification of the
overhead, the investigation for the root causes of the inefficiency, and the determination of
influencing factors that account for the overhead.

Certainly, further reducing the model’s accuracy to compensate for the initially bad perfor-
mance of the unsimplified models is not a satisfying solution. The main objective of this
work is to maximize performance through efficiency improvements of both the models and
the simulation process. The overhead should be reduced to a minimum in order to make this
modeling approach competitive in terms of simulation performance and to effectively use the
powerful model reduction algorithms for speeding-up the behavioral models compared to the
netlist-based simulation.

Based on the results of the performance analyses, Chapter 5 will present approaches to en-
hance the behavioral simulation efficiency. Automated optimization methods to increase the
model efficiency by reducing the simulation effort at constant accuracy are presented in
Chapter 6. Both measures are strongly related to each other as optimal efficiency requires an
adaptation between the behavioral model structure as well as the applied simulation algo-
rithms.





9

2 Behavioral Modeling Through Symbolic Analysis

Traditionally, circuits are analyzed by simulation. While numerical methods are useful for
rapidly checking a circuit’s functionality and characteristics, they are not well suited to gain
insight into and understanding of a circuit. Especially for debugging, optimization, dimen-
sioning, and modeling of analog circuits, a more detailed analysis is of great advantage. The
use of symbolic analysis methods [27, 71] provides understanding of interdependencies be-
tween variables and parameters of the circuit. These methods are based on symbolic equa-
tions that analytically describe the system. A symbolic analysis system is used to set up
equations, perform algebraic manipulations, analyze the equations, and apply model reduc-
tion based on a computer algebra system. In contrast to numerical methods, all variables and
parameters of the equations are contained in symbolic form. By applying numerical values
for symbolic parameters and inputs of the system, numerical analyses are easily possible. A
weakness of symbolic methods is the extremely high complexity of the equations. In order
to cope with the high complexity, symbolic model reduction techniques are applied to
achieve a simplified equation system.

Symbolic analysis of linear systems was previously presented in [31]. It is for example used
to perform stability analyses, derive symbolic transfer functions, and perform symbolic pole-
zero analyses. Nonlinear symbolic methods typically focus on modeling applications for
time-domain simulations [5, 26, 58, 82, 83]. This chapter will give an introduction to an an-
alytical modeling method for nonlinear analog circuits based on symbolic analysis. A mod-
eling flow based on the toolbox Analog Insydes [2] will be applied. It uses the computer
algebra system Mathematica [49, 84]. The tool is suited to analyze systems of different phys-
ical domains including electrical [6, 36, 81, 100], mechanical [8], thermodynamic [55], as
well as feedback-control systems [7].

Figure 2.1 depicts a typical bottom-up modeling flow for analog circuits. Starting from the
circuit’s netlist, an analytical behavioral model based on the circuit equations is generated.
Therefore, symbolic circuit equations are set up using symbolic device models. They are
equivalent to the equations used within circuit simulators and are hence considered to be as
accurate as the netlist-based simulation of the circuit. By applying nonlinear model reduction
algorithms, a simplified equation system of user-defined accuracy is achieved. It can be used
as the core of a behavioral model by exporting it to a simulator-compatible model represen-
tation. After introducing some basic definitions for analytical modeling, the major processes
within the flow will be discussed in more detail and demonstrated through an example appli-
cation.
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2.1 Fundamentals of Analytical Modeling

Electrical circuits are built from components and their interconnecting network. A compo-
nent within the network can be either a so-called primitive or a subcircuit that itself hierar-
chically consists of components. Primitives are the basic building blocks (e.g. resistors,
transistors, voltage sources) that provide a corresponding device model within the simulator.
They embody the physical relationship between the primitive’s ports by branch-constitutive
equations. A behavioral model within an electrical network can be considered as a user-spec-
ified primitive. Each component and primitive has a certain number of ports to connect to
other components. A connection between two or more ports is called a node or a net. A con-
nection between two nodes is denoted as a branch. Primitives may provide parameters to
adapt their behavior (e.g. resistance, geometrical properties). Netlists are used to store the
network structure and make it accessible for simulators. A netlist hierarchically contains a
set of subcircuit declarations and a set of parameterized instances of components as well as
the connectivity information. For further details on the terminology of networks see [88].

Analog circuits are continuous systems since all quantities of the network (voltages, branch
currents, node potentials) are considered to be time- and value-continuous, in contrast to dig-
ital systems that only use discrete values and time points. For modeling purposes, signal flow
systems and conservative systems are distinguished. Within signal flow systems, a port has
a certain orientation (input or output) and a specified type (voltage or current port). Thus, a
signal-flow port is non-reactive – meaning an input of a component does not influence the
electrical quantities of connected nodes and vice versa for outputs. Signal-flow systems are

Figure 2.1: Bottom-Up Modeling Process
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Model Export
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typically used for digital simulation or in mixed-mode simulation at higher abstraction levels
(e.g. system level).

Definition 2.1 - Conservative System

In a conservative (electrical) system, each port is associated with a node potential (across
quantity) and a port current (through quantity or flow). The node potential is shared with all
connected nets. The sum of all port currents into a connected node must sum to zero. The
system embodies Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL).

 �

A restriction to signal-flow systems does not hold
true for most analog circuits. Thus, all components
are modeled conservatively (Definition 2.1). Inputs
and outputs can not be distinguished in conservative
systems. In electrical systems, the across quantities
of a component are typically interpreted as the inde-
pendent input variables whereas through quantities
are thought to be the system’s outputs. In other
words, the port currents of a component are thought
to be calculated from the node potentials of its ports.
Internal variables are denoted as free quantities and

may only relate the across and through quantities of the component to each other.

Apart from this network-related definition of port directions, graphical design tools catego-
rize ports into inputs, outputs, and bidirectional ports. For analog circuitry, this distinction is
only of informative value for circuit designers as analog simulators handle all ports as con-
servative ports. Figure 2.2 shows an exemplary conservative system with three ports bound
to the across quantities u1,2,3 with corresponding through quantities i1,2,3. In combination
with the internal variables z and the parameters p, the equations f represent the behavior of
the component.

Figure 2.2: Conservative System
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Figure 2.3: Interconnected Components
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Figure 2.3 gives an example for two interconnected components. The node potential is
shared between both components. The port currents of the inner ports have to be enforced by
the network equations to be of equal absolute value and reverse sign (due to KCL).

Definition 2.2 - Differential Algebraic Equations (DAE)

Let  be a system of differential algebraic equations where

variable vector

continuous time

equations.
The variables  can be partitioned into

differential variables

algebraic variables

so that

with subsystems

differential equations

algebraic equations

 �

Continuous systems in the time-domain are described by nonlinear differential algebraic
equations (DAE, Definition 2.2). Solving a DAE system in most cases requires the applica-
tion of numerical methods to simultaneously determine a solution for the system’s variables.
The next chapter will discuss the most common numerical methods. Most simulation meth-
ods require a first-order system. Any DAE system of higher order can be reduced to a first-
order system by introducing auxiliary variables and equations (see Appendix B.1.1). Al-
though not mentioned within Definition 2.2 and any upcoming sections, DAE systems may
contain symbolic parameters.

Definition 2.3 introduces DAE systems with sequential structure. This concept simplifies
modeling and will be of significant advantage for numerical analyses. Sequential equations
have to be of an explicit formulation for their according sequential variable and may only
depend on simultaneous variables  as well as on previously determined sequential vari-
ables . The explicit formulation as well as the sequential ordering enable an efficient pro-
cessing of this equation type.

f x x· t, ,( ) 0=

x IRn∈
t IR∈

f IRn IR× IRn→:
x

xdiff IR
ndiff∈

xalgebr IR
nalgebr∈

f x x· t, ,( ) f xdiff x· diff xalgebr t, , ,( ) 0= =

fdiff xdiff x· diff xalgebr t, , ,( ) 0=

falgebr xdiff xalgebr t, ,( ) 0=

fdiff IR
ndiff IR× IR

ndiff→:

falgebr IR
nalgebr IR× IR

nalgbr→:

x
y
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Definition 2.3 - DAE System with Sequential Structure

The first-order DAE system  with

sequential variables

simultaneous variables

sequential equations

simultaneous equations

is a DAE system with sequential structure, if  is of the form

 for .

As the system with sequential structure retains its first order, there exists a decomposition of
the system so that

algebraic sequential subsystem

 differential sequential subsystem

simultaneous subsystem

The decomposed system ensures the absence of any (implicit) second order derivatives and
therefore ensures the solvability of the system with Newton’s method.

 �

Example 2.1: Sequential Equations (Foucault Pendulum)

Take as an example the differential equations describing the motion of a Foucault Pendulum
as shown in (2.1).

 with (2.1)

, variables (coordinates of the pendulum bob)

, , , parameters (rot. frequency, longitude, gravity, pendulum length)

This DAE system was exemplarily transformed to first-order and rewritten in a sequential
form as shown in (2.2a) and (2.2b). Both DAE systems are equivalent.

 (sequential equations) (2.2a)

f y y· x x· t, , , ,( ) 0=

y IRn∈

x IRm∈

f fseq fsim,{ }=

fseq IRn IR×
m

IR× IRn→:

fsim IRn IR×
m

IR× IRm→:

fseq

yi fseq i,= y1…yi 1– y· 1…y· i 1– x x· t, , , ,( ) i 1…n=

yalgebr fseq algebr, yalgebr x,( )=

ydiff fseq diff, yalgebr y· algebr ydiff x x· t, , , , ,( )=

fsim yalgebr y· algebr ydiff x x· t, , , , ,( ) 0=

x1′′@tD � − gx1@tD
l

+ 2wCos@lamD x2′@tD + 2wSin@lamDx1@tDx2′@tD
l

x2′′@tD � − gx2@tD
l

− 2wCos@lamD x1′@tD + 2wSin@lamDx2@tDx2′@tD
l

x1@tD x2@tD

w lam g l

y1@tD� 2wx4@tD
y2@tD� x3′@tD
y3@tD� Sin@lamDy1@tD

l
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 (simultaneous equations) (2.2b)

(2.2a) represents a set of sequential equations. The first and second equations only depend
on x4[t] and x3[t], which are simultaneous variables. The third sequential equation only de-
pends on the sequential variable y1[t], which was already defined by the first sequential
equation. Thus, the equation set fulfills the requirements for sequential equations.

The equations (2.2b) can not be handled as sequential equations as they either contradict with
their dependent variables (Eqs. 1 and 2) or would result in a second order system (Eqs. 3 and
4). Partitioning the sequential equations into algebraic and differential sequential equations
yields only one differential sequential equation (second equation of (2.2a)) as this equation
depends on a differential variable.

 �

2.2 Setup of Symbolic Network Equations

In order to illustrate the modeling process, an example circuit including a diode will be used
(see Figure 2.4). VIN is a sinusoidal voltage source whereas VGND and VOUT serve as cur-
rent probes. The circuit was set up as simple as possible but contains different relevant fea-
tures like dynamics, nonlinearity, sequential equations, and a case differentiation to illustrate
the modeling and simulation process.

The basis for symbolic analysis is the automatic setup of symbolic circuit equations for the
design to be analyzed or modeled. Therefore, Analog Insydes provides interfaces to import
several common netlist formats as well as a direct integration into the Cadence Design
Framework II (available from [2]). The network equations are set up based on the circuit de-

y2@tD� − gx1@tD
l

+ Cos@lamD y1@tD + x1@tD y3@tD
x4′@tD � − gx2@tD

l
− 2wCos@lamD x3@tD+ x2@tD y3@tD

x3@tD� x1′@tD
x4@tD� x2′@tD

Figure 2.4: Schematic of the Diode Example
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sign and a library of symbolic device models. The symbolic device model library contains a
variety of commonly used device models in a fully symbolic realization. The contained equa-
tions are equivalent to the internal implementation of circuit simulators. In addition to these
accurate device models, a selection of simplified device models is available. These models
are supplied in different abstraction levels (from ideal to accurate modeling). Hence, the user
is able to change the device model for all or only selected devices of the design to achieve a
first abstraction.

The basis for all (analytical) simulation methods are systems of equations describing the
physical laws and characteristics of the simulated devices. In circuit analysis, the describing
equations of a conservative electrical system are based on the element constitutive relations
(current-voltage relations of the primitives of the network) as well as on the conservation
laws (KCL/KVL) to enforce physically correct behavior within the network. The equations
are derived from a graph that represents the structure of the electrical network [14]. It con-
sists of nodes and branches (edges) that represent directed connections between two nodes.
Two simplifying assumptions are made to enable network analysis. On the one hand, all
primitives are treated as lumped elements neglecting their geometry and any field effects. On
the other hand, all connections are assumed to be perfect conductors.

Kirchhoff’s Current Law (2.3) states that the currents of all branches connected to a network
node sum to zero. This constitutes the principle of charge conservation. In addition, Kirch-
hoff’s Voltage Law (2.4) assures the principle of energy conservation. The directed sum of
the branch voltages around a closed loop within the network must be zero.

Kirchhoff’s Current Law (2.3)

Kirchhoff’s Voltage Law (2.4)

There are several graph-theoretical methods to derive network equations from a topology of
an electrical network [14, 50, 74]. The most common formulation is the Modified Nodal
Analysis (MNA). By applying MNA, a compact system of network equations based on node
potentials  and branch currents  through voltage sources as well as inductors is set up.
The nodal equations (2.5) can be achieved by applying KCL to each node of the network.
Without the additional equations for voltage-controlled branches (2.6), voltage sources and
inductors could not be handled (the pure Nodal Analysis). This analysis method can be effi-
ciently automated and leads to compact equation systems. Therefore, it is used in SPICE-like
circuit simulators.

(2.5)

(2.6)

Besides MNA, the Sparse Tableau Analysis (STA) will be used for some performance anal-
yses in this work. The resulting equations in STA are based on branch voltages  as well

ib k,

k 1=

n

∑ 0=

ub k,

k 1=

n

∑ 0=

un ib

fnodal un ib,( ) 0=

fvbranch un ib,( ) 0=

ub
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as branch currents . The equation system in STA consists of nodal equations (2.7) (relat-
ing branch currents to each other via KCL), voltage loop equations (2.8) (enforcing KVL),
as well as branch constitutive equations (2.9).

(2.7)

(2.8)

(2.9)

Both formulations obtain equivalent systems of equations. MNA obtains more compact net-
work equations than STA:

• MNA:

• STA:

In symbolic analyses, the resulting system of DAEs typically consist of the network equa-
tions as well as internal equations of the device models. The DAEs can be partitioned into
sequential and simultaneous equations and variables (Definition 2.3). The declaration of se-
quential equations is essential for an efficient numerical solution of the problem as a large
percentage of the internal equations is typically given in an explicit formulation. Device
models like BSIM3 contain a high percentage of internal sequential equations and result only
in a small number of simultaneous equations. Solving these internal equations simultaneous-
ly causes significant numerical problems and results in low performance as the dimension of
the equation system is quite high. As the complexity of the circuit equations in symbolic for-
mulation is tremendously increasing with the circuit’s size and the complexity of the device
models, the achieved DAEs are often extremely complex and impossible to set up manually.

Example 2.2: Network Equations for the Diode Example

Setting up the network equations in MNA for the diode example (cf. Figure 2.4) results in a
DAE system of 3 sequential equations (2.10a) and 8 simultaneous equations (2.10b). The
equations (2.10a) and the 5th equation of (2.10b), which is an internal nodal equation of the
diode, were added by the symbolic diode model. Within (2.10b), Equations 1 to 4 are nodal
equations, whereas Equations 6 to 8 are voltage equations resulting from the voltage sources.

(2.10a)
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(2.10b)

The corresponding variables of the system are given in (2.11a) to (2.11c). The vector of si-
multaneous variables consists of (2.11b) and (2.11c).

(sequential variables) (2.11a)

(node potentials, simultaneous) (2.11b)

(currents, simultaneous) (2.11c)

Additionally, the DAE system contains symbolic parameters and constants as listed in
(2.12):

(parameters) (2.12)

The netlist for the Titan simulator is given in Appendix A.2. It also contains the numerical
values for the parameters of the network elements.

 �

2.3 Model Reduction Techniques

Based on these symbolic network equations, different applications like symbolic analysis or
model generation can be performed. A major process is the model reduction in order to get
a grip on the complexity problem. The intention of model reduction is to generate a compat-
ible DAE system with reduced accuracy and complexity from a given DAE system that does
not exceed a user-specified maximal error boundary. The term model reduction (or symbolic
approximation) refers to a class of mixed symbolic/numerical methods for the simplification
of symbolic equation systems [4, 58, 81, 82]. These methods iteratively perform simplifica-
tions within the symbolic DAEs under continuous error control by numerical methods.

In order to perform the numerical error control, a user-specified simulation setup including
a testbench is required to determine the model’s operating conditions. Furthermore, different
error-criteria (e.g. for output voltages of interest) have to be specified. The process starts
with a numerical reference analysis of the DAE system that is to be simplified. The calculat-
ed data serves as reference solution against which the deviations of the iteratively performed
approximation steps are measured. Subsequently, the iterative approximation process is car-
ried out. 
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The performed simplifications within the DAEs are of the following types:

• Algebraic simplifications: Elimination and substitution of variables that do not cause
an error, but reduce the DAE systems’ complexity [82].

• Branch simplification: Branches of piecewise-defined functions, which are not rele-
vant during the simulation, are removed from the equations [65, 82].

• Switch simplification: Built-in (binary) parameters within the device models allow to
neglect certain physical effects within the device [60].

• Term substitution: Terms that are detected to be (nearly) constant during simulation
will be substituted by their numerical mean value [3, 82].

• Term deletion: Summands within equations with a contribution below the error-mar-
gin are hierarchically removed from the system of equations [3, 82].

After each simplification, a numerical analysis is performed to control the resulting
error [64]. Simplifications that violate the user-specified error-margins are discarded. This
process requires a considerable computational effort for error control. To reduce the number
of necessary numerical analyses a ranking process to determine an advantageous order of
simplifications and a clustering process to perform multiple simplifications within one iter-
ation are applied in the initialization phase of the algorithm [57, 64, 82]. Thus, a significant
improvement in terms of simulation effort could be achieved. Furthermore, the index of the
resulting DAEs is monitored during the model reduction process to ensure stability and solv-
ability. Another approach is to monitor convergence and simulation time after each simpli-
fication step to ensure that the model’s performance is enhanced [58]. A comprehensive
overview of the model reduction algorithms of Analog Insydes is given in [83].

As the resulting error is controlled during model reduction, the algorithm is one of very few
methods that permits satisfying a predefined user-specified accuracy. Furthermore, highly
accurate models can be generated as the approximation starts from a 100 % accurate Ansatz,
the network equations itself. As the equations’ complexity decreases despite the resulting er-
ror growing with the degree of model reduction, the problem of finding a suitable trade-off
between complexity and accuracy of the model remains. Experiments show that for reason-
able error margins the complexity can be reduced by a factor of 10 to 100.

Example 2.3: Simplified Network Equation(s) of the Diode Example

Applying the nonlinear model reduction to the network equations of the diode with the in-
tention to achieve a model only representing the output voltage (10 % absolute error) in
terms of the input voltage for the given simulation setup yields

. (2.13)

The resulting equation (2.13) is quite trivial and is 100 % accurate (rf. to Appendix A.2 for
waveforms). As the testbench did not drive the diode into the break-through region and the
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input source’s frequency was too low to cause dynamic effects, (2.13) only represents the
static equilibrium of the diode current and the current through the internal resistor.

 �

2.4 Model Generation

The final process step in the bottom-up modeling flow is the generation of the behavioral
model for the target simulator based on the simplified DAE system. Behavioral models can
be realized in an Analog Hardware Description Language (AHDL) or a hard-coded imple-
mentation. The former approach is more flexible as it uses a standardized AHDL. Languages
like Accellera Verilog-AMS [88], IEEE VHDL-AMS [90], and Saber MAST are well-
known and widely used. The models implemented in an AHDL can be integrated into many
different simulation environments and are hence flexible in terms of simulator dependency
and reusability. They can be easily distributed and stored in libraries for later reuse. The sim-
ulation efficiency of AHDL-based models mainly depends on the processing by the target
simulator’s model compiler.

Hard-coded models are implemented using a programming language (e.g. C/C++ or FOR-
TRAN) and are compiled for a specific simulator. They use proprietary interfaces provided
by the simulator and are thus not easily portable for other simulators. Typically, a much high-
er simulation efficiency can be achieved by hard-coded models [58]. The downside of these
models is that the effort to manually develop such models is quite high and the implementa-
tion requires knowledge about the simulator-internal processing.

Analog Insydes’ model export function supports several output formats allowing to create
models for almost every behavioral simulator. The probably most relevant ones are Ver-
ilog-A and VHDL-AMS. Although both languages are standardized, behavioral models are
not always portable between simulators. The main reasons are unsupported features of mod-
eling languages (requiring a different modeling strategy) or inabilities to cope with certain
model contents (e.g. due to bad convergence or low performance). The user’s choice for one
of the AHDLs is typically dominated by environmental requirements (simulator, corporate
regulations) and personal preferences.

Nevertheless, the combination of an AHDL and a specific simulator has a major influence
on robustness and performance (as will be discussed in Chapters 4 and 6) and should there-
fore be thoroughly taken into consideration. In order to consider simulator-specific proper-
ties and to generate a model optimized for the target simulator, the model generation in
Analog Insydes has been extended by several alternative modeling strategies to optimize the
AHDL-generation for a specific simulator (see Appendix B.1.2 for details).
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The generated behavioral models consist of the following modeling features:

• Model declaration / connectivity: Ports, definition of through/across quantities,
model name, parameters.

• Sequential equations / variables: Explicit DAEs including branch statements and
derivatives.

• Simultaneous equations / variables: Implicit DAEs including initial values, toler-
ances, branch statements, and derivatives.

Compared to the powerful modeling constructs supported by the AHDLs, these requirements
are only very basic features of the modeling languages. However, even these features are not
sufficiently supported by current versions of some commercial simulators. VHDL-AMS
simulators do not support a satisfactory method to model sequential equations whereas Ver-
ilog-AMS lacks from a direct and efficient way to model simultaneous equations.

Example 2.4: Model Generation for the Diode Example

Finally, the DAEs of the unsimplified model have been exported to VHDL-AMS and Ver-
ilog-A (the behavioral model for the simplified equation would not be very informative). The
AHDL codes and the according simulation results are presented in Appendix A.2.

 �
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3 Algorithms for Circuit and Behavioral Simulation

A basic knowledge about simulation algorithms is essential for creating efficient simulation
models. Within this chapter, relevant aspects will be highlighted. The focus is on numerical
analysis methods for nonlinear dynamic systems as this is the most typical application for
behavioral models.

One of the first analog circuit simulators was SPICE (published 1973). Since then, analog
simulators have been continuously improved and many commercial simulators have been
developed, most of them still being more or less similar to the original SPICE. The underly-
ing algorithms have been published in several books [14, 39, 74, 75]. This chapter will pro-
vide a brief introduction to nonlinear dynamic simulation algorithms and is mostly based on
Vlach [74].

The presented performance analyses within Chapter 4 and all improvements to the behavior-
al simulation process (Chapter 5) are based on the simulator Titan1 [24]. This SPICE-like
analog circuit simulator supports behavioral simulation using the Titan Modeling Language
(TML) [16]. The Titan simulator was chosen as a platform for this work as it provides deep
insight into the internal processing and thereby makes detailed analyses of the simulation
performance possible. Furthermore, the inhouse-development of the simulator allowed for
realizing prototypical enhancements to the model compilation.

3.1 Solving Linear Equation Systems

Solving linear equation systems numerically is a standard problem for almost all continuous
simulation methods. In circuit simulation, all analysis types are based on reducing the prob-
lem to a series of linear equation systems that is iteratively solved and refined. Hence, the
linear solver is the most basic component within circuit simulators. Consider a linear equa-
tion system

(3.1)

where  is an  matrix of constants,  is an -vector of constants, and  is the vector
of unknowns of dimension . The solution vector  of this equation system could be direct-
ly derived through

. (3.2)

1. Titan is an inhouse-simulator of Qimonda AG (formerly Infineon Technologies AG)

Ax b=

A n n× b n x
n x

x A 1– b=
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However, the computation of (3.2) requires either the matrix-inversion of  or the applica-
tion of Cramer’s rule to solve for , with  typically being a matrix of high dimension. Both
methods are expensive in terms of computational effort. Alternatively, Gaussian elimination
can be used to transform  into an upper-triangular form which can be subsequently solved
for  starting with the last equation (backward substitution). Gaussian elimination requires

 operations, while backward substitution requires  operations.

SPICE-like simulators are typically using an LU decomposition to solve (3.1). Therefore, the
matrix  is decomposed into a lower triangular matrix  and an upper triangular matrix 
with ones in the main diagonal so that

. (3.3)

The decomposition is quite similar to the Gaussian elimination. If  is a non-singular ma-
trix, an LU decomposition exists. It requires approximately  operations. After decom-
posing  (e.g. with Crout’s method), the decomposed system

(3.4)

is achieved. By introducing an auxiliary (intermediate) solution vector , the problem can
be rewritten as shown in (3.5) and solved through backward substitution.

(3.5)

By substituting (3.5) into (3.4), the calculation for the forward substitution is derived:

(3.6)

Due to the properties of  (lower triangular, non-zero main diagonal elements), (3.6) can be
easily solved for  through forward substitution by procedurally calculating

 and (3.7)

 for . (3.8)

By using , the backward substitution (3.5) solves for  through

 and (3.9)

 for . (3.10)

Both forward and backward substitution are of complexity . Through efficient imple-
mentation of the LU decomposition and the forward-backward substitution, some vectors
may share the same storage (as they are only sequentially needed in intermediate steps). The
matrices  and  can be stored within one matrix data structure (as the diagonal of  con-
sists of ones only and hence does not need to be stored).

A
x A

A
x

n3 3⁄ n2 2⁄

A L U

A LU=

A
n3 3⁄

A

LUx b=

z

Ux z=

Lz b=

L
z

z1 b1 l1 1,⁄=

zi bi li j, zj

j 1=

i 1–

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

li i,⁄= i 2 3 … n, , ,=

z x

xn zn=

xi zi ui j, xj

j i 1+=

n

∑–= i n 1– n 2– … 1, , ,=

O n2( )

L U U



3.1 Solving Linear Equation Systems 23

The forward substitution requires “good” pivot elements  for two reasons. First of all, the
pivot elements have to be non-zeros to be able to calculate (3.7) and (3.8). Furthermore, the
numerical precision of the process depends on the absolute value of the pivot elements that
should preferably be large. The former problem leads to a non-solvable system (due to sin-
gular matrix ) whereas the latter may result in serious accuracy problems (due to the bad
conditioning of ).

In order to avoid such problems, the linear equation system is pre-ordered by pivoting algo-
rithms. During pivoting, the equation system is reordered by successive permutation of rows
and/or columns. Thus, advantageous pivot elements can be achieved and singularity of the
matrix is prevented.

Another important aspect of linear solvers is the ability to deal with very large equation sys-
tems. Therefore, it is essential to make use of the high sparsity of the matrices. As electrical
systems are typically loosely coupled, the matrices are primarily populated by zeros. The
sparsity  of a matrix provides information on the ratio of non-zero entries compared to
the number of total entries of the matrix and is calculated as follows:

(3.11)

Typical values for the sparsity of electrical systems are between 80 and 99 %. The linear
solver is able to make use of the sparsity in order to avoid operations including structural zero
entries. Furthermore, specialized sparse data structures are used to reduce the storage for
sparse matrices (refer to [68] for details). By using sparse algorithms, the computational
complexity has been significantly reduced close to linear complexity (approximately

 depending on the sparsity). However, sparse solvers also lead to additional
considerations to improve their efficiency. Without a specialized preordering of the sparse
matrix, former zero entries of the matrix are likely to become non-zeros during the LU fac-
torization, so-called fill-ins. In order to keep the sparsity of the matrix as high as possible,
preordering strategies with respect to the necessary fill-ins are applied. For this purpose, Ti-
tan uses the Markowitz preordering that has the property to permute rows and columns pair-
wise, which preserves the pivot elements and thus does not interfere with previously applied
pivoting strategies.

Pivoting strategies are computationally expensive. Especially when solving a series of struc-
turally equal or similar linear equation systems, as it is the case in circuit simulation, reor-
dering might not be performed for each of the linear equation systems. In fact, an initial
preordering (static pivoting) based on the structural information of the nonlinear equation
system is sufficient to achieve (structurally) non-zero pivot elements and to determine an ad-
vantageous ordering for a minimal number of fill-ins. This saves the overhead of reordering
the linear system for each iteration. Dynamic pivoting strategies perform the reordering for
each of the linear systems (or adaptively whenever necessary). Therefore, they can cope
much better with numerically bad pivot elements that can not be considered in static pivoting
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strategies. Especially in behavioral simulation, this feature becomes important as the equa-
tion system is numerically less optimized than in netlist-based simulations.

Titan uses three different linear solvers as shown in Table 3.1. For all netlist-based simula-
tions the highly optimized Titan solver is applied. It depends on an initially good pivoting
which is typically available in netlist-based simulations. Due to the static pivoting approach,
the solver can not cope with numerically bad pivot elements as may result from behavioral
models. The LAPACK and MUMPS solvers are especially relevant for behavioral simula-
tions. Both apply dynamic pivoting strategies, enabling them to cope with numerically com-
plicated behavioral models by dynamically reordering within each iteration. The choice and
performance of the solvers will be discussed in more detail in Section 3.5 and Section 4.5.

3.2 DC Analysis

Calculating an operating point or a DC solution for an electrical network is the basis for al-
most all analysis types. The DC analysis requires the solution of a nonlinear algebraic system
of equations to determine the DC node voltages of the network. Especially active devices
may contain highly nonlinear branch constitutive equations that could cause numerical prob-
lems. Performing the DC analysis is based on Newton’s method to determine the roots of a
nonlinear equation system  numerically. Newton’s method iteratively refines the
solution for the nonlinear equation system. This method is widely used and has quadratic
convergence, if the initial solution  is sufficiently close to the solution.

In order to approximate the nonlinearities within the equation system, a Taylor series expan-
sion at the current solution  for the vector of unknowns  is performed:

(3.12)

Table 3.1: Overview of Solvers Available in Titan

Solver
Sparse 
Solver?

Pivoting
Strategy

Comment

Titan yes static
default solver for netlist-based simulation, very 
efficient, robustness critical for badly conditioned 
matrices

LAPACK no
dynamic,
column

default solver for behavioral models, very robust, 
inefficient for high dimensional systems due to 
missing sparse algorithms [45]

MUMPS yes
dynamic,
adaptive

MUltifrontal Massively Parallel sparse direct 
Solver [56], very robust, not as efficient as the 
Titan solver due to pivoting overhead
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As  is supposed to be close enough to the solution of , the Taylor series is truncated
to a linear approximation by neglecting terms of an order higher than one. In order to achieve
this property, a good initial value  is necessary. The iteration sequence for Newton’s
method is obtained by reformulation of (3.12):

(3.13)

where

Jacobian matrix

Newton correction

Residual

As an explicit solution of (3.13) for  would require the calculation of the (expensive)
inverse of the Jacobian matrix, the linearized systems are solved by LU decomposition and
forward-backward substitution as explained in Section 3.1. Subsequently, a refined solution
vector is calculated from

(3.14)

where  is a damping factor with . This (global) damping factor is controlled
by the simulator to improve convergence and damp unreasonable large Newton corrections.
While , Newton’s method is continued to avoid false convergence.

The process iteratively converges towards the solution of the equation system and is repeated
until the desired accuracy has been achieved. Therefore, convergence criteria are used to
compare the current solution to the specified tolerances of the system. The residual vector
and the Newton correction are of specific interest as their error norm should be compliant
with the tolerances:

(3.15)

(3.16)

Due to bad initial values, local minima, oscillations, or highly nonlinear functions, conver-
gence problems might cause Newton’s method to fail. In this case, most simulators provide
homotopy methods to find a DC solution (also known as continuation methods). Homotopy
methods are based on gradually modifying a simplified problem whose solution is known or
easy to calculate towards the original problem. Therefore, a homotopy parameter is intro-
duced to scale the selected property of the circuit. Starting with the simplest problem, the DC
solution is determined and used as an initial value for the next (more complex) problem. The
simplification is completely deactivated and the original system is solved with a good initial
value.
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There are different types of “simplifications” for homotopy methods (e.g. source stepping,
gmin stepping, pseudo-transient analysis), none of them being generally applicable or in all
cases successful. Therefore, different homotopy methods are sequentially executed until one
of them finishes the DC analysis. All present homotopy methods are based on topological
changes within the network. Source stepping for instance introduces a scaling factor for all
sources within the network as homotopy parameter. It is initially set to zero. Thus, the DC
solution is known and all node voltages are zero. Successively, the scaling factor is swept
from zero to one to achieve the solution of the original system. Some DC convergence diffi-
culties resulting from bad initial values can be overcome by applying homotopy methods.
For other analysis types, the DC values are typically used as an initial solution. Thus, non-
convergence within DC analysis is especially critical as it disables any subsequent analysis
that is based on the operating point (e.g. AC, Transient).

3.3 Transient Analysis

Transient analysis calculates the circuit’s response in the time domain over a time interval.
The nonlinear dynamic behavior of circuits is therefore described by a nonlinear system of
DAEs (see Section 3.4 on how to derive the DAEs):

(3.17)

The analysis starts with an initial DC analysis at time zero to determine a consistent initial
value for the system’s unknowns. Starting from the DC solution, the system is discretized in
time by numerical integration. Therefore, a variable step size  is used and the resulting non-
linear equations are solved at each time point. Furthermore, time dependent sources are up-
dated within each time point. The most commonly used integration methods are the
backward Euler formula (3.18) and the trapezoidal rule (3.19). Implicit linear multistep
(LMS) formulae are used for higher order integration methods to achieve “smoother” wave-
forms and increased stability.

(3.18)

(3.19)

The index  indicates the actual index of the timepoint, the length of the timestep is
. Both backward Euler formula and trapezoidal rule are implicit and only re-

quire values of the previous timestep (first-order). Backward Euler is applied within the first
timestep (as  is typically not known), trapezoidal rule or LMS methods of higher order
are applied for subsequent timesteps. Whereas backward Euler is very stable and hence tends
to unintentionally damp oscillations, trapezoidal rule is weakly instable and may result in nu-
merical oscillation (“ringing”, propagation of integration errors). A comprehensive discus-
sion regarding stability and properties of integration methods can be found in [39, 74]. 
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Different integration methods can be formulated in a common form

(3.20)

where  is a coefficient (e.g. ) and  contains summarized values of previous time-
points. The differential variables are approximated by finite differences by applying numer-
ical integration to (3.17) and the DAE system is transformed into a sequence of nonlinear
equation systems:

(3.21)

These systems are solved by iteratively applying Newton’s method (subscript  is omitted
for simplicity):

(3.22)

where

(static Jacobian matrix)

(dynamic Jacobian matrix)

As the numerical integration results in a local discretization error, which is dependent on the
length of the timestep, the timestep control has an important influence on the accuracy of the
solution. Hence, the stepsize is chosen in such a way that the error per step is below a user-
specified tolerance. Considerations on the theory of DAE systems and their solvability (re-
lated to the index of DAEs) are extensively discussed in [22, 23, 72, 73].

Convergence problems in transient analysis are not as problematic as in DC analysis. This
results from starting with a good DC solution and subsequently taking only small timesteps.
The solution of a timestep is typically close to the solution of the previous timestep and hence
can be determined within few Newton iterations. Furthermore, the numerical integration
tends to “smooth” some numerical problems and thereby enhances convergence. Primary
sources of dynamic convergence problems are unphysically steep signal edges in time (e.g.
independent sources), numerical oscillation by instable integration methods, and discontinu-
ities within models. Furthermore, oscillator circuits might require initial conditions (initial
value for charges or fluxes) to “disturb” the equilibrium and thereby initiate the oscillation.

Several specialized simulation methods exist that are used to enhance robustness as well as
performance of transient simulations and to cope with special requirements of specific circuit
classes. As these methods are not within the scope of this work, only a short overview will
be given:

• Multirate Methods – are of advantage for systems including widely differing time con-
stants. They are based on multirate integration methods that use local time steps
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(instead of adaptive global timesteps). Thus, latencies within subsystems can be effi-
ciently utilized [24].

• FastMOS – enables the simulation of very large mixed-signal systems with consider-
ably high speed-up compared to conventional transient analysis (factor of 10-1000).
The method is based on several simplifications (MOS table models, RC reduction) and
uses automatic partitioning methods to deploy multirate methods and hierarchical iso-
morphism (calculate similar subsystems only once). The speed-up is achieved by solv-
ing parts of the circuit with adaptively reduced accuracy. The speed-accuracy trade-off
can be controlled by simulator options. Hence, FastMOS engines could replace bottom-
up modeling methods as they automatically reduce accuracy for enhanced performance
without requiring complex modeling processes. However, these algorithms suffer from
missing transparency of the error bound. As it is hardly possible to determine the accu-
racy of the results, this method suffers reliability. [92] provides a good overview of the
related algorithms.

• Multilevel Newton Methods – offer the possibility to parallelize the calculation of sub-
systems on different CPUs. Therefore, loosely coupled systems are identified and
solved in parallel [11, 77]. Afterwards, the subsystems’ contributions to the higher level
system are combined and solved. Finding a suitable partitioning of the circuit’s topol-
ogy for high parallelism is an essential process step [25].

• RF Algorithms – are specialized simulation methods to analyze radio-frequency cir-
cuits. There are two established methods: harmonic balance and shooting methods.
These simulation methods are highly effective for analyzing base-band signals in RF
systems. [40] provides a good introduction.

• Affine Arithmetic Simulation – provides an innovative semi-symbolic approach to
take parameter variations into account. The resulting affine expressions provide a
bounded result that still reflects the correlations and causes of uncertainties [28, 29, 32].

3.4 Setup of Network Equations for Circuit Simulation

Within Section 2.2, the setup of network equations with the background of symbolic analysis
has been introduced. The derivation of the network equations within a circuit simulator dif-
fers from the symbolic setup, as the simulator does not use symbolic equation sets but rather
sets up the (numerical) linearized systems directly.

Equation Formulations

As circuit simulation requires a preferably compact equation system, the modified nodal
analysis (MNA) is used in most simulators. One of the main advantageous of MNA is that it
enables an automated system setup by direct inspection. The linearized equation system is
derived incrementally by superposing the contributions (“stamps”) of all network elements.
Finally, the (numerical) Jacobian matrix and the residual vector resulting from direct inspec-
tion of the network elements are transferred to the linear solver. The linear system is updated
by the device models within each Newton iteration.
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The MNA equation system is shown in Equation (3.23). Its variables are the node potentials
 and the branch currents  through voltage sources as well as inductors.  denotes the

nodal admittance matrix, , , and  are coefficient matrices containing coupling coeffi-
cients of the network, e.g. resulting from voltage sources, controlled sources, or inductors.

 is the node-current excitation vector and  represents branch voltage contributions.

(3.23)

In contrast to MNA, the equation system in STA is represented by (3.24), where  denotes
the nodal incidence matrix of the network and  a loop incidence matrix of maximum rank.
The branch constitutive equations are represented by , , and .

(3.24)

As the dimension of the network equations in STA is typically much higher than in MNA,
this method is not used in common circuit simulators. It results in very sparsely populated
Jacobian matrices.

An extension to the standard MNA used in circuit simulation is the charge-flux oriented
equation formulation. It introduces additional variables for the charges of capacitors and the
fluxes of inductors to ensure charge conservation. The latter problem results from differen-
tial variables in nonlinear equations (e.g. ) with the capacitor being modeled
nonlinearly. By using this equation formulation, charge conservation is not guaranteed thus
possibly resulting in the propagation of integration errors (accumulating voltage offsets due
to “lost” charges) [85]. A reformulation of the element relation results in  and

. This formulation requires an additional variable , but yields a linear equation for
. Considering the charge-flux based MNA, a nonlinear DAE system of the form

(3.25)

is achieved where  and  describe the static part of the network equations while  rep-
resents charges and fluxes [24].

Device Models

Device models are the basis for deriving MNA equations within circuit simulators. Besides
the tremendous effort to achieve exact model equations to describe modern semiconductor
devices, major effort is spent on optimizing the device models for high simulation perfor-
mance and numerical robustness.
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Figure 3.1 gives an impression of the simulation cycle and the interaction between simulator
kernel and compiled models. The simulator kernel provides a solution vector for the system’s
unknowns to the model routine. Within the model, the Jacobian matrix and the residual for
the next iteration are calculated and returned to the simulator. This stamp of the model is in-
tegrated into the linearized system by direct inspection. Afterwards, a new solution vector is
determined through the linear solver.

Typical properties of device models are:

• Determination of port currents by means of port voltages

• Admittance formulation of the equations

• Few internal nodes as they increase the dimension of the linear system

• Large amount of internal procedurally calculated equations

• Charge conservation by calculating charges first and then determining the port currents
from charge derivatives

• Branches defined to a common reference node (e.g. bulk) leading to  branches

• Hard-coded derivatives to determine the Jacobian matrix entries

Common “tricks” to enhance performance and robustness of highly complex device models
have been discussed in [15]:

• Limiting functions to avoid numerical problems (e.g. pn-junction limiting)

• Avoiding discontinuities in functions and their first-order derivatives, e.g. by smoothing
functions

• Prevention of division by zero through guarding by conditional statements

• Pre-evaluation of common subexpressions to avoid multiple evaluation,

• Approximated derivatives to reduce complexity

Figure 3.1: Simulation Cycle
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Most of these strategies (except the ones related to the Jacobian matrix) may also be applied
to behavioral models, always assuming the behavioral simulator supports the required mod-
eling features.

Instead of tediously implementing device models in standard programming languages (typ-
ically C/C++), there are approaches to automatically compile device models realized in an
AHDL for a simulator specific interface [35, 44]. These device model compilers will be dis-
cussed in more detail in Chapter 5. Within [79], an approach to automatically adapt device
models to the design was presented (adaptively neglecting certain effects). Furthermore, ta-
ble models provide an effective measure to avoid the highly complex calculations within de-
vice models and thus speed-up simulations.

3.5 Behavioral Model Compilation

Almost every up-to-date circuit simulator provides an interface for at least one of the major
AHDLs. Whereas mixed-signal simulators support analog as well as digital features of the
modeling languages, common circuit simulators only support the purely analog features.
This provides the possibility to extend the simulator by user-specified models, e.g. custom-
ized device models or any type of (analog) behavioral models. Most simulation environ-
ments generate compiled intermediates from AHDL-based models in order to combine the
high performance of hard-coded models with the flexibility achieved by a standardized mod-
eling language. Only very few simulators interpret the AHDL-based models, as the perfor-
mance is typically lower than for compiled models.

Hence, behavioral simulation requires a model compiler to translate the model into a shared
library that can be accessed by the simulator kernel. Therefore, a special interface to the sim-
ulator kernel (e.g. CMI [91]) is necessary to enable the communication between model and

Figure 3.2: Architecture for the Model Compilation (TML)
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simulator kernel. In principle, the (compiled) behavioral models are structurally very similar
to built-in device models. However, they may differ significantly in the formulation of the
modeled DAE system as AHDL-based models are much more general in their formulation.

Titan provides a model interface for the Titan Modeling Language (TML). TML is a (mainly
analog) subset of VHDL-AMS, some digital features are covered by a digital simulator ker-
nel. As mixed-signal simulation is not within the scope of this work, the focus will be on the
purely analog features. Models written in TML are compiled through the Titan Model Com-
piler (tmc) and dynamically linked with the simulator kernel [16, 47, 69]. Figure 3.2 visual-
izes the architecture of the model compilation process. The communication between the
models and the kernel is realized via shared memory.

During the model compilation, the TML code is parsed, stored into an intermediate format,
elaborated, and subsequently exported as an intermediate code. The Jacobian matrix is de-
rived by automatic differentiation of the contained simultaneous statements. Finally, the in-
termediate code is compiled into a shared library by a standard compiler.

Figure 3.3 shows the structure of the linear system for a behavioral simulation in Titan. The
vector of unknowns consists of the node potentials, the currents through voltage sources and
inductors, the through quantities (port currents of the behavioral model) , and the free
quantities (model internal variables) . The subsystem for the netlist-based elements of
the simulation (upper half) consists of its Jacobian matrix , the Newton correction for
node potentials and currents, the residual for nodal and voltage equations, and the contribu-
tions of the models’ port currents to the nodal equations ( ). The model equations result
in another subsystem consisting of its internal Jacobian matrix , the influences of (se-
lected) node potentials (across quantities or port potentials) , and the residual vector for

Figure 3.3: Structure of a Linearized System for Behavioral Simulation
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the model equations (simultaneous statements). Both systems are coupled through the across
and through quantities of the model.

Titan uses different solvers for the subsystems resulting from the structural description (by
direct inspection of the netlist elements) and the subsystem of the models’ equations. Please
refer to Section 3.1 for a description of the solvers. The subsystem resulting from the circuit’s
topology is solved by the Titan solver. By default, the LAPACK solver is used for behavioral
models. As the LAPACK solver is a dense solver with dynamic pivoting, it is very robust but
should preferably be applied only for low dimensional problems. For hand-written models,
these preconditions hold as they typically consist only of very few equations that might be
numerically critical. Alternatively, the MUMPS solver can be applied to combine high ro-
bustness (due to adaptive dynamic pivoting) and sparse algorithms. Finally, it is also possible
to solve the behavioral models’ equations using the standard Titan solver. As this solver only
performs static pivoting, a specialized preordering and processing of the model equations
based on topological information is necessary to ensure solvability, convergence, and accu-
racy.

Example 3.1: Linear Equation System for the Foucault Pendulum Example

In Example 2.1 (cf. page 13), a sequential DAE system for the Foucault pendulum was in-
troduced. Within this example, the linearized equation system as used in Newton’s method
for the DAE system is presented. (3.26) shows the static Jacobian matrix of the system,
whereas (3.27) represents the dynamic Jacobian matrix of the equation system. The system
contains three sequential equations resulting in a lower triangular subblock in the upper left
corner of the Jacobian matrix. The last two equations represent dummy equations for mod-
eling the second order derivatives of the system (refer to Appendix B.1.1 for the algorithm).

(stat. Jacobian) (3.26)

(dyn. Jacobian) (3.27)

The corresponding right-hand side of the linearized equation system with a backward Euler
integration method applied is shown in (3.28).
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(RHS) (3.28)

 �

Typically, today’s highly complex device models still lead to a reasonably high performance
even though they contain hundreds of equations. In contrast, quite simple behavioral models
that consist of a few equations only might already show astonishingly low performance. The
reason for the high performance of device models is their specialized realization to achieve
a high degree of adaptation to the simulation algorithms for extremely good performance.
Furthermore, their interface to the simulator kernel is highly optimized. However, most of
the optimizations applied to device models could also be applied to behavioral models. As
the next chapter will indicate, model compilers still lag behind device models in terms of per-
formance.
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4 Performance Analyses

This chapter presents a systematic approach for analyzing the simulation performance of an-
alytical behavioral models. Its main intention is to track the root causes for avoidable com-
putational effort and analyze the behavioral simulation efficiency. In general, performance
measurements are influenced by various parameters, and interpretations of the results can
easily lead to misinterpretation. Thus, benchmarks, operating conditions, and drawn conclu-
sions have to be selected and treated very accurately. Section 4.1 gives an impression what
kind of problems have to be taken into account and how statistics for all performance anal-
yses have to be conducted in order to guarantee a solid basis for an improvement of the be-
havioral simulation performance. The analyses require a common terminology and some
basics on computer architecture. Used terms and definitions are consistent with Hennessy/
Patterson [27]. Their book provides comprehensive information on computer architecture.

Measuring Performance

Performance is the reciprocal of the execution time of a program. The most basic definition
of execution time is the elapsed time , the latency to conclude a task (also known as
wall-clock time, response time). Unfortunately, the elapsed time also accounts for file I/O,
multithreading, and operating system activities. Therefore, it is a bad metric for a program’s
performance as it strongly depends on the usage and load of the computer system. The CPU
time  only takes into account the time the processor is executing the program and is
therefore much more appropriate for comparing performance.

The CPU time depends on the number of instructions evaluated during a computation (in-
struction count ), the cycles per instruction to calculate the instruction ( ), and the
clock cycle time . Assuming only instructions of the same type (or an av-
erage  figure),  is determined by (4.1a), in the more general case of  different
instructions by (4.1b).

(4.1a)

(4.1b)

When measuring performance, it is common practice to compare the performance of differ-
ent programs or computational tasks. The resulting figure of comparing the achieved perfor-
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mance (e.g. of a new program or hardware) to a reference’s performance is commonly
denominated as speed-up  and is defined as follows:

(4.2)

Inversely to speed-up, which is typically a number greater than one, the term slow-down will
be used (being the reciprocal of speed-up, ). The overall speed-up  obtained by im-
proving some portion ( ) of a computational task by a factor of  is
determined by Amdahl’s Law:

(4.3)

According to Amdahl’s Law performance improvements should be accompanied by exact
measurements to achieve maximum speed-up with limited effort. Only reasonable fractions
of the over-all computational effort are worth the effort to enhance their performance.

Another important characteristic of the performance of a program is the access to data within
the memory. During the evaluation of a program data is fetched from the memory, processed
by the CPU, and the results are stored back to the memory. In order to avoid high latency at
limited cost (fast memory is expensive), up-to-date memory architectures consist of one to
three cache levels located between the CPU and the main memory. The cache level closest
to the CPU (first level cache or L1 cache) provides the fastest access but has the lowest ca-
pacity due to its high cost. The strategies and mechanisms how to load/store data are quite
complex and, more important, cannot be influenced by the user. Regardless of that, it is ad-
visable to improve the interaction between CPU and memory by taking care of data locality.
Given a memory architecture with only one cache level, the (average) access time to fetch a
datum from the cache is determined by

 with .

The miss rate denominates the ratio of unsuccessful cache accesses (data has to be loaded
from the underlying memory level) and total accesses. Unfortunately, accesses to the lower
levels of the cache architecture take significantly longer ( ) than to the first level
cache (Pentium 4 – L1: 2 clock cycles, L2: 22 clock cycles, Memory: >> 22). As data is load-
ed and stored block wise between the hierarchy levels, it is advantageous to access data se-
quentially instead of randomly. The closer the data of an expression is stored within the
memory the less cache misses occur during expression evaluation (data locality). In the worst
case (completely random distribution of the data), each cache access would trigger a cache
miss (miss rate of 100 %) resulting in an evaluation that is easily more than 10 times slower
than in the optimal case.
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4.1 Analysis Environment and Objective

In order to equitably analyze simulation performance, a clearly defined reference and simu-
lation environment is necessary. As the simulation performance of bottom-up generated
models is to be analyzed, the most appropriate reference is the netlist-based simulation of the
original circuit the model was derived from. Previous research has mostly been evaluating
the efficiency of the model reduction algorithms by measuring the speed-up of simplified
models compared to unsimplified models [3, 58, 82]. The achieved speed-up has typically
been between two and three orders of magnitude, but strongly depends on the targeted accu-
racy of the resulting model. The primary target of this modeling approach is to speed-up the
over-all simulation. Hence, the speed-up has to be compared to the performance of the orig-
inal netlist-based simulation.

The major objective of this research is
to effectively increase the perfor-
mance of behavioral simulations by
improving the simulation efficiency
(in contrast to reducing the models’
accuracy). An approach based on un-
simplified behavioral models was cho-
sen in order to assess the simulator’s
efficiency in processing behavioral
models without distorting the compar-
ison by model reduction. Therefore,
the model reduction during modeling
was omitted as depicted in Figure 4.1.
The goal was to set up and solve equa-
tions being mathematically equivalent
to the netlist-based simulation in order
to have a clearly defined reference for
accuracy and performance. In princi-
ple, both problems are of equivalent
complexity, although the problem’s
conditioning is completely different.
The models were directly generated

from the circuit netlist. In order to make this strategy as accurate as the circuit simulation
itself, symbolic device models corresponding to the simulator internal device models are
used within Analog Insydes.

Thus, the comparison between netlist-based simulation and unsimplified behavioral models
results in a slow-down factor representing the overhead spent on processing the same (or at
least very similar) problem with the more general approach of behavioral simulation. The
SPICE-like topological way of solving this problem is very efficient as it is based on highly
specialized device models. Therefore, the performance of the circuit simulation represents

Figure 4.1: Bottom-Up Modeling Process for
Performance Analyses
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the optimum for the behavioral simulation performance under the assumption of unsimpli-
fied behavioral models.

Beyond doubt, there will always remain a non-negligible slow-down as the behavioral sim-
ulation has to solve a much more general problem without utilizing structural knowledge
(e.g. from topology). Furthermore, the nonlinear element relations have to be solved in al-
most the same way as the network equations. A “smart preprocessing” as usually done by
device models in order to simplify the solving process is hardly possible (Chapter 6 will ad-
dress this problem).

Measurements and Criteria

When performing simulations, the resulting waveforms and their analysis in terms of the cir-
cuit’s performance matter most. Within the scope of analyzing the simulation performance,
the resulting waveforms are only of subordinate interest as they merely verify that the un-
simplified behavioral model has the same solution as the netlist-based simulation. In fact,
some important characteristics of the simulation as listed in Table 4.1 are of greater interest:

These criteria provide a solid basis as benchmarks to compare behavioral versus netlist-
based simulations. Based on those characteristics other figures of merit are derived (see
Table 4.2). Above all, the number of Newton iterations is of major importance for the anal-
yses: Only one Newton iteration per time step indicates perfect convergence whereas the
maximum number of iterations per step is limited by a simulator option. The normalized
measurements for the CPU time provide a basis for comparing different simulators or bench-
mark circuits without considering their individual behavior in terms of performed time steps
and necessary number of iterations. By normalizing the total CPU time over iterations, the
pure efficiency in loading and solving the contained equations for one iteration is denoted.

Table 4.1: Characteristics of the Simulation Process

Symbol Characteristic Information on

Dimension of the linear system Matrix size

Sparsity of the Jacobian matrix Number of non-zero elements

CPU time for transient analysis Over-all performance

Profiling data Distribution of computational effort

Number of time steps Differences in time-step control

Total number of Newton iterations Convergence

Dim

Spa

Ttran

Tload Tsolve,

Nstep

Niter
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Simulation Setup

All analyses have been performed with nonlinear dynamic models and transient simulations
in order to select the most general simulation method. A direct comparison of the results of
the netlist-based and behavioral simulations requires equal simulation environments for the
experiments. Therefore, the following prerequisites were defined:

• Same simulator, testbench, transient inputs and analysis setup

• Default simulator options (if not mentioned)

• CPU time of each experiment must be measured on the same processor

• CPU time is determined by a mean value of 10 simulations (in order to eliminate load
variation)

• Characteristics extracted from simulator protocol files

The default simulator was Titan, as it facilitates for in-depth analyses of the simulation per-
formance. Nevertheless, the better part of the drawn conclusions is also valid for other
SPICE-like behavioral simulators (as Section 4.8 will show). The proposed enhancements
introduced in Chapter 5 and Chapter 6 could also be applied to other simulators likewise.

As analog simulators are very sensitive to accuracy options (influencing convergence and
number of time steps), particular attention was paid to equitably set those options equivalent
to the default accuracy options of Titan’s netlist-based simulation. These defaults aimed at
providing a high level of accuracy.

Furthermore, the numerical behavior (performance, robustness) of the analyzed simulators
differs from platform to platform (Solaris, Linux, 32/64bit), from version to version (not al-
ways getting better), from simulator to simulator, and even from model compiler to model
compiler (VHDL-AMS, Verilog-A for the same A/MS simulator). Thus, an absolute com-
parison of performances measured under different operating conditions cannot be drawn. It
is impossible to guarantee identical conditions for all possible environments. Hence, the fo-
cus was to ensure optimal conditions or perform relative comparisons (e.g. not comparing
different simulators absolutely to each other).

Table 4.2: Derived Characteristics of the Simulation Process

Symbol Characteristic Information on

Average iterations per time step Convergence

CPU time per time step
Normalized performance without 
consideration of time-step control

CPU time per iteration
Normalized performance without 
consideration of convergence

Number of nonzero elements
Storage and processing of the Jaco-
bian matrix

Niter step⁄

Ttran step⁄

Ttran iter⁄

Nnonzero
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An open problem (to be solved by simulator developers) is the time-step control for behav-
ioral models. The AHDLs provide language features to limit the number of time steps for the
simulator kernel from within a behavioral model. Unfortunately, the automatic time-step
control tends to select time steps that were too large for these types of models. Therefore, the
step size has been limited by an adequate maximum step size to achieve comparable results
between netlist-based and behavioral simulation.

Applied Model Generation Process

The principles of generating behavioral models with Analog Insydes have already been
pointed out in Section 2.4. As the following sections and analyses will show, it is essential
(in terms of simulation efficiency and numerical robustness) to provide a “good” formulation
of the describing model equations within the chosen modeling language. Unfortunately, the
optimal formulation also depends on the simulator. This conflicts with the approach of pro-
viding simulator-independent models. Hence, the model generation in Analog Insydes was
extended by simulator-specific “flavors” of the AHDLs leading to a variety of different mod-
eling alternatives for DAEs (see Appendix B.1 for detailed descriptions of the modeling
methods).

The bottom-up modeling flow as shown in Figure 4.1 was automated within a new Analog
Insydes function taking as input the circuit netlist and various modeling options
(WritePincompatibleModel, see Appendix B.1 for details). The modeling process gener-
ates a fully pin-compatible and 100 % accurate behavioral model (no model reduction per-
formed) for a selected subcircuit of the circuit netlist. Like in SPICE device models, only a
small portion of a device’s equations has to be treated simultaneously, the major portion of
the equations is provided in a sequential structure. In order to use these sequential equations,
additional information is returned by symbolic device models for handling sequential equa-
tions separately (reducing the number of simultaneous equations, see Section 4.7).

As far as supported by the modeling language and the simulator, initial values were provided
to improve DC convergence (derived from an internal operating-point calculation). Specific
tolerances for the contained equations and quantities were specified as appropriate in order
to ensure accurate processing of the DAEs. Modeling options that (non-intentionally) influ-
ence the number of resulting equations by adding auxiliary variables to the system of DAE
require particular attention. Within the following analyses, the number of model equations
will always be stated by the number of effective equations (resulting from the equation pro-
cessing). In some cases, the model export to an AHDL requires to introduce auxiliary vari-
ables for order reduction or handling of conditional statements as well as sequential
equations. For details on methods resulting in such auxiliary variables please refer to
Appendix B.

Furthermore, the connectivity between the behavioral model and the circuit (resp. testbench)
results in additional variables (port currents). Thus, the dimension of the linearized system
as reported by the simulator may differ from the number of effective equations contained
within the model. If possible, the number of auxiliary variables is kept to a minimum. The
over-all dimension of the models results in the following number of equations:
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• TML

• Verilog-A 

• VHDL-AMS

Analyzed Circuits (Benchmarks)

In general, any analog circuit that can be modeled with the discussed Analog Insydes based
modeling flow is suitable as benchmark for analyzing simulation performance. For practical
reasons, the modeling process is limited by the following factors:

• Available symbolic device models within Analog Insydes (a matter of spent effort in
order to implement further device models; the possibility to automatically set up sym-
bolic device models from imported Verilog-A code has been shown).

• Number of model equations (correlated with the number of transistors and the complex-
ity of the used device models) should not exceed 1500 equations as the complexity of
the DAE systems rises significantly. Thereby, various problems might be caused, from
computation times for model generation to unacceptably high compilation times for the
behavioral models. Using a hierarchical modeling approach provides a generally advis-
able solution to this limitation.

For the presented analyses, a selection of analog circuit blocks with different characteristics
has been chosen. The intention was to select circuits of different sizes and different device
models to cover a wide range of future applications. All measurements have been performed
with transient analyses. The testbenches and input stimuli have been designed to show non-
linear as well as dynamic characteristics of the circuits and models. For most examples, pe-
riodic stimuli sources were chosen to provide a measurable amount of CPU time over several
periods. Table 4.3 provides an overview of the analyzed circuits. For all BSIM3-modeled de-
vices, the parameter set of Infineon’s 130 nm CMOS technology was used.

A short summary of used circuit designs and their testbenches:

• cfcamp – a complementary folded-cascode operational amplifier in degenerative feed-
back (unity gain buffer), pulse input voltage (500 kHz frequency, 0.45 V amplitude,
0.75 V DC), 19 BSIM3 instances

• emitter – a common emitter configuration with periodic piece-wise linear input

• multiplier – a small circuit “multiplying” two input voltages, 8 Gummel-Poon instances

• nand2 – a NAND gate, input stimuli trigger all states (1.5 V supply voltage, 1.5 GV/s
slew rate), 4 BSIM3 instances

• opamp741 – the uA741 operational amplifier in degenerative feedback (unity gain
buffer), pulse wave input voltage (220 kHz frequency, 200 mV amplitude, 2 MV/s slew
rate), 26 Gummel-Poon instances

• sqrt – a circuit implementing a sqrt-function from current input to current output, peri-
odic piece-wise linear source

Dimmodel N= SimEqs Nports Nderiv Ncondition[ ]+ + +

Dimmodel NSimEqs= 2Nports Nderiv+ +

Dimmodel NSimEqs= NSeqEqs 2+ Nports Nderiv+ +
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As indicated in Table 4.3, the analyzed circuit blocks are of relatively small size. Neverthe-
less, the generated models of the circuits are of high complexity. The corresponding sche-
matics, testbenches, and waveforms can be found in Appendix A.

4.2 Basic Performance Measurements

Based on the assumption that unsimplified behavioral models simulated with a behavioral
simulation method pose an equivalent problem to netlist-based simulation (as based on the
same equations), nearly equal simulation performance should be possible. The intention of
the first presented analysis is to demonstrate and quantify the performance problem of such
analytical behavioral models. Therefore, several behavioral models have been directly com-
pared to their corresponding netlist-based simulation. Figure 4.2 shows the slow-down of the
behavioral simulation compared to the netlist-based simulation. Here, the discrepancy be-
tween the performance of both simulation methods increases significantly up to a factor of
192 for the μA741 operational amplifier. Even for very small models (like the emitter cir-
cuit), a non-negligible difference in simulation performance remains. It is obvious that the
performance problem increases with the complexity of the modeled circuits.

Table 4.3: Overview of the Analyzed Circuits

Example Transistors Device Model Ports Equations Parameters

cfcamp 19 BSIM3v3 6 1328 1621

cfcamp_mos1 19 MOS Level 1 6 134 155

emitter 1 Gummel-Poon 4 5 9

multiplier 6 Gummel-Poon 8 94 104

nand2 4 BSIM3v3 5 247 371

opamp741 26 Gummel-Poon 5 357 354

sqrt 4 Gummel-Poon 4 17 19

Figure 4.2: Slow Down Factors (Circuit vs. Unsimplified Behavioral Model)
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Table 4.4 summarizes the simulation results also giving information on the number of time
steps as well as iterations. As the internal equations of the used device models result in ad-
ditional equations within the linearized system, the dimension of the behavioral models is
noticeable higher than that of the corresponding circuit simulation. This also results in a
much higher sparsity of those systems. The number of time steps does only reveal different
behavior of the time-step control for the opamp741. In terms of convergence, the examples
sqrt and opamp741 are particularly interesting. The convergence of sqrt improves (which is
untypical) whereas the opamp741 faces (noncritical) convergence problems (3.5 instead of
2.25 iterations per time step) in the behavioral simulation.

In summary, the performance problems are neither caused by problems of the time-step con-
trol nor by (serious) convergence problems. The root causes for the performance problem are
a matter of the processing of the models’ equations and will be subject to further investiga-
tions within the following sections. Nevertheless, convergence is a critical issue for such
complex behavioral models. All behavioral models created by using the symbolic BSIM3
model did reveal serious problems in DC convergence and could therefore not be simulated
under these specific conditions. This problem has been solved by taking advantage of se-
quential equations and will be discussed within later sections.

For the time being, the above stated comparison gives the impression that the analytical mod-
eling method by symbolic analysis is inadequate for enhancing simulation performance. The
performance comparison reveals an enormous overhead. Still, the main difference between
both compared simulation setups is their problem conditioning, a matter of modeling effi-
ciency. Therefore, a major improvement of the behavioral simulation performance should be
attainable. Figure 4.3 exemplarily shows the current situation and the target performance.
The bottom-up generated behavioral models have to achieve a major speed-up compared to
the original circuit simulation in order to apply this modeling method in an appropriate and
acceptable way.

Table 4.4: Results of Basic Performance Measurements

Example Type

emitter
Circuit 11 72.0 % 6901 16851 0.252 s

2.4
Model 19 83.33 % 6901 16023 0.603 s

sqrt
Circuit 10 58.03 % 2509 9625 0.178 s

4.3
Model 29 88.39 % 2509 6804 0.757 s

multiplier
Circuit 28 75.72 % 1181 2361 0.102 s

36.5
Model 113 96.12 % 1181 2801 3.727 s

cfcamp_mos1
Circuit 23 70.87 % 1007 2022 0.099 s

46.9
Model 149 97.51 % 1007 2042 4.642 s

opamp741
Circuit 58 88.89 % 1669 3753 0.403 s

192.3
Model 368 99.01 % 1391 4856 77.5 s

Dim Spa Nstep Niter Ttran SlowDown
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The slow-down of an unsimplified behavioral model is significantly higher than 10 (for rea-
sonable size examples) and increases considerably with the dimension of the model. For the
analyzed examples, the slow-down increases up to ~200. Although the model reduction al-
gorithms for symbolic analysis have been proven to reach highly efficient reduction rates,
the reduced models are rarely faster than the netlist-based simulation. The relatively great
effort of the model reduction is primarily spent on compensating for the bad simulation per-
formance of the unsimplified model. The following research and improvements will show
that a major part of this inefficiency can be eliminated by adapting the interface between the
behavioral models and the simulators. This adaptation does not reduce the accuracy of the
behavioral models. Its approach is rather to improve the conditioning of the problem (by re-
formulation and restructuring of the behavioral models) and to handle such complex behav-
ioral models more efficiently within the model compiler. The target is to reduce the slow-
down to a minimum (at most a factor of 5 slower than the reference simulation). Starting
from this optimized model, nearly the full effectiveness of the existing model reduction al-
gorithms can be used to speed-up the generated models thus making them an attractive solu-
tion for bottom-up model generation.

4.3 Distribution of the Computational Effort

Profiling is a technique to analyze where computational effort was spent during the evalua-
tion of a program. Common profiling tools like gprof work on instrumented code containing
additional code to count function calls and to sum-up the spent CPU time by function. The
resulting tables allow statistics on how often each function was executed and how much CPU
time was actually spent on it. As the results are quite comprehensive and the usage of profil-
ing tools requires specific binaries (including the instrumentation), it is too complicated
within this scope to completely profile a circuit simulator. Nevertheless, built-in time mea-
surements facilitate analyzing the major process steps during a simulation. Such built-in pro-
filing methods have been used to examine the distribution of the computational effort in
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behavioral simulations and identify possible bottlenecks and shortcomings in terms of sim-
ulation performance.

Main contributors to the total CPU time spent for a transient analysis ( ) are the loading
process and the solving of the linearized system. During the loading process, the linearized
system is determined by the contained models. This involves the evaluation of the Jacobian
matrix ( ) as well as the evaluation of all expressions determining the right-hand side
( ) of the linearized system. Furthermore, any checks for convergence and numerical
problems ( ), numerical integration, and interfacing between models and linear solver
( ) contribute to the CPU time of the loading process ( ).  accumulates addi-
tional overhead during the loading process.

The amount of CPU time spent on solving the linear equation system ( ) can be sub-
classified into the CPU time for the LU decomposition ( ) and the forward-back-
ward substitution to determine the solution ( ) from the decomposed system.
Equations (4.4) to (4.6) summarize the classification of the main contributors to the over-all
CPU time.  accounts for any supplementary processes during the transient analysis
(initialization, time-step control, etc.) and is typically negligible small compared to 
and .

(4.4)

(4.5)

(4.6)

Within circuit simulations, the approximate ratio of  to  is 80 % to 20 %.
Table 4.5 indicates the distribution of CPU time in behavioral simulation, taking three be-
havioral models of different dimensions (113 to 368) and types (MOS Level 1 and Gummel-
Poon transistor model) as example. As already mentioned,  only contributes with less
than 2.5 % and will thus be neglected for following analyses. As can be seen in Figure 4.4,
the distribution for loading and solving is quite consistent within the different models, and

Table 4.5: Over-All Distribution of the CPU Time

Example

multiplier
absolute 3.727 s 2.49 s 1.17 s 0.06 s

relative 100 % 66.8 % 31.5 % 1.7 %

cfcamp_mos1
absolute 4.642 s 3.28 s 1.26 s 0.11 s

relative 100 % 70.6 % 27.1 % 2.4 %

opamp741
absolute 77.5 s 49.36 s 27.84 s 0.33 s

relative 100 % 63.7 % 35.9 % 0.4 %

Ttran

Tjacob

Tfunc

Tchecks

Tstamp Tload Tmisc

Tsolve

TLUDecomp

TFBSubst

Toverh

Tload

Tsolve

Ttran Tload Tsolve Toverh Tload Tsolve+≈+ +=

Tload Tfunc Tjacob Tchecks T+ stamp Tmisc+ + +=

Tsolve TLUDecomp TFBSubst+=

Ttran Tload Tsolve Toverh

Tload Tsolve

Toverh
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the ratio is close to what would be expected for any circuit simulation. The over-all CPU time
is slightly less dominated by the loading process.

Figure 4.5 visualizes the distribution of the computational effort spent on loading. Astonish-
ingly, the evaluation of the right hand side ( ) has the least influence on  (3 to 9 %)
even though it consists of highly complex nonlinear expressions. Table 4.6 reveals the con-
tributors and their distribution within the loading process in detail. Above all the processes
handling the Jacobian matrix ( , , ) require a large amount of CPU time
and thereby appear to be ideal for further investigation and enhancements.

Finally, Figure 4.6 and Table 4.7 show the distribution of the CPU time for solving. The LU
decomposition dominates the solving process with roughly 80 % (similar to circuit simula-
tion). As the linear solver is a fundamental component of the simulator, it was not considered
to be enhanced within this context. Still, Titan provides different linear solvers for behavioral
models that will be introduced and compared within Section 4.5. Apparently, loading and
solving are equally contributing to the overhead observed in behavioral simulation. Thus, it
is desirable to speed up both processes.
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Table 4.6: Distribution of the CPU Time for Loading

Example

multiplier
absolute 2.49 s 0.17 s 0.68 s 0.4 s 1.05 s 0.2 s

relative 100 % 6.7 % 27.2 % 15.9 % 42.3 % 7.9 %

cfcamp_mos1
absolute 3.28 s 0.29 s 0.87 s 0.49 s 1.29 s 0.34 s

relative 100 % 8.9 % 26.5 % 14.8 % 39.5 % 10.3 %

opamp741
absolute 49.36 s 1.51 s 11.63 s 10.09 s 22.23 s 3.89 s

relative 100 % 3.1 % 23.6 % 20.4 % 45 % 7.9 %

Table 4.7: Distribution of the CPU Time for Solving

Example

multiplier
absolute 1.17 s 0.98 s 0.19 s

relative 100 % 83.5 % 16.5 %

cfcamp_mos1
absolute 1.26 s 1.03 s 0.23 s

relative 100 % 81.8 % 18.2 %

opamp741
absolute 27.84 s 23.5 s 4.33 s

relative 100 % 84.4 % 15.6 %

Tload Tfunc Tjacob Tchecks Tstamp Tmisc

Figure 4.6: Profiling Results (Solving)
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4.4 Computational Complexity of Behavioral Models

In the next step, influencing factors on both loading and solving are analyzed. Therefore,
models with different characteristics but equal complexity (same accuracy) will be com-
pared. In general, the amount of computational effort should be proportional to the complex-
ity of the behavioral model. However, there are no sufficient metrics to measure the
computational complexity of a model. Various characteristics may be used as indicators for
a model’s complexity. The most obvious is the number of model equations. The complexity
of the contained equations can be judged by the number of terms contained, unfortunately
there is no normal form for nonlinear expressions making this metric an inexact criterion.
Within Section 4.7 an approach to classify models by their expression complexity will be
presented (based on the instruction count ). The number of resulting non-zeros within the
Jacobian matrix is also an important characteristic influencing the computational complexi-
ty. Finally, conditioning and sorting equations and variables is essential for the linear solver.

To overcome this dilemma an approach based on the following assumptions was chosen:
Different model formulations generated from the same circuit should be of equal computa-
tional complexity for the behavioral simulator. Hence, the following equation formulations
have been used to set up behavioral models for three selected examples:

• Network equations set up by Modified Nodal Analysis (MNA)

• Network equations set up by Sparse Tableau Analysis (STA)

• MNA equations processed by the function CompressNonlinearEquations that
removes some internal variables and equations by algebraic processing (Compr)

• MNA equations and substitution of all explicit equations (sequential equations from
device models) (Subst)
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By setting up the network equations in different formulations (MNA/STA) and algebraic post-
processing of the obtained DAEs (Compr/Subst), the resulting models widely differ in their
dimension and sparsity. While the STA models consist of a large number of equations (each
of low complexity), the Compr and Subst models are of much lower dimension but contain
highly complex expressions. Due to the extraordinary expression complexity, the Subst mod-
el type only converged in one of the presented examples (cfcamp_mos1).

The simulation results are shown in Table 4.8. While the number of time steps and Newton
iterations do not differ at all, the CPU time significantly varies over the basically equivalent
model formulations. Figure 4.7 visualizes the CPU time needed for the different model types
of multiplier and opamp741. As indicated in the chart, the most compact formulation (Com-
pr) achieves the best simulation performance. The distribution of solving/loading does not
scale over the dimension of the models.

In Figure 4.8, the results for the cfcamp_mos1 example are shown. While the upper three
model types perform as expected from the previously shown examples, the Subst model type
performs badly, although it is the most compact model formulation. According to its number
of equations it should have performed much better. While in the other cases the dimension
of the models dominates the simulation performance, the complexity of the contained ex-
pressions dominates in this example. Section 4.6 will investigate this phenomenon further
and provide a metric for estimating the complexity of expressions. It is likely that a break-
even point between the contradicting properties of the number of equations and their com-
plexity exists.

Table 4.8: Results of the Complexity Analyses

Example Type

multiplier

Circuit 28 75.72 % 190 0.102 s n/a

Compr 94 92.95 % 623 2.77 s 27.1

MNA 113 96.12 % 496 3.73 s 36.5

STA 136 96.91 % 571 5.34 s 52.4

cfcamp_mos1

Circuit 23 70.87 % 154 0.099 s n/a

Subst 62 92.74 % 279 5.11 s 51.6

Compr 113 95.97 % 514 2.64 s 26.7

MNA 149 97.51 % 552 4.64 s 46.9

STA 161 97.82 % 565 5.47 s 55.3

opamp741

Circuit 58 88.89 % 374 0.403 s n/a

Compr 294 98.4 % 1387 52.4 s 130.2

MNA 368 99.01 % 1347 77.5 s 192.3

STA 416 99.15 % 1469 103.7 s 257.3

Dim Spa Nnonzero Ttran S 1–
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In order to analyze the proportionality between model dimension and CPU time in more de-
tail, statistics on multiple examples with different model formulations have been generated.
These statistics purely focus on the internal processing time per iteration. They include emit-
ter, multiplier, sqrt, opamp741, and cfcamp_mos1 each modeled in MNA, STA, and Compr
model style. As the examples use completely different simulation setups, models, and test-
benches, a normalized metric for the CPU time was applied. Therefore, the CPU time for
each simulation was normalized to CPU time per iteration:

Thus, any influence of the simulation time, convergence, and time step control has been
eliminated. Figure 4.9 shows the coherence between the dimension of the used models and
the CPU time (separately for loading, solving, and total CPU time). The CPU times scale
with nearly quadratic complexity over the dimension of this selection of completely different
models. This result shows that the simulation performance greatly depends on the dimension
of the DAEs. Any internal differences like different equation types and different evaluation
complexity do currently not influence the simulation performance observably. Hence, (4.7)
is suited to estimate the CPU time for any TML model:

(4.7)

Figure 4.8:  for Different Model Formulations (cfcamp_mos1)Ttran
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The reason for this strong dependency on the dimension of the simulated problems is the fact,
that Titan did not apply sparse algorithms for behavioral models. As the dimension of hand-
written models is typically very low, there was no need for introducing a sparse handling for
the behavioral models. However, an approach to provide sparse solvers was taken and will
be discussed within the following section.

For models of such high dimension as analyzed within this scope, a sparse handling is indis-
pensable. As long as no sparse algorithms are available, the only objective to speed up the
behavioral simulation is to find a model formulation as compact as possible while still en-
abling convergence and not exceeding a maximum expression complexity. The computa-
tional complexity of the symbolic expressions does not play an important role in this case.
The CPU time for the function evaluation is completely hidden by the dominating influence
of the dense data structure and processing.

Table 4.9 gives an overview of the proportionalities of different fractions of the CPU time
for dense and sparse algorithms. The complexity of the expressions needed to evaluate the
RHS and the Jacobian matrix is indicated by the number of evaluation cycles 
which will be discussed in more detail below. In general, all CPU times linearly depend on
the number of Newton iterations performed during simulation. Note that all components of
the simulation have to be evaluated with the same number of iterations1. Hence, an appar-
ently “non-relevant” behavioral model with poor convergence may dramatically decrease

1. Multi-level Newton-Raphson methods solve this issue [34]
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the over-all simulation performance of a large simulation setup by requiring a large number
of iterations. The same is true for time steps.

When using dense algorithms the main contributors scale polynomially over the dimension,
whereas sparse algorithms provide an efficient method to reduce this proportionality to a
close to linear scaling. The exponent in the sparse case depends on the sparsity and condi-
tioning of the Jacobian matrix, and typically varies from 1.2 to 1.5. For the processing steps
during loading, the relevant characteristic is the number of non-zero entries in the Jacobian
matrix, which can be calculated as follows:

4.5 Performance of Linear Solvers

Linear solvers are based on a trade-off between performance, accuracy, and numerical ro-
bustness. As already discussed in Section 3.5, Titan uses different solvers for the subsystems
resulting from the structural description (by direct inspection of the netlist elements) and the
subsystem of the model equations. By default, the dense LAPACK solver was used for be-
havioral models as they were usually of low dimension but numerically critical to handle.
The other solvers are optionally available. The intention of this section is to demonstrate a
comparison of the performance of the available solvers. The simulation results will be exem-
plarily demonstrated by the emitter model with a low dimension of only 19 and the
opamp741 model, which is of reasonable high dimension (368). Table 4.10 lists the perfor-
mance measurements for both examples simulated with the three available solvers.

Table 4.9: Proportionalities of CPU Time and Model Characteristics

Dense Algorithms Sparse Algorithms

Solving

Function 
Evaluation

Jacobian 
Evaluation

Checks, 
Stamping

Tsolve Niter Dim2…Dim3

3
-------------,∼ Tsolve Niter Dim1 2…1 5,, Spa,,∼

Tfunc Niter D, im NEvalCycles,∼ Tfunc Niter D, im NEvalCycles,∼

Tjacob Niter Dim2 NEvalCycles,,∼ Tjacob Niter N, nonzero NEvalCycles,∼

Tchecks Tstamp, Niter Dim2,∼ Tchecks Tstamp, Niter N, nonzero∼

Nnonzero 1 Spa–( ) Dim2⋅=
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For the emitter model the choice of the linear solver does not influence the convergence of
the simulation. As the model is of low dimension, the Titan solver speeds up the solving pro-
cess by a factor of (only) 4.33. The application of the MUMPS solver significantly reduces
the simulation performance (presumably by the overhead caused by initializing the solver
and needlessly performing dynamic pivoting). Unlike in the emitter example, the solving
performance for the opamp741 shows a substantial improvement of a factor of 39.77 (Titan
solver) respectively 4.4 (MUMPS solver). Due to an unfavorable pivoting of the Jacobian
matrix, the Titan solver needed 6467 instead of 4856 iterations, which in turn decreased the
loading performance. Hence, the MUMPS solver would be the optimal solution for the
opamp741, but would be of major disadvantage for the emitter circuit. It is worth mentioning
that the ratio between loading and solving (98 % to 1 %) for the opamp741 simulated with
the Titan solver indicates that there was still a problem during loading. Other simulations
confirm these results.

The robustness of the Titan solver in combination with a sub-optimal ordering of the model
equations did cause severe convergence problems for some applications. This could be
solved for future applications by performing a sufficient preordering of the models’ equa-
tions to ensure a favorable conditioning of the Jacobian matrix. In general, the application of
a sparse solver is essential for systems of high dimension. Should convergence problems oc-
cur, the MUMPS solver is the preferred solution. In terms of performance, the precondition-
ing of the models (to improve robustness) and application of the standard Titan solver would
most likely lead to the best results. The default LAPACK solver is not suited for behavioral
models of higher dimension. Here, a sparse solver (Titan or MUMPS) should be applied.

Table 4.10: Distribution of the CPU Time for Different Linear Solvers

Example Solver

emitter

LAPACK 16023 2.32
0.6 s 0.34 s 0.13 s

1
100 % 55.9 % 20.7 %

Titan 15841 2.3
0.5 s 0.32 s 0.03 s

4.33
100 % 64.2 % 6.4 %

MUMPS 16037 2.32
1.9 s 0.41 s 1.35 s

0.096
100 % 21.4 % 70.9 %

opamp741

LAPACK 4856 3.49
77.52 s 49.36 s 27.84 s

1
100 % 63.7 % 35.9 %

Titan 6467 4.65
65.82 s 64.79 s 0.7 s

39.77
100 % 98.4 % 1.1 %

MUMPS 4856 3.49
59.01 s 52.34 s 6.36 s

4.38
100 % 88.7 % 10.8 %

Niter Niter step⁄ Ttran Tload Tsolve Ssolve
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4.6 Loading Performance

While the simulation efficiency of the solving process could be resolved by applying an ap-
propriate sparse linear solver, the loading process (especially in combination with the Titan
solver) consumes nearly the complete CPU time (98 %). Research proved that the loading
process of the compiled behavioral models was not realized in a sparse manner. In order to
eliminate any side effects and to only measure the performance in terms of loading and linear
solving two types of linear networks were set up:

• Chain networks of resistors with each node additionally connected to ground (see
Figure 4.10) � tridiagonal Jacobian matrix, high sparsity

• Complete networks with each node connected to each other by a resistor (see
Figure 4.11) � fully populated Jacobian matrix, no sparsity

As the networks are static linear, the simulation performance is not influenced by dynamic
effects or linearization issues. The Jacobian matrices of netlist and behavioral simulation are
identical (apart from the additional port currents for the behavioral models, which are negli-
gible).

Figure 4.10: Schematic for Chain Networks
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For the complete networks all benefits
from sparse handling strategies are dis-
abled as the matrices are (nearly) fully
populated. The scaling of the simula-
tion performance over dimension and
sparsity can be observed by varying
the number of nodes (20 to 100) of
both network types. As indicated by
the previous analyses, the Titan solver
was applied to enhance the solving
performance. Despite the linear nature
of the problems, transient simulations
with limited step size and sinusoidal
input sources have been performed to
achieve a large number of iterations
(for accurate CPU time measure-
ments).

Figure 4.12 shows the CPU time per it-
eration over the dimension of the com-

plete networks and their corresponding behavioral models. As expected, the CPU time scales
with a potential function of an exponent larger than 2. Although sparse algorithms do not af-
fect this network type and the linearized systems are (nearly) identical, the behavioral simu-
lations are by a factor of 2 slower than the corresponding netlist-based simulations. As
Figure 4.13 verifies, this overhead in behavioral simulation is solely caused by the loading
process, whereas solving is of exactly the same performance.

Figure 4.12: Scaling of  over 
for the Complete Networks
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As far as chain networks are con-
cerned, the overhead of the behavioral
simulation is much more serious as
Figure 4.14 shows. Due to efficient
sparse algorithms the CPU time of the
netlist-based simulation scales close
to linear. In contrast to that, the behav-
ioral simulation scales with an expo-
nent of 1.6 causing a rapidly
increasing discrepancy between both
simulation types. Comparing the dis-
tribution between loading and solving
(see Figure 4.15) evidences the appli-
cation of the Titan solver: the solving
process scales linearly and the dis-
crepancy between both types is ac-
ceptable.

The loading process shows dramatic
inefficiency. For the behavioral mod-
els, the exponent of the potential fitting function is 1.73. As the sparsity of the models is not
utilized within this realization, a major improvement of the loading performance by intro-
ducing a sparse processing should be expected. Some effective measures to reduce the over-
head to a minimum will be presented in Section 5.2.

Figure 4.14: Scaling of  over 
for the Chain Networks
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4.7 Expression Evaluation

The loading process primarily consists of a large number of expression evaluations in order
to determine the residual as well as the Jacobian matrix for the next iteration of the linear
solver. The spent CPU time within these processes (  and ) is influenced by the
clock cycles required for the evaluation of the nonlinear expressions and the time to access
the necessary data within the memory. While it is relatively easy to predict the computational
effort for the expression evaluation itself, memory accesses are highly dependent on data
structures and memory organization. Above all, data locality is of great importance as it de-
termines the cache miss rate. The miss penalty for data that has to be fetched from the main
memory instead of being available within the cache is (depending on the computer architec-
ture) 10 to 16 times higher than a successful cache access. Unfortunately, the cache miss rate
is hard to predict. The realization of the sparse data structure for the loading process (cf.
Section 5.2) will demonstrate the importance of data locality.

Two metrics have been introduced in order to estimate the computational complexity of a
system of DAE: the number of clock cycles for function evaluation ( ) and the
number of memory accesses ( ). The instruction counts  for all contained
arithmetic functions of the equation set as well as the instruction count for the symbolic Ja-
cobian matrix were determined within the model generator based on the function Cost [70].
Some basic expression optimizations that would be performed by a compiler (strength reduc-
tion, cf. [1]) have already been taken into account within [70] (e.g. ,

). Afterwards, the sum of the instruction counts for each function weighted by
an estimated cycles per instruction figure  (cf. Table 4.11) has been determined by
(4.8). The resulting figure  does not take into account CPU architecture specific
properties and non-ideal behavior of instruction level parallelism (ILP, cf. [30]). It should
therefore only be considered as a rough indicator for the evaluation complexity.

(4.8)

The number of memory accesses (to the data memory) during the expression evaluation was
derived from the total count of the referenced variables and parameters within the equations
and their Jacobian matrix. No distinction was made between read and write accesses.

Table 4.11: Cycles per Instruction

Instruction CPI

addition, subtraction, multiplication 1

division, square root 4

exponential function, logarithm, sinus, cosine, etc. 8

power 17

Tfunc Tjacob

NEvalCycles

NMemAccess ICi

x2 x x⋅→
xy ey x( )ln⋅→

CPIi

NEvalCycles

NEvalCycles ICi CPIi⋅
i 1=

n

∑≈
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(4.9) shows the (measurable) influencing factors for the expression evaluation. There are ad-
ditional dependencies on computer architecture, cache miss rate, pipelining, etc. that can nei-
ther be measured nor estimated easily.

(4.9)

In order to estimate the influence of the expression evaluation on the loading performance
two model types will be compared, the unsimplified models in MNA formulation and their
corresponding models with all parameters replaced by their numerical default values. There-
by, the expression complexity changes remarkably as some subexpressions, that only consist
of parameters, can be pre-evaluated within the modeling tool instead of being evaluated dur-
ing simulation. At the same time, the structure and numerical properties of the DAE system
do not change. As mentioned within the previous sections, the missing sparse handling dur-
ing loading heavily influences the loading process. As this effect dominates the loading pro-
cess, the influence of the expression complexity cannot be clearly diagnosed. Therefore, the
statistics were processed with the sparse implementation that will be presented within
Section 5.2.

Table 4.12 lists the estimated clock cycles  for the function and Jacobian evalua-
tion as well as the estimated number of memory accesses  and their respective
reduction by replacing the parameters with their numerical values for three examples. The
two right-most columns display the achieved speed-up in the residual’s and Jacobian’s eval-
uation. Apparently, the removal of the parameters efficiently reduces the expression com-
plexity and the number of necessary memory accesses (by roughly 40 %). The reduced
complexity of the expressions positively affects the simulation performance. It results in a
speed-up of roughly 25 % for the function and the Jacobian evaluation. The discrepancy to
the optimal speed-up of 40 % most likely originates from influencing factors of the computer
architecture that could not be taken into account. The good correspondence between CPU
time and expression complexity in this experiment is evidence for considering the function
evaluation for further optimization.

Table 4.12: Complexity of the Expression Evaluation

Example Parameters Ratio Ratio

multiplier
104 7946

68.2 %
2846

51.4 % 1.23 1.16
0 5419 1462

cfcamp_mos1
155 7300

62 %
4203

63.4 % 1.25 1.33
0 4532 2667

opamp741
354 17085

64.5 %
7136

56.2 % 1.22 1.34
0 11020 4012

Tfunc Tjacob NEvalCycles NMemAccess Niters …, , ,∼+

NEvalCycles

NMemAccess

NEvalCycles NMemAccess Sfunc Sjacob
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4.8 Comparison of Commercial Simulators

It is not in the scope of this research to compare different simulators. Nevertheless, a com-
parison with three major commercial simulators was made to ensure that the presented re-
sults and performance problems are not a Titan specific problem. For legal reasons all results
will be presented anonymously. As Titan is probably the most famous moon of Saturn, three
more satellites of Saturn will be used as pseudonyms for those simulators:

• Dione - a circuit simulator with Verilog-A support

• Rhea - a mixed-signal simulator supporting VHDL-AMS and Verilog-AMS

• Thetys - another mixed-signal simulator supporting VHDL-AMS and Verilog-AMS

Results simulated with different simulators must not be absolutely compared as it is
generally impossible to guarantee fair conditions among different simulators. Therefore,
each simulator was relatively compared to itself by determining the slow-down between its
behavioral and circuit simulation. The accuracy options have been chosen to achieve similar
settings as the Titan defaults (which are reasonably accurate). All measurements have been
extracted from the simulator’s log files (apart from the number of iterations that were not
reported by all simulators). In order to be able to evaluate the convergence for those
simulators a Verilog-A model measuring the number of iterations was used (see
Appendix A.8).

The basic analyses were performed under the same conditions as for Titan in Section 4.2. For
Rhea and Thetys, the model with the better simulation performance (VHDL-AMS or Ver-
ilog-A) was used within the statistics. Figure 4.16 shows the slow-down factors of the be-
havioral simulation compared to the circuit simulation of each simulator for the examples
cfcamp_mos1 and opamp741. The factors have been calculated from three different mea-
sures, the absolute CPU time spent for the transient analyses, the CPU time normalized to
the number of time steps, and finally the normalized CPU time per iteration. Even though the
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simulators show a great variety of different performances, no simulator reaches the expecta-
tions of being below five times slower than its netlist-based simulation. Moreover, the per-
formance problem seems to increase for all simulators with a rising dimension of the models
(as further analyses will demonstrate). It is worth mentioning that Titan was still measured
using its default dense algorithms and solver for simulating the models at this state.

By comparing the number of necessary time steps in Figure 4.17, a rather similar behavior
in time-step control can be seen. Dione and Thetys suffer from serious convergence problems
in behavioral simulation for the used models. As presented for Titan in Section 4.6, these
simulators were also analyzed about their scaling over the problem dimension. Although
VHDL-AMS would have been the better solution to model the linear networks, Rhea had to
be measured with Verilog-A models due to large memory consumption during the VHDL-
AMS models’ compilation (resulting in a compiler error). Figure 4.18 (dense) and 4.19
(sparse) give a qualitative overview of the simulation results for the analyzed simulators. For
the complete networks, the netlist-based simulations show remarkable differences between
the compared simulators. The performance of the behavioral models is significantly worse
than that of the netlist-based simulations.

The analysis of the chain networks reveals that all simulators use sparse techniques (linear
scaling). The performance of the circuit simulations is similar for all simulators. Still, the
overhead in processing the behavioral model is considerably large for Dione and Rhea. The
gradient of the linear approximation functions for those simulators differs by a factor of 8
and 6.66 respectively compared to the netlist-based simulation. Thetys has a very small over-
head between both simulation modes. Its behavioral simulation performance is nearly as

cfcamp_mos1

2380

4218

1046

1264

1052

4333

2022

2042

1191

1411

1025

1069

1027

1568

1007

1007

0 1000 2000 3000 4000 5000

circuit

model

circuit

model

circuit

model

circuit

model

T
he

ty
s

T
he

ty
s

R
he

a
R

he
a

D
io

ne
D

io
ne

T
ita

n
T

ita
n

S
im

u
la

to
r

N [1]iterations time steps

Figure 4.17: Convergence Comparison for cfcamp_mos1 (left) and opamp741 (right)
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good as the performance of the netlist-based simulations. Titan was not included in this anal-
ysis as it has shown a super-linear scaling in previous analysis due to the missing sparse han-
dling of the behavioral models.

The significant overhead between the netlist-based simulation and the corresponding behav-
ioral simulation is a characteristic all simulators have in common. This discrepancy can only
be caused by the internal processing of the models within the loading process. Other differ-
ences between the simulation modes like convergence, time-step control, and linear solving
issues (including sparse algorithms) have been eliminated by the experiment’s setup. It is
highly desirable in order to reduce this inefficiency to enhance the behavioral simulation per-
formance. Apart from the relatively high dimension of the models, their structure and their
contained equations represent one of the most basic models possible. For any more compli-
cated model the performance problems would most probably get worse. For a more detailed
overview of the corresponding charts and fitting functions please refer to Appendix C.1.

Figure 4.18: Simulator Comparison on the
Scaling of  over  for the Complete NetworksTtran iter⁄ Dim
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4.9 Taking Advantage from Sequential Equations

A promising approach to reduce the dimension of a linearized system that has to be solved
during simulation is to take advantage of sequential equations (see Section 2.1 for definition
and example). As device models typically contain a high ratio of explicit equations it is ob-
vious to model those equations in a manner that they do not have to be solved with iterative
methods. Therefore, the modeling language has to support some kind of procedural evalua-
tion (as discussed in Section 2.4) and the simulator has to deal efficiently with this method.

So far, all model equations have been modeled simultaneously and hence had to be solved
simultaneously. As Analog Insydes supports sequential equations and Verilog-A offers use-
ful possibilities to model the sequential equations (using procedural assignments), the advan-
tage of solving these equations procedurally will be analyzed within this section.
Unfortunately, TML and Titan did not provide the possibility to generate and simulate be-
havioral models with sequential structure. This issue has been solved and will be presented

Figure 4.19: Simulator Comparison on
the Scaling of  over  for the Chain NetworksTtran iter⁄ Dim
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within Chapter 5. For now, the analyses have been performed by using the simulator Dione
and Verilog-A models. The information which equations can be handled sequentially is pro-
vided by the symbolic device models.

Table 4.13 shows the number of (effective) sequential and simultaneous equations as well as
the simulation results for three examples with three different simulation types each: the
netlist-based simulation (circuit), the behavioral model with use of sequential equations (seq.
model), and the simultaneous behavioral model (sim. model). The dimension of the linear
system that is processed by the simulator kernel is the sum of the simultaneous equations,
equations resulting from netlist elements of the testbench, and auxiliary variables (as dis-
cussed in Section 4.1).

Table 4.13: Results of Sequential Simulations with Dione

Example Type

cfcamp
(MOS1)

Circuit 30 n/a n/a 1052 1027 0.137 s

Seq. Model 69 87 49 2142 1053 0.639 s

Sim. Model 156 0 136 4333 1568 2.044 s

opamp741

Circuit 57 n/a n/a 2117 1569 0.188 s

Seq. Model 243 177 127 4646 1786 4.878 s

Sim. Model 420 0 304 4479 1748 6.891 s

cfcamp
(BSIM3)

Circuit 20 n/a n/a 5195 4417 0.75 s

Seq. Model 190 1205 123 8160 3691 63 s

Sim. Model 1395 0 1328 (no convergence)
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Figure 4.20: Dimension of the Linear Systems
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Figure 4.20 shows the dimensions of the resulting linear systems. By handling a large portion
of the equations sequentially, the dimension was effectively reduced, but is still significantly
larger than for the netlist-based simulation. As can be seen from the number of iterations and
time steps, handling equations sequentially (instead of simultaneously) improved conver-
gence and time-step control for cfcamp_mos1, but led only to minor changes in terms of con-
vergence for the opamp741.

As shown in Figure 4.21, the simulation performance increased by the introduction of the se-
quential equations, but is still far from being competitive to the netlist-based simulation. For
large examples like the cfcamp (modeled with BSIM3), no convergence could be achieved
without sequential equations. Even with consideration of sequential equations, the perfor-
mance is very low (slow-down of factor 84).

Modeling and solving explicit equations in a sequential manner typically improves conver-
gence and reduces the CPU time (approximately proportionally to the reduced dimension of
the linear system). The CPU time is mainly determined by the number of simultaneous equa-
tions whereas the number of sequential equations is only of secondary effect. Therefore, it is
advantageous to formulate as many equations as possible in an explicit form (see Section 6.1
for an optimization strategy).

Figure 4.21: Simulation Performance of
the Sequential Models
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5 Compilation of Analytical Behavioral Models

Within this chapter, enhancements to
increase the behavioral simulation ef-
ficiency of Titan will be presented.
Above all, the model compilation has
been effectively improved whereas
enhancements within the simulator
kernel (linear solver, time-step con-
trol, etc.) have been of lower priority.

The general architecture of (most) be-
havioral simulators has been present-
ed in Section 3.5. Unfortunately, only
little information on specific details of
commercial simulators has been pub-
lished (except for the Language Refer-
ence Manuals of the AHDLs).
Therefore, no comparison of the algo-
rithms applied to Titan and commer-
cial tools can be drawn. Previous
experiments led to the assumption that
no sufficient optimization of complex
model equations is performed within
commercially available model com-

pilers. These compilers seem to rather focus on translating an AHDL into their intermediate
language without performing optimizations. While the code generation will be addressed
within this chapter, possible optimizations of the DAEs will be presented in Chapter 6. Op-
timizations as well as model compilation have been integrated into Analog Insydes and can
thus be combined modularly. Figure 5.1 shows the modeling flow, highlighting the new
model compilation for Titan.

As already mentioned, the compilation of analytical behavioral models has many analogies
with compiling device models. Within device model compilers, device models realized in an
AHDL are translated for a simulator specific interface (typically C/C++). Approaches to
achieve a high-performance compiled model are quite similar. Different from (behavioral)
model compilers, the objective of optimizing the model realization is of high priority within
device model compilers, as it is essential to generate a model that is of at least equal perfor-

Figure 5.1: Bottom-Up Modeling Process with 
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mance as a manual implementation. Device model compilers’ performances close to the tar-
geted “human-optimized” implementation have been reported in [13, 76, 80].

The problems with compiling analytical behavioral models are of a more general nature.
Typically, these models are of much higher dimension and have to be processed completely
automatically. In contrast to that, device model compilation is more specialized (e.g. requires
admittance formulation, uses physical and topological knowledge, etc.). It is often based on
hand-optimized Verilog-A models, and may be accompanied by manual enhancements of
the resulting model. Experiments with the adms compiler [44] revealed that this strategy is
(not yet) applicable to general DAE-based behavioral models.

The intention of the enhancements applied to the Titan AMS environment was to improve
both the simulation performance and the numerical robustness. Main objectives were

• the realization of a sparse loading,

• a new high-performance handling of sequential equations,

• the avoidance of restrictions resulting from modeling languages, and

• the reduction of the overhead of the former model compiler (as only very limited fea-
tures of TML were needed).

The latter aspect addresses a specialized compilation method for the analytical models to
achieve a close and direct interaction between the compiled models and the simulator kernel,
which will be described within Section 5.3.

5.1 Tuning Simulator Options for Performance

Before presenting any enhancements to the simulator, some basic issues that might be influ-
enced by simulator options will be addressed. The numerical solution of DAE systems is par-
ticularly sensitive to parameters influencing the behavior of the linear solver, the
convergence criteria, and the integration methods. In [39], a comprehensive discussion of the
most important simulator options is presented. Within this context, only some brief informa-
tion on how to enhance simulation performance will be given.

The most effective method to reduce the CPU time of simulations is to keep the number of
Newton iterations  as small as possible, because nearly all contributors to the CPU time
scale over . Therefore, it is important to avoid unnecessary large numbers of time steps
as each time step requires at least one (more likely two) Newton iterations. Main causes for
this might be

• a small time-step limit,

• a low iteration limit per time-step,

• over-accurate integration tolerances,

• unphysical fast signal edges, or

• break points (e.g. resulting from fine-granular PWL-sources, break-statements, or syn-
chronization issues with digital components in mixed-signal simulations).

Niter

Niter
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However, reducing the number of time steps not necessarily reduces the CPU time in a linear
way: Small time-steps typically improve the convergence within each step (as the solution
for the time step is closer to the previous solution). Taking fewer time steps might conse-
quently impair convergence.

Other important aspects influencing the number of Newton iterations are accuracy options
and tolerances of models. Choosing too restrictive accuracy options might result in serious
convergence problems or even non-convergence. Careless or unintentional loosening of tol-
erances holds the risk of wrong simulation results and non-convergence. The default simu-
lator settings might be too liberal for very sensitive circuits (e.g. bandgap). A general advice
on accuracy options cannot be given. In doubt, special attention should be paid to the corre-
sponding simulator options and tolerances specified within the model. The tolerances in be-
havioral models should be selected according to the physical meaning of the model’s
variables.

Saving values during simulation should also be handled with care. As the file I/O to store the
waveforms during simulation requires a considerable amount of time, only variables of par-
ticular interest should be selected to save. Saving current values should also be used carefully
as monitoring a current not only results in a longer processing time but, more important, in
additional equations within the linear system. This results from the fact that the branch cur-
rent to monitor is most likely not an unknown of the linear system (in MNA formulation),
and therefore an additional voltage source with zero voltage is introduced within the network
to obtain the necessary current variable.

For Titan, the linear solver should be changed to one of the sparse solvers (as discussed in
Section 4.5). This improves the simulation performance for models of “higher dimension”
(from approximately 10 equations) significantly.

5.2 Sparse Loading

For complex behavioral models resulting in Jacobian matrices of high dimension but with a
low ratio of non-zero entries, sparse loading becomes a serious issue (for details see
Section 4.6). Above all, the handling of the Jacobian matrix (storage, evaluation, copying)
turned out to be worth an increased effort to utilize sparsity. As Titan generates a fully sym-
bolic Jacobian matrix by automated derivation of the model’s equations, a large number of
complex expressions to determine the Jacobian’s non-zeros is necessary. Nevertheless, the
CPU time is not dominated by the evaluation of these highly complex nonlinear expressions.
In fact, cache effects dramatically slow down the performance during the expression evalu-
ation. These cache effects are caused by a low data locality due to the dense storage of the
matrix. The sparse realization avoids processing and storage of structural zero entries of the
Jacobian matrix. Moreover, storing the Jacobian matrix in a sparse data structure results in
an improved data locality and effectively reduces the cache miss rate.
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Saad [68] provides a good introduction to sparse
storages and methods. The realization of a so-
called coordinate data structure and the corre-
sponding changes in the processing of the Jacobian
matrix efficiently increases the loading perfor-
mance. This very basic sparse matrix format stores
only the non-zeros and their index within the ma-
trix. All operations that have previously been per-
formed based on the complete matrix may easily be
adapted to this data structure. Figure 5.2 visualizes
both matrix storage formats for a small example.
The memory consumptions:

For matrices of typical dimensions (like depicted in
Figure 5.3 for the opamp741), the effect on memory consumption and data locality is enor-
mous. This matrix contains 1214 nonzeros at a dimension of 317 (sparsity of 98.8 %, mem-
ory reduced from 785 kB to 14 kB). Although very basic, the COO format is absolutely
sufficient as an intermediate storage within the loading process as neither fill-ins nor reor-
derings are necessary. Thanks to its simplicity, the handling of this sparse data structure re-
sults in a minimal effort for initialization and administrative overhead.
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Table 4.6 on Page 47 contains the preceding profiling results for the loading process of the
opamp741 example. By repeating the analysis with the sparse loading method a significant
improvement of the performance could be observed. Figure 5.4 shows the improvement of
the sparse processing during loading. The evaluation of the Jacobian matrix, any checks per-
formed on the Jacobian matrix, and the process of copying the intermediate Jacobian to a
shared memory for the linear solver have been sped up by individual factors of 20 to 30. The
complete loading process was sped up by a factor of 7. Merely the function evaluation for
determining the residual (Func) and the processing overhead (Misc) were not affected.
Hence, the distribution of the CPU time changed as shown in Figure 5.5. The processing
overhead now clearly dominates the loading process. Applying the sparse solver and realiza-
tion of the sparse loading resulted in a total speed-up of a factor of 10 for the opamp741.
Table C.1 in Appendix C.2 contains the corresponding profiling results.

Figure 5.6 (left) depicts the CPU time per Newton iteration over the dimension of the chain
networks (see Section 4.6) analyzed with the new sparse loading implementation. The CPU
time for the behavioral simulation is now of linear complexity, too. Unfortunately, the ratio

Figure 5.4: CPU Time for Loading Using the new Sparse Loading (opamp741)
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of the gradients of the fitting functions between behavioral and netlist-based simulation is
still significantly larger than one (6.66). This means that the performance of the behavioral
simulation, even in the best case of same convergence, is of at least a factor of roughly 7
slower than its netlist-based equivalent. The main reason for this is the loading process (with
a gradient ratio of 16) while the ratio of 1.55 for the solving process is acceptable (for the
corresponding charts refer to Appendix C.2.4). Thus, the total discrepancy between both
simulation modes caused by overhead within the loading of behavioral models will still be
relevant for models of higher dimension.

Figure 5.6 (right) shows the behavioral simulations for the complete networks with and with-
out sparse loading. As sparse loading has no effect on the complete networks, the difference
between both graphs represents the additional overhead by initializing and processing the
sparse data structure which is negligible. Hence, the improved loading algorithm should be
advantageous even for Jacobian matrices of very low dimension or sparsity, and may there-
fore be used as default loading mechanism.

5.3 Concepts for a New Model Compiler

Fundamental prerequisites for the efficient processing of high-dimensional models are the
application of sparse storage and algorithms as well as a direct interface to the simulator ker-
nel. As the previous section has demonstrated, the best performance that could be achieved
under optimal conditions with the standard modeling interface (TML) of Titan would still be
of at least a factor of 6.66 slower than a netlist-based simulation of equal dimension. Hence,
a more efficient and specialized approach to achieve the targeted simulation efficiency was
indispensable. Main objectives were the reduction of the overhead resulting from the gener-
ality of the TML compiler and a more direct interface to the simulator kernel. Therefore, a
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specialized model compiler to generate high-performance models for the so-called Z-Ele-
ment Model Specification (ZMS) was developed. This new C-based interface was integrated
into Titan to provide a modern and flexible interface as a basis for future device models.

In order to be able to gener-
ate highly specialized com-
piled models for the
analytical behavioral models
and to avoid any restrictions
of the AHDLs, code genera-
tion was realized within Ana-
log Insydes. Here, a system
of DAEs processed within
the modeling tool can be ex-
ported directly to a C-model
for Titan, compiled by a
standard C-compiler, and
subsequently dynamically
linked with the simulator
kernel. Figure 5.7 shows the
architecture of the model
generation and compilation.
The interaction between the
model and the simulator ker-
nel is realized through a
shared memory.

As the interface was still in an early phase of development (outside the scope of this work),
some features of Titan (like the Titan solver) have not yet been adapted to be compliant with
ZMS. Therefore, all simulations of compiled models had to be performed with the MUMPS
or LAPACK solver (instead of the more efficient Titan solver). Unfortunately, this reduced
the performance of the solving process. This limitation is only a matter of development ef-
fort. Hence, another major improvement of the linear solver’s performance can be expected
by using the Titan solver. As the loading process (which is in the responsibility of the model
compiler) does not interfere with the Titan solver, the presented results can easily be adapted
to the most performant solver.

Within the following sections the key features of the new compiler [99, 102] and the gener-
ated models will be discussed. Figure 5.8 shows a summary of the realized features with ba-
sic requirements at the bottom of the pyramid and specialized processings on the top. The
basis for all models compilers is to be at least capable of handling simultaneous DAE sys-
tems. In order to enhance convergence, limiting and damping methods as well as initial val-
ues are well-known methods. Tolerances are essential for determining the accuracy of the
model, but are also related to convergence and simulation performance. A sequential han-
dling was introduced in order to reduce dimension and simulation time [101]. Finally, sev-
eral optimization strategies aim at increasing the simulation efficiency. In Chapter 6, such

Figure 5.7: Architecture for the Model Compilation (ZMS)
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strategies and algorithms to optimize the equations before generating the C-based model will
be introduced and applied in combination with the compiled model generation.

5.4 Compiling Simultaneous DAEs

Basically, all compiled models have to perform very similar process steps, the main differ-
ence being the efficiency of their realization. The models’ tasks are to

• provide structural information (connectivity, topology, matrix structure, equation and
variable types, etc.),

• handle parameters (default values, parameter changes, range checks),

• provide initial values for the variables,

• perform numerical integration,

• provide and update the Jacobian matrix and the residual,

• prevent and handle numerical problems (floating point exceptions),

• define options and tolerances for the solver (natures),

• check for convergence.

During the initialization, the model provides the simulator kernel with structural informa-
tion. This information is used to manage common data structures, to process netlist entries,
and to perform topology checks. Parameter settings from the netlist to configure the model
are stored within the shared memory. Furthermore, the model provides the simulator kernel
with initial values for the variables. All other process steps have to be performed within each
iteration. The most important and time-consuming task is the evaluation of the Jacobian ma-
trix and the residual for Newton’s method.

Titan solves a system of DAEs by iteratively applying

. (5.1)

The static and dynamic Jacobian matrices are determined within the model compilation by
calculating the partial derivatives of the DAE system:

Figure 5.8: Feature Pyramid for ZMS Compiler
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(5.2a)

(5.2b)

As the compiler is based on the Mathematica algebra system, the symbolic derivation is
available without the additional effort of implementing automatic derivation methods. The
resulting matrices are determined by evaluating the symbolic matrices with the actual solu-
tion vector. They are stored in coordinate storage form within the shared memory. The resid-
ual calculation requires the evaluation of the DAE system with the actual Newton solution.
Prior to that, the necessary dynamic values are determined through numerical integration,
which is performed via a call to the simulator kernel’s numerical integration function. Time
step length, integration method, and storage of previous values of differential variables are
handled by the simulator kernel.

5.5 Compiling Sequential DAEs

In common circuit simulators, the majority of equations contained in a device model is
solved internally in the device model in order to compose a compact stamp that is inserted
into the simulator’s Jacobian matrix. The model-internal equations are presolved in a proce-
dural manner without applying iterative methods. The main intention is to keep the dimen-
sion of the linear system as low as possible. The concept of sequential equations is used to
preprocess behavioral models in a similar way and thereby reduce the dimension of the linear
system.

Modeling DAE systems with sequential structure provides an effective measure to improve
performance and robustness of the model (compared to a fully simultaneous processing).
The explicit formulation and procedural order of the sequential subsystem provide the means
to solve the sequential equations directly and locally from the previous solution of the simul-
taneous variables. Thus, the sequential variables are less sensitive to numerical problems,
they do not have to be solved by a linear solver, and they do not cause a residual. As soon as
the sequential variables are solved, the residual for the simultaneous equations can easily be
determined by using the solution vector of the sequential variables. The conventional New-
ton method is applied in order to solve the simultaneous equations. Thus, the reduced dimen-
sion of the linear system enhances the solver’s performance.
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As a consequence of the approach to solve the sequential equations locally, changes in New-
ton’s method are necessary: applying the chain rule during the determination of the Jacobian
matrix for the simultaneous equations in particular is time-consuming. As the structure of the
Jacobian matrix is known to have a lower diagonal block with unit elements at the main di-
agonal (due to the sequential equation structure), this beneficial structure was used to achieve
an efficient processing of the chain rule.

Figure 5.9 visualizes the structure of the Jacobian matrix for a Titan simulation including a
model of sequential DAE structure. The gray parts of the matrix show the resulting Jacobian
matrix that will be used within the linear solver whereas the white part will be locally solved
within the model. The dark gray area represents the stamp of the behavioral model. The sub-
matrix  results from the netlist elements of the testbench and is set up by direct inspection
from device models. The model equations (sequential as well as simultaneous ones) result in
the submatrix  where  is of lower diagonal structure. Finally, the submatrices 
(node potentials of model ports) and  (port currents contributing to nodal equations) rep-
resent the connectivity between both subsystems.

Subsequently, a sequential Newton’s method is described that takes advantage of the sequen-
tial structure of a DAE system. Let  be a DAE system with sequential struc-

Figure 5.9: Matrix Structure of a Sequential DAE System for Titan
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ture. The vector of unknowns consists of the sequential variables  and the simultaneous
variables . Setting up the linearized system yields the following equation system:

(5.3)

Due to the lower diagonal structure of , it is possible to solve the sequential subsystem
for  in an explicit form (  is regular and can be inverted efficiently due to its diagonal
structure). The Newton correction for the sequential variables yields

. (5.4)

By substituting  into the simultaneous subsystem a linear system of reduced dimension
is achieved. It has to be solved for the Newton correction of the simultaneous variables :

(5.5a)

(5.5b)

As the sequential variables  can be determined through direct solution of the sequential
equations with the previous solution vector of  through

 for , (5.6)

their residual  is zero. Hence the residual of the reduced system can easily be de-
termined with the knowledge of . Consequently, Newton’s method has to be applied to
solve

(5.7)

with the reduced Jacobian matrix obtained by the following Schur complement:

(5.8)

 represents the Jacobian matrix for the simultaneous subsystem taking into account addi-
tional contributions to the original Jacobian matrix resulting from the evaluation of the chain
rule for the sequential equations.

Function Evaluation

The function evaluation within the sequential Newton method basically requires two process
steps. The evaluation of the sequential equations with the previous solution of the simulta-
neous variables yields the solution vector for the sequential variables. The residual for the
simultaneous equations has to be determined using the previous simultaneous solution and
the current solution of the sequential equations.
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However, the evaluation of the sequential equations contains differential variables that re-
quire a numerical integration before the equations can be processed. The evaluation of the
(simultaneous) residual might require another numerical integration. Calling the integration
function twice within one iteration implies the risk of implicit second order derivatives that
would result in a major inconsistency of Newton’s method. In order to prevent this problem,
the sequential subsystem itself is partitioned into a static and a dynamic subsystem.
Definition 5.1 provides the algorithm for the partitioning.

Definition 5.1 - Partitioning Sequential Variables into Algebraic/Differential Variables

As stated in Definition 2.3, the sequential variables  of a first-order DAE system with se-
quential structure can be partitioned into algebraic ( ) and differential sequential
variables ( ) and corresponding equations. The algorithm is initialized by . By
applying

in a fixed point iteration, the required partitioning for the sequential variables is obtained.
All sequential variables that are defined by a sequential equation containing at least one dif-
ferential simultaneous variable or a previously defined differential sequential variable are
handled as differential sequential variables. As each sequential variable corresponds to a
sequential equation, the partitioning for the equations is implicitly achieved.

 �

The partitioning ensures that an expression does not contain more than one differentiation
for each variable, either within the sequential or the simultaneous equations. The function
evaluation is performed as shown below:

(5.9a)

(5.9b)

(5.9c)

(5.9d)

The numerical integration is now required only once and second order derivatives are impos-
sible to achieve. The residual for solving the simultaneous equations using the linear solver
is computed using the previously calculated solution for the sequential variables.

Determination of the Reduced Jacobian Matrix

The Schur complement is the main reason for overhead when utilizing the sequential struc-
ture of the DAE system. Therefore, it has to be implemented efficiently in order to reduce
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the additional effort within the loading process. Its implementation will be discussed in detail
as it is one of the key features of the new compilation approach.

The computation of the Schur complement makes use of so-called structural matrices (see
Definition 5.2 and Figure 5.10). A structural matrix contains references by index to the struc-
tural non-zero elements of a symbolic matrix. It will be used to simplify the processing of
the Schur complement.

Definition 5.2 - Structural Matrix

The structural matrix  is derived from a matrix of
symbolic expressions  by

with

 �

There are several solutions to evaluate the chain rule during the Jacobian matrix setup. The
resulting  matrix is the same for all approaches. Nevertheless, the implementation signif-
icantly determines their efficiency:

• Symbolic Schur Complement: All sequential variables within the simultaneous equa-
tions are substituted by their determining sequential equations. Subsequently, a fully

symbolic  matrix is set up by symbolic derivation. This approach results in an expres-
sion set of tremendous complexity with a large degree of redundancy. The complexity
of the expressions alone disables this procedure even for low dimensional DAE sys-
tems.

• Numerical Schur Complement: The full Jacobian matrix  is set up by symbolic der-
ivation during the model compilation (as for both following methods). After evaluating

this matrix numerically within each iteration, the reduced Jacobian  is calculated
from Equation (5.8). This approach requires one matrix inversion and two matrix multi-
plications without utilizing the structural knowledge of the problem (high sparsity,
lower diagonal structure).

• Semi-Symbolic Schur Complement: This method combines the strengths of both
numerical and symbolic processing. Therefore, the structural Jacobian matrix

 is set up and the Schur complement is calculated symbolically from 

to derive . Finally, evaluating  and  results in the reduced Jacobian matrix .

Hence, the Schur complement takes advantage of structural zeros within . Unfortu-
nately, the necessary symbolic matrix operations still result in an extraordinary high
complexity (disabling the approach even for medium size matrices).
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0 expr22
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Figure 5.10: Structural Matrix
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• Semi-Symbolic Schur Complement by an Elimination Method: In order to reduce
the complexity of the previous approach, a method with low redundancy (no repetition
of performed calculations) and maximal usage of structural properties of the matrices
(use of structural zeros and ones) is proposed. Instead of calculating the Schur comple-

ment based on , the submatrix  is eliminated with the diagonal ele-

ments of submatrix  that are structurally one. The performed

elimination steps are “recorded” and represent a procedurally evaluated transformation

to calculate  from the submatrices of . Thus, the high complexity of a fully sym-

bolic  matrix can be avoided. An advantage of the transformation process is that it
contains a large number of very simple expressions (instead of a small number of highly
complex expressions for the previous method).

Due to its advantageous properties, the latter approach was chosen. For simplicity, the sep-
aration of  into static and dynamic portions has been neglected so far. In fact, the Jacobian
matrix results from:

(5.10)

The Schur complement has to be computed for the complete Jacobian matrix , but the re-
sulting model is supposed to return and  separately. Therefore, the structural ma-
trices are set up for both the static and dynamic Jacobian matrices:

(5.11a)

(5.11b)

Before processing the Schur complement, the structural matrix  is initialized by

(5.12)

with the symbol  representing the integration variable. After calculating the Schur com-
plement

, (5.13)

the resulting matrix is partitioned into static and dynamic contributions as follows:

(5.14a)

(5.14b)
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The Schur complement is performed by a two-stage elimination process. Within the first
step, the submatrix  is eliminated columnwise using the diagonal elements to achieve an
identity matrix. The elimination starts with the first column. During the processing, the sub-
matrix  is gradually changed to . Figure 5.11 (left) exemplarily shows a single step
of the proposed elimination method. In order to eliminate the entry , an elimination step is
added to the transformation rules:

(5.15)

During the elimination, fill-ins (former structural zero elements) are generated within the
submatrix . Within a second stage, the entries of the submatrix  are eliminated using
the derived identity matrix. Figure 5.11 (right) shows the elimination scheme for this stage.
The elimination is performed row wise and results in the desired chain rule contributions
within submatrix . The fill-ins resulting from this elimination process have to be taken
into account to initialize data structures correctly and to provide consistent structural infor-
mation to the simulator kernel. Finally, the gray part of the matrix in Figure 5.11 (right) is
provided as reduced Jacobian matrix. The elimination typically results in a large number of
transformation steps to perform. Still, a single elimination step is of very limited complexity.

Example 5.1: Schur Complement for Jacobian Matrix of the Foucault Pendulum

This example demonstrates the different methods to calculate the Schur complement. As the
dimension of the Foucault pendulum’s DAE system is pretty low, the example visualizes the
methods but does not make the complexity problems visible. The Jacobian matrix (5.16) was
previously derived in Example 3.1 (Page 33).

The numerical values within the example are determined by calculating the first Newton it-
eration of the DC analysis. The used values are:

 (initial values)
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Figure 5.11: Stage 1 (left) and Stage 2 (right) of the Elimination Process
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 (design point, parameter values)

(5.16)

Symbolic Schur Complement

For the symbolic Schur complement, the linearized system is determined directly from the
fully simultaneous system. This equation system is achieved by substituting all occurrences
of a sequential variable by its symbolic definition within the sequential equation. Afterwards,
the resulting simultaneous DAE system is derived for its variables to generate the static Ja-
cobian matrix (5.17).

(5.17)

Compared to the Jacobian matrix of the sequential DAE system (5.16), (5.17) contains a con-
siderable amount of redundant expressions. This effect becomes more and more important
with an increasing dimension of the DAE system. In order to determine the numerical result,
the reduced symbolic Jacobian matrix (5.17) is evaluated with the numerical values resulting
in (5.18).

(5.18)

Numerical Schur Complement

For the numerical method, (5.16) is evaluated with the numerical values before calculating
the Schur complement. The resulting Jacobian matrix (5.19) is of block lower-triangular
structure as the first three equations are sequential equations.

(5.19)
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Subsequently, the Schur complement is calculated from the submatrices of (5.19):

 -   

= (5.20)

The resulting Jacobian (5.20) is the same again. For matrices of higher dimension, the matrix
inverse as well as the matrix multiplications are problematic in terms of computational effort.

Semi-Symbolic Schur Complement

Combining both numerical and symbolic approaches, the semi-symbolic Schur complement
is based on the structural matrix of the symbolic Jacobian matrix (5.16) of the sequential
DAE system. The structural matrix (5.21) consists of references to the numerical values that
have previously been calculated as shown in (5.19). For better readability, the indexing has
been printed using standard matrix indices. In fact, the matrices are stored in COO matrix
format containing only the non-zero entries of the matrix.

(5.21)

In this method, the Schur complement is calculated by symbolically processing the subma-
trices of (5.21):

 -

  

= (5.22)

The resulting Schur complement of the structural matrix (5.22) is subsequently evaluated us-
ing the numerical values of (5.21), and leads to the same result. The entries within the last
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column insinuate the growing complexity of the expressions within this method. Further-
more, the multiplication of G[1,7] and G[3,1] is performed twice.

Semi-Symbolic Schur Complement by Elimination

Finally, the preferred method presents the semi-symbolic Schur complement by elimination.
The starting point is the structural matrix (5.21). The processing aims at transforming it into
a new matrix with the lower-left submatrix being eliminated to zeros. Afterwards, the trans-
formed lower-right submatrix is evaluated with the numerical values in order to achieve the
numerical Jacobian matrix of the simultaneous subsystem.

(5.23) shows the sequence of elimination steps that are necessary to transform the matrix. At
first, the entry G[3,1] is eliminated in order to achieve a unity matrix within the upper-left
submatrix. Afterwards, the entries of the lower-left matrix are eliminated resulting in fill-ins
in G[4,7] and G[5,7].

(5.23)

As it can be seen within the elimination sequence, the multiplication of G[1,7] and G[3,1] is
now only performed once to determine G[3,7]. Subsequently, G[3,7] is used twice to deter-
mine other matrix entries. Thus, the chain rule was evaluated with very low effort.

 �

Supplementary Performance Enhancements

Further enhancements to the performance of the Schur complement realization have been
achieved through strategies known from compiler design: constant propagation, constant
folding, and pre-evaluation of loop-invariant expressions (see [1] for details on compiler de-
sign). Since these optimizations have already been achieved on a relatively high level of ab-
straction (instead of relying on the C-compilations optimization), even structural changes
within the matrices can be taken into account.

Constant propagation identifies constants assigned to a variable and removes the correspond-
ing variable by replacing all occurrences of the variable with the constant’s value (saving
evaluation time and memory). As the Jacobian matrix  contains a relatively large number
of constant non-zero entries (especially ones) and simple expressions containing only para-
meters (e.g. ), these entries have been recursively propagated into the transformation
rules of the Schur complement and the  or  matrices. Combined with constant fold-
ing (pre-evaluation of expressions containing only constants) the Schur complement can be
simplified efficiently.

Afterwards, the pre-evaluation of loop-invariant expressions saves unnecessary frequent
evaluations of expressions within a loop. This strategy is adapted as so-called preloading
within simulators. The constant entries of the reduced Jacobian matrices  and  are
loaded only once within the initialization of the model instead of being processed repeatedly
within each iteration. Furthermore, there is typically a remarkable amount of sequential
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equations which can also be pre-evaluated instead of being recalculated within each itera-
tion. These sequential equations that contain solely constants and parameters are only eval-
uated within the initial iteration of each analysis. Thus, the computational effort within each
iteration is reduced.

As the expression evaluation for simultaneous equations and the reduced Jacobian matrices
do not contain any interdependencies, they can be evaluated in any order. Hence, the order
of the data within the memory should be optimally adapted to the expression evaluation with
regard to cache effects. Storing data within arrays restrains the C-compiler from optimizing
the memory allocation with respect to expression evaluation and cache effects. In some cas-
es, an array structure is inevitable (storage of vectors and matrices within the shared memo-
ry). Local data (e.g. the internal Jacobian matrix) is preferably held in separate variables
although the matrix structure would typically advise an array storage to achieve optimal re-
sults from C-compiler optimizations.

5.6 Improving Convergence

Tolerances

Tolerances are of fundamental importance to the accuracy and the convergence of Newton’s
method since they determine the level of accuracy to which the linearized systems are
solved. During simulation, tolerances for equations and variables are used to check for con-
vergence (refer to Section 3.1). In netlist-based simulations, the tolerances can relatively eas-
ily be specified, since the linear system typically consists of nodal equations (sums of
currents) and a few voltage equations (voltage sources, inductors) only. For behavioral mod-
els, the tolerances are specified by the user and should match the physical meaning of a vari-
able or equation (e.g. charge, force, temperature).

Determining tolerances in general DAEs without prior knowledge of the physical meaning
of variables is not possible without loss of generality. For future applications, the Analog In-
sydes based modeling flow should be extended by a general strategy to keep track of toler-
ances for all contained symbols and equations. As the DAEs are set up from a topology and
device models, the physical meaning can be provided by the device models and stored within
an additional data structure. This information has to be managed and updated whenever an
equation is subject to algebraic processing. Therefore, reformulations, simplifications car-
ried out by model reduction, substitutions, and many other processings do not only have to
change the DAE system but they also have to update the information on tolerances of the
equations.

Without keeping this additional physical information from device models, the proposed con-
sequent handling of tolerances is not yet available. Compromises and heuristics have to be
applied to determine reasonable accuracy settings. Hence, internal naming conventions for
the variables in Analog Insydes have been used to (heuristically) determine the physical
meaning of variables.
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Table 5.1 summarizes the tolerance settings that have been used for the C-based models. Due
to the general nature of the problem (to find reasonable tolerances for a general DAE system)
these settings are a good trade-off.

Initial Values

Inappropriate initial values of the variables are a common source of convergence problems
in DC analysis. As Newton’s method converges better in proximity of the solution, a good
and consistent initial value is of major importance for DC analysis. Possible problems in DC
analysis are non-convergence, numerical problems (e.g. division by zero), and convergence
towards a “wrong” operating point (if multiple solutions are available). By default, simula-
tors start from zero, if no user-specified initial value (e.g. nodeset) is available. Especially
for equation sets that are not (manually) optimized for convergence, thus not internally pre-
venting numerical problems (e.g. by case differentiation), bad initial values are a serious is-
sue.

The numerical problems result from nonlinear operations causing floating point exceptions
during the evaluation (e.g. division by zero, infinity, not a number). Unfortunately, once a
single variable is assigned a floating exception value, the exceptions propagate through the
equation system causing irrecoverable inconsistencies. Therefore, it is essential to avoid any
floating exceptions (e.g. by limiting functions, damping, initial values). A special case of
such floating exceptions is division by zero. It primarily happens within the first DC iteration
(due to variables initialized with zero) and can not be handled by limiting functions. Damp-
ing strategies are not suitable either as a workaround of this problem, as they depend on a
previous successful solution, which is not applicable within the first DC iteration. In any sub-
sequent iteration, division by zero is most unlikely to be a problem since variables are very
unlikely to reach an exact value of zero within Newton’s method1.

Consistent initial values for the internal variables of a model provide an effective measure to
avoid this problem. They prevent numerical problems and support convergence by starting
the iteration close to the expected solution. An additional problem that occurs with DC con-
vergence in behavioral simulation is the low effectiveness of homotopy methods for large
behavioral models. As most homotopy methods are based on topological information (e.g.

Table 5.1: Tolerances used within Compiled Models

Tolerance absolute relative

Residual 10-6 10-5

Variables 10-6 10-5

Differential Variables 10-2 10-5

1. Zero values during the iterative solution might result from conditional statements or functions like e.g. max(),
min(), sign(), unitstep(). These functions should be used with care within models and (if possible) return a value
close to zero instead of an exact zero.
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slowly ramping up sources, inserting capacitors at nodes) they have limited effect on behav-
ioral models. The methods can only influence the ports of a model but not the internal equa-
tion set.

Within the model compiler consistent initial values are determined by using the DC operat-
ing point available within Analog Insydes. Thus, initial values for most variables are avail-
able and are applied within the model initialization. These initial values are a DC solution to
the simulation, provided that the testbench the model is integrated in is the same as for the
modeling process. If this precondition is not met, the values provide at least some basic con-
sistency between the variables. Any variable without an initial value is initialized with a pos-
itive random number close to zero instead of exactly zero. The random values also avoid
zeros resulting from differences of variables that were initialized with the same value (e.g.

).

Limiting Functions

The intention of limiting functions is to prevent floating point exceptions by local correction
of functions that could cause such problems. The main objective is to extend the domain of
nonlinear functions to the complete range of possible arguments in order to prevent domain
exceptions (e.g. square root or logarithm of negative numbers). Furthermore, the co-domain
of the limited functions should not exceed the possible range of floating point numbers.
Thus, most of the root causes for floating exceptions within the model evaluation can be pre-
vented.

The original functions are replaced by the limiting functions. They return limited values
when being used outside of their area of validity. The limited value must not be accepted as
a solution for the function. The intention is rather to overcome short-term problems and to
force the limiting functions to converge back to the area of validity. In order to avoid false
convergence, the model activates a limiting flag when using a limiting function outside its
area of validity. This flag instructs the simulator kernel to continue the iteration until no lim-
iting functions are active anymore.

Due to the fact that behavioral models may contain automatically generated or manually cre-
ated equation sets, limiting functions for behavioral models are more important and more
complicated as for device models. Within device models, limiting functions are typically ap-
plied with regard to physical knowledge of the device (e.g. pn-junction limiting), which is
impossible for general models. Furthermore, device models are optimized for convergence
by experts whereas behavioral models may also have been created by unexperienced users.

Important issues related to the definition of limiting functions are:

• Determining the area of validity and the bounds for the activation of the limiting func-
tion

• Determining a simple and sufficient continuation function (mostly linear)

• Creating convergence back to the area of validity

• Taking care of the continuity of the piece-wise defined limiting functions (values and, if
possible, first-order derivatives)

V1 V2–( ) 1–
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• Limiting the derivatives of the limiting function (to keep function and derivative consis-
tent)

• Avoiding to return exact zero numbers (also for derivatives)

Typical (double precision) floating point numbers have a range of approximately  to
 (depending on architecture and number format). Numbers with an absolute value

smaller than  (except 0) cause an underflow, numbers of an absolute value greater than
 result in overflows. Apart from the theoretically possible range of floating point num-

bers, values of high orders of magnitude result in serious problems for linear solvers due to
ill-conditioned systems. Therefore, the numerics of the problem advise to limit functions al-
ready at considerably lower orders of magnitude (e.g. ). All nonlinear functions should
cover the whole domain and have a co-domain that does not exceed the predefined maximum
value. Problematic functions in terms of the domain are square root and logarithm. In terms
of overflow/underflow especially exponential and power functions are critical (exp, pow).

Local damping strategies are a special case of hard-coded limiting functions. These functions
adaptively determine properties (e.g. bounds, gradient, value) of the limiting functions by
past values of the function’s arguments. Thus, a more specific and efficient limiting with re-
gard to the function’s application is possible. As this strategy would require the storage of
past values of the expressions that are used as arguments for all of the concerned functions,
it is not efficiently applicable for behavioral modeling.

5.7 Results

The performance of the models generated by the new ZMS-based compiler will be presented
within this section. Due to the missing integration of Titan’s default sparse solver for the
ZMS interface, all following simulations have been performed with the MUMPS solver. As
this solver’s intention is to process systems of much higher dimension, it is of suboptimal
performance for these simulations (although it is much more efficient than the default
LAPACK solver). As previously mentioned, the ZMS interface should be enhanced to be
compatible with the Titan solver that has shown to achieve a high solving performance (refer
to Section 4.5). In order to evaluate the efficiency of the model compilation, the presented
statistics and charts will focus on the CPU time for the loading process. The overall perfor-
mance for future applications with the Titan solver can be preestimated by adding the pre-
sented loading performance and the solving performance that was achieved using the TML-
compilation and the Titan solver.

First of all, the analyses of CPU time over model dimension for the linear networks have
been repeated with the compiled models in order to check the sparse loading and to estimate
the overhead between both simulation modes. Figure 5.12 shows the loading performance
for the complete and the chain networks. The charts for total and solving performance can
be found in Appendix C.2. The loading performance of the chain networks was efficiently
improved to a ratio of only 1.2. Thus, the overhead was reduced to only 20 % (compared to
a factor of 16 for the sparse loading using TML). For the complete networks, the loading is
even faster than for the equivalent netlist-based simulations (due to the efficient preloading
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applied within the compiled models). As the network is completely linear, all entries of the
Jacobian matrix can be preloaded within the model initialization. Hence, the model evalua-
tion within each iteration merely consists of the residual calculation.

In Table 5.2, the performance of the compiled models is compared to the TML-based model
compilation (already including sparse loading). As the dimension indicates, the local solving
of sequential equations significantly reduces the dimension but does not achieve dimensions
competitive to the netlist-based simulation. This problem will be addressed by optimization
methods presented within the next chapter. The loading performance ( ) could be effi-
ciently enhanced by the ZMS compilation. The slow-down ( ) of the CPU time for the
loading process demonstrates that the processing within the compiled models is only a factor
of 2 to 3 slower than the circuit simulation (for the Gummel-Poon and MOS Level 1 based
models).

Figure 5.13 visualizes the slow-down factors for these models compared to the TML-based
simulation. The compiled models achieved major speed-ups between 3 and 12. Compared to
the performance that was originally reached by TML models without sparse loading (slow-
down of 210 for opamp741), the CPU time was improved by factors of 10 to 70. Considering
the sequential structure, it is now also possible to simulate models based on the symbolic
BSIM3 model. Due to the prevention of numerical problems (floating point exceptions)
through the sequential equations, convergence could be achieved for the highly complex cf-
camp and nand2 examples. Indeed, the slow-down for these models is still considerably high
(cfcamp: 55, nand: 28).

Figure 5.12: Loading Performance for Complete (left) and Chain Networks (right)
for Titan with ZMS-Based Models
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Comparing the results of the simultaneous and the sequential processing by the ZMS-com-
piler, the speed-up by applying the sequential solving method does not yet look satisfying.
Chapter 6 will show, that the advantages of the sequential Newton method will have a dis-
tinct effect on the simulation performance as soon as they are used in conjunction with DAE
optimization techniques.

The presented work aimed at the integration of a high-performance model compilation into
the symbolic analysis toolbox. Compared to TML-based models, it has significantly en-
hanced the simulation performance to a level that is already quite competitive to netlist-
based simulations (slow-down for opamp741 reduced from 210 to 3). Above all, the efficient
handling of the equation systems led to a major speed-up. By applying a local sequential
solving method, the dimension of the linearized equation system has been reduced signifi-
cantly. The realized sequential Newton method enables several optimizations of the DAE
systems that would have been ineffective without this specialized processing of the equation
system.

Table 5.2: Performance Measurements (ZMS Compilation)

Example Type

multiplier

Circuit 28 2.0 0.046 s 1

Seq. Model (ZMS) 47 2.95 0.159 s 3.46

Model (ZMS) 95 2.97 0.178 s 3.87

Model (TML) 113 2.37 0.634 s 15.85

opamp741

Circuit 58 2.25 0.178 s 1

Seq. Model (ZMS) 137 3.05 0.502 s 2.82

Model (ZMS) 314 3.1 0.568 s 3.19

Model (TML) 368 3.49 5.805 s 32.61

cfcamp_mos1

Circuit 23 2.01 0.069 s 1

Seq. Model (ZMS) 62 3.24 0.134 s 1.94

Model (ZMS) 149 3.71 0.188 s 2.72

Model (TML) 149 2.03 0.49 s 7.1

cfcamp
Circuit 21 2.12 0.469 s 1

Seq. Model (ZMS) 83 2.87 26.02 s 55.48

nand2
Circuit 11 2.09 0.075 s 1

Seq. Model (ZMS) 27 3.25 2.092 s 27.89

Dim Niter step⁄ Tload Sload
1–



5.7 Results 89

Figure 5.13: Slow-Down Factors for the Loading Process (ZMS Compilation)
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6 Optimization of DAEs for Numerical Methods

As demonstrated in Chapter 4, the
formulation of behavioral models de-
termines the simulation performance
to a large degree. Within this chapter,
algorithms to optimize the model effi-
ciency by algebraic transformations
of the DAE systems will be presented.
Figure 6.1 shows the bottom-up mod-
eling flow including the model opti-
mization. The term “optimization”
within this context does not refer to
the mathematical meaning of optimi-
zation methods, but to its meaning
within computer science and compiler
design, improving the efficiency of a
system. The intention is to automati-
cally optimize the equation sets
through algebraic reformulation (se-
mantics-preserving transformations)
with respect to the simulation algo-
rithms. All algorithms have been inte-
grated into Analog Insydes and can be
applied to general DAEs. Thus, a flex-
ible and modular application of the
equation optimization is possible.

Compiler Optimizations

Unlike in C-compilers, the reformulations are performed on a high abstraction level and are
supported by an algebra system. Therefore, the variety of possible optimizations is much
larger. A global optimization of the equation set is possible (e.g. structural changes of the
equation system). Nevertheless, the strategies are very similar to those known from compiler
design. [1] provides a comprehensive introduction to compilers and optimization strategies.
Typical compilers perform machine-independent and machine-dependent code optimiza-
tions within a two-stage approach. The latter can only be performed with a detailed knowl-
edge of the target platform in order to take advantage of its strengths. Similarly, a distinction

Figure 6.1: Bottom-Up Modeling Process with 
Model Optimization
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between simulator-dependent (Chapter 5) and simulator-independent optimizations
(Chapter 6). The following list contains a description of code optimizations that can be ap-
plied in a generalized form to DAE systems (refer to [1] for details):

• Data-flow analysis – Performing analyses of the interdependencies between expres-
sions to optimize for parallelism and optimal evaluation order. A similar approach has
been applied in order to identify sequential equations (for procedural evaluation) within
a simultaneous equation set.

• Common-subexpression elimination – Recognition and pre-evaluation of repeatedly
used subexpressions in order to avoid redundant computational effort. This optimiza-
tion was applied to DAEs to reduce their complexity.

• Copy propagation – Recognition of constant assignments (e.g. ) and copy state-
ments (e.g. ), removal of the assignment, and propagation of the assigned value.
Within DAEs, redundant equations can be removed by the same means.

• Strength reduction – Replacement of an expensive operation by an equivalent cheaper
one (e.g. ). Optimizations of this type could be performed directly on the
(high) level of DAEs, but it is left to the C-compilation as it can easily be carried out
there.

• Inline expansion – Replacement of a function call to a “simple” function by inserting
the function’s contents. Thus, the overhead of the function call is avoided and data
locality can be improved. Similarly, sequential equations cause overhead when being
processed. If the sequential equation itself is “cheap” to evaluate, it is advantageous to
substitute all occurrences of the assigned sequential variable by the sequential equation.

• Dead-code elimination – Removal of expressions which compute values that are never
used.

• Algebraic simplification – Application of algebraic properties to simplify expressions
(e.g. algebraic identities , ). This optimization is implicitly
achieved by the used algebra system. For implementational reasons, a special treatment
of algebraic simplifications within if-statements was necessary (due to HoldRest
attribute of Mathematica).

• Constant folding – Pre-evaluation of constant expressions at compilation time to save
computational effort at runtime. This optimization is also covered by the algebra system
that automatically evaluates constant expressions. Again, if-statements require the func-
tion FoldConstants (due to HoldRest attribute of Mathematica).

• Loop-invariant expressions – Evaluating loop-invariant expressions outside the loop.
This kind of optimization was used in a generalized way within Chapter 5 (preloading
of constant entries of the Jacobian matrix).

In addition to the optimizations applied during model generation, the C-compiler’s optimi-
zations are applied during the compilation of the C-based model and have turned out to
achieve further performance improvements. These optimizations probably speed-up the ex-
ecution by an optimized evaluation order (instruction level parallelism) and improved stor-
age mechanisms (like cache optimization and register allocation).

x 1=
x y=

x2 x x⋅→

x 0 x→+ x 1 x→⋅
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Similar approaches to the new optimization methods performed within Analog Insydes are:

• Modelica modeling language – This object-oriented modeling language for multi-
physics systems provides optimizations dealing with semi-symbolic systems
[20, 51, 54]. The equations are automatically reformulated and hence the application is
very convenient for users.

• (Behavioral) model compilers – Performing the optimizations within the model com-
piler would be the most obvious and user-friendly method. Unfortunately, current ver-
sions of commercial model compilers seem to either apply no optimizations or they do
not efficiently deal with complex analytical models (refer to Section 4.8).

• Device model compilers – The efficient compilation of device models requires a high
level of optimization. The device model compiler MCAST for instance, has been
reported to provide various optimization techniques [80] whereas ADMS [44] does not.

As Analog Insydes supports the model export for a wide variety of languages (VHDL-AMS,
Verilog-A, MAST, ZMS), the optimizations have been proven to be efficient for different
simulators. Optimizing models with respect to a specific simulator would yield the best re-
sults but requires a specific knowledge of the target simulator’s algorithms and interferes
with the paradigm of simulator-independent models. These simulator-dependent optimiza-
tions therefore have to be performed within the model compilers (as presented for Titan with-
in the previous chapter).

The overall target of the DAE optimizations focuses on two properties of the equation set
with regard to the necessary simulation effort: the achievement of a DAE system of sequen-
tial structure that consists of a minimal number of simultaneous equations and is of low re-
dundancy.

As discussed in Section 4.4, different (equivalent) formulations for network equations are
available. Within the proposed bottom-up modeling flow (cf. Figure 6.1), the network equa-
tions are the basis for the model optimization and code generation. Hence, it is highly desir-
able to choose an initial formulation of the network equations that is advantageous for the
following process steps. Due to its compact formulation, the MNA setup is the preferred so-
lution. STA unnecessarily enlarges the dimension of the equation set whereas a compressed
equation set is of disadvantage due to redundant expressions.

Section 6.4 will present an example for the equation optimization. The results of the optimi-
zation strategies will be summarized within Section 6.5. For the usage of the new Analog In-
sydes functions please refer to Appendix B.2.

6.1 Recognition of Sequential Equations

In [58], an algorithm for taking advantage of sequential equations was presented. The recog-
nition was done during the MNA-like set up of the circuit equations using a bottom-up mod-
eling strategy. Within this section, a general algorithm to identify sequential equations from
a system of DAEs will be presented [94]. This approach is also suitable for manual modeling
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and is more general in terms of recognition. It was realized through a new function
IdentifySequentialEquations.

The algorithm’s objective is to determine a partitioning and ordering of the equations of a
system of DAEs being compliant with Definition 2.3 (on Page 13) and having as many se-
quential equations as possible. An additional criterion for a good partitioning is to handle as
many nonlinear equations as possible in a procedural way. This helps to prevent convergence
problems during the iteration of the remaining simultaneous system.

The resulting Jacobian matrix of the DAE system is
of block lower-triangular (BLT) structure as visual-
ized in Figure 6.2. The dimension of the lower-trian-
gular submatrix  is typically significantly larger
than the dimension of . The modeling language
Modelica also provides an algorithm for BLT-trans-
formation of nonlinear equation systems [20] that
originates from [18]. In [63], an algorithm for block
triangularization of a sparse matrix for direct meth-
ods was presented. The identification process for
DAEs does not only affect the reordering of the ma-
trix, but also the reformulation of the equations and
ensuring the solvability of the resulting DAEs.

During the identification process, the equations and
the variables of the original system are successively
permuted and separated into sequential and simultaneous subsets. Figure 6.3 shows the flow
chart for the identification of sequential equations. Initially, the algorithm starts with all
equations and variables unclassified. Optionally, it is possible to start with a user-defined ini-
tial set of simultaneous variables simplifying the identification process and/or an initial set
of sequential equations which will be kept during the processing. As it is advantageous to
identify as many nonlinear equations as possible, the unclassified equations are preordered
giving the nonlinear equations a higher priority.

The algorithm itself is based on the analysis of dependency matrices having the same struc-
ture as the Jacobian matrix and indicating for each equation which variables are referenced.
The identification searches the set of unclassified equations recursively for additional se-
quential equations. Therefore, the equations have to fulfil three criteria:

• to fit into the lower-diagonal block structure,

• to be explicitly solvable for the corresponding sequential variable,

• and not to result in (implicit) second-order derivatives.

For the first criterion, the dependencies of the equation are checked. In order to be compliant
with the lower-diagonal structure, the equation must neither contain any unclassified vari-
ables (except the one, it will be solved for) nor derivatives of unclassified variables. For en-
suring that a new sequential equation is explicitly solvable for its sequential variable a
pattern-matching method is applied. For practical reasons (convergence) it has been restrict-
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input:  with , sequential variables , 

simultaneous variables , and initial simultaneous variables ,

where , , and  might be 

f y y· x x· t, , , ,( ) 0= f fseq fsim,( )= y

x xinit

y fseq xinit ∅

Figure 6.3: Flow Chart of the Identification of Sequential Equations
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ed to apply the symbolic solving only in linear and weakly nonlinear contexts. Optionally, it
can also be applied to symbolically solve nonlinear equations (as long as their solution is
unique). Finally, the new sequential equation must not imply second-order derivatives.
Therefore, it is checked to be either an algebraic equation or that its sequential variable does
not appear in a dynamic context. Equations meeting all requirements are symbolically solved
to be of explicit form and subsequently added to the sequential subsystem.

The identification process is executed in a fixed-point iteration until no new sequential vari-
ables are found. Unless all variables have been classified, it is necessary to declare one of the
remaining variables as simultaneous variable, as this will almost always allow to solve some
more unclassified equations sequentially. Every time the identification loop is stuck, the al-
gorithm heuristically determines a variable to be kept simultaneously. The larger the number
of dependent unclassified equations for a variable, the better is this variable suited to be treat-
ed simultaneously since this reduces the number of unknowns for as many remaining equa-
tions as possible. Afterwards, another identification cycle starts.

Once all variables have been classified, the identification process terminates. All remaining
equations are declared to be simultaneous equations. Example 6.1 illustrates the identifica-
tion process step by step for an arbitrary system of nine equations (numbered 1 to 9) depend-
ing on the variables A to I.

Figure 6.4: Example for the Sequential Identification Algorithm

1
2
3
4

9
8
7
6
5

A IHGFEDCB

unclassified

unclassified

1

5
8
3
4

9
2
7
6
1

E IHBFADCG

unclassified

unclassified

1
1

seq

seq

2

5
8
3
2

6
4
7
9
1

E HIBFADCG

unclassified

unclassified

1
1

seq

seq

3

5
8
1
2

6
4
7
9
3

E HIBFACDG

unclas.

unclassified

1
1

seq

seq

1

sim

4

5
8
1
7

6
3
2
9
4

E HIAFBCDG

u

unclass.

1
1

seq

seq1
1

1

sim

5 6

5
8
1
7

6
3
2
9
4

E HIAFBCDG

sim

1
1

seq

seq1
1

1

sim

1

Structural Zero Linear Entry Nonlinear Entry Identified to Solve for



6.2 Common Subexpression Elimination 97

Example 6.1: Identification of Sequential Equations

Figure 6.4 illustrates the algorithm in six steps. Each diagram represents the dependency ma-
trix of the equations on the corresponding variables. Light gray boxes represent linear non-
zero entries of the Jacobian matrix whereas dark gray boxes mark nonlinear dependencies.
The white boxes depict structural zero entries. The arrows indicate rows or columns which
have been identified to be swapped within the next process step. The used equations and sets
of variables are visualized at the right and bottom sides of the matrices. The crosses indicate
entries to be identified as sequential variables. These entries are moved to the correct posi-
tion by row and column swapping and the corresponding equation is reformulated into an
explicit formulation. Hence, the diagonal entry becomes one (ensuring good pivot elements).

Within the example, six equations and variables have been identified to be sequentially solv-
able (see Diagram 6). To emphasize some special behavior, two transitions will be discussed
in detail: In Diagram 2, the algorithm is stuck since no equation depends on less than two
unclassified variables. In order to solve this problem, one variable with as many dependen-
cies on unclassified equations is declared to be solved simultaneously. Choosing variable H
as simultaneous variable enables the algorithm to identify Equation 1 with variable D. At the
stage of Diagram 5, both Equation 9 or 2 could be used as sequential equations for
variable F. As Equation 2 contains F in a nonlinear context, it is more useful to select
Equation 9.

 �

A future aspect related to the discussed BLT transformation is the automatic partitioning of
the sequential equations into multiple lightly coupled subsystems. This structure would be
of advantage to further improve the Schur-complement or to even parallelize the evaluation
of the subsystems.

6.2 Common Subexpression Elimination

Reducing the redundancy within DAEs through common subexpres-
sion elimination [94] is another promising approach. In order to apply
common subexpression elimination (CSE) to general DAEs, two ma-
jor process steps are performed:

• Recognition of common subexpressions within the DAEs

• Substitution by additional sequential equations and variables

The recognition of common subexpressions is based on abstract syntax
trees (AST) [1]. An AST is a finite, labeled, directed tree where the in-
ternal nodes are labeled by operators, and the leaf nodes represent the
operands (in this case variables, parameters, and constants). They are
used as intermediate data structures in parsers to represent the syntac-
tical hierarchy of source code. Figure 6.5 shows an exemplary expression tree for the follow-
ing equation:

Figure 6.5: AST 
Example

equal

0plus

I1 div

minus

V1 V2

R



98 Optimization of DAEs for Numerical Methods 

(6.1)

The flow chart for the CSE algorithm is shown in Figure 6.6. In an initial step, an abstract
syntax tree for each equation within the DAE system is set up. The resulting forest  of syn-
tax trees is the basis for the recognition of common subexpressions. As there is no canonical
form for nonlinear expressions, and since the recognition only matches identical subtrees

 within , some basic algebraic transformations are applied in order to (heuristically)
normalize the expressions and thereby enhance the recognition rate. All operands of commu-
tative operations are alphabetically sorted with the first operand normalized to a positive
sign.

Example 6.2: Normalization of Subexpressions

Consider as an example the expressions  and :

  with        and        with 

Mathematically, both expressions are equivalent. However, their syntax trees are not identi-
cal, thus disabling the CSE. The normalization reformulates  to the form of .

 �

After performing the discussed normalization, the algorithm extracts all subtrees  of a
user-defined minimal depth out of . Eliminating subexpressions of very low depth (e.g. 2)
causes more overhead by handling the additional equations than it saves effort during eval-
uation. Therefore, the default value for the minimal depth is 3. A duplicate search in 
yields the common subexpressions  of the DAE system.

Instead of eliminating these subexpressions directly and recursively proceeding the CSE
(which would yield a large number of very simple expressions), the expressions  are
iteratively expanded by one level of hierarchy, unless the number of their occurrences within

 decreases. Thus, a reasonable number of subexpressions of maximal depth is recognized
without compromising efficiency.

The second step is the substitution. For each expression of  an additional sequential
equation and a new sequential variable are introduced. Subsequently, the occurrences of the
subexpressions are substituted by the newly introduced variable. In order to keep the sequen-
tial structure of the DAEs, each new sequential equation is inserted before its first usage
within the equation set. Additional equations which have only been used within the simulta-
neous equations are appended at the end of the sequential equation set.
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Although this strategy increases the number of sequential equations, the computational effort
is reduced by avoiding multiple evaluations of common subexpressions. The elimination is
performed globally (on the complete DAE system) and is applied in a fixed-point iteration
to detect so-called deep subexpressions recursively (subexpressions that contain previously
eliminated subexpressions).

The new Analog Insydes function OptimizeCommonSubexpressions also contains an alter-
native algorithm for detecting common subexpressions. The algorithm was introduced with-
in [70] and is also suited for recognizing common subexpressions. In contrast to the
previously presented algorithm, it also extracts expressions of depth 2 (e.g. ) thus caus-
ing an unacceptable overhead. Therefore, additional postprocessing through inline expan-
sion of cheap subexpressions is necessary.

set up forest  of ASTs for the equations in F0 f y y· x x· t, , , ,( ) 0=

determine all subtrees  of minimal depth in Esub Fi

Figure 6.6: Flow Chart of the Common Subexpression Elimination
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The results of both algorithms are of similar quality with respect to the evaluation cost. While
the algorithm of Sofroniou yields a large number of common subexpressions with quite low
complexity each (and causes additional effort for inline expansion), the proposed algorithm
leads to a reasonable number of more complex subexpressions (through expansion of the ex-
pressions).

Even though the number of sequential equations is only of secondary interest, each sequen-
tial equation causes some computational overhead (Schur-complement, storage). There is a
trade-off between the caused overhead and the complexity of the sequential equation as well
as the number of references to the sequential variable. If a sequential equation is cheap in
terms of evaluation cost and its sequential variable is rarely used, it is more efficient to sub-
stitute the sequential variable with its defining equation (inline expansion). The intention of
the function SubstituteSequentialEquations is to perform an inline expansion of
“cheap” sequential equations. It is based on three criteria: the depth of the sequential equa-
tion, its evaluation cost, and the number of references to the sequential variable. Any sequen-
tial equation that violates one of the requirements, is removed through inline expansion.

Up to now, CSE has only been applied to DAE systems to enhance the function evaluation.
When generating compiled models, another possibility in order to further increase the mod-
els’ efficiency arises. Even if all common subexpressions within an equation set have been
eliminated before the model generation, the Jacobian matrix of the DAE contains most likely
new common subexpressions. These common subexpressions can not be prevented when
generating AHDL models, since there is no possibility to influence the internal Jacobian ma-
trix. In contrast to that, the generation of compiled models offers the possibility to perform
the CSE on both the DAE system as well as on its Jacobian matrix. This feature was integrat-
ed into the ZMS model generation. Thus, redundancy resulting from common subexpres-
sions during the loading process can be reduced efficiently. Furthermore, the evaluation of
the function as well as the Jacobian matrix entries are nested such that each equation, its de-
rivatives, and its common subexpressions are evaluated in a sequence. Thus, data locality is
increased and evaluation performance enhanced.

A specialized application of CSE is the recognition and extraction of loop-invariant expres-
sions. As these expressions only contain constants and parameters they do not have to be
evaluated within each iteration. In fact, such loop-invariant expressions can be calculated
once within the models’ initialization phase and can be reused within subsequent iterations.
This feature can be used within all AHDLs and compiled models that support an initializa-
tion function1. A slightly modified version of the CSE algorithm (integrated into the same
function) allows to extract such loop-invariant expressions into additional sequential equa-
tions. Therefore, the criteria for the recognition have been modified: The expressions do not
necessarily have to be common expressions, a single appearance is sufficient, and they must
not contain any variables. During the model generation sequential equations consisting only
of constants and parameters are moved to the initialization function.

1. e.g. for Verilog-A: @(initial_step)
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6.3 Elimination of Redundant Equations

Superfluous equations and variables within the DAEs are further causes for redundancy.
Two cases have to be distinguished:

• Trivial equations that equate two symbols (copy/constant propagation)

• Unused sequential equations (dead-code elimination)

While the first case happens frequently due to the MNA-setup of the DAEs, the latter is an
unlikely case that will only become relevant when optimizing poorly formulated equations
(relevant for import and optimization of ADHL-based models).

The recognition of trivial equations is based on pattern matching. All equations that contain
only two symbols in an additive context (e.g. , ,

) are checked for removal. Depending on the type of the symbols (constant,
parameter, seq./sim. variable, differential variable) and the type of the equation (sequential
or simultaneous), several decisions have to be made:

• Is the equation really redundant?

• Can the equation be removed?

• Which of the symbols should be removed?

After deciding to remove an equation and one of the contained variables, the corresponding
“copying” variable and its derivatives are substituted with the “copied” symbol (constant,
parameter, variable).

Although the problem itself appears to be trivial, there are some hazards:

•  – can only be removed, if it is a sequential equation. In a simulta-
neous context, it represents a simultaneous equation with both left- and right-hand side
being defined by a sequential equation.

•  – parameters in Analog Insydes can be functions of time (e.g. for inde-
pendent transient sources). In this case,  can only be replaced, if it is not a dynamic
variable.

•  – substitution of  would possibly increase the order of the DAE sys-
tem.

• Variables can be protected by the user in order to prevent their substitution.

The elimination method is applied iteratively in order to eliminate multiple copy propaga-
tions, too.

Eliminating unused sequential equations performs a search for each of the sequential vari-
ables. A sequential variable that is not used in any equation (except its defining sequential
equation), is removed together with its definition. The elimination of redundant equations is
performed by the new Analog Insydes functions RemoveTrivialEquations and Remove-
RedundantEquations.

var1 var2= var1 param–=
var1 v– ar2 0=

seqvar1 seqvar2=

var1 param=
var1

var1 var2
·

= var1
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6.4 Example Application

The optimization algorithms will be illustrated by
means of the diode circuit that was introduced in
Example 2.2 (on Page 16). Even though the example is
very simple, the most relevant optimizations can be suf-
ficiently applied to the network equations of the diode
circuit. The sequence of the optimization process is ar-
bitrary. The optimizations may interfere with each oth-
er. Initially, the equation set consists of 3 sequential
equations and 8 simultaneous equations. The evaluation
cost  is approximately 288 including 129
memory accesses ( ).

Table 6.1 summarizes the properties of the DAEs for
different stages of the optimization process. Figure 6.7
visualizes the structural matrix of the initial DAE sys-
tem as resulting from the MNA setup of the network equations. The system’s sparsity is rel-
atively high and the lower-diagonal subblock is only of dimension three.

Common Subexpression Elimination

The CSE algorithm is able to identify three common subexpressions resulting from resistor
and capacitor branch currents that each appear within two nodal equations. The correspond-
ing sequential equations have been appended at the end of the sequential equation set that is
shown in Equation (6.2a), since they are only referenced within the simultaneous equations.
All occurrences of the former common subexpressions have been substituted by the newly
introduced sequential variables. Thus, the evaluation cost was reduced by 17 %.

(6.2a)

(6.2b)
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Figure 6.7: Jacobian Structure of 
the Diode Example (Initial)
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Recognition of Sequential Equations

From Equation (6.2b) it is obvious, that a major part of the simultaneous equations can be
solved sequentially. Applying the BLT transformation in order to identify further sequential
equations yields a reduction of six simultaneous equations. This results in the equation set
(6.3a) and (6.3b).

(6.3a)

Only two equations (out of previously eight) have to be solved simultaneously:

(6.3b)

Removal of Trivial Equations

Still, the sequential equations (6.3a) contain several
trivial equations causing redundancy. Removing these
equations reduces the dimension of the sequential equa-
tion set by five. Equations (6.4a) and (6.4b) show the fi-
nal stage of the optimization process for the diode
example. The structure of the Jacobian matrix for the
optimized DAEs is shown Figure 6.8.

Compared to the initial equation set, the resulting DAEs
(last column of Table 6.1) have been reduced to a di-
mension of only two simultaneous equations (-75 %),
the evaluation cost has been reduced by 25 %, and the
number of memory accesses has been reduced by 17 %.
Within the following section, the algorithms will be ap-

plied to problems of realistic dimension. For the upcoming examples, performance measure-
ments will also be compared in order to demonstrate the enhancement of the simulation
performance.
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(6.4a)

(6.4b)

6.5 Results

Within this section the results of the DAE optimizations will be presented on the basis of four
example circuits. For each of the circuits, four model types in different intermediate stages
of the optimization process will be compared:

• sim – the simultaneous model of the circuit after applying the RTE algorithm

• seq – the sequential model including the sequential equations resulting from the
symbolic device models after applying the RTE algorithm

• blt – the optimized sequential model after applying the BLT algorithm

• blt/cse – the optimized sequential model after applying BLT and CSE algorithms

Before reviewing the simulation performance of the models, the efficiency of the optimiza-
tion algorithms will be discussed on the basis of the models’ characteristics. Table 6.2 sum-
marizes the optimization results for the presented models. The key figures are the number of
simultaneous equations, in order to show the efficiency of the BLT algorithm, as well as the
evaluation complexity, showing the effect of the CSE.

Table 6.1: Optimization Process for the diode Example

Property Initial � CSE � BLT � RTE Final

Seq. Eqs. 3 6 (+3) 12 (+6) 7 (-5) 7 (+133 %)

Sim. Eqs. 8 8 2 (-6) 2 2 (-75 %)

288 239 (-49) 238 (-1) 215 (-23) 215 (-25 %)

129 136 (+7) 136 106 (-30) 106 (-18 %)
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Figure 6.9 depicts the dimension of the resulting linear systems for the different model types.
The high dimensions of the simultaneous models are very efficiently reduced by utilizing the
sequential equation structures. After having applied the presented BLT algorithm, the di-
mension of the models is very close or even equal to the dimension that is achieved in netlist-
based simulations. This provides the basis for high simulation performance. Above all, the
BSIM3-based models show an enormous reduction of the model dimension by using the se-
quential equations (cfcamp: from 1396 to 21). Solving these models simultaneously would
result in an enormous overhead due to the large number of equations.

Table 6.2: Optimization Results (Model Characteristics)

Example Type

multiplier

blt/cse 72 25 4801

blt 64 25 7882

seq 48 38 7874

sim 0 86 7946

opamp741

blt/cse 339 61 12002

blt 243 61 16788

seq 177 127 16895

sim 0 304 17085

nand2

blt/cse 339 6 30889

blt 265 6 57268

seq 254 17 57285

sim 0 271 57683

cfcamp

blt/cse 1707 16 153722

blt 1375 16 275111

seq 1313 78 275135

sim 0 1391 277032

NSeqEqs NSimEqs NEvalCycles
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The achieved reduction of redundant common subexpressions through the CSE algorithm is
demonstrated in Figure 6.10. It shows the evaluation complexity before (seq) and after the
application of the common subexpression elimination (blt/cse). For the Gummel-Poon based
models, a reduction by 30 % to 40 % was achieved. For the BSIM3-based models, the CSE
is of even higher efficiency. Their evaluation complexity was reduced by more than 45 %.

Figure 6.9: Optimization of the Dimension by Utilizing Sequential DAE Structures
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Figure 6.10: Effect of Common Subexpression Elimination on NEvalCycles
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Within Table 6.3 the simulation performance of the ZMS-based models is presented. Apply-
ing the optimization strategies improved the loading performance by 20 % to 75 % although
the convergence of the models is by roughly 50 % worse compared to the circuit simulation.
The performance improvements (16 % to 74 %) due to the application of CSE becomes ap-
parent when examining the loading time. The BLT transformation efficiently speeds up the
solving time of the MUMPS solver by 39 % to 50 %. Similar speed-ups are to be expected

Table 6.3: Simulation Performance of the Optimized ZMS-Models

Example Type a

multiplier

circuit 28 2.0 0.046 s 1 0.261 s 1

blt/cse 28 2.9 0.128 s 2.78 0.333 s 1.28

blt 28 2.9 0.152 s 3.3 0.349 s 1.34

seq 47 2.95 0.159 s 3.46 0.57 s 2.18

sim 58 2.97 0.178 s 3.87 1.09 s 4.18

opamp741

circuit 58 2.25 0.178 s 1 0.758 s 1

blt/cse 68 3.05 0.339 s 1.9 1.366 s 1.8

blt 68 3.05 0.487 s 2.74 1.342 s 1.77

seq 137 3.05 0.502 s 2.82 2.405 s 3.17

sim 314 3.1 0.577 s 3.24 5.058 s 6.67

nand2

circuit 11 2.09 0.075 s 1 0.206 s 1

blt/cse 11 3.21 0.869 s 11.59 0.344 s 1.67

blt 11 3.21 2.051 s 27.35 0.324 s 1.57

seq 27 3.25 2.092 s 27.89 0.554 s 2.69

cfcamp

circuit 21 2.12 0.469 s 1 0.494 s 1

blt/cse 21 2.87 6.543 s 13.95 1.197 s 2.42

blt 21 2.87 24.67 s 52.6 1.83 s 3.7

seq 83 2.87 26.02 s 55.48 3.707 s 7.5

a. CPU times for solving are disproportionately high due to the application of the MUMPS solver, cf. Section 5.3

Dim Niter step⁄ Tload Sload
1– Tsolve Ssolve

1–
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for future application of the Titan solver after its integration with the ZMS interface.
Figure 6.11 depicts the loading performance of the optimized models normalized to the cor-
responding performance of the circuit simulation. The slow-down of the optimized models
for opamp741 was reduced to a factor of 1.9 only. For the BSIM-based models, factors of 11
to 14 have been achieved. Taking into account the large number of equations (345, 1723),
the high complexity of the model equations, and the fact that no model reduction was ap-
plied, this is a great achievement.

Finally, Figure 6.12 shows the slow-down factors for the solving process of the optimized
models. The proportionality of the CPU time for solving the linearized equation systems to
the reduced dimension (refer to Figure 6.9) can be recognized very clearly. If the conver-
gence of the behavioral simulations could be further improved, the solving performance
would be even closer to the performance of the netlist-based simulation. Results achieved by
using the optimization methods in conjunction with Verilog-A models have been published
in [94, 97].

Figure 6.11: Loading Performance after Optimizations
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7 Conclusion

Automated bottom-up modeling strategies are of great importance for modern structured
top-down design flows. Symbolic analysis offers good opportunities for automated deriva-
tion of accurate behavioral models of analog circuit blocks. This work dealt with a bottom-
up modeling flow based on the symbolic analysis toolbox Analog Insydes. The advantages
of the tool’s modeling strategy make it highly attractive for the creation of analytical behav-
ioral models. Despite highly efficient model reduction algorithms, the simulation perfor-
mance of the generated behavioral models used to be unacceptably low.

Objectives

This work aimed at performing an in-depth analysis of the behavioral simulation efficiency
of the generated models using the Titan simulator to identify the root causes for such low
performance. Furthermore, a significant enhancement of the simulation performance without
further loss of accuracy was targeted in order to make the bottom-up modeling approach
through symbolic analysis competitive. The basic assumption was that performance suffered
from missing consideration of the applied simulation algorithms and the ability of simulators
to efficiently deal with such complex behavioral models.

Problem Analysis

A detailed comparison of the performance of netlist-based and behavioral simulations was
presented. It was based on unsimplified behavioral models generated without the application
of model reduction. Thus, the simulation performance of the netlist-based simulation should
be equal or at least very similar to the behavioral model’s performance as both problems are
of identical complexity. The results of the performance analyses lead to the conclusion that
the simulation performance of complex analytical behavioral models is suboptimal due to in-
efficiencies in processing the behavioral models’ equation sets. The slow-down compared to
an equivalent netlist-based simulation ranges from 2.5 (for small models) up to 200 (for an
operational amplifier). Currently, the speed-up achieved by the model reduction has to com-
pensate for the initially low behavioral simulation performance of the unsimplified models.
Such inefficiencies prevented the application of the modeling approach through symbolic
analysis.

The analyses presented within Chapter 4 have shown that the simulation efficiency suffers
from suboptimal model formulation as well as from shortcomings in the behavioral simula-
tion algorithms due to the extraordinary high complexity of the models. In particular, the
missing sparse handling for behavioral models led to a major slow-down for higher dimen-
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sional models. Furthermore, the dimension of the linearized equation systems of the models
was significantly higher than that of the equivalent netlist-based simulation resulting in an
increased simulation effort. Finally, the processing of the models turned out to be less effi-
cient than in circuit simulations. Although convergence is essential for behavioral models, it
is not the key to solving the discussed performance problems.

Achievements

Within Chapters 5 and 6, various approaches for improvements of the behavioral simulation
performance by “simulator-friendly” modeling and major enhancements of the model com-
pilation have been presented. These algorithms lead to significant improvements of the sim-
ulation efficiency by reformulating and restructuring the DAE systems without loss of
accuracy. Most important are the identification of sequential equations and the elimination
of common subexpressions. The former is very well suited to reduce the number of simulta-
neous equations by transforming the DAE system to a sequential structure with a maximum
number of sequential equations. The latter focuses on a reduced evaluation complexity of the
equation set by extracting common subexpressions. Furthermore, some strategies to reduce
redundancy within the equation sets have been discussed. All optimization techniques pre-
sented so far have been integrated into an automated modeling and optimization flow. As far
as the simulator is concerned, a highly efficient model compilation for Titan was developed.
It incorporates an efficient sparse handling as well as a local solving method significantly
reducing the dimension of the linearized equation system.

The improvements achieved within this work will be summarized on the basis of a represen-
tative modeling example (opamp741). Initially, the unsimplified behavioral model in TML
had an astonishingly low simulation performance. Compared to its netlist-based counterpart,

Figure 7.1: Performance Improvement through Sparse Algorithms (for opamp741)
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the behavioral simulation performance was a factor of 192 less efficient. Figure 7.1 shows
the improvements of the simulation performance that have been realized using TML models.
The origin of the low performance could mostly be attributed to the missing application of
sparse algorithms and sparse data structures. Through the application of the sparse Titan
solver, the solving performance has been sped-up by a factor of 40 at the expense of inferior
convergence due to pivoting problems (+30 % iterations). Additionally, the integration of a
sparse data structure and processing within the Titan model compiler enhanced the efficiency
of the loading process by a factor of 10. In total, the sparse handling for the TML models
resulted in a speed-up of 10 for the opamp741.

As a consequence of the still unsatisfying performance, a model compiler based on a new
modeling interface of Titan (ZMS) has been developed and integrated into Analog Insydes.
It aims at increased processing efficiency and a more direct communication between the
model and the simulator kernel. Thereby, the simulation performance has been improved fur-
ther as depicted in Figure 7.2. The bar to the left of the chart represents the best performance
that was achieved using TML models (cf. right bar of Figure 7.1). The simulation perfor-
mance using the new ZMS-based models of the fully simultaneous DAE system (ZMS sim)
of the amplifier has sped-up the loading process by a factor of 12. An unresolved issue of the
ZMS-based models is the missing adaptation of the ZMS interface and the most performant
linear solver (Titan solver). Hence, the models have been simulated using the MUMPS solver
(dashed bars within the chart) which performed suboptimal compared to the Titan solver

Figure 7.2: Performance Improvement through ZMS Compilation (for opamp741)
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(cf. Section 4.5). As this is only a matter of development effort, the solving performance us-
ing the Titan solver has been pre-estimated (light gray contributions within the chart). For
the fully simultaneous models, the solving performance has to be at least equal to the solving
performance using the TML models. This is due to the fact that the resulting linearized equa-
tion systems are (nearly) identical. Based on this assumption, the simulation performance
would be enhanced by a factor of 6 through the generation of compiled ZMS models. For the
following levels of improvement, this basic appraisal for the Titan solver was scaled by the
same speed-up factors as achieved for the MUMPS solver, being a conservative estimate.

Moreover, a local solving method was applied to efficiently reduce the dimension of the lin-
earized equation systems to be solved by the simulator. This approach is based on utilizing
the sequential structure of DAE systems. Sequential equations are solved locally within the
compiled model so that only the remaining simultaneous equations have to be solved by the
linear solver. Due to an efficient implementation of the necessary processing steps, this mea-
sure speeds-up the solving performance proportionally to the dimension of the simultaneous
subsystem of the models’ DAE systems. The loading performance is also enhanced due to
the reduced amount of data, which is transferred between model and simulator kernel and
increased data locality. For the opamp741, the local solving method doubled the simulation
performance (for MUMPS); using the Titan solver a speed-up of 1.5 is likely.

Enabled by the possibility of solving sequential equations locally, several optimization strat-
egies for DAE systems have been developed and integrated into Analog Insydes. They aim
at improving the models’ efficiency by reformulating equations and restructuring the DAE
systems. The recognition of sequential equations reduces the dimension of the simultaneous
subsystem and thus speeds-up simulation. Furthermore, a new algorithm for common-sub-
expression elimination within DAE systems reduces redundancy within the function evalu-
ation of the model. Last but not least, particular attention was paid to data locality, efficient
data structures, loop-invariant expressions, and redundant information within the equation
system. Through the application of these optimization strategies, another speed-up of 42 %
was achieved for the opamp741. These optimization strategies have also been applied to ex-
tremely complex models of up to 1700 equations based on a symbolic BSIM3 device model.
For the latter, speed-ups of up to factor 4 have been achieved through the optimizations.

Finally, the models’ simulation performance has been improved to a competitive level. For
the opamp741, a slow-down of only factor 2 compared to the netlist-based simulation re-
mains. Compared to the initial situation of a slow-down of factor 192, the efficient process-
ing of the model equations resulted in a total speed-up of nearly 100 without reducing the
model’s accuracy. The model reduction algorithms can easily compensate for the remaining
overhead. By combining the discussed approaches with the efficient model reduction strate-
gy, a significant speed-up of the behavioral simulation in comparison to the circuit simula-
tion was achieved [93]. Hence, the modeling flow may obtain increasing acceptance for
automated bottom-up generation of highly efficient analytical models.
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Future Aspects

Future aspects for the application of the presented model compilation could be the integra-
tion of the Titan solver in order to achieve competitive performance within the solving pro-
cess. This requires a preordering strategy within Titan to guarantee the solvability of the
equation system and to achieve a high level of accuracy. The pivoting algorithm has already
been successfully applied to TML models and should be adaptable to ZMS-based models.
With regard to model optimization, future aspects are preordering strategies for the simulta-
neous equations to perform a static pivoting before exporting the model. Thus, the condition-
ing of the DAE system could already be enhanced during model generation, reducing the risk
of badly conditioned systems and numerical problems during simulation. Furthermore, Mod-
elica provides an optimization strategy called “tearing” to decouple subsystems by introduc-
ing additional variables [21]. By using this strategy within Analog Insydes, the effectiveness
of sequential equations could be improved due to possible parallel processing of lightly cou-
pled subsystems.

By integrating import functionality for AHDL-based behavioral models into Analog Insy-
des, an even wider range of use cases would be possible. Figure 7.3 shows a proposed mod-
eling flow visualizing some promising applications of the tool. As proof of concept, a
prototypical function ReadVerilogA (rf. to Appendix B.3.8 for details) was realized. It was
evaluated to read in a Gummel-Poon transistor model realized in Verilog-A. This function
would be advantageous for extending the symbolic device model library of Analog Insydes
by additional up-to-date device models.

Figure 7.3: Future Applications of the Modeling Flow
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The automated import of models would enable several new applications:

• Device model compilation – compilation of device models realized in an AHDL (typ-
ically Verilog-A) to simulator specific compiled models
(e.g. ZMS for Titan)

• Model optimization – application of the optimization strategies to existing
models

• Model simplification – application of the model reduction algorithms to DAE
systems extracted from AHDL-based models

• Model translation – translating models from one AHDL to another (this
would require extensive examination of language spe-
cific issues)

Furthermore, an extension of the general model compilation strategy for other simulators’
compiled model interfaces is desirable. As this does typically not require fundamental
changes within the equation processing but mainly structural and syntax changes within the
generated models, such extensions are possible with limited effort. First approaches towards
using Cadence CMI [91] have successfully been taken.
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A Modeling Examples

A.1 cfcamp

Figure A.1: Schematic of the cfcamp Circuit
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Figure A.2: Testbench for the cfcamp Circuit
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Figure A.3: Simulation Results of the cfcamp Circuit
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A.2 diode

**
** TITAN Netlist for the diode circuit
**

** Model parameters for diode
.MODEL D1N4148 D(IS=2.68e-9 N=1.84 IKF=0.041 IBV=100e-6 BV=100 RS=0.6 CJO=4e-12
                   VJ=0.5 M=0.333 FC=0.5 TT=11.5e-9 XTI=3)

** Subcircuit Declaration
.SUBCKT DIODERC A C G
  D0 A C D1N4148 AREA=1
  C0 G C C='100p'
  R0 C G R='10K'
.ENDS

** DUT Instantiation
XI2 IN OUT GND DIODERC

** Testbench
VIN   IN   0    SIN (0 5 100)
VOUT  OUT2 0    DC '0' AC '0' '0'
VGND  GND  0    DC '0' AC '0' '0'
RLOAD OUT  OUT2 200Meg

** Simulation statements 
.SAVE results FORMAT=scope5
.OP
.TRAN 1e-4 1 
.OUTPUT TRAN LEVEL=0 V(*) 

.END

diode

 TIME(s)
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Figure A.4: Simulation Results of the diode Circuit
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--
-- VHDL-AMS model of the diode circuit (entity)
--

LIBRARY ieee;
USE ieee.math_real.ALL;
USE ieee.electrical_systems.ALL;

ENTITY diodeRC IS
GENERIC (

AREA : REAL := 1.0;
BV   : REAL := 100.0;
C0   : REAL := 0.1E-9;
CJO  : REAL := 0.4E-11;
GMIN : REAL := 1.0E-12;
IBV  : REAL := 0.1E-3;
ISS  : REAL := 0.268E-8;
R0   : REAL := 10.0E3;
RS   : REAL := 0.6;
k    : REAL := 0.138062E-22;
q    : REAL := 0.160219E-18

);
PORT (

TERMINAL A, C, G : ELECTRICAL
);

END ENTITY diodeRC;
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--
-- VHDL-AMS model of the diode cont’d (architecture dae)
--

ARCHITECTURE dae OF diodeRC IS

QUANTITY VA ACROSS I$A THROUGH A;
QUANTITY VC ACROSS I$C THROUGH C;
QUANTITY VG ACROSS I$G THROUGH G;

-- Simultaneous Vars
QUANTITY V$C    : REAL;
QUANTITY V$G    : REAL;
QUANTITY id     : REAL;
QUANTITY vd     : REAL;
QUANTITY cj     : REAL;
QUANTITY id$d1  : REAL;
QUANTITY vd$d1  : REAL;
QUANTITY V$C$d1 : REAL;
QUANTITY V$G$d1 : REAL;

-- If-functions
FUNCTION iffunc1(

vd : REAL) RETURN REAL IS
VARIABLE res : REAL;

BEGIN
IF vd < 0.25 THEN

res := 1.0/((1.0-2.0*vd)**(0.333));
ELSE

res := 0.251926E1*(0.3335+0.666*vd);
END IF;
RETURN res;

END;

BEGIN

-- Simultaneous Equations
I$A+I$C+C0*(V$C$d1+V$G$d1)+(-V$C+V$G)/(R0) == 0.0 TOLERANCE "Current";
I$G+C0*(V$C$d1-V$G$d1)+(V$C-V$G)/R0 == 0.0 TOLERANCE "Voltage";
id+0.115E-7*id$d1+I$A+cj*vd$d1 == 0.0 TOLERANCE "Current";
-VA+vd+V$C+I$A*RS/AREA == 0.0 TOLERANCE "Voltage";
id-GMIN*vd-AREA*(ISS*(-1.0+exp(0.181069E-2*vd*q/k))

-IBV*exp((-0.333167E-2)*(BV+vd)*q/k)) == 0.0 TOLERANCE "Current";
cj-AREA*CJO*iffunc1(vd) == 0.0 TOLERANCE "Current";
VC-V$C == 0.0 TOLERANCE "Voltage";
VG-V$G == 0.0 TOLERANCE "Voltage";
id$d1  == id'dot TOLERANCE "Current";
vd$d1  == vd'dot TOLERANCE "Current";
V$C$d1 == V$C'dot TOLERANCE "Current";
V$G$d1 == V$G'dot TOLERANCE "Current";

END ARCHITECTURE dae;
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//
// Verilog-A model of the diode circuit
//

`include "constants.h"
`include "discipline.h"

// Declaration for discipline DAEVar
nature daevar

abstol = 1n;
units = "";
access = X;

endnature

nature daevar_flow
abstol = 1n;
units = "";
access = Y;

endnature

discipline DAEVar
potential daevar;
flow daevar_flow;
domain continuous;

enddiscipline

module diodeRC( A, C, G ); 
inout A, C, G ;
electrical A, C, G;

// parameters 
parameter real AREA = 0.1E1;
parameter real BV   = 0.1E3;
parameter real C0   = 0.1E-9;
parameter real CJO  = 0.4E-11;
parameter real GMIN = 1.0E-12;
parameter real IBV  = 0.1E-3;
parameter real ISS  = 0.268E-8;
parameter real R0   = 0.1E5;
parameter real RS   = 0.6;
parameter real k    = 0.13806226E-22;
parameter real q    = 0.16021918E-18;

// procedural variables 
real  vd;
real  id;
real  cj;

// simultaneous variables 
DAEVar V_C;
DAEVar V_G;
DAEVar I_A;
DAEVar id_d1;
DAEVar vd_d1;
DAEVar V_C_d1;
DAEVar V_G_d1;
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//
// Verilog-A model of the diode circuit
//

analog begin 

// Empty contributions (for topology checker)
Y(I_A) <+ 0*X(I_A);
Y(V_C) <+ 0*X(V_C);
Y(V_G) <+ 0*X(V_G);

// Procedural Equations
vd = -RS*X(I_A)/AREA-X(V_C)+V(A);
id = GMIN*vd+AREA*(-ISS+limexp((0.18106E-2*vd*q)/k))
     -IBV*limexp((-0.33316E-2*(BV+vd)*q)/k));
cj = AREA*CJO*(vd < 0.25 ? 1/pow(1 -2*vd,0.333) : 
                           0.251926E1*(0.3335 + 0.666*vd));

// Simultaneous Equations
Y(I_A)    <+ -id-0.115E-7*X(id_d1)+X(I_A)-cj*X(vd_d1);
Y(V_C)    <+ X(V_C)-V(C);
Y(V_G)    <+ X(V_G)-V(G);
X(id_d1)  <+ ddt(id);
X(vd_d1)  <+ ddt(vd);
X(V_C_d1) <+ ddt(X(V_C));
X(V_G_d1) <+ ddt(X(V_G));

// Branch Equations
I(A) <+ -X(I_A);
I(C) <+ -X(I_A)+(X(V_C)-X(V_G))/R0+C0*(X(V_C_d1)-X(V_G_d1));
I(G) <+ (X(V_G)-X(V_C))/R0+C0*(X(V_G_d1)-X(V_C_d1));

end 
endmodule
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A.3 emitter

Figure A.5: Schematics of the emitter Circuit and its Testbench
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Figure A.6: Simulation Results of the emitter Circuit
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A.4 multiplier

Figure A.7: Schematic of the multiplier Circuit

Figure A.8: Testbench for the multiplier Circuit
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A.5 nand2

multiplier
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Figure A.9: Simulation Results of the multiplier Circuit

Figure A.10: Schematics of the nand2 Circuit and its Testbench
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A.6 opamp741
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Figure A.11: Simulation Results of the nand2 Circuit

Figure A.12: Schematic of the opamp741 Circuit
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Figure A.13: Testbench for the opamp741 Circuit
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Figure A.14: Simulation Results of the opamp741 Circuit
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A.7 sqrt

Figure A.15: Schematics of the sqrt Circuit and its Testbench

sqrt

 (
A

)

−0.002

−0.001

0.0

0.001

0.002

 TIME(s)
0.0 100u 200u 300u 400u 500u 600u

(A) : TIME(s)

I(IIN)

I(VOUT)

Figure A.16: Simulation Results the sqrt Circuit



130 Appendix A 

A.8 stepmonitor

This Verilog-A model provides a basic solution for monitoring the convergence within a
transient analysis for simulators supporting the $debug and $strobe functions. Including a
reference of stepmonitor within the netlist (no connections) results in an additional logfile
named <netlist>.stepmonitor containing information about the timesteps (length, absolute
time, number of Newton iterations) and a final statistics (total steps, total iterations, average
iterations per time step).

Note: The model extensively uses file-I/O to perform this statistics and therefore seriously
slows down the simulation performance. Any performance measurements have to be per-
formed in separate simulation runs without the stepmonitor instance.

//
// stepmonitor Verilog-A model 
//
`include "constants.h"
`include "discipline.h"

module stepmonitor; 

 integer LOGFILE, WRITEFILE, READFILE, DUMMY;   // File pointers
 integer eof;                                   // EOF dependends on sim version..
 integer stepno, totaliterno;
 real    told, tstep, tabs;
 integer iters, dummy, readline, alternate;

 analog begin

  @(initial_step("tran")) begin
      eof = 0; dummy = 0;
      stepno = 0; iters = 0; totaliterno = 0;
      told = 0.0; alternate = 0; tabs = 0.0;

     // Opening files
      LOGFILE = $fopen("spectre_conv.log", "w");
      $fstrobe(LOGFILE, "=== stepmonitor logfile ===");

     // Touch the files needed for iteration debugging
      DUMMY = $fopen(".iterstep0", "w");
      $fstrobe(DUMMY, "0");
      $fclose(DUMMY);
      DUMMY = $fopen(".iterstep1", "w");
      $fstrobe(DUMMY, "0");
      $fclose(DUMMY);

      if (eof == 0) begin
         // Determine the eof-value
         READFILE = $fopen("%C", "r");
         readline = $fscanf(READFILE, "%c", dummy);
         if (readline == 0) eof = 1;                     // Spectre 5.1.
         else eof = -1;                                  // Spectre 6.1.
         $strobe("eof is: %d", eof);
         $fclose(READFILE);
      end
   end
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//
// stepmonitor Verilog-A model cont’d
//

// Analysis within each timestep
   if (analysis("tran") && !analysis("ic")) begin
      // Open alternating files to determine iterations per timestep
      if (alternate <= 0) alternate=1;
      else alternate=0;

      // Determine iteration number from last file
      iters = -1;
      readline = 0;
      if (alternate <= 0)
        READFILE = $fopen(".iterstep1", "r");
      else
        READFILE = $fopen(".iterstep0", "r");

      // Count the lines within file
      while ($fscanf(READFILE, "%d", dummy) != eof) begin
         iters = iters + 1;
      end
      $fclose(READFILE);
      totaliterno = totaliterno + iters;
      $fstrobe(LOGFILE, "%d:\tabstime = %e\ttstep = %e\titers = %d", stepno, 
               tabs, tstep, iters);

      // Calculate steplength and export step debugging
      stepno = stepno + 1;
      tabs = $abstime;
      tstep = tabs - told;
      told = tabs;
      
      // Count iterations to file
      if (alternate <= 0)
        WRITEFILE = $fopen(".iterstep0", "w");
      else
        WRITEFILE = $fopen(".iterstep1", "w");
      $fdebug(WRITEFILE, stepno);
      $fclose(WRITEFILE);      
   end

   // Triggers logfile export at last timestep
   @(final_step("tran")) begin
      // Finale statistics
      $fstrobe(LOGFILE, "=== Overall Statistics ===");
      $fstrobe(LOGFILE, "Total iterations: %d", totaliterno);
      $fstrobe(LOGFILE, "Total steps:      %d", stepno);
      $fstrobe(LOGFILE, "Iterations/step:  %g", (1.0*totaliterno)/stepno);
     
      // Close all files
      $fclose(LOGFILE);
      $fclose(WRITEFILE);
   end
 end
endmodule
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B Analog Insydes

This appendix provides additional information on new or enhanced functions within Analog
Insydes. The first subsection covers topics related to model generation, the second subsection
provides usage information on the DAE optimization functions, and the last subsection in-
troduces some auxiliary functions.

B.1 Modeling Functions

B.1.1 Model Order Reduction

A DAE system

can be transformed into an equivalent system

 with

substitution variables

by adding dummy equations  of the form

and substitution of  within the differential equations . Recursive application
is suited for order reduction of higher order DAE systems to first-order. The structure of the
Jacobian matrix changes to

 with

.
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The described method is realized in Analog Insydes through the function ToFirstOrder-
System and is applied to the DAE systems before the model generation.

B.1.2 WriteModel

During this work, the original WriteModel function has been extended and enhanced by sev-
eral modeling languages (TML, ZMS, CMI) and features. Especially the idea of providing
different modeling strategies for certain features as well as the generation of simulator-spe-
cific models have been integrated into the modeling function. Thus, the function is able to
generate specific “flavors” of the AHDLs adapted to the simulators needs. The latter depend
on supported language features as well as performance and robustness aspects. The model
export is used as follows:

WriteModel[
modelfile, (* Output file for model *)
entityname, (* Entity / module name of model *)
DAEObject, (* DAEObject to model *)
ports, (* List of model ports *)
connections, (* Connection information for ports / variables *)
(* Mandatory “options” *)
ModelingLanguage -> ”VHDL-AMS”|”Verilog-A”|”TML”|”ZMS”|...,
Simulator -> ”Titan”|...,

Options (* Additional options*)
]

Table B.1: New Options of WriteModel

Option Values Description

CSE True|False
Internally performs CSE on Jacobian matrix and 
functions (valid only for Titan ZMS models)

Damping True|False
Replaces several nonlinear functions by damp-
ing functions (e.g. limexp, limsqrt)

IfStrategy see Table B.2
Distinguishes the modeling strategy for condi-
tional statements

InsertTolerances
Automatic|
True|False

Tries to heuristically determine tolerances of 
variables and equations (if applicable to model-
ing language)

Preloading True|False
Applies preloading strategies within the model 
export (applicable for Verilog-A and Titan
ZMS)

SequentialStrategy see Table B.3
Distinguishes the modeling strategy for sequen-
tial equations
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Table B.1 provides the new options of WriteModel that have been introduced to generate
simulator-specific models. Unfortunately, the modeling methods are limited by the support
of certain language features on the simulator side. Whereas simultaneous equations can be
very intuitively modeled in VHDL-AMS, the language is of major disadvantage for sequen-
tial equations. The (most desirable) simultaneous procedural statement is not yet supported
by any of the (to the author available) simulators. Using analog functions to realize sequen-
tial equations requires the sequential variable to be a free quantity (unnecessarily) increasing
the number of unknowns of the resulting system of equations (otherwise, derivatives of se-
quential variables would not be possible). This makes modeling of sequential equations ut-
terly impossible in VHDL-AMS as it is not possible to reduce the dimension of the linear
system.

In contrast to that, modeling sequential equations is very comfortable in Verilog-A. Though
modeling simultaneous equations requires some effort as there is no direct representation of
an equality in Verilog-A. Therefore, their modeling is realized through an indirect branch
contribution. Unfortunately, this seems to significantly limit the simulation performance.

Initial values and tolerances are not supported by some simulators. In order to enable the
modeling of conditional statements and sequential equations, several modeling strategies
have been introduced. Tables B.2 and B.3 introduce the implemented modeling strategies.

The probably most comfortable modeling strategy for conditional statements is the ternary
operator of Verilog-A. Anyway, there are several restrictions on what language features
might be used within the ternary operator and functions. The SimultaneousCondition op-
tion has the disadvantage of introducing additional variables. Finally, UnitStep might cause

Table B.2: Option Values for IfStrategy

Option Value Description

ConditionalOperator
Use of the ternary operator to model conditional statements 
(applicable for Verilog-A only)

Function
Generation of a function for each conditional statement and 
subsequent calls of the function from within the equation set 
(applicable for MAST, Verilog-A, VHDL-AMS)

SimultaneousCondition

Introduction of an additional variable and equation per condi-
tional statement, substitution of all conditional statements by 
the newly introduced variable (applicable for TML and 
VHDL-AMS)

UnitStep
Replacement of conditional statements by a sum of two 
inverse unitstep functions multiplied with either of the branch 
equations (applicable for TML and VHDL-AMS)
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numerical problems to do “unannounced” discontinuities, but experiments have shown good
convergence using this feature.

The modeling strategies for sequential equations are a crucial point when generating VHDL-
AMS models as was described above. The option’s value SequentialAssignment would
be the best modeling strategy, but is currently not supported by simulators. The strategy ac-
tivated by the option value Function does not enhance the performance of the simulation as
no reduction of the models’ dimension can be achieved.

B.1.3 WritePincompatibleModel

WritePincompatibleModel is a wrapper function for WriteModel. It is intended to bot-
tom-up generate behavioral models starting from a circuit netlist. The function contains a
complete behavioral modeling flow to import the circuit, extract the subblock to be modeled,
setup the circuit equations, optimize them for numerical methods, reduce the complexity (a
future issue), and finally export a behavioral model in one of the available analog hardware
description languages. As the process allows a diversity of different modeling strategies and
settings, WritePincompatibleModel tries to determine the best settings for your simulator
automatically. The function’s usage:

WritePincompatibleModel[
netlistfile, (* Netlist to generate model from *)
instancename, (* Instance name of subcircuit to model*)
modelfile, (* Output file for model *)
entityname, (* Entity / module name of model *)
(* Mandatory “options” *)
ModelingLanguage -> ”VHDL-AMS”|”Verilog-A”|”TML”|”ZMS”|...,
Simulator -> ”Titan”|...,
CircuitSimulator -> ”Titan”|”AnalogArtist”,

Options (* Additional options*)
]

Table B.3: Option Values for SequentialStrategy

Option Value Description

None All equations are modeled simultaneously

Function
Generation of a function, an additional free quantity, and an 
simultaneous statement for each sequential equation (applica-
ble for VHDL-AMS)

SequentialAssignment
Modeling of sequential equations by direct assignments (Ver-
ilog-A: procedural statement, VHDL-AMS: simultaneous pro-
cedural statement)
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The combination of ModelingLanguage and Simulator allows to generate models in vari-
ous modeling languages and to adapt the optimization as well as modeling strategies to the
specified target simulator (names not provided due to anonymous presentation).

The option WriteModelOptions is particularly helpful to select a non-default modeling
strategy within the bottom-up modeling flow. It enables the user to customize the model ex-
port as the provided options are passed to WriteModel.

Table B.4: Additional Options of WritePincompatibleModel

Option Values Description

EquationFormulation “MNA”|”STA”
Selection of a formulation of 
the network equations

CommonSubexpressions True|False Apply CSE

CompressModelEquations True|False
Compress model equations 
using CompressEquations

MarkAllSimultaneous True|False
Discard all information on 
sequential equations (all equa-
tions modeled simultaneously)

RemoveTrivialEquations True|False
Reduce redundancy by remov-
ing trivial equations

SequentialIdentification True|False Apply BLT

SequentialSubstitution True|False
Substitutes all sequential equa-
tions

SubstituteParameters True|False
Substitutes all parameters with 
their numerical default values

ProvideInitialGuess True|False
Perform a DC analysis and pro-
vide results as initial values for 
the model

Lisfile File name
Import the logfile of Titan to 
extract DC/AC values

<Subfunction>Options
List of options for spe-

cific subfunctions

These options allow to pass 
user-specified options to all of 
the major subfunctions within 
the modeling process (e.g. 
WriteModelOptions)
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B.2 DAE Optimization Functions

B.2.1 IdentifySequentialEquations

IdentifySequentialEquations[DAEObject, Options] performs BLT on a given DAE-
Object and returns an optimized DAEObject with additional sequential equations.

B.2.2 OptimizeCommonSubexpressions

OptimizeCommonSubexpressions[DAEObject, Options] performs a common subexpres-
sion elimination on the DAEObject. It finds common subexpressions and extracts these ex-
pressions into additional sequential equations to avoid unnecessary multiple evaluation of
common expressions.

Table B.1: Options of IdentifySequentialEquations

Option Values Description

ChooseMethod “Version1”|”Version2”
Switches between two different 
algorithms. Version2 is more 
performant.

KeepSequentialEquations True|False
Keep or discard original 
sequential equations of the 
input DAEObject

InitialSimultaneous-
Variables

List of variables
Keeps this variables simulta-
neous

KeepPivotElementsForSimeqs True|False
Keeps pivot elements within the 
simultaneous equations, typi-
cally this is not necessary

KeepDecoupledSequential-
Blocks

True|False

Does not recognize sequential 
equations that couple indepen-
dent sequential blocks (sup-
ported only by Version1)
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The latter three options may result in discarding a found expression. A common subexpres-
sion has to be compliant with all three conditions. When used together with
ExtractParametricExpressions->True, MinUsage does not apply.

B.2.3 RemoveRedundantEquations

RemoveRedundantEquations[DAEObject, Options] removes sequential equations that are
not needed within the equation structure. The option ProtectedVariables allows to pro-
vide a list of variables that are protected from being removed.

B.2.4 RemoveTrivialEquations

RemoveTrivialEquations[DAEObject, Options] removes redundant (trivial) equations
and thereby reduces the dimension of the DAE system. The option ProtectedVariables
allows to provide a list of variables that are protected from being substituted.

B.2.5 SubstituteSequentialEquations

SubstituteSequentialEquations[DAEObject, Options] conditionally replaces sequen-
tial variables by their determining sequential equation. Sequential equations violating one of
the conditions (options MinCost, MinUsage, MinDepth) are substituted. With default op-

Table B.2: Options of OptimizeCommonSubexpressions

Option Values Description

ChooseMethod “Version1”|”Version2”

Switches between two different algo-
rithms. Version1 is more performant 
and yields a lower number of deeper 
expressions.

ExtractParametric-
Expressions

True|False
Additionally extracts expressions only 
consisting of parameters (for preload-
ing)

ExpandSubexpressions True|False
Expands the found common subex-
pressions to maximum depth

MinCost Integer (default: 3) Minimum cost of a subexpression

MinDepth Integer (default: 3) Minimum depth of a subexpression

MinUsage Integer (default: 2)
Minimum number of references to a 
subexpression
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tions, the function reduces the dimension to the number of simultaneous variables. Use care-
fully, as the resulting equation sets might be of enormous complexity.

B.3 Supplementary Functions

This section introduces some new supplementary functions related to the modeling and op-
timization process.

B.3.1 AlgebraicDifferentialPartitioning

AlgebraicDifferentialPartitioning[DAEObject] performs a partitioning of the equa-
tion set of a DAEObject into algebraic and differential subsystems.

B.3.2 CheckDAEConsistency

CheckDAEConsistency[DAEObject] performs a set of basic consistency checks to make
sure a DAEObject does contain a valid DAE system. The function checks:

• Block sizes

• Equation / Variable numbers

• Structure of sequential equations (explicit formulation, lower-diagonal block)

• Independency of sequential subsystems

• First-order system

B.3.3 DAEStatistics

The function DAEStatistics[DAEObject] generates detailed statistics on a DAE system:

• Basic Statistics Number of equations and variables, differential variables, etc.

• Sequential Statistics Number of seq. and sim. vars. / eqs., sparsity, nonzeros

Table B.3: Options of SubstituteSequentialEquations

Option Values Description

KeepParametricExpressions True|False
Protects parametric expressions 
from being substituted

MinCost Integer (default: 1)
Minimum cost of a sequential equa-
tion

MinDepth Integer (default: 1)
Minimum depth of a sequential 
equation

MinUsage Integer (default: 1)
Minimum number of references to a 
sequential variable

ProtectedVariables List of variables
List of sequential variables that are 
protected from being substituted
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• Nonlinear Statistics Number of function calls to nonlinear functions

• Evaluation Cost Evaluation cost for functions and their Jacobian matrix

• Memory Accesses Memory accesses for functions and their Jacobian matrix

B.3.4 DisplayEquations / DisplayEquationCosts

DisplayEquations[DAEObject] shows a well-formatted list of the DAE system (also in-
cluding the partitioning into seq. and sim. equations). DisplayEquationCosts also in-
cludes cost, depth, and usage of the equations.

B.3.5 DisplayLinearSystem / DisplayLinearSystemStructure

DisplayLinearSystem[DAEObject] generates a symbolic
representation of the linearized system of the DAEs (with
Backward Euler applied to resolve differential variables).
DisplayLinearSystemStructure[DAEObject, Options]
returns a plot of the structural nonzero entries of the system’s
Jacobian matrix (as shown within the figure). The boolean
options DisplayBlockBorders and DisplaySeparators
allow to turn of auxiliary lines to separate the subsystems.

B.3.6 EvaluationCost

The function EvaluationCost[DAEObject, Options]estimates the effort necessary for the
numerical evaluation of the functions resp. the Jacobian matrix of the DAEObject. The op-
tions allow to measure in different modes and display the result in different metrics. The es-
timated CPI figures can be customized by using the option FunctionCosts.

B.3.7 OptimizeEquations

OptimizeEquations[DAEObject] applies various optimization strategies to the DAE sys-
tem and returns an optimized system of equations.

Table B.1: Options of EvaluationCost

Option Values Description

MeasureMode
“Function“|

”Jacobian”|”All”
Account for function only, Jacobian 
matrix only, or both

Metric
“FunctionCalls”| 

“Flops”|”TotalFlops”
Display results in calls per function, flops 
per function, or total flops

FunctionCosts List of function->cost Customize the function costs
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B.3.8 ReadVerilogA (Prototype)

The function ReadVerilogA[modelfilename] is a prototypical approach to import the equa-
tions of a Verilog-A model into Analog Insydes for further processing. As it does not contain
a Verilog-A parser, the process relies on the adms model compiler [44] to convert the Ver-
ilog-A model to a Mathematica conform syntax. This intermediate file is afterwards import-
ed and postprocessed to obtain a DAEObject. The postprocessing requires comprehensive
reformulations of procedural statements to obtain valid sequential equations. To name only
the major problems there are:

• Syntax conversion

• Unbalanced conditional statements

• Nested conditional statements

• Multiple procedural assignments to the same variable

• Redundant equations

• Conversion of branch representation to network equations

The function has been successfully applied to import a Verilog-A implementation of the
Gummel-Poon model. Based on the imported equation set, a symbolic device model for An-
alog Insydes was generated. The future application of this function includes several different
use cases: Generation of Analog Insydes device models, model translation (e.g. Verilog-A to
VHDL-AMS), model optimization, as well as device model compilation (e.g. Verilog-A to
Titan ZMS). In order to enable such promising applications, further enhancements have to
be done to provide further necessary features. However, the prototypical application to the
Gummel-Poon model has been the proof-of-concept for the Verilog-A import functionality.
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C Additional Statistics

C.1   Loading Performance

This section contains the charts for the complete and chain network experiments for the sim-
ulators Dione, Rhea, Thetys (for the corresponding results for Titan refer to Section 4.6).

C.1.1 Dione (Verilog-A)

Figure C.1: CPU Time for Complete (left) and Chain Networks (right) for Dione
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C.1.2 Rhea (Verilog-A)

This statistics for Rhea could not be performed with the VHDL-AMS front-end of the sim-
ulator as the compiler crashes due to insufficient memory for the majority of the generated
models.

C.1.3 Thetys (VHDL-AMS)

Figure C.2: CPU Time for Complete (left) and Chain Networks (right) for Rhea
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Figure C.3: CPU Time for Complete (left) and Chain Networks (right) for Thetys
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C.2   Sparse Loading Performance

C.2.4 Titan (TML)

Figure C.4: Additional charts to show the distribution of the CPU time to loading and solving
for the sparse implementation for Titan. Refer to Section 5.2 for further details.

C.2.5 Titan (ZMS)

Figure C.5 / Figure C.6: Additional charts to show the CPU time for the ZMS-based models
for Titan. Refer to Section 5.7 for further details and the charts for the loading performance.
The CPU time for the transient analysis (left chart) is dominated by the solving performance
(right chart), which is suboptimal due to application of the MUMPS solver (missing integra-
tion for the sparse Titan solver).

Table C.1: Evaluation of the Sparse Loading for opamp741

Example

model (dense)
absolute 3.49 77.52 s

10.0

49.36 s

7.2

27.84 s

43.5
relative n/a 100 % 63.6 % 35.9 %

model (sparse)
absolute 4.64 7.73 s 6.85 s 0.64 s

relative n/a 100 % 88.6 % 8.3 %

Niter step⁄ Ttran Stran Tload Sload Tsolve Ssolve

Figure C.4: CPU Time for Chain Networks with Titan (TML, incl. Sparse Loading).
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Figure C.5: CPU Time for Chain Networks with Titan (ZMS, MUMPS Solver)

for transient analysis (left) and solving (right)
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Figure C.6: CPU Time for Complete Networks with Titan (ZMS, MUMPS Solver)

for transient analysis (left) and solving (right)
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