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Chapter 1

Introduction

Liquidity, in the sense of market liquidity, is an essential characteristic of a well
working financial market. In fact, the absence of liquidity can influence the
trading process considerably. The simple situation that an investor is not able
to sell any given amount of assets at a given point of time can cause a financial
distress even up to its insolvency. From this point of view, market liquidity can
be seen as the life elixir of financial markets.
Albeit it is easy to circumscribe or to think of intuitively, liquidity is much
more difficult to define appropriately. Market liquidity, or, as related to one
single asset, asset liquidity, has numerous dimensions. As mentioned above for
the buyer side, timing is one of them. An additional dimension is the size of
the amount of shares the investor needs to sell. The combination of just these
two dimensions influences the price impact of the order in the market. But the
price impact depends as well on the trading preparedness of the counterparty,
the seller side. Hence, asset liquidity can be considered as a multidimensional
problem.
Already a descriptive specification of a liquid asset or a liquid market reveals
the complex nature of liquidity considerations. Since liquidity consists of several
different dimensions it is difficult to find a definition that accounts for all these
attributes. Such a definition has to be bound very general. An example can be
found for instance in O’Hara (2004), where she states that a liquid market is
one in which investors can trade into and out of positions quickly and without
causing large price effects.
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The vast majority of academic works suppose the existence of enough asset
liquidity implicitly. Most models for valuation assume that the considered asset
can be sold or bought immediately and for no costs, i.e. that enough asset
liquidity is available. For that reason the aspect of not being able to trade is not
included in valuation. However, two stories from financial history should help
to highlight the importance of the topic of asset liquidity and in particular, the
consequences of the lack of asset liquidity. The first one is the market crash of
October 1987 and the second event mentioned here is the financial collapse of
the Long Term Capital Management (LTCM) in 1998.
In financial markets history, Black Monday is the name given to Monday, October
19, 1987, when markets were suddenly flooded by sell orders overnight, sweeping
away the outstanding buy orders. Because of this imbalance of orders, markets
declined extraordinarily strongly and caused the greatest financial distress of
modern times. Grossman and Miller (1988) discuss this event in the framework
of their liquidity model and stated that in that situation “...markets had become
highly illiquid and virtually incapable of supplying immediacy at low cost...”.
The crash started in New York and Chicago and activated a chain reaction
across all financial markets around the world. It is the largest market breakdown
reported in financial history. Although the event was entirely, or even primarily,
not a matter of liquidity rather than of fundamentals, the large effects were
assisted, if not even caused by the liquidity question.
The second event was the crisis of the hedge fund Long-Term Capital Man-
agement (LTCM) in 1998. The company had developed complex mathematical
models and trading strategies to take advantages of different market arbitrage
situations. Starting with fixed income arbitrage deals of different government
bonds of U.S., Japanese and European markets, they moved into several riskier
market environments. To enhance the high returns additionally, the fund had
been extremely leveraged with borrowed capital. Consequently the fund grew so
much that it had became the primary supplier in several markets. Hence, to find
a counterparty to trade immediately large positions had been a hard task. As
the Russian crises started and Russian government bonds defaulted, LTCM had
been forced to sell positions. Not least by virtue of few market liquidity LTCM
collapsed.1

1For further readings see for instance Dunbar (2001) or MacKenzie (2003).
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These two crises have shown an important aspect of liquidity - the risk of sud-
denly losing it. However, there is another more subtle aspect of liquidity. It is
the day by day costs of transactions that have a significant impact on market
prices and that are influenced by the level of liquidity. And of course the im-
pact of dynamically changing liquidity levels. The better understanding of these
changes and of course their influence on liquidity risk will be in the center of
interest of this thesis.
The two liquidity risk stories of the previous section are a good example of the
many faces of liquidity or its absence - illiquidity. Among the named symptoms
of these liquidity crises were:

• The inability to find trading partners at market prices

• The inability to execute orders immediately

• High price impacts of trades

• High differences between offered buying and selling prices

These costs also occur in financial markets in the absence of a liquidity crisis but
are influenced by the level of market respective asset liquidity.

1.1 Review of Related Literature

The term liquidity is multifaceted and can be used in several financial contexts.
On the one hand in corporate finance or in accounting matters the concept of
liquidity can be used to describe the ability to fulfill payment obligations at any
time. This view is more cash or company based rather than market related. On
the other hand an asset is considered liquid if it can be traded quickly, in large
quantities and with little impact on the market price2. In literature this kind
of concept is called asset liquidity or, if refers to the market as a whole, market
liquidity.
Asset or market liquidity, or henceforth simply liquidity, is an elusive concept.
Because neither is directly nor explicitly identifiable as a risk factor, there exist
2See for similar definitions Keynes (1936), Black (1971), Glosten and Harris (1988) or Harris
(1990a) among others.
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a lot of different interpretations and definitions of it. Even though the existence
of liquidity was already mentioned by Keynes (1936), Black (1971) tried to make
a first descriptive characterization. Black (1971) established three dimensions
to capture liquidity in accordance with today’s understanding. He introduced
the amount of stocks that can be traded at a given price (depth), the ability to
trade across assets without affecting the price (breadth) and the dynamic of how
quickly the price returns to its pre-traded price level (resiliency).

From another point of view that trading causes transacting costs, Demsetz (1968)
already argued that the difference between the buy order price, so-called bid
price, and the sell order price, referred to as ask price, reflects transaction costs.
Hence, this difference between the bid price and the ask price, conventionally
called the bid-ask spread, may be a proxy candidate for measuring liquidity.

Commenced with these main considerations, a vast amount of researchers started
to investigate the aspects of liquidity. West and Tinic (1971), Amihud and
Mendelson (1980), S. Phillips and Simth (1980), Amihud and Mendelson (1982),
Ho and Stoll (1981), Ho and Stoll (1983) or Copeland and Galai (1983) for
example, explored different aspects of transaction costs connected to the bid-ask
spread. They conclude that the bid-ask spread may be an appropriate measure
for liquidity. Garbade (1982) and Stoll (1985) shows that a negative link between
the bid-ask spread and trading volume, number of shares, number of market
makers and stock price continuity exists. Analysis of transaction costs in the
context of a fixed investment horizon has been made by A. Chen, Kim, and Kon
(1975), Levy (1978) or Milne and Smith (1980), among others.

Kyle (1985), Glosten and Milgrom (1985), Easley and O’Hara (1987) and Admati
and Pfleiderer (1988) for instance started to theoretically describe the impact
of liquidity on stock returns. Beside theoretical works empirical investigations
such as Amihud and Mendelson (1986), Constantinides (1986), Grossman and
Miller (1988), Heaton and Lucas (1996), Vayanos (1998), M. Huang (2003),
O’Hara (2003), O’Hara (2004) or Eisfeldt (2004) followed and emphasized this
proposition. Huberman and Halka (2001) analyzed the systematic nature of
stock market liquidity. Holmström and Tirole (2001) developed a model where
a security’s expected return is related to its covariance of aggregate liquidity.
Based on the impact of liquidity on stock returns the predictability of stock
returns is another direction of sizable amount of investigations. Comparing
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two equal stocks, which only differ in liquidity aspects, the more liquid one
has lower returns but higher prices. Amihud and Mendelson (1986), Brennan
and Subrahmanyam (1996) or Brennan, Chordia, and Subrahmanyam (1998)
showed that measures of increased liquidity are associated with lower future
returns, which seems to evidence this proposition. Among others, Pastor and
Stambaugh (2003) find that aggregate liquidity is a priced risk factor in that
sense. Amihud (2002) and C. Jones (2002) are even of the opinion that liquidity
movements can be used to forecast aggregate returns. Moreover Baker and Stein
(2004) stated that time variation in liquidity, on aggregate market or on single
asset level, might deliver appropriate estimations of changes in returns and can
be used to reveal insider trading.
Research has been extended to other markets than stock markets. The relation-
ship between liquidity and option pricing have been investigated by Longstaff
(1995) or Cetin, Jarrow, Protter, and Warachka (2003), for instance. Liquidity
in treasury markets have been analyzed by M. J. Fleming (2003) or Strebu-
laev (n.d.) among others. A variety of different countries have been taken
into account. It attracted attention that the kind of market-organization and
market-structure, as well as trading rules and regulations, are summarized in
market microstructure matters to measure liquidity. O’Hara (1995), Muranaga
and Shimizu (1997) or Madhavan (2000) contributed works in that area.
Based oon the knowledge of liquidity so far, some different measures have been
tested in different markets. Different authors showed that the market microstruc-
ture affects liquidity measures. In the majority of cases two reasons for that are
cogitable. First, liquidity measures cannot be easily compared with each other.
And second, the efficiency of market microstructure can also be measured using
liquidity measures. Ceteris paribus measuring lower transaction costs indicates
a more efficient market microstructure.

1.2 Research Question

Economic theory assumes the existence of liquidity in financial markets. Asset
liquidity is an essential component for a well working financial market because
in the absence of liquidity no trading is possible. Since this liquidity restriction
is so elementary it affects not only trading but also several other disciplines of
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economic theory such as asset pricing or risk management. To measure liquidity
accurately is therefore fundamental for the assumptions of a vast amount of
economic concepts and financial models. It delivers the basics of the existence
of all these models. The two stories at the beginning of this chapter highlight
the effect of a sudden liquidity shock.
Lately, caused through these and other different events, researches into market
and asset liquidity matters have grown. A huge amount of different measure-
ment approaches have been developed. Different new figures and alternative
concepts have been proposed. But all these concepts and figures consider the
time proceeding dynamical behavior only implicitly.
In this thesis the main concern is to deal with the dynamical behavior of asset
liquidity as time proceeds. Moreover we define the measure of the dynamical
changes as the measure of asset liquidity and show that this measure reflects
asset liquidity most accurately. From this point of view several questions demand
to be answered. In particular these are:

• Is there a possibility to reflect the limit order book and its movements?

• Are there characteristic structures in this movements?

• Is it possible to capture the time series of these movements with a dynam-
ical model?

• Is the measure of these dynamical changes an appropriate measure for asset
liquidity?

These goals will be attained with both a sound mathematical background and
on an economic fundament. The detailed structure of this thesis will now be
described in the next paragraph.

1.3 Structure

The thesis is structured as follows. The first section is separated into two parts.
In the first part of the section, market microstructure and some elements of it
will be introduced. It will be shown how market liquidity depends on the struc-
ture and on the environment of financial markets. In connection with market
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microstructure the concept of the limit order book will be introduced and ex-
plained in more detail. The second part of this section gives an overview about
liquidity concepts in general. A definition of liquidity is given, liquidity dimen-
sions are provided and several basic liquidity measures are introduced. The
next section gives a short overview about specific econometric models which are
used in later sections. The subsequent section introduces our new concept of
an asset liquidity measure. In this section the basic ideas behind the concept
are derived. We show the additional information which can be captured by the
model and introduces the measurement approach in more detail. In particular,
the new measurement approaches will be considered under an economic point
of view. The next section is the main part of the thesis. It presents the empir-
ical application of the model and delivers the results. The chapter starts with
the reconstruction of the limit order book and shows evidence of characteristic
structures in the dynamic of the limit order book. The limit order book will be
examined under several points of view while these results build the fundament
of the new measurement concept. Subsequently, an extensive econometric anal-
ysis follows and finally, the new concept of measuring asset liquidity based on
the dynamic of the limit order book will be applied. A liquidity ranking based
on this new measurement approach is presented. The chapter closes with the
presentation of the liquidity premium computed on the liquidity ranking from
the previous section. The last chapter summarizes the findings and gives some
concluding remarks and an outlook for additional researches.





Chapter 2

Market Microstructure and
Liquidity Measures

Liquidity and particularly liquidity concepts are affected by the structure of
the market. Since liquidity is commonly considered as the ability to trade, the
organizational form of the market is an integral part of the concept. Differ-
ent market structures, respectively market microstructures, provide liquidity in
different ways. Hence, the market environment is essential to explain and under-
stand liquidity. However, beside the market microstructure, the measurement
approach itself is explicitly relevant to identify how liquid an asset is. Moreover
the measurement approach is closely related to the market microstructure since
the market environment determines the ways how liquidity can be provided.
From this point of view this chapter is divided into a section about market
microstructure in the light of liquidity and a section about liquidity measures.

2.1 Market Microstructure

Market microstructure is an area of finance that is concerned with the processes
and effects of trading assets under explicit trading rules. While most of the sci-
entific economic researchers simplify or neglect the mechanisms and influences
of practical execution of trading, market microstructure literature analyzes how
these trading mechanisms affect price behavior and price formation processes.
According to Madhavan (2000) these analysis range from investigations of the
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market structure and design over price formation and price discovery to informa-
tion arrivals and regulation of disclosures. Aspects as strategic trading, market
performance or liquidity measurement concepts are also covered by market mi-
crostructure theory as pointed out by O’Hara (1995). Market structure and
design addresses to the architecture of the market. It refers to the set of rules
governing the trading process. Rules like the degree of automation and continu-
ity, the existence of dealer intermediation, order placement procedure, market
open and close regulations or information transparency are some elements of
it. Price formation and price discovery includes aspects of asset pricing theory.
Models that typically assume complete markets, no taxes and transaction costs,
perfect competition or free market entry are extended in this field of market
microstructure research. It also concerns the process by which prices absorb
new information. Additionally researches in market microstructure theory sub-
mit recommendations for regulation to handle the publications of price relevant
information and disclosures of listed companies.
These mentioned components of market microstructure explicitly or implicitly
affect liquidity measurement concepts, market performance and trading strate-
gies. The following section presents an overview about selected disciplines of
market microstructure, focused on particular components necessary in order to
understand the Swiss market microstructure. Hence, in order to establish an
appropriate framework, the section covers mainly elements of market structure
and design. In particular, elements are highlighted which, if they are different
in other markets, influence trading and related activities.
The section’s structure and the terms are mainly oriented at Madhavan (2000).
It starts with describing markets with and without dealer intermediation, i.e. or-
der driven and quote driven markets will be introduced. Afterwards the degree
of automation will be explained. The next part presents order placement proce-
dure and how an order can be placed. The limit order book will be established.
The section closes with a part about an artificially constructed limit order book.

2.1.1 Market Structures and Design

A market can be structured in several ways. The choice of the market struc-
ture, or sometimes also referred to as the market architecture, depends basically
on the asset that is traded. Different assets require different market architec-
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ture. Commodities, for instance, have other trading requirements than financial
derivative instruments have, while securities like stocks are traded differently
than real estate is. The market architecture mainly defines the type of auction
how assets are traded. Beside other diverse market forms, our main focus in the
next following paragraphs forming the market architecture is on stock markets,
respectively the Swiss stock market.

Auction Type, Degree of Continuity and Automation

Many kinds of trading can take place at a market. The most established type
of a market is an auction market or also called double auction market.1 In an
auction market, an investor who is willing to buy an asset hands in a competitive
bid. An investor who aims to sell an asset presents an offer to sale. Both
supply and demand offers are collected in an order book and may take place
at different times or simultaneously. Depending on the degree of continuity the
offers will be matched in a continuous system immediately and in a periodic
system (call auction) at a specific point in time.2 How the orders arrive to the
market place, or more precisely are submitted to the market place system, is
governed by the automation of the market. On a floor-based market exchange,
for example, trading takes place via open outcry. Screen-based markets collect
orders electronically.

Intermediary

An intermediary dealer is a designated third party that offers intermediation
services between two trading parties. The intermediary institution, also referred

1As opposition to an auction market trading, an over-the-counter market can be considered.
At an over-the-counter market, trades are negotiated mostly one by one. Some tailor-made
derivative instruments or unique assets like real estates are traded in that manner. Stock
markets are commonly organized as auction markets.

2Empirical research regarding call auction is provided by Mendelson (1982) or Ho, Schwartz,
and Whitcomb (1985). They report that empirical findings seem to support, that if large
uncertainty about fundamental data exists, or if a market failure is possible, periodic trading
is more valuable. Moreover, several authors report that differences between periodic and
continuous trading affects asset returns, see for instance Amihud and Mendelson (1991),
Stoll and Whaley (1990), Forster and George (1996) or Amihud, Mendelson, and Lauterbach
(1997).
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to market maker or specialists3, acts as a counterparty to every investor who
places an order to the market. The institution is responsible at least for one
security and is required to provide offers to trade, both for the buyer and for the
seller side.4

Quote Driven Market Markets with designated market makers are called
quote driven markets or dealer markets. Market makers are required to make
trading possible all the time. They own an amount of cash and an inventory of
the security they are responsible to. Thus they can always offer stocks to or buy
stocks from the market. The bid price is the price at which the market maker
is prepared to buy and the ask price is referred to as the price at which she is
prepared to sell. The bid price is set slightly lower than the actual trading price.
The ask price is set somewhat higher than this reference price. The difference
between the bid and the ask price is called the bid-ask spread or sometimes
simply the spread. Market makers can be responsible for more than only one
security. In return, a security may also be assigned to more than one market
makers.5

Order Driven Market In contrast to a quote driven market, an order driven
market has no responsible intermediary institution for any traded stock. The
supply and demand is only provided by the investor’s submitted orders. Orders
are entered into the trading systems of the various participants and routed di-
rectly to a central order book. Execution of the orders takes place in keeping
with the principle of price-time priority.6 Taking a buy order as an example,
the booked orders with the highest price will be processed first and afterwards,
in the event of price parity, according to the time of their arrival in the central
order book.7

3The term market maker or specialist depends on the market which is considered. In this
thesis these terms are treated as synonyms.

4In contrast to a market maker, the field of functions of a financial intermediary is wider
defined as that of a market maker. Hence the two terms cannot be used as synonyms.

5Many financial markets operate with designated market makers, for instance the New York
Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Ex-
change or in Europe the London Stock Exchange (LSE) or also parts of the Swiss Stock
Exchange (SWX).

6For the principle of the time price priority see section 2.1.1.
7In this thesis, the Swiss Stock Exchange (SWX) is organized as an order driven market.
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Order Forms

Order forms determine the restriction possibilities associated with the submis-
sion of an order to the market. Diverse forms of restriction exists. With the
rules about the order placement of the market the restriction possibilities of an
order are also defined. In general, an order can have restrictions or have none.
Therefore an order can be placed as a market order or as a limit order. The two
mentioned order forms beneath are the most common ones and are described in
a very general way. Different markets can have different order forms or order
forms with additional features.

Market Order A market order has no restrictions. It represents an order
form to sell or to buy an asset at the best price currently available. The aim
of such an order is to be executed as fast as possible - targeted immediacy. A
market order without a given expiration date usually persists one trading day at
the market and will be canceled after the closing bell in the evening.

Limit Order A limit order is an order form where a certain price limit is
added by the investor. Such a limit order will be executed if the price reaches
the limit. Therefore the main focus of such an order is not on an immediate
execution rather on a specific price execution. A limit order is valid until a given
expiration date. In the case that no such particular information is given at the
order, the limit order usually expires in one trading day as well. In the case
that the price never reaches the given limit the order becomes worthless after
expiration and will be canceled by the market system.8 Typically a limit order
can be canceled anytime without causing any additional costs.

Protocols

Tick Size The minimum tick size is the smallest price change that a price
process can move, either up or down. More precisely, it is the next attainable
price. At US markets the minimum tick size is one sixteens of a US dollar.
8The mentioned forms are the most common ones. There exist a huge
amount of other forms like fill or kill, hidden size or accept order for exam-
ple. For a rigorous overview of the different order forms consult for instance,
http://www.interactivebrokers.com/en/trading/orderTypesMatrix.php.
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European markets trade in a decimal numeric system. The smallest possible
price change is 0.01 units. Moreover the higher the price level of the asset the
greater is the minimum tick size, in both US and European markets.9 There
are price ranges with assigned tick sizes. Each security is assigned to a specific
category of price range. Once the price of a given security trades within a new
price range, the corresponding price step takes immediate effect.10

Price-Time Priority One of the important protocols of exchange markets
is the price-time priority rule. Before matching takes place at the market, the
orders of the order book are arranged by price and time of entry. This procedure
is used, regardless of which matching rule will be applied. In the first priority
orders are arranged by the best to the worst price (price priority). This means
for a buy order from the highest to the lowest offer. Ask orders are ranked
conversely. Additionally market orders have priority over limit orders. Given
equal price priority, orders are ranked within the same prices according to the
time of entry, starting with the oldest one (time priority). Those orders that
have been on the book the longest will be taken into account first.

Stop Trading Trading-opening will be delayed stopped or trading will be
stopped if the proximate price diverge significantly from the reference price.
These divergence-limits are specified by the stock exchange.11

Other Protocols There are a plenty of other protocols which can be consid-
ered: opening and closing time, opening-, reopening- and closing-restrictions and

9Not every asset is subjected to that rule. Some securities have stable minimum tick sizes
independent of the price level. Additional information can be found on www.swx.ch

10As reported in Chung and Chuwonganant (n.d.), Ahn, Cao, and Choe (1996) showed that
a reduction of the tick size at the Amex results in a decline of the bid-ask spread. Similar
results found Bacidore (1997), D. Porter and Weaver (1997), Ahn, Cao, and Choe (1998)
and Griffiths, Smith, Turnbull, and White (1998) for a purely order driven market, namely
the Toronto Stock Exchange. Bollen and Whaley (1998) and Goldstein and Kavajecz (2000)
confirmed similar results for the NYSE. Harris (1994) and Harris (1997) concluded that only
in a market with a price-time priority rule are these findings are significant. He conjectured
that only when market makers compete with public traders the effects on the bid-ask spreads
are significant.

11Stop trading limits are set for safety reasons. It ought to help to avoid sharp retreats or
crashes of prices.
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so on.12 This thesis is focused on liquidity aspects. The just mentioned aspects
affect liquidity and are subjects of academic and practical researches.

2.1.2 Limit Order Book and Matching Rules

Limit Order Book The limit order book contains all submitted limited orders
separated by the bid and the ask side. The orders are ranked according to the
price-time priority rule. On the bid side, the best order with the highest price is
on the top of the book, followed by the second best and so on. On the ask side,
the order with the lowest price is on the top.

Table 2.1: Limit Order Book
The Table 2.1 displays a part of a limit order book. On the left hand side of the table the
offers of the buy side are collected. On the right hand side the supply side are summarized.
The limit orders are sorted according to the price-time priority, such that the corresponding
best offer appears at the top of the list. Within same prices the orders are sorted according to
their submitting time.

Bid Side Ask Side
Time Volume Price Price Volume Time
9:40 500 100.00 103.00 950 9:39
9:44 100 100.00 106.00 100 9:42
9:08 250 98.00 107.00 110 9:12
9:48 800 97.00

The limit order book can be publicly available. But in general the book is not
fully observable, except for some special investors. However, in some markets
the first few orders close to the best quotes are visible. Other markets sell that
information to the investor community.13

Matching Rules Matching rules describe how the orders submitted to the
market are executed. Basically, there are three sets of rules depending on the
current trading phase. These are the pre-opening-, opening- respectively re-
opening- and ordinary trading phase. With focus on the matching mechanism

12See for a detailed overview www.swx.ch.
13The SWX and in particular the Virt-X department of the SWX publishes a set of orders

around the best quoted offers.
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we mainly concentrate on the rules of the ordinary trading phase.
Principally, each incoming order can initiate a sequence of trades at different
price levels, provided that the incoming order has equal or even better conditions
than the counterpart in the limit order book. The basic mechanism is that an
incoming (limit) order is matched against available limit orders in the book as
long as a restriction on one side stops the execution. For instance, an incoming
limit order, with a price limit better than the best two offers in the book and a
volume larger than the sum of the best two offers, is first executed against the
best offer. The order is executed to the price of the limit order in the book and
effects therefore a price movement in the corresponding direction.14 Afterwards,
the remaining part of the incoming order is executed to the next best offer in
the limit order book, which again changes the price analogously. This process
continues until one restriction stops the executions. Given that the incoming
order cannot be fully executed because of restriction reasons, the remaining part
is registered in the limit order book as an (partly) unexecuted order. Albeit
the execution process depends on the restrictions of the order, the mechanism
remains for all matching processes similar.15

The Swiss market, or the the part of the Swiss market which is considered in
this thesis, is endowed as an auction market, without an intermediary, i.e. is
an order driven market. The market has a limit order book with the above
described matching rules and protocols.

2.2 Liquidity Concepts

In a financial context several risk forms are known. Related to financial markets
mainly three risk forms can be distinguished. These are credit risk, market risk
and operational risk.
Credit risk, on the one hand, describes the default possibilities of a debtor or
a group of debtors, which are somehow connected to each other. More general,
this is the risk that a counter party to a transaction will fail to perform according
to the terms and conditions of the contract. On the other hand market risk is
14For safety reasons, each matching is, before execution, automatically monitored by the ex-

change to avoid large price movements. A maximal price change is prescribed by the surveil-
lance authority.

15For more details consider www.swx.ch.
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the risk that the price of a security may decline due to different reasons. These
reasons can be for instance, unexpected movements in interest rates, changes in
macro-economic data, volatility changes, and so on. Finally, risk forms covered
by the term operational risk are risks of the kind like losses due to system
breakdowns, employee fraud or misconduct, errors in models or natural or man-
made catastrophes. It may also include the risk of loss due to the incomplete or
incorrect documentation of trades.16

Additionally to these three risk forms, liquidity can be considered as a risk factor
as well. It is a risk because the investor does not know whether the asset can
be sold in future or not. In this sense liquidity can be understood as the ease
with which an investor can convert an investment to cash and vice versa without
suffering negative impact on either capital or return.17 However, an investor
bearing those risks has to be compensated in a certain form. Some of these
compensations are explicit and can be observed directly. Some of them are
implicit and have to be identified and calculated through different measurement
approaches. Compensation for liquidity risk can be reflected in transaction costs,
market impact, waiting costs or search costs. This form of compensation is also
referred to as liquidity premium.
From this point of view this part of the chapter addresses the concept of asset
liquidity. In the first part, we showed the complex nature to define liquidity,
and provide a definition for our purposes. In a subsequent section we introduce
the different dimensions asset liquidity can be understood with and measured by.
Afterwards, we focus on some measures in more detail and close this chapter with
a presentation of an alternative concept to measure liquidity costs. This chapter
serves basically to build a knowledge fundament to comprehend the alternative
liquidity measure introduced in the following chapter.

2.2.1 Definitions of Liquidity

The definition of asset liquidity has to take several aspects into account. An
essential characteristic of a liquid market is that there are enough investors to
buy and sell at all times, so that trading is always possible and can be warranted.

16An overview about risk in financial markets can be found, for instance, in Jorion (2005),
among many others.

17For a more exact definition of liquidity or liquidity risk consider section 2.2.1.
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Additionally a further aspect of such a liquid market is that large quantities of
assets can be traded without causing large price effects. The time how long an
order takes to be executed is another element of a liquid market.
Already a descriptive specification of a liquid market reveals the complex nature
of liquidity considerations. Black (1971) for instance, defined a liquid market
as one, in which "...bid and ask prices are always quoted, their spreads are
small enough, and small trades can be immediately executed with minimal price
effects...". A similar definition stated by Harris (1990b): "...a market is liquid if
traders can quickly buy or sell large numbers of shares when they want and at
low cost...". A more general approach to define liquidity or a liquid market have
also been provided by O’Hara (2004): "...a liquid market is one in which buyers
and sellers can trade into and out of positions quickly and without having large
price effects...". Although the point of view of all these definitions is slightly
different the main message rests the same. In a liquid market orders will be
executed quickly, without a large influence on the current price and at low costs.
In all of these definitions the order of the magnitude of the terms quickly, imme-
diately, small, large or at low cost are not determined in more detail. Moreover,
it is difficult to define these terms closer. Particulary on the one hand they are
related to each other and to other components. On the other hand they depend
on the preferences of the investor. For instance, a large price effect depends on
the point of view of the investor and can therefore not be objectively measured.
This emphasizes the complex nature of this concept. In this thesis a general
definition of the term liquidity will be used.

Definition 2.2.1. Market liquidity and asset liquidity refer to the ability to buy
and sell assets quickly, independent of the quantity and with minimal influence
on the current market price.

The terms quickly, quantity and minimal influence on prices are not defined
in more numerical detail since the relation between one of this terms is more
important. What is important in the definition is that these three dimensions
are covered with it. In comparing different assets, it is inevitable to fix two of
the three dimensions and use the remaining one as a comparable figure. For
instance, holding the price impact and the quantity constant, the order which is
executed faster is referred to be more liquid.
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2.2.2 Liquidity Dimensions and Liquidity Measures

As the definition of liquidity suggests liquidity is a complex concept of several
dimensions. This multi-dimensionality was first intuitively described by Black
(1971). According to today’s understanding, Kyle (1985) identified three dimen-
sions in the work of Black. He denoted the amount of stocks that can be traded
at a given price as depth. The ability to trade across assets without affecting the
price he named as breadth and the dynamic how quickly the price returns to its
pre-traded price level have been considered as resiliency. As time proceeds, addi-
tional dimensions of liquidity have been identified. However, the terminology of
the dimensions of liquidity is not always used in the same way. Sometimes, dif-
ferent authors use the same term with slightly different interpretations or even
different definitions. According to Wyss (2004), in this thesis the dimensions
depth, immediacy, resiliency and tightness are distinguished.

Depth The quantity of shares demanded at the best bid price is referred to as
the bid depth. The volume of shares provided to sell at the ask side is named
as the ask depth. The sum of the bid depth and the ask depth is referred to as
depth.18 So,

Dt = qask
t + qbid

t (2.1)

where qask
t refers to the best ask volume and qbid

t refers to the best bid volume in
a given time interval t. Figure 2.1 shows depth schematically. On the horizontal
axis the volume is specified. Starting from the middle of the axis, on the right
hand side the best quoted ask volume is depicted, denoted as the ask depth, and
on the left hand side the best quoted bid volume is illustrated, named as bid
depth.
In general the volumes on the best quoted volumes, rather than the overall vol-
umes in a given time interval, are considered to calculate depth. According to
Csavas-Szilard Erhart (2005) a reason for this is that this volume is the largest
order that a market can absorb without evoking a price change. Therefore
depth measures the volume of immediacy provided at the best quotes. Hence,
Kyle (1985) characterized depth from the opposite point of view as "...the size
of an order flow innovation required to change prices a given amount". How-

18Some authors use the term quantity depth, market depth or volume depth.
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ever, as many authors already pointed out, the measurement concept of market
depth is one of the most common approaches to measure liquidity. Studies like
Goldstein and Kavajecz (2000), Chordia, Roll, and Subrahmanyam (2001) or
Huberman and Halka (2001) used this concept to measure liquidity.19 Amongst
others, Chordia et al. (2001) modified this figure to an average depth measure
by dividing depth by a factor of two.20

Immediacy/Trading time According to Harris (1990a) immediacy can be
defined as the speed at which trades of particular sizes can be executed at a
given cost. Immediacy can be interpreted and therefore be measured in several
ways. According to Gouriéroux, Jasiak, and Le Fol (1999) immediacy is defined
as the waiting time between two subsequent trades. Alternatively, some authors
define the inverse of the waiting time or the number of trades per unit of time as
immediacy. In contrast to this, immediacy can also be understood as the time
until an order has been completely executed at a prevailing price. In this case an
order can be executed in several smaller portions than the desired order volume.
Then the time between the arrival of the order at the market place until the
order has been completely executed, i.e. the last portion of the order has been
carried out, is referred to as the trading time or immediacy.

Resiliency The dynamic how prices react to new information or to different
order volumes is known as resiliency. From this point of view resiliency can be
interpreted as the price-volume elasticity of a given asset.21 In Figure 2.1 re-
siliency is presented as the dashed line connected between the aggregate volumes
to the corresponding price.

Tightness The difference between the best demand quote, the bid or bid price
and the best supply quote, the ask or ask price, is referred to as tightness.
According to Demsetz (1968), tightness or the bid-ask spread can be interpreted
as transaction cost. No transaction cost means that instantaneous buying and

19Brockman and Chung (2001), Lee, Mucklow, and Ready (1993) or Van Ness, R.A., and Pruitt
(2000), among others are further examples.

20Additional variations of calculating depth can be found in, e.g. Wyss (2004).
21Kyle (1985) extend the interpretation of resiliency by considering the speed with which prices

tend to converge towards the prevailing price level as resiliency.
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selling of an asset for exactly the same price is possible. In reality this is not
possible. An asset can only be bought for at least the best ask price or sold for
maximum the best bid price. For example, a security offered at a price under
the best bid price will be bought immediately and the order quits the limit order
book.22 In this case the seller suffers a loss of the difference of the best bid price
and the current sold price. This cost can be interpreted as the price the investor
has to pay for an immediate execution.23

This consideration reveals arguments why the bid-ask spread may be a good
measure for liquidity. The more investors are in the market, the higher is the
probability, that the current quoted best offers will be out- or underbid, respec-
tively. This means that a higher bid price or a lower ask price than the currently
available best price have been submitted to the market. As calculated above, in
that sense the investor has to pay a smaller extra charge to execute an order.
The transaction costs become smaller. Therefore a smaller bid-ask spread indi-
cates a more liquid market. The absolute bid-ask spread (st) for a given time
interval t is given as

st = pask
t − pbid

t (2.2)

where pask
t is the best quoted ask price and pbid

t is the best quoted bid price. The
absolute spread has the disadvantage that they depend on the absolute price level
of the considered asset. The higher the price level the larger the bid-ask spread.
This measure cannot be used to compare different assets with each other. In
contrast to the absolute spread, the relative bid-ask spread is set in relation to
the price level. This price level can be the artificially calculated mid price Mt.
The relative spread srel

t is

srel
t =

pask
t − pbid

t

Mt
. (2.3)

where the mid price Mt is defined as 1
2(pask

t + pbid
t ).24

22Assumed that the quantities agree with each other.
23From the context it becomes clear that liquidity is a symmetric problem. It affects seller and

buyer in the same way, except of that on the bid side the costs occur as a loss and on the
ask side they occur as an extra charge. For the sake of simplicity only the case of a sell will
be considered.

24Numerous authors use and extend the concept of the bid-ask spread. Hamao and Hasbrouck
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Figure 2.1: Liquidity Dimensions The Figure 2.1 shows the four different liquidity
dimensions illustrated with a limit order book for a snap-shot. The horizontal axis represents
the cumulative volumes of both the bid side on the left hand side and the ask side on the right
hand side respectively. The vertical axis shows the quoted prices.

Figure 2.1 depicts an illustration of the four above mentioned liquidity dimen-
sions with a limit order book in a snap-shot. On the horizontal axis the cumu-
lative volumes of the orders have been drawn. On the left hand side the bid
orders are collected and on the right hand side the ask orders are shown. The
vertical axis indicates the quoted prices of the orders. The highest vertical line
on the bid side is the best bid quote. The lowest line on the ask side is the
best ask quote. The difference between the two best quotes corresponds to the
bid-ask spread or tightness. The length of the vertical lines represents the quan-
tity of the appropriate order. According to the corresponding best orders this
are the bid depth or the ask depth, respectively. Additionally, on the bottom
of the illustration the depth is marked. Resiliency is pictured as a dashed line.

(1995) for example, take the logarithm of the absolute spread, while M. Fleming and Re-
monola (1999) replace the mid price of the relative spread with the last traded price of the
previous time interval. Hasbrouck and Seppi (2001), for instance, used the relative spread of
the natural logarithm of the prices and in order to get a distribution function closer to the
normal distribution Wyss (2004) applies the logarithm to the relative spread.



2.2 Liquidity Concepts 23

The line of the resiliency can also be interpreted as the demand and the supply
curve. Figure 2.1 is a snapshot of the limit order book in a given time frame
since incoming new orders change the picture of the book continuously.

2.2.3 Liquidity Risk

The bid-ask spread given in equation (2.2) is based on prices. No quantities are
involved in the calculation. But the cost an investor has to pay depends basically
on the amount of the asset which she wants to sell or to buy.
Now, if the amount of assets q the investor intends to trade does not exceed the
amount of assets at the best quote, the order will be fully executed at the best
quoted price level. The arising transaction costs, or we refer to as liquidity costs
Lt(q)best, are therefore defined as the difference between the revenue at the mid
prices and the revenue at the best quote, or formally

Definition 2.2.2. Liquidity costs Lt(q)best are defined as

Lt(q)best := qt · pbid
t − qt · Mt. (2.4)

where qt refers to the best offered quantity, pbid
t is the best offer on the bid side

and Mt corresponds to the mid price between the best ask and the best bid price.

Exceeds the amount of shares (q) the investor aims to sell the amount of shares
quoted at the bid price (qbid), the remaining part of the order will be executed
at the next lower price. The transaction costs increase once again. The cost to
absorb all orders in the order book at a given time interval (t) is referred to as
liquidation cost. We define the liquidation cost as

Definition 2.2.3. The liquidation cost Lt(q) of a liquidation of the position q

at time t is the difference of the liquidation price LPt(q) and the mid price Mt.

Lt(q) := LPt(q) − qt · Mt =
∫ q

0
pt(s)ds − qt · Mt (2.5)

Figure 2.2 illustrates this liquidity and liquidation cost. At this time the hori-
zontal axis represents the prices. The vertical axis shows the cumulated order
volumes. The order volumes are cumulated because a buyer who is prepared to
pay the current best price for an asset is also prepared to pay less than the best
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Figure 2.2: Liquidity and Liquidation The Figure 2.2 illustrates the liquidity cost
(bright shadowed area) and liquidation cost (dark and the bright shadowed area) according to
equation (2.4) and equation (2.5) respectively. The horizontal axis represents the prices while
the vertical axis shows the cumulative volumes.

price. In that sense, the smaller the price the more investors are willing to trade.
This is depicted with the concave volume-price function pt(q) on the demand
side.25 The bright shaded area in figure 2.2 shows the liquidity cost Lt(q)best.
Together with the dark shaded area, the liquidation cost Lt(q) is represented.
Since the liquidation cost Lt(q) as stated in definition 2.2.3 is influenced by
the volume-price function pt(q) and the mid price Mt. These functions are not
deterministic, so liquidation cost is stochastic and represents a risk.

25If there are very few investors, i.e. the asset seems to be very illiquid, the volume-price
function can also be of a convex form.



Chapter 3

Econometric Models

Auto Regressive Moving Average (ARMA) processes belong to discrete stochas-
tic difference equation models and, according to Enders (2004), form the basis
of time series analysis. The model consists of two parts, an autoregressive (AR)
component and a moving average (MA) element. Albeit, the model adresses to
several problems in economic time series, it features constant volatility. Many
economic time series have neither constant means nor possess constant volatil-
ity. Generalized autoregressive conditional heteroscedastic (GARCH) processes
address to this problem and offer possibilities to vary volatility over time. Both
the ARMA and the GARCH model are commonly used in applied work.

This chapter provides a brief introduction to ARMA and GARCH processes.
The chapter is basically oriented at McNeil, Frey, and Embrechts (2005), Enders
(2004) and Leippold (2004). Starting with an overview about basic premises and
assumptions in the first section, we introduce the ARMA model in a general way.
Following on this, we show some model selection approaches and how to verify
the model specifications. In the next section we extend the constant volatility
models by introducing stochastic volatility processes, the set of GARCH models.
Finally, in the last section we combine the ARMA models with GARCH volatility
structures and we give a short approach for interpreting the parameters. By
reason of the existence of substantial academic literature in the field of time
series analysis, this section is kept very general.
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3.1 Autoregressive Moving Average Process

A stochastic process (Xt)t∈Z is a collection of random variables, or a random
function, indexed by an integer t. It is a family of random variables defined on
some probability space (Ω,Ft, P), where Ω is the space of events that describes
all possible states of the world, P is the associated global objective probability
of each event and (Ft)t≥0 is the augmented natural filtration up to time t.

Moments of Time Series The first two moments of a time series model for
a single risk factor (Xt)t∈Z is defined as

μ(t) = E[Xt] ∀t ∈ Z

γ(t, s) = E[(Xt − μ(t))(Xs − μ(s))] ∀t, s ∈ Z,

where μ(t) describes the mean function and γ(t, s) represents the autocovariance
function. Note that it is that γ(t, s) = γ(s, t) for all t, s and for γ(t, t) = var(Xt).

Stationarity A common assumption in many time series techniques is that
the data are stationary. A time series is called stationary if some properties
are independent of time, i.e. that the process has the property that the mean,
variance and autocorrelation structure do not change over time.1 This means
that a shift in the time origin does not affect these properties of the process.

Definition 3.1.1 (Strictly Stationarity). A time series (Xt)t∈Z is said to be
strictly stationary if

(Xt, . . . , Xtn) dist.= (Xt1+k
. . . . , Xtn+k

)

for all t1, . . . , tn, k ∈ Z and n ∈ N.

Definition 3.1.2 (Covariance Stationarity). A time series (Xt)t∈Z is covariance
stationary if the first two moments are finite

μ(t) = μ, t ∈ Z

γ(t, s) = γ(t + k, s + k), t, s, k ∈ Z

1We treat the terms time series and process as synonyms.
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and γ(t, s) does not depend on t or s, but only on k.

In academic literature, a strictly stationary time series is also referred to as
strong stationary and a covariance stationary time series is referred to as weakly
stationary, second-order stationary, or wide-sense stationary.2

Stationarity is an elementary concept in time series analysis and particularly
in time series analysis of autoregressive processes. There have been substantial
approaches developed to test for stationarity. Most of the tests are hypothesis
tests, where the null hypothesis states that stationarity is present in a time series
against an alternative. Influential studies in this field include Dickey and Fuller
(1979), Said and Dickey (1984), P. Phillips and Perron (1988) and Kwiatkowski,
Phillips, Schmidt, and Shin (1992), among others.

White Noise Process Empirical data, in particular economic and financial
empirical data, can be described by several artificial models. A part of the
changes in the data can be explained by a corresponding model. The remainder
is uncertain. A variety of different time series models introduce uncertainty with
a so-called white noise process.

Definition 3.1.3 (White Noise). The time series (Xt)t∈Z is a white noise process
(εt)t∈Z if it is covariance stationary without serial correlation,

εt ∼ i.i.d.WN(0, σ2
t )

where i.i.d. means independent and identically distributed and WN represents a
distribution function with mean zero and variance σ2

t .

The conditional as well as the unconditional mean of a white noise process (εt)t∈Z

(hereafter denoted by εt) is zero. The process is conditional homoscedastic and
is not restricted on Gaussian distributions. The distribution function WN can
represent several forms of distribution functions.3

Several models are constructed with a white noise component which brings the

2For a detailed and augmented commented descriptions consider for instance, McNeil et al.
(2005) or J. Cochrane (1997).

3In contrast to a white noise process, a strict white noise process has finite but not constant
variance σ2

t .
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uncertainty in the model. The uncertainty is sometimes also called innovation
or shocks.
In financial time series, the current state of a given situation often is influenced
by the antecedent state or even by some of the last states. From a mathematical
point of view this effect can be established in a process by a weighted factor of
the last states. Since the process is related to itself, such processes are referred
to as autoregressive processes (AR). An additional component in financial time
series constitutes the effect of previous shocks or innovations. This element is
constructed by a weighted average of previous innovations and hence referred to
as the moving average part (MA) of the process.

Autoregressive Moving Average (ARMA) Process An ARMA processes
is a combination of an autoregressive process (AR) and a moving average process
(MA). It is a covariance stationary process where the innovation is generated by
a white noise process.

Definition 3.1.4 (ARMA Process). Let εt be a white noise. The process (Xt)t∈Z

is a zero-mean ARMA(p,q) process if it is covariance stationary and satisfy:

Xt = φ1Xt−1 + . . . + φpXt−p + εt + θ1εt−1 + . . . + θqεt−q ∀t ∈ Z

where (Xt) represents the ARMA process. φp is said to be the autoregressive
parameter of the order p and θq is the moving average parameter of the order q.

The stationary behavior of the process is determined by the driving white noise.
If the white noise is i.i.d. or strictly stationary, then the ARMA process exhibits
the same properties.
This kind of time series can be divided in a deterministic and a stochastic part

Xt = m + εt + α1εt−1 + . . . + αiεt−i = m +
∞∑
i=0

αiεt−i, (3.1)

if the coefficients αi satisfy that

∞∑
i=0

| αi |< ∞. (3.2)
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The coefficients αi are the impulse response coefficients and the function {αi, i ≥
0} is referred to as the transfer function or the impulse response function.
This technical condition in equation (3.2) guarantees that E[|Xt|] exists and
consequently that the infinite sum in equation (3.1) converges such that both∑∞

i=0 |αi||εt−i| and
∑∞

i=0 αtεt−i are finite with probability one. This restriction is
called the Wold theorem and ARMA processes restricted in this way are referred
to as causal ARMA processes.4

First Order Autoregressive Process Consider for instance the example of
the first-order autoregressive process

Xt = ρXt−1 + εt.

By calculating successively recursive we obtain

Xt = ρ2Xt−2 + ρεt−1 + εt = . . .

= ρnXt−n +
n−1∑
j=1

ρjεt. (3.3)

This process is causal if and only if |ρ| < 1.5 This ensures that limn→∞ ρj = 0
such that the process in equation (3.3) can be represented by a MA(∞) process

Xt =
∞∑

j=1

ρjεt. (3.4)

The MA(∞) representation of the AR(1) process simplifies the computation of
the moments like the mean and the variance. In addition this representation

4For more details, proofs and consequences consider for instance J. Cochrane (1997) or McNeil
et al. (2005).

5The condition |ρ| < 1 causes that an AR(1) process can be represented by a MA(∞) process.
Thus, this condition is known as an invertibility condition. A general ARMA(p,q) processes
is causal if the two polynomials of the model parameters in the complex plane given by

φ̃(z) = 1 − φ1z − . . . − φpzp

ρ̃(z) = 1 − ρ1z − . . . − ρqz
q

have no common roots and φ̃(z) have no roots in the unit circle |z| ≤ 1.
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shows the impact of the marginal effects of previous shocks. The impact of the
innovation occurring in time t−j, affects the today’s value with ρj . Accordingly,
the factor ρj is referred to as the multiplier or filter. In Figure 3.1 several func-
tions of multiplier for different values for ρj are illustrated. Since the multiplier
function is exponential the effect of previous shocks decreases disproportionately.
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Figure 3.1: Multiplier Effect Figure 3.1 illustrates the the multiplier effect for dif-
ferent ρ. The smaller ρ is the faster converges it to zero. The picture shows the graph of
ρ = 0.9, 0.7 and 0.5.

Analysis in the Time Domain Time series analysis usually starts with an
examination of the set of serial correlations. In order to get a first impression
about the order of a process, empirical estimates of serial correlations from real
data are compared with their theoretical analogues. Studies of serial correlations
is sometimes referred to as the analysis in the time domain.

Autocorrelation According to definition 3.1.2, the covariance between Xt

and Xs depends only on the difference of h = |t − s|. This temporal separation
(h) is known as lag. The autocovariance function (γ) can be rewritten with the
lag function (h) as γ(h) := γ(h, 0),∀h ∈ Z. In addition, h = 0 implies that
γ(0) = var(Xt).
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Definition 3.1.5 (Autocorrelation Function (ACF)). The autocorrelation func-
tion (ACF) of a covariance-stationary time series (Xt)t∈Z is defined as

ρ(h) =
γ(h)
γ(0)

=
γ(h)

var(Xt)
.

Accordingly, the ACF function with lag h describes the correlation between two
values Xt and Xt−h, where the lag represents the shift of the time series to itself.
Beside the autocorrelation function, a further analyzing tool to detect the order
of an ARMA process is the partial autocorrelation function (PACF). In contrast
to the ACF the PACF measures only the correlation between two fixed values,
namely the value of the time series and the value at a given lag length, while the
values between the two values are excluded. Consequently, it measures the linear
relation between Xt and Xt−h by excluding the influence of the intermediate
variables.

Definition 3.1.6 (Partial Autocorrelation Function PACF). The partial auto-
correlation at lag h is defined as the last component ψh in the matrix equation
given by ⎛⎜⎜⎜⎜⎝

ψ1

ψ2

...
ψh

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
γ0 γ1 . . . γh−1

γ1 γ0 . . . γh−2

...
... · · · ...

γh−1 γh−2 . . . γ0

⎞⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎝

γ1

γ2

...
γh

⎞⎟⎟⎟⎟⎠
In order to determine the order of an ARMA process, ACF and PACF calcula-
tions with different lag length have to be considered. A graphical illustration of
the values at different lag length is a correlogram. The x-axis refers to different
lag length while the y-axis represents the corresponding ACF and PACF val-
ues respectively. The illustration contains a 95% significance band for the null
hypothesis of a strict white noise process. Correlation estimates outside these
bounds are considered as evidence against the null hypothesis that data are strict
white noise; i.e. the data feature a kind of structural property.6 A cut off at
lag p in the partial autocorrelation indicates for a pure autoregressive behavior
of order p, while a cut off at lag q is interpreted as a diagnostic for a moving
6For a more detailed description about correlograms, boundaries of the null hypothesis and why
higher lagged correlations does not reject the null hypothesis consider McNeil et al. (2005).
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average process of order q. In Figure 3.2 and 3.3 several artificially generated
processes with the corresponding correlograms are presented. In Figure 3.2 (a) a
first order autoregressive process with p = 0.9 are simulated while Figure 3.2 (b)
displays the function of a moving average process with q = 0.9. Figure 3.3 shows
a autoregressive moving average (ARMA) process with p = 0.9 and q = 0.9.
Simulation is done with 200 time steps.
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(c) MA(1) Process
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(d) ACF and PCF

Figure 3.2: Auto Regressive and Moving Average Processes The Figure
3.2 displays an autoregressive and a moving average processes with their corresponding cor-
relograms. The Figure (a) illustrates a pure AR(1) process while in Figure (c) a pure MA(1)
process is shown. The first order AR process simulated with p = 0.9 and the MA process
features q = 0.9. Simulation is done for 200 time steps.
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(a) ARMA(1,1) Process
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(b) ACF and PCF

Figure 3.3: Auto Regressive Moving Average Process The Figure 3.3 shows
a simulated ARMA(1,1) process with 200 time steps. The coefficients of the process are p = 0.9
and q = 0.9.

Beside visual investigations, formal analyses are typically used to determine the
order of an ARMA process. There are several forms of analytical tests to assign
the order of a process, such as hypothesis tests or the finite prediction error
(FPE) criterion.7 Nevertheless, these methods prefer mostly over-parameterized
models. Albeit additional lags reduce the sum of squares of residuals, more
parameters cause a reduction in forecasting performance of the fitted model.
Additionally, the higher the order of the model is, the more imprecise the pa-
rameter estimation and the more difficult the parameter estimation process.
The two most popular approaches accounting for that fact are the Akaike In-
formation criterion (AIC) proposed by Akaike (1974) and the Schwarz-Bayesian
information criterion (BIC) provided by Schwarz (1978). These model selection
criteria methods can be viewed as measures of goodness-of-fit since they include
a penalty function for every additional parameter estimated. The AIC is defined
as

AIC = 2k − log(L), (3.5)

where k are the number of parameters and L is the likelihood function from the

7For more details consider for instance Enders (2004).
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parameter estimation. The BIC is defined as

BIC = −2 log(L) + k log(n), (3.6)

where n is the number of observations.8 The parameter combination minimizing
the information criterion ascertains the order of the parameter set. For increasing
sample sizes the BIC selects a more appropriate parameter set. Moreover, the
BIC is asymptotically consistent while the AIC is biased toward selecting an
over-parameterized model. In general, if the two approaches indicate the same
number of orders, the set of parameters can be assumed to be most appropriate
for the model.9

Alternatively, the analytical test of Ljung and Box (1978) can be used to deter-
mine the order of a process. Different from the AIC and the BIC approaches
this method makes use of the autocorrelation function of the process. However,
instead of testing randomness at each distinct lag, it tests the overall randomness
based on a number of lags. More formally the Ljung-Box test statistic is given
as

Q = n(n + 2)
h∑

j=1

ρ2(j)
n − j

, (3.7)

where n is the sample size, ρ(h) is the autocorrelation function at lag j, and h

is the number of lags being tested. The Ljung-Box test statistic is a Q-statistic
testing the null hypothesis H0 of randomness of the data to the alternative that
it is not. The hypothesis of randomness is rejected if the Ljung-Box test statistic
exceeds the critical value of X 2

h;1−α distributed function at a given significance
level α with h degrees of freedom. In this case at least one value of the autocor-
relation function is statistically significant different from zero. The Ljung-Box
test is commonly used to reveal model misspecification and is therefore applied
to the residuals of an estimated model.

8In time series literature, different authors report the AIC and the BIC in various ways.
Nevertheless, the selection approach stays the same.

9However, since the BIC chooses the parsimonious model an additional test for the residuals is
necessary. Since the AIC prefers the over-parameterized model, the t-statistic of all estimated
coefficients has to be statistically significant at the given significance level.
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3.2 Conditional Heteroscedastic Models

The innovation process modeled in ARMA processes have basically two draw-
backs. On the one hand, volatility is held constant as time proceeds. On the
other hand, the distribution function of the innovations captures no extreme
events, i.e. the distribution function is not leptokurtosic. Generally, empirical
findings report that financial time series typically feature leptokurtosis and have
stochastic volatility. Moreover volatilities are not only stochastic but also exhibit
forms of clustering effects, where periods of high volatilities are accompanied by
high volatilities and periods of low volatilities are followed by low volatilities.
In contrast to models with constant volatility processes with stochastic volatility
respectively, conditional heteroscedasticity induces leptokurtosis. Autoregressive
Conditional Heteroscedastic (ARCH) models address to this attribute and offer
possibilities to modeling conditional variance. With this kind of model at least
three characteristics of financial time series can be replicated. First, it allows
to simultaneously model the mean and the variance. Second, implicated by the
conditional variance, the process is able to generate volatility clustering. And
last, the unconditional distribution exhibits fat tails such that the probability of
extreme events are higher than implicated by a normal distributed function.
The first model offering these features is introduced by Engle (1982). In this
model the conditional variance is modeled by an AR(p) process using the squares
of the estimated residuals.

Definition 3.2.1 (Autoregressive Conditional Heteroscedastic Model (ARCH)).
Let (Zt)t∈Z be a strict white noise with N(0,1). A process (Xt)t∈Z is an autore-
gressive conditional heteroscedastic ARCH(p) process of order p if it is strictly
stationary and it holds that

Xt = σtZt, (3.8)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i, (3.9)

where α0 > 0 and αi ≥ 0 for all i = 1, . . . , p.

In order to avoid that the conditional variance becomes negative, the coefficients
α0 and αi have to be restricted such that both are strictly positive. Additionally,
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the restriction of
∑p

i=1 αi ≤ 1 ensures covariance stationary of the process.10

The model is conditional heteroscedastic, since the conditional volatility changes
continually, and it is autoregressive, since it depends on several previous states
of the process. Because the volatility structure is based on an AR(p) model it
features also similar characteristics. The autoregressive dependency of previous
states causes that large values for the volatility tend to follow large values and
small values tend to follow small values. This persistence produces volatility
clustering effects.
Bollerslev (1986) extends the model of Engle (1982) by modeling the volatility
structure not only by an AR(p) process but by an ARMA(p,q) process. The
model is formulated as

Definition 3.2.2 (Generalized Autoregressive Heteroscedastic Model (GARCH)).
Let (Zt)t∈Z be a strict white noise with N(0,1). A process (Xt)t∈Z is an gener-
alized autoregressive conditional heteroscedastic GARCH(p,q) process of order p

and q if it is strictly stationary and it holds that

Xt = σtZt, (3.10)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , (3.11)

where α0 > 0 and αi ≥ 0 for all i = 1, . . . , p and βi ≥ 0 for all i = 1, . . . , q.

In order to ensure covariance stationary of the process, it is necessary to restrict
αi and βi to

∑p
i=1 αi +

∑q
j=1 < 1.11

This model is the general form of the previous ARCH model by meaning that
the squared volatility σ2

t is additionally allowed to depend on previous squared
volatilities. While the ARCH model effects persistence in the volatility struc-
ture the additional component of the GARCH model causes furthermore shocks.
Overall, this model allows a more appropriate mapping of financial time series,
not least because it is possible to enhance the probability of events at the tails
of the distribution.

10For a detailed derivation of the mathematical conditions consider for instance, Hamilton
(1994) or McNeil et al. (2005).

11See for instance Leippold (2004).
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(b) Conditional Variance High Persistence
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(c) GARCH(1,1) Process Low Persistence
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(d) Conditional Variance Low Persistence

Figure 3.4: Generalized Auto Regressive Moving Average Process Fig-
ures 3.4 (a) and (c) show simulated GARCH(1,1) processes each with 200 time steps. Figures
3.4 (b) and (d) depict the corresponding conditional variances. The coefficients of the process
in Figures 3.4 (a) and (b) are p = 0.975 and q = 0.01 while the constant is α0 = 0.001. The
coefficients of the second simulation are p = 0.01, q = 0.9 and α0 = 0.001.

Figure 3.4 shows two trajectories of simulated GARCH(1,1) processes with a
graph of the corresponding conditional variances. The simulation displayed in
Figure 3.4 (a) is carried out with a parameter set of p = 0.975, q = 0.01 and
α0 = 0.001 while the parameter set of the process in Figure 3.4 (c) is given
by p = 0.01, q = 0.9 and α0 = 0.001. The conditional variance in Figure 3.4
(b) highlights high persistence in volatility while Figure 3.4 (d) emphasize high
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sequences of volatility shocks.
Figure 3.5 depicts QQ-plots, ACF and PCF estimations of the corresponding
processes. Albeit the driving innovation process of the model is strict white
noise, the simulated time series has fatter tails than a white noise implies, which
is graphically shown in the QQ-plots.
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(b) ACF and PCF
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(c) QQ-Plot GARCH(1,1) Process
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(d) ACF and PCF

Figure 3.5: QQ-Plot GARCH(1,1) Process and ACF and PCF Plots
Figures 3.5 (a) and (c) display the corresponding QQ-plots of the GARCH(1,1) process from
Figure 3.4. Figures 3.5 (b) and (d) shows the ACF and PCF function of the process.

ARCH respectively GARCH processes describe solely the variance structure of
a process. However, the underlying process can be formulated in different ways.
Basically, replacing the innovation process of an ARMA process with a GARCH
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volatility structure delivers a family of ARMA models with GARCH errors that
combines the features of both model classes.

Definition 3.2.3 (ARMA processes with GARCH variance structure). Let
(Zt)t∈Z be a strict white noise with N(0,1). A process (Xt)t∈Z is an ARMA(p,q)
process of autoregressive order p and moving average order q with GARCH(a,b)
volatility structure of persistence a and shocks b if it is covariance stationary and
it holds that

Xt = μt + σtZt, (3.12)

μt = μ +
p∑

i=1

φi(Xt−i − μ) +
q∑

j=1

θj(Xt−j − μt−j), (3.13)

σ2
t = α0 +

a∑
k=1

αk(Xt−k − μt−k)2 +
b∑

l=1

βlσ
2
t−l, (3.14)

where α0 > 0 and αk ≥ 0 for all k = 1, . . . , a and βl ≥ 0 for all l = 1, . . . , b and∑a
k=1 αk +

∑b
l=1 βk < 1. In addition Zt is independent of (Xs)s<t for all t.

The coefficients of the ARMA process extended with stochastic volatility are also
subjected to the restrictions given in the previous section for general ARMA(p,q)
processes.12

This family of processes allows to map time series respective to financial time
series in a more appropriate way than with constant volatilities. It is possible
to describe the underlying process with a theoretical economic model while the
stochastic volatility accounts for inconsistency in the innovation. With the con-
ditional variance the structure of shocks and its persistence can be visualized.
This extension may contribute additional information to the underlying theory
and improve the explanatory power of the economic model.

Analysis in the Time Domain The approach to determine the orders of the
parameters is similar to the method for ordinary ARMA models. In general,
the first step is an analysis of correlograms. Following on that first impres-
sion analytical approaches like for instance the AIC information criterion or the
BIC information criterion can be applied to ascertain the orders of the process.
12For more details consider for instance McNeil et al. (2005).
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Having found a set of orders and after parameter estimation, a test for model
misspecification, like the Ljung-Box test can be applied.

This chapter is by no means complete. Basically, it serves to catch an overview
and intuition about the models applied in later chapters. From this point of
view the chapter is kept in a very general way. However, in recent literature in
particular, the GARCH approach has been extended in several forms. GARCH
models with leverage effects are constructed, a threshold is implied or exponential
GARCH, EGARCH structures are developed for instance. In order to gain
advanced insights in time series analysis and in particular the different parameter
estimation methods consider for instance McNeil et al. (2005), Enders (2004) or
Hamilton (1994) among many others.



Chapter 4

Order Book Dynamics and Asset
Liquidity

This chapter deals with the dynamical behavior of the limit order book and
its importance to asset liquidity. In general, measurement approaches to detect
liquidity omit this source of influence. However, measurement concepts based
on a given situation in a specific time interval may not reflect the entire liquidity
situation adequately. Starting from this point of view, we introduce in this
chapter an alternative measurement concept based on the dynamical behavior
of the limit order book.
The chapter is structured in three sections. In the first section, we highlight
the dynamic of the limit order book. Starting with the order flow around the
best quotes we broaden our considerations to the entire limit order book and
the time dependent changes of it. In the following section we introduce a time
dependent measurement concept. The chapter closes with the third section,
where we specify the model, the parameters and their economic interpretations.

4.1 Limit Order Book Dynamics

Different definitions and various measurement concepts for liquidity have been
developed and several dimensions of liquidity are identified. For all these di-
mensions a vast amount of different measurement approaches and concepts have
been found and discovered. But the previous considerations and treatments of
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the liquidity question have been based on a static point of view. Static in the
sense that the measures capture a specific situation in time. The dynamical
behavior of the measurement approaches is in general not taken into account.

Order Flow around the Best Quotes From an auction theoretic perspective
the dynamic of the limit order book and in particular of the bid-ask spread
is a direct consequence of the order flow. Different orders submitted to the
market, are settled against or collected in the limit order book. Hence, this
order submission process generates the dynamical behavior of the book. Diverse
order types shape the face of the limit order book in various ways, whereas two
superior attributes of an order can be identified. While a limit order adjacent
to the best quotes has little impact on the bid-ask spread, an order at or within
the bid-ask spread has a larger effect. Beside the order price, the order size
influences the dynamic of the limit order book additionally. Large orders, large
compared with the currently available quoted volume, have a larger impact than
small orders. In this context, order types can be differentiated according to their
aggressiveness. An order with a larger order size than the currently available
best offer placed within the bid-ask spread or at the best quote is referred to as
an aggressive order. Orders placed deeper in the limit order book are said to be
less aggressive.1 Since in a more aggressive environment aggressive orders can be
executed to more favorable prices, order aggressiveness is a possible indication
for liquidity.
Moreover, the order placement procedure or the order flow is first, more fre-
quent around the best quotes. Second, the order flow induces a mean reverting
structural character of liquidity measured by the bid-ask spread or measures
based on the bid-ask mechanism. This effect is well documented for instance by
Coppejans, Domowitz, and Madhavan (2004), Wyss (2004), Handa and Schwartz
(1996) or Biais et al. (1995), among many others. To illustrate this structural
nature we adopt the arguments presented in Biais et al. (1995). Trades occur

1Harris and Hasbrouck (1996) or Biais, Hillion, and Spatt (1995), among others, separate the
order placement according to its aggressiveness. Biais et al. (1995), for instance, differentiate
the orders according to several events. They show evidence, amongst other things, that orders
placed around the best quotes are more frequent than a placement deeper in the limit order
book. In particular, they show that order placement decreases monotonically by moving away
from the quotes.
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relatively more often when the bid-ask spread is tight. In contrast when the bid-
ask spread is wide, orders are placed more frequently within the bid-ask spread.
Furthermore, new orders are placed within the spread when depth around the
spread is large and are placed at the quotes when depth is thin.2 Therefore
the mean reverting mechanism works as follows. Consider a starting situation
where depth is relatively high and the bid-ask spread is wide. Since the new or-
der is placed within the bid-ask spread, the new placed order becomes the best
quoted offer. Because the bid-ask spread is generally calculated as the difference
between the two best quoted offers, the new arrived order tightens the spread.
Moreover, for the reason that the older best quoted offer is an aggregation of
several unexecuted or uncanceled offers at this quote, the volume at the new best
offer is in general smaller. Hence, depth is reduced around the bid-ask spread
and spread is tighter. Now, the limit order book has thin depth and tight spread.
In this situation, agents hit the quote and trading takes place at the best offer.
The last trade clearing the best offer widens the spread and the limit order book
appears as in the initial position.3

Figure 4.1 illustrates this mechanism of the ask side schematically. In each Fig-
ure, the horizontal axis represents the prices and the vertical axis the cumulative
volumes, respectively, all the offers prepared to trade at this particular price. pbid

t

and pask
t are the corresponding best quoted offers while Mt represents the arith-

metic mean between the bid-ask spread. A bar illustrates the cumulative volume
of the orders at the corresponding price level. Figure 4.1 (a) displays the initial
situation of the limit order book. Depth is relatively high and the bid-ask spread
is wide. Figure 4.1 (b) shows an arriving new order which tightens the bid-ask
spread and lowers the depth. The absorption of the order is shown in Figure 4.1
(c) while the rebounding is illustrated in Figure 4.1 (d).

From an economic point of view a couple of hypotheses can be assumed to
explain this behavior. Orders are collected in the limit order book according
to the price-time priority rule. Since limit orders with equal price restrictions
are sorted according to their submission time, new limit orders restricted to
2See for instance the empirical results documented by Biais et al. (1995) or our findings
reported in section 5.

3This mechanism is not constricted to one side of the book. Moreover, this mechanism appears
on both sides, may be at the same time, and may effect price movements.
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(a) Initial Situation (b) Order within the Spread

(c) Trades Hitting the Quote (d) Rebounding of the Spread

Figure 4.1: Mean Reverting Mechanism The Figure 4.1 displays the order flow
mean reverting mechanism for the ask side schematically. In each Figure, the horizontal
axis represents the prices and the vertical axis the cumulative volumes, respectively, all offers
prepared to trade at the given price. pbid

t and pask
t are the corresponding best quoted offers

while Mt represents the arithmetic mean between the bid-ask spread. A bar illustrates the
cumulative volume of the orders at the corresponding price level. Figure 4.2 (a) shows a given
initial position of the limit order book with assumed relatively high depth and wide bid-ask
spread. An order placement within the bid-ask spread is illustrated in Figure 4.2 (b). The
Figure 4.2 (c) shows trading at the quotes until the offers at the quotes are cleared. Figure 4.2
(d) displays the reverting of the bid-ask spread to its previous location.

the same price are unlikely to be executed, in particular when depth is large
at this quote. Such an order opens additional risks to the investor. First, it
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enhance the waiting time until execution. Associated with transaction costs, Lo,
MacKinlay, and Zhang (2002) show evidence that the cost of submitting limit
orders increases with the expected time of execution. Second, it bears the risk
not to be executed at all. Therefore the investor is better off by undercutting
the best offer. As Biais et al. (1995) point out, the difference to undercut the
current quote could reflect the price to obtain time priority. Moreover, Harris
(1994) notes that there is first mover advantage in supplying liquidity if market
enforces time precedence, since it protects traders who exposes their quotations
or limit orders to the market. The reason for this fact is that, by revealing their
orders, these traders disclose their information to all market participants and
take the risk that other investors may act based on that information to their
disadvantages. Another, more practical oriented argument is suggested by Biais
et al. (1995).4 Consider for instance a noninformed agent splitting her order
to reduce market impact. She first buys a given limited amount of the desired
asset. Then, she waits hoping that additional liquidity will be provided on the
corresponding side of the order book. Finally, the agent submits the next order
to the market and hits the quotes again. This means that the order first hits the
best quote in the book, ends up in execution, consuming liquidity and widening
the bid-ask spread. Then liquidity will be supplied and tightened the bid-ask
spread.

Order Flow beyond the Best Quotes Albeit the order flow is mainly con-
centrated around the bid-ask spread, the quotes beyond the best quotes provide
additional information to the value finding process of a security. Pascual and
Veredas (2006) evaluate the informational content of the limit order book in
order to the explanatory power of long run volatility. By separating liquidity-
driven from information-driven volatility using a state space co-integrated model
for the bid and ask quote, they find at least that the book beyond the best quotes
contribute additional explanatory power to the best quotes. Furthermore, Cao,
Hansch, and Wang (2004) for instance show empirical evidence that order flow
beyond the best quotes adds approximately 30% of the information to short-term
future returns. Moreover they show that traders use the available information

4Albeit Biais et al. (1995) proposed this argument to explain the time interval between to
similar orders, this point can be used in a broader sense to explain investors behavior.
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on the state of the book to submit orders strategically to the market.

For trading activity beyond the best quotes we offer a possible explanation. An
investor or a financial intermediary acting for an investor has a distinct view
about the value of the considered security. This view may arise from strategic
trading considerations. Or, the investor owns private information. By submit-
ting an order to the market the investor discloses his information and contributes
explanatory power to the best quotes, i.e. to the informational content of the
limit order book.

(a) Large Depth around Quotes (b) Thin Depth around Quotes

(c) Demand Pressure (d) Supply Pressure

Figure 4.2: Limit Order Book Dynamic The Figure 4.2 shows several situations
of the limit order book schematically. Figure 4.2 (a) illustrates large depth around the best
quoted offers while Figure 4.2 (b) represents low depth on both sides. Figure 4.2 (c) and (d)
displays asymmetric depth between the ask and the bid side.

A possibility to bring out the dynamical behavior of the limit order book is
to illustrate the cumulative volumes with the corresponding prices. A graphical
interpretation of this relation is schematically shown in Figure 4.2. Each figure is
a frozen in time window of the limit order book. The horizontal axis corresponds
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to the prices while the vertical axis displays the cumulative volumes. In each
Figure, the bid offers are represented on the left hand side and on the right hand
side the ask offers are shown. The corresponding best quotes (highest bid price
pbid

t respective to the lowest ask price pask
t ) are given in the middle of the graphic

and represents at the same time the bid-ask spread. Mt is the arithmetic mean
of the bid-ask spread.

Time Dependent Limit Order Book However, as time proceeds the limit
order book affected by the order flow appears in one of these four situations. In
each time step the shape of the limit order book looks different. Already the
mean-reverting mechanism around the best quotes shapes the slope of the book
continuously. In order to get an impression about this dynamical behavior of the
limit order book, consider Figure 4.3. The x-axis shows the prices. The y-axis
displays the time where the time grid is one hour. The third dimension, the z-
axis, illustrates the cumulative volumes at the corresponding prices. Considering
the illustration from the right front side, the shape of the limit order book, as
presented in one of the pictures in Figure 4.2 appears for a given snap-shot in
time. The shaded valley between the best quotes, shows the time dependent
changes of the mean reverting bid-ask spread process.

4.2 Time-Dependent Liquidity Measure

Liquidity has multiple dimensions which consist of key elements of volume, time
and transaction cost. According to B. R. Porter (2003) an ideal measure of liq-
uidity should therefore incorporate elements of depth, breadth and resiliency. In
general we share this opinion and propose the construction of a new liquidity
measure concept. As mentioned above, the bid-ask spread features a mean re-
verting behavior. This mean reverting behavior is driven by the order flow and
particularly by the traders of the market. However, amongst other things this
mean reverting characteristic serves as a basis of our measurement concept.
Consider a market situation consisting of one buyer and one seller. Both hand
in an offer either to buy or to sell the asset. When the offers matches, trade
trade immediately takes place to the first offered price. Otherwise the offers
are collected in the limit order book and the agents disclose the information
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Figure 4.3: Three Dimensional Limit Order Book The Figure 4.3 shows the
limit order book as time precedes. On the x-axis the prices are illustrated. On the y-axis the
time is shown where the time grid is one hour. The z-axis displays the cumulative volumes
at the corresponding price level. From the right front side, the shape of the limit order book
appears for a given snap-shot.

connected with the offer. In order to attain matching, the agents can adjust
their offers as time proceeds. However, if there are more than two actors in
the market, the agents standing outside observe the limit order book. Based on
the new acquired information they can submit a competitive order.5 The new
agents entering the market either tighten the bid-ask spread by submitting a
competitive offer, or widen the bid-ask spread by hitting the quote.6 From an

5In a later section we show that agents tend to use previous order characteristics as benchmark
for their own order. We find that similar endowed orders tend to follow each other. Biais et
al. (1995) report results alike to our findings.

6See the mechanism explained in more detail in section 4.1.
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auction theoretic and competitive point of view, the more agents in the market
the faster new orders are submitted. Which in turn can be reflected by more
movements, respectively a faster converging of the bid-ask spread to its mean.
Moreover the more market participants in the market the tighter the mean of
the spread. However, a tighter bid-ask spread reflects a more liquid market.
From this perspective, we suggest that the converging rate of the mean reverting
process is a liquidity measure.

However, as pointed out above, the limit order book owns informational con-
tent even beyond the best quotes. From this point of view, we do not rely on
a measurement approach solely based on the bid-ask spread. Moreover we con-
struct a measure based on the bid-ask spread mechanism but extended by some
additional dimensions. In order to incorporate the dimension of resilience and
depth of the book, we propose to measure the limit order book for a given time
interval by a density measure approach. The density measure Dt is the difference
between the natural logarithm of the density at the ask and the bid side. In or-
der to compute the density at each side the sum of the cumulated volumes q(i,t)

weighted with the difference between the mid price Pm
t and the corresponding

price pt,t is calculated.

Dt = log

⎡⎣(
A∑

a=1

qask
a,t

pask
a,t − Pm

t

)−1
⎤⎦ − log

⎡⎣(
B∑

b=1

qbid
b,t

Pm
t − qbid

b,t

)−1
⎤⎦ , (4.1)

where the integers a respectively b represents the corresponding price level of
the offers. Since all the available volumes on each side are take into account, the
measure is constructed with respect to depth and to the informational content
beyond the quotes of the book. Additionally, since the cumulated volumes are
weighted with the difference between the mid price Pm

t and the corresponding
price level pi,t also resiliency is considered. The limit order book contains all
not executed orders. From this fact pask

a,t > PM
t , respectively pbid

a,t < PM
t is true

because otherwise orders immediately lead to execution. Then orders are traded
and disappear from the limit order book.
However, since this measure is an extended version of the bid-ask spread it
behaves like the bid-ask spread and tends to converge to a mean. Therefore, we
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propose this measure as time series to the estimation of the converging rate, i.e.
the dynamical liquidity measure.

4.3 Model Approach

In order to obtain the converging rate of the density measure Dt, we apply a first
order autoregressive model Xt extended by a first order generalized conditional
heteroscedastic volatility structure to capture the time series generated by Dt.
The model is given by

Xt = μt + σtZt, (4.2)

μt = μ + φ1(Xt−i − μ), (4.3)

σ2
t = α0 + α1(Xt−1 − μt−1)2 + β1σ

2
t−1, (4.4)

where φ1 is a member of [−1, 1], α0 > 0 and α1 ≥ 0 and β1 ≥ 0 and α1 +β1 < 1.
In addition Zt is independent of (Xs)s<t for all t.
Since the autoregressive parameter is bounded by |φ1| < 1 the process is sta-
tionary.7 Stationarity is equivalent to mean reversion. From this point of view
a first order autoregressive model can be interpreted as a mean reversion model.
However, a faster reverting to a mean is reflected by a smaller dependency of the
previous state of the process. The coefficient φ1 describes how strong a previous
state is present in the current state. A value of φ1 close to zero shows a small
presence of the previous state and indicates therefore a fast converging rate while
a value of φ1 closer to one constitutes higher dependency on the previous state
and represents thus a lower speed of reversion. Hence φ1 can be considered as
an inverse converging rate.

Asset Liquidity Measure Liquidity can be measured for several time inter-
vals. In each snapshot of the limit order book all different measurement ap-
proaches can be applied and the current liquidity situation can be determined.
However, as mentioned in the previous section our focus is not on a measure
acquired for a given time interval. Moreover, we propose that the changes be-

7Otherwise the process is a random walk, see for instance Dickey and Fuller (1979) among
many others.
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tween the sequence of time intervals reflect asset liquidity. We suggest, based on
the mean reverting behavior of the bid-ask spread, liquidity can be measured by
the converging rate of the mean reverting process. From an economic point of
view matching of the orders take place faster and to more favorable transaction
costs when bid-ask spread is small. The mean of the bid-ask spread, respectively
of the density measure, is zero. Thus, the faster the process converges to this
mean, the more liquid the considered asset. According to this, we suppose that
a value of φ1 close to zero denotes a liquid asset and conversely a value of |φ1|
close to one describes an illiquid asset.
The GARCH volatility structure reveals additional characteristics of the time
series. In contrast to a model with constant volatility the extended model
with stochastic volatility is able to highlight the arrival of sudden extraordi-
nary events. Such events are referred to as shocks. The β1 parameter illustrates
the frequency of sudden shocks, while the α1 parameter describes the persistence
of them. To both applies that the larger the value the higher the frequency or
the longer the persistence of the shocks. From an economic point of view a shock
in the time series equals either a sudden deficit or a sudden surplus of orders. In
general such events are associated with large price movements or long waiting
times till execution. In that sense, most liquidity is provided when α1 and β1

tend to zero.8

According to those arguments the most liquid market environment is given by
tending all parameters to zero. Hence, we propose that

λ =
1
2

(|φ1| + α1 + β1) , (4.5)

where λ is the dynamic liquidity measure. Since the parameters are bounded by
|φ1| < 1 and α1 + β1 < 1, while α1 > 0 and β1 > 0 due to positive volatility, the
dynamic liquidity measure λ is bounded by 0 < λ < 1. Based on the construc-
tion this liquidity measure allows for an estimate of the liquidity attribute of
a particular asset. Moreover, since the measure is independently of dimensions
different assets can be compared with each other and a liquidity ranking can be
established.

8Since α0 only measures the scale of the volatility we omit this parameter in the liquidity
measure.





Chapter 5

Data and Methodology

The purpose of measuring asset liquidity is to provide additional information to
investors to advance asset management and in particular to improve asset selec-
tion and active trading. In this chapter we present an analysis of the entire limit
order book in the context of asset liquidity. Several authors recently evidenced
that, compared with a truncated limit order book, an entire limit order book
contributes additional information to market development, market behavior and
price discovery process. In accordance to these findings we provide an alternative
measurement approach to capture the movements of the entire limit order book,
the density approach. Additionally we introduce a new measurement concept by
defining the dynamic of measurement changes as the liquidity measure. Instead
of calculating an average measure, such as for instance the bid-ask spread, we
observe the changes of such a measure as time proceeds. The basis of this con-
cept builds on the density measure, while the liquidity measure is based on the
movement of this measure.
The chapter is structured in five sections. The first section introduces the mar-
ket microstructure of the considered market and presents the available data set.
We show the reconstruction of the limit order book. The next section deals with
the dynamic of the limit order book. In the subsequent section we concentrate
on the shape of the book. We analyze the liquidity costs, the shape of the book
according to Naes and Skjeltorp (2006) and in particular the order placement
procedure according to Biais et al. (1995). We prove that there are no random
effects in the data even if we refine the order placement procedure increasingly
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and give several economic interpretations of this behavior. This section serves to
a theoretical and empirical background for the subsequent section. The next sec-
tion introduces the density measure and provides an extensive technical analysis
of the time series. In addition we apply the same analyses as in the previous sec-
tion to connect the measure with economical interpretations. The section closes
providing the parameter estimations of time series which gather the changes of
the density measure as time proceeds. In the following section, the asset liquidity
based on the findings in the previous section are represented. In the last section,
the liquidity premium based on the liquidity ranking from the previous section
according to Fama and French (1992) is computed.
Calculations are performed with Matlab. However, to verify the results, all
calculations and estimations are additionally computed with S-Plus, R, Excel
and SPSS. The results in this thesis can be verified except for rounding errors or
errors caused by the converging of the numerical optimizer of the corresponding
software.

5.1 Order Book Data

The market At the Swiss Exchange SWX several kinds of securities are
traded. The exchange’s assets spectrum runs from equities and bonds to deriva-
tive instruments or exchange traded funds (ETF). The market microstructure
for the individual assets is different. It exist mainly in two market places, the
Swiss Exchange SWX and a subgroup of it, the Virt-X. Swiss equities are traded
on both market places. In terms of market capitalization, small and middle
capitalized equities are assigned to the Swiss Exchange SWX. Large capitalized
equities, or so-called blue chips, are traded at Virt-X.1

The Virt-X is organized as a double auction market. During a regular trading
day, which starts at 9.00 o’clock and ends at 17.20 o’clock, equity trading takes
place continuously and fully automated. An investor can choose between on or-
der book trading and off order book trading. Orders submitted to the on order
book trading are routed directly to the trading system and are forwarded to the
central order book (limit order book). Passing a control and security system, the

1Beside Swiss Blue Chips also derivative Instruments, Pan-European equities and ETF’s are
traded at Virt-X.
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order will be executed according to the matching rules.2 Alternatively, orders
assigned to the off order book trading are executed between two market partic-
ipants. These trades will also be reported at Virt-X. Thus the market and the
order execution process is fully computerized and no designated market maker
exists. This part of the market is organized as a pure order driven market.
The exchange supports various order forms. Orders submitted to on order book
trading can feature forms of restriction. Orders restricted only to quantity are
market orders. Orders containing additional restrictions are referred to as limit
orders.3

The minimum tick size is ruled by the exchange and depends on the current
price level. In general, the minimum tick size increases as price moves up. Once
the price reaches a next higher price range, the corresponding minimum tick size
is valid immediately. The minimum tick size can even change within a trading
day. All these different kinds of offers are collected and stored in the limit order
book. The book follows the price-time priority rule.4

Data Description We consider all orders submitted to the Swiss Stock Ex-
change (SWX) between January 2 and December 31, 2002. Excluding days the
exchange is closed, these are 251 business days. The Swiss Stock Exchange pro-
vides order histories for every single Swiss blue chip.5 Data of 23 of 26 Swiss blue
chips are available for the purpose of this thesis. The dataset consists of total
152,488,698 records including records in Tables of trade prices, orders, canceled
orders and other information about trading and trading activities.6 The Tables
comprise fields about transaction time and date when the order has been sub-
2Orders are executed according to the price-time priority rule. An order is first arranged to
limit price. Within the same limit price orders are sorted according to the submission time.
For more details consider chapter 2 and www.swx.ch.

3Orders may have various forms of restrictions. At Virt-X, five different forms for trading
purposes are available. Hidden size orders, with a visible order size and an additional hidden
order size, accept orders, where the order can be partially executed canceling the remaining
part, fill-or-kill orders, which can only be executed fully, conditional orders with respect to a
price condition and unreleased orders entered together with a time condition. For more detail
see chapter 2 and www.virt-x.ch.

4See for more details chapter 2.
5A part of the data are publicly available. For scientific research purposes, the SWX hands
out the remaining part of the dataset.

6The database accommodates data which are not relevant for the purpose of this thesis. How-
ever, no confidential information about trades, trading activities or investors is available.
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mitted to the exchange. It contains fields about buy or sell indication, original
order size and the order price. The order form is assignable as well. Expiration
date, delete time and reason are also available. In addition, some order identifi-
cation numbers are inserted. Only orders submitted to the SWX during regular
trading periods are considered.7

Order Flow Based on the available data we perform an analysis of the order
flow. For instance, regarding the order flow of Novartis, 1,789,433 orders have
been submitted during the considered period. 1,645,246 of them, or 91.94%, are
limit orders and 144,187 or 8.05% are market orders. We find similar dimensions
between limit orders and market orders for all other securities. 50% of the limit
orders concerning Novartis are buy-orders. The other half are sell-orders. Of all
limit orders submitted, 44.8% are not executed at all, 32.7% are involved in at
least one trading process and 27.4% are fully matched in one trade.8 46.5% of
the limit orders were deleted and 4.5% expired. 40.3% of the market orders are
buy orders. 15.2% of all market orders were fully executed in one trade, 78.8%
were involved in at least one trade. The remainder have been canceled. None of
the market orders expired. Order sizes and revenues varies more than the order
forms. The average order size of the ask side for Novartis comprises 4940 shares
and the average order size on the bid side amounts 4788 shares. Basic trading
and market data for all considered assets during the period of 2002 are reported
in Table 5.1. The Table shows data concerning stock price development, market
capitalization, outstanding shares, average trading volume and average order
sizes. The column percentage changes of stock prices documents the market
environment for the year 2002. In general, markets strongly declined in this
period.

7Continuous trading takes place in the state of trading between 9.00 a.m. and 17.20 p.m.
From 6.00 a.m. until 9.00 and 5.30 p.m. until 10.00 p.m. is the pre-opening state. During
this period orders can be submitted or modified but no trades are executed. The auction
pre-opening takes place from 5.20 p.m. to 5.30 p.m. No securities can be traded in this
period but derivative instruments can. For a more detailed description consider www.swx.ch.

8Exceeds the order size the currently available trade size, the order will be split in several
smaller portions. For more details see the matching rules described in section 2.1.2 or
www.swx.ch.
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Reconstruction of the Limit Order Book The data received from the SWX
allows for an estimate of the limit order book. The dataset provides information
to every single limit order that has been submitted to the exchange. Each order
record specifies, among other things, investor generated data as the date and
time of submission, the type of order, which characterizes the order as a buy
or sell intention, the order original size and the limit price. Exchange created
data as expiration date, delete reason and delete time are also included in the
same record. Delete reason denotes if an order has been fully executed or not.
Not fully matched orders appear several times in the dataset with adjusted order
volumes. Data are collected in separate tables for every single asset. The time
resolution in this database is 0.01 seconds. This dataset enables to reproduce
the limit order book for several time intervals.

We reconstruct the limit order book similar to the approach proposed by Kava-
jecz (1999) and Naes and Skjeltorp (2006) and in particular according to the
matching rules of the SWX. The reconstruction is carried out in the following
steps. In a first step the bid and ask limit orders are separated and saved in indi-
vidual files. Then, a filter for a desired time interval runs over the data. The bid
limit orders respective to the ask limit orders, which belong to the correspond-
ing time interval, are clustered and stored in a multi-dimensional vector. These
multi-dimensional vectors contain all orders separated according to the chosen
time interval. In a third step, data which can be matched within the chosen time
interval are identified. Matching rules are applied to these identified records and
the matched orders are eliminated from the dataset. Within the time interval
data are sorted in descending order, respectively ascending order such that the
corresponding best quote appears on the top. It results two multi-dimensional
vectors with the limit order book for the desired time interval for both the bid
side and the ask side, respectively.
To verify the correctness of the reconstructed limit order book, the mid price
of the best ask quote and the best bid quote are calculated. We compare this
time series of the mid prices with the mean of the real traded prices for several
time intervals. In Table 5.2 the Pearson’s correlation coefficients of selected se-
curities for different time intervals are reported. The correlation coefficient for
the 5-minute time interval, for Adecco for instance is 0.999654, for 30-minutes
0.999946 and for 60-minutes 0.999976. We find similar results for other time
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series. Since the correlation’s coefficients are all close to 1, this shows evidence
of the value of the reconstructed limit order book.

Table 5.2: Correlation of the Limit Order Book
The Table reports Pearson’s correlations between traded prices received from our data set and
artificially computed mid prices from the reconstructed limit order book. Time interval for
the snapshots of the limit order book are 5, 30 and 60 minutes. Calculation is based on 2008
observations for the 60 minutes, 4016 for the 30 minutes and 8032 for the 5 minutes time
intervals for each security.

5 Minutes 30 Minutes 60 Minutes
Adecco 0.999654 0.999946 0.999976

Credit Suisse 0.999994 0.999997 0.999999

Novartis 0.999994 0.999999 0.999999

Richemont 0.999873 0.999889 0.999904

Nestle 0.999913 0.999947 0.999977

Syngenta 0.999243 0.999353 0.999655

After reconstruction of the limit order book, we define a feasible time interval.
An appropriate time interval is important for a representation of the dynamic
of the limit order book most accurately. A too short time grid runs the risk of
containing less or even no limit orders. Larger time intervals may not reflect the
dynamic behavior of the limit order book appropriately. Ahn, Bae, and Chan
(2001), for instance, address this problem and conclude a 15-minute time interval
to be most applicable for their dataset. Kavajecz (1999) takes 30-minute time
intervals and Ekinci (2005) investigates several time intervals beginning with
1-seconds over 2-seconds, 5-seconds and 15 seconds to 1-minute, 5-minute, 15-
minute and 30-minute time intervals. Pascual and Veredas (2006) take intervals
ranging from 30-minutes to 2-hours. However, the academic theory does not
provide any suggestions to the right time interval. We calculate reconstructed
limit order books of 5-minute, 10-minute, 15-minute, 30-minute and 1 hour time
intervals. The main part of investigation is based on an hourly data set.
Having reconstructed the limit order book on an hourly basis, the time horizon
for the analysis has to be determined. While the data set of Biais et al. (1995)
comprise 19 trading days, data of Naes and Skjeltorp (2006) range from February
1999 to June 2001 and consists of 597 trading days. Data in the study of Jain
and Joh (1988) runs from 1979 to 1983, comprising 1263 trading days and the
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data set of Gerety and Mulherin (1992) ranges beginning of 1933 and ends in
1988. Our data set in this thesis ranges from the 1st of January until the end of
December 2002 and covers a one year period. Consequently our analysis horizon
is based on one year.

5.2 Dynamic of the Limit Order Book

As Gerety and Mulherin (1992) pointed out, theoretical, experimental and em-
pirical science often analyzes different kinds of structural characteristics. The
aim is to recognize and comprehend regularities, normalities and recurrences in
patterns, systems or structures. This section serves to an introductive overview
about the trading activities and the limit order book. The main focus is on the
visualization of the dynamic of the limit order book. Following Chordia et al.
(2001) we distinguish between trading activity measures as volumes and liquidity
measures as depth or bid-ask spread based figures. We start with illustrations
based on data of an aggregate level and refine data increasingly. The end of the
section closes with analyzes of interdependency between different aspects of the
limit order book with each other or with other variables.

Volume Dispersion A vast amount of academic literature and economic in-
vestigations address to the relations between volume and return, respectively,
volumes and volatility in different ways. He, Velu, and Chen (2004) or Has-
brouck and Seppi (2001) for instance, model the relation through interaction
of several independent components of each factor. Campbell, Grossmann, and
Wang (1993) consider serial correlation structures.9

We are not concerned with detailed analyzes regarding the relation of daily
volumes and returns at this stage of investigations. However, to get a first im-
pression about trading activities, we provide a graphic of the offered volumes
and returns. In Figure 5.1 the bid and ask volumes and the natural logarithm
of the returns of Novartis for one year are illustrated. The measurement interval
is one hour. On the left hand side in Figure 5.1 (a) the sums of bid and ask
volumes are depicted. Each line represents the sum of the demanded respectively

9And many other authors as Jain and Joh (1988), Niemeyer and Sandås (1993) or Hedvall
(1994).
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supplied volume of the limit order book in the measurement interval. On the
top of the picture the ask volumes with inverted ordinate are illustrated. The
corresponding ordinate is on the right side. On the bottom of the picture the
bid volumes are drawn with corresponding ordinate on the left side. The white
part between the two volume processes can be interpreted as the volume pressure
process. On the right hand side in Figure 5.1 (b) the natural logarithms of the
returns are presented. From a structural point of view, clusters on each time
series can be detected. Serial correlation of both volumes and returns are well
documented in academic literature.
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Figure 5.1: Bid and Ask Volumes and Log-Returns of Novartis For the
period between January 2 and December 31, 2002, the Figure 5.1 (a) illustrates the intraday
volumes for Novartis on hourly basis. The Figure (b) shows time series of natural logarithms of
the returns calculated on hourly time intervals. Calculations are based on 2008 observations.

Figure 5.1 (a) depicts higher volumes in the first half of the year as in the second
half of the year. In particular clusters of higher volumes can be found around
January and between the time of May and June. The chart of the log-returns in
Figure 5.1 (b) shows a contrary picture. The returns oscillate strongest in the
second half of the year, especially around June and July.

In contrast to this the analysis of the intraday volume variabilities reveals a more
systematic behavior. Jain and Joh (1988), among others report a U-shaped pat-
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(a) Intraday Volume Dispersion Bid Side
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(b) Volume Dispersion One Year Bid Side

9.00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

1

2

3
x 10

4 Means of Intraday Volumes Ask Side

Tradinghours

M
ea

n 
of

 O
rd

er
 S

iz
es

9.00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

1

2

3

4
x 10

5 Sum of Intraday Volumes Ask Side

Tradinghours

S
um

 o
f O

rd
er

 S
iz

es

(c) Intraday Volume Dispersion Ask Side

9.00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

0.5

1

1.5

2

2.5
x 10

5 Average Sum of Volumes over one Year Ask Side

Tradinghours

S
um

 o
f O

rd
er

 S
iz

es

(d) Volume Dispersion One Year Ask Side

Figure 5.2: Intraday Volume Dispersion The Figure 5.2 displays the intraday
volume dispersion separately for both, the bid side (upper Figure) and the ask side (lower
Figure). The pictures on the left hand side give an idea about calculations for a given day,
while the illustrations on the right side show the average of a year.

tern of intraday trading volumes.10 Additionally, they consider and compare
every single day in the week separately and discover that in average, trading
activity is small at the beginning and the end of the week, and is large around
Wednesday. Gerety and Mulherin (1992) investigate data from the New York
Stock Exchange (NYSE) from 1933-1988 and confirm a U-shape in intraday
trading volumes also for long time horizons. They find that most activities oc-
10See also Harris (1986).
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cur at the beginning and the end of a trading session, and argue that much of
that clustering is due to fear of bearing risk in overnight positions. Biais et
al. (1995) provide a more extensive analysis of trading activities for the Paris
Stock Exchange. They additionally differentiate between orders according to
their aggressiveness and trades according to their size. In general, both exhibit
the intraday U-shape pattern. The study reports that small sized trades occur
in the morning, when depth is low while large sized trades take place more in
the late afternoon, when depth is large. Biais et al. (1995) offer four different
interpretations of these effects. The first interpretation states that small trades
in the morning contribute to price discovery while large trades tend to arise af-
ter prices are already discovered. Second, they assert that fund managers, who
intend to trade a large trade, are evaluated with respect to the closing price.
Third, the high frequency of small orders in the morning are caused by finan-
cial intermediaries who execute orders which they received from their customers
early in the morning. Fourth, the intraday U-shape patterns of the volumes arise
from strategic order splitting. We differ from these analyzes since we consider
the offered volumes for the bid and the ask side separately. Figure 5.2 illustrates
the situation for Novartis. Figure 5.2 (b) depicts the average sum of offered
volumes of one year on the bid side of a business day. Figure 5.2 (d) illustrates
the same for the ask side. Observations take place in hourly time intervals and
calculations are based on the entire limit order book in the corresponding time
interval. We find a U-shape with lowest value around noon, for both the bid and
the ask side thus also for the Swiss market. Besides our results and the find-
ings for the US market, Niemeyer and Sandås (1993) present similar patterns
for Sweden and Hedvall (1994) shows the intraday U-shape in volumes also for
Finnland.
On the left hand side of Figure 5.2 in subfigure (a) and (c) additionally the vol-
ume dispersion of a single day is plotted. In each of these cases the illustrations
on the top pictures are the mean of the volume in the corresponding trading
hour. The lower illustrations depict the sum of all order volumes in this trading
hour. The U-shape appears here as well. All considered securities exhibit this
kind of U-shape of intraday volume dispersion.
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5.3 Shape of the Limit Order Book

In order to get a deeper insight into the structure and the order flow process
and in particular of the trading activity, we refine the grid of the data once
again. Instead of considering the cumulative volumes, we now disjoint the data
additionally with respect to their prices submitted. In the limit order book all
orders submitted to the market place are collected according to their intent, price
and submission time.11 The book is separated into a bid- and an ask-side and
orders are assigned to the corresponding side. Within the bid respectively the
ask side, the orders are sorted first according to the submitted price and second,
within the same price, according to the submitted time.12

A graphical interpretation of the limit order book is presented in Figure 5.3.
Here, the time aspect within the same prices is omitted and orders submitted
to same prices are summarized. In this graphic we assume that an investor
intending to buy (sell) for the best quoted price is also prepared to buy (sell) at
the next lower (higher) price. As a result we aggregate the orders with increasing
depth of the book.13 This diagram allows a view to depth at a number of price
levels.14

A majority of analyses are mainly based on the best quoted prices, such as the
bid-ask spread for instance. Recent academic literature and scientific economic
research discovers that quotes beyond the best quotes accommodate additional
information. Cao et al. (2004) evidence that quotes beyond the best quotes
have informative properties. They show that firstly, the order book beyond the
best quote contains about 30 % of information of the true value of the under-
lying asset. Second, the imbalance information between demand and supply as
expressed in the entire book contributes additional explanatory power to future
returns.15 And third, trading and submission strategies are affected by the avail-

11For a more detailed description consult also chapter 2.
12This is called the price-time priority rule. See for more details chapter 2.
13From a microeconomic perspective the presented graphic represents the demand and supply

functions.
14This kind of illustration of the limit order book is also used by Glosten (1994) or Naes and

Skjeltorp (2006). In contrast to our pictures Naes and Skjeltorp (2006) visualize the shape
of the book on a relative basis. Instead of using the absolute aggregated volumes on the
ordinate they calculate the percentage of the accumulated share volume. The horizontal axis
shows the ticks away from the best quotes.

15They find that in a regression framework the imbalance information increases the adjusted
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able additional information of the limit order book. Harris and Panchapagesan
(2005) confirm these findings and extend research by analyzing trader’s behav-
ior regarding different actions a trader can take. They find strong evidence that
traders use the additional information provided by the entire limit order book.16

Moreover, to show that traders rely on their order book, they measure order
book information with trading options and future price changes.17 As a result,
they find strong evidence that the limit order book is informative about future
price changes and that order properties such as duration, price relative to the
market, and order size have information content. Pascual and Veredas (2006)
evaluate the informational content of the limit order book by its explanatory
power in long run volatility.18 By separating liquidity driven volatility from
informative driven volatility they report that changes in immediacy costs, for
trades of different sizes, indicates posterior fluctuations in long run volatility.

In Figure 5.3 (a) to (d) hourly snapshots of several situations of the limit order
book are depicted. With focus on the shape of the book, Figure 5.3 (a) illustrates
a high concentration of orders around the bid-ask spread on both sides. This
entails a steep shape of the limit order book. In contrast to this, in Figure 5.3
(b) orders are less dispersed around the bid-ask spread, which results in a more
gentle shape of the book. From an auction theoretic perspective Figure 5.3 (a)
is considered as more liquid situation than Figure 5.3 (b). To illustrate this,
consider the example of a buy (sell) order, price limited on the best quoted ask
(bid) price. The order size is equal to the corresponding offered size in Figure
5.3 (a). Since order size corresponds to the offered size in 5.3 (a), the order will
be fully executed at this quoted price. In situation 5.3 (b) due to lack of enough
volume at this price the order can not be fully executed and has to be split in
several portions. The split part either is executed at an adjacent price level or the
agent waits until volume is provided again.19 In the first case, transaction costs

R2 by 11-18% in comparison to the results using information based only on the best quotes.
16They characterize information according to their dependency of the limit order book and

investigate traders behavior to the information available only from the entire book.
17They use two option pricing models to estimate the value of limit orders and analyze the

value pattern of these artificially constructed options.
18Similar results are provided by Ahn et al. (2001) and Coppejans et al. (2004).
19Execution on an adjacent price level is only possible if the order price limit complies with

the adjacent price, the order has been submitted as market order or no other restrictions
according to order splitting have been done.
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(a) Liquid Limit Order Book
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(b) Illiquid Limit Order Book
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(c) Demand Pressure in Limit Order Book
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(d) Supply Pressure in Limit Order Book

Figure 5.3: The Limit Order Book The Figure 5.3 illustrates hourly based snap-
shots of several order book situations of Novartis. In each picture the left curve represents the
bid volumes aggregated with increasing tick levels away from the mid price, while a tick level
corresponds to 0.05 units of currency. The right curve shows the same for ask volumes. The
gap between the two curves represents the bid-ask spread with the corresponding quoted quan-
tities. From an auction theoretic perspective Figure (a) is considered as more liquid situation
than Figure (b). Figure (c) represents a buy pressure while Figure (d) shows a sell pressure.

measured by the price impact are higher and in the second case, the waiting time
until the order is executed is longer. Both accord with the definition of a less
liquid market environment.20 In this context, Figures 5.3 (c) and (d) represent

20See definition of liquidity in section 2.2.3.
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a demand pressure and a supply pressure in the order book, respectively

Liquidity Costs With focus on the price impact which arises of different order
sizes we analyze the shape of the limit order book regarding to its informational
contribution to the price impact. There has been substantial academic literature
in the field of transaction- and liquidity cost. With focus on price impact several
authors including Chan and Lakanishok (1993), Chan and Lakanishok (1995)
and Kalay, Sade, and Wohl (2004) constitute that buy orders have larger price
impacts than sell orders. Similar results are reported by Naes and Skjeltorp
(2006). Moreover, Chiyachantana, Jain, Jiang, and Wood (2004) find that the
underlying market condition is a major determinant of price impact, in particular
of the asymmetry between the price impact of sell and buy orders. They report
that in bullish markets, institutional purchases have bigger price impacts than
sells, and in bearish markets sell orders have larger price impacts.
Stock markets declined in the year 2002, in particular the Swiss stock market.
Table 5.1 reports the situation. Except Givaudan all other considered companies
lost substantial market value. In 2002 the market was bearish. According to the
mentioned literature in such a market environment sell orders affect prices more
than buy orders.
In order to measure the price impact we calculate the liquidation cost based on
the limit order book of the bid and the ask side separately. Since the data is not
continuous but discrete, we use instead of the definition 2.2.3 the discrete form
of

Ls(q) =
R∑

τ=1

q(τ,s)p(τ,s) − q · Ps, (5.1)

where τ denotes the tick level away from the mid price. q(τ,s) is the aggregated
volume at the corresponding tick level and p(i,s) represents the price at the
corresponding tick level.

∑R
τ=1 q(τ,s) = q represents the depth of the entire limit

order book in the snapshot s. Instead of using the mid price Ms as presented
in the theory section, we use the current trading price Ps in the corresponding
time interval.21

To calculate the liquidation cost we assume that an order submitted to the

21Mid prices are highly correlated with trading prices. See section 5.1. For that reason this
change does not affect the result, but facilitate calculation.
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market will be executed at the available prices in the corresponding time interval
of the limit order book. In particular, if the order size exceeds the size of the
current best quoted offer, the order will be split and the offered size will be
cleared. The remaining, not executed part of the order will be matched against
the next best quoted price. Additionally, exceeds the order size the currently
available size of the limit order book in time (s), the remaining part of the order
is transferred in the proximate limit order book in time (s + 1). The matching
process is carried out until the order is fully cleared. A fully executed order may
affect several price levels and consequently, may be split several times. Hence
liquidation costs increase due to execution at proximate price levels. This reflects
the price impact effected through the order size.

Order splitting is associated with additional costs. Financial institutions charge
additional fees for each split order. Additionally, in the case that an order cannot
be fully matched in one time interval, even more costs arise. Since these costs
depend on the financial institution and in particular on the conditions of the
contract between the investor and the institution, we exclude this kind of cost
in this calculation. Because only the liquidation cost in form of an immediate
price impact is calculated, it is herein after referred to as pure liquidation cost.

The calculations are performed for an order size starting at 1 share and ending
with 10’000 shares. The estimation for the average cost is based on a time
period of one year. The liquidation-costs in equation (5.1) are absolute values
and reflect the effective costs in Swiss Francs. In order to compare the liquidity
costs we calculate the relative costs with respect to the corresponding revenues.
In Figure 5.4 the liquidation cost structure with respect to different order sizes
are illustrated. The dashed line represents the liquidation costs on the bid side,
the solid line on the ask side. In Figure 5.4 (a) and (c) the liquidation costs of
the bid side are higher. In contrast, in Figure 5.4 (b) and (d) liquidation cost
on the ask side are higher.

The bid side absorbs possible sell orders. In order to measure the price impact of
a sell order, the bid side is relevant. To decide which price impact is greater, we
apply a right-sided T-test to the liquidation costs. For 56,52% of all considered
assets, or 12 out of 23, the null hypothesis that the mean of the bid side is greater
than the mean of the ask side is accepted. Of the rejected null hypotheses 5 of
23 or 21,74% even do not accept the inversely arranged T-test, that the mean
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(d) Novartis

Figure 5.4: Pure Liquidation Cost The liquidation costs relative to the price are
graphically illustrated in Figure 5.4. The costs are calculated for the price impact function of
the liquidity cost given in equation (5.1), where the order size increases starting of 1 share to
10,000 shares. The solid line represents the relative costs on the bid side, while the relative
costs on the ask side are shown by the dashed line.

of the ask side is greater than the mean of the bid side. The remainder, again
21,74%, accepts the alternative T-test and supports a higher price impact of a
buy order. Based on these statistical results we can not confirm the findings
of Chiyachantana et al. (2004) that sell orders have larger price impact. In
contrast, we can neither decline nor accept the hypothesis that in a bearish
market environment sell orders have large price impacts.
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However, in several empirical papers the shape of the limit order book is inves-
tigated. Glosten (1994), for instance, uses similar representations of the shape
of the limit order book in his investigations. In his model, he explains the slopes
of the limit order book shapes with homogeneous liquidity suppliers. Goldstein
and Kavajecz (2004) provide evidence that there exists a negative relation be-
tween the shape of the limit order book and volatility during extreme market
situations. Naes and Skjeltorp (2006) address to discover price formation in
a limit order market. Their main findings are that volume, volatility and the
volume-volatility relation are negatively related to the order book slope. In ad-
dition, they show evidence that there exists a negative relation between order
book slope and analysts earning forecasts. They interpret these findings as an
implication of the order book slope as a proxy for the beliefs of investors about
the asset value. The analysis of the slope of the order book also delivers in-
sights in different aspects of the order flow and hence in the dynamic of the limit
order book. Based on this, we follow Naes and Skjeltorp (2006) and partially
reconstruct their analysis.

Measuring the Slope of the Order Book The slope of the limit order
book is basically the elasticity measure ∂q/∂p, which expresses how quantity
(q) supplied in the limit order book changes as a function of the price (p).
Considering Figure 5.3, the slope changes along the price axis. To obtain an
average measure, Naes and Skjeltorp (2006) propose to first average the slopes
along the corresponding offer side of the limit order book for the given snapshot.
Obtaining the average slope for the bid and the ask side separately, in a second
step the average of a trading day is calculated for each side. In order to get the
average of the slope of the entire limit order book, the daily average of the bid
and the ask side is computed. Following Naes and Skjeltorp (2006) we calculate
the slope Sx,i

s,t for the corresponding offer side x, for each snapshot s ∈ [1, . . . , 8],
security i and date t as

Sx,i
s,t =

1
Nx

{
νx
1

px
1/px

0 − 1
+

Nx∑
τ=1

νx
τ+1/νx

τ − 1
px

τ+1/px
τ − 1

}
, (5.2)

where Nx are the total number of offered prices containing orders at the cor-
responding book side. Let τ index the tick level, where the bid-ask midpoint
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level is represented by τ = 0, and τ = 1 denotes the best quoted price with a
positive accumulated share volume.22 Let the mid price denoted by px

0 and let
νx

τ represent the natural logarithm of accumulated total offered shares at each
tick level τ . The first term in the brackets of equation (5.2) measures the slope
from the bid-ask mid price to the best quoted price level. The second term sums
the local slopes along the remaining price levels of the limit order book.23

Having calculated the mean of the slope for a trading day separately we average
the daily slope of the bid and the ask side arithmetically. To scale the slope
measure for parameter estimates of the regression analysis we divide the measure
by 100.
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(b) Average slope ± 10 ticks

Figure 5.5: Histogram of Slope Estimates The Figure shows the absolute fre-
quency of the daily averaged slopes of the limit order book of Novartis. In Figure (a) estimations
are based on the entire limit order book. In Figure (b) frequency distribution is counted on a
truncated limit order book limited to ± 10 ticks away from the mid price.

In Figure 5.5 histograms of the absolute slopes of two different subsets of the limit
order book for Novartis are presented. Figure 5.5 (a) represents the frequency of
22For each security traded at the SWX, the SWX rules the tick size depending on the currently

traded absolute price level. See for more details chapter 2. We adopt this tick size for every
single considered asset.

23Naes and Skjeltorp (2006) pointed out that the first and the second term inside the brackets
are not measured in the same units since no volume at the bid-ask mid price is available in
order to calculate the elasticity at this price level. However, they verify their choice of the
measure by calculating alternative approaches proposed by Kalay et al. (2004) or Kim, Lee,
and Morck (2004).
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the slopes calculated on the entire limit order book. In Figure 5.5 (b) the slopes
are estimated on a truncated limit order book, where depth is limited to ± 10
ticks away from the mid price.
The mean of the histogram of the slope based on the entire limit order book
is 17.79 (median 16.79), while the mean of the frequency of the slope based on
the truncated book is 32.35 (median 30.97). According to Naes and Skjeltorp
(2006), we find similar outcomes that the slope increases the less of the depth of
the book is involved. Based on this, we assume that in general average volumes
are larger the closer they have been submitted to the best quotes. Considering
order sizes equally, this means that the frequency of order placement around
the best quotes is higher. In fact, Biais et al. (1995) show evidence that order
placement decreases monotonically as one moves away from the quotes.
From an economical perspective the shape of the limit order book can disclose
information about the beliefs of investors about the real value of the traded
security. A wider book indicates that investors disagree more about the real value
of the asset. A steep book implies that investors have similar value perceptions.

Table 5.3: Correlation between slope measures and liquidity measures
The Table reports Pearson’s correlations of the results of 23 assets for slopes with several
liquidity and trading activity measures. The first estimation is based on the entire limit order
book, while the latter two are based on a truncated book bounded to 15 respectively 10 ticks
away from mid price. Estimations take place on a daily basis which involves 2008 observations.

Slope (Full order book) Slope (±15 ticks) Slope (± 10 ticks)
Number of Trades −0.356 −0.224 −0.187

Trading Volume 0.060 0.305 0.348

Market Capitalization 0.381 0.555 0.579

Spread −0.358 −0.464 −0.471

Slope (Full order book) 1.000

Slope (+/- 15 ticks) 0.871 1.000

Slope (+/- 10 ticks) 0.782 0.935 1.000

The proceeding analysis explores how the slope of the limit order book is related
to typical measures for liquidity or trading activity. Typical measures include the
number of trades, executed within the considered snapshot, trading volume, the
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current market capitalization and the bid-ask spread. We estimate first the slope
for every considered asset and compare then the results with the liquidity and
trading activity measures. In Table 5.3 the results of the Pearson’s correlation
between these measures for different restricted limit order books are represented.
As also reported by Naes and Skjeltorp (2006), we find that market capitalization
is positively and the bid-ask spread is negatively correlated to the book slope.
The full order book slope has a positive correlation to market capitalization of
0.381 and is negatively correlated with -0.358 to the bid-ask spread. Correlation
increases the more the limit order book is restricted. The book slope, where the
slope is estimated by a book bounded by ± 10 ticks away from the mid price
has a positive correlation with market capitalization of 0.579 and a negative
correlation of -0.471 with the bid-ask spread. These findings indicate that in
general larger capitalized assets are more liquid in terms of smaller spreads and
steeper order book slopes.24 In contrast to Naes and Skjeltorp (2006) we find a
negative correlation between the order book slope and the number of executed
trades. The full order book slope has a negative correlation of -0.356 with the
number of executed trades. But the negative correlation tends to be smaller the
more the book is bounded. The restricted limit order book slope is correlated
with -0.187 to the number of trades. Trading volume however behaves conversely.
For the entire book we find a correlation of 0.060. The correlation to the bounded
book is 0.348. This indicates that trading is more frequent closely around the
bid-ask spread. These findings are supported by the outcomes reported to Figure
5.5 and by Biais et al. (1995).

Naes and Skjeltorp (2006) proceed with analyzing the volume-volatility, price
volatility and slope volume relation in different ways. However, our main focus
is on the relation between the slope of the limit order book and the price pro-
cess, respective of the price volatility. In this sense, we mainly concentrate on
the regression framework involving these parameters. In order to estimate this
relation R. D. Huang and Masulis (2003) as well as Naes and Skjeltorp (2006)
follow the two step regression approach provided by C. M. Jones, Kaul, and
Lipson (1994). Following C. M. Jones et al. (1994) we measure in a first step

24Naes and Skjeltorp (2006) arrive to a similar conclusion.
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the return volatility for each security i by

Ri,s =
12∑

j=1

βi,jRi,s−j + ε̂i,s, (5.3)

where Ri,s is the return on security, i in the corresponding snapshot s. Short
term movements enter conditional expected returns by the 12 lagged return
regressor. The residual ε̂i,s is the estimate of the unexpected return on security
i in the time interval s. The absolute value | ε̂i,s | represents the volatility. The
second step according to C. M. Jones et al. (1994) consists of estimating the
relative effects of explanatory variables to the response variable by running for
each security i the regression

| ε̂i,s | = β1Ni,s + β2OVi,s + β3MCAPi,s + β4SPREADi,s

+ β5SLOPEi,s +
12∑

j=1

ρi,j | ε̂i,s−j | +ηi,s, (5.4)

where N reflects the number of trades executed in the corresponding time interval
s, OV is an abbreviation of the average order book volume, MCAP is the average
of the market capital in the snapshot, SPREAD is the relative bid-ask spread
and SLOPE stands for the slope measure computed according to equation (5.2).
The term ρi,j weights the volatility persistence across 12 lags.25 In addition to
the order book slope, several variables to control for liquidity are included in the
regression.
Less liquid assets generally have smaller order book volumes. A large offer cannot
be absorbed by the best quotes and affects therefore a price impact. In general
price impacts comprise an additional source of risk. Since agents require liquidity
premium for additional risk the bid-ask spread is higher for less liquid assets.
From this microeconomic theoretical perspective a positive relation between the
order book slope and the volatility is expected.
In Table 5.4 the regression results for Novartis for four different models are

25Naes and Skjeltorp (2006) include a constant term αi,s in some regression frameworks. We
estimate different regressions including and excluding the constant parameter and conclude,
that estimation is improved by omitting the constant parameter.
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Table 5.4: Price volatility and slope regression
The Table reports the estimation results for Novartis for the entire limit order book of four
different versions of the regression

| ε̂i,s | = β1Ni,s + β2OVi,s + β3MCAPi,s + β4SPREADi,s

+ β5SLOPEi,s +

12∑
j=1

ρi,j | ε̂i,s | +ηi,s,

The regressand | ε̂i,s | is the absolute value of the unexpected return on security i in the snap-
shot s obtained by equation (5.3). N is the number of executed trades within the considered
snapshot, OV represents the average order book volume, MCAP the market capitalization,
SPREAD the bid-ask spread and SLOPE the slope of the entire limit order book computed
according to equation (5.2). For each model in the first row the parameter estimations are
presented while in the second row the corresponding t-values of the parameter estimations are
shown. In model 2 and 3, negative respectively positive related parameters are omitted. In
model 4 we test only the effect of the limit order book slope. The parameter estimation results
for the volatility persistence are excluded. F-tests denoted by ** are significant at a 1 percent
level. Estimation is based on 2008 observations.

Model 1 Model 2 Model 3 Model 4
Variables β̂ t-Value β̂ t-Value β̂ t-Value β̂ t-Value
N 0.000 −1.32 0.034 6.90

OV 0.081 2.49 0.000 0.11

Market Cap −0.061 −1.39 0.005 8.91

Spread −0.108 −1.40 0.083 6.64

Slope −0.065 −12.06 −0.065 −12.48 −0.066 −12.69 −0.076 −15.64

Adj. R2 0.290 0.289 0.289 0.258

F-test 819∗∗ 817∗∗ 815∗∗ 699∗∗

DW 2.001 2.004 2.006 1.989

summarized. The estimations are based on the entire limit order book. Model
1 includes all parameters, while the model 2 and 3 excludes highly correlated
variables of the estimation. To extract the effect of the slope to the volatility
the last model is set up only of the slope parameter.

As expected from microeconomic considerations, the slope variable causes a neg-
ative effect to the price volatility. The results are in the same region and in
particular, highly significant across all model specifications. The parameter es-
timation in model 4 for the slope β̂5 is -0.065 with a corresponding t-value of
-15.64, which indicates significance even on a 1 percent significance level. That
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means that volatility decreases the steeper the order book slope is. These find-
ings are identical to that of Naes and Skjeltorp (2006). Moreover, we confirm the
outcomes by Naes and Skjeltorp (2006) and Biais et al. (1995) of the positive
relation between the order book volume and volatility. As pointed out by Biais
et al. (1995) this shows that more trades are executed when the order book
is thick. The estimation results of the market capitalization as well as of the
bid-ask spread alters signs by changing the model.
The adjusted R2 is 0.290 for the model 1 and declines by omitting control vari-
ables. Since in model 4 only the slope parameter is estimated the adjusted R2

indicates that 0.258 of the proportion of the response variation is explained by
the slope measure. In order to show the goodness of fit, the results of the F-tests
show evidence that the adjusted R2’s are significant even on a 1 percent signifi-
cance level. The Durbin Watson (DW) values indicate no autocorrelation in the
residuals.26

Order Flow Persistence So far, we have concentrated on the analysis of the
limit order book dynamic generated by orders aggregated on each price level. In
order to explore how order flows affect order book dynamic, we now turn to the
analysis of the order placement procedure. We follow Biais et al. (1995) and
consider all orders according to their restrictions regarding price and quantity
and in particular according to the submission time. The orders are differentiated
between the sell and the buy side and within the corresponding side according
to their aggressiveness. According to Biais et al. (1995) on each side, seven
categories of orders, corresponding to decreasing degrees of aggressiveness, are
defined.27 The first three categories of orders are limit orders price limited at
or higher than the currently available best quoted price. The most aggressive
order is "large buy", an order limited on a larger quantity and a higher price
than the currently available best offer. The second category is "market buy", an
order to buy a larger quantity than the quantity offered at the best quote and
limited to the best quoted price. Orders assigned to the category of "small buy"

26Naes and Skjeltorp (2006) provide deeper analysis regarding the explanatory components of
the limit order book slope. Since our work does not rely on the book slope we finish analysis
at this point.

27Biais et al. (1995) differentiate between trades and orders. We consider all orders before
they are executed and call them consequently all orders.
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are restricted in quantity lower than the offered quantity, while the price is set
as high as the currently best quoted price. The next two categories are price
limited within the bid-ask spread. The order size of orders of the category "large
buy within" are larger or equal to the best offer, while the quantity of an order
from the category "buy within" is smaller than the best quoted size. The price
limits of the last two categories are ascertained below the price of the best offer.
The category "large bid below" consists of orders with quantity limited to larger
than the best offer. Orders which belong to the category "small bid below" are
quantity limited below the best quoted offer. In the Table 5.5, the frequencies
of the 14 categories of orders conditional on the previously submitted order for
Novartis are reported.28 Each row corresponds to a type29 of submitted order
in time t − 1, while each column represents a type of submitted order in time
t. The Table is a transition probability matrix, where each row is a probability
vector summing up to one. The Table 5.5 documents that the probability that a
given type of order occurs after the same type of order has just occurred is larger
than that a different type of order occurs. Thus, for example large orders tend to
follow large orders or small orders tend to follow small orders.30 These outcomes
also find Biais et al. (1995), whereas compared to our results the probabilities
of the persistence of the same order type is smaller.31

Several empirical analyzes examine the behavior of limit order submission pro-
cess and discover that order flows are serially correlated. Additional work has
been done in this direction by Danielsson and Payne (2001) for foreign exchange
markets, Choi and Lee (2000) for the Korea stock exchange and Yeo (2006)
for the NYSE. Furthermore, Parlour (1998) provides a theoretical framework
to explain the behavior of the order placement process. She shows that within
this model framework, even with absence of asymmetric information and with
random arrivals of different trader types, non-random patterns in order flow are
observable. Limit order submission is not random and order flow has a non-zero

28Albeit the presented estimations are computed for Novartis, the calculations for all other
considered assets lead to similar outcomes.

29In this case the order type refers to as the category of aggressiveness.
30In order to facilitate overview, the largest numbers in each row are in bold type.
31Since the results appear in a diagonal matrix Biais et al. (1995) call this occurrence the

diagonal effect. However, since the probabilities attribute a characteristic of the order place-
ment procedure, we refer it to as the persistence in the order placement procedure or the
persistence in order flow.
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first order serial correlation. In particular, the state of the limit order book
affects an agent’s order submission strategy.32

32However, the theoretical model of Parlour (1998) suggests a negative serial correlation, while
empirical investigations show evidence of a positive serial correlation in the order flow.
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Biais et al. (1995) summarize three alternative economic hypotheses explaining
this observation. The first hypothesis states that serial correlation arises due
to strategic order splitting. An order is split to reduce market impact, and
thus to lessen transaction cost. Another point of view for order splitting is the
informational content an order owns. Large orders may signal additional positive
private information. This influences order flow in two ways. First, the investor
owning such information, sometimes also referred to as insider, repeatedly buys
and respectively sells the asset until his private information is revealed in the
price. Second, investors observing this trading behavior imitate the insider.
Easley and O’Hara (1987) for instance, show that order clustering arises if agents
own private information. This informational aspect of order splitting outlines the
content of the second hypothesis. The third hypothesis assumes that agents react
similarly to the same events, since they own the same economical or technological
knowledge. However, for proceeding analyzes what is important is that the order
placement is serially correlated.

To get more consolidated findings in the order placement process, we proceed
following Biais et al. (1995) and extend the computation of the frequency of or-
ders conditional on the previous type of orders by the analysis of order frequency
conditional on the state of the book. The state of the book is differentiated by
means of the size of the bid-ask spread and the size of the depth. The threshold
of assigning the state is defined by the median of each of the time series. A state
with depth at the best quotes below the median of the depth in the considered
period is referred to as "small depth." Similarly, if the bid-ask spread of a state
is below the median of the bid-ask spread, the state is assigned to the group
"small spread." In the Table 5.6 the results of these estimations are represented.
Orders are categorized according to the order aggressiveness scheme. With focus
on movements around the bid-ask spread, orders are subsumed in groups above,
within, at and below the bid-ask spread.

In general, we find that independently what the current state of the book is orders
are more frequent within and in particular at the bid-ask spread than below for
the buy side and above for the sell side. These findings emphasize the outcomes
presented earlier of the frequency of the slopes around the bid-ask spread of a
truncated limit order book compared with the entire book. Trading activity
basically takes place closely adjacent of the bid-ask spread. Nevertheless, 30% of
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the orders submitted to the market are orders subjected to less aggressiveness.
Additionally, we find that buy orders aimed to be immediately executed are
relatively more frequent when spread is tight, while buy orders within the bid-
ask spread are relatively more frequent when spread is large. Moreover, sell
orders intended with immediate execution are more frequently placed than buy
offers. One possible explanation for this effect is that stock markets substantially
declined in the year 2002. Sell pressure is always large and the risk to suffer price
loss is high. Strategic investors try to sell as fast as possible in order to avoid
larger losses. For this reason, order placement of sell orders below the best quotes
is preferred.
With respect to the depth of the limit order book we find that orders within the
spread occur more often when depth is large. Orders submitted at the quotes
are more often when depth is low. This result is in line with the findings of
Biais et al. (1995). From an auction theoretic point of view an argument for
this market behavior is that when depth is low, a new order limited to the best
quote is more likely to be executed than when depth is high. In contrast, when
depth is high, an order placed within the quotes are more likely to be executed
than at submitted at the quotes. In terms of economic theory to undercut the
best quote is the price to obtain time priority.

Table 5.6: Frequency of orders given the state of the limit order book
The Table 5.6 shows the frequency of submitted orders conditional on the previous state of the
limit order book. The estimation is based on observations for Novartis between January 2 and
December 31 in 2002, which comprises 1,645,246 submitted orders. Each row is a probability
vector summing up to one. Orders are categorized according to the order aggressiveness scheme.
The categories are simplified by subsuming orders above, within, at and below the bid-ask
spread each in one group. The bid-ask spread and depth is considered to be large, if it is larger
than its time series median.

Bid side Ask Side
Buy Within At Below Sell Within At Above

Panel A: Large Spread
Small Depth 13.14 11.11 10.51 14.22 24.48 5.20 6.95 14.40
Large Depth 9.96 9.84 3.81 23.72 29.77 4.70 1.03 17.17

Panel B: Small Spread
Small Depth 16.75 13.70 6.25 16.27 19.02 2.43 5.65 19.93
Large Depth 16.28 15.66 1.28 19.85 17.93 2.87 1.03 25.09
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Summary In the last two sections we illustrated how data of the limit order
book is structured. In the first section we showed evidence that u-shaped intra-
day volume patterns can also be found for the Swiss market and in particular,
this patterns also exists by considering the entire limit order book. Afterwards,
in the subsequent section, we illustrated different forms of shape of the limit
order book and connected it to auction theory. Measured on the effect of the
shape to unexpected volatility we supported the thesis that the entire limit order
book contains additional information compared to a truncated data set. With
the approach of Naes and Skjeltorp (2006), and later on with the approach of
Biais et al. (1995), we disclosed that orders are relatively frequently placed
closely around the bid-ask spread and, additionally, that the order flow process
is serially correlated.
By continuously refining the perspective of the data respective to the order place-
ment procedure we collected all relevant components to extend the analysis and
to build the fundament of our measurement concept. Basically two arguments
found in the previous section are important. One aspect is that large depth at
the quotes induces more relative frequent order placement at the spread, while a
thin book implies order submission within or above the spread. From an auction
theoretic perspective this behavior implies mean reversion in market liquidity,
as measured, for instance, by the bid-ask spread.33 The other aspect states that
serial autocorrelation is detectable in several elements of the limit order book.
With this basis we explore in the next section the limit order book as time
proceeds and introduce a new measurement concept for liquidity.

33See for instance Handa and Schwartz (1996) or Biais et al. (1995).
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5.4 Density Measure Approach

In this section we analyze the dynamic behavior of the limit order book as time
proceeds. In the previous section the time aspect played a subsidiary role. We
present a density measure approach, which includes and extends findings of Biais
et al. (1995) and Naes and Skjeltorp (2006), and many other authors, and in
particular the results performed in the previous section. Albeit the analyzes
are performed for every considered asset, the results of only two securities are
presented in more detail. The outcomes of the remaining assets are mentioned
in short overviews or where useful are summarized in tables. The approach is
represented by means of the shares of Novartis and Swisslife.
The section is structured as follows. First we start with a short description of
the density model approach. Fundamental analyzes of the time series follow,
i.e. descriptive statistics, tests of the distribution and stationarity. In order
to highlight the density measure from an economical point of view we apply
the concept provided by Naes and Skjeltorp (2006) to our time series. Next,
analyzes in the time domain follows. Based on these results we continue with
model selection and verification. The section closes by providing an appropriate
time series model to capture the dynamic of the density measure.

Model Description According to the description in section 2.2.3 the density
measure Dt is calculated as the difference between the natural logarithm of the
density on the ask side and the bid side. The density on each side is computed
as the sum of the volumes q(i,t) weighted with the difference between the mid
price Pm

t and the corresponding quoted price pi,t. Formally this is

Dt = log

⎡⎣(
A∑

a=1

qask
a,t

pask
a,t − Pm

t

)−1
⎤⎦ − log

⎡⎣(
B∑

b=1

qbid
b,t

Pm
t − qbid

b,t

)−1
⎤⎦ . (5.5)

The integers a, respectively b, represent the position of the offer in the current
limit order book on the ask and bid sides. The sum

∑I
i qask

i,t and
∑H

h qbid
h,t are

the sums of the offered volumes in the time interval t.34

Due to the construction of the density measure a negative value of Dt reflects

34Remember the time interval t = ti+1 − ti is defined as one hour.
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Figure 5.6: Order Book Dynamic Based on Density Model The Figure
5.6 illustrates the limit order book dynamic measured with the density measurement approach
for Novartis (a) and (b) and for Swisslife (c) and (d). The Figures on the left hand side are
restricted to the first quarter of the year and contains 496 observations. The illustrations on
the right hand side shows the dynamic for the entire period and comprises 2008 observations.

a supply pressure. A positive value of Dt indicates an excess demand. The
smaller the absolute value of Dt the more balanced market situation. Figure 5.6
illustrates the time series of the order book dynamic measured with the density
model approach. The sub-Figures 5.6 (a) and (b) show the dynamical behavior
of the limit order book of Novartis for the first quarter and for one year. In
Figures 5.6 (c) and (d) the corresponding time series for Swisslife are presented.
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Since the density is measured in relation to the mid price, the measure takes
account of the higher importance of orders placed close to the bid-ask spread.
As Biais et al. (1995) find, order placement frequently occurs not only within
the bid-ask spread but also at and beyond the spread and influences order place-
ment behavior.35 In contrast to alternative liquidity measures, for instance the
bid-ask spread of our measurement approach includes the order placement pro-
cess explicitly. Additionally, the density measure incorporates the mechanism of
the slope, the dynamic of the entire limit order book and the aspect of mean
reversion.36

Table 5.7: Descriptive Statistic of Novartis Order Book Dynamic
For the period between January 1 and December 31, 2002, the Table 5.7 reports the descriptive
statistic for the limit order book dynamic measured with the density measure according to
equation 5.5.

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 1 Year
Min −2.2383 −4.2418 −1.4938 −1.3917 −4.2418

1st Quantile −0.3014 −0.2970 −0.3071 −0.2957 −0.3021

Mean −0.0033 0.0149 0.0347 0.0653 0.0280

Median 0.0313 0.0120 0.0313 0.0441 0.0285

3rd Quantile 0.2976 0.2953 0.3345 0.4008 0.3317

Max 1.8921 1.4950 4.234 1.7672 4.2349

Variance 0.2368 0.2488 0.2717 0.2780 0.2591

Std.Dev 0.4866 0.4988 0.5212 0.5273 0.5090

S.E. Mean 0.0218 0.0223 0.0228 0.0236 0.0113

Skweness −0.1111 −0.9797 1.0357 0.1962 0.0990

Kurtosis 1.6416 10.0860 7.7304 0.1697 4.8989

Total Number 495 496 520 496 2008

Descriptive Statistical Analysis A descriptive statistical analysis delivers
first insights of the form and behavior of the process. In Table 5.7 the results of
the descriptive statistic to the time series of the order book dynamic of Novartis
are collected. The minimum is at -4.2418 and the maximum is at 4.2349 for
the one year observation of the process. The lowest value is reached in the

35We confirm these findings also for our data set in the previous section.
36See a detailed presentation of the measure in chapter 3.
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second quarter, whereas the highest value is in the third quarter. Since the
process is represented in relative values, this shows that the density in the second
quarter is on the ask side more than twice as high as on the bid side. This
implicates a large supply pressure for that quarter. The annual mean of the
process is 0.0280 and volatility ranges from 0.2368 to 0.2780 with an annual mean
of 0.2591. Considering the distribution behavior, the values of the skewness and
kurtosis already indicate that the order book dynamic measured with the density
model may not be normally distributed. This indication is also supported by
the quantiles, in particular for the fourth quarter.37

Table 5.8: Descriptive Statistic of Swisslife Order Book Dynamic
For the period between January 1 and December 31, 2002, the Table 5.7 reports the descriptive
statistic for the limit order book dynamic measured with the density measure according to
equation 5.5.

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 1 Year
Min −5.2811 −5.1915 −2.0397 −3.6221 −5.2811

1st Quantile −0.5748 −0.4937 −0.5599 −0.4424 −0.5201

Mean −0.1601 0.0081 −0.0353 0.0372 −0.0374

Median −0.1315 0.0119 −0.0511 0.0414 −0.0369

3rd Quantile 0.3102 0.4869 0.4279 0.4858 0.4307

Max 2.4112 2.7578 2.7702 4.3643 4.3643

Variance 0.6324 0.7520 0.5444 0.6760 0.6542

Std.Dev 0.7952 0.8672 0.7378 0.8222 0.8088

S.E. Mean 0.0357 0.0389 0.0323 0.0369 0.0180

Skweness −0.8074 −0.3146 0.1659 0.2453 −0.1765

Kurtosis 4.7691 2.9800 0.3055 2.8772 3.0035

Total Number 495 496 520 496 2008

Table 5.8 summarizes the results of the descriptive statistic of Swisslife. Com-
pared with Novartis, the minimum is with a value of -5.2811 larger. The max-
imum is similar. The annual mean is negative with -0.0374 and it exhibits the
lowest value in the first quarter with -0.1601. Volatility ranges from 0.5444 to
0.6760 with an annual mean of 0.6542. Skewness and kurtosis as well as the
values of the quantiles indicate that the data may be normal distributed, in
particular for a one year observation.
37Analytical test for this assumption follows.
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Data Distribution In order to get more insight about the distribution of the
data, we perform graphical and analytical distribution tests. Figure 5.7 illus-
trates the empirical cumulative function (CDF) and the quantile-quantile (QQ)
plot of both, Novartis and Swisslife. The sample period is one year. The pictures
on the left hand side, Figure 5.7 (a) and (c) are the empirical cumulative distri-
bution functions of the corresponding asset. The dashed lines in these pictures
represent the cumulative distribution function of a normal distribution. A closer
observation of the plots supports the indications by the values for the skewness
and kurtosis. It shows that the empirical cumulative distribution functions have
heavier tails than that of the normal distribution, at least for Novartis. Addi-
tionally, it is noticeable that the empirical cumulative distribution function of
Novartis is heavier tailed than that of Swisslife.
These findings can also be confirmed by the quantile-quantile plots on the right
hand side in Figure 5.7, picture (b) and (d) respectively. The dashed line rep-
resents the quantiles of a normal distribution. In contrast to the CDF plots,
this analysis indicates that the distribution of Novartis is closer to a normal
distribution than that of Swisslife.
In addition to the graphical interpretations, analytical investigations should en-
sure the distribution function of the processes more accurately. First, a test for
normality is applied. Miscellaneous test forms for this topic are available. Jarque
and Bera (1987), for instance provide a test for normality, the so-called Jarque-
Bera-Test. It is a goodness-of-fit measure of departure from normality, based on
the sample skewness and kurtosis. It is a test against the null hypothesis that
the data are from a normal distribution.
An alternative test for normality provides Kolmogorov and Smirnov. The so-
called K-S test compares the empirical cumulative distribution function with
the cumulative distribution function specified by the null hypothesis. This test
can be applied on different distribution functions. For a test of normality the
null hypothesis is the cumulative normal distribution function, according to the
dashed lines in Figure 5.7 (a) and (c), respectively.38

Lilliefors (1967) extends the test of Kolomogorov and Smirov. This test uses also
the null hypothesis that data arises from a normally distributed population, but
the null hypothesis does not specify the mean and the variance of the normal

38A detailed description of the test provides for instance, Boes, Graybill, and Mood (1974).
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(b) QQ Plot of Novartis
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(d) QQ Plot of Swisslife

Figure 5.7: CDF and QQ Plots of Novartis and Swisslife For the 251
trading days with 2008 observations in the period between January 2 and December 31, 2002,
the Figure 5.7 shows the graphical results for tests of normal distribution. The Figures on the
left hand side exhibit the empirical cumulative distribution function (solid line) compared with
the cumulative distribution function arose from a normal distribution (dashed line). On the
right hand side, the empirical quantiles (solid line) are compared to the quantiles of a normal
distribution (dashed line).

distribution. Recent literature propose in place of the test of Lilliefors to use the
test provided by Shapiro and Wilk (1965). In particular, this test is better for
data sets with a large number of observations than the test of Lilliefors.39

39See for instance Royston (1982).
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In Table 5.9 and 5.10 the results of the Jarque-Bera and Kolmogorov-Smirnov
tests for Novartis and Swisslife are summarized. All tests are performed at a
5% significance level. The Jarque-Bera critical value at this significance level is
5.9914 for both, all quarters and the one year time series. The corresponding
test value against this critical value is presented in the JB-stat row. A larger test
value than the critical value leads to a rejection of the null hypothesis. These
results are presented in the H0-column. The null hypothesis H0 = 0 represents
that the data comes from a normal distributed population. A rejection of the null
hypothesis H0 = 1 implies that the data from the time series does not support
the assumption of a normal distributed population. The p-values represent the
corresponding probability levels for a rejection of the null hypothesis.

Table 5.9: Tests for Normal Distributed Population of Novartis
The Table 5.9 reports tests for analytical test for a normal distributed population as the
Jarque-Bera test and the Kolmogorov-Smirnov test of Novartis for several periods. The null
hypothesis H0 states that data comes from a normal distributed population. The critical value
for the Jarque-Bera test for a 5% significance level is 5.9914, while the corresponding critical
values for the Kolmogorv-Smirnov test are reported in the CV column.

Jarque-Bera Test K-S Test
H0 JB-stat p-Value H0 KS-stat p-Value CV N

1st Quarter 1 53.43 0.0000 1 0.1977 0.0000 0.0607 494
2nd Quarter 1 2140.30 0.0000 1 0.1973 0.0000 0.0606 495
3rd Quarter 1 1344.70 0.0000 1 0.1866 0.0000 0.0592 519
4th Quarter 0 3.75 0.1536 1 0.1863 0.0000 0.0606 495
1 Year 1 1987.20 0.0000 1 0.1812 0.0000 0.0302 2008

The critical value for the Kolmogorv-Smirnov test for a significance level of 5%
is shown in the CV column. The test values are summarized in the KS-stat
row. A larger test value than the critical value leads again to a rejection of the
null hypothesis H0. In the case of Novartis the Jarque-Bera test proposes not
to reject all of the null hypothesis. The Kolmogorov-Smirnov test supports a
rejection in every single case. Since the two tests deliver contradictory results
at least in one case, we additionally apply the Shapiro-Wilk test for further
analyses. These test results endorse the outcomes of the KS test. In the case
of Swisslife no such contradictory statements exist. All test results show a clear
rejection of the null hypothesis.
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Table 5.10: Tests for Normal Distributed Population of Swisslife
The Table 5.10 reports tests for analytical test for a normal distributed population as the
Jarque-Bera test and the Kolmogorov-Smirnov test of Swisslife for several periods. The null
hypothesis H0 states that data comes from a normal distributed population. The critical value
for the Jarque-Bera’s test for a 5% significance level is 5.9914, while the corresponding critical
values for the Kolmogorv-Smirnov test are reported in the CV column.

Jarque-Bera Test K-S Test
H0 JB-stat p-Value H0 KS-stat p-Value CV N

1st Quarter 1 53.43 0.0000 1 0.1977 0.0000 0.0607 494
2nd Quarter 1 2140.30 0.0000 1 0.1973 0.0000 0.0606 495
3rd Quarter 1 1344.70 0.0000 1 0.1866 0.0000 0.0592 519
4th Quarter 0 3.75 0.1536 1 0.1863 0.0000 0.0606 495
1 Year 1 1987.20 0.0000 1 0.1812 0.0000 0.0302 2008

Considering all assets, 78.26% of the Jarque-Bera tests reject the null hypothesis
H0 of a normal distributed population. The Kolmogorov-Smirnov test rejects
93.43% of all null hypotheses and the Shapiro-Wilk test rejects 100.00% of all
null hypotheses.40Since the sample size accords to the Kolmogorov-Smirnov test,
and moreover to the Shapiro-Wilk test, we assume from now on, that the sample
data does not come from a normal distributed population.

Stationarity In order to get a first impression of how the order book dynamics
evolves as time progress, the evolution of the order book dynamic are plotted.
In Figure 5.6 (a) and (c) these plots are presented. The pictures indicate that
the processes tend to converge to a mean. The data sample has to be tested
for stationarity.41 Analytical approaches to test for stationarity are provided by
Dickey and Fuller (1979), P. Phillips and Perron (1988) or Kwiatkowski et al.

40In contrast to these results the Lillifors test rejects 53.91% of all null hypotheses. These
findings seem to support the argument that the Lillifors test is not applicable for a large
number of observations. For this reason the detailed results of the Lilliefors test are omitted
in the thesis.

41With stationary process the weak form of stationarity is meant, i.e. the variance is not time
dependent and the covariance between ut and ut+τ depends only on τ . Consider for a short
description of stationarity section 3. A more detailed overview can be found for instance in
Hamilton (1994) or McNeil et al. (2005).
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(1992).42

The test of Dickey and Fuller (1979) tests whether a unit root is present in
a time series sample. A unit root is not stationary. The null hypothesis H0

of the Dickey-Fuller test proves the unit root assumption in the time series
sample. A rejection of the null hypothesis gives evidence that the time series
sample is stationary.43 Said and Dickey (1984) augment the basic unit root
test to accommodate general autoregressive moving average (ARMA) models
with unknown orders. Their test is referred to as the augmented Dickey-Fuller
(ADF) test.
The test approach provided by P. Phillips and Perron (1988) computes for the
null hypothesis H0 also that the time series sample has a unit root against a
stationary alternative. The Phillips-Perron (PP) unit root tests differ from the
ADF tests mainly in how they deal with serial correlation and heteroskedasticity
in the errors. In particular, where the ADF tests use a parametric autoregression
to approximate the ARMA structure of the errors in the test regression, the PP
tests ignore any serial correlation.44 In contrast to these two tests, the test
approach provided by Kwiatkowski et al. (1992), usually abbreviated by KPSS,
proves the null hypothesis H0 that the data sample is stationary against the
alternative of a unit root.
The ADF test statistic with lag=0 for both Novartis and Swisslife are reported
in Table 5.11 and 5.12, respectively. For the 1st quarter of Novartis, for instance,
the ADF test statistic is -0.9235 with a t-value of -20.57 and has a corresponding
p-value of 3.388 × 10−39. Hence, the null hypothesis is not rejected at a 3.79 ×
10−35% level. Since analysis is based at a 5% significance level the null hypothesis
in this case is rejected. A rejection of the null hypothesis at a 5% significance
level is denoted with H0 = 1. Table 5.11 reports for every single case a rejection
of the null hypothesis. The results obtained by the ADF-test are also confirmed
by the PP and KPSS tests.45

Similar results are found for Swisslife. Here as well, all null hypotheses are

42There are more than these mentioned approaches. These three tests are the most common
ones, see Enders (2004).

43Consider section 3 or Hamilton (1994), Enders (2004), or McNeil et al. (2005) among many
others.

44See for a more detailed description Enders (2004).
45The results are available on request.
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Table 5.11: Unit Root Test for Novartis
For the period between January 2 and December 31, 2002, the Table 5.11 reports for several
subperiods the test results of the augmented Dickey-Fuller (ADF) test for unit root and sta-
tionarity, respectively. The ADF test is performed for a lag level of zero, with no intercept nor
a time trend. The results of the Durbin-Watson test are documented in the DW column.

H0 ADF S.E. t-value p-value adj. R2 DW N
1st Quarter 1 −0.9235 0.0449 −20.57 3.388e−39 0.4618 1.9831 494

2nd Quarter 1 −0.9535 0.0450 −21.20 1.422e−39 0.4765 1.9925 495

3rd Quarter 1 −0.8704 0.0436 −19.97 7.911e−39 0.4350 2.0194 519

4th Quarter 1 −0.9596 0.0450 −21.34 1.228e−39 0.4797 2.0023 495

1 Year 1 −0.9265 0.0223 −41.60 6.416e−60 0.4632 1.9990 2008

rejected at a 5% significance level, indicated by H0 = 1 in Table 5.12. These
findings are also confirmed by the PP and KPSS tests.46

Table 5.12: Unit Root Test for Swisslife
For the period between January 2 and December 31, 2002, the Table 5.12 reports for several
subperiods the test results of the augmented Dickey-Fuller (ADF) test for unit root and sta-
tionarity, respectively. The ADF test is performed for a lag level of zero, with no intercept nor
a time trend. The results of the Durbin-Watson test are documented in the DW column.

H0 ADF S.E. t-value p-value adj. R2 DW N
1st Quarter 1 −0.8953 0.0448 −20.00 9.059e−39 0.4480 2.0085 494

2nd Quarter 1 −0.9678 0.0450 −21.51 1.040e−39 0.4838 1.9983 495

3rd Quarter 1 −0.9263 0.0437 −21.21 1.142e−39 0.4649 2.0088 519

4th Quarter 1 −0.8977 0.0448 −20.05 8.079e−39 0.4489 1.9999 495

1 Year 1 −0.9234 0.0223 −41.47 3.566e−60 0.4616 2.0036 2008

An important issue for the implementation of the ADF test is the specification
of the lag length. If it is too small then the remaining serial correlation in the
errors will bias the test. The efficiency of the test will suffer if the length of
the lags are too large. The Durbin-Watson (DW) test, provided by Durbin and
Watson (1950) and Durbin and Watson (1951) proves a correlation of the errors.
A DW-value between 1.5 and 2.5 shows evidence that the residuals are not cor-
related for the given lag length. The DW values computed for the two examples

46Additional results are available on request.
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support an efficient setting of the ADF test.47

Since a constant parameter as well as a trend in the time series cannot be ob-
served directly from the plots, we perform additionally ADF tests and PP tests
with constants, trends and constants combined with trends. Like in all other
cases, the results are not affected. The null hypotheses of all considered assets
are rejected even on a 0.01% level.

We perform all the tests with different setting to all considered assets. The ADF
and PP tests for stationarity reject all null hypotheses even on a 0.01% signifi-
cance level, such that additional tests like the KPSS tests are omitted. Based on
that statistical analysis and findings, for the subsequent part of the analyses it
can be assumed that the dynamic of the limit order book is a stationary process,
without trend or constant and with no normal distributed innovations.

Density Measure, Return and Volatility Relation So far, we have per-
formed an analysis of basic characteristics of the time series generated by the
density measure approach. Before we proceed to analysis regarding the time do-
main we investigate the relation of the density measure to return and volatility.
In order to examine the relation to volatility we apply the same approach as
already used for the slope measure in a previous section.

In Figure 5.8 we illustrate the density against the depth of the limit order book.
The depth level is determined by the ticks away from the mid price. The density
is computed for each depth level separately and collected for the whole sample
period. For each depth level we calculate the median of the density and its
corresponding standard error. In Figure 5.8 the solid line represents the median
of the density on each tick level, while the dashed lines above and below the solid
line are the corresponding standard errors. The Figure 5.8 reveals that depth
decreases disproportionately by increasing tick level. In addition it shows that
the variance of the density adjacent to bid-ask spread is larger, than more ticks

47Nevertheless tests with different lag lengths have been performed. The lag lengths thereby
have been determined and implemented according to Schwert (1989) or Ng and Perron (1995).
Tests for different lag lengths show similar results. The null hypotheses are rejected for all
tests.
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away.48 Due to the construction of the density measure this means that order
sizes close to the bid-ask spread varies more than far away of the bid-ask spread.
In combination with the analysis of the order flow we find that orders are placed
more frequently close to the bid-ask spread, order sizes are generally larger and
in addition vary more around the bid-ask spread than deeper in the book.
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(b) Ask Density

Figure 5.8: Book Density as a Function of Depth The Figure 5.8 illustrates
the limit order book density as a function of the depth of the book, while the depth is indexed
by the ticks away from the mid quote. On the left hand side, the density of the bid side is
shown, while on the right hand side the density of the ask side is illustrated. Estimations are
based on 1,645,246 observations for Novartis.

From an economical point of view this behavior may have several reasons. As
already mentioned earlier, agents may disagree about the real value of an asset.
This is reflected in the slope of the limit order book. Looking at this interpre-
tation in more detail, we assume that larger disagreement in real value of the
asset is reflected by a small slope of the book. In contrast small nuances in the

48Analytical tests support this statement. We apply a right-sided t-test between the time series
generated by the density at the quotes and 10 ticks deeper in the book. We perform the
test for each side separately. The null hypothesis states that the means do not differ. The
null hypothesis for the bid side is rejected by a test value of 40.244 compared to the critical
value of 0.266 for a 0.01 % significance level. A similar result is found for the ask side. The
test value amounts 20.975, while the critical value for the same significance level is 0.299.
In order to affirm these results we additionally calculate an analysis of the variances. The
F-value is for the bid side 1619.44 and for the ask side 439.95. Both induce a rejection of the
null hypothesis on a 0.01 % significance level.
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belief of the real value are reflected by the occurrence of small variance of the
order sizes around the bid-ask spread.
The Table 5.13 shows how the density measure is related to other liquidity and
trading activity measures. It represents the Pearson’s correlations between av-
erages of corresponding measures of 23 assets. We find positive correlations
between the numbers of executed orders respective of trades and the density
measure. As already expected from previous findings the correlation is stronger
the more the book is restricted. A similar picture is shown for trading volumes.
Market capitalization is positively correlated to the density measure while the
bid-ask spread has a negative relation. This indicates that larger firms gener-
ally feature higher density in the limit order book and exhibit smaller bid-ask
spreads. Thus considered economically, larger firms are commonly more liquid
than smaller firms.

Table 5.13: Correlation between density and liquidity measures
The Table 5.3 reports Pearson’s correlations of the results of 23 assets for density with sev-
eral liquidity and trading activity measures. Calculations are based first on the entire limit
order book and afterwards on a book truncated to 15 or 10 ticks away from the best quote.
Calculation is based on 2008 observations for every security.

Slope (Full order book) Slope (±15 ticks) Slope (± 10 ticks)
Number of Trades 0.035 0.176 0.247

Trading Volume 0.176 0.334 0.301

Market Capitalization 0.207 0.220 0.070

Spread −0.150 −0.781 −0.961

Slope (Full order book) 1.000

Slope (+/- 15 ticks) 0.767 1.000

Slope (+/- 10 ticks) 0.466 0.615 1.000

To examine the relation between the density measure and price volatility we
apply the analogous analytical investigation already performed to the slope of
the limit order book. Table 5.14 shows the results of the regression between
the density measure and several combinations of parameters. We find that the
parameter estimations for the density are negative and weak significant. The
estimations for the density across all parameter combinations are robust even
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Table 5.14: Price Volatility and Density Regression
The Table reports the estimation results for Novartis for the entire limit order book of four
different versions of the regression.

| ε̂i,s | = β1Ni,s + β2OVi,s + β3MCAPi,s + β4SPREADi,s

+ β5DENSITYi,s +

12∑
j=1

ρi,j | ε̂i,s | +ηi,s.

The regressand | ε̂i,s | is the absolute value of the unexpected return on security i in the snap-
shot s obtained by equation (5.3). N is the number of executed trades within the considered
snapshot, OV represents the average order book volume, MCAP the market capitalization,
SPREAD the bid-ask spread and DENSITY the density of the entire limit order book. For
each model in the first row the parameter estimations are represented, while in the second
row the corresponding t-values of the parameter estimations are shown. In model 2 and 3,
negative and positive parameters are omitted. In model 4 we test only for the effect of the
density measure. The parameter estimation results for the volatility persistence are excluded.
Parameter estimations denoted by * are not significant at a 1 percent level. Estimation is
based on 2008 observations.

Model 1 Model 2 Model 3 Model 4
Variables β̂ t-Value β̂ t-Value β̂ t-Value β̂ t-Value
N 0.000 −2.038 0.000 −0.322

OV 0.159 4.727 0.053 10.298

Market Cap −0.139 −3.060 0.070 14.054

Spread −0.214 −2.677 0.159 13.593

Density −0.002∗ −0.385 −0.002∗ −0.322 −0.003∗ −0.493 −0.004∗ −0.698

Adj. R2 0.212 0.198 0.208 0.126

F-test 543 498 528 291
DW 2.033 2.026 2.036 1.999

if all other explanatory variables are removed. This suggests that the density
measure captures weak liquidity effects on volatility. The adjusted R2 shows that
approximately 12% of the variation in the response variable can be explained by
the density measure. An F-value of 291 shows evidence of the significance of the
adjusted R2 on a 0.01% significance level.

In order to examine the relation between the density measure and the return
we perform a linear regression analysis. The first analysis simply regresses the
density measure to the return. We find that the Durbin-Watson value indicates
autocorrelation in the residuals. We re-estimate the regression with a correction
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Table 5.15: Price Return and Density Regression
The Table 5.15 shows the results of the regression analysis between the density and the return.
The estimation referred to as CO regress is corrected for autocorrelation in the error terms
according to the approach provided by D. Cochrane and Orcutt (1949). The regression results
labeled by MA regress is the estimation approach proposed by C. M. Jones et al. (1994) with
a 12 lagged moving average component of the return as a correction term. Estimations are
based on 2008 observations for Novartis. Parameter estimations and F-tests are significant on
a 0.01% significance level.

β̂ t-value Adj. R2 F-value DW
CO regress 0.110 4.956 0.011 24.340 1.995
MA regress 0.035 4.247 0.028 58.950 2.028

for autocorrelation in the residuals with the approach provided by D. Cochrane
and Orcutt (1949). The results are reported in Table 5.15 in the CO regress row.
The regression shows a positive and significant relationship between the density
measure and the return. Albeit the F-value evidences high significance of the
R2, only 1.1% of the variation in the return can be explained by the density
measure. The alternative regression analysis, the Jones regression, shows similar
results. This regression is based on the approach provided by C. M. Jones et al.
(1994). The approach includes a moving average component of the return as an
additional explanatory variable in order to smooth outlier effects.49 While this
second approach increases the explanatory power regarding variation, it remains
still on a low level of 2.8%.

Time Domain Analysis Stationary processes with and without normally dis-
tributed errors can be captured and reproduced by several concepts and different
models. A review of the serial correlation should give closer insight to the proper-
ties of time series generated by the density measure approach. In Figure 5.9 the
correlograms of Novartis and Swisslife for the period of one year are illustrated.
Correlations can be detected in both the sample autocorrelation (ACF) and the
sample partial autocorrelation (PCF), respectively. The dependency characteris-
tics are in favor of models of stationary univariate autoregressive moving average

49It is basically the same approach as presented in equation 5.4 with a 12 lagged return
regressor.
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(ARMA) classes.50
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(a) ACF of Novartis
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(b) PCF of Novartis
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(c) ACF of Swisslife
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(d) PCF of Swisslife

Figure 5.9: ACF and PCF Plots The Figure 5.9 illustrates the empirical autocorre-
lation function (ACF) and the partial autocorrelation function (PCF) for the density measure
approach for Novartis and Swisslife. The estimations are based on 2008 observations.

Model Selection Criteria and Parameter Estimation A widely used ap-
proach to ascertain the orders to an ARMA process is to analyze the correlograms

50For a short description about premises, properties an characteristics of ARMA models con-
sider section 3. A more detailed overview is provided by Greene (2000) or Hamilton (1994),
among many others.
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of the data sample.51 The last significant lag of the sample partial autocorre-
lation function (PCF) determines the order of the autoregressive (AR) part. In
order to assign an order to the moving average (MA) part of the model, the sam-
ple autocorrelation (ACF) function has to be considered. The last significant lag
represents the order of the MA part.

A standard 95% significance level is depicted with a horizontal solid line in Figure
5.9. The range in between the lines marks all not significant lag parameters.
Significant parameters are illustrated beyond the solid lines. According to this
interpretation the limit order book dynamic of Novartis for a one year period is
reflected best with an ARMA(1,1) process.52 For the case of Swisslife we find
similar results. The correlogram analysis suggests again an ARMA(1,1) process.

Alternatively to the just mentioned approach, a statistical model selection cri-
teria may be used. The two most common information criterion are the Akaike
information criterion (AIC) proposed by Akaike (1974) and Schwarz-Bayesian
information criterion (BIC), provided by Schwarz (1978). Both approaches use
a certain combination of the number of parameters of the considered model and
the corresponding result of the log-likelihood function to rule a decision.53 Ac-
cording to Wagenmakers, Grünwald, and Steyers (2006) what is important to
model selection is to keep the model as general as possible. As Zivot and Wang
(2003), among others, state the AIC criterion asymptotically overestimates the
order of the model, whereas the BIC estimate the order more consistently. But
for finite samples the BIC shares no particular advantage over the AIC.

We perform AIC as well as BIC calculations and choose the model according
to the minimizing of the information criterion rule. Since the BIC criterion
suggests in more cases a more simple model we rely the analysis mainly on the
BIC criterion. In Table 5.16 the results of the Schwarz-Bayesian information
criterion for different ARMA models estimated for Novartis for a period of one
year are reported. Similar results are presented in Table 5.17 for Swisslife.54

In both cases an increase of order enhances the value of the information criterion.

51A good introduction to estimation and forecasting methods see for instance Box, Jenkins,
and Reinsel (1994), Granger and Newbold (1986), Mills (1990), Enders (2004).

52The 5th lag is graphically hard to assign. Analytically it is in between the no-significance
band.

53For more information consider section 3, or Zivot and Wang (2003), for instance.
54The results for every quarter are available on request.
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The lower the order, the lower the BIC such that only models with a maximal
order of 1 have to be taken into account.55 According to the minimization of
the information criterion rule, the Schwarz-Bayesian information criterion pro-
poses an ARMA(1,0) process for both, Novartis and Swisslife, respectively. This
analytical investigation differs of the conclusions resulting from the correlogram
analysis.

Table 5.16: BIC values for different ARMA models
The Table 5.16 represents the Schwarz-Baysian information criterion (BIC) for different
ARMA(p,q) models. In the rows the p-values of the model increases. In the columns the
q-values are heightened. The ARMA model is estimated with t-distributed innovations and
estimations are based on 2008 observations of Novartis.

p\q 0 1 2 3 4
0 0 2895.6 2902.9 2910.4 2918.0
1 2895.4 2902.9 2909.6 2917.2 2923.7
2 2902.9 2909.6 2917.2 2920.0 2925.1
3 2910.4 2917.2 2919.4 2931.8 2928.5
4 2918.0 2923.9 2925.2 2936.0 2942.1

Since we have proven that the process does not have normal distributed errors,
estimations represented in Table 5.16 and 5.17 are based on t-distributed inno-
vations. The BIC value for an ARMA(1,0) process with gaussian distributed
errors for the same period for Novartis is 2996.5 and that for Swisslife is 4853.3.
Comparing these findings with the corresponding results in Table 5.16 and 5.17
shows evidence for a better fit by t-distributed innovations.
The BIC model selection criterion suggests in 100% of the cases an ARMA(1,0),
ARMA(0,1) or an ARMA(1,1) model. In 91.30% of all considered time series
either an ARMA(1,0) or an ARMA(0,1) model is selected. The ARMA(1,0)
model is chosen in 56.62%. But in cases where the ARMA(0,1) model is preferred
to an ARMA(1,0) model, the difference between the information criterion is
small. For instance for Zurich’s third quarter the BIC value for the ARMA(0,1)
is 976.38. The BIC value for the ARMA(1,0) model is 976.48. According to
the next higher BIC value the ARMA(1,1) model is suggested with a BIC value
of 982.25. In order to be able to compare the dynamic behavior of the limit
55This is in contrast to the Akaike information criterion. The results vary between several

higher ordered models, such that no exact model can be assigned to.
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Table 5.17: BIC values for different ARMA models
The Table 5.17 represents the Schwarz-Baysian information criterion (BIC) for different
ARMA(p,q) models. In the rows the p-values of the model increases. In the columns the
q-values are heightened. The ARMA model is estimated with t-distributed innovations and
estimations are based on 2008 observations of Swisslife.

p\q 0 1 2 3 4
0 0 4729.0 4732.8 4739.8 4746.6
1 4727.7 4730.9 4738.3 4745.9 4753.0
2 4732.2 4738.3 4740.6 4753.5 4756.7
3 4739.3 4745.9 4748.1 4750.8 4758.2
4 4746.1 4753.1 4756.7 4758.2 4765.1

order book of all considered securities with each other, the ARMA(1,0) model is
defined for all processes. It is clear that in cases the model does not fit best, some
accuracy losses have to be taken into account. But in the majority of the cases
where the ARMA(1,0) model is not the first choice, it is close to the first choice
and therefore the bias is small. In addition, the analysis of the correlograms
supports several times an ARMA(1,0) model.
Table 5.18 and 5.19 represent the parameter estimations of the ARMA(1,0)
model based on t-distributed innovations. The corresponding degrees of freedom
of the t-distribution are reported in the DoF row. Except for the autoregres-
sive parameter of the fourth quarter of Novartis all parameter estimations are
statistically significant at a 5% significance level.56

Verification of the Model Selection To ensure that the model fit is ad-
equate, we perform an analysis of the residuals. This analysis checks whether
independency and heteroscedasticity are still present in the innovations. The
analysis is mainly based on the correlograms, the DW test statistics, the Ljung-
Box test, Engle’s test of heteroscedasticity as well as the Goldfeld Quandt test.
Figure 5.10 depicts the residuals of the estimated ARMA(1,0) model and its
corresponding correlograms. In order to gain insight into the independency of
the residuals, consider the correlograms in Figure 5.10 on the right hand side.
No significant autocorrelation can be detected, neither in the ACF in the up-
56Statistical significant parameters at a 5% significance level are marked with a single asterisk.

Estimations significant at a 10% significance level are highlighted with a double asterisk.
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Table 5.18: Parameter Estimation for ARMA(1,0) Model
The Figure 5.18 represents the parameter estimations for ARMA(1,0) models for Novartis.
The values in brackets below the parameter estimations are the corresponding t-values. The
σ2 represents the volatility of the model, DoF specifies the degrees of freedom for the t-
distributed innovations, N is the number of observations for the different periods and DW is
the corresponding Durbin-Watson value. T-values labeled with an asterisk indicate a statistical
significance on a 10% significance level while parameter estimations without an asterisk are
significant on a 5% significance level.

p σ2 DoF N DW
1st Quarter 0.094 0.234 7.452 494 2.017

(2.385) (12.113)

2nd Quarter 0.064 0.231 7.980 495 2.022

(1.7404) (12.882)

3rd Quarter 0.102 0.254 9.228 519 1.960

(2.462) (13.321)

4th Quarter 0.040 0.282 24.153 495 1.999

(1.000)∗ (14.435)

1 Year 0.074 0.251 9.114 2008 2.000

(3.770) (26.638)

per Figure nor in the PCF picture in the lower Figure. These results are also
supported by the Durbin-Watson values in Table 5.18 and 5.19. Since the DW
statistic is in the range of 1.5 and 2.5, this indicates a negative but low, not
significant autocorrelation. This negative autocorrelation can also be observed
by the oscillation of the values around zero in the ACF and PCF pictures in
Figure 5.10 (b) and (d), respectively.

The portmanteau test of Ljung and Box (1978) is commonly used to reveal model
misspecification of a time series model. If no significant autocorrelation is found
in the residuals from the fitted model, the model is declared to pass the test. The
advantage of the Ljung-Box test is that it tests for different lags at the same time.
The null hypothesis H0 is that the model fit is adequate to the alternative of the
existence of autocorrelation. The test is based on Q-statistic. In Figure 5.11 the
p-values for the Ljung-Box test for 200 lags are illustrated. The hypothesis test
is performed on a 5% significance level, which is depicted with a solid line in the
Figure 5.11. Each time the graph of the p-Value’s hits below the 5% significance
level the null hypothesis is rejected for the corresponding lag length. This is
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Table 5.19: Parameter Estimation for ARMA(1,0) Model
The Figure 5.19 represents the parameter estimations for ARMA(1,0) models for Swisslife.
The values in brackets below the parameter estimations are the corresponding t-values. The
σ2 represents the volatility of the model, DoF specifies the degrees of freedom for the t-
distributed innovations, N is the number of observations for the different periods and DW is
the corresponding Durbin-Watson value. T-values labeled with an asterisk indicate a statistical
significance on a 10% significance level while parameter estimations without an asterisk are
significant on a 5% significance level.

p σ2 DoF N DW
1st Quarter 0.102 0.633 5.366 494 1.996

(2.599) (10.422)

2nd Quarter 0.060 0.754 5.427 495 2.055

(1.378)∗ (9.574)

3rd Quarter 0.085 0.542 20.746 519 2.020

(1.861) (14.680)

4th Quarter 0.093 0.671 5.208 495 1.984

(2.386) (9.584)

1 Year 0.089 0.646 6.117 2008 2.028

(4.304) (22.106)

the case, several times for the first quarter, the third quarter and the one year
period.

Although the Durbin-Watson test as well as the graphical analysis by correlo-
gram shows evidence of no autocorrelation in the residuals, the Ljung-Box test
does not support these results in every case. In particular an increasing lag
length entails significant autocorrelation. Similar results are also found for all
considered assets.

Beside tests for autocorrelation we perform tests of the existence of heteroscedas-
ticity in the residuals. The test for heteroscedasticity is provided by Goldfeld
and Quandt (1965). The null hypothesis H0 assumes a homoscedastic time
series. In Table 5.20 the results of the Goldfeld-Quandt test for Novartis are
summarized. The Goldfeld-Quandt test statistic (GQ stat) is compared with a
critical value (CV). The critical value is calculated on a 5% significance level.
A larger test statistic than the critical value leads to an acceptance of the null
hypothesis, which is designated with H0 = 1. The corresponding p-value shows
the significance level at which the null hypothesis is rejected. In three of five



104 Chapter 5. Data and Methodology

0 500 1000 1500 2000
−5

−4

−3

−2

−1

0

1

2

3

4

5

time

In
no

va
tio

ns

(a) Residuals of Novartis

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns Sample Partial Autocorrelation Function

(b) ACF and PCF of the Residuals
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(c) Residuals of Swisslife
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(d) ACF and PCF of the Residuals

Figure 5.10: Residual Analysis of ARMA(1,0) The Figure 5.10 illustrates the
innovations, figure (a) and (c) and the corresponding empirical autorcorrelation function (ACF)
and the partial autocorrelation function (PCF) of both, Novartis (a) and (b) and Swisslife (c)
and (d). Estimtations are represented on 2008 observations.

cases the assumption of homoscedasticity is rejected and heteroscedasticity can
be assumed.

An additional test provided by Engle (1982) investigates for the presence of
autoregressive conditional heteroscedasticity (ARCH) effects in the time series.
The null hypothesis H0 states that no ARCH effects are detectable in the resid-
uals. A rejection of the null hypothesis is marked with H0 = 1. In Table 5.20,
the results for this test are shown. ARCH effects can be detected in three of five
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Figure 5.11: Ljung-Box for ARMA(1,0) The Figure 5.11 shows the Ljung-Box
test for the ARMA(1,0) model for different periods. The null hypothesis H0 is that the model
fit is adequate to the alternative of the existence of autocorrelation. The hypothesis test is
performed on a 5% significance level which is illustrated with a solid line on the bottom of
each picture. The p-values for a rejection of the null hypothesis is on the ordinate while the
corresponding lag length is on the x-axis.

cases.
Although residuals are for the most part not correlated, based on the results of
the ARCH test, they are not stochastically independent. Hence, the innovation
process of the ARMA(1,0) model features volatility-clustering.
In order to gain a more appropriate model based on the results of the analysis of
the residuals, the ARMA model has to be extended with at least heteroscedastic
volatility. This can be done by adding a generalized autoregressive conditional
heteroscedastic (GARCH) component to the ARMA model.57

57For further information about ARMA and ARMA-GARCH models, consider Hamilton



106 Chapter 5. Data and Methodology

Table 5.20: Engle’s ARCH Test and Goldfeld-Quandt Test
The Table 5.20 reports the results for Engle’s test for ARCH effects and Goldfeld-Quandt test
for heteroscedasticity. The null hypothesis H0 states that there is no heteroscedasticity in the
time series. An acceptance of the null hypothesis on a 5% significance level is assigned by
H0 = 1. The critical value (CV) for the ARCH test is 3.8414 for all periods. The critical value
(CV) for the Goldfeld-Quandt test is reported in the CV column. The test values stands in
the ARCH stat column respectively in the GQ stat column. The corresponding p-values are
in the next column.

H0 ARCH stat p-value H0 GQ stat CV p-value N
1st Quarter 1 28.879 0.000 1 1.433 1.234 0.002 494
2nd Quarter 0 3.196 0.073 1 1.925 1.233 0.000 495
3rd Quarter 0 0.013 0.908 1 1.366 1.227 0.006 519
4th Quarter 1 13.375 0.000 0 0.765 1.233 0.981 495
1 Year 1 11.156 0.000 0 0.870 1.109 0.985 2008

ARMA-GARCH Model As pointed out above, the analysis of the residuals
of the ARMA(1,0) model suggests an extension of the ARMA(1,0) model. The
extension should include the found properties of the residual analysis. First,
it should satisfy the heteroscedastic behavior. Second, with respect to the non
gaussian distribution, the volatility model should have other distribution possi-
bilities. To augment the ARMA model with these characteristics the generalized
autoregressive conditional heteroscedastic volatility (GARCH) model provided
by Bollerslev (1986), which is a generalized model of the model proposed by
Engle (1982), is taken into account.58

Model Selection Criteria and Parameter Estimation The parameter se-
lection criteria for finding an accurate number of parameters for a GARCH vari-
ance model is similar to the approach already applied to the ARMA model in
earlier sections. Beside the analysis of the correlograms, the Akaike information
criterion (AIC) and the Schwarz-Baysian information criterion (BIC) are used to
determine the order of the model. Albeit these approaches have been developed
to define the order of ARMA models, they obtained also practical relevance for

(1994), Greene (2000), Enders (2004) or McNeil et al. (2005).
58Robert F. Engle and Clive W.J. Granger have been honored with the Nobel prize for that

model in the year 2003.
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GARCH modeling.59

Hence, the analysis proceeds as follows. First the ARMA setting is fixed. Then
various GARCH settings are added to the given ARMA model and the corre-
sponding information criteria are computed. The GARCH setting, which min-
imizes the information criteria is selected. Finally, the GARCH setting is fixed
and different ARMA settings are tested and compared with each other.60 The
combination with the lowest information criteria represents the most accurate
model setting.
In order to gain a proper analysis we perform four different tests. On the one
hand the BIC criteria is used. On the other hand, the AIC criteria is performed.
Each of the approaches are estimated with both, gaussian distributed and t-
distributed innovations, respectively.61 In the Table 5.21 the results of the BIC
calculation for Novartis for the one year period are reported. The estimations are
based on an ARMA(1,0) model without a constant element, which is combined
with several GARCH components. The two GARCH parameters α and β vary
between one and four.

Table 5.21: BIC values for ARMA(1,0)-GARCH(α,β)
The Table 5.21 reports the Schwarz-Baysian information criterion (BIC) for ARMA(1,0) models
with different GARCH extensions for Novartis. The α-GARCH component increases with
increasing rows and the β-GARCH component increases with additional column. On the
left hand side, estimations are based on t-distributed innovations. On the right hand side,
estimations are performed for gaussian distributed errors. The estimation period is one year
with 2008 observations.

T-distributed Errors Gaussian Errors
α\β 1 2 3 4 1 2 3 4
1 2846.4 2848.4 2850.4 2852.3 2919.6 2921.6 2920.9 2922.9

2 2847.5 2849.5 2851.5 2853.5 2918.3 2920.2 2922.2 2924.2

3 2845.9 2847.9 2849.9 2851.9 2920.3 2922.2 2924.2 2926.2

4 2846.9 2849.0 2851.0 2853.0 2921.3 2923.2 2925.2 2927.2

The reported results constitute the lowest BIC value for the GARCH volatility
59The use of these information criterion is disputed. See for instance the comment of Bollerslev,

Engle, and Nelson (1994). Because of the lack of a useful selection criteria these approaches
will be used nevertheless.

60This last step serves for a confirmation of the selected model.
61The estimation results for the AIC approach are available on request.
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extension with α = 1 and β = 1. The BIC value for the GARCH(1,1) model
is 2874.4 with t-distributed innovations and 2942.0 for the GARCH(1,1) model
with gaussian errors. Higher orders in one of the two parameters α or β effect an
increase of the BIC value. This is independent of which parameter is enhanced.
Consequently the highest BIC value is represented by the GARCH(4,4) model.
Additionally, with higher orders the statistical significance of the estimated pa-
rameters decrease. Parameters of the order higher than 4 lead to estimations
below the 5% significance level. For that reason and that higher orders cause an
increase of the BIC value, estimates are made only until fourth orders.

Additionally to the underlying ARMA(1,0) model without a constant parame-
ter, we perform BIC estimations with a model including a constant. The BIC
value for the ARMA(1,0)-GARCH(1,1) with a constant and t-distributed inno-
vations is 2878.9 , for the ARMA(1,0)-GARCH(2,1) model is 2886.0 and for the
ARMA(1,0)-GARCH(1,2) model is 2886.5. Comparing these findings with the
model setting without a constant, an upward shift in the information criterion
is revealed. For every parameter setting a shift from the same size exists. Since
these BIC values are larger than the BIC values of the same model without a
constant, we omit the constant parameter.

The analysis delivers additional insights regarding the distribution of the errors.
Comparing the results of the t-distributed innovations with the gaussian dis-
tributed errors reported in Table 5.21, one can discover lower BIC values for
t-distributed errors. For instance the BIC value of a GARCH(1,1) specification
with t-distributed innovation is 2874.4. For the same specification but with gaus-
sian errors the value is 2942.0. This is true for every single specifications and for
both test methods. This kind of econometric analysis confirms a GARCH(1,1)
model with t-distributed innovations to additionally improve the model fit.

In order to justify the extension with modeled volatility, the BIC values of the
ARMA models are compared with their extended version, the ARMA-GARCH
models. The BIC value of the ARMA(1,1) process of Novartis without additional
modeled volatility as presented in Table 5.16 is 2895.4. The corresponding ex-
tended ARMA(1,1)-GARCH(1,1) model has an BIC value of 2874.4.

Based on the minimization of the information criteria, the introduction of the
GARCH component enhance the model fit. Both, the AIC and the BIC esti-
mations of the extended model are lower than the information criterion of the
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Table 5.22: BIC values for ARMA(p,q)-GARCH(1,1) models
The Table 5.22 represents the estimation results for the Schwarz-Baysian information criterion
(BIC) for different ARMA models while the GARCH extension is held constant with α = 1
and β = 1. Estimations are based on t-distributed innovations and for 2008 observations.

p\q 0 1 2 3 4

0 0 2874.6 2881.7 2889.3 2896.6

1 2874.4 2881.7 2889.3 2896.5 2901.5

2 2881.7 2889.0 2893.6 2903.8 2905.2

3 2889.3 2896.5 2903.8 2905.5 2912.6

4 2896.8 2901.8 2905.2 2909.9 2916.9

ARMA model. According to these outcomes, the time series of the density
model can be fitted the most appropriately by an ARMA-GARCH model with
t-distributed innovations.

Finally, in order to ensure that the best fit of the density dynamic is done by
an ARMA(1,0)-GARCH(1,1) model, we perform additional estimations of some
alternative models. In Table 5.22 the BIC estimations of different ARMA models
with GARCH modeled volatility are summarized. The lowest BIC value with
2874.4 is presented by the ARMA(1,0)-GARCH(1,1) model, which confirms the
preceding computations. Comparing of the results of all other models in Table
5.22 with the outcomes in Table 5.16 it shows that all BIC values are below the
BIC estimations of the ARMA models with constant volatility. This underlines
an improvement of the introduction of heteroscedastic variance.
The analysis based on the method of minimizing the Akaike information criterion
or the Schwarz-Baysian information criterion suggests a GARCH(1,1) model for
an extension of the basic ARMA model. This is not only the case for Novartis or
Swisslife. In fact, in 99.13% of all considered assets and periods a GARCH(1,1)
extension improves the model fit.
In Table 5.23 the parameter estimations of a ARMA(1,0)-GARCH(1,1) model
are represented. The Table is arranged according to the considered periods start-
ing with the first quarter. The parameter p is the autoregressive parameter of
the ARMA component. The remaining parameters k, α and β belong to the
GARCH element. The values in the brackets are the t-statistics calculated from
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Table 5.23: Parameter Estimation for ARMA(1,0)-GARCH(1,1)
model
The Figure 5.23 represents the parameter estimations for ARMA(1,0)-GARCH(1,1) models
for Novartis. The values in brackets below the parameter estimations are the corresponding
t-values. The p represents the autoregressive parameter, k the moving average parameter, α
and β the GARCH parameters, DoF specifies the degrees of freedom for the t-distributed inno-
vations, N is the number of observations for the different periods and DW is the corresponding
Durbin-Watson value. T-values labeled with an asterisk indicate a statistical significance on a
5% significance level while parameter estimations without an asterisk are significant on a 1%
significance level. With two asterisk labeled values are significant at least on a 10% significance
level.

p k α β DoF N DW
1stQuarter 0.072 0.019 0.835 0.079 16.087 494 1.978

(1.591) (0.162)∗ (11.094) (2.498)

2ndQuarter 0.040 0.176 0.125 0.108 9.081 495 1.977

(0.797)∗ (1.834) (0.294)∗∗ (1.697)

3rdQuarter 0.079 0.033 0.784 0.088 8.952 519 1.909

(1.685) (1.374)∗ (6.438) (1.931)

4thQuarter 0.015 0.244 0.000 0.131 27.524 495 1.948

(0.296)∗∗ (2.01) (0.000) (1.789)

One Year 0.058 0.130 0.337 0.146 11.112 2008 1.968

(2.384) (4.581) (2.717) (4.643)

the corresponding standard errors and degree of freedom of the corresponding
parameter. In addition to these outcomes the Durbin-Watson (DW) value and
the calculated degree of freedom (DoF) of the innovations are reported. Statis-
tically significant parameters on a 5% significance level are marked with a single
asterisk. Parameter estimations signed with a double asterisk are statistically
significant at a 10% significance level. The calculation for the statistical signifi-
cance is based on the standard error combined with the corresponding degree of
freedom as well as the chosen significance level.
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Verification of the Model Selection In order to ensure the quality of the
model fit we perform again an analysis of the residuals by means of an example of
Novartis and Swisslife.62 Again, as in the previous section the analysis is based
on exploring correlograms and analytically on Engle’s ARCH-test for conditional
heteroscedasticity and the Goldfeld-Quandt test for heteroscedasticity and the
Ljung-Box test.
In Figure 5.12 the correlograms of Novartis and Swisslife are presented. No cor-
relation is significant at a 5% significance level. Neither in the sample autocor-
relation nor in the sample partial autocorrelation is a significant lag constituted.
This is also true for all other considered assets.

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns Sample Partial Autocorrelation Function

(a) ACF and PCF of Novartis
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(b) ACF and PCF of Swisslife

Figure 5.12: Residual Correlograms of ARMA(1,0)-GARCH(1,1)
Model The Figure 5.12 shows the correlograms of the errors of the ARMA(1,0)-GARCH-
(1,1) model for Novartis, figure (a)and Swisslife, figure (b), respectively. Estimations are based
on 2008 observations.

The test for heteroscedasticity is rejected in less cases than in the more sim-
ple case of the ARMA model. Albeit, extending the ARMA model with a
GARCH component reduces GARCH effects in the innovations, not all cases of
heteroscedasticity can be eliminated. For instance for the first quarter Swisslife
documents a rejection of the null hypothesis that no GARCH effects can be
assumed. We find similar results for all other considered assets. With the

62Whereas partially the corresponding analysis of Swisslife is available on request.
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Goldfeld-Quandt test we find similar outcomes. Heteroscedasticity is reduced
but not eliminated.63
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Figure 5.13: Ljung-Box for ARMA(1,0)-GARCH(1,1) The Figure 5.13
shows the Ljung-Box test for the ARMA(1,0)-GARCH(1,1) model for different periods. The
null hypothesis H0 is that the model fit is adequate to the alternative of the existence of
autocorrelation. The hypothesis test is performed on a 5% significance level which is illustrated
with a solid line on the bottom of each picture. The p-values for a rejection of the null
hypothesis is on the ordinate while the corresponding lag length is on the x-axis.

In Figure 5.13 the p-values for 200 lags of the Ljung-Box test for Novartis are
illustrated. The significance level is 5% and is implemented with a solid line in the
pictures. The Ljung-Box test implies an improvement of the model specification
with GARCH elements for every considered period. In particular the model fit
of the one year time series is enhanced. Comparing the one year Ljung-Box test
63The results for the ARCH-test and the Goldfeld-Quandt test for both, Novartis and Swisslife

are available on request.
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results from Table 5.11 with the corresponding test results from Table 5.13 it can
be seen that the p-values are more rare under the significance level. An upwards
shift of the p-values can be observed for all considered assets and periods.
Comparing all test results of the ARMA-GARCH model with the ARMA model
we can conclude that the ARMA-GARCH model reflects more appropriately the
properties of the time series of the limit order book. All results show evidence for
this fact, at least the lower AIC and BIC values for the new model specification.
All results are at least as good as the results of the ARMA model.
In Table 5.24 the ARMA(1,0)-GARCH(1,1) parameter estimations of all con-
sidered assets are represented. The presented period is one year. The Table
is arranged in the same way as Table 5.23. The remaining estimations for the
different quarters are available on request.

Table 5.24: Parameter Estimation all Assets
The Figure 5.24 presents the parameter estimations for ARMA(1,0)-GARCH(1,1) models for
all considered assets. The values in brackets below the parameter estimations are the cor-
responding t-values. The p represents the autoregressive parameter. The constant of the
GARCH process is represented by k, while α and β are the GARCH parameters. DoF spec-
ifies the degrees of freedom for the t-distributed innovations and DW is the corresponding
Durbin-Watson value. T-values labeled with an asterisk indicate a statistical significance on a
5% significance level while parameter estimations without an asterisk are significant on a 1%
significance level. With two asterisk labeled values are significant at least on a 10% significance
level. Estimations are based on 2008 observations.

p k α β DoF DW

ABB 0.0031∗∗ 0.3103 0.1198∗∗ 0.0753 16.45 1.9918

(0.130) (2.665) (0.392) (2.439)

Adecco 0.0503∗ 0.0603∗ 0.7807 0.0427 10.17 1.9522

(2.174) (1.706) (6.956) (2.751)

Baloise 0.1025 0.0784∗ 0.8811 0.0309∗ 8.18 1.9784

(4.567) (1.587) (13.420) (2.125)

Richemont 0.0826 0.0021∗∗ 0.9910 0.0054∗ 8.16 2.0218

(3.867) (0.983) (163.400) (1.685)

Ciba 0.1110 0.0434∗ 0.8996 0.0304 8.97 2.0023

(5.016) (1.705) (18.139) (2.292)

Clariant 0.0717 0.3729∗ 0.3221∗∗ 0.0321∗ 9.24 2.0260

(3.159) (1.191) (0.587) (1.309)

Credit Suisse 0.0334∗ 0.2046∗∗ 0.3308∗∗ 0.0201∗∗ 9.46 1.9779

(1.494) (0.812) (0.412) (0.986)



114 Chapter 5. Data and Methodology

Table 5.24: (continued)

p k α β DoF DW

Givaudan 0.0903 0.0137 0.9507 0.0291 10.29 1.9748

(4.165) (2.005) (61.618) (3.601)

Holzim 0.0914 0.0110∗ 0.9653 0.0142∗ 10.83 1.9998

(4.129) (1.119) (40.202) (1.795)

Kudelski 0.0591 0.6821∗∗ 0.0000 0.0198∗∗ 9.74 2.0099

(2.655) (0.767) (0.000) (0.831)

Nestle 0.0280∗ 0.2753∗∗ 0.4022∗∗ 0.0226∗∗ 6.52 2.0385

(1.293) (0.965) (0.664) (0.918)

Novartis 0.0579 0.1296 0.3369 0.1462 11.11 1.9678

(2.384) (4.581) (2.717) (4.643)

Roche 0.0966 0.0031∗ 0.9737 0.0207 12.97 1.9756

(4.347) (1.459) (111.000) (3.156)

Swiss Re 0.0445 0.0228∗ 0.9305 0.0146∗ 9.65 1.9854

(2.011) (1.015) (15.165) (1.276)

SGS 0.0725 0.1029 0.8698 0.0407 4.64 2.0048

(3.553) (2.114) (16.590) (2.596)

Sulzer 0.0842 0.2823∗ 0.6722 0.0496 5.91 2.0226

(3.816) (1.690) (3.780) (2.120)

Swatch 0.1679 0.0015∗∗ 0.9886 0.0089 15.54 2.0284

(7.826) (0.712) (150.300) (2.108)

Swisscom 0.0720 0.0878 0.8150 0.0592 6.26 2.0027

(3.271) (2.276) (12.103) (3.124)

Swisslife 0.0853 0.0028∗ 0.9832 0.0124 6.81 2.0223

(3.966) (1.396) (164.100) (3.171)

Syngenta 0.0835 0.1271 0.6033 0.0748 10.26 2.0470

(3.524) (2.150) (3.652) (2.723)

UBS 0.3997 0.4005 0.0000 0.1349 8.08 2.2201

(17.673) (5.295) (0.000) (3.557)

Unaxis 0.1076 0.0050∗ 0.9772 0.0179 7.15 1.9574

(5.074) (1.351) (129.200) (3.324)

Zurich 0.0676 0.1267∗∗ 0.6251∗ 0.0188∗∗ 14.46 2.0132

(2.996) (0.625) (1.077) (0.935)
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5.5 Asset Liquidity

In regard to asset liquidity, we analyze and interpret the parameters of the
ARMA-GARCH model in an economic and auction theoretic sense. We con-
sider the ARMA- and the GARCH-part of the equation separately. We assume
that the ARMA part represents the liquidity measure and the GARCH com-
ponent contributes additional information about liquidity characteristics. The
liquidity measure reflects the integral part of the dynamic of the process. It
shows the kernel of the dynamic and the changes which liquidity experiences as
time proceeds. In return, the GARCH component reveals additional effects of
the process. It discloses information about the occurrence of liquidity shocks
and its persistence.64

The dynamic of the limit order book captures the changes between the unbal-
ance of investors prepared to sell and to buy. In general, a balanced market
absorbs orders faster and to more favorable conditions than an unbalanced mar-
ket. Hence, according to definition 2.2.1 of liquidity given in chapter 2.2.3, an
unbalanced market is less liquid than a balanced market. In an unbalanced en-
vironment either the waiting time until execution is longer or the price impact
of the order is larger. In either case the agent pays for the additional risk. In
the first case, the investor loses at least the risk free interest rate and bears the
additional risk of disadvantageous price changes. In the second case, the price
impact of the order directly reflects the costs. However, regarding the dynamic
behavior of the limit order book, a market which reaches a balanced market
situation faster is more liquid. Thus, a liquid market is characterized by a high
converging-rate, while a less liquid market has a low converging-rate. Conse-
quently, the converging rate itself is the liquidity measure.65

64The basis of the interpretation of the parameter is described in chapter 4.
65To illustrate this, consider the order placement process. According to Biais et al. (1995) the

aspect of the mean-reverting behavior of the bid-ask spread and the order placement process
are closely connected to each other. Agents place limit orders when the bid-ask spread is
large or the book is thin. Conversely, they hit the quote when spread is tight. This implies
the mean-reverting mechanism of the bid-ask spread. Large depth at the best quotes induces
order placement within the bid-ask spread. This reduces depth and the slope of the book
as shown by Naes and Skjeltorp (2006) and confirmed by us in the previous section. New
orders are more frequently placed at or even above the best quotes as found by Biais et al.
(1995), until large depth is reached again. Thus, a thick book absorbs orders faster than a
thin. Consequently the faster this favorable situation appears, the more liquid is the market.
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A fully balanced market is represented by a zero difference of the orders on the
bid and the ask side. A faster reverting to this mean is reflected by a smaller
dependency of the previous state of the limit order book.66 Consequently the
integral part of the dynamic behavior is represented by how strong this previ-
ous state is present in the current state. This component is measured by the
autoregressive part p of the ARMA(1,0)-GARCH(1,1) model. The parameter
p is bounded by |p| < 1 by definition. A p-parameter close to |1| indicates a
high influence of the previous state on the current state. A p-value close to zero
shows a smaller influence of the previous state on the current state and therefore
a higher dynamic.

Additionally, an illiquid market is also characterized by a confrontation of a
convex shape on the one side to a concave shape on the other side.67 Since the
construction of the measure by the density approach also takes the shape of the
limit order book in account it reflects such kind of situations. We constitute
as a liquidity shock a sudden arrival of such an imbalance. The β parameter
of the GARCH component describes the occurrence of sudden events or shocks.
How long such a shock persists is measured by the α parameter of the GARCH
component. In order to avoid negative volatility, α and β are greater than zero by
definition.68 Additionally they are jointly bounded by α + β < 1. The existence
of many liquidity shocks is denoted by a high value of β. A high value of α

represents a long persistence of the liquidity shock. Since these two parameters
provide additional information to liquidity behavior they are subjected to the
group of additional liquidity characteristics.

The k parameter of the GARCH component scales the volatility axis. A large
value of k induces large absolute values of the axis. This parameter relies mainly
on the absolute values of the underlying time series. A process with large absolute
values arouses large differences and hence an estimation of a large k value.

66A faster reverting does not depend on higher trading activity. Chordia et al. (2001) show
evidence that trading activity measures such as volume or the number of trades is low
correlated with liquidity measures such as depth, effective or quoted spread.

67See section 4.
68For more details consider section 3 or Hamilton (1994), Greene (2000) or McNeil et al.

(2005),
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Asset Liquidity Measure An imbalance between the bid side and the ask
side reports a price pressure in the corresponding direction. Besides, this imbal-
ance means that on the respective side too few shares are offered near the best
quoted price. Comparing with a balanced market situation, it is more difficult
to trade in this state. Since trading is affected by an imbalance of the limit order
book this imbalance can be used as a proxy of liquidity.69 According to this the
most balanced limit order book is reflected by a zero difference between the price
densities.
Hence we assume that the faster the market converges to its equilibrium the
more liquid it is. Since p reflects the dependency on the previous state, a small
value of p indicates a faster converging rate.70 We define the liquidity measure
λ as

λ =
1
2

(|p| + α + β) . (5.6)

Since the parameters in equation (5.6) are bounded by |p| < 1 and are jointly
bounded by α + β < 1, the impact of the converging rate is higher weighted
than the remaining parameters. In addition the liquidity measure λ is bounded
by 0 < λ < 1.71 A liquidity value λ close to zero represents a very high asset
liquidity, while a value of λ close to one indicates a very low liquidity situation.
In Table 5.25 the considered assets arranged according to their liquidity ranking
λ are represented. A low liquidity measure λ indicates a more liquid asset.
Beside the liquidity ranking λ, the corresponding weight in the Swiss Market
Index (SMI) is reported.72 The liquidity ranking shows that the 7 most liquid
assets represent 65.67% of the market capitalization of the Swiss Market Index.
From the 5 largest assets, 4 are ranked under the 7 most liquid securities.
Liquidity shocks and its persistence are summarized under additional liquidity
characteristics. It provides additional information to the investor for a considered

69For more details, see section 4.
70For a detailed analysis of the ARMA parameters interpreted as converging rate consult for

instance R.-R. Chen and Yang (1995).
71Since the parameter k measures only the scale of the volatility we omit this parameter in the

liquidity measure.
72The weights are calculated based on market capitalization at 31th of December 2002. For

additional information about calculating the weights consult
http : //www.swx.com/trading/products/indices/stock_indices/smi/smi_de.html.
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Table 5.25: Liquidity Ranking
For the period between January 2 and December 31, 2002, the Table 5.25 reports the liquidity
ranking in descending order of the considered securities of the SMI. The most liquid asset,
Kudelski, is represented by the lowest value of the liquidity measure λ. The measure λ is
calculated according to equation

λ =
1

2
(|p| + α + β),

Where the variables are the estimated parameters of an ARMA(p)-GARCH(α, β) process. For
each asset the estimations are based on 2008 observations.

Weight Weight
# Name λ in % # Name λ in %
1 Kudelski 0.0395 0.11 13 SGS 0.4916 0.43

2 ABB 0.0991 0.76 14 Swiss Re 0.4948 5.08

3 Credit Suisse 0.1922 6.21 15 Baloise 0.5073 0.53

4 Clariant 0.2130 0.52 16 Ciba 0.5205 1.11

5 Nestle 0.2264 20.19 17 Givaudan 0.5351 0.85

6 UBS 0.2673 14.67 18 Holzim 0.5355 1.20

7 Novartis 0.2705 23.21 19 Richemont 0.5395 2.34

8 Zurich 0.3558 3.23 20 Swisslife 0.5405 0.33

9 Syngenta 0.3809 1.41 21 Roche 0.5455 11.78

10 Sulzer 0.4030 0.12 22 Unaxis 0.5514 0.15

11 Adecco 0.4368 1.17 23 Swatch 0.5827 0.22

12 Swisscom 0.4731 1.72

investment horizon. As already mentioned a high α measures a long persistence
of a shock. A high β indicates the existence of sequent shocks. In order to get
an intuition of the mechanism, several situations are visualized in Figure 5.14.
The Figure comprises four different sub-Figures from (a) to (d). The sub-Figure
(a) depicts the time series of Novartis, sub-Figure (b) is Kudelski, (c) Givaudan
and the last sub-Figure (d) is the time series of UBS. The upper pictures in each
sub-Figure represent the limit order book dynamic. The lower pictures show
the corresponding conditional standard deviations. The effect of α and β are
identifiable in the conditional standard deviations. Compared to each other, in
Figure (a) both values are high, whereas in Figure (b) both are low. Figures (c)
and (d) represent high α and low β.

The chart of Figure 5.14 (c) exhibits less shocks. But the available shocks per-
sist long in the limit order book dynamic. This effect is illustrated by a sudden
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(a) α = 0.3369 and β = 0.1462
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(b) α = 0 and β = 0.0198
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(c) α = 0.9507 and β = 0.0291
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(d) α = 0 and β = 0.1349

Figure 5.14: Additional Liquidity Characteristics The Figure 5.14 illustrates
different aspects of the GARCH(α, β) effects. The upper pictures show the time series of
the density measure, while the lower pictures exhibits the corresponding conditional standard
deviations. A high α indicates a long persistence of the shocks, while a high β identifies the
existence of frequently shocks.

increase followed by a slow decrease of the chart of the standard deviation. In
contrast to this, Figure 5.14 (d) shows many sequent shocks, which declines in-
stantaneously. A combination of high α and β is represented by the standard
deviation of Figure 5.14 (a). The chart evolves disquietingly compared to the
other pictures. To visualize these effects, it is necessary to plot the conditional
standard deviation. These effects are not recognizable by only considering the
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charts of the limit order book dynamic.

Based on this model-framework and considered from an economic point of view,
the two parameters are useful concerning the timing of submitting an order to
the market. Knowing the behavior of the current period signals either to trade
or to wait, depending on the corresponding preferences. For instance in times,
where an order imbalance remains longer (situation (c) described in Figure 5.14),
the waiting time until an order has been executed may be longer. This causes ad-
ditional costs in the form of loss of interest on the invested capital, price changes
of the corresponding asset or monitoring expenses.

In Table 5.26 a liquidity ranking of the industrial sectors where the considered
assets belong is performed. The averages are calculated on a yearly basis. Ac-
cording to this analysis the two most liquid sectors are food and beverages and
the bank sector. These two sectors make up a market capitalization of 42.19%.

Table 5.26: Liquidity Ranking according to Industrial Sectors
The Table 5.26 shows the liquidity ranking of the industrial sectors of the SMI. For each sector
the average of the liquidity value of the firms from the corresponding sector is calculated. The
market capitalization is computed on December 31, 2002.

Industrial Market Number of Liquidity
Rank Sector Cap. in % Companies Measure λ

1 Food & Beverages 20.74 1 0.2264

2 Banks 21.45 3 0.2298

3 Industrial Goods & Services 2.67 1 0.2940

4 Chemicals 3.12 2 0.3714

5 Pharma 35.94 4 0.4080

6 Telecommunication 1.77 1 0.4731

7 Insurance 9.42 5 0.4746

8 Non Cyclical Goods & Services 0.87 1 0.5351

9 Construction 1.23 2 0.5355

10 Electronic & Elect. Equipment 0.16 2 0.5514

11 Cyclical Goods & Services 2.63 1 0.5611

At the end of this ranking reside sectors like cyclical goods and services, elec-
tronical equipments, constructions and non cyclical goods and services. These
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last four sectors make up a market capitalization of less than 5%. The largest
industrial sector, measured at the market capitalization is the pharma sector
with 35.94% of the SMI market capital. The pharma sector is located at the 5th
place. The top 5 most liquid sectors make up a market capitalization of 83.92%.

Measuring liquidity depends on the time horizon considered. In shorter periods,
estimations capture different events and effects in more detail. This influences
the result in a variation of the liquidity measure. In Table 5.27 the estimation re-
sults of the liquidity measure λ for all four quarters and for all considered assets
are reported. The Table is sorted in ascending alphabetic order. It reveals that
this liquidity measure is affected by the chosen time horizon. Although the num-
ber of the measure changes, the classification remains the same. In particular,
the 5 most liquid sectors determine around 75% of the market capitalization.

Table 5.27: Liquidity Measures for Quarters
For the period between January 2 and December 31, 2002, the Table reports the liquidity
measures λ for the quarters. In addition, the estimation for the whole year is calculated. For
security, calculations are based on 494 observations for the first quarter, 495 for the second
quarter, 519 for the third quarter and 495 for the fourth quarter. The average as well as the
standard error refers to the quarters.

Quarters Std.
1st 2nd 3rd 4th Average Error 1 Year

ABB 0.1659 0.0742 0.1793 0.4802 0.2249 0.1765 0.0991

Adecco 0.4477 0.4172 0.0215 0.4154 0.3254 0.2032 0.4368

Baloise 0.3966 0.5079 0.3000 0.4612 0.4164 0.0901 0.5073

Richemont 0.0159 0.0737 0.0343 0.1148 0.0597 0.0440 0.5395

Ciba 0.5067 0.5109 0.1832 0.3091 0.3775 0.1602 0.5205

Clariant 0.4763 0.2322 0.0480 0.1506 0.2268 0.1827 0.2130

Credit Suisse 0.1289 0.3785 0.1647 0.3001 0.2430 0.1166 0.1922

Givaudan 0.2598 0.4991 0.0475 0.1045 0.2277 0.2020 0.5351

Holzim 0.2680 0.0457 0.4958 0.4420 0.3129 0.2029 0.5355

Kudelski 0.4522 0.0107 0.4895 0.3869 0.3348 0.2203 0.0395

Nestle 0.4325 0.0270 0.2315 0.3692 0.2650 0.1795 0.2264

Novartis 0.4930 0.1361 0.4755 0.0730 0.2944 0.2209 0.2705

Roche 0.5224 0.5715 0.2568 0.5740 0.4812 0.1515 0.5455

Swiss Re 0.4800 0.2348 0.0051 0.0479 0.1919 0.2164 0.4948
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Table 5.27: (continued)

Quarters Std.
1st 2nd 3rd 4th Average Error 1 Year

SGS 0.4053 0.0574 0.1601 0.1169 0.1849 0.1529 0.4916

Sulzer 0.0747 0.3597 0.5604 0.4575 0.3631 0.2090 0.4030

Swatch 0.3036 0.5318 0.1291 0.0873 0.2629 0.2023 0.5827

Swisscom 0.5456 0.2985 0.4866 0.3546 0.4213 0.1144 0.4731

Swisslife 0.5514 0.0429 0.5473 0.5329 0.4186 0.2506 0.5405

Syngenta 0.3953 0.1234 0.4393 0.3210 0.3198 0.1397 0.3809

UBS 0.2384 0.2491 0.3333 0.2125 0.2583 0.0523 0.2673

Unaxis 0.5165 0.5869 0.4569 0.4426 0.5007 0.0658 0.5514

Zurich 0.1671 0.4955 0.0459 0.0338 0.1856 0.2152 0.3558

LM Market 0.3584 0.2811 0.2648 0.2951 0.2999 0.0410 0.4001

LM SMI 0.3894 0.2297 0.2877 0.2581 0.2912 0.0696 0.3284

At the end of the table, two additional estimations are presented. The LM
market is a simple average of all liquidity measures of all considered assets. The
LM SMI is the average of all liquidity measures of all considered assets weighted
according to the SMI weights. This calculation of the measures reveals that the
liquidity of the market is more stable than of one single asset.

5.6 Liquidity Premium

A basic principle in asset pricing theory is that any form of risk is compensated
in some form of additional return. The risk and return relation is a central role
in several economic concepts and models. The basic idea is that the higher the
risk, the higher is the probability to achieve a larger return. Less liquid assets
bear the risk of, for instance, longer execution times, higher price impacts by
execution or menace of order splitting, which again is connected with higher
transaction costs.73 From this point of view liquidity can be considered as a
form of risk.74 Since higher risk is compensated in the form of higher returns,
liquidity risk is a pricing component. This priced liquidity risk component is
referred to as the liquidity premium.
73See more detailed descriptions ahead.
74See also the definition of liquidity given in chapter 2.
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Depending on which measure serves as a liquidity proxy, several studies inves-
tigate the relationship between liquidity premium and asset return. Amihud
and Mendelson (1986), for instance, study the effects of the bid-ask spread on
returns and find that higher yields are required on higher spread stocks, i.e.
that market-observed expected return is an increasing and concave function of
the spread. Later, they verify their findings by connecting additional risk forms
with liquidity risk in Amihud and Mendelson (1989). Datar, Naik, and Radcliffe
(1998) extend the work of Amihud and Mendelson (1986) by using the turnover
rate as proxy for liquidity.75 They evidence that liquidity plays a significant
role in explaining the cross-sectional variation in stock returns. Brennan and
Subrahmanyam (1996) find that there is a significant return premium associated
with both the fixed and variable elements of the cost of transacting while Pereira
and Zhang (n.d.) focus on the relationship between the liquidity premium and
the volatility of liquidity. They examine the liquidity premium in a dynamic
model with price impact and give an explanation of that liquidity premium de-
creasing with the volatility of liquidity. Acharya and Pedersen (2005) introduce
a liquidity adjusted capital asset pricing model. They show that investors re-
quire return premium for illiquid securities and are willing to pay a premium
for liquid assets when the whole market is illiquid, investors are willing to pay a
premium for liquidity when market return is low and additionally, illiquid assets
tend to have commonalities in liquidity with market liquidity, return sensitivity
in market liquidity and liquidity sensitivity to market returns.76

Brennan et al. (1998) as well as B. R. Porter (2003) calculate, by means of
the Fama-French three factor model provided by Fama and French (1992) the
liquidity premium. In order to extract the liquidity component of the returns
according to our liquidity hierarchy respective to liquidity measure, we follow
Brennan et al. (1998) and B. R. Porter (2003) and apply the Fama-French three
factor model to our dataset.

The capital asset pricing model (CAPM) derived independently by Sharpe (1964),

75The turnover rate is defined as the number of shares traded as a fraction of the number of
outstanding shares.

76Work in this direction has also been done by Chordia, Roll, and Subrahmanyam (2000),
Huberman and Halka (2001), Hasbrouck and Seppi (2001), Amihud (2002) or Pastor and
Stambaugh (2003), among others.
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Lintner (1965) and Mossin (1966) relates the expected return of an asset to the
risk free rate and a weighted risk premium.77 The risk premium is the difference
between the expected market return and the risk free rate. The weight, referred
to as βi, serves as the asset (i) specific risk measure.78 Later on, several authors
extend the capital asset pricing model by relaxing assumptions or appending
additional factors.79 By combining the original market risk factor with two new
developed risk factors, Fama and French (1992) present a model which separates
the asset’s expected return in several risk specific components. Beside market
risk, they add size risk, measured as the difference between small minus big as-
sets (SMB) and value risk, measured as the difference between assets with high
book-to-market ratio minus assets with a low ratio (HML) as supplementary ex-
planatory variables into the model. Since we are interested in the liquidity risk
premium we additionally attach a risk factor measuring liquidity risk (LMI).
Therefore the model appears as

ri − rrf = β1(rm − rrf ) + β2LMI + β3HML + β4SMB,

where rf is the risk free interest rate, and βi is a measure of the exposure an
asset (i) has to market risk. The factor size risk (SMB) is the difference between

77Formally the capital asset pricing model (CAPM) is

E[ri] = rf + βi(E[rm] − rf ),

where E[ri] is the expected return of the asset (i), rf is the risk free interest rate and E[rm]
is the expected return of the market. For more details of the model and its assumptions,
particularly a critical discussion consider for instance, Black (1972), Black, Jensen, and
Scholes (1972), Fama and MacBeth (1973), Banz (1981) or Kothari, Shanken, and Sloan
(1995), among many others.

78The parameter βi is a measure of systematic risk. The systematic risk is the portion of
volatility measured by the degree to which the assets return vary relative to those of the
market return. Accordingly a βi of zero indicates a risk less investment, while a βi of 1
denotes average market risk. If βi is larger than one the investment is riskier than an average
market risk investment, if βi is lower than one, the investment is less risk than an average
market risk investment. Formally, βi can be written as βi = cov(ri,rm)

σ2
m

, where cov(ri, rm) is
the covariance between the return of the market rm and the return of the asset ri and σ2

m is
the variance of the return of the market.

79Ross (1976), for instance, introduces the arbitrage pricing theory (APT), which is a linear
function of various macro-economic factors or risk factors. It differs from the CAPM in that
it is less restrictive in its assumptions. For instance, the APT assumes only arbitrage free
markets instead of the existence of market equilibrium.



5.6 Liquidity Premium 125

the average return of the returns of the smallest market capitalized assets and
the average return of the returns of the largest market capitalized assets. The
parameter si measures the level of exposures to size risk. Constructed in a
fashion similar to SMB, HML is calculated as the difference between the average
return of stocks with the highest book-to-market ratio and the average return of
stocks with the lowest book-to-market ratio. The HML factor is referred to as
the value risk. The parameter hi is a measure of the level of exposure to value
risk.80

In contrast to the intention of Fama and French (1992) our aim is not to improve
the overall explanatory power of the capital asset pricing model by enhancing
the adjusted R2. From our liquidity ranking reported in Table 5.25 we pick
the 7 most liquid and the 7 fewest liquid assets to construct the liquid-minus-
illiquid (LMI) portfolio.81 The performance of the LMI portfolio is calculated as
the difference between the average return of the 7 most liquid and the 7 fewest
liquid assets. From an economic perspective, the LMI is designed to measure the
additional return investors have received by investing in illiquid assets. Hence,
the β2 measures the level of exposure to liquidity risk.
For the period between January 2 and December 31, 2002 the results of the
Fama-French three factor model estimations are reported in Table 5.28. The
calculations are based on daily notations which include 251 observations. To
determine the SMB portfolio, market capitalization at December 31, 2001 is
considered. In order to establish the HML portfolio, two parameters have to be
computed separately. The market value is taken of the closing prices at December
31, 2001 while the book value of the asset is calculated of the corresponding
annual report.82

80However, the size risk factor and the value risk factor are known as the Fama-French factors.
81Fama and French (1992) originally use a portion of 30% to create the portfolios. We follow

them and take 30% of the most liquid assets to build the liquidity portfolio.
82Source of the Data is Reuters. The annual reports are publicly available on the corresponding

homepages.
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The Table 5.28 is sorted in ascending order according to β2. In general a negative
value of β2 describes a small liquidity premium while a positive value of the
parameter displays a larger liquidity premium. The table 5.28 reports that assets
tend to have liquidity premium according to the liquidity ranking proposed in
Table 5.25. For instance, from Table 5.25 Kudelski is considered to be one of
the most liquid assets. Since liquidity is a risk factor, these assets should have
a small liquidity premium. Table 5.28 documents a large negative value for
Kudelski and therefore a small liquidity premium. In contrast, according to
Table 5.25 Swisslife is less liquid. In Table 5.28 a large positive value is attached
to Swisslife which reports a large liquidity premium. In general, the assets tend
to be sorted in Table 5.28 according to their liquidity ranking from Table 5.25.
This analysis implies that illiquidity is a cost factor and the market tends to
compensate for it.





Chapter 6

Conclusion/Discussion

In this thesis we have focused on the modeling of an asset liquidity measure
based on the dynamic of the limit order book. Asset liquidity is an essential
characteristic of a well working financial market. In fact, the absence of liquid-
ity can influence the trading process considerably. The simple situation that an
investor is not able to sell any given amount of assets at a given point of time can
cause a difficult financial situation. From this point of view a proper liquidity
measure is crucial.
We assumed in this work that the limit order book comprises all the relevant
information to construct an appropriate measure for asset liquidity.1 This as-
sumption suggests that it is possible to construct a measure which reflects asset
liquidity based on data only generated by the activities in the limit order book.
Therefore our main focus was to research the setting, structure and activities in
and around the limit order book to reflect its dynamic behavior most accurately.
In academic literature as well as in practical uses there is a huge amount of mea-
sures and key figures based on the limit order book. But in contrast to existing
measures we observed the changes of the limit order book as time proceeds, i.e.
the dynamics of the book, and used these changes to construct a new liquidity
measure.
We reflected the dynamic of the limit order book by means of the order disbalance

1In chapter 4 we showed evidence of this fact by means of the collection of different studies as
Harris and Hasbrouck (1996), Coppejans et al. (2004), Pascual and Veredas (2006) or Cao et
al. (2004) among many others.
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between the bid and the ask side. Since a large disbalance causes greater price
jumps and hence increasing transaction cost, large disbalances show illiquidity.
In contrast small differences offer more advantageous trading situations. From
an asset liquidity point of view a tighter difference between the bid and the ask
side is preferable. The faster the limit order book turns to small differences
between the bid and the ask side, the faster a trader can act at this market to
favorable transaction costs. As time proceeds the pattern of the these differences
shows a mean reverting behavior. Since the mean is zero by construction a faster
converging to the mean shows a more liquid asset. Therefore we interpret the
converging rate of the mean reverting process as a measure for liquidity. In order
to reach this model and to explore the way leading to this model, we collected a
set of sequent research questions to which we addressed to answer.

The first research question we had to answer is whether there is a possibility
to display the limit order book and its movements. For this, we reconstructed
the limit order book of 23 Swiss blue chips for the year 2002. We have collected
in a first step each limit order book entry for every single considered asset and
generated an overall dataset consisting of 152,488,698 records. This dataset in-
cluded all relevant information for all submitted orders. In a second step we
programmed a Matlab-Code which reconstructed all order arrivals, executions
and cancellations. Since every market has its own market architecture and trad-
ing rules we used the setting and principles of the Swiss Stock Exchange for
programming the code. For each asset the limit order book is separated in two
sides; the bid and the ask side. The submitted orders are collected for each side
individually. For an arbitrary time frame the Matlab-Code ranked orders ac-
cording to the best offered price for each side separately. On the bid side, orders
are classified according to the highest price and on the ask side they are sorted
according to the lowest price. Within same prices orders are arranged according
to the submitting time. This Matlab-Code allowed displaying the limit order
book for different time frames.
In order to illustrate the movements of the limit order book, we applied a den-
sity measurement approach. The measure can be calculated for different time
frames. In a given time frame, the difference of the sum of the volume per price
of the ask side and the bid side are taken, while the volume per price is computed
for all order levels in the current book. The advantage of this measure was that
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it is symmetric according to the bid and the ask side, it is independent of the
price level and it weights orders less which are further away from the best offer.
The measure shows for each time frame if the book was in an excess supply or
an excess demand situation. With this concept it was possible to illustrate each
trading situation, changes and the movements of the limit order book.

The second research question was to discover characteristic structures in the
limit order book and particularly in the time series of the density measure.
The idea of this question was to find out if investors behave strategically and
whether this can be recognized by observing the limit order book. For this reason
we performed a top to bottom analysis with respect to the order placement
process. We started with a daily grid of the data and refined our perspective
continuously. The first analysis attended to the daily volume dispersion. Like
Gerety and Mulherin (1992) for the New York Stock Exchange, Niemeyer and
Sandås (1993) for the Swedish Market or Hedvall (1994) for Finland we found
a similar U-shape pattern in daily volumes for the Swiss Market. Based on
an hourly observation interval, most volume occurred at the beginning and the
end of a trading session. Around noon, volumes usually declined and formed
the daily U-shape pattern. In contrast to other investigations we additionally
distinguished between the volumes on the bid and on the ask side. We found
that within the same time interval, the bid and the ask volumes are equally
scaled. Albeit mostly in common with findings of other researchers this was
a first impression that the order placement process possess a certain structure
which can be connected with a strategic behavior of the investors.
The first analysis with data on tick level was to illustrate the shape of the limit
order book. We tightened the time grid to an hourly basis and aggregated the
order volumes on the same submitted prices. We found that first, shape does
change as time proceeds. Moreover we discovered that for different assets the
shape of the limit order book does change at different speeds. This is a first
indication that different assets have different levels of trading activities. Second,
we found that the shape of the limit order book does also change beyond the best
quotes. Cao et al. (2004) showed evidence that quotes beyond the best quotes
have informative properties and Harris and Panchapagesan (2005) found strong
evidence that traders use the additional information provided by the entire limit
order book. To verify these findings, we performed a further analysis of the shape
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of the book by investigating the slope of the shape. We applied the slope measure
provided by Naes and Skjeltorp (2006). We found that the more the considered
range of the limit order book has been tightened, the steeper the average slope
of the shape. In addition we provided a correlation analysis between the spread
and the slope and found that the spread is negatively correlated to the slope.
Moreover the correlation is increasing the more the range for the slope calculation
is tightened. This means that in general larger volumes at quotes are associated
with a larger bid-ask spread. In chapter 4 we introduced theoretically that a limit
order book shaped with a steep slope is, in general, associated with larger spreads
and also that the converse of this is true. These empirical findings support the
theoretical concept and support the idea of the mean reverting character of the
bid-ask spread and hence the mean reverting behavior of the limit order book.
To find out more about the order flow influence on the limit order book we
also explored order flow persistence in this context. According to Biais et al.
(1995) we investigated the frequency of orders conditional on the previous type
of submitted order and the frequency of orders given the state of the limit order
book. To evaluate the order flow according to their type of orders we first had to
sort the orders in different categories. We followed Biais et al. (1995) and ranked
the orders according to their aggressiveness. The most aggressive order was an
order close to or in between the bid-ask spread, while the least aggressive order
was one far away from the current trading price. We found that the probability
that an order of the same aggressiveness follows each other is significantly higher
than that of any other aggressiveness class. Biais et al. (1995) call that event the
diagonal-effect. Biais et al. (1995) provide three economic hypotheses to explain
this observation of serial correlation in the order submission process. Serial
correlation may arise due to strategic order splitting. Strategic order splitting
reduce transaction costs. Moreover a large order in the market suggests that the
investor owns private information. This can be observed by the other market
participants and can therefore be imitated. This reason is also supported by
the findings of Easley and O’Hara (1987). The third hypothesis assumes that
agents react similarly on the same events, since they own the same economical
and technical knowledge. The second investigation paid attention to the state
of the book with respect to the depth and the bid-ask spread. The threshold of
assigning the state is defined by the median of each time series. From this point



133

of view we distinguished four different combinations of states. From theoretical
considerations and findings of diverse researchers orders hit the quote if spread
is tight or depth is small. Conversely, orders are placed within the spread if
spread is large or depth is large. We found that, in general, order placement
behavior for the bid and the ask side was different for the year 2002. For the
ask side, orders are placed more aggressively if spread is large and are even more
aggressive if depth is additionally large. Our theoretical aspects are, for the
most part, confirmed by the findings of the ask side. The bid side shows another
picture. Compared with the ask side, the orders of the bid side are in general
less aggressive. A possible explanation for this fact can be that stock markets
strongly declined in the year 2002. In order to avoid large losses, investors tried
to sell their positions fast. Hence investors acted more aggressive on the sell
side of the market. However, what is relevant is that first we found a serial
correlation for the order flow process and second, that the correlation mainly
follows the theoretical considerations of the mean reverting behavior explained
in more detail in the previous chapter.

Beside these mentioned analyses, we further made regressions of different param-
eters on return and on volatility. We only found a slightly negative connection
between volatility and the slope of the limit order book. We tested several models
where we used different parameter settings. Across all assets and all models we
found a statistical significant weak negative relation. That means that volatility
decreases the steeper the order book slope is. Additionally we investigated the
price impact by calculating the liquidity cost according to our cost calculation
presented in chapter 2. Along with several empirical findings we found that in
a bearish market environment, sell orders have larger price impact than buy
orders. Since we are mainly interested in the liquidity question, we ranked the
assets according to their liquidity cost for an average order size. This ranking
served later on to compare the results with the liquidity measure introduced in
the following chapter.

We found that the limit order book contains relevant information for asset liq-
uidity and that it is observable. We now turned to answer the third question. Is
it possible to capture the time series of the movements with a dynamical model?
In this context we first analyzed the characteristics of the time series generated
with the density measure approach. The measure is constructed out of the sum
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of the price-weighted order size, while the weights are calculated as the difference
between the corresponding price of the order and the current trading price for
the considered time frame. Hence a positive value of the measure reflected an
excess demand and a negative value indicated a supply pressure.

Then we turned to the statistical analysis of the time series for all considered
assets. In a first step we examined the distribution of the data. We found that
it is not normally distributed but t-distributed. Then, we confirmed that it is a
stationary process by applying three different tests for stationarity.
Before we proceeded with analysis regarding the time domain, we investigated
the relation to return and volatility. We plotted the density as a function of the
depth. We found that volatility is statistically significant closer to the bid-ask
spread rather than deeper in the book. As mentioned above, several other re-
searches find similar results that trading activities do not only take place close
to the bid-ask spread. Since we considered more than a truncated book, all this
information is incorporated in this measurement concept.
The correlation matrix presented a negative correlation between the density mea-
sure and the bid-ask spread. This is in line with the findings of the investigation
of the frequency of orders given the state of the limit order book. Moreover we
find that correlation becomes stronger the more the limit order book is restricted
to the range around the bid-ask spread.
Additionally we tested the relation of the density measure to return and volatil-
ity by applying the similar tests already used to the slope time series of the
limit order book. We applied the same four models provided by Naes and Skjel-
torp (2006) to the return and volatility time series. Regarding volatility, the
regression resulted in a weak negative relation to the density measure. The R2

showed that approximately 12% of the variation in the response variable can be
explained by the density measure. For the regression with respect to the price
returns, we applied two regressions. The first one was the same regression as
for the volatility and the second was corrected for autocorrelation in the error
terms. For both the result’s explanation of the variation of the response variable
is 1.1% and 2.8% respectively. From this point of view the additional tests of the
density measure did not contribute explanatory power neither to price volatility
nor to price returns. Since we are interested in capturing the time series with
an appropriate model we continued with the analysis of the time domain. Since
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the time series is stationary we applied tests for autoregressive moving average
(ARMA) processes. First we plotted the sample autocorrelation and the sample
partial autocorrelation. We found a first indication in these correlograms across
all assets that the processes can be reflected with first order ARMA processes.
From this first illustrated impression we turned to statistical analytical methods
to assign the orders of the processes. In this context we applied the Akaike infor-
mation criterion (AIC) and the Baysian information criterion (BIC) for different
order combinations. Since we have previously shown that the time series is not
normally distributed, tests are based with t-distributed innovations. The BIC
model suggested, in all cases, a more general model selection with less number
of parameters than the AIC approach. Wagenmakers et al. (2006) proposed to
keep the models as general as possible by reason of a.o. better results for param-
eter estimation. Since the majority of the correlograms, and moreover the BIC
model selection, suggested a first order autoregressive model we decided to select
this model. To verify that the model fit is adequate, we performed an analysis
of the residuals. For the analyses we used correlograms, the Durbing-Watson
test statistics, the Ljung-Box test, Engle’s test of heteroscedasticity as well as
the Goldfeld-Quandt test. Although residuals have been not correlated for the
most part, based on the ARCH test of Engle, we found that they have not been
stochastically independent. Hence, the innovation process of the ARMA(1,0)
model featured volatility clustering. Due to these results we decided to extend
the model with an heteroscedastic part, the generalized autoregressive condi-
tional heteoroscedastic (GARCH) component.
We extended the ARMA model with GARCH components of several parame-
ter combinations and found that the ARMA(1,0)-GARCH(1,1) model fitted the
best. Selecting this model combination, we additionally tested the distribution
of the innovation of the process. Again, the Baysian information criterion pro-
posed t-distributed errors. Moreover, all values of the BIC were smaller than
the previous results of the model without the extension. By repeating all the
tests for verification, the model fit we now concluded that the extended model
delivered the most adequate results.

The last question remaining to answer is to test whether the measure of these
dynamic changes serves as an appropriate measure for asset liquidity. The den-
sity measure captures the differences between investors prepared to sell and to
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buy. In general, a balanced market absorbs orders faster and to more favorable
conditions than an unbalanced market. From this point of view, an unbalanced
market is less liquid than a balanced market. Regarding the dynamic behavior
of the limit order book, this means that a market reaching a balanced market
situation faster is more liquid. In that sense a liquid market is characterized
by a faster converging rate from an unbalanced in a balanced market situation.
Since the autoregressive parameter measures the converging rate of the process,
this figure serves as the dynamic liquidity measure. The two parameters of the
GARCH component describe first the occurrence of sudden shocks and second
the persistence of such shocks. Applying to our liquidity time series this means
that this component measures the arrivals of sudden imbalances of orders and
how long such an imbalance persists in the market. Hence it measures liquidity
shocks.2

The dynamic liquidity measure is an additive combination of the converging rate
of the ARMA(1,0) process and the GARCH(1,1) parameters. Since all param-
eters are bounded and standardized the measure is standardized as well by 0
and 1, while 1 reflects an illiquid and zero a liquid market. We applied the
measure to all considered assets and ranked them according to their liquidity
attribute. Our measure identified that Kudelski was the most liquid asset in the
year 2002 while Swatch represented the least liquid asset. In the year 2002 the
liquidity ranking shows that the 7 most liquid assets represents 65.67% of the
market capitalization of the Swiss Market Index. Moreover from the 5 largest
companies, 4 are ranked under the 7 most liquid securities. Naes and Skjeltorp
(2006) evidenced that in general larger capitalized assets are more liquid than
small capitalized. Our findings presented similar results except of Kudelski. Ac-
cording to our liquidity ranking, the most liquid asset has been Kudelski albeit
it is one of the smallest capitalized asset in the Swiss Market Index. A possible
explanation for this fact may be that Kudelski has been excluded from the Swiss
Market Index in that year. Since several investors pursued a strategy involving
imitating the Swiss Market Index, a drop out of an asset caused large portfo-
lio regroupings from institutional and private investors. This in turn entailed
large trading activities in the corresponding asset. Consequently asset liquidity
increased.

2See for more details chapter 4 and chapter 5.
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An additional feature of the dynamic liquidity measure is that it shows the liq-
uidity behavior concerning liquidity shocks and the persistence of such shocks
of an asset. We showed that Novartis experienced a similar number of liquidity
shocks like UBS during that trading period. But in contrast to UBS, the liquid-
ity shocks of Novartis persisted longer in the market. Givaudan for instance had
less shocks but, compared to the sample, they persisted a long time. In the same
period, we found no liquidity shocks in the data of Kudelski. Considered from
an economic point of view, this information is useful for an investor concerning
the timing of submitting an order to the market. Knowing the behavior of the
current period opens the possibility to trade with an appropriate strategy.
We then extended our liquidity calculations to the industrial sectors of the Swiss
Market Index. We found that the most liquid categories was the food and bev-
erages and the bank-sector. These sectors covered more than 42% of market
capitalization of the Index. Moreover the 5 most liquid sectors accounted for
around 85% of market capitalization. Additionally we found that the most liq-
uid assets were in general the strongest weighted components in the Swiss Market
Index.
In order to evaluate the explanatory and measurement power of the model we
applied the Fama-French three factor model. With the Fama-French three fac-
tor model we were able to calculate whether an asset has a liquidity premium
or not. We found that liquid assets according to our liquidity ranking had a
small liquidity premium. Assets which were harder to trade compensated this
with a larger liquidity premium. The liquidity premium ranking generated by
the Fama-French three factor model corresponded by the majority to our liquid-
ity ranking generated by the dynamic liquidity measure. From this results we
concluded that the model is an appropriate measurement approach for asset and
market liquidity.

In this thesis we presented a new approach to measure asset liquidity. We pro-
vided a substantial analysis of the model and verified its measurement power.
In addition we showed several aspects and uses of the concept. This model and
the idea behind it open different opportunities for further researches. The first
use of this concept can be to support an investor in its asset allocation and asset
selection process. The model can contribute additional information to a decision
making process. Second, from a trading point of view the model can be evalu-
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ated for a trading strategy. For instance a short-long position strategy can be
tested, where a portfolio consisting of liquid assets are sold against a portfolio
composed of illiquid assets. Another application can be to use the figure for risk
monitoring and control for risk management. As mentioned in the beginning of
this thesis we said that one assumption in a lot of valuation models is that assets
can be sold immediately and for no costs. From this point of view, a further
research field can be to incorporate the liquidity aspect in valuation models.
Liquidity is a fundamental attribute of a well working financial market. In fact,
a market without liquidity can hardly be seen as working at all. The simple
situation that an investor is not able to sell any given amount of assets at a
given point of time can cause financial distress even up to its insolvency. From
this point of view, market liquidity can be seen as the life elixir of financial
markets.
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