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Bibliografische Informationen der Deutschen ibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2007

Nonnenstieg 8, 37075 Göttingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfältigen.
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Preface

Compared with nothing, little is much.

Marburg, Germany, C.M.

April 2004



Abstract

The work presented here deals with spin-dependent transport properties in
semiconductors.
The phenomenologic model developed in the first part describes activated
semiconductor band-transport in a disordered system using a network
approach. It is shown that in (Ga,Mn)As considered as the archetype of a
dilute magnetic semiconductor, the measured non-Arrhenius dependence of
the resistivity can be explained in the framework of band transport. This
finding is not limited to the special choice of the material and is in contrast
to the common belief reported in the literature, that such a characteristic
feature of the resistivity is indicative for hopping transport. In addition
the influence on the transport properties of an external magnetic field is
analyzed which interacts with the localized magnetic moments of the Mn
ions. This interaction, called giant Zeeman splitting, leads to spin-dependent
splittings of the heavy and light hole valence-band proportional to the local
Mn concentration and thus reflects the spatially disordered incorporation of
Mn ions. The resulting disordered potential landscape is converted into a
network of resistors. By use of the model one can describe even quantitatively
the experimentally obtained transport properties of a series of differently
annealed Ga1−xMnxAs samples from the ferromagnetic metallic regime via
a paramagnetic semiconducting regime up to a two-phase hybrid where
the segregation of MnAs has set in. An extension to MnAs/GaAs:Mn
hybrid structures shows that experimental results can be explained at least
qualitatively assuming spin conservation, the formation of a Schottky barrier
and taking into account the interaction between the ferromagnetic clusters
and the paramagnetic matrix. Based on this description tailored hybrid
structures are proposed which show strongly enhanced magnetoresistance
effects.

The second part deals with the microscopic simulation of spin-dependent
charge-carrier recombination as it can be observed e.g. in hydrogenated mi-
crocrystalline silicon (µc-Si:H) by pulsed electrically detected electron-spin
resonance (pEDMR). The recombination process via a two particle system,
the so-called intermediate pair, is mapped on the dynamics of a four level
system. Besides the regimes of different light-field coupling-strength different
strengths of the exchange coupling are studied and criteria are shown that
allow us to assign the measured data to one of the regimes. It is shown that
present deviations between experimental results and the theoretical descrip-
tion can be eliminated by introducing a particular, well defined disorder in
the model calculations.



Kurzfassung

Die vorliegende Arbeit behandelt die theoretische Beschreibung von spin-
abhängigem Transport in Halbleitern.
Das im ersten Teil entwickelte phänomenologische Modell beschreibt ak-
tivierten Halbleiter-Bandtransport in einem ungeordneten System mittels
einer Netzwerkbeschreibung. Das in (Ga,Mn)As, dem Archetyp eines mag-
netischen Halbleiters, gemessene nicht-Arrheniussche Widerstandsverhalten
kann in diesem Transportregime unter der Annahme von Unordnung erklärt
werden. Diese Aussage ist nicht auf das spezielle Material beschränkt und
steht im Widerspruch zur häufig in der Literatur vertretenen Meinung,
eine solche Widerstandscharakteristik sei nur im Rahmen von Hopping-
Transport erklärbar. Untersucht wird auch der Transporteinfluss eines
äußeren Magnetfeldes, welches mit den lokalisierten magnetischen Momenten
der Mn-Ionen wechselwirkt. Die resultierende giant Zeeman splitting genan-
nte spinabhängige lokale Aufspaltung der Valenzbänder ist proportional
zur (lokalen) Mn-Konzentration und reflektiert den räumlich ungeordneten
Einbau der Mn-Ionen. Die sich ergebende ungeordnete Potentiallandschaft
wird in ein Netzwerk lokaler Widerstände umgerechnet. Das Model ist in der
Lage, die experimentellen Transportergebnisse einer Serie von getemperten
Ga1−xMnxAs Proben vom ferromagntischen metallischen Regime über einen
paramagnetischen Halbleiter bis zur Segregation einer zweiten Phase aus
MnAs sogar quantitativ zu beschreiben. Die Ausdehnung auf MnAs/GaAs:Mn
Metal-Halbleiter Hybride zeigt, dass experimentelle Ergebnisse durch An-
nahme von Spinerhaltung, einer Schottky-Barriere sowie der Wechselwirkung
des ferromagnetischen Clusters mit der Matrix zumindest qualitativ zu
erklären sind. Darauf basierend werden maßgeschneiderte Hybridsysteme
vorgeschlagen, welche stark erhöhte Magnetowiderstandseffekte zeigen.

Der zweite Teil beschäftigt sich mit der mikroskopischen Simulation
von spinabhängiger Rekombination, welche z.B. in wasserstoffgesättigtem
mikrokristallinem Silizium (µc-Si:H) mittels gepulster elektrisch detektierter
Elektronenspinresonanz (pEDMR) gemessen werden kann. Diese Rekombi-
nation über intermediate pair genannte Zweiteilchen-Zustände wird auf die
Dynamik eines vier-Niveau Systems abgebildet. Neben den Regimes ver-
schiedener Lichtfeldkopplung werden unterschiedliche Austauschkopplungen
simuliert und Charakteristika aufgezeigt, die es erlauben, die gemessenen
Daten den verschiedenen Regimes zuzuordnen. Die Abweichungen zwischen
bisherigen theoretischen Beschreibungen und den gemessenen Daten können
durch Einbeziehung einer speziellen, wohldefinierten Unordnung in den Mo-
dellrechnungen beseitigt werden.
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Contents

Part I Transport in magnetic semiconductors

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Dilute magnetic semiconductors − an overview . . . . . . . . . . . . . . 4
1.3 The transport model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Transport in single-phase materials . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Basic transport equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 A non-Arrhenius transport behavior - indicative for hopping

transport? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Influence of disorder on the temperature dependence of the

resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Influence of annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Model properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Correlation of transport properties and model parameters . . . . 39
3.4 Comparison between theory and experiment . . . . . . . . . . . . . . . . 45
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Non-random Mn incorporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 The Curie temperature − from a global towards a local

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Non-random Mn incorporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



X Contents

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Transport in hybrid structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 General model properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Strong enhancement of MR effects . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusion of part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Part II Spin-dependent charge-carrier recombination

7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Remarks on the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2 The intermediate-pair concept, a closer look . . . . . . . . . . . . . . . . 106
8.3 Building blocks of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 The observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.1 General description − the stochastic Liouville equation . . . . . . . 111
9.2 Basic equations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10 Results in absence of disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.1 Recombination through pairs without exchange coupling . . . . . 120
10.2 Recombination through exchange-coupled pairs . . . . . . . . . . . . . . 123

11 Influence of disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
11.2 The regime of strong light-field coupling . . . . . . . . . . . . . . . . . . . . 129
11.3 The regime of weak light-field coupling . . . . . . . . . . . . . . . . . . . . . 136

12 Conclusion of part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A The network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B Dependence of the potential fluctuations on the choice of l 147



Contents XI

C The thermal average of Sz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D Temperature dependence of the spontaneous magnetization151

E The product-basis representation of H0 . . . . . . . . . . . . . . . . . . . . 153

F The Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

G On the definition of the magnetic-field strength . . . . . . . . . . . . 159

H Influence of the g-factor distribution of an ensemble of IPs 161

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

List of constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



List of Figures

1.1 The mobility edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Temperature dependence of 〈Sz〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Interaction diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 The system of network cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Model of an 1-d network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Fluctuations on a fixed length-scale . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Influence of the cube-edge length on the resistivity . . . . . . . . . . . . 23
1.8 Fluctuating donor level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Measured non-Arrhenius temperature dependence of ρ0 . . . . . . . 25
2.2 Different impurity-energy distribution . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Calculated non-Arrhenius temperature dependence of ρ0 . . . . . . 30
2.4 Dependence of EF on the acceptor-energy distribution . . . . . . . . 31

3.1 Phase diagram of (Ga,Mn)As under annealing . . . . . . . . . . . . . . . 34
3.2 Parameter dependence of ρ0 of a 400˚C annealed sample . . . . . . 40
3.3 Parameter dependence of the MR of an as-grown sample . . . . . . 41
3.4 Parameter dependence of the MR of a 400˚C annealed sample . 42
3.5 Influence of the model parameter l on the calculated ρ0 and MR 43
3.6 Measured and calculated ρ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Measured and calculated MR of an as-grown sample . . . . . . . . . . 46
3.8 Measured and calculated MR of a sample annealed at 350 ◦C. . . 47
3.9 Measured und calculated MR of a sample annealed at 400 ◦C. . . 48
3.10 Measured and calculated MR of a sample annealed at 500 ◦C. . . 49
3.11 Measured and calculated MR of a sample annealed at 600 ◦C. . . 50
3.12 Measured and calculated MR of a sample annealed at 400 ◦C. . . 51

4.1 Filtered Mn concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



List of Figures XIII

4.2 Influence of a local TC on the phase change . . . . . . . . . . . . . . . . . . 56
4.3 Comparison between local and global Curie temperature . . . . . . 57
4.4 Temperature dependence of the Weiss molecular-field . . . . . . . . . 58
4.5 Influence of a local Curie temperature on the carrier localization 60
4.6 ρ0 around the critical temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Influence of the attraction factors on the MR . . . . . . . . . . . . . . . . 63
4.8 Modelling the MR using a non-random Mn-ion incorporation . . 64

5.1 TEM image of a MnAs cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Observed enhancement of positive MR effects in hybrid samples 69
5.3 Current pathes in a matrix-cluster-matrix sandwich-structure. . 71
5.4 The half-metallic cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Two and four-channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Influence of EAC on the MR of a hybrid structure . . . . . . . . . . . . 73
5.7 Images of the current path through a hybrid sample . . . . . . . . . . 75
5.8 Dependence of the MR on the spatial distribution of clusters . . . 77
5.9 Influence of spin conservation on the transport properties . . . . . . 78
5.10 Scheme of the Schottky-barrier formation. . . . . . . . . . . . . . . . . . . . 79
5.11 Dependence of the MR on the value of the Schottky barrier. . . . 80
5.12 Dependence of the MR on ES for different values of x. . . . . . . . . 81
5.13 The half-metallic cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.14 Calculated temperature dependence of ρ0 on the clusterfield HC 84
5.15 Calculated temperature dependence of the MR at 10 T on HC . 85
5.16 MR effect at high HC and large x . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.17 Influence of statistical cluster incorporation on the MR . . . . . . . . 90
5.18 Influence of metallic short-circuits on the resistivity . . . . . . . . . . . 91
5.19 Interaction of ρC and the cluster orientation. . . . . . . . . . . . . . . . . 92
5.20 Hybrid gate-structure used to maximize the positive MR . . . . . . 94
5.21 Hybrid sandwich-structure used to maximize the positive MR . . 95

8.1 Illustration of a recombination process via an intermediate pair 106

10.1 Calculated Ω =FT(∆σ(t)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.2 The calculated Rabi frequency as function of log( ∆ω

γB1
) . . . . . . . . 122

10.3 Influence of the exchange coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.4 Calculations for strong light-field coupling including J . . . . . . . . 124
10.5 Calculations for weak light-field coupling including J . . . . . . . . . 126

11.1 Experimental data of a strongly coupled pair system. . . . . . . . . . 130
11.2 Different g-factor distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.3 Length-scale of an intermediate pair . . . . . . . . . . . . . . . . . . . . . . . . 133
11.4 Comparison of the peak value of the S1 and the S 1

2
resonances . 134



XIV List of Figures

11.5 Influence of the stochastic operator S . . . . . . . . . . . . . . . . . . . . . . . 136
11.6 Influence of the system size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.7 Width of the S1 resonance for distributions with varying δ. . . . . 139
11.8 Intensity of the calculated Ω =FT(∆σ(t)) for different δ . . . . . . 140

A.1 Model of a 2-dimensional network with 16+2 knots . . . . . . . . . . . 144
A.2 A network with 9 +2 knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

H.1 Addition of peaks in the (Ω, ω)-sphere . . . . . . . . . . . . . . . . . . . . . . 164
H.2 Correlated and non-correlated g-factor distribution. . . . . . . . . . . . 165
H.3 Ii

1/Ii
2-ratio of intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



Part I

Transport in magnetic semiconductors





1

Introduction

1.1 Introduction

Both ferromagnetic and paramagnetic dilute magnetic semiconductors (DMS)
are currently of interest in the context of spintronics and spin optoelectron-
ics. These technologies combine the merits of semiconductor-electronic and
magneto-electronic devices [1, 2].

Magnetoresistance measurements on DMS are well established techniques
to analyze the interplay of electronic and magnetic properties in dilute mag-
netic semiconductors. So far spin-dependent scattering was applied success-
fully for the interpretation of transport measurements in ferromagnetic metal-
lic GaMnAs random alloys, where the ferromagnetic coupling can be explained
by a Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism [3, 4, 5]. However,
these theories are no longer applicable for semiconducting samples in the para-
magnetic phase (e.g. obtained by annealing at elevated temperatures) or DMS
materials which even show segregation of clusters. The RKKY-based theories
are limited to metallic random GaMnAs alloys where disorder effects can be
neglected to a first approximation. Recently hybrid systems formed out of
ferromagnetic clusters embedded in a paramagnetic host matrix raised partic-
ular attention [6, 7, 8, 9]. They are considered as possible candidates for the
creation of spintronic devices working at room temperature. Along with this
interest, there is the need to find a proper theoretical model for the descrip-
tion of the material and transport properties of this highly complex material
class, e.g. beyond the the scope of (microscopic) RKKY theories. It is the aim
of this work to show that the transport properties of the matrix material and
of the hybrid structures can be described taking into account disorder aspects
as a major issue. The (macroscopic) description we use is rather empirical,
but it may serve as a first step towards a microscopic theory.



4 1 Introduction

We start by introducing a network model for the description of the magne-
totransport in p-type dilute magnetic semiconductors in the paramagnetic
phase. The model is based on a simplified description of the valence-band
structure and the acceptor state of the DMS. Band filling effects, magnetic-
field splitting of the band states due to the p-d exchange interaction as well
as effects of magnetic-field independent disorder are accounted for. We do
not include carrier-carrier interactions other than those responsible for the
local magnetism of the Mn ions. Despite the exclusion of many-body effects1

in the bands, positive as well as negative MR effects are predicted by the
model [10] which show a qualitative agreement with experiments on para-
magnetic p-type DMS [11, 12]. The model is adopted to the quantitative
description of Mn doped GaAs which serves as the archetypal dilute magnetic
semiconductor. As a physical by-catch on the way towards a fundamental de-
scription of this material (from the limit of a very dilute Mn incorporation
over annealed samples which show segregation trends to the other limit of
paramagnetic/ferromagnetic hybrid samples), an alternative explanation of a
non-Arrhenius temperature dependence of the resistivity is given. It is clearly
shown that in contrast to common oppinion a non-Arrhenius temperature
dependence is not inevitably indicative of hopping transport. This rather fun-
damental conclusion is not limited to the special choice of dilute magnetic
semiconductors.
In chapter 3 the model is extended to provide a quantitative description of a se-
ries of annealed Ga0.98Mn0.02As samples. It also serves for the first systematic
theoretical study of the magnetotransport properties of Ga1−xMnxAs/MnAs
hybrid structures in chapter 5. The first part of this work ends with a predic-
tion for the design of hybrid structures tailored to show strongly enhanced
magnetoresistance effects for possible future spintronic applications.

1.2 Dilute magnetic semiconductors − an overview

A dilute magnetic semiconductor is a semiconductor with a small (dilute)
fraction of magnetic ions incorporated on lattice sites. Due to the exchange
interaction between the localized spins of the magnetic ions and the spins
of the free carriers they exhibit unusual magnetic properties. Two major
classes of DMS are wide-gap (II,Mn)VI and (III,Mn)V alloys [13, 14, 15].
The magnetism of such DMS will strongly depend on the Mn content, the
electronic configuration of the Mn ion and on the degree of doping. While in

1 As a matter of fact, whenever in the following ’many-body effects’ are claimed
to be excluded, all many-body effects are neglected except the p-d exchange
interaction which is expressly included.
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(II,Mn)VI compounds the Mn is built in isoelectronically on group II cation
sites, in (III,Mn)V alloys the Mn ions are incorporated on cation sites acting
as acceptors. In particular the intrinsic correlation of transport and magnetic
properties in the III-Mn-V semiconductors aroused the interest of researchers
[16, 17, 18, 19]. The most prominent and best studied representative of the
(III,Mn)V alloys is Ga1−xMnxAs. In ideal Ga1−xMnxAs the Mn ions are spa-
tially randomly incorporated on Ga sites MnGa acting as acceptors [20], whilst
the half filled Mn 3d-shell provides S = 5

2 localized magnetic moments [21].
Since (II,Mn)VI compounds exhibit paramagnetic behavior up to very high
Mn contents, the combination of free holes and large localized magnetic mo-
ments yields ferromagnetism in Ga1−xMnxAs alloys. An Ruderman-Kittel-
Kasuya-Yosida (RKKY) mechanism is considered to be responsible for the
origin of ferromagnetism in this material. This is where the ferromagnetic
coupling between the localized Mn spins is mediated by the free holes in the
valence band [3, 22, 23, 24, 25]. Even though GaAs:Mn shows a paramagnetic
phase down to very low temperatures in the dilute regime, possible Curie
temperatures above room temperature are predicted theoretically for higher
Mn contents [26, 27]. However, the highest Curie temperature realized exper-
imentally so far in this alloy system is TC =173K [28].

For temperatures above TC the magnetization of dilute magnetic semicon-
ductor alloys is usually described by a modified Brillouin function accounting
for residual magnetic coupling between the magnetic ions. In paramagnetic
(II,Mn)VI alloys (where the magnetic properties are determined solely by su-
perexchange between Mn ions) the residual coupling is reflected by the tem-
perature dependence of the susceptibility, the inverse susceptibility follows a
linear Curie-Weiss temperature dependence at higher temperatures, but shows
a clear down bend when the temperature decreases [29, 30, 31, 32, 33]. This
behavior shows the temperature-induced change of the magnetic coupling.
The origin of this unusual behavior is the formation of antiferromagnetically
coupled nearest-neighbor Mn spins at low temperatures which break up with
increasing temperature [31]. It is worth noting that somewhat similar effects
may be anticipated for the magnetization of (III,Mn)V alloys above TC, lead-
ing to a Curie-Weiss parameter Θ which will depend on the sample properties
as well as on temperature. A detailed study of the influence of Θ on the mag-
netotransport properties of a Ga1−xMnxAs alloy and a first attempt to clarify
its dependence on the beforehand mentioned sample properties as well as on
temperature by comparison with experimental data is given in chapter 3.

Possible DMS-based designs consist either of ferromagnetic DMS [13],
paramagnetic DMS [34, 35, 36, 37] or paramagnetic-ferromagnetic hybrid
structures [38]. (Ga,Mn)As/MnAs is a typical example of such a hybrid struc-
ture. In this hybrid, ferromagnetic MnAs clusters are embedded in a paramag-
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netic Ga1−xMnxAs host matrix. Several current studies show that DMS-based
hybrid systems exhibit large positive and negative magneto-resistance (MR)
effects. Examples are the MR behavior of Ga1−xMnxAs/MnAs [39, 40, 41], of
GaAs/ErAs [42], of GaAs:Mn/MnSb [43, 44] and of Ge1−yMny:Mn11Ge8 [45].
However, so far the microscopic mechanisms are not at all understood be-
cause the galvano-magnetic properties of such granular ferromagnetic hybrid
systems depend strongly on the electronic transport properties of the para-
magnetic matrix material, the magnetic properties of the clusters and on the
interaction of the electronic states of the host matrix with the ferromagnetic
clusters. Of course, one essential prerequisite for understanding the galvano-
magnetic properties of the hybrids are detailed experimental and theoretical
studies of the transport in the paramagnetic DMS materials which act as host
matrix for the clusters.

Multiple magneto-transport experiments were reported on wide-gap
DMS alloys covering n-type Cd1−xMnxTe [46] and Cd1−xMnxSe [47] and
more recently p-type DMS such as Zn1−xMnxTe:N [11] and paramagnetic
Ga1−xMnxAs [12]. It is worth noting that already the paramagnetic DMS
alloy alone (i.e. without clusters) exhibits positive as well as negative MR
effects [11, 12, 46, 47, 48]. However, these are different from those in the cor-
responding hybrids [41]. The unusual MR effects of the paramagnetic DMS are
commonly explained by the interplay of band filling, magnetic-field induced
tuning of the band structure, carrier-carrier interactions and quantum correc-
tions [48, 49, 50, 51, 52, 53]. As an example, the influence of the magnetic-field
induced tuning of the alloy disorder on the galvano-magnetic properties of
DMS was included so far only in the magnetic polaron picture [54]. It arises
due to fluctuations in the Mn concentration which, in an applied magnetic
field, lead to local fluctuations of the Mn-induced band splitting. Magnetic-
field tuning of alloy disorder is a well known feature of DMS [55, 56, 57, 58].
On the other hand, it is well established that disorder in crystalline semicon-
ductor alloys and even more in amorphous semiconductors has a considerable
impact on the transport properties [59].

1.3 The transport model

According to the transport theory of Drude in a system which is considered
to be isotropic the resistivity ρ and the conductivity ν = 1

ρ can be represented
in terms of carrier density n and carrier mobility µ as

ρ =
1

n · q · µ (1.1)
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Fig. 1.1. For a doped semiconductor with a spatially disordered valence-band edge
it holds ∆ < (EA−EV (r)) (a) shows the energy spacing ∆E(r) between the average
valence-band edge EV (r) (dashed grey line) and the acceptor level EA. (b) illustrates
the activation energy ∆ = (EA − Em) given by the energy spacing between the
acceptor energy EA and the mobility edge Em (dashed grey line).

where q denotes the carrier’s charge. In the framework of a semiclassical trans-
port description the mobility µ can be decomposed as µ = q·τ

m� where τ repre-
sents the average time between two scattering events and m� is the effective
mass. The density of carriers in a semiconductor2 is given by

n =

∫ EV

−∞
N(E)Fh(E)dE (1.2)

where EV is the band-edge energy-level of the unperturbed valence band,
N(E) is the density of states in the valence band and F h(E) is the Fermi
distribution of holes. Usually this direct current resistivity ρ in doped semi-
conductors can be simplified and represented by an Arrhenius temperature
dependence

ρ = ρ̃ · exp(∆/kBT ) (1.3)

where ρ̃ is a pre-exponential factor, ∆ is the activation energy and kB is the
Boltzmann constant. A detailed analysis of the validity of such a simplification
depending on specific material parameters is given in chapter 2.

Disorder in the transport dominating band of a semiconductor can be
taken into account e.g. by a modification (a disorder-dependent reduction) of
the mobility. It is obvious that the mean free path (herewith τ) gets reduced
with increasing spatial fluctuations of the potential. Also the carrier density
gets affected by disorder. Besides a change of the position of the Fermi level,

2 Since Ga1−xMnxAs that is in the focus of this work is a p-type semiconductor,
we leave here the general description and concentrate on a semiconductor with
hole transport in the valence band.
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due to the fluctuations of the local valence-band edge EV (r), holes on accep-
tor states do not have to be activated to the spatial average of the valence-
band edge EV (r) but merely to an energy level Em, the so-called mobility
edge. As illustrated in Fig. 1.1 the required activation energy ∆ is given by
∆ = (EA − Em). It holds ∆ < (EA − EV (r)). Descriptions of the transport
properties in (doped) disordered semiconductors following this approach can
be found e.g. in [59, 60, 61] as well as in [10] where a comparison with the
alternative description given in the following is presented. Another attempt
to handle a transport description in the presence of disorder is to separate a
given disordered system into a number of subsystems which are so small, that
inside each single subsystem the influence of disorder can be neglected. The
transport properties of each of these ordered subsystems can be calculated
according to Eqn. 1.1 and 1.2. The members of this ensemble of subsystems
have to be connected somehow to represent the physical realities and the
macroscopic transport variables of the global system have to be derived.

1.3.1 General limitation of the approach

There is, however, one problem with the used description which should not be
concealed: Apart from the issue of finding the correct subsystem size which
represents the disorder in the system (discussed in detail in section 1.4.1), one
should keep in mind, that there exists a lower boundary of this subsystem
size. For subsystem sizes below this boundary the transport properties have
to be described quantum mechanically [62, 63]. Finding the exact value of
this lower boundary and its connection to parameters of the system is a
field of current research [64]. Therefore we follow a very pragmatic route and
hope that all subsystem sizes of use are large enough - an assumption that
indeed does not make the treatment of the given problem simple but at least
drastically simplifies it compared to the universal approach3.

1.3.2 The magnetoresistance

The material system we analyze is the magnetic semiconductor Ga1−xMnxAs
which in this work is in the main described in its paramagnetic phase.
The obtained results form a basis of the study of so-called paramagnetic-
ferromagnetic hybrid structures built out of a Ga1−xMnxAs host matrix with
embedded ferromagnetic MnAs clusters as shown in chapter 5. Discussed in

3 ”It would mean that the only possibility that remains is to describe the whole
universe at once by using one huge Hilbert space. It goes without saying that
such an approach will lead to many other problems” [63].
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more detail in section 1.3.3 the interaction of the localized magnetic moments
of the Mn-ions with an external magnetic field and their exchange interaction
with the valence-band states lead to a strong spin-selective splitting of the
valence band. According to this local variations of the carrier densities n as
well as a modified mobility µ arise due to the magnetic field induced disorder
effects. These modifications of quantities appearing in Eqn. 1.1 cause a notice-
able change of the resistivity. To access the magnetic fields influence on the
resistivity the macroscopic observable magnetoresistance (MR) is introduced

MR =
ρm − ρ0

ρ0
, (1.4)

ρm is the resistivity in the presence of an external magnetic field while ρ0

is the resistivity at zero field. Negative values of MR represent a resistivity
that decreases in the presence of an external magnetic field (in other words
the conductivity increases). The lower boundary of the magnetoresistance for
ρm ≤ ρ0 is given by MR= −1. For positive values of the MR the opposite
situation holds with ρm < ρ0 and no general upper boundary exists.

1.3.3 Interaction with an external magnetic field

In this section the interaction of a DMS with an external magnetic field H
is described briefly. For all further considerations the magnetic field is taken
as a weak perturbation and eigenvalues of the system Hamilton operator for
H = 0 are assumed to be known i.e. the band structure in the absence of
an external magnetic field is given. For simplicity the energy gets normalized
by the value of the unperturbed valence-band edge using EV = 0 at H = 0.
Starting point is the magnetic part Hm of the single-particle system Hamilton
operator H describing the interaction between a free carrier with spinoperator
s, an external magnetic field H = (0, 0, H) oriented in z-direction and the
system of magnetic ions with spinoperators Si

Hm(s,Si) =

HL + gµBµ0s · H︸ ︷︷ ︸
I

− 2
∑

i

JiSi · s︸ ︷︷ ︸
II

+ g′µBµ0H
∑

i

Si −
∑
i�=j

J ′
i,jSi · Sj

︸ ︷︷ ︸
III

. (1.5)

Part I describes the diamagnetic Landau quantization by HL and the contribu-
tion of the paramagnetic Zeeman splitting as for a pure diamagnetic material.
In part II the exchange interaction between the carrier and the localized mag-
netic ions is taken into account while part III covers the interaction between
the magnetic ions and the external field as well as the interaction among the
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Fig. 1.2. The graphs
show the average orien-
tation of the Mn 5

2
-spins

depending on an exter-
nal magnetic field for
different temperatures as
indicated in the figure.
The value of 〈Sz〉 is ba-
sically given by use of
the Brillouin function in
Eqn. 1.9.  0
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magnetic ions. J ′
i,j and Ji are constants given in Heisenberg notation describ-

ing the strength of the microscopic coupling between the magnetic ions and
the interaction between the magnetic ions and the free carrier spin, respec-
tively. We neglect the influence of the free carriers on the magnetic ions. Thus
a ferromagnetic coupling of the localized magnetic moments mediated by the
band states as well as a carrier induced polarization of the magnetic ions is
disregarded. Such a restriction seems arguable since the description of the
paramagnetic phase is in the focus of this work. This approach allows the de-
coupling of the magnetic ion- and carrier spin-operators yielding a separation
of H(s,Si) given by

Hm(s,Si) = Hm(Si) + Hm(s) (1.6)

with

Hm(Si) = g′µBµ0H
∑

i

Si −
∑
i�=j

J ′
i,jSi · Sj (1.7)

Hm(s) = HL + gµBµ0s ·H − 2
∑

i

JiSis (1.8)

Hm(Si) describes the system of localized magnetic moments while Hm(s)
represents the magnetic field induced change of the band structure. Firstly we
set J ′

i,j = 0 neglecting the coupling between the d-shells of different Mn ions.4

Using the molecular-field approximation one can substitute the summation

4 In general we consider the dilute limit, where the spatial separation between the
Mn ions is sufficiently large to neglect direct coupling.
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over the lattice sites occupied by Mn ions in Eqn. 1.8 with the thermal average
of the Mn-ion spin < Sz > in respect of the direction of the external field.
< Sz > is basically given by

< Sz >= a · S · Bf (ζ′) (1.9)

where Bf (ζ′) = 6
5coth

(
6ζ′

5

)
− 1

5coth
(

ζ′

5

)
is the Brillouin function for a par-

ticle with spin S = 5
2 with ζ′ = 2µBµ0H

kB(T−Θ) . Bf does basically depend on the

fraction H
T . With increasing magnetic-field strength < Sz > increases almost

linearly and finally saturates at < Sz >= 5
2 (for a = 1). With increasing tem-

perature the increase of < Sz > gets weaker and the saturation orientation
is reached at higher magnetic fields. The characteristic development of the
< Sz > values depending on the magnetic field for various temperatures is
shown in Fig. 1.2; for a derivation of Bf see appendix C.

The (antiferromagnetic) coupling between the Mn ions which was ne-
glected when setting J ′

i,j = 0 can be taken into account phenomenologically
by use of the parameter a in Eqn. 1.9. In all calculations a = 1 is used if not
stated explicitly. The parameter Θ in the denominator of the Brillouin func-
tion’s argument plays the role of the Curie-Weiss temperature. It accounts for
an antiferromagnetic coupling when Θ < 0 while a ferromagnetic coupling of
the Mn ions spins is represented by Θ > 0. The Curie Weiss parameter plays
an important role for the quantitative modelling of annealed Ga1−xMnxAs
samples as it is shown in chapter 3. As a summary of the discussed interac-
tions with an external magnetic field, that are considered in the model, the
interaction diagram given in Fig. 1.3 can be used.
In the next step Hm(s) accounting for the spin-dependent modifications of

the band structure can be simplified. We start with the third part of Eqn. 1.5
which describes the exchange interaction between the localized spins of the Mn
ions and the spins of the carriers: Considering that the carrier wave function
is extended over several Mn ions their spin becomes independent of the lattice
site and can be substituted by the average value < Sz > given by Eqn. 1.9,
which can be treated as a pre-summation factor. Now the virtual crystal ap-
proximation comes into play. Instead of a summing over all lattice sites occu-
pied by Mn ions and the local evaluation of the microscopic coupling constant
Ji(r−Ri) an infinite crystal is assumed, leading to a coupling constant which
becomes a constant value independent of the spatial coordinate i and weighted
with the average Mn concentration x:

∑
i J(r−Ri) ≈ x

∑
R J(r−R) = x·N0β.

The used parameter is the p-d (s-d) exchange integral N0β(α) where N0 de-
notes the number of cations per cm3 while β(α) gives the strength of the
interaction of the Mn spin with a valence-band (conduction-band) state. This
weighting with the average value of the spatial Mn concentration is justified
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Fig. 1.3. The interaction diagram shows the interactions with the external magnetic
field. Dashed lines denote interactions which are neglected while solid lines denote
interactions that are taken into account such as the orientation of the Mn spins and
the p-d exchange interaction between the local Mn spins and the band states.

only in the case of a homogeneous distribution of the Mn ions. As soon as the
distribution of Mn ions shows sufficiently large local fluctuations the Hamilton
operator of the system varies spatially. In this case the averaging over the local
Mn concentration that neglects this spatial dependence is no longer a good
approximation. Thus when taking into account significant spatial fluctuations
of the magnetic ion concentration this approximation has to be improved. A
possible treatment is given in Sect. 1.3.4.

The resulting expression for the exchange part Hex of Hm(s) is

Hex ≈ −1

3
s < Sz > xN0β (1.10)

where the sum over the microscopic coupling constant J is replaced and gets
represented in terms of the p-d exchange integral N0β. This yields a macro-
scopic description of the exchange interaction. For the description of exchange
effects in the conduction band, the corresponding exchange integral N0α has
to be used.

For the materials which are in the focus of our description the effects of
the Landau diamagnetism as well as the Pauli paramagnetism which leads
to the usual Zeeman splitting are much less than the so-called giant Zeeman

splitting (GZS) described by Hex. Thus both remaining parts of Hm(s) are
neglected.

By using the Hamilton operator in Eqn. 1.10 the pseudospin-dependent
energy shifts ∆EV (jz , H, T ) of the heavy- and light-hole valence-band states
are given by

∆EV (jz, H, T ) = −1

3
xN0β < Sz > jz (1.11)
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where jz = ± 3
2 (± 1

2 ) are the pseudospins of the heavy holes (light holes). The
influence of the magnetic field is solely included by the average orientation of
the Mn 5

2 -spin given by the Brillouin function in Eqn. 1.9.
In conclusion, Eqn. 1.11 describes the giant Zeeman splitting of the

valence-band subbands with the pseudospins ± 3
2 and ± 1

2 if an external
magnetic field in z-direction is applied on an ideal Ga1−xMnxAs crystal5 in
the pure paramagnetic phase. This forms the basis of all further calculations.

1.3.4 The mesoscopic virtual-crystal approximation

As shown in the previous section the interaction of Ga1−xMnxAs with an ex-
ternal magnetic field H can be reduced in a first step to the effects of the giant
Zeeman splitting only. The exchange interaction between the valence-band
states of heavy- and light holes, respectively, and the Mn d-electrons leads
to a pseudospin-dependent splitting of the valence bands given by Eqn. 1.11.
It can be interpreted as the development of four so-called valence-band sub-
bands V (jz) with half the density of states (DOS) N jz

V compared with the
degenerate heavy- and light-hole DOS at H = 0, and with the corresponding
valence-subband edges EV (jz , H, T ) = − 1

3xN0β < Sz > jz. To bare the in-
fluence of H on the transport properties this splitting given by Eqn. 1.11 is
included when the hole density is derived according to Eqn. 1.2 as

n =
∑

jz=± 3
2 ,± 1

2

∫ EV (jz ,H,T )

−∞
N jz

V (E)Fh(E)dE. (1.12)

It should be mentioned that besides the obvious influence of the magnetic field
on the integration limits the implicit influence on the position of the Fermi
energy EF has also to be taken into account. To calculate the position of the
Fermi level the neutrality equation

n = nA + nC (1.13)

has to be solved with respect to EF to ensure charge neutrality in the system6.
nA is the density of negatively charged acceptor states while nC denotes the
density of electrons in the conduction band.7 Doing so with use of Eqn. 1.1

5 We consider an isotropic crystal.
6 Since the voltages applied on the sample during the measurement are sufficiently

small to ensure that one is in the linear response regime, the Fermi energy is a
global constant.

7 Since the unperturbed valence-band edge is the fixed reference energy in all calcu-
lations, the temperature dependence of the gap energy is given as the temperature



14 1 Introduction

and the material parameters given in Tab. 1.1, the magnetic-field dependent
resistivity ρm can be derived.

As discussed briefly in section 1.3.3 a homogeneously distributed incorpo-
ration of the Mn ions was assumed when deriving the Hamilton operator that
describes the magnetic interaction in Eqn. 1.10. By use of the virtual crys-
tal approximation the carrier is considered to average over all Mn ions in the
sample. This procedure had the advantage that the microscopic local coupling
strength Ji of the exchange interaction could be replaced by the macroscopic
p-d exchange integral N0β. The disadvantage of such an approach which makes
it unfeasible for the quantitative description of real samples is the negligence
of disorder. Both a spatial inhomogeneity of the magnetic-ion density (which
will cause a magnetic-field dependent disorder) as well as possible alloy disor-
der (which does not depend on the magnetic properties of the Mn ions but still
is related with the non uniform distribution of foreign atoms in the GaAs lat-
tice) are not taken into account. The crucial points are how to include effects
related with a disordered Mn ion incorporation and how to keep the model
simple enough to be solvable with reasonable numerical effort. Both can be
done by a slight modification of the virtual-crystal approximation: Instead
of using a Mn content equally smeared out and represented by the average
concentration x in Eqn. 1.10 the Mn concentration is considered to show an
’increased spatial dependence’. An averaging of the carrier not over the sam-
ple as a whole but only over some smaller volume V is taken into account.
Following this idea, N0β the macroscopic expression of the coupling constant
J , still can be used but the density of Mn ions interacting with the carrier
becomes a local however still averaged quantity. This assumption contains a
certain self-consistency: Due to the incorporation of a local Mn concentration
the accompanying disordered valence-band landscape may cause a localiza-
tion of the carrier. This localization was implicitly plugged in initially when
assuming an averaging over the volume V instead over the total system. This
procedure is referred to as a mesoscopic virtual-crystal approximation and
leads to a modification of Eqn. 1.11 expressing the giant Zeeman splitting of
the valence-band subbands as

∆EV (jz, H, T ) = −1

3
xlocN0β < Sz > jz (1.15)

dependence of the conduction band. This is accounted for by the Varshi formula
[65] as

EC(T ) = EC(T = 0) − (1000 ∗ ((5.5 ∗ 0.0001 ∗ T 2)/(225.0 + T ))). (1.14)
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with xloc denoting the local Mn concentration. The basic question how to
define the volume V over which the Mn concentration is averaged is discussed
in detail in Sect. 1.4.1. Within V the holes are assumed to behave as free
carriers with band mobility µh of heavy and µl of light holes, respectively.

Table 1.1. Material parameters used for the calculations [66]

lU [nm] 8 mh
9 ml µh[ cm2

V s
] µl[

cm2

V s
] EG [meV ]

0.57 0.50 0.082 130 1060 1500

1.4 The network model

In principle the macroscopic transport properties of (Ga,Mn)As can be cal-
culated now, using the refinement of the magnetic-field influence given in the
previous section as well as the basic transport description given by Eqn. 1.1.
For the calculations, an advancement of a network model introduced for de-
scribing electronic transport in disordered semiconductors [59, 67, 68, 69] was
developed. It is used to describe transport at H = 0 as well as magnetotrans-
port in DMS, i.e. effects due to magnetic-field induced band splitting and
tuning of the disorder potential are included. For readers who are interested
in a detailed description of the network model and the accompanying set of
equations the study of appendix A is reprehended. For all others, who are more
interested in the general problem of the description of transport phenomena
in disordered systems and less in the technical details of the modelling, only
a brief summary of the model and its features is given below.
The basic idea of the network model is to divide the crystal into cubic cells

of equal size (characterized by an edge length l) and to assign a local re-
sistance to each cell. The resistances are connected to a network. We use a
two-dimensional K × K square array of cubic cells with index m ∈ K2 to
model the transport in an epitaxial layer. By solving Kirchhoff’s equations
for the network the macroscopic resistance is derived. Such a network ap-
proach instead of the direct calculation of a uniform system attends to be
required as it allows one to take into account spatial disorder e.g. due to the
non-uniform incorporation of the Mn ions. In the model the Mn ions are dis-
tributed randomly between the cells such that the average of the local Mn

8 lU denotes the lattice constant of the cubic unit cell of the zinc-blende lattice.
9 The heavy- and light-hole mass (mh, ml) is given in units of the free electron

mass.
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Fig. 1.4. Image of the calculated system of network cubes. Different grey tones of
the cubes represent different concentration of Mn ions.

concentrations10xloc remains x. Fig. 1.4 shows such a system of cubes with
different Mn concentrations serving as the basis of the applied model. The
variation of xloc causes locally different band shifts Em

V (jz , H, T ) according
to Eqn. 1.15 for k = 0 by use of V = l3. Besides the influence of an external
magnetic field one is also able to add a field-independent contribution given
by

∆Em
D = mD(xloc − x) (1.16)

to account for alloy disorder in the valence band. mD represents the derivative
of the average valence-band edge EV with respect to xloc at x. Thus locally
different transport properties, e.g. carrier concentrations arise.

In the calculation of the Fermi level of the entire system the changes of the
density of states due to the local band splittings covered by Eqn. 1.11 need to
be accounted for. This is done by solving the equation for charge neutrality∑

jz

∑
m∈K2

pm,jz

V (T ) =
∑

m∈K2

[nm
A (T ) + nm

C (T )] (1.17)

numerically; nm
A (T ) = xmF e(EA, T ) denotes the local density of ionized ac-

ceptors in each cell with index m. For simplicity, we assume as a first approx-
imation a δ-like acceptor density. Further is assumed that every Mn ion acts
as an acceptor. nm

C (T ) is the density of intrinsic electrons excited via the band
gap.

10 xloc will be used in the following, whenever the general role of a local Mn ion
distribution is of interest. If the properties of a specific cell related to its local
Mn ion content are of interest, the variable xm is used, which denotes the specific
local Mn concentration of a cell with label m.
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This density is given by

nm
C (T ) =

∑
jz=± 1

2

(∫ ∞

Em,jz
C

Nmjz

C F e(E, T )dE

)
, (1.18)

Em,jz

C is the band edge of the conduction-band subband with pseudospin jz at

cell m and Nmjz

C denotes the density of states of the conduction-band subband
with pseudospin jz of the cell with index m. F e(E, T ) = 1

1+eE−EF/kBt is the

Fermi distribution of electrons. As an extension a more realistic description
taking into account both a broad energetic distribution of acceptor states as
well as a separation of acceptor density and the density of magnetic ions is
given in chapter 3. The possibility of such a separation is a valuable feature
of the model as it makes it applicable even for materials with an immanent
decoupling of magnetic ion- and dopant density, such as Zn1−xMnxTe:N for
example.

For wide gap DMS with band-gap energies of EG ≥ 1 eV as in the discussed
case with EG ≈ 1.5 eV and at low temperatures T ≤ 100K, no thermal
activation of carriers via the band gap into the conduction band takes place
and to a first approximation nm

C (T ) = 0. Eqn. 1.17 has to be solved for all
sets of (T, H) to gain the Fermi energy which depends on the local densities
pm,jz

V (T ) of heavy and light holes for all subband pseudospins jz which are
given by

pm,jz

V (T ) =

Em
V (jz ,H,T )+∆Em

D∫
−∞

Nm,jz

V (E)(1 − F e(E, T )) dE, (1.19)

Nm,jz

V (E) is the local density of states of the valence-band subband with
angular momentum jz given by

Nm,jz

V (E) =
2π(2mjz )

3
2

h3

√
−(E + Em

V (jz, H, T ) + ∆Em
D ). (1.20)

The resistivity of an individual cell ρm is given as the parallel connection11 of

11 As soon as a resistivity of an individual cell is formulated in the way given by
Eqn. 1.21, the information about carrier angular-momentum (pseudospin) is lost,
when connecting the cells to the network. In the case of a single-phase material the
majority band is of the same pseudospin in all cells. The conservation of the carrier
pseudospin is fulfilled automatically. For the description of hybrid samples, where
the spin of the majority band may differ from cell to cell the situation changes
and additional assumptions have to be made when a conservation of the carrier
pseudospin is required.
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the four resistivities of subbands with different jz by

ρm =
ρm
− 1

2

ρm
3
2

ρm
− 3

2

+ ρm
1
2

ρm
3
2

ρm
− 3

2

+ ρm
1
2

ρm
− 1

2

ρm
− 3

2

+ ρm
1
2

ρm
− 1

2

ρm
3
2

ρm
1
2

ρm
− 1

2

ρm
3
2

ρm
− 3

2

. (1.21)

The resistivity ρm
jz

of the hole bands of band mobility µjz (different mobilities
µh and µl are used for heavy and light holes) are given by(

ρm
jz

)−1
= q · µjz · pm,jz

V (T ) (1.22)

with pm,jz

V (T ) defined in Eqn. 1.19.
The cell resistances Rm are calculated for each cell by multiplication of

ρm with 1
l .

To define the network, the following assumptions were made:

• For each cubic cell of the square array the transport can only take place
through its four surfaces perpendicular to the plane of the array; i.e. a
central cube has four conducting connections with nearest-neighbor cubes.

• The knots of the network are centered in the cells. Thus the resistance
Rn,m of a conducting connection between two adjacent knots Km and Kn

is Rn,m = 1
2 (Rn + Rm). For every knot Km of the network it holds

4∑
i=1

Ii
m = 0 (1.23)

where Ii
m are incoming and outgoing currents at Km. Ohm’s law relates

voltage Un,m, current In,m and resistance Rn,m between knots Kn and Km

as
Un,m = Rn,m · In,m. (1.24)

• The electrodes are modelled by two additional knots on opposite edges
of the array. Both electrodes are connected to all K knots of the corre-
sponding edge. One of the electrodes is grounded i.e. its electric potential
is set to zero. To calculate the potential values at the remaining K2 + 1
knots (and thus the total resistance R of the array) a systems of K2 + 1
linear equations needs to be solved employing standard network-analysis
algorithms.

In Fig. 1.5 the model of a one dimensional chain of network cubes as a connec-
tion of the accompanying resistors is shown. Most calculations were performed
for arrays with K = 40 cells. Since it was assured for all parameter sets for
the simulated materials, that K was chosen large enough i.e. the results do
not depend on the specific value of K. For most studies it was assumed that
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Fig. 1.5. Model of a 1-dimensional resistor network. The chain of three cubes on
top is described by the connection of the resistors given below. The two additional
knots K0 and K4 represent the electrodes.

µl ≈ 10 · µh ≈ 1000 cm2

Vs2 (remaining parameters see Tab. 1.1). It should be

noted that despite the network model is applied on the modelling of trans-
port and magnetotransport phenomena in DMS the magnetic properties of
the material as well as interactions with an external magnetic field are only
considered as the origin of spatial disorder in the transport carrying bands.
After the local valence-band edges are calculated neither further influence of
the external field nor of the magnetic ions are taken into account. In more
simple words: On the basis of the network model the transport properties of
a semiconductor with a spatially fluctuating activation energy are described.
The requirement for such a treatment is that beside the validity of the general
transport mechanism (activated band transport) the transport properties are
represented basically by the local fluctuations of the carrier density. If this is
not the case and the transport properties are determined predominantly by
many-body effects such as the formation of e.g. magnetic polarons, the used
model is not applicable any more.

At first view the use of a constant mobility (for heavy and light holes each)
may be astonishing since the carrier mobility is expected to be reduced due to
an increase of disorder. One has to keep in mind that only the local mobility
stays constant in the model. Using the calculated resistivity ρ and the carrier
density12n one can use Eqn. 1.1 to define an effective mobility for all sets of
parameters (H, T ). This effective mobility is not constant any more and its
disorder induced change is implicitly taken into account by the model. This

12 The definition of the carrier density is likewise artificial in disordered systems
since predominantly the density of carriers on the perculation path is of interest.
Nevertheless in this framework we use the carrier density as if it was well defined.
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artificial parameter (the effective mobility) plays the role of a mathematical
by-catch as it is in principle obtainable by the calculations but of no further
use and even of doubtful physical meaning.

1.4.1 The length-scale

Whenever a description of disordered media has to be developed, one key
problem is the treatment of the present disorder on a length-scale well adapted
to reflect the physical properties of the system. Depending on the chosen
approach this length-scale may be somehow ”hidden” as e.g. it is implicitly
given as the standard deviation of the assumed spatial potential fluctuation,
or (as in the case discussed here), it is obviously present as the length l of the
network cubes.

As a standard model for the description of electronic transport in disor-
dered media one may regard the Anderson model [60, 61]. This description is
unfortunately featured by the high degree of difficulty to remain applicable
in case of hybrid structures. Therefore it is not considered to be functional in
our situation.

Nonetheless taking a look at these models is worthwhile, as other de-
scriptions based on this theory exist that also claim to provide a satisfactory
description of transport phenomena in DMS, see e.g. [5]. As a starting point
the question arises, whether the electronic wave functions are extended over
the considered system or localized around some spatial position i13. A given
spatially fluctuating potential gets filled up with electronic states which are
treated as being localized and do not contribute to transport.14 As long as
the energy of the carriers is below the critical value Em (called the mobility
edge), they are localized. The carriers on states above Em are extended over
the whole system and may be described as free carriers. Carriers in such ex-
tended states interact by definition with the entire system, thus their mobility
gets affected by scattering processes, e.g., with potential fluctuations or im-
purity states [60]. Such an approach is useful as soon as it can be assumed

13 We will not address in detail the formulation of localization which indeed is a
mathematically bold venture. Localization is used in the sense of Anderson [70], in
very brief words: One considers an electron wave function Φi(t) which is prepared
at time t = 0 at a lattice site i and which is not eigenfunction of the system
Hamiltonian. If limt→∞ | Φi(t) |= 0 the electron is not localized, it corresponds
with an extension of the particle over the infinite system.

14 It should be mentioned here, that this kind of localized states may contribute to
transport in terms of hopping- or rather variable range hopping (VRH) conduc-
tivity, which is not subject of the present work. Descriptions of the VRH regime
in DMS can be found in e.g. [42, 71, 72].
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that the disordered potential exists independently from the presence of elec-
tronic states (carriers) within it. It has to be assumed that whether a carrier
is in a localized or extended state the potential landscape is not altered. As
a comprehensible analogy one may look at water flowing through valleys of
mountains: For the moment of observation the change of the mountains due to
the river can be neglected, the valley exists even in the absence of any water.
This still is the case for the disordered potential related with alloy disorder
as described by Eqn. 1.16, but not in the case of the potential fluctuations
related with the giant Zeeman splitting given (see Eqn. 1.11). This exchange
interaction inherently requires the existence of electronic states (in our case
valence-band hole states) interacting with the magnetic ions. In this regard
two distinct influences of the carriers on the potential can be considered:

1.) a direct (active) polarizing influence of a carrier aligning the spins of
the magnetic ions in its vicinity in a energetically favored way. This influence
is assumed when introducing magnetic polarons (MP) as quasi-particles who
carry the transport. As the antipodal analogy to the situation discussed above
one may think in this context of the potential felt by a metal ball rolling on a
soft matter as a mattress for example, in the absence of the ball, the potential
is plain and a minimum as felt by the ball in its vicinity simply does not exist.
The influence of polaronic effects, i.e. self trapped MP [73] as well as bound
MP [42, 71, 72, 74, 75, 76, 77], is neglected in the theoretical description given
here.

2.) the pure passive influence of the valence-band hole due to its exchange
interaction with the Mn ions according to Eqn. 1.11. The spins of the magnetic
ions are treated to be unpolarized by the hole state.

In the latter case the influence of the hole comes into play when the con-
centration of magnetic ions is of interest. Based on extended states within the
virtual-crystal approximation (VCA) the hole averages over all K2 lattice sites
and the average Mn concentration x enters Eqn. 1.11. All spatial fluctuations
of the Mn concentration are averaged out herewith. This procedure predicts
too large negative MR effects, due to the neglect of GZS-induced disorder,
it is not taken into account. On the other hand strong localization due to
the GZS that requires the description of carriers as point-like and therefore
classical particles is devoid of any foundation since an exchange interaction
does not exist is this framework.

As possible alternative a length-scale l is introduced. This parameter is
used as an effective value representing the quantum-mechanical properties in a
classical picture as if they were completely known. The VCA is substituted by
the mesoscopic virtual-crystal approximation to make clear that the averaging
over the Mn ions takes place over a finite space of volume l3. The crucial point
of this approach is obvious: The solution of the full problem should be known
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Fig. 1.6. In the left figure three of the infinite number of possible potentials fluctu-
ating on different length-scales are depicted. The right side illustrates the translation
of this variety of all possible scales into a fluctuation with a fixed length-scale l.

when fixing the numerical value of l which then is used to find an advanced
solution. The value of l influences the potential landscape as it is proportional
to the average amount of the fluctuations of the valence-band subbands given
by to the GZS: ∆EV ∝ 1

l
2
3
. (For details see appendixB). The model represen-

tation of the potential landscape which fluctuates in principle on all possible
scales by a single fluctuation with length-scale l is illustrated in Fig. 1.6. In
this context the inelastic scattering length li is a lower boundary of l. For l < li
the classic description of transport as used in this work fails. But even if the
assumption l > li is fulfilled15, the choice of a small value of l leads to large
fluctuations of the local valence-band splits Ejz ,m

V . This corresponds to large
fluctuations of the local carrier densities as well as enhanced fluctuations of
the local resistivity. Thus an underestimation of l will cause an overestimation
of the influence of disorder. If the potential fluctuates on short length-scales
with the corresponding large fluctuation amplitudes, the classic percolation
theory predicting a continuously decreasing conductivity that finally reaches
zero with increasing disorder is no longer applicable. Below a certain minimum
value of the conductivity (corresponding to this, below a minimum value of
l) the conductivity does not decrease further since quantum-mechanical tun-
nelling between the states ’localized’ by the disordered potential becomes the
essential transport mechanism [78]. This transport mechanism is not taken
into account in the network model used in this work. In the opposite case
when l is chosen too large, almost all fluctuations get averaged out and no in-
fluence of disorder remains in the model. Fig. 1.7 shows the dependence of the
resistivity on l for three different temperatures. The influence of an increase
of disorder with decreasing value of l is obvious as the resistivity strongly
increases. For increasing l when the amplitude of the potential fluctuations in
the system vanishes the resistivity converges against an l-independent limit.

15 We assume l > li for all calculations presented in this work.
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In this context it should be noted that against intuition the choice of a small
value of l and herewith incorporation of disorder does not for all sets of pa-
rameters cause an increase of the resistivity: Whether a decrease of l (that
modifies the mobility edge, reduces the activation energy, increases the am-
plitude of disorder and leads to an elongation of the percolation path) will
reduce or increase the resistivity depends finally on the system parameters.

Fig. 1.7. Calculated resistivity at an
external magnetic field of 10 T ver-
sus the length-scale of the resistor net-
work for three different temperatures
as indicated in the figure. For param-
eters see third sample in Tab. 3.1 ex-
cept for: mD = 0 and σ=60 meV.

For all calculations the value of l was
chosen large enough for not to overes-
timate the influence of disorder. This
ensures that the physical properties of
the system do not become covered up
by model artifacts, while l is set small
enough not to neglect disorder and end
up with a simple VCA16. Even against
the background of this free model pa-
rameter it is nevertheless possible to gain
some new insights into the transport
properties by a comparison between ex-
perimental data and calculation. If one
is able to reproduce even quantitatively
the measured data for different samples
using material parameters in a reason-
able range and with a physically mo-
tivated tendency of parameter changes,
one can conclude that the influence of
the considered effect (the local band
splittings due to an external magnetic
field) cannot be neglected within a fu-
ture microscopic theory. Possible many-
body effects that are neglected in the present approach have to be included
on top of the given mechanism. On the other hand if one cannot reproduce
the experimental data by use of proper sets of material parameters (which
are known in certain limits) the approach has to be rejected. Beside the pos-
sibilities of the present model it has of course its limits: Since a variation of
l requires at least a slight modification of the values of most material pa-
rameters to gain still a quantitative description of the experiment, this model
cannot be used to determine these material parameters.
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Fig. 1.8. The left side depicts the energy landscape of a n-type DMS at µ0H = 0.
The right side shows the situation at µ0H �= 0. The donor energy level fluctuates
spatially, since it is assumed to be connected with the local conduction-band edge.

1.4.2 A remark on the acceptor level

In all calculations the acceptor energy level EA is treated as a fixed global
value. It is particularly independent from the spatial fluctuations of the
valence-band edge. This assumption is required so assure the existence of
negative MR effects due to the giant Zeeman splitting. If a coupling of the en-
ergetic level of the impurity atoms on the local valence-band edge is assumed,
the external magnetic field leads to an increase of disorder while the (averaged)
activation energy stays nearly constant. Such a regime leads to predominantly
positive MR effects and can be excluded by comparison with the experimen-
tal data. In contrast to the p-type III-Mn-V DMS with a comparatively deep
acceptor energy level the situation may change for the description of n-type
DMS with a donor level close to the conduction band such as ZnMnSe:Cl.
For this material the choice of a fluctuating donor level, connected somehow
to the local conduction-band energy as shown in Fig. 1.8 seems appropriate
since the corresponding disorder causes a strong positive MR as observed in
experiments.

16 Based on a simple VCA the experimental results cannot be described.
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Fig. 2.1. Measured temperature de-
pendence of ρ0 of two Ga0.98Mn0.02As
samples annealed at 400 and 500◦C in
Arrhenius depiction. The curves devi-
ate from the expected linear behavior,
which is indicated by the dashed lines.

Indispensable for a proper description of
the magnetotransport properties is not
only the knowledge of the influence of
magnetic fields but headmost the knowl-
edge of the transport regime in gen-
eral and the accurate description of the
transport properties in absence of a mag-
netic field. Only if the theoretical model
is able to provide a quantitative descrip-
tion of the experimentally obtained zero
field temperature dependence of the re-
sistivity, it makes sense to extend it and
to take into account the interaction with
the external magnetic field.

The initial point of the considera-
tions in this section is the measured tem-
perature dependence of two GaAs:Mn
samples as shown in Fig. 2.1. The ex-
perimental data shows a clear non-
linear behavior of the logarithmic re-
sistivity plotted versus the inverse tem-
perature. When such a strong, though
non-Arrhenius temperature dependence
of electrical resistivity is observed, one
usually concludes that the underlying mechanism is variable-range hopping.
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Unexpectedly, such observations are also made for many semiconductor sys-
tems at elevated temperatures, as in the present case, where a variable-range
hopping mechanism seems unlikely. A satisfactory explanation for this ob-
servation was lacking so far. In the following it is demonstrated that a non-
Arrhenius resistivity behavior may also arise in a band-transport picture by
thermal activation of charge carriers from a reservoir into the transport-
carrying band states, provided the energy distribution of reservoir states is
sufficiently broadened or the density of band states exhibits tails. This de-
scription including a broad acceptor-energy distribution (alternatively band
tail-states) represents the basis of all further calculations. Even though the
motivation to analyze possible origins of a non-Arrhenius temperature depen-
dent resistivity in this work is related with the description of the magneto-
transport properties of DMS samples, the results are not limited to the choice
of this special class of semiconductors.

2.2 Basic transport equations

In studies of transport properties of solid-state materials researchers usually
devote particular attention to the temperature dependence of electrical resis-
tivity, since this dependence is indicative for the underlying transport mech-
anism. Usually the direct current resistivity in doped semiconductors can be
described by an Arrhenius temperature dependence

ρ = ρ̃ · exp(∆/kBT ) (2.1)

where ρ̃ is a pre-exponential factor, ∆ is the activation energy, and kB is the
Boltzmann constant. At high temperatures the so-called intrinsic resistivity is
provided by thermal activation of charge carriers over the band gap and the
activation energy ∆ is related to the band gap energy EG: ∆ ≈ EG/2. With de-
creasing temperature the so-called impurity resistivity mechanism takes over
according to which charge carriers in the band are supplied by thermal acti-
vation from impurity atoms (donors or acceptors). The activation energy ∆ in
this transport mode is related to the depth of electronic levels on impurities
with respect to the band edge (conduction band for donors and valence band
for acceptors) [79]. At even smaller temperatures the so-called hopping trans-
port mechanism comes into play, in which carrier transport does no longer
take place via band states, but instead is provided by tunnelling (hopping)
of charge carriers between the impurity atoms. In the latter case, the activa-
tion energy ∆ is usually determined by the width of the energy distribution of
charge carriers on impurity atoms. Detailed description of hopping conduction
along with quantitative calculations of the activation energy ∆ for this regime
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Fig. 2.2. Left: band transport regime, right: hopping regime where ∆ is the activa-
tion energy, ∆̃ is the energy spacing between the localized states and the extended
band states, and kT is the thermal energy.

can be found in [60]. At extremely low temperatures electrical conduction is
provided by the so-called variable-range hopping (VRH). In this transport
regime the Arrhenius law for ρ(T ) is not valid anymore. The temperature
dependence of the resistivity in the VRH has the form ρ = ρ̃ exp[(∆/kBT )β ],
where β is determined by the shape of energy-dependent distribution of im-
purity atoms (DOI). For an energy-independent DOI is β = 1/4, while for the
parabolic Coulomb gap in the DOI it is β = 1/2 [60].

2.3 A non-Arrhenius transport behavior - indicative for

hopping transport?

Surprisingly, there are many experimental results of typical semiconductor
systems in the literature which exhibit a strong non-Arrhenius temperature
dependence of ρ at elevated temperatures. Very often, it is claimed in these
cases that the underlying transport mechanism is the VRH transport mode
[80, 81, 82, 83]. However, one should keep in mind that the VRH regime in
semiconductors is usually valid only for extremely low temperatures when the
thermal energy kBT is much smaller than the width σ of the energy distribu-
tion of impurity levels (illustrated in Fig. 2.2) which is not the case in most
semiconductor systems at elevated temperatures. Therefore one must consider
other transport mechanisms for explaining the corresponding experimental
data. The most natural approach is to seek for an explanation in the regime
of charge carrier transport via extended band states, where the carriers are
supplied by thermal activation from impurity states, as this transport regime
is usually valid in doped semiconductors in the relevant temperature range.
The possible occurrence of a strong non-Arrhenius temperature dependence of
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ρ in the case of traditional band charge-transport is the main message of this
section and forms the basis for the quantitative modelling of the transport
and magnetotransport properties of a series of (Ga,Mn)As samples annealed
at different temperatures given in chapter 3.

To refer to Eqn. 1.1, in the isotropic case the electrical resistivity in the
band-transport regime can be represented by

ρ = (nqµ)−1 (2.2)

where q is the charge of the carrier, n is the concentration of charge carriers
in transport states, and µ is their mobility. For p-type (n-type) semiconduc-
tors, the transport states are the extended band states for holes (electrons)
in the valence (conduction) band. In such states charge carriers move as free
particles with an effective mass. In semiconductors, the mobility of the car-
riers via extended states depends comparatively weakly on temperature (i.e.
weak power-law form) due to the temperature dependence of scattering cross
sections, e.g. in scattering by impurities (µ ∝ T 3/2) below about 40K and
in scattering by phonons (µ ∝ T−γ with γ > 0) above about 80K in GaAs
[84]. The carrier mobility cannot therefore be in any sense responsible for
the observed, strong non-Arrhenius behavior of ρ. Hence the only factor in
Eqn. (2.2), which can be responsible for the observed temperature dependence
is the concentration of charge carriers n in the transport-carrying band. The
crucial question then is why the temperature dependence of this concentration
can be non-Arrhenius if charge carriers are supplied into the extended bands
by thermal activation from acceptor (donor) states. Two possible disorder-
related explanations in the framework of the band transport regime shall be
discussed in the following.

2.4 Influence of disorder on the temperature dependence

of the resistivity

Two different scenarios both based on effects of disorder are introduced and
analyzed with regard to their influence on the temperature dependence of the
resistivity in the activated transport regime:

• Scenario 1: The energy levels of holes (electrons) on acceptors (donors)
have a broad energy distribution.

• Scenario 2: The density of states (DOS) of the extended band states in the
vicinity of the band edge possesses a low-energy exponential tail.

Both, a distribution of dopants as well as an exponential tail of the DOS
lead to a non-linear shift of the Fermi-level as a function of temperature
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and thus result in a non-Arrhenius temperature dependence of the resistivity.
In what follows the case of holes in the valence band of a semiconductor
with zincblende or diamond structure is addressed. Calculations for electrons
can be carried out in the same manner and yield similar results. The carrier
concentration is calculated according to

n =

∫ EV

−∞
Ñ(E)Fh(E) dE (2.3)

where Fh(E) is the Fermi distribution of holes and Ñ(E) is the DOS of
the valence band. Defining N(E) as the ideal square-root like DOS in the
approximation of parabolic valence bands taking into account both heavy
holes and light holes, disorder of the band states can be included by adding
an exponential tail yielding

Ñ(E) =

{
N(E) : N(E) ≥ α

α · exp
(
− (E−N(E)−1(α)) ln 2

δ

)
: N(E) < α

(2.4)

where α is the onset of the tail, N(E)−1 is the inverse function of the ideal
DOS, and δ is a damping in form of a half-width energy, which is treated
as a free parameter. In the calculation corresponding to the first scenario an
ideal square-root like DOS was used, i.e. α = 0. In the second scenario, α was
non-zero and δ was varied.

The concentration of charge carriers n is decisively determined by the posi-
tion of the Fermi level. The latter is calculated using the neutrality condition.
In the second case of a delta-like DOI of the acceptor, the Fermi level is given
by the neutrality condition in the form∫ EV

−∞
Ñ(E)Fh(E) dE = NAF e(EA) (2.5)

where NA and EA are the concentration and the energy depth of acceptors,
respectively, and Fh(e)(E) is the Fermi-distribution of holes (electrons). With
the assumption of a broad DOI of the acceptor states (first scenario), the
right-hand side of Eqn. (2.5) has to be replaced by

n =

∫
NA(E)F e(E) dE (2.6)

where NA(E) is the DOI of acceptor states.
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Fig. 2.3. Logarithmic plots of the calculated resistivity versus 1/T for a
Ga0.998Mn0.002As sample. In (a) the calculation was performed with different values
of σ as indicated in the figure. The valence band DOS has the ideal square-root
shape. In (b) the calculation was performed with different values of δ as indicated
in the figure. The energy distribution of the acceptor states is a delta function.

This Gaussian distribution

NA(E) =
1√

2πσ2
exp

(
− (E − EA)

2

2σ2

)
(2.7)

is assumed to be centered at EA = 110meV above the unperturbed valence-
band edge. The width σ of this distribution is treated as a free parameter.

Results of calculations for the first scenario using Eqs. (2.2)-(2.7) are shown
in Fig. 2.3 for different values of σ. For the narrowest band the temperature
dependence of the resistivity can be approximated by the Arrhenius-law. With
increasing broadening of the acceptor DOI the results of calculations for the
temperature dependence of the resistivity deviate more and more from the
Arrhenius-behavior. The broadening of the acceptor distribution leads to a
non-linear temperature dependence of the Fermi-level. Such a nonlinearity of
the temperature dependent Fermi energy can be found in Fig. 2.4, where the
calculated Fermi energy is plotted against temperature for different width of
the acceptor-energy distribution. For a very narrow acceptor distribution with
σ = 5 meV, EF shows an almost linear behavior. With increasing acceptor-
band width σ both a reduction of the accompanying EF, what can be inter-
preted in terms of a reduction of the activation energy, as well as a non-linear
down bend at higher T appear. If such a non-linear behavior of EF is con-
sidered in Eqn. 1.3 its crucial influence on the appearance of a non-linear
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Arrhenius depiction of ρ becomes visible. With

ρ = ρ̃ · exp

(
∆

kBT

)
(2.8)

where ∆ = EF(T ) − EV where EV denotes the valence-band edge, one gets

ρ = ρ̃ · exp

(
EF(0) + ιT + O(T 2) − EV

kBT

)
(2.9)

⇔
log(ρ) ≈ ι +

EF(0) − EV

kB
· 1

T
+ O(T ). (2.10)

The broader the energy distribution of holes on acceptors,

Fig. 2.4. Calculated temperature depen-
dence of the Fermi energy for different
widths σ of the acceptor-energy distribu-
tion as indicated in the figure. The va-
lence band DOS has the ideal square-root
shape.

the weaker is the temperature de-
pendence of the concentration of
thermally activated holes in trans-
port states at the valence-band
edge. Therefore, the introduction
of disorder into the reservoir of
charge carriers, i.e. on the right-
hand side of Eqn. (2.5) (energet-
ically distributed acceptor levels),
can cause the non-Arrhenius tem-
perature dependence of the resistiv-
ity although no disorder is present
in the transport-carrying band. The
theoretical curves for the resistivity
are very sensitive to the choice of
the parameter σ as can be seen from
Fig. 2.3(a). Changing σ to 20meV
or to 30meV leads to an order of
magnitude change of the resistiv-
ity and a different curvature of the
plot. Therefore, for a known impu-
rity depth EA, the comparison of
theory and experiment might allow
one to determine the energy width σ
of the DOI.

Results of the second scenario ob-
tained using different values of δ in
the calculation (see Eqn. (2.4)) are shown in Fig. 2.3(b). It can be seen that in
the absence of an exponential tail the resistivity shows the usual Arrhenius-
dependence. With increasing δ the low temperature resistivity drastically
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drops leading to a non-Arrhenius temperature dependence. The reason for
this is similar to that in the first scenario discussed above: The disorder ac-
counted for by the variable extension of the exponential tail enters the neutral-
ity equation Eqn. (2.5) as a modification of the DOS leading to a non-linear
dependence of the Fermi energy with increasing temperature. Again the cal-
culation shows a strong dependence of the shape of the resistivity curves on
the free parameter δ which allows one (if a broad impurity distribution can
be excluded), to determine the extension of such a tail by comparison with
experimental data.

2.5 Conclusion

In this chapter it has been shown that a strong non-Arrhenius temperature
dependence of the electrical resistivity can occur in the framework of a tradi-
tional semiconductor band-transport mechanism. Therefore, a non-Arrhenius
dependence of the resistivity of a semiconductor system alone, is no proof of
variable-range hopping being the dominant transport mechanism. It is worth
noting that this statement is basically independent of the semiconductor ma-
terial.
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Influence of annealing

3.1 Introduction

In this chapter the model developed previously for the description of mag-
netotransport in dilute magnetic semiconductors, is applied to a series of
(Ga,Mn)As samples annealed at different temperatures. It is the aim to show
that by use of the model the magnetotransport in the series of samples can be
described in the regime of activated transport neglecting many-body effects.
The changes of resistivity and MR observed in a series of Ga0.98Mn0.02As of
parent material divided into pieces of the same specimen and annealed at dif-
ferent temperatures are analyzed in terms of the annealing-induced structural
changes. The magnetic properties of the (Ga,Mn)As alloys, in particular, the
magnetic-field induced changes of the density of states, potential fluctuations
due to the giant Zeeman splitting in the paramagnetic phase and sponta-
neous magnetization effects in the ferromagnetic phase are accounted for in
the mean-field fashion as introduced in chapter 1. The energy distribution of
the acceptor states is realistically specified as given in chapter 2.
The magnetotransport is described in the different magnetic phases occurring
in the annealing process. This is unlike the overwhelming majority of publi-
cations in the field of (III,Mn)V semiconductors (e.g. [5, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95]) which are concentrating on ideal metallic (Ga,Mn)As
alloys in the ferromagnetic phase.
Annealing in the temperature range considered leads to significant changes
of the electronic, structural and magnetic properties of the specimen, e.g. the
samples change from a metallic ferromagnetic random alloy to an almost insu-
lating paramagnetic-ferromagnetic hybrid structure as given schematically by
the diagram shown in Fig. 3.1. Thus depending on the annealing conditions



34 3 Influence of annealing

Ga Mn As alloy1-x x

metallic transport

depending on
annealing
conditions

activated transport

paramagnetic
Ga Mn As matrix1-x x

ferromagnetic MnAs
clusters

T 2000K xC� �

Mn concentration x

300 C� 400 C� 500 C� 600 C�

annealing temperature

T
C

Fig. 3.1. The diagram illustrates the structural change of Ga1−xMnxAs depending
on the annealing process (for x < 0.1). Due to the annealing the sample changes from
single-phase ferromagnetic metal via an intermediate state to a two-phase hybrid
structure formed by ferromagnetic MnAs inclusions embedded in a paramagnetic
GaAs:Mn matrix. The red line denotes the Curie temperature of the single-phase
material, the grey line denotes the Curie temperature of the hybrid due to the ferro-
magnetic MnAs precipitates. Note that the increase of TC in the regime of moderate
annealing temperature is illustrated for a sample with a fixed Mn concentration.

such a treatment of LT MBE1 grown samples provides a method to study
segregation and the formation of MnAs precipitates blow-by-blow. The pos-
sibility to study the intersection from a paramagnetic sample with spatially
random incorporated Mn ions via spatially non-random Mn incorporation up
to the formation of very small MnAs precipitates is solely governed by the cho-
sen approach using well adapted annealing conditions. It cannot be provided
e.g. by growth of the hybrids due to MOVPE2[96].

It is shown that the model yields a reasonable agreement between theory
and experiment and allows to extract changes of the material parameters in-
duced by annealing. Thus it can be used to shed some light on the underlying
microscopic processes. In this regard it is obvious that the use of a simple
molecular-field approach as given in section 3.2.1 does not provide an enclos-
ing description of the ferromagnetism in the system. This approach only serves
as the simplest extension of the paramagnetic model to check its validity in
the range of limited condition.
Regarding to section 1.2 the RKKY interaction, is considered to be the origin
of ferromagnetism in GaMnAs alloys by means of a coupling between the lo-

1 Low temperature molecular-beam epitaxy
2 Metalorganic vapor phase epitaxy
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calized Mn spins that is mediated by free holes in the valence band. The Curie
temperature depends sensitively on the free hole concentration p as well as
on the Mn concentration x, i.e. TC ∝ p1/3 · x. In ideal metallic Ga1−xMnxAs
samples, where p = x, the simple relation yields TC ∝ x4/3. In experiments
one basically observes a linear change of TC with x followed by a plateau or
even a decrease of TC at higher x [3, 97, 98, 99]. The plateau or decrease of
TC typically occurs in the range of Mn concentrations between 5% and 8%
depending on the growth and annealing conditions of the Ga1−xMnxAs alloy.
The microscopic causes of this behavior are manifold and originate from the
low growth temperatures employed in molecular-beam epitaxy of these alloys.
The low growth temperatures are required to yield the non-equilibrium con-
ditions necessary to overcome the low solubility of Mn in GaAs and thus to
reach Mn concentrations in the range of a few percent in the alloys. However,
as a side effect of the low growth temperatures not all of the Mn atoms are
incorporated on Ga sites, i.e. as MnGa, and a variety of defects is formed
which may affect the magnetic as well as the electric properties of the alloys
[100, 101]. Two prominent defects are Mn interstitials MnI (Mn atoms not in-
corporated on a lattice site) and arsenic antisites AsGa (As atoms on the Ga
sublattice) which both act as double donors in the alloy, i.e. they compensate
the MnGa acceptor. In particular, the MnI are considered to play a dominant
role in the compensation process [102, 103, 104]. It can also be anticipated
that the defects will affect the average magnetic properties of the alloys. Sev-
eral calculations predict that MnI tend to form MnGa-MnI-MnGa-complexes
under certain growth conditions. These complexes should lead to a ferromag-
netic coupling of the adjacent substitutional Mn ions [105].
It is established that annealing in a moderate temperature regime close to
the growth temperature leads to an increase of TC, of the carrier density p
and of the saturation magnetization [106, 107, 108, 109, 110]. The major rea-
son for this is a diffusion of MnI to the surface and therefore a reduction
of the compensation [104, 111, 112]. At low annealing temperatures the ar-
senic antisites do not contribute to the annealing induced changes since they
remain stable up to 450 ◦C [104, 109, 113]. At temperatures above 400 ◦C,
segregation and formation of MnAs precipitates sets in leading to a struc-
tural transition from a random alloy via a non-random alloy to a granular
hybrid structure [9, 114, 115]. The sample properties are profoundly sensitive
to the annealing duration and temperature. Whether the transport properties
of hybrid samples are defined predominantly by the clusters and the interplay
between the ferromagnetic clusters and the paramagnetic matrix or solely by
the paramagnetic matrix depends strongly on the amount of clusters in the
sample and the strength of the cluster-matrix interaction. For low Mn con-
centrations as in the case of the annealed Ga0.98Mn0.02As sample described
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in this chapter the direct influence of the MnAs precipitates can be neglected
as the effective cluster concentration3 is below the percolation threshold. The
formation of Schottky barriers at the boundary between the grains and the
matrix can be neglected as well but it may play a role at higher cluster con-
centrations and low carrier density [116]. The influence of Schottky barriers
in hybrid samples of valuable cluster concentration is discussed in detail in
section 5.2.3. To summarize: In the parameter regime discussed here only the
corresponding reduction of the Mn-ion concentration in the matrix due to the
annealing induced cluster formation needs to be considered [114].
The mesoscopic magnetic properties are also affected by the annealing pro-
cedure. The ferromagnetic domain size is reported to be in the micro-
meter range, depending on the annealing conditions between 2 and 100µm
[117, 118, 119]. Regions which exhibit ferromagnetism above TC are reported
as well. The microscopic origin of these ferromagnetic islands is still not fully
understood. It may be associated with the existence of small precipitates or
spatially increased hole and Mn ion densities. An additional magnetic disor-
der on a smaller length-scale even within a single domain was also observed.
Studies of such a local fluctuating TC and non-random Mn incorporations are
shown in chapter 4. In addition to the magnetic disorder it has been shown
that low temperature MBE grown Ga1−xMnxAs contains a significant alloy
disorder which is believed to be reduced during annealing [120]. The influence
of this disorder on the Curie temperature is still controversially discussed: On
one hand there are predictions that a fully ordered situation can be considered
as an upper limit to TC [121]. On the other hand there are both experiments
[120] and theoretical considerations [122] claiming that the presence of disor-
der leads to an increase of TC.

3.1.1 Experimental details

Details of the growth and transport measurements are described elsewhere
[114]. In brief, a Ga0.98Mn0.02As layer with a thickness of 50 nm was grown
on GaAs (311A) substrate by LT MBE. The growth temperature was about
290 ◦C. After the growth five pieces of this specimen were annealed at 300 ◦C,
350 ◦C, 400 ◦C, 500 ◦C and 600 ◦C, respectively, for 10 minutes in an As-rich
atmosphere. Magnetotransport measurements were performed in a tempera-
ture range from 20 to 100K. An external magnetic field up to 10 T was applied
perpendicular to the sample surface.

3 Effective cluster concentration means the concentration of cluster cells and matrix
cells which are under the influence of the cluster.
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3.2 Model properties

We apply the transport description developed in the previous chapters. For the
derivation of the temperature and magnetic field dependent resistivity curves
of the series of alloys, full network calculations are performed for different sets
of temperature/magnetic field pairs (T, H). To describe the material prop-
erties we use the ideal square-root density of states in the approximation of
parabolic valence bands for each of the four valence-band subbands of pseudo-
spin jz as given by Eqn. 1.20. To account for the residual coupling between the
Mn spins the Curie-Weiss parameter Θ as introduced in section 1.3.3 is used.
This residual coupling is ferromagnetic for Θ > 0 and is antiferromagnetic for
Θ < 0. In the model Θ is treated as a free parameter (see Table 3.1). The
exchange integral N0β is an average of the local p-d exchange constants Ji

defined between the localized spin of a Mn ion and a hole spin (see Eqn. 1.5).
The local p-d exchange strongly depends on the local configuration of the Mn
ion, i.e. substitutional Mn acting as an acceptor, compensated substitutional
Mn, and interstitial Mn, will have different Ji constants. Therefore the av-
erage exchange integral N0β in Ga1−xMnxAs alloys is somewhat ill defined
[123]. The corresponding values in the literature for |N0β| vary between 1 eV
and 4.5 eV [3, 124, 125].

Besides the disorder induced by the giant Zeeman splitting, we also take
into account a magnetic field independent disorder given by Eqn. 1.16.

For a quantitative modelling of the resistivity dependence attempted here,
not only a realistic description of the local density of states of the valence
band of Ga1−xMnxAs is essential but also a realistic modelling of the accep-
tor states. Typical hole densities in ferromagnetic Ga1−xMnxAs alloys with
x of a few percent are in the range of 1018 to 1020 cm−3, i.e. they can be
considerably lower than the actual Mn content. Since not all Mn ions which
are incorporated into the crystal act as acceptors, we treat x and the density
of acceptors NA as two independent model parameters. Moreover, instead of
a simple delta-like acceptor density NA, we model the acceptor density by an
acceptor band with a Gaussian distribution of acceptor energies centered at
110meV (depth of an isolated Mn acceptor in GaAs [126, 127, 128]) and with
a halfwidth σ according to Eqn. 2.7. The halfwidth σ discussed in detail in
section 2.3 is treated as a free parameter. The existence of such an acceptor
band is essential for explaining a non-Arrhenius behavior of the resistivity in
the framework of traditional semiconductor band transport [129]. Such a non-
Arrhenius behavior of the resistivity can clearly be seen in the experimental
data in Fig. 3.4.

In the model an interaction between the magnetic field and the acceptor
states is neglected. The acceptor distribution only serves as a reservoir of hole
states and no formation of an acceptor band which directly contributes to
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the transport process is taken into account. Therefore, the model can only
give a crude approximation of the transport situation for a metallic ferromag-
netic semiconductor alloy such as the as-grown sample below TC. Neverthe-
less, we will show that a reasonable description of the temperature-dependent
magneto-transport behavior can be obtained. The effects are crudely ac-
counted for in the model by a large half-width σ which shifts the Fermi-energy
into the valence-band states leading to a quasi-metallic behavior and the zero-
field splitting of the valence-band states due to the Weiss molecular-field.

Accounting for both, the influence of the external magnetic field on the
band states as well as the broadened acceptor energy levels, the neutrality
equation ∫ maxK2 (EV)

−∞
Ň(E)F h(E) dE =

∫
NA(E)F e(E) dE, (3.1)

is solved to determine the position of the Fermi energy EF. The upper bond
of the integration maxK2(EV) denotes the maximum of all K2 local valence-
band subband edges. Ň(E) is the normalized sum over the (K2) different local
valence-band densities of states

Ň(E) =
1

K2

∑K2

m=1

∑
jz

Nm
jz

(E) (3.2)

which includes the external field induced splitting of the valence-band states
in each network cell covered by Eqn. 1.15.

3.2.1 Description of the ferromagnetic phase

Furthermore, we extend the model to the ferromagnetic phase below the Curie
temperature TC, where the magnetic moments of the Mn ions exhibit a spon-
taneous magnetization. The simplest approach to do so is to introduce a Weiss
molecular-field, where the magnetization M at T < TC is given by

M = M0Bf

(
gµBµ0S

kBT
(H + WM)

)
(3.3)

where M0 is the magnetization at saturation, W is the molecular-field con-
stant, S is the spin of the Mn 3-d shell and Bf is the corresponding Brillouin-
function. For simplicity, H and M are treated as scalars, i.e. we do not ac-
count for magnetic anisotropy. The magnetic anisotropy leads to anomalies,
the so-called anisotropic magnetoresistance effect in the magnetoresistance at
low fields (µ0H < 1 T) [130]. However, the effects are rather small compared
with the MR effects occurring up to 10T which are in the focus of this work.
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At fields above 1T the treatment of H and M as scalars is justified as the
magnetization is aligned along the external magnetic-field direction.

Without an external field one can rewrite and expand Eqn. 3.3 to

M

M0
= Bf

(
gµBµ0SWM

kBT

)
≈ S + 1

3S

gµBµ0SWM

kBT
(3.4)

where

W =
3kBTC

(S + 1)gµ0µBM0
. (3.5)

Eqn. 3.4 is an implicit equation for the magnetization and can be solved
numerically using the Curie temperature as an input parameter determined
by experiment. For T < TC Eqn. 3.4 is solved and the obtained molecular
field is added to the external magnetic field when calculating the average Mn
spin orientation 〈Sz〉 which is used to calculate the giant Zeeman splitting
of the valence-band subbands given by Eqn. 1.15. The Curie temperature of
the samples annealed at 400-600 ◦C which show paramagnetism in the full
temperature range down to 20K is set to 0 in the model (see Tab. 3.1). Even
though the samples will have Curie temperatures slightly above 0K basing on
the simplified treatment of the ferromagnetic phase as given by the molecular-
field theory, the molecular field is 0 for all temperatures T > TC. Therefore
the choice of TC = 0K is justified and holds exactly the same result as if the
real value of the systems TC was known and used in the model.

3.3 Correlation of transport properties and model

parameters

It is demonstrated that, despite the considerable number of model parameters
(i.e. acceptor density NA, halfwidth σ of the acceptor energy distribution, Mn
concentration x, alloy disorder parameter mD, p-d exchange integral N0β, and
Curie-Weiss parameter Θ) a combined analysis of temperature dependence of
the resistivity and a set of MR curves at different temperatures yields a very
narrow range of possible values for each model parameter. Therefore, the entire
set of parameters determined for a particular sample can be considered as a
characterization of its microscopic state. Furthermore, the trends observed for
the parameter sets of the series of samples annealed at different temperatures
gives valuable insight into the microscopic changes due to thermal treatment.

The resistivity in zero-magnetic field in the paramagnetic phase is inde-
pendent of the ‘magnetic’ parameters N0β and Θ. It mainly depends on the
energetic arrangement between acceptor states (serving as the carrier reser-
voir only) and the valence-band states (where the transport takes place). This



40 3 Influence of annealing

Fig. 3.2. Effect of the model parameters on the temperature dependence of the re-
sistivity ρ0 based on the model parameters used for the sample annealed at 400 ◦C.
(a) Influence of disorder: |mD| varied from 0 to 3.0 eV; (b) Influence of halfwidth σ
of the Gaussian distribution of acceptor energies varied from 35 to 75 meV; (c) In-
fluence of the acceptor density NA varied from 2.2·1016 cm−3 to 2.2·1019 cm−3.

situation is characterized almost entirely by the three model parameters mD,
σ, and NA. Graphs (a), (b), and (c) of Fig. 3.2 depict the behavior of the tem-
perature dependence of the resistivity on varying each of these parameters.
As expected, the resistivity at low temperatures in graph (a) increases with
increasing |mD|. It is worth noting that the calculated resistivity in zero-field
is independent of the sign of mD in contrast to the MR as discussed below.
In addition, the disorder influences the temperature dependence of the Fermi
energy resulting in a change of the curvature of the Arrhenius plot of the
temperature-dependent resistivity [67]. As is depicted in graph (b), mainly
the resistivity at low temperatures is significantly affected by the choice of σ.
Basically with decreasing σ the effective activation energy is increased and
approaches EA = 110meV (activation energy of an isolated Mn acceptor)
for σ → 0. A non-zero σ corresponds to a distribution of acceptor energies
leading to the curvature of the Arrhenius plots of the temperature-dependent
resistivity (see detailed discussion in Ref. [129]). For very large values of σ the
Fermi energy lies within the valence band at low temperatures, leading to a
quasi-metallic temperature behavior of the resistivity. Graph (c) presents the
dependence of the temperature dependent resistivity on the acceptor density
NA. The decrease of the acceptor density simply leads to a downshift of the
resistivity-curves basically without changing their curvature.

Using only the zero-field results it is impossible to determine both param-
eters mD and σ. Additional information is required, which is given by the
MR data. The MR mainly depends on the ‘magnetic’ parameters N0β and Θ,
but also significantly on the sign of the alloy disorder mD [10]. Exemplarily,
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Fig. 3.3. Effect of the model parameters on the calculated magnetoresistance at
20 and 40 K for the as-grown Ga0.98Mn0.02As sample. (a) Influence of disorder:
mD varied from −1.25 eV to −3.0 eV (fixed parameters: Θ = 7.5 K, N0β = 2.0 eV);
(b) Influence of the p-d exchange integral: |N0β| varied from 1.25 eV to 2.25 eV
(fixed parameters: Θ = 7.5 K, mD =,−2.75 eV); (c) Influence of the residual coupling
between Mn ions: Θ varied from 0K to 12.5 K (fixed parameters:N0β = 2.0 eV, mD

= −2.75 eV).

Figs. 3.3 and 3.4 show calculated MR results for the as-grown Ga0.98Mn0.02As
layer and the sample annealed at 400 ◦C, respectively. Both figures consist of
three graphs (a) to (c) where the model parameters mD, N0β and Θ, respec-
tively, were varied whereas all other model parameters remained fixed at the
values given in Table 3.1. The MR curves were calculated for 20 and 40 K in
each case.

In the graphs (a) of Figs. 3.3 and 3.4 the dependence of the MR on the
magnitude of the magnetic field independent disorder mD is shown. In both
cases the MR increases with increasing absolute value of the negative mD.
The situation arising from a negative value of mD is a disordered valence-
band energy landscape where regions (cells in the model) with a local Mn
concentration xloc below the average Mn content x have a reduced activa-
tion energy. This reduced activation energy arises as their local valence-band
edge is closer to the (global) Fermi level. An external magnetic field splits
the valence bands according to Eqn. 1.15 and the valence-band subband den-
sity of states belonging to the majority spin orientation is shifted towards
the acceptor level. In contrast to the valence-band shift towards the acceptor
induced by the alloy disorder, this magnetic-field induced shift is the stronger
the higher the local Mn concentration is. Therefore the two shifts may com-
pensate each other in the subbands dominating the transport, if the values
of mD(xloc − x) and EV (jz , T, H) are in a comparable range. The disordered
potential landscape determined by mD in zero-field will be smoothed out with
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Fig. 3.4. Effect of the model parameters on the calculated magnetoresistance of
the sample annealed at 400˚C. (a) Influence of disorder: mD varied from −1.0 eV
to −3.0 eV (fixed parameters: Θ = −12.5 K, |N0β| = 1.85 eV); (b) Influence of the
p-d exchange integral: |N0β| varied from 1.0 eV to 2.5 eV (fixed parameters: Θ =
−12.5 K, mD = −1.5 eV); (c) Influence of the residual coupling between Mn ions: Θ
varied from −10K to 10 K (fixed parameters:|N0β| = 1.85 eV, mD = −1.5 eV).

increasing magnetic field leading to a negative MR. Vice versa, if the absolute
value of the negative mD is too small or mD is positive, one obtains a positive
MR since the disorder increases in the presence of an external magnetic field.
Therefore, the combined analysis of ρ0 and MR data allows one to determine
the magnitude as well as the sign of mD.

Furthermore, in graph (a) of Fig. 3.4 the negative MR effects calculated
for T = 20K are more pronounced than those at 40K. The reason is that the
giant Zeeman splitting of the sample annealed at 400 ◦C, which is paramag-
netic in the entire temperature range under study, decreases with increasing
temperature. Thus the influence of the magnetic effects is reduced with in-
creasing temperature. The situation for the as-grown sample shown in graph
(a) of Fig. 3.3 is different because the sample has a Curie temperature of
TC ≈ 44K. The MR curves calculated for 40K are more negative than those
at 20K. The reason is that the further the temperature is reduced below the
Curie temperature, the closer is the spontaneous magnetization to the satu-
ration magnetization. This spontaneous magnetization yields a giant Zeeman
splitting already for zero external magnetic field. Therefore, in the approxi-
mation of a Weiss molecular-field the influence of the external magnetic field
on the band structure decreases with decreasing temperature in the ferromag-
netic phase.

We will now turn to the discussion of the ‘magnetic’ parameters N0β
and Θ. The variations of both parameters exhibit clear and distinguishable
trends. The former mainly scales the magnitude of the MR effects whereas
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the latter mainly affects the curvature of the MR as it determines the value
of the saturation field of the Brillouin function. The dependence of the MR
of the ferromagnetic and paramagnetic sample on N0β at 20 and 40K is
demonstrated in Figs. 3.3 and 3.4. The results for the paramagnetic sample are
easily understood: Since the value of N0β scales the influence of the external

Fig. 3.5. Calculated resistiv-
ity (a) and MR (b) for the
sample annealed at 400˚C
for different values of the
cube-edge length l. Solid line
indicates l = 6nm as it is
used in the calculations.

magnetic field, the negative MR increases with
increasing N0β. In the calculations performed
to describe the ferromagnetic sample, the mag-
nitude of the MR as well as the influence of
the value of N0β on the MR are much smaller.
Again the reason is the existence of the spon-
taneous magnetization which reduces the influ-
ence of the external magnetic field as discussed
above. It is remarkable here that the negative
MR at the lower temperature of 20K decreases
with increasing value of N0β, whereas at 40K
close to TC it shows almost the opposite behavior
and the negative MR increases with increasing
N0β. At temperatures far below the Curie tem-
perature, the Weiss molecular-field W ·M given
by Eqn. 3.3 becomes very large. Even though
the molecular field is a global value and does
not vary spatially throughout the sample, the
resulting potential landscape given by this in-
ner magnetic field via Eqn. 1.15 will fluctuate as
the Mn ions are incorporated randomly in the
system. For large values of N0β these fluctua-
tions are saturated already without an external
field and the influence of the additional exter-
nal magnetic field is almost negligible. At higher
temperatures just below the Curie temperature,
the molecular field is still present though much
weaker and hence the effect of an external mag-
netic field can yield the dominant contribution
to the MR and the negative MR increases with
increasing N0β.

In graphs (c) of Figs. 3.3 and 3.4 the depen-
dence of the MR on the Curie-Weiss temperature Θ is shown for both samples
at both temperatures. In the case of the ferromagnetic sample the effect of
the external field decreases with increasing positive value of Θ since the fer-
romagnetic order, i.e. the spontaneous magnetization, at a given temperature
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is increased. In the case of the paramagnetic sample the MR is shown for
values of Θ ranging from 10K to −10K. Since the sample shows paramag-
netism, Θ has no impact on the transport behavior at zero-field as the Weiss
molecular-field W ·M = 0. However, it affects the effects of an external field.
For a given temperature, the influence of the external field gets boosted for
positive values of Θ, which leads to an earlier saturation of the Brillouin func-
tion compared to Θ = 0 K due to the residual ferromagnetic coupling between
the Mn ions, while for negative values of Θ the influence of the external field
gets damped compared to Θ = 0K because of the residual antiferromagnetic
coupling between Mn ions.

Fig. 3.5 depicts the influence of the choice of the network-cube length l on
the calculated results of the resistivity (a) and the magnetoresistance (b). This
is done with use of the parameters which were applied to describe the sample
annealed at 400◦C as given in Tab 3.1. In (a) one can see that the resistivity
at low temperatures gets enhanced with decreasing l. This can be understood
since with decrease of l the amplitudes of the potential fluctuations leading to
a localization of carriers at low temperatures increase. A strong localization
due to the alloy disorder resulting in a strong increase of ρ0 at low T does
not agree with the experimental data. Thus a lower boundary for the choice
of l is obvious. With increase of l all influences of the magnetic field inde-
pendent disorder vanish as the concentration of xloc reaches its average value
x. In (b) the choice of large values of l corresponding to the virtual-crystal
approximation averaging out all spatial fluctuations of the Mn concentration
result in a much too small negative MR. The large negative MR values are
obtained for small l. Due to the corresponding large amplitude of the potential
fluctuations induced by the giant Zeeman splitting, a percolation path of low
conductivity can be obtained. In this scenario the reduction of the activation
energy along the percolation path overcompensates the effect of localization
due to enhancement of disorder. Nevertheless, there exists a (physically not
meaningful) value of l below which the amplitude of the spatial fluctuation
becomes that large, that localization effects lead to a strong enhancement of
the MR. In conclusion, the dependence of the calculated resistivity ρ0 and

Table 3.1. Model parameters

Ta [˚C] x NA [cm−3] N0β [eV] σ [meV] mD [eV] θ [K] TC [K]

ag 0.02 5.47 · 1019 2.0 85 −2.75 7.5 44
350 0.019 3.64 · 1019 2.0 75 −2.5 5 42
400 0.018 5.92 · 1018 1.85 60 −1.5 −12.5 < 20
500 0.014 1.37 · 1018 1.75 47 −1.5 −12.5 < 20
600 0.01 2.28 · 1016 1.65 45 −1.5 −12.5 < 10
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Fig. 3.6. Comparison be-
tween experimental data
and calculated values of
the logarithmic resistiv-
ity versus 1/T for the
as grown Ga0.98Mn0.02As
samples and the sam-
ples annealed at different
temperatures. Symbols de-
note the experimental val-
ues while full lines are
calculated curves. Inset:
anomaly of the measured
resistivity around TC for
the two metallic samples.

magnetoresistance on the model parameter l can be well understood [10]. The
value of l only can be chosen in a certain range, where still remains a freedom
of choice. A different choice of l requires a modification of the choice of the re-
maining parameters connected with the influence of disorder such as e.g. mD

and N0β. Thus this model cannot be used to determine their exact values as
long as the choice of l stays a free parameter. The main statement of this work
stays untouched by this uncertainty: The transport properties of the discussed
DMS in its paramagnetic phase can be described using the discussed effects
of magnetic field independent disorder and giant Zeeman splitting induced
shifting of the local valence-band edge while commonly discussed many-body
effects such as the formation of magnetic polarons are neglected.

3.4 Comparison between theory and experiment

We demonstrate that the effects of annealing on the resistivity and the MR
of series of Ga0.98Mn0.02As samples at temperatures below 100K can be well
described using the model developed in Sect. 3.2. Furthermore, we show that
the temperature-independent set of model parameters obtained for the best
description of the experimental data of each sample is in agreement with
the literature. In the following, we assume that annealing of MBE grown
Ga1−xMnxAs in the temperature range between 350 and 600 ◦C mainly causes
segregation and leads to the formation of MnAs precipitates. In terms of the
transport behavior of the samples this will mainly reduce the amount of Mn
x in the matrix as the MnAs cluster densities are too low to affect the main
transport path through the sample (i.e. are below the percolation threshold).
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Fig. 3.7. Comparison
of experimental and cal-
culated values of the
magnetoresistance versus
Hfield at various temper-
atures between 20 and
40 K for the as-grown
Ga0.98Mn0.02As sample.
Symbols denote the ex-
perimental values, full
lines are calculated curves.
Model parameters used
are given in Table 3.1.

-0.5

-0.25

 0

 0  2  4  6  8  10

M
R

µ0 H [T]

20 K

40 K

30 K

20 K
30 K
40 K
calc.

Fig. 3.6 depicts a comparison of the Arrhenius plots of the resistivity of
the as-grown Ga0.98Mn0.02As sample and the corresponding series of samples
annealed at different temperatures. It is worth noting at this point that the
transport properties of the sample annealed at 300◦C are within the experi-
mental uncertainties almost identical with those of the as-grown sample. This
indicates that 10min annealing at this moderate temperature has almost no
impact on the structural properties of the alloy. The plots cover the temper-
ature range below 100K. The as-grown sample (triangles down) as well as
that annealed at 350 ◦C (diamonds) exhibit a metallic behavior in this range
and, as can be clearly seen in the inset, show an anomaly in the resistivity
curve indicative for the ferromagnetic to paramagnetic phase transition. This
transition occurs in both samples at about 40K. The samples annealed at 450
(triangles up), 500 (circles), and 600 ◦C (squares) show activated transport
behavior, which becomes more pronounced with increasing annealing temper-
ature. The corresponding Arrhenius plots exhibit the bowing indicative for a
distribution of acceptor energies as discussed in section 3.3, i.e. it is not a lin-
ear Arrhenius plot which would be indicative for a delta-like acceptor energy
distribution.

The calculated curves are presented by the solid lines. First, we will ad-
dress the two metallic samples. The assumption of a very broad acceptor
band in Eqn. 3.1 leads to a Fermi energy which is located within the valence
band. This results in a metal-like temperature dependence of the resistivity
at low temperatures. With increasing temperature one leaves the range where
the model is approximately valid for metallic samples. After all acceptors are
ionized, the Fermi energy moves into the band gap, which results in an acti-
vated transport behavior. Although this is only a crude approximation of the
metallic state, we use such a broadened acceptor to model the temperature
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Fig. 3.8. Comparison of
experimental and calcu-
lated values of the MR
versus H-field at tempera-
tures between 20 and 40 K
for the sample annealed
at 350 ◦C. Symbols denote
the experimental values,
full lines are calculated
curves. Model parameters
used are given in Table 3.1.
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dependence of the resistivity of the as-grown sample and the sample annealed
at 350 ◦C in the temperature range below 100K. The calculated values coin-
cide with the measured data below the Curie temperature TC. The magnetic
phase transition at the Curie temperature is clearly visible in the calculated
curves as a strong peak of the resistivity appearing at TC. The corresponding
anomaly in the measured data shows a much weaker maximum at TC which is
considerably broadened, such that it is hardly visible in the logarithmic plot.

This difference between the measured and calculated curves potentially
originates from two assumptions made in the model: (a) the phase transition
from paramagnetic to ferromagnetic occurs throughout the entire sample at
TC (the Curie temperature is taken as a global parameter) and (b) the sample
acts as a single domain. Both assumptions do not hold for the real system.
Neither will it have a single domain structure nor does it exhibit a global
transition from the paramagnetic to the ferromagnetic state. Instead it will
exhibit a domain structure which will become ferromagnetic at slightly differ-
ent temperatures in dependence on the local Mn concentration and the local
concentration of carriers. The calculated curves for the three semiconducting
samples (annealed at 400, 500, and 600 ◦C) are in good agreement with the
experimental data. The observed transition from metallic behavior via semi-
conducting to almost insulating behavior on annealing can be reproduced in
the model by mainly adjusting two parameters. The acceptor density NA and
the halfwidth σ of the distribution of acceptor energies. The acceptor density
decreases from about 5× 1019 cm−3 for the as-grown sample to 2× 1016 cm−3

for the sample annealed at 600 ◦C and σ decreases from 85meV to 45meV. A
decrease of the halfwidth of the acceptor energy distribution is expected on
reducing acceptor density as the mean distance between acceptors increases
leading to a more isolated behavior, i.e. a well defined activation energy of
110meV for acceptors which are infinitely far apart. The reduction of the ac-
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Fig. 3.9. Comparison of
experimental and calcu-
lated MR versus H-field at
various temperatures be-
tween 20 and 90 K for the
sample annealed at 400 ◦C.
Symbols denote the mea-
sured values, full lines are
calculated curves. Model
parameters used are given
in Table 3.1.
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ceptor density NA itself, which becomes significant, can be explained by the
structural transition from a random alloy via an alloy with a non-random Mn
distribution to a granular hybrid where MnAs inclusions have formed inside
a Mn-doped GaAs matrix. The onset of the formation of MnAs clusters will
occur typically at an annealing temperature of 400 ◦C. For the corresponding
sample, there is a rapid decrease of the parameter NA in the calculation. In-
deed, ferromagnetic resonance measurements of the sample annealed at 600 ◦C
show clear signatures of MnAs hexagonal clusters with the c-axis parallel
to the GaAs [111] directions as observed previously in GaAs:Mn/MnAs hy-
brids grown by MOVPE [131]. However, in contrast to their MOVPE grown
counterparts [41], the density of the MnAs clusters is too small to affect the
magneto-transport behavior of the hybrids.

In Figs. 3.7 and 3.8 the comparison between the calculated and measured
magnetoresistance is shown for the two metallic samples. It is obvious that
the model yields a good description of the MR curve in the vicinity of the
paramagnetic phase at 40K while the deviations between experiment and
theory are more significant in the case of the ferromagnetic phase at 20 and
30K. Here the theoretical values for the negative MR are too small. However,
this is somewhat expected as the model can only crudely approximate the
ferromagnetic phase as discussed in Section 3.2.

A possible explanation is that the model is based on a global Curie tem-
perature and does not account for spatial fluctuations of TC. In reality, there
are still paramagnetic regions in the sample present at temperatures of 20 or
30K (i.e. below the global TC of about 40K). The percolation path which
determines the transport properties of the sample will connect only regions of
ferromagnetic order simply because of their higher carrier density. The per-
colation path is smoothed and shortened with increasing external field and
corresponding giant Zeeman splitting of the paramagnetic regions which re-
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Fig. 3.10. Comparison
of experimental and cal-
culated values of the MR
versus H-field at various
temperatures between 20
and 90 K for the sample
annealed at 500 ◦C. Sym-
bols denote the measured
values, full lines are cal-
culated curves. Model pa-
rameters used are given in
Table 3.1.

-1

-0.5

 0

 0  2  4  6  8  10

M
R

µ0 H [T]

90 K
60 K
40 K
30 K
20 K
calc.

duces the disorder in the sample. This will lead to an enhancement of negative
MR effects at these temperatures. However, even in its simplicity, the model
shows the observed trend of the experiments: The lower the temperature below
TC, the smaller is the negative MR effect.

Figs. 3.9, 3.10, and 3.11 show the good quantitative agreement of the
calculated and measured MR for the three semiconducting samples annealed
at 400 ◦C, 500 ◦C, and 600 ◦C. Especially for the two samples annealed at
400 ◦C and 500 ◦C the calculated values are in a good quantitative agreement
with the experimental data for all temperatures except the lowest temperature
at 20 K. Here the model predicts a negative MR effect which is too large
compared to experiment.

One possible explanation of the differences between theory and experi-
ment is again the assumption of a global TC in the model. A ferromagnetic
percolation path will only persist up to TC, however, in a real sample at least
small regions with ferromagnetic order will be still present at temperatures
above TC. The size and density of these regions will decrease with increasing
temperature. The effect of the external magnetic field on the regions with
ferromagnetic order is weaker than that on the surrounding paramagnetic en-
vironment. Therefore the negative MR effect in the presence of ferromagnetic
regions will be smaller than in a pure paramagnetic phase assumed in the
model. An other possible explanation is an annealing induced non-random
Mn ion incorporation which is studied in detail in chapter 4.

We will now discuss the annealing-induced changes of the temperature-
independent parameters derived from the analysis of the transport data (Ta-
ble 3.1). First of all, it should be stated that the values of all model parameters
throughout the series are in realistic parameter ranges and show monotonic
trends on annealing. Annealing considerably above the growth temperature
leads to the formation of MnAs precipitates and the observed transport be-
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Fig. 3.11. Comparison
of experimental and calcu-
lated MR versus H-field at
various temperatures be-
tween 40 and 90 K for the
sample annealed at 600 ◦C.
Symbols denote the experi-
mental values, full lines are
calculated curves. Model
parameters are given in
Table 3.1.
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havior is determined almost solely by the surrounding alloy-like matrix and
not directly by the MnAs precipitates. The observed reduction of x with in-
creasing annealing temperature reflects the extraction of Mn from the matrix
for forming MnAs precipitates. In particular, x decreases more rapidly be-
tween 400 and 600 ◦C, where the precipitate formation is known to become
significant. Furthermore, the acceptor density NA and width σ of the acceptor
energy distribution also show a decrease with increasing annealing tempera-
ture. We do not expect an increase of NA at these high annealing temperatures
as the dominant structural effect is not the reduction of compensating defects
but rather precipitation formation.

The remarkable decrease of NA at the highest annealing temperature
(where one observes clear FMR4 signatures of hexagonal MnAs clusters as dis-
cussed above) may be explained by trapping of holes at the matrix-precipitate
interfaces (as for the MOVPE counterparts see Refs [41, 132, 133]) which
leads to an additional reduction of free holes, i.e. a low effective acceptor
concentration NA. The weak change of σ between 500 and 600 ◦C annealing
temperature supports this view, as the almost constant σ indicates that the
real distribution of acceptors is very similar. The alloy-disorder parameter
mD is constant for all paramagnetic samples, as somewhat anticipated. The
origin of the slightly different values for the ferromagnetic samples is not ob-
vious. The trends for the two ‘magnetic’ parameters N0β and Θ are related
to the observed reduction of the free hole concentration reflected by the re-
duction of NA on annealing. It is well established that N0β depends on the
carrier concentration [123], it is even of different sign for p-type and n-type
GaAs:Mn. Therefore, a reduction of the absolute value of N0β with decreas-
ing NA appears reasonable. The change of sign of Θ from positive to negative

4 Ferromagnetic resonance
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Fig. 3.12. Comparison of
experimental and calculated
MR versus H-field at tem-
peratures between 20 and
90 K for the sample annealed
at 400 ◦C. Symbols denote
experimental values, full lines
are calculated curves. In the
calculation a temperature
dependence of N0β and Θ
was assumed: Pairs of Θ
and N0β of 2.5 K/1.0 eV;
5.0 K/1.2 eV; 7.5 K/1.35 eV;
15 K/1.7 eV; 25K/2.75 eV
were used for temperatures
in ascending order from 20 to
90 K. Additional parameters
are given in Table 3.1.
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with increasing annealing temperature manifests the change from residual fer-
romagnetic coupling to residual antiferromagnetic coupling between Mn ions
in the paramagnetic phase which is also anticipated with decreasing free hole
concentration.

An alternative explanation of the deviation of the calculated MR curves
from the experiment (other than spatial fluctuations of TC) can be given for
the paramagnetic samples. It is based on the fact that the free hole concentra-
tion increases almost exponentially with increasing temperature. Furthermore,
it is well established that the coupling between the Mn ions in Ga1−xMnxAs
is governed by the RKKY mechanism, i.e. depends strongly on the free hole
concentration. This influence is not restricted to the ferromagnetic phase, but
should also determine the residual coupling between Mn ions in the paramag-
netic phase, i.e. affect the corresponding model parameters N0β and Θ. We
have refined the description of the MR data of the sample annealed at 400 ◦C
allowing for a temperature dependence of these two magnetic parameters. The
best agreement between theory and experiment obtained for these assump-
tions is shown in Fig. 3.12. The model parameter N0β is found to increase
with increasing temperature from 1.0 eV at 20K to 2.75 eV at 90K corre-
sponding to an increased p-d exchange. The Curie-Weiss parameter Θ also
increases from 2.5K at 20K to 25K at 90K corresponding to an increase of
the residual ferromagnetic coupling between Mn ions with increasing carrier
density as expected.
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3.5 Conclusion

The annealing induced changes of the temperature-dependent resistiv-
ity and magnetoresistance of series of (Ga,Mn)As samples (an as-grown
Ga0.98Mn0.02As sample and annealed samples of the same specimen) were
studied. The samples, whose transport properties were simulated here, were
annealed at various temperatures between 350 and 600 ◦C. In this tempera-
ture range the main effects of annealing are structural changes from a random
alloy with metallic behavior to a granular hybrid with almost insulating be-
havior. Modelling the transport data with the network model introduced in
Sect. 1.3, which accounts for the peculiarities of the Ga1−xMnxAs dilute mag-
netic semiconductor in a realistic way, allows one to extract sets of material
parameters. These parameters reflect the microscopic changes induced by the
thermal annealing procedure. The model yields an astoundingly satisfactory
quantitative description of the transport properties of (Ga,Mn)As samples in
the entire range of resistivity, from metallic to insulating. We demonstrate
that the complexity of the measured resistivity curves can be condensed into
a few microscopically meaningful model parameters with realistic values and
that these parameters characterize the microscopic state of the samples due
to the strong correlation between magnetic, transport and structural proper-
ties. Due to the apparent mismatch between the high degree of complexity
of the discussed materials and the simplicity of the applied model the even
quantitative agreement of experimental data and theory is rather astonishing.
However, it is undoubted that a full description of the transport properties of
the discussed materials is missing still and the present work only provides an
indication for the principal transport mechanism on top of which the influence
of many-body interactions have to be clarified prospectively.
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Non-random Mn incorporation

4.1 The Curie temperature − from a global towards a

local parameter

As discussed in detail in previous chapters, the network model was pri-
marily developed to describe the transport properties of an ideal DMS

Fig. 4.1. Hatched area shows
a cell of the Curie tempera-
ture meta-network for a co-
ordination number of 3, over
which the local Mn concen-
tration of the ground laying
network cells is averaged. The
monochrome cells belong to
the transport network. Differ-
ent grey tones indicate differ-
ent Mn concentrations.

in its paramagnetic phase. It was extended to
stay applicable for the description of the ferro-
magnetic phase even in a metal like transport
regime.

On the basis of the used Weiss molecular-
field model (for more details see appendixD),
the Curie temperature TC is the only free param-
eter which is needed to take into account a ferro-
magnetic coupling between the Mn ions. So far
TC is a global parameter. It does not depend on
the spatial position e.g. the local density of Mn
ions. As the ferromagnetism in Ga1−xMnxAs al-
loys is explained in the framework of the RKKY
mechanism [3, 23] where the coupling between
the spins of the Mn ions is mediated by carri-
ers, the transition temperature will be strongly
affected by the carrier concentration. As shown
previously spatial fluctuations of the carrier den-
sity play an essential role for the transport prop-
erties of the studied system. Against the back-
ground of the underlying ferromagnetic coupling
mechanism it seems reasonable to consider not solely the spatial fluctuations
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of the carrier density but resulting spatial fluctuations of the ferromagnetic
ordering temperature and their influence on the (macroscopic) transport prop-
erties as well. Indeed there are some experimental studies that support the
existence of magnetic disorder within a single domain of size between 2 and
100µm. Their influence on the transport properties and the characteristic
length-scale of this disorder remains unsettled so far [117, 118, 119].
It is well established that for ideal Ga1−xMnxAs samples with x ≤0.05 the
Curie temperature depends almost linearly on the concentration of Mn ions
[3] and can be described by the relation

TC = α · x (4.1)

with α ≈ 2000K. This simple relation providing a connection between Mn
concentration and Curie temperature serves as the basis of the following cal-
culations.

4.1.1 Model details and results

When modelling a local Curie temperature the question arises again what the
characteristic length-scale of this fluctuation should be. The answer is similar
to that given when the length-scale l of the network was studied in Sect. 1.4.1:
If magnetic disorder represented by a fluctuation of local Curie temperatures
plays a role and if its influence is studied, one has to assume a length-scale that
is small enough to keep disorder effects visible in the observed quantities.1

In the framework of this assignment the most natural approach is to pre-
sume the length-scale l of the network (in this section referred to as the trans-
port network) as the length-scale of the local Curie temperature fluctuations.
Doing so a cube with the edge length l = 6nm contains the average number
of Mn ions given by NMn = x · 4

(0.56nm)3 · l3. Under the assumption of x = 0.02

this leads to an average value NMn = 394 of ferromagnetically coupled Mn
atoms. As slightly modified version of Eqn. 4.1 is used to calculate the local
Curie temperature as

TCloc = α · xloc. (4.2)

This replaces the Curie temperature introduced in Sect. 3.2 as a free constant
parameter by a local value determined by the factor α. It should be noted that

1 Since ferromagnetism is a collective phenomenon which vanishes if the number
of spins to be coupled is below a certain critical level, a physically motivated
lower limit for the length-scale of such a fluctuation of the Curie temperature
represented by our network approach should exist. As the existence of this lower
boundary is clear its value is impossible to derive using the theoretical description
at hand.
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α is not accessible by theoretical considerations on the basis of our model. α is
a free parameter which is used to set the (averaged) Curie temperature upon
the experimentally observed value.

To study the intersection between strong local changes of TC and a fully
ordered situation, a linear filter function is used. In Eqn. 4.2 the local Mn
concentration xloc fluctuating on the length-scale of the cube-edge length l
resulting in the largest possible fluctuation amplitudes2 was substituted by
a filtered value xf

loc. This is calculated for each cell (i, j) of the transport
network as given by

xf
i,j =

1

o2

∑
i− o

2
<i‘<i+ o

2
j− o

2
<j‘<j+ o

2

xi‘,j‘ (4.3)

where the parameter o defines the filter size. In this attempt the Mn concen-
tration of the o2 cells centered around the cell with the coordinates (i, j) is
averaged.

4.1.2 Influence of the local Curie temperature on the transport
properties

In Fig. 4.2 the influence of the spatially varying Curie temperature and differ-
ent filter sizes o on the temperature dependent resistivity are shown. In each of
the three graphs the calculated resistivity ρ0 is plotted logarithmically against
the inverse temperature for three different (average) Curie temperatures of 35,
40 and 45K. The three different graphs differ with respect to the considered
local fluctuations of the Curie temperature: In graph (a) the TC used in the
calculations fluctuates on the length-scale of the transport network. This is
the smallest possible scale leading to the largest possible amplitudes of the
spatial fluctuation of TC. In graph (b) o = 3 and in graph (c) o = 5 is used.
As expected the width of the resistivity anomaly around the phase transi-
tion, which is the region of a strongly enhanced resistivity between the pure
metallic transport regime at T � TC and the activated transport regime
at T � TC gets broadened from (c) to (a) with decreasing length-scale of
TCloc . The more the system deviates from the ordered case with a global mag-
netic ordering temperature, the more cells exist which show paramagnetism

2 Since the average deviation δTC of the local Curie temperature from its mean
value is proportional to the average deviation δx of the local Mn content from its
mean value as given by Eqn. 4.2 and under the assumption that x is a normal
variable one gets δTC = α · δx ∝ 1

lC
3
2

where the lC denotes the cube-edge length

used for the derivation of the local Curie temperatures. Since the minimal value of
lC can be l, a Curie temperature fluctuation on the transport network cube-edge
length l shows the largest possible amplitudes.



56 4 Non-random Mn incorporation

Fig. 4.2. Arrhenius plots
of the calculated temper-
ature dependence of ρ0

on a local Curie temper-
ature which fluctuates on
different length-scales. In
(a) the Curie tempera-
ture varies on the length-
scale of the transport
network, in (b) TC gets
filtered on the threefold
length-scale and in (c)
it gets filtered on the
fivefold length-scale. For
details about the filter
procedure see text. The
values of TC indicated
in the cut line corre-
spond to the average Mn
concentration. The fac-
tors of proportionality
α defined by Eqn. 4.1
are: 45 K: 2368.4, 40K:
2105.3, 35K: 1842.1. The
used material parameters
belong to the sample an-
nealed at 350 ◦C as given
in Table 3.1.

even at temperatures below TC. In such a case TC is the average value of
all TCloc . In contrast to the ferromagnetic regions which still show metallic
conductivity, the paramagnetic cells exhibit an activated transport behavior
with a larger resistivity. In the absence of ferromagnetic order (no accompa-
nying Weiss molecular-field) no valence-band subband is shifted towards the
Fermi level. Even though the amount of such paramagnetic regions below TC

is small enough not to intercept the percolation path through ferromagnetic
(and thus metallic) regions, such paramagnetic islands will however elongate
the path and contribute to an increase of the resistivity even below TC.
The second dominant feature visible in the graphs in Fig. 4.2 is the maximum
peak which decreases with increasing TC. We concentrate in the following on
the temperatures T < TC. To interpret the calculated data, one has to keep
in mind that only the cells which show paramagnetism are responsible for de-
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Fig. 4.3. Graph shows the resistivity around the Curie temperature in Arrhenius de-
piction. Solid lines indicate a calculation with a local Curie temperature (l= 15 nm),
dashed lines a global Curie temperature The inset shows the corresponding Fermi
energy for easier comparison plotted versus 1/T . Images of the corresponding car-
rier densities and current paths of the sample with TCloc can be found in Fig. 4.5.
The used sample parameters are as given for the sample annealed at 350◦C given in
Tab. 3.1.

viation from the metallic conductivity. The resistivity of such semiconducting
paramagnetic regions is determined sensitively by the ratio between thermal-
and activation energy kBT

∆ as given by Eqn. 1.3. With decrease of TC the
thermal energy of the cells which show paramagnetism at low temperatures
slightly above TC decreases as well whilst ∆ stays nearly constant. Herewith
the decrease of the maximum of the resistivity with increasing TC as given by
the calculations can be understood.
Another feature of the three graphs scilicet the large value of the resistivity
peak stays questionable from the background of the following points:
1. The theory does not include effects related with different magnetic do-
mains or grain boundaries such as localization at interfaces. In addition to
the discussed influence of the Weiss molecular-field no further influence of the
magnetic ordering of the Mn ions is included.
2. The band structure of a cell (i,j) is not affected by the value of the Curie
temperature as soon as T ≥ TCi,j .
3. For cells with T < TCi,j an additional Weiss molecular-field is taken into
account. This cells show metallic transport behavior due to the position of
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the Fermi level which is energetically located almost inside the most shifted
valence-band subband.
But nevertheless the maximum of the resistivity in all three graphs of
Fig. 4.2 slightly around TC is much larger than an extrapolation out
of the semiconducting phase down to T < TC would predict. For a
proper illustration Fig. 4.3 shows the calculated ρ0 around the critical
temperature which was performed using a local Curie temperature with

Fig. 4.4. Calculated strength of
the Weiss molecular-field for a
sample with TC=40 K.

TC = 42K in comparison with the calcu-
lated resistivity of a reference system ex-
hibiting a global Curie temperature of the
same value. To suppress all additional influ-
ences of disorder mD = 0 was used. The ori-
gin of this pronounced maximum of the re-
sistivity is the dependence of the activation
energy of paramagnetic cells on the amount
of ferromagnetic cells in the system: Within
a cell (i, j) fulfilling T < TCi,j the Weiss
molecular-field leads to a giant Zeeman split-
ting of the valence-band subbands as dis-
cussed more detailed in Sect. 1.3.3. Even
slightly below the Curie temperature the
strength of the molecular field is large in
comparison with the external fields usually
applied during the discussed experiments3.
The calculated temperature dependence of
the strength of the Weiss molecular-field for
a system with TC = 40 K is given in Fig. 4.4.
The combination of the high molecular field and the Mn concentration
x(i,j) > x of the mentioned cells4 leads to exceedingly large subband splits.
These large shifts of the majority bands in the ferromagnetic cells also in-
fluence the neutrality equation and lead to an increase of the Fermi level.
Despite the fact, that the resulting Fermi energy lies inside or at least close
to the shifted valence-band subbands of the ferromagnetic cells5, its energetic
spacing from the valence-band edge of the paramagnetic cells is drastically
enhanced. The proof that indeed such kind of magnetic disorder bears re-

3 The MR measurements discussed in this work were performed with external fields
up to µ0H = 10 T.

4 For cells which show ferromagnetism even at T > TC, x(i,j) > x is fulfilled
according to Eqn. 4.2.

5 We focus here on the transport leading subbands which are shifted towards the
acceptor level.
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sponsible for the enhancement of the Fermi energy and for this reason re-
sponsible for the strong increase of ρ0 is given in the inset of Fig. 4.3. In this
inset the calculated Fermi energy of calculations using a local- and a global
Curie temperature is shown. The Fermi energy is plotted versus 1

T simplifying
the comparison with the Arrhenius plot of the resistivity given in the same
figure. Whilst the Fermi energy of the sample calculated by use of a global
Curie temperature drops immediately down for temperatures above TC, the
result of the calculation with a local Curie temperature shows a significantly
slower decrease in the temperature regime slightly above TC. According to
this the activation energy of the paramagnetic cells will be enhanced at this
temperature range. Their carrier density n gets reduced drastically and as
a direct consequence of Eqn. 1.1 the resistivity of these cells increases. This
indirect influence is not in contradiction to 2.) where only the direct influence
of T ≥ TCi,j on a cell (i, j) was considered. In other words, the scenario of a
network system with local Curie temperatures leads to a strong localization of
carriers in ferromagnetic cells while the paramagnetic cells act as insulators.
The pronounced maximum of the resistivity at temperatures slightly above
the average of the local Curie temperatures can easily be understood in terms
of percolation theory: In this temperature regime almost 50 percent of all cells
are insulators. This coincides exactly with the predicted percolation barrier
for the given 2-dimensional geometry6 of the network. In this context the influ-
ence of the disordered spatial incorporation of Mn ions gets strongly amplified
around the critical temperature. To complete the illustration of this localiza-
tion of carriers due to the ferromagnetic cells Fig. 4.5 is used. In this figure
snap-shots of the carrier and current density distributions in the system with
TCloc = 42K are shown for five different temperatures. Without magnetic dis-
order (pure paramagnetic T � TC (55K) and pure ferromagnetic T � TC

(30K)) almost all cells provide the same carrier density and straight-lined
current paths. Fluctuations arise solely due to the fluctuating Mn concentra-
tion which is comparatively small for the underlying length-scale l = 15nm.
A contrary situation can be found for temperatures around TC: The carrier
density shows a large separation into two phases. One phase with very high
carrier density (dark areas) and one with low density (red areas). As a simple
consequence the current paths connecting dark areas of low resistivity show a
strong non-linear behavior with many intersections. As mentioned above the
amount of ferromagnetic cells (dark areas in Fig. 4.5) decreases with increas-
ing temperature reaching 50 percent at T = TC. It should be noted that a
quantitative comparison between different images based on the colors shown
in the figure is not feasible. Due to the large carrier- density changes for the
different temperatures the color scales change from image to image.

6 In the limit of ideal infinitely small cells
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Fig. 4.5. Images show the calculated carrier densities and current paths for a net-
work calculation with use of a local Curie temperature for different temperatures
around TC = 42 K. The corresponding resistivity characteristics can be found in
Fig. 4.3. The darker the color the higher the carrier density, yellow lines denote
paths of high current density. Note that the colors cannot be compared among dif-
ferent images, since the underlying scales change. l= 15 nm, the parameters are used
as for the sample with 350 ◦C annealing temperature given in Tab. 3.1.

4.2 Non-random Mn incorporation

So far the incorporation of Mn ions in Ga1−xMnxAs alloys was assumed to
be randomly i.e. without any correlation between the local Mn ion densities.
This description ensures that basic physical properties such as disorder are
taken into account without hiding some fundamental important effects be-
hind the choice of statistics. Although a random Mn incorporation seems to
be a reasonable approach to study an ideal paramagnetic DMS, it may be
less adequate to model systems where due to the growth technique or post
growth treatment such as e.g. annealing a non-random Mn incorporation is
likely. In these systems the observed transport data reflects the interplay of
material specific properties and mechanisms (e.g. the giant Zeeman splitting)
and local properties (e.g. non-randomness of the Mn ions or a MnAs clus-
ter incorporation). In the following we analyze whether the assumption of a
spatially non-random Mn-ion incorporation in Ga1−xMnxAs alloys will cause
significant changes of the calculated transport properties.
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4.2.1 Model details and results

The total number of Mn ions nMn in the system is given by

nMn = χ · x(l/lU )
3
K2 (4.4)

where χ is the number of atoms per cubic unit-cell, K is the number of cubes
in x- and y-direction and lU is the lattice constant of the cubic unit cell of the
zinc-blende lattice. Each of these Mn ions is individually allocated to one of
the K2 cubes in nMn separate distribution runs. In case of a spatially random
Mn incorporation the probability ρ0

Mn = 1/K2 of a cell to receive the Mn ion
is equal for all cubes and during all runs. The tendency of Mn ions to cluster
is modelled such that the probability of a cell to receive an additional Mn ion
is the larger the more Mn ions are already in the cell. This is expressed by
the parameter n1 as

ρMn = ζ
(
ρ0
Mn + n1 · n∗

Mnρ
0
Mn

)
(4.5)

where n∗
Mn is the number of Mn ions in the cube of the network at the time of

the distribution run, ζ is a normalization factor. The introduced parameter n1

describes the correlation of the non-random Mn ion incorporation i.e. n1 = 0
corresponds to the non-correlated case, n1 > 0 corresponds to the attractive
Mn incorporation and n1 < 0 to the repulsive case. Beside this capability of
the cell to influence the probability to obtain a Mn ion on its own during
the distribution process, (which is a direct influence weighted with n1), the
non-random incorporation of Mn ions due to the influence of neighbor cells
(the indirect influence) can also be considered. To take this indirect influence
into account a second parameter n2 is introduced. The model is based on the
assumption that each cell influences the probability ρMn of each of the four
neighbor cells (for the four-fold coordinated network) to obtain a Mn ion. To
describe the probability for a cell to receive a Mn ion at a specific distribution
run taking into account the indirect and the direct influence covered by n1

and n2 an extended version

ρMn = ζ

⎛
⎜⎝ρ0

Mn + n1 · n∗
Mnρ0

Mn +
∑

neighbor
cells(i)

n2 · n∗
Mn(i)ρ0

Mn

⎞
⎟⎠ . (4.6)

of Eqn. 4.5 has to be used. To eliminate artifacts related to cubes at the border
of the network which have less neighbors than inner cubes the distribution
procedure is performed with a ”shadow” network of (K + 2) · (K + 2) cubes.
After all Mn ions are distributed a smaller inner structure of K · K network
cubes is used in the actual calculation.
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Fig. 4.6. The upper part shows the Arrhenius plots of the resistivity around the
critical temperature for a series. The attraction factors n1 and n2 which are given
in the legends. The used material parameters belong to the sample annealed at
350 ◦C as given in Table 3.1. The lower part shows the images of the corresponding
networks. Each network image belongs to the calculation with the largest values of
the attraction factors in the Arrhenius plot above. The lower the resistivity of a cell
(the high carrier concentration) the darker is the color. Paths of high current density
are indicated by yellow lines, the thicker the lines the higher the carrier density. 8

Fig. 4.6 depicts the influence of n1 and n2 on the temperature-dependent
resistivity around the critical temperature for parameters of the sample an-
nealed at 350 ◦C as given in Table 3.1. The calculations were performed using
a local Curie temperature with α= 2105.3K corresponding to an averaged
TC= 40K. With increasing attraction factors the anomaly of the resistivity
gets broadened until for the largest simulated values of (n1,n2) = (1.0,0.5) the
peak of the resistivity is smeared out even down to 20K. This can be under-
stood on the basis of the given model. In the case of a strong non-random
distribution of Mn ions it exists even at 20K a fraction of network cells
which show paramagnetism and thus semiconducting transport properties.

8 It should be noted that the color scales of each of the three images are differ-
ent. The images just serve as an illustration and allow no further quantitative
consideration.
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Fig. 4.7. Calculated MR ver-
sus external magnetic field at
40K for different values of n1 of
a Ga0.992Mn0.008As sample. Re-
maining parameters are given in
Tab. 3.1 for the sample annealed
at 600 ◦C.

As their resistivity is larger than that of the
metallic (and ferromagnetic) network cells,
the semiconducting regions almost define the
resistivity if their amount or the distribution
of them is such that the percolation path has
to pass them. The increase of the resistiv-
ity with increasing temperature is the direct
consequence of the growing amount of para-
magnetic regions. The three color images il-
lustrate the carrier-density distribution and
the main current paths in the system for
n1= 0.02 (left), n1=0.1 , n2=0.05 (middle)
and n1=1.0, n2=0.5 (right). A trend from
a pure random distribution of the local car-
rier density reflecting the (almost) random
Mn-ion distribution for n1=0.02 towards a
clustering of carriers in the calculation with
the largest values of n1 and n2 is clearly vis-
ible. The calculations presented in Figs. 4.6
and 4.2 performed using a local Curie tem-
perature and taking into account a non-random Mn-ion incorporation can
be understood on the basis of the applied model. Nevertheless they are not
able to reproduce the experimental data more accurately than the calcula-
tions performed without these two modifications. In particular the anomaly
of the resistivity around the critical temperature which is measured to be much
weaker than given by previous calculations (see Fig. 3.4) cannot be reproduced
more satisfactorily by introducing TCloc . This suggests that for a more realis-
tic description of the resistivity around the phase change more sophisticated
models beyond the macroscopic description given here have to be applied,
which e.g. take into account the scattering of carriers on the fluctuations of
the magnetization [134, 135]. As the antipode of the ferromagnetic sample
one can consider the sample annealed at 600 ◦C. Since the experimental data
shows that the sample is paramagnetic even at low temperatures (down to
at least 10K) and that possible precipitates have no direct influence on the
transport properties, the model should be well adopted for a proper descrip-
tion. It seems reasonable that the high annealing temperature goes along with
a spatial non-random rearrangement of Mn ions. The question arises whether
due to the assumption of a correlated distribution of magnetic ions a certain
weakness of the choice of material parameters (shown in Tab. 3.1) namely the
assumption of a comparatively large concentration of magnetically active Mn
ions even at high annealing temperatures can be eliminated. Fig. 4.7 serves
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Fig. 4.8. Comparison
of calculated and mea-
sured MR versus exter-
nal magnetic field for
different temperatures
for a Ga0.98Mn0.02As
sample annealed at
600 ◦C. Symbols de-
note experimental
results, solid lined the
calculations. For the
calculations n1 = 0.25
and x = 0.004 were
used. The remaining
model parameters are
given in Table 1.1

as a first hint that this question can be answered positively. In this figure
the calculations of the MR at 40K for different values of n1 show that the
negative MR increases with increasing strength of the attraction factor. The
percolation path connects cells an enhanced amount of Mn ions and thus the
resistivity shows a stronger dependence on the magnetic field as in the case
of a pure random incorporation of Mn ions. In other words the non-random
Mn distribution simply enhances the effective amount of Mn ions which are
relevant for the magnetotransport properties of the sample.

Fig. 4.8 shows the comparison of calculated and measured MR of a
Ga0.98Mn0.02As sample annealed at 600◦C where the annealing led to the
formation of MnAs clusters such that their density is below the percolation
threshold and the Mn content in the surrounding paramagnetic matrix is sig-
nificantly reduced to about x = 0.004. The non-random Mn ion incorporation
was accounted for by n1 = 0.25. The experimental results can be described
quantitatively in the entire temperature range considered which is hardly pos-
sible assuming a random Mn incorporation as shown in Fig. 3.11.

4.3 Conclusion

In this chapter the influence of a local Curie temperature and a non-random
incorporation of Mn ions in (Ga,Mn)As alloys on the transport properties was
analyzed. The deviations between the calculated and the experimentally ob-
tained resistivity around the critical temperature cannot be eliminated by in-
troducing a local Curie temperature. But as a supplement it can be concluded
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that the model calculations of the series of annealed Ga1−xMnxAs samples
do not only substantiate a reduction of the density of Mn ions acting as ac-
ceptors and the reduction of the density of magnetically active Mn ions but
also suggest a spatially non-random rearrangement of Mn ions with increasing
annealing temperature. This is the main result of this chapter. Herewith the
gap of how the annealing process influences the transition from a single-phase
Ga1−xMnxAs random alloy towards a two-phase hybrid structure is bridged
plausibly.





5

Transport in hybrid structures

5.1 Introduction

Another subclass of the (Ga,Mn)As system is granular hybrid structures
consisting of ferromagnetic MnAs clusters embedded in a paramagnetic
Ga1−xMnxAs host matrix. Such hybrids allow one to combine semiconduct-
ing and magnetic properties [39, 40, 41, 44, 131, 133]. The high attractiveness
results from the fact that the MnAs clusters exhibit ferromagnetism with a
TC above room temperature which is necessary for future commercial use in
spintronic devices, while the host matrix can easily be integrated into existing
III-V non-magnetic semiconducting systems. Unfortunately this very ’entan-
glement’ of magnetic and electronic properties, which makes this material
class predestinated for spintronic applications, leads to a markedly high com-
plexity of the material properties. This high degree of complexity is reflected
in the fact that even fundamental questions like those about the dominant
transport mechanism, about the interaction between cluster and host matrix
and about the band structure of the cluster are still under discussion or even
entirely open. This may be the reason why from the theoretical point of view
the system attracted only little attention, as a comprehensive microscopic
description, even if possible, is a distant prospect. On the other hand, ex-
perimentalists considered the discussed hybrid structures often more as an
undesired side effect when attempting to enhance the solubility limit of Mn
in GaAs, rather than as an interesting system to be analyzed systematically.
Recently the situation changed and clusters were even considered to be a new

paradigm of condensed matter physics [137]. A couple of experimental studies
appeared e.g. dealing with cluster formation [6, 9, 138] or during post-growth

2 Transmission electron microscopy
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Fig. 5.1. TEM2image of a ferromagnetic MnAs cluster embedded in a paramagnetic
GaAs:Mn matrix originated from MOVPE growth. [136]

annealing of MBE grown samples and optical [7] as well as transport proper-
ties [8] of hybrids. This arising interest may be correlated with the moderate
success of researchers to increase the Curie temperature of the single-phase
(Ga,Mn)As random alloy up to room temperature − an ambition that, despite
promising theoretical studies [26], has turned out to be a highly complex and
tedious quest [102, 121, 139, 140].
Based on the results of the studies of the paramagnetic single-phase
(Ga,Mn)As, a minimal-model is developed to describe the transport prop-
erties of ferromagnetic-paramagnetic MnAs/GaAs:Mn hybrid structures over
a broad range of temperatures and external magnetic fields. For the first sys-
tematic theoretical study of this material class, we used an adequately small
set of assumptions and parameters whose influence on the macroscopic trans-
port properties were analyzed. The specification of the analyzed parameter
space and of the studied effects was performed on a purely phenomenological
basis. It was attempted to identify qualitatively physical mechanisms that ex-
plain the remarkable differences between the transport properties of hybrids
and the pure Ga1−xMnxAs host matrix [133]. These main differences are:

• A strongly enhanced resistance of hybrid samples at low temperatures
• A strong increase of the gradient of the resistivity in Arrhenius represen-

tation at low temperatures
• A large negative MR at low temperatures (T < 50 K)
• A pronounced positive MR effect up to several hundred percent in an

intermediate temperature regime
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Fig. 5.2. (a) Measured temperature dependence of the MR at µ0H=10T of a
GaAs:Mn/MnAs hybrid sample and of a Ga1−xMnxAs sample in the paramagnetic
phase. The strongly enhanced positive MR observed for the hybrid sample is clearly
visible. (b) Arrhenius plot of the measured ρ0 of a GaAs:Mn/MnAs hybrid sample
and for a Ga1−xMnxAs sample in the paramagnetic phase. For details see [136] .

For the quantitative analysis of the dependence of the transport properties on
the model parameters a multiplicity of numerical calculations was performed.
Therefore an extended version of the network model, introduced in a previ-
ous chapter, was applied. The influences of effects that in principle can be
considered to be able to lead to the measured temperature dependence of the
conductivity and magnetotransport behavior are firstly studied individually
in order to reduce the parameter space. A strong emphasis was placed on the
analysis of the influence of local cluster configurations inside the matrix on the
magnitude of the magnetotransport effects. In this context it is shown that by
use of controlled positioning of clusters e.g. gate-like or sandwich structures
the simulated positive MR effects can be enhanced considerably in comparison
with a pure random or a centered incorporation.

5.1.1 Dependence on growth conditions

The formation of ferromagnetic MnAs clusters within the host matrix can
occur under certain conditions by ion implantation of Mn into LT GaAs and
subsequent annealing [39, 141], or in the MBE growth followed by annealing
above the growth temperature [6, 9, 40, 142, 143]. Another possibility for hy-
brid structures to form is in the metalorganic vapor phase epitaxy (MOVPE)
growth [96] where it takes place during the actual growth process. Under such
growth conditions the clusters form in a region near the surface leading to
a top layer of remarkably high cluster density and cluster size up to a di-
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ameter of several hundred nm. Below this top layer the material is almost
free of MnAs precipitates. Fig. 5.1 shows an image of such a cluster grown by
MOVPE, the image was taken by transmission electron microscopy (TEM)
at the Central Technology Laboratory of the Philipps University in Marburg
[136].

5.2 General model properties

The basic ingredients of the model developed to describe the magneto trans-
port properties in hybrid structures are:

• The cluster is assumed to be a half-metal [144, 145]. The spin degener-
acy of its bands is lifted. The Fermi energy is energetically located inside
the subband of one spin orientation. The carriers in this subband show
metal-like conductivity. The minority subband has an energy spacing of
EAC between the Fermi energy and the subband edge and therefore shows
activated transport behavior.

• To be able to describe the strong positive MR effects that are observed
solely in hybrid structures and which do not occur in pure matrix samples
(see Fig. 5.2) we assume that the pseudospins of the majority subbands
of the matrix and the cluster are of opposite orientation. In simple terms:
While the spin-down subband of the matrix has the lower resistivity (for
H > 0) inside the cluster the spin-up subband has the lower resistivity
(independent of the external field).

• When connecting the cluster cells with the surrounding matrix cells, a
spin conservation is assumed (see Fig. 5.3): In the presence of an external
magnetic field the spin degeneracy in the matrix materials valence bands
is lifted, the carriers are not allowed to change their spin when entering
the cluster. Therefore they have to pass the cluster via the minority band
or have to avoid it and stay in the majority band of the matrix increasing
the length of the current path.

• Due to different inherent Fermi energies of the cluster and the matrix (in
respect to the vacuum level), the formation of a Schottky barrier at the
cluster-matrix interface can be considered. Depending on the sign of this
barrier it is either attractive or repulsive for the carriers in the matrix. The
influence of the barrier on the matrix material is taken into account when
solving the neutrality equation for the derivation of the Fermi energy.

• The clusters exhibit ferromagnetism. The influence of their spontaneous
magnetization on the matrix is taken into account in the simplest possible
way: We assume an additional magnetic field felt by the matrix cells in the
vicinity of the cluster. This cluster field leads to a GZS induced splitting
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Fig. 5.3. The arrows denote the possible transport paths through a matrix-cluster-
matrix sandwich-structure in the presence of an external magnetic field H �= 0. The
corresponding resistor network is imaged by Fig. 5.6.

of the valence-band subbands even in the absence of an external magnetic
field.

• A direct influence of an external magnetic field on the band states of the
cluster is not taken into account.

To explain the strong deviations in transport properties between pure matrix
and hybrid samples (e.g. Fig. 5.2 ) the basic effects taken into account in the
model (the formation of a Schottky barrier, the magnetic field of the clus-
ter and its half-metallic character) are studied independently of each other
at the beginning. This was necessary even though these effects influence each
other. However without such a radical decoupling the dimension of the param-
eter sphere is simply too high to gain new insights by performing parameter
studies. In the following the boundaries of the parameter space are identified,
within which a description of the experimental data is possible. By comparison
of numerical with experimental data, one is not only able to exclude certain
effects, but also to obtain a reduction down to defined sets of parameters and
effects. Nonetheless the phenomenological model does not allow one to identify
particular points in the parameter sphere and to provide definite weighting of
different physical effects, since the system exhibits a remarkably high degree
of complexity.

5.2.1 The cluster itself

Seeing as the existing theoretical studies for the band structure of MnAs
suggest it to be a half-metal (but differ at least quantitatively [144, 146, 147,
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Fig. 5.4. Schematic illustration of the band structure of the cluster as it is used in
the calculations in comparison with the majority bands of the matrix material in
presence of an external magnetic field. The dashed lines denote the spin degenerate
band structure in the matrix at H = 0.

148, 149]) the assumption of a convenient half-metallic band structure seems
reasonable. Based on the presumed material properties of the cluster, the
experimentally observed transport properties should be allegeable. At least no
known experimental or theoretical statement suggests that the assumptions
made about the cluster are wrong. In the calculations the cluster is considered
to be a half-metal as schematically shown in Fig. 5.4. For the resistivity of the
majority band a temperature independent value ρMaC = 2 ·10−4Ω cm is used.
This majority-band resistivity is below the resistivity of the matrix cells in
the observed temperature range. The assumed resistivity ρMiC of the minority
band is governed by activated transport given by3

ρMiC = ρ0
Cexp

(
EAC

kBT

)
(5.1)

where ρ0
C plays the role of the pre-exponential factor as introduced in

Eqn. 2.1. The energy EAC required by carriers for thermal activation into
the minority band of the cluster has to be chosen sufficiently large to
assure that ρMiC is larger than the resistivity of the majority band of
the matrix cells. If this condition is not fulfilled a positive MR related
with different majority-subband spins as discussed in detail in section 5.2.2
cannot be achieved. Fig. 5.5 shows the influence of the calculated tem-

3 As the band structure of the cluster is unknown, we use this simplified description
instead of a self consistent determination of the Fermi energy and the carrier
density as done for the matrix e.g. in Eqs. 1.1 and 1.2.
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Fig. 5.6. Illustration of the different ways to connect the resistors representing the
spin up and spin down subbands. (a) shows the connection where all channels are
switched in parallel in each cell, all spin information gets lost. (b) illustrates a two-
channel model, one single resistance for each spin direction is calculated and the
resulting two channels are switched in parallel at the end. The spin information of a
carrier does not get lost when passing from cell to cell, such a connection represents
the conservation of the carrier spin.

perature dependence of the MR at µ0Hex =10T for a hybrid sample.
For a simple comparison with the transport properties of the surrounding

Fig. 5.5. Dependence of the calculated
MR at µ0H =10 T versus T of a hy-
brid sample on values of EAC . Inset
shows the calculated temperature depen-
dence of EF of the matrix material. Cal-
culation uses spin conservation as intro-
duced in Sect. 5.2.2. Single centered clus-
ter xC= 0.3, parameters see sample No. 1
Tabs. 5.1,5.2.

matrix material the inset depicts the
calculated Fermi level of the ma-
trix cells. This represents the aver-
age activation-energy of the matrix.
With increasing EAC the positive
MR effect gets more pronounced and
persists up to higher temperatures.
This trend is anticipated, since only
if EAC is large enough to ensure a re-
sistivity larger than that of the sur-
rounding matrix cells, thus the cur-
rent avoid the cluster, resulting in a
positive MR effect. Nevertheless just
by increasing EAC the maximum of
the positive MR can be increased
and shifted towards higher temper-
atures. Although this shift is lim-
ited due to the fact that at elevated
temperatures the spin splitting of
the valence-band states in the ma-
trix breaks down. Thus the spin con-
servation covered by Eqn. 5.2, which
will be discussed in detail in the fol-
lowing section plays no crucial role
anymore and the current can pass througt the clusters majority band. Under
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this condition the activation energy EAC determining the transport properties
of the minority band of the cluster is of negligible influence on the transport
properties of the system.

5.2.2 Consequence of opposite alignment of majority spins of
cluster and matrix

The resistivity of the hybrid system is modelled by

ρ = (1 − η) · ρsc + η · ρp (5.2)

with the pre-factor η = e−Esa/kBT representing the probability of thermal
activation of a carrier from the top of the majority band with jz = − 3

2 into
the minority valence-band subband with jz = 1

2 . The resistivity ρp is the
result of the (usual) network calculation, while ρsc is the resistivity assuming
spin conservation. This description assures to study the influence of a cluster
whose majority band providing metal-like conductivity has an opposite spin
projection than the majority band of the surrounding semiconducting matrix
(in the case that Hex = 0). Esa = 2

3xN0β < SZ > is given by the energy
difference originating in the giant Zeeman splitting according to Eqn. 1.114

Esa = Ev(−3

2
, H, T ) − Ev(

1

2
, H, T ) (5.3)

= −1

3
(−3

2
)xN0β < Sz > −

(
(−1

3
)
1

2
xN0β < Sz >

)
=

2

3
xN0β < Sz > .

On the basis of the usual network calculation the resistivity of a cell ρm is given
by Eqn. 1.21. To obtain ρm the resistivity ρjz of each of the four subbands is
connected in parallel
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. (5.4)

The information about the carrier spin is lost when Eqn. 5.4 is solved. The
carrier spin only plays a role for the spin selective splitting of the valence-
band subbands. As soon as the resistivity of each subband is calculated and
the resistivity of each cell is derived no further distinction between carriers

4 The global Mn concentration is used as an approximation. The additional mag-
netic field of the cluster is neglected, thus the activation energy Esa is a constant
average value for all cells.
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Fig. 5.7. Illustration of the current path through a hybrid sample including a
centered cluster (grey area), µ0Hex = 10 T. Different intensities of bluetones denote
different resistivity of the cells, yellow lines denote the current path, thickness of the
lines indicates the current density. The calculation was performed (a) for a system
in absence of spin conservation, (b) including spin conservation.

of different spin is made. This situation is illustrated by Fig. 5.6 (a) where
a hybrid system of 1·3 cubes (matrix - cluster - matrix) is represented by a
resistor network. In each cell the resistors of both spin directions representing
the two spin channels (up and down) are connected in parallel. The resulting
three resistors (one for each cell) are consequently connected in series. This
connection allows a carrier to pass the majority bands of both the matrix and
the cluster to achieve the lowest resistance independently from the spin ori-
entation in the bands. In Fig. 5.7 the current path through a two dimensional
hybrid structure (at µ0Hex = 10T) including a centered cluster is shown.
Since no spin conservation was assumed the current passes through both the
majority band of the matrix cells as well as the highly conductive metal-like
subband of the cluster. Under the assumption of (i) the spins of the majority
bands of the matrix and the cluster are different and (ii) η ≈ 1 or even smaller,
a carrier keeps its spin during the transport process and an approach which
does not take this into account is maladjusted. If (i) and (ii) are fulfilled a
carrier in the majority band of the host matrix has to pass the cluster via its
minority band or has to circumvent it. In the following this effect is referred
to as the regime of spin conservation. A possibility to represent this in terms
of the present model is to introduce an independent resistor network for each
spin orientation5.

5 For simplification only one network for spin up (spin down) is introduced. In
this network the resistors belonging to jz = 3

2
and 1

2
(jz = − 3

2
and − 1

2
) are

connected in parallel. Such an approximation is justified due to the same reason
as the parallel connection of all four resistors in each cell in the absence of spin
conservation.
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Doing so ρsc is given as

ρsc =
ρ↑ρ↓

ρ↑ + ρ↓
; (5.5)

ρ↑ (ρ↓) is the result of a network calculation where the resistivity in each cell
are given by the parallel connection of the two subbands with spin 3

2 and
1
2 (− 3

2 and − 1
2 ). In Fig. 5.6(b) such a connection of resistors is shown that

provides spin conservation. The total resistance of the matrix-cluster-matrix
chain is given by the parallel connection of a spin-down and a spin-up channel.
Since a carrier is not allowed to change its spin when entering a new cell, a
spin-down carrier in the majority band of the matrix has to pass through the
minority band of the cluster and vice versa.
In the case of a real 2-d network assuming spin conservation, instead of passing
the minority band of the cluster the carrier circumvents the cluster in the
majority band of the matrix. Fig. 5.7(b) shows the calculated current path
developing through a hybrid system avoiding the cluster as a consequence of
the spin conservation regime.6 This basically geometric origin of the positive
MR effect leads to another important aspect: The influence of the arrangement
of the clusters in the sample on the transport phenomena. The elongation
of the current path leads to an enhancement of the MR while the choice of
different spatial arrangements of clusters should lead to different current paths
which avoid the clusters. These different paths should have a considerable
influence on the MR properties. Fig. 5.8 serves as a first illustration of this
influence of the cluster positions and cluster size. In this figure the calculated
maximum value of the MR at µ0Hex = 10T is shown versus the concentration
of cluster cells xC for two different cluster distributions (a) and (b). While
(a) represents a structure of five clusters arranged in a very specific way as
shown in the inset7, (b) corresponds to a single cluster centered inside the
matrix material. The observed difference in the maximum value of the MR
reflects the influence of the cluster position on the increase of the current-
path length. This length scales the size of the positive MR. In the case of
the centered cluster given in (b) even for very high concentrations up to 40%
always areas of matrix cells remain where the current paths are not affected
by the presence of the cluster. This is in contrast to distribution (a) where for
high xC the four clusters located at the fringe of the sample form a gate-like

6 Whether passing the cluster on a short but highly resistive path or circulating
around it with lower resistivity but increased path length provides the smallest
resistance depends sensitively on the chosen parameters. Most relevant parame-
ters are: ρMaC , ρMic,the valence-band subband-splittings ∆EV (jz, H, T ) as well
as the geometry, the size and distribution of the clusters.

7 If not mentioned separately the current direction always is from left to right.
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structure which all carriers have to pass. The fifth cluster is located right in
the middle of this gate. Therefore almost all carriers in the system are affected
by the clusters at some stage of their way through the sample.
In Fig. 5.8 this influence can be found clearly reflected. For high concentrations

Fig. 5.8. Calculated MR at
µ0H=10T versus xC for two dif-
ferent cluster geometries as given
in the inset. Calculation with
spin conservation, without Schot-
tky barrier and HC . Parameters
see sample No. 5,Tabs. 5.1, 5.2.

of cluster cells the maximum MR of the
two samples strongly differs and sample (a)
shows a much stronger increase with increas-
ing xC up to more than 600% for xC = 0.4.
Not to cover effects of different additional
mechanisms which are discussed in the fol-
lowing sections, by the influence of statis-
tics (cluster arrangements), further calcula-
tions are performed with a single cluster cen-
tered in the sample. An extensive analysis of
the influence of the cluster position and the
possibility of a tailoring of hybrid structures
to provide MR effects on a preferably large
scale is given in section 5.3.

Besides its large influence on the mag-
netotransport properties, the discussed spin-
conservation mechanism alone is not able to
explain the strong enhancement of the resis-
tivity of hybrid samples in comparison with
their matrix counterparts at zero field and
low temperatures. Fig. 5.9 (b) shows the cal-
culated temperature dependence of the re-
sistivity in absence of an external field. As
expected the calculated resistivity depends
neither on the size of the cluster nor on spin
conservation. Similarly no significant differ-
ence between the low temperature resistivity
of hybrid structures and the accompanying
pure matrix material (depicted by a solid line) can be found. This result of
the current model is in appreciable contrast to the experimental data shown
in Fig. 5.2 (b).

If no external field is applied and no spin-dependent splitting of the valence
bands is present, the resulting resistivity with and without spin conservation
is still almost equal.8 The influence of clusters with almost metal-like conduc-
tivity (as in this regime the current can pass through the majority band of the

8 The splitting of the valence-band subbands induced by the magnetic field of the
cluster is neglected so far in terms of its influence on spin conservation.
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Fig. 5.9. (a) shows the calculated MR versus T at µ0Hex =10T assuming spin
conservation for a series of hybrid samples with a centered cluster of various size as
indicated. The dashed line denotes the pure matrix behavior. The inset shows the
same calculation without spin conservation. (b) shows the calculated resistivity for
the same series of samples with spin conservation, the inset shows the calculation
performed without spin conservation. Parameters as sample No. 5, Tabs. 5.1, 5.2.

clusters) has only a weak influence on the conductivity of the whole sample
as soon as their concentration is much below the percolation limit [60].

Without the special choice of the majority-band spin-directions of the clus-
ter and the matrix, and in the absence of spin conservation, the experimentally
obtained strong positive MR at µ0H = 10T cannot be found in the calcula-
tions. Thus the cluster band-structures required as well as the two channel
model, providing the spin conservation are assumed in further calculations.
To summarize, it was shown that the assumptions of (i) an opposite ori-
entation of majority spins in cluster and matrix and (ii) spin conservation
are essential for obtaining positive MR effects9 as observed in experiments.
However, they are not sufficient to explain the differences in the temperature-
dependent resistivity observed with and without clusters. Therefore additional
effects have to be added. The influence of Schottky-barrier formation and the
magnetic field of the cluster are both studied separately in the sections 5.2.3
and 5.2.4. They are assumed in addition to the assumptions about the band
structure of the cluster and the spin conservation.
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Fig. 5.10. Schematic illustration of the band alignment at the cluster to matrix
interface (a) before both were brought into contact and (b) after having realized a
perfect contact (e.g. in absence of surface/interface states) [150]. The transfer from
electrons out of the metal (dashed line in (a) leads to the formation of a Schottky
barrier of ohmic type (ES > 0) that causes a trapping of carriers in the vicinity of
the cluster as assumed in most calculations.

5.2.3 The Schottky barrier

The possible formation of a Schottky barrier at the interface between the
cluster and the semiconducting matrix can be taken into account in the model
as well. This is basically done by adding an additional and magnetic-field
independent energy shift ES to the valence-band energy of all matrix cells in
the neighborhood of cluster. Since the decrease of the Schottky barrier with
increasing distance from the cluster is not known to us an arbitrary decay as
1/(∆C(m))5 is assumed10. ∆C(m) denotes the distance of a cell with index m
from the nearest cluster cell measured in units of network cubes (as no decay
of the valence-band energy is resolvable at smaller length-scales). Taking this
into account the valence-band subband-edge Ěm

V (jz , T, H) of a matrix cell in
a hybrid structure is described by

Ěm
V (jz, T, H) = Em

V (jz, T, H) + Em
D + ES · 1

(∆C(m))5
. (5.6)

With ES > 0 the Schottky barrier leads to a trapping of carriers in the vicinity
of the cluster as schematically shown in Fig. 5.10 and forms a semiconductor-
metal contact of ohmic type. If ES < 0 a rectifying contact is formed which
leads to a repulsion of carriers away from the cluster. In this context it should
be noted that the formation of a perfect contact between the cluster and

9 One anticipates that on the basis of the model given in 5.2 no other effect can
cause this pronounced positive MR.

10 The exponent is a rather noncritical value which scales the effective cluster den-
sity. A decay ∝ 1/(∆C(m))4 or 1/(∆C(m))6 leads to qualitatively similar results.
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Fig. 5.11. In (a) the calculated MR at µ0H = 10T for a hybrid sample with x =
0.1 % depending on T for samples with different Schottky-barrier depths as indicated
in the key are shown. The solid line denotes the MR of the pure matrix material. The
inset shows the average energy shift of the majority band with jz = 3

2
at µ0H = 10T

versus T. (b) shows the corresponding resistivity ρ0 at zero field versus T. The solid
line denotes the resistivity of the pure matrix. For parameters see sample No. 3,
Tabs. 5.1, 5.2, single centered cluster.

the matrix material is assumed, i.e. interfacial defects are neglected. Fig. 5.11
shows the results of the calculated temperature dependence of the MR at
µ0H = 10T and the temperature dependent resistivity at zero field for a
hybrid structure assuming a variety of different Schottky-barrier depths of
both ohmic and rectifying type. In the absence of a Schottky barrier the
result basically reflects the exponential decay of the spin conservation regime
as given by Eqn. 5.211. The situation becomes more complex with increasing
values of | ES |. First we study only the interplay of the spin conservation and
the Schottky barrier (i.e. without the interplay between the (ohmic) Schottky
barrier induced trapping of carriers and the matrix induced delocalization due
to the giant Zeeman splitting). Thus the Mn concentration in the calculations
was chosen sufficiently small and the influence of the matrix is negligible for
the interpretation of the calculation. This results in an almost vanishing MR
of the pure matrix as well as the average split of the most shifted subband
(depicted in the inset of Fig. 5.11(a)) which is very small compared with the
value of the Schottky-barrier depth.

For increasing positive values of ES the positive MR at low temperatures
breaks down. The ohmic Schottky barrier leads to a trapping of carriers in
the vicinity of the cluster. In other words, it leads to a formation of a belt

11 Since the elongation of the current path breaks down exponentially.
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Fig. 5.12. In (a) the calculated MR at µ0H =10 T for a series of hybrid samples with
different x and ES=10meV is shown. The inset depicts the corresponding average
split of the matrix majority-band at µ0H =10 T. (b) shows the resistivity at zero
field versus T for the same series. For parameters see sample No. 4, Tabs. 5.1, 5.2,
single centered cluster.

around the cluster consisting of cells with high conductivity. This conductiv-
ity increases with increasing positive value of ES. The influence of the spin
conservation on the MR, that forces the current path to avoid the cluster, gets
damped with increasing ES since the conductivity of the cells on the (elon-
gated) current path around the cluster is strongly enhanced. In the opposite
case increasing values of a rectifying Schottky barrier reduce the influence of
spin conservation. Even in the absence of a magnetic field the current does
not pass through the cluster as the almost carrier-free neighboring cells show
an enhanced resistivity. From this background it is quite obvious that the spin
conservation in conjunction with a rectifying Schottky barrier does not lead
to an increase of the MR as the main current paths are only affected weakly.
The dependence of the resistivity at zero field shown in Fig. 5.2(b) helps to
clarify the sign of a possible Schottky barrier. A strong enhancement of the
low-temperature resistivity (as required in order to reproduce the experimen-
tal data shown in Fig. 5.2) can be found only in the calculations performed
using an ohmic type of contact. As mentioned, the carriers are trapped at low
temperatures in the vicinity of the cluster due to the Schottky barrier. Com-
pared with the absence of the barrier or a rectifying contact, the resistivity
increases drastically since the carrier concentration in the remaining matrix
cells, through which the current has to pass, drops down. With increasing
temperature the carriers become delocalized from the cluster surface and con-
tribute to the transport.
After the sign of a possible Schottky-barrier formation has been determined
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Fig. 5.13. Image of the splitting of the matrix valence-band in the vicinity of the
cluster due to its magnetic field HC .

by a comparison of experimental and model data, the additional interaction
with the giant Zeeman splitting of the matrix cells is switched on. This can be
done easily in the model by an increase of the Mn ion concentration. Fig. 5.12
shows the calculated MR at µ0H =10T versus temperature for a hybrid sam-
ple with ES = 10meV for different Mn concentrations ranging from x=0.002
to 0.016. The visible strong negative MR at low temperatures, which is more
pronounced with increasing Mn concentration, results from the large splittings
of the matrix valence-band states. Depending on x the size of this giant Zee-
man effect-induced splittings is at low temperatures even larger than the value
of the Schottky barrier. To illustrate this the inset of Fig. 5.12 (a) shows the
energy shift of the valence-band subband shifted most towards the acceptor
state. If an external magnetic field is applied the carriers are no longer local-
ized at the belt surrounding the cluster (due to the influence of the Schottky
barrier) but are distributed almost over the entire system into cells showing a
low activation energy. This negative MR scales with the concentration of mag-
netically active Mn ions and persists up to higher temperatures. In contrast
to the magnetoresistance the resistivity at zero field shown in Fig. 5.12 (b) is
affected only weakly by the variation of x. On the basis of the model this is
obvious since the strong MR effects were related to the giant Zeeman splitting
which vanishes at zero field. The slight increase of the resistivity at low tem-
peratures with increasing x visible in the results is a pure matrix effect due
to the magnetic field independent disorder given in Eqn. 1.16, and therefore
independent of the hybrid character of the sample.

5.2.4 The cluster field

The ferromagnetism of the cluster is assumed to be a dipolar field. It is treated
as an additional magnetic field of strength HC which acts on the cells near the
cluster surface. It decays with increasing distance of the cell from the interface



5.2 General model properties 83

with 1/∆C(m)3 where ∆C(m) is defined as in 5.2.3. The magnetic field acting
on a matrix cell in a hybrid structure is given by

H = Hex +
1

∆C(m)
3 · HC (5.7)

where Hex denotes the external magnetic field while H represents the total
field acting on a matrix cell. Due to the additional contribution of HC a
splitting of the valence-band subbands in the vicinity of the cluster cells can
occur even at Hex = 0 as the cluster field alone leads to a giant Zeeman
splitting. This is illustrated in Fig. 5.13. The splitting of the valence band
subbands induced by HC is given by ∆EV (jz , HC , T ) = − 1

3xlocN0β < Sz > jz

in the vicinity of the cluster, with < Sz > is given by Eqn. 1.9. This splitting
and the resulting localization of carriers in the vicinity of the cluster at small
Hex and T does not only depend on the value of HC but also on x.

This significant dependence on both parameters is shown in Fig. 5.14,
where the calculated logarithmic resistivity at Hex =0 T for a hybrid sam-
ple including a centered cluster of 30 percent of the total sample volume is
plotted against the inverse temperature. In (a) µ0HC =6T and a series of
different Mn concentration in the matrix ranging from 0.2 up to 1.0 percent
were assumed. While at higher temperatures (T > 40K) the calculated re-
sults do not depend on x, (as the giant Zeeman splitting breaks down) for
small temperatures a strong dependence on the Mn content is visible. With
increasing x the resistivity increases and for the largest value x =0.01 the
Arrhenius plot is even bent upwards. This is caused by the aforementioned
phenomenon, whereby carriers get localized near the cluster surface which
leads to an enhancement of the resistivity in the remaining matrix cells. With
increasing temperature the localization of carriers breaks down, leading to an
even stronger than exponential increase of the conductivity as illustrated in
Fig. 5.14(a). The inset of this figure depicts the dependence of the resistivity
of the pure matrix material on the change of x. Since the calculation was per-
formed with mD =1.5 eV the potential landscape at zero field also depends
on x. With increasing average fluctuation amplitude (Eqn. 1.16) the activation
energy of the cells which contribute to the percolation path is reduced and
the resistivity is decreased with increasing x. With increasing temperature
this weak reduction of the activation energy due to alloy disorder becomes
irrelevant and the curves coincide. Fig. 5.14(b) shows almost the same calcu-
lation as in Fig. 5.14(a) but the Mn content in the matrix is a fixed value
(x =0.006) and the curves indicated by symbols belong to different strength
of HC ranging from 2T up to 15T. The solid line denotes the pure matrix
behavior. It is remarkable that for weak HC the field does not lead to any
trapping of the carriers. Since no external field Hex is applied and thus no
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Fig. 5.14. Calculated dependence of the zero field resistivity ρ0 on the strength of
the clusterfield HC for a sample with a centered cluster with a size of 30% of the
total sample. (a) shows ρ0 for µ0HC = 6T for matrix materials with different Mn
concentrations in Arrhenius depiction. The insert shows the Arrhenius plot of ρ0 for
the pure matrix material for corresponding x. (b) shows the resistivity for different
magnetic fields HC of the cluster for a sample with x = 0.006. The solid line denotes
the MR of the pure matrix material. For remaining parameters see sample No. 2 in
Tabs. 5.1, 5.2.

spin conservation is considered the total resistance of the hybrid sample is
even slightly below that of the matrix sample. If HC increases up to 10T a
small up bend of the Arrhenius plot is visible at temperatures around 20K.
At HC = 15 T this upwards bend is well pronounced. Similarly to the results
shown in Fig. 5.14(a) this is caused by the strong localization of carriers at
the interface which leads to a carrier depletion in the surrounding matrix.

The concentration of magnetically active Mn ions which was needed to
calculate the observed characteristics is found to be large (e.g. between 0.6
and 1.0%) compared to experiment. But one should keep in mind that such
large values of x are particularly required in the vicinity of the cluster. In the
calculations the same average concentration was assumed within the whole
sample. At least for the hybrid samples obtained by thermal annealing of MBE
grown Ga1−xMnxAs, where precipitates are assumed to form in regions of high
Mn concentration, the existence of a slightly enhanced Mn concentration in
the vicinity of these precipitates seems not unreasonable. On the contrary,
a non-random incorporation of Mn ions is even suggested by the results of
chapter 4.

Fig. 5.15 shows the dependence of the magnetoresistance for an external
field µ0Hex= 10T versus temperature. In (a) the calculated MR using a fixed
clusterfield µ0HC =6 T are shown for a series with different x. For the lowest
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Fig. 5.15. Calculated dependence of the MR on the strength of the clusterfield HC

for a sample with a centered cluster with a size of 30 percent of the total sample.
(a) shows the MR at 10 T for µ0HC = 6T for matrix materials with different Mn
concentrations. The insert shows the MR for the pure matrix material for corre-
sponding x. (b) shows the MR for different magnetic fields HC of the cluster for a
sample with x = 0.006. The solid line denotes the MR of the pure matrix material.
For remaining parameters see sample No. 2 in Tabs. 5.1, 5.2.

Mn concentration x = 0.002 the sample shows no dependence on the external
field, which can be connected with the properties of the matrix material.
The calculated positive MR effect that decreases with increasing T is solely
determined by the effect of spin conservation. A trapping of carriers at the
cluster surface or magnetic field induced splittings of the matrix bands play no
role. With increasing x the situation changes. The MR starts at low T at small,
even negative values for the largest amount of x, increases up to a maximum
and vanishes with further increase of the temperature. For moderate values of
x and HC the MR of the hybrid sample does not significantly deviate from that
of the matrix material at small temperatures. With increase of x and HC the
delocalization of carriers becomes visible again as the MR of the hybrid sample
reaches larger negative values than that of the matrix as shown in Fig. 5.16.
This delocalization can be understood on the basis of the model presented
so far: At µ0Hex = 0T the hybrid sample shows a valence-band landscape
which is almost flat (We neglect the influence of magnetic field independent
disorder as it is not a crucial feature for the discussed mechanism.). Only at
the cells close to the cluster a strong giant Zeeman effect induced splitting
of the valence bands occurs. We now concentrate only on its effect on the
subband which is shifted mostly towards the acceptor level since this subband
determines the transport properties. Due to the shift of the valence-band
edge the states in this subband get filled with holes and to fulfil the neutrality
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condition (Eqn. 1.17) the Fermi energy is shifted towards the acceptor. The
resulting effect is an increase of the carrier density in the vicinity of the MnAs

Fig. 5.16. Comparison between
the MR at µ0H = 10T of a matrix
(dashed line) and a hybrid sam-
ple (full line), using x = 0.08 and
µ0HC =15 T, a magnetic field de-
localization of carriers is clearly
visible at low T (Parameters as
used in Fig. 5.14).

cluster and a depletion of carriers in the re-
maining matrix cells. If an additional exter-
nal magnetic field Hex is applied, the valence
bands in all other matrix cells also split. This
split increases more strongly than the split-
ting of valence-band states in the vicinity
of the cluster, since the Brillouin function
Bf (Hex+HC

T ) almost reached its saturation

while Bf (Hex

T ) increases linearly. This in-
creasing split of band states in cells which
are not in the vicinity of the cluster reduces
their activation energy and thus results in
a higher carrier density. It should be noted
that a shift of the valence-band states indeed
reduces the activation energy of an average
matrix cell as the Fermi level does not shift
away by the same amount. Indeed the Fermi
level does not shift substantially. The Fermi
function is strongly non-linear, when solv-
ing Eqn. 1.17 the position of EF is predomi-
nantly determined by cells with the smallest
activation energy. In the discussed case these
are the cells in the cluster vicinity whose
splitting is not essentially affected by an ad-
ditional external field. Taking this into account the reduction of the resistivity
due to an external magnetic field can be understood.

Table 5.1. Model parameters − I matrix parameters

Sample σ [meV ] θ [meV ] mD [eV ] na [ 1
cm3 ] xMn N0β [eV ]

1 45 0 -1.5 1.14·10−18 0.008 1.85

2 45 0 -1.5 1.14·10−18 varied 1.85

3 45 0 -1.5 1.14·10−18 0.001 1.85

4 45 0 -1.5 1.14·10−18 varied 1.85

5 45 0 -1.5 1.14·10−18 0.008 1.85

6 45 0 -1.5 1.14·10−18 0.008 1.85

7 45 0 -1.5 1.14·10−18 0.008 1.85

8 45 0 -1.5 1.14·10−18 0.008 1.85
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Table 5.2. Model parameters − II cluster parameters

Sample xCl ES [meV ] EAC [meV ] µ0HC [T] ρMac [Ω cm]

1 0.3 0.0 varied 0.0 2·10−4

2 0.3 0.0 60 varied 2·10−4

3 0.3 varied 60 0.0 2·10−4

4 0.3 10.0 60 0.0 2·10−4

5 varied 0.0 60 0.0 2·10−4

6 varied 10.0 60 6.0 2·10−4

7 0.0225 10.0 60 6.0 varied

8 varied 10.0 60 6.0 1.0
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5.3 Strong enhancement of MR effects using tailored

hybrid nanostructures − a prediction

Theoretical studies (that e.g. show the optimal conditions for strong ferro-
magnetic coupling in DMS [105, 151, 152, 153], the minimization of clustering
tendencies [154] or for the composition of stable ferromagnetic half-metals
[155]) are well established tools of condensed matter physics and in particular
for spintronic research. Besides this pure theoretical tailoring of microscopic
properties to gain insight into the optimized material capacities and to show
its principle feasibility, even the effective experimental designing of artificial
structures down to nanometer scales has become possible. Such nanostruc-
tured materials can show new or enhanced properties compared with their
bulk counterparts [156]. The intensive and diversified study of nanostruc-
tures was basically enabled by the development of novel lithography tech-
niques [157]. In this context specially magnetic nanostructures have gained
attention as they can be considered as basic modules of prospective spintronic
devices.

Besides concepts based on the effects related with the intrinsic magnetic
properties of magnetic materials and single structures (e.g. high TC ferro-
magnetic semiconductors) nanostructures built out of hybrids may offer a
promising alternative. In this framework the large magnetoresistance effects
of tailored non-magnetic semiconductor-metal hybrid structures the so-called
extraordinary magnetoresistance effect (EMR) was in a focus of recent studies
[158, 159, 160, 161, 162].

As mentioned previously, another subclass of nanostructures are hy-
brids formed by ferromagnetic inclusions in a paramagnetic host matrix. In
this regard we present here a concept for MnAs/GaAs:Mn ferromagnetic-
paramagnetic hybrid-based nanostructures to strongly enhance magnetoresis-
tance effects due to a tailoring of the spatial arrangement of the clusters. On
the basis of the model given in section 5.2 the predicted pronounced MR up
to several hundred percent can be achieved due to the tailoring of nanostruc-
tures simply by a controlled positioning of ferromagnetic MnAs clusters in a
paramagnetic GaAs:Mn host matrix.

5.3.1 Remarks on the influence of statistics

The main influence of the effects of a Schottky-barrier formation, of the mag-
netic field of the cluster and of spin conservation considered in the model for
ferromagnetic-paramagnetic hybrid structures have been analyzed in the pre-
vious section for a system including a single cluster centered within its host
matrix. Here we expand the area of interest to the influence of the spatial
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distribution of the ferromagnetic inclusions inside the host matrix. In partic-
ular the strong positive MR effect related with spin conservation is based on
a local change of the main current path. Thus it is expected that different
distributions of clusters (even for the same total amount of cluster cells) will
lead to different current paths and to visible differences in the MR data.
Fig. 5.17 displays the calculated MR for different distributions of clusters with
a total concentration of cluster cells xC =0.1, 0.2 and 0.3. For each xC the
figure shows ten different calculated MR for each of the three different sets
containing: (1.) three randomly distributed clusters, (2.) five randomly dis-
tributed clusters and (3.) forty randomly distributed clusters. It is clearly
visible that the MR depends strongly on the position of the cluster cells since
the calculated results vary for a fixed value of xC over a range of (up to) sev-
eral hundred percent. To illustrate the spatial distribution of clusters related
with the results the inset of each graph shows the arrangement of cluster cells
which belongs to the largest calculated positive MR (upper inset) and which
belongs to the smallest calculated positive MR (lower inset). By studying the
insets of the calculations performed with three and five clusters it becomes
obvious that a distribution of clusters along the main current direction12 leads
to a strong enhancement of the positive MR effects. A distribution extend-
ing perpendicular to the current direction seems to result in a comparatively
small positive magnetoresistance. This clarifies that two related but never-
theless different scenarios lead to a strong enhancement of the MR in the
spin-conservation regime:

• The increase of the current-path length since the current has to circum-
fluent the cluster.

• The disappearance of ’quasi’ short-circuits since the cluster majority-band
does not lead transport anymore.

The first mechanism was described in detail in section 5.2.2. In short, the
positive MR results out of the fact that in the presence of a spin dependent
splitting of the valence bands of the matrix the carriers cannot flip their spin
to pass the cluster in its majority band. The carriers have to circumvent the
cluster and the current path gets elongated. In Fig. 5.7 such an elongation of
the current path is illustrated. This effect contributes to the positive MR in
the regime of spin conservation as long as the cluster’s minority band provides
a conductivity which is sufficiently smaller than that of the majority band of
the matrix. More simplified: As long as the condition13 (i) ∆EM < EAC holds,
the elongation of the current path contributes to an enhancement of the re-
sistivity in the regime of spin conservation. ∆EM represents the activation

12 In all calculations we use a horizontal current direction from left to right.
13 For simplicity the influence of different mobilities is not taken into account here.
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Fig. 5.17. Calculated MR at µ0Hex = 10T versus T for a series of hybrid samples
with xC = 0.1 (first row), 0.2 (second row) and 0.3 (third row). The number of
clusters increases from 3 (first column) to 5 (second column) up to 40 (third column),
the clusters can contact but not overlap each other. Each single graph depicts the
results of ten different statistical distributions of clusters and illustrates the influence
of the cluster distribution. The insets show the cluster positions of the sample with
the largest (upper inset) and the smallest (lower inset) positive MR effect. For
remaining parameters see sample No. 6 in Tabs. 5.1, 5.2.

energy of the matrix majority-band.
In addition to (i) the second scenario requires two more conditions to be-
come valid: (ii) The conductivity of the majority band of the cluster has to
be much larger than that of the matrix and (iii) it should exist a percola-
tion path through the hybrid system which is remarkably covered by cluster
cells. If (ii) is fulfilled14 the cluster acts as a short-circuit with negligible

14 This is fulfilled in all calculations so far since ρMac = 210−4Ω cm.
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resistivity (compared to the matrix). With increasing external field and con-
sidering the spin-conservation regime, based on (i) the current has to avoid
the clusters and the resistivity jumps from (almost) zero (due to iii) to the
value corresponding to the matrix majority-band. Under such a condition
an elongation of the current path occurs as well. Even if such an increase
of the path length was to be neglected, a sufficient increase of the resis-
tivity would occurr. Fig. 5.18 depicts the temperature dependent resistivity
at zero field for the two hybrid samples with the largest and smallest pos-
itive MR effects of all distributions calculated in Fig. 5.17(g) (The cluster
positions of these two distributions are shown in the inset of Fig. 5.17(g).).

Fig. 5.18. Arrhenius plot of
ρ for the hybrid samples given
in Fig. 5.17 (g). along denotes
the sample providing the largest-
across denotes the sample provid-
ing the smallest positive MR. Due
to the metallic short circuits the
resistivity of both samples is sig-
nificantly weaker than that of the
matrix (solid line).

One distribution is labelled with across. This
indicates the cluster distribution where the
clusters are not aligned with the main cur-
rent direction. This distribution shows the
smallest positive MR effect. In the second
sample labelled with along are the three clus-
ters almost aligned with the main current di-
rection. This distribution shows the largest
positive MR effect. The Arrhenius plot is
restricted to elevated temperatures between
40K and 100K. In this temperature range
the localization of carriers due to the Schot-
tky barrier and the magnetic field of the
cluster has been overcome predominantly. At
high T even in the case of the across distri-
bution the resistivity of the sample gets re-
markably reduced due to the cluster incorpo-
ration compared with the pure matrix mate-
rial (shown as a solid line). In the case of the
along distribution with the clusters roughly
oriented along the main current path, the re-
sistivity at high temperatures is even more
reduced. A more detailed study of the in-
fluence of the effect of metallic quasi short-
circuits on the MR is covered by the results given in Fig. 5.19. In Figs. 5.19(a)
and (b) the calculated MR and ρ0 are shown. We assumed different cluster
majority-band conductivities for a hybrid structure where a cluster is oriented
along the main current direction (as depicted in the inset of (b)). Figs. 5.19(c)
and (d) show the results obtained for a sample with a cluster of same size
oriented perpendicular to the main current direction (depicted in the inset
of (d)). In the first case the cluster serves almost as a short circuit for weak
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Fig. 5.19. (a) shows the influence of ρC on the MR, (b) depicts the corresponding
resistivity. Both calculations performed for the cluster configuration given in the
inset of (b). For (c) and (d) the cluster configuration given in the inset of (d) is
used. (c) shows the influence of ρC on the MR while in (d) the influence of ρC on
the resistivity is shown. Solid lines denote the calculated values of the pure matrix
sample. For parameters see sample No. 7 in Tabs. 5.1, 5.2, current from left to right.

values of ρMac = 10−4 Ω cm and a large positive MR effect is visible. The
increase of the current-path length can be neglected for this orientation of the
cluster. The lifting of the short circuit due to the external field (in the regime
of spin conservation) can be identified definitely as the origin of the strongly
enhanced positive MR effect of the hybrid sample. The decrease of the posi-
tive MR with decreasing conductivity ρMac serves as an additional proof. In
(b) the remarkable influence of the cluster oriented along the main current
direction on the resistivity in the absence of an external field becomes visible
as well. The results of the calculations performed with the second geometry
given in Fig. 5.19(c) and (d) show an negligible influence of the variation of
ρMac on both the MR and ρ0(T ). This is rather expected since the contribu-
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tion to the resistivity of a cluster which is oriented perpendicular to the main
current path can be neglected.

This detailed analysis of the role of the conductivity of the cluster majority-
bands clarifies that the rather trivial mechanism of field induced lifting of
short-circuits is not responsible for the observed positive MR effects. The
calculated behavior of the resistivity in absence of external fields strongly de-
viates from the experimental data as e.g. in Fig. 5.2. The experimental data
does not support the existence of metallic short-circuits since the measured
resistivity of the hybrid samples is not found to be smaller than that of the
pure matrix material. As a valuable inference of this analysis it can be sum-
marized that either (i) the density of clusters in the matrix is that low that
a percolation path basically connecting metallic clusters does not exist in the
samples accessible for experimental characterization so far, or (ii) that the
conductivity of the cluster majority band is not sufficiently higher than the
conductivity of the matrix. The experimental data given in Ref. [136] in com-
parison with the calculations shown in Fig. 5.17 may serve as a first hint. In the
experimental data a decrease of the cluster size (and therefore an increase of
the cluster number) goes along with a decrease of the positive MR effects. The
results of the calculations using clusters with very high majority-band con-
ductivity follow from an opposite situation: The positive MR effects increase
while the number of cluster cells is increased simply due to the fact that the
probability for the formation of short circuits is increased. This comparison is
a first, but nevertheless weak, argument against the assumption of a cluster
majority-band conductivity which is significantly larger than the average ma-
trix conductivity. Nevertheless these considerations should not hide the wide
range of uncertainties concerning the material parameters of the clusters. At
this point further measurements of structures including only a few clusters at
well defined positions are strongly required.
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Fig. 5.20. Graph shows
the calculated MR ver-
sus T at µ0H =10 T for
the hybrid structures given
right. The concentration of
cluster cells is xC = 0.15
(1), 0.13 (2), 0.11 (3), 0.09
(4). For remaining param-
eters see sample No. 8 in
Tabs. 5.1, 5.2.

5.3.2 Examples for optimized hybrid structures

In this section different hybrid structures are shown whose cluster distribu-
tion is optimized to provide enhanced magnetoresistance effects. The strong
enhancement of the positive MR effect bases on a combination of the spin-
conservation mechanism introduced and discussed in detail in section 5.2.2
with tailored hybrid structures. Due to the special choice of cluster positions
in these structures they provide a change from a direct to a labyrinth-like
current path if an external magnetic field is applied. The conductivity of the
majority band of the cluster is set to ρMac = 1.0Ω cm to suppress the influ-
ence of cluster built short-circuits as discussed in the previous section 5.3.1.
In Fig. 5.20 the MR at µ0H = 10T versus temperature for a series of tailored
hybrids as given in the insets is shown15. The sample consists of two clusters
forming a gate-like structure while the third cluster is located on the main
current path passing this gate. When an external magnetic field is applied,
carriers avoid the cluster cells and are passing the matrix gate between the
two cluster cells. With increasing size of the two clusters the current density
of the matrix cells in the gate increases and the structure acts as a kind of
current valve. The third cluster forms an obstacle which the carriers leaving
the valve have to evade. This avoiding leads to an increase of the current-
path length which is the origin of the observed positive MR. This positive
MR scales with the size of the cluster acting as the barrier as given by the
calculations presented in Fig. 5.20.

15 In the images of the hybrid samples of both figures 5.20 and 5.21 only the black
area denotes the cluster cells while the surrounding band of cells colored in dark
red symbolizes matrix cells which are under the influence of HC and the Schottky
barrier and therefore provide an enhanced density of hole states.
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Fig. 5.21. Graphs show the MR versus T at µ0H = 10T in (a) for a series of cluster
samples including three clusters as given in the images above and in (b) for a series
including five clusters. The concentration of cluster cells decreases from xC = 0.1 (1),
0.15 (2), 0.20 (3), 0.25 (4). For remaining parameters see sample No. 8 in Tabs. 5.1,
5.2.

The second system serving as an example for tailored structures is built by
cluster bars forming a sandwich structure oriented perpendicular to the main
current direction. Due to the choice of the vertical orientation the bars form
a labyrinth-like structure which shows a drastic increase of the current-path
length if the carriers cannot pass the cluster cells. The length of the current
path increases with increasing number of bars as depicted in Fig. 5.21, where
the magnetoresistance is calculated for two different series including three and
five bars with increasing concentration of cluster cells. For weak concentra-
tions (e.g. Fig. 5.21b (1)) where the bars located above do not overlap with
the bars beneath, the current path is just affected weakly by the spin conser-
vation regime and the MR effects stay comparatively small. With increase of
the cluster concentration and according to this with an increase of the over-
lap of the cluster bars, the current path in the presence of an external field
gets elongated and the positive MR reaches values up to about 800 percent
(Fig. 5.21b (4)).
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5.4 Conclusion

The model was extended to provide a transport description in ferromag-
netic/paramagnetic MnAs/GaAs:Mn hybrid structures. In this regard the in-
fluence of the formation of a Schottky barrier, the magnetic field of the cluster
and a so-called spin-conservation regime were analyzed. This regime accounts
for opposite orientations of the matrix and cluster majority bands. On the
basis of the modified model the experimentally observed large differences be-
tween the magnetotransport properties of hybrids and the paramagnetic host
material can be explained at least qualitatively.

In particular it was shown that the effect of spin conservation is responsible
for a positive MR in hybrid samples at intermediate temperatures as it is com-
monly measured. At low temperatures the positive MR attributed to the spin
conservation can be compensated. Carriers which are trapped in the vicinity
of the cluster due to a cluster field and a Schottky barrier get delocalized
when an external magnetic field is applied. An enhancement of the content of
magnetically active Mn ions in the matrix material and of HC can even lead
to a low temperature MR of hybrid samples which is below that of the pure
matrix material. This finding is again in agreement with experimental data.

The strong increase of the measured resistivity for Hex = 0 at low tem-
peratures can also be explained by the interplay of the magnetic field of the
cluster with the paramagnetic matrix material. In summary, the influence of
the magnetic field of a cluster interacting with a sufficiently large density of
Mn ions in the surrounding cells and the assumption of spin conservation can
explain the experimentally observed transport as well as magnetotransport
effects at least qualitatively.

A closing analysis of the influence of the spatial incorporation of MnAs
clusters ends with the prediction of tailored hybrid nanostructures that offer
MR effects up to several hundred percent.
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Conclusion of part I

6.1 Conclusion

A model for the description of the transport and magnetotransport properties
of dilute magnetic semiconductors (DMS) and paramagnetic/ferromagnetic
semiconductor hybrid-structures was developed.
The macroscopic model provides a description of the transport properties of
DMS materials which are beyond the area of validity of the RKKY theories.
The approach developed is applicable to a wide range from an almost metallic
random alloy in the ferromagnetic phase over paramagnetic semiconductors
towards (annealed) samples with non-random incorporation of magnetic ions
up to hybrid samples of ferromagnetic clusters embedded in a paramagnetic
host matrix. This description may serve as a basis for future microscopic the-
ories.
The model applied is an extension of a network model well established in
the description of transport properties in disordered (non-magnetic) semicon-
ductors. It accounts for the material specific properties of DMS such as the
magnetic-field induced giant Zeeman splitting of the band states. Alloy disor-
der is taken into account as well. Many body effects (except the p-d exchange
interaction) are neglected.
A first major result is the demonstration that a non-Arrhenius temperature
dependence of the resistivity of semiconductors is not indicative for hopping
as being the dominant transport mechanism. It is shown that an energetically
broad distribution of dopants or band-tail states can cause this non-Arrhenius
dependence in the regime of ’usual’ activated band-transport. This statement
is not limited to the special choice of (dilute) magnetic semiconductors and is
in contrast to the widely held belief so far.
The second result is gained by modelling a series of LT MBE grown
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Ga1−xMnxAs samples annealed at different temperatures. The qualitative
description of the experimental results proves that in this regime disorder
effects play the dominant role and justifies the neglect of many-body effects
as a good approximation. The structural properties of the samples could be
condensed into a set of well defined material parameters and the modifications
of the transport properties induced by the thermal treatment are connected
with changes of these parameters. This treatment allowed first insights into
the ’adolescence’ of hybrids where segregation sets in and a small fraction
of MnAs (micro-) clusters is formed. In this regime the direct influence of
these MnAs clusters can be neglected. The transport properties are solely
determined by the matrix material which contains a non-random Mn ion in-
corporation caused by the annealing procedure.
Finally results were obtained for MOVPE grown MnAs/GaAs:Mn hybrid-
samples including a high concentration of ’adult’ MnAs clusters (with diam-
eters up to 100 nm).
The remarkable discrepancies between the experimental results obtained
for (Ga,Mn)As in the paramagnetic phase and ferromagnetic/paramagnetic
MnAs/GaAs:Mn hybrids could be explained. The differences were resolved by
the assumption of: (a) a Schottky barrier at the interface between cluster and
matrix, (b) the influence of the ferromagnetic cluster on the paramagnetic host
matrix leading to a giant Zeeman splitting and (c) a spin conservation mech-
anism using opposite spin orientation of cluster and matrix majority bands.
The influence of these three (phenomenological) model ingredients was stud-
ied and their order of magnitude could be obtained by numerical simulations
and comparison with the measured data. The role of the spatial incorpora-
tion of MnAs clusters was analyzed and it was shown that due to tailoring
of hybrid nanostructures the MR effects can be enhanced in principle up to
several hundred percent. This prediction confirms the auspicious possibilities
of hybrids as building blocks of future spintronic devices.



Part II

Spin-dependent charge-carrier recombination
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Introduction

7.1 Introduction

Recombination of charge carriers belongs to the crucial mechanisms that de-
fine the electronic properties of semiconductors. In the following we focus on
those recombination paths where the recombination process is determined by
the spin state of the involved particles. In the framework of the model de-
veloped by Kaplan, Solomon and Mott (KSM) the recombination process is
described in terms of so-called intermediate pairs [163]. These intermediate
pairs are considered to be the bottle neck of this loss mechanism. Theoretically
the evolution of the ensemble of intermediate pairs can be described using the
density-matrix formalism, including the fermionic (spin S = 1

2 ) character of
the pair partners [164]. To investigate the recombination processes via interme-
diate pairs the pulsed electrically detected magnetic-resonance measurements
(pEDMR) had been proven to be a powerful tool [165, 166, 167].

In this work, we apply the most general theoretical concept available for
the description of a spin dependent charge-carrier recombination-channel. The
concept based on the KSM model contains exchange coupling and disorder
effects and can in principle be expanded to describe dipolar coupling. The
simulations help to understand the influence of these effects on recombina-
tion processes and can provide an interpretation of the experimental results.
The insights gained by the simulations may help to provide a better under-
standing of the recombination process. In the long term the understanding
and the possibility of controlling recombination may hopefully lead to an effi-
ciency increase of electronic components where spin-dependent charge-carrier
recombination is a major efficiency limiting factor, e.g. solar cells [168].

The hurried reader and those who are solely interested in the simulations
may skip the following section, where a very brief overview of the experiments
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is given, as well as the introduction sections of chapter 8.1 and continue with
8.3.

7.2 Remarks on the experiments

The time evolution of the density matrix is simulated in the following sections
and is used to describe an observable which is obtainable by (pulsed) elec-
trically detected magnetic-resonance experiments (pEDMR). A rather short
overview concerning these experiments is given. The basic principles of elec-
trically detected magnetic-resonance experiments are presumed, nevertheless
the reading of [169] is warmly recommended.

EDMR is an alternative way to detect electron-spin resonances (ESR) in
materials with charge-carrier transport or recombination transitions that are
governed by spin-selection rules [170]-[175]. Thus for any EDMR experiment
there must be a spin-dependent electronic mechanism which encodes spin-
information into electronic transitions which are then detected through charge
transport and recombination1. This has recently been studied alongside the
analysis of recombination processes. This was, in particular, to find potential
spin to charge–conversion mechanisms for the electric readout of solid state
based spin quantum-computers [166]. The advantage of EDMR, in comparison
to the traditional ESR spectroscopy, is the sensitivity of these methods which
is typically 6 to 10 orders of magnitude higher [172, 173]. These techniques
have become particularly useful for the investigation of paramagnetic centers
in highly diluted matrices or low dimensional semiconductor thin film devices,
interfaces and point defects [170, 171, 176, 177, 178].

One of the challenges of EDMR spectroscopy is that the information ob-
tained from these experiments is different from the ESR data [179]. The rea-
sons for the discrepancies between ESR and EDMR are mainly due to the two
different measurement approaches which imply two different observables: The
observable corresponding to ESR experiments will always be spin polarization
〈P〉 = Tr(P̂ρ̂) representing the statistical state of the spin ensemble whereas
for indirect detection through spin-dependent transport or recombination, the
observables are the permutation-symmetry or -antisymmetry operators rep-
resented by the singlet |S〉〈S| or triplet operators |Ti〉〈Ti|, respectively [164].
For many experimental EDMR studies (the so-called continuous wave ex-
periments) the difference of the observable in comparison with ESR are not
relevant, since these experiments are carried out in the incoherent time regime
where only a line shape analysis of the respective spectra is feasible. However,

1 The influence of spin dependent hopping rates to singly occupied sites on the
transport properties is not taken into account.
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when coherent effects are studied with a pulsed technique (pEDMR) [165, 180]
the interpretation of the experiments strongly relies on the proper theoretical
description of spin interaction during coherent microwave excitation [165, 176].

An example of the difference between a pEDMR signal and a pESR signal,
which comes from the same spin ensemble, is weak exchange and weak dipo-
lar coupled distant pair states in the band gap of an arbitrary semiconductor
material with weak spin-orbit coupling as described analytically by Boehme
and Lips [180]. Weak spin-orbit coupling is required in order to ensure a
spin-selection rule. When the two pair partners are manipulated (almost) reso-
nantly with a coherent pulse of high field strength B1 ((gµBB1

�
) = γB1 � ∆ω 2

where ∆ω denotes the Larmor-frequency difference between the pair partners
and γ = gµB

�
is the gyromagnetic ratio), they undergo a simultaneous spin–

Rabi oscillation. With pEDMR, the rate relaxation after the coherent exci-
tation would be integrated reflecting the pair permutation-symmetry within
the pairs at the end of the exciting pulse [181]. While both, the pESR and the
pEDMR transients (the photoconductivity) would exhibit oscillating signals,
the frequency of these oscillations would differ by a factor of 2: The pESR
detected nutation frequency ΩESR = γB1 would simply represent the Rabi
frequency of an uncoupled spin S = 1

2 , whereas the pEDMR measured oscil-
lation reflects the two-particle character of the system. Using a simple, but
nevertheless sustainable model, the oscillations exhibit the frequency at which
the identically precessing spins of the two pair partners cross the geometric
plane transverse to the direction of the externally applied magnetic field B0

(the x̂-ŷ plane) since at these moments the projection of the parallel oriented
spins in the x̂-ŷ plane onto the spin eigenstates with singlet content will be
maximized. Since this plane is passed twice per nutation period, the oscillation
of the transition rate is twice as high. Note that this frequency discrepancy
of the oscillations, between pESR and pEDMR detected transient nutations,
is changed as the B1-field strength becomes weak: When γB1 � ∆ω, the
two-particle character of the system almost vanishes and the system can be
considered as a pair of non-interacting particles. Hence, for weak B1 fields,
the nutation frequencies for pESR and pEDMR become equal.

2 Note that g may be either one of the two pair partners Landé factors ga or gb or
it may even be assumed to be the free electrons Landé factors g = ge since the
differences between these values compared to their magnitudes is negligible.
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The model

8.1 Introduction

A central part of the spin-dependent recombination-process, which is discussed
in the following, is the creation of a two-particle system called an intermediate
pair (IP)[169]. Without external perturbation the system is in a steady state
where the creation of IPs equals their annihilation. Annihilation of IPs can
be due to recombination or dissociation.

The two annihilation mechanisms are discussed in more detail in sec-
tion 8.2. If an IP is created once, its probability of being destroyed by recombi-
nation is determined by the projection of its actual state onto the eigenstates
of the angular-momentum operator J . In the product basis of a two-particle
system given by the basis elements |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 these eigenstates are
the triplet and singlet states

|T+〉 = |↑↑〉
|T−〉 = |↓↓〉
|T0〉 =

1√
2

(|↑↓〉+ |↓↑〉)

|S 〉 =
1√
2

(|↑↓〉 − |↓↑〉) .

While the three triplet states have a small but non-vanishing1 recombination-
rate coefficient rT the recombination-rate coefficient of the singlet state rS is
about 100 times larger [169]. Thus an IP in a singlet state has a high probabil-
ity of recombining. Since the triplet states show permutation symmetry while

1 rT is non-vanishing in the considered case of small spin-orbit coupling.
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the singlet state is antisymmetric, the observable in pEDMR experiments is
often referred to as the permutation-symmetry or -antisymmetry operator.

When considering their interaction with an external magnetic field, the
two pair partners a and b can be described by using the characteristic Landé
g-factors ga and gb. The different g-factors represent different local magnetic
fields and thus reflect the different characteristic microscopic vicinities of the
pair partners. With the application of a constant magnetic field B0, the spin
degeneracy of the eigenstates lifts, resulting in a system with four distinct
energy levels. Interpreted in terms of two independent S = 1

2 particles this
scenario becomes more tangible. The energy spacing between each two spin
states of the pair partners according to the field B0 is

�ωa(b) = ga(b)µBB0 (8.1)

where ωa(b) denotes the Larmor frequency of the pair partners. The recombi-
nation rates ri of the four eigenstates |i〉 (which are not necessarily eigenstates
of the angular-momentum operator J ) are given by the projections onto the
eigenstates of J as

ri = rS |〈i| S〉|2 + rT

∑
j=+,−,0

|〈i| Tj〉|2 . (8.2)

Without any additional disturbance of the system it is in a steady state, where
the creation and annihilation of intermediate pairs are in equilibrium. Rep-
resented in the density-matrix formalism the time derivative of the diagonal
elements ρii of the density matrix vanishes in the case ρii = ρs

ii where ρs
ii

denotes the steady-state density-matrix elements. A deviation of the ρii from
the steady-state value (the accompanying projections onto the eigenvectors of
J change resulting in changing recombination rates) upsets the equilibrium
of the IP creation and annihilation. This is reflected in a change of the pho-
toconductivity. The simulated pEDMR experiments based on this feature in
particular. In these experiments in addition to the constant B0 field a time
dependent magnetic field B1 is applied. This B1 field causes a deviation from
the steady state. The change of the photoconductivity obtainable by pEDMR
experiments can be simulated if the time evolution of the density-matrix el-
ements is known. In general, an experiment can be described solely by the
simulation of the dynamics of a density matrix, representing the statistical
state of a four-level system. To do so, the Liouville equation d

dt φ̂ = i�[Hφ̂]
has to be solved. This is done by solving the set of Bloch equations result-
ing from the commutator in the Liouville equation numerically. Stochastic
processes (e.g. the creation of the intermediate pairs) are taken into account
as well by resolving the so-called stochastic Liouville equation. Besides the
phenomenological treatment of the recombination process described by the
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Fig. 8.1. Illustration of a spin dependent recombination process in the KSM picture
via a deep level defect as it can happen e.g. at a dangling bond in µc-Si:H. Electrons
are colored blue, holes are colored red and the orange area symbolizes the correlated
two electron system called an intermediate pair (IP). Arrows indicate the spin of the
carriers and cb and vb denote the valence band and conduction band respectively.

recombination rates, further parameters such as the dissociation-rate coef-
ficient d and the generation rate G of the intermediate pairs are taken into
account. The description of the dynamics of a four-level system using a Hamil-
ton operator covering the spin-selection rules accounts for all spin dependent
system properties. Other descriptions based on the Larmor precession of spins
in magnetic fields can be skipped entirely. Thus the rather bulky formalism
using sequences of drehoperators can be left out. Apart from that, the given
approach fully accounts for the two-particle character which has been proven
to be necessary especially in the case of strong light-field coupling as discussed
in detail in section 9.2.4.
In summary, applying this approach all relevant (spin-dependent) system in-
formation is coded into the energy levels. Out of them all further information
can be obtained using an interaction Hamilton-operator which reflects the
spin-selection rules. In the framework of this description, taking into account
exchange interaction as well as dipolar interaction (covered by the coupling
constants J and Dd in Eqn. 9.3) simply leads to a modification of the four
energy levels. The whole formalism stays unchanged. As we will show in chap-
ter 11, even an extension to systems containing disorder is possible.

8.2 The intermediate-pair concept, a closer look

The concept of intermediate pairs developed by Kaplan, Solomon and Mott
in 19782 [163] is a general one, which describes an intermediate step between
the charge carriers in independent states and the final recombined state. One
example, where this concept can be applied is the recombination at dangling

2 Referred to as the KSM model
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bonds (db) as it takes place e.g. in hydrogenated microcrystalline silicon (µc-
Si:H) schematically illustrated in Fig. 8.1. In µc-Si:H this spin dependent re-
combination ’catalyzed’ by dangling bonds is a dominant recombination path
[169].

In such a material the generation of an intermediate pair can be interpreted
as the process of the localization of a conduction-band electron in proximity
of to a db. The localized electron and the electron of the singly occupied
(thus neutral and paramagnetic) db form a two-particle system, which is in
an excited state. The ground state of this two-particle system is given by the
doubly occupied (thus negatively charged) dangling bond. The transition into
the ground state is the crucial step that makes this recombination process
spin dependent. If an intermediate pair is formed it can only be destroyed by
one of the two following mechanisms:
a) Dissociation of the IP. Using the example of an IP given above this is a
delocalization of the localized electron (e.g. due to thermal fluctuations). This
leads to the initial situation of a singly occupied dangling bond and a free
conduction-band electron.
b) Recombination of the IP. Using the example of an IP given above this is the
transition into the ground state of the IP, resulting in the doubly occupied
and negatively charged defect state (the dangling bond). This state has a
negligible life time, so that one pair partner recombines immediately with a
valence-band hole.

8.3 The building blocks of a general model for

spin-dependent recombination

Before we start with the detailed theoretical description we give an overview of
the assumptions made. They were discussed above and form the general build-
ing blocks of the model for the spin-dependent recombination, as primarily
given by Boehme [169]:

• Based on the picture of Kaplan, Solomon and Mott, the intermediate pair
is the bottle neck through which every recombination process discussed in
the following has to pass.

• An intermediate pair is formed by two particles, each with spin S = 1
2 .

The resulting two particle system has four eigenstates with respect to the
Hamilton operator.

• The density of intermediate pairs is so weak compared with the density
of carriers that effects of higher order can be neglected, i. e. a (coherent)
manipulation of the recombination process resulting in a change of the
carrier density does not affect the generation rate of intermediate pairs.
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• If an intermediate pair is created, it can (a) be destroyed due to recom-
bination or it can (b) be destroyed due to pair dissociation. The creation
as well as the two different mechanisms to destroy an intermediate pair
are taken into account in the calculations in a parameterized form. These
parameters are inputs to the calculations rather than being calculated
therein.

• The spin-orbit coupling of the discussed system is so weak that the spin of
the two-particle system is almost conserved and so the recombination be-
comes spin-dependent. Nevertheless a non-vanishing triplet recombination
probability has to be taken into account.

• The interactions between the two pair partners such as spin-exchange in-
teraction and spin-dipole interactions are possible and can modify the
recombination properties. If such interactions are taken into account in
the model, this is solely done by the introduction of parameters such as
the strength of the exchange integral J .

• The interaction of a spin pair with its environment (spin-lattice or spin-
spin relaxation) can destroy the correlation of the spin pair.
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8.4 The observable

The observable usually measured when performing a pEDMR experiment3 is
the change of the photoconductivity ∆σ(t). The photoconductivity is given
by

σ = µeene + µhenh (8.3)

with the electron charge e, mobility µe(h) for the electron and hole respectively
and the electron (hole) density ne(h). The observable is given by

∆σ(t) = e (µe∆ne(t) + µh∆nh(t)) (8.4)

with

∆ne(h) = ne(h)(t) − ns
e(h) (8.5)

with the steady-state electron (hole) density ns
e(h). The steady-state electron

density is

ns
e = τl

(
−Gs + d

∑
i

ρs
ii + G∗

)
(8.6)

where ρs
ii are the (diagonal) elements of the steady-state density matrix, Gs

is the (steady-state) intermediate-pair generation rate, d is the dissociation-
rate coefficient of the spin pairs and G∗ is the constant electron-hole pair
generation-rate due to the continuous wave light-field source. The lifetime τl

is the averaged carrier lifetime. The different signs of the expressions for the
pair generation and the pair dissociation represent the different influence of
both processes on the density of electrons: The generation of an intermediate
pair takes an electron from the conduction band. The dissociation, which de-
pends on the density of intermediate pairs in the steady state (Trρ̂s), destroys
an IP and thus adds an electron to the conduction band.
The steady-state hole-density is mainly determined by the recombination pro-
cess

ns
h = τl

(
−

∑
i

riρ
s
ii + G∗

)
(8.7)

where ri are the recombination-rate coefficients.

3 For a detailed description of the experiments see [169].
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The electron (hole) density at time t is basically given by the time evolution
of the density matrix4

ne(t) = τl

(
−G(t) + d

∑
i

ρii(t) + G∗
)

(8.8)

nh(t) = τl

(
−

∑
i

riρii(t) + G∗
)

. (8.9)

According to Sect. 8.3 the generation rate of spin pairs is considered as
constant (G(t) = Gs=G). Although the generation rate of the spin pairs
depends on the density of carriers this assumption is justified to first order5.
By use of Eqns. 8.6, 8.7, 8.8, 8.9 and Eqn. 8.5 one gets

∆ne(t) = τld

(∑
i

(ρii(t) − ρs
ii)

)
(8.10)

∆nh(t) = τl

(∑
i

ri (ρs
ii − ρii(t))

)
. (8.11)

Finally the equation for the change of the photoconductivity (Eqn. 8.4)
becomes

∆σ(t) = τle

(
µed

4∑
i=1

(ρii − ρS
ii) + µh

4∑
i=1

ri(ρ
S
ii − ρii)

)

= τle
4∑

i=1

(ρii − ρs
ii) (µed − µhri)

= τleµed
4∑

i=1

(ρii − ρs
ii)

(
1 − ri

d

µh

µe

)
. (8.12)

Thus Eqn. 8.12 provides a connection between the macroscopic change of the
photoconductivity ∆σ(t) and the microscopic spin-dependent dynamics of an
ensemble of intermediate-pair states. This change ∆σ(t) can be positive (en-
hancement of the conductivity) or negative (quenching of the conductivity),
depending on the difference of the diagonal elements of ρ(t) and their steady-
state value as well as on the recombination rates.

4 It should be noted, that the trace of the density matrix is not necessarily conserved
during the excitation.

5 The relative charge-carrier density-changes usually obtained in the experiments
are of less than 10−3 [169]
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Theoretical description

9.1 General description − the stochastic Liouville

equation

The general problem examined here is the solution of a stochastic Liouville
equation [164]

d

dt
ρ̂ =

i

�
[ρ̂,H]− + S[ρ̂] + R[ρ̂ − ρ̂s] (9.1)

where ρ̂(s) is the (steady-state) density operator and H is given as the sum of
a time-independent and a time-dependent part

H = H0 + H1(t) (9.2)

S is a stochastic operator describing recombination, dissociation and gener-
ation of the pairs while R is the so-called Redfield operator describing the
interaction with a bath [182, 183].
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9.2 Basic equations and conventions

The starting point of the description is the Hamilton operator H0 as it is given
in Eqn. 3.5 in [169]1

H0 =
µBga

�
Sa ·B0 +

µBgb

�
Sb ·B0︸ ︷︷ ︸

I

− J̃Sa · Sb︸ ︷︷ ︸
II

− D̃d [3Sz
aSz

b − Sa · Sb]︸ ︷︷ ︸
III

. (9.3)

Part I of the Hamilton operator describes the usual Zeeman splitting of the two
particles due to the (time independent) external magnetic field while II and III
account for the interactions of the pair partners (exchange interaction as well
as the dipolar interaction in the high-field approximation (| Dd |� gµBB0)).
The constant external magnetic field B0 is given as

B0 = (0, 0, B0).

The matrix representation of H0 in the product base is given by

Ĥ0 =

⎛
⎜⎜⎝

�

2ω0 − II 0 0 0
0 �

2∆ω + II −J 1
2 + Dd 1

2 0
0 −J 1

2 + Dd 1
2 −�

2∆ω + II 0
0 0 0 −�

2ω0 − II

⎞
⎟⎟⎠

with ω0 = ωa + ωb and using the abbreviation II = J 1
4 + Dd 1

2 . With the
introduction of the time dependent magnetic field B1(t) = (B1cos(ωt), 0, 0)
the matrix representation of the interaction Hamilton-operator H1 is given
following [169] as

Ĥ1(t) =
1

2
µBB1cos(ωt)

⎛
⎜⎜⎝

0 ga gb 0
ga 0 0 gb

gb 0 0 ga

0 gb ga 0

⎞
⎟⎟⎠ .

The Hamilton operator H1 accounts for the spin conservation of the dis-
cussed weakly spin-orbit coupled system. In the regime of weak spin-orbit
coupling the spin-dependent transitions are governed by spin-selection rules.
These spin-selection rules are coded into the matrix elements of H1 and thus
determine the allowed transitions.

1 In contrast to [169] the eigenvalues of Sz are set to ± �

2
, so the exchange integral

and the dipolar coupling constant have been rewritten as J̃ = J

�2 ,

D̃d = Dd

�2 , where J and Dd have unit energy.
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Since the derivation of the product-base representation of both parts of the
Hamilton operator is a rather lengthy procedure, it is not performed here. The
interested reader is recommended to study appendix E where the derivation
is given in detail.
Usually (whenever Dd − J = 0), Ĥ0 has no diagonal form in the product-
basis representation. Ĥ0 can be diagonalized by the transformation Ĥdia =
ŨĤ0Ũ

−1. The transformation matrix Ũ is given as

Ũ =

⎛
⎜⎜⎝

1 0 0 0
0 A B 0
0 C D 0
0 0 0 1

⎞
⎟⎟⎠ , (9.4)

with the entries:

A :=
�∆ω −

√
(Dd − J)2 + �2∆ω2

(Dd − J)
√

2 − 2�∆ω

�∆ω+
√

(Dd−J)2+�2∆ω2

,

B :=
�∆ω +

√
(Dd − J)2 + �2∆ω2

(Dd − J)

√
2 +

2∆ω
“

�∆ω+
√

(Dd−J)2+�2∆ω2
”

(Dd−J)2/�

,

C :=
1

(Dd − J)
√

2 − 2�∆ω

�∆ω+
√

(Dd−J)2+�2∆ω2

,

D :=
1

(Dd − J)

√
2 +

2∆ω
“

�∆ω+
√

(Dd−J)2+�2∆ω2
”

(Dd−J)2/�

.

Hence the normalized eigenbasis of the free Hamilton operator H0 in the
representation of the product basis becomes
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|1〉 = |T+〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ,

|2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
�∆ω−

√
(Dd−J)2+�2∆ω2

(Dd−J)
r

2− 2�∆ω

�∆ω+
√

(Dd−J)2+�2∆ω2

1

(Dd−J)
r

2− 2�∆ω

�∆ω+
√

(Dd−J)2+�2∆ω2

0

⎞
⎟⎟⎟⎟⎟⎟⎠ , (9.5)

|3〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�∆ω+

√
(Dd−J)2+�2∆ω2

(Dd−J)

s
2+

2∆ω(�∆ω+
√

(Dd−J)2+�2∆ω2)
(Dd−J)2/�

1

(Dd−J)

s
2+

2∆ω(�∆ω+
√

(Dd−J)2+�2∆ω2)
(Dd−J)2/�

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.6)

|4〉 = |T−〉 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ .

It is obvious that the triplet-plus state |T+〉 and the triplet-minus state |T−〉
are still members of the eigenbasis but it should be noted that |2〉 and |3〉 are
usually not elements of the triplet-singlet basis. The eigenbasis vectors |2〉 and
|3〉 are mixed states built out of linear combinations of the triplet zero and
the singlet state. It can be anticipated here that for high values of J (while
Dd=0) the state |2〉 almost only has triplet contributions and the state |3〉
only singlet contributions.

The matrix representation of the free Hamilton operator H0 in its eigen-
basis is given as

Ĥ0 =
1

4

⎛
⎜⎜⎝
−W + 2�ω0 0 0 0

0 W − 2V 0 0
0 0 W + 2V 0
0 0 0 −W − 2�ω0

⎞
⎟⎟⎠ (9.7)

with V =
√

(Dd − J)2 + �2∆ω2 and W := 2Dd + J .
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The matrix representation of the interaction Hamilton operator H1 in its
eigenbasis is given as

ĤI =
1

2
µBB1 cosωt

⎛
⎜⎜⎝

0 gaA + gbC gaB + gbD 0
gaA + gbB 0 0 gaC + gbA
gaB + gbD 0 0 gaD + gbB

0 gaB + gbA gaD + gbB 0

⎞
⎟⎟⎠ .

9.2.1 Remarks on incoherent phenomena

The commutator in Eqn. 9.1 describes the evolution of a closed system char-
acterized by H0 interacting with B1. The last two terms, S and R, describe
the interaction with the environment. While S describes stochastic processes,
due to the many-particle character of the system, R represents the resulting
influence of a bath. While the stochastic processes will be called generation

(pair creation), dissociation (dissociation of a pair) and recombination (pair-
partners recombine), we will call the bath influence relaxation. The influence
of relaxation which can be described by the Redfield-operator as given in
Eqn. 9.1 is neglected in all further calculations. The following assumptions
about the stochastic processes are made:

• Without a B1 field the photoconductivity is constant, i.e. the generation
is in equilibrium with the dissociation and recombination.

• The generation is independent of the B1 field. It depends only on the
constant reservoir of free carriers and defects. It is assumed that small
changes of the carrier density, due to a change of the recombination, have
no effect on the generation since the ratio between pairs and carriers is
small.

• Dissociation and recombination affect not only the populations (diagonal
elements of ρ̂) but also the polarizations (the off-diagonal elements of ρ̂).

• The B1 field manipulates the populations, therefore the equilibrium of
generation, dissociation and recombination is perturbed.

It should be noted that based on these assumptions, the norm of the density
matrix is not necessarily conserved during excitation with the B1 field.
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9.2.2 Generation and recombination

As is briefly stated in Sect. 8.1 the recombination rates of the eigenstates
|i〉 of H0 are given by their projections on the eigenvectors of the angular-
momentum operator J

r1 = rT+ = rT , (9.8)

r2 = rS |〈2| S〉|2 + rT |〈2| T0〉|2

=
rS

2

⎛
⎝ �

2∆ω2√
(Dd − J)2 + �2∆ω2

(
−(Dd − J) +

√
(Dd − J)2 + �2∆ω2

)
⎞
⎠

+
rT

2

⎛
⎝ �

2∆ω2√
(Dd − J)2 + �2∆ω2

(
(Dd − J) +

√
(Dd − J)2 + �2∆ω2

)
⎞
⎠ ,

r3 = rS |〈3| S〉|2 + rT |〈3| T0〉|2

=
rS

2

⎛
⎝ �

2∆ω2

�2∆ω2 + (Dd − J)
(
(Dd − J) +

√
(Dd − J)2 + �2∆ω2

)
⎞
⎠

+
rT

2

⎛
⎝ �

2∆ω2

�2∆ω2 − (Dd − J)
(
−(Dd − J) +

√
(Dd − J)2 + �2∆ω2

)
⎞
⎠ ,

r4 = rT−
= rT .

Now all the necessary ingredients for the presentation of the matrix elements
for the stochastic operator S (as introduced by Haberkorn and Dietz [164]),
are well defined as

S [ρ(t)] = San[ρ(t)] + Scr[ρ(t)], (9.9)

{San[ρ(t)]}ij = (ri + rj + d)
ρij

2
, (9.10)

{Scr[ρ(t)]}ij = δijGi, i, j ∈ 1, 2, 3, 4 (9.11)

where Gi are the generation rates of the four diagonal elements of ρ̂, for sim-
plicity taken here as Gi = G

4 , the ri(j) are the recombination rate coefficients
as given by Eqn. 9.8 and d is the dissociation rate coefficient.
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9.2.3 The Bloch equations

With use of the density matrix ρ̂

ρ̂(t) =

⎛
⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎠

the commutator [ρ̂,H]
−

appearing in Eqn. 9.1 can be evaluated. The resulting
Bloch equations are a set of 16 coupled differential equations which represent
the interaction of a four-level system (the eigenstates of H0) with a coherent
excitation (given by H1). They can be found in appendix F.

9.2.4 The regimes of different light-field coupling

The Bloch equations resulting from [ρ̂,H]
−

serve as the most general descrip-
tion of the dynamics of the discussed two-particle system and can be solved
numerically. However, an interpretation of the results using these differential
equations turns out to be rather difficult and simply inappropriate. The pic-
ture of two spin- 1

2 particles with Larmor frequencies ωa(b) that precess around
the B0 field is commonly used and has turned out to be a helpful interpreta-
tion tool. Needless to say that such a model based on single-particle quantities
is not able to explain the quantum-mechanical two-particle character of the
system. In the same way it is questionable to draw conclusions and to make
predictions about experiments based solely on such a simple picture. Never-
theless it can help to interpret borderline cases of the two-particle system in
which the single-particle signatures appear dominantly.
A quantity which can be used to distinguish between different intermediate-
pair regimes which can be observed by e.g. pEDMR is the coupling strength
of the B1 field. The parameter that separates the system into weak, medium
and strong B1 field coupling is the ratio between the amplitude of the B1 field
and the pair partners Larmor-frequency difference ∆ω. We concentrate on the
two extreme cases: If γB1 << ∆ω the system is said to be weakly light-field
coupled2. This means that the system can be considered in a first approxima-
tion to decompose into two one-particle systems. Each of these one-particle
systems can be characterized by its Larmor frequency ωa(b). If γB1 << ∆ω
and e.g. the B1 field is in resonance with the two-level system of particle a
(ω = ωa) almost no transitions with transition frequency ωb are induced be-
tween the two states of particle b. In other words, the spins can be considered

2 The terms weak (strong) light-field coupling or large (small) Larmor separation
are used synonymously in the following.
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to precess independently of each other with their Larmor frequencies. Both
spins are considered to be distinguishable.

In general the Rabi frequency Ω of transitions between two states with
transition (Larmor) frequency ωL excited by an external field B1 of strength
B1 and frequency ω is given by

Ω =

√
(γB1)

2
+ (ω − ωL)

2
. (9.12)

The analytic expression of the relative change of the density matrix elements3

∆(τ) of a weakly light-field coupled pair, as derived in [169], becomes

∆(τ) =
1

2

γ2B2
1

Ω2
a(b)

[1 − cos(Ωa(b)τ)]. (9.13)

This dependence of ∆(τ) on the single-particle Rabi-frequencies confirms the
assumption that the two-particle system can be considered in a first ap-
proximation as two one-particle systems as soon as the light-field coupling
is sufficiently small. Thus, the two signals appearing in the calculations of
Ω = FT(∆σ(t)) versus excitation frequency ω (in the regime of weak light-field
coupling), which reach their maximum intensities at Ω = γB1 for ω = wa(b),

are called the spin- 1
2 contributions S 1

2
.

The other extreme scenario is the regime of so-called strong light-field
coupling (weak Larmor separation) fulfilling γB1 >> ∆ω. In this case the
separation of the two Larmor frequencies is small compared to their absolute
values. In the picture of spins exposed to external magnetic fields this can be
interpreted as a precession of the two pair partners across the geometric plane,
transverse to the field direction of the externally applied magnetic field B0 (the
x-y-plane). At these moments the projection of the parallel oriented spins in
the x-y-plane onto the spin eigenstates with singlet content will be maximized.
Since this plane is passed twice per nutation period, the oscillation frequency
of the transition rate is twice as high as that of an uncoupled spin S = 1

2 . This
can alternatively be represented as one system with spin S = 1, with a Rabi
frequency which is twice that of a single pair partner with S = 1

2 . Thus for
γB1 >> ∆ω the signal appearing in the calculation of Ω = FT(∆σ(t)) versus
excitation frequency ω which reaches its maximum intensity at Ω = 2γB1 for
ω = wa � wb will be called the spin-1 contribution S1. The analytic expression
of ∆(τ) in the regime of strong light-field coupling as given by [169] is

∆(τ) =
1

2

γ2B2
1

Ω2
a(b)

[1 − cos(2Ωa(b)τ)] (9.14)

3 Since the observable is a linear combination of the density matrix elements the
frequency components of ∆(τ ) are found in the Fourier transformation of ∆σ(t).
In this framework τ indicates the length of the pulse.
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with a Rabi frequency of the two almost resonantly excited spins which is
twice the single-particle Rabi-frequency. This can be seen as a beat oscillation
of the two simultaneously excited spin states and is usually called a Rabi

beat-oscillation [169].
Besides these two extreme cases there in no known analytic expression of

∆(τ) in the case of the remaining regime of intermediate light-field coupling.
In addition to the work of Rajevac et al. ([184]), where the Liouville equation
(9.1) was solved without the stochastic contribution4, in the following chapter
the first calculations of this intermediate case are shown.

4 And without the Redfield operator R which is skipped in this work as well.
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Results in absence of disorder

10.1 Recombination through pairs without exchange

coupling

In this section the results of the calculations of the change of the photo-
conductivity ∆σ(t) for a system of localized identical spin pairs in semicon-
ductors during coherent spin excitation are shown. The accompanying set of
Bloch equations given in appendix F was solved numerically using a standard
Runge-Kutta algorithm.

In all calculations we use J = 0 and Dd = 0. For the illustration of all
calculated results, shown in this work, the units of the intensity are arbitrary.1

The relevant information contained in the calculated transients ∆(τ) which
appear in the observable ∆σ(t) are the frequencies as well as the amplitudes
of the transitions (nutation components). Thus, from the solutions of ∆σ(t)
the Fourier transform (FT) was calculated in order to analyze the various
frequencies contained therein.2

Figure 10.1 displays Ω = FT(∆σ(t)) versus ω (the frequency of the B1

field) obtained by the solution of Eqn. 9.1 for spin pairs with four different
Larmor separations (∆ω

2π =1MHz, 5MHz, 20MHz, 40MHz) for microwave
excitation frequencies of 9.95 GHz ≤ ν = ω

2π ≤ 10.05 GHz with a given B1

1 Since the chosen absolute values of the scale are defined with respect to the
maximum intensity of a data set which often lies in the data offset (not shown)
originating in numerical artifacts, a comparison of the given intensities of the
signals between different figures will often be misleading.

2 The time scale for the time domain simulation and, therefore, the Fourier inte-
gration was chosen to be 5µs long.
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Fig. 10.1. Three-dimensional color plot of the calculated Ω = FT(∆σ(t)) as a
function of the excitation frequency ω scaled in units of γB1 as the difference between
ω and the average of the Larmor frequencies of the two pair partners ω′ = 1

2
(ωa+ωb)

and the Rabi frequency Ω in units of γB1. For all plots γ

2π
B1 = 10 MHz and

ω′

2π
= 10GHz. The Larmor-frequency separation of the pair partners decreases from

(a) to (d): (a) 40MHz, (b) 20 Mhz, (c) 5 MHz and (d) 1MHz.

field-strength of γB1

2π = 10MHz.3 It should be noted that the scaling of the
color code was normalized for all figures to the maximum for each graph in
order to achieve sufficient contrast. While the plots (a) and (d) fulfill the

3 It should be noted that in this work the magnetic fields B0 and B1 are con-
sidered to be linearly polarized. As long as the absolute value of the magnetic
field-strength is transformed out, as it is done here by use of the unit γB1, the
distinction between different definitions of a magnetic field becomes unimportant.
The situation changes when comparing the absolute values of the Rabi frequency
depending on the strength of variously defined magnetic fields B1 (e.g. comparing
[180] and [184]). A diagram of how to transform the field strength between the
different frames is given in G.
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Fig. 10.2. Color plot of the Rabi-frequency components Ω = FT(∆σ(t)) as function
of log( ∆ω

γB1
) for an excitation frequency (a) ω = ωa,b on resonance with one of the pair

partners and (b) ω = ω′ on resonance with the average ω′ of the pair partners Larmor
frequencies.[184] Note that the results are obtained for calculations neglecting S in
Eqn. 9.1.

extreme cases of small and large Larmor separation, respectively, the plots
(b) and (c) describe two intermediate cases with γB1 ≈ ∆ω.

The four different scenarios displayed in Fig. 10.1 confirm the hyperbolic
increase of the Rabi frequency Ω =

√
(γB1)2 + (ω − ωa,b)2 as the microwave

frequency is shifted out of resonance. For the two extreme cases Ω = γB1

for large Larmor separation and Ω = 2γB1 for small Larmor separation the
results shown in Fig. 10.1(a) and (d) show only one frequency component,
which confirms the analytical results of Ref. [180]. Outside of the resonances
(ω = ωa,b), the oscillation splits into two components for the extreme cases
and in the general intermediate cases, there are up to four different nutation
frequencies visible as known from [184]. The main result is that the calcula-
tions justify the approach of Rajevac et al. where incoherence was not taken
into account. By comparison with their results it becomes clear, that under
the assumption of realistic recombination rate-coefficients the influence of S
is negligible in a first approximation.

Thus the essential point in [184] remains valid: In the simulations of the
spin-Rabi oscillation the doubling of the dominant frequency component from
Ω = γB1 to Ω = 2γB1 appears ’abruptly’ with increasing strength of the
B1 field. A visualization of this behavior is shown in Fig. 10.2. This signature
at Ω = 2γB1 does not increase continuously out of the S 1

2
resonance. It

evolves at higher Rabi frequencies and converges with increasing strength of
the light-field coupling down to its minimum value Ω = 2γB1.
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Fig. 10.3. (a) Plot of the ESR allowed transition frequencies ωij = 1
�

(Ei − Ej) with
(ij) ∈ {12, 13, 24, 34} as function of J . Transitions indicated by ω13 and ω34 involve
the state |3〉 with high projection on the singlet state for large values of J . For the
plot, Larmor frequencies of ωa,b = 10± 0.01GHz have been assumed. (b) Schematic
illustration of the transition probabilities between the four states depending on the
strength of J . The probability of transitions involving |3〉 (indicated by the thickness
of the arrows) decreases with increasing J . Note that the position of the energy levels
of the four states is not true to scale.

10.2 Recombination through exchange-coupled pairs

In the following a numerical study of transport and recombination through
localized exchange coupled identical spin pairs during coherent excitation is
presented. One purpose is to elucidate differences between transient nutation
experiments on exchange-coupled radical pairs detected by pESR in contrast
to the detection by pEDMR. In particular we focus on when the observed
spin pairs can be approximated as two one-particle systems or show the full
characteristics of a two-particle system. This has turned out to be one of the
key differences for pESR- and pEDMR- detected transient nutation of weakly
coupled spin pairs. Another question that is discussed is whether magnetic
resonance induced triplet–singlet transitions, which become increasingly for-
bidden with increasing exchange coupling (see Fig. 10.3(b)), will reduce the
observed signal intensities. It shall be pointed out here that the focus of this
study deals solely with electronic transitions, based on spin–selection rules, be-
tween paramagnetic states in weakly spin–orbital coupled systems. Besides the
applicability of the model on IPs, formed by a singly charged dangling bond
and an electron localized in its vicinity, typical examples would be charge
carrier pairs in semiconductors such as electron–hole or polaron pairs [185],
defect pairs such as donor–acceptor pairs [186, 187] or radical pairs [188] in
molecular systems or solid state host environments [189].

In summary the key problem that should be resolved by the calculations is
the following: What are the features of the studied quantity Ω = FT(∆σ(t))
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Fig. 10.4. Three-
dimensional color
plot of the calculated
Ω = FT(∆σ(t)) as a
function of the excitation
frequency ω scaled in units
of γB1 as the difference
between ω and the average
of the Larmor frequencies
of the two pair partners
ω′ = 1

2
(ωa + ωb) and

the Rabi frequency Ω
in units of γB1. For all
plots γ

2π
B1 = 10MHz and

ω′

2π
= 10 GHz. Shown here

for strong light-field cou-
pling with ∆ω

2π
= 1MHz, for

medium and small light-
field coupling see Fig. 10.5.
For proper illustration the
barely visible resonances
in (c) are marked with
black dots. The strength
of the J-coupling used in
the calculations increases
from top to bottom:
1
2π

J = 1 MHz (a), 10MHz
(b), 50 MHz (c).

that are affected by changing the coupling strength J in spin pairs responsible
for carrier recombination and how do these features depend on the strength
of the light field B1 ? Furthermore, it should become clear whether one could
distinguish experimentally between the cases of strong and weak exchange
coupling4 between the pair partners at different microwave fields.

The theoretical model we use here has been described in detail in chapter 9.
The time-independent Hamiltonian H0 including part I and II as given by
Eqn. 9.3 has the eigenvalues

4 ’Weak’ and ’strong’ are defined in comparison with ∆ω.
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E1,4(J) = −1

4
J ± 1

2
�ω0, (10.1)

E2,3(J) =
1

4
J ∓ 1

2

√
J2 + �2∆ω2

where ωa,b are the Larmor frequencies of the pair partners while ω0 = ωa +ωb

and ∆ω = ωa − ωb are the sum and the difference of the Larmor frequencies
within the pair. As expected for a two-particle system the energy eigenvalues
represent a four–level system and, as long as only single-photon processes are
concerned, there are four allowed transitions as is well known from conven-
tional ESR spectroscopy. Fig. 10.3(a) shows the transition frequencies of all
four transitions as a function of the exchange coupling strength J . One can
see that with increasing exchange, the |1〉 � |2〉 and the |2〉 � |4〉 tran-
sitions (which are the transitions between the triplet states) will gradually
reach the same transition-frequency ω0

2 . The transition frequencies of the two
transitions involving the mixed state |3〉, which has high singlet content for
increasing exchange coupling, will develop almost proportionally with J . In
the case of strong exchange coupling (J � ∆ω), the transition strength into
state |3〉 (State |3〉 shows an increasing projection on the singlet state with
an increase of J .) will decrease and vanish entirely for infinite strength of J .
This dependence of the transition strength on the exchange coupling constant
J is schematically shown in Fig. 10.3(b)5. The results of the simulations of
Ω = FT(∆σ(t)) versus excitation frequency ω for various exchange-coupling
strengths are shown in Fig. 10.4 for a system with strong light-field coupling
and in 10.5 for the medium and weak light-field coupling regimes.

We start our discussion from the results of the calculation in the case of
a weak light field B1 shown in Fig. 10.5(d-f). The curves presented in (d) and
(e) of this figure obtained for small and moderate exchange couplings J can
be well understood using the resonant frequencies shown in Fig. 10.3(a). In
particular, the resonant frequencies Ω belonging to the transitions between
states involving singlet projections, (the transitions between states |1〉 and
|3〉 and between states |3〉 and |4〉) shift away from the reference point and
correspond to nutations with smaller Rabi frequencies with increasing J . The
data shown in part (e) of this figure shows a new pronounced resonance at Ω ≈
2γB1 which continually develops from resonances in parts (a) and (b). In the
calculations shown in Fig. 10.1 as well as in Ref. [184] a very similar resonance
was obtained at the very same Rabi frequency Ω = 2γB1 for the case of
strong light-field coupling and zero exchange coupling (J = 0). In the latter

5 This is the reason why ESR spectroscopy of strongly coupled pairs is typically a
triplet spectroscopy.
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Fig. 10.5. Three-dimensional color plot of the calculated Ω = FT(∆σ(t)) as a
function of the excitation frequency ω scaled in units of γB1 as the difference between
ω and the average of the Larmor frequencies of the two pair partners ω′ = 1

2
(ωa+ωb)

and the Rabi frequency Ω in units of γB1. Data shown for intermediate light-field
coupling ∆ω

2π
=20MHz (left) and weak light-field coupling ∆ω

2π
=40MHz (right). The

strength of the J coupling used in the calculations increases from top to bottom:
1
2π

J = 1 MHz (a) and (d), 10 Mhz (b) and (e), 50 MHz (c) and (f). For remaining
parameters see caption of Fig. 10.4.

case, however, this resonance arises ’abruptly’6 with increasing B1. In the case
discussed here with finite exchange coupling between spin constituents of the

6 ’abruptly’ in the sense that it does not evolve out of the single particle S 1
2

reso-

nances with increasing light-field coupling.
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pair this resonance evolves continuously with increasing J out of resonances
caused by transitions between the states |1〉 and |3〉 and states |3〉 and |4〉
shown in (e) and (f) of Fig. 10.5. In Ref.[184] as well as in section 10.1 the
abruptly arising resonance at Ω = 2γB1 was interpreted as Rabi oscillations
of a spin-1 system, since the two spin- 1

2 particles are excited simultaneously
being coupled by the strong light field B1. The resonance at Ω = 2γB1 arising
smoothly in Fig. 10.5 with increasing exchange coupling J has however a
completely different nature as we show below. Therefore this resonance cannot
be interpreted as formation of a spin-1 system.

Let us consider the results obtained for the calculation of Ω = FT(∆σ(t))
versus excitation frequency ω in the medium light-field coupling regime shown
in Fig. 10.5(a-c). Besides the splitting of one transition frequency into two
separate transition-frequency signals due to the J-coupling (discussed already
with respect to Fig. 10.5(d-f)), one can recognize in part (a) of Fig. 10.5 a
weak resonance at higher Rabi frequency Ω ≈ 3γB1. This corresponds to
the two spin- 1

2 particles coupled into an effective spin-1 system due to the
coupling of spins by the microwave field [184]. Following the development of
the observable (FT(∆σ(t))) in Fig. 10.5 (b) with increasing J the intensity
of this resonance decreases and is not visible anymore. Nevertheless this is
a problem of the choice of depiction. Out of the calculated data it can be
concluded that the resonance shifts towards higher Rabi frequencies with in-
crease of J . Instead a new resonance clearly seen at Ω = 2γB1 in part (c)
of Fig. 10.5 evolves gradually with increasing J similar to the case shown in
parts (e)−(f). Therefore this resonance cannot be interpreted as belonging to
a spin-1 system created by coupling of the pair partners due to the light field
B1. Instead this resonance is caused by the strong spin-exchange coupling.
In the case of the strongest J coupling shown in parts (c) and (f) additional
prominent resonances appear at very low Ω whose minimum Rabi frequency
is reached at increasing | ω − ω′ | with increasing light-field coupling. This
rather unexpected high intensity of resonances involving transitions with par-
ticipation of |3〉 (since |3〉 is the state with high projection on the singlet state
for large values of J , the signals of transitions involving |3〉 are referred to in
the following as ’singlet’ signatures (resonances)) becomes most intensive in
the case of a strong light field shown in Fig. 10.4. In this case the previously
discussed signal at Ω = 2γB1 is barely visible due to its weak intensity in
comparison with the ’singlet’ signatures. So far these ’forbidden’ transitions
including |3〉 have been considered (at least in the ESR literature) as negligi-
ble. While the curves in part (a) of Fig. 10.4 coincide with the results obtained
for non-interacting pair partners given in Fig. 10.1 and [184], the increase of
the exchange interaction between the spins in the pair creates pronounced
resonances with very high intensity at very low Rabi frequencies as shown in
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part (b) and (c) of Fig. 10.4 and shift with increasing J far apart. The inten-
sity becomes so strong that the depicted frequency range had to be reduced
in order to avoid the maximum intensity of these signatures to keep the other
comparatively weak resonances visible. These dominant ’singlet’ resonances
arise solely due to the exchange interaction. Looking at Fig. 10.3 one can rec-
ognize that such behavior is to be expected for transitions with frequencies ω13

and ω34 involving state |3〉. Therefore we conclude that state |3〉 which has a
large projection on the singlet state (in comparison with the projection on the
singlet state of state |2〉.) plays an essential role in the regime of strong spin
coupling via the light field and via exchange interactions. This pronounced
role of states with considerable singlet projection in the coherent dynamics
of spin pairs was unexpected. With rising exchange-coupling constant J the
states |2〉 and |3〉 evolve from the mixed states with equal singlet and triplet
contents into almost pure singlet and triplet states, respectively. Matrix ele-
ments involving transitions to/from state |3〉 almost vanish with rising J as
the interaction Hamilton operator fully accounts for the spin selection-rules.
However the huge recombination rate of the singlet state rs as compared
to the recombination rate of the triplet state rt makes the contribution of
transitions involving |3〉 into the observable (FT(∆σ(t))) given by Eqn. 8.12
essential. In other words: The contribution of ’forbidden’ transitions involving
the state with the large singlet projection (for sufficient values of J) arises
due to the fact that we consider those spin pairs which strongly affect the
transport and recombination processes. A second major result of this study is
almost covered by the effects discussed so far. Under experimental conditions
the systems of strong light-field coupled pairs without exchange interaction
(Fig. 10.1(c)) and systems with strong exchange interaction (Fig. 10.4(c)) are
almost indistinguishable. The strong intensity differences between both cases
are not present when performing such experiments on a material sample. As
soon as the experiment is not performed such that one can assure that reso-
nances related with transitions incorporating ’singlet’ states can be detected,
the two different regimes stay indistinguishable.
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Influence of disorder

11.1 Introduction

The rich structure of the simulation results, as it has been shown in section
10.1 as well as in [184] is mostly invisible in the experimental results as e.g.
Fig. 11.1. The prominent peak in the case of a system with strong light-field
coupling, is the spin-1 contribution S1, while the S 1

2
resonance is barely visi-

ble. In Fig. 10.1(d) the branches of the S 1
2

contributions in the simulations of
one system without exchange coupling are clearly of the same intensity as the
S1 peak shows at ω = ω0

2 . The introduction of exchange coupling does not
resolve this disagreement between the simulations and the experimental data
(see Fig. 10.4). In the following a rather simple extension of the previously
introduced theoretical model on ensembles of unequal intermediate pairs is
presented. It is shown that by taking disorder into account, namely a distri-
bution of pair-partner g-factors, the deviation between theoretical and exper-
imental results can be remedied. Following to this a qualitative interpretation
of the g-factor disorder is given which may allow us to obtain further insights
into the material properties. In this framework a detailed model study of the
influence of differently distributed pair-partner g-factors on the observable is
presented.

11.2 Ensembles of unequal pairs − the regime of strong

light-field coupling

The spin dependent recombination process which was simulated in the previ-
ous chapter is supposed to happen only within intermediate pairs, formed, for
example, by a dangling-bond electron and a conduction band electron weakly
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Fig. 11.1. An example
for experimental data
obtained by pODMR
on a-Si:H. The signal at
Ω ≈ 2γB1 ≈ 60MHz is
indicative for strongly
(light-field) coupled
systems, the signal at
Ω ≈ 40 MHz has a
different origin and is
not discussed here. For a
detailed description and
remaining parameters
see [190].

localized in its vicinity. The model is in principle applicable to intermedi-
ate pairs built out of other pair partners which are not discussed here. Since
the pair partners are considered to have characteristic local properties on a
microscopic scale, resulting in specific internal magnetic fields, the effective
magnetic field for both partners differs and has characteristic values for each of
them. This difference of the effective magnetic field can be represented by use
of two different characteristic average g-factors, ḡa and ḡb e.g. for the weakly
localized electron and for the dangling-bond electron, respectively. All local
modifications of the external magnetic field due to the interaction with the
magnetic moments present in characteristic environment in the sample (e.g.
the magnetic moments of the atomic nuclei) are coded into these effective
parameters. For an ensemble of identical recombination centers1 the g-factor
distribution is shown in Fig.11.2(a). Nevertheless one can claim that the re-
combination centers are not all identical since deviations from a perfect crystal
structure can never be avoided. Due to the fact that the local environment
for both pair partners change within the crystal, both pair partner g-factors
will reflect this change of local environment and will fluctuate around their
mean values. On the basis of the assumptions made (in comparison with the
microscopic g-factor change discussed above) this fluctuation of the effective
magnetic field on a mesoscopic length-scale is described by a Gaussian distri-
bution for both pair-partner electrons. The probability of a certain ga (gb) is

1 As taken into account in the calculations presented so far.
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Fig. 11.2. The graphs show the probability-density distribution of the intermediate-
pair partners g-factors (ga and gb) for different correlations between the pairs. In
case a) the g-factors ga and gb of each IP are distributed δ-like at their corresponding
mean values ḡa and ḡb. Due to this the ensemble of intermediate pairs consists of
equal ones. The g-factor difference ∆g of the pair partners of an intermediate pair
is constant for all pairs. In b) and c) the distributions of the g-factors are given by
Gaussian distributions around ḡa and ḡb with a standard deviation δ. In b) ∆g varies
and the ensemble consists of pairs with all possible combinations of values of ga and
gb. This results in an ensemble of intermediate pairs, whose pair partner g-factors are
not correlated. In c) ∆g is constant with ∆g = ḡb − ḡa, and the ensemble consists
of pairs with all combinations of values of ga and gb fulfilling the condition for
∆g. This results in an ensemble of intermediate pairs, whose pair partner g-factors
are correlated. Note that in this depiction the ratio of δ

∆g
is strongly decreased in

comparison with the values used for the calculations in order to provide a proper
illustration of both types of g-factor distributions.

given by

p(ga(b)) =
1√
2πδ

e−
(ga(b)−ḡa(b))

2

2δ2 . (11.1)

For simplicity the standard deviation δ is assumed to be the same for the
distributions of ga and gb.

We take into account an ensemble of M non-interacting intermediate pairs
whose members are numbered by the index i. Each pair is characterized by
its two g-factors gi

a and gi
b. This corresponds to the Larmor frequencies ωi

a =
1
�
gi

aµBB0 and ωi
b = 1

�
gi

bµBB0 with ωi
0 = ωi

a + ωi
b and ∆ωi = ωi

a − ωi
b

With the Hamilton operator given in Eqn. 9.7 and with use of J = 0 and
Dd = 0 one gets the energy levels
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Ei
1 =

1

2
�ωi

0,

Ei
2 = −1

2
�∆ωi,

Ei
3 =

1

2
�∆ωi,

Ei
4 = −1

2
�ωi

0.

The fluctuation of the local magnetic field2 represented by the g-factor dis-
tributions given in Eqn. 11.1 is supposed to take place on a characteristic
length-scale LB as illustrated in Fig. 11.3(b). This length-scale depends on the
specific properties of the sample material3. In the case that the localization
radius L of the two-particle system (consisting of the electron on the dan-
gling bond and its pair partner localized around it) as shown in Fig. 11.3(a),
for example, is large compared to LB one has to consider that the values of
the local magnetic fields felt by the pair partners will not be correlated. Due
to this, the non-correlated g-factor distribution shown in Fig. 11.2(b) is the
correct way to model such a scenario. For the members of the ensemble of
intermediate pairs all combinations of ga and gb are possible and thus such
a distribution of g-factors is referred in the following as non-correlated. In
this case the difference between the pair partners’ g-factors ∆g will not be
constant for all members of the ensemble of IPs.

In the opposite case, when the localization radius L of the two-particle
system is small compared to LB, the value of the local magnetic field, felt
by the pair partners, can be considered to be almost equal. This results in a
so-called correlated distribution of g-factors. For example a pair state whose
ga is below its mean value gb will be below its mean value and vice versa.
According to this the g-factor difference ∆g within each pair is the same for
all members of the ensemble of intermediate pairs (see Fig. 11.2).

Remarks on the length-scale of an IP

So far the value of L was treated as a free, but almost constant, value. The
question arises whether it has to be considered distributed, and if so, whether a
distribution involving all possible length-scales Li will have a crucial influence

2 Local magnetic field means, in this context, the position-dependent magnetic
field resulting from the interactions of the external magnetic field with the entire
system of magnetic moments of the atomic cores in the material.

3 It should be noted that we consider only an isotropic material in this simple
model.
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Fig. 11.3. (a) Illustration of the length-scale L of an intermediate pair with the
example of an IP formed by a dangling-bond electron and an electron weakly lo-
calized in its vicinity, (b) Illustration of the fluctuation of the strength of the inner
(effective) magnetic field Heff on a characteristic lenght scale LB .

on the results. Such a case describes an ensemble of IPs where all combina-
tions of the ratio between Li and LB and between Li � LB and Li � LB

have to be considered and the assumption of an either totally correlated or
totally non-correlated g-factor distribution is not valid anymore. At this point
one has to place emphasis on the KSM model which justifies the assumption
taken previously. The recombination can only take place out of an IP. Not
all possible combinations of a conduction-band electron and a singly charged
dangling bond with, for example, the corresponding spatial separation of the
length Li can be considered as an IP, since the formation of an IP is equiv-
alent to a spatial localization of the electron in the vicinity of the impurity.
Thus recombination will only take place as combinations of, for example, a
conduction-band electron and a singly charged dangling bond if their spa-
tial separation LI is smaller than a certain maximum value LM = L. This
length-scale L can be seen as the natural upper boundary of the localization
length of an IP. So if LB � L (the correlated case) the system is modelled
correctly by use of this upper bond L as Li ≤ L � LB and all members of the
ensemble are correlated. On the other hand if LB � L (the non-correlated
case) the real system will not consist of non-correlated pairs only, since with
Li ≤ L the amount of pairs with smaller localization length fulfill the con-
dition LB > Li ≤ L and are thus correlated. Their effect is neglected when
simulating the non-correlated ensemble.
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Fig. 11.4. Ratios
between the inten-
sity of the calculated
Ω = FT(∆σ(t)) as
a function of the
excitation frequency
ω at Ω = 2γB1 (the
S = 1 signature), p1

and the maximum
value of the intensity
of the S = 1

2
compo-

nent p2 against the
standard deviation δ
of the g-factor distri-
bution for correlated
and non-correlated
distributions of 81
intermediate pairs.
For parameters see
text.

11.2.1 Discussion of the results

In the following the mobility of holes and electrons are assumed to be
equal (µe = µh) for simplicity. Furthermore, in all simulations, includ-
ing the stochastic contribution, it holds for the dissociation-rate coefficient
d
ns = 10−6, the triplet recombination-rate coefficient rT

ns = 10−5 and the sin-
glet recombination-rate coefficient rS

ns = 10−3.
In Fig. 11.4 the ratio between the Ω = 2γB1 amplitude and the largest

amplitude of the Ω = 1γB1 frequency component from the FT of ∆σ(t) is
plotted against the standard deviation δ of the g-factor distribution for the
correlated and the non-correlated case. The parameters are: γB1

2π = 10MHz,
M = 81, ∆ω = 0.2MHz. The influence of the stochastic part in Eqn. 9.1 was
neglected here. Since for very small δ the ratios are almost equal, the ratio
for the non-correlated distribution breaks down with increasing δ and is even
smaller than 1 for standard deviations larger than δ

2π = 5 MHz. For the cor-
related case the ratio decreases with increasing δ after a maximum slightly
below 5 MHz, but even for large standard deviations as 25MHz the Ω = 2γB1

signal is twice as large as the Ω = 1γB1 signal.
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In Fig. 11.5 two 3-d plots4 of the calculated FT(∆σ(t)) are shown5. The
plots are shown in this manner to illustrate the peak ratio between the S 1

2

and the S1 resonance. The calculations were performed for an ensemble of
M = 81 IPs, for a correlated g-factor distribution and a standard deviation
δ
2π = 3 MHz, corresponding to the maximum ratio between the S1 and the S 1

2

according to Fig. 11.4. In (a) the observable was calculated by solving the Li-
ouville equation via use of the Hamilton operator given in Eqn. 9.1 without a
stochastic term. In (b) it is calculated including the stochastic term represent-
ing incoherent processes such as recombination, dissociation and generation
of pairs as covered by Eqn. 9.1. Both calculations show a dominant S1 con-
tribution at a Rabi frequency of Ω = 2γB1 as obtained by the experimental
results. The differences between these results is rather small. The stochastic
term causes only a slight broadening of the ’U’-structure which is centered
at (0,γB1) in the (ω − ω′, Ω)-sphere. This is the plane relates increase of the
Rabi frequency to increase of detuning in the two non-interacting S 1

2
systems.

The strong deviation of those results which depend on ones choice of g-
factor distribution can be explained geometrically. For example the prominent
dot-like signal of the S1-resonance, appearing under the assumption of a cor-
related g-factor distribution, evolves due to the overlapping centers of the U
structures while the arms of the Us don’t sum up. A detailed discussion of
this explanation is given in Sect. H.

A dulcet note

This simple geometric description reflects the information contained in the
Fourier transformed signals due to simple additions of single-pair results. In-
teractions between the different pairs are not taken into account in the calcu-
lations. Signal interference effects of a single system in the time domain must
lead to the Fourier transformed plots, considered here, and do not contain
other information.

4 Due to the symmetry of the 3-d plots (and thus without loss of information) the
results shown in this section display only a cutout of the (Ω, ω)-sphere shown.
Fig. 10.4 is a good example of this.

5 The calculation was made with 1000 steps per nanosecond in a time range of 6
micro seconds
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Fig. 11.5. Three-
dimensional color plot
shows the intensity
I of the calculated
FT((∆σ(t)) as a func-
tion of the excitation
frequency ω, scaled in
units of γB1 as the
difference between ω
and the average of the
Larmor frequencies of
the two pair partners
ω′ = 1

2
(ωa + ωb), and

the Rabi frequency Ω
in units of γB1 for
a system of 81 inter-
mediate pairs with a
correlated g-factor dis-
tribution ( δ

2π
= 3MHz).

The used parameters
are γ

2π
B1 = 10 MHz,

ω0
2π

= 10 GHz, and
∆ω
2π

= 0.2 MHz. In (a)
Eqn. 9.1 was solved
without the stochastic
part S , in (b) the dis-
sociation rate-coefficient
d
ns

= 10−6, the triplet
recombination rate-
coefficient rt

ns
= 10−5,

the singlet recombi-
nation rate-coefficient
rs
ns

= 10−3 and the
pair generation-rate
G
ns

= 2.1 10−4 were used.
For this parameter set
the influence of S is
weak as the graphs show
marginal differences.

11.3 Ensembles of unequal pairs − the regime of weak

light-field coupling

After analyzing the influence that a g-factor distribution has on the FT(∆σ(t))
of a collection of intermediate pairs in the strong light-field coupling regime we
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now discuss the influence of such a distribution on a collection in the regime
of weak light-field coupling. Therein we use the parameters given in [184] wa

2π =

9.98 GHz, wb

2π =10.02 GHz, ∆ω
2π =40MHz and γB1

2π =10MHz.

11.3.1 Influence of system size

The introduction of g-factor disorder in the (Ω, ω)-sphere is assumed to lead
the U-like structures of the S 1

2
resonance to vanish and point-like signatures to

develop. This can be predicted for the strong light-field coupling regime since
the mechanism applied to explain the change in the S1 signature induced by
the disorder, which is given above, remains applicable. The two different distri-
butions of the pair partner g-factors are modelled as in the previous section.
On initial inspection the choice of g-factor distribution, either a correlated
or an non-correlated distribution should play no role in the regimes of weak
light-field coupling, since the strength of the B1 field is so weak, that both
pair partners get excited independently of each other. In other words the cal-
culated Rabi-frequency signal of the pair partner whose resonance (Larmor-)
frequency is, for example, wa

2π = (10.02 + δ)GHz (where δ is the standard de-
viation of g-factor distribution) will not change if the corresponding resonance
(Larmor)-frequency wb of its pair partner is located at wb

2π = (9.98 + δ)GHz
(as is assumed of a correlated g-factor distribution). Neither will it change if
it is located at a random position within the interval [wb − 2δ, wb + 2δ].

The large deviations between the calculated Ω =FT(∆σ(t)) as a function
of ω for a correlated and a non-correlated ensemble with 9 times 9 intermedi-
ate pairs each, can be found by a comparison of Fig. 11.6(a) and Fig. 11.7(b).
These deviations result in the fact, that for a correlated g-factor distribu-
tion the 81 different resonance signatures of one of the pair partners with
e.g. index b are distributed over the interval [wb − 2δ, wb + 2δ] in the (Ω, ω)-
sphere. In the case of the non-correlated distribution only 9 different reso-
nances are distributed over the same interval. In this situation the total sum
of 81 ensemble members results out of all combinations between the 9 reso-
nances given for ωa with all 9 resonances given for ωb as discussed in more
detail in Appendix H. Thus the pair partner (Larmor)-frequency resonances
of a correlated g-factor distribution are almost continuously distributed while
for a non-correlated g-factor distribution they are discretely distributed. In
other words, the differences between the calculated results for ensembles of
correlated and non-correlated g-factor distributions for a system with weak
light-field coupling arise solely due to the special choice of modelling the dif-
ferent distributions. Fig. 11.6 bears this point out where Ω = FT(∆σ(t)) as a
function of the excitation frequency ω is shown for different distributions and
numbers of ensemble members but for the same density of resonances. In (a)
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Fig. 11.6. Three-dimensional color plot of the calculated Ω =FT(∆σ(t)) as a
function of the excitation frequency ω. It is scaled in units of γB1 as the difference
between ω and the two pair partners ω′ = 1

2
(ωa + ωb) average Larmor frequencies

and the Rabi frequency Ω in units of γB1. (a) for a system of 9 · 9 IPs with a non-
correlated g-factor distribution, (b) for a system of 3·3 IPs with a correlated g-factor
distribution. The two results for the weakly light-field coupled systems displayed in
(a) and (b) are identical. The standard deviation is δ

2π
= 12MHz. Other parameters

are used as for the calculation shown in Fig. 10.1(a).

Ω = FT(∆σ(t)) as a function of ω is shown for a system of 9 · 9 IPs with an
non-correlated distribution, while in (b) Ω = FT(∆σ(t)) as a function of ω
is shown for a system of 3 · 3 IPs with a correlated distribution; all further
parameters are identical. As expected the plots shown in Fig. 11.6(a) and (b)
are equal.

As one can clearly see in Fig. 11.6(b) at very low densities of different
(single-particle) resonance signatures the resonance of each single system be-
comes visible and the resulting plot is the same as in Fig. 11.6(a) in the case of
the non-correlated system with 9·9 members. Herewith it has been shown that
due to the special choice of the model parameters the ensemble size used to
calculate a system of weakly coupled spin pairs with a non-correlated g-factor
distribution has to be significantly larger than that used for the correspond-
ing system with a correlated g-factor distribution. Therefore we come to the
conclusion that in the regime of weak light-field coupling, a system with a
non-correlated g-factor distribution and a system with a correlated g-factor
distribution are indistinguishable and show equal results.

Fig. 11.7 shows the calculation of Ω =FT(∆σ(t)) versus excitation fre-
quency ω for a system of 9 · 9 IPs with weak light-field coupling for three
different standard deviations (a) δ

2π = 5MHz, (b) δ
2π = 12MHz and (c)

δ
2π = 25MHz. It is obvious by comparison of the three graphs that the width
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Fig. 11.7. Three-
dimensional color
plot of the calculated
Ω = FT(∆σ(t)) as a
function of the excita-
tion frequency ω scaled
in units of γB1 as the
difference between ω and
the average of the Larmor
frequencies of the two pair
partners ω′ = 1

2
(ωa + ωb)

and the Rabi frequency
Ω in units of γB1 for a
system of 81 intermediate
pairs with a correlated
g-factor distribution. The
standard deviation of
the distribution ranges
from δ

2π
= 5MHz in (a),

over δ
2π

= 12 MHz in
(b) to δ

2π
= 25 MHz in

(c). As used for the cal-
culation in Fig. 10.1(a)
γ

2π
B1 = 10 MHz,

ω′

2π
= 10 GHz and the

Larmor-frequency separa-
tion of the pair partners is
40MHz.

of the S 1
2

resonance gets broadened with increasing δ. Fig. 11.8 shows the in-

tensity of the calculated Rabi frequency at Ω
2π = γB1

2π = 0.01GHz versus the
excitation frequency ω for three ensembles of 81 pairs with different standard
deviations δ

2π = 5MHz, 12MHz and 25MHz.
The small oscillation visible in the depicted data belonging to the ensemble

with the largest value of δ results in the fact that for large standard deviations
the separation of different pair partner’s g-factors becomes so large, that sig-
natures of single intermediate-pair partners become visible. Such oscillations
vanish with increasing number of ensemble members and therefore represent
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Fig. 11.8. Intensity
I of the calculated
Ω = FT(∆σ(t)) at
Ω
2π

=0.01 GHz versus
excitation frequency ω
for ensembles with 9x9
correlated intermediate
pairs, distributed with
three different standard
deviations δ as indicated
in the figure. For re-
maining parameters see
caption of Fig. 11.6.

no general restrictions of the model. It can be concluded apparently that based
on the discussed model the magnitude of disorder of the g-factor distribution
(represented by the value of δ in our calculations), should be indicated by
the width of the measured spin- 1

2 resonances in the regime of weak light-field
coupling.
In summary taking into account disorder via the introduction of an ensemble
of pairs with distributed g-factors for a weak light-field coupled regime, leads
to vanishing ”U”-like structures in the 3-d plots of Ω versus ω and appearance
of ”dot”-like structures. This effect is similar to the case of strong light-field
coupling. The width of a resonance in the ω-sphere scales with the size of δ.
On the basis of the given model, the extraction of this width in the ω-sphere
out of experimental data may allow a conclusion about the g-factor disorder
in the system to be made.
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Conclusion of part II

12.1 Conclusion

In summary, the response of charge-carrier transport and recombination rates
through localized electronic states in semiconductors to a coherent manipu-
lation by magnetic resonance were simulated as they would be expected in
pEDMR/pODMR experiments on, for example, µc-Si:H. The transient re-
sponse was calculated with the spin excitation present for different excitation
fields and frequencies as well as different Larmor separations within the pairs.
Firstly it was assumed that exchange and dipolar interaction were weak. In-
coherence due to the electronic transitions or spin-relaxation was taken into
account. The results were obtained by the numerical solution of the stochas-
tic Liouville equation. The results show that four qualitatively distinguishable
nutation processes influence the oscillation of the transition rates which re-
duce to one significant contribution in the cases of large and small Larmor
separations. The presence of the four oscillation processes implies that chang-
ing the Larmor separation or the applied excitation field leads to an ’abrupt’
and non-continuous change of the observed signal frequencies.

In the second part we have studied the effect of the exchange interaction.
The study was carried out for different coupling strengths between the inter-
mediate pair and the microwave field. At weak and moderate spin couplings
induced by the light field a new resonance has been found in the photocon-
ductivity response. This resonance is clearly distinguished from the one aris-
ing in the absence of the exchange interaction. At strong light-field coupling
the contribution of singlet states plays an essential role even at strong ex-
change coupling. Such contributions were not discussed so far. Furthermore it
is shown that only if signals of transitions incorporating singlet states can be
detected experimentally a distinction between the following two scenarios of
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strong light-field coupled pairs is possible:(a) Strong exchange coupling and
(b) Weak exchange coupling.
The results of the last chapter eliminate the crucial discrepancy between all
existing theoretical predictions and the experimental data. Disorder in terms
of a distribution of the pair partners g-factors is responsible for the primarily
reproduction of essential measured characteristics. By a comparison between
experimental and theoretical results other distributions, except one with cor-
related pair partner g-factors, can be excluded. The length-scale of the g-factor
disorder can be obtained by a comparison between simulation and experimen-
tal results. This hopefully provides new insight into the characteristics of the
recombining pairs in the future. In addition the assumption of pair-partner
g-factor distributions of different width provides a promising interpretation of
’non-symmetric’ (in the Ω-ω-plane) experimental results which remain unex-
plained so far.
The influence of the simulated disorder related effects can be understood on
the basis of the given model by simple geometrical considerations applied on
the Fourier transformed results.
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The network model

The starting point of the resistor network model is a system of K2 cubes of
same size l3 which are arranged as a quadratic slice of single-cube thickness.
The resistivity (resistance respectively) of each cube is known and may de-
pend e.g. on temperature or magnetic field. The resistivity can differ from cell
to cell depending on the nature of the underlying material. Fig. 1.4 depicts
an arrangement of cubes with different resistivity serving as the basis of the
network model. Each cube is connected with its neighbor cubes, only connec-
tions between side surfaces are allowed. The inner cubes are connected with
four other cubes each and cubes at the surface of the system are connected
with just two other neighbors. The number of cubes which are connected with
an inner cube is called the coordination number. A network which is built up
in the described way is said to be fourfold coordinated. In the used fourfold
coordinated network for each cube exists only one possible connection with
a neighbor cube which allows a current in the direction of the main current.
This value changes if the coordination number of the network is changed.
Independently from the coordination number the network needs to be able to
describe the trivial system of cubes of the same type, resulting in a total resis-
tivity which is the same as that of each of the cubes. This characterization of
a minimal condition for a transport network is naturally fulfilled in the case
of the present model.
The network is built out of knots and paths. The knots are centered in the
cubes and the paths represent the resistors between them.1 The current be-
tween two knots ki and kj passes half the cube i and half the cube j. Therefore
the resistance R(i,j) representing the path between the knots i and j is given
as

1 For simplicity and without any general restriction we use resistors instead of
resistivity here.
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Fig. A.1. Model of a 2-dimensional network with coordination number 4 consisting
of 16 cubes and the corresponding 16 + 2 knots. Left side shows the sample of cubes
right side the corresponding resistor network.

Ri,j =
1

2
(Ri + Rj) (A.1)

where Ri and Rj are the resistors of the cubes i and j which have to be known.
With the knowledge of the resistors given by each cube and the application
of Kirchhoff’s laws (in our case the knot law) as well as Ohm’s law the total
resistor given by such a network of resistors can be derived.

Every knot is unable to store carriers. Hence the sum of current passing
into a knot and out of it has to be zero

4∑
l=1

I l
i = 0, (A.2)

I l
i represent the four currents flowing from knot i into the four neighbor knots

or flowing into knot i. By use of Eqn.A.2 the Kirchhoff knot-law is described
for a fourfold coordinate network. Furthermore the connection between the
voltage and the current between two knots is required. This is provided by
Ohm’s law which is formulated for each pair of cubes kn and km

U(n,m) = R(n,m) · I(n,m) (A.3)

with voltages U(n,m) and the the resistance and current between knots n and
m R(n,m) and I(n,m). The network that is required for the description of the
system formed by K2 cubes consists of one knot centered in each cube and
two additional knots representing the two electrodes. Fig.A.1 displays a two
dimensional system of 4 · 4 cubes with both electrodes and the corresponding
resistor network built out of 16 + 2 resistors.

A possible treatment to solve such a system of equations is the so-called
knot analysis [195, 196]. First of all every knot ki gets allocated a potential
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φi. After the potential of one of the K2 + 2 knots is fixed as a reference value
(a simple calibration of the potential capacity) K2 +1 knot potentials are left
to be defined.
For each of the K2 + 2 knots the Kirchohoff knot-law is written as

K2+1∑
i=0
i�=j

(φj − φi)G(ij) = ij (A.4)

where ij is the current induced extraneously into knot j and G(ij) denotes
the reciprocal resistance of the path between the knots i and j. For the taken
assumptions for all knots which are not connected directly by a path it holds
that G(ij) = 0. By rewriting Eqn. A.4 one gets

φj

K2+1∑
i=0
i�=j

G(ij) −
K2+1∑

i=0
i�=j

φiG(ij) = ij . (A.5)

The sum over all four reciprocal resistances connected with a knot j gets
written as G(jj) and EqnA.5 becomes

φjG(jj) −
K2+1∑

i=0
i�=j

φiG(ij) = ij. (A.6)

Such an equation can be set up for all knots and the resulting K2+2 equations
can be represented by a linear system of equations

Âφ = i (A.7)

where
ij is the current induced extraneously into knot j for 1 ≤ j ≤ K2 + 2,
φi is the potential of the knot i for 1 ≤ j ≤ K2 + 2
and

Aij =

⎧⎪⎪⎨
⎪⎪⎩

0 : i = j and ki,kj not connected directly∑
( k
for all k neighboring i)

G(kk) : if i = j

−G(ij) : else.

The resulting symmetric (K2 + 2) · (K2 + 2) matrix Â with the entries Aij

is called the conductivity matrix. Since not the absolute values but only the
potential differences are of interest, one potential φi can be chosen freely as a
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Fig. A.2. Scheme of a network with 3 · 3 + 2 knots which is described by Eqn.A.8

calibration.2 By use of this simple physical argument it is illustrated that the
rank of this matrix is K2 + 1. After this calibration the technical challenge is
to find the subsystem of K2 + 1 linear independent row- and column-vectors
of Â to gain an uniquely solvable set of equations. The solution of this set
of equations is done numerically by use of the Bi-CGSTAB method [197].
An example of a network and the corresponding set of equations is given in
Fig. A.2, where a network of 3 · 3 + 2 knots is shown, that is described by
the linear equation system given in Eqn. A.8. In this equation it holds for all
matrix entries that Aij = 0 for matrix elements which are labelled by +. After
the calibration φ0 = 0 the first row of the equation system was added to the
last and by omitting the first row and column the equation set was reduced
down to ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + 0 + 0 0 0 0 0 0
+ + + 0 + 0 0 0 0 0
0 + + 0 0 + 0 0 0 0
+ 0 0 + + 0 + 0 0 0
0 + 0 + + + 0 + 0 0
0 0 + 0 + + 0 0 + 0
0 0 0 + 0 0 + + 0 +
0 0 0 0 + 0 + + + 0
0 0 0 0 0 + 0 + + 0
+ + + 0 0 0 + 0 0 +

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.8)

2 The solution space of dimension K2 + 1 gets subtended with the 1-dimensional
kernel, which makes the solution unique.
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Dependence of the potential fluctuations on

the choice of l

To assure a short motivation how the length-scale l of the network influences
the amplitude of the (valence-band) subband fluctuations we consider a DMS
with a density of lattice points d. The interaction with an external magnetic
field may be described according to Eqn. 1.11. The valence-band edge Em,jz

V

of a subband of a cell with index m is given by

Em,jz

V = E0 − 1

3
N0β · δx· < Sz > jz (B.1)

where E0 denotes the valence-band split related with the average Mn ion
concentration E0 = Em,jz

V (x) and δx = xloc − x is the deviation of the local

Mn concentration from the mean value. The deviation δEV of Em,jz

V from the
average value of the local valence-band edges is given by1 δEV = Em

V − E0.

With the derivative
dEm,jz

V

dx = Γ it yields

Γ · δx = δEV . (B.2)

A spatial normal distribution of the Mn ions over the cells of the network is
assumed. Following Gaussian statistics this leads to the standard deviation of
the local Mn concentration

δ̄x =

√
x · d · l3
d · l3 . (B.3)

The average deviation of the shift of the valence-band edge from its mean
value is given by

1 For simplification and without loss of generality jz is considered as fixed.
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¯δEV = Γ · δ̄x (B.4)

= Γ

√
x√

d · l 3
2

.

(B.5)

Thus Eqn.B.5 provides the average deviation of the shift of the valence-band
edge from its mean value. This characterizes the potential fluctuations and
the disorder is scaled with the choice of l as

¯δEV ∝ l
3
2 . (B.6)

This illustrates that the model parameter l influences the amount of disorder
which is taken into account when modelling the sample.



C

The thermal average of Sz

The (normalized) thermal average <Sz>
S of the spin component Sz of a particle

with S = 5
2 in the presence of an external magnetic field H = (0,0,H) oriented

in the z-direction is given by

< Sz >

S
=

1

S

∑
i

ρ(Si) · Si (C.1)

where the summation has to be performed over all possible values of Si while
ρ(Si) is the probability that the particle has the eigenvalue Si of the operator
Sz. Eqn.C.1 can be rewritten as

< Sz >

S
=

1

S

∑
i

1

Z
e

“
− Ei

kBT

”
· Si (C.2)

with Ei = g′µBµ0HSi as given by the Hamilton operator in Eqn. 1.8 and the
canonical partition function

Z =
∑

i

e

“
− Ei

kBT

”
. (C.3)

By use of y = g′µBµ0HS
kBT the partition function Z can be rewritten as

Z = e−
y
S S + e−

y
S (S−1) + ... + e

y
S (S)︸ ︷︷ ︸

2S+1

= e−
y
S S

(
1 − e

y
S (2S+1)

)
1 − eyS

=
sinh

(
2S+1

S y
)

sinh
(

y
2S

) . (C.4)
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Now employing both Eqn.C.2 and Eqn.C.4 one gets

< Sz >

S
=

d

dy
lnZ

=
2S + 1

2S
coth

(
2S + 1

2S
y

)
− 1

2S
coth

( y

2S

)
= Bf (y) (C.5)

where Bf (y) is called the Brillouin function.



D

Temperature dependence of the spontaneous

magnetization − a simple molecular-field

approach

An extension of the theory of paramagnetism basing on P. Weiß (1907) is the
most simple description of ferromagnetic ordering below TC. Only a short
overview over the used equations is given here. For a detailed description see
e.g. [198].

One starts with the assumption of an inner magnetic field1 Hi, named
molecular field, which has to be proportional to the magnetization. The origin
of this field is not further discussed here. This inner magnetic field represented
by Hi = WM , where W is the so-called molecular-field constant, is added to
the external field H inside the Brillouin function

M = NgµBJBf

(
gµBJµ0

kBT
(H + WM)

)
. (D.1)

The saturation value of the magnetization M0 = NgµBJ is the maximum
magnetization. The external magnetic field is set to zero and with H = 0
Eqn. D.1 becomes

M

M0
= Bf

(
gµBJµ0WM

kBT

)
. (D.2)

Rewriting the left side in terms of the argument a = gµBJµ0WM
kBT of the Bril-

louin function one gets

a
kBT

gµBJµ0WM0
= Bf (a). (D.3)

On the left side of Eqn. D.3 one finds a linear function whose slope depends on
T. For small enough temperatures this linear function intersects the Brillouin

1 We use the scalar values of the magnetic fields in this section instead of the vectors
since the vector character is neglected when incorporating the Weißmolecular-field
into our model.
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function on the right side and thus for such a temperature the equation has
a solution. With increasing temperatures the value of M belonging to the
intersection point decreases until it vanishes at the Curie temperature TC. For
temperatures above TC Eqn. D.3 has no solution and no magnetic ordering is
present.

Expanding Bf (a) for small values of a leads to

Bf (a) ≈ J + 1

3J
a. (D.4)

Equating the derivatives with respect to a of Eqn. D.3 and Eqn. D.4 leads to
a representation of the molecular-field constant

W =
TC

Ng2µB
2µ0

3kB

J(J + 1)
. (D.5)

Inserting W into Eqn. D.2 one ends up with an implicit equation of the mag-
netization M depending on TC

T as an input parameter

M

M0
= Bf

(
3M

NgµB(J + 1)

TC

T

)
. (D.6)

This equation can be solved numerically and thus the molecular field WM
can be derived.
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The product-basis representation of H0

Here we give a detailed derivation of the product-basis representation of the
free Hamilton operator H0 as introduced in section 9.2.

Using the two spaces of the electrons with index a, Ha and with index b,
Hb, respectively, all two-particle operators act in the Hilbert space

H = Ha ⊗Hb.

The spin operators Sa and Sb act on the particles a and b. We will use the
abbreviations

Sa = S′
a ⊗ Ib,

Sb = Ia ⊗ S′
b

where Ia(b) is the identity. In that spirit we can represent them as

Sa = (Sx
a , Sy

a , Sz
a),

Sb = (Sx
b Sy

b , Sz
b ).

The normalized eigenbasis of S2 and Sz will be written as

|↑〉 = (1, 0),

|↓〉 = (0, 1).

The single-particle Pauli matrices are given in this basis as

ˆSx
a(b) =

�

2

(
0 1
1 0

)
, ˆSy

a(b) =
�

2

(
0 −i
i 0

)
, ˆSz

a(b) =
�

2

(
1 0
0 −1

)
.
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In the following we will use

|µν〉 = |µ〉 ⊗ |ν〉 with µ, ν ∈ {↑, ↓} ,

〈µν| µ′ν′〉 = δµµ′δνν′ (E.1)

to represent two-particle states and the orthogonality relation between the
elements of the basis.

Using the conventions defined so far the spin operators given in Eqn. 9.3
act on the two-particle basis as

Sa(b) · B0 = B0
ˆSz
a(b) = B0

�

2

(
1 0
0 −1

)
,

Sa · Sb = Sx
aSx

b + Sy
aSy

b + Sz
aSz

b

⇒ Sa · Sb |↑↑〉 =
�

2

4
|↑↑〉 ,

Sa · Sb |↑↓〉 =
�

2

4
(2 |↓↑〉 − |↑↓〉) ,

Sa · Sb |↓↑〉 =
�

2

4
(2 |↑↓〉 − |↓↑〉) ,

Sa · Sb |↓↓〉 =
�

2

4
|↓↓〉 ,

Sz
aSz

b |↑↑〉 =
�

2

4
|↑↑〉 ,

Sz
aSz

b |↑↓〉 = −�
2

4
|↑↓〉 ,

Sz
aSz

b |↓↑〉 = −�
2

4
|↓↑〉 ,

Sz
aSz

b |↓↓〉 =
�

2

4
|↓↓〉 .

With the definition of the product basis

|↑〉a ⊗ |↑〉b = |↑↑〉 = |1′〉 ,

|↑〉a ⊗ |↓〉b = |↑↓〉 = |2′〉 ,

|↓〉a ⊗ |↑〉b = |↓↑〉 = |3′〉 ,

|↓〉a ⊗ |↓〉b = |↓↓〉 = |4′〉 (E.2)

and the abbreviations:
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ωa(b) = ga(b)µBB0,

ω0 = ωa + ωb, (E.3)

∆ω = ωa − ωb (E.4)

the matrix elements of the time independent Hamilton operator H0 as given
by Eqn. 9.3 can be calculated in the product-basis representation

〈1′| Ĥ0 |1′〉 =
�

2
ω0 − J

1

4
− Dd 1

2
,

〈2′| Ĥ0 |2′〉 =
�

2
∆ω + J

1

4
+ Dd 1

2
,

〈2′| Ĥ0 |3′〉 = −J
1

2
+ Dd 1

2
,

〈3′| Ĥ0 |2′〉 = −J
�

2

2
+ Dd 1

2
,

〈3′| Ĥ0 |3′〉 = −�

2
∆ω + J

1

4
+ Dd 1

2
,

〈4′| Ĥ0 |4′〉 = −�

2
ω0 − J

1

4
− Dd 1

2
,

rest = 0.

Using the abbreviation I = J 1
4 + Dd 1

2 the matrix representation of H0 in the
product basis is given by:

Ĥ0 =

⎛
⎜⎜⎝

�

2ω0 − I 0 0 0
0 �

2∆ω + I −J 1
2 + Dd 1

2 0
0 −J 1

2 + Dd 1
2 −�

2∆ω + I 0
0 0 0 −�

2ω0 − I

⎞
⎟⎟⎠ . (E.5)

In the same way the time dependent part H1 of the Hamilton operator in
Eqn. 9.2 describing the interaction with an external field gets rewritten. Start-
ing from

H1 =
gaµB

�
Sa ·B1 +

gbµB

�
Sb ·B1 (E.6)

this leads to the expression

H1 =
gaµB

�
B1Sx

a +
gbµB

�
B1Sx

b

=
gaµB

�
B1

�

2

(
0 1
1 0

)
a

⊗ Ib +
gbµB

�
B1

�

2
Ia ⊗

(
0 1
1 0

)
b

.
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This is used to calculate the non-vanishing matrix elements of the interaction
Hamiltonian H1 in the product basis

〈1′| Ĥ1 |2′〉 =
1

2
gaµBB1,

〈1′| Ĥ1 |3′〉 =
1

2
gbµBB1,

〈2′| Ĥ1 |1′〉 =
1

2
gaµBB1,

〈2′| Ĥ1 |4′〉 =
1

2
gbµBB1,

〈3′| Ĥ1 |1′〉 =
1

2
gbµBB1,

〈3′| Ĥ1 |4′〉 =
1

2
gaµBB1,

〈4′| Ĥ1 |2′〉 =
1

2
gbµBB1,

〈4′| Ĥ1 |3′〉 =
1

2
gaµBB1.

With the same definitions as used previously we come to the following matrix
representation of the interaction Hamiltonian in the product basis:

H1(t) =
1

2
µBB1cos(ωt)

⎛
⎜⎜⎝

0 ga gb 0
ga 0 0 gb

gb 0 0 ga

0 gb ga 0

⎞
⎟⎟⎠ .

Here the time dependent magnetic field B1(t) = (B1cos(ωt), 0, 0) is intro-
duced.
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The Bloch equations
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G

On the definition of the magnetic-field strength

A light field which is linearly polarized in the x direction, is given as

B1 = (B1 cos(ωt), 0, 0). (G.1)

With this definition, the amplitude of the light field is B1. It can be rewritten
in a complex notation

(B1 cos(ωt), 0, 0) = (B′
1(e

iωt + e−iωt), 0, 0) (G.2)

with the relation between the new amplitude B′
1 and the old one

B1 = 2B′
1.

A circularly polarized wave (in the x,y-plane) is given as

B1 = B1(cosωt, sinωt, 0) anticlockwise, (G.3)

B1 = B1(cosωt,− sinωt, 0) clockwise. (G.4)

A linear polarized wave can always be seen as the superposition of two circular
polarized waves

(B1 cos(ωt), 0, 0) = B′′
1 (cos(ωt), sin(ωt), 0) + B′′

1 (cos(ωt),− sin(ωt), 0)(G.5)

with the relation

B1 = 2B′′
1 (G.6)

between the amplitudes. Representing the linearly polarized wave in its com-
plex representation (G.2) in terms of circularly polarized waves (G.5) leads
to
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(B1 cos(ωt), 0, 0) = (B′
1(e

iωt + e−iωt), 0, 0)

= B′′′
1 ((eiωt + e−iωt))((1, i, 0) + (1,−i, 0))

with the relation
B1 = 2B′

1 = 4B′′′
1

between the amplitudes The following scheme illustrates how to transform the
field strength depending on the definition of the magnetic field:

B1 complex −→ B′
1 =

B1

2
circular ↓ circular ↓
B′′

1 =
B1

2
complex −→ B′′′

1 =
B1

4

In this work we use B1.



H

Influence of the g-factor distribution of an

ensemble of intermediate pairs

H.0.1 Open questions so far

In this chapter we show that the deviations between the calculated Ω =
FT(∆σ(t)) versus excitation frequency ω for ensembles with different g-factor
correlations (δ-like, correlated and non-correlated) can be understood using
a rather simple geometrical model. As a fundament of further considerations
we present briefly the essential points visualized in Figs. 11.4, 11.5 and H.2
which will directly lead to the questions given below: (a) In the case of a δ-
like g-factor distribution, i.e. ωi

a(b) = constant ∀i, all pairs are identical with

ωi
a−ωi

b = ∆ω. The results of the calculated Ω = FT(∆σ(t)) versus excitation
frequency ω shown first in [184] are almost similar to the calculated results
including the stochastic term as given by Fig. 11.5. (b) In the calculations of
Ω = FT(∆σ(t)) versus excitation frequency ω of an ensemble with a correlated
g-factor distribution (the Larmor separation ∆ωi = ∆ω = constant ∀i) the
S1 contribution showing a sharp resonance at Ω = 2γB1 is the dominant
peak. Its U -like structure vanishes since the intensity of the U ’s arms drops
rapidly with off-resonant excitation. (c) In the case of a non-correlated g-factor
distribution the ratio between the intensity of the S1 signal at Ω = 2γB1 and
the maximum S 1

2
signal becomes smaller compared to the result calculated

by use of a correlated distribution (e.g. see Fig. 11.4).
While the main result shown in Figs. 11.5 and H.2 is clear, namely that

due to the introduction of a correlated g-factor distribution, the experimental
data e.g. shown in Fig. 11.1 can be reproduced. Two major questions for the
reasons of this behavior arise:

• How can a correlated distribution of g-factors lead to a dominant S1 res-
onance while a non-correlated distribution does not?
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• Why do the ’arms’ of the dominant S1 resonance disappear stronger (see
Fig. 11.5) as compared to a system with a δ-like distribution of g-factors
(e.g. Fig. 10.1(d))?

The starting points for the answers of both questions are the following defini-
tions serving as the basis of all further considerations: We take into account
an ensemble G of non-interacting1 intermediate pairs Pi. The Larmor frequen-
cies of the pair partners are ωi

a and ωi
b. A detailed look at the modelling of

the different distributions is required. The order of magnitude of the involved
quantities and the special choice of the distributions play an important role
for the interpretation of the results. The average values of the g-factors are
ḡa(b). For simplification the standard deviations δa(b) of both the Gaussian
distribution of gi

a and gi
b are assumed to be equal: (δa = δb = δ). The Lar-

mor frequencies of the pair partners result directly out of the g-factors by:
ωi

a(b) = 1
�
gi

a(b)µBB0.

Modelling a correlated g-factor distribution

The method, used here, for modelling an ensemble of n2 intermediate pairs
with correlated g-factors is as follows: Using ḡa − ḡb = ∆g the g-factor
difference for all pairs is given (w.l.o.g. we assume here ḡa < ḡb). We
take the interval [ḡa − 2δ, ḡa + 2δ] and distribute the gi

a equally over it:
gi

a = ḡa − 2δ + i · 4δ
n2 ∀i ∈ {

0, n2 − 1
}

The corresponding pair partners g-
factor is given by: gi

b = gi
a +∆g ∀i. Using these definitions for all n2 pairs the

g-factor differences ∆gi and thus all Larmor-frequency separations ∆ωi are
the same. For each one of these pairs, characterized by the tuple

(
gi

a, gi
b

)
, the

observable ∆σ(t) is calculated, weighted with a Gaussian distribution G(gi
a)

with mean value ḡa and standard deviation δ and all signals are summed.

Modelling a non-correlated g-factor distribution

The method, used here, for modelling an ensemble of n2 interme-
diate pairs with non-correlated g-factors is as follows: The intervals[
ḡa(b) − 2δ, ḡa(b) + 2δ

]
are taken and at any one time the gi

a(b) are equally

distributed over them: gi
a(b) = ḡa(b) − 2δ + i · 4δ

n ∀i ∈ {0, n − 1}. The re-

sulting n2 pairs are constructed out of all possible combinations of n gi
a

with n gj
b ending up with tuples

(
gi

a, gj
b

)
whose pair partner g-factor differ-

ence ∆gij is not constant. This results in Larmor-frequency differences ∆ωij

∈ [∆g − 4δ, 4δ + ∆g] for ∆g > 4δ and ∆ωij ∈ [0 4δ + ∆g] in the case that

1 Non interacting means the intermediate pairs do not interact with each other.
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∆g ≤ 2δ. For each one of these pairs characterized by the tuple
(
gi

a, gj
b

)
the observable is calculated, weighted with Ga(gi

a) · Gb(g
j
b) where Ga(b) are

Gaussian distributions with standard deviation δ around the mean value ga

and gb respectively. After this had been done, the observables for each IP get
summed and a Fourier transformation is taken. 2

Influence of the g-factor correlation of an ensemble of IPs on the
FT(∆σ(t))

First of all it should be mentioned that the calculated signal of the S1 reso-
nance is visible only for middle (∆ω/γB1 ≈ 1 and strong (∆ω � γB1) light-
field coupling as shown in Fig. 10.1 and [184] Fig. 3. We remind the reader that
with decreasing value of ∆ω

γB1
the Rabi frequency Ω of the S1 resonance reaches

its minimum at Ω = 2γB1. With increasing ratio ∆ω
γB1

the Rabi frequency shifts

towards larger values with strongly decreasing intensity (see again Fig. 10.1 as
well as [184] Fig. 3). The strong signal of the S1 resonance at 2γB1 in the case
of a correlated g-factor distribution, shown in Fig. 11.5, can be understood
since with γB1 � ∆ωi = constant ∀i all pairs are strongly coupled, have the
same (minimum) Rabi frequency and are distributed almost 1-dimensionally
in the (Ω, ω)-sphere parallel to the ω-axis with a high density of n2 dis-
tinct resonances distributed over the interval

[
ωa + ∆ω

2 − 2δ, ωb − ∆ω
2 + 2δ

]
. Therefore the average density3 of resonances in the 1-dimensional ω-sphere

is n2

4δ−∆ω . Now we come to the crucial point whether the weaker signal of the
S1 resonance in the case of a non-correlated ensemble can be understood on
the basis of the given assumptions. We give two major reasons:

• Since all possible combinations of ωi
a and ωi

b appear in the non-correlated
ensemble, depending on the choice of parameters, not all pairs fulfill the
condition for strong light-field coupling ∆ω � γB1. For the amount of
pairs with weaker light-field coupling the Rabi frequency of the S1 reso-
nance shifts towards higher Ω values and looses intensity. The amount of
pairs with increased strength of the light-field coupling due to a decrease of
∆ωi is not able to compensate for this, since the Rabi frequency converges

2 For simplicity we do not take into account the g-factor differences and distribu-
tions for the definition of γ since they play a minor role and can be neglected
in the description of the interaction Hamiltonian (see [169] page 14), neverthe-
less these g-factor differences were taken into account in the derivation of the
interaction Hamilton operator.

3 This is an average density, the density at intervals around ω′ increases with re-
duction of the width of the interval since the Gaussian weighting of the single
resonances is not taken into account in this estimation.
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Fig. H.1. (a) shows the approximation of the calculated Ω = FT(∆σ(t)) ver-
sus excitation frequency ω for a pair in the strong light-field coupling regime with
2γB1
2π

= 0.02 GHz and ω′

2π
= 10 GHz due to a ’U’-like structure. In (b) the addition of

different U-structured resonances in the Ω, ω-plane of pairs of a correlated ensemble
is illustrated resulting in a strongly enhanced intensity Ii

1.

with increasing strength of the light-field coupling against 2γB1. Taking
this into account the center of the calculated U -shaped resonances in the
(Ω, ω)-sphere are not only distributed over a one dimensional space (as in
the correlated case) but over a 2-dimensional plain. Therefore the density
of overlapping Us is reduced.

• Even the pairs with strong light-field coupling do not contribute to the S1

signal as strongly as in the calculations for a correlated ensemble, since
they are distributed over a wider range. Namely an interval of width 4δ.

As a short illustration may serve the following estimation using an non-
correlated distribution and the parameters given in the caption of Fig. 11.5:

The step-width si between ωi
a for different i is si = 4δn = 12/2πMHz

9 =
1.33/2πMHz. This makes clear that in almost 8

9 of all possible combinations
of ωi

a and ωi
b the ∆ω is more than 6 times larger than in the case of a correlated

distribution.

The ’U’-shape of the calculated FT(∆σ(t)) depending on ω.

To answer the second question one can again use a geometrical explanation.
For simplicity we approximate the parabolic form of the S1 resonance by a
U -form (see Fig. H.1(a)). Also for simplicity we suppose a width of the bottom
of 2

2π MHz. The point of intersection between the axis of symmetry and the
bottom of the U will be called the symmetry point ps. For one system this
symmetry point is located at a microwave frequency ω

2π = ω′

2π = 10GHz

and a Rabi frequency Ω
2π = 2γB1

2π = 0.02GHz (from now on we will note
points by giving their coordinates (ω, Ω), i.e. ps is located at (10, 0.02)). In
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Fig. H.2. Three-dimensional color plot of the calculated Ω = FT(∆σ(t))as a func-
tion of the excitation frequency ω scaled in units of γB1 as the difference between ω
and the average of the Larmor frequencies of the two pair partners ω′ = 1

2
(ωa + ωb)

and the Rabi frequency Ω in units of γB1 for two systems with strong light-field
coupling. In (a) the result is shown for the calculation of a single pair (∼= δ-like
g-factor distribution), in (b) for an ensemble of 81 correlated pairs. Eqn. 9.1 was
solved without the stochastic operator S , δ

2π
=3 MHz, the remaining parameters are

given in the caption of Fig. 11.5.

all calculations this symmetry point is the area of the highest intensity in
the 3-d plots. To investigate the ratio of the intensity between ps and the
arms, we have chosen (10.006, 0.024) as a reference point inside the arm of
the resonance. The corresponding intensities will be labelled with Ii

1 for that
of ps and Ii

2 for the arm, the upper index i labels the number of pairs used in
the calculation. For one system one gets I1

1 = 16500 and I1
2 = 7000 (both in

arbitrary units). This results in a ratio
I1
1

I1
1
≈ 2.35.

The distribution of Us

For an ensemble with a correlated g-factor distribution the Larmor-
frequency difference ∆ω is the same for all intermediate pairs. The ge-
ometric translation is the following: The symmetry point is shifted in
ω-direction, but its Ω-coordinate stays constant. This is rather obvi-
ous since by change of ωa(b) the frequency of the resonant excitation
changes but the value of the Rabi- frequency stays constant as long as
the regime of strong light-field coupling is not left. The g-factor dis-
tribution leads to a distribution of Us which is schematically shown in
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Fig. H.3. Ratio of Ii
1/Ii

2 against the
number of pairs i estimated as given
in the text and obtained by the nu-
merical calculations.

Fig. H.1(b). It is obvious, that only Us
contribute to the intensity at (10,0.02)
that have their sp within the interval
W = [9.999, 10.001] with width h =
2
2π MHz. The simulated data shown in
Fig. H.2(a)4 was achieved by consider-
ing a single pair only that corresponds
to an ensemble with the δ-like g-factor
distribution shown in Fig. 11.2(a). While
Fig. H.2(b) was simulated using an en-
semble of i = 81 pairs and Gaussian g-
factor distribution with a standard de-
viation of δ

2π = 3 MHz. We have dis-
tributed the g-factors of the pair part-
ners evenly over a range with the width
of 4δ. The number f of systems whose
U -signature in the Ω − ω-plane overlaps with the point (10,0.02) is

fi = i
h

4δ

Thus for the calculation of the number of system signals contributing to the
sharp S1 signature displayed in Fig. H.2(b), we get

f81 = 81
2MHz

12MHz
= 13.5

that denotes the factor between
I1
1

I1
2

and
I81
1

I81
2

. To summarize the given simple

geometric explanation for the origin of this increase of fi with increasing i for
the discussed scenario is:

• The centers of the S1-resonance sum up at (ω0, 2γB1).
• The arms of the S1-resonance do not sum up, as they stay parallel.

We have to mention that so far we have neglected in the discussion the Gaus-
sian distribution of the U ’s intensities: i.e. the system with ps at (10, 0.02)
has the maximum intensity, while a system located outside with a symmetry
point at (10 + 2δ, 0.02) is almost not visible anymore. For simplicity we as-
sume that all systems within the interval W with width h centered around
ω
2π = 0.02GHz have the same weight factor, i.e. the same intensity. Thus

4 Due to the symmetry of the 3-d plots (and thus without loss of information) the
results shown in this section display only about 1

4
of the (Ω,ω) plane shown e.g.

in Fig. 10.4.
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we substitute the Gaussian distribution with a constant. This leads to the
intensity at (10, 0.02) of Ii

1 ∝ fiI
1
1 while the largest intensity in the region

of the arms is the one of the system whose ps is at (10, 0.02), i.e. will be
Ii
2 ∝ I1

2 . Herewith one gets the ratio between peak and arm intensities of the
S1 resonance depending on the system number i

Ii
1

Ii
2

= fi
I1
1

I1
2

. (H.1)

This leads in the case of 9 · 9 = 81 pairs to the ratio between the bottom and
the reference point of the arm

I81
1

I81
2

= 13.5 · 2.35 ≈ 32.

In Fig.H.3 we have compared the result of the theoretical estimation using
Eqn.H.1 with the numerical values obtained by an extraction of the peak
intensities out of the calculated data. The fact that the numerical values
are smaller than the predicted ones is not surprising. Calculated signals do
not have exact U -form which leads to an overestimation of the number f of
systems overlapping in (10, 0.02) when deriving fi in comparison with the
reality. Furthermore, taking into account the Gaussian distribution leads to
smaller contributions of the outer systems to the peak.

A comment on the the spin 1

2
peak

The question, whether the S 1
2

resonance does not show a behavior similar to
the S1 resonance, can also be understood easily on the basis of the given simple
geometric explanation. One can suppose a U -form again, but the bottom has
a hole as depicted in, for example, Fig. 11.5(d). Therefore the influence of
the summation of different Us becomes much weaker in their middle point.
On the other hand this hole in the U structure seen in the calculations of
Ω = FT(∆σ(t)) versus ω for a single pair in the regime of strong light-
field coupling disappears as the shifted holey Us overlap with the parts of U
structures of other ensemble members.
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List of constants, variables and conventions

Constants of nature

c = 299792458 ms−1 speed of light in vacuum
kB = 1.380662× 1023 JK−1 Boltzmann’s constant
� = 1.054589× 10−34 Js Planck’s constant (h = 2π�)
me = 9.109534× 10−31 kg electron mass
e = 1.6021892× 10−19 As electron charge
µB = e�

2me
= 9.2741× 10−24 JT−1 Bohr’s magneton

µ0 = 4π × 10−7 Vs
Am permeability of vacuum

(defined)

Variables used in part I

ρ resistivity
ν conductivity
q charge of the carrier
n carrier density
µ mobility
τ average time between two scattering events
m� effective mass
EV valence-band edge



List of constants

N(E) density of states of the unperturbed valence band
Fh(E) Fermi distribution of holes
F e Fermi distribution of electrons
ρ̃ pre-exponential factor in the Arrhenius equation
∆ activation energy
EV (r) local valence-band edge
ĒV (r) averaged local valence-band edge
Em mobility edge

¯∆E(r) energy spacing between ĒV (r) and EA

MR magnetoresistance
T temperature
ρm resistivity in presence of an external magnetic field
ρ0 resistivity in absence of an external magnetic field
TC Curie temperature
Θ Curie-Weiss parameter
H external magnetic field
H magnetic-field intensity
Hm magnetic part of the single-particle Hamilton-operator
H single-particle Hamilton-operator
Hex part of Hm describing the exchange interaction

between localized magnetic ion and carrier
s spin operator of a free carrier
Si spin operator for magnetic ion on lattice site i
HL part of the Hamilton

operator describing the diamagnetic Landau quantization
g Landé factor of the electron
µB Bohr’s magneton
µ0 permeability of the vacuum
J ′

i,j Heisenberg notation of the coupling constant describing the
interaction between magnetic ions on lattice site i and j

Ji Heisenberg notation of the coupling constant describing the
interaction between carrier and magnetic ion on lattice site i

< Sz > thermal average of the Mn ion spin
Bf the Brillouin function
ζ′ argument of the Brillouin function

E
(m)
V (jz, T, H) valence-band shift of subband with pseudospin jz for

field H and temperature T (of cell with index m)
S spin of the magnetic ion
N0β value of the p-d exchange integral
a parameter representing the antiferromagnetic coupling

between Mn ions
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List of constants

x average Mn concentration
jz carrier spin
DOS density of states
ml effective mass of the light hole
mh effective mass of the heavy hole
µh mobility of the heavy hole
µl mobility of the light hole
lc lattice constant

N jz

V density of states of the valence-band subband
with pseudospin jz

V (jz) valence-band subband with pseudospin jz

EG gap energy

n
(m)
C density of electrons in the conduction band (in cell m)

n
(m)
A density of negatively charged acceptor states (in cell m)

EF Fermi energy
V an unspecified volume
xloc local concentration of Mn ions
l edge length of a model cube
li the inelastic scattering length
E energy
K number of model cubes in x- and y-direction
∆ED local valence-band shift induced by

magnetic-field independent disorder
mD parameter describing the magnitude of magnetic-field

independent disorder
F e(E) Fermi distribution of electrons

E
(m,jz)
C conduction-band edge (in cell m

for conduction-band subband with pseudospin jz)

Nmjz

C density of states of the conduction-band subband
with pseudospin jz in cell m

pm,jz

V density of holes in the valence-band subband
with pseudospin jz in cell m

Nm,jz

V (E) density of states of the valence-band subband
with pseudospin jz in cell m

ρm
jz

resistivity of the valence-band subband of pseudospin
jz in cell m in presence of an external magnetic field

Km knot of the resistor-network cell with index m

Rn,m resistance of the conducting connection between
the network knots n and m

Un,m fall of potential between the network knots n and m
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List of constants

Ii
m the ith in- or outgoing current for cell m

EA acceptor-energy level
β exponent in the Arrhenius law, required for the description

of the transport mode dominated by variable range hopping
DOI density of impurity atoms
γ exponent used for the description of the

temperature dependent mobility

Ñ(E) density of states modified by a low energy exponential tail
α onset of the exponential tail of the density of states

δ damping of the exponential decay of Ñ(E)
N(E)−1 inverse function of the ideal DOS
NA density of acceptor states
σ width of the Gaussian shaped energy distribution

of acceptor states
ζ normalization constant to assure that the sum

over all cell probabilities to gain an Mn ion stays one
maxK2(EV) maximum of all K2 local valence-band subband edges
Ň(E) normalized sum over all valence-band subbands

density of states of all cells
M magnetisation
M0 saturation magnetisation
W molecular-field constant
TA annealing temperature
α proportionality between Mn concentration and

Curie temperature
NMn number of Mn ions of a (network) cell
χ number of atoms per cubic unit cell
TCloc local Curie temperature
δTC deviation of the local Curie temperature from its mean value

xf
loc filtered value of the local concentration of Mn ions

xf
i,j filtered local Mn concentration of cell with coordinates (i , j )

o parameter defining the filter size
lC cube-edge length of the network defining the local

Curie temperature
nMn total number of Mn ions in the modelled sample
lU lattice constant of the cubic unit cell of the zinc-blende lattice
ρ0
Mn probability of a cell to gain a Mn ion in absence of correlations

n∗
Mn number of Mn ion in a specific cell at the time of

the distribution run
n1 factor describing Mn attraction of the cell itself
n1 attraction factor describing the influence of

180



List of constants

the nearest neighbor cells

Â the conductivity matrix
Aij entries of the conductivity matrix
ρMiC resistivity of the minority band of the cluster
ρMaC resistivity of the majority band of the cluster
EAC activation energy of carriers in

the cluster minority-band
ρ0

C pre-exponential factor in the Arrhenius equation for
the transport in the cluster minority-band

Hex field intensity of the external magnetic field
ρsc resistivity with perfect spin conservation
ρp resistivity in absence of spin conservation
Esa activation energy from the majority valence-band subband

into the energetically closest minority valence-band subband
η probability of loss of spin conservation
xC concentration of clusters in the sample
ρ↑(↓) resistivity of the system given by the parallel connection

of the two subband resistor-networks for spin up (down)
∆C(m) distance of a semiconducting cell with index m from

the nearest cluster cell in units of l
ES depth of the Schottky barrier
Ěm

V (jz, T, H) valence-band shift of subband of pseudospin jz in presence
of an external field H in a matrix cell of a hybrid structure

HC field intensity of the magnetic field of the cluster
∆EM activation energy of the majority band of the matrix
Ri resistor representing a cube with index i
φ(i) potential of a cell (with index i)
G(ij) reciprocal resistance of the path between the knots i and j
E0 valence-band edge corresponding with the average

Mn concentration for an arbitrary but fixed jz

δ̄x standard deviation of the local Mn distribution
Γ derivative of EV after x
δEV (m) deviation of the local valence-band edge (for a fixed

but arbitrary jz) from the average value E0
¯δEV averaged deviation of the local valence-band edge

from the average value E0 (for a fixed but arbitrary jz)
Z partition function of a canonical ensemble
Hi field strength of the (inner) molecular field
M0 saturation value of the magnetisation
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Variables used in part II

P the polarization operator
ρ̂ the density matrix
γ the gyromagnetic ratio
B0 constant external magnetic field
B0 strength of the constant external magnetic field
B1 external magnetic field induced by microwave radiation
B1 strength of the external microwave radiation
∆ω the pair partners Larmor-frequency difference
J the angular momentum operator
S spin quantum number
rT recombination rate coefficient of a triplet state
rS recombination rate coefficient of a singlet state
g Landé factor in general
ga(b) the Landé factors of the pair partners with index a(b)
d dissociation-rate coefficient of a pair state
ωa(b) Larmor frequency of the pair partner with index a(b)
G approximation of the pair-state generation-rate in first order
G(t) time dependent generation rate of a pair state
Gs steady-state generation rate of a pair state
G∗ (first order approximation of the) generation rate of electron-

hole pairs due to the continuous wave light-field source
σ the photoconductivity
∆σ the change of the photoconductivity
µe(h) the mobility of electrons and holes respectively
e electron charge
ne(h) density of electrons and holes respectively
ns

e(h) steady-state density of electrons and holes respectively

ρs
i,j steady-state density-matrix elements

ρi,j density-matrix elements
τl averaged carrier lifetime
H Hamilton operator of a single pair
H0 Hamilton operator of a single spin-pair

in absence of time dependent electromagnetic fields
H1 Hamilton operator of a single spin-pair

exposed to a time dependent electromagnetic field
S stochastic operator
R Redfield operator
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List of constants

Dd spin-dipolar coupling constant (in high field approximation)

D̃d normalized spin-dipolar coupling constant (D̃d = Dd

�2 )
J spin-exchange interaction constant

J̃ normalized spin-exchange interaction constant (J̃ = J
�2 ))

ĤI(t) matrix representation of H1

Û transformation matrix from product basis
into basis of eigenstates

Ĥdia matrix representation of H0 in the basis of eigenstates

A, B, C, D abbreviation of matrix elements of Û

V, W abbreviation of matrix elements of Ĥdia

San annihilation part of S accounting for
recombination and dissociation of pairs

Scr creation part of S accounting for generation of pairs
∆(τ) relative change of density-matrix elements
ν microwave frequency given in cycles per second
S1 spin-1 resonance
S 1

2
spin- 1

2 resonance

δ standard deviation of the g-factor distribution
δa(b) standard deviation of the distribution of ga(b)

gi
a(b) ga(b) of a pair with index i

ḡa(b) average value of ga(b)

∆g difference of the average g-factors
ωi Larmor frequency of pair with index i
∆ωi Larmor-frequency difference of pair partners with index i
ωi

0 Larmor-frequency sum of the pair partners with index i
LB characteristic length-scale of the inner magnetic field
L upper boundary of the localization length of an IP
Li an arbitrary length-scale
M number of intermediate pairs in the total system
ω′ average of both pair partner’s Larmor frequency
Ei

k energy level k of the IP with index i

General symbol conventions

B boldface letters indicate vectors
H mathcal style indicates operator functionals
ρ̂ hats indicate matrix representations of operators
|↑〉 bra–ket notation of Hilbert space elements
δij Kronecker’s delta
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Prof. Dr. Christoph Böhme for his invitation to Salt Lake City and his
hospitality while introducing us to a new subject. I want to thank him as well
for spending his time when answering my numerous questions to improve this
thesis.

Prof. Dr. Gerhard Weiser for his help, in particular, the illuminating dis-
cussions about ESR and EDMR spectroscopy.
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