Rafael Ballagas

Bringing Iterative Design
to Ubiquitous Computing

media

</ Cuvillier Verlag Géttingen o g

Bringing Iterative Design to
Ubiquitous Computing:

Interaction Techniques,
Toolkits, and Evaluation Methods

Von der Fakultit fiir Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfilischen Technischen
Hochschule Aachen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Rafael A. Ballagas, M. Sc.
aus Atlanta, Georgia, USA

Berichter: Prof. Dr. Jan Borchers
Prof. Dr. Hans Werner Gellersen

Tag der miindlichen Priifung: 23. August, 2007

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet {iber
http://dnb.ddb.de abrufbar.
1. Aufl. - Gottingen : Cuvillier, 2008

Zugl.: (TH) Aachen, Univ., Diss., 2007

978-3-86727-531-6

© CUVILLIER VERLAG, Géttingen 2008
Nonnenstieg 8, 37075 Gottingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdriickliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfiltigen.

1. Auflage, 2008

Gedruckt auf sdurefreiem Papier

978-3-86727-531-6

iii

Contents

Abstract xxiii
Zusammenfassung XXV
Acknowledgements xxVii
Conventions Xxix
1 Introduction 1
1.1 Tterative Human-Centered Design 1
1.2 Applying Iterative Design to Ubicomp)
1.2.1 Fieldworko 5
1.2.2 Lightweight Prototypes 7
1.2.3 High-fidelity Prototypes 8

1.3 Thesis Structure Lo 9
1.4 Thesis Contributions 10

2 Supporting Design: The Design Space of Ubiquitous Mo-

bile Phone Input Techniques 13
2.1 Examining the Design Space of Input Devices 14
Feedback 15

Interaction Style 15

iv Contents
2.1.1 The POSITION Subtask 16
Continuous Indirect Interactions 16
Continuous Direct Interactions 19
Discrete Indirect Interactions 20
Discrete Direct Interactions 21
Evaluating Positioning Techniques 22

2.1.2 The ORIENT Subtask 25
Continuous Indirect Interactions 25
Continuous Direct Interactions 26
Discrete Direct Interactions 28

2.1.3 The SELECT Subtask 28
Continuous Indirect Interactions 28
Continuous Direct Interactions 28
Discrete Indirect Interactions 29
Discrete Direct Interactions 29

2.1.4 The PATH Subtask 33
2.1.5 The QUANTIFY Subtask 33
2.1.6 The TEXT ENTRY Subtask 33
Keyboard L. 33
Speech Recognition 34
Stroked Character Recognition 35

Menu Selection 35

2.2 Spatial Layout of the Design Space 35
2.2.1 Supported Subtasks 36
2.2.2 Dimensionality 37

Contents

2.2.3 Relative vs. Absolute. 38
2.2.4 Other Relevant Attributes of Interaction Devices . . 38
Designing for Serendipity 38

Social Acceptance L. 39

2.3 Design Spaces in the Design Process 40
2.4 Chapter Summary« . v v v e 41

3 Supporting Prototyping: Toolkit Support for Ubiquitous

Computing Applications 43
3.1 Requirements 44
3.2 iStuff Toolkit Architecture 45
3.2.1 User Interface Layer 46
Other Physical Hardware Toolkits 49

Software Components 49

Layer Summary 50

3.22 Proxy Layer. 50
Proxy Manager 51

Layer Summary 53

3.2.3 Network Layer 53

The Event Heap 53

Debugging the Event Heap 56

Layer Summary 56

3.24 Mediator Layer 58
Other System Approaches to Interoperability 58

Functional Details of the Patch Panel 60

Layer Summary 66

vi Contents
3.2.5 Application Layer 66
Scripting Language 67

Patch Panel Manager 71

Custom GUI - Workspace Navigator 73

Quartz Composer 73

Other Rapid Prototyping Environments 76

Layer Summary 77

3.2.6 iStuff Architecture Summary 77

3.3 iStuff Prototyping Examples 78
331 Elope 78
3.3.2 iStuff Mobile 82
iStuff Mobile Architecture 82

Mobile Phone Application Support 84

Other Mobile Phone Interface Prototypes 86

Other Mobile Phone Toolkits 86

Recreating Seminal Mobile Phone Interactions . .. 86

Ubiquitous Computing Prototyping Scenarios 88

3.4 User Evaluation 91
3.4.1 Experimental Results 94
3.4.2 Questionnaire Results 95
Quanititative Results 95

Qualitative Results 96

3.5 Performance Evaluation 97
3.6 Conclusions oo 99

Contents vii

4 Supporting Evaluation: Expressiveness as an Evaluation

Tool for HCI 101
4.1 Motivation L 101
4.2 Background L Lo 102
4.2.1 Expressiveness of Relative Pointing Devices 104
4.2.2 Examples o 107
Opto-Mechanical Mouse 107

Optical Mouse 108

Analog Joystick L 108

SWEED . . v v o 110

4.2.3 Expressiveness of Absolute Pointing Devices 110

4.3 Selexels: Using Expressiveness as a Design Tool 111
4.3.1 The Selexel Approach 111
4.3.2 Practical Application of Selexels 112
Usage Scenario oL 113

4.3.3 Comparing Selexels to Other Selection Techniques . 113

44 Evaluation. 115
4.5 Experiment 1 oo 116
4.5.1 User Study Design 116
4.5.2 Participantso oo 117
4.5.3 Equipment oo 117
454 Results 117
4.5.5 Discussion o 118
4.6 Experiment 2 L o 119
4.6.1 User Study Design 119

4.6.2 Participants o 120

viii

Contents

4.6.3 Equipment 0oL 120
4.6.4 Results Lo 121
4.6.5 Discussiono 121
4.7 Chapter Summary 121

Iterative Design in Practice: Player-Centered Iterative De-

sign for Pervasive Games 125
5.1 Game Overview 126
5.2 Detector Functionality 128
5.3 Gameplay Scenario 131
5.4 Other Pervasive and Mobile Games 133
5.5 Mobile Phone Turned Magic Wand 134

5.5.1 Camera-based Motion Estimation 134

5.5.2 Gesture Recognition 135

5.5.3 Iteratively Designing the Spell-Casting Experience . 137

User Reactions to Gesture Recognition in a Field Study 138

5.6 Other Prototyping Iterations 139
5.6.1 Early Concept Prototyping 139
5.6.2 Board Game Prototyping 142
5.6.3 Game Statecharts 143
5.6.4 Content Prototyping 143
5.6.5 Hotzone Prototyping 143
5.6.6 Detector Prototyping 145
5.6.7 “Wizard of Oz” Playability Tests 146

Analysis 146

5.7 Design Rationale 147

Contents

ix

Designing for Narrative Consistency 148
Balancing Competitiveness and Leisure 149

Balancing Cooperative Experience vs. Outdoor Play 149

Designing for a “Heads Up” Experience 150

5.8 Chapter Summary oL 151

6 Conclusion 153
6.1 Contributions 153
6.2 Future Work 156
6.3 Closing Remarks 157

A iStuff Hardware Schematics 159
A1l iButton 159
A2 iDog 160
A3 iLight 160
A4 iSlider 162
A5 iStuff Proxy Receiver 163
A.6 iStuff Proxy Transmitter 163

B iStuff Evaluation and Scenario Descriptions 167
C Post-participation Questionnaire 173
Bibliography 177

Index 191

xi

List of Figures

1.1

1.2

1.3

14

1.5

21

2.2

2.3

24

2.5

A high-level diagram illustrating the iterative design process.

An illustration of interface quality as a function of the num-
ber of design iterations. Each additional iteration increases
the usability of the design until a potential “usability plateau”
is reached. (Nielsen, 1993)

An abstract timeline illustrating a sample desktop iterative
design process. Low-fidelity prototypes can be prototyped
and evaluated much quicker than high fidelity prototypes.
Identifying design flaws earlier in the iterative design process
saves time and money.

Paper prototypes provide a low-fidelity representation of a
graphical user interface to enable user testing early in the
design process. (Photo by Kris Kables, reprinted under the
Creative Commons License.)

The coverage of the contributions of this thesis in the field
of HCI.

A large public display used for advertisments and announce-
ments in a subway stop in Vienna, Austria.

The Smart Laser Scanner: a 3D input technique for mobile
devices using laser tracking (Cassinelli et al., 2005)..

In the C-Blink system, the user waves the phone screen in
front of a camera to control cursor position (Miyaoku et al.,
2004). ..o

The Sweep technique uses camera input and optical flow im-
age processing to control a cursor (Ballagas et al., 2005). . .

Using the phone to manipulate tagged widgets such as but-
tons, dials, and sliders (Madhavapeddy et al., 2004).

2

18

19

xii

List of Figures

2.6

2.7

2.8

2.9

2.10

2.11

3.1

3.2

3.3

3.4

Direct Pointer uses a handheld camera to track a cursor
displayed on the remote screen without relying on visual
tags. (Jiang et al., 2006)

The view of the facade of a building used to play the classic
game “Pong” with buttons on the mobile phone controlling
the paddle. (Chaos Computer Club, 2002)

Point & Shoot technique (Ballagas et al., 2005)

A warehouse scenario employing RFIG. The users can high-
light and select objects of interest combining a handheld pro-
jector and embedded light sensitive RFID tags (Raskar et al.,
2004). ..o

Classification of different mobile phone interactions that
have been implemented in the projects surveyed. Inspec-
tion of the diagram reveals opportunities for future work —
for instance, developing interaction techniques that support
3D relative direct orientation.

REXPLORER uses camera-based motion estimation to allow
players to cast spells using the path subtask (Ballagas et al.,
2007b). ..o

A layered model of the iStuff Toolkit Architecture.

Interactive Workspaces are ubiquitous computing environ-
ments that combine an array of input devices and displays
to provide a coordinated user experience.

Custom built iStuff components are reusable modules that
can combined to build a physical user interface prototype.
(Top) contains input devices, (Middle) shows output devices,
(Bottom) A design space can be used to illustrate the cov-
erage of these devices.

(Left) The Smart-Its proxy GUI allows developers to dis-
cover Smart-Its sensor boards, configure them, and activate
communication with the Network Layer through this basic
interface. (Right) The configuration menu allows the devel-
oper to activate sensors and set sampling rates for the sensor
network module. L

List of Figures

xiii

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

A screenshot of the ProxyManager application. Proxies can
be arranged on different tabs (middle). On the left the dis-
covered Event Heaps are displayed as well as buttons for
launching a local Event Heap and the Event Logger, respec-
tively. In the middle, a hierarchical tree is used to browse
available proxies. A workspace shows the current proxies of
interest selected by the user and their status. On the right
side, the currently running proxies are shown. In the dis-
played situation, a “TextEventGenerator” proxy is running,
indicated by the “walking man” icon.

Sample Java code for posting an event on the Event Heap.
The event is of type AudioEvent and has fields AudioCom—
mand and Text, which are parameters for the SpeakText re-
ceiver. This program can be executed with the following
command: $> java SpeakTextSender ehl.informatik.rwth-
aachen.de "Hello World"

Sample Java code for receiving an event from the Event
Heap using a blocking method. This program can be ex-
ecuted with the following command: $> java SpeakTextRe-
ceiver ehl.informatik.rwth-aachen.de

Sample Java code for receiving an event from the Event Heap
using a non-blocking callback. This program can be exe-
cuted with the following command: $> java SpeakTextRe-
ceiver ehl.informatik.rwth-aachen.de

The Event Logger GUI simplifies debugging and monitoring
Event Heap Activity. The top panel controls the connectivity
to the Event Heap, the right panels control the event-level
and field-level filtering desired for the log view (left panel).

Selecting a particular event from the Event Logger displays
all the fields and values of the event. The mandatory fields
required by the Event Heap are visually separated using grey
to assist the user in identifying the custom fields specified by
the client application.

The Patch Panel adds a level of indirection to the commu-
nication channel between two components to perform event
intermediation. The publish/subscribe semantics are also
demonstrated. oo

Sample Java code for setting the Button — Lights, Projector
MapPINg. . . . o o v e e e e e

52

54

54

55

o7

o7

61

xiv

List of Figures

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

(A) A textual description of the Mealy state machine dia-
gram for a light toggle in (B). Circles labeled Si are states.
Each edge is labeled with “x /3’ where z is the input and y is
the output. (C) The Patch Panel mappings that implement
the state machine.

(A) FSM description with timers. (B) Formal notation for
the mappingsin A.,

the iClub in Action with iSlider
Range Normalization and Equation Specification

Patch Panel mappings that enable the multi-slider handheld
music controller

FSM description of iClub multi-slider mappings. We have
minimally stylized the code for space (Typically each event
template must be described with necessary mandatory fields
and values at the top of the script, instead of inline as shown

Resolving semantic mismatch between relative-position and
absolute-position devices. We have minimally stylized the
code for space (Typically each event template must be de-
scribed with necessary mandatory fields and values at the
top of the script, instead of inline as shown above).

(Top) The simple panel of the patch panel GUI, intended for
casual non-technical users, provides access to a very limited
set of simple mappings. (Bottom) The advanced panel of the
patch panel manager, intended for experts, supports direct
browsing and editing of the Patch Panel mappings.

(Top) Sequence of screens that illustrate the functionality of
the Button-to-Bookmark Configuration Servlet. (Bottom)
The equivalent function of the GUI specified in the mapping
notation..

Apple’s Quartz Composer is a visual programming environ-
ment designed to support rapid creation of 3D interactive
visualizations. We have extended it to support prototyping
physical user interfaces. This screenshot shows the develop-
ment of a weather application for a large public display in a
train station.o Lo

A rough comparison of the different Application Layer pro-
gramming interfaces of the iStuff Toolkit.

Summary of the layers of the iStuff Toolkit architecture. . .

64

65

68

69

69

70

71

72

74

75

List of Figures

XV

3.25

3.26

3.27

3.28

3.29

3.30

3.31

A system diagram illustrating the coordination between the
components to set up a presentation by scanning a presen-
tation controller.

Hardware prototype components, including tagged presen-
tation remote control (upper left), prototype mobile device
(right), and RFID reader (bottom left). The remote control
is tagged with an RFID tag (black circle on end), and the
RFID reader is exposed to show its inner circuitry. (A Euro,
a British Pound, and a U.S. quarter are included for scale.)

Back view of a mobile phone augmented with a Smart-Its
sensor board in iStuff Mobile. The sensors can be attached
to the phone in whatever position the designer finds most ap-
propriate. The pictured Smart-It contains a 3D accelerome-
ter, microphone, and sensors for light, pressure, temperature,
and voltage.

The iStuff Mobile architecture.

The Quartz Composer implementation of the tilt-scrolling
interaction from Harrison et al. (1998). Squeezing input is
measured by the “Force” node from the SmartItsSensor_1
and is tested with a simple threshold. The result is passed to
the Tilt To Key - JavaScript, which maps various tilts
in the Z-direction of the gravity sensor to different key codes
and key repeat rates. The outputs from that JavaScript
node include “KeyCode”, which represents the appropriate
key (up or down arrow) depending on the current tilt, and
“Repeat Period”, which specifies how fast the LFO (low fre-
quency oscillator) node should operate. For this scenario,
larger tilt is mapped to faster repeat rates. The Key Press
- Conditional changes the oscillator to function like a bi-
nary clock, regularly switching between 0 and 1. “Source #0”
(which defaults to 0) represents no key pressed, and “Source
#1” represents the key specified from the JavaScript node.
The key is then passed to the Mobile PhoneController_1
to forward to the mobile phone. The naming convention of
the iStuff Mobile related nodes corresponds to the name of
the device being controlled. (_1 helps distinguish multiple
devices of the same type.) L.

Implementation of the context based profile change described
in (Hinckley and Horvitz, 2001; Schmidt et al., 1999). The
Threshold - JavaScript node changes the profile based on

79

81

83

83

87

the pressure sensor (indicating the user is holding the phone). 88

The TiltText (Wigdor and Balakrishnan, 2003) technique
maps numeric keys to different characters based on the tilt
of thedevice. L

xXvi List of Figures

3.32 The Quartz Composer implementation for combining ac-
celerometer data with camera-based motion detection to im-
prove motion detection accuracy. The Sensor Fusion -
JavaScript node implements the algorithm to combine the
sensor values in a meaningful way. The JavaScript logic can
be modified at run-time to test and refine the sensor fusion
strategy. The standard Billboard node of Quartz Composer
displays an image to the screen (e.g., a cursor). The output
of the sensor fusion algorithm in the JavaScript node controls
the position of the billboard on the screen.. 89

3.33 The proof of concept weather browser application allowed
users to navigate through regions on the map using the
Sweep technique. The weather forecast is updated live using
RSS feeds from Yahoo! Weather. 90

3.34 (Top) A multi-screen presentation application that uses a
mobile phone as a presentation remote control. The fore-
ground application in this example is prototyped using a
static image. The right screen shows the previous slide, and
the left screen shows the current slide. (Bottom) The Quartz
Composer implementation for the multi-screen presentation
application. On the far left, the MobilePhoneKeyLis-
tener_1 node receives the key presses from the iStuff Mobile
Proxy. The two nodes on the far right are iStuff modules
to control two instances of the same PowerPoint presenta-
tion, each running on a different computer in the interactive
workspace (Top). No JavaScript nodes are required for this
composition. 91

3.35 (A) The window floating on top belongs to iListen, a com-
mercial application that supports continuous speech recog-
nition (dictation) on Mac OS X. When speech is recognized,
it is converted to ascii text and sent to the focused appli-
cation as key events. (B) Our Text Event Engine is a Java
application in focus that produces Text events for each key
entered in the textbox. In this example, the user is dic-
tating an SMS message. (C) Text events are recognized by
the CharacterGenerator_1 and transferred to Mobile-
PhoneController_1. This composition can alternatively
be used to allow users to type messages onto their mobile
phone using a standard keyboard on their desk. 92

3.36 Results show that Quartz Composer is significantly faster
and enables significantly more iterations than the Patch
Panel scripting language. 95

3.37 Sources of latency in tangible Uls for ubicomp. 98

List of Figures

xvii

3.38 Benchmark measurements and example performance degra-

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

dation for combined Event Heap and Patch Panel round trip
time. Note the periodic delay spikes indicated by the large
positive skew for each group of measurements.

Analysis of a simple radio from (Card et al., 1991). Two ro-
tation devices are connected directly to the application. The
third rotational device is connected to a positional device,
which is then connected to the application.

The optimized dual-submovement model is a variation of the
optimized submovement model with two submovements. Hy-
pothetical primary submovements are marked with a solid
line, secondary submovements with a dashed line. (Based
on Figure 6.8 from Meyer et al. (1990).)

An optical-mechanical mouse: (1) Motion across the desk-
top surface moves the ball. (2) Grips transfer the ball move-
ment to turn (3) optical encoding disks. (4) Infrared LEDs
shine through the holes. (5) Infrared sensors accumulate
light pulses and convert them into motion along the X and
Y axes. (Source: Wikipedia)

An analog joystick measures absolute tilt of the stick in the
rX, rY dimensions. oL oL

A sample selexels screen division over a typical desktop inter-
face. It indicates that existing desktop interfaces may need
to be modified to disambiguate selection when using a low
resolution selection space.

Experimental results showing that pointing under selexels
can be modeled using Fitts’ Law.

Experimental results showing that user performance in
pointing tasks decreases when the target distance is greater
than the submovement reach.

Experimental results separated by C-D ratio, showing that
Fitts’ law is not an acceptable model of human performance
when target distances exceed the submovement reach.

A child’s gravestone inscribed with a secret language serves
as inspiration for the gesture vocabulary of REXPLORER.
The long-term goal of the players is to unveil the mystery
behind these symbols by solving as many other challenges in
the city as possible during their game session.

122

xviii

List of Figures

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

The REXPLORER “detector” consists of a Nokia N70 mobile
phone and a GPS receiver packaged together in a protective
shell. A soft and stretchable textile overlay with a zipper
on the back transforms the standard phone keypad into an
8-key game interface.o Lo

A souvenir blog documents the player’s route, visited points

of interest, and player-generated content (pictures and videos).129

A souvenir brochure contains a map marked with points of
interest and a legend for device buttons and gestures.

As players move through the city, a slow heartbeat indicates
that there is no unusual paranormal activity. When a player
moves close to a point of interest, inside a hotzone, the de-
tector’s heartbeat gets excited and speeds up. In the excited
state, there is additional vibration and audio feedback to
emphasize the new state.

A step-by-step illustration of the REXPLORER interaction
SCQUENICE. .« o v v v e e e e e e e e e e e

Recognizing the gesture using offsets

The alternative spell selection menu was a rotating, clock-
like interface where the red highlight continuously rotated
around the screen. The gesture symbol in the middle dis-
cretely rotated to eliminate ambiguity as to which element
was currently highlighted. Note that the shape of the gesture
in the middle matches the gesture that would be performed
to evoke the corresponding spell for the medieval element.
Users press “Auswihlen” to select, and “Nochmal” to try the
gesture again. Lo

Storyboard conveying REXPLORER game play
Board game prototype of REXPLORER
Finite State Machine showing the reaction to a gesture.

Map tool that allows us to visually define hotzones based on
GPS measurements from testing

Different stages of detector design.

For the playability tests, Wizard of Oz techniques were ap-
plied using the Nokia 770 tablet. A test administrator uses
the tablet to manually input the players’ position as they fol-
low the players through the city to simulate a fully functional
location detection system.

130

148

List of Figures

xix

5.15

5.16

6.1

Al

A2

A3

A4

A5

B.1

B.2

B.3

B4

C.1

C.2

An affinity analysis consists of writing individual quotes from
the interviews and play sessions to try to isolate patterns of
behavior across the different sessions. 148

REXPLORER is designed to be played in groups of two or
three. 150

A map showing the contributions of this thesis mapped over

the ACM’s map of Human—Computer Interaction. 156
The circuit diagram for the iButton. 160
The circuit diagram for the iLight. 161
The circuit diagram for the iSlider. 162
The circuit diagram for the iStuff proxy reciever. 164
The circuit diagram for the iStuff proxy transmitter. 166
Evaluation description page 1 168
Evaluation description page 2 169
Evaluation description page 3 170
Evaluation description page 4 171
User test questionnaire page 1. 174

User test questionnaire page 2. 175

xx1

List of Tables

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

4.1

Summary of POSITION techniques using a smart phone as an
input device. 23

Rough estimates of ergonomic measures to compare mo-
bile phone-based POSITION techniques (small circle = low,
medium circle = medium, large circle = high). 26

Summary of ORIENT techniques using a smart phone as an
input device. L L 27

Rough estimates of ergonomic measures to compare mobile
phone-based ORIENT techniques (small circle = low, medium
circle = medium, large circle = high). 27

Summary of SELECT techniques using a smart phone as an
input device (Continued in Table 2.6). 30

Summary of SELECT techniques using a smart phone as an
input device (Continued from Table 2.5) 31

Rough estimates of ergonomic measures to compare mobile
phone-based SELECT techniques (small circle = low, medium
circle = medium, large circle = high). 32

Summary of TEXT ENTRY techniques using a smart phone as
an input device.o oL 36

Rough estimates of ergonomic measures to compare mobile

phone-based TEXT ENTRY techniques (small circle = low,
medium circle = medium, large circle = high). 37

User test scenario completion matrix. 94

By matching the selexel resolution to the C—S ratio (Lsgmpie)
we maintain a constant C-D ratio across the test conditions. 117

xxiii

Abstract

An iterative human-centered design process is required to create interfaces that are useful, in-
tuitive, efficient, and enjoyable for users in the ubiquitous computing domain. Currently, only
experts can design, prototype, and deploy ubiquitous computing applications; others lack the
tools and conceptual frameworks. This work starts to fill the gap by providing contributions that
support each phase of the iterative human-centered design process and address the complexity
of ubiquitous computing application scenarios.

e To support the design phase, the range of ubiquitous mobile input techniques are organized
into a design space, which helps identify the relationships between input techniques, and
select the most appropriate input technique for an interaction scenario.

e To support the prototyping phase, the iStuff Toolkit architecture simplifies construction
of functional prototypes for ubiquitous computing application scenarios. The architecture
has been used to create two separate toolkits: iStuff to simplify prototyping physical user
interfaces for ubiquitous computing, and iStuff Mobile to simplify prototyping new sensor-
based interactions for mobile phones in ubiquitous computing.

e To support the evaluation phase, a new conceptual framework based on expressiveness
is used to demonstrate how to evaluate input devices in prototype form (suffering from
reduced resolution or sampling rates) and still make conclusions about future performance
if further time and money were invested in improvements.

To illustrate how this iterative design process can be used from drawing board to deployment,
experiences developing REXPLORER are shared. REXPLORER is one of the first permanently
installed pervasive games and helps tourists explore the historical UNESCO World Heritage
city of Regensburg, Germany. Players use a special “paranormal activity detector” (a device
composed of a mobile phone and a GPS receiver) to interact with location-based and site-specific
spirits. “Casting a spell” by waving the wand-like detector lets players awaken and communicate
with the spirits to receive and solve quests. The game is designed to make learning history fun
and influence tourists’ path through the city.

XXV

Zusammenfassung

Um niitzliche, intuitive, effiziente und unterhaltsame Schnittstellen fiir die Benutzer im ubi-
quitdren IT (ubiquitous computing) zu entwickeln, ist ein iterativer und benutzerorienter De-
signprozess erforderlich. Zurzeit sind es nur Experten, die unter diesen Voraussetzungen Pro-
totypen entwickeln kénnen. Nicht-Experten fehlt es an den notwendigen Werkzeugen und den
konzeptuellen Bezugssystemen. Die vorliegende Arbeit verringert diese bestehende Liicke, wobei
sie einen Beitrag leistet, der jede Phase des iterativen und benutzerorientierten Designprozesses
unterstiitzt und die Realisierung solcher ubiquitdren I'T-Szenarien vereinfacht.

e 7Zur Unterstiitzung der Designphase sind die gegenwirtigen mobilen Eingabetechniken
in einem Gestaltungsraum (design space) organisiert. Dieser Gestaltungsraum hilft, die
Beziehung zwischen den Eingabetechniken zu identifizieren und die passende fiir das jew-
eilige Interaktionsszenario zu wahlen.

e Zur Unterstiitzung der Prototypenphase vereinfacht die iStuff Architektur mit ihrer
»Analogie eines Werkzeugkastens® die Konstruktion der Funktionsprototypen fiir das ubiq-
uitére I'T. Basierend auf dieser Architektur wurden zwei separate ,,Werkzeugsétze entwick-
elt: iStuff vereinfacht die Herstellung von Prototypen fiir physikalisch basierte Benutzer-
oberflichen wahrend iStuff Mobile die Herstellung von Prototypen fiir neuen sensorbasierte
Interaktionen mit Mobiltelefonen unterstiitzt.

e Zur Unterstiitzung der Auswertungsphase wird ein neues Konzept angewendet, welches auf
Ausdrucksfahigkeit basiert. Es ist fiir die Auswertungen von prototypischen Eingabeproto-
typgerdten (mit niedriger Auflosung und geringen Abtastrate) geeignet und zeigt anhand
der erreichten Leistungen, ob zukiinftige Zeit- und Geldinvestitionen erforderlich sind.

Um die Anwendung dieses iterativen Designprozesses von Zeichenbrett bis zum richtigen Ein-
satz darzustellen, werde ich die von mir gesammelten Erfahrungen wéhrend der Entwicklung
von REXplorer, eines der ersten fest installierten pervasive Spiels, behandeln. REXplorer hilft
Touristen bei der Erforschung der von der UNESCO zum Weltkulturerbe erklirten historischen
Stadt Regensburg in Deutschland. Die Spieler benutzen einen speziellen ,paranormalen Aktiv-
itdtsdetektor* (ein Geréit, bestehend aus einem mobilen Telefon und einen GPS-Empfinger), mit
dem sie mit standortbezogenen und ortspezifischen fiktiven Mitspielern zusammenspielen. Durch
sogenanntes ,Verzaubern“ (winkende Bewegungen mit einem Zauberstab) erweckt der Spieler die
fiktiven Mitspieler zum Leben, unterhélt sich mit ihnen und bekommt Fragen gestellt, deren Lo-
sungen er in der Stadt suchen muss. Das Spiel wurde entwickelt, um das Lernen von Geschichte
unterhaltsam zu machen und um Touristen durch die Stadt zu fiithren.

xxvil

Acknowledgements

First, I would like to thank my advisor, Jan Borchers, for his continued support of my work. He
is ultimately the reason I came to Germany to work on my Doctoral degree at RWTH Aachen
University, and I am glad that I followed him. He was there to meet with me to discuss ideas,
and always willing to provide comments on my papers and chapters. He kept challenging me to
think differently throughout our time together.

I would also like to thank my co-advisor, Hans Gellersen, who has supported me over the past
years through collaborations with his research group. His influence and support have helped
shape this work.

I would also like to acknowledge all of the contributors to the REXPLORER project. REX-
PLORER was jointly developed between RWTH Aachen University and ETH Zurich with over
50 individual contributors. Primarily, I would like to thank Steffen P. Walz, my counterpart
at ETH Zurich who took the lead for content development and co-designed the game with me.
Alexander Mohnle significantly contributed to character development and script creation for
the game content, and he is the photographer for the picture on the cover of this work. Also,
I would like to thank my students at RWTH Aachen University who helped realize the game
implementation, especially Sven Kratz, Joel Mendoza, Eugen Yu, André Kuntze, and Johannes
Fundalewicz. REXPLORER would not be a product today without the help of these individuals
and many others that are not listed here.

My colleagues have also played an important role in this process, especially Eric Lee, David
Holman, Daniel Spelmezan, Thorsten Karrer and Elaine Huang. They were always available
to provide comments, help refine ideas, and most importantly laugh with me to maintain my
sanity. I only hope to have the same quality of people to work with throughout the remainder
of my career.

I definitely would not have gotten this far without the love and companionship of Snezhana
Dimitrova. She has helped me stay grounded and remember what is important in life. The
ability to finish this thesis was largely due to her encouragement and support.

Finally, I’d like to dedicate this thesis to my parents, Rafael and Linda Ballagas, and my sister,
Corina Ballagas. They have always encouraged me to do my best, and their love and support
has been unwavering.

xXXix

Conventions

The following conventions will be used throughout this thesis:

Technical terms or jargon that appear for the first time will be set in italics.
Definitions of technical terms or other jargon will be enclosed in shaded
boxes, and will be referenced in the index.

Jargon:
Special words or expressions that are used by a particular profession or
group and are difficult for others to understand.

Source code and implementation symbols will be typeset using a monospace
font.

Margin notes will be used to improve readability and assist in browsing the
text.

Definition:

Jargon

Chapter 1

Introduction

“You don’t have to please everyone—you have to please the
user.”

—Brenda Laurel

Mark Weiser envisioned ubiquitous computing as a world where com-
putation and communication “blend into the fabric of our everyday
lives” (Weiser, 1991). To realize Weiser’s vision, we must find interfaces
that are useful, intuitive, efficient, and enjoyable for users in the ubiquitous
computing domain. An iterative human-centered design process (Nielsen,
1993) is required to find these interfaces. Currently, only experts can de-
sign, prototype, and deploy ubiquitous computing applications; others are
lacking the tools and conceptual frameworks to fully support an iterative
human-centered design process for ubiquitous computing. This work starts
to fill the gap by providing contributions that support each phase of the
iterative human-centered design process that addresses the complexity of
ubiquitous computing application scenarios.

1.1 Iterative Human-Centered Design

The field of Human—Computer Interaction (HCI) has long recognized that
user interfaces should be designed iteratively (Nielsen, 1993; Buxton and
Sniderman, 1980; Gould and Lewis, 1985), because the requirements for
an interactive system cannot be completely specified at the beginning of
the lifecycle (Dix et al., 2004). Instead, the road to success in interaction
design is to fail early and often. The design needs to be prototyped and
tested with real users to reveal any false assumptions or unforeseen design
problems. These problems can then be corrected in the next iteration of
the prototype, which should then again be tested to ensure the problems
are resolved. Each prototype is more detailed and functional than the last,
thus converging towards the final system (see figure 1.1). The main phases
of iterative design are:

Ubicomp needs
iterative
human-centered

design

the road to
success in
interaction design
is to fail early and
often

2 1 Introduction

Interviews

What is wanted Ethnography

Prototype > Evaluate

\/

Design

Redesign

Implement and

deploy

Figure 1.1: A high-level diagram illustrating the iterative design process (adapted from Dix
et al. (2004))

know the user ¢ Requirements (what is wanted)— In human-centered design, the
primary task is to ‘know the user’ (Hansen, 1971). When beginning
to develop any interactive system, it is important to clearly identify
who the system is intended to support, and for which tasks. After
the user group is identified, exploratory techniques such as contextual
inquiry or ethnography can be used to derive user needs and system
requirements.

e Design — This is the stage of the design process where the system

existing design requirements are translated into a design solution. This stage can
knowledge can be informed through design knowledge captured by abstract design
help conceptualize guidelines (Mayhew, 1991), platform specific design guidelines (Ap-
an interface ple Computer Inc., 1992), heuristics (such as Shneiderman’s golden

rules (Shneiderman, 1992)), and HCI design patterns (Borchers,
2001). Other tools that can assist in making informed design de-
cisions are design spaces, such as Card et al.’s design space of input
devices (Card et al., 1991), which helps designers reason about design
alternatives and identify the most appropriate design for the given

1.1 Iterative Human-Centered Design

task.

e Prototyping — Early in the development of a product, prototypes
are typically conceptual in the form of scenarios, sketches, and story-
boards that illustrate the basic usage in context. Later after evalua-
tion, more detailed prototypes flush out concrete design ideas. With
each cycle in the iterative design process, the ideas are further refined
with a combination of functional (works like) and form (looks like)
prototyping strategies.

e Evaluation — The essence of iterative design is to evaluate the pro-
totypes early and often to identify problems and design flaws early
in the design process. Delaying meaningful testing increases the cost
of correcting fundamental design problems. Analysis can either be
done without users, such as employing an expert to perform a heuris-
tic analysis, or they can be tested by observing real users interacting
with the product either in controlled experiments or in real context of
use. All of these forms of evaluation should be used together through-
out the design process to identify potential difficulties users may have
with a product. After the problems are identified, they can be trans-
lated into design changes for the next iteration of the prototype (Dix
et al., 2004).

e Implementation and Deployment — Once the design is of ac-
ceptable quality, the creation of production quality code, the man-
ufacturing of robust and integrated hardware, and the creation of
documentation and manuals can begin. Commonly, the output of
the iterative design process is a full design specification and reference
prototype, not the final implementation. Evaluations should continue
throughout the implementation stage to ensure that the implementa-
tion meets the quality required by the design. If the quality cannot
be met, further design iterations may be necessary.

Prototyping structures innovation, collaboration, and creativity in the most
successful design studios (Kelley and Littman, 2001). Designers use proto-
types as physical representations of ideas, effectively externalizing cognition
and facilitating a “conversation with materials” to uncover surprising prob-
lems or generate suggestions for new designs (Schon and Bennett, 1996).
Prototypes also serve as artifacts that represent tacit knowledge of devel-
opers as a communication tool to clients or other members of a design
team (Schrage, 1999). Most importantly, prototypes provide an artifact to
test with real users as a part of a human-centered iterative design process.

Research has shown that, generally speaking, the more iterations in the
design process, the better the user interface (Nielsen, 1993). Figure 1.2
illustrates how usability improves with each iteration in the design process.
At the surface, it appears that each iteration is a time consuming and ex-
pensive process, but studies have shown that iterative design has economic
value (Karat, 1990). Additionally, the cost of performing design iterations
can be dramatically decreased with rapid prototyping strategies, but the

Prototype
refinement
advances with
each iteration

Evaluate early and
often with real

users

Design before

implementation

Prototypes
externalize

cognition

More iterations
lead to better

designs

1 Introduction

Prototype both

form and function

Beware of false
starts

Usability

Reconceptualizing
the interface

O\

Removing
interaction bugs

Y

Iteration

Figure 1.2: An illustration of interface quality as a function of the number
of design iterations. Each additional iteration increases the usability of the
design until a potential “usability plateau” is reached. (Nielsen, 1993)

nature of the prototype influences the nature of the problems that can be
identified.

Prototypes can generally be characterized as one of two variants: func-
tional (works like) prototypes try to match the interactive experience as
closely as possible (Buchenau and Suri, 2000), and form (looks like) proto-
types are passive and try to match the appearance and affordances of the
final design. These two characterizations can be seen as two extremes of a
prototype continuum where, in most practical situations, prototypes have
aspects of both. For example, humans can simulate the interactive func-
tionality of form prototypes by updating the state of the form prototype
manually. This practice, known as Wizard of Oz prototyping (Dahlbéck
et al., 1993), was originally developed in the context of natural language
interfaces where a hidden human stenographer typed in spoken text to sim-
ulate high-performance natural language processing (Kelley, 1984). This
technique allows the interactions to be tested before significant effort is
placed in the implementation.

One of the pitfalls of iterative human-centered design is that if you pick a
poor starting point, you may reach a peak in the usability of a particular
design without reaching the desired usability goals. In this case, it may be
necessary to throw the design away and start over. False starts are relatively
painless early in the design process if low-fidelity prototyping techniques
are used, but can be extremely expensive if determined late in the design
process. In order to minimize the risk of false starts, a parallel design

1.2 Applying Iterative Design to Ubicomp

strategy (Nielsen and Faber, 1996) can be used, where multiple designs
can be explored independently early in the design process. As the designs
mature, the best design becomes clear, or the strengths of the top designs
can be merged to a unified design. Parallel design is more practical early
in the design process when rapid prototyping techniques are used.

1.2 Applying Iterative Design to Ubicomp

Today, strategies for applying an iterative design process to desktop graph-
ical user interfaces are generally well-defined. Figure 1.3 exemplifies how
these strategies might be applied over the course of a design process for
a desktop application. However, attempting to apply an identical design
process to ubiquitous computing is problematic, often because ubiquitous
computing application scenarios require a functional prototypes to convey
the intended experience. Currently, functional prototypes for ubiquitous
computing are costly, time-consuming, and require technical expertise to
construct. For example, Heiner et al. (1999) report spending about one
person-year developing a ubiquitous peripheral display. If meaningful test-
ing is delayed until too late in the design process, monetary constraints
and resource commitments prohibit fundamental design changes (Ulrich
and Eppinger, 1995).

1.2.1 Fieldwork

Fieldwork that has examined current design practices indicates that there
are many issues obstructing iterative design in ubiquitous computing ap-
plications.

Hartmann et al. (2006) conducted fieldwork interviewing product design-
ers. They found that most product designers have had exposure to pro-
gramming, but few were proficient. Although access to programmers and
engineers was available, there were not enough to complete large proto-
typing projects. This resulted in a perception that interdisciplinary teams
slow the interaction design process and increase costs. Thus, prototypes
that combined form and function were not built until late in the design
process. These prototypes were typically expensive, one-off presentation
tools instead of artifacts for human-centered reflective practice.

Klemmer (2004) conducted structured interviews with tangible user inter-
face developers. For these developers, dealing with physical input was the
primary challenge requiring a high level of technical expertise and extensive
development effort. One developer commented “the sensing hardware is not
perfect, so sometimes we had to change interactions a bit to make them
work in the face of tracking errors.” Developers reported that often exten-
sive system redesigns were required to perform straightforward changes to
input technologies (e.g., exchanging a camera and barcode reader). Addi-

Ubicomp requires
functional

prototypes

Functional
prototypes are

often delayed

Effort to build
functional
prototypes is too
high

1

Introduction

Design

Identify Users and Task —

Requirements —
Brainstorming]

Consider alternative -
designs
(Design Space Analysis)

Redesign—]

Redesign

Redesign—}

Redesign—

Implementation Begins—

v

User Profiles / Scenarios —

Storyboards —

Paper Prototype |

Parallel Design Paper Prototype —]

Revised Paper Prototype —]

High Fidelity Form Prototype —
(e.g. Photoshop)

Limited Fuctionality —
Interactive Prototype
(e.g. Flash)

High-Fidelity Interactive Prototype]
(e.g. Flash)

v

Prototype

Evaluate

Contextual Inquiry —

Focus Group Interview —

Task-centered walkthroughs—
Wizard of Oz User Testing—

Wizard of Oz User Testing—

Heuristic Evaluation—
Wizard of Oz User Testing —

Controlled Interactive User—|
Testing

Interactive Field Testing—

v

Design
Process Start

Low Fidelity
Prototypes

Medium Fidelity
Prototypes

High Fidelity
Reference
Prototype

Figure 1.3: An abstract timeline illustrating a sample desktop iterative design process. Low-
fidelity prototypes can be prototyped and evaluated much quicker than high fidelity prototypes.
Identifying design flaws earlier in the iterative design process saves time and money.

1.2 Applying Iterative Design to Ubicomp

tionally, each development team was creating their own software architec-
tures based on basic event-based software design patterns from the ground
up because no tool existed that could save developers time and effort.

Carter et al. (2007b) conducted fieldwork examining current design prac-
tices of applications for mobile devices (personal digital assistants or mobile
phones). The biggest challenge in this domain was developing prototypes
robust enough for use “in the wild”. Similarly, Kjeldskov and Graham
(2003) reviewed many mobile HCI projects and concluded that many mo-
bile developers rarely used lightweight prototypes because they strongly
believed it was important to test their tools in a realistic and ecologically
valid setting. Developers found that lightweight prototypes were insufficient
to perform these types of evaluations.

Matthews (2005) conducted fieldwork of peripheral display developers. One
developer interviewed commented “I would say the hardest part about im-
plementing these displays is the mechanics of doing it...”. Participants
were interested in building and deploying functional prototypes as rapidly
as possible because the “real value in many of these systems is only apparent
longitudinally.” Developers interviewed also expressed a need for tools that
support building applications that combined distributed input and output
over multiple modalities (physical, graphical, or audio).

1.2.2 Lightweight Prototypes

The most prevalent low-fidelity prototyping technique for graphical user
interfaces is paper prototyping (Snyder, 2003) (see Figure 1.4). Paper pro-
totypes are valuable because of the speed and low cost with which they can
be constructed, evaluated, and thrown away or modified. Paper prototypes
can be tested using a Wizard of Oz technique (Dahlbéck et al., 1993), where
the designer plays the role of the computer to update the paper “display”
to respond to user input. Paper prototypes by themselves are low-fidelity
form (looks-like) prototypes; when combined with Wizard of Oz, they are
low-fidelity prototypes of the form and function of the proposed design.
The unfinished nature and rough form of these early prototypes can be
particularly valuable; end-users often see them as unfinished and provide
richer design suggestions (Landay, 1996). A more polished prototype, on
the other hand, implies effort and may discourage comments from testers
that imply drastic design changes.

This form of low-fidelity prototyping is well suited for the desktop paradigm
as the constrained 2D nature of paper is a good match to the experience
of using the standard 2D display of desktop environments. However, paper
prototyping does not translate well to the ubiquitous computing domain,
because it falls short of capturing the ubiquitous computing user experi-
ence convincingly (Liu and Khooshabeh, 2003). For example, Rudstrom
et al. (2003) used paper prototypes to evaluate a mobile social applica-
tion, but reported that users had difficulty reflecting upon how their use

Functional
prototypes are
needed for
ecologically valid

evaluations

Functional
prototypes are
needed for
longitudinal
studies

Unpolished
prototypes can be

valuable

Paper prototypes
don't capture
ubiquitous
computing user

experiences

1 Introduction

Figure 1.4: Paper prototypes provide a low-fidelity representation of a
graphical user interface to enable user testing early in the design process.
(Photo by Kris Kables, reprinted under the Creative Commons License.)

would change if they were mobile and the system were interactive. In a
different study, Mankoff and Schilit (1997) successfully applied paper pro-
totypes to test a ubicomp terminal application that supported activities tied
to a particular space such as requesting supplies, or making reservations.
The prototype required wizards to respond once per day during evaluation.
These contrasting examples serve to illustrate that paper prototypes can
be well-suited when “interactivity” is limited, but are generally ineffective
in ubiquitous computing — especially when real-time feedback is required.

Wizard of Oz prototyping techniques have proven successful for many ubig-
uitous computing interaction scenarios early in the design process. For
example, many have successfully simulated sensor-based interactions using
Wizard of Oz techniques (Mynatt et al., 2001; Hudson et al., 2003; Con-
solvo et al., 2004). Other researchers have had success using Wizard of
Oz for location detection (Li et al., 2004; Benford et al., 2004), gesture
recognizers (Akers, 2006), speech interfaces (Klemmer et al., 2000), mul-
timodal interactions (Oviatt et al., 2000), augmented reality (MacIntyre
et al., 2004), and input techniques (Klemmer et al., 2004).

1.2.3 High-fidelity Prototypes

In the desktop domain, high-fidelity comprehensive prototypes that demon-
strate both form and function of the user interface can be implemented

1.3 Thesis Structure

fairly quickly using development tools such as Adobe Flash! (Moggridge,
2006). In the ubicomp domain, support for functional prototyping is still
emerging. Generally speaking, the only practical high-fidelity prototyping
approach is to develop a working product that can be tested. Significant
time, resources, and expertise are required to create these high-fidelity ubig-
uitous computing systems (Abowd, 1999).

1.3 Thesis Structure

This thesis is organized to emphasize contributions in each phase (design,
prototyping, and evaluation) of the iterative human-centered design pro-
cess.

Chapter 2 supports the design phase. It organizes the range of ubiquitous
mobile input techniques into a design space. This design space is an impor-
tant tool to help designers of ubiquitous computing applications identify
the relationships between input techniques, and select the most appropri-
ate input technique for their interaction scenarios. Included in this survey
are two camera-based input techniques that I have developed: “Sweep” and
“Point & Shoot”.

Chapter 3 supports the prototyping phase. The iStuff toolkit architecture
simplifies construction of functional prototypes for ubiquitous computing.
This architecture has been used to create two separate toolkits: iStuff to
simplify prototyping physical user interfaces for ubiquitous computing, and
1Stuff Mobile to simplify prototyping new sensor-based interactions for mo-
bile phones in ubiquitous computing. The toolkit architecture is supported
by the Patch Panel infrastructure that uses intermediation to deal with
heterogeneity and allow for incremental integration.

Chapter 4 supports the evaluation phase. A new technique has been de-
veloped to evaluate prototype input devices. These devices may have a re-
duced sampling rate or resolution due to their technical immaturity, making
it difficult to predict their efficiency if time and money were spent on im-
proving the technology. The notion of device expressiveness is introduced
to structure the evaluation such that conclusions can be made about future
improvements of the input device.

Chapter 5 illustrates how an iterative design process can be used from
drawing board to deployment, by discussing the experiences developing
REXPLORER. REXPLORER is a permanently installed pervasive game; it
helps tourists explore the history of Regensburg, Germany. In the game,
historically-based spirits are stationed at points of interest throughout the
city. Players use a special “paranormal activity detector” (a device com-
posed of a mobile phone and a GPS receiver in a protective shell) to inter-
act with location-based and site-specific spirits. A novel mobile interaction

"http://www.adobe.com/products/flash/

10

1 Introduction

Design spaces
help reason about

design alternatives

Mobile phones are
ubiquitous input

devices

iStuff architecture
radically simplifies
construction of
functional

prototypes

mechanism of “casting a spell” (making specific gestures by waving the
wand-like detector through the air) allows players to awaken and commu-
nicate with spirits to receive and resolve quests. The game is designed to
make learning history fun for tourists and influence their path through the
city.

1.4 Thesis Contributions

This thesis provides contributions that support each phase of the iterative
human-centered design process for ubiquitous computing.

1. Organizes mobile phone input techniques into a design space that:

(a) Organizes mobile phone input techniques into families to help
reason about their relationships,

ids designers in considering alternative parallel designs and se-

b) Aids desig i idering alt ti llel desig d
lecting the most appropriate mobile phone input technique for a
particular interaction scenario,

(c¢) Allows future mobile phone input techniques to be predicted.

2. New interaction techniques for employing mobile phones as input de-
vices in ubiquitous computing application scenarios.

(a) The Sweep and Point & Shoot input techniques use the camera
on the mobile phone as a sensor to enable interactions with large
public displays.

(b) The Elope project shows how to fluidly combine the storage and
processing of mobile phones with the input and output capabil-
ities of an interactive workspace.

(¢) The REXPLORER pervasive and mobile game for tourists em-
ploys mobile phones as a platform where users can interact with
spirits (historical characters) distributed throughout an urban
environment by casting spells (gestures created from waving the
mobile phone through the air).

3. Architecture support for physical user interface input and mobile
phone input techniques in ubiquitous computing application scenarios
that:

(a) Lowers the threshold for prototyping ubiquitous computing ap-
plications that employ physical or mobile phone input,

(b) Supports incremental integration, extensibility, and rapid con-
figuration of input using the Patch Panel infrastructure,

(¢) Introduces several new programming interfaces for rapid pro-
totyping ubiquitous computing interactions including a light
scripting language and a visual programming environment.

1.4 Thesis Contributions

11

Use and Context

U2 Application Areas

Ul Social Organization and Work @ U3 Human-Marchine Fit and Adaptation

Human Computer
TN (O Oo C2 Dialogue
H1 Hutnan 2z Techniques
Informmation —
Processing J D D
3 Dialogue
H2 Language, ‘ Cenre

Communication
and Interaction

C1 Input and
Ergonomlcs Output Devices

> D

C4 Computer
Craphics

=5

5 Dialogue
Architecture

=
x5

D4 Example Systems

Approaches

Development Process

D3 Evaluation and Case Stw:hes D2 Implementation
Techniques Tech.niques and Teools
D1 Design

Figure 1.5: This thesis makes contributions across the field of Human—Computer Interaction

in the highlighted areas. (Hewett et al., 1992)

4. Redefines the expressiveness of input devices so that it can be cal-
culated using physical properties of the device instead of empirical
thresholds.

(a) Demonstrates how to use expressiveness to structure the evalua-
tion of prototype pointing devices to be able to make conclusions
about how the device will function after further refinement.

5. Demonstrates how to apply player-centered iterative design to perva-
sive game development.

(a) Illustrates a range of low-fidelity, and limited functionality pro-
totypes that can be used to evaluate parts of the game earlier in
the design process.

Many of these contributions relate directly to the field of Human—Computer
Interaction. As a preview, the corresponding areas are highlighted in the
ACM’s map of the field (see Figure 1.5).

Expressiveness
helps evaluate

input devices

Iterative design
from concept to
deployment for

ubicomp

13

Chapter 2

Supporting Design: The
Design Space of Ubiquitous
Mobile Phone Input

Techniques

“Basically, an input device is a transducer
from the physical properties of the world
into logical parameters of an application.”

—R. Baecker and W. Buxton

Today, mobile phones are used not just to keep in touch with others but also
to manage everyday tasks, to share files, and to create personal content.
Consequently, our mobile phones are always at hand. Technological trends
result in ever more features packed into this small, convenient form factor.
Smart phones can already see, hear, and sense their environment. But,
as Weiser (1991) pointed out: “Prototype tabs, pads and boards are just
the beginning of ubiquitous computing. The real power of the concept
comes not from any one of these devices; it emerges from the interaction
of all of them.” Therefore, this chapter demonstrates how modern mobile
phones (Weiser’s tabs) can interact with their environment — especially
large situated displays (Weiser’s boards).

The range of input and output (I/O) capabilities for modern mobile phones
is broad. Keypad, joystick, microphone, display, touch-screen, loudspeaker,
short range wireless connectivity over Bluetooth, WiFi, and infrared, long
range wireless connectivity via GSM/GPRS and UMTS all provide multiple
ways of interacting with our phones. These multiple I/O capabilities have
increased our ability to use mobile phones to control resources available
in our environment, such as public displays, vending machines, and home
appliances.

Broad 1/0
capabilities are an
opportunity

14 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Figure 2.1: A large public display used for advertisments and announcements in a subway stop
in Vienna, Austria.

The ubiquity of mobile phones gives them great potential to be the de-
fault physical interface for ubiquitous computing applications. This would
provide the foundation for new interaction paradigms, similar to the way

Potential default the mouse and keyboard on desktop systems enabled the WIMP (windows,
ubiquitous icons, menus, pointers) paradigm of the graphical user interface to emerge.
interface However, before this potential is realized, we must find mobile phone inter-

action techniques that are intuitive, efficient, and enjoyable for applications
in the ubiquitous computing domain.

2.1 Examining the Design Space of Input Devices

Recent research demonstrates a broad array of mobile phone input tech-

Design spaces niques for ubiquitous computing application scenarios. To make sense of
help reason about the cumulative knowledge, we systematically organize the input techniques
design alternatives to give insights into the design space. The design space is an important tool

for helping designers of ubiquitous computing applications to identify the
relationships between input techniques, and to select the most appropriate
input technique for their interaction scenarios. Design spaces can also be
used to identify gaps in the current body of knowledge and suggest new
designs (Zwicky, 1967).

The new Looking to Foley, Wallace and Chan’s classic paper (Foley et al., 1984), we
ubiquitous design find a taxonomy of desktop input devices that are structured around the
space draws graphics subtasks that they are capable of performing (POSITION, ORIENT,
inspiration from SELECT, PATH, QUANTIFY, and TEXT ENTRY). These subtasks are the
seminal work elementary operators that are combined to perform higher level interface

tasks and will be elaborated upon in later sections. In this chapter, we
structure our analysis of smart phones as ubiquitous input devices using
this taxonomy. This analysis builds on classic design spaces (Buxton, 1983;
Card et al., 1991) and extends our own previous work (Ballagas et al., 2003,

2.1 Examining the Design Space of Input Devices

15

2006, 2008) on the design space of input techniques. In our analysis, we
blur the line between smart phones and personal digital assistants (PDAs)
because their feature sets continue to converge.

Although Foley et al.’s analysis was completed with the desktop comput-
ing paradigm in mind, the subtasks in their analysis are still applicable
to ubiquitous computing today. They naturally apply to situated display
interactions; however, their applicability is not limited to graphical inter-
actions.

Foley et al.’s taxonomy uses the following input characteristics to further
classify input techniques:

Feedback

Continuous interactions describe a closed-loop feedback, where the user
continuously gets informed of the interaction progress as the subtask is
being performed. For example, when using a mouse, the current cursor
position is continually fed back to the user. Discrete interactions describe
an open-loop feedback, where the user is only informed of the interaction
progress after the subtask is complete. For example, when selecting an
object on a touch panel, the progress of the selection is not displayed until
after the finger meets the surface to complete the selection of the desired
item.

Interaction Style

In direct interactions, input actions are physically coupled with the user-
perceivable entity being manipulated (such as an image on a display). Phys-
ical coupling can be achieved when the feedback spatially coincides with the
input action, or can be achieved at a distance if the user is manipulating a
3D ray (such as with a laser pointer) that intersects directly with the entity
being manipulated. To the user, this appears as if there is no mediation,
translation, or adaptation between input and output.

In indirect interactions, user activity and feedback occur in disjoint spaces
(e.g., using a mouse to control an on-screen cursor). Scaling and abstrac-
tion between input actions and feedback are often necessary in indirect
interactions.

In the following sections, each of Foley et al.’s subtasks will be examined
in the context of mobile phone interactions.

Graphics subtasks
also apply to
ubicomp

Feedback can be
continuous or

discrete

Interaction can be

direct or indirect

16 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Specify position in
application

coordinates

Example: Remote

Commander

Example:Joystick

Example:
Tilt-to-scroll

2.1.1 The PoOSITION Subtask

During a positioning task, the user specifies a position in application co-
ordinates, often as part of a command to place an entity at a particular
position. Positioning techniques can either be continuous where the object
position is continually fed back to the user, or discrete where the position is
changed at the end of the positioning task. Positioning tasks can further be
differentiated using the directness of the interaction. In direct interactions,
input actions are physically coupled with the object being positioned; in
indirect interactions, user activity and feedback occur in disjoint spaces.
We note that position could refer to screen position, or physical position in
the real world. For example, the height of motorized window blinds can be
adjusted using the position subtask.

The mobile phone has been used for positioning tasks in a variety of ways:

Continuous Indirect Interactions

1. Trackpad. A trackpad is a touch sensitive surface that is used as a rel-
ative pointing device, standard in modern laptops. Remote Comman-
der (Myers et al., 1998) enables individuals to use the touch screen
on a PDA as a trackpad to control the relative position of a cursor
on a remote situated display. In this interaction, the user’s attention
is concentrated on the situated display and no application-level feed-
back is provided on the PDA, thus the functionality of the PDA is
essentially reduced to an input device.

2. Velocity-controlled joystick. A return-to-zero joystick controls the ve-
locity of an object (such as a cursor) that is continuously repositioned
on the display. Zero displacement of the joystick corresponds to no
motion (zero velocity). Positioning with a velocity-controlled joystick
(a temporally- and spatially-constrained task) has been shown to be
inferior to positioning with a mouse (a spatially-constrained task)
for desktop pointing scenarios (Card et al., 1978). Silfverberg et al.
(2001) have done an in-depth study of isometric joysticks on handheld
devices to control the cursor on a situated public display. Many of
today’s mobile phones are shipping with simple joysticks with a push
button for menu navigation.

3. Accelerometers. Accelerometers are beginning to emerge in handheld
devices. For example, Samsung’s SCH-S310 mobile phone comes with
an integrated 3D accelerometer. Several researchers (Bartlett, 2000;
Harrison et al., 1998; Hinckley and Horvitz, 2001) have proposed in-
teractions that allow users to scroll (e.g., through an electronic photo
album) by tilting the handheld device. The scrolling is typically ac-
tivated through a clutch mechanism, such as squeezing the sides of
the device (Harrison et al., 1998). The degree of tilting controls the
speed of scrolling, making this a temporally-constrained positioning
task similar to the velocity-controlled joystick. Although these tech-

2.1

Examining the Design Space of Input Devices

17

E non-
Jp— imaging
g sensor
steerable . Sy

faser beam

hand-held
device

Figure 2.2: The Smart Laser Scanner: a 3D input technique for mobile
devices using laser tracking (Cassinelli et al., 2005).

niques were used to interact with an application directly on the de-
vice, they could clearly be extended to positioning tasks in ubiquitous
computing environments.

. Camera tracking. The Smart Laser Scanner uses a laser combined

with a wide-angle photo detector (see Figure 2.2) to detect relative
finger motion in 3-dimensional space (Cassinelli et al., 2005). The
laser beam is steered with a two-axis micro-mirror. The tracking
principle is based on the backscatter of a laser beam. When the
backscatter is disrupted the motion is deduced from the angle of the
backscatter, and the laser is repositioned for the next measurement.
Like other tracking techniques, it is possible for the device to lose
track if the finger moves too fast, but input can easily be resumed by
repositioning the finger to the laser. The research prototype of the
tracker is fast enough to track the motion of a bouncing ping-pong
ball.

C-Blink (Miyaoku et al., 2004) rapidly changes the hue of a color
phone screen to allow an external camera system to track the phone’s
absolute motion for cursor control on a large public display (see Fig-
ure 2.3). The hue sequence encodes an ID to allow multiple users to
interact simulaneously and control independent cursors.

. Motion detection. The Sweep (Ballagas et al., 2005) interaction tech-

nique the phone is waved in the air to control relative cursor motion on
a remote screen (see Figure 2.4). This is accomplished using motion
detection — an image processing technique involving rapidly sampling
successive images from the phone’s camera and sequentially compar-
ing them to determine relative motion in the (x, y,) dimensions. No
visual tags are required. The screen on the phone can be ignored, and
the camera doesn’t even need to be pointed at the display. A clutch

Example: Smart

Laser Scanner

Example:C-Blink

Example: Sweep
is like an optical

mouse

18 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Camera

Cursor_

Figure 2.3: In the C-Blink system, the user waves the phone screen in front of a camera to
control cursor position (Miyaoku et al., 2004).

Figure 2.4: The Sweep technique uses camera input and optical flow image processing to
control a cursor (Ballagas et al., 2005).

mechanism, such as a button press, is used to activate the Sweep in-
teraction. The clutch can be used to reposition the arm, similar to
the way a mouse can be lifted to be repositioned without additional
cursor motion.

6. Location detection. Location of the phone can also be used as input,
where the user moves through physical space. Mogi (Licoppe and
Example: Mogi Inada, 2006), for instance, is a phone-based persistent item collection
and trading game where the absolute geo-position of a subscriber cor-
relates to the position in the game world. Mogi combines GPS (global
positioning system) technology built into the phone with information
from different mobile infrastructure towers from the network service
provider to determine the player’s position.

2.1

Examining the Design Space of Input Devices

19

Figure 2.5: Using the phone to manipulate tagged widgets such as buttons, dials, and slid-
ers (Madhavapeddy et al., 2004).

Continuous Direct Interactions

. Camera tracking. Madhavapeddy et al. (2004) present camera-based

interactions involving tagging interactive GUI elements such as sliders
and dials (see Figure 2.5). In manipulating the position and orienta-
tion of the phone camera, the user can position a graphical slider, or
orient a graphical dial. Similarly, Direct Pointer (Jiang et al., 2006)
uses a handheld camera to track the standard cursor on the display
(see Figure 2.6). An analogy can be drawn to the classic light pen
with a tracking cross. As the light pen moves to a new position, the
cross follows the motions of the pen. Tracking may be lost if the pen
is moved too fast, but can be easily resumed by repositioning the pen
back to the tracking cross. Madhavapeddy et al.’s interactions rely
on the tagged GUI widget instead of a cross for tracking; in Direct
Pointer, the mouse cursor is the modern equivalent of the tracking
CTrOss.

In the tracking examples above, the handheld device is responsible
for tracking. An alternative is to use a tracker in the environment to
track the output from a handheld device. For example, smart phones
have been augmented with laser pointers, as in (Patel and Abowd,
2003), making them suitable for positioning tasks described by Olsen
and Nielsen (2001) that use a camera in the environment to track the
laser.

The mobile phone can also be passively tracked using a camera in the
environment such as in VisionWand (Cao and Balakrishnan, 2003).
The user holds a passive handheld device that is augmented with
distinctive markings (such as colored balls) at each end. Using two
fixed cameras to perform stereo tracking, a 3D ray can be deduced
from the orientation of the markings in the stereo view, assuming the
distance of the markings on the device is known a priori. This allows
using a projection of the ray as a pointing device for a fixed remote
screen. The result is an interaction that is very similar to pointing
using a laser pointer, except the ray is not a visible beam of light.

Example: tracked
GUI elements

Example: laser
pointer

Example:
VisionWand

20 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Example:
Blinkenlights

Figure 2.6: Direct Pointer uses a handheld camera to track a cursor
displayed on the remote screen without relying on visual tags. (Jiang et al.,

This technique has an advantage over the standard laser pointer in
that it provides an extra dimension of information: the distance to the
display. The disadvantage of this interaction is that it is vulnerable
to occlusion (e.g., by the users’ own body) bringing into question
the robustness of tracking in practical scenarios, although different
camera configurations (such as from overhead facing downward) may
solve these issues for certain interaction scenarios.

Discrete Indirect Interactions

. Directional step keys. The location of an object is controlled using

up, down, left, and right step keys for 2D applications, plus in and out
for 3D. In the Blinkenlights project (Chaos Computer Club, 2002),
users played the arcade classic “Pong” using the side of a building as
a large public display. Each window equalled one pixel on the 18x8
pixel display (shown in Figure 2.7). Players connected to the display
by making a standard voice call to a phone number. Pressing the
number 5 on the phone keypad moved the paddle up, and the num-
ber 8 moved it down. The server controlling the “Pong” application
would decode the tones generated from the key activity during the
phone call and use them as application input. One of the notable
things about this interaction is that it used the lowest common de-
nominator of phone technologies. The communications channel was
the standard voice channel, and the input was the numeric keypad,
requiring no additional hardware or software besides what standard
phones provide.

2.1 Examining the Design Space of Input Devices 21

Figure 2.7: The view of the fagade of a building used to play the clas-
sic game “Pong” with buttons on the mobile phone controlling the pad-
dle. (Chaos Computer Club, 2002)

- 7 Selected

Figure 2.8: Point & Shoot technique: (Left) The phone display is used to aim at a puzzle
piece on a large display. (Middle) Pressing the joystick indicates selection and a visual code grid
flashes on the large display to compute the target coordinates. (Right) The grid disappears and
the targeted piece highlights to indicate successful selection. (Ballagas et al., 2005)

Discrete Direct Interactions

9. Camera image. Using the Point & Shoot (Ballagas et al., 2005) in-
teraction technique, the user can specify an absolute position on a Example: Point &
public display using a cross hair drawn over a live camera image on Shoot
the mobile phone. To make a selection, the user presses a button
while aiming at the desired target.! The button press triggers a brief

! An alternative implementation of the Point & Shoot technique could use pen input
instead of the cross-hair image so that the user repositions the cursor by selecting the
desired position directly on the live camera image displayed on the phone screen.

22 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Evaluations are
rare, and difficult

to compare

Psychology
provides a good
basis for

comparison

overlay of a grid of 2D tags over the large display contents, as can
be seen in the middle of Figure 2.8. The grid allows the phone to
derive a perspective-independent coordinate system on the large dis-
play, which is enabled by the special properties of the Visual Code
tags (Rohs, 2005a). Only one visual tag is required to establish a
coordinate system, but a grid is used to increase the probability of
having one tag entirely in the camera view. The drawback of the
current implementation is that the tag grid is disruptive in multi-user
scenarios, but future implementations could, for example, display the
tags in infrared so that they are visible to the camera but not to other
users.

Point & Shoot is related to the classic light pen, where position is
discretely determined by displaying a raster scan when the user clicks
a button on the light pen. When the raster scan is temporally sensed
by the pen, the position of the pen is known because of a tight cou-
pling between the pen clock and display clock. In Point & Shoot,
a visual tag grid replaces the functionality of the raster scan except
its mechanics are spatial rather than temporal. The lack of temporal
dependencies makes Point & Shoot robust to different display tech-
nologies and the loose coupling between camera and display.

Table 2.1 summarizes the range of mobile position techniques at a glance.
The breadth of positioning techniques is relatively large, making it difficult
to choose which technique is most appropriate for a particular application
scenario. To help with this selection, it is important to examine different
figures of merit for each device.

Evaluating Positioning Techniques

There have been only a handful of thorough evaluations of the different
ubiquitous mobile input techniques (Ballagas et al., 2005; Myers et al.,
2002; Silfverberg et al., 2001; Wang et al., 2006) as the field is still relatively
new. These studies are difficult to compare directly since they each used
different experimental parameters, and some evaluations were not done
in the context of ubiquitous computing interaction scenarios. Therefore,
rough estimates for a variety of ergonomic measures are used to create a
high-level comparison table for the positioning task presented in Table 2.2.
These rough estimates are derived using our knowledge of the interaction
techniques for mobile phones and the collective knowledge of their desktop
computing counterparts. The ergonomic parameters are mostly borrowed
from Foley et al.’s survey of interaction techniques.

The evaluation measures are grounded in psychological and physiological
foundations. Card et al. (1983) provide an integrated survey of the various
fundamental theories in a way that makes them more accessible and easier
to use during analysis. Central to this work is the human processor model,
which brings knowledge of the perceptual, cognitive, and motor processes of

2.1 Examining the Design Space of Input Devices

23

Foley

Mobile Phone Interactions

In Environment

On Phone * In Environment

Direct Pick Search for Light Pen Camera + On-Screen + 'Visual Tags
(Raster Scan) Cursor '
[Point & Shoot]
Laser Pointer + Camera
[Olsen]
Light Pen Tracking Camera Tracking + 'Visual Tags
[MadHhavapeddy]
Camera Tracking + '‘On-Screen Cursor
[Direct Pointer]
Vision Markers + Camera
[VisionWand]
Camera + Touch-Screen
Direct with Touch Panel
Locator Device
Indirect with Mouse Camera
Locator Device [Sweep]
Display + ‘Stationary Camera
[C-blink]
Joystick (Velocity) Joystick (Velocity)
[Silfverberg]
Tablet Trackpad
[Remote Commander]
Trackball

Cursor Control Keys
with Auto-Repeat

Cursor Control Keys
with Auto-Repeat

Joystick (absolute)

Accelerometer
[Harrison + Rock 'n' Scroll]

Steerable Laser +
Wide Angle Photodetector
[Cassinelli]

Indirect with
Dlrectional

Commands/
Button Push

Up-Down-Left-Right
Arrow Keys

Directional Step Keys
[Blinkenlights]

(See Selection)

(See Selection)

Location Detection

GPS + ' Cell Network

' Towers
[Mogi]

Numerical Value/
Numerical
Coordinates/
Character

String Name

(See Text Input)

(See Text Input)

Table 2.1: Summary of POSITION techniques using a smart phone as an input device.

24 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

a human together under a single model. Ideally, a user interface minimizes
the work required for each of these basic psychological processes.

The comparison table also incorporates various ergonomic measures de-
signed to capture the efficiency of users executing the subtask, the accuracy
they can achieve, and the pleasure the user derives from the process. The
individual measures used in our comparison table are as follows:

e Perceptual Load refers to the difficulty for the user to recognize with
their own senses the physical stimuli and feedback of the interaction.
For example, in the Point & Shoot interaction, users need to shift their
perceptual attention between a large display and the phone screen to
isolate a target in the phone camera view, leading to a comparatively
high perceptual load. Sweep has a low perceptual load because the
user can focus their attention on the remote screen, similar to using
a mouse.

e Cognitive Load refers to the difficulty for the users to organize and
retrieve information related to the interaction technique. For exam-
ple, the joystick has a relatively low cognitive load because of the
simplicity of the interaction sequence.

e Motor Load refers to the physical movement required to execute the
action after the appropriate action has been determined in the cog-
nitive process. For example, Mogi is classified as a high motor load
technique because the user needs to physically move at the city scale
to specify the necessary position.

e Motor Acquisition Time characterizes the amount of time for the pro-
cesses involved in the interaction technique (e.g., reaching for an ob-
ject, moving to a certain target area, rotating to a certain orientation,
etc.). For example, Point & Shoot has a high motor acquisition time
because of the aiming required. Remote Commander has a relatively
low motor acquisition time, similar to the trackpad on a laptop.

e Visual Acquisition Time characterizes the amount of time it takes to
perceive the physical stimuli of the interaction technique. For exam-
ple, Point & Shoot has a high visual acquisition time because the
target needs to be visually acquired on two separate displays. The
laser pointer has a low visual acquisition time because the selected
item and the pointer visually coincide on the same display surface.

e Ease of Learning characterizes the level of skill that is required to use
the device. The Sweep technique is relatively difficult to learn because
one must understand the clutch concept to interact fluidly with the
system. The joystick, on the other hand, is easy to learn because of
the simplicity of the interaction steps.

e Fatigue characterizes how tiring the interaction technique is to per-
form. Rock 'n’ Scroll is a relatively low fatigue interaction since tilting
the arm is not a very muscle intensive activity. Sweep, on the other

2.1

Examining the Design Space of Input Devices

25

hand, requires larger arm motions that could tire the user after ex-
tended use.

Error Proneness characterizes the susceptibility for errors of the input
technique, the degree to which the interaction technique by its design
allows/avoids errors, e.g., if possible movement trajectories match the
degrees of freedom of the required input then certain errors can be
avoided. Laser pointers, for example, are susceptible to natural jitters
in the arm. Remote Commander, on the other hand, allows for more
fine-grained control since the pen can utilize the friction against the
touch sensitive surface to stabilize the interaction.

Sensitivity to Distance. Users in ubiquitous computing scenarios typ-
ically have freedom of motion, making the amount of separation be-
tween the user and the target in the environment (such as a large
display or other device) dynamic and unpredictable. Thus, the range
of distances the interaction will support is an important design consid-
eration. Interactions that are based on aiming, such as laser pointers,
become more difficult to perform when further away, where targets are
perspectively smaller. Other techniques, such as the Sweep technique
are not significantly affected by distance of interaction.

2.1.2 The ORIENT Subtask

The ORIENT subtask involves specifying a heading or direction instead of a
position. Like POSITION, ORIENT is also not limited to graphics subtasks
as it can relate to physical orientation in the real world, such as a security
camera, a spot light, or a steerable projector. Some of Foley et al.’s original
graphics interactions carry over directly to ubiquitous computing including
indirect continuous orientation with velocity-controlled joystick and discrete
orientation with angle type-in. The remaining techniques observed in our
survey include:

Continuous Indirect Interactions

. Locator device. The user can specify the angle of orientation by using

a continuous quantifier or one axis of a positioning device. The Sweep
technique supports detection of rotation around the Z-axis (perpen-
dicular to the display) allowing interactions like rotating a puzzle
piece in a jigsaw puzzle application, where the phone is used like a
ratchet to adjust orientation. The image processing used by Sweep
also detects rotation around the X and Y-axis. However, for bet-
ter performance as a positioning device, rotation around the Y-axis
is mapped to translation along the X-axis and rotation around the
X-axis is mapped to translation along the Y-axis.

. Camera tracking. VisionWand (Cao and Balakrishnan, 2003) uses a

set of cameras in the environment to track the absolute orientation of

Specify a heading
or direction

Example: Sweep

26 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Ergonomic Measures
Project Inter-
action i i
(Author) T Cognitive | Perceptual | Motor Visual Motor Ease of . Error | Distance
ype Load Load Load Acqui- Acqui- Learnin Fatigue | Prone- Sensi-
sition sition 9 ness tivity
Remote Commander . A .
(Myers et al.) :
Isometric Joystick ° ° ° °
(Silfverberg et al.)
[Tilt to Scroll §
(Harrison et al.) 5 ® * ® ® ® * ® *
=
'Smart Laser Scanner @ ° . . ° . . .
(Cassinelli et al.) 8 ®
[=
IC-blink =
(Miyaoku et al.) § b * L b ® e o * ®
Sweep
(Ballagas et al.) b * ® b ® ® L ¢
Mogi
(Licoppe et al.) L L L L ®
Visual Tag Widgets
(Madhavapeddy et al.) ‘3’ * hd b s . o * ®
Direct Pointer i§
(Jiang et al.) @ ¢ ® ¢ ® ® ¢ ®
°
Laser Pointer Interaction 2
(Olsen et al.) z ¢ s b hd hd ® ®
o
VisionWand ©
(Cao et al.) C > O C O > ® ®
2y
Blinkenlights g o
(Chaos Computer Club) @ 'g ®
o<
-
Point & Shoot 29
(Ballagas et al.) g a C L > L L O O L L

Table 2.2: Rough estimates of ergonomic measures to compare mobile phone-based POSITION
techniques (small circle = low, medium circle = medium, large circle = high).

Example:
VisionWand

Example: tagged
GUI dials

Example:

compass

a marked handheld device. The technique requires that at least two
markers are visible in at least two camera viewpoints to determine
the orientation in 3-dimensional space.

Continuous Direct Interactions

3. Camera tracking. Madhavapeddy’s tagged GUI dials (Madhavapeddy

et al., 2004) can be oriented using the phone camera to track rotation
movement. Similar to the Sweep technique, the phone is used like a
rachet to adjust orientation.

4. Compass. Electronic compasses such as the Honeywell HMC1052

magnetometer can be used to detect the physical orientation of the
phone with a +/-3° error, enabling a continuous and direct ORIENT
task. These or similar sensors could be easily incorporated into future
mobile phone applications.

2.1 Examining the Design Space of Input Devices 27
Foley Mobile Phone Interactions
In Environment On Phone * In Environment
Direct Pick Camera
[Point & Shoot])
Camera Tag Tracking + :Visual Tags
[Madhavapeddy]
Vision Markers + Camera
[VisionWand]
Indirect with Camera '
Cursor Match/ [Sweep] '
Locator Device -
Joystick (Velocity) Joystick (Velocity))
Joystick (absolute)
Numerical Value/ (See Text Input) (See Text Input) '
Numerical '
Coordinates/ '
with Character '
String Name
Table 2.3: Summary of ORIENT techniques using a smart phone as an input device.
Ergonomic Measures
. Inter-
Project action Visual Motor Error Distance
Author iti
(Au) Type Cognitive | Perceptual Motor Acqui- Acqui- Ease-of Fatigue | Prone- Sensi-
Load Load Load . o Learning -
sition sition ness tivity
Sweep »
(Ballagas et al.) § ° i b ® * ® ® ® *
o
€=
Isometric £ 2
Joystick [3) ° ° o
(Silfverberg et al.)
Visual Tag
Widgets 0
(Madhavapeddy | @ w s hd i hd hd o i ®
etal.) H §
‘g’ a
VisionWand o
(Cao etal.) S S S S S S o o
fo
Point & Shoot 28
(Ballagas etal) | &5 ® ® s ® ® hd s ® ®
a

Table 2.4: Rough estimates of ergonomic measures to compare mobile phone-based ORIENT
techniques (small circle = low, medium circle = medium, large circle = high).

28 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Example: Point &
Shoot

Choose from a set

of alternatives

Example:
VisionWand

Example: RFIG

Discrete Direct Interactions

5. Camera image. The Point & Shoot technique supports discrete orien-
tation along the Z-axis. As the user aims at a target, they rotate the
phone to specify the desired Z-orientation using the aiming cross-hair
as an axis of rotation.

The range of ORIENT techniques are summarized in Table 2.3. To help
guide designers in selecting the most appropriate ORIENT technique, rough
estimates for performance measures are given in Table 2.4.

2.1.3 The SELECT Subtask

In many interaction scenarios, the user must choose from a set of alterna-
tives, such as a menu of icons. The SELECT subtask addresses this style of
interaction. The SELECT subtask is commonly accomplished by arranging
the items spatially in a graphical user interface, allowing the user to com-
plete the selection using a cursor controlled through the PosIiTioN subtask.
Instead of icons, the set of alternatives might be a list of commands. How-
ever, selection is not limited to graphical interactions as a user may select
a physical object to operate upon, such as selecting a lamp to adjust its
setting. Many selection techniques carry over directly from Foley et al.’s
earlier analysis such as character string name type-in common for command
prompts, or button push—soft keys where buttons are located on the edge
of the display area with their labels displayed on screen. The remaining
selection techniques are as follows:

Continuous Indirect Interactions

1. Gesture recognition. The user makes a sequence of movements with a
continuous positioning device such as the joystick, camera, trackpad,
or accelerometers. For example, VisionWand (Cao and Balakrishnan,
2003) demonstrates a rich gesture vocabulary using stereovision to
track a passive wand. For example, a tapping gesture is used to allow
selection of the current cursor position specified by the orientation
of the wand. This gesture interaction is indirect, but with other
technologies gestures can also occur directly on the feedback surface,
such as circling a group of objects on a touch screen.

Continuous Direct Interactions

2. Tagged objects. RFIG Lamps (Raskar et al., 2004) allows a hand-
held projector to be used to select objects with photosensitive RFID
tags in the physical world (See Figure 2.9). The handheld projector
emits a gray-code pattern that allows the tags to determine their rel-
ative position in the projected view. Waving the handheld projector

2.1

Examining the Design Space of Input Devices

29

g

: el

Figure 2.9: A warehouse scenario employing RFIG. The users can high-
light and select objects of interest combining a handheld projector and
embedded light sensitive RFID tags (Raskar et al., 2004).

around, you can navigate a cursor in the center of the projected view
to select individual physical objects.

Discrete Indirect Interactions

. Voice recognition. The user speaks the name of the selected com-

mand, and a speech recognizer determines which command was spo-
ken. The Personal Universal Controller (Nichols and Myers, 2006)
supports automatic generation of speech interfaces (as well as graph-
ical interfaces) to issue commands to objects in the real world.

Discrete Direct Interactions

. Tagged objects. Tagged objects can be used to present information on

a wireless mobile computer equipped with an electronic tag reader,
as demonstrated by the early E-tag project (Want et al., 1999). For
example, selecting a book by scanning its embedded RFID tag would
activate a virtual representation of the object on the screen, such
as a web-reference to the book allowing it to be purchased. Similar
interactions have also been proposed for visual tags in the environ-
ment (Rohs, 2005a) and tagged GUI elements (Madhavapeddy et al.,
2004; Toye et al., 2007; Rohs, 2005b) where a camera is used to ac-
quire an image to decode the selected tag. Patel and Abowd (2003)
present a physical world selection method for mobile phones in which
a modulated laser pointer signal triggers a photosensitive tag placed
in the environment, allowing users to bring up a menu to control the
object on their handheld device.

Example:
Personal Universal

Controller

Example: RFID
and visual tags

30 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Table 2.5: Summary of SELECT techniques using a smart phone as an input device (Continued
in Table 2.6).

Foley Mobile Phone Interaction

In Environment On Phone * In Environment

Direct Pick Camera + On-Screen Cursor'
[Point & Shoot] '

Laser Pointer + Light Sensor
, (e.g. camera)
[Olsen, Semantic Snarfing, Patel]

Light Pen Tracking Camera + Visual Tags
[Madhavapeddy]

Camera Tracking + ' On-Screen Cursor
[Direct Pointer]

Camera + Pen Input

Vision Markers + . Camera + Tapping

: Gesture Recognition
[VisionWand]

Handheld Projector + . Light Sensitive
RFID Reader ‘RFID Tags

[RFIG]
RFID Reader + :RFID Tags
[Want]
Touch Panel
Indirect with Mouse Camera
Cursor Match/ [Sweep]
Locator Device ;
Display + Stationary Camera
[C-blink]
Joystick (Velocity) Joystick (Velocity)
[Silfverberg]
Tablet Trackpad
[Remote Commander]
Trackball
Cursor Control Keys Cursor Control Keys
Joystick (absolute) Accelerometer

[Harrison, Rock 'n' Scroll]

Steerable Laser +

Wide Angle Photodetector +
Button Push

[Cassinelli]

2.1 Examining the Design Space of Input Devices 31

Table 2.6: Summary of SELECT techniques using a smart phone as an input device (Continued
from Table 2.5)

Foley Mobile Phone Interaction
In Environment On Phone In Environment
Indirect with Programmed Function Programmed Function
Directional Keyboard Keyboard
Commands/
Button Push/ Soft Keys Soft Keys
Time Scan
Alphanumeric Keyboard
Gesture Camera +
Recognition/ Button Push Clutch
Sketch [TinyMotion]
Recognition ;
Display + Camera
Accelerometer
[Patel]
Light Pen Pen Input
Steerable Laser +)
Wide Angle Photodetector +
Button Push for Clutch
[Cassinelli]
Laser Pointer + Light Sensor
(e.g. camera)
[Olsen, Semantic Snarfing, Patel]
Vision Markers + :Camera
[VisionWand]
Tablet + Stylus .
Location Detection GPS + .Cell Networks
.Towers
[Mogi]
Voice Input Microphone + :Voice Recognizer
[PUC]
Numerical Value/ (See Text Input) (See Text Input)
Numerical
Coordinates/
with Character
String Name

32 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Ergonomic Measures
. Inter-
Project action Visual Mot E Dist
(Author) T Cognitive | Perceptual Motor isua otor Ease of . fror 'stance
ype Acqui- Acqui- R Fatigue | Prone- Sensi-
Load Load Load o P Learning "
sition sition ness tivity
[}
3
VisionWand s o
! ==
(Caoetal.) 7T * b b * s b ® ®
c
]
o
()
=]
RFIG Lamps S%
c o
(Raskar et al.) s = C U O U C L L
c O
o
o
Personal Ly
Unversal e
Controller @ "é o s o ®
(Nichols et al.) a=
E-tag
(Want et al.) : : S ® > S S : ®
Visual tags § ° ° ° ° °
(Rohs et al.) a ([
B
(]
Photosensitive 5
tags + lasers a ° ° () () ° ° [) [)
(Patel et al.)
'Semantic
Snarfing (] ° ° ° [] ° ° [] []
(Myers et al.)

Table 2.7: Rough estimates of ergonomic measures to compare mobile phone-based SELECT
techniques (small circle = low, medium circle = medium, large circle = high).

5. Laser pointer. Myers et al. (2002) proposed a multi-layer selection
technique called “semantic snarfing” that combines multiple devices in
Example: consecutive actions. First, a laser pointer integrated with a handheld
Semantic Snarfing computer is used to make a coarse-grained selection of a screen region
on a display in the environment. A camera, also in the environment,
detects laser activity on the display. The system then transmits the
details of the selected screen region to the handheld device, which
composes a GUI on the handheld screen to make the fine-grained
selection with a stylus.

The range of SELECT techniques are summarized in Tables 2.5, and 2.6. To
help guide designers in selecting the most appropriate SELECT technique,
rough estimates for pefromance measures are given in Table 2.7.

2.1 Examining the Design Space of Input Devices

33

2.1.4 The PATH Subtask

The PATH subtask involves specifying a series of positions and orientations
over time. The PATH subtask has different requirements than POSITION and
ORIENT because the movement is governed by the speed-accuracy trade-
off (Schmidt et al., 1979). Despite this, PATH adheres to the same taxonomy
as the corresponding POSITION and ORIENT techniques, because a PATH
task can be specified using the more primitive subtasks.

2.1.5 The QUANTIFY Subtask

The QUANTIFY task involves specifying a value or number within a range
of numbers. This technique is used to specify numeric parameters such
as time or speaker volume. In ubiquitous applications, QUANTIFY tasks
using phone input are typically accomplished through the GUI using 1D
PosITION or ORIENT subtasks.

2.1.6 The TEXT ENTRY Subtask

TEXT ENTRY for mobile phones is a well-studied area (MacKenzie and
Soukoreff, 2002) as it is central to text-based mobile communications like
SMS (short messaging service) and personal information management func-
tionality. Text entry also has many applications for ubiquitous applications,
e.g., the Digital Graffiti (Carter et al., 2004) project seeks to annotate pub-
lic content on large public displays. This section is not intended to be a
comprehensive survey of mobile text entry techniques, but we have selected
a few examples to illustrate the design space. All of the techniques listed
were originally designed for text input directly on the mobile phone, but
could clearly be used for text entry for a ubiquitous computing application.

Keyboard

Although some mobile phones and handheld devices feature a full
QWERTY keyboard (albeit much smaller than their desktop counterparts),
miniaturization trends make this type of keyboard impractical for the ma-
jority of mobile phone form factors. The most well known text entry tech-
niques for mobile phones use a standard numeric keypad. For text entry
from a 26 character alphabet using this keyboard, a mapping with more
than one character per button is required. Following the classification by
Wigdor and Balakrishnan (2004), there are two fundamental types of dis-
ambiguation: consecutive, where the user first selects a letter grouping and
then an individual letter, or concurrent, where the user simultaneously se-
lects the letter grouping and the individual letter.

Specify a series of
positions over

time

Specify a value

Text entry is
central to mobile

communications

Disambiguation
can be
consecutive or

concurrent

34 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Consecutive
approaches are
most common

today

Example: TiltText

Example:ChordTap

Example:TiltType

Consecutive approaches are the most common today. One approach to
disambiguate text entry is MultiTap, which requires users to make multiple
presses to select a single letter from the characters associated with a certain
key. Another solution is to use a two-key disambiguation where the first
key selects the letter group, and the second key specifies the letter in the
group. Dictionary-based techniques predict the word being typed based on
the different possibilities for combining the groups of characters assigned to
each key. When multiple words match the key sequence, the user selects the
intended word from a list (typically ordered by probability or frequency of
use). Examples of dictionary-based text entry include T9? with a standard
numeric keypad, or more recently, SureType® with an extended numeric
keypad commercialized with the Blackberry Pearl (Kao et al., 2007).

Concurrent approaches, however, demonstrate a lot of promise. For ex-
ample, TiltText (Wigdor and Balakrishnan, 2003) combines the standard
12-key keypad with an accelerometer. To disambiguate which character is
intended when a key is pressed, TiltText uses the tilt orientation of the
handset. A keypress with the phone tilted to the left enters the first char-
acter on the key, forward tilt enters the second character, right tilt enters
the third character, tilting towards the user enters the fourth character (if
one exists for the key), and no tilt enters the numeric character.

ChordTap (Wigdor and Balakrishnan, 2004) combines the standard nu-
meric keyboard with additional “chording” buttons on the back of the
phone. A user selects an individual letter by selecting the key group on
the numeric keyboard while pressing the appropriate “chord” key on the
back of the phone.

If miniaturization trends continue, TiltType (Partridge et al., 2002) repre-
sents an interesting point in the design space that combines chord button
presses to specify a letter grouping and tilting to allow the user to specify
a particular character within that grouping. Using only 4 buttons and a
2-axis accelerometer, the technique supports an alphabet of 55 characters
in a watch-sized form factor. Expert users can memorize the character
positions, allowing the letter grouping and individual character within the
grouping to be specified concurrently.

Speech Recognition

Text entry by speech recognition is not yet technically viable on mobile
platforms, but we list it here for completeness. Technology is making rapid
advances in the realm of speech processing. For example, system on a chip
designs for speech processing (Ravindran et al., 2005) have the potential
to bring speech input to interactive text entry on mobile phones. Karpov
et al. (2006) have developed a short message (SMS) dictation system for
Symbian phones with a vocabulary of 23000 words. The language model is

http://www.tegic.com
3http://www.blackberry.com/products/suretype/

2.2 Spatial Layout of the Design Space

35

adapted to words typically used in SMS messages.

Speech recognition could also be achieved in a compound architecture where
the speech is recognized through an external computer (i.e., connected
through a voice call) and sent back to the mobile phone.

Stroked Character Recognition

Pen-based techniques, such as Graffiti, are very common in the PDA form
factor and are also available on a small portion of the handsets on today’s
market. However, any of the continuous positioning tasks discussed earlier
are capable of generating stroke information necessary for stroked-character
recognition. For example, TinyMotion (Wang et al., 2006) demonstrates
both English and Chinese stroked character recognition using camera-based
motion estimation (similar to the Sweep technique).

Menu Selection

On-screen keyboards are common for touch sensitive displays, where the
letters of the alphabet are displayed as a menu of buttons, commonly in
a spatial layout similar to the QWERTY keyboard. If the screen size of
the mobile phone is not large enough to depict a keyboard layout, items in
the environment could be used to display the menu, where users select the
characters using the selection subtask previously discussed.

The range of TEXT ENTRY techniques are summarized in Table 2.8. To help
guide designers in selecting the most appropriate TEXT ENTRY technique,
rough estimates for pefromance measures are given in Table 2.9.

2.2 Spatial Layout of the Design Space

Our interaction taxonomy is summarized in Tables 2.1, 2.3, 2.5, 2.6, and 2.8.
Card et al. (1991) point out that this ad hoc format lacks a notion of
completeness. Card then builds on the work of Buxton (1983) to create a
systematic spatial layout of the design space of input devices that captures
the physical properties of manual devices very well. However, it does not
capture many aspects that are relevant to ubicomp interactions such as
modality or feedback (Ballagas et al., 2003).

Using Foley et al.’s taxonomy, we propose a 5-part spatial layout, shown
in Figure 2.10, for mobile phone interaction tasks discussed in our sur-
vey including supported subtasks (POSITION, ORIENT, and SELECTION),
dimensionality, relative vs. absolute, interaction style (direct vs. indirect),
and feedback from the environment (continuous vs. discrete). Feedback

Example:
TinyMotion

The subtask
summary tables
lack a notion of

completeness

New 5-dimension

spatial layout

36

2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Foley

Mobile Phone Interactions

In Environment

On Phone

' In Environment

Keyboard

Alphanumeric

Alphanumeric
[Multitap, T9]

Alphanumeric +
Accelerometer

[TiltText]
Chord Alphanumeric +

Chord

[ChordTap]

Chord +

Accelerometer

[TiltType]
Stroked Character Tablet with Stylus (See Continuous Positioning)
Recognition
Voice/Speech Voice Recognizer Speech Recognizer
Recognition

Microphone +: Speech Recognizer

Direct Pick Light Pen (See Selection)
from Menu
with Locator
Device Touch Panel (See Selection)
Indirect Pick (See Positioning) (See Positioning)
from Menu
with Locator
Device

Table 2.8: Summary of TEXT ENTRY techniques using a smart phone as an input device.

Uses Foley et al.’s

subtasks

and interaction style have been previously defined in the introduction to
Foley et al.’s taxonomy. We describe the remaining dimensions in more
detail in the remainder of this section.

2.2.1 Supported Subtasks

When choosing the most appropriate input device for a particular interac-
tion scenario, the subtasks an interaction supports are the primary consid-
eration. By including the subtask directly in the design space, it becomes
more useful as a design tool.

2.2 Spatial Layout of the Design Space 37

Ergonomic Measures
Project Visual Mot E Dist
(Author) Cognitive | Perceptual | Motor Isua otor Ease of . rror istance
Acqui- Acqui- . Fatigue | Prone- Sensi-
Load Load Load o o Learning o
sition sition ness tivity
QWERTY . ° . °
Multitap . ° o o ° o a o
T . ° . ° ° . . °
SureType c ° o ° °
TiltText
(Wigdor et al.) * * b o hd s ® *
ghordlen ° ° ° ° ° ° ° °
(Wigdor et al.)
TiltType
(Partridge et al.) o * b o hd L s i
Speech
Recognition (] - . . . 5 . o
(Karpov et al.)
Stroked
Character ° ° °
Recognition - ’ ' ' ’ ®
Pen
Stroked
Character
Recognition — ° [) () . o . o [) o
TinyMotion
(Wang et al.)

Table 2.9: Rough estimates of ergonomic measures to compare mobile phone-based TEXT
ENTRY techniques (small circle = low, medium circle = medium, large circle = high).

2.2.2 Dimensionality

Dimensionality refers to the number of dimensions the interaction supports.
Dimensionality can indicate spatial dimensions (X,Y, Z) or rotational di-

mensions (rX,rY,rZ). This distinction is visible in our design space by Number of
observing the subtask of the dimension. Following Card et al. (1991), if dimensions the
a particular interaction uses a combination of dimensions across different interaction
points in the design space, the relationship is indicated using a merge com- supports

position operator (a solid line). In contrast to Card’s notation, our merge
composition operators are connecting subtasks, not spatial sensor dimen-
sions.

38 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Other dimensions
may be
appropriate for

further insights

Establishment of
data connection
must be
considered

2.2.3 Relative vs. Absolute

Relative input is specified with respect to interaction history: the input
technique provides information about the amount of change from the previ-
ous state. Relative input can be specified regardless of the current physical
properties, such as position and orientation. For example, standard desk-
top mouse input is specified through motion across the desktop regardless
of the physical position of the mouse on the desktop.

Absolute input is specified with respect to current physical properties, and
can be specified indepedently of any interaction history. For example, stylus
input can be used to provide absolute positional information on a screen
space.

2.2.4 Other Relevant Attributes of Interaction Devices

It should be noted that this set of dimensions is not comprehensive, and
other dimensions such as resolution, direction (input vs. output), and
modality may provide further insights into the design space. However, the
design space depicted in Figure 2.10 does provide an interesting overview of
the interaction techniques covered in this work. Using this graphical layout,
we are able to pinpoint gaps in the breadth of the interaction techniques
surveyed, and can anticipate opportunities for future work. For example,
our space shows no interaction that supports 3-dimensional relative direct
orientation. An alternative layout might include direction and modality,
which would demonstrate the sparse usage of auditory and haptic feedback
in these techniques.

Designing for Serendipity

One key design consideration is the ease and speed of setting up a data
connection between the phone and the environment or the device it is con-
trolling. Olsen et al. (2001) refer to the ad hoc assembly of input and
output resources as opportunistic assemblies. In some of the interactions
surveyed, the data connection is inherent in the physical properties of the
device. For example, VisionWand (Cao and Balakrishnan, 2003) is a com-
pletely passive system and requires no additional action on the user’s part
to start the interaction.

The C-Blink interaction is classified as highly serendipitous as the users
merely launch an application on their mobile phone to interact with a dis-
play; no network connection or handshaking is required. The RFIG Lamps
project also falls into this category because RFID tags are so simple in
terms of communications protocol that no connection needs to be estab-
lished before data can be transferred.

2.2 Spatial Layout of the Design Space 39
Supported Subtasks Dimensionality
- Position N/A D 2D 3D
Orientation T ' T T
: e Q0 | ® © | .
election 94— D
, @0 . a | 2
[Position & Selection 5 ! ! t t
o F--=--- N [N Y I _—————t ——— == =----
8 1 1 1 1 _
1. (P) Trackpad - '2 1 1 é | 1 $ 2
Remote Commander | | ! | 3
2. (P) Joystick (Velocity) - I I I I o
Romeo : : : :
3. (P) Accelerometers - I I @ @ I I o
Rock’n’Scroll : : ! ! -3
4. (P) Directional Step Keys- ¢ \ | : : e
Blinkenlights g F----- [el S e i
o I
5. (P) Camera - e ! 1® : 1] 5
Madhavapeddy (Slider) | I | I <%
6. (P) Camera - | | | : g
Madhavapeddy (Dial) | | @'_f' | -

7. (E) Camera + (P) Display -

C-Blink Discrete Continuous Discrete Continuous Discrete Continuous
8. (P) Laser + (E) Camera - Environment Feedback
Olsen

9. (P) Camera - Point & Shoot
10. (P) Camera - Sweep

Discrete Continuous

11. (P) RFID Reader + (E) Tags - E-tag 14. (P) Projector + 17. (E) Camera - VisionWand

12. (P) Camera + (E) Tags - (P) RFID Reader + 18. (E)Tilt sensor - Harrison et al.
Madhavapeddy (E) Photo Sensitive Tags - RFIG 19. (P) Laser + Camera -

13. (P) Microphone + 15. (P) Laser + (E) Camera - Smart Laser-Scanner

(E) Voice Recognition -
Personal Universal Controller

Semantic Snarfing 20.
16. (P) Laser + (E) Camera - Patel 21.
- Mogi

(P) Camera - Direct pointer
(P) GPS + (E) Network Localization

Figure 2.10: Classification of different mobile phone interactions that have been implemented
in the projects surveyed. Inspection of the diagram reveals opportunities for future work — for
instance, developing interaction techniques that support 3D relative direct orientation. In the
listing of techniques, (P) indicates capabilities of the phone, and (E) indicates capabilities of the

environment.

For projects that use short range wireless communications models such
as Bluetooth, visual or RFID tags can be used to encode the connection
information for the environment, creating a very low threshold of use.

Social Acceptance

Smart phones today are social devices. While smart phone ubiquity seems
inevitable, social acceptance will influence the success of these new inter-
actions. Remind yourself, for example, of the first time you came across a
person using a wireless headset to communicate via their mobile phone. For
many people, this communication technique is still awkward and strange,
particularly in public places. Smart phone interaction will require users to
perform particular actions and behaviors which might feel unintuitive and
awkward to them. Furthermore they will perform these actions in the pres-
ence of passive or active others, both familiars and strangers. On one hand,
outside observers might find these interactions disturbing or embarrassing,
but on the other hand these kinds of interaction have the potential to raise

Some interactions
may be awkward;
others may raise
social status

40 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

Parallel design
helps prevent false

starts

Example:
spell-casting

interaction

Alternatives for

spell-casting input

Engagement over

efficiency

your social status, similar to the way phones themselves are status symbols
for part of our society.

2.3 Design Spaces in the Design Process

Design spaces are particularly useful design tools as a part of a human-
centered iterative design process (Nielsen, 1993). One of the pitfalls of
iterative human-centered design is that if you pick a poor starting point,
you may reach a peak in the usability of a particular design without reaching
your desired usability goals. In this case, it may be necessary to throw the
design away and start over. False starts are relatively painless early in the
design process, but can be extremely expensive if determined late in the
design process. In order to minimize the risk of false starts, a parallel design
strategy (Nielsen and Faber, 1996) can be used, where multiple designs
can be explored independently early in the design process. As the designs
mature, the best design becomes clear, or the strengths of the top designs
can be merged to a unified design. Using the design space, designers can
more easily reason about alternative input techniques in a parallel design
process.

As a concrete example, REXPLORER (Ballagas et al., 2007b) is a pervasive
spell-casting game that allows tourists to explore the history of the medieval
buildings in Regensburg, Germany. The game premise is that historical
spirits are trapped inside of medieval buildings. Players need to interact
with the spirits to learn their stories and perform quests on their behalf to
earn points in the game. The game design called for spell-casting as the
primary interaction metaphor; in order to awaken a spirit, one of four spells
must be cast.

Choosing one spell out of four can be characterized as a SELECT subtask.
The design space was used to identify a set of design alternatives that we
initially considered:

1. Four dedicated spell buttons,
2. Selecting one of four spells from on-screen menu,

3. Recognition of spell gestures. We noted that gestures are actually
specified using the path subtask. Then we came up with gesture
input alternatives including;:

(a) Pen trace across a touch screen,

(b) Path using camera-based motion detection to allow the phone
to be used like a magic wand.

After preliminary analysis with our target group (students aged 15-25),
we decided to go with the camera-based motion detection solution (see

2.4 Chapter Summary 41

Figure 2.11: REXPLORER uses camera-based motion estimation to allow players to cast spells
using the path subtask (Ballagas et al., 2007D).

Figure 2.11). Waving the phone through the air is not the most efficient
technique, but is the most similar to the spell-casting metaphor. Also,
this physical style of gesture was more likely to create an engaging experi-
ence (Hummels, 2000).

Later in the design process, after a working gesture recognition system was

created, we did a full playability test. Most of the test players found the Mixed response
gestures to be an important element of gameplay. They found it height- was resolved
ened the sense of magic and mysteriousness. However, we also discovered through unified
during the playability tests that a few of our players (especially our older design

participants) found the gestures awkward. As a compromise, we created
a unified design where an alternative gesture selection mechanism through
an on-screen menu can be used anytime an invalid gesture is performed,
effectively allowing people to avoid gestures altogether if desired. This fi-
nal design encouraged the use of gestures for spell selection to promote
engagement, but allowed an alternative selection mechanism to those who
preferred to avoid gestures.

2.4 Chapter Summary

Our structured tour illustrates the state of the art in using smart phones
to interact with and control our environments. The taxonomy organizes
the range of techniques into families that help make functional relations
between the mobile phone techniques and their desktop counterparts. The
design space addresses the lack of a sense of completeness in the taxonomy;,
and structures the range of interactions in a way that helps visually identify

42 2 Supporting Design: The Design Space of Ubiquitous Mobile Phone Input Techniques

gaps and predict future interaction techniques. The design space can be
used as a part of a human-centered iterative design process to help generate
parallel or alternative designs. These methods of thought are intended to
inspire new applications that use the mobile phone for interaction with the
environment, as well as inform the design of future smart phone interaction
techniques.

This also concludes the Chapter 2 of this work, in which we support the
design phase of the human-centered iterative design process. The next
chapter will discuss how to rapidly create functional prototypes of user
interfaces and interaction techniques for ubiquitous computing, including
those discussed in this chapter.

43

Chapter 3

Supporting Prototyping:
Toolkit Support for
Ubiquitous Computing
Applications

“Our Age of Anxiety is, in great part, the result of trying to
do today’s jobs with yesterday’s tools.”

—Marshall McLuhan

After a design is conceptualized, it needs to be translated into a prototype
that captures the interactive experience. Currently, only experts can effec-
tively prototype, and deploy ubiquitous computing applications. Much of
the effort in ubiquitous computing application development is still focused
on low-level systems aspects, making it a long road before a system is func-
tional enough for end-user testing. Once user testing can be peformed, it is
often too expensive to make any significant changes. Toolkit support is re-
quired to simplify the design process, but recently, fieldwork on prototyping
ubiquitous computing systems led Carter et al. (2007a) to conclude: “het-
erogeneity of ubicomp’s input technologies may require different support
architectures than GUI toolkits provide.”

This chapter introduces the iStuff toolkit architecture to radically simplify
design, prototyping, evaluation and deployment of ubiquitous computing
systems. The architecture consists of several layers of abstraction to pro-
mote flexibility and provide a high ceiling for prototyping activities: it
places few limits on prototyping behavior. At the same time, systems can
be built and configured using rapid prototyping environments, such as Ap-
ple’s Quartz Composer visual programming environment, to provide a low
threshold for prototyping activities: the toolkit is not difficult to learn.

New tools are
needed for
prototyping in
ubicomp

The iStuff
architecture
provides a high
ceiling and low

threshold of use

44 3 Supporting Prototyping: Toolkit Support for Ubiquitous Computing Applications

Ubicomp has
more dimensions

of multiplicity

Components must
communicate
without a priori
knowledge of their
counterparts

Interoperability
relationships

should adapt

3.1 Requirements

Ubiquitous computing applications have different challenges and require-
ments than traditional desktop applications.

M The first, and possibly biggest, challenge is architectural: Software
architectures need to move away from the scenario of a single user
interacting with a single computer. Distributed Computing has al-
ready tackled this challenge on a technical level, so that multiple
systems interacting with each other have become a commodity. On
a user interface level, CSCW has looked at groups of co-located peo-
ple collaborating using a single system (Single-Display Groupware,
or SDG). Bier and Freeman (1991), for example, introduced one of
the earliest user interface architectures for such systems. Its name,
MMM, stood for multiple (input) devices, users, and editors. To
implement the visions of ubiquitous and pervasive computing for an
interactive environment, however, requires extending this concept to
also include multiple systems (computers) and output devices (espe-
cially screens)—hence MP°.

Extensibility and Incremental Integration. Our homes (Kidd et al.,
1999) and offices (Johanson et al., 2002a) are becoming augmented
with technologies to improve the way we live and work, but it is clear
that this transformation will not happen overnight. New technolo-
gies are brought piecemeal into these environments (Edwards et al.,
2003). Physical spaces evolve slowly, and ubicomp technologies will
be incrementally deployed (Rodden and Benford, 2003). Ubiquitous
entities such as physical devices, applications, and services require a
mechanism to coherently communicate without a priori knowledge
of the other system components they may encounter. Moreover, the
semantics of the interactions must be meaningful to both the individ-
ual components and the users of the environment. Therefore, systems
must be designed such that they may be augmented with future de-
vices and services whose feature set cannot be predicted in advance.
Integration strategies are needed for situations where devices and ap-
plications have no direct knowledge of each other’s function