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Preface

The properties of metallic materials are directly related to the kind, amount and 
distribution of lattice defects (dislocations, grain boundaries, etc.) that the material 
contains. In fact, the microstructure of a material can be defined as the collection of 
all thermodynamics non-equilibrium lattice defects [1]. The simultaneous occurrence 
of these defects in different quantities and qualities leads to a constellation of diverse 
microstructures, each of them with different properties. The key for the design of 
modern materials is the precise control of their microstructure. This task is achieved 
by the materials scientist by making use of different methods and techniques, from 
the apparently simple change in chemical composition to the use of complex 
processes (e.g. thermomechanical treatments, CVD, ECAP, etc). It is evident that the 
understanding of the underlying physics behind the phenomena governing these 
processes is fundamental for good accomplishment of this important task. 
Nowadays, concepts like Materials Design, Grain Boundary Engineering, etc. 
have become part of the normal language for the materials science researcher, 
emphasizing the importance of the microstructure control. 

The heat treatment of metallic materials is one of the most used methods for the 
modification of the microstructure, especially when used in connection with plastic 
deformation. During this stage of the processing, the change in the mechanical 
properties of the material is principally aimed. For this purpose, three different 
phenomena are utilized: recrystallization, recovery and grain growth. 
Recrystallization is defined as the substitution of an existing deformed grain structure 
by a new dislocation-free structure. This is carried out by the formation and migration 
of high angle grain boundaries driven by the stored energy of deformation. Recovery, 
on the other hand, corresponds to all annealing processes that imply the annihilation 
and rearrangement of dislocations [2]. The final phenomenon is the grain growth 
which is defined as the collective motion of the grain boundaries driven by the 
reduction of the boundary area. Grain growth occurs immediately after the 
completion of the recrystallization and takes place when the deformed structure has 
completely been substituted by the new dislocation-free structure. 

Despite having been largely studied, grain growth is still not completely understood. 
The complexity of the process arises from the diverse factors that affect the 
phenomenon. Due to the high complexity of the phenomenon, its abstraction is 
necessary. The process of abstraction consists in the replacement of the real world
by a model, which properly describes the occurring phenomena in the reality [4].

Modeling and Simulation are nowadays essential tools that help to understand 
physical phenomena by providing solutions to setups which cannot be experimentally 
realized, explanation to experimental observations and validation of theoretical 
considerations. The present dissertation is dedicated to the simulation of grain 
growth and related phenomena by means of the Vertex-Model.
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Chapter 1 

Grain Growth 

1.1 Introduction 

Grain growth is a widely investigated phenomenon in materials science. It influences 
a large variety of physical and mechanical properties of polycrystalline materials. 
Grain growth is the result of the collective migration of the grain boundaries and 
consequence of the necessary topological decay (decrease of the topological and 
structural elements of the microstructure) that takes place when the average volume 
of the grains increases. During grain growth both events occur simultaneously, 
making it a very complex phenomenon. The main driving force for the migration of 
grain boundaries during grain growth is the area of the boundaries, however, other 
sources can contribute to the driving force and hence influence grain growth as well. 
Such sources can be given by a gradient of any intensive thermodynamic variable, 
for example, temperature, pressure, density of defects, density of energy, etc. In the 
present chapter, the phenomenology of grain growth will be introduced. 

1.2 Grain Boundaries 

A polycrystal, as its name indicates, is conformed by many different crystals. Each 
crystal consists of an ordered three-dimensional arrangement of atoms, which 
repeats itself, thoroughly the volume of the crystal. These crystals are also known as 
grains or crystallites. Because each crystal may possess a different orientation, an 
interface must be formed between two crystals with different orientations when they 
come into contact. This interface is called grain boundary. 

A grain boundary is a very complex structure; its mathematical description requires 
four parameters in the two-dimensional case and eight parameters in the three-
dimensional one. These eight parameters can be discriminated in five macroscopic 
and three microscopic parameters. The macroscopic parameters are respectively, 
three Euler angles ( 1, , 2) which describe the specific orientation difference 
between adjacent crystals to the grain boundary and two parameters describing the 
spatial orientation of the grain boundary by means of the normal unit vector to the 
grain boundary plane n=(n1,n2,n3) with regard to one of the adjacent grains. The 
other three microscopic parameters are given by the three components of the 
translation vector t=(t1,t2,t3) of the displacement of one crystal with respect to the 
other.  The intrinsic properties of the grain boundary depend on the eight parameters. 
In particular, the mobility and the grain boundary energy are predominantly sensitive 
to them. 
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(a) (b)

(c)
Figure 1.1. Types of grain boundaries. (a) Twist grain boundary, (b) symmetrical tilt grain boundary,
(c) asymmetrical tilt grain boundary [2]. 

There are different kinds of grain boundaries. The easiest way to discriminate grain 
boundaries is to use the orientation relationship existing between neighboring
crystallites. If a common origin is assumed, this relationship is reduced to a pure
rotation, which can be defined in terms of a crystallographic axis <hkl> or a vector 
[uvw] and an angle of rotation . The grain boundary can now be defined using the 
necessary rotation to bring one of the neighboring crystallites into the orientation of 
the other. For example, if the grain boundary plane is perpendicular to the rotation 
axis, the grain boundary is referred to as a pure twist grain boundary (Fig. 1.1a). In 
contrast, if the grain boundary plane is parallel to the rotation axis, the boundary is
referred to as a pure tilt grain boundary (Fig. 1.1b). In the case of the twist grain
boundary it should be noted that the grain boundary plane is unambiguous and does
not depend on the rotation angle , however, for the tilt grain boundaries there is not
unique grain boundary plane because there is an infinite number of possible planes
parallel to a given direction. The simplest type of grain boundary is the symmetrical
tilt grain boundary whose boundary plane mirrors the crystallographic direction the of 
the adjacent crystallites. All other tilt grain boundaries are identified as asymmetrical
tilt grain boundaries (Fig. 1.1c). 
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1.2.1 Low Angle Grain Boundaries 

Depending on the magnitude of the rotation angle  between adjacent crystals is also
possible to distinguish two different kinds of grain boundaries: Low Angle Grain
Boundaries (LAGB) and High Angle Grain Boundaries (HAGB). 

Figure 1.2. The dislocation model of a symmetrical low angle grain boundary.

A LAGB is an interface between two crystallites whose spatial orientation with
respect two each other does not differ largely. This condition is reflected, precisely, in 
the rotation angle . If this angle does not exceed 15°, it is normally assumed that the 
grain boundary correspond to a LAGB. A LAGB is completely comprised of a periodic
set of crystal dislocations. In figure 1.2, the structure of a symmetrical low angle tilt 
grain boundary is shown. Such grain boundary consists of one set of edge 
dislocations with the same Burgers vector b. The number of dislocations per unit 
length in the grain boundary, 1/D, increases with the misorientation angle 

.2sin21
bbD

         (1.1)

In contrast, the structure of an asymmetrical grain boundary is more complex, it 
requires at least two sets of non-parallel edge dislocations to be constructed (Fig. 
1.3). It should be noted that the grain boundary starts as a symmetrical tilt grain 
boundary but the increasing deviation from this configuration makes it necessary to 
introduce a new set of dislocations. The number of dislocations of this second set
increases with increasing deviation, while the number of dislocations of the first set 
decreases. This situation leads to a point where the grain boundary is completely
composed by dislocations of the second set. At this point the grain boundary is again 
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a symmetrical tilt grain boundary but perpendicular to the original grain boundary. 
The number of dislocations of each set can be calculated. The number of 
dislocations of the first set with Burgers vectors b1 and of the second set with Burgers
vector b2 is given by 

cos
1 1

1

b
D

          (1.2)

and by 

sin
1 2

2

b
D

          (1.3)

respectively.

Figure 1.3. Asymmetrical tilt low angle grain boundary [4]. 

The case of the low angle twist boundaries is very similar to the previous one; the 
only difference is that screw dislocations (Fig. 1.4) now comprise the grain boundary.
These grain boundaries always require at least two sets of screw dislocations
because only under this condition a rotation is generated (a single set of screw 
dislocation leads only to a shear deformation). 
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Figure 1.4. Dislocation model for a low angle twist grain boundary [2], a single set of screw 
dislocations lead to a shear, a second set is necessary for a rotation. 

1.2.2 High Angle Grain Boundaries 
 
For higher rotation angles ( >15°), the dislocation model fails to describe properly the 
structure of the grain boundary. It can be seen from Eq. (1.1), that the number of 
dislocations per unit length increases with the rotation angle. However, for this 
equation, it is supposed that the distance between dislocations is so large that the 
influence of the dislocations cores can be neglected. Nevertheless, for >15° the 
distance between dislocations reaches the range of the dislocation core radius, the 
dislocation cores then start to overlap and the dislocations lose their identity as 
individual lattice defects. Grain boundaries with rotation angles higher than 15° are 
called high angle grain boundaries. The modern understanding of the structure of 
these grain boundaries is still based on dislocations models of low angle grain 
boundaries. 
 
The positions of the atoms of a perfect crystal are determined by the minimum of the 
Free Energy, the atoms will always occupy those positions that lead to this energetic 
state of the crystal. For the description of the structure of a high angle grain 
boundary, we can assume that the atoms in the grain boundary try to lie in these 
ideal positions (low energetic positions). If we take now two crystals with different 
spatial orientations and superpose them, it is possible to observe that some atoms of 
both crystals have the same positions; these points are referred to as coincidence 
sites. Due to the periodicity of the crystal lattices of both grains, the coincidence sites 
show also periodicity. In fact, the coincidence sites build also a lattice, which is called 
the Coincidence Site Lattice (CSL) (Fig. 1.5a). If we compare the density of a CSL 
with respect to the density of crystal lattice, it is possible to define the parameter  as 
follows [5] 
 

.
lattice crystal of cell elementary of volume

CSL of cell elementary of volume        (1.4) 

 
This parameter defines how similar the CSL and the crystal lattice are. The larger the 
value of  is, the smaller is the number of coincidence sites in the grain boundary 
and vice versa. For example, a grain boundary with =1, can be found, if we consider 
a grain boundary which is supposedly formed between two crystals with exactly the 
same spatial orientation, small deviations in the orientation of one of the crystals 
need to be compensated by the introduction of dislocations. Even with the 
introduction of dislocations the grain boundary can still be considered to posses an 

=1 since all lattices nodes, except those of the dislocation cores, are in coincidence 
sites. Incidentally, this grain boundary corresponds to a LAGB. 
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Geometrically, high angle grain boundaries can be treated as small deviations from a 
nearest CSL. As in the case of LAGB, deviations from the CSL need to be 
compensated by lines of dislocations in between regions of undistorted CSL. These
dislocations are called Secondary Grain Boundary Dislocations (SGBD) and the
boundary between them is the perfect CSL boundary generated by the periodic
arrangement of primary lattice dislocations. Burgers vector of SGBD is a translation
vector of the Displacement Shift Complete lattice (DSC-lattice) (Fig. 1.5b). As a 
result, the DSC lattice is the coarsest grid, which contains all lattice points of both 
crystal lattices. 

(a) (b)
Figure 1.5. (a) Coincidence site lattice of a 36.9° <110> ( 5) grain boundary in a cubic crystal lattice.
(b) Displacement Shift Complete Lattice and Coincidence Site Lattice. 

1.2.3 Grain Boundary Energy

The grain boundary energy is a function of all eight parameters describing a grain 
boundary. Only five of these eight parameters can be influenced, namely, the 
orientation relationship and the inclination of the grain boundary. The dependency of
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the grain boundary energy on inclination for a constant orientation relationship (i.e., 
constant misorientation) can be described by the Wulff-Plot (Fig. 1.6) [6]. 

Figure 1.6. Two-dimensional Wulff-Plot shows the dependency of the grain boundary energy on
inclination angle .

Figure 1.7. Simulated shape of the grain boundary of an island-grain for two different dependencies of
the energy with the inclination is shown. For grain (a) no dependency is assumed, the shape of the
grain boundary resembles a perfect circle. For (b) the function shown in Fig. 1.6 is assumed, the grain
boundary, in this case, presents facets, which correspond to the low energetic positions ( 45°).

The Wulff-Plot describes the grain boundary energy  as a function of the inclination 
angle  in polar coordinates and is related with the physical grain boundary through 
the normal vector . The shape of the grain boundary depends also strongly on the 
inclination. If the Wulff-Plot reveals positions, where the grain boundary energy is 
considerably low, then the grain boundary will tend to assume these positions (Fig. 
1.7). It is possible to observe in Fig. 1.7 that the grain boundary (b) is composed only
by facets that correspond to the low energetic positions of the Wulff-Plot of Fig. 1.6. 

n
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The high energetic position (near =0°,90°) are broken down in small low energetic
facets.

Figure 1.8. Grain boundary energy of an asymmetrical <110> tilt boundary as a function of tilt angle 
[7].

The grain boundary energy also depends on the orientation relationship existing
between the adjacent crystallites to the grain boundary. In a previous section, we 
used the orientation relationship to differentiate LAGB from HAGB. As the LAGB are
made up of dislocations the energy can be calculated using dislocations theory and 
therefore the free energy of a LAGB can be calculated exactly. The stress field of a 
dislocation in an infinite periodic arrangement is confined to a range in the order of 
the dislocation spacing, D [8]. The energy of an edge dislocation per unit length in an 
elastically isotropic material is given by 

cd E
r
DbE

0

2

ln
14

,         (1.5)

where  is the Poisson ratio, μ is the shear modulus, br0 is the radius of the 
dislocation core and Ec is the energy of the dislocation core. Finally, the energy per
unit area of a symmetrical tilt grain boundary as a function of the misorientation angle 
  is given by 

ln1ln
14

2

BAEb
b cb ,      (1.6)

where A=Ec/B and B=μb/4 (1- ).

The free energy of a HAGB cannot be calculated using the previous equation 
because, as stated in a precedent section, the dislocation model fails in describing a 
HAGB due to the superposition of the dislocation cores. Nowadays, the best method 
to determine the free energy of general high angle grain boundaries is the use of
computer simulations, in particular, molecular dynamics (MD). The energy of high
angle grain boundaries is hardly dependent on the misorientation angle, as seen in 
figure 1.8. Fig. 1.8 shows the energy of a symmetrical <110> grain boundary in Al as
a function of the misorientation angle. The presence of sharp minima (cusps) 
corresponds to special orientation relationships, which lead to particular low
energetic boundaries. For example, the orientation relationship 70.5°<110>, which
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coincides with the coherent twin grain boundary, has a particular low energy. Also, 
when in both crystals a {311} plane lies parallel to the grain boundary a cusp in the 
grain boundary energy will appear.

1.3 Grain Boundary Motion 

1.3.1 Fundamentals

There is no unified theory of grain boundary migration. Almost all theoretical attempts 
try to describe grain boundary migration in the basis of the simple rate theory of
atoms crossing the grain boundary with grain net energy. Grain boundary motion is
reduced to the diffusive motion of atoms across the grain boundary [9]. It is assumed 
that the boundary is narrow enough to be crossed by a single atomic jump and also 
that the boundary is displaced by the diameter of an atom b every time when a jump 
occurs. Under these assumptions the velocity of the grain boundary reads 

,bv          (1.7)

where + and - are the jump frequencies in opposite directions to the grain 
boundary. If there is no difference in free energy between the neighboring crystals +-

-=0 and the boundary will remain static. In contrast, when the free energies of the
crystals are different a driving force P for the motion of the grain boundary appears
as

,
dV
dGP           (1.8)

this causes that every atom of volume b3 gains the free energy Pb3 when jumps to 
the growing grain, in the opposite direction the atom must increase the Free Energy
by the same quantity Pb3. Figure 1.9 shows schematically the variation of the Free 
Energy across the grain boundary. Correspondingly, the velocity of the grain 
boundary can now be expressed in terms of the thermally activated diffusional jumps 
from the shrinking grain to the other as follows 

kT
PbG

kT
G mm

eebv

3

       (1.9)

If the attack frequencies +=  -=  D, which is the Debye frequency, and also if the
free energy of the migration Gm is the same in both directions, Eq. (1.7) can be
rewritten as 

,1

3

kT
Pb

kT
G

vacD eecbv
m

(1.10)
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since the jump of the atoms is only possible through the vacancies of the grain 
boundary, the vacancy concentration cvac at the grain boundary must be considered. 

In all practical cases, including recrystallization in heavily deformed metals, it can be 
considered that Pb3<<kT and, therefore 

,1
3

3

kT
Pbe kT

Pb

(1.11)

which leads to 

,
4

PmPe
kT

cb
v gb

kT
G

vacD
m

(1.12)

where mgb is the grain boundary mobility. The relation between grain boundary
mobility and the atomic jumps through the grain boundary with an activation energy 
Qm is given by the Nernst-Einstein equation 

,0
0

22
kT
Q

kT
Q

m
gb

mm

eme
kT
Db

kT
Dbm          (1.13)

where Dm is the diffusion coefficient for the atomic jumps through the grain boundary, 
D0 is the diffusion pre-exponential factor. Respectively, m0 is the pre-exponential 
factor of the grain boundary mobility. In can be noted that if cvac is not thermally
activated, Qm=Gm.

Figure 1.9. The free energy of a moving atom changes by the driving force Pb3 when it crosses the 
boundary. Gm is the free energy barrier for the bulk diffusion [9]. 
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1.3.2 Driving Forces for the Boundary Migration 
 
A driving force for the migration of a grain boundary appears as a necessity of the 
system to reduce the total free energy. There are diverse sources for the driving 
forces, in principle, a gradient of any intensive thermodynamic variable leads to a 
driving force, for example, a gradient of temperature, pressure, density of defects, 
density of energy, etc. For the grain growth, the most relevant source for the driving 
force is the energy A  in the area A of the grain boundaries. Nevertheless, it cannot 
be excluded that other driving forces can occur at the same time affecting the 
evolution of the grain growth. Table 1.1 shows some possible driving forces for the 
grain boundary motion and their range of magnitude. 
 

Table 1.1 
Driving forces for the grain boundary motion [9] 

Source Equation Approx. Values 
Estimated 

Driving 
Force (MPa) 

Stored deformation 
energy 

2

2
1 b  

28
2

215

102

10

Jmb
m

 ~10 

Grain Boundary 
Energy R

gb2
 

mR

Jmgb

4

2

10

5.0
 ~10-2

Surface Energy 
h

s2  2

3

1.0
10

Jm
mh

s
 ~10-4

Chemical Driving 
Force 0001 lnccTTR  5%Ag in Cu at 300°C ~102

Magnetic Field 
2

1
2

2
0 coscos

2
H

 
7

17

108.1
10 AmH

 ~10-4

Elastic Energy 
21

2 11
2 EE

 
MPaEE

MPa
5

21 10,
10

 ~10-4

Temperature 
Gradient a

TS 2  

13

10

14

113

10
1052

10
108

molcm
m

KmT
molJKS

a

 ~10-5

 

1.4 Normal Grain Growth 
 
In previous sections, the most important parameters that affect grain growth have 
been described. The definitions of grain boundary, grain boundary energy and grain 
boundary mobility were necessary because the evolution of the grain boundary is 
intrinsically related to the migration of the grain boundary. In the current section, the 
fundamental aspects of the grain growth will be explained. 
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1.4.1 Fundaments and Topological Aspects Grain Growth 

A polycrystal is composed of an arrangement of grains. The grains can be described
by polyhedra (Fig. 1.10), whose faces, edges and vertices act as junctions of the
polycrystal (faces=grain boundaries, edges=triple lines and vertices=quadruple 
junctions) and together with the grains form a topological network with well defined 
properties. In fact, the general formulation for such space network is given by the
Euler formula for the unbounded state [10]: 

(1.14),vfge

where e is the number of edges or triple lines, g the number of grains, f the number 
of grain boundaries and v the number of quadruple junctions. Under the assumption
that all the grain boundaries have the same energy, the number of triple lines is
double the number of quadruple junctions and the formulation reduces to 

.fvg (1.15)

For any grain of the assembly with a definite number of faces, the number of 
quadruple junctions of this grain is one less than the number of its grain boundaries 
and the number of triple lines is the double of the quadruple junctions

.1efv (1.16)

All these topological properties of the polycrystal are very relevant for the grain 
growth, as we will see subsequently. 

(a) (b)
Figure 1.10. A polycrystal is an assembly of grains, (a) shows a three dimensional microstructure, the
faces of the containing box cut the polycrystal forming two-dimensional sections of the polycrystal, (b)
shows the same microstructure without a limiting box, the polyhedral nature of the grains can be better 
observed, the faces, edges and vertices of the polyhedra come into contact forming the junctions of
the polycrystal.

Strictly speaking, the grains can be considered as polyhedra with curved faces. The
shape of the grains, and thus the curvature of their grain boundaries, is result of the 
necessity of completely filling the space and the energetic equilibrium at triple lines
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and quadruple junctions. The mathematical treatment of this three-dimensional 
problem is very complex. However, it is possible to use a two-dimensional model in 
order to understand the relationship between the shape of the grain boundaries and 
the needed topology to fill the space. 
  
In the 2-dimensional case, the equilibrium of the arrangement of grain boundaries is 
only possible if all the grains have a hexagonal shape (Fig.1.11a). In this case, all the 
grain boundaries will be straight because at the triple junctions (intersection of a triple 
line with the plane) the grain boundaries meet at the equilibrium angle. In order for 
the surface tensions at the triple junctions to be in equilibrium, it must be valid 
 

.
sinsinsin 3

3

2

2

1

1 gbgbgb                  (1.17) 

 
If the surfaces tensions of the three meeting grain boundaries are equal then the 
equilibrium angle must be 120°, but in case of anisotropy of the surface tensions 
( 321 gbgbgb ) the dihedral angles will have different values. This is commonly 
observed in multiphase material, for example, considering a triple junction in an - -
brass formed by the grain boundaries between two  grains and one  grain, the 
dihedral angle corresponding to the  grain will be of 95° [11]. In the three 
dimensional case, it would be possible to fill completely the space and at the same 
time to have flat grain boundaries only if three grains meet at the triple lines with an 
angle of 120° and if four grains meet at the quadruple junctions with an angle of 
109.47°. However, at quadruple junctions the equilibrium cannot be achieved. 
 

  
(a) (b) 

Figure 1.11. (a) A completely equilibrated two-dimensional microstructure can only be achieved by 
grains with a hexagonal shape. The equilibrium of forces at the triple junctions can also be seen 
(highlighted), (b) four grains without hexagonal shape introduce the imbalance in the microstructure 
making necessary the curvature of some grain boundaries in order to maintain the equilibrium at triple 
junctions. Due to the curvature a driving force Fc for the migration of the grain boundary appears. 
 
A real polycrystal, something what one can find in a metallographic investigation, is 
not formed exclusively by hexagonal grains but by a constellation of grains with 
different shapes, sizes and number of sides. The simple presence of one grain with 
less or more than six sides makes it impossible to fulfill the equilibrium of the surface 
tensions at the triple junctions by using only straight grain boundaries, therefore the 
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condition given in Eq. (1.17) can only be satisfied if the grain boundaries are curved,
as seen in figure 1.11b. The dihedral angles between the grain boundaries are still
close to 120° degrees but the grain boundaries present now a considerable
curvature. This curvature causes a driving force for the boundary migration. The 
force is applied at every point on the grain boundary in the direction normal to the 
grain boundary (local radius of curvature), as seen in Fig. 1.11b.

The migration of the grain boundary has principally two consequences: the first is the 
loss of equilibrium at triple junctions, which in turn causes the migration of the triple
junction and the second is the result of the combination of the migration of the grain 
boundaries and the triple junctions.

The successive combination of both migrations leads to the eventual disappearance 
of the grain boundaries. This disappearance causes the change of the topology in the
polycrystal, from Eq. (1.14)-(1.16) we can see that all the structural elements of the 
microstructure are topologically related. For instance, when a 3D polycrystal loses a
triangular grain boundary, the number of quadruple junctions would be reduced by
one and the number of triple lines would be reduced by two. 

Figure 1.12. An arbitrary 14-sided grain, a grain boundary, a triple line and a quadruple junction are
indicated.

Grain growth is, in fact, a topological process. For increase in the average grain 
volume, it is necessary that the number of grains in the body should diminish. This is
a process of topological decay [12]. The average number of grain boundaries per 
grain in a polycrystal is about 14 (Fig. 1.12) and, correspondingly, 24 quadruple 
junctions and 36 triple lines. The random collapsing of 13 triangular grain boundaries
in the polycrystal is equivalent to the reduction of one average fourteen-sided grain to
a single sided grain, which is completely unstable and will collapse spontaneously
under the driving force of the surface tension. The collapsing of a triangular grain 
boundary also destroys the triple lines shared with other grains. Due to this, new 
triangular grain boundaries are created out of former grain boundaries with multiple
triple lines. The repetition of this process constitutes grain growth since the 
proportion of grain boundaries must be kept constant in the polycrystal. The detailed
topological transformations, which take place during grain growth will be explain in 
detail in a further chapter. 
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1.4.2 Grain Growth Kinetics

The increase of the mean grain size with time during isothermal annealing can be 
easily described using an empiric equation [13-15]. Under the assumption that the 
mean curvature radius R of the grain boundary is proportional to the mean grain 
diameter D and that the mean grain boundary velocity is proportional to the change 
with time of the mean grain diameter (dD/dt), one can write: 

D
mK

dt
dD gb

1 , (1.18)

where m is the grain boundary mobility, gb is the grain boundary energy and K1 is a 
geometrical constant relating the proportionality of R with D. Given that K1 does not 
change with time Eq. (1.18) can be directly integrated 

tKDD 2
2
0

2 (1.19)

where D0 is the mean grain size for t=0. If D>>D0, it is possible to simplify Eq. (1.19) 
even further: 

nKtD (1.20)

n is known as the grain growth exponent. Theoretically, the mean grain size should 
increase with the square root of the time (n=0.5). However, this exponent has been
found only in extremely pure metals near to the melting point. In metals of 
commercial purity, the value of n falls normally in the range of 0.2-0.3, depending on
the purity, temperature and texture. For example, in table 1.2, the grain growth 
exponents for an alloy Cu-30%Zn at different temperatures are shown [16], as seen
in this table, under some conditions higher exponents than 0.5 can be found.

Table 1.2 
Grain Growth Exponents for a Cu-30%Zn Alloy 

T (°C) n
500 0.35
600 0.38
700 0.44
800 0.48
850 0.6

1.4.3 Grain Growth Inhibition 

During grain growth, the free energy of the system decreases due to the elimination 
of the grain boundaries of the consumed grains, ideally grain growth should continue
until any grain boundary is left, because only a single crystal can achieve the perfect 
thermodynamic stability, associated with the lowest possible internal energy of the 
system. Nevertheless, normal grain growth usually stops long before the polycrystal 
becomes a single crystal, indicating the existence of a maximal attainable grain size. 
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The nature of the phenomenon provides an intrinsic limitation to the growth of the 
crystals. The increase of the grain size necessarily implies the reduction of the grain 
boundary area per unit volume. Because the latter is the driving force for the grain 
boundary migration, the remaining driving force is reduced for further grain growth. 
Therefore, the increase of the grain size decreases with time and becomes zero 
when there is not enough driving force to sustain further growth. The minimal 
necessary driving force for the boundary migration depends on various factors like 
temperature, chemical composition, texture, size of the sample, etc. 

1.4.3.1 Free Surface Induced Inhibition 

It is well known that grain growth can be suppressed near to the surface of a metal.
Beck and co-workers [14] found that the grain growth rate in strip samples was 
slower than expected and that the grain growth was completely inhibited when the
grain size reached approximately the thickness of the sample.

Figure 1.13. The equilibrium of forces of the grain boundary and surface tensions leads to the 
formation of a groove. 

The inhibition of the grain growth in this case can be explained from the fact that 
when a grain boundary adjoins the free surface the equilibrium of the grain boundary 
and surface tensions needs to be reestablished. This leads to the formation of a 
thermal groove along the grain boundary (Fig. 1.13), which needs to be overcome in
order for the grain boundary to move. The displacement of this element requires the
mass transport and consequently energy dissipation, which makes it a dragging force 
for the grain boundary migration. The corresponding dragging force pR is given by [9] 

,
2

s
gb

R h
p (1.21)

where h is the sample thickness and s is the surface energy. This force causes that 
the grains with grain boundaries adjoining the free surface decrease their growing
velocity. For samples with a mean grain size much smaller than its smallest
dimension, thermal grooving has practically no influence, because the grain growth
kinetics are determined mainly by the growing grains in the bulk, however, as the 
grain size increases and more grains come into contact with the surface, the drag 
becomes more and more effective until the grain growth ceases completely. This
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occurs when the mean grain size is approximately two times bigger than the smallest 
dimension of the sample. 

1.4.3.2 Solute Induced Inhibition 

In this first case, the inhibition of the grain growth arose from the physical size of the
sample. However, the chemistry of the material also plays an important role. In solid 
solution alloys it has been reported [16- 20] that grain growth is inhibited due to the 
influence of the solute atoms [21-23]. When the boundary migrates, the segregated
atoms will attempt to remain in the boundary, this will cause that the boundary
migrates at the velocity of the slowly moving impurities.

The problem is, however, more complex because the concentration distribution of the 
solute atoms is also altered by the grain boundary motion. In a stationary grain 
boundary the solute atoms are supposed to be symmetrically distributed about the 
central line of it. Once the grain boundary starts to move, the solute atoms cannot 
retain the same position, which leads to an asymmetric solute atom distribution. 

Figure 1.14. Dependence of the grain boundary migration rate on driving force in the presence of
impurity drag. The transition from the loaded to the free boundary and vice versa occurs
discontinuously.

The dragging force exerted on the grain boundary is a function of the asymmetry of 
the solute distribution, which is, in turn, dependent on the boundary velocity. It can be 
said that there are three zones of velocity dependence. The first one takes place 
when the boundary initiates its movement: as the velocity of the boundary increases
from zero, the asymmetry of the solute distribution becomes more pronounced and 
therefore the drag effect increases as well. The second zone is the transition from the 
loaded to a free grain boundary. This zone is characterized by a very rapid increase 
of the velocity with increasing driving force (Fig. 1.14). Within this zone, the grain
boundary can reach suddenly both, zone 1 or zone 3. Finally, the third zone
corresponds to the movement of a boundary free from the cloud of impurity atoms 
[9].

Most of the experimental evidence suggests that grain growth kinetics are principally
dominated by the movement of grain boundaries in the first zone [17,24], i.e. the
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grain boundaries of the polycrystal do not reach the necessary velocity to break away
from the impurity cloud. The linear relationship of the velocity with the driving force in 
both zones 1 and 3 guarantees a growth exponent of 0.5. This means that deviations
of the exponent from this value cannot be explained on the basis of solute drag. The 
only possibility for this is that the boundary migration during grain growth takes place
predominantly in the transition zone where the mobility is dependent on the velocity,
which violates the suppositions of Eq. (1.8). The probability of the latter to happen is,
however, very low. Another explanation to the deviation of n from 0.5, in this kind of 
alloys, was suggested by Grey and Higgins [17], who proposed the existence of a
dragging force due to clusters of atoms which are unable to diffuse with the grain
boundary. If the net driving force falls to the dragging force of the clusters, the grain 
growth will cease. This concept is somehow similar to the Zener pinning because 
also predicts a limiting grain size. 

1.4.3.3 Particle Induced Inhibition 

In the presence of second phase particles, the grain growth will be also inhibited. In 
this case, as outlined previously, grain growth will only take place until a determined
maximal grain size is attained. The drag due to the particles can be explained 
physically by the attraction force between particles and grain boundaries which, in 
turn, is due to the reduction of the total boundary area which occurs when a grain
boundary comes into contact with a particle. The detachment of the grain boundary
from the particle significantly increases the total interfacial energy of the system. For 
this reason, the detachment will only occur if the total energy released by the
boundary migration is enough to supply the increase in interfacial energy, for the 
particle, and at the same time to reduce the total free energy of the system [26]. 

The magnitude of the dragging force, and therefore the maximal achievable grain 
size, depends on the quantity and size of the second phase particles. This force is 
given by [25] 

,3
p

gbR d
fp (1.22)

where f is the volume fraction of the second phase and dp is the diameter of the 
precipitates.

During grain growth the total grain boundary area decreases gradually. Since the 
boundary area is the driving force for the grain boundary migration, grain growth will 
stop when the total remaining potential energy for the migration does not provide the 
necessary driving force for the detachment of the grain boundaries from the particles. 
It is possible to calculate the maximal grain size if we consider that, the grain growth 
ceases when the driving force and the dragging force come to an equilibrium i.e. p=-
pr:
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(1.23)
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where  is a proportionality constant between the curvature radius of the boundary
and  the grain diameter. With this, we can determine the maximal grain size as
follows:

.
3
2

max f
d

d p (1.24)

The grain sizes calculated with Eq. (1.24) are normally bigger than those determined 
experimentally. This is due to the simplifications used for the assessment of Eq. 
(1.24).

1.4.4 Abnormal Grain Growth

Abnormal grain growth unlike normal grain growth is characterized by the excessive
growth of a relatively small number of grains while the rest remains unaltered until 
they are consumed. Due to its nature, this phenomenon has been also called, “grain 
coarsening”, “exaggerated grain growth”, “discontinuous grain growth” and also
“secondary recrystallization” [26]. At this point, it is important to remark that despite
the apparent similarities between abnormal grain growth and recrystallization, they
are completely different phenomena. The most important difference and probably the
decisive one is the nature of the driving force. While for recrystallization the driving
force is the stored energy of the deformation, for the abnormal grain growth it is still 
the reduction of the boundary area in a deformation-free polycrystal (in some 
circumstances, however, the surface energy can also play a role). 

Two conditions have been found to be necessary for the onset of abnormal grain
growth. The first is that the normal grain growth must be kinetically inhibited and the 
second is that certain grains must have an advantage to grow further. Since the 
inhibition of the normal grain growth is a pre-requisite for the abnormal growth to
occur, it is normally considered that the main factors which lead to this phenomenon
are second-phase particles and surface effects. 

Figure 1.15. Abnormal grain growth in an Al-4%Cu alloy annealed at a temperature close to the 
melting point. The image was obtained by means of orientation microscopy in a quasi-2D sample. The 
mapping shows the excessive growth of some grains [28]. 
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We have seen previously that the presence of second-phase particles inhibit the
grain growth and limit the maximal achievable grain size. However, under certain 
conditions the second-phase particles can lead to abnormal grain growth. For 
example, it has been found in aluminum-copper alloys [27] that the annealing, near to
the temperature where the copper enters into solid solution, inhibits the normal grain 
growth but leads to the development of abnormal grain growth. This occurs because
the distribution in size and space of the particles in the matrix is not homogeneous 
and hence, it is possible that in some places of the sample the particles dissolve 
allowing local grain growth while the rest of the matrix is still pinned by the particles.
Some grains near of the particle-free region may have a clear advantage for their 
growth promoting the abnormal growth of these favored grains. 

Another mechanism for the stagnation of the grain growth arises from the finite size
of the sample, as seen in section 1.4.3.1. There is enough experimental evidence
[29-31] showing that abnormal grain growth can take place in thin films or in sheets 
where the grain size has reached a similar size than the sheet/film thickness. 

For latter case, Dunn and Walter [29] found that the driving force for the abnormal 
grain growth was the difference in surface energies s= s2- s1 (Fig. 1.11) of the two 
adjacent free surfaces to the grain boundary (in figure 1.11 denoted by s1 and s2). In 
turn, this difference comes from the dependency of the surface energy on the 
orientation. The driving force for the boundary migration is: 

.2
h

p
s

S (1.25)

In order for the grain boundary to move, the velocity of the grain boundary can be 
calculated form the difference between the driving force and the drag term due to the 
thermal groove (Eq. (1.21))
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Because the grain boundary needs to overcome the dragging force, it is possible to 
define a criterion and establish the required conditions for abnormal grain growth to 
occur. For this, the subsequent relation must be fulfilled [32] 
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where c is a constant. Mullins [33] considered that a value of about s/ s=0.03 is 
sufficient to initiate the boundary migration of a typical HAGB without the contribution 
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of the component of the grain boundary energy, which leads to the abnormal grain 
growth of the grains with an energetic advantage. 



Chapter 2 

Grain Growth Modeling and Simulation 

2.1 Introduction 

There has been for several years extensive modeling and simulation on the 
apparently simple problem of grain growth, however a lot of questions are still open. 
Several models have been used to simulate grain growth, for example, cellular 
automaton (CA), phase-field, Monte Carlo, Vertex and even finite element models. 
Among these, the vertex model distinguishes itself for the clarity of the underlying 
physics which are used. In the present chapter, a brief introduction of the different 
methods used for the simulation of the grain growth is presented. Finally, the vertex 
model, which is used in the present dissertation, will be introduced in detail. 

2.2 Modeling and Simulation 

Modeling (we refer to the mathematical modeling of physical systems) is the art of 
imitate and describe the nature by means of mathematical equations. The main 
purpose of the modeling is to isolate a part of the universe in order to analyze it and 
obtain a better understanding of the processes occurring within this space. However, 
because the nature is complex, some level of abstraction is indispensable [3]. This 
abstraction is what we call a model.

Bellomo and Preziosi [34] gave a strict definition of a mathematical model. They 
define a model using a generalized state variable concept. The definition and 
selection of the independent and the dependent variables, the evolution equation, 
and the physically related parameters are necessary. The model then can be defined 
as the equation or the set of equations, whose solution provides the time-space 
evolution of a physical system. The equation that defines the mathematical model 
can also be called the state equation. Figure 2.1 shows schematically the modeling 
process, which in accordance with our definition starts from the observation of a 
phenomenon and continues with the description of the nature through the model 
finishing with the validation and utilization of the same. 

There is a gap between the definition of the model (which finishes after the 
formulation of the mathematical model) and the analysis and validation of the model. 
This gap exists because the formulation of the model does not take into account the 
method or methods for the solution of the governing equations. However, in modern 
materials science most models are rather complex and the state equations normally 
consist of coupled differential equations which should be solved correspondingly.
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Figure 2.1. Flow chart of the modeling process [34]. 

Because the analytical solution of such systems is practically impossible, the only 
alternative left is the use of numerical methods to solve the governing equations and 
overcome the gap between model formulation and model analysis. However, the 
utilization of numerical methods introduces also the concept of exactitude of the 
numerical model. This occurs because the numerical model is not exactly identical to 
the analytical one. The exactitude of the numerical models depends among others on 
the truncation, series expansion, discretization, statistical, ergodic, and programming 
errors [3]. The validation of the model can be accomplished, even in complex models, 
by the derivation of analytical solutions of simple cases and the comparison with the 
numerical prediction. Nevertheless, the best validation of a model (analytical or 
numerical) will always be the direct comparison with the natural phenomena, which 
the model tries to describe. 

Recapitulating, numerical modeling implies the solution of the analytical model by
means of numerical methods. This procedure is called sometimes simulation.
However, both terms are normally used indiscriminately. There is not a clear and well 
defined limit, which indicates where the modeling stops and where the simulation 
starts. The discrepancy in the utilization of both concepts arises from this lack of
definition.
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A numerical model is, however, still a model. It means that the principal objective of it 
is the description of the nature, independent of the method chosen for the solution of 
the state equations. In other words, if there is a clear boundary between analytical 
modeling and simulation the same boundary must be valid for the numerical 
modeling. Numerical modeling comprises, then, only the model formulation together 
with the necessary methods for the solution of the state equations, nothing more 
nothing less. In contrast, simulation is the mere application of the model to a well 
defined physical system in order to extract the response of the dependent variables 
under certain conditions. In fact, Ashby [35] classified simulation as the study of the 
dynamic response of a modeled system by subjecting the model to inputs, which 
represent (simulate) real events. 

2.3 Grain growth models 

Numerous models have been developed for the simulation of the grain growth. Most 
of them fall in three categories, Monte Carlo, Phase Field and Vertex models. Models 
based on cellular automata [36, 37], finite element [38] and even molecular dynamics 
[39, 40] have been also used to a lesser extent. In the present section, we will review 
briefly the most used models for the simulation of the grain growth. The vertex model 
will be explained in detail in this chapter. 

2.3.1 Monte Carlo Potts Model 

The name Monte Carlo originates from the usage of random numbers similar to those 
coming out of roulette games [41] in this model. The name was coined by Metropolis 
[42] based on this fact. For the simulation of grain growth a variant of the original 
Monte Carlo model is used, this variant is called the Monte Carlo-Potts model and 
was used for the first time by Anderson [43], precisely, for the simulation of grain 
growth.

In the Monte Carlo-Potts model the space is discretized in a lattice (Fig. 2.2), where 
each point of the lattice belongs to a particular grain (i.e. the grain is the “state” of the 
lattice point). The grain boundaries are not defined explicitly but they can be found 
where two lattice points with different states meet. Correspondingly, triple lines 
(points in 2D space) and quadruple junctions (only in 3D space) are defined in the 
same way. The energy of the system is given by the Hamiltonian of the discrete 
microstructure. The lattice points surrounded by points of the same state do not 
contribute to the total energy of the system and only those points which have a 
neighbor of a different state will increase the energy (i.e. grain boundaries).  

The integration step can be described as follows [44]: 

1. A lattice point li is probabilistically selected, li has already an orientation or 
state Qold, which is called old state.

2. A new state (orientation) for li is assigned from the remaining (Q-1) states; Q is 
the total number of different states in the system. 

3. The Hamiltonian and therefore the energy, induced by the change of the state, 
are calculated. 

4. The difference in energy E between the new and the old state is calculated. 
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5. If E is negative (i.e. reduction of the free energy of the system) the change is 
accepted automatically, however if the change of state represents an increase
of the energy of the system ( E>0), the change can still be accepted but only
with a certain probability that is described by a Boltzmann factor. The decision
step is done in accordance with the conventional Metropolis Monte Carlo 
algorithm [42]. 

(a) (b)
Figure 2.2. Discretization of a microstructure according to the Monte Carlo Potts model, each lattice
point has an assigned state. The lattice points possess also certain energy according to the orientation
of their grain.

2.3.2 Phase Field Model 

In the phase field model, a continuous microstructure is represented by variables
known as order parameters. For example, if we consider a simple system where only 
two phases exist, let say, a matrix and precipitates. It is possible to define a single 
order parameter , which describes continuously the system. The matrix is
represented then by =1, whereas the precipitates by =0, the interface between the 
matrix and the precipitates is represented by the gradient of both phases (0< <1).
For the simulation of grain growth, the discretization of the polycrystal is more 
complex, because the whole microstructure can not be described using a single order
parameter, in this case it is necessary to use the same number of order parameters
as different oriented grains exist in the polycrystal. Figure 2.3 shows an easy
example of the discretization of a polycrystal for the simulation of the grain growth, 
each grain is represented by an individual order parameter whereas each cell can
now have different order parameters. The grain boundaries, in fact, are formed by the
spatial variation of the order parameters of the cells. 

The evolution of the microstructure is given by the variation of the free energy
functional with respect to the order parameters

,gM
t

          (2.1)
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where M is the mobility and g is the free energy functional as a function of the order
parameter. At constant T and P, g takes typically the form [45] 

V

dVTgg ,],[ 2
0        (2.2)

where V and T represents the volume and temperature respectively. The second 
term in this equation  is given by the gradient of the order parameters and 
hence introduces the grain boundary energy because this term is non-zero only for
the interfaces (see Fig. 2.3). 

2

Figure 2.3. The discretization of the microstructure according to the phase field model [46]. 

For the phase field model, the construction of the free energy functional is crucial;
this function must be defined to reflect the underlying physics of the phenomenon to 
be modeled [47].

2.3.3 The Vertex Model 

The vertex model was first introduced by Kawasaki et al. in 1989 [48] for the 
simulation of cellular patterns. The basic idea behind this model is that the 
minimization of the free energy can be achieved exclusively by the motion of the 
triple junctions (called vertices by Kawasaki [48]). As a result, the curvature of the 
grain boundaries is not considered (Fig. 2.4a). The equations of motion are of 
dissipative character, it means that the total free energy of the system (potential 
energy) is dissipated by the motion of the vertices. The equations of motion for the 
vertices can be derived from the Lagrange equation 

rv
R ,           (2.3)

where the term in the left side represents the dissipation of the energy through the 
motion of the vertices whereas the term in the right side is the potential energy. 
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(a) (b)
Figure 2.4. (a) The discretization of a microstructure after Kawasaki and (b) after Weygand [49]. 
Weygand as opposed to Kawasaki considered the curvature of the grain boundary by the introduction
of so-called virtual vertices along the boundaries.

Weygand in 1998 [49] modified the original model by Kawasaki by allowing the 
curvature of the grain boundaries through the introduction of additional points (virtual 
vertices) along the grain boundary (Fig. 2.4b). The equations of motion for both kinds
of vertices are calculated in the same manner as in the Kawasaki approach. 

Other variations of these models consider straight grain boundaries but introduce an 
artificial curvature to the calculation of the velocities of the vertices to overcome the 
error introduced by the flat grain boundaries. In these models, the local equilibrium at
the triple junctions is superimposed and used for the calculation of a factor that 
artificially introduces the curvature to the motion equations of the triple junctions [50].

Following the approach of Weygand, some models utilize virtual vertices along the
grain boundary but the displacement of the triple junctions and virtual vertices is
computed from the local curvature [50-53]. 

All these models are also called network models, because the discretization of the 
microstructure is achieved by means of a topological network of connected structural
elements. In the case of the pure vertex model, these elements are exclusively the 
triple junctions whereas in Weygand’s [49] and front-tracking models discrete grain 
boundaries are considered as a part of the network. 

2.4 Simulation Method –A Vertex Model Approach–

In this section, it will be detailed the implementation of a 2D vertex model. The model 
is very flexible and capable to consider a large variety of parameters that affect the 
grain boundary motion and hence grain growth. The effect of some of these 
parameters on the grain boundary migration and grain growth evolution will be
analyzed in further chapters. 

The model is based on the network models [48,49], and uses a front-tracking 
approach [54]. One of the requirements of such methods is the discretization of the 
microstructure in a topological network of connected elements. For these reason, two 
different elements are considered: the triple junctions (the intersection point of three 
2D grain boundaries) and grain boundaries, which are further segmented in a similar
way to dislocation simulations found in the literature [55]. The grains are conformed
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by the collection of boundaries and triple junctions surrounding them; they keep the 
information about the crystallographic orientations.

2.4.1 Equations of motion 

Each element is considered to have a different equation governing its motion. First
we will consider the case of the grain boundaries. A grain boundary moves with a 
velocity given by 

pmv gb ,           (2.4)

where mgb is the grain boundary mobility and p is the driving force. For the general
case when more than one driving force is applied to the grain boundary the velocity
reads

n

i
igb pmv .           (2.5)

The mobility is here considered to be a unique property of the grain boundary and 
therefore is not included within the sum. However, as shown in recent experimental 
investigations [56-59] on grain boundary migration in bicrystals under a stress field, 
the mobility can depend on the magnitude of the driving force induced by the stress
(the mechanism for this phenomenon is not discussed here, but the dependency of
the mobility on the character of the driving force is considered an exception). If this is
the case, the mobility needs to be included also within the sum.

Because the capillary driving force is intrinsic for the grain growth phenomenon, it is
possible to expand the sum as follows 

1

2

21 n

i
igbgb

n

i
igbgb pmmpmTmv ,     (2.6)

 is the curvature of the grain boundary and T is the line tension which is given by the 
sum of the grain boundary energy and the second derivative of the same with respect 
to the boundary inclination angle. It is noted that the boundary energy and mobility
include their dependency on grain boundary misorientation. The energy dependence 
on the inclination angle is considered also in T.

Fig. 2.5 depicts a discretized boundary and the variables used for the calculation of
Eq. (2.6) are also indicated. To define explicitly Eq. (2.6) is needed only the curvature 
of the grain boundary. The curvature can be calculated from the local geometry at 
each point bi along the grain boundary with the help of the two immediately adjacent 
points bi-1 and bi+1 [55] (see appendix A). The path vector or tangential vector is 
determined. This vector describes the position of a discretizing point of the grain 
boundary with respect to the global coordinate system. In Fig. 2.5, the components of
this vector are illustrated by  and .  Since the tangential vector is known, the 
components of the normal velocity can be easily calculated from this vector, the 
normal velocity is then given by 

x y
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2
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gbn m
x
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v .         (2.7)

Figure 2.5. A discretized boundary is shown, t0 represents the tangential vector to the boundary line at
the point bi, vn is the normal velocity,  and  are the trajectory vectors along the boundary.x y

The motion equation of the triple junction can be calculated in a very similar way. The 
velocity of the triple junction is obtained from the equilibrium of forces existing at the 
triple junctions, which is given by the three adjoining grain boundaries and by the 
possible additional forces acting on the triple junction, the velocity can be defined as 

n
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mv ,         (2.8)

where
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,       (2.9)

mtj is the triple junction mobility, s  is the distance between the triple junction and 
the first discretizing point of an adjacent grain boundary (Fig. 2.6).  Eq. (2.9) is the 
summation of the line tensions over the adjacent boundaries. Eq. (2.8) considers also 
the sum of the possible additional driving forces. The strict application of Eq. (2.8) will
lead to the equilibrium of forces at triple junctions, if the dihedral angles between 
grain boundaries have a value of 120° then no motion of the triple junction will occur.
However as discussed in the first chapter, the motion of the curved grain boundary
introduces automatically the disequilibrium of forces that consequently leads to the 
motion of the triple junctions. It should be noted that in this model the motion of the 
triple junctions is not artificially superimposed in order to attain the equilibrium as in 
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other models [52, 53]. The equilibrium at triple junctions will only be attained if the 
necessary conditions for this exist. 

Figure 2.6. Variables used for the calculation of the triple junction velocity. 

2.4.2 Topological Transformations

The principal disadvantage of the network models is that the topological
transformations that take place during grain growth evolution must be incorporated by 
a set of analytically determined topological rules [60, 61] that need to be 
implemented in the model.

(a) (b)
Figure 2.7. Grain growth evolution in a simple geometry, in (a) the disappearing grain boundary is 
highlighted whereas in (b) the quadruple junctions which are formed after the collision of the triple 
junctions as a result of the boundary annihilation.

In order to understand better the necessity to implement the topological 
transformations, let analyze a simple case. Fig. 2.7 shows two snapshots of the 
evolution of a simple microstructure during the course of grain growth. In the first 
figure (Fig. 2.7a) two grain boundaries (highlighted) migrate in the direction of their 
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center of curvature producing the shortening of the length of the boundary between 
the triple junctions TJ1 and TJ2. The eventual disappearance of the grain boundary
(Fig. 2.7b) causes the collision of the two triple junctions which were connected to the 
grain boundary forming a quadruple junction QJ (four grain boundaries meeting at
one point). Since a quadruple junction is energetically unstable, it will split again into 
two triple junctions.

In the nature, this is managed simply by the rearrangement of the atoms that will 
always choose the less energetic configuration (i.e. two triple junctions).  The 
problem is similarly managed by the Monte Carlo and phase field models. In the 
Monte Carlo model, a quadruple junction is represent by a zone with four different 
states and therefore the probability of one arbitrary cell to change to another state 
increases, the change of state is done automatically and is inherent to the model. 
Something similar happens in the phase field model. The quadruple junction zone will 
be characterized by a high gradient and thus the interchange energy of the cells
within the zone increases and causes the rapid variation of the order parameters until 
the quadruple junction zone disappears. 

(a)

(b)
Figure 2.8. Topological transformations; (a) neighbor switching (T1) and (b) triangle elimination (T2). If 

s is smaller than  then the transformation occurs.
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Because in the network models only connected points compose the microstructure, 
the disappearance of a boundary means that the distance between two triple 
junctions approaches zero, when this occurs the network needs to be reconnected in
order to minimize the free energy. The process occurs in two well defined steps: (a) 
quadruple junction formation (boundary collapsing) and (b) handling of the eventual 
split of the quadruple junction. For the implementation of 2D Vertex models, normally
only two topological operations are considered [48]: neighbor switching operation 
(Fig. 2.8a) (usually denoted as T1) and triangle elimination (T2) (Fig. 2.8b). These 
operations are triggered when the distance s between triple junctions reaches a 
certain predefined critical value . The operation T2 is, in fact, not necessary because 
it can be achieved by the successive application of T1. However, this operation is
normally implemented because it reduces the complexity of the model whereas the 
topology of the network remains intact.

It should be noted that T1 introduces a non-physical factor by avoiding completely
the natural formation of quadruple junctions. Usually, such junctions are unstable and 
split automatically into two triple junctions and a new boundary. However, under 
anisotropic conditions, where the energies of the grain boundaries can greatly vary
this might not be the case. 

Figure 2.9. (a) A quadruple junction is allowed to form, the forces 1f , 2f , 3f ,  and 4f jiij ffF
are calculated; (b) if the split of the quadruple junctions leads to an increase in the free energy of the
system the quadruple junction is the stable configuration.

To overcome this problem in the present model, the formation of the quadruple 
junctions is allowed and the split takes place only if it leads to a reduction of the total 
free energy of the system. The procedure is as follows, once that the quadruple 
junction is formed the forces if  exerted at the junctions by each grain boundary are 
calculated. The largest sum of the forces of two consecutively adjacent grain 
boundaries, denoted as , allows to determine the direction of the rip. However, if 
the formation of the new grain boundary leads to an increase in the free energy of the 
system the quadruple junction is considered stable. This procedure is schematically
shown in Fig. 2.9. 

ijF
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2.5 Validation of the Model 

2.5.1 Grain Growth Kinetics

In order to determine the validity of the model, the outcome from the simulations were 
compared with classical theories on grain growth. For this purpose, a microstructure, 
comprised of 20000 grains, was constructed by means of a Voronoi tessellation [62, 
63]. To give a rough impression of the simulations, Fig. 2.10 shows the evolution of 
the microstructure for increasing time. 

(a)

(b)

(c)
Figure 2.10. Evolution of the simulated microstructure for ta<tb<tc.



Chapter 2 34

The simulations yield a scaling behavior which is characterized by parabolic kinetics,
where the mean grain size increases with t1/2. The time evolution of the normalized 
mean area is presented in Fig. 2.11, the linear fit is given by the equation 

tmAtA gb4.10 . (2.10)

Fig. 2.11. Evolution of the mean grain area A  with time. The simulated grain growth kinetics shows
parabolic behavior.

2.5.2 Comparison with the von Neumann-Mullins Relation

The von Neumann-Mullins relation [64, 65] is a reference frame for the simulation of 
2D grain growth, since it relates the growth rate of a grain in a polycrystal with the 
number of sides (topological class) of a definite grain. For the calculation of the 
relation, it is necessary to assume isotropic conditions, it means that the energy and 
mobility of the triple junctions are constant, and also the triple junctions are
considered not to drag the grain boundary motion. Under these conditions the 
dihedral angle will take a value of 120°. 

For the determination, let consider an arbitrary grain with an area S (Fig. 2.12). After
certain time dt the grain boundaries will migrate a certain distance given by ,
where  is the grain boundary velocity (Eq. (2.4)). The change of the area with 
respect to the time is, correspondingly, the contour integral of the product of the 
boundary velocity and the derivative of the boundary length dL

vdt
v

vdL
dt
dS , (2.11)

the migration of the grain boundaries is exclusively curvature driven and can be 
substitute with Eq. (2.5) 
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dLm
dt
dS

gb . (2.12)

If we consider now that every element dL of the grain boundary has a tangential
vector with an angle , it is possible to define the curvature as the variation of the 
angle  with respect to the perimeter of the grain boundary L

dL
d , (2.13)

therefore

dm
dt
dS

gb . (2.14)

The integral of Eq. (2.14) in a continuous close curved will result in 2 , however,
while the grain boundaries can be considered continuous curves, the grain itself can 
not (a grain is comprised by the union of continuous curved segments –grain 
boundaries-). At every triple junction the continuity of the grain shape is interrupted 
by the next grain boundary. The abrupt change is characterized by the turning angle 

, because the energy is equal for all grain boundaries, the value of this angle 
corresponds to /3, as seen in Fig. 2.12. The angular change from boundary to 
boundary must be subtracted from 2 ; with this, we obtain the final expression 

6
33

2 nmnm
dt
dS

gbgb .          (2.15)

Figure 2.12. Parameters used for the determination of the von Neumann-Mullins relation. 

Equation (2.15) relates the rate of change of the grain area to only the topological
class n of the grain, n is the number of triple junction by which a grain is enclosed. It
can be noted that grains with more than 6 sides will grow whereas grains with less
will shrink. 
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In Fig. 2.13, the simulated rate of change of the grain area S is plotted as a function 
of the topological class n. The linear fit of the simulations has a slope of 1.0452mgb

while the slope of the von Neumann-Mullins relation is approximately 1.047mgb  . The 
accuracy of the model is attributed to the clear interpretation of all physical
parameters, and to the introduced method to handle the topological transformations.
It can be observed that the largest deviation are found for the grains with only three 
sides (n=3). This occurs because these grains reach very small sizes and the 
curvature of their grain boundaries can not be properly represented. Such grains 
disappear almost instantly, affecting the statistics for the grains within this topological 
class.

Figure 2.13. The comparison of the simulation results with the theoretical von Neumann-Mullins
relation.

2.5.3 Grain Size Distribution 

The microstructure of a material provides important information about the state of the 
material, distribution of the components (phases), and also hints about the physical
or mechanical properties which can be expected from the material. For these 
reasons, the analysis and understanding of the microstructure is indispensable.

The microstructure of a material can be experimentally obtained by sectioning three-
dimensional samples into two-dimensional planes. Examples of typical two-
dimensional (simulated) microstructures in a polycrystal are given in Fig. 2.10. The 
microstructures which can be found during grain growth can be characterized 
basically by the mean grain size and its evolution with time. However, a uniform grain 
size is normally not expected, instead the grain sizes fluctuate along the mean grain 
size and can be described by a statistical distribution function. The grain sizes
obtained experimentally can be represented by a lognormal distribution function,
which is given by 
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where D is the grain size, Dm the mean grain size and  the standard deviation. 
 
In Fig. 2.14, the histogram of the grain size measured in a titanium sample after 
recrystallization is compared with the lognormal distribution function (Eq. 2.16). It can 
be observed that the grain sizes follow very well the theoretical function. Lognormal 
distributions can be normally found in processes where the independent variable can 
be obtained from the product of many small independent factors, for example the 
sizes of sand grains can be considered to be the product of the interactions between 
them (these interactions occurs randomly depending on many factors like number of 
neighbouring sand grains, wind presence, etc.). However, the fact that the grains of a 
polycrystal are lognormal-distributed lacks of a strict scientific justification, several 
attempts have been done trying to derive the same dependency from elementary 
premises but so far, none has been completely successful. 
 

 
Figure 2.14. The histogram corresponds to the measured mean grain size in a pure titanium sample 
after recrystallization. The experimental grain size distribution can be fitted with the lognormal 
distribution. 
 
Hillert [66] introduced a statistical model of grain growth by using some aspects of the 
method of Lifshitz and Slyozov [67] for coarsening of particles (Ostwald ripening) for 
the derivation of a fundamental grain size distribution. The grain size distribution 
derived by Hillert has been, however, never experimentally verified. In the same tone, 
other distributions have been proposed [68, 69]. These distributions function to some 
extent but there is not still a unified and clear derivation of a proper grain size 
distribution. 
 
The grain size distributions obtained from simulations in isotropic conditions are 
normally characterized by their time invariance during grain growth (so called, self-
similarity). If a model shows this behavior, it is said that the model reaches scaling 



Chapter 2 38

behavior. In Fig 2.15 the simulated grain size distribution is shown, it can be 
observed that despite the decreasing number of remaining grains the normalized 
grain size shows the same behavior. The distribution function which fits better the 
simulations is the Weibull function, this function is correlated with the gamma function 
and has been found to fit well some experimental results [69]

Figure 2.15. Simulated grain size distribution, the scaling regime which is characterized by the 
invariance of the distributions functions with time is shown. The simulated distributions can be well
fitted by means of the Weibull distribution.
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Influence of a Magnetic Field on Grain 
Growth

3.1 Introduction 

Grain growth is intimately related to the grain boundary migration and therefore is 
susceptible to the same factors which affect the movement of the grain boundaries. 
For example, in Chap. 1 we learned the different factors that cause grain growth 
stagnation and that all of them are related to some kind of impediment on the motion 
of the grain boundary. In a similar way, the different driving forces for the boundary 
migration may affect the evolution of the grain boundary. Nevertheless, the order of 
magnitude of the driving forces is normally completely dissimilar. For instance, the 
order of magnitude of the capillary driving force is of about 10-2 MPa [9] whereas for 
the magnetic driving force is approximately 10-4 MPa (for Bismuth, H=107 A/m). Due 
to this tremendous difference, it is difficult to think that other driving forces can affect 
grain growth evolution. For example, in recrystallization, the driving force provided by 
the deformation is much higher than the capillary driving force, therefore the 
curvature of the grain boundaries cannot practically affect the boundary movement 
during recrystallization (in fact, the grain boundaries migrate against its curvature 
indicating how diminutive the capillary driving force is for this phenomenon). 

The effect of magnetic fields during the processing of materials has been extensively 
studied. In recrystallization and grain growth, this effect has been researched since 
1949 [70] in iron-based alloys, however, the investigations are normally restricted to 
ferromagnetic materials [71]. Non-ferromagnetic materials are normally overlooked 
because the effect of a magnetic field in these materials has been considered 
negligible.

However, in recent experiments [72-74] carried out in non-ferromagnetic Bismuth and 
Zink bicrystals, it was found that a magnetic field can exert a sufficient driving force to 
produce the motion of the grain boundaries. Experiments in non-ferromagnetic 
polycrystalline samples [75, 76] also showed that magnetic annealing can relevantly 
modify the texture evolution. All these investigations evince the importance of the 
development of simulation models capable to reproduce this phenomenon. 

3.2 The Magnetic Driving Force 

It is well known that the anisotropy of any physical property can be used as a source 
for a driving force. It is necessary only to create a difference in free energy across the 
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grain boundary to produce the required driving force. This can be achieved, for
example, by the application of a stress field to a material with an anisotropic Young’s
modulus or by the application of a magnetic field to a material with anisotropic 
magnetic susceptibilities. 

Figure 3.1. The magnetic driving force for a grain boundary is simply given by the difference in the
magnetic induced free energy of the neighboring grains. The grain g1 has a high magnetic free energy
(when 0, pm max.) whereas g2 a low energy, this leads to a driving force in the grain boundary in
direction of the most energetic grain.

In the case of a magnetic anisotropic material the driving force is given by the 
difference in magnetic induced free energy of both crystals along a grain boundary.
The magnetic free energy of one crystal reads [77] 

2
02

1 HEm ,          (3.1)

where μ0 is the vacuum permeability of the free space, H is the magnetic field 
strength and  is the magnetic susceptibility of the crystal. The driving forces in a
grain boundary with neighboring grains g1 and g2 (Fig. 3.1) can be written as 
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12 2
H

EEpm .        (3.2)

According to elementary crystallography the magnetic susceptibility of an uniaxial 
crystal can be written as , where 2cos  is the difference in parallel 

and perpendicular  susceptibility,  is the angle between the c-axis and the
magnetic field. Substituting into Eq. (3.2) leads to 
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To consider the magnetic driving force in the simulations it is only necessary to 
introduce explicitly Eq. (3.3) into Eq. (2.6) and (2.9), the velocity of the grain
boundary can be calculated as follows 

mgbgb pmmv 2

2

,         (3.4)

because the capillary and the magnetic driving force have the same direction (not 
necessarily the same sense) and recalling the variables of Fig. 2.5, the velocity of 
each discretizing point along the grain boundary is given by 
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The velocity of the triple junction is also slightly affected by the magnetic driving 
force. In the equation of the triple junctions (Eq. (2.9)), the magnetic driving force
applied on the immediately adjoining segments of the grain boundaries at the triple 
junction needs to be considered, then the velocity of the triple junctions reads 
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3.3 Texture Evolution in Magnetically Annealed Titanium

Molodov et. al.[78] investigated the evolution of polycrystalline titanium during 
magnetic annealing. They found that a magnetic field effectively affects the evolution
of the texture dramatically. The experiments were carried out in samples with 
different degrees of deformation. Two symmetrical peaks (Fig. 3.2) in the {0002} pole
figure characterize the deformation texture of titanium. These peaks spread around 
the orientations { 1=0°, =35°, 2=0°} and { 1=180°, =35°, 2=0°}.

Figure 3.2. Texture of 75% deformed titanium after reduction by rolling: (a) {0002} pole figure, ODF
sections at (b) 1=180° and (c) 1=0° [79]. 
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After the rolling, the samples were first annealed 15 minutes without magnetic field
and then magnetically annealed under field strength of 17 T at 750°C for different 
times. The direction of the magnetic field was selected in such a way that the grains 
with orientations close to the texture component { 1=0°, =35°, 2} posses a high
magnetic free energy (c-axis perpendicular to magnetic field). After 240 minutes 
magnetic annealing the texture has considerably changed since the intensity of the 
component { 1=0°, =35°, 2} has evidently weakened. This is attributed to the
higher rate of disappearance of those grains with a higher magnetic free energy. 

Figure 3.3. Texture after 240 minutes magnetic annealing, the weakening of the disfavored
component is evidently. 

3.4 Computer Simulations

In order to corroborate the hypothesis that the changes in the microstructure and 
texture were caused by the introduction of the magnetic field during the grain growth,
computer simulations were performed. For this purpose, the polycrystalline
microstructure obtained from EBSD measurements (Fig. 3.4a) was discretized for its 
use in the simulations. For the discretization of the microstructure, an algorithm was
implemented that tracks and connects the triple junctions and grain boundaries of the
microstructure through the difference of orientation between points and thus delivers 
the topological network that the model utilizes. The results of this discretization can
be seen in Fig. 3.4b, which consists only of connected points forming grain 
boundaries whereas the EBSD mapping consists of single orientations and there is
neither explicit discrimination of grains nor grain boundaries. 

The model requires as input the information about the grain boundary energy and 
mobility, the orientation of the grains, the magnetic field and the initial microstructure.
There is, so far, not reliable data on grain boundary energy and mobility for titanium,
for this reason, this parameters were chosen to be constant for the entire simulation 
with values of =0.3 J/m2 and mgb=1x10-10 m4J-1s-1. In turn, the used magnetic field 
strength was of 17.4 T. The other constants for the calculation of the magnetic driving
force are respectively the difference in magnetic susceptibility for titanium 

=1.18x10-5 and the permeability of the free space μ0=4 x10-7 N/A2. The
microstructure and orientation of the grains were taken from the EBSD mappings
(initial texture is shown in Fig. 3.6a), as described previously. 



Chapter 3 43

(a) (b)
Figure 3.4. (a) Experimentally determined microstructure by means of orientation microscopy
corresponding to the initial state before the magnetic annealing and (b) the same microstructure in its
discrete form for the simulation.

The orientation of the magnetic field mirrors the conditions used in the experiment, as
shown in Fig. 3.5. The magnetic field is perpendicular to the rolling direction (RD)
whereas the transverse direction is tilted 32° with respect to the magnetic field. 
Because both component are symmetrical, it is expected that the grains with 
orientation near the component { 1=180°, =35°, 2} have an additional driving force 
for the growth. Since their c-axes are nearly parallel to the magnetic field and thus 
have a smaller magnetic free energy in comparison with the component { 1=0°,

=35°, 2} whose c-axes are nearly perpendicular. 

Figure 3.5. Spatial orientation of the cold-rolled sample with respect to the magnetic field H; C1 stands
for the texture component { 1=180°, =35°, 2} and C2 for { 1=0°, =35°, 2}; ND/RD/TD are the
normal/rolling/transverse direction respectively.

3.4.1 Texture and Microstructure Evolution 

It should be noted, however, that the simulation results can only be compared 
qualitatively with the experimental ones. This is caused by two main factors, the lack
of real data for the boundary energy and mobility and the fact that the experiments
are performed in 3D samples whereas the simulation are 2D. Nevertheless, the 
simulations allow the possibility to draw general and qualitative predictions of the
effect of the magnetic field on the microstructure evolution. 

The texture obtained from the simulation shows a very good agreement with the 
experimental results. The intensity of the component { 1=0°, =35°, 2} decreases 
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with increasing time (Fig. 3.6c), in absence of the magnetic field the texture, as 
expected, shows no relevant changes in its evolution with time for the same 
annealing time (Fig. 3.6b).

(a) (b) (c)
Figure. 3.6. (a) {0002} pole figure for 75%-rolled Ti sheet sample after annealing at 750° for 15 min;
(b) and (c) - simulated pole figures after subsequent 10 min annealing at 750°C for a 2D Ti-polycrystal
without field (b) and subsequent 20 min. in a magnetic field of 17.4 T (c) (field direction is indicated by
a white cross).

The grains with orientations near to the favored component ({ 1=180°, =35°, 2}),
depending on their surroundings, have an additional driving force for their growing. 
Because the grains with higher magnetic energy disappear, the additional magnetic
driving force decreases with time and after sufficient time the magnetic field has no 
further effect.

The measurement of the individual orientation by means of orientation microscopy
provides the opportunity to analyze the evolution of the microstructure and its 
relationship with the fraction of grains which assemble a particular texture 
component. Since the magnetic driving force for an arbitrary grain depends on its
environment, the distribution of the grains with different orientations within the 
microstructure is very relevant. In Fig. 3.7a, the EBSD mapping of the microstructure 
is shown, the grains belonging to the component { 1=180°, =35°, 2} are depicted 
in red whereas the grains of the component { 1=0°, =35°, 2} in green.

Despite some clustering of grains with the same orientation, it can be observed that 
the grains of both components tend to distribute themselves essentially
homogeneous. For this reason, the effect of the magnetic field is also expected to be 
homogenous. After the application of both annealing treatments (conventional and
magnetic) the grains are distributed distinctly depending on the conditions of the 
annealing. The magnetically annealed sample shows a higher fraction of grains with 
orientation within the favored component { 1=180°, =35°, 2} (Fig. 3.7b and 3.7d)
whereas the sample annealed conventionally presents essentially the same quantity 
of grains of both components (Fig. 3.7c and 3.7e) which is the same condition found
in the original sample before the treatments (Fig. 3.7a). The good agreement of the 
simulation with the experimental results can also be observed. It must be only
stressed that the time of the simulation does not (and cannot, at least for 2D 
simulations) correspond with the real annealing time. The simulations provide,
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however, qualitatively the same result which validates the simulation model for its 
application in the simulation of grain growth in a magnetic field. 

(a) (b) (c)

(d) (e)
Figure 3.7. The simulated evolution of the grain fraction of the favored (red) and disfavored (green)
component; (a) shows the original microstructure, the grain fraction of both components is practically
the same. After 10 min. of magnetic annealing the microstructure is dominated by the favored grains
(b), whereas without magnetic field for the same time (c) no significant difference can be found from
the original condition. The same can be observed in the samples obtained experimentally (d)-(e) [79, 
80]. The component { 1=180°, =35°, 2} is depicted in , whereas { 1=0°, =35°, 2} in  and
other orientations in  respectively.

(a) (b) (c)
 Figure 3.8. Grain fraction of the favored and disfavored components; (a) the evolution with time of 
experimental grain fraction for both components during magnetic annealing, (b) grain fraction evolution
for the favored and disfavored (c) component during conventional and magnetic annealing.

In Fig. 3.8 the evolution with time of the grain fraction of the favored and disfavored 
component is shown. Consequently the amount of grains of the component { 1=0°,

=35°, 2} decreases apparently linear with time whereas the amount of the other
component correspondingly increases, this effect was observed in both, experiments 
(Fig. 3.8a) and simulations (Figs. 3.8b and 3.8c). In contrast, during conventional
annealing the grain fraction of both components remains practically constant with 
time which indicates that the grain growth is now exclusively driven by the reduction 
of the grain boundary surface. 
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3.4.2 Influence of the Magnetic Field on Grain Growth Kinetics 
 
As seen in previous sections, the introduction of an additional driving force for the 
grain boundary migration affects effectively the evolution of the texture during the 
magnetic annealing, as result of the faster shrinking rate of the highly energetic 
grains. For this reason, it can be thought that the overall kinetics of the sample is 
affected as well. However, the relationship between the dynamic behavior of the 
mean grain size and the effect of the magnetic field is not easy to establish because 
the magnetic driving force is dependent on time, texture, morphology of the sample 
and spatial distribution of the grains. The initial grain size before the annealing plays 
an additional role, then for very small grain sizes, the capillary driving force might be 
much larger than the magnetic one and, as a result, have practically no influence. In 
order to analyze all these possibilities, the kinetics of the grain growth was studied by 
means of computer simulations.  
 

 
Figure 3.9. Simulated kinetics of the experimental setup given in Fig. 3.5. The overall kinetics for the 
conventional and magnetic annealing does not show any significant difference, this is caused by the 
compensation of the kinetics of the favored component with the kinetics of the disfavored component. 
 
In Fig. 3.9, the results of the simulated kinetics obtained with the experimental 
conditions seen in Fig. 3.5 are presented. The kinetics obtained from all the grains, 
for the conventional and magnetic annealing, seems to be the same, no major 
difference between can be observed. This can be also appreciated in Figs. 3.7d and 
3.7e, after the annealing treatments, the mean grain size does not change 
significantly.  
 
However, if the kinetics of the diverse texture components is analyzed in detail, the 
difference becomes evident. For instance, the kinetics of the favored component is 
much higher than the kinetics of the disfavored component and the overall kinetics. 
The kinetics of the disfavored component presents also an interesting feature, at the 
beginning of the annealing, the curve for this condition seems to evolve linearly (Fig. 
3.9) but after some time (approx. at 30 min) the kinetics becomes slower and the 
curve does not show further linearity. This occurs because grains of the opposite 
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component surround mainly the still existing grains of this component and thus the 
magnetic driving force affects decisively their growth. 

Figure 3.10. Simulated grain growth kinetics for a sample with an initial mean grain size of only 10
μm.

Due to the nature of the influence of the magnetic field, the existence of a threshold 
grain size is expected. In Fig. 3.10 the simulated kinetics of a sample with an initial
grain size of 10 μm is plotted, all other parameters for the simulation were not 
changed. It is evident that the magnetic field does not affect the kinetics of the grain 
growth until a certain value of the mean grain size is reached. The kinetics of the 
favored and disfavored component (shaded region of Fig. 3.10) can not be
indistinctly separated and present practically the same behavior as the kinetics of the 
entire sample.

3.4.3 Von Neumann-Mullins Relation during Magnetic Annealing.

As a consequence of the analysis of the previous section, it is also expected, the von
Neumann-Mullins relationship not to be valid during magnetic annealing. In Fig. 3.11
the rate of area change for the favored component at different annealing times is 
shown and compared with theoretical von Neumann-Mullins relation. For the sake of 
simplicity, simple linear fits were selected to model the simulation data owing the fact 
that the real dependency of the grain-area rate change is unknown.

The area change rate, taken after 10 minutes of annealing, shows the largest
deviation with respect to the theoretical relationship. This occurs because at early 
stages of the thermal treatment, the grains of both components are distributed 
homogeneously (Fig. 3.7a), their grain fractions are similar (Fig. 3.8b-c) and thus the 
grains of the favored component experiment a maximal advantage for their growth.

With the decrease in number of the disfavored grains the clustering of the favored 
grains is promoted and as consequence the evolution of the grains becomes slowly
dominated by the capillary driving force (i.e. curvature driven grain growth). This 
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behavior is reflected also in Fig. 3.11, which shows that after subsequent annealing
the area change rate of the favored component approaches the von Neumann-
Mullins relationship. It can be noted that the simulation data after 80 minutes deviates 
only slightly from the von ideal von Neumann-Mullins relation. The curve for the 
disfavored grains after 10 minutes of magnetic annealing can also be observed in 
Fig. 3.11. A negative growing rate for grains with n=6 is evident, the curve is shifted 
to lower growing rates reflecting the influence of the magnetic field.

Figure 3.11. Grain-area rate with time in dependency on the topological class for the favored and
disfavored component, the data were taken directly from the simulation at different times. 

One would be tempted to derive an equivalent equation to the von Neumann-Mullins
relation with consideration of the magnetic field. However, this task is practically
impossible due to the stochastic nature of the magnetic driving force. Since the 
magnetic driving force change heterogeneously, the equilibrium angle at triple
junctions deviates from /3 and cannot be subtracted from result of the integration of 
Eq. (2.14). Another complication for the determination of the analytical equation
arises from the dependency of the magnetic force on time, as seen in a previous
section, because the disfavored grains disappear gradually, the influence of the 
magnetic field decreases accordingly, resulting in a completely new set of turning
angles that should be rested from Eq. (2.14).

3.5 Magnetic Annealing in a Sample with Randomly 
Oriented Grains

In previous sections, it was effectively demonstrated that a magnetic field can affect 
the evolution of the texture and kinetics during grain growth in a strongly textured 
sample. However, it still remains open if the same occurs in samples mildly textured
or even with randomly oriented grains. If the magnetic field is capable of affecting the
evolution of grain growth even in this kind of samples, then it can be used to engineer
materials magnetically by massively eliminating undesired texture components or
promoting the growth of some selected grains, which would be the base of
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magnetically tailored materials. In the current section, it will be analyzed the general 
case of a sample with randomly oriented grains.  
 
Considering only a grain of the sample, the average magnetic driving force exerted at 
this grain can be expressed as the difference between the magnetic free energy of 
the grain and the average magnetic free energy resulting from the neighboring grains 
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where n is the number of grain boundaries enclosing the grain. For a crystalline 
aggregate with randomly oriented grains, the distribution of the angles between the c-
axis and the magnetic field is given by [81] 
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the average magnetic driving force can be expressed then as [80] 
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For a >0, the grains with <54.73° will be favored for growth independently of the 
direction of the field. Naturally, this condition can only be attained as long as the 
orientations of the grains remain random distributed. However, we can conclude that 
even in a sample with randomly oriented grains, there will always be grains with an 
energetic advantage for their growth and thus the sample will become textured during 
the magnetic annealing. 
 
Despite that initially the grains with <54.73° will be favored for their growth 
irrespectively of the field direction, the latter is decisive for the final texture of the 
sample. Taking into account the direction of the magnetic field, the distribution of the 
magnetic energy for random orientations can be determined. In Fig. 3.12, such 
distribution is shown for the cases when the field is directed parallel to the direction z0 
(Fig. 3.12a) and when the field is directed parallel to the direction y0 (Fig. 3.12b).  
 
In both cases, it is evident that for some orientations, the magnetic energy is much 
higher and therefore grains with these orientations will have a disadvantage for their 
growth indistinctly of their spatial location in the polycrystal. Since the formation of 
clusters of similar orientations is not very probable: grains with orientations in the red 
zone will be surrounded by at least one grain of the blue zone and be consumed 
more rapidly by this grain (Fig. 3.12). 
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(a) (b)
Figure 3.12. Distribution of the magnetic energy in the spherical space given a permanent direction of
the field, in (a) the field is parallel to the direction z0 (perpendicular to the paper plane) and in (b)
parallel to the direction y0.

3.5.1 Orientation and Simulation Details

In order to demonstrate the validity of the previous assumptions, computer
simulations were performed using the microstructure described in section 2.5. A
random orientation distribution was imposed in the microstructure, while others 
parameters for the simulation ( , mgb and H) were not changed.  Two different
directions for the magnetic field were used, [001] and [010], both represented as unit 
vectors of the general vector [x0,y0,z0]. Both directions correspond to the cases 
shown in Fig. 3.12.

The algorithm to generate a random orientation distribution is critical, because if 
simple random numbers are assigned to { 1, , 2}, due to the symmetry of the 
spherical space, the selection of random orientations from uniform distributions will 
lead to the clustering near the poles of the sphere ({0001} pole figure for the 
hexagonal geometry). In order to avoid this complication a special algorithm is
necessary. This algorithm and some useful tools for the easy and fast calculation of
mis- and disorientations are explained in detail in appendix B.

The accuracy of the used algorithm can be appreciated in Fig. 3.13, where the pole
figure of the obtained orientations and the corresponding misorientation distribution
can be seen. The pole figure (Fig. 3.13a) shows that the clustering of orientations is
relatively infrequent; this is reflected by the very low maximal intensity (about 1.2). In 
concordance with this result, the corresponding misorientation distribution of the 
grain boundaries in the sample (bars in Fig. 3.13b) agrees almost perfectly with the 
theoretical prediction (solid line in Fig. 3.13b) demonstrating the random character of 
the orientation distribution.
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(a) (b)
Figure 3.13. (a) {0002} pole figure for a sample with an absolute random texture and (b) the
corresponding misorientation distribution, the solid line represents the theoretical distribution function.

3.5.2 Texture Evolution

The simulation results showed that the magnetic field determines the final texture 
after the magnetic annealing. When the field is directed parallel to the z0-axis, the 
grains with orientation near to the component { 1, 90, 2} experiment a lower
magnetic energy (Fig. 3.12a) than the grains with other possible orientations in the 
polycrystal. For this reason, during the magnetic annealing, these grains have an 
advantage for their growth and are expected to consume the more energetic grains. 

After only 15 minutes of magnetic annealing, the most energetic grains have already 
disappeared (Fig. 3.15a for t1), the center of the pole figure has now the minimal 
intensity and the sample presents a significant texture. According to the color scale, 
the intensity shows an increasing gradient in the outward direction of the pole figure 
that corroborate that the grains with the lowest energy grow at expense of the others. 

The texture becomes sharper with increasing time (Fig. 3.15a). This occurs because
the magnetic energy is a continuous function of the spatial orientation of the 
crystallites, and therefore, there is not a limiting value where the energy suddenly
drops to zero (discontinuities). In fact, taking as reference the center of the pole
figure, it can be said that the magnetic energy decreases monotonically as the crystal 
orientation deviates from the center of the pole figure. Naturally, the only orientations
with a zero magnetic energy will be those which lie precisely at the border of the pole
figure i.e. with the orientation { 1, =90, 2}. In a hypothetically infinite polycrystal, 
normal grain growth (i.e. curvature driven), under these conditions of magnetic 
annealing, can only take place when all the remaining grains possess an orientation 
in the interval { 1, 90, 2}.
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Figure 3.14. Comparison of the pole intensity for the sample with randomly oriented grains (t0) with
the magnetically annealed sample after 50 minutes, the direction of the sample corresponds to the
vector [001]. Evidently, after the annealing the sample has a very sharp texture.

(a)

(b)
Figure 3.15. Texture evolution with time in a sample with randomly oriented grains with magnetic field
(a) oriented parallel to the z0-axis (perpendicular to plane x0y0) and (b) oriented parallel to y0-axis
(perpendicular to plane x0z0) with t3>t2>t1.
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The texturization of the sample can be corroborated by the plot of the texture 
intensity (Fig. 3.14) as a function of the Euler angle . The values of the Euler angles 

1 and 2 are irrelevant because the intensity is homogenous for all Euler angles for 
the case of a sample with random orientations. In the case of the magnetically 
annealed sample, the intensity shows only variation for , as consequence of the 
magnetic annealing which leads to the disappearance of the grains with orientations 
different than { 1, =90°, 2}. The intensity of the sample with random orientations is 
shown to be constant for all the range of , furthermore, the intensity is very low. In 
contrast, the intensity of the sample which was annealed 50 minutes presents a high 
peak precisely at =90, the intensity of this peak is also much higher than the 
maximal intensity of the sample with randomly oriented grains. 

In the case when the field has an orientation indicated by the unit vector [010], the 
favored grains have an orientation given by the components {90°, , 2} and { 1, 0°, 

2} in the Euler space. As in the previous case, after some time the sample becomes 
textured and with increasing time, the intensity of the orientations of the favored 
grains raises as well (Fig. 3.15b). 

3.5.3 Grain Fraction Evolution 

The sharpening of the texture is the result of the decrease of the grain fraction of the 
disfavored component with time. Unlike the case of titanium, where the initial texture 
was very sharp and the initial grain fraction similar, the grain fraction of both grain 
subsets is now clearly dissimilar. The favored grains are only about 35% of the grains 
at the beginning of the annealing (Fig. 3.16) whereas the rest corresponds to grains 
of the disfavored component. This leads to a similar but slightly different behavior of 
the evolution of the grain fraction with time with respect to the grain fraction evolution 
for the sample with a very sharp initial texture (Fig. 3.8).  

The principal feature which can be drawn from this picture is that apparently there 
are two different regimes of the grain fraction evolution. The first regime is 
characterized by a high slope and takes place approximately in the time interval of 5-
40 minutes. The slope is directly related to the magnetic driving force which 
experiment the grains in this stage. As the favored grains occupied only 35% of the 
polycrystal and due to the random character of their spatial distribution, it can be 
supposed that they are mainly surrounded by grains with an energetic disadvantage 
and thus will grow much faster at expense of the disfavored grains, which leads to 
the eventual intersection of both grain fractions. 

In accordance with the decreasing number of disfavored grains, the favored grains 
come gradually into contact with grains that possess also a low magnetic energy and 
therefore their kinetics slows down which is reflected also in the deceleration of the 
grain fraction of the favored grains. The second regime starts when grains of the 
same energetic class dominate the microstructure, this occurs after approximately 40 
minutes of magnetic annealing when the grain fraction of the disfavored grains is 
about 0.3. 
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Figure 3.16. Computed grain fractions as a function of the annealing time for different grain subsets;
favored grains subset { 1, =90, 2} and disfavored {all other grains}.

3.5.4 Effect of the Magnetic Field on Grain Size Distribution and 
Topologic Arrangement of the Grains 

As demonstrated in sec. 2.5.3, during normal grain growth under isotropic conditions,
the grain size distribution is characterized by its time invariance. However, in 
presence of a magnetic field, the invariance cannot be guaranteed due to the 
enhanced growth of some grains at expense of the others. 

The next example comprises the grain size distributions for the sample magnetically 
annealed with a field direction [001]. With this setup the grains with orientations { 1,

=90, 2} experiment a negative mean magnetic driving force mp <0 whereas the
remaining grains a positive one. This can be interpreted, in terms of the grain size
distribution, as a displacement of the mean grain size of the favored and disfavored
grains to greater and smaller values respectively and thus as an overall displacement 
of the grain size distributions.

As stated in sec. 2.5.3, the initial grain size of the used microstructure is normal 
distributed. Therefore, the corresponding initial distributions for the favored and
disfavored grains are also normal, as shown in Fig. 3.17a. When the magnetic field is 
applied, the influence of it can be immediately seen after only 10 minutes of 
annealing. As mentioned previously, the distribution of the favored grains is shifted to 
the right side with respect to the mean grain size of the whole sample (D/<D>=1). In 
contrast, the distribution corresponding to the disfavored grains is displaced to the 
left side. Since most of the disfavored grains have a smaller size than the sample
average, they have an additional disadvantage besides the one caused by the 
magnetic field because grains with smaller sizes are more prone to shrink (since 

1/D).
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(a) (b)
Figure 3.17. Grain size distributions for grains with low { 1, 90°, 2} and high {all other orientations}
magnetic energy. In this example the magnetic energy is oriented along the z0-direction, (a) initial
distribution at t=0 and (b) distributions after only 10 minutes magnetic annealing.

The question now is whether the magnetic field can affect other characteristics of the 
microstructure. So far, the magnetic field has proven to affect effectively the texture 
and the grain growth kinetics. However, due to the nature of the magnetic driving
force, the effect on the kinetics tends to dissipate as the microstructure becomes 
dominated by the grains with the lowest magnetic energy and thus the growth 
advantage is lost. For this reason, a noticeable modification of the morphology
occurs only in the interval where the magnetic field influences determinedly grain 
growth.

For a strict analysis of the morphology, some objective criteria are needed, such as 
the grain size distribution function or the topological class distribution function. As in
the case of the grain-size distribution function, the experimentally determined and
simulated topological class distribution functions are different in some aspects. The 
experimental distribution reaches, normally, a maximum near the topological class 
n=5 [82, 83] whereas the simulated distribution reaches a maximum at n=6, which is 
the expected for a topological network. This difference arises because the 
experimental distributions are measured from 2D sections of three-dimensional 
samples whereas in the simulations the grain growth takes place exclusively in two-
dimensional space. Nevertheless, the topological class distribution, in contrast to the 
size distribution, corresponds to a lognormal distribution for both cases (experimental
and simulated).

In the present case, the simulated topological class distribution during conventional
annealing reaches a maximum at n=6 (Fig. 3.18a), as expected. When a magnetic 
field is applied, the maximum can still be seen at n=6, however, the number of grains 
within this topological class decreases considerably (about 5%) (Fig. 3.18a). This
results in a slight broadening of the distributions. It can be seen that there are more 
grains of all other topological classes with exception only of n=6, as result of the 
failing of the von Neumann-Mullins Equation.

In Fig. 3.18b, the distributions of the topological class for the favored and disfavored 
grains are shown. It can be seen that the distribution for the disfavored grains is
displaced slightly to the left, whereas, exactly the opposite can be seen in the 
distribution corresponding to the favored grains. The displacement of the topological 
class distributions is in accordance also with the displacement of the distribution for 
the grain size. For instance, the grain size distribution of the disfavored samples is
displaced clearly to smaller sizes and for this reason, it is expected, that grains with 
these conditions possess a lower topological class, which actually occurs. 
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(a)

(b)
Figure 3.18. Normalized grain fraction as a function of the topological class for (a) the whole sample
during magnetic and conventional annealing and (b) only during magnetic annealing but for the 
favored and disfavored grains.
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The Vertex Model, Grain Boundary 
Junctions and Grain Boundary 
Migration

4.1 Introduction 

Grain boundary migration is one of the unresolved fundamental problems of the 
materials science. The interest in this topic arises from the fact that this phenomenon 
underlies a wide range of microstructural evolution processes, such as, 
recrystallization and grain growth and hence, is determinant for the physical, 
chemical and mechanical properties of materials. Extensive investigation in the field 
has been performed by measuring the mobilities in polycrystals, normally during 
recrystallization and grain growth. However, the extensive information provided by 
these investigations was useful only to certain extent and mainly only for the system 
in which the mobility was measured. Due to the nature of the experimental setups, 
only the average mobility could be obtained and therefore the correlation between 
the property (grain boundary mobility) and structure cannot be established. 
Additionally, the isolated effect of temperature, pressure, impurity content on the 
motion of specific grain boundaries cannot be studied by these methods. 

Recently, fundamental results have been obtained by studying the motion of 
individual grain boundaries from bicrystal experiments [84-91]. As the bicrystal 
represents an isolated system, the dependency of the motion on determined factors 
(crystallography, impurity content, etc) can be straightforwardly established. For this 
reason, the bicrystal method for the determination of the (reduced) mobility has 
become, nowadays, the standard.

Besides, the previously mentioned factors that affect grain boundary motion. The 
triple junctions have been found [92-95] to influence grain boundary motion, as well. 
Naturally, investigations for the determination of the dependency of the grain 
boundary motion on this variable have been carried out  in tricrystalline samples with 
very simple geometries. Despite the simplicity of the specimens, the existing 
methods [8, 9] for their manufacture require substantial experimental effort for the 
obtaining of tricrystals with the required quality. 

Nevertheless, this problem is not present if the investigations are performed by 
means of computer simulations, since the geometry can be arbitrarily defined and the 
grain boundary character is predefined simply by setting the orientation of the 
neighboring grains. For this purpose, simulation models, normally in the microscopic 
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spatial scale (e.g. molecular dynamics), have been used to determine diverse effects 
on grain boundary mobility [96]. In a minor scale, mesoscopic models have been 
used for similar purposes [97]. The contempt for such models occurs because they 
make use necessarily of the boundary mobility and energy and thus rely on the data 
obtained either experimentally or by more fundamental simulation methods. 
However, the grain boundaries (as explained in Ch. 1) are complex structures 
depending on many factors, which cannot be always neglected during
experimentation (e.g. grain boundary stiffness [98], external crystal surface [8], 
dependency of the mobility on boundary inclination [98, 99], etc.). It is precisely at
this point, where mesoscopic simulations models can be used to understand better 
the underlying physics of these phenomena.

Regardless that the vertex model considers only the fundamental equations 
governing the boundary migration, it has been scarcely used for the simulation of
simple grain boundary migration and preferably, and normally only, used for the 
simulation of topological networks despite that the model allows to study individually
all factors and dependencies involved in the course of grain boundary migration.

In the present chapter, the vertex model is used in very simple geometries to explain
fundamental problems found during grain boundary and triple junction migration. The 
theoretical basis of the motion of connected grain boundary systems and triple 
junctions is introduced. The examples in this chapter evince the flexibility and efficacy
of the model. 

4.2 Grain Boundary Systems with Triple Junctions 

A triple junction, as defined in Sec. 1.4.1, is the intersection of a triple line with the
plane or the point where three two-dimensional grains meet (Fig. 4.1). The triple
junctions are the points where the grain boundaries interact with each other. They 
have well defined physical properties, such as line tension l [100, 101] and mobility
mtj [102]. The motion of the triple junctions during the course of microstructure 
evolution occurs under the action of the grain boundaries energies and the line 
tension of the junction [9] and is given by 

n
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igbitjtj
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where vtj is the triple junction velocity, the vector t  is the tangential vector to the
grain boundary which is also parallel to the line of the junction. The vector r is the 
radius of curvature at a determined point of the triple line. If the influence of the line 
tension can be neglected, Eq. (4.1) reduces to 

n
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which is, in principle, equal to Eq. (2.8). Eq. (4.2) considers the sum of the grain
boundaries energies that intersect at the same line, however, n (number of adjoining
boundaries) is typically equal to three. More than three grain boundaries might 
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intersect along a line. However, since these configurations are energetically unstable,
they will subsequently split up into several triple junctions.

Figure 4.1. (a) Triple line and cutting plane (AA’-BB’); (b) the intersection of the three-dimensional
triple line with the plane results in a two-dimensional triple junction.

4.3 Triple Junction Motion 

It is commonly believe that triple junctions cannot affect grain boundary motion and
that their role is reduced to maintain the thermodynamic equilibrium during grain 
boundary migration. However, in recent years, several experimental and theoretical 
investigations have demonstrated that these elements can drag grain boundary
motion [94, 95, 103] because their motion can involve additional energy dissipation
and thus have a finite and definite mobility [102]. 

The study of the kinetic properties of such system is only possible in the course of
steady-state motion. However, the steady-state motion can be achieved in very few 
configurations. Since the driving force for the motion of the system is still the 
curvature of the boundaries, the required independency with time of the driving force 
depends necessarily on the geometry of the configuration and thus the range of 
possible configurations is restricted to those which fulfill the geometrical 
requirements. In the present chapter two different configurations will be considered, 
the first being a tri-crystalline system (Fig. 4.2) which has been achieved
experimentally [92] and the second, being a system, which can be only theoretically 
considered due to the required boundary conditions of the system (Fig. 4.3) [9].

4.3.1 Grain Boundary Shape and its Correlation with the Steady-
state Motion of a Tricrystalline System

In the following, a grain boundary system and a triple junction, as shown in Fig. 4.2, 
will be considered. The system is supposed to have grain boundary energies and 
mobilities independent of the grain boundary misorientation. Under such conditions,
the normal velocity vn of the grain boundary is given by the product of the mobility 
mgb, energy  and the curvature  of the grain boundary, as follows

gbn mv ,           (4.3)
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where the curvature of any two-dimensional curve explicitly reads 
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The displacement velocity of the grain boundary in the x-direction can be easily 
calculated as 
 

2
121 y

yvvv xxn cos .        (4.5) 

 
Combining Eq. (4.3), (4.4) and (4.5) yields the differential equation 
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which provides the shape of the grain boundary depending on the used boundary 
conditions for its solution. According to the geometry of Fig. 4.2, the boundary 
condition of the current problem are: 00)(y , 2/)( ay  and tan)(0y . The 
solution of Eq. (4.6) delivers 
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the meaning of the variables, a and  are clear from Fig. 4.2. Finally, working out the 
boundary velocity in the x-direction in Eq. (4.6), substituting Eq. (4.7) in (4.2) and 
simplifying the resulting expression, the steady-state velocity of the system can be 
expressed as [9] 
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Figure 4.2. Geometry of the grain boundary system with triple junction.

The previous equation demonstrates that the steady-state motion of a boundary 
system with a triple junction is indeed possible but the description of the influence of 
the latter element on the evolution of the system is still lacking. In order to consider it, 
the equilibrium of forces at the triple junction needs to be taken into account. The 
force P acting at the triple junction can be determined from the sum over the surface 
tensions of the grain boundaries meeting at the triple junction 

321 FFFP . (4.11)

Due to the symmetry of the forces, the force acting at the junction is reduced only to 
the x-component and thus the magnitude of the force P reads 

122 coscosP . (4.12)

The evolution in steady-state of the system requires the force P to be equal to
, and consequently the velocity of the triple junction is given by tjtj mvP /

12costjtjtj mPmv . (4.13)

If the triple junction does not drag the evolution of the system, the force P is
correspondingly equal to zero (if mtj  then P 0) and the equilibrium angle will be

=60°. It should be noted that under this circumstance the dihedral angle 2  would
correspond exactly to 120°. 

Since  (Eq. (4.10)) and  (Eq. (4.13)) have to be identical, it is possible to define a 
dimensionless parameter which determines the steady-state value of the angle  and 
therefore the influence of a finite triple junction mobility on the evolution of the 
system.
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If the quadruple junction is perfectly mobile, then tj  and 60°, which is the
equilibrium angle. In contrast, if the triple junction moves slowly and drags the 
migration of the grain boundary then tj 0 and 0.

4.3.2 Effect of a Finite Triple Junction Mobility on the Evolution of a
Multigranular System (n>6)

A second system in which the motion occurs in steady-state is shown in Fig. 4.3. 
Unlike the configuration of Fig. 4.2, which can be used to conduct experimental 
investigations, the present configuration can only be theoretically considered. 
Nevertheless, this configuration is very useful because it helps to understand the 
influence of finite triple junction mobility on the growth of grains with a topological
class larger than six, as will be shown in a further section.

Figure. 4.3. The motion of the triple junction of the grain boundary system takes place in steady-state.
The dotted lines indicate the needed periodicity of the system in the y-direction, the equivalent to this 
would be an infinite system, which repeats itself in the same y-direction.

The shape of the curved grain boundary for the present configuration is defined by
the solution of Eq. (4.6) but with a different set of boundary conditions, namely, 

,)(0y tan)( 0xy  and 00)(y . Under these conditions the shape of the 
moving grain boundary is given by 

C
x

eCxy arccos)( , (4.15)

where

sinln
0x

C . (4.16)

The meaning of the angle  and the distance x0 can be seen in Fig. 4.3. The
displacement velocity of the grain boundary is calculated in the same way as for the 
previous configuration (substituting Eq. (4.15) in (4.6) and further simplification); the 
steady-state velocity results 

sinln
0x

m
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x . (4.17)
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The motion of the triple junction occurs under the action of the surfaces energies of
the three meeting grain boundaries, the triple junction velocity can be expressed as 

cos21tjtj mv . (4.18)

Combining Eq. (4.17) and Eq. (4.18), we arrive to the expression of the 
dimensionless parameter similar to Eq. (4.14)

gb
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sinln . (4.19)

When the kinetics are dominated by the grain boundary mobility ( tj>>1) the angle 
tends to 60° whereas when the triple junctions determines the kinetics ( tj<<1) the
angle tends to 90° which is fully equivalent to the flattening of the grain boundaries. 
This has deep repercussions on the von Neumann-Mullins equation because the 
equilibrium angle at triple junction is also affected by a finite triple junction mobility,
this effect will be treated in a subsequent section. 

4.3.3 Validation and Verification of the Equations for the Effect of a 
Finite Triple Junction Mobility on the Evolution of a Grain
Boundary System

To validate the equations introduced in the previous section and verify the 
applicability of the vertex model when the triple junction mobility is finite, vertex 
model simulations were performed. Fig. 4.4 shows the grain assembly that
reproduces the configuration shown in Fig. 4.2. The initial configuration can be seen 
in Fig. 4.4a, it can be noted that the initial geometry differs deeply from the required 
configuration. The system requires relaxing in order to reach the equilibrium 
geometry (Fig. 4.4b). During the simulation of this configuration, the angle  and the
time evolution of the surface of the grain were recorded as a function of time and tj.

The time evolution of the area is shown in Fig. 4.5, for large tj [ ,5] the area is 
evidently linear with time. For intermediate and low values of tj (5,0] the area 
dependency on time seems not to be linear. It might be thought that the evolution of 
the system does not takes place in steady-state for this regime. However, the plot of
the area rate of change (Fig. 4.6) demonstrates that the steady-state motion of the 
grain boundaries is reached but at different times, this delay in time depends on tj,
the lower the value of tj, the larger the delay. For instance, in the interval tj=[ ,5]
the relaxation time is very short and the constant area rate of change  is reached 
very quickly, whereas in the interval 

S
tj=(5,0], the constant  takes place after

evidently much larger times. This can be explained by the fact that the area, which
needs to be swept by the grain boundary in order to reach the steady-state 
configuration, increases with decreasing 

S

tj and thus the relaxation time increases.
Additionally, during this stage the displacement velocities of the triple junction and 
grain boundaries are different, which leads to the nonlinearity of the grain area with 
time. Nevertheless, the most prominent consequence of the finite mobility of the triple 
junction is the slowing down of the grain growth kinetics. As seen in Fig. 4.5, for the 
lowest triple junction mobility the system requires about four times more time to 
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sweep the same area (i. e. the triple junction slows down the evolution of the 
system).

Figure 4.4. (a) Grain configuration used for the simulations of the configuration given in Fig. 4.2 at
time t0 and (b) after relaxation, when the steady-state motion occurs.

Figure 4.5. Evolution of the kinetics of the system shown in Fig. 4.4 for different triple junctions
mobilities.

The curve for  (Fig. 4.6) shows that a perfect steady-state motion of the system is 
not attained, the value of  reaches an almost constant value but a slightly non-
constant dependency on time can still be observed. The explanation for this is found 
in one of the boundary conditions used for the integration of Eq. 4.6. The dimension a
(grain size) is only attainable at the infinite according to Eq. 4.6, in order to attain a 
perfect steady-state motion this condition must be reproduced in the computer 
simulations, condition that is practically impossible. For this reason, a small 
dependency on time is introduced. The nonlinear dependency on time of the grain
area is more evident for smaller 

S
S

tj because with the decrease of the angle , the 
finite length l (Fig. 4.5) needs forcibly to be increased in order to avoid the reduction 
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of the length a that takes place when the grain boundary is curved in the vicinity of l.
The initial ratio l/a used in the simulation was constant and equal to l/a=20, thus the 
introduced error manifests itself more clearly for lower tj.

Figure 4.6. Area rate of change in dependency of time and triple junction mobility, certain time is
needed before the steady-state motion can be achieved. However, a perfect steady-state motion is not 
attained.

One of the first effects of a finite triple junction mobility can be seen in the shape of 
the evolving grain boundaries. Eq. (4.14) predicts that the decrease of the triple
junction mobility leads to the change of the equilibrium angle  and consequently to
the modification of the shape, since y(x)=f( ). Fig. 4.7 illustrates the change of the 
shape and equilibrium angle as a function of tj. Experimental investigations in pure 
zinc tri-crystals have also confirmed that a change of the grain boundary shape,
attributable to the triple junctions, occurs during annealing at different temperatures 
(Fig. 4.8) [92]. 

It has been so far demonstrated that the steady-state motion of a system of grain 
boundaries and a triple junction is possible. Additionally by means of the computer 
simulations the kinetics of the grain growth under the influence of a finite triple 
junction mobility was determined for the configuration corresponding to n<6. To 
corroborate the case when n>6, the geometry shown in Fig. 4.9 is used. This
geometry reproduces exactly the configuration used for the derivation of Eq. (4.19), 
for these simulations periodical boundary conditions were used, as indicated in Fig. 
4.3. In a similar manner to the previous case, the grain boundaries at the beginning
of the simulation are flat and thus some relaxation time is required until they become
curved and the motion proceeds in steady-state (Fig. 4.10). Despite the necessity of 
a relaxation time no major influence can be seen in the results. This is in part due to 
the initial configuration which possess boundaries closer to the equilibrium angle for
low tj, i.e. =90° and in part because for this case the quality of steady-state motion
does not depend on the size of the simulation box at all. 



Chapter 4 66



Chapter 4 67

Figure 4.8. Experimental shapes [9]. 

The time evolution of the grain area (grain 1 in Fig. 4.9) is evidently linear, a 
decreasing finite triple junction mobility drags the grain growth in a similar way as in 
the case for n<6. The shape of the grain boundaries and the equilibrium angle of the 
steady state motion are also influenced by the triple junctions. The flattening of the 
initially curved grain boundaries can be clearly seen in Fig. 4.11.

Figure 4.9. (a) Grain configuration used for the simulations of the configuration given in Fig. 4.3 at
time t0 and (b) after relaxation, when the steady-state motion occurs.
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Figure 4.10. Evolution of the kinetics for the grain 1 in the configuration shown in Fig. 4.7, the steady-
state motion is achieved almost immediately; the area of the grain as a function of time is evidently
linear.

Figure 4.11. Steady-state shape and equilibrium angle for different mobilities (n>6).

The change of the shape and equilibrium angle are a good indicator that triple 
junctions affect grain growth evolution, the magnitude of the effect can be estimated
from the kinetics, but none of these results provide a validation for the simulation
model. In order to demonstrate that the simulation results fully agree with the 
theoretical equations derived in the preceding section, the equilibrium angle  has
been plotted as a function of the triple junction mobility tj (Fig. 4.12)  for both 
simulation cases, n<6 and n>6. In this plot, the lines represent the theoretical 
equations whereas the points were calculated with Eq. (4.14) and (4.19) from the 
angles which were taken directly from the simulations. The simulation results agree 
very well with the theoretical considerations, the deviations from the theoretical line
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lie in the expected range error of the simulation method. Recalling that the vertex 
model uses straight-line segments to represent a continuous grain boundary, one 
can note that the error in the calculation of the angles will depend on the number of
the segments that are being used to brake down the grain boundary during a
simulation. Nevertheless, despite the deviations, the simulation results show an
outstanding agreement with the theoretical predictions. This point is very important 
because it validates both, the simulation model and the theoretical predictions. For 
the simulation model is particularly relevant because it means that the model can be 
used to simulate polycrystals with a finite triple junction mobility. In the next section,
we will refer briefly to this point.

Figure 4.12. Comparison of the simulation results with the theoretical relationships given in Eq. (4.14)
and (4.19).

4.3.4 Effect of a Finite Triple Junction Mobility on the Evolution of a
2D Polycrystal

The effect of a finite triple junction mobility on the evolution of a polycrystal has been 
in detail investigated [94]. It has been shown that grain boundary migration affected 
by triple junctions can be considered as motion of grain boundaries with mobile 
defects, in such a way that the area rate of change of the grains is given by [104] 

22
11

n
m

S

tj

gb . (4.20)

Evidently, there will be two different expressions for the area rate of change
depending whether the topological class is less than or more than 6. A finite triple 
junction mobility changes the value of the dihedral angle, in the case of n<6, this
angle decreases whereas in the case of n>6 the angle increases. Since the 
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magnitude of the angle  depends solely on tj it is possible to find the relationship
between the  and S tj. First let consider the case when n<6, by expanding the 
cosine function in Eq. (4.14) by its series equivalent, it is possible to work out the 
angle  as follows [94]: 

tj

tj

336

3
, (4.21)

and combining with Eq. (4.20) results in 
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If the triple junction mobility is infinite, Eq. (4.22) will convey the classical von
Neumann-Mullins relationship. Eq. (4.22) shows that a zero growing rate is not 
anymore an exclusive function of the topological class. 

In a similar manner, it is possible to work out  from Eq. (4.19) (n>6). The value of 
for this case reads 

tj3
3sinln

3 , (4.23)

and the rate of change of the grain area for n>6 can be expressed as 
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This expression becomes identical to the von Neumann-Mullins relation for an infinite
triple junction mobility, as in the case for n<6. 

Gottstein, Ma and Shvindlerman [94] demonstrated the validity of these expressions
using the vertex model and determined the effect of triple junctions on the grain 
growth kinetics. Fig. 4.13 shows the kinetics of the grain growth when is dominated
completely by the motion of the triple junctions in comparison with the normal grain 
growth kinetics. It can be observed that grain growth is strongly dragged, for details 
refer to [28, 94]. 
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Figure 4.13. Triple junction- and grain boundary-grain growth kinetics [28]. 

4.4 Grain Boundary Motion and Dependency of the 
Boundary Energy on Inclination Angle

The physical properties of the grain boundaries depend on the eight parameters that
describe the grain boundary. In particular, the mobility and the grain boundary energy
are particularly sensitive to them. Normally, only the dependency of these properties 
on the misorientation angle is considered. This is in part due to the lack of reliable
data for dependencies that are more complex and partially to the belief that other 
dependences do not affect grain boundary migration. In particular, the dependency of
the grain boundary energy and mobility on grain boundary inclination is normally
neglected, not without reason then in many cases, the boundary inclination does not 
strongly affect the migration of the grain boundaries [8, 98]. Moreover, molecular 
dynamic simulations have also shown that the shape of a U-shaped grain boundary 
is consistent with an isotropic reduced mobility [199]. 

Nevertheless, the neglect of the influence of this parameter has lead in the past to
the misinterpretation of results [97]. Therefore, it is clear that in some cases its 
influence cannot and must not be ignored. In the present section, it is shown that the 
vertex model can be used for the simulation of grain boundary migration when the 
dependency on inclination of the grain boundary energy is considered. The vertex 
simulations were used in conjunction with molecular static simulations for the 
understanding of the faceting of grain boundaries in Aluminum bicrytals.

4.4.1 Modification of the Vertex Model for the Consideration of the 
Inclination Dependency

In the vertex model, the influence of the inclination angle on the grain boundary
migration needs to be explicitly implemented. The velocity of a migrating grain
boundary is given by the product of the grain boundary mobility, curvature and the
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sum of the grain boundary energy and its second derivative with respect to the 
inclination angle 

2

2

gbmv . (4.25)

The principal effect of the inclusion of the term 2

2
 is the faceting of the grain

boundaries (see Fig. 1.7). Since sharp steps normally characterize the transition
between different facets, it should be noted that the curvature at these points, where 
a facet change occurs, is undefined. For this reason, utilization of Eq. (4.25) for the 
calculation of the velocity will introduced an error to the computation of the velocities
during the simulation. To overcome this difficulty, it is possible to use, instead of the
curvature, the sum of the forces, which are exerted at the discretizing points of the 
grain boundary, and to translate the second derivative of the energy with respect to 
the inclination angle into forces applied at the discretizing points. Eq. (4.25) 
transforms then into 
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where the sum of the unit vectors defines the direction of the motion, the vector u  is 
defined as

i

i
i s

su , (4.27)

and the torque M( ) is the first derivative of the energy with respect of the inclination 
angle

d
dM . (4.28)

(a)

(b)
Figure 4.14. (b) Schematic representation of the forces at a discretizing point of a grain boundary; (b)
each rigid segment of grain boundary senses a torque due to the anisotropy of the grain boundary
energy with the inclination angle, which can be substituted by a par of forces and then apply as forces
at the discretizing points.
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Eq. (4.26) is completely equivalent to Eq. (4.25) but with the advantage that by 
avoiding the calculation of the curvature no error in the calculation of the grain 
boundary stiffness is introduced. For a demonstration of the equivalence of both 
equations, refer to [105]. 
 
The equation for the motion of the triple junctions (Eq. (2.8)) remains practically the 
same with only the inclusion of the three forces produced by the torques of the three 
adjoining grain boundaries. 
 

4.4.2 Case of Study - Faceting of <100> Tilt Grain Boundaries 
 
The next example is remarkable because it involves the utilization of three different 
investigation methods, as well as the linking between microscopic and mesoscopic 
simulation models. This situation represents an excellent opportunity to demonstrate 
that by the simultaneous application of differmodelsent simulation  and experimental 
techniques a better understanding of materials science problems can be 
accomplished. 
 

 
Figure 4.15. Bicrystal geometry of the experimental samples [98]. 
 
The motivation for the investigation arose from experimental observations of grain 
boundary faceting during the annealing of aluminium bi-crystalline samples with a 
<100> symmetrical aluminium grain boundary. The geometry of the sample 
corresponded to a quarter-loop. The crystallography and the geometry of the 
bicrystal is shown in Fig. (4.15). The samples had different misorientation angles and 
lay in the range of 8° - 24° and were annealed in the temperature window of 350°C – 
640°C.  The behaviour of the motion of the grain boundaries was inconsistent. For 
example, the grain boundary with a misorientation angle of 8.4° showed no motion at 
all, even at high temperatures (0.97Tm). The principal observed featured was the 
faceting of the grain boundaries. In general, from the experimental results, it can be 
summarized that with increasing misorientation angle and temperature the faceting of 
the grain boundaries decreased. For instance, the grain boundary annealed at 600°C 
with a misorientation angle of 14.3° did not show facets, however, the same sample 
annealed at lower temperatures showed clearly faceting. An exact description of the 
experimental setup and the results can be found in [98]. 
 
The faceting was attributed to the anisotropy of the grain boundary energy with 
respect to the spatial position of the grain boundary (i.e. inclination angle) but single 
experimental results cannot provide enough evidence to demonstrate this 
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hypothesis. For this reason, molecular static simulations were carried out in order to 
determine firstly if such anisotropy exists. The simulation method is extensively
described in [106]. In the present contribution, only the principal characteristics of the 
model will be mentioned.

4.4.2.1 Molecular Static Simulations

The simulation method utilizes an adapted 12-6 Lennard-Jones (LJ) pair potential for
the calculation of the interaction energy between aluminum atoms 
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where rij is the distance between neighboring atoms and re is the cutoff distance at 
which the interatomic potential is equal to zero,  is the dept of the potential well. The
parameters re and  can be calibrated according to requirements. For the case of the 
present simulations, they were adjusted to the elastic constant and the bulk modulus
for aluminium. The obtained values were, correspondingly, =0.17 eV and re=2.561

.

The construction of the grain boundary was achieved by simple generation of to 
identical FCC cubic lattices that were subsequently rotated with respect to each other 
along a common axis until the desired misorientation and inclination angles were 
acquired. By discriminated remotion of superfluous atoms the grain boundary is
finally build up [98]. As an example, Fig. 4.16 shows the two-dimensional projection
of a 14.3°<100> grain boundary created with the method here described. 

Figure 4.16. Two-dimensonal projection of the atomic arrangement of a 14.3°<100> grain boundary
[98].

Once the bicrystal is formed, the calculation of the energy at a temperature of 0 K 
can be performed. For this, the bicrystal is fully relaxed by means of the steepest
gradient algorithm [106] and the minimal boundary energy can be easily calculated 
as
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 which is simply the subtraction of the total cohesive energy ( ) for a perfect 
crystal under an absolute zero temperature from the sum of the potential energy E

cohEN
i 

over all atoms of the system N. This quantity is finally divided by the effective grain 
boundary area A (which in practice is the area of the plane of the simulation box 
parallel to the grain boundary). It should be noted that the energy calculated in this 
way reflect only the minimal energy for the perfect bicrystal (perfect in the sense that 
there are not more defects involved besides the grain boundary) and not the local 
equilibrium grain boundary energy. The latter can be achieved by small variations of 
the configuration through vacancy segregation at locations where the local 
hydrostatic pressure is highest [106]. It was necessary to analyzed over 500 different 
configurations for each calculation. The configuration that provided the minimal 
energy was then chosen. Finally, the grain boundary energies for higher 
temperatures were computed using the approach of LeSar et al. [106, 107]. 
 

 
Figure 4.17. Polar plot of the grain boundary energy as function of the inclination angle for different 
misorientation angles [98]. 
 
The results of the simulation for different misorientation angles for a temperature of 0 
K are summarized in Fig. 4.17. With respect to the misorientation angle, it can be 
observed that the anisotropy of the grain boundary energy with the inclination angle 
decreases for increasing misorientation. The plot corresponding to a misorientation of 
5.1° present sharp cusps for the inclinations angle of 0° and 45 °, the same cusps 
can still be seen in the other plots, which correspond to higher misorientation, but the 
dept of the cusps evidently decreases. For instance, the plot for a misorientation 
angle of 22.6° shows an almost circular shape, reflecting the more isotropic 
dependency of the energy on inclination angle. A similar effect can be observed with 
respect to the temperature. For the same misorientation angles and different 
temperatures, a softening of the curves and thus a decrease in the anisotropy can be 
observed. 
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The molecular static simulations demonstrate that the <100> tilt-grain boundary has
an anisotropic energy with respect to the inclination angle but the simulations cannot 
predict if the effect of the anisotropic energy is large enough to produce the faceting 
of a mesoscopic grain boundary. For this reason, it is necessary to link the results of
the molecular static simulations with a model capable to translate the outcomes to 
the mesoscopic scale.

4.4.2.2 Vertex-Model Simulations of Grain Boundary Migration 

The simulation model has been extensively explained in Ch. 2. In order to simulate 
the anisotropy of the boundary energy with the inclination angle, the modifications
described in section 4.4.1 were accomplished. For the simulations, instead of the 
quarter-loop geometry of the grain boundary, the geometry of a so-called island grain 
(circular grain embedded into a grain of different orientation) was selected because
such geometry allows studying all possible inclination angles. The data about the
dependency of the grain boundary energy on inclination and misorientation angle
was used as input for the simulation model. Despite that the grain boundary mobility
can also depend on the spatial orientation of the grain boundary, in the present
simulations it was assumed constant. The reasons behind this are principally the lack 
of appropriate data and also the difficulty of measuring this property, even by means 
of simulations. 

(a) (b)
Figure 4.18. Evolution of an island-grain for a constant grain boundary energy. The energy is isotropic
with respect to the inclination angle. For this case the kinetics of the grain growth can be analytically
derived, (a) shows the comparison of the simulation results with the analytical solution whereas (b) 
shows the evolution of the grain at three different times t0<t1<t2.

The purpose of this section is to demonstrate that the vertex model can simulate 
grain boundary evolution and grain growth when the energy is anisotropic with 
respect to the boundary spatial position. For this reason, the results delivered by the 
molecular static model will be used as input for the vertex model, however, only the 
results for 0 K and 500 K will be analyzed. The input can be fed into the vertex model 
in form of a list of inclination angles and corresponding energy or in form of a 
continuous mathematical function. If the data is introduced in the first manner, the 
program extrapolates the values that cannot be found directly in the list, for the
present simulations, only linear extrapolation was used, but more complex 
extrapolation algorithms are available as well. The data extracted from the molecular
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static simulation was fitted and the resulting functions were used to simulate grain
boundary migration. 

In order to verify the exactitude of the vertex simulations, simulations were first 
carried out using isotropic grain boundary energy. In this case, the kinetics of the 
grain growth for the island-grain can be analytically derived. The area A of the island-
grain as a function of time t is given by the equation 

99 1086610047102 ..)( tAtmtA gbgb ,          (4.31)

for the present case, the simulation results delivered the following relation 

99 1085961004981 ..)( ttA fit .          (4.32)

Evidently, the agreement is very good and indicates the applicability of the model to 
the current problem. With respect to the grain boundary shape, as expected, the 
grain remains circular during the whole simulation. Fig. 4.18b shows the evolution of
the grain at three different times, in all cases the shape corresponded to a perfect
circle.

(a) (b)
Figure 4.19. Simulated grain boundary energy as a function of inclination angle in Cartesian
coordinates, the lines represent the fitting functions whereas the dots are the energies calculated with
the molecular static method; (a) 0 K; (b) 500 K. 

When the energy is inclination anisotropic, the situation changes radically, the shape
of the island-grain is not circular any longer. The grain boundary has now clearly
facets that correspond to the minima of the energy. According to Fig. 4.17, two 
minima can be appreciated, at 0° and 45°. In general, these minima are present in all 
the curves but the difference in magnitude between the minima decreases as the 
misorientation angle and the temperature increase.

The decrease of the difference between minima is reflected in the shape of the
evolving grain boundary. For example, in Fig. 4.20a, the grain boundary shows only
faceting for an inclination angle of 45° (with the corresponding symmetry) whereas no 
facet at 0° could form. As the misorientation angle increases, the facet for 0° 
becomes firstly visible and subsequently its length increases. At the beginning, this 
facet is inexistent because the energy for this facet is much higher than the energy 
for 45° and thus solely the 45° facets can achieve the minimal energetic state for the 
evolution of the configuration. Since the difference in energy between both states 
decreases, the minimal energetic configuration is result of the coexistence of both
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facets. In the figure corresponding to a misorientation of 28°, the difference is 
practically zero and the length of the facets for 0° and 45° is almost the same.

Figure 4.20. Simulated grain boundary shape for 5°,16° and 28° misorientation angle. (a)-(c) were
simulated using the curves corresponding to T=0K and (d)-(f) with the curves for T=500K.

The grain does not attain a circular shape, even at high temperatures and 
misorientations, because, as shown by the curves of Fig. 4.19, the energy is still 
anisotropic and hence the 0° and 45° minima still determine the shape of the evolving
grain. This deviates from the experimental observations. However, it does not 
contradict or invalidate the hypothesis that the faceting of the grain boundary is due 
to the anisotropy of the grain boundary energy with the inclination angle. On the 
contrary, the simulations corroborate this hypothesis. The deviations are explained
on the basis that during experimentation other factors can also affect the facet
formation and in the fact that for the simulation, the anisotropy of the grain boundary 
mobility with the inclination angle was not taken into account, which can eventually
modify the conditions for the formation of the facets. 
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3D Grain Growth Vertex Model 

5.1 Introduction 

Grain growth is a three-dimensional phenomenon and thus can only be fully 
considered in this space. Two-dimensional abstractions of the phenomenon are 
necessary because the mathematical complexity of the problem in 3D space is rather 
high. In order to properly described grain growth in three dimensions, not only the full 
dependency of the boundary properties on the eight parameters that describe a grain 
boundary but also the 3D topology of the polycrystal needs to be considered. 

Modeling and simulation of 3D grain growth are essential tools for the investigation of 
this phenomenon, since the three-dimensional experimental observation of 
polycrystals is difficult and normally restricted to few grains with modern techniques. 
Several three-dimensional models have been developed for the simulation of grain 
growth. All of them have advantages and disadvantages but among them, the Vertex 
model stands out for the clarity of the physics underlying it. Nevertheless, the 
principal disadvantage of this model is the high grade of programming skills 
necessary for its implementation. In the present chapter, the 3D Vertex model and 
the details for its implementation are presented. 

5.2 3D Vertex Model 

The simulation method is based on a vertex model that considers a front tracking 
approach [48, 49, 108-113]. In such approach, only the grain boundary is discretized 
whereas the grain interior is not. The grain is considered as the volume enclosed by 
certain grain boundaries and keeps the information about its crystallographic 
orientation. Fundamental stages of the simulation and modeling process are the 
creation of a microstructure for the simulation, the method for the grain boundary 
discretization, the formulation of the equations for the boundary motion and the 
topological transformations that take place as result of the minimization of the free 
energy through the disappearance of the grain boundaries. In the present section, all 
of these stages will be explained in detail. 

5.2.1 Microstructure Generation 

The generation of the microstructure is crucial for every simulation model. In 2D, the 
problem is relatively simple and the microstructure can be obtained even from 
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experimental sampling by means of techniques like optical, electronic and orientation
microscopy and the further digitalization of the information. Nevertheless, in 3D the 
problem is more complicated since there are very few three-dimensional observation
techniques, so far. Furthermore, the only existing methods allow merely the analysis
of very small volumes of a sample and thus it is not representative of the whole
sample.

The alternative to three-dimensional sampling is the reconstruction of a 3D 
microstructure from numerous successive two-dimensional slices of the sample
(serial sectioning) [114]. The necessary effort for this task is, nevertheless, enormous 
if the acquisition is conducted by conventional techniques. Fortunately, 3D orientation 
microscopy has recently become available facilitating this task and the simultaneous
development of algorithms capable to interpret the information and convey it in 
adequate forms has made possible the successful reconstruction and digitalization of 
three-dimensional microstructures. However, the information provided by these 
methods normally discriminates the grain boundaries (and thus it does not provide
the microstructure as a topological network) and discretize the grains as small pieces 
of volume with an assigned orientation. For several simulation models such as 
cellular automata, phase field models, Monte-Carlo models, etc, this information is
sufficient because they require the discretization of the volume, precisely through
small volume elements. Conversely, for the Vertex model, this information is not
adequate because, as will be explained in a subsequent section, the Vertex model 
demands the discretization of the grain boundaries. However, adequate algorithms
for the identification of the grain boundaries are more complicated and require more 
computational efforts. 

Figure. 5.1. Natural tessellation, the honeycomb pattern is a tessellation found in the nature. This
tessellation is bounded by the physical constrains of the beehive.

The numerical alternative is the use of tessellations. A tessellation (sometimes also
called mosaic) is a regular arrangement of polygons (2D) (regular in the sense that 
there are no gaps or overlaps between the elements of the tessellation), polyhedra 
(3D) or polytopes (n-dimensional) that a determined space comprises. A tessellation 
can be bounded or unbounded depending on the spatial boundary conditions. There 
are several tessellations in the nature (a polycrystal itself is an excellent example) in 
Fig. 5.1, as an example, a honeycomb pattern is shown [115]. 

For the simulation of grain growth, the so-called Voronoi tessellation can be usually
found in the literature [44, 48, 49]. This kind of tessellations is simple and provides 
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the necessary information for the simulation of grain growth i.e. about the topological 
network. However, despite its simplicity, the numerical implementation for the 
algorithm that constructs the tessellation are either complicated or slow, and 
frequently both. For a detail descriptions of the different methods for the 
constructions of Voronoi tessellation and other topics on computational geometry 
refer to [62, 63]. 

(a) (b)
Figure 5.2. (a) Sites for the Voronoi tessellation and (b) the corresponding Voronoi diagram.

The concept of Voronoi tessellation is, in fact, more than a century old [116]. The 
formal definition is rather simple, given a defined (not necessarily finite) space S and 
letting P={p1,p2,…,pn} be a set of points within S, where the points are called partition
sites. The partition of the space is formed by assigning every point to its nearest site. 
All those points assigned to pi form the Voronoi region V(pi), which is also called
Voronoi polygon (only in 2D and in a bounded space). V(pi) consist of all the points at 
least as close to pi as to any other site, explicitly

ijxpxpxpV jii : .        (5.1)

Evidently, the sites compete for the biggest region possible. The points where the 
region of influence of the sites overlaps form the limit for each Voronoi region: in 2D 
this limit is a line whereas in 3D is a surface, the collection of all these limits forms 
the Voronoi diagram. In Fig. 5.2, a two-dimensional Voronoi tessellation is shown,
this tessellation was formed by ten sites in a bounded space S (Fig. 5.2a). Each site 
has influence over a limited region of the space S, the region is limited by straight 
lines that form polygons (Fig. 5.2b). An example of 3D Voronoi tessellation can be
seen in Fig. 5.3.

In materials science, it is possible to identify a Voronoi region with a grain and the 
Voronoi diagram with the grain boundaries. It can be noted that this method delivers 
the topology of the tessellation and, therefore, is optimal for its utilization in the 
generation of an input for the Vertex model. The principal problem with the Voronoi 
tessellation is that it delivers an arbitrary grain size distribution. A discretional
selection of the sizes of the cells is not possible. To overcome this difficulty, some 
modifications to the original method for the calculation of the Voronoi tessellation 
have been proposed [44, 117]. In summary, the Voronoi tessellation is an excellent 
alternative for the generation of microstructure for the simulation; with the actual 
stand, it is possible to produce even discretional grain size distributions. 
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Figure 5.3. 3D Voronoi tessellation.

5.2.2 Discretization of the Grain Boundaries 

The grain boundaries (internal interfaces) are discretized in triangular facets; for the 
vertices of these facets, the forces and velocities are calculated. While in the two 
dimensional case, the structural elements that conform the microstructure are the 
grain boundary and the triple junctions, in the three-dimensional case, an additional 
element needs to be added, namely, the quadruple junction. A quadruple junction is
the geometrical point where four grains meet. In addition, the other two elements 
require a three-dimensional description. It means that for the current case a grain 
boundary is  represented by a surface and the triple junction has now its real
character as a line (for the sake of clarity, in the following, this element will be
referred as triple line). All these elements and the kind of discretization are 
represented in Fig. 5.4. 

Figure 5.4. Discretized boundaries of a grain and their junctions with adjacent grains. 

The procedure for the discretization depends on the kind of the provided initial input. 
Such input should at least deliver the spatial localization of the grains (center of 
mass), the grain boundaries enclosing it and the coordinates of the vertices 
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conforming the grain boundaries. If some of this information lacks, the construction of 
the microstructure becomes impossible. Nevertheless, supposing that this 
information is existent, the first step is to discretize the grain boundaries in triangular 
facets. The choice of the triangle as the minimal surface element is due to the fact 
that this geometrical element is the only one whose surface lies on the same plane 
(i.e. all of its points of the triangle are coplanar). The selection of other surface 
elements is possible but the calculation of velocity of the elements and the topology 
are more complicated because for complex geometries some of the points of the 
discretizing element might be non-coplanar. 

(a) (b) (c)
Figure 5.5. Sequence of the discretization procedure; (a) original polyhedron, (b) grain after the
introduction of the first triangular facets and (c) after the sequential segmentation.

The grain boundaries are first discretized by the segmentation of the sides of the 
polyhedra that are delivered by the Voronoi tessellation. For this, it is necessary to 
calculate first the geometric centroid of the grain boundaries in order to construct the 
triangular facets. In Fig. 5.5a, a polyhedron as delivered by the Voronoi tessellation is 
shown, after the calculation of the geometrical centroid and the setting of the initial 
triangular facets, the same polyhedron can be observed in Fig. 5.5b. Fuchizaki et al. 
[110] and Weygand et al. [111] used a similar method for the discretization of the 
grain boundaries in their original works on 3D grain growth simulation. However, the
subdivision of the grain boundaries in only these triangular facets cannot represent
adequately the curvature of the grain boundaries and hence the error introduced to
the calculation of the forces and velocities increases. 

To overcome this problem, the recursive and continuous segmentation in further 
triangular facets is introduced. A minimal length s of the edges of the triangular 
facets is first defined. This length is not only necessary for the discretization of the 
grain boundaries but it is also required to trigger the topological transformations. The 
procedure for the segmentation of the facets is rather simple, whenever the distance 
between two vertices is larger than twice s, a new vertex in the middle of the
segment is introduced, the facets attached to the edge are then split in two. The 
procedure is repeated until all edges have a length of about s. In fig. 5.6, an 
example of the procedure is schematized. In this example, an arbitrary grain
boundary, whose shape corresponds to a regular hexagon, is discretized in triangular 
segments that are formed with the edges of the hexagon and the geometric centroid 
of the hexagon (Fig. 5.6a). Since the length of all edges is clearly larger than twice

s, a new vertex (denoted by 1 in Fig. 5.6b) is introduced in one of the edges of the 
grain boundary. Correspondingly, the facet is sectioned into two new triangles (dotted 
line from 1 to the centroid), the same operation is repeated for all edges (2 and 3).
Thereafter, the diagonals from the centroid to the vertices of the edges are split (4 
and 5) and finally the first edge introduced at the beginning of the segmentation 
procedure is sectioned (6). The repetition of the process leads to the discretization of 
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the grain boundary as shown in Fig. 5.6c. The length of all edges is now very close to 
s. The procedure here described is only one possibility of the multiple potential 

segmentation procedures. However, the result is in any case similar (Fig. 5.5c). 

(a) (b) (c)
Figure 5.6. (a)Arbitrary grain boundary after initial discretization, (b) the distance between two points
cannot be larger than twice the pre-defined critical distance s and (c) result after the segmentation of
the edges of the facets and the facets themselves in new facets. The original edges are represented in
black whereas the new introduced edges in blue.

5.2.3 Equation of Motion 

The forces at vertices arise from the surface tensions of the triangular facets that 
adjoin the respective vertex. Figure 5.7 shows a vertex and the facets surrounding it. 
The force Ff1 due to the shaded facet f1 on the vertex P0 is given by 

.
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where  is the grain boundary energy, and 0s , 1s , 2s  are the edge vectors in the facet, 
which are fully determined by the position of the vertices (P0, P1 and P2) conforming
the facet (Fig. 5.7). 

The sum of the forces over all facets surrounding the vertex leads to the net force 
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where n is the total number of facets adjoining at P0. The velocity of the vertex reads 

sum
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Fmv 1 ,        (5.4)

meff is the effective mobility of the vertex and Df is the drag factor, which is defined as 
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mgb, mtl, and mqp are the grain boundary, triple line and quadruple junction mobilities, 
respectively, ds is the mean distance between adjacent vertices over a triple line, and 
An is the projected area of the surrounding facets onto the direction of motion. 
 

 
Figure 5.7. The velocity of a point is calculated from the local geometry of the facets adjoining it.  
 

5.2.4 Topological Transformations 
 
Topology is a concept that is foreign in the materials science; it is normally only 
introduced in the study of the topological properties of cellular patterns [48, 108] and 
by extension in the study of topology evolution in grain growth. In Ch. 1, the basic 
concepts of the topology of 3D polycrystals (topological network) were introduced. 
However, the notion of topology was limited to the number of structural elements that 
comprises a polycrystal. 
 
Johann Benedict Listin introduced the term topology in 1847, however, one of the 
first topological results is found in a Leonhard Euler’s paper of 1736 on The seven 
bridges of Königsberg [118]. The basic notions introduced in Ch. 1 on the topology of 
a polycrystal are due also to Euler. It means that the fundamental topology used in 
materials science is more than two centuries old.  
 
Nevertheless, the importance of the topology, at least, for the grain growth is evident. 
Grain growth is, after all, a process of topological decay [12]. The comprehension of 
the definition of topology can bring a better understanding of its importance in this 
physical phenomenon, as topology is the mathematical study of the properties that 
are preserved through deformation, twisting, and stretching of objects. Evidently, 
during grain growth the individual crystals are subjected to deformation (though not in 
the mechanical sense). Due to the deformation, the topological properties of the 
grains change during the course of grain growth. The grains lose faces (grain 
boundaries), edges (triple lines) and vertices (quadruple junctions). The Euler 
formula (Eq. (1.14)-(1.16)) of the unbounded state indicates that the lost of any 
element affects necessarily the quantity of the other two elements. The fundamental 
operation during grain growth that triggers a change in the topology of the polycrystal 
is the lost of a triangular grain boundary (however is not the only event that triggers a 
topological transformation). When the triangular grain boundary collapses, the edges 
shared with other grains are destroyed, at this precisely instant the Euler formula for 
the unbounded state is not longer valid, because the collapsing of the grain boundary 
produces an edge with more than three grain boundaries and thus Eq. (1.14)-
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Eq.(1.16) cannot be fulfilled. Consequently, the topological order needs to be
restored. For this, new triangular grain boundaries are created and edges with
multiple adjoining grain boundaries are reconnected until Eq. (1.14)-(1.16) are 
completely fulfilled.

The restoration of the topology during grain growth implies that the connectivity of the 
structural elements of the polycrystal must remain intact during the microstructure 
evolution. For instance, a quadruple junction links four grains, six grain boundaries
and four triple lines, a triple line connects three grains, three grain boundaries and 
two quadruple junctions. If some element has a different connectivity, the elements 
surrounding it must be reordered until the natural connectivity is reassured. This
reordering is called topological transformation.

Doubtless, the most difficult part in the implementation of the Vertex Model is the 
realization in the program of the topological transformations. In Ch. 2, the necessity
of implementing such transformations was explained, as well as the indispensable
topological transformations that take place during the evolution of 2D 
microstructures. In the three-dimensional case, the complexity sensibly increases 
due mainly to the increment of the possible cases that can occur during 
microstructure evolution.

Nevertheless, the basic transformations are well documented [61] and their
implementation has succeed to certain extent [109-111]. There are a finite number of 
transformations only if the energy of the grain boundaries is constant (isotropic
energy). In the contrary case, the possible transformations will depend on the 
possible combinations of the energies of the grain boundaries attached to an edge
that introduces a decrease in the free energy of the system. In an anisotropic system, 
the Euler formula is not anymore valid since multiple junctions can be stable even
only instantly.

(a) (b) (c)
Figure 5.8. Elimination of a facet that possesses an edge with a length less than 0.5 s; (a) initial grain
boundary, (b) the distance between two is less than 0.5 s and (c) grain boundary after the elimination
of the short edge and thus the adjoining facets.

As mentioned previously, a criterion established on basis of the minimal length s
triggers the facet elimination, which in turn, triggers the topological transformations.
The facet elimination is the fundamental process not only for the topological 
transformations but also for the boundary area reduction. To explain this procedure,
we will refer to Fig. 5.8a, which shows again a surface with a hexagonal regular
shape that is discretized in small regular triangles. In the same figure, let vertices v1
and v2 be attached by an edge e1 on a triangular facet. Due to the action of the forces 
at the vertices v1 and v2, they approach to each other (Fig. 5.8b); the distance
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between them becomes then closer than 0.5 s, which is the condition that triggers 
the facet elimination. Since the edge between v1 and v2 will be eliminated, also the 
attached facets to the edge have to be removed. In the current case, only two facets 
are involved (highlighted in yellow in Fig. 5.8b). Respectively, if the considered edge
lies in a triple line, then three facets are to be considered. A vertex vnew located at the 
mean length of e1 replaces the vertices v1 and v2 (i.e. the length of the edge e1 is
zero), the attached facets disappear and are replaced by the edges en1 and en2
(dotted lines in Fig. 5.8c). A topological transformation triggers when the facet 
elimination meets determined conditions, which alter the topology of the system.

Figure 5.9. For the demonstration of the topological transformations, a small system is used, six
grains fill the shown cube, in the figure only two of them are shown but the remaining grains fill
completely the space.

In order to make clear the topological transformations that take place, the grain 
system shown in Fig. 5.9 will be employed. Fig 5.9 is a volumetric cubic section 
around a rectangular grain boundary (denoted by GB) of a bigger system. In the 
cube, there are six grains; however, only two of them and their boundaries are 
observed. The topology of this system follows the Euler formula and is correct for 
isotropic conditions.

For the explanation of the first topological transformation, let now consider only the 
grain boundaries shown in Fig. 5.10 of the system and let be the length of the edge 
e1 between vertices v1 and v2 shorter than 0.5 s. Since the requirements for the facet 
elimination meet, the removal of edge e1 occurs. After the elimination, the grain 
boundaries, attached previously to the vertices v1 and v2, adjoin now vertex vn1 (Fig. 
5.10c). The topology of the resulting configuration is not correct, since nine grain 
boundaries adjoin a single vertex (however, in Fig 5.10c only six grain boundaries 
are shown).

In Fig. 5.10b, the planar section perpendicular to the grain boundary GB at the edge
e1 is shown. After the elimination of the edge, the two-dimensional section (5.10b) 
shows that a 2D quadruple junction is formed. In the two dimensional case, this 
junction is energetic unstable and must split into two triple junctions, as explain in Ch.
2.
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(a) (b)

(c) (d)
Figure 5.10. Grain boundary arrangement for the explanation of the topological transformation, (a) 
original configuration and (b) two-dimensional equivalent. After the deletion of edge e1 the
configuration converts into (c), which is the 3D equivalent of a 2D quadruple point (d). 

The three-dimensional case is similar, under isotropic conditions, a vertex can only
be adjoined by six boundaries; more than six boundaries lead to the energetic
instability of the junction and to the further splitting of it into more stable
configurations. In the case presented in Fig. 5.10c, in order to re-attain the energetic 
stability and the correct topology, a new triangular grain boundary needs to be 
introduced and the boundaries previously attached to the multiple junction need to be
reconnected. Once the new grain boundary is introduced, the topology recovers its 
correct state again. Only a single triangular facet with vertices vn1, vn2 and vn3 forms
the new boundary (Fig. 5.11a).

Since a completely new grain boundary forms, it can be thought that this 3D 
topological transformation is equivalent to the 2D ripping of the quadruple point,
which occurs after the collapsing of one boundary in 2D. However, it must be noted
that in the 3D case there is no grain boundary disappearance, the boundary loses 
only one edge. Moreover, no quadruple line was created. In fact, the creation of a 
new grain boundary in 3D occurs only after two quadruple junctions collide into one 
(i.e. a grain boundary loses an edge) and do not occur after the collapsing of a grain 
boundary. Nevertheless, the collapsing of a grain boundary triggers another 
topological transformation, which will be explained in the following.
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(a) (b)
Figure 5.11. Introduction of a previously inexistent grain boundary in order to attain the energetic
stability and the correct topology after the formation of the configuration shown in Fig. 5.10c. The new
grain boundary and the vertices created to form the triangular facet (a) and (b) two-dimensional
equivalent.

For the next topological transformation, we will depart from the configuration of Fig. 
5.12a, which is the configuration delivered by the previous topological transformation. 
In contrast with the former, in the current case, the edge e2 (va,vb) meets the 
requirements for the facet elimination (e2<0.5 s).

The two-dimensional section (Fig. 5.12b) shows the situation; a grain boundary
collapses and an unstable quadruple junction forms. The 2D sections show no
difference with respect to the previous case, an edge collapses, a quadruple point
appears and a “new grain boundary” must be introduced to correct the topology and 
regain the energetic stability. 

Nevertheless, the 3D diagram shows a different situation. The elimination of edge e2
causes the collapsing of the original grain boundary GB. After this, a quadruple line
forms (Fig. 5.12b) and the topology does not follows the Euler formula since more 
than three grain boundaries adjoin a line, eight boundaries meet at a single point 
(vn)in one extreme of the quadruple line and in the other extreme, only five 
boundaries adjoin a vertex (vm).

In order to repair the topology, it is necessary to rip the quadruple line and form 
stable triple lines, just like in 2D. However, in 3D, this is not anymore achieved by the
introduction of a new grain boundary but by the introduction of one or more triangular
facets that complement the existing grain boundary and rip the quadruple line in two 
quadruple junctions and three triple lines (though one already existed in the form of 
the quadruple line). Fig. 5.13a shows the result after the insertion of the triangular
facets for the splitting of the quadruple line. The 2D section shows the similarity with 
the two-dimensional topologic transformation.
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(a) (b)

(c) (d)
Figure 5.12. Collapsing of a grain boundary; (a) initial configuration and (b) planar section
perpendicular to the grain boundary at edge e2, (c) after the collapsing of the grain boundary a
quadruple line forms, (d) the planar section shows the formation of a quadruple junction.

(a) (b)
Figure 5.13. Topological transformation after the collapsing of a grain boundary and posterior
quadruple line formation, since a grain boundary already existed, it is only necessary to introduce a
triangular facet and connect it with the existing grain boundary; (a) 3D result and (b) 2D section.
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Figure 5.14. Shrinking grain at three different stages; prior to its disappearance, the grain resembles a 
tetrahedron; the real size of the grain is shown in the frame.

The last topological transformation is simple to explain, the only grain, which can 
collapse without affecting the topology, is the grain with a tetrahedral shape because 
its collapse leaves a natural quadruple junction. Grains with more than four sides can 
also instantly collapse as long as the volume is comparable to ( s)3. However, the
collapsing of a grain with more than four sides leaves a multiple junction and thus an 
incorrect topology. The treatment of such junctions is more complicated since their 
topological properties (number of grains and boundaries adjoining it) depend on the 
state of the grain prior to collapsing and thus very infrequently the procedure to treat
such a junction is the same.

Figure 5.15. Growing grain from the simulations

The basic topological transformation were implemented in the program, and the 
result of them can be partially appreciated in Fig. 5.14 and 5.15. The grains for these 
figures were taken from a simulation performed on the polycrystal depicted in Fig.
1.8.b. Fig. 5.14 shows four different stages of the shrinking of a grain.

At the beginning of the simulations, the grain boundaries are still flat (Fig. 5.14a). 
After some time the grain boundaries become curved, the curvature of the grain
boundaries is convex and thus the grain shrinks. In the last stage (Fig.5.14d), 
preceding its collapsing, the grain shrinks until it achieves a tetrahedral form. The 
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real size of the grain in this last stage is shown in the black frame in Fig. 5.14d. In 
contrast, in Fig. 5.15, a growing grain is depicted; three different stages of its growth 
can be appreciated, during the growing of the grain, new grain boundaries are 
formed. 
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Grain Boundary Junctions Revisited 

6.1 Introduction 

A polycrystalline aggregate is a system composed of grains, grain boundaries, triple 
lines and quadruple junctions. This system forms a topological network with a 
specified number of elements. For a long time, it was assumed that the only element
affecting grain boundary migration was the grain boundary itself. Triple lines and 
quadruple junctions were not taken into account because these elements were 
believed not to drag grain boundary motion. However, in recent years several 
theoretical and experimental studies [103, 119, 120] have demonstrated that triple 
lines can have kinetics different from the adjoining grain boundaries, i.e. triple lines
can possess a finite mobility, and therefore can drag grain boundary motion. The first 
experimental investigations were conducted only in a narrow range of geometrical
configurations which allow a steady state motion of a system of connected
boundaries [92]. Later on, experimental and theoretical investigations on
polycrystalline samples indeed confirmed the dragging effect of triple lines [94]. 

Whereas the experimental study of triple lines can be easily conducted in quasi-2D 
systems quadruple junctions are true 3D features and hence their study can be only
accomplished in 3D space which is difficult to do by experiments on metals, since 
metals are opaque. As a first attempt to address this problem, Gottstein and 
Shvindlerman [121] introduced a new concept, which would permit the study of a 
finite quadruple junction mobility in a special grain assembly. In the current chapter, 
this concept is extended and the effect of a finite quadruple junction mobility on grain 
growth is explored by means of computer simulations. 

6.2 Three-sided Grain Configuration 

In [121], the four grains assembly outlined in figure 6.1 was proposed. The main
feature of this configuration is that one of the four grains has only three boundaries
as depicted by the enclosing triple lines shown in Fig. 6.1. In such configuration the
motion of the connected boundary system proceeds under the action of the triple line 
tension l and is assumed to occur in steady-state. The dimensionless parameter 
describing the influence of the quadruple junction is given by 
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,         (6.1)
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where mqp is the quadruple junction mobility, mtl is the triple line mobility, 1 is the 
angle at the tip of the triple lines at the quadruple junction, and a is the grain size 
(Fig. 6.1). Obviously the effect of a finite quadruple junction mobility is reflected by
the change of the angle 1. For a perfectly mobile quadruple junction qp  and 

1 /3, whereas for a very low quadruple junction mobility qp 0 and 1 0.

The steady-state motion of such a configuration can occur only when the shrinkage
of the three-sided cross section proceeds much more slowly than the displacement of 
the quadruple junction. 

Figure 6.1. Grain assembly proposed in [121] for the determination of the dimensionless parameter
qp.

Figure 6.2. Geometry of the three-sided grain shown in Fig. 1, (a) top view, (b) front view and (c) 
lateral view.

6.2.1 3D Vertex Simulation 

For the simulations a 3D vertex model was used. A description of the model and its 
implementation can be found in chapter 5 as well as in [122]. The geometry of the 
three-sided grain used in the simulations is shown in figure 6.2; it perfectly matches 
the configuration shown in Fig 6.1. As stated in the previous section the shrinkage of 
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the cross section should not contribute to the volume change of the grain, in order to 
maintain the geometry for the displacement of the quadruple junctions. To check the 
validity of this assumption the computed net displacements of the triple line and the 
quadruple junction are plotted in Figure 6.3a for the case of an infinite quadruple 
junction mobility mqp. Contrary to expectations the magnitude of the triple line 
displacement is not negligible. In fact, the velocity of both junction elements is not 
very different (Fig. 6.3b); the triple line velocity is only approximately 3-4 times slower 
than the quadruple junction velocity. In fact, if the three-sided grain is very long (a 
prerequisite for Eq. (6.1)), the cross section and hence the whole grain vanishes 
even before the two quadruple points meet. The necessary condition that the volume 
change is essentially dominated by the motion of the quadruple junction – if the 
shrinkage of the cross section can not be avoided – can only be achieved for very 
small mtl, when the shrinkage of the cross section is dominated by triple lines 
kinetics. In this case the grain boundaries are virtually flat, which would severely 
restrict the kinetic range where the investigation can be carried out.  
 

 
Figure 6.3. Triple line and quadruple junction displacement (a); ratio of quadruple junction to triple line 
velocity (b). 
 

6.3 Steady-state Quadruple Junction Motion 
 
The cross section of the previous configuration corresponds to a three-sided grain, 
which is subjected to a high shrinking rate. By contrast, for a steady-state quadruple 
junction motion a cross section, which neither grows nor shrinks, is needed. The von 
Neumann-Mullins law [65] predicts that this can only be fulfilled by a grain with a six-
sided cross section. Furthermore, to make sure that the dihedral angle between 
adjacent boundaries remains 120° is necessary that the system consists only of 
regular hexagons (Fig 6.4a), i.e. the cross section plane should be filled by regular 
hexagons. The corresponding 3D grain assembly is an arrangement of hexagonal 
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prisms (Fig. 6.4b). It is noted that in the front and the back of the hexagonal prisms
two more grains are connected to the system, in order to generate intergranular 
quadruple junctions. 

(a) (b)
Figure 6.4. (a) Cross section of the used grain assembly, it is composed of regular hexagons and the
dihedral angles are 120°. For this reason no shrinkage or growth of the cross section occurs; (b) the
special grain assembly allows a steady-state motion of the quadruple points. Only the first layer of 
grains adjoining the central grain is shown, however, there are more hexagonal grains filling the space
(plane y-z) while in the x direction, in front and in the back of the configuration, two more grains,
whose shape is irrelevant, adjoin the hexagonal grains.

Figure 6.5. Geometry of four triple lines (tl) meeting at the quadruple junction (qj).

6.3.1 Equations of Motion 

As in the configuration shown in Fig. 6.1, the motion proceeds under the action of the
triple junction line tension l, which can be negative or positive. Fig. 6.5a shows two 
grains of the configuration as well as the grain boundaries meeting at a quadruple 
junction. The condition for steady-state motion of the system is that the line tensions
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of all triple lines at the quadruple junction have the same sign. Configurations which
are formed by triple lines with line tension of different sign are possible as well, 
however, in such condition, configurations with steady-state motion are unlikely to 
exist.

From Fig. 6.5a it is possible to extract the geometry of the triple lines meeting at their 
point of intersection. The forces acting on the quadruple junction due to the triple 
junction line tensions are depicted in Fig. 6.5b.  denotes the angle between adjacent 
triple lines on the same grain boundary. The force P acting on the quadruple junction 
can be determined from the sum over the line tension of all triple lines meeting at the 
quadruple junction 

4321 FFFFP .         (6.2)

For the used geometry the sum is reduced to the sum of the components in x-
direction of the line tension. Due to the symmetry of forces at the quadruple junction 
the sum of forces in the y- and z- direction, respectively, are zero. Hence, 

cos31lP . (6.3)

Then, the velocity of the quadruple junction reads 

cos31l
qpqpqp mPmv .        (6.4)

The equilibrium angle at zero force on the quadruple point is easily calculated. It 
corresponds to the tetrahedral dihedral angle 47.1093/1arccos .

Figure 6.6. Shape of the grain boundaries and definition of the variables used for the derivation of the
equation of motion. 

Taking into account the shape of the grain boundaries, the problem can be 
comprehensively described. In Fig. 6.6 the grain boundary shaded in Fig. 6.5b is
shown with a new coordinate system. The variables used for the derivation of the
equation of motion are also shown. 



Chapter 6 98

The velocity of a moving triple line is given by 

l
tln mv ,           (6.5)

where

2
32 ]1[ yy ,  (6.6) 

represents the curvature of the triple line. The horizontal steady-state velocity vx of 
the system is related to the normal velocity vn as follows 
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Combining Eqs. (6.5), (6.6) and (6.7) yields the differential equation 
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which needs to be solved under the boundary conditions ,0)0(y ,tan)( 0xy
 and ,)0(y .

The length x0 and the angle  are clear from Fig. 6.6, y(x) is the shape of the triple
line obtained by integration of Eq. (6.8) and given by: 
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Finally, the velocity vx of steady-state motion of the triple line is equal to 
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Since vx (Eq. (6.10)) and vqp (Eq. (6.4)) have to be identical, this defines the
dimensionless parameter qp which characterizes the influence of a finite quadruple 
junction mobility on grain boundary migration. 
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Substituting  by   we obtain the final expression in terms of this angle, 
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If the quadruple junction is perfectly mobile, then qp  and 109.47°, which is
the equilibrium angle. In contrast, if the quadruple junction moves slowly and drags 
the migration of the grain boundary then qp 0 and /2.

6.3.2 Effect on Grain Microstructure Evolution 

From Eq. (6.13) it is clear that the angle  is completely defined by the dimensionless
parameter qp, which, in turn, does not only depend on the triple line and quadruple
junction mobilities but also on the grain size, x0. It is noted that the term x0 is not the 
grain size itself but is directly related to it. This is relevant because it indicates that, 
as in the case of triple line drag, the effect of quadruple junctions increases with 
decreasing grain size. 

Figure 6.7. Displacement of grain boundary and quadruple junction vs. time. The triple line and
quadruple junction mobilities were considered to be infinite. Both lines are practically parallel indicating
a steady-state motion of the configuration. The grain indicates the points where the displacements
were taken from. 

In order to demonstrate that the motion of the configuration attains a steady-state 
motion, two simulations under extreme conditions were performed. For the first 
simulation triple line and quadruple junction mobilities were considered infinite. By 
contrast, for the second simulation an extremely low quadruple junction mobility was
used ( qp=1.2x10-3).
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Figure 6.8. Grain Boundary and quadruple junction displacement vs. time for very low quadruple
junction mobility. Steady-state motion also occurs for this condition.

Figure 6.9. Shape of the triple lines for different values of qp. Minor deviations from the theoretical
angles can be attributed to the discretization used in the simulations.

Figure 6.7 shows the displacements of the grain boundary and the quadruple junction 
as a function of time for the first case (mtl= , mqp= ). The displacement was taken 
directly from the simulations. Initially all the boundaries were flat; after a short time 
the boundaries became curved and the motion proceeded in steady-state. Minor
jitters are only the artifacts of the simulations [122]. The displacement of both 
considered elements is linear with time, the velocities of grain boundary and the
quadruple junction are practically the same, i.e. both lines have the same slope. 
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As expected, the motion also proceeds in steady-state when qp is very low, as
shown in Fig. 6.8. The displacement is also linear in time, and both velocities are 
almost equal. Evidently the proposed grain configuration also attains a steady-state 
behavior in the course of time. 

Figure 6.10. Comparison of the function  vs. qp and simulation results.

Figure 6.11. Grain volume vs. time for different qp.

One effect of a finite quadruple junction mobility can be seen in the shape of the 
grain boundary. The triple lines delimiting the boundary become flat as a result of the 
decrease of qp (Fig. 6.9). Eq. (6.13) predicts that the effect of qp is reflected by a 
change of the angle , however this also impacts the curvature of the triple lines and
hence, the shape of the grain boundary. The geometry of the triple lines in figure 6.9 
was taken directly from the simulations. The steady-state angles obtained from the 
simulations agree very well with the theoretical curve (Eq. (6.13)), as shown in Fig.
6.10.
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(a)

(b)
Figure 6.12. Relative volume change rate as a function of qp. Three different conditions are shown:
( ) original condition; ( ) grain boundary mobility reduced by a factor 10, and ( ) the grain volume 
increased by a factor 1000; (b) magnification of Fig. 12a for low and medium values of qp.

Qualitatively, a finite quadruple junction mobility can modify the geometry of the 
evolving configuration. However, for a quantitative description it is necessary to 
evaluate the grain size evolution as a function of qp. In Fig. 6.11, the grain volume
as a function of time is shown for different values of qp. A small but evident 
retardation of the kinetics can be observed with decreasing qp. This becomes more 

obvious in Fig. 6.12, where the relative volume change rate V
V  is plotted (  is 

the volume change rate when ). Apparently, 

V

V
V 1 when qp . By 

contrast, when qp 0, V
V  approaches zero. This behavior is expected because

the volume change rate is indirectly a function of , qp, or .))(()( qpqp fvfV
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Fig. 6.12 demonstrates the scaling behaviour of the model. Three simulations with 
very different simulation parameters are compared. The first simulation assumed a 
certain value of mb0 and V0. In a second simulation the grain boundary mobility was
one order of magnitude lower than mb0, whereas the third simulation assumed a
volume 1000 times larger than V0.  No significant differences in the relative volume 
change rate among the three conditions are found. Fig. 6.12b shows the same graph
but restricted to the low and intermediate range of qp, for a more accurate
comparison. The small variations of the different simulations are below the 
uncertainty range. 

6.4 Effect of a Finite Triple Line Mobility on the Evolution 
of the 3D Grain Assembly

Due to the small size and the low frequency of quadruple junctions, it is expected that 
their effect on grain growth should be smaller in comparison, for example, to triple 
lines, which occupy a much larger volume and occur more frequently. In this section 
the effect of triple lines on the kinetics of the same 3D configuration will be briefly
analyzed.

In figure 6.13, the grain volume as a function of annealing time is presented. Here 
mqp was considered infinite, while mtl was varied to achieve different regimes of tl.
The retardation of the kinetics by a finite mtl is evident. It can be observed that in the
large and intermediate ranges ( tl=[ ,~1]) the volume decreases linearly with time. 
This means that the motion of the grain boundary network occurs under steady-state 
conditions.

However, for values of tl<<1 the linearity is lost. Under such conditions the kinetics
become triple line dominated, because the original curved grain boundaries become 
flat and the dihedral angles at triple lines deviate from the equilibrium angle (120°). At 
first glance, the effect of triple lines is more pronounced than the effect of quadruple 
junctions.

Figure 6.13. Grain volume as a function of time for different values of tl.
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6.4.1 Effect on Grain Microstructure Evolution 

The comparison between triple line and quadruple junction kinetics serves to better 
understand the phenomenology of grain growth, especially in nanocrystalline
materials. However, for the considered grain arrangement such comparison has to 
be restricted to the regime of large and intermediates values of tl, because as
shown in Fig. 6.13, for low values of tl, the system does not show steady-state
motion. Thus, in the following we assume tl, qp>5.

Figure 6.14. Volume change rate, for (*) qp is varied while tl is held infinite and for ( ) tl is varied 
whereas qp is held infinite.

Figure 6.15. The rate 
id

Vd
(i=tl,qp) as a function of i.

The volume change rate as a function of triple line and quadruple junction mobility
(Fig. 6.14) suggests that for tl, qp>100 the drag effect is practically constant.
However, for the intermediate regime (5< tl, qp<100) the triple lines seem to drag 
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boundary motion more effectively than quadruple junctions as reflected by a much 
lower volume change rate for tl= qp.

For intermediate values of tl, qp the differences in  are markedly pronounced,
because  is more sensible to a change of 

)(V
)(V tl than of qp. The derivates of the 

volume change rate with respect to tl and qp reveal that 
qptldVd /  increases 

faster with decreasing tl than 
tj

qpdVd /  with decreasing qp (Fig. 6.15). In 

essence, triple lines drag grain boundary motion more effectively than quadruple 
junctions contrary to predictions of other authors [123].

6.5 Comparison with Theoretical Predictions

6.5.1 Analytical Description of the Volume Rate of Change 

The von Neumann-Mullins relation gives a general and physically transparent
description of the growth of a definite grain in a polycrystal. The main advantage of 
this relation is its precise topological nature: a grain with topological class n>6 will 
grow while grains with n<6 will shrink. All attempts to derive a 3D analogue [124-126]
were successful only to a certain extent. 

Recently, MacPherson and Srolovitz [127] introduced the n-dimensional equivalent to 
the von Neumann-Mullins law. The MacPherson-Srolovitz relation (Eq. (14))
considers two terms, the mean width L(D) of a given domain D (grain) and the length
of the edges e(D) (triple lines) of the same domain.

DeDLm
dt
dV

gb 6
12 , (6.14)

where mgb is the grain boundary mobility and  is the grain boundary energy. L(D)
and e(D) are defined as follows 
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The term e(D)  is simply the length of the triple lines of a given grain, whereas the 
term L(D) reflects the local variation of the surface with respect to a fixed reference. 
The normal to each element dS of the surface characterizes its spatial orientation,
which may be different from the orientation of other elements surrounding dS. Its
difference to an adjacent element across a junction of length ei is denoted by the
angle ,  also known as the turning angle. In particular the orientation difference 
across a triple line corresponds to the external dihedral angle as established by the 
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surface tensions of the adjoining grain boundaries. Another interesting feature of this
term is that it introduces implicitly the curvature of the surface.

6.5.2 Comparison of the Simulation Results with the MacPherson-
Srolovitz Equation 

The special configuration which was introduced in section 6.3 of this chapter makes it 
possible to determine analytically all the terms of Eq. (6.14). In Fig. 6.16, one grain of 
the configuration is shown. Two new variables, a and d, define the dimensions of the 
grain; d is the length of the longitudinal triple lines while a is the length of the triple
lines of the hexagonal cross section. The curvature of the triple line is included in a.

Figure 6.16. One grain of the special grain assembly and the dimensions a and d.

The term e(D) for this grain reads
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and the term L(D) is given by 
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where Lk is the unknown mean width of the two curved faces of the grain. Because
all other grain boundaries are flat, = 0 and thus, their surface does not contribute to 
the mean width. 

Combining Eqs. (6.17) and (6.18) with Eq. (6.14) the volume change rate can be 
determined

kgb
k

gb LmadadLm
dt
dV 2222 .          (6.19)

The volume change rate for the considered configuration depends exclusively on the 
term Lk which represent the only curved grain boundaries in the configuration. Since
the configuration moves in steady-state, V =const. This prediction was examined by 
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computer simulations. The 3D-vertex simulations rendered independently the
parameters needed for the MacPherson-Srolovitz relation [127] and .V

Figure 6.17 shows the calculated parameters L(D) and e(D) taken directly from the 
geometry of the considered grain. If the grain evolves in steady-state the curves 
L(D,t) and e(D,t) have to be parallel to yield V =const. in Eq. (6.14). According to Fig.
6.17 this condition is evidently fulfilled. Also, the value of the volume change rate 
calculated according to Eq. (6.14) agrees perfectly with the simulation results (Fig. 
6.18).

Figure 6.17. The temporal evolution of the parameters L(D) and e(D).

Figure 6.18. Comparison of dV/dt as obtained from simulations and calculated using Eq. (6.14).
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 The observed small deviation is attributed to the calculation of the parameter L(D) 
which is very sensitive to the size of the mesh.  
 
Another important question is whether the MacPherson-Srolovitz relation holds for 
the general case when the driving force is not constant (i.e. the curvature depends on 
time). We can use the configuration shown in Fig. 6.2 to investigate the problem. As 
demonstrated in sec. 6.2.1., this configuration does not evolve in steady-state. 
Correspondingly, the volume does not change linearly with time i.e. V  is not constant 
(Fig. 6.19). 
 

 
Figure 6.19. Simulated temporal evolution of the grain in Fig. 6.1. 
 

 
Figure 6.20. Comparison of theoretical predictions (Eq. (6.14)) and simulation results. 
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According to Fig. 6.20, the predictions of Eq. (6.14) agree very well with the volume
change rate calculated from the data of Fig. 6.19. For long times, simulations and
theory seem to diverge. However, this is caused by the decreasing number of 
triangular facets in the simulation as the grain shrinks which increases the error in the 
calculation of L(D).

6.5.3 The Effect of a Finite Quadruple Junction Mobility on the 
MacPherson-Srolovitz Equation 

One major effect of a finite quadruple junction mobility is a change of the curvature of 
the triple lines, which implicitly alters also the length of the triple lines. The total
length of the triple lines e(D) for the configuration shown in Fig. 6.16 is given by the
sum of all triple line lengths a and d. If the horizontal triple lines are straight, the 
calculation of d is very simple, however, the determination of the length a becomes 
problematic because the triple lines of the hexagonal cross section are now curved. 
Nevertheless, Eq. (6.9) describes the shape of the triple line and can be used to 
calculate the triple line length. The length of any two-dimensional curve is given by 
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Applied to Eq. (6.9) we obtain
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where c=x0/ln sin . Integration leads to 
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Accordingly, the length of the triple lines of the hexagonal cross section can be easily
calculated as 
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By series expansion of Eq. (6.13) we find the angle  as a function of qp
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While the length a strongly depends on qp, the term d does not, at least not directly.
Actually d changes linearly with time 
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tvdd gb20 , (6.25)

where d0 is the length of the longitudinal triple line at t=0, vgb is the velocity of the
front and rear faces of the grain. This velocity depends naturally on qp but remains 
constant for qp=const. From the simulation it is possible to extract the dependency
of the parameter a on qp and to test the validity of the derived equations. For this, 
the length a/x0 from the simulations is compared with Eq. (6.23) (Fig. 6.21). 

Figure 6.21. Dependency of the triple line length on the angle .

The triple line length as a function of qp is given in Fig. 6.22. Both dependencies of 
a/x0 on  and qp, confirm good agreement of the theoretical predictions and the 
simulation results.

Figure 6.22. Dependency of a on qp.
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It would be also desirable to know analytically the dependency of L(D) on  and qp.
However, for the solution of this problem the velocity of the grain boundary needs to 
be related to the velocity of the triple lines. This introduces the ratio of grain boundary
and triple line energies which is so far unknown.

Figure 6.23. Dependency of L(D) on qp for the curved grain boundaries of the special grain assembly
shown in Fig. 6.5. 

Nevertheless, from the simulations this dependency can be extracted. According to 
the definition of L(D) the flat grain boundaries do not contribute to this term. 
Moreover, the turning angle of the longitudinal triple lines does not depend on qp.
Only the curved grain boundaries and the turning angle of the triple lines at the cross 
section vary with changing qp. In Fig 6.23, L(D) for the curved grain boundaries is 
shown as a function of qp. L(D) increases rapidly for small qp<1. In the intermediate
range (1< qp < 20) a transition occurs to a constant value of L(D), which correspond 
to the curvature of the grain boundary at zero drag force. 

Since the parameters L(D) and e(D) are affected by a finite quadruple junction 
mobility, it can be expected that a modified MacPherson-Srolovitz relation exists that 
takes the additional parameter qp into account like recently shown for the 
modification of the von Neumann-Mullins relation for a limited triple junction mobility
in 2D grain growth [94,128]. Since both L(D) and e(D) are expected to depend on the
junction mobility, a generalized MacPherson-Srolovitz relation will be of the form: 

tlqptlqp eLf
dt
dV ,,, . (6.26)
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Summary

The objective of the present dissertation was to contribute in the elucidation of the 
phenomenon known as grain growth. Grain growth takes place after the completion 
of recrystallization in a polycrystal free of dislocations. The driving force for the grain 
boundary migration is the reduction of the free energy of the polycrystal through the 
reduction of the total grain boundary surface. Since decisive properties of the grain 
boundaries depend on the eight parameters that describe them, grain growth results 
in a very complex process, as well.  

Due to the complexity of the phenomenon, complete theoretical abstraction is not 
possible. In order to overcome this problem, diverse simulation models have been 
developed with the purpose to study grain growth under controlled conditions. For 
this task, cellular automata, phase-field, Monte Carlo mode, Vertex models, etc. have 
been used. Among them, the Vertex model stands out for the clarity of the physics 
underlying the model. 

The principal feature of the Vertex model is the kind of discretization that is used. The 
vertex model in its two dimensional variant uses points along the grain boundary and 
straight line segments between them to represent a continuous boundary. The triple 
junction is considered also as an individual discretizing element. Grain microstructure 
evolution occurs as result of the collective motion of the individual grain boundaries 
and triple junctions and their interaction. The velocity of the boundary is calculated at 
each discretizing point of the boundary from the local curvature and the intrinsic 
properties of the grain boundary (mobility and energy). The motion of the triple 
junction occurs under the action of the forces exerted by the adjoining grain 
boundaries at the junction. 

The principal disadvantage of the model is the high level of programming skills 
required for its implementation. Since the model consists of a net of connected 
points, the topological transformations that take place during grain growth need to be 
handled by the program trough the reconnection of the net. Despite the difficulty of its 
implementation, the model delivers remarkable results. The model has been 
compared with classical theories on grain growth and showed less than 1% deviation 
from the von Neumann-Mullins relation, and yielded a scaling behavior, which is 
characterized by parabolic kinetics, where the mean grain size increases with t1/2,
and by the invariability of the grain size distribution with time. 

Additionally, the model has been successfully used for the simulation of grain growth 
under the effect of an extraneous driving force. As grain growth is product of the 
migration of the grain boundaries, the boundary area is the main driving force but not 
the only that can be exerted simultaneously. In fact, a gradient of any intensive 
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thermodynamic variable leads to a driving force. A magnetic field, for instance, 
causes an energetic gradient due to the magnetic anisotropy of hexagonal materials. 
In these materials, a driving force for the boundary migration appears when a 
difference in magnetic induced energy of both crystals along the grain boundary 
exists. Experimental observations in pure titanium demonstrated that the application 
of a magnetic field in a sample with an initial butterfly texture affect the evolution of 
the texture and grain growth kinetics, as well. The experimental investigation showed 
that the growth of one component of the texture was promoted whereas the growth of 
the other component was disadvantageous. However, due to the experimental setup, 
it was not possible to determine whether the affectation occurred during 
recrystallization or grain growth. The Vertex model effectively demonstrated that the 
magnetic field affects the texture evolution during grain growth, since it exerts an 
additional driving force to the grain boundaries of grains with a low magnetic energy 
promoting their growth. Further simulations in samples with randomly oriented grains 
showed that the magnetic field is capable to promote the growing or shrinking of 
desired or undesired components. 

Besides grain boundaries, other structural elements can influence grain 
microstructure evolution, namely triple junctions. A triple junction is the point where 
three two-dimensional grain boundaries meet. Triple junctions have been proved to 
have a finite mobility and thus to affect grain boundary migration in connected 
systems, since the kinetics of the system depends on the velocity of the slowest 
element. The Vertex model was used to cross-validate theoretical considerations of 
the effect of a finite triple junction mobility in simple geometries of connected grain 
boundaries with triple junctions. In all cases, the Vertex model reproduced very well 
the theoretical expectations validating both the simulation model and the theory. 

Simulation of simple geometries leaded to relevant results. The simulation of simple 
grain boundary migration requires straightforward setups. Simulation has the 
additional advantage that by this mean the preparation of an adequate sample is 
avoided. Probably, the main advantage of the utilization of simulation methods is that 
the effect of diverse variables can be studied separately under controlled conditions. 
For example, the effect of the anisotropy of the energy with respect of the inclination 
of the grain boundary was successfully studied by means of computer simulations. 
The simulations were performed with two different simulation techniques, molecular-
static and Vertex model simulations and additionally corroborated by experimental 
observations in aluminum. This example is remarkable because linked microscopic 
and mesoscopic models. 

The Vertex model is a notable model, but the complexity of the programming and 
implementation in 3D spaces is notably high, since the topological transformations 
that must be implemented, become more complex, as well as, the reconnection of 
the topological net after such events.

Simulation with the Vertex model in 3D space requires four stages. The first is the 
generation of the configuration to be simulated. This stage is achieved by diverse 
means; it can be obtain by the reconstruction of experimental samples by serial 
sectioning or by the utilization of mathematical techniques for the construction of 
spatial tessellations. The second stage involves the discretization of the grain 
boundaries. The third stage is the formulation of the equations of motion of the 
discretizing elements and finally the fourth involves the implementation of the 
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topological transformation and reconnection of the net. The last stage is the most 
difficult to accomplish. 

The 3D Vertex model was used for the simulation of a special three-dimensional 
assembly, which permitted the study of the finite mobility of quadruple junctions. In 
analogy with triple junctions, quadruple junctions are the structural elements of a 
polycrystal where four grains meet. A special configuration, which permits the steady-
state motion, was proposed. The simulations of this configuration showed that 
quadruple junctions can drag the grain boundary migration. However, simulation on 
the same configuration with a finite triple line mobility showed that triple lines drag 
more effectively grain growth than triple junctions. Finally, the simulations were 
compared to the MacPherson-Srolovitz relation that describes the volume change of 
rate of grains as a function of their metrics and topology. The results showed a very 
good agreement. 



Abstract 115

Abstract
Grain growth is the result of the collective migration of the grain boundaries of a 
polycrystal. Since grain boundaries are very complex elements, grain growth is 
complex as well. The mathematical description of the grain boundary requires four 
parameters in the two-dimensional case and eight parameters in the three-
dimensional one. The evolution of the microstructure in the course of grain growth is 
determined by the grain boundary mobility and energy; both properties depend on all 
the parameters for the definition of the grain boundary. Since triple lines, quadruple 
points and chemical composition play an important role, grain boundary becomes 
even more complex. 

The modeling of the grain growth requires the consideration of all the factors that 
affect grain growth. In the present dissertation, a Vertex Model for the simulation of 
two- and three-dimensional grain growth is implemented. The two-dimensional model 
was corroborated with classic basic theories on grain growth. Simulation on normal 
grain growth showed scaling behavior und a deviation of less than 1% when 
compared with the von Neumann-Mullins relationship. Furthermore, the model 
validated the theory on the finite mobility of the triple junctions from Gottstein and 
Shvindlerman and with this the model showed its applicability for the simulation of 
more complex granular aggregates with a finite triple junction mobility. The model 
also allows the use of experimental data. For instance, it was utilized for the 
reproduction of an experimental setting of magnetic influenced grain growth in pure 
titanium samples. The results of the simulation demonstrated that a magnetic field 
can determined the texture and grain growth kinetics of magnetic anisotropic metals.

Simulation can also help to understand unexpected experimental results. For 
example, it was explained by means of molecular static and vertex model simulation 
the faceting of certain grain boundaries in aluminum. For this purpose, the grain 
boundary energy was obtained from molecular-static simulation and subsequently 
used in Vertex simulation. The results showed that the faceting of the grain 
boundaries can be attributed to the anisotropy of the grain boundary energy with the 
inclination angle. 

In turn, the 3D model was utilized to study the effect of the boundary junctions on 
three-dimensional grain growth. For this purpose a special configuration that allows 
the steady-state motion of the grain boundaries was used. The simulation results 
showed a very good agreement with the theoretical expectations and demonstrated 
that the finite mobility of the quadruple junctions can drag grain boundary migration. 
However, it was also found that triple lines drag more effectively grain growth. 
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Zusammenfassung
Kornwachstum ist das Resultat von der gemeinsamen Wanderung der Korngrenzen 
eines Vielkristalls. Dieses Phänomen ist sehr komplex, da die Korngrenzen selbst 
sehr komplizierte Elemente sind. Schon im zweidimensionalen Fall benötigt man vier 
Parameter zu ihrer geometrischen Definition, während in 3D acht Parameter zur 
Festlegung der Korngrenze notwendig sind. Die Entwicklung eines Gefüges während 
Kornwachstum wird durch die Korngrenzenmobilität und –energie bestimmt, wobei 
beide Korngrenzeneigenschaften von allen Parametern zur Definition der 
Korngrenzen abhängen. Da Tripellinien und Quadrupelpunkte sowie ggf. die 
Zusammensetzung zusätzlich eine sehr wichtige Rolle spielen können, ist das 
Kornwachstum noch komplexer. 

Die Kornwachstumsmodellierung benötigt die Betrachtung von allen Faktoren, die 
das Kornwachstum beeinflussen. In vorliegender Dissertation wurden ein zwei- und 
ein dreidimensionalen Vertex Modell implementiert, das die Betrachtung all dieser 
Faktoren ermöglicht. Das zweidimensionale Modell wurde mit klassischen 
grundlegenden Theorien des Kornwachstums vollständig validiert. Die Simulation 
bestätigt das zeitliche Skalierungsverhalten und die von Neumann-Mullins Relation 
mit einer Abweichung von weniger als 1%. Weiterhin beweist das Modell die Theorie 
von Gottstein und Shvindlerman zur Auswirkung einer endliche Beweglichkeit der 
Tripellinien. Da das Modell auch die Anwendung experimenteller Daten erlaubt, 
wurde es benutzt, um Experimente des magnetisch beeinflussten Kornwachstums in 
reinem Titan in Computersimulationen zu reproduzieren. Die Ergebnisse dieser 
Simulationen zeigen, dass ein Magnetfeld die Textur und die Kinetik des 
Kornwachstums in magnetisch anisotropen Metallen beeinflussen kann. 

Simulationen können auch helfen, um experimentelle unerwartete Beobachtungen zu 
verstehen. Zum Beispiel wurde mithilfe der Vertex und Molekularstatik-Simulationen 
die Facettierung der gewissen Korngrenzen in Aluminium erklärt. Zu diesem Zweck 
wurde die Korngrenzenenergie aus Molekularstatik-Simulationen berechnet und im 
Vertex Model für Skalen-übergreifende Simulationen verwendet. Die Ergebnisse 
zeigen, dass die Facettierung auf die Anisotropie der Korngrenzenenergie mit der 
Korngrenzenlage zurückgeführt werden kann.

Des Weiteren wurde das neu entwickelte dreidimensionale Vertex Modell zur 
Untersuchung des Einflusses von Tripellinien und Quadrupelpunkten auf die 
Korngrenzenwanderung benutzt. Zu diesem Zweck wurde eine spezielle 
Konfiguration vorgeschlagen und getestet, die die stationäre Bewegung der 
Korngrenzen erlaubt. Die Ergebnisse der Simulationen zeigen, dass 
Quadrupelpunkte die Korngrenzenwanderung und daher Kornwachstum hemmen 
können. Gleichwohl zeigen die Resultate auch, dass Tripellinien einen viel stärkeren 
Einfluss auf das Wachstum haben. Dreidimensionale Simulation bestätigten auch die 
MacPherson-Srolovitz Relation, die die Wachstumsrate einzelner Körner in 
Abhängigkeit geometrischer Merkmale der Körner beschreibt. 
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Appendix A 

Details of the Simulation Program 

A.1 Programming 

The core of the simulation program is an Ordinary Differential Equation (ODE) fourth-
order Runge-Kutta integrator [129, 130] with an adaptive step size [131]. This method 
utilizes some parameters for the calculation of the solution of the first order 
differential equation, these parameters were originally set by Fehlberg [132] and 
subsequently modified by Cash and Karp [133]. The current program uses a set of 
parameters that were optimized by Mohles [105] and utilized for the simulation of 
dislocation dynamics [55, 105, 134]. 

The program is written using the object-oriented paradigm. The objects in the 
simulation are for the two-dimensional case: the grains, grain boundaries and triple 
junctions (also called vertices, sing. vertex). The grain boundaries are formed by an 
array of the elemental object node whereas the triple junction is itself an upper class 
of the node. The nodes keep only the information about their position {(x,y,z)i}. The 
objects that formally enter into the integration routine are the triple junctions and the 
grain boundaries; each of them has its own differential equation (see Ch. 2). In the 
three-dimensional case, the objects are listed as follows: grains, grain boundaries, 
edges and vertices, again the nodes are a subclass of vertex. The edges are 
identified as a triple line only if three grain boundaries are attached to them, and 
correspondingly a vertex is considered as a quadruple junction only if four grains 
adjoin the vertex. In this case, only the vertices enter into the integration routine. 

During the simulation, the integrator calls the routine that contains the differential 
equations of the integration elements (2D: triple junctions and grain boundaries, 3D: 
vertices). This routine calculates then from the vector {(x,y,z)i,t+ t} at the time t+ t the 
derivatives {(dx/dt,dy/dt,dz/dt)i,t+ t} which is returned to the integrator. After more of 
such callings for different values of 0 t t, the integrator calculates the new position 
of the elements for the time t+ t. After the completion of the integration routine, the 
output for the simulation can be generated, afterward the integrator is called again 
and the process is repeated until the conclusion of the simulation. 

The vectors calculated in the differential equations at the time t+ t and the time itself 
have not a physical meaning, they are only possibilities of the real solution. The real 
time step t and thus the real calculation is determined by error estimation 
(adaptative step size [132]) of the difference between calculations of different 
approximation orders and by the comparison with a provided error bound. 
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A.2Curvature Determination From the Local Geometry 

The algorithm for the calculation of the curvature of a discrete two-dimensional curve
was taken from [105]. With this method, the first dy/dx and the second d2y/dx2

derivatives can be calculated and used for the depiction of the grain boundary. 

The derivatives  and dsdxx / dsdyy /  are needed for the description of the 
tangential vector ( , ). The driving force for the boundary migration operates in the 
normal direction to the tangential vector, which is given by the vector (- , ). The
curvature  reads 

x y
y x

xyyx
yx

xyyx
2

322
       (A.1)

where  and  are the second parametric derivatives of the dependent and 
independent variables. Because =1, the equation can be simplified.

x y
22 yx

Figure A.1. Variables for the calculation of the curvature from the local geometry.

In Fig. A.1, the required variables for the calculation of the curvature are indicated, 
the meaning of the parameter is given in the following: 

11 ii xxx           (A.2)

ii xxx 12          (A.3)

11 ii yyy          (A.4)

ii yyy 12          (A.5)
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The second parametric derivatives read 
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and
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2121

1211122
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Finally, the wanted variables are: 
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On Quaternions, Rotations, 
Orientations and Disorientations 
 
B.1 Orientations, Rotations and Quaternions 
 
An orientation describes the spatial position of an object with respect to a reference 
frame. Orientations are also called angular positions. In the simple case of a vector, 
the direction cosines with respect to the reference describe the orientation of the 
vector. If the object is, for instance, a rigid body the orientation of the object is more 
complex to represent because only the position of the body given by a fixed point in 
the body and a reference frame (translation) are not enough since the body may still 
be rotated. The orientation of a rigid body has thus two components, a linear 
(translation) and an angular (rotation) position or orientation. The linear component is 
trivial because a translation is a simple operation and normally the reference frame is 
translated to the fixed point in the rigid body, which leaves the rotation, as the only 
needed descriptor for the orientation of the body; this is known as the Euler’s rotation 
theorem. 
 
A rotation is non-commutative transformation that describes the motion of a body 
around a fixed point. Rotations are difficult to represent because the topology of 
spatial rotations does not permit a smooth embedding in Euclidian three-dimensional 
space (considering a solid sphere in R3). Nevertheless, according to the Euler 
rotation theorem, any rotation may be described by only three angles, which are 
known, precisely, as the Euler’s angles. The Euler’s angles are probably the most 
used way to represent a rotation and thus an orientation. However, there are other 
forms to represent a rotation, namely, rotation matrix, axis-angle representation, 
Rodrigues vector, quaternions and Cayley-Klein parameters. All these 
representations have advantages and disadvantages, some can be better visualized 
or interpreted, others offer easiness of calculation or faster calculation, etc. 
 
For the simulations, three different representations are used for different reasons, 
Euler’s angle are employed because they are the standard used in orientation 
microscopy. The reader can note that also rotation matrixes are obtained from such 
measurements, however, rotation matrixes are a very bad choice because its usage 
is a waste of computational resources, both in memory and in velocity. Another 
representation considered is the axis-angle pair, which is very popular among 
researchers of grain boundary migration. The last offered alternative is the usage of 
quaternions. Quaternions offer the easies and faster calculation, however, they 
remain unpopular due to their difficult abstraction. Whereas, in the program, the user 
can select any of the alternatives to represent orientations and rotations, all the 
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calculations are performed using quaternions. In the following, the basic concept of 
the quaternions will be described, for an explanation of other orientation
representations refer to [135] 

Quaternions are a non-commutative extension of the complex numbers. William
Rowan Hamilton first described them in 1843. A quaternion can be also seen as a
vector in R4. It has a real component and a vectorial component. Amusingly, due to 
their dual nature, quaternions have interesting properties. A quaternion has the
general form: 

kqjqiqquqq 32100        (B.1)

where is the real part and  is the vectorial one. In analogy with complex numbers
and contrarily to vectors in R

0q u
3, a quaternion has an inverse. For this reason, it is said 

that vectors in R4 can have an inverse. The sum of two quaternions
 and kqjqiqqqqq 32100 krjrirrrrr 32100  is defined as 

kqrjqriqrqrrq 33221100      (B.2)

For the calculation of the product of two quaternions, the introduction of some 
properties is first needed. The following axioms describe the basic properties of
quaternions

1222 ijkkji (B.3a)
kij (B.3b)
ijk (B.3c)

jikjki (B.3d)

Eq. (B.3) points out that the quaternion multiplication is not commutative. With these 
properties, we can now define the product as 

krjrirrkqjqiqqqr 32103210      (B.4)

expanding the product in Eq. (B.4) and applying the equalities of Eq. (B.3a)-(B.3d) 
the product reads in R4 vectorial representation 

krqrqkrqkrq
jrqrqjrqjrq

irqrqirqirq
rqrqrqrq

qr

12210330

31130220

23320110

33221100

       (B.5)

Probably, this notation makes not much sense. However, it allows the simplification
into a very interesting equation 

rqqrrqrqrqqr 0000        (B.6)
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The product of two quaternions involves both, the dot and the cross product of the 
vector part of the quaternion. 

In analogy with complex numbers, the conjugate q* of quaternion q is given by 

kqjqiqqqqq 32100*        (B.7)

whereas

2
3

2
2

2
1

2
0 qqqqqq *      (B.8) 

Now, in analogy with vectors, the quaternion has a length or norm 

2
3

2
2

2
1

2
0 qqqqqqq *        (B.9)

We have now everything to define the inverse of a quaternion 

2
1

q
qq * (B.10)

A unit quaternion (i.e. 1q ) can be expressed as

nsincos
22

q (B.11)

where the angle  and the vector n  are to be identified with a rotation. For instance, 
let u be a quaternion with an scalar part equal to zero, such as , then the 
operation  defines the rotation 

uu 0
*ququ )n,(rot  of the vector u . There is a simple 

demonstration that the quaternions really represent a rotation, for those interested, it 
only needs the expansion of the product , the application of half angle formulas, 
simplification of the expression and finally the comparison with the Rodrigues’s
formula.

*quq

B.2Mis- and Disorientations

A misorientation is the necessary rotation to bring two orientations together with 
respect to a general reference frame. Misorientation are used to represent grain 
boundaries because a grain boundary is the region where to crystals with different 
spatial orientations interact. A disorientation is by definition the misorientation with 
the minimal orientation angle and with a rotation axis located in the Standard 
Stereographic Angle. The discrimination is necessary because the misorientation 
between two rotations can lead to a rotation angle as high as 180° yet due to crystal 
symmetry two lattices cannot be different than a well defined limit, for example, for 
the cubic lattice, it cannot be different by more than ~62.8°. The calculation of mis-
and disorientation will be explained next. 
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For the calculation of the misorientation with quaternions, first is needed to express
the two orientations in terms of quaternions, for the calculation, it will be assumed 
that the orientations are given in terms of Euler’s angle or axis-angle representation.
An orientation given in form of the latter with an angle  and an axis expressed by n
has an equivalent quaternion q equal to: 

22
sinncosq (B.14)

respectively, the quaternion can be expressed as an axis-angle pair as 

022 qq arctanarctan (B.15)

and

q
qn (B.16)

The conversion from Euler’s angle to quaternion is more complicated, nonetheless
straightforward. Given the Euler’s angles ( 1, , 2) the quaternion components read 

22
21

0 coscosq (B.17)

22
21

1 cossinq (B.18)

22
21

2 sinsinq (B.19)

22
21

3 sincosq (B.20)

The calculation of the misorientation is very simple, a misorientation quaternion m
between two orientations, given by the quaternions p and q respectively, is 

1pqm (B.21)

where q-1 is the inverse of the quaternion q as defined in Eq. (B.10) and the product 
pq-1 is obtained with Eq. (B.6). 

The quaternion m describes the orientation to bring the lattice of the crystal with 
orientation p in coincidence with the crystal with orientation q. The rotation angle is 
not necessarily the minimum. In order to calculate the minimal rotation angle and by
extension the disorientation, a method, which varies depending on the crystal lattice, 
must be applied. 

Let consider the cubic lattice. The cubically equivalent quaternions to  are 
obtained by arbitrary permutations and sign changes from one of the following six
expressions [136] 

m
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 mmmmm 3210 ,,,                 (B.22a) 

32321010 ,,,2 mmmmmmmm              (B.22b) 

31312020 ,,,2 mmmmmmmm              (B.22c) 

21213030 ,,,2 mmmmmmmm              (B.22d) 

3210321032103210 ,,,
2
1 mmmmmmmmmmmmmmmm        (B.22e) 

3210321032103210 ,,,
2
1 mmmmmmmmmmmmmmmm        (B.22f) 

 
The disorientation angle corresponds to the component with the maximal value 
among the 24 listed possibilities, for example, let 312 mm  (Eq. B.22a) have the 

maximal value, the disorientation angle will be then 312arccos2 mm  and the 
possible rotation axes will be defined by the remaining three components on the 
same line, 312020 ,,2 mmmmmm . 
 
If the quaternion with the minimal rotation angle is defined by MMM 0 , where M0 
is the maximum value among the 24 possibilities of Eq. (B.22) and M  is the vectorial 
part of the quaternion, which was formed by arbitrary ordering of the remaining three 
components of the selected quaternion (Eq. (B.22)), then the axis of M  with M0>0 
lies in the standard stereographic triangle if . The reordering of the 
components of 

0321 MMM
M  in order to fulfill the previous inequality delivers the disorientation 

because, as defined by Handscomb [137], rotations with the smallest angle and an 
axis in the standard stereographic angle are called disorientations. For the cubic 
lattice, the conditions that a rotation must fulfilled, in order to be a disorientation, 
were described by Grimmer [136] 
 

0321 MMM                  (B.23a) 

01 12 MM                  (B.23b) 

0321 MMMM                 (B.23c) 
 
The selection of the disorientation for the hexagonal lattice is as easy as for the cubic 
lattice. Given a misorientation mmm 0  with components 3210 ,,, mmmm ,  
 
Similar methods for the calculation of the disorientation for other elemental crystalline 
lattices can be found in [139-140]. 
 

B.3 Random Orientations 
 
A naïve attempt for the generation of random orientation might try to sample 
uniformly each Euler angle independently. However, this results in a distribution that 
is biased toward the polar regions. In the program, an algorithm for the generation of 
uniformly distributed quaternions is used. The method is taken from [141]. 
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The method utilizes three intermediate random variables in order to produce unit
quaternions. The algorithm is shown in pseudo-code as follows [142]. 

Algorithm: Pseudo-code to generate uniformly distributed random quaternions.

Input: none 
Result: uniform random quaternion kqjqiqquqq 32100

220

110

111

220

2

1

2

1

2
2

1

sin
cos
sin
cos

();
();

;

;

();

q
q
q
q

rand
rand

s

s

rands

return q
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