

A Semantic Time Framework
for Interactive Media Systems

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfälischen Technischen

Hochschule Aachen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Eric Lee, M. Sc.
aus Montréal/Kanada

Berichter: Prof. Dr. Jan Borchers
Prof. Dr. Sidney Fels

Tag der mündlichen Prüfung: 7. September 2007

Bringing Iterative Design to
Ubiquitous Computing:

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfälischen Technischen

Hochschule Aachen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Rafael A. Ballagas, M. Sc.
aus Atlanta, Georgia, USA

Berichter: Prof. Dr. Jan Borchers
Prof. Dr. Hans Werner Gellersen

Tag der mündlichen Prüfung: 23. August, 2007

Interaction Techniques,
Toolkits, and Evaluation Methods

Bibliografische Information er Deutschen ibliothek

Die Deutsche ibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über

http://dnb.ddb.de abrufbar.

 Nonnenstieg 8, 37075 Göttingen

 Telefon: 0551-54724-0

 Telefax: 0551-54724-21

 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung

des Verlages ist es nicht gestattet, das Buch oder Teile

daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)

zu vervielfältigen.

Gedruckt auf säurefreiem Papier

1. Auflage, 2008

 CUVILLIER VERLAG, Göttingen 2008

1. Aufl. - Göttingen : Cuvillier, 2008
Zugl.: , Univ., Diss., 2007
978-3-86727-531-6

978-3-86727-531-6

d Nationalb
Nationalb

 (TH) Aachen

iii

Contents

Abstract xxiii

Zusammenfassung xxv

Acknowledgements xxvii

Conventions xxix

1 Introduction 1

1.1 Iterative Human-Centered Design 1

1.2 Applying Iterative Design to Ubicomp 5

1.2.1 Fieldwork . 5

1.2.2 Lightweight Prototypes 7

1.2.3 High-fidelity Prototypes 8

1.3 Thesis Structure . 9

1.4 Thesis Contributions . 10

2 Supporting Design: The Design Space of Ubiquitous Mo-
bile Phone Input Techniques 13

2.1 Examining the Design Space of Input Devices 14

Feedback . 15

Interaction Style . 15

iv Contents

2.1.1 The Position Subtask 16

Continuous Indirect Interactions 16

Continuous Direct Interactions 19

Discrete Indirect Interactions 20

Discrete Direct Interactions 21

Evaluating Positioning Techniques 22

2.1.2 The Orient Subtask 25

Continuous Indirect Interactions 25

Continuous Direct Interactions 26

Discrete Direct Interactions 28

2.1.3 The Select Subtask 28

Continuous Indirect Interactions 28

Continuous Direct Interactions 28

Discrete Indirect Interactions 29

Discrete Direct Interactions 29

2.1.4 The Path Subtask 33

2.1.5 The Quantify Subtask 33

2.1.6 The Text Entry Subtask 33

Keyboard . 33

Speech Recognition 34

Stroked Character Recognition 35

Menu Selection . 35

2.2 Spatial Layout of the Design Space 35

2.2.1 Supported Subtasks 36

2.2.2 Dimensionality . 37

Contents v

2.2.3 Relative vs. Absolute 38

2.2.4 Other Relevant Attributes of Interaction Devices . . 38

Designing for Serendipity 38

Social Acceptance 39

2.3 Design Spaces in the Design Process 40

2.4 Chapter Summary . 41

3 Supporting Prototyping: Toolkit Support for Ubiquitous
Computing Applications 43

3.1 Requirements . 44

3.2 iStuff Toolkit Architecture 45

3.2.1 User Interface Layer 46

Other Physical Hardware Toolkits 49

Software Components 49

Layer Summary . 50

3.2.2 Proxy Layer . 50

Proxy Manager . 51

Layer Summary . 53

3.2.3 Network Layer . 53

The Event Heap . 53

Debugging the Event Heap 56

Layer Summary . 56

3.2.4 Mediator Layer . 58

Other System Approaches to Interoperability 58

Functional Details of the Patch Panel 60

Layer Summary . 66

vi Contents

3.2.5 Application Layer 66

Scripting Language 67

Patch Panel Manager 71

Custom GUI - Workspace Navigator 73

Quartz Composer . 73

Other Rapid Prototyping Environments 76

Layer Summary . 77

3.2.6 iStuff Architecture Summary 77

3.3 iStuff Prototyping Examples 78

3.3.1 Elope . 78

3.3.2 iStuff Mobile . 82

iStuff Mobile Architecture 82

Mobile Phone Application Support 84

Other Mobile Phone Interface Prototypes 86

Other Mobile Phone Toolkits 86

Recreating Seminal Mobile Phone Interactions . . . 86

Ubiquitous Computing Prototyping Scenarios 88

3.4 User Evaluation . 91

3.4.1 Experimental Results 94

3.4.2 Questionnaire Results 95

Quanititative Results 95

Qualitative Results 96

3.5 Performance Evaluation . 97

3.6 Conclusions . 99

Contents vii

4 Supporting Evaluation: Expressiveness as an Evaluation
Tool for HCI 101

4.1 Motivation . 101

4.2 Background . 102

4.2.1 Expressiveness of Relative Pointing Devices 104

4.2.2 Examples . 107

Opto-Mechanical Mouse 107

Optical Mouse . 108

Analog Joystick . 108

Sweep . 110

4.2.3 Expressiveness of Absolute Pointing Devices 110

4.3 Selexels: Using Expressiveness as a Design Tool 111

4.3.1 The Selexel Approach 111

4.3.2 Practical Application of Selexels 112

Usage Scenario . 113

4.3.3 Comparing Selexels to Other Selection Techniques . 113

4.4 Evaluation . 115

4.5 Experiment 1 . 116

4.5.1 User Study Design 116

4.5.2 Participants . 117

4.5.3 Equipment . 117

4.5.4 Results . 117

4.5.5 Discussion . 118

4.6 Experiment 2 . 119

4.6.1 User Study Design 119

4.6.2 Participants . 120

viii Contents

4.6.3 Equipment . 120

4.6.4 Results . 121

4.6.5 Discussion . 121

4.7 Chapter Summary . 121

5 Iterative Design in Practice: Player-Centered Iterative De-
sign for Pervasive Games 125

5.1 Game Overview . 126

5.2 Detector Functionality . 128

5.3 Gameplay Scenario . 131

5.4 Other Pervasive and Mobile Games 133

5.5 Mobile Phone Turned Magic Wand 134

5.5.1 Camera-based Motion Estimation 134

5.5.2 Gesture Recognition 135

5.5.3 Iteratively Designing the Spell-Casting Experience . 137

User Reactions to Gesture Recognition in a Field Study138

5.6 Other Prototyping Iterations 139

5.6.1 Early Concept Prototyping 139

5.6.2 Board Game Prototyping 142

5.6.3 Game Statecharts 143

5.6.4 Content Prototyping 143

5.6.5 Hotzone Prototyping 143

5.6.6 Detector Prototyping 145

5.6.7 “Wizard of Oz” Playability Tests 146

Analysis . 146

5.7 Design Rationale . 147

Contents ix

Designing for Narrative Consistency 148

Balancing Competitiveness and Leisure 149

Balancing Cooperative Experience vs. Outdoor Play 149

Designing for a “Heads Up” Experience 150

5.8 Chapter Summary . 151

6 Conclusion 153

6.1 Contributions . 153

6.2 Future Work . 156

6.3 Closing Remarks . 157

A iStuff Hardware Schematics 159

A.1 iButton . 159

A.2 iDog . 160

A.3 iLight . 160

A.4 iSlider . 162

A.5 iStuff Proxy Receiver . 163

A.6 iStuff Proxy Transmitter . 163

B iStuff Evaluation and Scenario Descriptions 167

C Post-participation Questionnaire 173

Bibliography 177

Index 191

xi

List of Figures

1.1 A high-level diagram illustrating the iterative design process. 2

1.2 An illustration of interface quality as a function of the num-
ber of design iterations. Each additional iteration increases
the usability of the design until a potential“usability plateau”
is reached. (Nielsen, 1993) 4

1.3 An abstract timeline illustrating a sample desktop iterative
design process. Low-fidelity prototypes can be prototyped
and evaluated much quicker than high fidelity prototypes.
Identifying design flaws earlier in the iterative design process
saves time and money. 6

1.4 Paper prototypes provide a low-fidelity representation of a
graphical user interface to enable user testing early in the
design process. (Photo by Kris Kables, reprinted under the
Creative Commons License.) 8

1.5 The coverage of the contributions of this thesis in the field
of HCI. 11

2.1 A large public display used for advertisments and announce-
ments in a subway stop in Vienna, Austria. 14

2.2 The Smart Laser Scanner: a 3D input technique for mobile
devices using laser tracking (Cassinelli et al., 2005). 17

2.3 In the C-Blink system, the user waves the phone screen in
front of a camera to control cursor position (Miyaoku et al.,
2004). 18

2.4 The Sweep technique uses camera input and optical flow im-
age processing to control a cursor (Ballagas et al., 2005). . . 18

2.5 Using the phone to manipulate tagged widgets such as but-
tons, dials, and sliders (Madhavapeddy et al., 2004). 19

xii List of Figures

2.6 Direct Pointer uses a handheld camera to track a cursor
displayed on the remote screen without relying on visual
tags. (Jiang et al., 2006) . 20

2.7 The view of the façade of a building used to play the classic
game “Pong” with buttons on the mobile phone controlling
the paddle. (Chaos Computer Club, 2002) 21

2.8 Point & Shoot technique (Ballagas et al., 2005) 21

2.9 A warehouse scenario employing RFIG. The users can high-
light and select objects of interest combining a handheld pro-
jector and embedded light sensitive RFID tags (Raskar et al.,
2004). 29

2.10 Classification of different mobile phone interactions that
have been implemented in the projects surveyed. Inspec-
tion of the diagram reveals opportunities for future work –
for instance, developing interaction techniques that support
3D relative direct orientation. 39

2.11 REXplorer uses camera-based motion estimation to allow
players to cast spells using the path subtask (Ballagas et al.,
2007b). 41

3.1 A layered model of the iStuff Toolkit Architecture. 45

3.2 Interactive Workspaces are ubiquitous computing environ-
ments that combine an array of input devices and displays
to provide a coordinated user experience. 46

3.3 Custom built iStuff components are reusable modules that
can combined to build a physical user interface prototype.
(Top) contains input devices, (Middle) shows output devices,
(Bottom) A design space can be used to illustrate the cov-
erage of these devices. 48

3.4 (Left) The Smart-Its proxy GUI allows developers to dis-
cover Smart-Its sensor boards, configure them, and activate
communication with the Network Layer through this basic
interface. (Right) The configuration menu allows the devel-
oper to activate sensors and set sampling rates for the sensor
network module. 52

List of Figures xiii

3.5 A screenshot of the ProxyManager application. Proxies can
be arranged on different tabs (middle). On the left the dis-
covered Event Heaps are displayed as well as buttons for
launching a local Event Heap and the Event Logger, respec-
tively. In the middle, a hierarchical tree is used to browse
available proxies. A workspace shows the current proxies of
interest selected by the user and their status. On the right
side, the currently running proxies are shown. In the dis-
played situation, a “TextEventGenerator” proxy is running,
indicated by the “walking man” icon. 52

3.6 Sample Java code for posting an event on the Event Heap.
The event is of type AudioEvent and has fields AudioCom-
mand and Text, which are parameters for the SpeakText re-
ceiver. This program can be executed with the following
command: $> java SpeakTextSender eh1.informatik.rwth-

aachen.de "Hello World" 54

3.7 Sample Java code for receiving an event from the Event
Heap using a blocking method. This program can be ex-
ecuted with the following command: $> java SpeakTextRe-

ceiver eh1.informatik.rwth-aachen.de 54

3.8 Sample Java code for receiving an event from the Event Heap
using a non-blocking callback. This program can be exe-
cuted with the following command: $> java SpeakTextRe-

ceiver eh1.informatik.rwth-aachen.de 55

3.9 The Event Logger GUI simplifies debugging and monitoring
Event Heap Activity. The top panel controls the connectivity
to the Event Heap, the right panels control the event-level
and field-level filtering desired for the log view (left panel). 57

3.10 Selecting a particular event from the Event Logger displays
all the fields and values of the event. The mandatory fields
required by the Event Heap are visually separated using grey
to assist the user in identifying the custom fields specified by
the client application. 57

3.11 The Patch Panel adds a level of indirection to the commu-
nication channel between two components to perform event
intermediation. The publish/subscribe semantics are also
demonstrated. 61

3.12 Sample Java code for setting the Button → Lights, Projector
mapping. 62

xiv List of Figures

3.13 (A) A textual description of the Mealy state machine dia-
gram for a light toggle in (B). Circles labeled Si are states.
Each edge is labeled with“x / y”where x is the input and y is
the output. (C) The Patch Panel mappings that implement
the state machine. 64

3.14 (A) FSM description with timers. (B) Formal notation for
the mappings in A. 65

3.15 the iClub in Action with iSlider 68

3.16 Range Normalization and Equation Specification 69

3.17 Patch Panel mappings that enable the multi-slider handheld
music controller . 69

3.18 FSM description of iClub multi-slider mappings. We have
minimally stylized the code for space (Typically each event
template must be described with necessary mandatory fields
and values at the top of the script, instead of inline as shown
above). 70

3.19 Resolving semantic mismatch between relative-position and
absolute-position devices. We have minimally stylized the
code for space (Typically each event template must be de-
scribed with necessary mandatory fields and values at the
top of the script, instead of inline as shown above). 71

3.20 (Top) The simple panel of the patch panel GUI, intended for
casual non-technical users, provides access to a very limited
set of simple mappings. (Bottom) The advanced panel of the
patch panel manager, intended for experts, supports direct
browsing and editing of the Patch Panel mappings. 72

3.21 (Top) Sequence of screens that illustrate the functionality of
the Button-to-Bookmark Configuration Servlet. (Bottom)
The equivalent function of the GUI specified in the mapping
notation. 74

3.22 Apple’s Quartz Composer is a visual programming environ-
ment designed to support rapid creation of 3D interactive
visualizations. We have extended it to support prototyping
physical user interfaces. This screenshot shows the develop-
ment of a weather application for a large public display in a
train station. 75

3.23 A rough comparison of the different Application Layer pro-
gramming interfaces of the iStuff Toolkit. 76

3.24 Summary of the layers of the iStuff Toolkit architecture. . . 77

List of Figures xv

3.25 A system diagram illustrating the coordination between the
components to set up a presentation by scanning a presen-
tation controller. 79

3.26 Hardware prototype components, including tagged presen-
tation remote control (upper left), prototype mobile device
(right), and RFID reader (bottom left). The remote control
is tagged with an RFID tag (black circle on end), and the
RFID reader is exposed to show its inner circuitry. (A Euro,
a British Pound, and a U.S. quarter are included for scale.) 81

3.27 Back view of a mobile phone augmented with a Smart-Its
sensor board in iStuff Mobile. The sensors can be attached
to the phone in whatever position the designer finds most ap-
propriate. The pictured Smart-It contains a 3D accelerome-
ter, microphone, and sensors for light, pressure, temperature,
and voltage. 83

3.28 The iStuff Mobile architecture. 83

3.29 The Quartz Composer implementation of the tilt-scrolling
interaction from Harrison et al. (1998). Squeezing input is
measured by the “Force” node from the SmartItsSensor 1
and is tested with a simple threshold. The result is passed to
the Tilt To Key - JavaScript , which maps various tilts
in the Z-direction of the gravity sensor to different key codes
and key repeat rates. The outputs from that JavaScript
node include “KeyCode”, which represents the appropriate
key (up or down arrow) depending on the current tilt, and
“Repeat Period”, which specifies how fast the LFO (low fre-
quency oscillator) node should operate. For this scenario,
larger tilt is mapped to faster repeat rates. The Key Press
- Conditional changes the oscillator to function like a bi-
nary clock, regularly switching between 0 and 1. “Source #0”
(which defaults to 0) represents no key pressed, and “Source
#1” represents the key specified from the JavaScript node.
The key is then passed to the MobilePhoneController 1
to forward to the mobile phone. The naming convention of
the iStuff Mobile related nodes corresponds to the name of
the device being controlled. (1 helps distinguish multiple
devices of the same type.) 87

3.30 Implementation of the context based profile change described
in (Hinckley and Horvitz, 2001; Schmidt et al., 1999). The
Threshold - JavaScript node changes the profile based on
the pressure sensor (indicating the user is holding the phone). 88

3.31 The TiltText (Wigdor and Balakrishnan, 2003) technique
maps numeric keys to different characters based on the tilt
of the device. 89

xvi List of Figures

3.32 The Quartz Composer implementation for combining ac-
celerometer data with camera-based motion detection to im-
prove motion detection accuracy. The Sensor Fusion -
JavaScript node implements the algorithm to combine the
sensor values in a meaningful way. The JavaScript logic can
be modified at run-time to test and refine the sensor fusion
strategy. The standard Billboard node of Quartz Composer
displays an image to the screen (e.g., a cursor). The output
of the sensor fusion algorithm in the JavaScript node controls
the position of the billboard on the screen. 89

3.33 The proof of concept weather browser application allowed
users to navigate through regions on the map using the
Sweep technique. The weather forecast is updated live using
RSS feeds from Yahoo! Weather. 90

3.34 (Top) A multi-screen presentation application that uses a
mobile phone as a presentation remote control. The fore-
ground application in this example is prototyped using a
static image. The right screen shows the previous slide, and
the left screen shows the current slide. (Bottom) The Quartz
Composer implementation for the multi-screen presentation
application. On the far left, the MobilePhoneKeyLis-
tener 1 node receives the key presses from the iStuff Mobile
Proxy. The two nodes on the far right are iStuff modules
to control two instances of the same PowerPoint presenta-
tion, each running on a different computer in the interactive
workspace (Top). No JavaScript nodes are required for this
composition. 91

3.35 (A) The window floating on top belongs to iListen, a com-
mercial application that supports continuous speech recog-
nition (dictation) on Mac OS X. When speech is recognized,
it is converted to ascii text and sent to the focused appli-
cation as key events. (B) Our Text Event Engine is a Java
application in focus that produces Text events for each key
entered in the textbox. In this example, the user is dic-
tating an SMS message. (C) Text events are recognized by
the CharacterGenerator 1 and transferred to Mobile-
PhoneController 1 . This composition can alternatively
be used to allow users to type messages onto their mobile
phone using a standard keyboard on their desk. 92

3.36 Results show that Quartz Composer is significantly faster
and enables significantly more iterations than the Patch
Panel scripting language. 95

3.37 Sources of latency in tangible UIs for ubicomp. 98

List of Figures xvii

3.38 Benchmark measurements and example performance degra-
dation for combined Event Heap and Patch Panel round trip
time. Note the periodic delay spikes indicated by the large
positive skew for each group of measurements. 99

4.1 Analysis of a simple radio from (Card et al., 1991). Two ro-
tation devices are connected directly to the application. The
third rotational device is connected to a positional device,
which is then connected to the application. 103

4.2 The optimized dual-submovement model is a variation of the
optimized submovement model with two submovements. Hy-
pothetical primary submovements are marked with a solid
line, secondary submovements with a dashed line. (Based
on Figure 6.8 from Meyer et al. (1990).) 105

4.3 An optical-mechanical mouse: (1) Motion across the desk-
top surface moves the ball. (2) Grips transfer the ball move-
ment to turn (3) optical encoding disks. (4) Infrared LEDs
shine through the holes. (5) Infrared sensors accumulate
light pulses and convert them into motion along the X and
Y axes. (Source: Wikipedia) 107

4.4 An analog joystick measures absolute tilt of the stick in the
rX, rY dimensions. 109

4.5 A sample selexels screen division over a typical desktop inter-
face. It indicates that existing desktop interfaces may need
to be modified to disambiguate selection when using a low
resolution selection space. 112

4.6 Experimental results showing that pointing under selexels
can be modeled using Fitts’ Law. 118

4.7 Experimental results showing that user performance in
pointing tasks decreases when the target distance is greater
than the submovement reach. 120

4.8 Experimental results separated by C–D ratio, showing that
Fitts’ law is not an acceptable model of human performance
when target distances exceed the submovement reach. . . . 122

5.1 A child’s gravestone inscribed with a secret language serves
as inspiration for the gesture vocabulary of REXplorer.
The long-term goal of the players is to unveil the mystery
behind these symbols by solving as many other challenges in
the city as possible during their game session. 127

xviii List of Figures

5.2 The REXplorer “detector” consists of a Nokia N70 mobile
phone and a GPS receiver packaged together in a protective
shell. A soft and stretchable textile overlay with a zipper
on the back transforms the standard phone keypad into an
8-key game interface. 128

5.3 A souvenir blog documents the player’s route, visited points
of interest, and player-generated content (pictures and videos).129

5.4 A souvenir brochure contains a map marked with points of
interest and a legend for device buttons and gestures. . . . 130

5.5 As players move through the city, a slow heartbeat indicates
that there is no unusual paranormal activity. When a player
moves close to a point of interest, inside a hotzone, the de-
tector’s heartbeat gets excited and speeds up. In the excited
state, there is additional vibration and audio feedback to
emphasize the new state. 131

5.6 A step-by-step illustration of the REXplorer interaction
sequence. 132

5.7 Recognizing the gesture using offsets 136

5.8 The alternative spell selection menu was a rotating, clock-
like interface where the red highlight continuously rotated
around the screen. The gesture symbol in the middle dis-
cretely rotated to eliminate ambiguity as to which element
was currently highlighted. Note that the shape of the gesture
in the middle matches the gesture that would be performed
to evoke the corresponding spell for the medieval element.
Users press “Auswählen” to select, and “Nochmal” to try the
gesture again. 140

5.9 Storyboard conveying REXplorer game play 141

5.10 Board game prototype of REXplorer 142

5.11 Finite State Machine showing the reaction to a gesture. . . 144

5.12 Map tool that allows us to visually define hotzones based on
GPS measurements from testing 145

5.13 Different stages of detector design. 147

5.14 For the playability tests, Wizard of Oz techniques were ap-
plied using the Nokia 770 tablet. A test administrator uses
the tablet to manually input the players’ position as they fol-
low the players through the city to simulate a fully functional
location detection system. 148

List of Figures xix

5.15 An affinity analysis consists of writing individual quotes from
the interviews and play sessions to try to isolate patterns of
behavior across the different sessions. 148

5.16 REXplorer is designed to be played in groups of two or
three. 150

6.1 A map showing the contributions of this thesis mapped over
the ACM’s map of Human–Computer Interaction. 156

A.1 The circuit diagram for the iButton. 160

A.2 The circuit diagram for the iLight. 161

A.3 The circuit diagram for the iSlider. 162

A.4 The circuit diagram for the iStuff proxy reciever. 164

A.5 The circuit diagram for the iStuff proxy transmitter. 166

B.1 Evaluation description page 1 168

B.2 Evaluation description page 2 169

B.3 Evaluation description page 3 170

B.4 Evaluation description page 4 171

C.1 User test questionnaire page 1 174

C.2 User test questionnaire page 2 175

xxi

List of Tables

2.1 Summary of position techniques using a smart phone as an
input device. 23

2.2 Rough estimates of ergonomic measures to compare mo-
bile phone-based position techniques (small circle = low,
medium circle = medium, large circle = high). 26

2.3 Summary of orient techniques using a smart phone as an
input device. 27

2.4 Rough estimates of ergonomic measures to compare mobile
phone-based orient techniques (small circle = low, medium
circle = medium, large circle = high). 27

2.5 Summary of select techniques using a smart phone as an
input device (Continued in Table 2.6). 30

2.6 Summary of select techniques using a smart phone as an
input device (Continued from Table 2.5) 31

2.7 Rough estimates of ergonomic measures to compare mobile
phone-based select techniques (small circle = low, medium
circle = medium, large circle = high). 32

2.8 Summary of text entry techniques using a smart phone as
an input device. 36

2.9 Rough estimates of ergonomic measures to compare mobile
phone-based text entry techniques (small circle = low,
medium circle = medium, large circle = high). 37

3.1 User test scenario completion matrix. 94

4.1 By matching the selexel resolution to the C–S ratio (Lsample)
we maintain a constant C–D ratio across the test conditions. 117

xxiii

Abstract

An iterative human-centered design process is required to create interfaces that are useful, in-
tuitive, efficient, and enjoyable for users in the ubiquitous computing domain. Currently, only
experts can design, prototype, and deploy ubiquitous computing applications; others lack the
tools and conceptual frameworks. This work starts to fill the gap by providing contributions that
support each phase of the iterative human-centered design process and address the complexity
of ubiquitous computing application scenarios.

• To support the design phase, the range of ubiquitous mobile input techniques are organized
into a design space, which helps identify the relationships between input techniques, and
select the most appropriate input technique for an interaction scenario.

• To support the prototyping phase, the iStuff Toolkit architecture simplifies construction
of functional prototypes for ubiquitous computing application scenarios. The architecture
has been used to create two separate toolkits: iStuff to simplify prototyping physical user
interfaces for ubiquitous computing, and iStuff Mobile to simplify prototyping new sensor-
based interactions for mobile phones in ubiquitous computing.

• To support the evaluation phase, a new conceptual framework based on expressiveness
is used to demonstrate how to evaluate input devices in prototype form (suffering from
reduced resolution or sampling rates) and still make conclusions about future performance
if further time and money were invested in improvements.

To illustrate how this iterative design process can be used from drawing board to deployment,
experiences developing REXplorer are shared. REXplorer is one of the first permanently
installed pervasive games and helps tourists explore the historical UNESCO World Heritage
city of Regensburg, Germany. Players use a special “paranormal activity detector” (a device
composed of a mobile phone and a GPS receiver) to interact with location-based and site-specific
spirits. “Casting a spell” by waving the wand-like detector lets players awaken and communicate
with the spirits to receive and solve quests. The game is designed to make learning history fun
and influence tourists’ path through the city.

xxv

Zusammenfassung

Um nützliche, intuitive, effiziente und unterhaltsame Schnittstellen für die Benutzer im ubi-
quitären IT (ubiquitous computing) zu entwickeln, ist ein iterativer und benutzerorienter De-
signprozess erforderlich. Zurzeit sind es nur Experten, die unter diesen Voraussetzungen Pro-
totypen entwickeln können. Nicht-Experten fehlt es an den notwendigen Werkzeugen und den
konzeptuellen Bezugssystemen. Die vorliegende Arbeit verringert diese bestehende Lücke, wobei
sie einen Beitrag leistet, der jede Phase des iterativen und benutzerorientierten Designprozesses
unterstützt und die Realisierung solcher ubiquitären IT-Szenarien vereinfacht.

• Zur Unterstützung der Designphase sind die gegenwärtigen mobilen Eingabetechniken
in einem Gestaltungsraum (design space) organisiert. Dieser Gestaltungsraum hilft, die
Beziehung zwischen den Eingabetechniken zu identifizieren und die passende für das jew-
eilige Interaktionsszenario zu wählen.

• Zur Unterstützung der Prototypenphase vereinfacht die iStuff Architektur mit ihrer

”Analogie eines Werkzeugkastens“ die Konstruktion der Funktionsprototypen für das ubiq-
uitäre IT. Basierend auf dieser Architektur wurden zwei separate ”Werkzeugsätze“ entwick-
elt: iStuff vereinfacht die Herstellung von Prototypen für physikalisch basierte Benutzer-
oberflächen während iStuff Mobile die Herstellung von Prototypen für neuen sensorbasierte
Interaktionen mit Mobiltelefonen unterstützt.

• Zur Unterstützung der Auswertungsphase wird ein neues Konzept angewendet, welches auf
Ausdrucksfähigkeit basiert. Es ist für die Auswertungen von prototypischen Eingabeproto-
typgeräten (mit niedriger Auflösung und geringen Abtastrate) geeignet und zeigt anhand
der erreichten Leistungen, ob zukünftige Zeit- und Geldinvestitionen erforderlich sind.

Um die Anwendung dieses iterativen Designprozesses von Zeichenbrett bis zum richtigen Ein-
satz darzustellen, werde ich die von mir gesammelten Erfahrungen während der Entwicklung
von REXplorer, eines der ersten fest installierten pervasive Spiels, behandeln. REXplorer hilft
Touristen bei der Erforschung der von der UNESCO zum Weltkulturerbe erklärten historischen
Stadt Regensburg in Deutschland. Die Spieler benutzen einen speziellen ”paranormalen Aktiv-
itätsdetektor“ (ein Gerät, bestehend aus einem mobilen Telefon und einen GPS-Empfänger), mit
dem sie mit standortbezogenen und ortspezifischen fiktiven Mitspielern zusammenspielen. Durch
sogenanntes ”Verzaubern“ (winkende Bewegungen mit einem Zauberstab) erweckt der Spieler die
fiktiven Mitspieler zum Leben, unterhält sich mit ihnen und bekommt Fragen gestellt, deren Lö-
sungen er in der Stadt suchen muss. Das Spiel wurde entwickelt, um das Lernen von Geschichte
unterhaltsam zu machen und um Touristen durch die Stadt zu führen.

xxvii

Acknowledgements

First, I would like to thank my advisor, Jan Borchers, for his continued support of my work. He
is ultimately the reason I came to Germany to work on my Doctoral degree at RWTH Aachen
University, and I am glad that I followed him. He was there to meet with me to discuss ideas,
and always willing to provide comments on my papers and chapters. He kept challenging me to
think differently throughout our time together.

I would also like to thank my co-advisor, Hans Gellersen, who has supported me over the past
years through collaborations with his research group. His influence and support have helped
shape this work.

I would also like to acknowledge all of the contributors to the REXplorer project. REX-
plorer was jointly developed between RWTH Aachen University and ETH Zurich with over
50 individual contributors. Primarily, I would like to thank Steffen P. Walz, my counterpart
at ETH Zurich who took the lead for content development and co-designed the game with me.
Alexander Möhnle significantly contributed to character development and script creation for
the game content, and he is the photographer for the picture on the cover of this work. Also,
I would like to thank my students at RWTH Aachen University who helped realize the game
implementation, especially Sven Kratz, Joel Mendoza, Eugen Yu, André Kuntze, and Johannes
Fundalewicz. REXplorer would not be a product today without the help of these individuals
and many others that are not listed here.

My colleagues have also played an important role in this process, especially Eric Lee, David
Holman, Daniel Spelmezan, Thorsten Karrer and Elaine Huang. They were always available
to provide comments, help refine ideas, and most importantly laugh with me to maintain my
sanity. I only hope to have the same quality of people to work with throughout the remainder
of my career.

I definitely would not have gotten this far without the love and companionship of Snezhana
Dimitrova. She has helped me stay grounded and remember what is important in life. The
ability to finish this thesis was largely due to her encouragement and support.

Finally, I’d like to dedicate this thesis to my parents, Rafael and Linda Ballagas, and my sister,
Corina Ballagas. They have always encouraged me to do my best, and their love and support
has been unwavering.

xxix

Conventions

The following conventions will be used throughout this thesis:

Technical terms or jargon that appear for the first time will be set in italics.
Definitions of technical terms or other jargon will be enclosed in shaded
boxes, and will be referenced in the index.

Jargon:
Special words or expressions that are used by a particular profession or
group and are difficult for others to understand.

Definition:

Jargon

Source code and implementation symbols will be typeset using a monospace
font.

Margin notes will be used to improve readability and assist in browsing the
text.

1

Chapter 1

Introduction

“You don’t have to please everyone–you have to please the
user.”

—Brenda Laurel

Mark Weiser envisioned ubiquitous computing as a world where com-
putation and communication “blend into the fabric of our everyday
lives” (Weiser, 1991). To realize Weiser’s vision, we must find interfaces Ubicomp needs

iterative

human-centered

design

that are useful, intuitive, efficient, and enjoyable for users in the ubiquitous
computing domain. An iterative human-centered design process (Nielsen,
1993) is required to find these interfaces. Currently, only experts can de-
sign, prototype, and deploy ubiquitous computing applications; others are
lacking the tools and conceptual frameworks to fully support an iterative
human-centered design process for ubiquitous computing. This work starts
to fill the gap by providing contributions that support each phase of the
iterative human-centered design process that addresses the complexity of
ubiquitous computing application scenarios.

1.1 Iterative Human-Centered Design

The field of Human–Computer Interaction (HCI) has long recognized that
user interfaces should be designed iteratively (Nielsen, 1993; Buxton and
Sniderman, 1980; Gould and Lewis, 1985), because the requirements for the road to

success in

interaction design

is to fail early and

often

an interactive system cannot be completely specified at the beginning of
the lifecycle (Dix et al., 2004). Instead, the road to success in interaction
design is to fail early and often. The design needs to be prototyped and
tested with real users to reveal any false assumptions or unforeseen design
problems. These problems can then be corrected in the next iteration of
the prototype, which should then again be tested to ensure the problems
are resolved. Each prototype is more detailed and functional than the last,
thus converging towards the final system (see figure 1.1). The main phases
of iterative design are:

2 1 Introduction

Design Prototype

OK?

Evaluate

Redesign

What is wanted
Interviews

Ethnography

No

Implement and
deploy

Yes

Figure 1.1: A high-level diagram illustrating the iterative design process (adapted from Dix
et al. (2004))

• Requirements (what is wanted)– In human-centered design, theknow the user

primary task is to ‘know the user’ (Hansen, 1971). When beginning
to develop any interactive system, it is important to clearly identify
who the system is intended to support, and for which tasks. After
the user group is identified, exploratory techniques such as contextual
inquiry or ethnography can be used to derive user needs and system
requirements.

• Design – This is the stage of the design process where the system
requirements are translated into a design solution. This stage canexisting design

knowledge can

help conceptualize

an interface

be informed through design knowledge captured by abstract design
guidelines (Mayhew, 1991), platform specific design guidelines (Ap-
ple Computer Inc., 1992), heuristics (such as Shneiderman’s golden
rules (Shneiderman, 1992)), and HCI design patterns (Borchers,
2001). Other tools that can assist in making informed design de-
cisions are design spaces, such as Card et al.’s design space of input
devices (Card et al., 1991), which helps designers reason about design
alternatives and identify the most appropriate design for the given

1.1 Iterative Human-Centered Design 3

task.

• Prototyping – Early in the development of a product, prototypes Prototype

refinement

advances with

each iteration

are typically conceptual in the form of scenarios, sketches, and story-
boards that illustrate the basic usage in context. Later after evalua-
tion, more detailed prototypes flush out concrete design ideas. With
each cycle in the iterative design process, the ideas are further refined
with a combination of functional (works like) and form (looks like)
prototyping strategies.

• Evaluation – The essence of iterative design is to evaluate the pro- Evaluate early and

often with real

users

totypes early and often to identify problems and design flaws early
in the design process. Delaying meaningful testing increases the cost
of correcting fundamental design problems. Analysis can either be
done without users, such as employing an expert to perform a heuris-
tic analysis, or they can be tested by observing real users interacting
with the product either in controlled experiments or in real context of
use. All of these forms of evaluation should be used together through-
out the design process to identify potential difficulties users may have
with a product. After the problems are identified, they can be trans-
lated into design changes for the next iteration of the prototype (Dix
et al., 2004).

• Implementation and Deployment – Once the design is of ac- Design before

implementationceptable quality, the creation of production quality code, the man-
ufacturing of robust and integrated hardware, and the creation of
documentation and manuals can begin. Commonly, the output of
the iterative design process is a full design specification and reference
prototype, not the final implementation. Evaluations should continue
throughout the implementation stage to ensure that the implementa-
tion meets the quality required by the design. If the quality cannot
be met, further design iterations may be necessary.

Prototyping structures innovation, collaboration, and creativity in the most
successful design studios (Kelley and Littman, 2001). Designers use proto- Prototypes

externalize

cognition

types as physical representations of ideas, effectively externalizing cognition
and facilitating a “conversation with materials” to uncover surprising prob-
lems or generate suggestions for new designs (Schön and Bennett, 1996).
Prototypes also serve as artifacts that represent tacit knowledge of devel-
opers as a communication tool to clients or other members of a design
team (Schrage, 1999). Most importantly, prototypes provide an artifact to
test with real users as a part of a human-centered iterative design process.

Research has shown that, generally speaking, the more iterations in the
design process, the better the user interface (Nielsen, 1993). Figure 1.2 More iterations

lead to better

designs

illustrates how usability improves with each iteration in the design process.
At the surface, it appears that each iteration is a time consuming and ex-
pensive process, but studies have shown that iterative design has economic
value (Karat, 1990). Additionally, the cost of performing design iterations
can be dramatically decreased with rapid prototyping strategies, but the

4 1 Introduction

U
sa
b
ili
ty

Iteration

Removing
interaction bugs

Reconceptualizing
the interface

Figure 1.2: An illustration of interface quality as a function of the number
of design iterations. Each additional iteration increases the usability of the
design until a potential “usability plateau” is reached. (Nielsen, 1993)

nature of the prototype influences the nature of the problems that can be
identified.

Prototypes can generally be characterized as one of two variants: func-
tional (works like) prototypes try to match the interactive experience as
closely as possible (Buchenau and Suri, 2000), and form (looks like) proto-
types are passive and try to match the appearance and affordances of the
final design. These two characterizations can be seen as two extremes of aPrototype both

form and function prototype continuum where, in most practical situations, prototypes have
aspects of both. For example, humans can simulate the interactive func-
tionality of form prototypes by updating the state of the form prototype
manually. This practice, known as Wizard of Oz prototyping (Dahlbäck
et al., 1993), was originally developed in the context of natural language
interfaces where a hidden human stenographer typed in spoken text to sim-
ulate high-performance natural language processing (Kelley, 1984). This
technique allows the interactions to be tested before significant effort is
placed in the implementation.

One of the pitfalls of iterative human-centered design is that if you pick aBeware of false

starts poor starting point, you may reach a peak in the usability of a particular
design without reaching the desired usability goals. In this case, it may be
necessary to throw the design away and start over. False starts are relatively
painless early in the design process if low-fidelity prototyping techniques
are used, but can be extremely expensive if determined late in the design
process. In order to minimize the risk of false starts, a parallel design

1.2 Applying Iterative Design to Ubicomp 5

strategy (Nielsen and Faber, 1996) can be used, where multiple designs
can be explored independently early in the design process. As the designs
mature, the best design becomes clear, or the strengths of the top designs
can be merged to a unified design. Parallel design is more practical early
in the design process when rapid prototyping techniques are used.

1.2 Applying Iterative Design to Ubicomp

Today, strategies for applying an iterative design process to desktop graph-
ical user interfaces are generally well-defined. Figure 1.3 exemplifies how
these strategies might be applied over the course of a design process for
a desktop application. However, attempting to apply an identical design Ubicomp requires

functional

prototypes

process to ubiquitous computing is problematic, often because ubiquitous
computing application scenarios require a functional prototypes to convey
the intended experience. Currently, functional prototypes for ubiquitous
computing are costly, time-consuming, and require technical expertise to
construct. For example, Heiner et al. (1999) report spending about one
person-year developing a ubiquitous peripheral display. If meaningful test-
ing is delayed until too late in the design process, monetary constraints
and resource commitments prohibit fundamental design changes (Ulrich
and Eppinger, 1995).

1.2.1 Fieldwork

Fieldwork that has examined current design practices indicates that there
are many issues obstructing iterative design in ubiquitous computing ap-
plications.

Hartmann et al. (2006) conducted fieldwork interviewing product design-
ers. They found that most product designers have had exposure to pro-
gramming, but few were proficient. Although access to programmers and Functional

prototypes are

often delayed

engineers was available, there were not enough to complete large proto-
typing projects. This resulted in a perception that interdisciplinary teams
slow the interaction design process and increase costs. Thus, prototypes
that combined form and function were not built until late in the design
process. These prototypes were typically expensive, one-off presentation
tools instead of artifacts for human-centered reflective practice.

Klemmer (2004) conducted structured interviews with tangible user inter-
face developers. For these developers, dealing with physical input was the Effort to build

functional

prototypes is too

high

primary challenge requiring a high level of technical expertise and extensive
development effort. One developer commented“the sensing hardware is not
perfect, so sometimes we had to change interactions a bit to make them
work in the face of tracking errors.” Developers reported that often exten-
sive system redesigns were required to perform straightforward changes to
input technologies (e.g., exchanging a camera and barcode reader). Addi-

6 1 Introduction

Contextual Inquiry

Storyboards
Focus Group Interview

Consider alternative
designs

(Design Space Analysis)

Identify Users and Task
User Profiles / Scenarios

Requirements

Paper Prototype

Parallel Design Paper Prototype

Wizard of Oz User Testing

Redesign
Revised Paper Prototype

Wizard of Oz User Testing

Redesign

High Fidelity Form Prototype
(e.g. Photoshop)

Wizard of Oz User Testing
Redesign

Limited Fuctionality
Interactive Prototype

(e.g. Flash)

 Controlled Interactive User
Testing

Redesign

High-Fidelity Interactive Prototype
(e.g. Flash)

Interactive Field Testing

Implementation Begins

Design
Process Start

High Fidelity
Reference
Prototype

Design Prototype Evaluate

Brainstorming

Task-centered walkthroughs

Heuristic Evaluation

Low Fidelity
Prototypes

Medium Fidelity
Prototypes

Figure 1.3: An abstract timeline illustrating a sample desktop iterative design process. Low-
fidelity prototypes can be prototyped and evaluated much quicker than high fidelity prototypes.
Identifying design flaws earlier in the iterative design process saves time and money.

1.2 Applying Iterative Design to Ubicomp 7

tionally, each development team was creating their own software architec-
tures based on basic event-based software design patterns from the ground
up because no tool existed that could save developers time and effort.

Carter et al. (2007b) conducted fieldwork examining current design prac-
tices of applications for mobile devices (personal digital assistants or mobile
phones). The biggest challenge in this domain was developing prototypes Functional

prototypes are

needed for

ecologically valid

evaluations

robust enough for use “in the wild”. Similarly, Kjeldskov and Graham
(2003) reviewed many mobile HCI projects and concluded that many mo-
bile developers rarely used lightweight prototypes because they strongly
believed it was important to test their tools in a realistic and ecologically
valid setting. Developers found that lightweight prototypes were insufficient
to perform these types of evaluations.

Matthews (2005) conducted fieldwork of peripheral display developers. One
developer interviewed commented “I would say the hardest part about im-
plementing these displays is the mechanics of doing it...”. Participants Functional

prototypes are

needed for

longitudinal

studies

were interested in building and deploying functional prototypes as rapidly
as possible because the“real value in many of these systems is only apparent
longitudinally.” Developers interviewed also expressed a need for tools that
support building applications that combined distributed input and output
over multiple modalities (physical, graphical, or audio).

1.2.2 Lightweight Prototypes

The most prevalent low-fidelity prototyping technique for graphical user
interfaces is paper prototyping (Snyder, 2003) (see Figure 1.4). Paper pro-
totypes are valuable because of the speed and low cost with which they can
be constructed, evaluated, and thrown away or modified. Paper prototypes Unpolished

prototypes can be

valuable

can be tested using a Wizard of Oz technique (Dahlbäck et al., 1993), where
the designer plays the role of the computer to update the paper “display”
to respond to user input. Paper prototypes by themselves are low-fidelity
form (looks-like) prototypes; when combined with Wizard of Oz, they are
low-fidelity prototypes of the form and function of the proposed design.
The unfinished nature and rough form of these early prototypes can be
particularly valuable; end-users often see them as unfinished and provide
richer design suggestions (Landay, 1996). A more polished prototype, on
the other hand, implies effort and may discourage comments from testers
that imply drastic design changes.

This form of low-fidelity prototyping is well suited for the desktop paradigm
as the constrained 2D nature of paper is a good match to the experience
of using the standard 2D display of desktop environments. However, paper Paper prototypes

don’t capture

ubiquitous

computing user

experiences

prototyping does not translate well to the ubiquitous computing domain,
because it falls short of capturing the ubiquitous computing user experi-
ence convincingly (Liu and Khooshabeh, 2003). For example, Rudström
et al. (2003) used paper prototypes to evaluate a mobile social applica-
tion, but reported that users had difficulty reflecting upon how their use

8 1 Introduction

Figure 1.4: Paper prototypes provide a low-fidelity representation of a
graphical user interface to enable user testing early in the design process.
(Photo by Kris Kables, reprinted under the Creative Commons License.)

would change if they were mobile and the system were interactive. In a
different study, Mankoff and Schilit (1997) successfully applied paper pro-
totypes to test a ubicomp terminal application that supported activities tied
to a particular space such as requesting supplies, or making reservations.
The prototype required wizards to respond once per day during evaluation.
These contrasting examples serve to illustrate that paper prototypes can
be well-suited when “interactivity” is limited, but are generally ineffective
in ubiquitous computing – especially when real-time feedback is required.

Wizard of Oz prototyping techniques have proven successful for many ubiq-
uitous computing interaction scenarios early in the design process. For
example, many have successfully simulated sensor-based interactions using
Wizard of Oz techniques (Mynatt et al., 2001; Hudson et al., 2003; Con-
solvo et al., 2004). Other researchers have had success using Wizard of
Oz for location detection (Li et al., 2004; Benford et al., 2004), gesture
recognizers (Akers, 2006), speech interfaces (Klemmer et al., 2000), mul-
timodal interactions (Oviatt et al., 2000), augmented reality (MacIntyre
et al., 2004), and input techniques (Klemmer et al., 2004).

1.2.3 High-fidelity Prototypes

In the desktop domain, high-fidelity comprehensive prototypes that demon-
strate both form and function of the user interface can be implemented

1.3 Thesis Structure 9

fairly quickly using development tools such as Adobe Flash1 (Moggridge,
2006). In the ubicomp domain, support for functional prototyping is still
emerging. Generally speaking, the only practical high-fidelity prototyping
approach is to develop a working product that can be tested. Significant
time, resources, and expertise are required to create these high-fidelity ubiq-
uitous computing systems (Abowd, 1999).

1.3 Thesis Structure

This thesis is organized to emphasize contributions in each phase (design,
prototyping, and evaluation) of the iterative human-centered design pro-
cess.

Chapter 2 supports the design phase. It organizes the range of ubiquitous
mobile input techniques into a design space. This design space is an impor-
tant tool to help designers of ubiquitous computing applications identify
the relationships between input techniques, and select the most appropri-
ate input technique for their interaction scenarios. Included in this survey
are two camera-based input techniques that I have developed: “Sweep” and
“Point & Shoot”.

Chapter 3 supports the prototyping phase. The iStuff toolkit architecture
simplifies construction of functional prototypes for ubiquitous computing.
This architecture has been used to create two separate toolkits: iStuff to
simplify prototyping physical user interfaces for ubiquitous computing, and
iStuff Mobile to simplify prototyping new sensor-based interactions for mo-
bile phones in ubiquitous computing. The toolkit architecture is supported
by the Patch Panel infrastructure that uses intermediation to deal with
heterogeneity and allow for incremental integration.

Chapter 4 supports the evaluation phase. A new technique has been de-
veloped to evaluate prototype input devices. These devices may have a re-
duced sampling rate or resolution due to their technical immaturity, making
it difficult to predict their efficiency if time and money were spent on im-
proving the technology. The notion of device expressiveness is introduced
to structure the evaluation such that conclusions can be made about future
improvements of the input device.

Chapter 5 illustrates how an iterative design process can be used from
drawing board to deployment, by discussing the experiences developing
REXplorer. REXplorer is a permanently installed pervasive game; it
helps tourists explore the history of Regensburg, Germany. In the game,
historically-based spirits are stationed at points of interest throughout the
city. Players use a special “paranormal activity detector” (a device com-
posed of a mobile phone and a GPS receiver in a protective shell) to inter-
act with location-based and site-specific spirits. A novel mobile interaction

1http://www.adobe.com/products/flash/

10 1 Introduction

mechanism of “casting a spell” (making specific gestures by waving the
wand-like detector through the air) allows players to awaken and commu-
nicate with spirits to receive and resolve quests. The game is designed to
make learning history fun for tourists and influence their path through the
city.

1.4 Thesis Contributions

This thesis provides contributions that support each phase of the iterative
human-centered design process for ubiquitous computing.

1. Organizes mobile phone input techniques into a design space that:Design spaces

help reason about

design alternatives (a) Organizes mobile phone input techniques into families to help
reason about their relationships,

(b) Aids designers in considering alternative parallel designs and se-
lecting the most appropriate mobile phone input technique for a
particular interaction scenario,

(c) Allows future mobile phone input techniques to be predicted.

2. New interaction techniques for employing mobile phones as input de-
vices in ubiquitous computing application scenarios.Mobile phones are

ubiquitous input

devices (a) The Sweep and Point & Shoot input techniques use the camera
on the mobile phone as a sensor to enable interactions with large
public displays.

(b) The Elope project shows how to fluidly combine the storage and
processing of mobile phones with the input and output capabil-
ities of an interactive workspace.

(c) The REXplorer pervasive and mobile game for tourists em-
ploys mobile phones as a platform where users can interact with
spirits (historical characters) distributed throughout an urban
environment by casting spells (gestures created from waving the
mobile phone through the air).

3. Architecture support for physical user interface input and mobile
phone input techniques in ubiquitous computing application scenarios
that:iStuff architecture

radically simplifies

construction of

functional

prototypes

(a) Lowers the threshold for prototyping ubiquitous computing ap-
plications that employ physical or mobile phone input,

(b) Supports incremental integration, extensibility, and rapid con-
figuration of input using the Patch Panel infrastructure,

(c) Introduces several new programming interfaces for rapid pro-
totyping ubiquitous computing interactions including a light
scripting language and a visual programming environment.

1.4 Thesis Contributions 11

Figure 1.5: This thesis makes contributions across the field of Human–Computer Interaction
in the highlighted areas. (Hewett et al., 1992)

4. Redefines the expressiveness of input devices so that it can be cal-
culated using physical properties of the device instead of empirical
thresholds. Expressiveness

helps evaluate

input devices
(a) Demonstrates how to use expressiveness to structure the evalua-

tion of prototype pointing devices to be able to make conclusions
about how the device will function after further refinement.

5. Demonstrates how to apply player-centered iterative design to perva-
sive game development. Iterative design

from concept to

deployment for

ubicomp

(a) Illustrates a range of low-fidelity, and limited functionality pro-
totypes that can be used to evaluate parts of the game earlier in
the design process.

Many of these contributions relate directly to the field of Human–Computer
Interaction. As a preview, the corresponding areas are highlighted in the
ACM’s map of the field (see Figure 1.5).

13

Chapter 2

Supporting Design: The
Design Space of Ubiquitous
Mobile Phone Input
Techniques

“Basically, an input device is a transducer
from the physical properties of the world

into logical parameters of an application.”

—R. Baecker and W. Buxton

Today, mobile phones are used not just to keep in touch with others but also
to manage everyday tasks, to share files, and to create personal content.
Consequently, our mobile phones are always at hand. Technological trends
result in ever more features packed into this small, convenient form factor.
Smart phones can already see, hear, and sense their environment. But,
as Weiser (1991) pointed out: “Prototype tabs, pads and boards are just
the beginning of ubiquitous computing. The real power of the concept
comes not from any one of these devices; it emerges from the interaction
of all of them.” Therefore, this chapter demonstrates how modern mobile
phones (Weiser’s tabs) can interact with their environment – especially
large situated displays (Weiser’s boards).

The range of input and output (I/O) capabilities for modern mobile phones
is broad. Keypad, joystick, microphone, display, touch-screen, loudspeaker, Broad I/O

capabilities are an

opportunity

short range wireless connectivity over Bluetooth, WiFi, and infrared, long
range wireless connectivity via GSM/GPRS and UMTS all provide multiple
ways of interacting with our phones. These multiple I/O capabilities have
increased our ability to use mobile phones to control resources available
in our environment, such as public displays, vending machines, and home
appliances.

14 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Figure 2.1: A large public display used for advertisments and announcements in a subway stop
in Vienna, Austria.

The ubiquity of mobile phones gives them great potential to be the de-
fault physical interface for ubiquitous computing applications. This would
provide the foundation for new interaction paradigms, similar to the way
the mouse and keyboard on desktop systems enabled the WIMP (windows,Potential default

ubiquitous

interface

icons, menus, pointers) paradigm of the graphical user interface to emerge.
However, before this potential is realized, we must find mobile phone inter-
action techniques that are intuitive, efficient, and enjoyable for applications
in the ubiquitous computing domain.

2.1 Examining the Design Space of Input Devices

Recent research demonstrates a broad array of mobile phone input tech-
niques for ubiquitous computing application scenarios. To make sense ofDesign spaces

help reason about

design alternatives

the cumulative knowledge, we systematically organize the input techniques
to give insights into the design space. The design space is an important tool
for helping designers of ubiquitous computing applications to identify the
relationships between input techniques, and to select the most appropriate
input technique for their interaction scenarios. Design spaces can also be
used to identify gaps in the current body of knowledge and suggest new
designs (Zwicky, 1967).

Looking to Foley, Wallace and Chan’s classic paper (Foley et al., 1984), weThe new

ubiquitous design

space draws

inspiration from

seminal work

find a taxonomy of desktop input devices that are structured around the
graphics subtasks that they are capable of performing (Position, Orient,
Select, Path, Quantify, and Text Entry). These subtasks are the
elementary operators that are combined to perform higher level interface
tasks and will be elaborated upon in later sections. In this chapter, we
structure our analysis of smart phones as ubiquitous input devices using
this taxonomy. This analysis builds on classic design spaces (Buxton, 1983;
Card et al., 1991) and extends our own previous work (Ballagas et al., 2003,

2.1 Examining the Design Space of Input Devices 15

2006, 2008) on the design space of input techniques. In our analysis, we
blur the line between smart phones and personal digital assistants (PDAs)
because their feature sets continue to converge.

Although Foley et al.’s analysis was completed with the desktop comput- Graphics subtasks

also apply to

ubicomp

ing paradigm in mind, the subtasks in their analysis are still applicable
to ubiquitous computing today. They naturally apply to situated display
interactions; however, their applicability is not limited to graphical inter-
actions.

Foley et al.’s taxonomy uses the following input characteristics to further
classify input techniques:

Feedback

Continuous interactions describe a closed-loop feedback, where the user
continuously gets informed of the interaction progress as the subtask is
being performed. For example, when using a mouse, the current cursor Feedback can be

continuous or

discrete

position is continually fed back to the user. Discrete interactions describe
an open-loop feedback, where the user is only informed of the interaction
progress after the subtask is complete. For example, when selecting an
object on a touch panel, the progress of the selection is not displayed until
after the finger meets the surface to complete the selection of the desired
item.

Interaction Style

In direct interactions, input actions are physically coupled with the user-
perceivable entity being manipulated (such as an image on a display). Phys- Interaction can be

direct or indirectical coupling can be achieved when the feedback spatially coincides with the
input action, or can be achieved at a distance if the user is manipulating a
3D ray (such as with a laser pointer) that intersects directly with the entity
being manipulated. To the user, this appears as if there is no mediation,
translation, or adaptation between input and output.

In indirect interactions, user activity and feedback occur in disjoint spaces
(e.g., using a mouse to control an on-screen cursor). Scaling and abstrac-
tion between input actions and feedback are often necessary in indirect
interactions.

In the following sections, each of Foley et al.’s subtasks will be examined
in the context of mobile phone interactions.

16 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

2.1.1 The Position Subtask

During a positioning task, the user specifies a position in application co-
ordinates, often as part of a command to place an entity at a particular
position. Positioning techniques can either be continuous where the object
position is continually fed back to the user, or discrete where the position is
changed at the end of the positioning task. Positioning tasks can further beSpecify position in

application

coordinates

differentiated using the directness of the interaction. In direct interactions,
input actions are physically coupled with the object being positioned; in
indirect interactions, user activity and feedback occur in disjoint spaces.
We note that position could refer to screen position, or physical position in
the real world. For example, the height of motorized window blinds can be
adjusted using the position subtask.

The mobile phone has been used for positioning tasks in a variety of ways:

Continuous Indirect Interactions

1. Trackpad. A trackpad is a touch sensitive surface that is used as a rel-
ative pointing device, standard in modern laptops. Remote Comman-Example: Remote

Commander der (Myers et al., 1998) enables individuals to use the touch screen
on a PDA as a trackpad to control the relative position of a cursor
on a remote situated display. In this interaction, the user’s attention
is concentrated on the situated display and no application-level feed-
back is provided on the PDA, thus the functionality of the PDA is
essentially reduced to an input device.

2. Velocity-controlled joystick. A return-to-zero joystick controls the ve-
locity of an object (such as a cursor) that is continuously repositioned
on the display. Zero displacement of the joystick corresponds to noExample:Joystick

motion (zero velocity). Positioning with a velocity-controlled joystick
(a temporally- and spatially-constrained task) has been shown to be
inferior to positioning with a mouse (a spatially-constrained task)
for desktop pointing scenarios (Card et al., 1978). Silfverberg et al.
(2001) have done an in-depth study of isometric joysticks on handheld
devices to control the cursor on a situated public display. Many of
today’s mobile phones are shipping with simple joysticks with a push
button for menu navigation.

3. Accelerometers. Accelerometers are beginning to emerge in handheld
devices. For example, Samsung’s SCH-S310 mobile phone comes with
an integrated 3D accelerometer. Several researchers (Bartlett, 2000;
Harrison et al., 1998; Hinckley and Horvitz, 2001) have proposed in-
teractions that allow users to scroll (e.g., through an electronic photo
album) by tilting the handheld device. The scrolling is typically ac-Example:

Tilt-to-scroll tivated through a clutch mechanism, such as squeezing the sides of
the device (Harrison et al., 1998). The degree of tilting controls the
speed of scrolling, making this a temporally-constrained positioning
task similar to the velocity-controlled joystick. Although these tech-

2.1 Examining the Design Space of Input Devices 17

�

Figure 2.2: The Smart Laser Scanner: a 3D input technique for mobile
devices using laser tracking (Cassinelli et al., 2005).

niques were used to interact with an application directly on the de-
vice, they could clearly be extended to positioning tasks in ubiquitous
computing environments.

4. Camera tracking. The Smart Laser Scanner uses a laser combined
with a wide-angle photo detector (see Figure 2.2) to detect relative
finger motion in 3-dimensional space (Cassinelli et al., 2005). The Example: Smart

Laser Scannerlaser beam is steered with a two-axis micro-mirror. The tracking
principle is based on the backscatter of a laser beam. When the
backscatter is disrupted the motion is deduced from the angle of the
backscatter, and the laser is repositioned for the next measurement.
Like other tracking techniques, it is possible for the device to lose
track if the finger moves too fast, but input can easily be resumed by
repositioning the finger to the laser. The research prototype of the
tracker is fast enough to track the motion of a bouncing ping-pong
ball.

C-Blink (Miyaoku et al., 2004) rapidly changes the hue of a color
phone screen to allow an external camera system to track the phone’s Example:C-Blink

absolute motion for cursor control on a large public display (see Fig-
ure 2.3). The hue sequence encodes an ID to allow multiple users to
interact simulaneously and control independent cursors.

5. Motion detection. The Sweep (Ballagas et al., 2005) interaction tech-
nique the phone is waved in the air to control relative cursor motion on
a remote screen (see Figure 2.4). This is accomplished using motion Example: Sweep

is like an optical

mouse

detection – an image processing technique involving rapidly sampling
successive images from the phone’s camera and sequentially compar-
ing them to determine relative motion in the (x, y, θ) dimensions. No
visual tags are required. The screen on the phone can be ignored, and
the camera doesn’t even need to be pointed at the display. A clutch

18 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Figure 2.3: In the C-Blink system, the user waves the phone screen in front of a camera to
control cursor position (Miyaoku et al., 2004).

Figure 2.4: The Sweep technique uses camera input and optical flow image processing to
control a cursor (Ballagas et al., 2005).

mechanism, such as a button press, is used to activate the Sweep in-
teraction. The clutch can be used to reposition the arm, similar to
the way a mouse can be lifted to be repositioned without additional
cursor motion.

6. Location detection. Location of the phone can also be used as input,
where the user moves through physical space. Mogi (Licoppe and
Inada, 2006), for instance, is a phone-based persistent item collectionExample: Mogi

and trading game where the absolute geo-position of a subscriber cor-
relates to the position in the game world. Mogi combines GPS (global
positioning system) technology built into the phone with information
from different mobile infrastructure towers from the network service
provider to determine the player’s position.

2.1 Examining the Design Space of Input Devices 19

Figure 2.5: Using the phone to manipulate tagged widgets such as buttons, dials, and slid-
ers (Madhavapeddy et al., 2004).

Continuous Direct Interactions

7. Camera tracking. Madhavapeddy et al. (2004) present camera-based
interactions involving tagging interactive GUI elements such as sliders
and dials (see Figure 2.5). In manipulating the position and orienta- Example: tracked

GUI elementstion of the phone camera, the user can position a graphical slider, or
orient a graphical dial. Similarly, Direct Pointer (Jiang et al., 2006)
uses a handheld camera to track the standard cursor on the display
(see Figure 2.6). An analogy can be drawn to the classic light pen
with a tracking cross. As the light pen moves to a new position, the
cross follows the motions of the pen. Tracking may be lost if the pen
is moved too fast, but can be easily resumed by repositioning the pen
back to the tracking cross. Madhavapeddy et al.’s interactions rely
on the tagged GUI widget instead of a cross for tracking; in Direct
Pointer, the mouse cursor is the modern equivalent of the tracking
cross.

In the tracking examples above, the handheld device is responsible
for tracking. An alternative is to use a tracker in the environment to
track the output from a handheld device. For example, smart phones Example: laser

pointerhave been augmented with laser pointers, as in (Patel and Abowd,
2003), making them suitable for positioning tasks described by Olsen
and Nielsen (2001) that use a camera in the environment to track the
laser.

The mobile phone can also be passively tracked using a camera in the
environment such as in VisionWand (Cao and Balakrishnan, 2003). Example:

VisionWandThe user holds a passive handheld device that is augmented with
distinctive markings (such as colored balls) at each end. Using two
fixed cameras to perform stereo tracking, a 3D ray can be deduced
from the orientation of the markings in the stereo view, assuming the
distance of the markings on the device is known a priori. This allows
using a projection of the ray as a pointing device for a fixed remote
screen. The result is an interaction that is very similar to pointing
using a laser pointer, except the ray is not a visible beam of light.

20 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Figure 2.6: Direct Pointer uses a handheld camera to track a cursor
displayed on the remote screen without relying on visual tags. (Jiang et al.,
2006)

This technique has an advantage over the standard laser pointer in
that it provides an extra dimension of information: the distance to the
display. The disadvantage of this interaction is that it is vulnerable
to occlusion (e.g., by the users’ own body) bringing into question
the robustness of tracking in practical scenarios, although different
camera configurations (such as from overhead facing downward) may
solve these issues for certain interaction scenarios.

Discrete Indirect Interactions

8. Directional step keys. The location of an object is controlled using
up, down, left, and right step keys for 2D applications, plus in and out
for 3D. In the Blinkenlights project (Chaos Computer Club, 2002),Example:

Blinkenlights users played the arcade classic “Pong” using the side of a building as
a large public display. Each window equalled one pixel on the 18x8
pixel display (shown in Figure 2.7). Players connected to the display
by making a standard voice call to a phone number. Pressing the
number 5 on the phone keypad moved the paddle up, and the num-
ber 8 moved it down. The server controlling the “Pong” application
would decode the tones generated from the key activity during the
phone call and use them as application input. One of the notable
things about this interaction is that it used the lowest common de-
nominator of phone technologies. The communications channel was
the standard voice channel, and the input was the numeric keypad,
requiring no additional hardware or software besides what standard
phones provide.

2.1 Examining the Design Space of Input Devices 21

Figure 2.7: The view of the façade of a building used to play the clas-
sic game “Pong” with buttons on the mobile phone controlling the pad-
dle. (Chaos Computer Club, 2002)

ShootPoint

“Click”

Selected

Figure 2.8: Point & Shoot technique: (Left) The phone display is used to aim at a puzzle
piece on a large display. (Middle) Pressing the joystick indicates selection and a visual code grid
flashes on the large display to compute the target coordinates. (Right) The grid disappears and
the targeted piece highlights to indicate successful selection. (Ballagas et al., 2005)

Discrete Direct Interactions

9. Camera image. Using the Point & Shoot (Ballagas et al., 2005) in-
teraction technique, the user can specify an absolute position on a Example: Point &

Shootpublic display using a cross hair drawn over a live camera image on
the mobile phone. To make a selection, the user presses a button
while aiming at the desired target.1 The button press triggers a brief

1An alternative implementation of the Point & Shoot technique could use pen input
instead of the cross-hair image so that the user repositions the cursor by selecting the
desired position directly on the live camera image displayed on the phone screen.

22 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

overlay of a grid of 2D tags over the large display contents, as can
be seen in the middle of Figure 2.8. The grid allows the phone to
derive a perspective-independent coordinate system on the large dis-
play, which is enabled by the special properties of the Visual Code
tags (Rohs, 2005a). Only one visual tag is required to establish a
coordinate system, but a grid is used to increase the probability of
having one tag entirely in the camera view. The drawback of the
current implementation is that the tag grid is disruptive in multi-user
scenarios, but future implementations could, for example, display the
tags in infrared so that they are visible to the camera but not to other
users.

Point & Shoot is related to the classic light pen, where position is
discretely determined by displaying a raster scan when the user clicks
a button on the light pen. When the raster scan is temporally sensed
by the pen, the position of the pen is known because of a tight cou-
pling between the pen clock and display clock. In Point & Shoot,
a visual tag grid replaces the functionality of the raster scan except
its mechanics are spatial rather than temporal. The lack of temporal
dependencies makes Point & Shoot robust to different display tech-
nologies and the loose coupling between camera and display.

Table 2.1 summarizes the range of mobile position techniques at a glance.
The breadth of positioning techniques is relatively large, making it difficult
to choose which technique is most appropriate for a particular application
scenario. To help with this selection, it is important to examine different
figures of merit for each device.

Evaluating Positioning Techniques

There have been only a handful of thorough evaluations of the different
ubiquitous mobile input techniques (Ballagas et al., 2005; Myers et al.,
2002; Silfverberg et al., 2001; Wang et al., 2006) as the field is still relatively
new. These studies are difficult to compare directly since they each usedEvaluations are

rare, and difficult

to compare

different experimental parameters, and some evaluations were not done
in the context of ubiquitous computing interaction scenarios. Therefore,
rough estimates for a variety of ergonomic measures are used to create a
high-level comparison table for the positioning task presented in Table 2.2.
These rough estimates are derived using our knowledge of the interaction
techniques for mobile phones and the collective knowledge of their desktop
computing counterparts. The ergonomic parameters are mostly borrowed
from Foley et al.’s survey of interaction techniques.

The evaluation measures are grounded in psychological and physiological
foundations. Card et al. (1983) provide an integrated survey of the variousPsychology

provides a good

basis for

comparison

fundamental theories in a way that makes them more accessible and easier
to use during analysis. Central to this work is the human processor model,
which brings knowledge of the perceptual, cognitive, and motor processes of

2.1 Examining the Design Space of Input Devices 23

[Point & Shoot]

In Environment

Direct Pick

Indirect with
Locator Device

Foley Mobile Phone Interactions

Numerical Value/
Numerical
Coordinates/
Character
String Name

(See Text Input)

Camera + On-Screen
Cursor

Camera Tracking + Visual Tags
 [Madhavapeddy]

Indirect with
DIrectional
Commands/
Button Push

Directional Step Keys
[Blinkenlights]

(See Selection)

Location Detection GPS +

Laser Pointer + Camera
 [Olsen]

On Phone In Environment

Camera Tracking + On-Screen Cursor
[Direct Pointer]

Vision Markers + Camera
 [VisionWand]

Cell Network
Towers

Camera + Touch-Screen

[Mogi]

Light Pen Tracking

Camera
[Sweep]

Joystick (Velocity)
[Silfverberg]

Trackpad
[Remote Commander]

Cursor Control Keys
with Auto-Repeat

Accelerometer
[Harrison + Rock 'n' Scroll]

Steerable Laser +
Wide Angle Photodetector
[Cassinelli]

Display + Stationary Camera
[C-blink]

Tablet

Joystick (Velocity)

Cursor Control Keys
with Auto-Repeat

Direct with
Locator Device

Touch Panel

Up-Down-Left-Right
Arrow Keys

(See Selection)

(See Text Input)

+ Visual TagsSearch for Light Pen
(Raster Scan)

Trackball

Joystick (absolute)

Mouse

Table 2.1: Summary of position techniques using a smart phone as an input device.

24 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

a human together under a single model. Ideally, a user interface minimizes
the work required for each of these basic psychological processes.

The comparison table also incorporates various ergonomic measures de-
signed to capture the efficiency of users executing the subtask, the accuracy
they can achieve, and the pleasure the user derives from the process. The
individual measures used in our comparison table are as follows:

• Perceptual Load refers to the difficulty for the user to recognize with
their own senses the physical stimuli and feedback of the interaction.
For example, in the Point & Shoot interaction, users need to shift their
perceptual attention between a large display and the phone screen to
isolate a target in the phone camera view, leading to a comparatively
high perceptual load. Sweep has a low perceptual load because the
user can focus their attention on the remote screen, similar to using
a mouse.

• Cognitive Load refers to the difficulty for the users to organize and
retrieve information related to the interaction technique. For exam-
ple, the joystick has a relatively low cognitive load because of the
simplicity of the interaction sequence.

• Motor Load refers to the physical movement required to execute the
action after the appropriate action has been determined in the cog-
nitive process. For example, Mogi is classified as a high motor load
technique because the user needs to physically move at the city scale
to specify the necessary position.

• Motor Acquisition Time characterizes the amount of time for the pro-
cesses involved in the interaction technique (e.g., reaching for an ob-
ject, moving to a certain target area, rotating to a certain orientation,
etc.). For example, Point & Shoot has a high motor acquisition time
because of the aiming required. Remote Commander has a relatively
low motor acquisition time, similar to the trackpad on a laptop.

• Visual Acquisition Time characterizes the amount of time it takes to
perceive the physical stimuli of the interaction technique. For exam-
ple, Point & Shoot has a high visual acquisition time because the
target needs to be visually acquired on two separate displays. The
laser pointer has a low visual acquisition time because the selected
item and the pointer visually coincide on the same display surface.

• Ease of Learning characterizes the level of skill that is required to use
the device. The Sweep technique is relatively difficult to learn because
one must understand the clutch concept to interact fluidly with the
system. The joystick, on the other hand, is easy to learn because of
the simplicity of the interaction steps.

• Fatigue characterizes how tiring the interaction technique is to per-
form. Rock ’n’ Scroll is a relatively low fatigue interaction since tilting
the arm is not a very muscle intensive activity. Sweep, on the other

2.1 Examining the Design Space of Input Devices 25

hand, requires larger arm motions that could tire the user after ex-
tended use.

• Error Proneness characterizes the susceptibility for errors of the input
technique, the degree to which the interaction technique by its design
allows/avoids errors, e.g., if possible movement trajectories match the
degrees of freedom of the required input then certain errors can be
avoided. Laser pointers, for example, are susceptible to natural jitters
in the arm. Remote Commander, on the other hand, allows for more
fine-grained control since the pen can utilize the friction against the
touch sensitive surface to stabilize the interaction.

• Sensitivity to Distance. Users in ubiquitous computing scenarios typ-
ically have freedom of motion, making the amount of separation be-
tween the user and the target in the environment (such as a large
display or other device) dynamic and unpredictable. Thus, the range
of distances the interaction will support is an important design consid-
eration. Interactions that are based on aiming, such as laser pointers,
become more difficult to perform when further away, where targets are
perspectively smaller. Other techniques, such as the Sweep technique
are not significantly affected by distance of interaction.

2.1.2 The Orient Subtask

The Orient subtask involves specifying a heading or direction instead of a
position. Like Position, Orient is also not limited to graphics subtasks Specify a heading

or directionas it can relate to physical orientation in the real world, such as a security
camera, a spot light, or a steerable projector. Some of Foley et al.’s original
graphics interactions carry over directly to ubiquitous computing including
indirect continuous orientation with velocity-controlled joystick and discrete
orientation with angle type-in. The remaining techniques observed in our
survey include:

Continuous Indirect Interactions

1. Locator device. The user can specify the angle of orientation by using
a continuous quantifier or one axis of a positioning device. The Sweep Example: Sweep

technique supports detection of rotation around the Z-axis (perpen-
dicular to the display) allowing interactions like rotating a puzzle
piece in a jigsaw puzzle application, where the phone is used like a
ratchet to adjust orientation. The image processing used by Sweep
also detects rotation around the X and Y-axis. However, for bet-
ter performance as a positioning device, rotation around the Y-axis
is mapped to translation along the X-axis and rotation around the
X-axis is mapped to translation along the Y-axis.

2. Camera tracking. VisionWand (Cao and Balakrishnan, 2003) uses a
set of cameras in the environment to track the absolute orientation of

26 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Ergonomic Measures

Project
(Author)

Inter-
action
Type Cognitive

Load
Perceptual

Load
Motor
Load

Visual
Acqui-
sition

Motor
Acqui-
sition

Ease of
Learning

Fatigue
Error

Prone-
ness

Distance
Sensi-
tivity

Remote Commander
(Myers et al.) � � . �

Isometric Joystick
(Silfverberg et al.) � � . . � . . � .

Tilt to Scroll
(Harrison et al.) � � � � � � � � .

Smart Laser Scanner
(Cassinelli et al.) � � � � � � � � .

C-blink
(Miyaoku et al.) � � � � � � � � �

Sweep
(Ballagas et al.) � � � � � � � � .

Mogi
(Licoppe et al.)

C
o

n
ti

n
u

o
u

s
In

d
ir

e
c

t

� . � . � . � � .

Visual Tag Widgets
(Madhavapeddy et al.)

. � � � � � � � �
Direct Pointer
(Jiang et al.)

. � � � � . � � �
Laser Pointer Interaction
(Olsen et al.)

. � � � � . � � �
VisionWand
(Cao et al.)

C
o

n
ti

n
u

o
u

s
D

ir
e

c
t

� � � � � . � � �

Blinkenlights
(Chaos Computer Club)

D
is

c
re

te
In

d
ir

e
c

t

. � . � � � . � .

Point & Shoot
(Ballagas et al.)

D
is

c
re

te
D

ir
e

c
t

� � � � � � � � �

Table 2.2: Rough estimates of ergonomic measures to compare mobile phone-based position
techniques (small circle = low, medium circle = medium, large circle = high).

a marked handheld device. The technique requires that at least twoExample:

VisionWand markers are visible in at least two camera viewpoints to determine
the orientation in 3-dimensional space.

Continuous Direct Interactions

3. Camera tracking. Madhavapeddy’s tagged GUI dials (Madhavapeddy
et al., 2004) can be oriented using the phone camera to track rotationExample: tagged

GUI dials movement. Similar to the Sweep technique, the phone is used like a
rachet to adjust orientation.

4. Compass. Electronic compasses such as the Honeywell HMC1052
magnetometer can be used to detect the physical orientation of theExample:

compass phone with a +/-3 ◦ error, enabling a continuous and direct Orient
task. These or similar sensors could be easily incorporated into future
mobile phone applications.

2.1 Examining the Design Space of Input Devices 27

In Environment

Direct Pick

Foley Mobile Phone Interactions

Numerical Value/
Numerical
Coordinates/
with Character
String Name

(See Text Input)

Camera
[Point & Shoot]

Camera Tag Tracking + Visual Tags
 [Madhavapeddy]

On Phone In Environment

Vision Markers + Camera
 [VisionWand]

Camera
[Sweep]

Joystick (Velocity)

Indirect with
Cursor Match/
Locator Device

(See Text Input)

Joystick (absolute)

Joystick (Velocity)

Table 2.3: Summary of orient techniques using a smart phone as an input device.

Ergonomic Measures

Project
(Author)

Inter-
action
Type Cognitive

Load
Perceptual

Load
Motor
Load

Visual
Acqui-
sition

Motor
Acqui-
sition

Ease of
Learning

Fatigue
Error

Prone-
ness

Distance
Sensi-
tivity

Sweep
(Ballagas et al.) � � � � � � � � .

Isometric
Joystick
(Silfverberg et al.)

C
o

n
ti

n
u

o
u

s
In

d
ir

e
c

t

. � . . � . . � .

Visual Tag
Widgets
(Madhavapeddy
et al.)

. � � � � � � � �

VisionWand
(Cao et al.)

C
o

n
ti

n
u

o
u

s
D

ir
e

c
t

� � � � � . � � �

Point & Shoot
(Ballagas et al.)

D
is

c
re

te
D

ir
e

c
t

� � � � � � � � �

Table 2.4: Rough estimates of ergonomic measures to compare mobile phone-based orient
techniques (small circle = low, medium circle = medium, large circle = high).

28 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Discrete Direct Interactions

5. Camera image. The Point & Shoot technique supports discrete orien-
tation along the Z-axis. As the user aims at a target, they rotate theExample: Point &

Shoot phone to specify the desired Z-orientation using the aiming cross-hair
as an axis of rotation.

The range of Orient techniques are summarized in Table 2.3. To help
guide designers in selecting the most appropriate Orient technique, rough
estimates for performance measures are given in Table 2.4.

2.1.3 The Select Subtask

In many interaction scenarios, the user must choose from a set of alterna-
tives, such as a menu of icons. The Select subtask addresses this style of
interaction. The Select subtask is commonly accomplished by arrangingChoose from a set

of alternatives the items spatially in a graphical user interface, allowing the user to com-
plete the selection using a cursor controlled through the Position subtask.
Instead of icons, the set of alternatives might be a list of commands. How-
ever, selection is not limited to graphical interactions as a user may select
a physical object to operate upon, such as selecting a lamp to adjust its
setting. Many selection techniques carry over directly from Foley et al.’s
earlier analysis such as character string name type-in common for command
prompts, or button push–soft keys where buttons are located on the edge
of the display area with their labels displayed on screen. The remaining
selection techniques are as follows:

Continuous Indirect Interactions

1. Gesture recognition. The user makes a sequence of movements with a
continuous positioning device such as the joystick, camera, trackpad,
or accelerometers. For example, VisionWand (Cao and Balakrishnan,Example:

VisionWand 2003) demonstrates a rich gesture vocabulary using stereovision to
track a passive wand. For example, a tapping gesture is used to allow
selection of the current cursor position specified by the orientation
of the wand. This gesture interaction is indirect, but with other
technologies gestures can also occur directly on the feedback surface,
such as circling a group of objects on a touch screen.

Continuous Direct Interactions

2. Tagged objects. RFIG Lamps (Raskar et al., 2004) allows a hand-
held projector to be used to select objects with photosensitive RFID
tags in the physical world (See Figure 2.9). The handheld projectorExample: RFIG

emits a gray-code pattern that allows the tags to determine their rel-
ative position in the projected view. Waving the handheld projector

2.1 Examining the Design Space of Input Devices 29

Figure 2.9: A warehouse scenario employing RFIG. The users can high-
light and select objects of interest combining a handheld projector and
embedded light sensitive RFID tags (Raskar et al., 2004).

around, you can navigate a cursor in the center of the projected view
to select individual physical objects.

Discrete Indirect Interactions

3. Voice recognition. The user speaks the name of the selected com- Example:

Personal Universal

Controller

mand, and a speech recognizer determines which command was spo-
ken. The Personal Universal Controller (Nichols and Myers, 2006)
supports automatic generation of speech interfaces (as well as graph-
ical interfaces) to issue commands to objects in the real world.

Discrete Direct Interactions

4. Tagged objects. Tagged objects can be used to present information on
a wireless mobile computer equipped with an electronic tag reader,
as demonstrated by the early E-tag project (Want et al., 1999). For Example: RFID

and visual tagsexample, selecting a book by scanning its embedded RFID tag would
activate a virtual representation of the object on the screen, such
as a web-reference to the book allowing it to be purchased. Similar
interactions have also been proposed for visual tags in the environ-
ment (Rohs, 2005a) and tagged GUI elements (Madhavapeddy et al.,
2004; Toye et al., 2007; Rohs, 2005b) where a camera is used to ac-
quire an image to decode the selected tag. Patel and Abowd (2003)
present a physical world selection method for mobile phones in which
a modulated laser pointer signal triggers a photosensitive tag placed
in the environment, allowing users to bring up a menu to control the
object on their handheld device.

30 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Table 2.5: Summary of select techniques using a smart phone as an input device (Continued
in Table 2.6).

In Environment

Direct Pick

Foley Mobile Phone Interaction

On Phone In Environment

Camera + On-Screen Cursor
[Point & Shoot]

Camera +

Laser Pointer + Light Sensor
 (e.g. camera)

Visual Tags

Camera Tracking + On-Screen Cursor

Vision Markers + Camera + Tapping
Gesture Recognition

Handheld Projector +
RFID Reader

Light Sensitive
RFID Tags

RFID Reader + RFID Tags

 Camera + Pen Input

[Madhavapeddy]

[Olsen, Semantic Snarfing, Patel]

[VisionWand]

[RFIG]

[Want]

[Direct Pointer]

Touch Panel

Indirect with
Cursor Match/
Locator Device

Steerable Laser +
Wide Angle Photodetector +
Button Push
[Cassinelli]

Camera
[Sweep]

Joystick (Velocity)
[Silfverberg]

Trackpad
[Remote Commander]

Cursor Control Keys

Accelerometer
[Harrison, Rock 'n' Scroll]

Display + Stationary Camera

[C-blink]

Joystick (absolute)

Tablet

Cursor Control Keys

Light Pen Tracking

Mouse

Joystick (Velocity)

Trackball

2.1 Examining the Design Space of Input Devices 31

Table 2.6: Summary of select techniques using a smart phone as an input device (Continued
from Table 2.5)

Numerical Value/
Numerical
Coordinates/
with Character
String Name

Indirect with
Directional
Commands/
Button Push/
Time Scan

Location Detection

Programmed Function
Keyboard

Soft Keys

Programmed Function
Keyboard

Soft Keys

Gesture
Recognition/
Sketch
Recognition

Camera +
Button Push Clutch
[TinyMotion]

Display +

Accelerometer
[Patel]

Pen Input

Steerable Laser +
Wide Angle Photodetector +
Button Push for Clutch
[Cassinelli]

Vision Markers +

Camera

Camera

Laser Pointer + Light Sensor
(e.g. camera)

[Olsen, Semantic Snarfing, Patel]

[VisionWand]

Voice Input

GPS + Cell Networks
Towers

[Mogi]

Microphone + Voice Recognizer

[PUC]

Light Pen

Tablet + Stylus

Alphanumeric Keyboard

(See Text Input)(See Text Input)

In Environment

Foley Mobile Phone Interaction

On Phone In Environment

32 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Ergonomic Measures

Project
(Author)

Inter-
action
Type Cognitive

Load
Perceptual

Load
Motor
Load

Visual
Acqui-
sition

Motor
Acqui-
sition

Ease of
Learning

Fatigue
Error

Prone-
ness

Distance
Sensi-
tivity

VisionWand
(Cao et al.)

C
o

n
ti

n
u

o
u

s
In

d
ir

e
c

t

� � � � � . � � �

RFIG Lamps
(Raskar et al.)

C
o

n
ti

n
u

o
u

s
D

ir
e

c
t

. � � � � . � � �

Personal
Unversal
Controller
(Nichols et al.) D

is
c

re
te

In
d

ir
e

c
t

� � . . . � . � .

E-tag
(Want et al.)

. . � � � � � . �

Visual tags
(Rohs et al.)

. . � � � � � . �

Photosensitive
tags + lasers
(Patel et al.)

. � � � � � � � �

Semantic
Snarfing
(Myers et al.)

D
is

c
re

te
D

ir
e

c
t

� � � � � � � � �

Table 2.7: Rough estimates of ergonomic measures to compare mobile phone-based select
techniques (small circle = low, medium circle = medium, large circle = high).

5. Laser pointer. Myers et al. (2002) proposed a multi-layer selection
technique called“semantic snarfing”that combines multiple devices in
consecutive actions. First, a laser pointer integrated with a handheldExample:

Semantic Snarfing computer is used to make a coarse-grained selection of a screen region
on a display in the environment. A camera, also in the environment,
detects laser activity on the display. The system then transmits the
details of the selected screen region to the handheld device, which
composes a GUI on the handheld screen to make the fine-grained
selection with a stylus.

The range of Select techniques are summarized in Tables 2.5, and 2.6. To
help guide designers in selecting the most appropriate Select technique,
rough estimates for pefromance measures are given in Table 2.7.

2.1 Examining the Design Space of Input Devices 33

2.1.4 The Path Subtask

The Path subtask involves specifying a series of positions and orientations
over time. The path subtask has different requirements than Position and Specify a series of

positions over

time

Orient because the movement is governed by the speed-accuracy trade-
off (Schmidt et al., 1979). Despite this, Path adheres to the same taxonomy
as the corresponding Position and Orient techniques, because a Path
task can be specified using the more primitive subtasks.

2.1.5 The Quantify Subtask

The Quantify task involves specifying a value or number within a range
of numbers. This technique is used to specify numeric parameters such Specify a value

as time or speaker volume. In ubiquitous applications, Quantify tasks
using phone input are typically accomplished through the GUI using 1D
Position or Orient subtasks.

2.1.6 The Text Entry Subtask

Text entry for mobile phones is a well-studied area (MacKenzie and
Soukoreff, 2002) as it is central to text-based mobile communications like
SMS (short messaging service) and personal information management func-
tionality. Text entry also has many applications for ubiquitous applications, Text entry is

central to mobile

communications

e.g., the Digital Graffiti (Carter et al., 2004) project seeks to annotate pub-
lic content on large public displays. This section is not intended to be a
comprehensive survey of mobile text entry techniques, but we have selected
a few examples to illustrate the design space. All of the techniques listed
were originally designed for text input directly on the mobile phone, but
could clearly be used for text entry for a ubiquitous computing application.

Keyboard

Although some mobile phones and handheld devices feature a full
QWERTY keyboard (albeit much smaller than their desktop counterparts),
miniaturization trends make this type of keyboard impractical for the ma-
jority of mobile phone form factors. The most well known text entry tech-
niques for mobile phones use a standard numeric keypad. For text entry
from a 26 character alphabet using this keyboard, a mapping with more
than one character per button is required. Following the classification by Disambiguation

can be

consecutive or

concurrent

Wigdor and Balakrishnan (2004), there are two fundamental types of dis-
ambiguation: consecutive, where the user first selects a letter grouping and
then an individual letter, or concurrent, where the user simultaneously se-
lects the letter grouping and the individual letter.

34 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Consecutive approaches are the most common today. One approach to
disambiguate text entry is MultiTap, which requires users to make multiple
presses to select a single letter from the characters associated with a certain
key. Another solution is to use a two-key disambiguation where the firstConsecutive

approaches are

most common

today

key selects the letter group, and the second key specifies the letter in the
group. Dictionary-based techniques predict the word being typed based on
the different possibilities for combining the groups of characters assigned to
each key. When multiple words match the key sequence, the user selects the
intended word from a list (typically ordered by probability or frequency of
use). Examples of dictionary-based text entry include T92 with a standard
numeric keypad, or more recently, SureType3 with an extended numeric
keypad commercialized with the Blackberry Pearl (Kao et al., 2007).

Concurrent approaches, however, demonstrate a lot of promise. For ex-
ample, TiltText (Wigdor and Balakrishnan, 2003) combines the standardExample: TiltText

12-key keypad with an accelerometer. To disambiguate which character is
intended when a key is pressed, TiltText uses the tilt orientation of the
handset. A keypress with the phone tilted to the left enters the first char-
acter on the key, forward tilt enters the second character, right tilt enters
the third character, tilting towards the user enters the fourth character (if
one exists for the key), and no tilt enters the numeric character.

ChordTap (Wigdor and Balakrishnan, 2004) combines the standard nu-
meric keyboard with additional “chording” buttons on the back of the
phone. A user selects an individual letter by selecting the key group onExample:ChordTap

the numeric keyboard while pressing the appropriate “chord” key on the
back of the phone.

If miniaturization trends continue, TiltType (Partridge et al., 2002) repre-
sents an interesting point in the design space that combines chord buttonExample:TiltType

presses to specify a letter grouping and tilting to allow the user to specify
a particular character within that grouping. Using only 4 buttons and a
2-axis accelerometer, the technique supports an alphabet of 55 characters
in a watch-sized form factor. Expert users can memorize the character
positions, allowing the letter grouping and individual character within the
grouping to be specified concurrently.

Speech Recognition

Text entry by speech recognition is not yet technically viable on mobile
platforms, but we list it here for completeness. Technology is making rapid
advances in the realm of speech processing. For example, system on a chip
designs for speech processing (Ravindran et al., 2005) have the potential
to bring speech input to interactive text entry on mobile phones. Karpov
et al. (2006) have developed a short message (SMS) dictation system for
Symbian phones with a vocabulary of 23000 words. The language model is

2http://www.tegic.com
3http://www.blackberry.com/products/suretype/

2.2 Spatial Layout of the Design Space 35

adapted to words typically used in SMS messages.

Speech recognition could also be achieved in a compound architecture where
the speech is recognized through an external computer (i.e., connected
through a voice call) and sent back to the mobile phone.

Stroked Character Recognition

Pen-based techniques, such as Graffiti, are very common in the PDA form
factor and are also available on a small portion of the handsets on today’s
market. However, any of the continuous positioning tasks discussed earlier
are capable of generating stroke information necessary for stroked-character
recognition. For example, TinyMotion (Wang et al., 2006) demonstrates Example:

TinyMotionboth English and Chinese stroked character recognition using camera-based
motion estimation (similar to the Sweep technique).

Menu Selection

On-screen keyboards are common for touch sensitive displays, where the
letters of the alphabet are displayed as a menu of buttons, commonly in
a spatial layout similar to the QWERTY keyboard. If the screen size of

the mobile phone is not large enough to depict a keyboard layout, items in
the environment could be used to display the menu, where users select the
characters using the selection subtask previously discussed.

The range of Text Entry techniques are summarized in Table 2.8. To help
guide designers in selecting the most appropriate Text Entry technique,
rough estimates for pefromance measures are given in Table 2.9.

2.2 Spatial Layout of the Design Space

Our interaction taxonomy is summarized in Tables 2.1, 2.3, 2.5, 2.6, and 2.8. The subtask

summary tables

lack a notion of

completeness

Card et al. (1991) point out that this ad hoc format lacks a notion of
completeness. Card then builds on the work of Buxton (1983) to create a
systematic spatial layout of the design space of input devices that captures
the physical properties of manual devices very well. However, it does not
capture many aspects that are relevant to ubicomp interactions such as
modality or feedback (Ballagas et al., 2003).

Using Foley et al.’s taxonomy, we propose a 5-part spatial layout, shown
in Figure 2.10, for mobile phone interaction tasks discussed in our sur- New 5-dimension

spatial layoutvey including supported subtasks (Position, Orient, and selection),
dimensionality, relative vs. absolute, interaction style (direct vs. indirect),
and feedback from the environment (continuous vs. discrete). Feedback

36 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

[Multitap, T9]

In Environment

Keyboard

Voice/Speech
Recognition

Foley Mobile Phone Interactions

Alphanumeric

Direct Pick
from Menu
with Locator
Device

Indirect Pick
from Menu
with Locator
Device

Alphanumeric +
Accelerometer
[TiltText]

On Phone In Environment

Alphanumeric +
Chord
[ChordTap]

Chord +
Accelerometer
[TiltType]

Speech Recognizer

(See Selection)

Microphone + Speech Recognizer

Touch Panel

Light Pen

(See Positioning)

Stroked Character
Recognition

(See Continuous Positioning)

Voice Recognizer

Chord

Tablet with Stylus

(See Positioning)

(See Selection)

Alphanumeric

Table 2.8: Summary of text entry techniques using a smart phone as an input device.

and interaction style have been previously defined in the introduction to
Foley et al.’s taxonomy. We describe the remaining dimensions in more
detail in the remainder of this section.

2.2.1 Supported Subtasks

When choosing the most appropriate input device for a particular interac-Uses Foley et al.’s

subtasks tion scenario, the subtasks an interaction supports are the primary consid-
eration. By including the subtask directly in the design space, it becomes
more useful as a design tool.

2.2 Spatial Layout of the Design Space 37

Ergonomic Measures

Project
(Author) Cognitive

Load
Perceptual

Load
Motor
Load

Visual
Acqui-
sition

Motor
Acqui-
sition

Ease of
Learning

Fatigue
Error

Prone-
ness

Distance
Sensi-
tivity

QWERTY . � . �

Multitap . � . . � . . � .

T9 . � . � � . . � .

SureType . � . � �

TiltText
(Wigdor et al.) � � � � � � � � .

ChordTap
(Wigdor et al.) � � � � � � � � .

TiltType
(Partridge et al.) � � � � � � � � .

Speech
Recognition
(Karpov et al.)

� � .

Stroked
Character
Recognition -
Pen

. � � . � . . � .

Stroked
Character
Recognition –
TinyMotion
(Wang et al.)

� � � . � . � � �

Table 2.9: Rough estimates of ergonomic measures to compare mobile phone-based text
entry techniques (small circle = low, medium circle = medium, large circle = high).

2.2.2 Dimensionality

Dimensionality refers to the number of dimensions the interaction supports.
Dimensionality can indicate spatial dimensions (X, Y, Z) or rotational di-
mensions (rX, rY, rZ). This distinction is visible in our design space by Number of

dimensions the

interaction

supports

observing the subtask of the dimension. Following Card et al. (1991), if
a particular interaction uses a combination of dimensions across different
points in the design space, the relationship is indicated using a merge com-
position operator (a solid line). In contrast to Card’s notation, our merge
composition operators are connecting subtasks, not spatial sensor dimen-
sions.

38 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

2.2.3 Relative vs. Absolute

Relative input is specified with respect to interaction history: the input
technique provides information about the amount of change from the previ-
ous state. Relative input can be specified regardless of the current physical
properties, such as position and orientation. For example, standard desk-
top mouse input is specified through motion across the desktop regardless
of the physical position of the mouse on the desktop.

Absolute input is specified with respect to current physical properties, and
can be specified indepedently of any interaction history. For example, stylus
input can be used to provide absolute positional information on a screen
space.

2.2.4 Other Relevant Attributes of Interaction Devices

It should be noted that this set of dimensions is not comprehensive, and
other dimensions such as resolution, direction (input vs. output), and
modality may provide further insights into the design space. However, theOther dimensions

may be

appropriate for

further insights

design space depicted in Figure 2.10 does provide an interesting overview of
the interaction techniques covered in this work. Using this graphical layout,
we are able to pinpoint gaps in the breadth of the interaction techniques
surveyed, and can anticipate opportunities for future work. For example,
our space shows no interaction that supports 3-dimensional relative direct
orientation. An alternative layout might include direction and modality,
which would demonstrate the sparse usage of auditory and haptic feedback
in these techniques.

Designing for Serendipity

One key design consideration is the ease and speed of setting up a data
connection between the phone and the environment or the device it is con-
trolling. Olsen et al. (2001) refer to the ad hoc assembly of input andEstablishment of

data connection

must be

considered

output resources as opportunistic assemblies. In some of the interactions
surveyed, the data connection is inherent in the physical properties of the
device. For example, VisionWand (Cao and Balakrishnan, 2003) is a com-
pletely passive system and requires no additional action on the user’s part
to start the interaction.

The C-Blink interaction is classified as highly serendipitous as the users
merely launch an application on their mobile phone to interact with a dis-
play; no network connection or handshaking is required. The RFIG Lamps
project also falls into this category because RFID tags are so simple in
terms of communications protocol that no connection needs to be estab-
lished before data can be transferred.

2.2 Spatial Layout of the Design Space 39

21. (P) GPS + (E) Network Localization
 - Mogi

21

Figure 2.10: Classification of different mobile phone interactions that have been implemented
in the projects surveyed. Inspection of the diagram reveals opportunities for future work – for
instance, developing interaction techniques that support 3D relative direct orientation. In the
listing of techniques, (P) indicates capabilities of the phone, and (E) indicates capabilities of the
environment.

For projects that use short range wireless communications models such
as Bluetooth, visual or RFID tags can be used to encode the connection
information for the environment, creating a very low threshold of use.

Social Acceptance

Smart phones today are social devices. While smart phone ubiquity seems
inevitable, social acceptance will influence the success of these new inter-
actions. Remind yourself, for example, of the first time you came across a Some interactions

may be awkward;

others may raise

social status

person using a wireless headset to communicate via their mobile phone. For
many people, this communication technique is still awkward and strange,
particularly in public places. Smart phone interaction will require users to
perform particular actions and behaviors which might feel unintuitive and
awkward to them. Furthermore they will perform these actions in the pres-
ence of passive or active others, both familiars and strangers. On one hand,
outside observers might find these interactions disturbing or embarrassing,
but on the other hand these kinds of interaction have the potential to raise

40 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

your social status, similar to the way phones themselves are status symbols
for part of our society.

2.3 Design Spaces in the Design Process

Design spaces are particularly useful design tools as a part of a human-
centered iterative design process (Nielsen, 1993). One of the pitfalls of
iterative human-centered design is that if you pick a poor starting point,
you may reach a peak in the usability of a particular design without reaching
your desired usability goals. In this case, it may be necessary to throw the
design away and start over. False starts are relatively painless early in the
design process, but can be extremely expensive if determined late in the
design process. In order to minimize the risk of false starts, a parallel designParallel design

helps prevent false

starts

strategy (Nielsen and Faber, 1996) can be used, where multiple designs
can be explored independently early in the design process. As the designs
mature, the best design becomes clear, or the strengths of the top designs
can be merged to a unified design. Using the design space, designers can
more easily reason about alternative input techniques in a parallel design
process.

As a concrete example, REXplorer (Ballagas et al., 2007b) is a pervasive
spell-casting game that allows tourists to explore the history of the medieval
buildings in Regensburg, Germany. The game premise is that historicalExample:

spell-casting

interaction

spirits are trapped inside of medieval buildings. Players need to interact
with the spirits to learn their stories and perform quests on their behalf to
earn points in the game. The game design called for spell-casting as the
primary interaction metaphor; in order to awaken a spirit, one of four spells
must be cast.

Choosing one spell out of four can be characterized as a Select subtask.
The design space was used to identify a set of design alternatives that we
initially considered:

1. Four dedicated spell buttons,Alternatives for

spell-casting input
2. Selecting one of four spells from on-screen menu,

3. Recognition of spell gestures. We noted that gestures are actually
specified using the path subtask. Then we came up with gesture
input alternatives including:

(a) Pen trace across a touch screen,

(b) Path using camera-based motion detection to allow the phone
to be used like a magic wand.

After preliminary analysis with our target group (students aged 15-25),
we decided to go with the camera-based motion detection solution (seeEngagement over

efficiency

2.4 Chapter Summary 41

Figure 2.11: REXplorer uses camera-based motion estimation to allow players to cast spells
using the path subtask (Ballagas et al., 2007b).

Figure 2.11). Waving the phone through the air is not the most efficient
technique, but is the most similar to the spell-casting metaphor. Also,
this physical style of gesture was more likely to create an engaging experi-
ence (Hummels, 2000).

Later in the design process, after a working gesture recognition system was
created, we did a full playability test. Most of the test players found the Mixed response

was resolved

through unified

design

gestures to be an important element of gameplay. They found it height-
ened the sense of magic and mysteriousness. However, we also discovered
during the playability tests that a few of our players (especially our older
participants) found the gestures awkward. As a compromise, we created
a unified design where an alternative gesture selection mechanism through
an on-screen menu can be used anytime an invalid gesture is performed,
effectively allowing people to avoid gestures altogether if desired. This fi-
nal design encouraged the use of gestures for spell selection to promote
engagement, but allowed an alternative selection mechanism to those who
preferred to avoid gestures.

2.4 Chapter Summary

Our structured tour illustrates the state of the art in using smart phones
to interact with and control our environments. The taxonomy organizes
the range of techniques into families that help make functional relations
between the mobile phone techniques and their desktop counterparts. The
design space addresses the lack of a sense of completeness in the taxonomy,
and structures the range of interactions in a way that helps visually identify

42 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

gaps and predict future interaction techniques. The design space can be
used as a part of a human-centered iterative design process to help generate
parallel or alternative designs. These methods of thought are intended to
inspire new applications that use the mobile phone for interaction with the
environment, as well as inform the design of future smart phone interaction
techniques.

This also concludes the Chapter 2 of this work, in which we support the
design phase of the human-centered iterative design process. The next
chapter will discuss how to rapidly create functional prototypes of user
interfaces and interaction techniques for ubiquitous computing, including
those discussed in this chapter.

43

Chapter 3

Supporting Prototyping:
Toolkit Support for
Ubiquitous Computing
Applications

“Our Age of Anxiety is, in great part, the result of trying to
do today’s jobs with yesterday’s tools.”

—Marshall McLuhan

After a design is conceptualized, it needs to be translated into a prototype
that captures the interactive experience. Currently, only experts can effec-
tively prototype, and deploy ubiquitous computing applications. Much of New tools are

needed for

prototyping in

ubicomp

the effort in ubiquitous computing application development is still focused
on low-level systems aspects, making it a long road before a system is func-
tional enough for end-user testing. Once user testing can be peformed, it is
often too expensive to make any significant changes. Toolkit support is re-
quired to simplify the design process, but recently, fieldwork on prototyping
ubiquitous computing systems led Carter et al. (2007a) to conclude: “het-
erogeneity of ubicomp’s input technologies may require different support
architectures than GUI toolkits provide.”

This chapter introduces the iStuff toolkit architecture to radically simplify
design, prototyping, evaluation and deployment of ubiquitous computing
systems. The architecture consists of several layers of abstraction to pro- The iStuff

architecture

provides a high

ceiling and low

threshold of use

mote flexibility and provide a high ceiling for prototyping activities: it
places few limits on prototyping behavior. At the same time, systems can
be built and configured using rapid prototyping environments, such as Ap-
ple’s Quartz Composer visual programming environment, to provide a low
threshold for prototyping activities: the toolkit is not difficult to learn.

44 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

3.1 Requirements

Ubiquitous computing applications have different challenges and require-
ments than traditional desktop applications.

M5 The first, and possibly biggest, challenge is architectural: Software
architectures need to move away from the scenario of a single user
interacting with a single computer. Distributed Computing has al-Ubicomp has

more dimensions

of multiplicity

ready tackled this challenge on a technical level, so that multiple
systems interacting with each other have become a commodity. On
a user interface level, CSCW has looked at groups of co-located peo-
ple collaborating using a single system (Single-Display Groupware,
or SDG). Bier and Freeman (1991), for example, introduced one of
the earliest user interface architectures for such systems. Its name,
MMM, stood for multiple (input) devices, users, and editors. To
implement the visions of ubiquitous and pervasive computing for an
interactive environment, however, requires extending this concept to
also include multiple systems (computers) and output devices (espe-
cially screens)—hence M5.

Extensibility and Incremental Integration. Our homes (Kidd et al.,
1999) and offices (Johanson et al., 2002a) are becoming augmented
with technologies to improve the way we live and work, but it is clear
that this transformation will not happen overnight. New technolo-
gies are brought piecemeal into these environments (Edwards et al.,
2003). Physical spaces evolve slowly, and ubicomp technologies willComponents must

communicate

without a priori

knowledge of their

counterparts

be incrementally deployed (Rodden and Benford, 2003). Ubiquitous
entities such as physical devices, applications, and services require a
mechanism to coherently communicate without a priori knowledge
of the other system components they may encounter. Moreover, the
semantics of the interactions must be meaningful to both the individ-
ual components and the users of the environment. Therefore, systems
must be designed such that they may be augmented with future de-
vices and services whose feature set cannot be predicted in advance.
Integration strategies are needed for situations where devices and ap-
plications have no direct knowledge of each other’s function or even
existence. We refer to this challenge as incremental integration, and
note that solving these issues will also provide solutions for getting
current devices and services to interoperate that were not designed
to do so.

Heterogeneity and Dynamic Composition Weiser’s vision of ubiqui-
tous computing (Weiser, 1991) consists of heterogeneous components
seamlessly working together. People bring with them personal de-Interoperability

relationships

should adapt

vices such as mobile phones (Weiser’s tabs) and laptop computers
(Weiser’s pads), and these need to fluidly interoperate with resources
embedded in the environment, such as wall sized displays (Weiser’s
boards). Related to this, different usage scenarios require different
compositions of hardware and software components. Users of these

3.2 iStuff Toolkit Architecture 45

Proxy Layer

Network Layer

Mediator Layer

Application Layer

Designer

End UserIn
pu

t

O
ut

pu
t

User Interface Layer

Figure 3.1: A layered model of the iStuff Toolkit Architecture.

environments also need a mechanism to fluidly task switch, which
may require changes the interoperability relationships at run-time.
They need to dynamically redirect their input or the system output
to different computational resources in the environment, similar to
the way we use the concept of focus to redirect our input to different
applications in desktop environments.

3.2 iStuff Toolkit Architecture

The iStuff Toolkit architecture is designed to address these requirements. This model helps

reason about the

layers of

functionality

The five layer architectural model (see Figure 3.1) provides appropriate
flexibility required to rapidly prototype and refine new user interfaces for
ubiquitous computing, promoting a human-centered iterative design pro-
cess. This architectural model is intended to be an abstract tool to reason
about the layers of functionality, not a strict prescription for how the func-
tionality should be implemented. An analogy can be drawn to the classic
four-layered model of window system architectures (Gosling et al., 1989),
which was a useful tool to compare various window system implementa-
tions. In the following sections, we will examine each of these layers in

46 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Figure 3.2: Interactive Workspaces are ubiquitous computing environ-
ments that combine an array of input devices and displays to provide a
coordinated user experience.

turn, starting from the User Interface Layer moving up to the Application
Layer.

3.2.1 User Interface Layer

The user interface layer is how the designer, through affordances and feed-
back, communicates to the end user. This layer encompasses all of theThe UI Layer

includes both

physical and

graphical UIs

properties of what Norman (2002) refers to as the“system image”. The user
interface layer is not limited to graphical user interfaces; it also incorpo-
rates physical embodiment and form factor of the user interface. Hardware
and form factor are important considerations for ubiquitous application de-
signers because, as we have seen in earlier chapters, there is no default set
of hardware, like a keyboard and mouse, for designers to depend on when
constructing their applications.

The user interface layer in ubiquitous computing applications is typically
not spatially concentrated; instead, different elements of the user interfaceUI components

are distributed

around a space

may be distributed throughout space. Consider, for example, an interactive
workspace (Johanson et al., 2002a) (see Figure 3.2) where multiple displays
and an array of input devices work in concert to support tasks. Here the
goal is to give the user the experience that they are interacting with a
coordinated and unified space instead of a loose collection of independent
components.

3.2 iStuff Toolkit Architecture 47

To simplify creation of ubiquitous user interfaces, the iStuff toolkit encour-
ages reuse of both hardware and software components. For example, in the Hardware and

software reuse are

promoted

beginning of the iStuff project, several custom input and output devices
were built to serve as physical widgets, which are reusable building blocks
to prototype novel user interfaces (see Figure 3.3).

To examine the completeness of this early building block set, we can use
the design space concept presented in Chapter 2. For this design space, the
following dimensions were used:

• Direction - This attribute indicates whether a device is used to provide
input, output, or both.

• Sense Addressed / Modality Used - For input devices, this attribute
describes the modalities used to operate an input device – manual
(e.g., mouse or stylus), visual (e.g., eye-tracking input), acoustic (e.g.,
sound or speech input), thermal (heat sensors), etc. For output com-
ponents, this describes the sense(s) which perceive the output – visual
(LEDs, displays), auditory (noise or speech output), haptic (force,
temperature changes), etc.

• Resolution - For an input device, resolution is analogous to
Card et al.’s property that classifies the domain provided by the device
as ranging from a single, binary value to an infinite range of values.
For output devices, the interpretation of resolution varies depending
on the sense addressed. For visual output, resolution means number
of pixels, levels of brightness, and/or number of colors. Resolution
of auditory devices can range from one-bit (as in a buzzer) to near-
infinite (as in a speaker). For haptic feedback, resolution describes
whether a binary value (presence/absence of feedback) or a range of
values can be provided.

• Dimensions - For manual input and visual output devices, the familiar
spatial concepts of 1, 2, and 3D are applicable. Upon inspection, such
concepts apply to other modalities as well – for instance, sound output
could provide 3D information if high-quality “surround sound” speak-
ers were used to provide a sense of location to the sound. Similarly,
vocal input could carry with it dimensional information if triangula-
tion techniques were used to pinpoint the location of the speaker. 0D
interactions represent non-spatial interactions, such as simple audio.

• Relative vs. Absolute - This concept applies not only in the familiar
domain of manual input (with a stylus providing absolute positional
information while a mouse provides the relative variety), but to other
domains/directions as well. For instance, an audio output device
could be absolute, conveying the presence or absence of a sound, or
it could be relative, conveying a change in pitch.

This design space helps identify gaps of coverage of our original hardware
set. Inspection of the design space in Figure 3.3 reveals that the preliminary

48 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

(1) iButton
(2) iSlider
(3) iMike
(4) iWand
(5) iPen
(6) iVibe
(7) iBuzzer
(8) iLight
(9) iSpeaker
(10) iKnob
(11) iMouse

= manual

= auditory

= haptic

= visual

Sense/Modality

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t
0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

6

7

8

2 3

9

10

4 5

11

(1) iButton
(2) iSlider
(3) iMike
(4) iWand
(5) iPen
(6) iVibe
(7) iBuzzer
(8) iLight
(9) iSpeaker
(10) iKnob
(11) iMouse

=

=

=

=

Sense/Modality

=

=

=

=

=

=

=

=

iStuff Device

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t
0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

6

7

8

2 3

9

10

4 5

11

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t
0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

6

7

8

2 3

9

10

4 5

11

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t
0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

6

7

8

2 3

9

10

4 5

11

D
ire

ct
io

n

Resolution

Dimensions

1111

Figure 3.3: Custom built iStuff components are reusable modules that can combined to build a
physical user interface prototype. (Top) contains input devices, (Middle) shows output devices,
(Bottom) A design space can be used to illustrate the coverage of these devices.

3.2 iStuff Toolkit Architecture 49

set of iStuff hardware components were lacking 3D interactions, non-manual
input devices, and higher resolution output components.

Other Physical Hardware Toolkits

A variety of hardware toolkits have emerged in recent years to help proto-
type physical interactions. BOXES (Hudson and Mankoff, 2006) provides a
prototyping solution using common household items, to simplify early stage
exploration of form factor. Toolkits like Phidgets1 (Greenberg and Fitch- Many hardware

toolkits have

emerged

ett, 2001), Teleo2, Calder (Lee et al., 2004a), VoodooIO (Villar et al., 2006)
and Smart-Its3 (Gellersen et al., 2004) provide a set of reusable hardware
components with accessible APIs to reduce the barriers of physical device
prototyping. d.tools (Hartmann et al., 2006) provides a set of software
tools in addition to hardware components to support the full range of de-
sign, testing, and analysis activities in an iterative design process.

The custom built hardware components also have the disadvantage that
for non-experts they are difficult to recreate or produce more instances. Many components

are commercially

available

Therefore, the iStuff toolkit architecture also supports a wide range of com-
mercially available hardware toolkits that have emerged since the project
has begun including Phidgets, Teleo, and Smart-its.

Software Components

The user interface layer also includes graphical user interfaces. iStuff en-
courages reuse of existing software components. Perhaps a designer wants
to prototype a ubiquitous computing presentation application, but doesn’t
want to build a new presentation system (such as Microsoft PowerPoint)
from the ground up to explore her ideas. Using the iStuff architecture, the
designer can take an existing presentation application and adapt it to suit
her needs.

We note that although our architecture does include graphical user in-
terfaces, the classic window system layers are not represented directly by
our model and are instead subsumed into this layer. This is because the
affordances and feedback that make up the system image can either be rep-
resented physically through a custom hardware construction, or virtually
through a graphical user interface. Often it is desirable to switch between Switching

between virtual

and physical

virtual and physical representations of the same interface. For example in
d.tools (Hartmann et al., 2006), virtual representations of objects are used
to allow a designer to simulate an interaction before the effort is made to
build the physical prototype. Alternatively, the interactive virtual repre-
sentation facilitates Wizard of Oz prototyping at test time if the physical
prototype is not fully functional. Essentially this means that in the iStuff

1http://www.phidgets.com
2http://www.makingthings.com/teleo.htm
3For Smart-Its hardware, see http://www.particle-computer.net

50 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

architecture layer model, clicking a virtual button with a mouse is func-
tionally equivalent to pressing a physical button.

Layer Summary

The User Interface Layer comprises the “system image” for the user, includ-
ing both physical and graphical user interface components. This layer isDiverse

components need

to interoperate

responsible for both enabling user input, and providing user feedback. The
problem with using this diverse array of user interface components is inter-
operability. How does the designer get this range of components, produced
by different (often competing) companies with different standards, to work
together to provided a unified user experience? The remaining layers of the
architecture show how this can be achieved.

3.2.2 Proxy Layer

The Proxy Layer provides the first level of interoperability by enabling
the heterogeneous UI components to communicate over the same network
substrate. Gamma et al. (1995) describes a proxy as “a surrogate or place-Enables Network

Layer access to all

UI components

holder for another object to control access to it”. The role of the Proxy
Layer in the iStuff Toolkit Architecture is to accommodate user interface
components that are unable to interact with the Network Layer directly
(perhaps because of lacking computational resources, or because they are
legacy). The proxy communicates (e.g., through serial ports or application
hooks) with a service, device, or application to send and receive Network
Layer packets on its behalf.

• Case Study – original iStuff hardware: The original iStuff hardware
consisted of low-cost circuitry and pre-built electronic chips with cus-
tom wireless transmission capabilities (see Appendix A for full con-
struction details). This made the hardware relatively simple to buildExample: low

computational

resources

for someone with basic knowledge of soldering. However the construc-
tion included no programmable components, making it impossible to
implement the necessary protocols to communicate with the Network
Layer. To resolve this, a proxy strategy was used to allow a desktop
computer in the room to communicate with the Network Layer on
their behalf. A simple transceiver was built, using compatible wire-
less components, that was connected to the desktop computer through
a USB port. A Java native interface (JNI) extension was used to ex-
pose the USB device in Java which then encapsulated the input data
from the custom-built wireless devices into a Network Layer packet.

• Case Study – PowerPoint: Existing desktop applications such as pre-
sentation applications perform their tasks well, but are not designedExample: legacy

software to adapt to new interaction scenarios of interactive workspaces. To
expose presentation control functions for ubiquitous computing pro-
totyping scenarios, we created a proxy that simulates key presses,

3.2 iStuff Toolkit Architecture 51

essentially enabling any keyboard shortcut (e.g., Next Slide, Previous
Slide, Goto Slide Number, Full Screen, etc.) to be accessed from the
network.

• Case Study – iTunes: Several operating systems provide high-level
mechanisms or hooks for end-users to programmatically control ap-
plications. For example, in the Windows operating system, Visual Example:

application hooksBasic can be used to create macros to simplify execution of repetitive
tasks. Similarly, in Mac OS X, AppleScript provides an accessible
programming interface to control applications. For example, we have
created a proxy for the iTunes music player on Mac OS X that uses
AppleScript hooks to expose functionality to the Network layer in-
cluding: play, pause, next track, previous track, volume, and retrieve
track information, playlist information, album art, etc.4

• Case Study – Smart-Its: Smart-Its are sensor network modules that
combines a miniature array of sensors with a wireless radio for net-
working. The communication with the Smart-Its is facilitated through Example:

commercially

available wireless

sensor modules

the XBridge5 device, which allows the sensor network modules to be
accessed and configured through a local area network. Our Smart-Its
proxy interprets the sensor data packets from the XBridge, canonical-
izes the format and posts them to the Network Layer. For this proxy,
we also allow the developer to configure the sensor boards, activate
particular sensors, and set sampling rates through a basic GUI (see
Figure 3.4).

• Case Study – iSpeaker: The iSpeaker is an off-the-shelf shower radio
that we turned into a mobile speaker. The wireless communication is Example: low-cost

commodity

hardware

handled through a commodity FM transmitter that is plugged into the
headphone jack of a desktop computer in the room. The proxy for the
iSpeaker uses standard audio libraries to play sounds on the mobile
speaker. This example highlights the flexibility of the proxy approach
to expose the functionality of low-cost commodity components for
ubiquitous computing application scenarios.

Proxy Manager

To simplify working with iStuff proxies, we have developed the proof of
concept Proxy Manager GUI (see Figure 3.5), which provides an interface Manage active

proxies through a

GUI

to organize and manage which proxies are running on a particular machine.
The left side of the interface displays automatically discovered Network
Layers that can be used. A hierarchical tree structure is used to organize the
available proxies on the local machine. This tree is automatically generated
by traversing user-specified proxy directories allowing the list to be easily
extended. Proxies of interest can brought into the current workspace, where
they can be started or stopped. The workspace represents a prototype
configuration that can be saved for later use.

4For an extensive list of examples of iTunes scripting support, see the following website:
http://www.dougscripts.com/itunes/index.php

5http://www.particle-computer.net/index.php?article_id=74

52 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Figure 3.4: (Left) The Smart-Its proxy GUI allows developers to discover Smart-Its sensor
boards, configure them, and activate communication with the Network Layer through this basic
interface. (Right) The configuration menu allows the developer to activate sensors and set
sampling rates for the sensor network module.

Figure 3.5: A screenshot of the ProxyManager application. Proxies can be arranged on different
tabs (middle). On the left the discovered Event Heaps are displayed as well as buttons for
launching a local Event Heap and the Event Logger, respectively. In the middle, a hierarchical
tree is used to browse available proxies. A workspace shows the current proxies of interest
selected by the user and their status. On the right side, the currently running proxies are
shown. In the displayed situation, a “TextEventGenerator” proxy is running, indicated by the
“walking man” icon.

3.2 iStuff Toolkit Architecture 53

Layer Summary

The Proxy Layer provides the glue that allows a diverse set of hardware
and software components to communicate over the same network substrate,
discussed in the subsequent Network Layer section. Examples demonstrate Proxy Layer is the

glue for the

Network Layer

how the proxy strategy can be applied to support a range of different physi-
cal and graphical user interface elements. The Proxy Manager helps design-
ers administer the active proxies running on specific machines that com-
municate over a distributed setting through the Network Layer.

3.2.3 Network Layer

The network layer serves as a medium for the distributed components to
communicate. It is abstracted as its own layer because it serves to simplify
network communications, providing a high-level message-passing abstrac-
tion that makes networking accessible to designers in rapid prototoyping
scenerios.

The Event Heap

The Event Heap (Johanson and Fox, 2002) is the central coordination mech-
anism used in the iROS ubicomp software framework. The Event Heap is Tuplespace

decouples

communication in

both time and

space

partly modeled after the Linda tuplespace (Leichter and Whiteside, 1989),
which provides a repository where tuples can be placed and then later re-
trieved by others. The tuplespace model is easy to grasp, and serves as a
useful abstraction layer as it decouples readers and writers in both time and
space. This communication model enables inter-application coordination in
the iRoom interactive workspace (Johanson et al., 2002a).

Event Heap clients communicate over TCP/IP networks through the Event
Heap’s tuplespace abstraction using event publish/subscribe APIs that hide
the underlying networking details. Similar to tuples, events consist of an Simplified APIs

hide underlying

networking details

unordered set of human-readable attributed-value pairs. The set of fields
include mandatory fields, such as EventType and TimeToLive, and an ar-
bitrary number of optional application-defined fields. The basic operations
allowed of the client are put, to post an event, and get, which queries
(either blocking or non-blocking) for the existence of an event based on
a template that specifies required fields and constraints on their values.
Clients may alternatively choose to receive notification of events through
a callback function. It is possible to remove events from the Event Heap
upon retrieval, but the removal is executed after all registered event sub-
scriptions have been notified, preventing any race conditions for existing
subscriptions. Events that are not marked as deleted are placed in an
event store and are available for retrieval until their TimeToLive expires.
Sequence numbers and time stamps are used to prevent duplicate delivery
of events to the same client.

54 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

import iwork.eheap2.*;
class SpeakTextSender { // Connects to event heap in

static void main(String []args) // arg[0], and sends AudioEvent
{ // with the text in arg[1].

try{
EventHeap theHeap = new EventHeap(args[0]); // Connect to the Event Heap
Event myEvent = new Event("AudioEvent"); // Create an event
myEvent.setPostValue("AudioCommand", "Read"); // Set its fields
myEvent.setPostValue("Text", args[1]);
theHeap.putEvent(myEvent); // Put event into Event Heap

}
catch(Exception e) {

e.printStackTrace();
}

}
}

Figure 3.6: Sample Java code for posting an event on the Event Heap. The event
is of type AudioEvent and has fields AudioCommand and Text, which are parameters for
the SpeakText receiver. This program can be executed with the following command:
$> java SpeakTextSender eh1.informatik.rwth-aachen.de "Hello World"

import iwork.eheap2.*;
class SpeakTextReceiver{
public static void main(String argv[]){

try{
// Connect to the Event Heap
EventHeap theHeap = new EventHeap(argv[0]);

// Create an event template
Event template=new Event("AudioEvent");
// specifying exact field values requires the field match both
// field name and value of the template
template.setPostValue("AudioCommand", "Read");
// wildcard fields can be specified as follows,
// where only the field name and type must be matched, not the value
template.addField("Text", String.class,

FieldValueTypes.FORMAL,
FieldValueTypes.FORMAL);

// get event from Event Heap
retEvent = theHeap.waitForEvent(templates, this);

// handle the text to speech conversion here
System.out.println("Speaking text " + retEvent.getPostValueString("Text"))

} catch(Exception e) {
e.printStackTrace();

}
}

}

Figure 3.7: Sample Java code for receiving an event from the Event Heap us-
ing a blocking method. This program can be executed with the following command:
$> java SpeakTextReceiver eh1.informatik.rwth-aachen.de

3.2 iStuff Toolkit Architecture 55

import iwork.eheap2.*;
class SpeakTextReceiver implements EventCallback{
public SpeakTextReceiver(String ServerName){

try{
// Connect to the Event Heap
EventHeap theHeap = new EventHeap(ServerName);

// Create the template
template=new Event("AudioEvent");
// specifying exact field values requires the field match both
// field name and value of the template
template.setPostValue("AudioCommand", "Read");
// wildcard fields can be specified as follows,
// where only the field name and type must be matched, not the value
template.addField("Text", String.class,

FieldValueTypes.FORMAL,
FieldValueTypes.FORMAL);

// create a list of event templates
Event templateList[]=new Event[1];
templateList[0] = template

// register the return event method of this class as the callback
theHeap.registerForEvents(templateList, this);

} catch(Exception e) {
e.printStackTrace();

}
}

public boolean returnEvent(Event[] retEvents){
try{

// handle the speech to text conversion here
System.out.println("Speaking text " + retEvents[0].getPostValueString("Text"))

} catch(Exception e){
e.printStackTrace();

}
return true;

}

public static void main(String argv[]){
// Connects to event heap in argv[0]
SpeakTextReceiver s = new SpeakTextReceiver(argv[0]);

}
}

Figure 3.8: Sample Java code for receiving an event from the Event Heap using
a non-blocking callback. This program can be executed with the following command:
$> java SpeakTextReceiver eh1.informatik.rwth-aachen.de

56 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

The Event Heap promotes an anonymous communication model where as
long as two applications understand the same event types, they are able
to communicate without an explicit rendezvous. Failure isolation and ro-Decoupling

promotes

robustness

bustness are promoted under this model since senders and receivers are
decoupled over both time and space. The level of indirection between
senders and receivers also provides the foundation for intermediation, but
the Event Heap does not directly provide facilities for expressing these in-
termediations. A drawback of the event-driven anonymous coordination is
that it does not support end-to-end delivery semantics of messages, since
the sender does not know in advance who the receiver(s) will be or whether
there will be any at all.

The Boundary Principle (Kindberg and Fox, 2002) states that the scope of
ubiquitous computing infrastructure should not exceed the perceived phys-Infrastructure

should not exceed

physical

boundaries of

space

ical boundaries of a space. Thus, there is a single Event Heap serving as the
locus of interaction for each ubiquitous computing environment. A service
or device must be able to communicate with the Event Heap to participate
in the environment. Multi-cast DNS, a network discovery mechanism, is
used to allow mobile clients to automatically connect to the appropriate
Event Heap as they move from space to space.

Various libraries and other software components also allow Event HeapMany other

languages

supported

clients to be written in Java, C/C++, AppleScript, Visual Basic, Perl,
Python, and other languages, creating support for heterogeneous machines
and operating systems; servlets allow Web-based clients to perform limited
Event Heap operations as well.

Case Study – Java: The Event Heap implementation in Java allows theExample: Java

senders and receivers to put and get events with only a few lines of code
(see Figures 3.6, 3.7, and 3.8).

Debugging the Event Heap

One strength of using a tuplespace abstraction is that the fields and valuesHuman readable

events simplify

debugging

are human readable, simplifying debugging. The Event Logger GUI6 (see
Figures 3.9, and 3.10) allows a developer to monitor and influence Event
Heap activity.

Layer Summary

The Network Layer abstracts low-level networking details to simplify pro-
totyping distributed application scenarios. In the iStuff Architecture, theCommon

substrate, but

different formats

Event Heap’s tuplespace model provides a simplified API to promote rapid
prototyping, decouples communication to provide more robustness, and

6The Event Logger GUI was created by Andy Szybalski as a part of the open source
iROS project (http://iros.sourceforge.net).

3.2 iStuff Toolkit Architecture 57

Figure 3.9: The Event Logger GUI simplifies debugging and monitoring Event Heap Activity.
The top panel controls the connectivity to the Event Heap, the right panels control the event-
level and field-level filtering desired for the log view (left panel).

Figure 3.10: Selecting a particular event from the Event Logger displays all the fields and
values of the event. The mandatory fields required by the Event Heap are visually separated
using grey to assist the user in identifying the custom fields specified by the client application.

58 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

simplifies debugging through its human readable events. Although the UI
components are all communicating over the same substrate, they are send-
ing events in unique and incompatible formats. This last interoperability
challenge is addressed in the next level, the Mediator Layer.

3.2.4 Mediator Layer

The primary role of the Mediator Layer is to support interoperation between
heterogeneous components. Gamma et al. (1995) describe a mediator as“anMediators

encapsulate how

objects interact

object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and
it lets you vary their interaction independently.” In the iStuff architecture,
this role is fulfilled by the Patch Panel infrastructure (Ballagas et al., 2004).

However, to support incremental integration and dynamic composition, the
interoperability relationships must support late binding (i.e., be run-time
configurable).

Other System Approaches to Interoperability

Many have argued for the use of service-oriented architectures, such as
CORBA (Object Management Group, 2004), to address the interoperabil-
ity challenges in pervasive computing. In these architectures, application-A variety of

approaches to

interoperability

exist

level interoperability is achieved through well-defined abstract interfaces to
distributed software components that are accessed through RPC (remote
procedure calls). Service-oriented architectures often support reflection al-
lowing a service to reveal its service definition at run-time. An agent can
use the service definition to support run-time decisions on how the ser-
vices should interoperate. Message-oriented publish / subscribe systems
such as Gryphon (Sturman et al., 1998) offer brokering services to trans-
form messages from one format to another. These systems also typically
employ reflection to support run-time bindings between services. However,
Johanson and Fox (2004) argue that a tuplespace communications model is
better suited for room-sized environments, such as Interactive Workspaces,
which is the domain the Patch Panel is designed to serve. Compared to
RPC, the tuplespace model has better temporal decoupling, extensibility,
expressiveness, a simple portable client API, easy debugging, fault toler-
ance and recovery mechanisms. Compared to message-oriented systems,
the tuplespace model has better expressiveness, and limited temporal de-
coupling.

Agent-based architectures, such as the brokers in CORBA, automati-
cally reason about interoperability relationships. Ontologies, such asAutomatic

reasoning can be

problematic for

HCI

SOUPA (Chen et al., 2004), can facilitate automatic reasoning by defining a
vocabulary to structure data shared between services or devices. However,
automatic reasoning is not well suited to determine the appropriate map-
pings for human-computer interaction. Consider the exercise of mapping a

3.2 iStuff Toolkit Architecture 59

device to control the lights in the room. An agent will be able to identify a
number of devices that can express the semantics of on and off, but it lacks
human design insight and creativity to select the most appropriate device.
Instead, ontologies and automatic reasoning can be used to support the hu-
man mapping process by automatically generating a list of mappings from
which the designer can select the most appropriate mapping. This use of
ontologies is an opportunity for future extensions of the Patch Panel.

One limitation of many service-oriented architectures, such as CORBA,
and message-oriented publish/subscribe systems, such as Gryphon, is that
they lack the ability to express patterns of events. Pietzuch et al. (2003) Patterns of events

can be expressed

using FSMs

introduced a framework to express event composition at run-time in pub-
lish/subscribe systems using finite state automata. However, the relatively
slow performance (approx. 10x slower than the Patch Panel) limits the sys-
tem’s usefulness for human-computer interaction. The Patch Panel extends
this event composition work to show that finite state automata can also be
used for modifying interoperability relationships (e.g., the input focus) of
components in a room.

Data-flow interoperation resolves mismatches in data type and has received
much attention in the mobile computing literature (Kindberg and Fox,
2002). For example, a user may wish to connect a camera producing im- Control-flow

interoperability

addresses

commands and

metadata

ages in JPEG format to a printer accepting data in PostScript format.
Speakeasy (Edwards et al., 2002) provides support for datatype conver-
sion by exploiting mobile code “proxies.” However, datatype conversion is
insufficient to enable interoperation because it neglects metadata and com-
mands, which we refer to as control-flow interoperability . Continuing the
printer example, the user may want to specify color vs. black-and-white
printing, or the order in which pages will print. The communication of
metadata and commands between the camera and the printer will vary
depending on the the specific devices and their capabilities.

A common approach to control-flow interoperability is interface standard-
ization, as attempted by Sun’s Jini (Waldo, 2000). Each class of service
or device, such as printers, must adhere to a set of standard interfaces,
enabling substitution by any other service or device in that class. The Standardization is

surprisingly

difficult

standardization process turns out to be surprisingly difficult, even for such
a seemingly simple class of devices as printers. After more than 7 years in
development, the Jini specification for printers is still (as of March 2007)
labeled “draft”7, meaning that “the implementation may necessitate chang-
ing the API before finalizing it as a full standard.” One may infer that
in fact the definition of a printer is a moving target since the feature set
keeps changing. As new services or features are created, they cannot be
exploited by applications until their integration into existing programmatic
interfaces has passed the standards-approval process, potentially leading to
unacceptable delay in adoption of the new service or feature.

Alternatively, mappings can be set through direct user intervention via
GUIs as in Speakeasy (Edwards et al., 2002) and iCrafter (Ponnekanti et al.,

7http://www.jini.org/files/specs/print-api/index.html

60 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

2001). Each time the user wishes to print a picture, a specialized GUIDirect user

intervention is

often not fluid

enough

allows setting printing preferences for that specific printer model at print
time. This approach limits interactions to “transactions” which are often
not fluid enough for ubicomp. It also does not support making pre-defined
rules for connections to reduce user intervention, for example, setting sensor
data from a motion detector to turn on the lights.

The Patch Panel uses intermediation to achieve control-flow interoperabil-
ity. This approach utilizes a decoupled communication model, such as
event publish/subscribe, for inter-component communication. Implicit inIntermediation by

rewriting event

streams

the model is the ability to intercept and rewrite these event streams to
convert the event (or interface) of the user input into another event (or
interface) that clients producing user feedback expect (see the Adapter
pattern from (Gamma et al., 1995)). Other systems have proposed using
intermediation for interoperation. Taylor’s C2 architecture (Taylor et al.,
1996) uses connectors to perform intermediation on messages between het-
erogeneous components. Bates et al. (1998) proposes event-based rules to
serve as integration glue to federate heterogeneous components. Munson
(1998) also proposes using intermediation to support composition of dis-
tributed applications. The Patch Panel builds on these ideas by adding
and exploiting dynamic reconfiguration capabilities.

Functional Details of the Patch Panel

The Patch Panel translates events to allow incompatible event publishers
and subscribers to communicate. Simple intermediations are expressed as
mappings that connect triggers (event templates that specify the conditions
for intermediation to occur) with outputs (new events emitted as a result
of the trigger, presumably for consumption by a different entity). The
Patch Panel prototype is implemented as an Event Heap client that works
by subscribing to all events. The Patch Panel internally manages a data
structure to quickly compare each incoming event against all active triggers.
When an event is received that matches one or more trigger conditions, the
Patch Panel generates the corresponding superset of output event(s) and
posts them to the Event Heap before processing the next incoming event.

A mapping (trigger → output event(s)) is the basic abstraction providedA mapping

represents the

function of the

Patch Panel

by the Patch Panel. For example as in Fig. 3.11, suppose we have a wireless
iStuff button (Ballagas et al., 2003) that posts a Button event8 each time it
is pressed with string-valued field id, a light dimmer service that responds
to Lights events containing an integer-valued field brightness between 0
and 10, and a projector-control service that responds to events Projector
with boolean-valued field powerOn. We can configure the button to turn the
lights and projector on by establishing the following Patch Panel mapping:

Button(id=red) → Lights(brightness = 10), Projector(powerOn=true)

8The stylized event names such as Button and Lights represent the mandatory Event-

Type field of the events.

3.2 iStuff Toolkit Architecture 61

Figure 3.11: The Patch Panel adds a level of indirection to the communication channel between
two components to perform event intermediation. The publish/subscribe semantics are also
demonstrated. Note that there is actually only one Patch Panel process per Event Heap; two
are shown above for visual clarity.

Now, when someone presses the button, the following sequence of operations
occurs:

1. In response to being pressed, the physical button transmits a wireless
signal that is received by the button’s Event Heap proxy, which in
turn posts a Button(id=red) event to the Event Heap. Input events

rewritten
2. Although neither the light service nor the projector service recognize

the Button event, the Patch Panel recognizes it as a trigger for the
Button mapping.

3. The mapping fires, causing the Patch Panel to post the events
Lights(brightness=10) and Projector(powerOn=true) to the Event
Heap.

4. The light controller recognizes the Lights event and turns the lights
on; the projector controller recognizes the Projector event and turns
the projector on.

Event Heap clients can query, add, remove, and modify the mappings in
the Patch Panel using event-based remote method invocation (RMI). The
Patch Panel listens for an application-specific PPMapping event type. The
event includes a Method field which describes the operation to perform, and
a Mapping field which contains an XML-style description of the triggers and
outputs. The Patch Panel handles the request and returns a PPResponse
event indicating the result of the desired operation. This event also con- RMI used to set

mappings at

run-time

tains a field identifying the process that requested the operation, as well
as the details of the method performed. By using the Event Heap as the
communications substrate for RMI, the processes that affect mappings do
not need to care about the “address” of the Patch Panel as they move from
space to space. We have provided programmer-friendly client libraries that
abstract from the details of the event-based RMI so that the programmer
can modify mappings as if it were a local function call as shown in Fig. 3.12.
This event-based interface design also has significant implications on the

62 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

// connect to a specific EH
EventHeap eh = new EventHeap(eheap.rwth-aachen.de);
PatchPanel pp = new PatchPanel(eh);

// specify the template for the trigger
Event trigger = new Event("Button");
trigger.addPostValueString("id", "red");

// create the desired output events
Event[] outputs = new Event[2];
outputs[0] = new Event("Lights");
outputs[0].addPostValue("brightness", new Integer(10));
outputs[1] = new Event("Projector");
outputs[1].addPostValue("powerOn", new Boolean(true));

// commit the mapping to the Patch Panel
Mapping myMapping = new Mapping(trigger, outputs);
try{

pp.setMapping(myMapping);
} catch(PatchPanelException ppe){

System.out.println("RMI timeout");
}

// test the mapping
eh.putEvent(trigger); // put Button
Event received = eh.waitForEvent(outputs[0]); // get Lights

Figure 3.12: Sample Java code for setting the Button → Lights, Projector mapping.

capabilities of the Patch Panel because event triggers can be mapped to
generate PPMapping events as outputs, which in turn modify the active
mappings. This idea of mappings that have the ability to change mappings
when fired is the key feature that enables dynamic reconfiguration and dif-
ferentiates the Patch Panel from other systems that use intermediation, as
we will discuss further in later sections.

In order for the Patch Panel to serve as an viable strategy for control-flowA range of

interoperability

problems

interoperability, it must provide richer mapping capabilities than the basic
button scenario shown in Fig. 3.11. Sheth (1999) classifies interoperabil-
ity problems as System, Syntactic, Structural, and Semantic. System level
interoperability corresponds to heterogeneous hardware and operating sys-
tems and is resolved by using the Event Heap. The remaining issues can
be described as follows:

• Syntactic differences between field values: fields from differ-
ent event formats may choose to represent the same information in
incompatible formats (such as different data types).

• Structural differences in the event formats: the same data may
be represented in a different event structure, for example, with differ-
ent field names.

• Semantic differences at the field level: the intended meanings
of fields do not directly correspond, but the mapping is such that the

3.2 iStuff Toolkit Architecture 63

value of one field affects the value of the other (such as absolute vs.
relative values, or different units).

• Semantic differences at the event level: the desired outputs do
not necessarily correspond to a single input trigger, and instead may
be the result of many different input events, or if the correct mapping
changes due to the context of interaction such as time passing.

We have built facilities into the Patch Panel to address each of these in-
teroperability issues. First of all, the Patch Panel supports a field-level Output events

often depend on

input events

equation specification in order to support translation dependencies, where
field values of the output events are not known at the time the mapping is
specified and instead must be determined based on the trigger at run-time.
Consider the following mapping from a simple slider whose value is a float
that ranges from 0 to 1 that is intended to control a paddle in a multi-screen
version of the classic Pong arcade game. The Pong event template expects
a Side field which identifies which paddle to control (left or right) and a
Position field that accepts integer values from 0 to 100:

Slider(value=FORMAL) → Pong(Side=left, Pos=(int)(in.value*100))

The FORMAL value is used in the Event Heap to indicate that any value is
acceptable for template matching as long as the field is present. In this A range of

operators are

supported for

equation

specification

instance, the equation directs the Patch Panel to perform an affine trans-
formation of the value field of the input event (specified by the in. prefix)
and then convert the result to an integer. The Patch Panel equations sup-
port all basic mathematical operators (∗, %, +,−, etc.), logical operators
(AND, OR, NOT, >, <,<=, etc.), and string concatenation. Additionally,
global variables (set via event RMI and referenced using a global. prefix)
are also provided to preserve values across individual firings of a trigger.
Global variables are especially useful when converting between absolute val-
ues (such as screen position) and relative values (such as delta X). Equa-
tions can be used to resolve field-level syntactic mismatches, structural
mismatches, as well as perform operations to resolve field-level semantic
differences.

In order to address the interoperability challenge of semantic differences
at the event level, the Patch Panel employs finite state machines (FSMs).
Going back to the wireless button example in Fig. 3.11, suppose instead
we want the red button to toggle the lights and projector between on and
off. Assuming (as is often the case) that the light and projector service Patch Panel

mappings can be

used to implement

FSMs

cannot be “queried” about their current state (on or off), we could turn the
button into a toggle switch using an FSM as in Fig. 3.13. Although the
button is stateless, and the light and projector do not expose their internal
state, the Patch Panel uses mappings to instantiate an FSM that “remem-
bers” the current state of the interaction and responds accordingly to the
Button(id=red) trigger event. The actual state transitions are performed
using PPMapping events as a part of the mapping output to modify the
active mappings.

64 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

(A)

state Off {

on Button(id = red) {

Lights(brightness = 10);

Projector(powerOn = true);

goto On;

}

}

state On {

on Button(id = red) {

Lights(brightness = 0);

Projector(powerOn = false);

goto Off;

}

}

(B)

S0:
Off

S1:
On

Button(id=red) /

Button(id=red) / Lights(brightness=0),
Projector(powerOn=false)

Lights(brightness=10),
Projector(powerOn=true)

(C)

Patch Panel

EventType "Button"

Template to Match Output Events to Generate

EventType "StateOn" EventType "Light"

brightness 10

EventType "PPMapping"

Mapping
Button(id="red")

-> StateOff

EventType "StateOff" EventType "Lights"

Brightness 0

EventType "PPMapping"

Mapping
Button(id="red")

-> StateOn

"StateOn"

""

EventType

ChainEvent

Event Heap

Light
Controller

Button Proxy

Put:
Button

Get:
Button

Get:
Light

Put:
Light

""ChainEvent

""ChainEvent

EventType "Projector"

powerOn true

EventType "Projector"

powerOn false

Projector
Controller

Put:
Projector

Get:
Projector

ID "red"

Figure 3.13: (A) A textual description of the Mealy state machine diagram for a light toggle
in (B). Circles labeled Si are states. Each edge is labeled with “x / y” where x is the input and
y is the output. (C) The Patch Panel mappings that implement the state machine.

To formally illustrate that this can be done for any FSM, consider a more
complex example shown in Fig. 3.14, which adds support for a motion
sensor that posts a MotionSensor event whenever it detects activity. If no
motion is detected for timeout seconds, the lights and projector turn off
automatically.

Using Fig. 3.14, we can formalize the Patch Panel’s operation as follows.Patch Panel

operation can be

formalized

Let S0, . . . , Sn−1 be the n states of an FSM that expresses a Patch Panel-
mediated interaction. Going back to Fig. 3.14, let S0 be the Off state
and S1 the On state. Let mi be a simple event mapping of the form ti →

3.2 iStuff Toolkit Architecture 65

(A)

state Off {
on Button(id = red) { // turn things on manually

Lights(brightness = 10);
Projector(powerOn = true);
goto On;

}
}
state On {

on MotionSensor { // motion detected, so...
set timer 1000*timeout; // ...reset idle timer
goto On;

}
on timer { // no motion sensed, so...

Lights(brightness = 0); // ...turn things off
Projector(powerOn = false);
goto Off;

}
on Button(id = red) { // turn things off manually

Lights(brightness = 0);
Projector(powerOn = false);
goto Off;

}
}

(B)

m0 = Button(id=red) → Lights(brightness=10), Projector(powerOn=true) NS(0) = S1

m1 = MotionSensor → set timer 1000*timeout NS(1) = S1

m2 = timer → Lights(brightness=0), Projector(powerOn=false) NS(2) = S0

m3 = Button(id=red) → Lights(brightness=0), Projector(powerOn=false) NS(3) = S0

Figure 3.14: (A) FSM description with timers. (B) Formal notation for the mappings in A.

oi1, oi2, . . . oik, where ti is a trigger event and oi1 . . . oik are the output events
triggered by ti. Finally, let NS(i) be the number of the next state to go to
after emitting the output events of mapping mi. Each of the “on” clauses
generates one mapping mi and one next-state NS(i).

Let Mi be the set of mappings consistent with the FSM being in state Si.
For Fig. 3.14, we would have M0 = {m0} and M1 = {m1, m2, m3}. The
Patch Panel maintains a single set P of mappings that is currently active,
i.e., against which incoming events will be checked for triggers. When a
state transition occurs into state Si, P must be set to Mi. With this
notation, we can express in pseudocode the operation of the Patch Panel
(by convention, S0 is the initial state):

1. Compute all mi, NS(i), and sets M0 . . . Mn−1 from textual FSM de-
scription;

2. Set P to M0;

3. do forever:

66 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

(a) wait for an event ti that triggers some mapping mi in P ;
(b) emit the mapping’s output events oi1, . . . , oik;
(c) set P to MNS(i);

In other words, the Patch Panel has an FSM “compiler” that takes the
textual descriptions of the FSMs as input and produces the mappings to
implement the FSM as output.

By design, the Event Heap does not guarantee ordering of events from
different sources. Therefore, output events from the Patch Panel and trigger
events from other sources may be interleaved. This is problematic sinceChain events

ensure atomic

execution of state

transitions

the FSM abstraction requires that emitting output events (step 3b above)
and transitioning to the next state (step 3c) must occur atomically. To
address this, the Patch Panel provides event chains, groupings of events that
must be processed atomically. In our current implementation, any outgoing
event containing a field ChainEvent is considered to be part of such a
chain. The Patch Panel’s event emitter handles event chains internally
by directly passing them to its own event handling loop (bypassing the
Event Heap), where they are given highest priority. These events are also
passed to the Event Heap for other applications to use, but any incoming
events from the Event Heap with the ChainEvent field are thrown out to
prevent duplicate processing. For example, in Fig. 3.13, when the Button
is pressed, a StateOn event is created. Because of its ChainEvent field, it
bypasses the Event Heap and is processed directly by the Patch Panel as
the next incoming event. Subsequently, the same happens for the following
PPMapping event. Therefore, the state transition is complete before the
next incoming event from the Event Heap is processed.

Layer Summary

The Mediator Layer supports interoperation by encapsulating how objects
interact. In the iStuff Toolkit architecture, the Patch Panel peforms this
functionality by rewriting events. The basic unit of functionality is the
mapping, which can be leveraged to express patterns of events using fi-
nite state machines. The Patch Panel mappings can be dynamically set at
run-time through remote method invocation allowing designers to specify
mappings using higher-level Application Layer interfaces. This section has
partly introduced one of these interfaces, the Patch Panel scripting lan-
guage, which will be elaborated on further in the following section along
with other graphical interfaces to configure mappings.

3.2.5 Application Layer

The application layer is where the interaction logic is expressed – defining
how the user interface responds to certain inputs. This layer serves as

3.2 iStuff Toolkit Architecture 67

the interface to developers, allowing them to rapidly prototype different
application designs.

Myers et al. (2000) identify several characteristics, or “themes”, for evaluat- Toolkit ceiling and

threshold can be

used for analysis

ing toolkits. In particular, the threshold describes how difficult it is to learn
to use the system. The ceiling describes how much can be accomplished
using the system.

We have developed several different user interfaces that allow end users
to configure the active mappings of the Patch Panel. The range of UIs Wide-range of UIs

are geared towards different audiences and tasks, and each have different
ceilings and thresholds for building applications. The first UI, partly intro-
duced in the previous section, is a non-graphical text-based FSM scripting
language.

Scripting Language

The Patch Panel scripting language enables a repertoire of “programming The scripting

language enables

programming

patterns

patterns” needed to cover a broad variety of incremental-integration sce-
narios. In this section, we describe some of the patterns supported by
the scripting language, motivating each one with a real-life example. As a
preview, the mechanisms we will describe are as follows:

1. Allowing for dependent translations, where the field values of output
events are not known at the time the mapping is specified. Instead,
the output fields must be derived from field values of trigger events
at run-time.

2. Programmatically exposing to applications the ability to change map-
pings on the fly, allowing the construction of GUIs and other appli-
cations whose function is to configure the Patch Panel itself.

3. Allowing the use of global variables (whose value persists across in-
dividual firings) to further support interactions requiring persistent
state.

4. Providing an abstraction for time, allowing for time-based interac-
tions

This set of Patch Panel scripting language examples is based on the iClub Set of examples

based on the

iClub

(Samberg et al., 2002), an iRoom application that creates an interactive
dance club environment using the large displays in the iRoom. The iClub
was originally developed by a group of students in the Stanford iRoom as
part of a student project.

iClub is a distributed application that includes a playlist program to select Interactive

Workspace turns

night club

songs and sound effects, an audio proxy application that plays the audio
and publishes a “beat clock” event synchronized to each beat of the music,

68 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Figure 3.15: the iClub in Action with iSlider

several visualization applications that synchronize to the beat of the music
by subscribing to the beat clock events, and a GUI that controls various
aspects of the music as it plays.9 We used the iStuff Toolkit architecture
and Patch Panel scripting language to extend the iClub to achieve a range
of new features as discussed in the following sections.

Case Study – On-the-Fly Integration: The audio proxy recognizes events
to adjust the volume and tempo of the music, inject sound effects, andConnect a new

physical UI to an

existing behavior

on-the-fly

apply high- and low-pass frequency filters (a common audio special-effect)
to the music. In the original version of iClub, a human DJ would use a
GUI to control these aspects of the music. However, an observer suggested
that the clubgoers themselves should be able to participate in the music
creation without leaving the dance floor. We arranged to give each clubgoer
a wireless button with a unique ID as they entered the room. Each button
was mapped through the Patch Panel to direct the audio proxy to play a
sound, so each clubgoer had her own characteristic sound effect that could
be injected by pressing her button. We refer to this common programming
pattern—connecting a new physical or other UI to an existing behavior—as
on-the-fly integration.

Case Study – Range Normalization: The developers’ next inspiration was
to allow a DJ to use a wireless handheld slider to have mobile controlPerform affine

transformations the tempo of the current song. Conceptually, this is similar to the previous
example in that a slider event must be used to trigger an iClubAudio output
event, except that the value of the slider must also be reflected in the output
event. Furthermore, the specific slider we used produces real numbers in
the range 0.0 to 1.0, whereas the iClubAudio’s tempo parameter must be an

9A video demonstrating the iClub is available at http://iwork.stanford.edu/pubs/
iclub-300mb.mov

3.2 iStuff Toolkit Architecture 69

iSlider(position = *) → iClubAudio(tempo = (int)in.position * 20 - 10)

Figure 3.16: Range Normalization and Equation Specification

Button(id=1) → PPMapping [iSlider(position=*) → iClubAudio(tempo=(int)in.position*20-10)]
Button(id=2) → PPMapping [iSlider(position=*) → iClubAudio(volume=(int)in.position*100)]
Button(id=3) → PPMapping [iSlider(position=*) → iClubAudio(highfreq=(int)in.position*100)]
Button(id=4) → PPMapping [iSlider(position=*) → iClubAudio(lowfreq=(int)in.position*100)]

Figure 3.17: Patch Panel mappings that enable the multi-slider handheld music controller

integer from −10 to +10. We use the term range normalization to describe
this pattern for incremental integration. The Patch Panel supports range
normalization by allowing output event fields to reference input event fields
and by providing a simple arithmetic expression evaluator. Figure 3.16
shows a mapping that connects the slider to the tempo control.

This mapping will fire when the Patch Panel receives an event of type iSlider
that contains a field named position. The tempo field of the iClubAudio
output event is computed from the position field of the input event (in.)
each time the mapping fires. Similarly, the prefix out. could be used to
reference other fields in the current output event; the Patch Panel auto-
matically detects syntax errors or output field dependency loops and leaves
such equations unresolved (in string form) for debugging purposes.

Case Study – Dynamic Reconfiguration: The wireless slider works well to
control a single parameter, but in order for a DJ or clubgoer to abandon Physical actions

that change the

state of mappings

the desktop GUI completely, she must have the ability to change any of
the music parameters, not just the tempo. We constructed a new device
by physically attaching four wireless buttons (call them 1, 2, 3, 4) to the
slider. Pressing a button determines which music parameter—tempo, vol-
ume, high pass filter, low pass filter—is controlled by the slider. This case
is more subtle, because the effect of pressing a button is not to emit a new
audio event, but rather to affect the handling of future iSlider events. In
other words, pressing a button should change the currently-active iSlider
mapping. We therefore refer to this pattern as dynamic reconfiguration.

As explained previously, the Patch Panel consumes events of type PPMap-
ping to modify the set of currently active mappings. With this in mind,
the mappings to implement the“multi-slider”handheld music controller are
shown in Figure 3.17.

When the Patch Panel receives a Button(id=1) event, for example, it emits
a PPMapping event that will set up a new mapping for future iSlider events
to control the music’s tempo. This powerful dynamic reconfiguration allows
complex interactions to be synthesized without direct user interaction.

Since the mappings are somewhat difficult to interpret for a programmer
unfamiliar with the Patch Panel, we express the multi-slider example using
the FSM representation shown in Figure 3.18, and in fact, submitting this

70 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

state ControllingTempo {
on iSlider(position=*) { send iClubAudio(tempo=int(in.position)*20-10); }
on Button(id=2) { goto ControllingVolume; }
on Button(id=3) { goto ControllingHighFreq; }
on Button(id=4) { goto ControllingLowFreq; }

}
state ControllingVolume {
on iSlider(position=*) { send iClubAudio(volume=int(in.position)*20-10); }
on Button(id=1) { goto ControllingTempo; }
on Button(id=3) { goto ControllingHighFreq; }
on Button(id=4) { goto ControllingLowFreq; }
}

}
...

Figure 3.18: FSM description of iClub multi-slider mappings. We have
minimally stylized the code for space (Typically each event template must
be described with necessary mandatory fields and values at the top of the
script, instead of inline as shown above).

FSM description to the Patch Panel’s FSM compiler would effectively result
in the mappings in Figure 3.17.

Several points about this example should be emphasized. First, the hand-
held DJ device and the interaction with the iClub Audio Proxy were as-
sembled from devices and services that had no a priori knowledge of eachDevices composed

without a priori

knowledge

other. In other words, the slider has no concept of a button or vice versa,
and the iClub Audio Proxy has no concept of any physical devices. Also
in this example, the buttons and mappings, once initially set up by an ad-
ministrator, represent a tangible UI for reconfiguring the Patch Panel that
can be used by people who have no technical skill or knowledge of Event
Heap operation.

Case Study – Semantic Mismatches and Globals: At one point, the wireless
slider malfunctioned, and although we did not have another slider immedi-
ately available, we did have a joystick. However, while a slider’s position
naturally maps to the value being controlled, a joystick’s position naturallyGlobal variables

store values that

must persist

across firings of

mappings

maps to the rate of change of the value being controlled (since joysticks are
self-zeroing). We refer to this circumstance as semantic mismatch, and in
this case can be resolved by using an FSM with global variables as shown in
Figure 3.19. Global variables store values that must persist across firings of
mappings; variables can be set using “PPVariable” events and dereferenced
on the output side of any mapping by using the prefix global. To mimic
the slider’s behavior with a joystick, we use a global variable to hold the
current “slider position” and adjust the global variable’s value each time
the joystick is moved. To avoid wild fluctuation in the variable’s value, we
can use timers (as previously described) to control the interval at which the
joystick is sampled; changing the timer value changes the sensitivity of the
joystick as a controller. Although the joystick is an imperfect interaction
modality for the iClub Audio Proxy, the Patch Panel made it possible to

3.2 iStuff Toolkit Architecture 71

state JoystickMoved {
on Joystick(joystickX, joystickY) {

global.currentX += in.joystickX * global.scaleFactor;
global.currentY += in.joystickY * global.scaleFactor;
send Position(global.currentX, global.currentY);
set timer sampleRate;
goto WaitingForSample;

}
}
state WaitingForSample {

on timer { goto JoystickMoved; }
}

Figure 3.19: Resolving semantic mismatch between relative-position and
absolute-position devices. We have minimally stylized the code for space
(Typically each event template must be described with necessary manda-
tory fields and values at the top of the script, instead of inline as shown
above).

use it as an adequate substitute until the slider could be replaced.

Patch Panel Manager

Transitioning from textual to graphical interfaces to control the mappings,
the Patch Panel Manager is a general purpose GUI that exposes different
granularities of Patch Panel functionality to the user. The Patch Panel
Manager distinguishes between expert and casual users. Expert users in-
clude: developers who want to create or augment applications by connect-
ing new behaviors via the Patch Panel; system administrators; and “power
users” (akin to those who can write complex macros in spreadsheet pro-
grams) who want to modify the behavior of existing applications.

For casual users, the “simple” pane of the Patch Panel Manager provides
very basic interface provides access to a very limited set of simple mappings The simple UI has

a low threshold,

but also a low

ceiling

(see Figure 3.20 [Top]). The full details of the mapping are abstracted away
through a configuration file that is modified by the room administrator. If
a new device or service is added to the room, it can only be used through
this interface after the room administrator has made the appropriate mod-
ifications to the configuration. This “simple” pane is considered to be a low
threshold UI because of its simplicity, but also a low ceiling UI since the
types of mappings that can be created are very limited.

Expert users can access the “advanced” pane of the Patch Panel Manager
(see Figure 3.20 [Bottom]), a tree-based view of the Patch Panel mappings The expert UI is

high ceiling, but

high threshold

that allows graphically browsing of the current mappings and the creation
of new mappings. Using this GUI requires some understanding of Event
Heap semantics as well as the event interfaces of individual components. In
everyday situations, the Patch Panel Manager is used to visualize and debug

72 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Figure 3.20: (Top) The simple panel of the patch panel GUI, intended for casual non-technical
users, provides access to a very limited set of simple mappings. (Bottom) The advanced panel
of the patch panel manager, intended for experts, supports direct browsing and editing of the
Patch Panel mappings.

3.2 iStuff Toolkit Architecture 73

the state of the Patch Panel. It is also particularly useful for making on-
the-fly modifications to mappings or for “debugging” in-progress mappings;
for example, changing the amplification factor applied to an input device.
This “advanced” pane is considered to be a very high ceiling interface since
any mapping can be created, but is also a high threshold interface since it
is very difficult to setup a series of interrelated mappings such as with a
state machine.

Custom GUI - Workspace Navigator

Workspace Navigator (WSN) (Ionescu et al., 2002) is an application that
captures multi-person meetings in interactive rooms containing shared pub-
lic displays. WSN’s GUI provides a“bookmark”feature that allows a partic- Meeting capture

softwareipant to flag an important moment in the meeting; WSN’s meeting-replay
tools can then be used later to reconstruct the state of the meeting (e.g.,
which documents were visible on each of the shared displays) at the time
the bookmark was inserted. To implement the bookmark function, the
WSN GUI console sends a Bookmark event to the WSN server application
when the Bookmark GUI widget is clicked.

During user testing of WSN, one user complained that inserting a book-
mark required disrupting the meeting to acquire the shared keyboard and Need for efficient

bookmarkingmouse (in order to interact with the GUI), discouraging users from tak-
ing advantage of this feature. The researcher proposed giving each meeting
participant a wireless button that could be discreetly pressed to add a book-
mark during the meeting. This approach has the additional benefit that
each bookmark could be associated with the participant who inserted it.

To implement this, an iRoom administrator created a simple Web-based Simple web

interface for

mapping physical

buttons as

bookmark UI

“This Is My Button” wizard (see Figure 3.21) that configures an iButton
(an iStuff wireless physical button) to send Bookmark events. On entry to
the iRoom, a meeting participant, say Rachel, picks up an iButton from
a bucket of buttons, enters her name into the Web form, and submits the
form. The form submission runs a servlet that waits for the next button
press from any iButton. Rachel now presses the (physical) button, causing
the servlet to establish a Patch Panel mapping connecting her particular
button to bookmark events with her name attached to them.

This is another example of dynamic reconfiguration. The entire process of
integrating the wireless button interaction into the WSN project only took
about an hour and did not require any changes to the Workspace Navigator
code or the wireless buttons.

Quartz Composer

Quartz Composer is a visual programming environment (see Figure 3.22)
that is part of Apple’s freely available Xcode development environment.

74 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

→ →

Button(id=*) → PPMapping[Button(id=in.id) → Bookmark(username="Rachel")]

Figure 3.21: (Top) Sequence of screens that illustrate the functionality of the Button-to-
Bookmark Configuration Servlet. (Bottom) The equivalent function of the GUI specified in the
mapping notation.

It was introduced with Mac OS X 10.4 “Tiger”. It uses a pipe-and-filterUses a

pipe-and-filter

metaphor

metaphor (originally from software architecture, popularized by the UNIX
operating system) to establish data and control flow between different com-
ponents, establishing a composition. Advantages of the pipe-and-filter
metaphor include (Bass et al., 1998):

• Filters stand alone and can be treated as black boxes ensuring infor-
mation hiding, high cohesion, modifiability, and reuse.

• Filters interact with other components in limited ways. This connec-
tion simplicity helps to ensure low coupling.

• Pipes and filters can be hierarchically composed allowing higher order
filters to be created from any combination of lower order pipes and
filters.

• The construction of the pipe and filter sequence can often be delayed
until runtime (late binding).

• Parallelism is encouraged because the process performed by the filter
is isolated from the other components in the system.

The editor is live, and changes made in the workspace are immediately func-
tional without any compilation steps. We have extended the Quartz Com-
poser environment to enable prototyping of physical interfaces. We added
library components for each of the iStuff proxies and new data processing
modules that are particularly useful in physical prototyping scenarios.10

10Update: In response to requests from the developer community, including our own
initiative (www.qcplugins.com), Apple decided to officially open its Quartz Composer
architecture to third-party plugin development.

3.2 iStuff Toolkit Architecture 75

F
ig

u
re

3.
22

:
A

pp
le

’s
Q

ua
rt

z
C

om
po

se
r
is

a
vi

su
al

pr
og

ra
m

m
in

g
en

vi
ro

nm
en

t
de

si
gn

ed
to

su
pp

or
t
ra

pi
d

cr
ea

ti
on

of
3D

in
te

ra
ct

iv
e

vi
su

al
iz

at
io

ns
.

W
e

ha
ve

ex
te

nd
ed

it
to

su
pp

or
t

pr
ot

ot
yp

in
g

ph
ys

ic
al

us
er

in
te

rf
ac

es
.

T
hi

s
sc

re
en

sh
ot

sh
ow

s
th

e
de

ve
lo

pm
en

t
of

a
w

ea
th

er
ap

pl
ic

at
io

n
fo

r
a

la
rg

e
pu

bl
ic

di
sp

la
y

in
a

tr
ai

n
st

at
io

n.

76 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Threshold

C
ei

lin
g

Workspace Navigator Servlet

Patch Panel Manager
(simple)

Patch Panel
Manager
(advanced)

Quartz Composer

Patch Panel
Scripting Language

Figure 3.23: A rough comparison of the different Application Layer programming interfaces
of the iStuff Toolkit.

Other Rapid Prototyping Environments

Quartz Composer is very similar to Max/MSP11 and LabVIEW12 in that
it targets developers, researchers, and interaction designers. They differMany alternative

visual

programming

environments exist

in that Max/MSP’s strength is audio processing, LabVIEW is geared to-
wards electrical signal analysis, and Quartz Composer focuses on interactive
multimedia and 3D rendering. Quartz Composer is a live editor, whereas
Max/MSP and LabVIEW have separate edit and run modes. The Calder
toolkit (Lee et al., 2004a) supports the Macromedia Director13 development
environment; Phidgets (Greenberg and Fitchett, 2001) and Teleo provide
hooks to work with Max/MSP and Adobe Flash14 as development envi-
ronments; d.tools (Hartmann et al., 2006) supports visual programming
through a custom visual statechart editor. Exemplar (Hartmann et al.,
2007) is an extension to d.tools that introduces techniques for authoring
sensor-based interactions by demonstration, combining direct manipula-
tion and pattern recognition techniques to enable designers to control how
interaction rules are created. Other work in the realm of visual configura-
tion of ubiquitous computing environments focused heavily on end-users,
such as the Jigsaw Editor (Humble et al., 2003) and the CAMP (Truong
et al., 2004) magnetic poetry interface. Although valuable for end-users,
the low ceiling of these environments makes them less suitable for advanced
prototyping activities.

11http://www.cycling74.com/products/maxmsp
12http://www.ni.com/labview/
13http://www.adobe.com/products/director/
14http://www.adobe.com/products/flash/flashpro/

3.2 iStuff Toolkit Architecture 77

Hardware

Phidgets Teleo Smart-Its

A
p

p
lic

at
io

n
s

N
et

w
or

k
La

ye
r A

w
ar

e

Applications

Power
Point

iTunes ...

Application Hooks,
Keypresses, ...

Serial Port, USB, Ethernet
Bluetooth, Custom RF, ...

Quartz
Composer

Patch
Panel

Plugins

Event Heap

Patch Panel

Patch Panel
Scripting Language

...

Patch Panel
GUI

Custom GUIs

Software Proxies Hardware Proxies

Application Layer

Mediator Layer

Network Layer

Proxy Layer

User Interface
 Layer

Event Heap events
over TCP/IP network

Event Heap events
over TCP/IP network

Event Heap events
over TCP/IP network

Event Heap events
over TCP/IP network

Event Heap events
over TCP/IP network

PPMapping events
over Event Heap

PPMapping events
over Event Heap

PPMapping events
over Event Heap

Figure 3.24: Summary of the layers of the iStuff Toolkit architecture.

Layer Summary

The application layer allows developers to rapidly prototype different appli-
cation designs by defining interaction logic. Several interfaces for the iStuff
Toolkit have been demonstrated, ranging from textual to visual program-
ming, that allow the designer to define how the user interface responds to
certain inputs. A rough comparison of the range of interfaces available for
the iStuff Toolkit architecture is given in Figure 3.23.

3.2.6 iStuff Architecture Summary

Figure 3.24 places each of the pieces of the iStuff Toolkit architecture back
into the layer diagram presented in Figure 3.1. Through the various layers of
communication abstraction, the architecture solves issues of heterogeneity,
interoperability, and dynamic composition of distributed components. The
remaining sections will illustrate how this architecture is used in practice
through a series of examples, and evaluations.

78 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

3.3 iStuff Prototyping Examples

Several examples applications such as iClub and Workspace Navigator haveHigh ceiling

demonstrated

through examples

been used to illustrate how different layers of the iStuff Toolkit architecture
interact. In this section, we will further demonstrate the high ceiling of the
toolkit architecture through two examples we developed: Elope and iStuff
Mobile.

3.3.1 Elope

The Elope project (Pering et al., 2005) simplifies the process of connect-
ing and configuring mobile devices to work with their environment. The
proof of concept for this publication was built using the iStuff Toolkit. It
uses RFID-tagged objects to invoke a distributed wireless application that
combines a mobile device and an interactive space.

The primary motivation for marrying mobile devices with interactive spaces
is that the devices typically possess storage and computation resources to
manage our personal data, but are not optimally suited for all tasks due to
their small displays and keyboards. This observation served as the inspira-Phone storage

continues to

increase

tion for the Personal Server Project (Want et al., 2002) at Intel Research,
a model of computing in which mobile devices wirelessly use the superior
user-interface capabilities of nearby infrastructure. Interactive spaces afford
a rich user experience; wirelessly blending them together with mobile de-
vices results in the best of both worlds. Fully realizing the synergy between
mobile devices and interactive spaces requires a smooth integration process
not encumbered by messy cables or elaborate connection and configuration
menus.

Interactive spaces (Johanson et al., 2002a), like the one discussed earlier in
Figure 3.2, include wall-size interactive surfaces, surround-sound speaker
systems, and specialized input devices to facilitate group interaction.UsersI/O resources in

environment are

better

naturally want to configure them to work with the personal data they carry
on their mobile devices (such as laptops, PDAs, and mobile phones). Be-
cause two devices can meaningfully interoperate in a variety of ways, the
result is often ambiguity for both devices. For example, specifying that a
mobile phone should be connected to a wall-size interactive surface does
not sufficiently specify a configuration. The display could be used to show
pictures, movies, or presentations stored on the device. The number and
variety of applications involving the combined use of the two computers is
virtually unlimited.

The Elope approach uses tagged physical objects to embody different con-Need to simplify

configuration figurations, leveraging the affordances of the physical world to character-
ize the intended configuration (see Figure 3.25). For example, consider a
presentation remote controller that represents a presentation service in a
conference room. After scanning the remote, the phone is then “married”
to the interactive space, simplifying the integration tasks (such as network,

3.3 iStuff Prototyping Examples 79

Tagged Presentation
Remote Control

Presentation Service

- Description of service (making a presentation)
- Bluetooth MAC address for local access point
- Presentation service connection details
- Controller ID

- Control Data
 (Next, Previous)
- Controller ID

Initiate connection with service
Send:

Mobile Device with embedded
RFID reader

Send:

RFID scan

- Controller ID
- Pointer to presentation data

Send:

Figure 3.25: A system diagram illustrating the coordination between the components to set
up a presentation by scanning a presentation controller.

device, and application configuration). As an analogy, instead of a formal
wedding involving a complicated ritual, the union between space and de-
vice is accomplished quickly, as if a couple had eloped. This streamlined
process significantly eases the integration burden for users, allowing them
to concentrate on higher-level tasks (such as giving their presentation).

The Elope system combines advanced mobile devices, interactive spaces,
and tagged objects to enable the complete configuration of the space (based Use objects to

represent

intentions

on simple user action), including launching the desired application and load-
ing a user’s personal data. These technologies combine to support a model
requiring “near zero” configuration–the minimum interaction necessary to
perform a task. The system encapsulates an“intention”in a physical object.
The following scenario illustrates the potential of the Elope concept:

At home, Ms. Grünberg prepares a presentation on her PC
she will give to a valued client later that afternoon. When com-
plete, she copies the presentation from her desktop computer to
her smart (mobile) phone before heading out to the afternoon
appointment.

When she arrives, her hosts escort her to the conference
room. After greeting the other participants, she scans the RFID
tag embedded in a Meeting Minder device located in the room
by pressing the “scan” button on her mobile device. She is now

80 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

signed into the meeting, and her email address is automatically
registered to receive a copy of the meeting minutes.

Her hosts hand her the wireless Presentation Remote Con-
trol for the room. She scans the RFID tag in the remote control
with her phone, triggering a list of likely presentations to ap-
pear on the room’s main screen. Using the remote control, she
selects the appropriate presentation, causing it to be accessed
from her phone and displayed in full-screen mode on the projec-
tion surface. She then advances through her presentation while
freely walking around the presentation space.

Halfway through the presentation, Mr. Jones wishes to share
some supporting material from one of his own presentations. He
borrows the remote control from Ms. Grünberg, scanning it with
the RFID reader in his laptop, thus duplicating the display from
his laptop on the presentation surface. After the meeting partic-
ipants discuss his slides, Ms. Grünberg again scans the remote
control, returning the screen to the place in her presentation
where she left off.

At the end of the meeting, the participants press the “end
meeting” button on the Meeting Minder device, closing the
shared workspace and automatically sending a copy of the meet-
ing minutes to all participants.

In this business presentation scenario, each of them (Grünberg and Jones)
have scanners embedded in their personal devices (phones and laptops).
The environment also contains shared presentation surfaces and two phys-
ical objects functioning as gateways to seamlessly engage their associated
services. The interaction is supported by two physical objects in the space:

• Meeting Minder. This object allows users to form a shared informa-
tion space facilitated by the proximity of tags to the mobile computing
components. When wireless communication channels are established
through Elope, the components are logically joined automatically,
allowing users to take advantage of the rich interaction capabilities
now provided by the space to share information. Interaction with the
Meeting Minder could grant easy association with the meeting space,
including a list of email addresses provided to all participants.

• Presentation Remote Control. This physical object serves as a to-
ken for giving a presentation in the room. After the user’s mobilePrototyped using

the iStuff Toolkit computer scans the remote control’s tag, it can interact with the pre-
sentation service to show the user’s presentation. Tags automatically
configure the initial presentation setup and transition between pre-
senters fluidly and without encumbrance. The remote control can
then be used to interact (such as to advance to the next slide) with
the presentation.

A prototype of the Elope system was built using the iStuff Toolkit. The
prototype system includes several technologies (see Figure 3.26):

3.3 iStuff Prototyping Examples 81

Figure 3.26: Hardware prototype components, including tagged presenta-
tion remote control (upper left), prototype mobile device (right), and RFID
reader (bottom left). The remote control is tagged with an RFID tag (black
circle on end), and the RFID reader is exposed to show its inner circuitry.
(A Euro, a British Pound, and a U.S. quarter are included for scale.)

• Mobile device and RFID reader. A Stargate mobile platform15 serves Handheld RFID

readeras the user’s mobile device, processing messages from the hand-
held RFID reader and delivering them to the infrastructure using
the Bluetooth radio standard. The RFID reader is built around a
small keyfob-size battery-powered RFID reader based on the M1-
Mini reader from SkyTek16. The reader scans for tags when the user
presses a button, communicating the results to the Personal Server
using a Mote radio17. The cell phone then uses the Bluetooth radio
to communicate with the room infrastructure. Although the RFID
reader is physically separate from the user’s device in the prototype,
the reader and device effectively function as a single device to the rest
of the system and are easily repackaged into a single compact unit,
similar to the Nokia 3220 Near Field Coupling cell phone.

• Presentation Remote Control. This physical device, augmented with
a Texas Instruments (ISO15693) RFID tag18 and several buttons, Tagged

environmentprovides the necessary connection information and triggers events in
the infrastructure. The tag contains up to 256B of information and
is programmed with basic information (such as the object’s unique
ID, a description of the service provided, the Bluetooth address of a

15http://platformx.sourceforge.net/
16http://www.skyetek.com/readers_Mini.html
17http://www.xbow.com/Home/HomePage.aspx
18http://www.ti.com/rfid/docs/products/transponders/1356mhz-encapsulated.

shtml

82 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

nearby access point, and the appropriate service for the mobile device
to contact). The buttons trigger another Mote radio to provide local
wireless broadcast communications.

Once a mobile device scans the RFID tag embedded in the Presentation Re-
mote Control, the device uses the Bluetooth address obtained through the
interaction to form a local-area IP-capable network connection using the
Bluetooth personal area network profile. Then, using the additional infor-Configuration

information is

encoded into

RFID tag

mation in the tag, the mobile device posts an event to the Event Heap with
the remote control’s ID, the desired service, and a self-referencing URL.
Mappings in the Patch Panel are used to invoke the necessary services and
to link the presentation remote control and the presentation application.
The self-referencing URL points to a Web server running on the mobile
device itself, providing the data necessary to show the user’s personal pre-
sentation. The buttons attached to the Presentation Remote Control in-
dependently broadcast messages to the room that are then routed by the
room’s middleware to the presentation application. This system, based on
the Elope architecture, provides a complete mechanism for showing and
controlling a user’s personal presentation while limiting the user’s inter-
action to a single device–the Presentation Remote Control. Including an
RFID tag makes this interaction possible because it simplifies the connec-
tion process, instead of requiring the user to perform multiple integration
steps. The prototype is capable of showing a presentation served from a
mobile device in approximately 13 seconds, a period representing the end-
to-end delay from scanning to presenting.

Elope shows how the iStuff Toolkit architecture supports creating a fairly
complex research prototype quickly and without wasting much time on
infrastructure coding.

3.3.2 iStuff Mobile

iStuff Mobile is a toolkit that employs the iStuff Toolkit architecture to sim-Toolkit

support for

sensor-enhanced

phones

plify prototyping of new sensor-based mobile phone interactions for ubiqui-
tous computing environments. This extension of the iStuff architecture into
the mobile phone domain enables us to explore a wide range of prototypes.

With iStuff Mobile, hardware prototypes can be built by simply attaching
a commercially available sensor network module to the back of a standard
mobile phone using Scotch tape (see Fig. 3.27).

iStuff Mobile Architecture

iStuff Mobile (Ballagas et al., 2007a) is designed as a compound prototype
architecture (Abowd et al., 2005) where part of the software is distributed
across separate computers. This compound architecture, shown in Fig. 3.28,

3.3 iStuff Prototyping Examples 83

Figure 3.27: Back view of a mobile phone augmented with a Smart-Its sensor board in iStuff
Mobile. The sensors can be attached to the phone in whatever position the designer finds most
appropriate. The pictured Smart-It contains a 3D accelerometer, microphone, and sensors for
light, pressure, temperature, and voltage.

Smart-Its
Events

iStuffMobile
Events

Smart-Its
Events

Bluetooth

Mobile
Phone Proxy

Event Heap

Smart-Its
Proxy

Quartz
Composer

External
Proxies

Background
Application

Patch Panel
Plugins

Smart-Its Custom
RF Communication

iStuffMobile
Events

TCP

TCP

TCP

TCP

TCP

A

B

C

D

UDP

X-bridge

Smart-Its
APIs

Other
Apps

Hooks

UDP

Figure 3.28: The iStuff Mobile architecture. Dark boxes indicate our own technical contribu-
tions; light boxes are third-party developments. (A) When the phone is moved, for example, the
Smart-Its sensor board transmits the resulting sensor data wirelessly to the Smart-Its X-bridge.
Our Smart-Its Proxy collects that data from the X-bridge over ethernet, and encapsulates it
into Smart-Its events. (B) Mobile phone input events (such as key presses) are intercepted by
the background application and passed to the Mobile Phone Proxy over a Bluetooth connec-
tion, and the proxy encapsulates the data into iStuffMobile events. (C) The Quartz Composer
GUI is extended with special plugins for the Patch Panel to transform input events into desired
output events. (D) For mobile phone output, the Mobile Phone Proxy listens for iStuffMobile
events, and passes the resulting commands to the mobile phone background application over the
Bluetooth connection. The background application then either executes the command directly,
or forwards it to the foreground application as appropriate.

84 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

allows interface designers to prototype interactions that may be beyond the
capabilities of current mobile phone hardware. In addition, this architec-
ture provides communication capabilities necessary for ubiquitous comput-
ing application scenarios. The disadvantage of the compound architectureCompound

prototype

architecture has

pros and cons

is that it spatially restricts experiments. While a direct communications
channel between the sensors and the phone (e.g., through a Bluetooth con-
nection) may be more efficient and less spatially restrictive, this would
eliminate the prototyping benefits gained from using the Quartz Composer
visual interface, which allows the relationships between user activity and
application feedback to be changed at run-time using a comfortable desk-
top GUI. The delay between user action and application feedback is small
enough to easily maintain causality (Card et al., 1983) and support a wide
range of tasks including continuous pointing tasks which require a latency
much less than 100ms.

Mobile Phone Application Support

The iStuff Mobile architecture divides the mobile phone application into two
parts. The foreground application is what the user interacts with duringForeground is

what the user

sees; Background

helps developers

testing. The background application, provided by iStuff Mobile, is designed
to simplify the work of the interaction designer creating the functional
prototype. It is not directly visible to the user.

Designers can remotely execute commands on the phone by sending iStuff-
Mobile events to the desktop-based Mobile Phone proxy, which relays the
commands to the background application on the phone via a Bluetooth con-
nection (see Fig. 3.28). The background application relays the commands
to the foreground application or the operating system as appropriate. The
background application can also intercept user actions, such as key presses,
from the foreground application, which are relayed to the proxy over the
Bluetooth connection and subsequently posted as events on the Event Heap.
In terms of the iStuff Layer Architecture, this background application can
been seen as part of the Proxy Layer to facilitate communication with the
foreground application. The prototype implementation of the background
application on the mobile phone was designed to include the following fea-
ture set. It does not cover the entire design space of interaction possibilities,
but it does enable a wide range of interesting interactions, and the archi-
tecture encourages expansion to include more features.

1. Bluetooth Communication: communicate with the proxy through a
low-latency wireless communications channel.

2. Sound Playback : trigger available sounds to be played and stopped.

3. Vibrator Control : trigger the vibrator to start and stop.

4. Key Capture: intercept key events from the foreground application
and relay them to the proxy for processing.

3.3 iStuff Prototyping Examples 85

5. Foreground Application Key Simulation: pass key events to the fore-
ground application. Wide range of

functionality

supported in

Background

application

6. Launch External Application: launch any application on the mobile
phone.

7. Profile Control : programmatically change the ring profile of the mo-
bile phone.

8. Backlight : control the backlight programmatically.

9. Run Application in Background : send the current foreground appli-
cation to the background.

10. Camera Control : use the camera on the mobile phone for taking
pictures, videos, or interactions using motion estimation such as the
Sweep technique as discussed previously in Section 2.1.1.

We have built a prototype implementation of the background application
using the Symbian Series 60 operating system. Our analysis shows that Other platforms

may be suitable.Windows Mobile 6.0 SmartPhone Edition would be a good candidate for
porting the iStuff Mobile background application because it shares many
of the same capabilities as Symbian Series 60. Java 2 Micro Edition, on
the other hand, is currently not a candidate platform as the background
application would be lacking critical functionality. We believe that it is
possible to port the background application to Linux-based mobile phone
platforms such as the Motorola E680i19 or OpenMoko20, but open source
development efforts on these phones are still in their early stages.

The foreground application is the application the user sees and interacts
with. iStuff Mobile is designed to be used with any foreground application
and communicates primarily through system events (e.g., key presses). De- Foreground can

be produced using

rapid prototyping

tools of choice

signers are expected to prototype their own mobile phone application using
rapid prototyping solutions such as static images, Adobe’s Flash Lite21, or
a scripting language like Python22. Alternatively, designers have the op-
tion to program their own application using Java23 or native code. Lastly,
designers can prototype interactions with existing foreground applications
that come with the mobile phone, such as its Address Book or Calendar,
despite the fact that these applications were not explicitly designed to ac-
commodate new interaction techniques. In terms of the iStuff toolkit lay-
ered architecture, this foreground application is part of the User Interface
Layer.

19http://sf.net/projects/e680
20http://openmoko.org
21http://www.adobe.com/products/flashlite/
22http://opensource.nokia.com/projects/pythonfors60/
23http://java.sun.com/j2me/

86 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Other Mobile Phone Interface Prototypes

The TEA project (Schmidt et al., 1999) uses a predecessor of the Smart-Its
platform to demonstrate mobile phone context interactions. Also, HarrisonSeminal mobile

phone interactions

represent the

types of scenarios

iStuff Mobile

supports

et al. (1998) and Hinckley and Horvitz (2001) built custom PDAs and
mobile phones with integrated sensor hardware. These projects broke new
ground and demonstrated a broad vision for what types of interfaces are
possible for mobile phones, but the focus was on the interfaces, not the
development process: Their software prototypes were one-off developments.
iStuff Mobile focuses on providing a reusable prototyping framework for
research and design scenarios like these.

Other Mobile Phone Toolkits

d.tools (Hartmann et al., 2006) allows designers to rapidly prototype hand-
held devices including mobile phones. Its strength is the ability to explored.tools facilitates

form factor

exploration

different mobile phone form factors and sensor placements. However, its
lack of support for critical phone functionality, such as voice calls, and its
wired sensors currently limit the toolkit’s ceiling for many mobile phone
application scenarios.

Topiary (Li et al., 2004) is a toolkit for building Wizard of Oz prototypes ofTopiary facilitates

WOz prototypes

of location-based

interactions

location-based applications on existing handheld devices. While valuable
for location-based scenarios, it does not address other types of physical
sensors, and does not simplify the construction of functional prototypes.
iStuff Mobile is the first toolkit to allow rapid prototyping of functional
physical sensor-based interactions with existing mobile phones.

Recreating Seminal Mobile Phone Interactions

To demonstrate the utility of the framework, we have used it to recreate
several mobile phone interactions discussed in previous literature. HarrisonExample:

Tilt-scroll et al. (1998) introduced a tilt-scrolling interaction for mobile devices. The
implementation consisted of a PDA augmented with an accelerometer and
pressure sensors. To activate tilt-scrolling, the user squeezes the sides of
the device with her thumb and forefinger. The more the user tilts, the
faster the device scrolls. Figure 3.29 shows that, with iStuff Mobile, the
researchers could have created their prototype in just six Quartz Composer
nodes and one simple JavaScript node, and in particular without having to
write any networking, driver or glue code, or doing any electronics work.

We were also able to recreate some context-aware interactions described
in the literature. Schmidt et al. (1999) and Hinckley and Horvitz (2001)Example:

Context-aware

profile control

describe a scenario where the mobile phone ring tone profile is automatically
switched to vibrator-only when the mobile phone is in the user’s hand, since
an audio notification is unnecessary in that situation. This interaction was

3.3 iStuff Prototyping Examples 87

T
il
t

T
o
 K

e
y
 -

 J
a
v
a
S
c
ri

p
t

E
n
a
b
le

T
il
t

K
e
y
C

o
d
e

R
e
p
e
a
t

P
e
ri

o
d

M
u
lt

ip
le

x
e
r

S
o
u
rc

e
 I
n
d
e
x

S
o
u
rc

e
 #

0

S
o
u
rc

e
 #

1

O
u
tp

u
t

L
F
O T
y
p
e

P
e
ri

o
d

P
h
a
s
e

A
m

p
li
tu

d
e

O
�

s
e
t

P
W

M
 R

a
ti

o

R
e
s
u
lt

K
e
y
 P

re
s
s
 -

 C
o
n
d
it

io
n
a
l

F
ir

s
t

v
a
lu

e

C
o
n
d
it

io
n

S
e
c
o
n
d
 V

a
lu

e

T
o
le

ra
n
c
e

R
e
s
u
lt

S
m

a
rt

It
s
S
e
n
s
o
r_

1

S
o
u
rc

e
ID

G
ra

v
it

y
-
X

G
ra

v
it

y
-
Y

G
ra

v
it

y
-
Z

L
ig

h
t

L
e
v
e
l

F
o
rc

e

T
e
m

p
e
ra

tu
re

S
w

it
c
h
 V

a
lu

e

A
u
d
io

V
o
lt

a
g
e

T
h
re

s
h
o
ld

 -
 C

o
n
d
it

io
n
a
l

F
ir

s
t

v
a
lu

e

C
o
n
d
it

io
n

S
e
c
o
n
d
 V

a
lu

e

T
o
le

ra
n
c
e

R
e
s
u
lt

M
o
b
il
e
P
h
o
n
e
C

o
n
tr

o
ll
e
r_

1

E
n
a
b
le

T
h
re

s
h
o
ld

T
u
rn

 B
a
c
k
li
g
h
t

O
n

T
u
rn

 B
a
c
k
li
g
h
t

O
�

P
la

y
 S

o
u
n
d

S
to

p
 P

la
y
in

g
 S

o
u
n
d

L
a
u
n
c
h
 A

p
p
li
c
a
ti

o
n

P
a
th

C
lo

s
e
 A

p
p
li
c
a
ti

o
n

K
e
y
 C

o
d
e

R
e
p
e
a
t

P
o
rt

S
c
a
n
c
o
d
e
 P

o
rt

P
ro

fi
le

 #

C
a
p
tu

re
 K

e
y
 P

re
s
s
e
s

1

F
ig

u
re

3.
29

:
T

he
Q

ua
rt

z
C

om
po

se
r
im

pl
em

en
ta

ti
on

of
th

e
ti

lt
-s

cr
ol

lin
g

in
te

ra
ct

io
n

fr
om

(H
ar

ri
so

n
et

al
.,

19
98

).
Sq

ue
ez

in
g

in
pu

t
is

m
ea

su
re

d
by

th
e“

Fo
rc

e”
ou

tp
ut

fr
om

th
e
S
m

a
rt

It
sS

e
n
so

r
1

an
d

is
te

st
ed

w
it

h
a

si
m

pl
e

th
re

sh
ol

d.
T

he
re

su
lt

is
pa

ss
ed

to
th

e
T
il
t
T
o

K
e
y

-
J
a
v
a
S
c
ri

p
t,

w
hi

ch
m

ap
s

va
ri

ou
s

ti
lt

s
in

th
e

Z
-d

ir
ec

ti
on

of
th

e
gr

av
it
y

se
ns

or
to

di
ffe

re
nt

ke
y

co
de

s
an

d
ke

y
re

pe
at

ra
te

s.
T

he
ou

tp
ut

s
fr

om
th

at
Ja

va
Sc

ri
pt

no
de

in
cl

ud
e

“K
ey

C
od

e”
,
w

hi
ch

re
pr

es
en

ts
th

e
ap

pr
op

ri
at

e
ke

y
(u

p
or

do
w

n
ar

ro
w

)
de

pe
nd

in
g

on
th

e
cu

rr
en

t
ti

lt
,
an

d
“R

ep
ea

t
P
er

io
d”

,
w

hi
ch

sp
ec

ifi
es

ho
w

fa
st

th
e
L
F
O

(l
ow

fr
eq

ue
nc

y
os

ci
lla

to
r)

no
de

sh
ou

ld
op

er
at

e.
Fo

r
th

is
sc

en
ar

io
,
la

rg
er

ti
lt

is
m

ap
pe

d
to

fa
st

er
re

pe
at

ra
te

s.
T

he
K

e
y

P
re

ss
-

C
o
n
d
it
io

n
a
l

ch
an

ge
s

th
e

os
ci

lla
to

r
to

fu
nc

ti
on

lik
e

a
bi

na
ry

cl
oc

k,
re

gu
la

rl
y

sw
it

ch
in

g
be

tw
ee

n
0

an
d

1.
“S

ou
rc

e
#

0”
(w

hi
ch

de
fa

ul
ts

to
0)

re
pr

es
en

ts
no

ke
y

pr
es

se
d,

an
d

“S
ou

rc
e

#
1”

re
pr

es
en

ts
th

e
ke

y
sp

ec
ifi

ed
fr

om
th

e
Ja

va
Sc

ri
pt

no
de

.
T

he
ke

y
is

th
en

pa
ss

ed
to

th
e

M
o
b
il
e
P
h
o
n
e
C
o
n
tr
o
ll
e
r

1
to

fo
rw

ar
d

to
th

e
m

ob
ile

ph
on

e.
T

he
na

m
in

g
co

nv
en

ti
on

of
th

e
iS

tu
ff

M
ob

ile
re

la
te

d
no

de
s

co
rr

es
po

nd
s

to
th

e
na

m
e

of
th

e
de

vi
ce

be
in

g
co

nt
ro

lle
d.

(
1

he
lp

s
di

st
in

gu
is

h
m

ul
ti

pl
e

de
vi

ce
s

of
th

e
sa

m
e

ty
pe

.)

88 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

SmartItsSensor_1

SourceID

Gravity-X

Gravity-Y

Gravity-Z

Light Level

Force

Temperature

Switch Value

Audio

Voltage

MobilePhoneController_1

Enable

Threshold

Turn Backlight On

Turn Backlight O�

Play Sound

Stop Playing Sound

Launch Application

Path

Close Application

Key Code

Repeat Port

Scancode Port

Profile #

Capture Key Presses

1

Threshold - JavaScript

Pressure Profile

Figure 3.30: Implementation of the context based profile change described
in (Hinckley and Horvitz, 2001; Schmidt et al., 1999). The Threshold -
JavaScript node changes the profile based on the pressure sensor (indi-
cating the user is holding the phone).

recreated using the Smart-Its pressure sensor to detect when the user was
holding the phone. Pressure sensor activity triggers a command to the
mobile phone proxy to switch the ring tone profile, and inactivity triggers
the command to switch the ring tone back. Using iStuff Mobile, building
this prototype becomes trivial (see Fig. 3.30).

As another example, the TiltText (Wigdor and Balakrishnan, 2003) tech-
nique simplifies text entry using a numeric keypad by adding tilting. TiltingExample:

TiltText the phone to the left activates the first letter, tilting upward activates the
second letter, tilting to the right activates the third letter, tilting down-
ward activates the fourth letter (applicable for keys ‘7’ and ‘9’) and no tilt
activates the standard numeric character. This technique has been shown
to be faster than MultiTap and comparable to dictionary-based techniques.
Again, we were able to quickly recreate this interaction using the iStuff
Mobile framework (see Fig. 3.31). This example is a good illustration of
how capable Quartz Composer is of expressing state-based interfaces. In
the implementation, the tilt state is determined through the Tilt State -
JavaScript node and passed to the TiltType - JavaScript node, which mod-
ifies the key presses based on the current state. Note that since there are
5 different states for 12 different phone keys, this would be cumbersome
to model as a state machine, but it is fairly easily modeled using Quartz
Composer.

Ubiquitous Computing Prototyping Scenarios

To show how the framework goes beyond the localized sensor-based interac-
tions described so far, we will now demonstrate how it simplifies prototyping
entire ubiquitous computing scenarios.

The idea of using the mobile phone as an input device for ubiquitous com-

3.3 iStuff Prototyping Examples 89

TiltType - JavaScript

KeyCode

Tilt State

Modified KeyCode

MobilePhoneKeyListener_1

Key Code

KeyPressed
SmartItsSensor_1

SourceID

Gravity-X

Gravity-Y

Gravity-Z

Light Level

Force

Temperature

Switch Value

Audio

Voltage

MobilePhoneController_1

Enable

Threshold

Turn Backlight On

Turn Backlight O�

Play Sound

Stop Playing Sound

Launch Application

Path

Close Application

Key Code

Repeat Port

Scancode Port

Profile #

Capture Key Presses

1

Tilt State - JavaScript

Tilt X

Tilt Y

State

Figure 3.31: The TiltText (Wigdor and Balakrishnan, 2003) technique maps numeric keys to
different characters based on the tilt of the device.

SmartItsSensor_1

SourceID

Gravity-X

Gravity-Y

Gravity-Z

Light Level

Force

Temperature

Switch Value

Audio

Voltage

Billboard

Enable

Image

Mask Image

X Position

Y Position

Rotation

Width

Color

Blending

1Image Importer

Image

SweepController_1

dX

dY

drZ

Select

Sensor Fusion - JavaScript

Tilt X

Tilt Y

Tilt Z

Motion X

Motion Y

X

Y

Figure 3.32: The Quartz Composer implementation for combining accelerometer data with
camera-based motion detection to improve motion detection accuracy. The Sensor Fusion -
JavaScript node implements the algorithm to combine the sensor values in a meaningful way.
The JavaScript logic can be modified at run-time to test and refine the sensor fusion strategy.
The standard Billboard node of Quartz Composer displays an image to the screen (e.g., a
cursor). The output of the sensor fusion algorithm in the JavaScript node controls the position
of the billboard on the screen.

puting application scenarios is very compelling because the phone is almost
always with us (Patel et al., 2006). One technique that has demonstrated Example: Large

public display

weather browser

some potential for this use is the Sweep (Ballagas et al., 2005) interaction
technique, which uses camera-based motion estimation to allow the phone
to be used as a relative pointing device for public displays. The motion
estimation algorithm on the low power mobile processor is not perfect and
suffers from some estimation errors. We used the iStuff Mobile framework
to combine accelerometer data with the camera information to improve the
motion estimation, as shown in Fig. 3.32. This allows the mobile phone
to serve as a more accurate pointing device, for example when interacting
with public displays. The synergies of choosing Quartz Composer as a vi-
sual programming environment are demonstrated in this scenario because
Quartz Composer makes authoring visually compelling interactive graph-
ics very simple (see Fig. 3.33). This means that the iStuff Mobile input
techniques can directly drive these 3D visualizations and the framework
provides end-to-end prototyping assistance.

Mobile phones have also emerged as popular presentation remote controls,

90 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Figure 3.33: The proof of concept weather browser application allowed users to navigate
through regions on the map using the Sweep technique. The weather forecast is updated live
using RSS feeds from Yahoo! Weather.

due in part to the success of tools like Salling Clicker24. But ubicomp envi-Example:

Multi-screen

presentation

remote control

ronments like interactive workspaces (Johanson et al., 2002a) have multiple
screens that can be taken advantage of to enhance the presentation. As a
proof of concept, we developed a multi-screen presentation interface (see
Fig. 3.34). In this scenario, one screen is showing the current slide of the
presentation, while the second screen is showing the presentation history.
These presentations are controlled through simple PowerPoint proxies run-
ning on different machines in the interactive workspace. Each proxy listens
for events with different names (e.g., PresentationController 1) so that they
can be individually controlled. By pressing a key on the mobile phone, the
user advances the slide on each screen.

Ubiquitous computing environments such as interactive workspaces (Jo-
hanson et al., 2002a) are rich in input and output capabilities, includ-
ing touch sensitive wall-sized displays, and interactive tabletop displays.Example:

Keyboard

redirection

PointRight (Johanson et al., 2002b) demonstrates a system that lets users
redirect the mouse and keyboard input to the different computers in the
room. We wanted to demonstrate a system that would also let users redi-
rect their keyboard input to a mobile phone. The resulting prototype is
shown in Fig. 3.35.

Using an almost identical configuration, we were able to prototype a sce-
nario where the user could dictate text to the phone using continuous speechExample:

Continuous

speech recognition

recognition. Mobile phones are years away from having the processing abil-
ity to support such continuous speech recognition, but iStuff Mobile enabled
us to create a functional prototype today.

In summary, the preceding examples illustrate our key point: With iStuff
Mobile, a researcher or designer with a new idea for a mobile or ubiqui-
tous interaction technique can get to his “core business” – exploring and

24http://www.salling.com/Clicker/

3.4 User Evaluation 91

MobilePhoneKeyListener_1

Key Code

KeyPressed

Counter

Increasing Signal

Decreasing Signal

Reset Signal

Count

Is Next Key?

First value

Condition

Second Value

Tolerance

Result

Is Prev Key?

First value

Condition

Second Value

Tolerance

Result

SlideNum - 1

Initial Value

Operation #1

Operand #1

Resulting Value

PresentationController_1

Enable

Next Slide

Previous Slide

GotoSlide #

1

PresentationController_2

Enable

Next Slide

Previous Slide

GotoSlide #

2

Figure 3.34: (Top) A multi-screen presentation application that uses a mobile phone as a
presentation remote control. The foreground application in this example is prototyped using
a static image. The right screen shows the previous slide, and the left screen shows the cur-
rent slide. (Bottom) The Quartz Composer implementation for the multi-screen presentation
application. On the far left, the MobilePhoneKeyListener 1 node receives the key presses
from the iStuff Mobile Proxy. The two nodes on the far right are iStuff modules to control
two instances of the same PowerPoint presentation, each running on a different computer in the
interactive workspace (Top). No JavaScript nodes are required for this composition.

evaluating the technique – very quickly, without getting sidetracked by in-
frastructure glue code development or electronics hardware work.

However, to show the validity of our claims of thus improving the develop-
ment process, an evaluation is needed. This is given in the next section.

3.4 User Evaluation

Conducting a formal evaluation of a toolkit or software framework is an
extremely difficult task. The qualities that are important for toolkits, such Evaluating

toolkits is hardas development effort, are difficult to measure directly. Evaluating a soft-
ware framework has issues similar to evaluating middleware. Edwards et al.
(2003) point out that although we have good techniques for designing and
evaluating interactive applications, we are lacking well formed techniques

92 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

CharacterGenerator_1

KeyCode

Permanent KeyCode

MobilePhoneController_1

Enable

Threshold

Turn Backlight On

Turn Backlight O�

Play Sound

Stop Playing Sound

Launch Application

Path

Close Application

Key Code

Repeat Port

Scancode Port

Profile #

Capture Key Presses

1

Text
Events

Text
Events

Event
Heap

A
B

C

Figure 3.35: (A) The window floating on top belongs to iListen, a commercial application that
supports continuous speech recognition (dictation) on Mac OS X. When speech is recognized,
it is converted to ascii text and sent to the focused application as key events. (B) Our Text
Event Engine is a Java application in focus that produces Text events for each key entered
in the textbox. In this example, the user is dictating an SMS message. (C) Text events are
recognized by the CharacterGenerator 1 and transferred to MobilePhoneController 1 .
This composition can alternatively be used to allow users to type messages onto their mobile
phone using a standard keyboard on their desk.

for designing and evaluating the infrastructure to support application devel-
opment. Klemmer et al. (2004) provide a detailed discussion of this topic,
and describe their various approaches to evaluate the Papier-Mâché toolkit.
One approach is to measure the efficiency (e.g., development time, or lines
of code) of developers while using a toolkit, but efficiency is also related
to the quality of the resulting prototype, making these metrics difficult to
isolate.

New toolkits are typically validated by the breadth of coverage in the de-High ceiling

demonstrated

through examples

signs they support (Greenberg and Fitchett, 2001; Ballagas et al., 2003;
Klemmer et al., 2004) and their ability to recreate important interactions
from the literature more easily (Klemmer et al., 2004). Similarly, the high
ceiling of our iStuff architecture was demonstrated in the last section by
the range of prototypes it enables.

The rest of the evaluation is designed to show that the iStuff architecture
has a low prototyping threshold. In this evaluation, we examine the effi-Low threshold

demonstrated

through

experiment

ciency of prototyping with the iStuff toolkit using development time and
number of prototype iterations as the primary metrics. In the case of Quartz
Composer, the lines of code metric is less relevant since only a small part
of the modeling is done textually in JavaScripts.

In order to experimentally evaluate iStuff, we chose to compare the effec-
tiveness of the new visual programming paradigm to the established Patch
Panel scripting language.

To reduce task bias, we chose to examine four different design problems,
each making use of different hardware components:

3.4 User Evaluation 93

1. Multi-screen presentation. Participants were asked to prototype
a presentation interface that used the mobile phone to control a pre-
sentation across several different screens, similar to Fig. 3.34 on p. 91.
The station was equipped with a mobile phone and two remote ma-
chines connected to large LCD displays. The remote machines were
running PowerPoint presentation software and connected to the de-
sign station via ethernet. Variety of design

problems chosen

to reduce task

bias

2. Tilt-to-scroll. Participants were asked to prototype a mobile phone
interface that allows scrolling through large lists of data by tilting
the phone, similar to (Harrison et al., 1998) and Fig. 3.29 on p. 87.
The station was equipped with a mobile phone and several Smart-Its
sensors.

3. Handheld music player. Participants were asked to prototype a
new handheld music player, including song selection and volume con-
trol functionality. The station was equipped with a variety of Phidgets
sensors, and the iTunes software music player. This task was chosen
to provide some level of comparability to d.tools and BOXES, where
the portable music player serves as a prominent example.

4. Remote steering. Participants were asked to design a remote con-
trol mechanism for a model boat, where physical input would control
an electronic motor to steer a boat rudder. The station was equipped
with Phidgets sensors for input and Phidgets servo-motors and card-
board to build a low-fidelity boat prototype.

Full scenario descriptions from the test are provided in Appendix B.

The test consisted of 16 participants (10 male, 6 female) from a computer
science course. On average, the students were in their 4th year of university
studies. All students had completed lectures on Human Computer Interac-
tion and were familiar with the fundamentals of iterative interaction design,
prototyping, and evaluation.

The test was structured such that the group of participants received training
before the design exercises with the following time schedule:

0:00 – 0:30: Introduction to iStuff prototyping principles
0:30 – 1:00: Training for Prototyping Environment 1
1:00 – 1:30: Design Task 1
1:30 – 2:00: Design Task 2
2:00 – 2:30: Training for Prototyping Environment 2
2:30 – 3:00: Design Task 3
3:00 – 3:30: Design Task 4

The test was designed as a within-groups study, with special care taken
to avoid learning effects both in terms of the tasks completed and the
prototyping environments used (see Table 3.1). The 16 participants were
split up into 2 shifts of 8 and further split into 4 teams of 2 participants.
During each shift, there was one team at each test station attempting one

94 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

of the 4 design tasks described earlier. After each task, the teams rotatedTask order varied

to reduce learning

effects

to a different station such that each team performed the design tasks in
a different order. The first shift of 4 teams completed their first 2 design
tasks using the Quartz Composer GUI, then their last 2 tasks with the Patch
Panel script. The second shift of 4 teams used the prototyping environments
in the opposite order. Participants were instructed to stop after 30 minutes,
regardless of whether or not they had a functional prototype ready.

Test Run #1
Group A B C D

Patch Panel GUI Scenario 1 Scenario 3 Scenario 2 Scenario 4
Patch Panel GUI Scenario 2 Scenario 4 Scenario 1 Scenario 3

Scripting Language Scenario 3 Scenario 1 Scenario 4 Scenario 2
Scripting Language Scenario 4 Scenario 2 Scenario 3 Scenario 1

Test Run # 2
Group E F G H

Scripting Language Scenario 1 Scenario 3 Scenario 2 Scenario 4
Scripting Language Scenario 2 Scenario 4 Scenario 1 Scenario 3
Patch Panel GUI Scenario 3 Scenario 1 Scenario 4 Scenario 2
Patch Panel GUI Scenario 4 Scenario 2 Scenario 3 Scenario 1

Table 3.1: User test scenario completion matrix.

We measured the time it took for the participants to build their first func-
tional prototype, and the number of iterations completed in the time al-
lotted. For this study, we define functional prototype as an artifact that
successfully implements at least a portion of the functionality described in
the design task. We define a design iteration as a full DIA cycle (design,
implement, analyze). Every time the participants created a functional pro-
totype, analyzed the problems, and made changes to the design we counted
it to be a design iteration.

3.4.1 Experimental Results

Results from the experiment are shown using box-plots in Fig. 3.36. In the
time measurement plot, if a group was unable to complete a prototype in
the allotted 30 min., we assigned a time of 31 minutes to maintain the visual
integrity of the box-plots, but omitted these data points during statistical
analysis. The average time for the first functional prototype was 19.6 min-Quartz Composer

is faster and

supports more

iterations

utes for the Quartz Composer GUI, and 27.6 minutes for the Patch Panel
script. However, we are unable to show that this difference is statistically
significant because of the large number of incomplete first iterations for the
Patch Panel script. Participants were able to complete at least one itera-
tion of the test in the time alloted 81% of the time with Quartz Composer,
compared to only 31% with the Patch Panel script (p < 0.05, Fisher’s test).
Participants were also able to complete an average of 2.5 iterations using
the Quartz Composer GUI compared to 0.9 iterations using the Patch Panel
scripting language (p < 0.05, Student’s t-test). The combined results show

3.4 User Evaluation 95

1st quartile
minimum

median
3rd quartile
maximum

Figure 3.36: Results show that Quartz Composer is significantly faster and enables significantly
more iterations than the Patch Panel scripting language.

that the Quartz Composer GUI is significantly faster than the Patch Panel
script in building prototype iterations.

Clearly, there are disadvantages to this experimental design since the com-
parison is limited and doesn’t reflect the range of prototyping approaches Main takeaway:

low prototyping

threshold

that exist today. The main take-away is that the study demonstrates a
low prototyping threshold: with very little training, users could often build
early prototypes in less than 30 minutes. The Patch Panel scripting lan-
guage serves as a point of reference to interpret the results.

3.4.2 Questionnaire Results

Participants were given ten questions that should be judged by ranking on
a 1 to 5 scale (see Appendix C). Additional free-form questions encouraged
feedback on different aspects of the different rapid prototyping environ-
ments.

Quanititative Results

More than 90% of the participants preferred the graphical approach but
also provided some critical thoughts that are presented in the qualitative
results. Participants stated that the development capabilities of Quartz Quartz Composer

preferredComposer were better than the scripting approach with an average score
of 4.5 (5 = strongly agree). A rating of 4.6 (5 = strong preference) for the
graphical programming approach compared to a rating of 1.6 (5 = strong
preference) of the scripting approach further demonstrated a strong pref-
erence for the graphical programming. The appropriateness of the Quartz

96 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Composer metaphor was scored with an average of 3.9 (5 = very appro-
priate) which shows that participants generally agreed that the interface
worked with the event passing concept of the iStuff toolkit. These results
suggest the continuation of Quartz Composer development in the future.

An average score of 3.2 (5 = very frequent) was given to the question
regarding the frequency of use of the built-in Quartz Composer patches,
supporting the decision to extend Quartz Composer and therefore benefit
from its built-in functionality. The Quartz Composer graphical approachhighly extensible

was felt as being extensible in the future which is supported by a score of
4.4 (5 = very extensible). This result encourages the extension of the iStuff
prototyping suite and strengthens the decision that was made to develop
a software framework that makes the integration of new components very
easy.

The clarity of the iStuff project concepts was rated an average score ofTraining was

sufficient 4 (5 = very clear), demonstrating that the training was effective for the
scope of the user test and the participants did not struggle with the overall
understanding.

The scripting approach was felt as being more powerful with an average
score of 3.1 (5 = very powerful). This justifies the need for state machineScripting

approach more

powerful

support in future versions of the Quartz Composer extensions as well as
several other custom patches that support the prototyping process. The
inner structure of the passed events should also be conveyed in a better
way. In following iterations of the Quartz Composer extensions, existing
features will be improved and new ones added.

More than 90% expressed to be more encouraged to undergo more iterations
with their design using the graphical approach. This demonstrates general
willingness to refine designs using the graphical programming model.

Qualitative Results

The participants were also given a chance to freely express their criticism
of the system, tell what features or patches were missing or what should be
changed in future versions. It turned out that the scripting approach was
judged as immature although it has been used for a long time inside the
iStuff project. This point was stated because the users had to apply a lot
of workarounds to achieve a working solution. The results demonstrate the
difficulty in creating a custom scripting language. Although it was refined
and tested for over two years, the testers were still able to find new bugs.

Participants also expressed difficulty dealing with the array of support ap-
plications such as the Proxy Manager and the Event Logger in addition toToo many

windows the rapid prototyping environments. One suggested that the Event Logger
application could be combined with the Proxy Manager such that events
sent by the configured proxies could be directly analyzed.

3.5 Performance Evaluation 97

Participants requested state machine capabilities, like a “Toggle Switch”, in
Quartz Composer. State machine like capabilities are available using the Need for FSM

support in Quartz

Composer

JavaScript capabilities, but this was not obvious to the testers. Prototyping
scenarios might benefit from a custom state machine extension to better
support these needs, but it is unclear how such a module might work.

Participants also felt the range of sensor types in the evaluation was limited
and requested the integration of more sensor types.

This concludes our user-centered evaluation. The remaining section assesses
the system performance of the iStuff Toolkit architecture.

3.5 Performance Evaluation

The distributed nature of ubicomp environments inevitably leads to sys-
tem latency. However, latency is a critical aspect of the user experience. Distributed

interactions have

latency

It is important to understand the implications of tampering with the tight
interaction loop users require for fluid interactivity. Pointer input in tra-
ditional desktop systems is specially integrated into the operating system,
bypassing normal system event queues, and allowing device movements to
be echoed almost instantaneously. However, these optimizations are not
available for the loosely-coupled, distributed infrastructure of ubicomp en-
vironments. We have identified three general types of latency in ubiquitous
computing systems (Fig. 3.37):

• Internal latency is internal to a system component, application, or
device (e.g., program execution times).

• External latency occurs in communication between system compo-
nents (i.e., networking)

• Human latency arises from human factors such as perception, cogni-
tion and reaction times.

From our experience in using the system, the Patch Panel has no problems
maintaining causality by keeping delays below 100ms (Card et al., 1983)
for command-based interfaces (e.g., “turn on the lights”). However, other
tasks, such as pointer manipulation, require a much lower latency. The dis-
tributed, loosely-coupled system architecture (shown in Fig. 3.37) has many
different sources of external latency (due to communication overhead) and
internal latency (due to internal processing overhead). In addition, there
are several conditions that are known to cause perfomance degradation in
the overall intermediation system.

• The most obvious degradation happens when the underlying network
becomes overloaded with external TCP/IP traffic, for example if sev-
eral people start to download a large file at the same time.

98 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Figure 3.37: Sources of latency in tangible UIs for ubicomp.

• An extremely high number of Event Heap clients (> 1000) slows down
performance because this increases the template matching burden of
the Event Heap for each incoming event (although this is typically
never realized because of the Boundary Principle (Kindberg and Fox,
2002)).Sources of latency

in the iStuff

Toolkit

architecture

• Large numbers of equations per event mapping affect performance
because the Patch Panel must resolve the equations for each incoming
trigger event.

• Large numbers of mappings affect performance because this increases
the template matching burden of the Patch Panel, although trees and
hashes are used to reduce this effect.

To portray an example of performance degradation, we measured the per-
formance as the number of mappings increased by increments of 100. Re-
sults are shown in Fig. 3.38. The benchmark consisted of a 2 computerBenchmark

performance

analysis

setup networked over a 1Gb LAN, including a dual-2GHz G5 PowerMac
running the Event Heap, and a 1.67GHz G4 PowerBook running the Patch
Panel and a benchmark client. The benchmark client configured the Patch
Panel with the appropriate mappings before measuring the time between
sending a benchmark event and receiving the translated output of the inter-
mediation. The translation mappings included a single equation to resolve
at run-time. For each test condition, 200 round trip times (RTT) were
measured. Note that variance is extremely high in the benchmark mea-
surements due to the large number of random latency sources identified in
Fig. 3.37.

To determine if this lag is acceptable for pointer manipulation, Fitts’ law is
the most commonly referenced human performance model. The mean time
to select a target using a pointing device can be predicted as follows:

MeanTime = C1 + C2ID

3.6 Conclusions 99

1st quartile
minimum

median
3rd quartile
maximum

Figure 3.38: Benchmark measurements and example performance degradation for combined
Event Heap and Patch Panel round trip time. Note the periodic delay spikes indicated by the
large positive skew for each group of measurements.

where ID represents the index of difficulty of the pointing task, which can
be interpreted as a measure of the average number of movement correc-
tions required to acquire a target. C1 and C2 are empirically determined Modified Fitts’

Law incorporates

lag

constants that vary with input device. A slightly modified version of Fitts’
law that incorporates lag has been proposed (MacKenzie and Ware, 1993;
Ware and Balakrishnan, 1994) for the mean task performance time:

MeanTime = C1 + C2(C3 + MachineLag)ID

where C3 represents the human processing time required to make a correc-
tive movement, MachineLag represents the system processing time, C2ID

represents the average number of iterations of the human control loop, and
C1 represents the sum of the initial response time and the time required to
confirm the acquisition of the target. This version of Fitts’ law was applied Lag target for

ubicomp should

be less than 50ms

to 3D virtual reality systems and experimental measurements revealed a lag
target of less than 50ms for input devices (Ware and Balakrishnan, 1994).
This threshold for 3D virtual reality systems can serve as approximate
threshold for the lag in ubiquitous computing. Based on our benchmarks,
our system is below this critical threshold on average. However, the high
variance of the latency in our system or performance degradation under
system load can push system latency above this threshold. Also, variance
in latency impedes usability further by making the input device seem more
erratic. Thus our system architecture, in its current implementation, is
borderline for fluid pointer manipulation.

3.6 Conclusions

The quality of a user interface tends to increase with more iterations in the Deployable

systems for

Interactive

Workspaces

design process, motivating the need for rapid prototyping solutions. The
iStuff framework greatly simplifies the exploration of new physical and mo-
bile phone interactions in ubiquitous computing environments from very

100 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

early stage prototypes all the way to a deployable system for interactive
workspaces. For mobile scenarios, the toolkit is prototype-only because its
compound prototype architecture and spatial proximity restriction are not
acceptable for deployment and make user studies “in the wild” difficult to
perform. However, Kjeldskov and Graham (2003) show in a review of mo-Prototype-only for

mobile phones bile evaluations that controlled user studies, similar to those supported by
iStuff Mobile, are common in the mobile domain, and useful for identifying
critical interaction problems. In a later paper, Kjeldskov and Stage (2004)
noted that mobile field experiments are expensive and found that labo-
ratory tests approximating field use of mobile systems identified usability
problems at a lower cost.

In this chapter, we have demonstrated how the iStuff Toolkit architecture
can be used to easily recreate seminal ubiquitous computing interfaces,Radically

simplifies

prototype creation

for ubicomp

and to significantly simplify the creation of novel ubiquitous computing
scenarios. Our evaluation shows that the visual programming environment
allows prototypes to be built faster and encourages more design iterations
to be performed. System performance is also shown to be adequate for
human–computer interaction in ubiquitous computing. By making this
toolkit available as open source25 to the interaction design and research
community, we hope to advance the pace of innovation and improve the
quality of interface designs in ubiquitous computing.

This also concludes Chapter 3 of this work, in which we introduced a lay-
ered architecture model to support prototyping ubiquitous computing user
interfaces. Using this model, we introduced the different layers of func-
tionality of the iStuff Toolkit architecture. The toolkit architecture was
demonstrated to have a low threshold for prototyping, and a high ceiling
for the prototypes that can be realized.

In the next chapter, we will transition to supporting the evaluation process.
Here we will discuss how to more effectively evaluate the prototype input
devices created using the toolkits presented in this chapter.

25http://istuff.berlios.de

101

Chapter 4

Supporting Evaluation:
Expressiveness as an
Evaluation Tool for HCI

As human–computer interaction extends beyond the desktop, the need
emerges for new input devices and interaction techniques. However, many
novel interaction techniques must be prototyped in a proof-of-concept form,
using toolkits such as iStuff or iStuff Mobile introduced in the last chapter. Prototype input

technologies can

suffer from low

expressiveness

Such prototypes can suffer from low expressiveness: their ability to convey
the intended meaning is limited due to their technical immaturity. Cur-
rently, we are lacking the conceptual frameworks to properly assess input
devices with low expressiveness. This chapter fills the gap by presenting
a conceptual framework that clearly characterizes the expressiveness of in-
put devices allowing for more objective comparison with advanced devices.
With this definition, designers will also be able to match the expressiveness
of the input device to the user interface to optimize comfort and perfor-
mance of pointing tasks.

4.1 Motivation

The inspiration behind this work is the Sweep technique (Ballagas et al.,
2005) that uses the camera on a mobile phone to detect motion of the hand-
set in several dimensions. This technique enables many direct manipulation Example: Sweep

with modern

mobile phones

interactions with large public displays, including cursor control. Currently,
the technique suffers from low sampling rates and resolution because of the
limitations of current mobile processors and cameras. With future improve-
ments in mobile processing capabilities, the resolution and sampling rate
will improve. However, we want to develop applications that can be used
today that still provide a fluid user experience. (Note that this problem
also occurs when someone uses standard desktop input devices with a very
high resolution display.)

102 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

4.2 Background

The expressiveness of input devices was first defined by Card et al. (1991) as
an evaluation criterion capturing how well the input conveys the intended
meaning. Without explicit guards, a mismatch of expressiveness can causeDefinition:

Expressiveness problems in the user interface. These problems were formally described
using parameters of input devices. The In parameter represents the input
domain, which describes the range of values that can be expressed in the
physical world. The Out parameter represents the output domain set of
the input device, which describes the logical values that an input device
can produce.

“In the design of input devices, an expressiveness problem
arises when the number of elements in the Out set does not
match the number of elements in the In set to which it is con-
nected. If the projection of the Out set includes elements that
are not in the In set, the user can specify illegal values; and
if the In set includes values that are not in the projection, the
user cannot specify legal values.” (Card et al., 1991)

To clarify, consider Card et al.’s original example of a simple radio control
panel in Figure 4.1. For the selector knob, the In set is the continuous setExample: Simple

radio from 0-90 degrees, which corresponds to the range of knob positions that are
physically possible. The Out set includes <0,45,90>, which are the only
possible values that this knob can produce. Here there is an expressiveness
mismatch between the input and output domains, which can allow the user
to specify illegal values if explicit guards are not taken. One simple way to
guard against this particular problem is to use a resolution function that
rounds the value from the In set to the nearest valid output.

For a different example of an expressiveness problem, consider a touch
panel overlaying a display where the resolution of the touch panel (where
transducer values form the Out set) is much less than the resolution of
the display (where pixels form the In set). If a user wanted to select anExample: Touch

Panel individual pixel, he would not be able to express that request exactly. This
example is straightforward because the touch panel is an absolute input de-
vice, making the Out set fixed. However for relative input devices, such as
a mouse, mathematically characterizing the expressiveness is more complex
and has yet to be clearly addressed in the literature. One may be tempted
to argue that the expressiveness of any relative input device is infinite, since
any value can be specified given enough time. This definition is flawed be-
cause it inherently means that all relative input devices are equivalent (and
superior to absolute input devices) in terms of expressiveness, preventing
us from using it as a metric to characterize and compare different devices.

The expressiveness problem is closely related to the problem of device
precision. Pointing precision characterizes how small of a target can be
conveniently selected with the device. Quantifying the pointing precision

4.2 Background 103

Figure 4.1: Analysis of a simple radio from (Card et al., 1991). Two rota-
tion devices are connected directly to the application. The third rotational
device is connected to a positional device, which is then connected to the
application.

of absolute input devices in terms of screen area is relatively straightfor-
ward.However, quantifying the precision of relative pointing devices is more Expressiveness is

closely related to

device precision

difficult. Card et al. (1991) quantify precision of input devices in terms of
bits using insights from subjective ratings of the difficulty of pointing tasks
using the mouse in text editing applications, where the threshold between
easy and hard tasks lies between selecting a word and selecting a character;
selecting a word is the hardest easy task, and selecting a character is the
easiest hard task. Thus, device precision is defined by Card et al. (1991) as
follows:

“We characterize the precision of a device as the ID that
requires the same amount of time as the easiest hard task of
the mouse.” (Card et al., 1991)

Here, ID is the Fitts’ law index of difficulty of the pointing task measured Empirical testing

limits value as

design tool

in bits. The problem with this definition is that it requires empirical testing
to determine the precision of the device, limiting its utility as a design tool.

104 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

In this chapter, a new definition to quantify the precision of relative input
devices based on device parameters is proposed, and it is demonstrated how
this definition can be used to predict changes in precision without empirical
testing.

4.2.1 Expressiveness of Relative Pointing Devices

The expressiveness of a relative pointing device can be characterized us-
ing the precision of the input technique based on models of human motor
performance including Fitts’ law (Fitts, 1954; MacKenzie, 1992), and the
linear speed-accuracy tradeoff (Schmidt et al., 1979). The reasoning be-Users attempt to

hit a target in the

first submovement

hind our definition can be best explained using the conceptual framework
presented by Meyer et al. (1990), which was used to create the stochas-
tic optimized submovement model. This model attempts to reconcile the
strengths of Fitts’ Law (better suited to model spatially constrained tasks,
such as cursor positioning using a mouse), and the linear speed-accuracy
tradeoff (Schmidt et al., 1979) (better suited to model temporally con-
strained tasks, such as cursor positioning using a joystick to control cursor
velocity) into a unified model capable of expressing a wider range of move-
ment tasks. The stochastic optimized submovement model is based on the
assumption that the subject attempts to hit the center of the target region
with their first submovement (see Fig. 4.2). If the primary submovement
successfully acquires the target, then the action terminates. The model
anticipates noise in the motor system to affect the primary submovement,
causing a slight variation from the intended movement and the actual re-
sult. If a miss occurs, then a secondary corrective submovement will be
used, and so on. Thus, for a pointing task to be valid for this model, the
input device must theoretically allow a subject to reach a target in the
primary submovement, even though noise in the motor system may require
additional submovements before the target is successfully acquired.

We define the expressiveness of a relative pointing device as
the number of distinct positions a user can theoretically express
in a single submovement.

The duration of a submovement is defined by the basic human reaction
time.Using the human processor model (Card et al., 1983), the basic re-Submovement

duration comes

from Psychology

literature

action time is approximated by Tsub = τp + τc + τm, or one cycle for each
of the perceptual, cognitive, and motor processors. This equation approxi-
mates the time for the user to observe the motion progress (τp), decide on
a correction (τc), and perform the correction (τm). For the average user
(“middleman” in Card et al. (1983)), this sum would result in an approxi-
mate submovement duration of 240ms.

We define the expressiveness of a relative input device in terms of the motion
throughput of the transducer (dX in dots per sec.), and the psychological

4.2 Background 105

Figure 4.2: The optimized dual-submovement model is a variation of the
optimized submovement model with two submovements. Hypothetical pri-
mary submovements are marked with a solid line, secondary submovements
with a dashed line. (Based on Figure 6.8 from Meyer et al. (1990).)

limits of human information processing in terms of the submovement dura-
tion (Tsub in sec.). Motion throughput describes the rate at which motion Expressiveness in

terms of the

physical properties

of the device

information can be processed by the input device. Industry typically re-
ports the device specifications in terms of device resolution (R in dots per
inch) and maximum supported rate of motion (v in inches per sec.). We
can use these parameters to define motion throughput as follows:

dX := R ∗ v (4.1)[
dots

sec

]
=

[
dots

inch

]
∗

[
inches

sec

]

Alternatively, the motion throughput can be defined using the transducer
resolution (N in dots per sample) and sampling frequency (fsample in sam-
ples per sec.), assuming a single transducer per axis of motion. To simplify
the definition, we first define the notion of sample reach length (Lsample in
dots per sample) as the maximum distance that can be reached in a single
sample.

Lsample := .5 ∗ (N − 1) (4.2)

The scaling factor (.5) is necessary because the transducer resolution is
split into positive and negative values along the motion axis. One sample
is removed to account for the zero value which has no motion. If positive
and negative measurements are separated into multiple transducers, this
equation may require slight adjustments.

106 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

The maximum supported rate of motion (v) can then be defined in terms of
sample reach (Lsample), sampling frequency (fsample), and device resolution
(R) as follows:

v := fsample ∗ Lsample/R (4.3)[
inches

sec

]
=

[
samples

sec

]
∗

[
dots

sample

]
/

[
dots

inch

]

The motion throughput (dX) can then be alternatively formulated by com-
bining Equations 4.1 and 4.3,

dX = R ∗ v

dX = R ∗ fsample ∗ Lsample/R

dX = fsample ∗ Lsample (4.4)[
dots

sec

]
=

[
samples

sec

]
∗

[
dots

sample

]

We further define the submovement reach (Lsub in dots per submovement)
as the maximum distance that can be reached during a single submovement
(Tsub in sec. per submovement).Definition:

Submovement

reach
Lsub := dX ∗ Tsub (4.5)[

dots

submovement

]
=

[
dots

sec

]
∗

[sec

submovement

]

We note that Lsub is measured in dots per submovement, which is a unitless
quantity relating to the number of distinct values that can be expressed in
a single submovement.

The expressiveness set (E) can then be defined as the set of points that
a user can theoretically express in a single submovement. For a one-
dimensional input device, assuming a C–D gain function of S(t) (i.e., cursor
acceleration), we can define its expressiveness set as follows:

E := {S(x) :where 0 < x < Lsub and x ∈ Z},Definition:

Expressiveness set

where Z is the set of all integers. We note that in the case of no C–D gain
(S(t) = t), this reduces to the set of integers between 0 and Lsub , and the
cardinality of the expressiveness set (|E|) is Lsub + 1 .

An input device is said to have higher expressiveness when the cardinal-
ity of the expressiveness set (|E|) is greater than that of another device.Increasing C–D

gain does not

increase

expressiveness

We also note that changing the C–D gain function from S(t) = t cannot
increase the cardinality of the expressiveness set; instead, it may create un-
reachable gaps or even decrease expressiveness if multiple transducer values
map to the same cursor displacement. This theoretical observation fits with
the findings of Jellinek and Card (1990) who explored second order cursor
acceleration using several different C–D ratios on a mouse, but found no
performance improvements.

4.2 Background 107

Figure 4.3: An optical-mechanical mouse: (1) Motion across the desktop
surface moves the ball. (2) Grips transfer the ball movement to turn (3)
optical encoding disks. (4) Infrared LEDs shine through the holes. (5)
Infrared sensors accumulate light pulses and convert them into motion along
the X and Y axes. (Source: Wikipedia)

4.2.2 Examples

A case study of specific input devices should serve to illustrate the theo-
retical definition with practical examples. They show how expressiveness
can be used as a design metric to gauge the suitability of a relative input
device for a particular interaction scenario.

Opto-Mechanical Mouse

Figure 4.3 shows the inner workings of an optical-mechanical mouse. The Example:

Opto-mechanical

mouse

device resolution (R in dots per inch) of the mouse is determined by the
ratios of the physical dimensions of the ball, the grips, and the discs. The
current industry standard for device resolution of these mice ranges from
400 to 800 dpi. For this example, assume that the pulse accumulator is
capable of storing 8 bits of information for each dimension of motion, re-
sulting in a transducer resolution (N) of 256 possible dots (positions) per
sample.

For traditional PS/2 mice, common in the 1990s, the default sampling rate
(fsample) under Windows 95 / 98 was 40 Hz. Thus, their motion throughput

108 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

(dX) can be calculated by combining Equations 4.2 and 4.4 as follows:

dX = Lsample ∗ fsample

= (N − 1) ∗ .5 ∗ fsample

= (256 − 1) ∗ .5 ∗ 40

= 5100
[
dots

sec

]

Then their submovement reach (Lsub) follows as:

Lsub = dX ∗ Tsub

= 5100 ∗ .240

= 1224
[

dots

submovement

]

Thus a user would start to have problems with expressiveness using this
device with a screen resolution of 1225 dots or higher in any dimension.
These problems would manifest themselves as consistently undershooting
targets beyond the submovement reach with the primary submovement.

Optical Mouse

As another example, consider the Agilent Technologies (2004) ADNS2610Example: Optical

mouse optical mouse sensor. It supports a device resolution of 400 dpi, and rates
of motion of up to 12 inches per second. Thus, following Equation 4.1 its
throughput can be calculated as follows:

dX = R ∗ v

= 400 ∗ 12

= 4800
[
dots

sec

]

Then its submovement reach (Lsub) follows as:

Lsub = dX ∗ Tsub

= 4800 ∗ .240

= 1152
[

dots

submovement

]

Thus a user would start to have problems with expressiveness using this de-
vice with a screen resolution higher than 1152 dots in any dimension. Note
that if the resolution of the sensor was bumped to 800 dpi (as with most
more modern optical mice), then Lsub also doubles, supporting resolutions
much higher than 2000 pixels in either dimension.

Analog Joystick

Consider a USB analog joystick (shown in Figure 4.4) that has a tranducer
resolution (N) of 256 distinct dots per sample on each axis after digital

4.2 Background 109

Figure 4.4: An analog joystick measures absolute tilt of the stick in the
rX, rY dimensions.

conversion. The joystick measures absolute tilt in the (rX, rY) dimensions, Example: Joystick

but is used as a relative positioning device by mapping tilt to control the
velocity of cursor movement. Positioning a cursor with velocity control is a
temporally constrained task. Modern operating systems support sampling
such USB devices at a rate of 125 Hz. Thus the rate of motion dX can be
expressed as follows:

dX = (N − 1) ∗ .5 ∗ fsample

= (256 − 1) ∗ .5 ∗ 125

= 15937.5
[
dots

sec

]

Then the resulting submovement reach (Lsub) follows as:

Lsub = dX ∗ Tsub

= 15937.5 ∗ .240

= 3825
[

dots

submovement

]

This indicates that this particular joystick has a very high expressiveness,
notably higher than the mice examined above primarily because of the
higher sampling rate. It should be noted that expressiveness does not nec- Higher

expressiveness is

not necessarily

higher efficiency

essarily indicate that a device can be used with a higher efficiency (Card
et al., 1991). Instead, it indicates the boundary where efficiency will start
to decrease, because users will consistently undershoot targets further than
the submovement reach during their first submovement. To draw conclu-
sions about the normal pointing efficiency (or device bandwidth), it is still
necessary to compare the devices using an ISO 9241-9 (ISO, 2000) standard
empirical evaluation.

110 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

Sweep

Sweep (Ballagas et al., 2005) is an experimental input technique that uses
the camera on a mobile phone to detect relative motion of the phone. TheExample: Sweep

interaction is intended to support novel interactive applications for large
public displays. The current implementation of this technique detects rel-
ative motion in the (X, Y) dimensions with a sample frequency (fsample)
of 12.5 Hz and a transducer resolution (N) capable of detecting 9 distinct
dots (displacements) per sample. The actual physical sensor in this exam-
ple is the camera which has a relatively high resolution. However, for the
purposes of expressiveness we consider the output of the motion detection
algorithm to be the transducer output since those are the actual values that
can affect the cursor. Thus,

dX = (N − 1) ∗ .5 ∗ fsample

= (9 − 1) ∗ .5 ∗ 12.5

= 50
[
dots

sec

]

Then the submovement reach (Lsub) follows as:

Lsub = dX ∗ Tsub

= 50 ∗ .240

= 12
[

dots

submovement

]

Thus the largest resolution that would not result in expressiveness problems
would be 13×13. This means that the use of this input device with standardPrototype input

techniques suffer

from low

expressiveness

desktop resolution will result in difficulties because of the severe mismatch
in expressiveness. This matches the difficulties expressed in a previous
evaluation of the Sweep technique (Ballagas et al., 2005).

4.2.3 Expressiveness of Absolute Pointing Devices

For direct surface interaction, such as a touch screen, the expressiveness
|E| is simply defined as the resolution of the input surface (dpi) multiplied
by its size along each dimension. For example, the high resolution WacomExample: Tablet

Cintiq 21UX tablet1 reports a input resolution of 5080 locations per inch
with an active area of 17” × 12.75”. This results in an expressiveness of
86, 360 × 64, 770 selexels. The submovement reach can be limited by the
physical characteristics of the relevant parts of the human body, such as
arm length, with larger form factors.

The example illustrates an instance where the input device expressiveness
(86, 360 × 64, 770) is much higher than the expressiveness of the display
(1600 × 1200). Typically in this case, software is used to reduce the input
expressiveness so that it is matched to the output expressiveness.

1http://www.wacom.com/cintiq/index.cfm

4.3 Selexels: Using Expressiveness as a Design Tool 111

4.3 Selexels: Using Expressiveness as a Design
Tool

There are several scenarios where expressiveness can inform the design of
an interactive system.

1. The display resolution is specified, and the input device can
be chosen. In this scenario, the input device can be selected to have
an expressiveness that matches or exceeds the display resolution to
achieve best user performance.

2. The input device is specified, and the display resolution can
be chosen. In this scenario, the display can be selected to have a
resolution the matches or is less than the input device expressiveness.
This solution assumes that reducing the display resolution can be
compensated for in the UI design such that it has no effect on the
quality of the interface.

3. The input device and display resolution are specified, but the
expressiveness of the input device is less than the resolution
of the display. In this case, an interesting option remains: to match
the selection resolution of the user interface to the expressiveness of
the input device without sacrificing display resolution. This can be
accomplished using “selexels” (see below).

4.3.1 The Selexel Approach

The traditional conceptual framework for analyzing pointing tasks
separates the task into two spaces: motor space and display (or vi-
sual) space. This is reflected by the frequent use of the control–display
(C–D) ratio to describe the relationship between motion distance in
the physical world (meters) and motion distance on the screen (pix-
els). Our new conceptual framework adds selection space as a level Definition:

selection spaceof indirection between motor space and display space. Using this
framework, a traditional desktop interface is a special case where the
selection space is identical to the display space. We note that since the
motor space is mapped to selection space and not display space, the
concept of C–D ratio is replaced by the notions of Control–Selection
(C–S) ratio for the relationship between motor and selection space,
and Selection–Display (S–D) ratio for the relationship between selec-
tion and display space.

The selection resolution of the user interface can be matched to the
expressiveness of the input device by dividing the screen into atomic
selectable elements, or selexels, with a resolution that is independent
of the pixel resolution of the screen (see Fig. 4.5). By separating
selexels from pixels, the range of motion in the interface is adjusted
to support a smooth and fluid user experience for the input device in
use, while preserving the screen resolution and information capacity
of the display.

112 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

Figure 4.5: A sample selexels screen division over a typical desktop inter-
face. It indicates that existing desktop interfaces may need to be modified
to disambiguate selection when using a low resolution selection space.

Selexel:
An atomic selectable element in Selection space, analogous to a “pixel”
or picture element in Display space. The resolution of Selection space is
independent of display resolution.

Definition:

Selexel

Expressiveness is easily confused with the notion of device resolution.Expressiveness is

different from

resolution

Resolution of an input device, usually measured in dpi (dots per inch),
describes precision in motor space; how small of a movement, in motor
space, can be distinguished by the transducer. Expressiveness, char-
acterized by selexels (unitless), describes precision in selection space;
how many distinct positions, in selection space, can one theoretically
express, or “reach”, using this input device in a given timeframe.

4.3.2 Practical Application of Selexels

Mismatches in expressiveness can disrupt the user exprience. Our new
method of characterizing expressiveness allows us to identify and resolve
these mismatches to provide a more fluid experience. Selexels provide a
level of abstraction that allows us to reduce the selection resolution of the
display to match the expressiveness of the input device, without sacrificing
valuable display resolution.

4.3 Selexels: Using Expressiveness as a Design Tool 113

Usage Scenario

We may apply these concepts to interactions in the domain of large public
displays, as illlustrated in the following scenario.

While Hans is waiting for his train to Berlin, he notices a large
public display on the platform displaying advertisements and
community news. He recognizes the style of a 2D bar code next
to the display. He has previously used a similar barcode to initi-
ate interaction with a demo display in the T-Mobile showroom.
He takes a picture of the code (just as he had done in the show-
room), and his phone automatically connects wirelessly to the
display via Bluetooth and transfers information characterizing
its input expressiveness. The advertisement transforms into an Example:

adapting UI to

match the

capabilities of the

Sweep technique

interactive menu with a selexel resolution matched to his input
device, allowing Hans to select from several options including:
browsing the news, checking the weather, or even contributing
to an interactive community bulletin board where people post
images, video, and text. Hans waves his phone through the air
using the Sweep technique to select the weather option. A map
of Germany appears and as he navigates the cursor over differ-
ent regions, the current conditions and forecast are displayed
to the right of the map. It looks like the previously forecast
afternoon showers are no longer a threat in Berlin. Hans then
calls his wife to invite her to go to their favorite restaurant for
dinner on the quaint cobblestone patio.

Shortly after Hans leaves, Maria wants to check up on her bul-
letin board post from last week about the proposed new theatre
to be built next to the train station. Her phone is much older
than Hans’ and the expressiveness of the Sweep technique is
much lower. As she connects to the display, the cursor grows
and the menu options move further apart to adapt the selexel
resolution of the interface to match that of her phone. Now she
is able to use her more limited phone as a pointing device, and
yet the system still provides a fluid experience.

This scenario shows how expressiveness can be used to tailor a user interface
on the fly to the capabilities of the input devices that are used in a particular
interaction. These concepts may also be useful for scenarios using very high
resolution displays such as those described by Czerwinski et al. (2006).

4.3.3 Comparing Selexels to Other Selection Techniques

There are many approaches to improving selection performance in point- Selexels vs. Area

Cursorsing tasks that increase the size of the cursor. The area cursor has an
active selection region that spans a screen area, rather than a single point.

114 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

Kabbash and Buxton (1995) show that selection of a point-sized target
with an area cursor can be accurately modeled using Fitts’ law by setting
W to the cursor width, reducing the index of difficulty for small targets.
However, area cursors can overlap multiple targets, making user selection
ambiguous. Worden et al. (1997) propose an improved area cursor with an
additional hot spot at its center to disambiguate between multiple closely-
spaced targets within the cursor area. This cursor performs better than the
standard point cursor when targets are far apart, and identically to point
cursors when targets are closer together. The Bubble cursor (Grossman
and Balakrishnan, 2005) dynamically resizes the active cursor region to al-
ways encompass exactly one selectable object that is nearest to the center
position of the cursor. This effectively changes the width of the target to
the size of the Voronoi region surrounding the target, maximizing its size
in motor space. This technique is superior to previous techniques in that it
also demonstrates benefits over the point cursor for densely packed targets.
However, for each of these solutions, cursor motion is governed by pixels,
making them unsuitable for tasks for input devices with low expressiveness.

A cursor in the selexel domain is similar to these techniques in that it
has an active region that spans a screen area, rather than a single pixel.
However, a cursor highlighting a single selexel is actually a point cursor in
selection space, even though the active region may span a screen region in
display space. Thus, the techniques proposed above should result in the
same performance improvements if applied to targets in selection space,
but we leave the experimental validation of this theory to future work.

Several selection techniques have been shown to increase pointing perfor-
mance by dynamically adjusting the control–display (C–D) ratio (Blanch
et al., 2004; Baudisch et al., 2005), sometimes referred to as cursor accel-
eration. Pointing performance can be improved by increasing the control–Selexels vs.

Adaptive C–D

gain

display ratio while approaching the target (and thereby decreasing the dis-
tance traveled in motor space), or by decreasing the control–display ratio
while inside the target (and thereby increasing the target size in motor
space). In this paper, we focus on a static C–S ratio. However, these adap-
tive techniques should still be applicable in the selexels domain by replacing
the C–D ratio with the C–S ratio, but again we leave the validation of this
theory to future work.

A selexel cursor has the same ambiguity problem as the area cursor whenEliminating

selection

ambiguity

covering multiple targets, as demonstrated in Fig. 4.5. There are several
options to eliminate this ambiguity:

• The input device could be restricted to one that supports the min-
imum selexel resolution required for the interface to have no cursor
overlap of multiple targets. In this way, the selexels framework allowsResrict input

device us to define device criteria for interacting with existing applications.
However, most desktop applications are not compatible with a grid
selection scheme, requiring the standard “one selexel per pixel” sce-
nario.

4.4 Evaluation 115

• Alternatively, if a situation requires the use of a low precision pointing Restrict to one

selectable UI

object per selexel

device (e.g., in the aforementioned case of large public display inter-
actions using the Sweep technique), the layout of the interface could
be altered to be compatible with the selexel resolution of the input
device. This can be accomplished through manual rearrangement,
or through automatic layout of user interfaces as in Gajos and Weld
(2004). In this way, the selexels framework allows us to define graphi-
cal layout constraints for applications designed for low-expressiveness
pointing techniques. (See Future Work for more discussion on this
topic.)

• Lastly, drawing inspiration from the Bubble Cursor (Grossman and
Balakrishnan, 2005), the size of the selexel in pixels (the S–D ratio) Adapt selexel size

to Voronoi regions

around selectable

objects

can be dynamically varied to always contain one and only one se-
lectable target, essentially mapping each selexel to the Voronoi regions
of the targets on the display, and thereby minimizing the number of
selexels in an interface. A simplified 1D version of this approach is
embodied by the tabbed interface, where a user can cycle the selection
focus through the selectable items in an interface, often by pressing
the tab key. The problem with this symbolic and irregularly spaced
approach is that the resulting C–D ratio (a combination of C–S and
S–D ratios) might be unpredictable for users, preventing them from
accurately planning their movements. In this paper, we focus on the
case of a constant S–D ratio.

4.4 Evaluation

Card, English, and Burr’s (Card et al., 1978) seminal work showed that the
efficiency of pointing devices can be analyzed using Fitts’ law (Fitts, 1954;
MacKenzie, 1992), which models human motor performance by predicting
movement time in a pointing task as follows:

MT = a + b ∗ ID

ID = log2(
D

W
+ 1),

where D is the target distance, W is the target width, and ID is the in-
dex of difficulty of the pointing task. a and b are empirically determined
constants that vary with the characteristics of the input device. These em-
pirically determined constants are affected by a wide variety of input device
characteristics including mass, friction, resolution, sampling rate, lag, and
C–D gain (MacKenzie, 1992). Changes in any of these parameters will also
change the result of the regression analysis.

In a series of experiments, we attempt to characterize how pointing tasks are
affected by the relationship between the expressiveness of the input device
and the selexel resolution of the display. A custom test program allows us
to vary the selexel resolution of the display, and vary the expressiveness
of input devices by artificially limiting the resolution and sampling rate.

116 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

The test application hides the system cursor and displays a point cursor
in selexel space (an area cursor in pixel space) that moves selexel-wise,
appearing to jump from one selexel position to the next. The application
was implemented in Objective-C under Mac OS X.

4.5 Experiment 1

Given that the selexel cursor represents a point cursor in selexel space,
Fitts’ Law (Fitts, 1954) should be a suitable model for predicting target
aquisition time in pointing tasks. However, the selexel cursor is an areaCan pointing in

selection space be

modeled by Fitts’

law?

cursor in pixel space. Previous studies of area cursors have demonstrated
that selection using area cursors lowers the index of difficulty for smaller
targets (Kabbash and Buxton, 1995; Worden et al., 1997). Also, as users
have come to expect pixel-wise cursor motion, the selexel-wise motion may
impede or annoy the user. Thus, it is important to examine whether point-
ing in the selexel paradigm can be modeled by Fitts’ Law. This experiment
is specifically designed to examine if the input device expressiveness affects
the empirically determined constants of the input device (a and b).

4.5.1 User Study Design

Using a within-groups design, users were asked to complete a horizontal
tapping test based on ISO 9241-9 (ISO, 2000), but modified to accommo-Horizontal

tapping test date selexel pointing. For each test condition, the same range of target
distances (D = 256, 640, and 1024 pixels) and target widths (W = 64 and
128 pixels) were used.

To simulate input devices of varying expressiveness, the sampling period
of the mouse was artificially increased to 20ms to guarantee a constant
sampling rate for all test conditions. The transducer resolution (N) of theMatched

expressiveness

conditions

input device was varied to have an Lsample of 1280, 256, 40, and 20 dots
per sample. The selexel resolution of the test UI was designed to match the
Lsample of the input devices with selexel resolutions of 1280×800, 256×160,
40×25, and 20×13 selexels respectively (selexel sizes of 1×1, 5×5, 32×32,
and 64×64 pixels). By matching the selexel resolution of the UI (S–D ratio)
to the transducer resolution of the input device (C–S ratio), the resulting
C–D ratio remains effectively constant (see Table 4.1) across the different
conditions.

The cursors were all displayed as point cursors in selexel space, except for
the one selexel per pixel condition. In this condition, a 5 × 5 pixel area
cursor was used instead of a 1 × 1 pixel point cursor for visibility. ThisVarying selexel

block size particular cursor still maintained the other properties of a point cursor in
pixel space in that it had an active region of 1× 1 pixel at the center of the
cursor, and its motion was pixel-wise.

4.5 Experiment 1 117

C-S (Reachsample) Selexels Pixels S-D C-D

1280 1280 1280 1 1280

256 256 1280 0.2 1280

40 40 1280 0.03125 1280

20 20 1280 0.01563 1280

Table 4.1: By matching the selexel resolution to the C–S ratio (Lsample)
we maintain a constant C–D ratio across the test conditions.

The pixel placement for target pairs remained constant across test condi-
tions. However, the pairs of targets were placed such that some were aligned Constant target

placement in

display space

to the selexel boundaries and some weren’t (depending on the selexel con-
dition). When a target is not aligned to selexel boundaries, its width may
span over several selexels even if its size in pixels is much less than a single
selexel.

Both the ordering for the different expressiveness conditions, and the order- Ordering varied to

control for

learning effects

ing for the different IDs were varied to reduce learning effects in a within-
groups study. A fully crossed design resulted in a total of 24 combinations
of D, W , and matched (N , selexel resolution) pairs. For each combination,
25 target selections were required.

4.5.2 Participants

10 volunteers (4 females, 6 males) ranging in age from 22 to 27 participated
in the study. All of the participants were students (8 computer science, and
2 political science) from RWTH Aachen University.

4.5.3 Equipment

The tapping test was performed using a Logitech M-BJ58 (800 dpi) USB
optical mouse, an Apple 23” Cinema LCD monitor with the display resolu-
tion set to 1280 × 800, and a PowerMac Dual 2.0 GHz G5 computer.

4.5.4 Results

The results from this experiment are shown in Figure 4.6. The graphs
indicate that using the distance and width in units of pixels results in a
valid (p < 0.05), but poor model (R2 = 0.71) for selexel pointing tasks. If
the same data is reinterpreted using target distance (D) and target width
(W) in units of selexels, the model becomes much improved (p < 0.005,
R2 = 0.959). An analysis of variance (ANOVA) shows a significant effect

118 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

1.2

1.4

1.6
y =0.24496 +0.151x
R2 =0.7143
F =55.0037
p =0.01771

Index of difficulty (pixels)

M
ov

em
en

t t
im

e
(s

)

0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

1.2

1.4

1.6
y =0.15009 +0.19687x
R2 =0.95902
F =514.8228
p =0.0025404

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)

Figure 4.6: (Left) Index of difficulty calculations in terms of display pixels are not well suited
for selexel pointing tasks. (Right) The same data reinterpreted with index of difficulty in terms
of selexels provides a strong correlation. The correlation is strong despite the fact that this data
is mixed across selexel conditions, demonstrating that selexel resolution has no impact on device
performance as long as the C–D ratio is preserved. Here the C–D ratio is preserved by matching
the expressiveness of the UI to the expressiveness of the input device by changing the selexel
resolution.

for index of difficulty [F (15, 23) = 42.99, p < 0.0003], and no significant
effect for the expressiveness conditions [F (2, 23) = 1.64, p < 0.28].

4.5.5 Discussion

These results demonstrate that selexel-wise cursor motion, despite beingPointing in

selection space

can be modeled

by Fitts’ Law

potentially visually disruptive to the user, had no significant effect on task
completion time compared to the pixel-wise cursor motion. This is further
demonstrated by the fact that the mixed results can be modeled very well
(R2 = 0.959) using a single linear regression.

These results also confirm previous findings by Kabbash and Buxton (1995)
that show that area cursors lower the index of difficulty for small targets,
but these results further show that movement time in selexel pointing tasks
for targets larger than one pixel can be accurately predicted using units of
selexels to measure target distance and width for the calculation of ID .

By matching our the device resolution to the selection resolution of the
screen (see Table 4.1), the distance in motor space required to move the
cursor across the entire width of the screen in display space was pre-
served across conditions (although target sizes and distances in selection
space slightly varied). Given that, these results support previous find-
ings (MacKenzie, 1991; Blanch et al., 2004; Baudisch et al., 2005) that
demonstrate target distance and width in motor space are the key factors
for performance time.

4.6 Experiment 2 119

A more significant result from this experiment is that, contrary to what
one might expect, transducer resolution (N in dots per sample) has no ef-
fect on task completion time, as long as the C–D ratio is preserved across
test conditions. This result has important implications for evaluating pro-
totype input techniques with low transducer resolution, such as the Sweep
technique. As mobile processors and cameras continue to improve, motion Transducer

resolution has no

effect on

performance if

C–D is constant

detection will become more powerful, and the resulting transducer reso-
lution will improve. Using this study as a model, an evaluation can be
structured such that conclusions can be made about pointing performance
of future mobile phones as the transducer resolution (dots per sample) con-
tinues to rise (assuming all other parameters, such as C–D ratio, remain
the same).

The error rates for pointing under selexels were lower than pointing under
pixels. This can be explained using the speed-accuracy trade-off since the
target widths effectively expand to the selexel span of the target, reducing
the physical accuracy required for the pointing task.

4.6 Experiment 2

To further validate our conceptual framework, it is necessary to exper- Targets exceeding

submovement

reach lower

pointing

efficiency?

imentally verify the notion of submovement reach (Lsub), the maximum
distance that can be reached in the first submovement. Based on the con-
ceptual framework, the selexel resolution should match the submovement
reach (Lsub) preventing any target distances from exceeding the maximum
distance. This experiment examines the effect of target distances exceeding
the submovement reach.

4.6.1 User Study Design

This experiment was structured as a horizontal tapping test, very similar to Constant device

resolutionExperiment 1. It used a within-groups design, and reused the parameters
for target distance (D), target width (W), and target placement. However,
in this experiment we maintained the transducer resolution (N) to have a
constant Lsample of 20 dots per sample. With a sample period of 20 ms,
the Lsub can be calculated as follows:

Lsub = dX ∗ Tsub

Lsub = fsample ∗ Lsample ∗ Tsub

Lsub = (1/.020) ∗ (20) ∗ .240

Lsub = 240
[

dots

submovement

]

This submovement reach (Lsub) of 240 dots per submovement was main-
tained across all conditions.

120 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

0 2 4 6

0.5

1

1.5

2

2.5

3

3.5

4

4.5 y =�0.73654 +0.57139x
R2 =0.44928
F =17.9478
p =0.61384

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)

0 2 4 6

0.5

1

1.5

2

2.5

3

3.5

4

4.5 y =�0.057842 +0.29371x
R2 =0.78865
F =59.7046
p =0.030317

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)
Figure 4.7: (Left) In this experiment, contrary to the previous experiment, the mixed results
across experimental conditions cannot be modeled with Fitts’ Law. (Right) The same data is
shown with target distances greater than submovement reach (Lsub) removed (marked as “x”).
When the conditions that exceed the submovement reach are removed, the data can be modeled
by Fitts’ Law (p < 0.05).

The selexel resolution of the display (and resulting pixel size) was varied asVarying selexel

resolution

resulting in

varying C–D

ratios

in Experiment 1. As a result the C–S ratio remained constant, while the
S–D ratio varied, resulting in a range of C–D ratios.

The ordering for the different selexel resolutions, and the ordering for the
different IDs were varied to reduce learning effects in a within-groups study.
A fully crossed design resulted in a total of 24 combinations of D, W , and
selexel resolution. For each combination, 25 target selections were required.

4.6.2 Participants

11 volunteers (2 females and 9 males) ranging in age from 22 to 29 par-
ticipated in the study. All of the participants were students (8 computer
science, 1 political science, and 2 undisclosed) from RWTH Aachen Univer-
sity.

4.6.3 Equipment

The equipment used was the same as for Experiment 1.

4.7 Chapter Summary 121

4.6.4 Results

The results from this experiment are shown in Figure 4.7. In the first
graph, all of the conditions are mixed, resulting in data that is unable to be
modeled using Fitts’ Law (p = 0.61). In the second graph, the same data
from the first graph is reinterpreted by removing conditions (marked with
an“x”) where the target distance (D) exceeds the submovement reach (Lsub)
to allow comparison with the original data. The second graph results in a
data set that can be modeled by Fitts’ Law (p < 0.05). Using an analysis
of variance (ANOVA), a binary “reach exceeded” variable has a significant
effect [F(1,23)=28.79, p<0.00003] showing that target distances exceeding
submovement reach (Lsub) increase task completion time.

4.6.5 Discussion

In the second graph of Figure 4.7, the conditions where the targets were
placed only slightly further (256 selexels) than the submovement reach (240
dots per submovement) are still relatively close to the other samples, in- Targets beyond

submovement

reach reduce

pointing efficiency

dicating that slight mismatches in expressiveness are only a minor issue.
However, the extreme mismatches in expressiveness with target distances
of 512 and 1024 selexels are extreme outliers in terms of target acquisition
time. This indicates that target distances exceeding Reachsub disrupt the
user experience and increase task performance time.

The reader may have noticed that the quality of the input device model
(R2 = 0.788) is much lower than that of the previous experiment. This Varying C–D

conditions

decrease the

quality of the

mixed model

is due to the fact that the data has mixed C–D ratios across the different
experimental conditions. As mentioned before, the C–D ratio is one of the
input device parameters that is captured by the Fitts’ law coefficients (a
and b). Separating the different C–D ratio conditions, as in Figure 4.8,
should result in models that account for much more of the variance in
the data (a higher R2). Figure 4.8 demonstrates that this is true except
for the condition with a selexel size of 1 × 1, which contains only target
distances greater than submovement reach (Lsub). This further indicates
that an upper bound to the validity of Fitts’ Law can be predicted using
our definition of input device expressivness.

4.7 Chapter Summary

Previous characterizations of the expressiveness of relative input devices Expressiveness as

a design toolrequired empirical testing, limiting their utility as a design tool. We have
presented a conceptual framework to characterize the expressiveness of in-
put devices based on the physical properties of the hardware, allowing its
appropriateness for a particular interaction scenario to be more easily as-
sessed. Our selexel framework allows the user interface to be tailored (even

122 4 Supporting Evaluation: Expressiveness as an Evaluation Tool for HCI

1 1.5 2 2.5 3 3.5 4 4.5

3

4

5

6
y =1.8484 +0.9076x
R2 =0.6509
F =7.458
p =0.91962

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)

Selexel size =1x1 pixels

0.8 1 1.2 1.4 1.6 1.8 2

3

4

5

6
y =�0.5432 +3.4657x
R2 =0.9416
F =64.492
p =0.13784

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)

Selexel size =5x5 pixels

0.6 0.7 0.8 0.9 1 1.1 1.2

2.5

3

3.5

4

4.5 y =0.052833 +3.9478x
R2 =0.91656
F =43.9387
p =0.06133

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)

Selexel size =32x32 pixels

0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4
y =�1.0935 +5.4612x
R2 =0.95928
F =94.2354
p =0.051738

Index of difficulty (selexels)

M
ov

em
en

t t
im

e
(s

)

Selexel size =64x64 pixels

Figure 4.8: The data from Figure 4.7 separated into charts based on C–D ratio results in more
accurate models (a higher R2) for conditions where the targets were within Lsub . Note that the
condition with target distances greater than Lsub (selexel size of 1 × 1) still poorly correlates
with the model despite separation.

adapted at run-time) to match the expressiveness of the input device with-
out sacrificing the screen resolution, which is important to preserve the
information output capacity of the display.

Our experiments have shown that pointing under selexels can be modeled
by Fitts’ Law, demonstrating that selexel-based motion has no effect on
task performance time. Experiment 1 further demonstrates that transducer
resolution has no effect on task performance time as long as the C–D ratio
of the UI is preserved.

In experiment 2, our conceptual framework was validated by experimentally
verifying the notion of Lsub . These results demonstrate that the upper
bound for the validity of the Fitts’ Law model can be predicted based on
the physical properties of the input device.

Using these results, this new conceptual model can be used to structure theEvaluate input

devices in

prototype form

evaluation of prototype input devices. The input bandwidth (the slope of
the Fitts’ Law regression analysis) of a prototype device measured under low
expressiveness conditions is a good approximation of the same device with
higher sampling rates and resolution under high expressiveness conditions.

4.7 Chapter Summary 123

This concludes Chapter 4 of this work, where we demonstrated how to
evaluate prototype input devices in a technically immature form and still
draw conclusions about their future performance after expressiveness is
improved. In the next chapter, we will discuss iterative design in practice
by showing how the theoretical concepts presented throughout this work
can be applied to a real project.

125

Chapter 5

Iterative Design in Practice:
Player-Centered Iterative
Design for Pervasive Games

“Any sufficiently advanced technology is indistinguishable
from magic.”

—Arthur C. Clarke

This chapter introduces REXplorer as a real example of a ubiquitous
computing application that uses mobile phones as an input device for the
surrounding environment. This application serves as a test bed to bring Bringing theory to

practicethe theories described in the earlier chapters to practice. REXplorer has
applied aplayer-centered iterative design throughout the design process.

The fields of Human–Computer Interaction and Game Design have long rec-
ognized that user interfaces should be designed iteratively (Nielsen, 1993;
Buxton and Sniderman, 1980; Gould and Lewis, 1985), because the re- Interfaces should

be designed

iteratively

quirements for an interactive system cannot be completely specified at the
beginning of the lifecycle (Dix et al., 2004). Instead, the design needs to
be prototyped and tested with real users to reveal any false assumptions or
unforeseen problems with the existing design. These problems can then be
corrected in the next iteration of the prototype, which should then again
be tested to ensure the problems are resolved.

Currently, we are lacking the tools and conceptual frameworks to fully
support iterative player-centered design in the domain of pervasive games, Ubicomp

applications

require new

design tools and

techniques

because existing methodologies for the desktop computing, such as paper
prototypes, do not scale to ubiquitous computing applications (Liu and
Khooshabeh, 2003). A desktop environment is targeted for one user, one
set of hardware, and a single point of focus. In pervasive games, com-
plexity is added in every direction; there are multiple players and player
backgrounds, dynamic contexts of use, diverse spatial qualities, different

126 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

metrics for successful interfaces, varying stakeholder interests, as well as
political and economical interests that may change over time. This work
starts to fill the gap by showing how to apply the concepts presented in
this thesis to pervasive game design.

Earlier, in Section 2.3, we have seen how the design space of mobile input
techniques can be used to analyze mobile input alternatives for a new appli-
cation. This chapter walks through the rest of the player-centered iterative
design process for this game. Each design iteration was important in reach-
ing the current design which balances conflicting forces and satisfies both
stakeholders and players in our user tests.

5.1 Game Overview

REXplorer is a pervasive game that helps tourists explore the history of
Regensburg, Germany. In the game, historically-based spirits are stationedGame designed to

make learning

history fun

at points of interest throughout the city. Players use a special “paranormal
activity detector” (a device composed of a mobile phone and a GPS receiver
in a protective shell) to interact with location-based and site specific spirits.
A novel mobile interaction mechanism of“casting a spell” (making a gesture
by waving the wand-like detector through the air) allows players to awaken
and communicate with spirits to receive and resolve quests. The game is
designed to make learning history fun for tourists and influence their path
through the city.

REXplorer is a part of the Regensburg Experience1 (REX) museum in
Regensburg, Germany. The museum itself contains interactive exhibits toExtending the

museum

experience

allow visitors to experience different aspects of the city’s cultural heritage,
such as medieval music, and poetry. REXplorer is designed to extend
the visitor experience beyond the museum walls, showcasing the most sig-
nificant attraction of Regensburg: its mostly gothic and romanesque ur-
ban silhouette and architecture. Regensburg is a UNESCO world heritage
site and one of the best-preserved medieval cities in Germany, mostly un-
touched by the widespread bombings during WWII. REXplorer engages
players to narratively and, by physical mobility, link city sites, creating an
interconnected mental map, and changing the visitors’ perception of the
destination.

The target group of REXplorer mainly consists of younger visitors with
German language proficiency. The theme of the game is techno-magical:Paranormal

activity linked to

a secret language

Visitors are asked, as scientific assistants, to examine paranormal activity
recently discovered outdoors in the Regensburg medieval city core within
one hour. Fictional“scientists”have discovered that the phenomena seem to
be linked to a child’s gravestone inscribed with a mysterious secret language
shown in Figure 5.1. The gravestone is a real artifact in the Regensburg
cathedral, and historians (factual) have found that the symbols used instead

1http://www.rex-regensburg.de

5.1 Game Overview 127

Figure 5.1: A child’s gravestone inscribed with a secret language serves
as inspiration for the gesture vocabulary of REXplorer. The long-term
goal of the players is to unveil the mystery behind these symbols by solving
as many other challenges in the city as possible during their game session.

of letters cover up the identity of the child buried, who is thought to be an
illegal offspring of a Regensburg cleric - a scandal in the 16th century!

For field research, the scientists have developed a special detector device
(see Figure 5.2) that is able to measure paranormal activity at specific sites
in the city core. The detector has artificial intelligence and is able to talk Detector indicates

presence of spiritdirectly to the players. This makes the device a character in the game,
encouraging players to anthropomorphically relate to it as a team member
helping them achieve their goals. The detector notifies players when they
are in the vicinity of paranormal activity (and a point of interest) through
it’s own excited heartbeat, further emphasizing its human qualities.

When near a historically significant site, players can evoke one of the grave-
stone symbols by drawing the symbol through the air, similar to casting
a spell with a magic wand. Each symbol draws power from one of four Spirits share

history and issue

quests

medieval elements (earth, water, fire, or wind) and establishes a commu-
nication channel to the spiritual world, allowing the either historical or
mythological spirits to tell their “cliff-hanger” stories through the loud-
speaker of the device. Each story challenges the players to fulfill a quest
by going to a different point of interest in the city. Players need to listen
carefully to the spirits to capture the verbal clues indicating which gesture
to use to accept a quest. When the quest is completed at another site by
interacting with another spirit, the “cliff-hanger” narrative is resolved, and

128 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.2: The REXplorer “detector” consists of a Nokia N70 mobile
phone and a GPS receiver packaged together in a protective shell. A soft
and stretchable textile overlay with a zipper on the back transforms the
standard phone keypad into an 8-key game interface.

a new quest is offered. For each completed quest, players receive points,
allowing them to level up from rookie to master research assistant during
their game session.

During the game, the player’s progress is tracked and used to create a
personalized souvenir geo-weblog (blog). The player blog documents theirBlog summarizes

tourist experience route over space by interfacing with Google maps and their route over time
by chronologically listing all sites and characters the player has visited
during her session (see Figure 5.3). The blog provides de-briefing web links
concerning the characters appearing during gameplay to help the players
learn more about the history behind the sites. During their game session,
players can shoot pictures of their field research. This image material is
also automatically added to the blog with corresponding locations marked
on the interactive map.

5.2 Detector Functionality

The detector’s simplified keypad, refined through several iterative design
stages, interface provides users access to the following functionality during
the game:

• Status button: Players can check their status at any point in the
game. The status menu shows them their current point score, theirCheck game

status current level, and their current open quests including a short descrip-
tion to remind the players of the nature of the quests.

• Gesture button: REXplorer is the first pervasive and mobile game
to enable magic wand style spell-casting. Players hold down thisClutch to activate

gesture input button while performing a gesture. Releasing the button indicates
the end of the gesture. Gesture recognition is accomplished using
camera-based motion estimation, as in (Ballagas et al., 2005; Wang
et al., 2006). As motion samples are collected, they are rendered to
the screen to allow players to see their gesture progress. After the
gesture is complete, the motion trail is normalized and the data is

5.2 Detector Functionality 129

Figure 5.3: A souvenir blog documents the player’s route, visited points of interest, and player-
generated content (pictures and videos). Clicking on a point of interest in the map takes the
visitor to in-depth historical information with external links and a bibliography to explore and
learn more.

passed to a gesture recognition algorithm. A legend of gestures is
provided in a souvenir brochure players receive at the start of the
game (see Fig. 5.4).

• Repeat button: Players can always repeat the verbal communica-
tion from the spirits at any point during game play if they missed Replay audio

important details because of real-world interruptions such as traffic
noises or the many other roaming tourists during the peak season.

• Volume buttons: Players can adjust the volume of the device at Adjust volume

any time to adapt to changing environmental conditions and social
scenarios.

• Map button: Since the players are tourists, they generally have
difficulties navigating through a foreign city. To compensate this, we Show current

positionprovide a physical tourist map in the souvenir brochure, indicating
the paranormal activity sites (see Figure 5.4). As an additional aid,
the players can see their current position on a smaller on-screen map
using this button. The on-screen map also shows the destinations for

130 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

24

28
14

13

2223

15
12

11 10

26

27

09

16

17

06 02

21

01

03 07

05

04

18

08

20

19

25

29

Domgarten
01

xxx
16

Dom
02

St. Johann
17

Dompfarr-
kirche

03

xxx
18

Domplatz
04

xxx
19

Dalberg
-Residenz

05

Haus
Heuport

06

Römerturm
07

Zanthaus
08

Goliath-Haus
09

Neue Waag
10

Haidplatz
11

Goldenes
Kreuz

12

Runtinger-
haus

13

xxx
14

Barbara
Blomberg-Haus

15

Löschenkohl
-Palais

20

Porta
Praetoria

21

xxx
22

Reichstags-
museum

23

Steinerne
Brücke

24

Kastenmayer
-Haus

25

Goldener
Turm

26

Baumburger
Turm

27

Start/Ziel
Vhs

28

Wurstkuchl
29

Das

magische

Stadtspiel.

Gestenmodus:
Drücken und halten Sie diese Taste, um eine Geste
auszuführen. Dies ist an magischen Orten möglich.

OK-Taste:
Diese Taste dient zur Bestätigung.

Aufgaben:
Zeigt Ihnen an, welche Aufgaben Sie zu erfüllen
haben.

Kamera:
Ein Tastendruck ruft die Kamerafunktion auf.

Karte:
Das Betätigen dieser Taste blendet eine Landkarte
ein.

Lautstärke:
Mit diesen Tasten können Sie die Lautstärke anpas-
sen.

Wiederholen:
Mit diesen Tasten können Sie die Lautstärke anpas-
sen.

Rexplorer ist ein laufendes Forschungsprojekt zu ortsbasierter Computernutzung
und touristischer Unterhaltung im Stadtraum und wurde gemeinsam produziert

von

REX Erlebnismuseum Regensburg Experience gemeinnützige GmbH
Zeilerweg 8 | 93152 Zeiler bei Regensburg

Mit freundlicher Unterstützung von

Das

magische

Stadtspiel.

Liebe Rexplorer,
vielen Dank, dass Sie sich für den neuen Detektor RX 42 ent-
schieden haben. Wir wünschen Ihnen für die Arbeit mit diesem
Gerät viel Erfolg.

Bitte lesen Sie diese Anleitung vor dem ersten Gebrauch auf-
merksam durch. Nur so ist eine einwandfreie Funktion des
Gerätes garantiert.

Die 5 Gesten
Gestentaste gedrückt halten und Bewegung ausführen.

Nicht die Kamera auf der Rückseite des Geräts verdecken!

Gestentaste gedrückt halten und Bewegung
ausführen.ACHTUNG! Nicht die Kamera auf
der Rückseite des Geräts verdecken!

Gestentaste gedrückt halten und Bewegung ausführen. ACH-
TUNG! Nicht die Kamera auf der Rückseite des Geräts verdek-
ken!Bitte lesen Sie diese Anleitung vor dem ersten Gebrauch
aufmerksam durch. Nur so ist eine einwandfreie Funktion des
Gerätes garantiert.

Regensburg ExperienceRegensburg Experience

Magische Suche aktiv Magischen Ort gefunden

SPIELZEIT:
30 min.

ER
D
E

W
A
SS
ER

IN
FO
G
ES
T
E

FE
U
ER

W
IN
D

!

!

Die Bedienelemente

BEDIENUNGSANLEITUNG

GESTENMODUS

KAMERA

WIEDERHOLEN

LAUTSTÄRKE

KARTE

AUFGABEN

OK-TASTE

Figure 5.4: (Top) The front of the souvenir brochure has a large map with points of interest
marked. (Bottom) The back of the brochure displays a legend for device buttons and gestures.
Players receive the brochure when they rent the detector to start playing the game.

5.3 Gameplay Scenario 131

Figure 5.5: As players move through the city, a slow heartbeat indicates that there is no
unusual paranormal activity. When a player moves close to a point of interest, inside a hotzone,
the detector’s heartbeat gets excited and speeds up. In the excited state, there is additional
vibration and audio feedback to emphasize the new state.

the current open quests to help the player navigate through the city
to fulfill quests.

• Camera button: Players are encouraged to capture their own mem-
ories with photos and videos using the built in camera. The player- Take photos

generated content is automatically uploaded to a personal weblog
with the location marked on an interactive map.

5.3 Gameplay Scenario

Anna and Peter are a young couple visiting Regensburg on a day trip.
At the tourist information office, they notice REXplorer advertised as Game starts at

tourist info officea city-experience game, and decide to try it out. They are renting the
detector (see Fig. 5.2) and a souvenir brochure (see Fig. 5.4) directly at
the tourist information center. Then they are shown a short three minutes
movie introducing them to the gravestone, the paranormal activity, and
their task as a scientific assistant to help solve the mysteries of the city.

As they leave to start playing, Anna is holding the detector and Peter is in
charge of the brochure. They turn the corner and Anna notices a heartbeat Game played in

small groupsvibration indicating the detector is excited (see Fig. 5.5) and that the couple
has reached a point of interest. From the introductory movie, Anna knows
that there is a spirit here that she can awaken by casting a spell.

She looks at Peter, who flips over the brochure map, looks at the different
gestures, and points to “wind” for Anna to try. After glancing at the legend Brochure provides

a gesture legendto get an idea for the gesture shape, Anna holds down the gesture button
and waves the device through the air, just as she saw in the introductory
video. As she moves the device, she sees her gesture progress on the detector
screen (see Fig. 5.6) and hears the gesture mode audio sample. Once the
gesture is complete, she releases the button, and a short “tornado” video

132 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.6: (A) The excited heartbeat indicates that the player is in a hotzone and can interact
with a spirit. (B) The player casts a spell by drawing one of the gravestone symbols in the air.
Audio feedback, as well as visual feedback is given to the player displaying the gesture progress.
(C) An element animation (in this case ‘wind’) confirms which gesture was recognized, whilst
the attached audio plays back. (D) The likeness of the character is displayed on the screen as
the spirit communicates with the player.

with audio playback confirms that she has successfully completed the wind
gesture.

A figure is shown on the detector screen and a spirit begins to speak to the
players:

REXplorer! It’s nice to see you. I am a salt trader. Peo-
ple like me used horses to pull heavy ships, full of expensive
salt, up the river Danube to Regensburg until around 1820 A.D.Spirit conveys

historical info and

issues a quest

Usually, the excursions last 4 weeks at a time. Yep, my life is
tough and dangerous. Thieves plague the salt trading routes, but
I have a loving wife who constantly prays in a nearby church for
my safe return. Only the fire of her love keeps me alive. Would
you be willing to deliver a message to my wife? Then show me
the appropriate gesture.

5.4 Other Pervasive and Mobile Games 133

After listening carefully to the text, Anna understands that she must cast
the“fire” spell to accept the quest. She looks at Peter and asks: “Which one
was fire, again?”. Peter shows her the gesture legend, and Anna successfully
completes the fire gesture to accept the quest. Then she hears:

I thank you from the bottom of my heart! It pleases me Quest details are

given after

acceptance

that you are willing to deliver my love letter to my wife at the
St. Ulrich Church near the Cathedral. Oh! My colleagues are
already waiting for me at the river. Good luck! Take care of
yourselves.

Peter looks on the brochure map and quickly finds the next location. He
looks to Anna and asks: “where are we now?”. She presses the map button Device map

complements the

brochure map

on the detector which shows them their current position and the destination
of their open quest. After orienting themselves, they start walking towards
the St. Ulrich Church to complete their first mission.

5.4 Other Pervasive and Mobile Games

In recent years, the field of pervasive and mobile experience design has been
growing rapidly, bringing forth exciting works. Although heterogenous in
scope and intent, a number of recent projects can be related and compared
to REXplorer in order to contour the scope of our project.

Most pervasive games to date are event-based and of an experimental na-
ture. The most notable exceptions have been (a) commercial and (b) at-
tempts to establish continuing, subscription based servicing. Mogi (Licoppe Previous

subscription-based

games

and Inada, 2006), for instance, is a cell phone and web based persistent item
collection and trading game where the actual geo-position of a subscriber
correlates to the position in the game world. Created by the French Tele-
com supported Newtgames and commercialized in Japan by the operator
KDDI in 2003, Mogi was discontinued in 2006. Another example of a mo-
bile phone subscription service is the GSM-cell positioning SMS-shooter
game Botfighters (Sotamaa, 2002), created by Swedish company It’s Alive
and launched for the first time in 2001 by Swedish operator Telia. The goal
of REXplorer is to achieve a research prototype of a robust, sustainable
service, but as opposed to Mogi or Botfighters, the REX museum and the
Regensburg tourist information will operate REXplorer as a local, site-
specific offer, using rental smartphones embedded into custom made shells
as game controlling devices.

A number of pervasive games have been designed for non-entertainment
purposes such as city marketing, learning, or emergency simulation.
Amongst the earliest examples of a serious pervasive game is the multi-
player indoor experience M.A.D. Countdown (Walz, 2005), where a “res- Serious pervasive

gamescue” team of players – one of whom roleplays a saboteur – has to locate an

134 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

atomic bomb within eight hours and disarm it; players use wirelessly net-
worked PocketPCs, browse puzzle websites, call fake answering machines,
and interact with physical game elements such as lockers containing game
clues. In an educational game, “Savannah” (Benford et al., 2005), children
role play lions, practicing hunting, and thereby learning about prey be-
havior in wildlife habitats. Environmental Detectives (Klopfer and Squire,
2005) embeds high schoolers into an authentic situation where teams of
players representing different interests have to locate the source of pollu-
tion by drilling “wells” and “sampling” with PDAs. The role playing game
Frequency 15502 blends Internet and mobile phone gameplay with location-
based puzzles to supplement the city history curriculum at the Montessori
school in Amsterdam.

Specifically Frequency 1550 is of particular interest in our context, as it
demonstrates how to convey site-specific knowledge with the help of game
mechanics. Both de Souza e Silva and Delacruz (2006) and Thomas (2006)Site-specific

knowledge describe a number of other relevant projects, examining potential uses of
pervasive gaming for educational purposes. These theoretical approaches
are interesting for the REXplorer gameplay, which aims at conveying
knowledge about touristic sites.

Similar to REXplorer, site-specific narratives and spatial storytelling -
that is, connecting site A with site B through a story - are eminent fea-
tures in History Unwired (Epstein and Vergani, 2006), which was testedLinear

vs. Non-linear

storytelling

during the 2005 Biennale of Contemporary Art in the most touristed city
worldwide, Venice. History Unwired is not a game, but an innovative and
entertaining linear walking tour around one of Venice’s less-traveled neigh-
borhoods, involving location-aware smartphones and interactive art pieces
at sites which are embedded into the tour. Contrary to REXplorer, the
designers of History Unwired decided for linear storytelling, where users
had few opportunity to “choose their own adventure”, which is an impor-
tant feature in the non-linear gameplay of REXplorer.

5.5 Mobile Phone Turned Magic Wand

One of the most significant ways we have differentiated ourselves from pre-
vious work is through our inclusion of a novel ubiquitous mobile interaction
technique of casting a spell.

5.5.1 Camera-based Motion Estimation

The motion information used for the gesture input is acquired using camera-
based motion estimation as in the Sweep technique(Ballagas et al., 2005).
We employ a block-matching algorithm similar to the ones described in
(Rohs, 2005a; Wang et al., 2006). A correlation between the current andBlock matching

algorithm 2http://freq1550.waag.org

5.5 Mobile Phone Turned Magic Wand 135

previous video frames is performed. Both frames are subsampled to roughly
1
8th of their former size. We test the MSE (Mean Square Error) between the
old and a shifted version of the new frame, with a shift range of 5×5 pixels.
The candidate with the lowest MSE then delivers the motion vector. The
subsampling and limited shift range can result in motion tracking errors,
but the simplifications are necessary to make this algorithm work in real
time on mobile phone computational resources. Wang et al. (2006) have
previously used a very similar motion estimation algorithm for gestural
interfaces and reported difficulties with the low frame rate and relatively
noisy motion data.

5.5.2 Gesture Recognition

A lot of work has been done in the field of handwriting recognition sys-
tems (Plamondon and Srihari, 2000) that could be adapted to our needs. Traditional

gesture

recognition

approaches are

too resource

intensive

However, most of these algorithms are very complex, employing neural net-
work classifiers (Oh and Suen, 2002) or using stochastical methods such
as Hidden Markov Models (Hu et al., 1996) for classification. These tra-
ditional gesture recognition engines typically use a library of predefined
gesture traces, which are often entered by the user in a learning phase. As
the typical REXplorer user will only use the device once, a learning phase
for the gesture classifier is undesirable. While these algorithms feature a
very good recognition rate operating on large and complex gesture vocabu-
laries, they are too complex and resource-intensive for our target platform
and application area.

The storyline required us to use gesture symbols from the historical grave- Simple gesture set

stone depicted in Figure 5.1. We carefully selected a few relatively simple
symbols whose motion vectors were as orthogonal as possible to simplify
the gesture recognition process.

We have designed a new gesture recognition algorithm that is tailored for
our gesture set and is suitable for the constrained computational resources
and mediocre motion estimation data. This algorithm uses state machines,
modeled from a gesture rule set, that parse the motion data and interpret Simple FSM

gesture

recognition

the gesture the user has performed. The algorithm incrementally matches
the input to a gesture by verifying the entered motion data reaches certain
predefined distance offsets.

To formalize the description of the algorithm, let M = m1, . . . , mn be a
sequence of motion tuples with mi ∈ N

2, obtained by user input. When
adding up the motion tuples we obtain a “gesture trace”T = t1, . . . , tn with

tj =
j∑

i=0

mi mi ∈ M

As shown in Figure 5.6b, a gesture trace can be plotted in 2D space to
obtain a graphical representation of the gesture.

136 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.7: Recognizing the gesture using offsets

Due to the fact that users perform gestures that cover a varying area of
pixels and that we only specify fixed offsets in our gesture configurationNormalize gesture

trace files, the input gesture trace is normalized to make its points lie within an
area of 100 × 100 pixels before gesture recognition.

Our algorithm determines which predefined rule set is matched best by the
entered motion data. A rule set defines a sequence of distance offsets that
must be fulfilled by the trace of the entered motion data.

We model each gesture as the acceptance state of a state machine G. UponRules specify

distance

thresholds

initialization, a gesture configuration file with the sequence of predefined
offset rules is loaded. Each state qi of a state machine Gn represents an
offset rule. An offset specifies the (Manhattan-)distance (x, y) in pixels
between the states qi and qi−1, in other words the first occurrence of the
value δ = tj − ti with j > i and ti, tj being two points in the gesture trace.
A gesture is accepted if Gn reaches it’s acceptance state qaccept.

For instance, if, as in Figure 5.7, q2 is defined as being (−2, 0) pixels away
from q1, which was matched at the coordinates ti = (2, 6), then the au-
tomaton will change it’s state to q2 when incoming motion data can be
traced to a location tj = (2 − k, n), where k > 3 and j > i.

The gesture recognizer A is thus modeled as the following union automaton:

A = G1 ∪ G2 ∪ . . . ∪ Gk

So it is evident that
F = {q(1)

accept, . . . , q
(k)
accept}

is the acceptance set of A.

5.5 Mobile Phone Turned Magic Wand 137

Because it is theoretically possible that multiple gestures can be recognized
from a single user input. We pragmatically modify the union criterion so
that the first automaton that accepts, be it Gn, will yield the recognition of
gesture n, while the results of the remaining automata that have accepted
will be discarded. This modification is justified because we use a carefully
chosen gesture vocabulary (see Figure 5.1) composed of a few very distinct
gestures that not only lowers the user’s learning curve but also eliminates
almost all falsely recognized gestures.

Our algorithm has proven itself to robustly handle the mediocre motion
data. This is because, conceptually, our system is very forgiving and usu- Very forgiving of

imperfect motion

input

ally leads to a correctly recognized gesture, even if the graphical represen-
tation of the gesture trace is very dissimilar to the predefined shapes. An
explanation for this is that we are, abstractly seen, testing if our inter-
nal cursor has entered the infinite plain3 specified by the next automaton
state’s offset vector. This cancels out noise from inadequate motion data
quite effectively as it is possible to move away from or orthogonally from
the specified direction before moving correctly and finally reaching the next
state.

Due to our algorithm’s coarse matching criteria, it does not scale well to simplifications

won’t work with

larger gesture sets

large and complex gesture vocabularies. Here a finer analysis of the data
is required. For instance, angle sums, point distances or mean absolute
distances can be used for more detailed classification. But taking all into
account, our algorithm’s low complexity but relatively high recognition rate
allows for an efficient implementation that performs well with a simple
gesture set on our target platform.

5.5.3 Iteratively Designing the Spell-Casting Experience

After the spell-casting game concept was settled, an iterative human-
centered design process was used to ensure that the spell-casting input
is an intuitive, enjoyable, and appropriate interface for REXplorer. As Design space

helped analyze

input alternatives

presented early in Section 2.3, we analyzed the design space of mobile in-
put techniques to understand the design alternatives. Our initial decision
was to use camera-based motion estimation because the physical motion
required was the most similar to the spell-casting metaphor. Also, the
physical style of gesturing with the arm was more likely to create an en-
gaging experience (Hummels, 2000).

We used the iStuff Mobile toolkit (presented in Section 3.3.2) to create iStuff Mobile used

to create initial

prototypes

a first low-fidelity functional prototype of the gesture recognition system
using camera-based motion estimation through the Quartz Composer visual
programming interface. This prototype was instrumental in convincing the
various stakeholders (including sponsors) of the feasibility of the gesture
recognition input technique. It also allowed us to explore and narrow in on
our current gesture recognition algorithm.

3These plains are represented by the shaded areas in Figure 5.7

138 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

The advantage of the iStuff Mobile prototype was that it allowed us to
quickly experiment with different gesture recognition and motion visualiza-
tion strategies in a controlled setting. The disadvantage of the iStuff MobileEarly prototypes

helpful for

demonstration

and controlled

settings

gesture recognition prototype is that it was inconvenient to do experiments
“in the wild”, because the compound architecture required proximity to
a laptop. In order to ensure that players would find gesture recognition
socially acceptable in context, and to verify that camera-based motion es-
timation would work with public traffic, we needed an ecologically valid
evaluation. We decided to build a more advanced, integrated, and self-
contained prototype to support these ecologically valid evaluations more
effectively.

User Reactions to Gesture Recognition in a Field Study

After completing the integrated prototype, we performed play sessions in
the wild, followed by focus group interviews to collect impressions of users.
The gesture recognition system in our integrated prototype proved to be
very tolerant and worked fairly well in public. Players were surprised of
the gesture tolerance. Aaron: “What I thought worked really well was,
even when I made a round C gesture, the device still would recognize it
– in any case, it has a really high tolerance.”4 However, the extra noiseFinding: Noisy

gesture

visualization

disrupts user

experience

in the motion data due to public traffic disturbed many of the users to
the point where many abandoned the gesture in the middle, preventing
the gesture recognition system from functioning properly. Ironically, if the
player had completed the gesture, the recognition system would have in
most cases tolerated the extra noise in the motion data and successfully
recognized the gesture. Lacy described her experience as follows: ”In terms
of the gestures (motion)... the device didn’t recognize everything entirely.”5

This led us to realize that the smoothness of the gesture trace visualization
was very important to the spell-casting experience, because players had
preconceptions about the robustness of the recognition system.

To improve the smoothness of the motion data, we loosely applied the
concept of expressiveness from Chapter 4. Specifically, there is a mismatchLimiting motion

vectors to match

gesture set

between the motion vectors required for our gesture set, and the motion
vectors that can be expressed by our input device. The gesture vocabulary
only requires Manhattan-style motion along the X and Y axes, but our
motion estimation algorithm can generate motion vectors along our 5 × 5
motion search grid. To translate the 2D motion vector to Manhattan-style
motion, we simply take the larger of the X or Y motion parameters. In the
case they are equal, the motion history is used as a tie breaker.

To further improve smoothness in the presence of noise, we employed aFiltering noise

momentum heuristic where the direction of motion would not be changed
4Original German Text: “Was ich ganz gut finde, ist dass selbst wenn man ein rundes

C macht, das Geraet selbst das noch erkennen wuerde - recht grosse Toleranz auf jeden
Fall.”

5Original German Text: ““Das mit den Gesten... das Gerät hat das alles nicht so ganz
erkannt.”

5.6 Other Prototyping Iterations 139

until 3 consecutive samples were received moving in the same direction
(after Manhattan conversion). Any motion samples received that are not
in the current direction of motion are ignored in the gesture trace until the
direction has changed.

Several testers had problems with repeated recognition failures at a par-
ticular location (e.g., when they were facing a street with moving cars). Finding:

TroublespotsDanny said: “I made one of these (gestures) five times, and then I thought,
if it fails one more time, then I’ll lose interest and leave it behind.”6 This
points to the need for an alternative or backup method for selecting a spell
in these difficult locations.

Some participants (especially our older participants who played in soli-
taire) found the gestures socially awkward, and they requested dedicated
spell buttons instead of gestures. However, others mentioned that the ges- Social

awkwardness

vs. Physical

engagement

tures were an important part of the experience adding to the sense of magic
and mysteriousness. They also argued that the game shouldn’t be without
challenges. In a focus group interview, Maria said: “We had fun with the
fact that it was hard to trace out the gestures. When it works everytime,
then it’s boring. It shouldn’t be too easy.”7 Tom followed up with: “It
was somehow funny”8 Emotional reactions were also common when peo-
ple successfully performed a gesture. Irene said: “Bravo... Yeah!”9 after
performing a correct gesture during a play session.

We designed an alternative spell selection mechanism to help balance the
forces of physical engagement and social awkwardness. This alternative Alternative spell

input requiredselection works through an on-screen menu (see Fig. 5.8) that can be used
anytime an invalid gesture is performed, effectively allowing people to avoid
gestures altogether by intentionally entering invalid gesure input. Players
who choose to avoid gestures are penalized by not earning points.

5.6 Other Prototyping Iterations

Iterative design was not only used to refine the spell-casting experience,
but also for many other aspects of the game.

5.6.1 Early Concept Prototyping

In the early stages of the design, we generated a number of game ideas and
formalized these ideas into one page conceptual design treatments, briefly

6Original German text: “Ich habe so eine (Geste) fünf Mal gemacht und dann habe
ich gedacht, wenn Du das jetzt nochmal machst und es nicht klappt, dann hast Du keinen
Bock mehr, dann lässt Du es bleiben.”

7Original German text: “Wir hatten Spaß daran, dass es schwierig war es hinzumalen.
Wenn es auf Anhieb klappt, dann ist es ja langweilig. Es darf nicht zu einfach sein.”

8“Es war witzig irgendwie.”
9Original German text: “Na bravo... Yeah!”

140 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.8: The alternative spell selection menu was a rotating, clock-like interface where
the red highlight continuously rotated around the screen. The gesture symbol in the middle
discretely rotated to eliminate ambiguity as to which element was currently highlighted. Note
that the shape of the gesture in the middle matches the gesture that would be performed to
evoke the corresponding spell for the medieval element. Users press “Auswählen” to select, and
“Nochmal” to try the gesture again.

describing formal and dramaturgical elements of the games (Fullerton et al.,
2004). We presented these treatments to our main stakeholder, the REXEarly conceptual

design treatments museum. After REX stakeholders had opted for the basic idea that even-
tually became our game, we created scenarios and storyboards outlining
potential core mechanics of the game (see Figure 5.9), as well as a first
physical prototype in the form of a board game (see Fig. 5.10), next to a
simple map application indicating Regensburg sights and the walkability of
the city core.

We used this demonstration and simulation material to collect feedback
from the target group. We presented the game to two German high school
classes – 10th and 11th grade – living in a city three hours away from Re-
gensburg, followed by a questionnaire and a focus group discussion. Gen-Presented

storyboards to

users

erally, the feedback showed that the magic theme was very important in
attracting the interest of this age group and that the idea of a history game
alone wasn’t as attractive. However, the feedback helped us to move away
from the original purely magic theme to a techno-magic theme involving
science elements. The target players expressed high interest in playing the
game themselves, and they found the technical aspects novel and inter-
esting. In general, the board game prototype and the storyboards were a
success as mechanisms to flush out the different gameplay elements and get
high-level feedback on the early game concept from our target players.

5.6 Other Prototyping Iterations 141

Figure 5.9: Storyboard conveying REXplorer game play

142 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.10: Board game prototype of REXplorer

Following our target group research, we created a design document draft
with functional specifications and an iteration of the board game prototype,
as well as a video walkthrough of the gestural interaction. These concep-Early prototypes

helped

communicate

ideas

tual techniques served a very important role in communicating our ideas
to various stakeholders to win their support. In REXplorer, there were
a wide variety of stakeholders whose concerns needed to be addressed. Our
clients, the REX museum, were trying to portray an image of historical
integrity. Our conceptual material was effective in assuaging fears of too
much fantasy and too little historical content. We also used the mentioned
material to win over support of the municipal government to provide space
and resources necessary for the proper operation of the game. The concep-
tual material was also instrumental in convincing local tour-guides that we
were not attempting to compete with them and even helped recruit them
for content oversight. Eventually, these early concept prototypes helped
communicate the abstract game concept in a concrete fashion to sponsors.

5.6.2 Board Game Prototyping

In addition to being a demonstration tool, a board game prototype provides
a world-in-miniature that allows the gameplay to be tested easily. This formBoard game

testing is low cost of prototype is very useful for early stage content testing by reading the
content aloud as the players progress through the game. It helps express
spatiality, get a feeling for travel times, oversee proximities of sights, achieve
narrative consistency, and helps to ensure that the underlying game is fun.

5.6 Other Prototyping Iterations 143

Dice and event cards can be used to regulate the progress through the city
streets to give a more realistic simulation of the way people actually move
in the city.

5.6.3 Game Statecharts

The formal UI state machine diagrams were important for defining exactly FSMs helped

formalize UIwhat text needed to be written for each character. By flushing out the
design formally, we were able to ensure that we had accounted for every
possible game state and error condition before the script was written and
recorded. The statecharts also served as a design document for the software
implementation of the game engine.

5.6.4 Content Prototyping

The content directly supports the main purpose of this serious game: ed-
ucating the players. Therefore, it was very important to carefully craft a
high quality dialogue. To prototype the different characters in the game we
used character sheet format. This is a one-page description of the differ-
ent characters that provided an at-a-glance overview to simplify the review
process. The sheets included the following entry fields:

• Bookkeeping elements: including name, building address, character
ID.

• Physical Characteristics: including age, height, hair color, weight,
vocal characteristics, species, remarkable features, and sketches of
each character.

• Inspiration for spoken text: including typical quotes, description mo-
tivating why this character belongs at this location, and a brainstorm-
ing list of what the content could include.

These character sheets were important in communicating our more detailed
content ideas with the local tour-guides for content oversight. The character Local tour-guides

oversaw contentsheets provided a compact and highly-browsable format which supported
an effective review process. The tour guides were able to suggest improve-
ments or changes in character selection very easily using this format. The
changes at this stage were easy to incorporate and they prevented signifi-
cant rewriting of the full script later on.

5.6.5 Hotzone Prototyping

GPS can have problems in urban spaces due to buildings or even clouds
obstructing signals from the satellites. It is very important to test the

144 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

In cell

Recognizing
gesture

Press
"GESTURE"

Quest
Gesture

Non-Quest
Gesture

Invalid
Gesture

Is incoming
quest

accepted?

Please try again

Character not
responding

Quest completed

Quest offer
Quest
offered

no

Are all
outgoing
quests

completed?

yes

Is there a
possiblity to

close a quest?

Request for more
uncompleted quests

yes

Is there a
possiblity to

close a quest?

Request for
uncompleted

quests
yes

Quest already
completed

yes

no

Is outgoing
quest

accepted?

no

Is outgoing
quest

completed?

no

no

Quest
incomplete

yes

no

Walking
around

Leave
hotzone

Qi=c
Qi=u

Qi=a

Qi2=a

Qi2=c
Qi2=u

Qi2 = null
Qi2=a

Qi2=c
Qi2=u

Qi2 = null

Qo=c and Qo2 = c

Qo=u
Qo=a

Qo=u

Qo=c

Qo=u
Qo=a

Qo=a

In cell
(repeated
from top)

Loc = in
Qlistfull = x

Qi = x
Qi2 = x
Qo = x

Qo2 = x

Is quest list
full? List fullyes

no

Qlistfull = t

Qlistfull = f

Figure 5.11: Finite State Machine showing the reaction to a gesture. The colors determine
whether the spoken text is from the character or the device itself. This is only an excerpt that
defines behavior for the “In cell” state, similar diagrams were created for each of the remaining
game states.

5.6 Other Prototyping Iterations 145

Figure 5.12: Map tool that allows us to visually define hotzones based on GPS measurements
from testing

location system thoroughly to ensure proper functionality. Our hotzones
are defined iteratively based on GPS measurements. Leveraging our pre- Visually defining

hotzones

iteratively from

play session data

vious experience in tools for ubiquitous computing applications(discussed
in Chapter 3), we developed a tool (see Fig. 5.12) that allows us to define
the hotzones visually based on the GPS measurments from testing. Using
this tool we were able to iteratively define hotzones, and were able to deter-
mine that GPS alone is not sufficient for the accuracy that we require. To
support location detection, we also considered using Bluetooth beacons, as
well as providing the ability for players to select their own location when
the location detection fails.

5.6.6 Detector Prototyping

The form the detector (game controller) including the keypad went through
many iterations before we ended with the final design (see Fig. 5.13). A Many stages of

form prototypingsmall group of students co-created the detector, seeking input from indus-
trial design professionals, and from a manufacturer specializing in leigh-
weight metal bending and laser cutting. There are many considerations

146 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

that need to be addressed in the design, for example it needs to:

1. house the phone and GPS receiver together in a tamper-proof, pro-
tective shell.

2. support the atmosphere of the game by providing a look that fits
the story description of a scientific detector and a feel that mimics a
techno-magic wand.

3. provide a skin for the phone keypad to provide a customized game
interface.

4. allow for quick recharging of devices.

During the prototyping phases, different materials were tested. Plastic was
the first choice, but it proved not to be robust enough. A thin aluminum
skeleton was used in the final design, wrapped with a soft and stretchable
textile with a laser-etched keypad layout.

5.6.7 “Wizard of Oz” Playability Tests

For late stage prototyping, we performed an on-site player study. Our lo-
cation detection enhancements were not ready yet, so we used a “Wizard
of Oz” prototype to simulate a fully functional game. In this prototype, weSimulate parts of

functionality for

experience testing

used a Nokia 770 internet tablet with a custom application that allowed a
test administrator (a wizard) to follow the player and manually input the
current player location on the touch screen as the player moved through
the city streets to simulate a near-perfect location detection system. The
Nokia 770 was connected via a Bluetooth connection to the mobile phone
housed in the game controller. The communication protocol from the tablet
to the REXplorer detector was identical in format to a standard GPS
receiver, so the software implementation of the detector required no addi-
tional changes for this prototype to function properly.

For the structure of our study, we used a product-interactive focus
group (Lee et al., 2004b). Traditional focus groups center on discourseFocus group

interviews after

play sessions

regarding a early concept guided by a moderator, similar to the techniques
we used with our storyboards and early board game prototype with high
school students. In product-interactive focus groups, on the other hand,
users are asked to perform a certain set of tasks using a product before the
group discussion. In the case of REXplorer, 18 participants played a full
one hour game session before joining a focus group discussion with several
other players at the end of their game session.

Analysis

We transcribed the video data from the focus group interviews and the
playing sessions and then analyzed the data for patterns of behavior using

5.7 Design Rationale 147

Figure 5.13: The detector houses the GPS receiver and the mobile phone in a protective shell;
it is wrapped by a stretchable and soft textile with custom key labels. (Left) An early prototype
consisting of construction paper, wrapping a wooden core, and buttons sketched on with a
metallic pen. (Middle-Left) A more advanced prototype consisting of cardboard, a real mobile
phone, and a close to final textile skin. (Middle-Right) A prototype for materials exploration,
this plastic design housed both the mobile phone and the GPS device, but did not properly
expose the buttons. (Right) The final design with an aluminum protective shell covered in a
soft textile wrapping.

an affinity analysis (Beyer and Holtzblatt, 1998) as shown in Fig. 5.15.

5.7 Design Rationale

Each iteration in the design process helped formulate the current design
based on a great deal of feedback from our stakeholders and players (espe-
cially the data captured in our affinity analysis). In this section, we will Towards a

language of

design patterns

outline the most significant factors that resulted from the many prototype
iterations. Specifically, we will discuss how we were able to balance con-
flicting forces that pulled the design in competing directions. This rationale
should serve to inform the design of future pervasive game systems, even-
tually leading to a language of design patterns (Borchers, 2001; Bjork and
Holopainen, 2005).

148 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.14: For the playability tests, Wizard of Oz techniques were applied using the Nokia
770 tablet. A test administrator uses the tablet to manually input the players’ position as they
follow the players through the city to simulate a fully functional location detection system.

Figure 5.15: An affinity analysis consists of writing individual quotes from the interviews and
play sessions to try to isolate patterns of behavior across the different sessions.

Designing for Narrative Consistency

One of the primary challenges of designing a history game for the city of
Regensburg is that the city’s history spans several periods starting from the
Roman empire as a strategic military fortress, through the middle ages asMany important

historical periods a vital trade center, up to the early 1800’s where it served as an important
political center as the permanent seat of the Imperial Diet for the Holy
Roman Empire of German Nation. Focusing on any of these periods would

5.7 Design Rationale 149

not do justice in conveying heritage of the city, yet having a game that spans
the different periods risks inconsistency, or overly structured linearity. The
difficulty is finding a story that appropriately bridges these periods. In
REXplorer, we use the “haunted house” and “techno-magic” themes to
bridge these historical movements in a non-linear story.

Early on in our discussions, the “magic” theme was negatively received
by many of the stakeholders. It was perceived as too close to the “Harry
Potter” series or too much oriented towards “Disney”, as our client valued Entertainment

vs. Educationa strong academic and historical basis that would be seen as educational
instrument and not pure entertainment. On the other hand, we wanted to
create a game that was fun and exciting, and not just an uninspired audio
guide regurgitating the facts from the history books. By the way of the
iterative design techniques, we were able to find an appropriate balance
of fun and seriousness, blending fact and fiction in a way that conveyed
historical information effectively, yet preserved the engaging techno-magic
background.

One key breakthrough that helped us reach this goal is recognizing that
local folklore is an important part of the history and culture of the city. Folklore is an

important part of

culture

We leveraged local folklore to create a number of our fictional characters.
We also derived the techno-magical gesture vocabulary using a real histor-
ical artifact, blending game make-belief with fact. These were key design
decisions that helped us ultimately win over skeptics. The tradeoff here is
that we make the game less portable to a different site, but with a history
game it is important that all of the content is tailored to the site, including
details such as the inspiration of the gestures.

Balancing Competitiveness and Leisure

From the playability tests, points and game levels were a polarizing topic. Point score moved

to backgroundPeople who were avid games players demanded it. However, non-gamers
(especially our older participants) mentioned that points made the experi-
ence feel competitive and detracted from a relaxing tourist experience. Our
compromise was to keep points away from the main screen and move them
to the status menu. This made points visible to those seeking them, and
hidden in the background for those who weren’t interested.

Balancing Cooperative Experience vs. Outdoor Play

Tourism is rarely an activity enjoyed in isolation; instead, it is an activity
that is shared with family and friends to create common experiences and
memories. REXplorer is designed to support shared experiences through Promoting shared

memories through

cooperative

experience

cooperative gameplay, where two or three people can share a single con-
troller. To support this model, the controller was designed to use the phone
loudspeaker instead of headphones. The shell is designed to reflect the au-
dio playing from the phone loudspeaker towards the players when holding

150 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

Figure 5.16: REXplorer is designed to be played in groups of two or
three.

the device in front of them, making use of the shell as a resonator. The
controller is surprisingly loud, and in our playability tests, most had no
problems hearing the audio. In some scenarios, unusual levels of street
noise made the audio difficult to hear, but players were easily able to cope
by holding the loudspeaker closer to the ears between their heads. The
controller also has a “repeat audio” button to handle cases when something
prevents the text from being heard. Plugging in headphones is also sup-
ported by the controller by the way of a cut-out, but headphones isolate
the player and should only be used in single-player scenarios.

Designing for a “Heads Up” Experience

One criticism that we received early in the design process was the concern
that people would have their attention focused primarily on the device
screen, and that this would detract from the real attraction of Regensburg:

5.8 Chapter Summary 151

the medieval architecture. There are also safety concerns when people are Keep focus of

attention on city

architecture

moving through a physical space while visually engaged with a handheld
screen. This criticism focused our design to discourage the player from
looking at the device screen. First of all, this led us to choose the small
screen form factor of a phone instead of a larger PDA, or tablet computer.
On the screen, only simple visualizations are used. The black & white
static sketches were chosen over vivid color animations to enable people
to get an impression of the character at-a-glance and spend the rest of
the time visually absorbing their environment. During our playability test,
the black & white content had another unexpected benefit of providing a
high-contrast interface suitable for bright sunshine.

The small display makes it more difficult to navigate with the on-screen
map. However, we provide the players with a map brochure intended for Small map

difficulties

compensated with

brochure

navigation. The device map additionally serves to help pinpoint their cur-
rent position. The small on-screen map makes it undesirable to focus at-
tention on the map while moving through the city, which helps to divert
attention away from the device screen.

Multi-modal feedback also allows players to keep their visual attention away Multi-modal

feedback reduces

need for visual

attention

from the screen during gameplay. When players enter a hotzone, the device
notifies them with an accelerated heartbeat that they can hear, see and feel.
The haptic and audio feedback allows them to keep the device at their side
until they have reached their next destination.

5.8 Chapter Summary

In this chapter, a real example of a ubiquitous computing application that
uses mobile phones as an input device for the surrounding environment was
presented. The chapter demonstrates how player-centered iterative design
can be applied from drawing board to deployment. The concepts presented Theories from

previous chapters

successfully

applied in a real

context of use

in earlier chapters contributed to enabling an iterative design process. In
the early design stages, the design space of mobile input techniques (pre-
sented in Chapter 2) helped reason about design alternatives and select
the mobile input techniques that were most appropriate for the applica-
tion domain. For the early prototyping stages, the iStuff Mobile toolkit
(presented in Chapter 3) helped with early-stage functional prototyping
of spell-casting using gesture recognition. These early functional proto-
types were instrumental in convincing stakeholders of the feasibility of the
idea, and quickly narrowing in on an appropriate gesture recognition algo-
rithm. The concept of expressiveness (presented in Chapter 4) also helped
optimize the motion estimation input to best match the given gesture set.
Other non-obvious prototyping techniques, such as board game prototypes,
helped iron out some of the playability issues of the game earlier in the de-
sign process. The high fidelity prototypes helped us perform ecologically
valid evaluations to isolate issues related to bringing a ubiquitous comput-
ing application into a real public setting. Clearly there are difficulties and
challenges remaining in the application of human-centered iterative design

152 5 Iterative Design in Practice: Player-Centered Iterative Design for Pervasive Games

to the ubiquitous computing domain, but this example demonstrates that
the tools and conceptual frameworks presented in this thesis are helping to
close the gap.

This concludes Chapter 5 of this work, in which we show how iterative
design for ubiquitous computing is applied in practice. The next chapter
will summarize the contributions of this work and provide an outlook for
continuing the research vision.

153

Chapter 6

Conclusion

This dissertation demonstrates that despite the numerous challenges, itera-
tive design can be applied to the ubiquitous computing application domain.

6.1 Contributions

In this section, the contributions of the thesis are reiterated with a summary
of how each contribution was achieved.

1. Organizes mobile phone input techniques into a design space that:

(a) Organizes mobile phone input techniques into families to help
reason about their relationships.
The structure of our design space used the subtask the input Design space

visually organizes

design alternatives

technique performed with other dimensions of interest such
as feedback (continuous vs. discrete), interaction style (direct
vs. indirect), dimensionality, and relative vs. absolute. Laying
this structure out into a design space allows visual association
of similarities and differences of interaction techniques. It
also helps reason about where to look for alternative input
techniques and what properties they require.

(b) Aids designers in considering alternative parallel designs and se-
lecting the most appropriate mobile phone input technique for a
particular interaction scenario.
Early in the design process, the design space can be used to Helps with parallel

designgenerate ideas for parallel designs to comparatively test in a
human-centered design process. As the designs mature, the
best design becomes clear, or the strengths of the top designs
can be merged to a unified design.

154 6 Conclusion

(c) Allows future input techniques to be predicted.
Gaps in the design space are visually apparent, and can allowHelps identify

gaps a designer to analyze which future input technique might fill
the gap. This property was most apparent when examining
the original iStuff hardware components in a design space to
visualize the gaps of coverage of that early toolkit and identify
where it could be extended.

2. New interaction techniques for employing mobile phones as input de-
vices in ubiquitous computing application scenarios.

(a) The Sweep and Point & Shoot input techniques use the camera
on the mobile phone as a sensor to enable interactions with large
public displays.
The Sweep technique is a continuous, relative, indirect inputNew

camera-based

mobile input

techniques

technique that uses camera-based motion detection to allow a
user to control a cursor on a remote display using 3 degrees
of freedom (X, Y , θ). An analogy can be made to an optical
mouse, in that motion is tracked through a camera view. The
Point & Shoot technique is a discrete, absolute, direct input
technique that allows the user to use the camera as a view
finder to aim at and select their desired target. It uses tags in
the environment to establish an absolute coordinate system on
the remote screen.

(b) The Elope project shows how to fluidly combine the storage and
processing of mobile phones with the input and output capabilities
of an interactive workspace.
Elope is a novel way to combine personal data on your mobileNew RFID-based

interactions phone with high-fidelity input and output facilities in an inter-
active workspace. The idea takes advantage of the affordances
of objects in the room (such as a presentation remote control)
to represent room configurations and services.

(c) The REXplorer pervasive and mobile game for tourists employs
mobile phones as a platform where users can interact with spirits
(historical characters) distributed throughout an urban environ-
ment by casting spells (gestures created from waving the mobile
phone through the air).First mobile

spell-casting

interaction
REXplorer is the first pervasive game to use spell-casting as an
interaction metaphor, allowing the mobile phone to be used as
gestural input based on the Sweep technique mentioned above.

3. Architecture support for physical user interface input and mobile
phone input techniques in ubiquitous computing application scenar-
ios that:

(a) Lowers the threshold for prototyping ubiquitous computing appli-

6.1 Contributions 155

cations that employ physical or mobile phone input while main-
taining a high ceiling of prototyping activities.
The iStuff architecture makes it easy to use a variety of hard- Radically

simplifies

construction of

functional

prototypes

ware components ranging from mobile phones to sensor network
platforms to off-the-shelf commercial components as building
blocks to construct novel ubiquitous user interfaces. A broad
range of examples demonstrates the high ceiling of prototyping
activities, and an evaluation demonstrates the low threshold of
prototyping.

(b) Supports incremental integration, extensibility, and rapid config-
uration of input using the Patch Panel infrastructure.
The Patch Panel is a systems approach to address issues of Supports

incremental

integration

heterogeneity and interoperability in ubiquitous computing
environments. It uses event intermediation to allow otherwise
incompatible entities to communicate, even if they weren’t
intended to interoperate.

(c) Introduces several new programming interfaces for rapid proto-
typing ubiquitous computing interactions including a light script-
ing language and a visual programming environment.
Quartz Composer uses a pipe-and-filter metaphor to rapidly New interfaces

support rapid

prototyping

prototype motion graphics. This dissertation shows that it
is also useful to define physical prototypes. This interface is
preferred in our user studies over an alternative textual pro-
gramming environment. The textual programming environment
was better suited for defining interactions modeled by finite
state machines.

4. Redefines the expressiveness of input devices so that it can be cal-
culated using physical properties of the device instead of empirical
thresholds.

(a) Demonstrates how to use expressiveness to structure the evalua-
tion of prototype pointing devices to be able to make conclusions
about how the device will function after further refinement.
Expressiveness can be calculated using the resolution and Expressiveness as

a design and

evaluation tool

sampling rate of the input device. As long as a pointing task
during evaluation does not extend past the expressiveness of
the input device, the Fitts’ law regression can be used to make
conclusions about future improvements of the input technique
with respect to resolution and sampling rate.

5. Demonstrates how to apply player-centered iterative design to perva-
sive game development

(a) Illustrates a range of low-fidelity, and limited functionality pro-
totypes that can be used to evaluate parts of the game earlier in
the design process.

156 6 Conclusion

User Interface Layer

Proxy Layer

Intermediary Layer

Application Layer

Ubiquitous Computing
Prototypes

Expressiveness

iStuff Architecture

Patch Panel

Ubiquitous
Computing

Design

Point & Shoot

Sweep

Selexels

Evaluating Prototype
Input Devices

Quartz Composer

Design Space of
Ubicomp Input

REXplorer

Patch Panel
Scripting Language

Elope

Focus in Ubicomp

Iterative Design

Network Layer

Figure 6.1: A map showing the contributions of this thesis mapped over the ACM’s map of
Human–Computer Interaction.

Iterative design is difficult to apply to ubiquitous computingBring theory to

practice with real

world examples

applications. Through this example, we walk the reader through
the use of iterative design from drawing board to deployment.

6.2 Future Work

The iStuff architecture can be applied to explore the design space of ubiq-Use toolkits to

explore the design

space

uitous computing applications. Because the iStuff architecture lowers the
threshold for physical interface development and makes development avail-
able to a broader user base, there is an opportunity for application research.
This architecture and resulting toolkits can be used for creative design,
technology transfers, classroom educational scenarios, and longitudinal de-
ployment and evaluation of these systems.

iStuff Mobile can be used to explore the gaps identified in the design space

6.3 Closing Remarks 157

of ubiquitous mobile input techniques. For example, using the mobile phone
for more 3D position and orientation interactions by attaching appropriate
3D sensors.

Quartz Composer can continue to be extended to address any physical pro- Continue Quartz

Composer

extentions

totyping gaps in the programming environment. A more thorough eval-
uation that compares Quartz Composer to other rapid prototyping en-
vironments such as the statechart editor from d.tools, programming by
demonstration with Exemplar, or other pipe-and-filter environments such
as Max/MSP would benefit the toolkit community.

Further exploration of pointing performance under selexels would be valu-
able. The user studies presented in this work only consider point cursors Further explore

selection space

pointing

in selexel space, even though the active region spanned a screen region in
display space. Confirmation is required that previous findings regarding
fixed area cursors or dynamically expanding area cursors also apply to area
cursors in Selection space.

It would also be valuable to explore using animation to smoothen selexel Animation for

selexel cursor

motion

cursor movement. Animation may introduce delay and create ambiguity
in terms of the active selexel during a transition between selexel regions,
however it may provide a smoother interaction experience for the user.

Building on the expressiveness work, we are currently working on toolkit Toolkit support

for adaptive

selexel UI layout

support of the selexel framework, allowing applications to dynamically ad-
just their selexel resolution based on the input device used. An early proof-
of-concept of these ideas has been demonstrated by Jenabi (2006). This
framework shows that it is possible to adapt a user interface at run-time to
match the capabilities of an input device. More work is required to make
this a robust application framework for other developers to depend on.

In our continued research on REXplorer, we are examining different eval- Evaluation of

pervasive gamesuation strategies for pervasive games. We plan on performing a long-term
study examining how usage patterns emerge over large sets of users. We
also plan to examine the effectiveness of using a game simulator in a con-
trolled setting to identify design flaws in a pervasive game. The controlled
setting is not “ecologically valid”, but is much cheaper to perform than a
full-scale field study. The simulator also allows the developer to be loca-
tion independent and not tied to their intended deployment location during
development.

6.3 Closing Remarks

Ubiquitous computing has the potential to change the way we live, work,
and play. In order to tap into this potential, we need to design applications
that are useful, efficient, and enjoyable. The human-centered iterative de-
sign process has been effective in the desktop domain, but has remained
elusive for ubiquitous computing because of a number of challenges. This

158 6 Conclusion

dissertation reduces the gap by contributing to each phase of the iterative
design process, and demonstrates that iterative design can be an effective
design strategy by showing a product that has been taken from drawing
board to deployment.

159

Appendix A

iStuff Hardware Schematics

The original iStuff hardware was designed to use commercially available
electronic components that were relatively easy to reconstruct for anyone
with basic soldering skills. These designs are fairly elementary but are in-
cluded here for completeness to allow other interested designers to recreate
the original hardware set.

A.1 iButton

The iButton consists of a transmitter assembly activated by a button.
When the button is depressed, the transmitter sends its identifying 8-bit
number to a receiver. In software connected to the receiver, an action can
be paired with the ID such that the button can perform a useful task. The
identifying number is specified by setting data pins (D0 - D7) high or low
according to the binary version of the number (1= high, 0 = low). For our
iButtons, although not specified in the schematic, we have hardwired the
appropriate data pins to high such that each iButton has it’s own unique
ID. The default state of a disconnected data pin is low.

The iButton circuit (see Figure A.1) consists of the following components.

• Ming TX-99 transmitter1

• HT640 encoder chip2

• 3V watch battery and holder

• Resistor (51 kΩ)

1http://www.rentron.com/remote_control/TX-99.htm
2http://www.rentron.com/remote_control/Holtek.htm

160 A iStuff Hardware Schematics

Figure A.1: The circuit diagram for the iButton.

A.2 iDog

The iDog was a slight variation of the iButton, where the button was re-
placed with a binary gravity sensor. The circuit was sewn into a stuffed
animal such that when the dog was handled, it behaved as a pressed iBut-
ton.

A.3 iLight

The iLight is a portable Ming 300MHz RF receiver and linked actuator.
It listens for preset ON and OFF numerical codes sent by Ming 300MHz
transmitters, and when it receives one of these codes, the actuator is cor-
respondingly turned on or off. The device is designed to control many
different types of actuators (light, buzzer, vibrator, anything requiring sim-
ple on/off control), providing a standard Molex connection with one pin
power and another, ground. We refer to this device as the iLight, because
our actuator at the moment happens to be a bright LED. The ON code for
the device is set by using an 8-bit dip switch. The OFF code is this same
8-bit dip switch number, only with the least significant bit inverted. While
the iLight responds to its preset on and off codes, it is unaffected by other
transmitted codes. Power on the iLight in our laboratory is provided by a
9V 300mA AC adapter, but the power source could easily be a battery. The
circuitry requires a supply voltage of at least 5V to enable logic, however,
a larger supply voltage may be needed depending on the actuator used.

The iLight circuit (see Figure A.2) consists of the following components.

A.3 iLight 161

Figure A.2: The circuit diagram for the iLight.

• Ming RE-99 receiver3

• HT-648L decoder4

• 74HC688 8-bit comparator (Need 2)

• 8-bit dip switch

• 10 100kΩ resistors

• 74HC14 Schmidt-triggered hex inverter

• 4013B dual D flip-flop

• NTE922M voltage comparator

• 2N2222A transistor

• Molex connector of your choice

• Momentary push-button switch
3http://www.rentron.com/remote_control/RE-99.htm
4http://www.rentron.com/remote_control/Holtek.htm

162 A iStuff Hardware Schematics

Figure A.3: The circuit diagram for the iSlider.

• 18kΩ resistor

• 1.8kΩ resistor

• 1kΩ resistor

A.4 iSlider

The iSlider is a one dimensional input device that transmits data using the
300MHz Ming transmitter. The circuit (see Figure A.2) included of the
following main components.

• Ming TX-99 transmitter5

5http://www.rentron.com/remote_control/TX-99.htm

A.5 iStuff Proxy Receiver 163

• HT640 encoder chip6

• LED (to indicate when on)

• Sliding Potentiometer

A.5 iStuff Proxy Receiver

The receiver board (see Figure A.4) enabled communication between the
various input devices (such as the iButton, or the iSlider) to a desktop
computer. The construction included a Ming RE-99 receiver, a decoder
chip, and an ActiveWire USB interface board. This receiver supports iStuff
that broadcast using the Ming TX-99 transmitter.

• Ming RE-99 receiver

• ActiveWire USB card7

• HT-648L decoder

• LM340T5 5V power regulator

• 2N2222A transistor

• LED

• 120Ω resistor

• 33kΩ resistor

• 100kΩ resistor

• 9V power supply

A.6 iStuff Proxy Transmitter

The transmitter board (see Figure A.5) enabled communication between
the desktop computer and various output devices (such as the iLight, or
iBuzzer). The construction included a Ming TX-99 transmitter, an encoder
chip, and an ActiveWire USB interface board. This transmitter can send
information to iStuff with Ming RE-99 receivers.

• Ming TX-99 Transmitter

• ActiveWire USB card
6http://www.rentron.com/remote_control/Holtek.htm
7http://www.activewireinc.com/

164 A iStuff Hardware Schematics

F
ig

u
re

A
.4

:
T

he
ci

rc
ui

t
di

ag
ra

m
fo

r
th

e
iS

tu
ff

pr
ox

y
re

ci
ev

er
.

A.6 iStuff Proxy Transmitter 165

• HT-640 encoder

• LM340T5 5V power regulator

• 2N2222A transistor

• LED

• 120Ω resistor

• 33kΩ resistor

• 100kΩ resistor

• 9V power supply

166 A iStuff Hardware Schematics

F
ig

u
re

A
.5

:
T

he
ci

rc
ui

t
di

ag
ra

m
fo

r
th

e
iS

tu
ff

pr
ox

y
tr

an
sm

it
te

r.

167

Appendix B

iStuff Evaluation and
Scenario Descriptions

168 B iStuff Evaluation and Scenario Descriptions

User tests for the Patch Panel GUI and the Patch Panel Script
language

Welcome to the user study of the iStuff project at the Media Computing Group and
thank you for your participation. We are happy to give you an introduction into our
latest development in the field of supporting the rapid prototyping process for
ubiquitous environments: A new graphical interface for the Patch Panel and a
command line wrapper responsible to facilitate the management of iStuff proxies, the
Proxy Manager.

0. Important note
Important note on the test in that you take part for us: It is not you to be judged or
evaluated; it is our design of the software we hand to you! So do not be afraid to
criticize the development environment.
This lesson should include the benefit for you that you become familiar with the
development suite and for us that we can justify a user evaluation and incorporate
today’s results of a user evaluation into our work.

The tasks you perform are recorded in terms of a screen capture and audio recording.
Please do not feel offended by these techniques and just try to ignore them. We will
not attempt to identify or judge your behavior with these recordings. They only
represent a post-evaluation aid for us to see how you have derived a certain solution.
You are not filmed explicitly. The iSight vision is turned off!

Figure B.1: Page 1 of description of the evaluation handed out to the participants - Introduc-
tion

169

1. Motivation
In order to give a motivation for the following scenarios we would like you to recreate
certain design tasks. Please let your fantasy go a little beyond what you directly see
and the context in which you perform your tasks.

Ithat you are part of a design team in a company that wants to produce a new type of
mobile phones. The new design should include different sensors and explore new
ways of interaction with the phone. Another research field lies in security systems as
well as in controlling robotic assistance systems.

One week, your advisor enters your office and presents you different scenarios and
asks you to evaluate them. The scenarios are presented in written form as you can see
below. You take the papers he gives you and start thinking about different
configurations and what types of input and output devices you will need.
With the help of the iStuff prototyping suite you want to build a first hardware
prototype that can be shown to different test users. The results of these user studies
should justify your current design or help to discover weaknesses or strengths that
influence future designs. You know that your prototypes will look a little awkward
but it is clear to you and also to your test users that the functionality matters, not the
look of the device. If the interaction is well designed, a later product that integrates all
the tested capabilities can be derived from that early design.

So, just go ahead and explore the possibilities of the Patch Panel and create whatever
you think to be meaningful. And please remember: At that stage there is not right or
wrong design, it has to be found out later. You just want to build something robustly
working.

Figure B.2: Page 2 of description of the evaluation handed out to the participants - Motivation

170 B iStuff Evaluation and Scenario Descriptions

Scenario 1: Control a multi screen presentation controlled via a mobile phone
and Phidgets.

A presentation software running on two different machines should show the same set
of slides. The screen of the left machine should display the last slide and the one on
the right should show the current slide that is talked about. In order to control the slide
transitions, the use of mouse and keyboard should be avoided. Instead, the
presentations should be controlled via the presenter’s mobile phone keys. An
alternative to this design is the installation of pressure and touch sensors on the floor,
the speaker has to step onto. A light sensor would also be possible.

Discover the event types of the other events through the Event Logger.
And also discover the mobile phone key values by examining the appropriate events
on the Event Logger.

Scenario 2: Tilt to scroll (SmartIts sensor board)

Augment a mobile phone in the following way:
A SmartIts sensor boards is attached to the mobile phone.
When the phone is tilted upwards or downwards and a pressure threshold is crossed,
the menu display should start scrolling in upward direction and downwards,
respectively. Depending on the degree of tilting, the scrolling speed changes. In a first
prototype, it should be differentiated between at least two scrolling speeds.

Figure B.3: Page 3 of description of the evaluation handed out to the participants - Scenarios
1 and 2

171

Scenario 3: Prototype a new iPod Shuffle using iTunes and Phidgets.

You are asked to build a new iPod Shuffle interface with a new generation of sensors.
You decide to use Phidgets sensors to control the new version of the iPod Shuffle.
As a representation of the music player device, you use the iTunes application coming
with your Mac OS distribution. An iStuff proxy that controls the application is
available. Basic interaction such as Play/Pause, Next/Previous Track and the increase
and decrease of volume are to be implemented in the scope of this scenario.

Scenario 4: Control motor with SmartIts and Phidgets).

An automatic balance control system for boats should be developed. Whenever the
boat is tilting too much to the side, the motor should move a counter weight attached
to it in order to balance it again.

Make use of the SmartIts Accelerometers and the Phidgets Servo Motor Controller for
this scenario. As an extension, you could also make use of other extensions with
Phidgets.

Figure B.4: Page 4 of description of the evaluation handed out to the participants - Scenarios
3 and 4

173

Appendix C

Post-participation
Questionnaire

174 C Post-participation Questionnaire

Post participation questionnaire

1. Would you say that the development capabilities with the Quartz Composer
approach are better than with the script?

I strongly agree I agree Don’t know I disagree I strongly disagree
() () () () ()

2. Could you imagine more scenarios where ubiquitous devices are connected
and configured in the presented way?

I strongly agree I agree Don’t know I disagree I strongly disagree
() () () () ()

3. How do you like the data flow metaphor of the Quartz Composer?

It was a strong help It was useful Don’t know It was no help It absolutely made no sense to me
() () () () ()

4. Would you say that you used lots of the Quartz Composer original patches?
I used them a lot I used them equal to the new one seldom not at all

() () () () ()

5. The general concept of the iStuff project (Event Heap infrastructure,
distributed exchange of information with events, etc.) was understandable.

I strongly agree I agree Don’t know I disagree I strongly disagree
() () () () ()

6. How would you judge the future extensibility of the graphical approach?
Very extensible extensible don’t know hardly extensible none at all

() () () () ()

7. I would prefer the graphical approach over the scripting approach

I strongly agree I agree Don’t know I disagree I strongly disagree
() () () () ()

8. I would prefer the scripting approach over the graphical approach
I strongly agree I agree Don’t know I disagree I strongly disagree

() () () () ()

9. Would you say the script approach is more flexible or powerful?
I strongly agree I agree Don’t know I disagree I strongly disagree

() () () () ()

Figure C.1: Page 1 of the questionnaire handed out to the participants after the user test

175

10. What approach encourages you to go through many iterations?
Graphical Appraoch (Quartz Composer) Scripting Approach

() ()

11. What would you like to be changed in future version?

12. What features would you add?

13. What patches were you missing during the prototyping process?

14. Additional comments: (Write whatever you think!)

15. How would you judge your former experience with Quartz Composer
(1 = No at all, 5 = Quartz Composer expert)?

Figure C.2: Page 2 of the questionnaire handed out to the participants after the user test

177

Bibliography

Abowd, G. D. (1999). Software Engineering Issues for Ubiquitous Com-
puting. In Proceedings of the 1999 International Conference on Software
Engineering., pages 75–84, Los Alamitos, CA, USA. IEEE Computer
Society Press.

Abowd, G. D., Hayes, G. R., Iachello, G., Kientz, J. A., Patel, S. N.,
Stevens, M. M., and Truong, K. N. (2005). Prototypes and Paratypes:
Designing Mobile and Ubiquitous Computing Applications. IEEE Per-
vasive Computing , 4(4), 67–73.

Agilent Technologies (2004). ADNS-2610 Optical Mouse Sensor.
(http://cp.literature.agilent.com/litweb/pdf/5988-9774EN.pdf).

Akers, D. (2006). CINCH: a cooperatively designed marking interface for
3D pathway selection. In UIST ’06: Proceedings of the 19th annual
ACM Symposium on User Interface Software and Technology , pages 33–
42, New York, NY, USA. ACM Press.

Apple Computer Inc. (1992). MacIntosh Human Interface Guidelines.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Ballagas, R., Ringel, M., Stone, M., and Borchers, J. (2003). iStuff: A
Physical User Interface Toolkit for Ubiquitous Computing Environments.
In CHI ’03: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 537–544, New York, NY, USA. ACM Press.

Ballagas, R., Szybalski, A., and Fox, A. (2004). Patch Panel: Enabling
Control-Flow Interoperability in Ubicomp Environments. In PerCom ’04:
Proceedings of the 2nd annual IEEE Conference on Pervasive Computing
and Communications. IEEE.

Ballagas, R., Rohs, M., Sheridan, J. G., and Borchers, J. (2005). Sweep and
Point & Shoot: Phonecam-based interactions for large public displays.
In CHI ’05: Extended Abstracts of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1200–1203, New York, NY, USA.
ACM Press.

Ballagas, R., Rohs, M., Sheridan, J., and Borchers, J. (2006). The Smart
Phone: A Ubiquitous Input Device. IEEE Pervasive Computing , 5(1),
70–77.

Ballagas, R., Memon, F., Reiners, R., and Borchers, J. (2007a). iStuff Mo-
bile: Rapidly Prototyping New Mobile Phone Interfaces for Ubiquitous

178 Bibliography

Computing. In CHI ’07: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 1107–1116, New York, NY,
USA. ACM Press.

Ballagas, R., Walz, S. P., Kratz, S. G., Fuhr, C. O., Yu, E., Tann, M.,
Borchers, J., and Hovestadt, L. (2007b). REXplorer: A Mobile, Pervasive
Spell-Casting Game for Tourists. In CHI ’07: Extended Abstracts on
Human Factors in Computing Systems, pages 1929–1934, New York, NY,
USA. ACM Press.

Ballagas, R., Rohs, M., Sheridan, J., and Borchers, J. (2008). The Design
Space of Mobile Phone Input Techniques for Ubiquitous Computing. In
J. Lumsden, editor, Handbook of Research on User Interface Design and
Evaluation for Mobile Technologies (To appear). IGI Global, Hershey,
PA, USA.

Bartlett, J. F. (2000). Rock ’n’ Scroll Is Here to Stay. IEEE Comput.
Graph. Appl., 20(3), 40–45.

Bass, L., Clements, P., and Kazman, R. (1998). Software Architecture in
Practice. Addison Wesley.

Bates, J., Bacon, J., Moody, K., and Spiteri, M. (1998). Using events for
the scalable federation of heterogeneous components. In Proceedings of
the 8th ACM SIGOPS European Workshop on Support for Composing
Distributed Applications, pages 58–65. ACM Press.

Baudisch, P., Cutrell, E., Hinckley, K., and Eversole, A. (2005). Snap-
and-go: helping users align objects without the modality of traditional
snapping. In CHI ’05: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 301–310, New York, NY, USA.
ACM Press.

Benford, S., Seagar, W., Flintham, M., Anastasi, R., Rowland, D., Humble,
J., Stanton, D., Bowers, J., Tandavanitj, N., Adams, M., et al. (2004).
The Error of Our Ways: The Experience of Self-Reported Position in
a Location-Based Game. In Ubicomp ’04: Proceedings of the 6th Int’l
Conference on Ubiquitous Computing , pages 70–87. Springer.

Benford, S., Magerkurth, C., and Ljungstrand, P. (2005). Bridging the
physical and digital in pervasive gaming. Commun. ACM , 48(3), 54–57.

Beyer, H. and Holtzblatt, K. (1998). Contextual Design: Defining
Customer-centered Systems. Morgan Kaufmann, San Francisco, CA,
USA.

Bier, E. A. and Freeman, S. (1991). MMM: A user interface architecture
for shared editors on a single screen. In UIST ’91: Proceedings of the 4th
Annual Symposium on User Interface Software and Technology , pages
79–86. ACM.

Bjork, S. and Holopainen, J. (2005). Patterns in game design. Charles
River Media, Hingham, MA, USA.

Bibliography 179

Blanch, R., Guiard, Y., and Beaudouin-Lafon, M. (2004). Semantic point-
ing: improving target acquisition with control-display ratio adaptation.
In CHI ’04: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 519–526, New York, NY, USA. ACM Press.

Borchers, J. (2001). A pattern approach to interaction design. John Wiley
& Sons, New York, NY, USA.

Buchenau, M. and Suri, J. F. (2000). Experience prototyping. In DIS ’00:
Proceedings of the conference on Designing interactive systems, pages
424–433, New York, NY, USA. ACM Press.

Buxton, W. (1983). Lexical and pragmatic considerations of input struc-
tures. SIGGRAPH Comput. Graph., 17(1), 31–37.

Buxton, W. A. and Sniderman, R. (1980). Iteration in the design of the
human-computer interface. In Proceedings of the 13th Annual Meeting of
the Human Factors Association of Canada, pages 72–81. HFAC.

Cao, X. and Balakrishnan, R. (2003). VisionWand: interaction techniques
for large displays using a passive wand tracked in 3D. In Proceedings
of the 16th annual ACM Symposium on User Interface Software and
Technology , pages 173–182. ACM Press.

Card, S. K., English, W. K., and Burr, B. J. (1978). Evaluation of mouse,
rate controlled isometric joystick, step keys and text keys for text selec-
tion on a CRT. Ergonomics, 21, 601–613.

Card, S. K., Newell, A., and Moran, T. P. (1983). The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates, Inc., Hills-
dale, NJ, USA.

Card, S. K., Mackinlay, J. D., and Robertson, G. G. (1991). A morpholog-
ical analysis of the design space of input devices. ACM Trans. Inf. Syst.,
9(2), 99–122.

Carter, S., Churchill, E., Denoue, L., Helfman, J., and Nelson, L. (2004).
Digital graffiti: public annotation of multimedia content. In CHI ’04:
Extended abstracts of the SIGCHI Conference on Human Factors and
Computing Systems, pages 1207–1210. ACM Press.

Carter, S., Mankoff, J., Klemmer, S., and Matthews, T. (2007a). Exiting
the cleanroom: On ecological validity and ubiquitous computing. Human-
Computer Interaction (To appear).

Carter, S., Mankoff, J., and Heer, J. (2007b). Momento: Support for Situ-
ated Ubicomp Experimentation. In CHI ’07: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 125–134,
New York, NY, USA. ACM Press.

Cassinelli, Á., Perrin, S., and Ishikawa, M. (2005). Smart laser-scanner
for 3D human-machine interface. In CHI ’05: Extended abstracts of the
SIGCHI Conference on Human Factors and Computing Systems, pages
1138–1139, New York, NY, USA. ACM Press.

180 Bibliography

Chaos Computer Club (2002). Blinkenlights. http://www.blinkenlights.de.

Chen, H., Perich, F., Finin, T., and Joshi, A. (2004). SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications. In Int. Conf. on
Mobile and Ubiquitous Systems: Networking and Services, Boston, MA.
IEEE.

Consolvo, S., Roessler, P., and Shelton, B. (2004). The CareNet Display:
Lessons Learned from an In Home Evaluation of an Ambient Display.
In Ubicomp ’04: Proceedings of the 6th Int’l Conference on Ubiquitous
Computing , volume 4, pages 1–17. Springer.

Czerwinski, M., Robertson, G., Meyers, B., Smith, G., Robbins, D., and
Tan, D. (2006). Large display research overview. In CHI ’06: Extended
Abstracts on Human Factors in Computing Systems, pages 69–74, New
York, NY, USA. ACM Press.

Dahlbäck, N., Jönsson, A., and Ahrenberg, L. (1993). Wizard of Oz studies:
why and how. In IUI ’93: Proceedings of the 1st International Conference
on Intelligent User Interfaces, pages 193–200, New York, NY, USA. ACM
Press.

de Souza e Silva, A. and Delacruz, G. C. (2006). Hybrid Reality Games
Reframed. Potential Uses in Educational Contexts. Games and Culture,
1(3), 231–251.

Dix, A., Finley, J., Abowd, G., and Beale, R. (2004). Human-Computer
Interaction. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Edwards, W. K., Newman, M. W., Sedivy, J., and Izadi, S. (2002). Chal-
lenge: recombinant computing and the speakeasy approach. In MobiCom
’02: Proceedings of the 8th Annual Int. Conf. on Mobile Computing and
Networking , pages 279–286. ACM Press.

Edwards, W. K., Bellotti, V., Dey, A. K., and Newman, M. W. (2003). The
challenges of user-centered design and evaluation for infrastructure. In
CHI ’03: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 297–304, New York, NY, USA. ACM Press.

Epstein, M. and Vergani, S. (2006). Mobile Technologies and Creative
Tourism. In AMICS ’06: Proceedings of the 12th Americas Conference
on Information Systems. Association for Information Systems.

Fitts, P. M. (1954). The information capacity of the human motor sys-
tem in controlling the amplitude of movement. Journal of Experimental
Psychology , 47, 381–391.

Foley, J. D., Wallace, V. L., and Chan, P. (1984). The human factors of
computer graphics interaction techniques. IEEE Comput. Graph. Appl.,
4(11), 13–48.

Fullerton, T., Swain, C., and Hoffman, S. (2004). Game Design Work-
shop: Designing, Prototyping, and Playtesting Games . CMP Books, San
Francisco, CA.

Bibliography 181

Gajos, K. and Weld, D. S. (2004). SUPPLE: automatically generating user
interfaces. In IUI ’04: Proceedings of the 9th International Conference
on Intelligent User Interface, pages 93–100, New York, NY, USA. ACM
Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Pat-
terns: elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Gellersen, H., Kortuem, G., Schmidt, A., and Beigl, M. (2004). Physical
Prototyping with Smart-Its. IEEE Pervasive Computing , 3(3), 74–82.

Gosling, J., Rosenthal, D., and Arden, M. (1989). Windows System Archi-
tecture: History, Terms and Concepts. In The NeWS Book , chapter 3,
pages 23–52. Springer-Verlag.

Gould, J. and Lewis, C. (1985). Designing for usability: key principles and
what designers think. Communications of the ACM , 28(3), 300–311.

Greenberg, S. and Fitchett, C. (2001). Phidgets: Easy development of
physical interfaces through physical widgets. In UIST ’01: Proceedings
of the 14th annual ACM Symposium on User Interface Software and
Technology , pages 209–218, New York, NY, USA. ACM Press.

Grossman, T. and Balakrishnan, R. (2005). The Bubble Cursor: enhancing
target acquisition by dynamic resizing of the cursor’s activation area. In
CHI ’05: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 281–290, New York, NY, USA. ACM Press.

Hansen, W. (1971). User engineering principles for interactive systems. In
Proceedings of the AFIPS Fall Joint Computer Conference, pages 523–
532. AFIPS.

Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., and Want, R.
(1998). Squeeze me, hold me, tilt me! An exploration of manipulative
user interfaces. In CHI ’98: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 17–24, New York, NY,
USA. ACM Press/Addison-Wesley Publishing Co.

Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L., Burr, B.,
Robinson-Mosher, A. L., and Gee, J. (2006). Reflective physical pro-
totyping through integrated design, test, and analysis. In UIST ’06:
Proceedings of the 19th annual ACM Symposium on User Interface Soft-
ware and Technology . ACM Press.

Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S. R. (2007). Author-
ing sensor-based interactions by demonstration with direct manipulation
and pattern recognition. In CHI ’07: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 145–154, New
York, NY, USA. ACM Press.

Heiner, J. M., Hudson, S. E., and Tanaka, K. (1999). The Information
Percolator: ambient information display in a decorative object. In UIST
’99: Proceedings of the 12th annual ACM Symposium on User Interface

182 Bibliography

Software and Technology , pages 141–148, New York, NY, USA. ACM
Press.

Hewett, T., Baecker, R., Card, S., Carey, T., Gasen, J., Mantei, M., Perl-
man, G., Strong, G., and Verplank, W. (1992). ACM SIGCHI Curricula
for Human-Computer Interaction. ACM Press, New York, NY, USA.

Hinckley, K. and Horvitz, E. (2001). Toward more sensitive mobile phones.
In UIST ’01: Proceedings of the 14th annual ACM Symposium on User
Interface Software and Technology , pages 191–192, New York, NY, USA.
ACM Press.

Hu, J., Brown, M., and Turin, W. (1996). HMM based online handwrit-
ing recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(10), 1039–1045.

Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D., Forlizzi, J., Kiesler,
S., Lee, J., and Yang, J. (2003). Predicting human interruptibility with
sensors: a Wizard of Oz feasibility study. In CHI ’03: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
257–264, New York, NY, USA. ACM Press.

Hudson, S. E. and Mankoff, J. (2006). Rapid construction of functioning
physical interfaces from cardboard, thumbtacks, tin foil and masking
tape. In UIST ’06: Proceedings of the 19th annual ACM Symposium on
User Interface Software and Technology , pages 289–298, New York, NY,
USA. ACM Press.

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.-P., Koleva, B.,
Rodden, T., and Hansson, P. (2003). “Playing with the Bits” User-
Configuration of Ubiquitous Domestic Environments. In Ubicomp ’03:
Proceedings of the 5th Int. Conf. on Ubiquitous Computing , pages 256–
263. Springer-Verlag.

Hummels, C. C. M. (2000). An exploratory expedition to create engaging
experiences through gestural jam sessions. Ph.D. thesis, Delft University
of Technology.

Ionescu, A., Stone, M., and Winograd, T. (2002). WorkspaceNaviga-
tor: Capture, Recall, and Reuse using Spatial Cues in an Interactive
Workspace. Technical Report 2002-04, Stanford University, Computer
Science Department, Stanford, CA, USA.

ISO (2000). Ergonomic requirements for office work with visual display
terminals (VDTs) - Requirements for non-keyboard input devices. ISO
9241-9 .

Jellinek, H. D. and Card, S. K. (1990). Powermice and user performance.
In CHI ’90: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 213–220, New York, NY, USA. ACM Press.

Jenabi, M. (2006). Selexels: Adapting User Interfaces to Mobile Input
Devices. Master’s thesis, RWTH Aachen University, Aachen, Germany.

Bibliography 183

Jiang, H., Ofek, E., Moraveji, N., and Shi, Y. (2006). Direct pointer: direct
manipulation for large-display interaction using handheld cameras. In
CHI ’06: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1107–1110, New York, NY, USA. ACM Press.

Johanson, B. and Fox, A. (2002). The Event Heap: A Coordination Infras-
tructure for Interactive Workspaces. In WMCSA ’02: Proceedings of the
Fourth IEEE Workshop on Mobile Computing Systems and Applications,
page 83. IEEE.

Johanson, B. and Fox, A. (2004). Extending tuplespaces for coordination
in interactive workspaces. J. Syst. Softw., 69(3), 243–266.

Johanson, B., Fox, A., and Winograd, T. (2002a). The interactive
workspaces project: experiences with ubiquitous computing rooms. IEEE
Pervasive Computing , 1, 67–74.

Johanson, B., Hutchins, G., Winograd, T., and Stone, M. (2002b).
Pointright: experience with flexible input redirection in interactive
workspaces. In UIST ’02: Proceedings of the 15th annual ACM Sym-
posium on User Interface Software and Technology , pages 227–234, New
York, NY, USA. ACM Press.

Kabbash, P. and Buxton, W. A. S. (1995). The “Prince” technique: Fitts’
law and selection using area cursors. In CHI ’95: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
273–279, New York, NY, USA. ACM Press/Addison-Wesley Publishing
Co.

Kao, R., Sarigumba, D., Kao, M.-C., and Sarigumba, Y. (2007). BlackBerry
Pearl For Dummies. Wiley Publishing, Hoboken, NJ, USA.

Karat, C.-M. (1990). Cost-benefit analysis of iterative usability testing. In
INTERACT ’90: Proceedings of the IFIP TC13 Third Interational Con-
ference on Human-Computer Interaction, pages 351–356. North-Holland.

Karpov, E., Kiss, I., Leppänen, J., Olsen, J., Oria, D., Sivadas, S., and
Tian, J. (2006). Short message dictation on Symbian Series 60 mobile
phones. In ICMI ’06: Proceedings of the 8th international conference on
Multimodal interfaces, pages 126–127, New York, NY, USA. ACM Press.

Kelley, J. F. (1984). An iterative design methodology for user-friendly
natural language office information applications. ACM Transactions on
Information Systems (TOIS), 2(1), 26–41.

Kelley, T. and Littman, J. (2001). The art of innovation. Doubleday
Broadway, New York, NY, USA.

Kidd, C. D., Orr, R., Abowd, G. D., Atkeson, C. G., Essa, I. A., MacIn-
tyre, B., Mynatt, E. D., Starner, T., and Newstetter, W. (1999). The
aware home: A living laboratory for ubiquitous computing research. In
CoBuild ’99: Proceedings of Second International Workshop on Cooper-
ative Buildings, pages 191–198. Springer.

184 Bibliography

Kindberg, T. and Fox, A. (2002). System software for ubiquitous comput-
ing. IEEE Pervasive Computing , 1(1), 70–81.

Kjeldskov, J. and Graham, C. (2003). A review of mobile HCI research
methods. In Mobile HCI ’03: Proceedings of 5th International Sympo-
sium on Human-Computer Interaction with Mobile Devices and Services,
Lecture Notes in Computer Science, pages 317–335. Springer.

Kjeldskov, J. and Stage, J. (2004). New techniques for usability evaluation
of mobile systems. International Journal of Human-Computer Studies,
60(5-6), 599–620.

Klemmer, S. (2004). Tangible user interfaces: Tools and techniques. Ph.D.
thesis, University of California, Berkeley.

Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A., Aboobaker, N., and
Wang, A. (2000). Suede: a Wizard of Oz prototyping tool for speech user
interfaces. In UIST ’00: Proceedings of the 13th annual ACM Symposium
on User Interface Software and Technology , pages 1–10, New York, NY,
USA. ACM Press.

Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. (2004). Papier-Mâché:
Toolkit Support for Tangible Input. In CHI ’04: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
399–406, New York, NY, USA. ACM Press.

Klopfer, E. and Squire, K. (2005). Environmental Detectives—The Devel-
opment of an Augmented Reality Platform for Environmental Simula-
tions. Educational Technology Research and Development .

Landay, J. A. (1996). Interactive sketching for the early stages of user
interface design. Ph.D. thesis, School of Computer Science, Carnegie
Mellon University.

Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., Dietz, P. H., and
Leigh, D. (2004a). The Calder toolkit: wired and wireless components
for rapidly prototyping interactive devices. In DIS ’04: Proceedings of the
2004 Conference on designing interactive systems, pages 167–175, New
York, NY, USA. ACM Press.

Lee, Y. S., Smith-Jackson, T. L., Nussbaum, M. A., Tomioka, K., and
Bhatkhande, Y. (2004b). Use of product-interactive focus groups for
requirement capture and usability assessment. In Proceedings of the 48th
Annual Human Factors and Ergonomics Conference, pages 2461–2465,
New Orleans, LA.

Leichter, J. S. and Whiteside, R. A. (1989). Implementing Linda for dis-
tributed and parallel processing. In ICS ’89: Proceedings of the 3rd
Int. Conf. on Supercomputing , pages 41–49, New York, NY, USA. ACM
Press.

Li, Y., Hong, J. I., and Landay, J. A. (2004). Topiary: a tool for prototyping
location-enhanced applications. In UIST ’04: Proceedings of the 17th
annual ACM Symposium on User Interface Software and Technology ,
pages 217–226, New York, NY, USA. ACM Press.

Bibliography 185

Licoppe, C. and Inada, Y. (2006). Emergent Uses of a Multiplayer Location-
aware Mobile Game: the Interactional Consequences of Mediated En-
counters. Mobilities, 1(1), 39–61.

Liu, L. and Khooshabeh, P. (2003). Paper or interactive?: a study of
prototyping techniques for ubiquitous computing environments. In CHI
’03: Extended abstracts on Human Factors in Computing Systems, pages
1030–1031, New York, NY, USA. ACM Press.

MacIntyre, B., Gandy, M., Dow, S., and Bolter, J. (2004). DART: a toolkit
for rapid design exploration of augmented reality experiences. In UIST
’04: Proceedings of the 17th annual ACM Symposium on User Interface
Software and Technology , pages 197–206, New York, NY, USA. ACM
Press.

MacKenzie, I. and Soukoreff, R. (2002). Text Entry for Mobile Computing:
Models and Methods, Theory and Practice. Human-Computer Interac-
tion, 17(2), 147–198.

MacKenzie, I. S. (1991). Fitts’ Law as a Performance Model in Human-
Computer Interaction. Ph.D. thesis, Univeristy of Toronto, Toronto,
Ontario, Canada.

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-
computer interaction. Human-Computer Interaction, 7, 91–139.

MacKenzie, I. S. and Ware, C. (1993). Lag as a determinant of human per-
formance in interactive systems. In CHI ’93: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 488–493.
ACM Press.

Madhavapeddy, A., Scott, D., Sharp, R., and Upton, E. (2004). Using
camera-phones to enhance human-computer interaction. In Ubicomp ’04:
Adjunct Proceedings of the 6th International Conference on Ubiquitous
Computing (Demos). Springer-Verlag.

Mankoff, J. and Schilit, B. (1997). Supporting knowledge workers beyond
the desktop with palplates. In CHI ’97: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 550–551,
New York, NY, USA. ACM Press.

Matthews, T. (2005). Interviewing peripheral display designers and devel-
opers. Technical Report EECS-2005-19, University of California, Berke-
ley.

Mayhew, D. (1991). Principles and guidelines in software user interface
design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Meyer, D. E., Smith, J. E. K., Kornblum, S., Abrams, R., and Wright, C. E.
(1990). Speed-Accuracy Tradeoffs in Aimed Movements: Toward a The-
ory of Rapid Voluntary Action. In M. Jeannerod, editor, Attention and
Performance XIII , pages 173–226. Lawrence Erlbaum, Hillsdale, N.J.

186 Bibliography

Miyaoku, K., Higashino, S., and Tonomura, Y. (2004). C-blink: a hue-
difference-based light signal marker for large screen interaction via any
mobile terminal. In UIST ’04: Proceedings of the 17th annual ACM
Symposium on User Interface Software and Technology , pages 147–156.
ACM Press.

Moggridge, B. (2006). Designing Interactions. The MIT Press, Boston,
MA, USA.

Munson, M. (1998). System Support for Composing Distributed Applica-
tions Using Events. Diploma Dissertation, Cambridge University, Cam-
bridge, UK.

Myers, B., Hudson, S. E., and Pausch, R. (2000). Past, present, and future
of user interface software tools. ACM Trans. Comput.-Hum. Interact.,
7(1), 3–28.

Myers, B. A., Stiel, H., and Gargiulo, R. (1998). Collaboration using mul-
tiple PDAs connected to a PC. In CSCW ’98: Proceedings of the 1998
ACM Conference on Computer Supported Cooperative Work , pages 285–
294. ACM Press.

Myers, B. A., Bhatnagar, R., Nichols, J., Peck, C. H., Kong, D., Miller,
R., and Long, A. C. (2002). Interacting at a distance: measuring the
performance of laser pointers and other devices. In CHI ’02: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 33–40, New York, NY, USA. ACM Press.

Mynatt, E., Rowan, J., Craighill, S., and Jacobs, A. (2001). Digital family
portraits: supporting peace of mind for extended family members. In
CHI ’01: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 333–340, New York, NY, USA. ACM Press.

Nichols, J. and Myers, B. A. (2006). Controlling home and office appliances
with smart phones. IEEE Pervasive Computing , 5(3), 60–67.

Nielsen, J. (1993). Iterative user-interface design. Computer , 26(11), 32–41.

Nielsen, J. and Faber, J. (1996). Improving system usability through par-
allel design. Computer , 29(2), 29–35.

Norman, D. (2002). The design of everyday things. Basic Books.

Object Management Group (2004). The Common Object Request Broker:
Architecture and Specification. revision 3.0.3.

Oh, I. and Suen, C. (2002). A class-modular feedforward neural network
for handwriting recognition. Pattern Recognition, 35(1), 229–244.

Olsen, Jr., D. R. and Nielsen, T. (2001). Laser pointer interaction. In
CHI ’01: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 17–22, New York, NY, USA. ACM Press.

Bibliography 187

Olsen, Jr., D. R., Nielsen, S. T., and Parslow, D. (2001). Join and Capture:
A model for nomadic interaction. In UIST ’01: Proceedings of the 14th
annual ACM Symposium on User Interface Software and Technology ,
pages 131–140. ACM Press.

Oviatt, S., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers,
J., Holzman, T., Winograd, T., Landay, J., Larson, J., and Ferro, D.
(2000). Designing the user interface for multimodal speech and pen-
based gesture applications: State-of-the-art systems and future research
directions. Human-Computer Interaction, 15(4), 263–322.

Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., and Want, R.
(2002). TiltType: accelerometer-supported text entry for very small de-
vices. In UIST ’02: Proceedings of the 15th annual ACM Symposium on
User Interface Software and Technology , pages 201–204, New York, NY,
USA. ACM Press.

Patel, S. N. and Abowd, G. D. (2003). A 2-way laser-assisted selection
scheme for handhelds in a physical environment. In Ubicomp ’03: Proc. of
the 5th Int. Conf. on Ubiquitous Computing , Lecture Notes in Computer
Science, pages 200–207. Springer.

Patel, S. N., Kientz, J. A., Hayes, G. R., Bhat, S., and Abowd, G. D.
(2006). Farther Than You May Think: An Empirical Investigation of the
Proximity of Users to Their Mobile Phones. In Ubicomp ’06: Proceedings
of the 8th International Conference on Ubiquitous Computing , pages 123–
140. Springer.

Pering, T., Ballagas, R., and Want, R. (2005). Spontaneous marriages of
mobile devices and interactive spaces. Commun. ACM , 48(9), 53–59.

Pietzuch, P. R., Shand, B., and Bacon, J. (2003). A Framework for Event
Composition in Distributed Systems. In Middleware ’03: Proceedings of
the 4th ACM/IFIP/USENIX Int. Conf. on Middleware. Springer-Verlag.

Plamondon, R. and Srihari, S. N. (2000). Online and off-line handwriting
recognition: a comprehensive survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1), 63–84.

Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., and Winograd, T. (2001).
ICrafter: A Service Framework for Ubiquitous Computing Environments.
In Ubicomp ’01: Proc. of the 3rd Int. Conf. on Ubiquitous Computing ,
pages 56–75. Springer-Verlag.

Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P., Lee, J., Leigh,
D., and Willwacher, T. (2004). RFIG lamps: interacting with a self-
describing world via photosensing wireless tags and projectors. ACM
Trans. Graph., 23(3), 406–415.

Ravindran, S., Smith, P., Graham, D., Duangudom, V., Anderson, D., and
Hasler, P. (2005). Towards Low-Power on-Chip Auditory Processing.
EURASIP Journal on Applied Signal Processing , 7, 1082–1092.

188 Bibliography

Rodden, T. and Benford, S. (2003). The evolution of buildings and impli-
cations for the design of ubiquitous domestic environments. In CHI ’03:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 9–16. ACM Press.

Rohs, M. (2005a). Real-world interaction with camera phones. In UCS ’04:
Proceedings of the 2nd International Symposium on Ubiquitous Comput-
ing Systems, pages 74–89. Springer.

Rohs, M. (2005b). Visual code widgets for marker-based interaction. In
IWSAWC’05: Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems – Workshops (ICDCS 2005 Workshops),
pages 506–513, Columbus, Ohio, USA.

Rudström, A., Cöster, R., Höök, K., and Svensson, M. (2003). Paper
prototyping a social mobile service. In MUM ’03: Proceedings of the
2nd International Conference on Mobile and Ubiquitous Multimedia –
Workshop on Designing for Ubicomp in the Wild: Methods for Exploring
the Design of Mobile and Ubiquitous Services. ACM.

Samberg, J., Fox, A., and Stone, M. (2002). iClub, An Interactive Dance
Club. In Ubicomp ’02: Adjunct Proceedings of the 4th Int. Conf. on
Ubiquitous Computing (Videos). Springer.

Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven, K. V.,
and de Velde, W. V. (1999). Advanced interaction in context. In HUC
’99: Proceedings of the 1st international Symposium on Handheld and
Ubiquitous Computing , pages 89–101, London, UK. Springer-Verlag.

Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., and Quinn,
J. T. (1979). Motor-output variability: A theory for the accuracy of
rapid motor acts. Psychological Review , 86, 415–451.

Schön, D. and Bennett, J. (1996). Reflective Conversation with Materials.
In T. Winograd, editor, Bringing Design to Software, pages 171–189.
Addison-Wesley.

Schrage, M. (1999). Serious Play: how the world’s best companies simulate
to innovate. Harvard Business School Press, Boston, MA, USA.

Sheth, A. (1999). Changing Focus on Interoperability in Information Sys-
tems: from system, syntax, structure, to semantics. In Interoperating
Geographic Information Systems, chapter 2, pages 5–30. Kluwer, Nor-
well, MA, USA.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effec-
tive Human-Computer Interaction. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Silfverberg, M., MacKenzie, I. S., and Kauppinen, T. (2001). An isometric
joystick as a pointing device for handheld information terminals. In GI
’01: Proceedings of Graphics Interface 2001 , pages 119–126. Canadian
Information Processing Society.

Bibliography 189

Snyder, C. (2003). Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. Morgan Kaufmann, San Francisco, CA, USA.

Sotamaa, O. (2002). All the World’s a Botfighter Stage: Notes on Location-
Based Multi-User Gaming. In Proceedings of the Computer Games and
Digital Cultures Conference, pages 35–45. Tampere University Press.

Sturman, D., Banavar, G., and Strom, R. (1998). Reflection in the gryphon
message brokering system. In OOPSLA ’98: In Workshop Proceedings
of the 13th ACM Conference on Object Oriented Programming Systems,
Languages and Applications – Reflection Workshop. ACM.

Taylor, R. N., Medvidovic, N., Anderson, K. M., Whitehead, Jr., E. J.,
Robbins, J. E., Nies, K. A., Oreizy, P., and Dubrow, D. L. (1996). A
component- and message-based architectural style for gui software. IEEE
Trans. Softw. Eng., 22(6), 390–406.

Thomas, S. (2006). Pervasive learning games: Explorations of hybrid edu-
cational gamescapes. Simulation & Gaming , 37(1), 41.

Toye, E., Sharp, R., Madhavapeddy, A., Scott, D., Upton, E., and Black-
well, A. (2007). Interacting with mobile services: an evaluation of camera-
phones and visual tags. Personal and Ubiquitous Computing , 11(2), 97–
106.

Truong, K., Huang, E., and Abowd, G. (2004). CAMP: A Magnetic Po-
etry Interface for End-User Programming of Capture Applications for the
Home. In Ubicomp ’04: Proceedings of the 6th International Conference
on Ubiquitous Computing . Springer-Verlag.

Ulrich, K. and Eppinger, S. (1995). Product design and development .
McGraw-Hill, New York, NY, USA.

Villar, N., Gilleade, K., Raymundy-Ellis, D., and Gellersen., H. (2006). The
voodooio gaming kit: a real-time adaptable gaming controller. In ACE
’06: Advances in Computer Entertainment , New York, NY, USA. ACM
Press.

Waldo, J. (2000). Alive and well: Jini technology today. Computer , 33,
107–109.

Walz, S. P. (2005). Constituents of Hybrid Reality: Cultural Anthropologi-
cal Elaborations and a Serious Game Design Experiment merging Mobil-
ity, Media, and Computing. In G. M. Buurman, editor, Total Interaction.
Theory and Practice of a New Paradigm for the Design Disciplines, pages
122–141. Birkhäuser.

Wang, J., Zhai, S., and Canny, J. (2006). Camera phone based motion
sensing: interaction techniques, applications and performance study. In
UIST ’06: Proceedings of the 19th annual ACM Symposium on User
Interface Software and Technology , pages 101–110, New York, NY, USA.
ACM Press.

190 Bibliography

Want, R., Fishkin, K. P., Gujar, A., and Harrison, B. L. (1999). Bridging
Physical and Virtual Worlds with Electronic Tags. In CHI ’99: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 370–377. ACM Press.

Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., and Light,
J. (2002). The Personal Server: Changing the Way We Think about
Ubiquitous Computing. In Ubicomp ’01: Proceedings of the 3rd Int.
Conf. on Ubiquitous Computing, pages 194–209. Springer-Verlag.

Ware, C. and Balakrishnan, R. (1994). Reaching for objects in VR displays:
lag and frame rate. ACM Trans. Comput.-Hum. Interact., 1(4), 331–356.

Weiser, M. (1991). The Computer for the 21st Century. Scientific Ameri-
can, 265, 94–104.

Wigdor, D. and Balakrishnan, R. (2003). TiltText: using tilt for text input
to mobile phones. In UIST ’03: Proceedings of the 16th annual ACM
Symposium on User Interface Software and Technology , pages 81–90,
New York, NY, USA. ACM Press.

Wigdor, D. and Balakrishnan, R. (2004). A comparison of consecutive and
concurrent input text entry techniques for mobile phones. In CHI ’04:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 81–88, New York, NY, USA. ACM Press.

Worden, A., Walker, N., Bharat, K., and Hudson, S. (1997). Making com-
puters easier for older adults to use: area cursors and sticky icons. In
CHI ’97: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 266–271, New York, NY, USA. ACM Press.

Zwicky, F. (1967). The morphological approach to discovery, invention,
research and construction. In New Methods of Thought and Procedure,
pages 273–297. Springer, Berlin.

191

Index

absolute . 39
accelerometer . 18, 36
accelerometers .30
accuracy . 24
Adobe Flash . 80
Adobe Flash Lite . 89
affordance . 4
AppleScript. .55, 60
Application Layer . 70
architecture

- agent-based . 62
- compound prototype . 86
- message-oriented . 62
- service-oriented. .62
- toolkit . 47
- window system . 49

attention . 26

background application . 88
backlight . 89
Blackberry Pearl . 36
Blinkenlights . 22
blog . 136, 138
Bluetooth . 88
board game . 147
boards . 48
Botfighters . 141
Boundary Principle . 60, 102
BOXES. .53, 97

C-Blink . 19, 41
C/C++ . 60
C2 . 64
Calder . 53, 80
camera . 30, 89
camera image . 22
camera tracking . 18, 20, 28
causality . 101
ChordTap . 36
cliff-hanger narrative . 135
closed-loop . 17
clutch . 19
cognitive load . 26
cognitive process. .24, 110
commands. .63
compass . 28

192 Index

continuous interaction . 17, 39
control–display ratio . 117, 120, 122, 126
control–selection ratio . 117, 122, 126
cooperative experience . 157
CORBA. 62
cross hair. .22
CSCW . 48
cursor

- area . 120, 122, 124
- Bubble . 120
- bubble . 121
- point . 120, 122
- selexel . 120

cursor acceleration . 112

d.tools . 53, 80, 90, 97
datatype conversion . 63
dependent translations . 71
design

- human-centered . 1, 4, 5, 10, 49
- interaction . 1
- iterative . 1, 3–5, 10, 49, 133
- parallel . 4, 10, 161
- player-centered . 133

design guidelines. .2
design patterns

- HCI . 2
- software . 7

design space . 2, 9, 10, 16, 35, 38, 40, 41, 43, 88, 161
desktop computing . 5, 7, 8, 17, 24
Digital Graffiti . 35
dimensionality . 39, 161
direct interaction . 17, 39
Direct Pointer . 20
discrete interaction . 17, 39
display

- large public . 10, 19, 116, 119
- situated . 18
- wall-size . 82

dynamic composition . 48
dynamic reconfiguration . 73, 77

E-tag project . 33
efficiency . 24, 115
Elope . 10, 82, 162
Environmental Detectives . 141
ergonomic measures . 24
error proneness . 26
evaluation . 9, 24

- ecologically valid . 7
- longitudinal . 7

event chains . 70
Event Heap. .57, 60, 65, 67, 102
Event Logger . 60
event-based software . 7
Exemplar . 80
Expressiveness . 163

Index 193

expressiveness . 9, 107, 108, 110, 112, 113, 117, 118, 122, 128
- extreme mismatches . 127

false starts . 4, 42
fatigue . 26
feedback . 26, 39

- closed-loop . 17
- continuous . 161
- discrete . 161
- multi-modal . 158
- open-loop . 17

fieldwork . 5, 7
finite state machine . 67, 74, 150
Fitts’ law. .102, 109, 110, 120, 121, 127, 163
Flash . 9
focus . 49
focus group

- product interactive . 154
folklore. .156
foreground application . 88, 89
Frequency 1550 . 141
friction . 121

gain
- C–D. .112, 121

game . 42
- collection . 20
- item collection . 140
- pervasive . 9
- pervasive and mobile . 10
- SMS-shooter . 141
- trading . 20, 140

geo-position . 20
geo-weblog . 136
gesture recognition . 136
global positioning system . 20, 152
Google maps . 136
GPS. .9
Graffiti . 37
graphical user interface . 5
Gryphon . 62

hardware . 54
- iStuff. .54

Harry Potter . 156
heads up experience . 157
headset. .41
heterogeneity. .9, 47, 48
heuristics . 2
History Unwired . 141
horizontal tapping test . 122
human processor model . 24, 110

iButton . 77
iClub . 71, 74
iCrafter . 63
incremental integration . 9, 48
indirect interaction . 17, 39

194 Index

input
- multi-modal . 7
- physical . 5

input device . 122
- absolute . 109, 161
- efficiency . 121
- low-expressiveness . 121
- low-precision . 121
- relative . 110, 113, 128, 161

input devices . 16
input techniques .16

- camera-based . 9
- gesture . 10
- mobile . 24
- mobile phone . 10
- ubiquitous. .24
- ubiquitous mobile . 9

input technologies . 5
intention . 83
interaction

- continuous . 17
- continuous direct .20, 28, 30
- continuous indiect . 30
- continuous indirect . 18, 28
- direct. .17, 161
- discrete . 17
- discrete direct . 22, 28
- discrete indirect . 22, 30
- indirect .17, 161
- mobile phone . 86
- sensor-based. .90
- time-based . 71

interaction style . 39
interactive space. .82
interactive workspace . 10, 50, 62, 77, 82
interactive workspaces . 94
interdisciplinary teams. .5
interface standardization . 63
intermediation. .64
interoperability . 54

- control-flow. 63, 66
- data-flow . 63

iRoom . 57, 71, 77
iROS . 57
ISO 9241-9 . 122
iSpeaker . 55
iStuff . 49, 162
iStuff Mobile . 86
It’s Alive . 141
iTunes . 55, 97

Java. .60
Java 2 Micro Edition . 89
Jigsaw Editor . 80
Jini . 63
joystick . 30, 74

- analog . 114

Index 195

- isometric . 18
- return-to-zero . 18
- velocity-controlled . 18, 28

key interception . 88
key simulation . 89
keyboard . 35, 94

- chord. .36
- on-screen . 37
- QWERTY. .37

keypad . 22
- REXplorer simplified . 136

LabVIEW. 80
lag . 121
laser pointer . 17, 21, 33
laser scanner . 18
latency . 101

- external . 101
- human . 101
- internal . 101

learning
- ease of . 26

lifecycle . 1
light pen . 21
Linda . 57
linear speed-accuracy tradeoff . 110
location-detection . 19
locator device . 28

M5 . 48
M.A.D. Countdown . 141
Mac OS X. .55
Macromedia Director . 80
magic wand . 136
mapping . 71
mass . 121
Max/MSP. .80
menu selection . 37
message-passing . 57
metadata . 63
metrics . 96
middleman . 110
mobile phone . 7, 9, 15, 82, 86, 88, 162
mobile phones . 7, 10
modality .39, 40
Mogi . 20, 140
Mote . 85
motion detection . 19
motion estimation

- camera-based . 37, 42, 136
motion throughput . 110
motor acquisition time. .26
motor load . 26
motor process . 24, 110
mouse .17–19, 122

- optical . 114, 162

196 Index

- opto-mechanical . 113
- PS/2 . 113

Multi-cast DNS . 60
multi-modal feedback. .158
multi-screen presentation . 97
MultiTap . 35

narrative consistency . 156
near zero configuration . 83
network layer . 54, 57
Newtgames. .140
Nokia 770 . 153

on-the-fly integration . 72
ontology. .62
open-loop feedback . 17
orient .16, 27

pads. .48
Papier-Mâché . 96
parallel design . 42
parallelism . 78
Patch Panel. .63–65, 73, 77, 101
Patch Panel Manager .75
Patch Panel scripting language . 98
path . 16, 34
pen

- light. .24
perceptual load . 26
perceptual process . 24, 110
Perl . 60
Personal Server . 82
Personal Universal Controller . 30
Phidgets . 53, 97
pipe-and-filter metaphor . 78
pixel . 108, 121
Point & Shoot . 9, 10, 22, 24, 28, 162
pointing device

- relative . 18
PointRight . 94
Pong . 22, 67
Position . 17
position . 16
PowerPoint . 54
precision . 108, 118
printer . 63
product designers . 5
profile

- mobile phone . 89
projector

- handheld . 30
prototype . 1, 3

- board game . 147, 149
- form. 3–5, 7
- functional . 3–5, 7
- high-fidelity . 9
- low-fidelity . 4, 7

Index 197

- paper. .7
- physical . 78, 147
- rapid . 5
- reference . 3
- Wizard of Oz . 4, 53, 90

proxy . 55
proxy layer . 54, 88
Proxy Manager . 55
psychological process . 24
Python . 60, 89

quantify . 16, 35
Quartz Composer . 77, 78, 88, 92, 93, 96, 98
QWERTY. .35

range normalization . 72
raster scan . 24
rate of motion

- maximum supported. .111, 112
reach

- sample . 111, 112
- submovement. .112, 125

Regensburg . 134
Regensburg Experience . 134
regression analysis .121
relative . 39
resolution . 9, 107, 121, 163

- device . 111, 113, 118
- display . 117, 119
- pixel . 117
- selection . 118
- selexel . 120, 122, 126
- transducer . 111, 113, 122

REXplorer . 10, 42
RFIG. .30, 41

sampling frequency . 111
sampling rate . 9, 121, 163
sampling rates. .107
Savannah . 141
scaling . 17
scenario . 3
scenarios . 147
screen

- phone . 19
select . 16, 30
selection–display ratio . 117, 122, 126
selexel . 121, 122
selexels . 117, 118
semantic mismatches . 74
semantic snarfing . 33
sensitivity to distance . 27
serendipity . 41
Single-Display Groupware . 48
sketch . 3
slider . 73, 74
Smart Laser Scanner . 18

198 Index

Smart-Its .90
Smart-its . 53, 55
SMS . 35, 36
social acceptance . 41
software architecture . 7
sound . 88
spatially-constrained task . 18
Speakeasy . 63
speech recognition . 36, 94
spell-casting . 10, 135, 136
step keys

- directional. .22
stereo camera tracking. .21
stereovision. .30
stochastic optimized submovement model . 110
storyboard. .3, 147
stroked character recognition . 37
submovement. .110, 112

- duration . 111
subtask . 16, 17, 24
SureType. .36
Sweep . 9, 10, 19, 28, 89, 93, 107, 116, 119, 121, 162
Symbian Series 60 . 89
system image . 54

T9 . 35
tabs . 48
tags . 33

- GUI elements . 20
- RFID . 30, 33, 41, 82, 83, 85
- visual . 20, 28, 30
- Visual Code . 23

task bias . 96
taxonomy . 16, 17, 38, 43
TEA . 90
Teleo . 53
temporally-constrained task. .18, 110
text entry . 16, 35

- dictionary-based. .35
tilt-scroll . 90, 97
TiltText . 36, 92
TiltType . 36
TinyMotion . 37
toolkit

- ceiling . 47, 71, 80, 82, 96
- efficiency . 96
- hardware . 53
- threshold . 47, 71, 96, 99

toolkits . 9
Topiary . 90
touch panel . 17, 108
touch screen . 18, 42, 116
trackpad . 18, 26, 30
transducer .110, 111
tuplespace . 57, 60, 62

ubiquitous computing.1, 5, 7, 9, 15, 28, 35, 48, 49, 86, 92, 162

Index 199

UNESCO world heritage . 134
UNIX operating system . 78
usability goals . 4
USB . 54
user interface

- automatic layout . 121
- graphical .16, 30, 53
- physical . 9, 15, 30
- tangible. .5, 74
- ubiquitous. .51

user interface layer .50, 89

variable
- global . 71, 74

vibrator . 88
VisionWand . 21, 30
visual acquisition time . 26
Visual Basic . 55, 60
visual programming . 77
voice recognition . 30
VoodooIO . 53
Voronoi regions. .121

wand . 21
WIMP . 16
window system . 53
Windows Mobile 5.0 SmartPhone Edition . 89
Wizard of Oz . 4, 7, 8, 153
Workspace Navigator . 77
world-in-miniature . 149

Xcode . 77

	9783867275316.jpg
	Diss2kleiner.pdf

