Vegetation Dynamics in Queme Basin Benin West Afrika

Institut für Nutzpflanzenwissenschaft und Ressourcenschutz

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vegetation Dynamics in Oueme Basin, Benin, West-Africa

Inaugural-Dissertation

zur

Erlangung des Grades

Doktor der Agrarwissenschaften (Dr. agr.)

der Hohen Landwirtschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität zu Bonn

vorgelegt am 14.06.2007

von Zhixin Deng

aus Dali, VR. China

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2007 Zugl.: Bonn, Univ., Diss., 2007

978-3-86727-430-2

Referent:	Prof. Dr. Marc. J.J. Janssens
Korreferent:	Prof. Dr. Heiner Goldbach
	Prof. Dr. Heinrich W. Scherer
Tag der mündlichen Prüfung:	24.07.2007

© CUVILLIER VERLAG, Göttingen 2007 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2007

Gedruckt auf säurefreiem Papier

978-3-86727-430-2

For my sister Zhidang

Acknowledgment

I am indebted to many people whose assistance in different ways, not only inspired and encouraged me, but made my work as agreeable as possible.

Prof. Dr. Marc J.J. Janssens supervised the study and only with his continuously strong support this work came to existence. Already since 2001, Prof. Janssens gave me over-proportional time, provided inspiration and encouragement. My Grateful thanks for his wife Ingrid Janssens, for her warmhearted generosity and hospitality.

Thank very much for Prof. Dr. Heiner Goldbach, my second supervisor, for his kind acceptance.

Prof. Hartmut Gaese and Prof. Jürgen Pohlan encourage me going on a scientific way and provide their supporting readiness. Prof. Heinrich W. Scherer and Angelika Veits gave me advices about soil analysis. Dr. Michael Blanke gave training course for soil respiration technique.

Many scientific colleagues and friends in Benin: Evariste Bara, Doussi Orou Goura, Godefroy Adjagnissodé, Abib Moumouni, Youssaou Baguiri, Farouk Marou, Conforte Mensah, Dr. Vincent Orekan, Dr. Gustave Dagbenonbakin, Dr. Nassirou Bako-Arifari (Impetus); Prof. Brice Sinsin , Prof Joachim Dalmeida (UAC); Prof. Nestor Sokopon (UNIPAR); Dr. Pierre Houayé (ONAB); Wei Huang, Shuyuan Luo (SUCOBE); Mama Marou Doumbant (SOS SABU IZE); Tikande Djima, Lafia Philippe Kora (Mairie de N'dali); Dr. Guy Apollinaire Mensah, Dr. Anastase Hessou Azontonde, Dr. Angelo L. Djihinto, Isaac A. Adje, René M. Affonyon, Philippe Fadegnon, Natacha Sylvana Gebenou, Alphonse Omere (INRAB); Christohpe T.K. Medenou (DPP/MAEP); Dr. James D. Braima, Dr. Jean-Francois Vayssieres (IITA); Martiale Essoun; the mayors, the officers and numerous farmers of the communes of N'dali, Bohicon, Pobe, Save and Za-kpota, facilitated my field research, opened my eyes to the daily facts of Benin and made the research quite interesting.

Some of the Impetus colleagues like Julia Röhrig, Malte Diederich, Michael Judex, Dr. Arnim Kuhn, Moritz Heldmann, Prof. Dr. Heiko Paeth (University of

Würzburg) were not only inspiring for my research but also supplied me with some valuable data sets. Other colleagues like Tobias El-Fahem, Dr. Elizabeth van den Akker, Andreas Preu, Dr. Valens Mulindabigwi, Dr. Uwe Singer, Alexandra Uesbeck, Dr. Hans-Peter Thamm, Gero Steup, Dr. Simone Gietz, Claudia Hieppe supported me by flourishing scientific discussions and facilitated my field research.

Thanks for all my family members. Thanks for all my Chinese friends, especially Neng Mo, Lin Wei and the friends by the Rhine Academic Forum (NGO), which we initiated together and drive forwards in Germany.

This study was embedded in the program IMPETUS (Integratives Management Projekt für den effizienten und tragfähigen Umgang mit der Ressource Süßwasser), funded by the Federal German Ministry of Education and Research (BMBF) under grant No. 01 LW 06001B and by the Ministry of Innovation, Science, Research and Technology (MIWFT) of the federal state of Northrhine-Westfalia under grant No. 313-21200200.

Abstract

Land use in Benin has been changed enormously since 20 years. The farming systems in the Oueme Basin are experiencing an ongoing intensifying process. Balancing the inherent trade-offs between immediate human needs and ecosystem capacity, needs comprehensive knowledge about ecosystem functions. To test the possible feedbacks between vegetation, precipitation and other environmental driving forces empirically, a new quantitative vegetation appraisal method was developed. Thus, the temporal and spatial vegetation dynamics of the Oueme Basin in Benin, West-Africa were reconstructed. The newly defined eco-volume and bio-volume concepts were used as alternative vegetation indicators in comparison with the standard biomass indicators. That portion of precipitation variability, originating specifically from vegetation variability, was defined as eco-precipitation. The in situ measured agro-ecological and farming system parameters of the three major vegetation types were used to validate the agricultural statistics and the satellite land cover data. Other available datasets comprising annual precipitation, vegetative duration coefficient and population density were adapted to comparable time and spatial spans, and eventually analysed together with the reconstructed vegetation dynamics. The feedback between vegetation and precipitation was evaluated at different spatial scales.

To detect possible future trends, static regional scenarios of precipitation in relation to eco-volume in 2004, as well as combined temporal and spatial scenarios of bio-volume in relation to precipitation from 1987 to 2025 have been simulated.

Zusammenfassung

Landnutzung in Benin hat sich seit rezenten 20 Jahren gewaltig geändert. Die Anbausysteme im Oueme-Einzugsgebiet erleben grade einen weitergehenden Intensivierungsprozeß. Das nachhaltige Management von den "Trade-offs" zwischen der Lebensmittelproduktion und dem Erhalt der Ökosystemkapazität stellt eine große Herausforderung an interdisziplinären Erkenntnissen dar. Um die möglichen Zusammenhänge zwischen Vegetationsdynamiken, jährlichen Niederschläge und anderen Umweltfaktoren empirisch zu überprüfen, wurde eine neue quantitative Evaluierungsmethode entwickelt. Damit sind die temporalen und räumlichen Vegetationsdynamiken im Oueme-Einzugsgebiet in Benin, Westafrika rekonstruiert. Das neu definierte Konzept von Öko-Volumen und Bio-Volumen sind als alternative Indikatoren im Vergleich zu Standard-Indikatoren Biomasse für Vegetation eingesetzt. Der Anteil der jährlichen Niederschläge, der durch Vegetationsänderung innerhalb eines Einzugsgebiets induziert wird, ist als Öko-Niederschlag definiert. Die Parameter, die während der Felduntersuchung gemessen wurden, wurden für Validierung der Agrar-Statistiken und Satellitendaten über Landnutzung genutzt. Andere Daten von jährlichen Niederschlägen, Koeffizient der vegetativen Länge und Bevölkerungsdichten wurden in einer gleich zeit-räumlichen Skala aufbereitet. Alle Daten wurden dann zusammen analysiert.

Um die möglichen zukünftigen Tendenzen herauszufinden, wurden sowohl die statisch regionalen Szenarien des Niederschlags im Zusammenhang mit Öko-Volumen des Jahres 2004, als auch die temporal räumlichen Szenarien des Bio-Volumens im Zusammenhang mit der Niederschlagszeitreihe 1987-2025 simuliert.

TABLE OF CONTENTS

1 INTRODU	JCTION	1
2 AGRO-E	COLOGICAL CONDITIONS IN THE OUEME BASIN.	3
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Location and geography Climate Soil Vegetation Population dynamics Land property rights Agro-ecological Zone Major crops Animal husbandry Farming systems	3 4 5 7 9 11 13 14
3 MATERIA	ALS AND METHODS IN GENERAL	17
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Eco-volume and bio-volume Reconstructing vegetation dynamics Datasets Experimental geographical grid Experimental farming systems grid Farm interview Parameters and variables Interpolation Statistical analyses	17 19 20 21 22 24 25 27 27
4.1 4.2 4.3 4.3.1	Literature review Material and method Results and discussion Crop calendar and crop rotation	28 28 28 29
4.3.1.1 4.3.1.2 4.3.1.3	South Oueme Middle Oueme North Oueme	29 34 36
4.3.2 4.3.3 4.3.4	Intercropping Case study mango	38 41 42

i

4.4	Partial conclusion	48
5 LITTER	FALL IN FOREST AND PLANTATION	49
5.1 5.2 5.3 5.4	Introduction Material and method Results and discussion Partial conclusions	49 49 50 54
6 SPATIA	L VEGETATION DYNAMICS	56
6.1 6.1.1	Introduction	56 56
6.1.2	Hypothesis	
6.2 6.3 6.3.1	Material and method Results and discussion Vegetation parameters in four test communes	
6.3.1.1	Measured vegetation parameters	58
6.3.1.2	2 Weighted parameters of annual crops 3 Aggregated parameters of three vegetation types	60 64
6.3.2	Integrated vegetation parameters of 62 communes	
6.3.3	Integrated vegetation parameters and agro-ecological fa	actors in
	ten departments	
6.3.4	Relations among vegetation parameters	67
6.3.4.1	Communal level	67
6.3.4.2	2 Department level	68
6.3.4.3	8 Within Impetus zones	69
6.3.5	Relations between vegetation dynamics and agro-ed	cological
	factors	72
6.3.5.1	Communal level	72
6.3.5.2	2 Department level	
6.3.5.3	8 Within Impetus zones	80
6.4	Partial conclusions	87
7 TEMPO	RAL AND SPATIAL VEGETATION DYNAMICS	90
7.1	Introduction	90
7.1.1	Objective	90
7.1.2	Hypotheses	90
7.2	Material and method	90
		ii

7 2	Deculto and discussion	01
7.3 7.3.1	Relations among vegetation parameters	91 91
7.3.1.1	Within the whole Oueme Basin	
7.3.1.2	Relations by General Linear Model	
7.3.2	Relations between vegetation dynamics and	agro-ecological
	factors	95
7.3.2.1	Relations within four test communes	
7.3.2.2	Relations by Multiple Regression	
7.3.2.3	Relations by General Linear Model within Impetus Zones	s 99
7.4	Partial Conclusion	
8 SCENA PRECIP	RIOS OF VEGETATION DYNAMICS	AND ECO-
8.1	Introduction	
8.1.1	Objective	
8.1.2	Hypothesis	104
8.2	Material and method	
8.3 8.3.1	Scenarios of vegetation dynamics Model description	105 105
8.3.2	Observed vegetation dynamics	107
8.3.3	Predicted vegetation dynamics	109
8.3.4	Observed vs. predicted	110
8.4 8.4.1	Scenarios of eco-precipitation	112 112
8.4.1.1	Static regional model	
8.4.1.2	Temporal and regional model	114
8.4.2	Observed vs. predicted precipitation 2004	116
8.5	Partial Conclusion	122
9 GENERA		123
10 REFER	ENCES	
11 ANNEX	ES	

List of Tables

Table 2-1 Classified land use area using remote sensing dataset (GLC2000) and corrected for CIC (Cropping Intensity Index) of the whole Oueme Basin
Table 2-2 Agro-ecological Zone with Communes
Table 3-1 Zonation of the Oueme Basin according to the Impetus approach
Table 3-2 Experimental farming systems grid
Table 3-3 Farmer interviews: sampling number, spatial distribution in communes, arrondissements and villages 24
Table 3-4 Geographic coordinates (decimal) of the interviewed villages
Table 4-1 Crop rotation modules in Abomey-Calavi 31
Table 4-2 Crop rotation modules in Pobe 33
Table 4-3 Crop rotation modules in Bohicon 35
Table 4-4 Crop rotation modules in Save 36
Table 4-5 Ruthenberg's R values and its modification with CIC 38
Table 4-6 Production trend of mango in the world, West Africa and neighbouring countries of Benin 43
Table 4-7 Primary Parameters of Mango Tree Biomass Productivity of N'Dali-103 (Average Value)
Table 5-1 Litter fall (LF) data across 13 sites in Benin as related to different ecological parameters
Table 5-2 Litter fall (LF) across 6 sites in Benin as related to important soil and growth characteristics *
Table 6-1 Measured vegetation parameters of different plants in N'dali 59
Table 6-2 Measured vegetation parameters of different plants in Save
Table 6-3 Measured vegetation parameters of different plants in Bohicon
Table 6-4 Measured vegetation parameters of different plants in Pobe 60
Table 6-5 Weighted vegetation parameters of annual crops in N'dali by surface percentages

Table 6-6 Weighted vegetation parameters of annual crops in Save by surface percentages
Table 6-7 Weighted vegetation parameters of annual crops in Bohicon by surface percentages 63
Table 6-8 Weighted vegetation parameters of annual crops in Pobe by surface percentages
Table 6-9 Aggregated average vegetation parameters of three vegetation types65
Table 6-10 Integrated average unit vegetation parameters of 62 Oueme Communes in year 2004
Table 6-11 Integrated vegetation parameters and agro-ecological factors of ten Oueme departments
Table 6-12 Relations among vegetation indicators at communal level 68
Table 6-13 Simple linear regression models estimating biomass using other indicators of vegetation dynamics at communal level (n=62)
Table 6-14 Relations among vegetation indicators at department level 69
Table 6-15 Simple linear regression models estimating biomass using other indicators of vegetation dynamics at department level (n=10)
Table 6-16 Relations among vegetation indicators within North Oueme
Table 6-17 Simple linear regression models estimating biomass using other vegetation parameters within North Oueme ($n = 15$)
Table 6-18 Relations among vegetation indicators within Middle Oueme
Table 6-19 Simple linear regression models estimating biomass using other vegetation parameters within Middle Oueme ($n = 10$)
Table 6-20 Relations among vegetation indicators within South Oueme
Table 6-21 Simple linear regression models estimating biomass using other vegetation parameters within South Oueme ($n = 37$)
Table 6-22 Statistic results of model 6-1 73
Table 6-23 Statistic results of model 6-2 74
Table 6-24 Statistic results of model 6-3 74
Table 6-25 Statistic results of model 6-4 75

Table 6-26 Statistic results of model 6-6 76
Table 6-27 Statistic results of model 6-7 77
Table 6-28 Multiple regression models predicting bio-volume (Vbc) at department level $(n = 10)$
Table 6-29 Multiple regression models predicting eco-volume (Vec) at department level
Table 6-30 Multiple regression models predicting biomass (BMc) at department level
Table 6-31 Multiple regression models predicting bio-volume (Vbc) within North Oueme 81
Table 6-32 Multiple regression models predicting bio-volume within Middle Oueme
Table 6-33 Multiple regression models predicting bio-volume within South Oueme.82
Table 6-34 Multiple regression models predicting eco-volume within North Oueme 83
Table 6-35 Multiple regression models predicting eco-volume within Middle Oueme
Table 6-36 Multiple regression models predicting eco-volume within South Oueme 84
Table 6-37 Multiple regression models predicting biomass within North Oueme85
Table 6-38 Multiple regression models predicting biomass within Middle Oueme86
Table 6-39 Multiple regression models predicting biomass within South Oueme87
Table 7-1 Relations among vegetation indicators of whole Oueme Basin
Table 7-2 Simple linear regression models estimating biomass using other vegetation parameters at communal level
Table 7-3 ANOVA for biomass (BMc) in relation to eco-volume (Vec) within Impetus zone
Table 7-4 ANOVA for biomass (BMc) in relation to bio-volume (Vbc) withinImpetus zones
Table 7-5 ANOVA for biomass (BMc) in relation to soil litter (SLc) within Impetus Zone
Table 7-6 Multiple regression models estimating vegetation parameters of N'dali commune

Table 7-7 Multiple regression models estimating vegetation parameters of Sa commune	ave .95
Table 7-8 Multiple regression models estimating vegetation parameters of Bohic commune	:on .96
Table 7-9 Multiple regression models estimating vegetation parameters of Po	obe .96
Table 7-10 Multiple regression models estimating vegetation parameters within who Oueme Basin	ole .97
Table 7-11 Multiple models estimating vegetation parameters using other drive forces within North Oueme	ing .97
Table 7-12 Multiple models estimating vegetation parameters using other drive forces within Middle Oueme	ing .98
Table 7-13 Multiple models estimating vegetation parameters using other drivi	98
Table 7-14 Analysis of Variance for Vbc using other driving forces within the Impetus zones.	ree .99
Table 7-15 Analysis of Variance for Vec using other driving forces within the Impetus zones.	ree 00
Table 7-16 Analysis of Variance for biomass (BMc) using other driving forces with three Impetus zones.	hin 00
Table 8-1 ANOVA for bio-volume (Vbc) estimated by precipitation (Raipopulation density (POPD) and elevation (ELE)	in), 06
Table 8-2 ANOVA for precipitation (Rain_04) estimated by eco-volume (Vec) a three geographic coordinates 1	und 12
Table 8-3 ANOVA for precipitation (Rain) in relation to eco-volume (Vec) and thegeographic coordinates from 1987 to 2004	ree 15
Table 8-4 Sub-regional models estimating relationship between precipitati(Rain_o4) and eco-volume (Vec) in year 20041	ion 19

List of Figures

Figure 2-1 Vegetation zones of Benin
Figure 2-2 Total population growth in Benin 1961-2002 (source: Doevenspeck 2004, Bevölkerung=population and Jahr=year)
Figure 2-3 Population projection for Benin 2005-2025 (source: Doevenspeck 2004, Bevölkerung=population and Jahr=year)
Figure 2-4 Population density (Bevölkerungsdichte) of Benin in 1992 and 2002 at communal level (source: Doevenspeck 2004) in inhabitants (Einwohner)/km ²
Figure 2-5 Gradients of population density, rainfall and topography (source: von Oppen, 2001)
Figure 2-6 Map of 8 Agro-ecological zones in Benin
Figure 4-1 Cropping Intensity Coefficient (CIC) and Ruthenberg's values (R) according to time and area
Figure 4-2 Ruthenberg's values (R) modified by Cropping Intensity Coefficients (CIC) vs. CIC and Vegetation Duration Coefficient (C_veg)
Figure 4-3 Result of cluster analysis with three datasets across the Oueme basin: Cropping Intensity Coefficient (CIC) and Ruthenberg R values, biological and soil indices, coordinates and precipitation parameters
Figure 4-4 Fruit loading difference between different mango varieties in the north Oueme
Figure 4-5 Difference of yield level between mango orchards in the north Oueme45
Figure 4-6 Mango Varieties composition in N'Dali and Sérarou, north Oueme47
Figure 4-7 Yield difference between the mango varieties in the north Oueme47
Figure 5-1 Relation between observed and predicted annual litter fall (LF in t/ha) data related to annual precipitation (mm) and tree height (cm) as independent variables52
Figure 5-2 Prediction model for annual litter fall (kg/ha) using tree DBH and annual precipitation as independent variables
Figure 5-3 Prediction model between soil carbon (C%) and annual litter fall quantity (kg/ha)
Figure 6-1 Predicted against observed values of bio-volume in model 6-173
Figure 6-2 Predicted against observed values of bio-volume in model 6-375

Figure 6-3 Predicted vs. observed eco-volume in model 6-4
Figure 6-4 Predicted vs. observed eco-volume (Vec) in model 6-777
Figure 7-1 Observed vs. predicted plot of simple linear model estimating biomass using Vec
Figure 7-2 Observed vs. predicted plot of Model 7-193
Figure 8-1 Hypothesis of eco-volume as related to eco-precipitation104
Figure 8-2 Estimated surface diagram using model 8-1106
Figure 8-3 Observed bio-volume dynamics (Vbc) of 62 Oueme communes: 1987-2004
Figure 8-4 Observed bio-volume dynamics (Vbc) of 62 Oueme communes in five years interval: 1989-2004
Figure 8-5 Observed bio-volume dynamics (Vbc) of 62 Oueme communes in year 2004
Figure 8-6 Predicted bio-volume dynamics (Vbc_f) of 62 Oueme communes: 1987-2025
Figure 8-7 Predicted bio-volume dynamics (Vbc_f) of 62 Oueme communes in five years interval: 2005-2025
Figure 8-8 Predicted bio-volume (Vbc_f) dynamics of 62 Oueme communes in year 2004
Figure 8-9 Observed and predicted bio-volume of 62 Oueme communes: 1987-2004
Figure 8-10 Observed and predicted bio-volume of 62 Oueme communes in five years interval: 1989-2004
Figure 8-11 Observed and predicted bio-volume of 62 Oueme communes in years 2004
Figure 8-12 Estimated response surface using model 8-2
Figure 8-13 Estimated response surface using model 8-3116
Figure 8-14 Observed precipitation (P) versus predicted precipitation (P_f) in years 2004 of 62 Oueme communes
Figure 8-15 Residues of precipitation when subtracting observed precipitation (P) from predicted precipitation (P_f) in year 2004 of 62 Oueme communes

Figure 8-19 Concrete (Pe_ac)	versus maximum	(Pe_max) e	eco-precipitation	in year
2004 of 62 Oueme communes				120

List of Annexes

Annexe 1 Example of interview questionnaire in Abomey Calavi135
Annex 2 Cropping Calendar in the south Oueme: Abomey-Calavi: sowing and harvest periods
Annex 3 Cropping Calendar in the south Oueme: Pobe
Annex 4 Cropping calendar in the middle Oueme: Bohicon and Save
Annex 5 Cropping calendar in the north Oueme: N'dali146
Annex 6 Crop rotation pattern in different villages of the Commune Abomey-calavi
Annex 7 Crop rotation pattern in different villages of the Commune Pobe
Annex 8 Crop rotation pattern in different villages of the Commune Bohicon149
Annex 9 Crop rotation pattern in different villages of the Commune Save150
Annex 10 Crop rotation pattern in different villages of the Commune N'dali151
Annex 11 Chemic and physical parameters of soil samples in Oueme Basin-1152
Annex 12 Chemic and physical parameters of soil samples in Oueme Basin-2153
Annex 13 Data sets of vegetation, environmental and demographic parameters used in chapter spatial vegetation dynamics

List of Symbols

AEZ	Agro-Ecological Zone
BA	Basal Area
C_Veg	Vegetation Duration Coefficient
CIC	Cropping Intensity Coefficient
DBH	Diameter at Breast Height
ELE	Elevation (In M above Sea Level)
GDP	Gross Domestic Product
GPS	Global Positioning System
GRRE	Exponential Growth Rate in Percentage
GTZ	Deutsche Gesellschaft für Technische Zusammenarbeit
Н	Plant Height
IMPETUS	An Integrated Approach to the Efficient Management of
	Scarce Water Resources in West Africa
IPCC	International Panel for Climate Change
LC	Land Cover
MDR/DAPS	Ministère du Développement Rural (MDR), Direction de l'
	analyse, de la Prévision et de la Synthèse (DAPS)
MEAP/DPP	Ministère de l'Agriculture, de l'Elevage et de la Pèche (M
	EAP), Direction de la Programmation et de la Prospective
	(DPP)
Ρ	Observed Precipitation
P_f	Predicted precipitation
P_max	Simulated concrete maximum precipitation in certain year
P_min	Simulated concrete minimum precipitation in certain year
PD	Planting Density (normally in piece/Ha)
Pe	Eco-Precipitation
Pe_ac	Concrete eco-precipitation in certain year
Pe_max	Predicted minimum eco-precipitation
Pe_min	Predicted minimum eco-precipitation
Pe'	Eco-Precipitation by its initial means
R or R_time	Ruthenberg's Value expressed either as fraction or as a
	percentage

R_long_area	Long-term Ruthenberg's Value according to area share
R_short_area	Short-term Ruthenberg's Value according to area share
Vb or Vbio	Bio-Volume
Vbc	Weighted communal Bio-Volume
Vbc_f	Predicted Bio-volume
Ve or Veco	Eco-Volume (M ³ /U)
Vec	Weighted communal Eco-Volume

1 Introduction

Land use is becoming a force of global importance. In Benin, enormous changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fibre, water, and shelter to rapid growing population. Croplands, pastures, plantations, and urban areas have strongly expanded in recent 20 years (Paeth 2006), accompanied by large increases in energy, water, and fertilizer consumption. Such changes in land use have enabled local people to appropriate an increasing share of the natural resources, but they also potentially undermine the capacity of ecosystems to sustain food production, to maintain freshwater and forest resources, to regulate climate and air quality, and finally to preserve soil fertility. The ecosystem responses to land use vary according to the ecological setting and the type of landuse change, and have partially differentiated local, short-term as well as global, longterm effects. On the one hand, balancing the inherent trade-offs between immediate human needs and maintaining the capacity of other ecosystem functions requires comprehensive knowledge about these ecosystem functions on regional scale (Matson, Parton, Power, and Swift 1997; DeFries, Foley, Asner 2004; Foley, DeFries, Asner, et. 2005). On the other hand, reliable data about West-Africa are not always readily available. The need for practical and efficient indicators, which can describe and relate interdisciplinary phenomena on a suitable regional scale, is not only important for biological and ecological sciences, but also for economical and political implementation. The integrative indicators eco-volume and bio-volume as vegetation indicators opposed to the standard biomass indicators generally enable to better describe the reactions between vegetation dynamics and soil nutrients variation, precipitation, population dynamics and farming intensity on the regional scale.

Since vegetation cover has been rapidly declining in Benin, the agro-ecological constraints in the whole Oueme basin have been further investigated, allowing vegetation evolution to be reconstructed on a regional scale, which, in turn and combined with other research results, would enable a realistic policy analysis. The possible feedback between vegetation and precipitation dynamics is in the focus of this study on "Vegetation Dynamics in Oueme Basin, Benin, West-Africa".

To make the test of the feedback between vegetation and precipitation empirically

1

possible, a suitable vegetation data compiling approach was developed together with the newly defined concepts of eco-volume and bio-volume. The portion of precipitation variability, originating specifically from vegetation variability, was defined as eco-precipitation. The in situ measured agro-ecological and farming system parameters of all three vegetation types were used to validate the agricultural statistics of each 62 administrative communes in the whole Oueme Basin from 1987 to 2004 and the land cover data of Global Landcover Classification (GLC2000). Thus for each of the 62 communes, the temporal and spatial dynamics of biomass, ecoand bio-volume were reconstructed. Other available datasets comprising annual precipitation, vegetative duration coefficient and population density were adapted to comparable time and spatial spans, and eventually analysed through linear multiple regressions and general linear model together with the reconstructed vegetation dynamics. The feedback between vegetation and precipitation was evaluated at different spatial scales including all 62 communes, all ten Departments (provinces), and eventually, the communal means regrouped into the south, middle and north Oueme Basin sub-regions. Moreover, the static regional scenarios of precipitation in relation to eco-volume in 2004, the temporal and spatial scenarios of bio-volume in relation to precipitation from 1987 to 2025 have been simulated in order to detect possible future trends.

This study deals with interdependent processes between vegetation dynamics, precipitation variability and, on the human side, institutional arrangements, agricultural economics and population dynamics for the whole Oueme Basin. Farming systems are highlighted for their influence on the vegetation dynamics.

2

2 Agro-ecological Conditions in the Oueme Basin

2.1 Location and geography

Benin is located in West Africa. It is bound by Niger to the north, Burkina Faso to the northwest, Nigeria to the east, Togo to the west and the Gulf of Guinea to the south. The country has four natural topographical regions: (i) A coastal belt which has four lagoons, the Cotonou, Ouidah, Grand Popo and Porto Novo while further north the land rises slowly to a savannah plateau, (ii) The Lama which is a wide marshy depression, (iii) The Atakora Mountains in the northwest and, (iv) The eastern plains of Borgou and Kandi which slope to the Niger basin. The country is covered with different vegetation types and has many major rivers. The Oueme River is the longest river running southerly, starting from Atakora, down the middle of the country, ending till the coast. The Oueme River rises in the Atakora massif in north-western Benin. It is approximately 500 km in length and flows southward, where it is joined by its main affluent, the Okpara, on the left bank and by the Zou on the right bank. It then divides into two branches, one discharging into Lake Nokoué Abomey-Calavi, delta near Cotonou and the other one into Lagoon Porto-Novo. The Oueme Basin covers ten provinces (departments) encompassing 62 administrative Communes.

2.2 Climate

The Oueme Basin, endures a tropical climate subdivided into three climatic zones according to different rainfall regimes by the Impetus project classification; (i) The north Oueme with an unimodal rainfall regime which has two seasons: the rainy season from May to October and the dry season which is hot with very low humidity, (ii) The south Oueme with a bimodal rainfall regime which has two wet seasons, a long one between March and July and a short one between September and mid November as well as a long dry season between November and March, (iii) The middle Oueme with a transitional rainfall regime which has a rainy season between March to October, with or without a small dry season during August. Rains mostly originate from the Guinean coast. The prevailing dry season wind is the Saharan Harmattan, a hot dry dust laden wind that blows from the northeast and occurs between December and March. Average annual precipitation varies between 960 mm in the north and 1340 mm in the south. Average annual temperature ranges in

Cotonou from 23 °C in August to 28 °C in May.

2.3 Soil

The Republic Benin locates in West-Africa and geographically between 06°00' to 12°00' northern latitude and 01°00' to 03°40' eastern longitude. It has a land area of 114870 km² (MDR/DAPS, 1998) or around 11.5 million ha. According to GLC2000 there are only 11.43 million ha for the whole of Benin. In this study the value of land area of GLC2000 was used. Table 2-1 shows the land use classification of the three climate regions of the whole Oueme Basin used in this study. The item "Real annual crops (ha)" has been extracted from the corresponding area sum from the agriculture statistic books by the MAEP/DPP, after correction for CIC (Cropping Intensity Coefficient), as detailed in Chapter 3.

Within Oueme Basin there are four major soil types. First in North and centre, the crystalline base soils Alfisol, so called "sols ferrigineux", are dominant. Such soils are expressed by concretion and lateritic crusts, most are sandy. Second in South, a depression with direction western to eastern separates the crystalline base soils. The soils in this depression are mainly comprised of hydromorph Vertisols, which are sandy loamy to loam soils. Third in South is a sand-stone plain ("Terre de Barre"), here the soils are dominantly deep, fertile and sandy to loamy Acrisol. Fourth after the sand-stone plain follows a coast zone, where the soils are dominated through quartz rich sand and characterized by expanded swamp zone and lagoon water (Fritz 1996, Herrmann 1996, Bohlinger 1998, van den Akker 2000).

corrected		c (cropp	nng i	mensity	maex) or m	e whole		Dasin	
Depart-	Com-	IMPETUS	AEZ	Total	Sum	Forest	Savannah	Real	Other
ment	mune	Zone		(ha)	vegetation	(ha)	(ha)	annual	(ha)
					(ha)			crops	
								(ha)	
10	62	3	6	6780865	6745167	449871	5115482	1179814	35698
% to					99.47%	6.63%	75.44%	17.40%	0.53%
Total									
% to Sum						6.67%	75.84%	17.49%	0.53%
of									
vegetation									
•	Sourc	e: Remote	sensi	ng dataset	of land use in	Benin in	year 2000 f	rom the GL	C2000

Table 2-1 Classified land use area using remote sensing dataset (GLC2000) and corrected for CIC (Cropping Intensity Index) of the whole Oueme Basin

- Project, supplied by Michael Judex
 AEZ = Agricultural Ecological Zone
- Total (ha) = Total Land area in hectare of Benin according to GLC2000
- Sum vegetation (ha) = GLC2000 area of total vegetation in hectare
- Forest = mosaic forests and mangrove
- Savannah = Deciduous woodland + Deciduous shrubland with sparse trees + Sparse grassland+Swamp bushland and grassland (including perennial plantation crops)
- Real annual crops (ha) = annual crops area from Agriculture Statistics Book in year 2004 (MAEP/DPP 2004), then corrected for CIC
- Other (ha) = urban area and water bodies

2.4 Vegetation

Wezel and Bohlinger (1999) have classified Benin in four vegetation zones viz.; Coast Zone, Guinea-Congolian Zone, Guinea Zone with Southern and Northern Guinea Zone, and Sudanian Zone with Southern and Northern Sodanian Zone as shown in Figure 2-1. Northern part of Oueme Basin is mainly covered by the Southern Sudanian Zone and to a lesser extent by the Northern Guinea Zone. Northern parts of Donga and Borgou belong to the Southern Sudanian Zone, where the prevailing vegetation types are woodlands and savannahs and, *Isoberlinia* trees occur more frequently. Along rivers, gallery forests can be found. The Southern Parts of Donga and Borgou and part of Collines are dominated by the Northern Guinea Zone. The vegetation here is dominated by moist woodlands and savannahs and characterised by woodlands, tree and shrub savannahs with abundant *Isoberlinia* spp. and *Butyrospermum parkii* (Karité).

Map Layout: Alex Wezel; Department of Landscape and Plant Ecology University of Hohenheim, Germany, 1999

Figure 2-1 Vegetation zones of Benin

Central Oueme Basin is dominated by the Northern Guinea Zone. The separation between a Northern and a Southern Guinea Zone coincide with the northern boundary of bimodal rainfall in southern Benin.

The Southern Oueme Basin comprises three vegetation zones: (i) The Southern Guinea Zone where moister types of woodland and savannahs with abundant *Daniella oliveri* are found, (ii) The Guinea-Congolian Zone and, (iii) A Coastal Zone

with a small band of coastal vegetation existing along the Atlantic Ocean. In the Guinea-Congolian and Coastal Zones mosaic forests and savannahs exist. In these two zones most of the original vegetation is replaced by secondary grasslands or savannahs due to human impact.

2.5 Population dynamics

Since the beginning of 80's Benin experiences a rapid population growth with an average annual rate of ca. 2.8%. According to the last census there were 6750000 inhabitants in Benin in the year 2002 (INSAE 2003). The figures 2-2 and 2-3 show the total national population growth and projection from 1961 to 2025.

Figure 2-2 Total population growth in Benin 1961-2002 (source: Doevenspeck 2004, Bevölkerung=population and Jahr=year)

Figure 2-3 Population projection for Benin 2005-2025 (source: Doevenspeck 2004, Bevölkerung=population and Jahr=year)

Figure 2-4 Population density (Bevölkerungsdichte) of Benin in 1992 and 2002 at communal level (source: Doevenspeck 2004) in inhabitants (Einwohner)/km²

There is obviously a gradient of population density from the south, centre to north Benin. One reason for this population distribution pattern could be as mentioned by Doevenspeck (2004) that historically the south was economically more developed than the centre and north since slave trading period and colonial time. von Oppen (2001) pointed out also the similar gradients of rainfall and topography from south to north.

Figure 2-5 Gradients of population density, rainfall and topography (source: von Oppen, 2001)

2.6 Land property rights

Even the topic about land property rights is a complicated and sensitive issue; together with increasing population growth, climatic change, economic, institutional evolution, traditional and State land tenure play a particularly important role in the area of land use. Thus, during the field research in Benin, this issue was discussed with the farmers in all interviews and with informants (civil servants, for instance functionaries of the Service Domaine). Especially, the Pobe commune in south Plateau Province and N'dali in northern Borgou Province were selected as study sites serving as privileged observation sites for assessing previous studies in this area.

In the legislative and political land tenure practice of Benin; all land belongs to the

State.¹ It is somehow similar as the socialistic China, at least comparable with the beginning period of China's Reform. Some similar phenomena such as unclear delimitation of property rights, especially the private property rights and very high institutional costs were observed also in Benin. The costs of land transaction are very high and administrative certifications of the contracts from the State are so complicated, that most of such land transactions (including variety of tenancies) were not confirmed by the government. One of the most crucial arguments of critics is the tragedy of common property rights, which is true. For the efficiency goal, the privatization of land property rights was and is heavily discussing, but there is still no clear answer (Chimhowu & Woodhouse, 2006).

Moreover, such legal uncertainty and restrictions on access to resources, as discussed by Kirk and Adokpo-Migan (1995), endanger soil fertility up to the point of degradation. Individual private ownership also offers no guaranty of resource preserving utilization when this is only recognised and protected by the State under extremely restrictive conditions or when in addition unclear, arbitrary regulations of tenancy lead to legal uncertainty and prevent a willingness to invest in sustainable cultivation options such as agro-forestry.

Beyond these 'uncertainties', there are also optimising tendencies in Benin that the community based common property rights system is diminishing and with the decentralization process, the privatization/individualization is going deeper. More and more transaction options (=opportunities) are coming up within the land tenure

¹ Kirk & Aokpo-Migan (1996) pointed out three points in legislation and policy of land property rights in Benin:

Even if Benin lawyers do not see a legal basis for the primacy of state ownership, land tenure practice sees it differently: it is deeply rooted in the consciousness of all levels of administration that the State is, after all is said and done, the owner of all natural resources. Autochthonous land tenure justifies if need be, only ownership-like usufructuary rights. Peasants and livestock owners with formal education have also internalised this principle.

Through the procedure of land registry, the State ensures an exclusive private land title for natural and legal persons (titre foncier).

The State has a far reaching right even since democratisation to expropriate land which is cultivated in line with customary rules in the 'interests of the general public' and to confer titles in land through urban or rural concessions. In such a case there is no right of appeal for compensation.

system especially in south.²

Logically and empirically, it is not a problem, whom the land ownership rights belong to, as the experience of China's reform shows. For the functioning of a private property system requires the exclusive right to use (or to decide on use), the right to freely transfer, and the right to exclusively enjoy income generated from usage. Whether the user of a property has private ownership in title is not important (Cheung, 1969, 1998). For efficient and functioning land tenure systems in Benin, the crucial concern here is a clear delimitation of these three rights.

2.7 Agro-ecological Zone

To generate more congruence between administrative areas and vegetation zones for agricultural extension and political decision purposes, the Ministry of Rural Development (MDR) defined eight agro-ecological zones (AEZ, MDR, 1998) for whole Benin, comprising sub-prefectures (after decentralization: communes) as the smallest unit having relatively homogenous soil and climatic conditions and providing statistical data (see table 2-3 and figure 2-6). The Oueme Basin spans across six AEZs, from zone 3 to 8.

The classification of the eight agro-ecological zones followed the natural conditions of these zones. In the north, there are two zones with lesser favorable conditions for agricultural production, Zone Extrême Nord Bénin (1) and Zone Ouest Atakora (4), respectively, and two zones with favorable production conditions, Zone Cotonnière du Nord Bénin (2) and Zone Vivrière du Sud Borgou (3). All are characterized by one cropping season per year and by a relatively low population density between 12 and 33 inhabitants per km². In the center, one large zone with favorable production conditions is found, Zone Cotonnière du Centre Bénin (5). In this transitional zone the cropping intensities go up from one to two cropping seasons, depending on length of

² The other authors like Kirk & Aokpo-Migan(1996) described the land tenure situation in Benin more sceptically: "...endangered customary common property rights with long-term use rights of families in the North including conflicts between settled cropping farmers and livestock keepers in the face of restricted grazing lands and transhumance routes; individual private ownership, varied forms of tenancy, the beginnings of landlessness and a 'grey' land market for agriculturally favourable locations in regions with high population pressure in the South."

the local growing season, which is in turn regulated by the transition of unimodal to bimodal rainfall regimes. The population density here is still low with 28 inhabitants per km². The south has one zone with a high production potential (Zone de la Dépression (8)), one zone with a medium production potential (Zone des Terres de Barre (6)) and one zone with a low production potential (Zone des Pêcheries (7)). All these are characterized by two cropping seasons and a high population density, reaching from 135 inhabitants per km² in Zone 8, 267 inhabitants per km² in zone 6 to 416 inhabitants per km² in Zone 7 (including the urban population). In the north and in the center arable land is still available which is not yet under cultivation implying that here extended fallow periods exist. In the south all arable land is under cultivation and therefore a very high land-use ratio is prevailing (van den Akker, 1998).

Reg on	No.	Agro-ocological zono	Subprefecture
NORTH	1	Zone de l'Extrême Nord Bénin	Karimama (8), id alanville (8)
	2	Zone Catonnière du Nord Bénin	8 anilioara (8), Károu (A), Kandi (8), Oogounou (8), Ségbana (8)
	3	Zone Vivlère du Sud Borgeu	Kouandé (A), Péhunco (A), Sinenté (B), Bembèrèkè (B), M'Dall (B), Kalalé (B), Nikki (E), Pèrèrè (B)
	•	Zone Ouest-Ataccra	Maléd (A), Cobly (A), Tanguléta (A), Toucountouna (A), Eoukoumbé (A), Natilingou (A), Copanjo (A), Oualé (A), Djougou (A)
CENTER	5	Zone Cotonnière du Centre Bénin	Parakou (8), Bassila (A), Tchaourou (8), Bantè (2), Ouessè (2), Savalou (2), Olazoué (2), Savè (2), Dassa-Zoumé (2), Djidja (2), Kétou (0), Aplahoué (M)
80UTH	6	Zone des Terres de Barre	Za-Kpota (Z), Cově (Z), Zagnanado (Z), Bohicon (Z), Aboney (Z), A jbangnizoun (Z), Klouškanně (M), Tovikin (M), Dakotomer (M), Dogbo (M), Houšvogbš (M), Kpomassě (Aq), Allada (Aq), Tori-Bosaito (Aq), Aboney-Calavi (Aq), Zě (Aq), Sabště (O), Kangni (O), Akpre-ili Issérécé (O), Avranicou (C), Adjarrs (O), Porio- Novo (O)
	7	Zone des Pâcharies	Lokossa (M), Eopa (M), Alhiémè (M), Comè (M), Grani-Popo (M), Ouldah (Aq), Colonou (Aq), So-Ava (Aq), Aguégués (O), Dangbo (O), Adjohour (O), Bonou (O), Sèmè-Pocii (O), Ouinhi (Z)
	8	Zone de la Dépression	Laio (iii), Zogbodomey (2), Tofio (Aq), Adja-Ouèrè (0), Pobè (0)

Table 2-2 Auto-ecological 2011e With Communes

A: Atacora, B: Bergou, Z: Zou, M: Wono, Aq: Atlantique, O: Ouémé

Source: DAPS/MDR 1998

Figure 2-6 Map of 8 Agro-ecological zones in Benin

2.8 Major crops

Generally there are eight major annual crops extensively cultivated in the Oueme Basin: maize, yam, cassava (manioc), sorghum, rice, groundnut, beans, and cotton.
Maize cultivation areas increased in the south, and then expanded more and more in north Benin. Hence, maize wins more importance, although its rapid and unsuitable cropping techniques induce soil degradation as can already be seen in the south. Diverse vegetable production is increasing in the south and will further increase up north with the ongoing urbanization process.

Among the fruit trees, cashew cultivation is expanding, followed by mango and coconut. The other tree crops: oil palm, coffee and cocoa are decreasing. Oil palm is also cropped at very high densities in the Mono in view of palm wine production. There are plans to establish huge oil palm estates in south-eastern Benin under joint-venture agreements with Asian investors. Also characteristic of Benin is the multitude of small communal or private teak plantations, generally grown at very slow revolution rates.

2.9 Animal husbandry

Animal grazing impacts obviously on the vegetation stand. Thus, the state of the animal husbandry is of interest to the vegetation dynamics. But in general the explicit information and data about animal production in Benin are scarce and difficult to obtain. Hence, animal husbandry was not included in our study. The following part is a description of this sector based on literature and own experiences during field research in Benin. According to van den Akker (2000), nationally around 75% agricultural GDP belongs to plant production and ca. 25% belongs to animal and fish production.

With rapid growing population in Benin the demands on diverse animal products are increasing. Both, the plant and animal production are typical extensive production system, the major chance for an expansion of plant as also of animal productions is using more and more land areas. Consequently, the competition for land areas is almost inevitably under actual constraints. Especially in the centre of the Oueme Basin, where there are still a lot of arable land and less population density, the animal number, - mainly cattle -, is expected to be increasing in the future. In the north, cattle's keeping in a transhumance pattern plays an important role after annual crops cultivation. In the south, animal production systems are small but diverse and technically more intensive than these in centre and south, probably impacted by land

14

scarcity and easier access to capital, information, techniques and market, even if the tropical climate and animal diseases limit strongly the expansion of cattle, pig productions in south.

The south Benin is characterised through lagoon landscape with 27000 ha water surface in dry season. Traditionally the lagoons are utilised intensively for fish production, also in other seasonal water bodies in wet season. Together 42200 tonnes of fishes were produced in Benin 1995 (Cellule Macro-économique, 1997).

2.10 Farming systems

In Benin, cattle are normally kept by nomads and typical traditional character of transhumance. Otherwise, animals like poultry, goat are kept around house or combined with annual as also perennial crops. The cropping or plant production systems are characterized through natural traditional agro-forestry pattern, i.e. less or more, useful trees are left on the annual crops fields, as néré and karité in north and oil palm in south. Most annual crops fields are mixed crop fields. Different combinations are possible and with newly in Benin introduced crop varieties the new types of mixed crops are emerging.

Since this study was concentrated on the cropping systems, the term farming system was used later as synonym of cropping system. Farming systems in Benin were described as extensive subsistence farming systems. Nowadays, they have evolved from tropical shifting cultivation to relatively intensive fallow cultivation systems (Janssens, Deng and Mulindabigwi 2004, Mulindabigwi 2006).

In north the annual crops are the most important component with its farming system. Near to the Niger boundary millets and sorghum, followed by yam, groundnut and beans and increasing maize cropping are dominant, while in Donga and Borgou the yam then followed by cotton, maize, sorghum, groundnut, beans and increasing cashew and mango trees are normal cropping patterns. In central Oueme Basin almost all annual crops are cultivated, maize occupying more and more areas and perennial trees like orange, teak are common, but oil palm trees are less than these in south. In south Oueme Basin maize and cassava are dominant, while the oil palm and coco palm dominate in the coastal zone. In the pre-urban areas vegetables are

15

produced with increasing intensive techniques.

As mentioned in the section 2.5. Agro-ecological zone, in north there is only one cropping season, in centre one season cropping is dominant but southwards two cropping seasons occurring. In south two cropping seasons are cultivated. So from north to south, the cropping intensity index (CIC; see Chapter 3) increases, whereas fallow duration decreases southwards, even if the soils in south are more degraded than those in centre and north. As a plant indicator for soil degradation, *Imperata cylindrica* (spear grass) is more widely spreading in south and induces major harvest losses.

The south is more heavily impacted by social-economic progress. The crop rotation patterns in south are more diverse, even if some of these are not proper to local agro-ecological conditions. The local farmers are trying different possibilities other than the dominating option of expanding cultivating areas under given constraints.

Whether people in the south can win this fight with more favourable technological and institutional advantages against less land per person in comparison with the centre and the north where land is more available, remains as a challenging issue.

3 Materials and Methods in General

The primary objective of the present study is to test if vegetation dynamics are influenced by climate change, land use change and population dynamics as well as agricultural farming intensity. Vegetation dynamics, however, imply two dimensions: spatial and temporal variations. The spatial variation encompasses horizontal and vertical variations. Conventionally the biomass is used to describe vegetation dynamics in plant ecology, whereas in remote sensing related geo-ecology the NDVI (Normalized Difference Vegetation Index) is the standard parameter (Rouse et al. 1973, Tucker 1979 and Myneni et al. 1995). Biomass measurement, especially at regional scale, is relatively cumbersome and takes long time, since the phytomass has to be dried in the oven at first. The destructive character of biomass approach is also a limiting factor. To test the working hypotheses the eco-volume and bio-volume concepts were designed as inter-connecting indicators.

3.1 Eco-volume and bio-volume

The *eco-volume* of a single plant is defined as the volume of a cylinder with basal area equals to the basal area of the canopy and the aboveground height at the highest point of the plant:

where:

- Ve = Eco-volume (m³) of a plant;
- S = Surface or canopy area (m²) occupied by a plant;
- H = Plant height (m).

Eco-volume (Ve) of a plant community is defined as surface multiplied by the weighted average height (eco-height) of a given phytocenose or agricultural system. It is expressed as a volume in m³. For example, when the total eco-volume amount of a commune is divided by the total surface area of this commune, the communal average eco-volume (Vec) of this commune is expressed as m³/ha:

$$\sum Ve_i = \sum S_i * H_i$$

Where

- Ve_i = the partial eco-volume of each vegetation component i
- S_i = the respective area occupied by each vegetation component i at canopy closure. If no canopy closure has been reached, then this vegetation component will be treated as the sum of singular plants (e.g. the case of dispersed karite trees in a crop field).
- H_i = the respective height of each vegetation component i

Bio-volume (Vb) of a single plant in m³ is normally defined as biomass divided by specific weight. For practical purposes an allometric formula was used to estimate bio-volume in m³ as basal stem area multiplied by its height:

where:

- Vb = Bio-volume (m³) of a single plant;
- S = Basal stem area (m²) of a given plant;
- H = Plant height (m).

Thus, the bio-volume of a phytocenose (vegetation community) or agricultural system can be defined as:

$$\sum Vb_i = \sum BA_i * H_i$$

(Equation 3-4)

Where

- Vb_i = the partial bio-volume of each vegetation component i
- BA_i = the respective basal stem area (subtotal) occupied by each vegetation component i
- H_i = the respective height of each vegetation component i

The communal average unit bio-volume (Vbc) in m³/ha is obtained, when the total bio-volume amount of a commune is divided by the total surface area of this commune.

This definition of eco-volume integrates some physic details of a given vegetation comparing with conventional indicators like biomass (kg/ha), which measures explicit physic quantities of a vegetation on a dry weight basis. But any measurement has its disadvantages and advantages. The height of a plant or an average height of a vegetation type is easier to measure as biomass, which, needs to be dried at a cost of energy and time. To get a quick insight of relations between the vegetation, site stand and its socioeconomic environment, eco-volume might be a good starting point. It can be further agued that the dominant change of vegetation under rapid social economic developing process like in Benin should be first of all the surface area change of different vegetation components. Since eco-volume takes the changes of land use area into account, combined with eco-height it represents a certain dimension of the vegetation dynamics. Since not only the plant height, but also the plant density of a vegetation community reacts to different environment settings, the bio-volume is also suggested as another alternative indicator for rapid appraisal of vegetation. In this study all three indicators describing vegetation dynamics were used and compared.

3.2 Reconstructing vegetation dynamics

For estimating vegetation dynamics the land use/cover change data are needed. The annual agriculture statistics books supply spatial and temporal datasets about annual cropped areas in each commune, within the different types of land use under continuous change. But the statistic data about forests and plantations areas were scarce in Benin. Even vegetation data acquired through remote sensing could not distinguish explicitly the really complicated different agricultural cropping areas from other vegetation formations, whereas they distinguished relatively well either the forest or savannah area from other vegetation components. Thus, the annual agriculture statistics were combined with remote sensing data to estimate the land use change of whole Oueme communes assuming the forest area from remote sensing to be correct. To the contrary, cropped land area was taken from the agricultural statistics and savannah area corrected accordingly.

Before these land use change datasets from the agriculture statistics could be combined with remote sensing data, one crucial step had to be treated. The field measurements were needed to validate and justify the statistic and satellite datasets. For example, remote sensing measures geographic physic areas of different vegetations; to the contrary, annual agriculture statistics record cultivated areas of different annual crops, which are cropping areas, but not geophysical areas. Especially, when a field is cultivated twice within a year, it would be recorded twice in the official statistics. In the centre and south Oueme Basins, the cropping intensities are higher than 1, which means that a field will be cultivated more than one time within one year. Since the annual rainfall duration and thus the vegetative period length allows one to even three cropping seasons for short season crops practically, the datasets from the agricultural statistics must be corrected for CIC (Cropping Intensity Coefficient) before they are comparable with remote sensing area data.

3.3 Datasets

The own measured agro-ecological and farming system parameters are described in detail in the sections 3.6 and 3.7 and chapter 4. The personally recorded datasets in the field were completed by datasets kindly supplied by colleagues of the Impetus project as referenced hereunder.

- The agriculture statistics of Benin from 1987 to 2005 (MAEP, Benin);
- The GDP statistics for all Departments of the Oueme basin by Dr. Arnim Kuhn from the Institute for Food and Resource Economics, University of Bonn;
- The satellite land cover data of Global Landcover Classification (GLC2000) of year 2000, supplied by Michael Judex in the Remote Sensing Centre of the University of Bonn;
- The vegetative duration coefficient data from 1987 to 2004 for the 62 Oueme communes, supplied by Julia Röhrig in the Remote Sensing Centre of the University of Bonn;
- The precipitation datasets supplied by Malte Diederich in the Meteorological Institute of the University of Bonn:
- The climatologic precipitation dataset from 1987 to 2004 for the 62 Oueme communes,
- The precipitation data from 2005 to 2025 for the 62 Oueme communes, simulated by the REMO- a regional model of climate and based on the assumptions of

IPCC-A1B with strong forcing scenarios and strong FAO land use change assumptions;

 Population projection data from 1987 to 2025 for the 62 Oueme communes, supplied by Moritz Heldmann in the Institute of Ethnology of the University of Cologne, based on projection of the census data of Benin in year 1992 and 2002.

3.4 Experimental geographical grid

Ecosystems at different levels and scales reveal different mechanisms. The micromechanisms determining plant physiology at the individual level can not be applied directly into regional vegetation formations. Some laws hold on throughout different levels, some do not. Since the objectives of this study is trying to find out the empirical vegetation dynamics as related to precipitation, population dynamics, farming system development across time, one ought to address first the scaling issue. The different datasets must be compiled at comparable scale, so that they can be analysed together. In this study, the **commune** (previously sous-préfecture) was selected as basic analytic unit. Accordingly, all data sets were prepared at this scale for further analyses. On the one hand, the datasets needed from the other subprojects of Impetus could be supplied at this scale; on the other hand, the commune is the smallest administrative unit, by which most required statistical data, such as annually agricultural used cropping area, are available.

To make the agro-ecological field measurements representative, the sampling areas were subjected consistently to the Impetus zoning method approach. The project Impetus, "an integrated approach to the efficient management of scarce water resources in West Africa", has water as its major issue. Hence, especially the precipitation stands in the centre of the project. As Impetus encompasses five gross interdisciplinary sub-projects, a consistent scale must be defined for cooperative analyses. The whole Oueme River Basin is then grouped into three zones as shown in table 3-1.

Zones	Rainfall Regime	Provinces	Communes	Principle Crops	
North		Borgou	Ndali, Pèrèrè, Parakou, Tchaourou	Yam, Manioc, Maize,	
Oueme Basin	Unimodal	Donga	Korpago, Ouaké, Djougou, Bassila	Sorghum, Cotton,	
		Collines	Bantè, Ouèssè, Glazoué,	Cashew, Mango	
		Collines	Savè, Savalou, Dassa	Yam, Manioc,	
Middle		Plateau	Kétou	Maize,	
Oueme Basin	Transitional	Zou	Djidja, Abomey, Za- Kopta, Bohicon, Covè, Zangnanado	Groundnut, Sugar Cane, Orange, Cashew	
	Bimodal	Zou	Agbangnizoun, Zogbodomè, Ouinhi		
		Plateau	Adja-Ouère,Ifangni, Pobè, Sakété		
		Kouffo	Aplahoué, Djakotomè, Dogbo-Tota, Klouékamné, Lalo, Toviklin		
South		Mono	Athiémè, Bopa, Comè, Grand-Popo, Houéyogbè, Lokosa	Maize, Manioc, Groundnut, Beans, Vegetables,	
Oueme Basin		Atlantique	Abomey-Calavi, Allada, Kpomassè, Ouidah; So- Ava, Toffo, Tori- Bossito, Zè		
		Ouémé	Adjara, Adjohoun, Aguégué, Akpro- Missérété, Avrankou, Bonou, Dangbo, Porto- Novo, Sèmè-Kpodji	OII Palm	
		Littoral	Cotonou		

Table 3-1 Zonation of the Oueme Basin according to the Impetus approach

Source: Impetus Project Document 2004 (unpublished)

3.5 Experimental farming systems grid

The farming systems along the Oueme Basin are quite different depending on social economic and agro-ecological settings. Hence, a subdivision of the basin into four zones, - each zone with three sub-zones - was made concerning farming systems variation at the beginning of the Impetus project starting phase in year 2000, as shown in table 3-2. Instead of the commune Ina up north, N'dali commune directly near to Ina was selected as sampling site following logistic capacity limitation. Additionally, the commune Abomey-Calavi was intensively interviewed, but without

field measurement of the agro-biological parameters. Thus five communes: N'dali, Save, Bohicon, Pobe and Abomey-Calavi were interviewed allowing later description of crop calendar, crop rotation, and calculation of CIC and Ruthenberg's values (R).

Transect	West site	Middle site	East site
Upper Ouémé	Djougou (Catch) - Serou * N: 9°43' E: 1°40' Yam, Maize, Manioc Veg.Phase: 200-240 Days Rain: 1200mm Soil: Ferrugineux	General De Gaule (Impetus) -Dogué * N: 9°6' E: 1°57' Yam, Maize, Manioc Veg.Phase: 200-240 Days Rain: 1100 mm Soil: Ferrugineux	INA ** (INRAB) N: 9°59' E: 2°44' Maize, Sorghum, Cotton Veg. Phase: 130-200 Days Rain: 1000mm Soil: Ferrugineux
Middle Ouémé	Banté * N: 8°26' E: 1°54' Maize, Manioc, Yam, Groundnut Veg. Phase: 240 Days Rain: 1000mm Soil: Ferrallitique	Glazoué * N: 7°59' E: 2°15' Maize, Manioc, Yam, Groundhut Veg. Phase: 240 Days Rain: 1000 mm Soil: Ferrallitique	Savè (INRAB) ** N: 8°03' E: 2°30' Maize, Manioc, Yam, Sugar cane, Groundnut Veg. Phase: 240 Days Rain: 1000mm Soil: Ferrallitique
Lower Ouémé	Bohicon** N: 7°14' E: 2°05' Maize, Manioc, Yam, Groundnut Veg. Phase: 1000 mm Soil: Ferrallitique	Niaouli (INRAB) N: 6°45' E: 2°12' Maize, Manioc, Groundnut Veg. Phase: 210-240 Days Rain: 1200 mm Soil: Ferrallitique	Pobè: (INRAB)** N: 6°59' E: 2°42' Palme, Maize, Manioc, Vigna unguiculata Veg. Phase: 210-240 Days Rain: 1200mm Soil: Ferrallitique
Littoral Ouémé	Ouidah (Mangrove): N: 6°21' E: 2°6' Coco palm, Manioc, Vigna unguiculata Veg. Phase: 210-240 Days Rain: 1400 mm Soil: minéraux brut	Cotonou: (Peripherie) N: 6°22' E: 2°27' Coco palm, Vegetables Veg. Phase: 210-240 Days Rain: 1400 mm Soil: sE minéraux brut	Sèmè Podji: (INRAB) N: 6°24' E: 2°38' Coco palm, Manioc, Vegetables, Sugar cane Veg. Phase: 210-240 Days Rain: 1400 mm Soil: minéraux brut

Table 3-2 Experime	ental farming	systems	grid
--------------------	---------------	---------	------

N= North Longitude, E= East Latitude,

* = sites designed to be measured by former researcher (Valens Mulindabigwi) during the first Impetus project phase (2000-2003),

** = sites designed for own measurements during the second Impetus phase (2004-2006), INRAB=Institut National de la Recherche Agronomique du Bénin

3.6 Farm interview

More than 150 farmers belonging to five Communes of the North-, Middle- and South-Oueme Basin were visited, either on their fields, or at home with their families. Within them, 66 selected farmer interviews were completed during the field research from September 2003 to December 2005.

At beginning of the work in each Commune, an explorative round tour has been done, accompanied by the local agricultural technicians or civil servants. Then, farmers and villages to be interviewed were selected. Criteria to select certain farms were guided by their representative characteristics as to a particular category in a given Commune, concerning their economical and social status and for each of the important spatial subdivisions. Eventually, sampling of fields was performed. Among the 66 recorded questionnaires, ten were group interviews and the others were individual interviews. In each interview group six to 18 farmers participated (table 3-3).

Table 3-3 Farmer interviews: sampling number, spatial distribution in communes, arrondissements and villages

		Number of samples						
Commune	Date	Arrondissement	Village	Group Interview	Individual Interview	Farmer		
Abomey- Calavi	2004	5	14	0	15	15		
Pobe	2004	5	8	6	2	63		
Bohicon	2005	3	6	0	11	11		
Save	2005	5	12	4	16	58		
N'dali	2003	2	9	0	12	12		
Sum		20	49	10	56	159		

The questions in the interviews concentrated in practice on farming systems, especially on the cropping systems. An example of questionnaire was attached in Annexe 1.

Crop sowing and harvest timing, crop rotation patterns, field management were repeatedly asked. Such questions allowed estimation of the cropping and fallow duration. Moreover, field management could be used to estimate the ratios of differently used crops and field areas to the whole farm land areas of farmers. Thus the Cropping Intensity Index and the Ruthenberg's value R were carried out. They were estimated for different cropping systems. Also the intercropping pattern, the farmers' perceptions about the future development of cropping systems and the most important crops were recorded.

Commune	Village	N-longitude	E-latitude	Elevation /meter
Abomey-calavi	Yevie	6.603	2.367	29
	Dossounou	6.462	2.244	24
	Kparoun	6.683	2.485	13
	Agongbe	6.537	2.309	40
Pobe	Igana	7.038	2.705	81
	Towe	7.155	2.737	68
	Ibere	7.040	2.705	62
	Onigbolo	7.174	2.660	83
Bohicon	Madje	7.162	2.206	92
	Masse-	7.266	2.084	219
	Gbame			
	Flely	7.188	2.093	173
Save	Okewo	8.049	2.712	173
	Dani	7.982	2.457	192
	Igbodja	7.813	2.587	170
N'dali	Mama	9.870	2.661	375
	Imorou			

 Table 3-4 Geographic coordinates (decimal) of the interviewed villages

3.7 Parameters and variables

In the four selected communes: N'dali, Save, Bohicon and Pobe in the north, middle and south Oueme basin, vegetation was classified into three categories:

- Forest
- Savannah: including savannah, fallow and plantation as one category
- Annual crops: including mainly eight major crops mentioned in chapter 2

In the three regions of the whole Oueme Basin, the following standard agroecological parameters and data were repeatedly measured using standard methods:

- Basal Area, Height, Planting Density, Litter-fall, Soil-litter, Biomass
- Soil Chemical and Physical Indicators

- Economic yield of the principal annual crops, cultural calendars, crop rotation pattern, including fallow period, and farming management scheme
- Constraints and problems of the agriculture production from the point of view of the local farmers

For the biological parameters, a total of 150 fields were measured. Within each field a plot of 900 m^2 with a length and width of 30 m was selected in so far possible. Within each plot 5 points, comprising 1 m^2 of surface, were selected and all plants in this 1 m^2 point were measured. Where it was possible, at least three fields of each category within each commune were measured, especially in the case of different annual crops.

The measured data from these four communes in different zones were used at first to calculate the eco-volume, bio-volume and biomass of singular crops on a hectare basis. Then they were integrated into an average value of annual crops category for each commune. In turn, the eco-volume, bio-volume and biomass values of the three vegetation types were calculated for these four communes. These data were then submitted later to statistic analyses as representative values. Before the latter data were submitted for analyses, they were corrected for CIC to identify the real annual cropping areas in each 62 Oueme communes and combined with Benin Agricultural Statistics of the MEAP/DPP (MAEP: Ministere de l'Agriculture, de l'Elevage et de la Peche. DPP: Direction de la Programmation et de la Prospective).

In this study the Cropping Intensity Coefficient (CIC) is defined as a ratio of the sum of cultivated area for annual crops in big and small growing season divided by these in big growing season. Pigeon pea was excluded from this calculation being considered as a crop lasting more than one year in Benin and often perceived by farmers as fallow land. The CIC in the north Oueme Basin is 1, since there is only one growing season annually. In the middle and south, CIC ranges from 1 to 2 depending on vegetative duration and cropping intensity. All CIC values were based on the results of farm interviews during the field research. In the chapter "Farming systems in Oueme Basin" the CIC will be presented in detail. Thus the recorded areas of 62 communes in the annual agriculture statistics are divided by corresponding CIC, enabling the latter values to be combined with remote sensing data of different vegetation types in a consistent way.

The Vegetative duration Coefficient (C_veg) was defined as the number of annual rainy days plus 10 divided by 365 (Vanacker *et al.* 2005).

3.8 Interpolation

Since the selected sampling sites were only four communes and the interviewed sites were only five communes, a simple interpolation method was used to estimate the of vegetation parameters of the 62 Oueme communes for further analyses.

First, the measured eco-volume, bio-volume and biomass values in four selected communes were calculated into average unit values per hectare, and then these values were interpolated for the three Oueme Basin sub-regions. The north Oueme communes used the mean values of these from N'dali and Save, the centre Oueme communes used the mean values of these from Save and Bohicon and the south Oueme communes used the mean values of these from Bohicon and Pobe.

Secondly, the CIC values of five communes were used correspondingly for the five provinces (Departments), within which these communes are located. For the remaining five south provinces, the average CIC values from Abomey-Calavi, Pobe and Bohicon were used.

3.9 Statistical analyses

Following the data compiling process described above, the spatial vegetation dynamics in the whole Oueme Basin in the year 2004 were analyzed together with other data sets comprising geographical coordinates, the annual precipitation data, the vegetative duration coefficient, the population density, and soil nutrient indicators in 2004. Furthermore, the vegetation dynamics of these 62 communes from 1987 to 2004 were analyzed together with the annual precipitation data, the vegetative duration coefficient and the population density across time and space using multiple variable analysis methods. The statistical analyses were performed with the program STATGRAPHICS® Plus 5.1. The statistical methods used in the study include: descriptive multiple-variable analysis for numeric data, ANOVA, multiple regression, general lineal models.

4 Farming Systems in the Oueme Basin

To better understand the vegetation dynamics within the Oueme basin, it is crucial to identify the contribution and the role of agricultural land use, and particularly of farming systems, throughout the Oueme landscapes. Could agricultural development be considered as a major driving force in shaping the vegetation dynamics?

4.1 Literature review

Farming systems research in Africa dates back as far as to the standard book of de Schlippé (1956) describing traditional farming systems among the Azande tribe on both sides of the Uele River in Southern Sudan and in Northern Congo. Later on, Okigbo (1977-1993) described on-going farming systems in West-Africa. Ruthenberg (1976), Fresco and Westphal (1988) were able to hierarchize different farming systems throughout the tropics. Recent advances in African agriculture were summarized by Raemaekers (2001).

Farming systems in the north Oueme Basin were described by Mulindabigwi (2005). Most cropping systems are dominated either by yam, cassava, maize or sorghum. Among fruit trees, mango (Deng and Janssens 2004), citrus and in particular cashew trees are widely grown. Cashew trees are now becoming a booming tree crop in north Oueme, implying not only better revenues but also better protection against bush fires (Mulindabigwi, 2005).

4.2 Material and method

The material and method used in this chapter followed the same as described in the Chapter 3, sections 3.6 and 3.7.

The common Ruthenberg's R is the ratio of cropping length/area to the total rotation length/area, then multiplied by 100 (Ruthenberg 1976). Note that crop length and crop area are not always interchangeable. Therefore, R-time was defined as the ratio of number of cropping years divided by total number of years (cultivation + fallow). Moreover, "R-short area" explicitly refers to the ratio of crop area to total area (fallow + crop land).

Additionally, a modified Ruthenberg formula (R-long area) was devised such as to include both annual and perennial crops and was defined as the ratio of the total rotating annual crops area (excluding pigeon pea area), divided by the total area including pigeon pea, short fallow as well as plantation and forest areas occupied or used by the farmer. Also farmers were asked about the most important crops, the usual intercropping patterns, and their perception about the future development of cropping systems.

The original Ruthenberg's R value is a rough measure in view of grouping tropical farming systems into different classes of farming intensity i.e. permanent cultivation, ley systems, fallow systems and shifting systems, respectively. The Ruthenberg's R value becomes troublesome if it is applied as a tool for comparing the farming systems with great different vegetation length or cultivating duration and intercropping under different rainfall regimes, especially where there is more than one growing season.

4.3 Results and discussion

In this part, the farming systems in five selected communes of the south, middle and north Oueme Basin were qualitatively described with crop calendars, crop rotation patterns at first. Then quantitative analysis followed with estimation of R and CIC values of the farming systems.

4.3.1 Crop calendar and crop rotation

The detailed crop calendars and crop rotation patterns in five selected communes of the Oueme Basin were listed in the annexes 2 to 10.

4.3.1.1 South Oueme

4.3.1.1.1 Abomey-Calavi

The south Oueme commune Abomey-Calavi is becoming a new city with a total land area of 540 km² and a population density of 570 inhabitants per km² in 2002. It locates directly on the boundary of the economic capital Cotonou and is experiencing a rapid urbanizing process. The rural area here is not far from the city centre and can

be taken as an extreme typical peri-urban area. The land speculations, land transactions, and different new land tenure arrangements are daily life here. A lot of autochthon farmers sell their own land and immigrate into Cotonou or move to other activities like transport, construction, seasonal labour works and trading. Meanwhile, many people from other regions are settling here. So the population density is very high comparing with other regions in Benin, even higher than the average of south Benin, which has a higher population density than that in centre and north. About half the income of local farmers, originates from such off-farm activities. The soil is sandy and relative poor. *Imperata Cylindrica* grass is widely spread, which, in most tropical regions, serves as a plant indicator for poor or degraded soils (photo 4-1).

Within the farming system here, specialization and division of labor are ongoing processes induced by turbulent social economic impacts. Traditional cropping pattern is continuing but with declining tendency, whereas the intensified vegetable productions, small animal production like rabbits and pigs are rising, indicating a newly emerging farming diversification. Farming is more and more concentrated and intensified on more suitable areas, for instance near to water, into lowland or on more fertile areas (photo 4-2, 4-3).

Maize is still the absolute dominant crop since it was introduced into Benin. It occupies more than half of agricultural cultivated land areas, followed by cassava, groundnut. In the observation year 2004, the maize field yielded obviously very poorly (photo 4-3).

The Cultivated vegetables in Abomey-calavi are especially numerous, comparing with that in the other researched four communes. Following are some examples: vernonia/amanvive, solanum/gboman, amaranth, aubergine (*Solanum melongena var. esculenta*), *lettuce* (*Lactuca* sativa), cucumber (*Cucumis sativus*), onion (*Allium cepa*), carrot (*Daucus carota subsp. sativus*), parsley (*Petroselinum crispum*). Even mush room production exists here (photo 4-4). Tomato and chilli are widely spread over the field, mostly planted on the border of a field as is the case in whole Oueme Basin. Pineapples have been cultivated since several years here as commercial cash crop. Most vegetables are cultivated as market oriented cash crops. So the commercializing grade, and thus technical level as well as cropping intensity are relatively high. Here exist already semi-automatized irrigating vegetable gardens, as

30

shown in photos 4-5 and 4-6.

The growing season starts at beginning of April till October. The rainfall here allows two cropping seasons for short seasonal crops likes maize, cowpea, groundnut and so on as commonly practiced in south Benin.

As shown in Annexe 9, the current crop rotation pattern in Abomey-Calavi encompasses mainly two modules (table 4-1).

Table 4-1 Crop rotation modules in Abomey-Calavi

- Main module 1: Starting with maize at beginning of first big rain season, repeated maize planting at following small rain season.
- Main module 2: Starting with maize at beginning of first big rain season, then maize planting combined with cassava at following small rain season.

On average the cultivating duration was four years with a variation range from three to four and half years; and followed by four years of fallow ranging from two to five years. So a conventional Ruthenberg R value of 50 was obtained. Nevertheless, here there are two cropping seasons with unique cropping intensity, so this R in its original mean could not be used in comparison with those from north, where there is only one cropping season. Later in this chapter this will be discussed deeper.

Seldom chemical fertilizers and manures were used for maize and cassava, and with two cropping seasons a year, both rotation modules of Abomey-Calavi had to be described as "depleting modules". Thus overexploitation led to soil degradation as a consequence.

Photo 4-4 Mush room production in south Oueme commune Abomey-Calavi

Photo 4-1 Widely spread *Imperata cylindrica* in south Oueme commune Abomey-Calavi

Photo 4-2 Rabbit production in south Oueme commune Abomey-Calavi

Photo 4-3 Poor maize yield in south Oueme commune Abomey-Calavi

Photo 4-5 Irrigating vegetable garden in south Oueme commune Abomey-Calavi

Photo 4-6 Irrigated vegetable garden under banana in Abomey-Calavi

4.3.1.1.2 Pobe

With its about 400 km² total area and 207 int/km² Pobe is already a big commune in the south. The rainfall starts here already in March and lasts till the end of October. Part of the soil here is within the so called "depression de Lama", and belongs to the hydromorphic soils. The soils here are sandy to loamy and relatively fertile compared

with the average of the soils in south. Day and night temperature differences are big and dew condenses normally at early morning. Traditional crops are intensively cultivated here; on some fertile soils even three cropping seasons are cultivated for short season crops. Commonly two cropping seasons are practiced annually.

Pobe is far from the economic and political centres but directly on the border with neighbouring Nigeria. Trading activities are highly engaged by autochthon inhabitants and local markets exist almost everywhere in the commune. Also illegal diesel oil and gasoline transport from oil rich Nigeria to Benin is relatively active. Trading of motor bikes and cars is also important for autochthon people. Food export to Nigeria is also a profitable off-farm opportunity. Many immigrants from other regions are also living here. Some local farmers have not only farms in Benin, but also in Nigeria. So share cropping is common here and land transactions are somehow easier compared with the case of the commune of N'dali in north Oueme.

Annual crops are relatively very intensively cultivated following mainly traditional patterns in Pobe comparing with those in Abomey-Calavi. Over all, oil palm trees spread widely through the whole commune. Many oil palm plantations exist here. Some of them are bigger than 50 ha. But palm fruit yield and thus oil production are declining. Many oil palm trees are increasingly been cut down for palm wine production. Most of traditional crops can be found here.

The crop rotation pattern encompasses diverse rotation modules and seems to be more traditional and intensive comparing with those in Abomey-Calavi (table 4-2). There is seldom a depleting module in Pobe as in Abomey-Calavi. Even the popular share cropping appears to be relatively sustainable. The soil here is more fertile, population less dense, social economic impact less turbulent in comparison with Abomey-Calavi. The land tenure system here is functioning as if it were a spontaneous ongoing evolution process. Hence, the rotation pattern here seems to be more sustainable.

Table 4-2 Crop rotation modules in Pobe

- Main module 1: Maize in first big rain season + cowpea (or diverse leguminous and vegetables) in following small rain season.
- > Main Module 2: Maize repeatedly planted in big and small seasons.
- End phase module: maize + cassava at first big rain season, after maize is harvested in the end of big season, the cassava continues during the small

season.

- Crypto-fallow module: sometimes, after three years of main modules were repeated, three years of pigeon pea will be planted as a kind of short fallow crop. Afterwards, main modules can be continued.
- Short season module: depending on market demands or when rainfall perceived as unfavourable or soil is relative unfertile, the crops needing only short growing time likes cowpea, other vegetables can be repeatedly planted as an alternative to main modules.

The cultivating duration is normally six years with a variation range of three to ten years. The hydromorphic soils here in the "Lama depression", with its big share of compacted loam fraction, contain relatively rich contents of minerals and carbon. Hence, during the annual flooding period nutrients enrich such areas additively each year. Thus, some farmers said, on such soil one could cultivate continuously without break and fertility problem. Also the farmers with origin from Pobe are well known locally, that they like and specialize on such compacted soil in the Lama depression. After six years of cultivation on average, five years of fallow takes place with a variation range from three to six years. So the original Ruthenberg's value obtained according to time was about 55 here. In the fallow fields, oil palm trees are more densely planted. The so called oil palm fallow is characteristic here as the cashew fallow is the case in north or centre.

4.3.1.2 Middle Oueme

The communes Bohicon and Save belong to the middle Oueme Basin in accordance of Impetus zoning approach. The rainfall regime changes here from south to north direction from bimodal to unimodal. Thus the cropping seasons depend on the vegetative length varying from two to one. The dominant type of soils here are southnorth-wards ferrallitic and ferruginous soils. Population density is in Bohicon higher than that in Save, the urbanization process in Bohicon is more developed than in Save.

4.3.1.2.1 Bohicon

Bohicon is a more urbanized small town with total area of 136 km² in comparison with Save. Its population density in 2002 was 833 inhabitants per km². The agricultural activities are less intensive. Most farmers have off-farm activities. The soil here is sandy and less fertile than that in Save. The traditional cropping pattern, i.e. maize

plus cowpea rotation is evidently dominant here. Lots of small plantation crops are cultivated here including: orange, banana, cashew, and teak.

Two crop rotation modules dominated here as listed in table 4-3. Pigeon pea is occasionally planted as soil improving bush fallow crop. Generally the cultivation of a field takes place for five years with a range from two to ten. The fallow lasts out four years with a range from two to six years. Thus an original Ruthenberg's value was 57.

Table 4-3 Crop rotation modules in Bohicon

- Main module: Maize at first big rain season then followed cowpea (sometimes leguminous or vegetables) at small rain season.
- Short season module: Different leguminous crops through out of 2 cropping seasons annually

4.3.1.2.2 Save

Save has a total area of 2279 km² with a population density of 30 inhabitants per km². Compared to Bohicon the annual rainfall amount in most parts of Save is higher though more irregular as mentioned by farmers. So the two cropping seasons are dominant here. The uncultivated arable land here is still easily available. Here exist still certain areas of forests, even though they are continually cut down for charcoal production to be transported to Cotonou. Immigrants with different origins are establishing here renting arable land. Also the cattle keeping nomads are living here, especially during the dry season. Farming activities are the major income source for the local people. There are considerable potentials for adaptation of farming system to the climate changes but the current situation is not optimistic. On the one hand, suitable already cultivated lands cannot be intensified as the farmers have no sufficient accumulated capital to do so. On the other hand, the charcoal production for urban centre is destroying the remaining forests.

Comparing with Bohicon in the south end of the middle Oueme Basin, Save locates in the north end of the middle Oueme Basin. Here, in some parts typical semi-arid summer moist crops like yam and sorghum are cultivated. Despite the fact that maize remains the most important crop, cassava was intensively introduced into the local existing farming systems by different ways. For instance cassava has been planted with different planting densities at different periods by local farmer with belief that cassava combined with suitable crops could maintain soil fertility and simultaneously serves as food reserve where food shortage occurs, since cassava can be harvested throughout the whole year. This belief is contradicted by many authors (Raemaekers 2001).

The typical crop rotation begins with yam at first year, than followed with maize or maize + sorghum, and then cowpea, soya or groundnut. It can also be initiated with maize, cassava, leguminous crops depending on market demands and soil fertilities. Paddy rice is cultivated here at lower areas and near to water. Pigeon pea is used as fallow crop. Long term fallow is often combined with establishing cashew plantation. Mango plantations begin to occur northwards. The modules within the crop rotation here were listed in table 4-4 and the different Ruthenberg's values in table 4-4.

Table 4-4 Crop rotation modules in Save

- > Main module 1: Yam at first year then followed by the other modules.
- Main module 2: Maize at first and leguminous or vegetables at second rain seasons.
- End phase module: Cassava alone or mixed with maize at first season, or maize at first then followed by cassava at second season.
- Short season module: diverse leguminous crops planted in both seasons.
- Crypto-module: pigeon pea continually for two years.

Short season module was practiced where market demands reached, or as the soil fertility was diminishing to a certain degree. End phase module here was a little different as normal. Normally after cassava cultivation in Oueme Basin, the soil fertility degrades already to a certain grade, thus only the leguminous crops followed can yield a significant harvest, or such fields have eventually to return to fallow. But as mentioned above, cassava here was planted with varying planting densities, most of those were sparse. The cultivating duration was about four year with a range from three to five years. The fallow takes place for three years with a variance from two to four years. So a typical Ruthenberg's value approximated 60 confirming the on-going intensification process of agriculture in the Oueme basin as recorded earlier on by Mulindabigwi (2006) in upper Oueme.

4.3.1.3 North Oueme

N'dali commune in the north province Borgou was selected in this study. It is a typical north commune with relative bigger area: 3759 km² comparing to the area of a south

commune. With a population density of 28 inhabitants per km² in 2002 N'dali is less settled. It becomes a transport node in north Benin since most imported cars in Cotonou are transiting here on their way to Niger. Also food like yam, maize is transported both to north and to south from here. The major soil type here is sandy ferruginous soil and remains still fertile. Arable land areas are still available even though the land conflict is increasing. The administrative intervention in this point is relative weak and certification process for land property rights is less well known here and even complicated by local administration. So the traditional land property rights system is still dominant. Even against locally dominant ethnic group Bariba's tradition, the land transactions are on the rise. N'dali is becoming an immigrant target region with its relative favourable conditions considering transport, market access, available relative fertile arable lands. The expansion of government supported cotton cultivation has helped autochthon farmers accumulating certain capital.

Rainfall begins here normally from April to October but cropping season begins from May, so it allows only one cropping season. The typical yam cropping is characteristic here. Maize wins more importance, while millet, sorghum, cassava, diverse leguminous crops like cowpea, groundnut, soya and other vegetables are traditionally cultivated here.

The crop rotation pattern begins normally the first year with yam after land clearing. As cotton was intensively extended here, it took sometimes also the leading place as first crop after clearing a land. The second year followed by maize or maize mixed with sorghum or millet, and is then repeated till year four. In the fifth and sixth year leguminous crops are planted. Afterwards, depending on soil fertility and market demand, this field would be given up to fallow or yam, sorghum or cassava would be planted for the further two years. Fallow has been increasingly combined with establishing cashew plantation, so called cashew fallow. One important reason is that trees are generally recognised as a sign of land property rights; only the land lord/owner is allowed planting and occupying trees.

Combined with the data about cultivation and fallow duration of another Impetus project colleague Julia Röhrig, the average cultivation duration was four years with a range from two to eight years. The average fallow duration was four years with a range from one and half to ten years. Thus the Ruthenberg's value is about 56.

37

4.3.2 CIC and modifying Ruthenberg's value

There are very scarce data about estimation of fallow areas and duration for Benin. Even such estimation could not be used directly in this study, for the other studies such estimation is useful, also for further research of the interplay between vegetation dynamics and agro-ecological settings.

For this purpose, several modifications of R coefficient are proposed, for instance combining it with CIC. To be able to calculate R and CIC values in five selected representative communes, farmers were asked to estimate the percentage share of different annual and perennial crops, fallow and forest land that they occupied or used during the same year. Where there are two cropping seasons, the percentage estimations were done separately.

The CIC was calculated as a ratio of the sum of cultivated area for annual crops excluding pigeon pea in big and small growing season divided by these in big growing season, as mentioned in chapter Materials and Methods in General.

Commune	R-time	R-time	R-	R-	R-	R-	CIC	C_veg	C_veg
		x CIC	short-	short-	long-	long-		2004	03-05
			area	area x	area	area x			
				CIC		CIC			
Abomey-Calavi	0.51	0.80	0.57	0.90	0.52	0.82	1.58	0.49	0.45
Pobe	0.55	1.02	0.89	1.73	0.76	1.42	1.86	0.59	0.53
Bohicon	0.61	0.99	0.75	1.21	0.54	0.88	1.61	0.55	0.53
Save	0.59	1.02	0.75	1.31	0.57	1.00	1.75	0.54	0.54
North(=N'dali)	0.56	0.56	0.66	0.66	0.43	0.43	1.00	0.47	0.48

Table 4-5 Ruthenberg's R values and its modification with CIC

The CIC and R values for five selected communes are shown in table 4-5 and figure 4-1. In the second column R-time values are the original Ruthenberg's values expressed as arithmetic mean (average) without multiplying by 100, which were obtained through farmer interviews by asking how long their cultivation and fallow duration are. The R-time values of the Bohicon, Save and north coincide with the observation by the other author (Mulindabigwi, 2006). C_veg 2004 values were the vegetative duration coefficient of year 2004, and C_veg 03-05 values were the average of vegetative duration coefficients from 2003 to 2005, where field research took place.

R values vs. CIC

Figure 4-1 Cropping Intensity Coefficient (CIC) and Ruthenberg's values (R) according to time and area

Figure 4-2 Ruthenberg's values (R) modified by Cropping Intensity Coefficients (CIC) vs. CIC and Vegetation Duration Coefficient (C_veg)

The R-time and R-short-area values could be considered as short-term rotation intensity, while the R-long-area values could be considered as long-term rotation intensity, since in the long run, theoretically all kinds of land use types could be changed into other kinds, for instance into annual crops fields. The practices of oil palm fallow in the south and cashew fallow in the centre and north Oueme Basin supported this consideration about the long-term R definition. Such definition of R-long-area implies that all other land areas of a farm, excluding annual crops areas, have been considered as fallow areas.

In accordance to the agro-ecological and social economic conditions in the five communes, the R-long-area was considered as more suitable indicator and discriminator responding to the proportion of the area under annual crops cultivation to the total arable area. The R-time has not clearly distinguished the differences between five communes, thus it was relative unsuitable. One reason might be that the vegetative length and thus cultivation duration in north, centre and south regions are clearly different. Since tree crops like oil palm and cashew were more and more used to sign the ownership rights, the R-short-area was also not very suitable to distinguish the different farming systems under different conditions. The unclear delimitation of land caused by unclear land property rights systems in Benin contributed also to the unsuitability of R-short-area as a good indicator.

It is interesting that all R values modified by CIC could yield a better indicator for distinguishing different farming systems intensities. Figure 4-2 showed a visual example that CIC and CIC modified R values were varying congruously with C_veg 2004, but more explicit quantitative evaluation will need more sampling data.

It would be ideal to describe a cropping system, if an integrative indicator could measure simultaneously the cropping intensity, soil fertility, area allocation upon space and parcel management across time. Even better, if it could respond to the rainfall influence, for example, the length of vegetative period, and, respond to the impact of population dynamics. But the interplay between these events is not linearly correlated, even though logically they are related. Thus for the study goal, for the whole Oueme Basin, CIC was taken as a responding indicator to cropping intensity, length of vegetative period. As the Oueme Basin has been zoned into three different zones, CIC could also be a good responding indicator to soil fertility and population

40

dynamics.

To test the relationships between cropping intensity index and population indicators, different social, biological and environmental parameters, a preliminary cluster analysis was performed CIC and R values, biological and soil indices, coordinates and precipitation parameters (figure 4-3). The modified R by CIC (R_time justified) was closely associated with vegetation duration coefficient (VR_1) and to a lesser extent with population density (P_dens02). Even so, CIC should prove useful for justifying agricultural used land area in the official statistics. This topic remains a very interesting issue for further research.

Figure 4-3 Result of cluster analysis with three datasets across the Oueme basin: Cropping Intensity Coefficient (CIC) and Ruthenberg R values, biological and soil indices, coordinates and precipitation parameters

4.3.3 Intercropping

Annual cropping practice in Benin is often assorted with intercropping. Only commercialized cotton is planted in pure stand. Moreover, many plantation crops (mainly fruit trees) become also pure stands, at their adult stadium. Different annual crops are planted in the same field, for example, maize + cowpea pattern is popular in whole Benin, where maize is cultivated. Further patterns, maize + sorghum, yam + cassava, cassava + maize, maize + groundnut/beans and maize/cassava + vegetables exist. More characteristic in Benin and also in other African countries,

one can find useful trees with varying distances in most annual crop fields. Up north one observes inter-planted Karitè and Nérè trees (Vermeersch 2005). In newly established young cashew or mango plantations annual crops are usually planted. In the centre and south regions, the oil palms are customary to many annual crops, and near to urban areas the vegetables under banana trees are typical of the landscape. This intercropping practice is on the one hand a risk management strategy in response to local climate uncertainties (irregular rainfall amount and temporal distribution); on the other hand, it is a response of farmers to increase productivity of the same area. In north and centre regions there are still arable lands which are not cultivated. In the south the intercropping with different annual crops could be induced by the fact that in the dense settled south, share-cropping occurs increasingly, even though the institutional arrangements are relatively weak. Moreover, land tenure systems encompass legislative and traditional uncertainties as mentioned in chapter 2. So the tenants are tempted to overexploit their fields.

4.3.4 Case study mango

In order to illustrate the importance of controlling biomass development, biomass partitioning and crop intensification at micro-scale, a pilot study was initiated with Mango farmers of the N'dali commune, in the north Oueme sub-region.

Mango (*Mangifera indica L., Anacardiaceae*), is the most widely known cultivated fruit tree in the Sahel and one of the most important tree crops of the tropics. As shown in table 4-6, the global mango production revealed a growing trend worldwide during the 1990-2003 periods. For Africa, Western Africa and the world as a whole, a similar exponential growth rate (GRRE) of about 3% has been recorded for total mango production, mainly due to the harvesting area expansion, with GRRE values of 4.10%, 3.65% and 3.91% for the whole world, Africa and Western Africa, respectively. At the same period, the differentiated yield levels (Mt/ha) showed a slightly diminishing trend: GRRE were -0.34%, -0.19% and -0.54% for world, Africa and Western Africa, respectively. In Benin, the total mango production, harvesting area and yield per hectare were 12 000t, 2 300 ha and 5.2 t/ha since 1985 (FAO, 2004).

Production (Mt)	1990	2001	2002	2003	GRRE %
World	16902707	25140500	26478497	25562469	3.41
Africa	1728677	2641090	2619204	2629800	3.45
Western Africa	672711	1008351	1040217	1046405	3.35
Benin+	12 000	12 000	12 000	12 000	0.00
Burkina Faso	5 000	5 000	5 000	5 000	-0.00
Cape Verde	4 761	4 500	4 500	4 500	-0.49
Côte d'Ivoire	14 000	15 000	15 000	15 000	2.62
Gambia	250	554	560	560	4.68
Ghana	4 000	4 000	4 000	4 000	-0.00
Guinea	50 000	120 000	155 812	160 000	5.81
Guinea-Bissau	3 700	4 700	4 700	4 700	1.05
Mali	14 000	33 097	29 145	29 145	7.51
Nigeria	504 000	730 000	730 000	730 000	3.14
Senegal	56 000	73 000	73 000	75 000	2.11
Sierra Leone	5 000	6 500	6 500	6 500	2.20

Table 4-6 Production trend of mango in the world, West Africa andneighbouring countries of Benin

*: Calculation based on the FAOSTAT. www.fao.org, FAO 2004.

**: GRRE = % exponential growth rate.

+: Benin data based on FAO estimation.

The mango tree originates in India and the adjacent Southeast Asian region. Early explorers brought the tree to other regions, such as East Africa in the 14th century and 200 years later Portuguese sailors brought the tree to West Africa. Today the species is cultivated in almost every tropical region but preferably in zones with a dry season because fruiting becomes irregular in other regions (von Maydell, 1986). Consequently, the irregular, alternating fruiting, so recognised as on-off fruiting phenomenon, induces the income instability of mango growers and more undesirably, it hinders the development of commercialising mango production at its starting stage. The on-off fruiting phenomenon should be also one of the reasons, why the worldwide mango production was estimated at e.g. 17 million tons in 1992 although only 0.102 million tons (0.6 %) were internationally traded (THE HINDU, 1997).

Indeed, in Benin mango trees distribute in whole country but mostly concentrate in the arid north region. Even though, during the field research in September 2003 - May 2004, the on-off fruiting phenomenon of mango production was identified in N'Dali and Sérarou of North Benin, - where an obvious dry season dominates the region from October to April -, only 49% trees were bearing fruits at that time as shown in the figure 4-4. The explanation for the on-off fruiting phenomenon in North

Benin, and more particularly in the Northern part of the Oueme Basin, needs further thinking.

Considering the agro-ecological constraints and technological level of mango production in West Africa, the following hypothesis was put forward: the on-off fruiting phenomenon is due to the trade-off between the reproductive and vegetative growth cycles of mango tree. The biomass partitioning pattern within different plant organs of an individual plant varies under different conditions. When a plant partitions more net photosynthate to leaf, branch and stem, it remains less to the reproductive organs like flower and fruit. This implies that:

- The fruit yield of mango should quantitatively correlate with the leaf area index (LAI), crown diameter, basal area and tree height;
- There should be a threshold value of LAI, which could predict the on or off fruiting of individual mango trees;
- Further more, the pruning could increase the quantity as well as the quality of mango yield since it rebalances the biomass partitioning.
- •

Table 4-7 Primary Parameters of Mango Tree Biomass Productivity of N'Dali-103 (Average Value)

Parameter	LAT	Basal Area	DBH CM	Crown Diameter m	Surface m²	Height m	Biomass	Fruit Yield
Average/tree	1.58	844 cm²	8.45	8.53	57.15	7.18	246.2 kg	26.2 kg
On ha basis**	0.90	8.44 m ²	_	_	5715	_	24.62 t	2.6 t

*Co-ordinates (GPS-data): Elevation:1262 ft; N: 09°47,446'; E: 002°42,351'.

**: Planting density: 10 m X 10 m, which means 100 trees/ha

Figure 4-4 Fruit loading difference between different mango varieties in the north Oueme

^{* &}quot;Others" includes the following varieties: Brooks, Keitt, Smith, Ifac, Dabtcha, Ruby, July, Palmer, Zill, Irwin, Haden, Tomy Atkins ...

Figure 4-5 Difference of yield level between mango orchards in the north Oueme

To test the hypotheses the necessary parameters have been measured at a mango orchard in N'Dali (table 4-7), and a small survey was done in four mango orchards in

North Benin (figures 4-6, 4-7 and 4-8). First results are documented here. The harvested and exported products (2.6 t of fruits/ha) amount to 1/10th of the total biomass, which remains within the sustainable potential of these orchards. When possible, the research measurement is to be completed during the coming years. Or it could be a potential collaborative research with GTZ (Deutsche Gesellschaft für Technische Zusammenarbeit).

Considering the figures 4-4 and 4-5, one can recognise a technological potential present in Serarou (ca. 7 t/ha) which could improve mango production in North Benin. Of course, if it is worth to improve mango production, is an economic and political choice.

Under the West African sub-humid i.e. vigorously growing conditions, pruning does remain the most effective and feasible technique. Hence, there is a need of an *in situ* experiment to quantify the relationships between the different pruning approaches, pruning intensities and fruit yield levels of mango production. Indeed, the pruning could double the current average fruit yield of 3.2 t/ha to ca. 7 t/ha (see Figure 4-5), particularly when choosing productive clones like cultivar Kent (Figure 4-7). And more important, it could stabilise the fruit yield between the different years, which is a prerequisite to integrate mango production into the market economy and into the international trade, since market mechanisms need predictable production information to price building, which in turn facilitates the market transactions and enable an efficient resource allocation (Alchian, and Demsetz. 1972). Otherwise, the too high information costs caused by the production uncertainty will disable a certain amount of mango transactions.

Figure 4-6 Mango Varieties composition in N'Dali and Sérarou, north Oueme

Loosening the other technological, institutional and economical constraints. the

further developing of mango sector can be reasonably imagined: beyond the orchard management strategy with pruning as critical technique, assuming that mineral fertilizer would be available through liberalized market access upon governmental intervention, and if modern weeding and plant protection measures could be used, if so, the yield level could reach ca. 15 t/ha, which is four times the current average yield level. If additionally, irrigation, - preferably drip irrigation -, could be realized, a yield level of 30 t/ha could be reached together with the development in other sectors.

4.4 Partial conclusion

Farming systems are experiencing an on-going intensifying process reshaping vegetation dynamics in the Oueme basin. Crop production can easily be intensified by appropriate techniques. The case of mango production is illustrated. The Ruthenberg coefficient modified as R-long-area coefficient, and particularly combined with CIC, was considered as a more suitable indicator and discriminator of overall cropping intensity as annual crops are related to the total arable area. Above indicators point to systems where long-term fallows become nearly extinct and where short-term fallow period tends to be shorter than the cropping period. Hence, vegetation dynamics rely more and more on human management, if not, influence.

5 Litter Fall in Forest and Plantation

5.1 Introduction

Tree litter fall is the major above-ground input of carbon (and nutrients) into the forest and plantation floor. Such litter layer protects the underlying humus and mineral soil against drought and represents a considerable buffer for the on-going vegetation dynamics and eventually contributes to the sustainability of ecosystem capacity. However, on a regional scale, litter fall data are scarcely available on sufficient stands as it is a cumbersome task. These are to be collected and analyzed, when estimating carbon budgets and accounting green house gas as requested by international agreements.

To predict litter fall annual quantity of forest and plantation in Benin, West-Africa, vegetation stand parameters like biomass were measured. Previous studies by Sonwa (2004) in Cameroon and Mulindabigwi (2006) in Benin indicated that litter fall depended on factors like latitude, precipitations, basal area and age. Yearly litter fall fluctuated around 6-8 t/ha in Northern Ouémé, Benin (Mulindabigwi 2006) and between 8-14 t/ha under several types of cocoa based agro-forests in Cameroon (Sonwa 2004).

The biological stand parameters, however, will not change as strongly as variation of litter fall over time and across regions in Benin, where unimodal and bimodal Guinean Coast climate rainfall regimes dominate differently in North and South. For predicting regionally more generalized and temporal dynamics of litter fall, climate change should be taken into account. Moreover, the micro-site parameters, like soil characters, vary throughout the regions in Benin and could contribute to predict litter fall more precisely.

5.2 Material and method

Litter fall amounts of six sites in forest and plantations along the whole North, Middle and South Oueme River Basin (10°N, 2°E—6°N, 2°E), were collected at monthly interval for a whole year. Additionally, litter fall data of other seven sites within the same project IMPETUS in Benin were used. The biological stand parameters like diameter at breast height (DBH), basal area (BA), height of tree (H), and planting
density (PD) were measured in situ. Between 10 and 20 litter traps of 1m² were allocated to each of the 13 sites. The soil samples in the same sites were taken and analyzed either in Germany for chemical characteristics or in Benin for physical characteristics. Climate parameters like 20 years average annual and monthly precipitation amount (1985-2004), number of rainy days, were supplied by Mr. Malte Diederich (2006) from the same project.

Data were analyzed with the statistic program STATGRAPHICS Plus 5.1 in three steps. Firstly, the time series analyses were done with two variables: the monthly litter fall quantities and the average monthly precipitation quantities of 13 sampling sites. Secondly, the multiple regressions with 13 sites data were done. Thirdly, the simple regression analyses were performed with above mentioned stand, site and climate parameters from own measurements taken in the six sites. Finally, the multiple regression analyses with the six sites data set were performed for determining the most suitable predicting model for litter fall. More general methods are described under Chapter 3.

5.3 Results and discussion

The data shown in table 5-1 are relatively similar to those collected formerly by John (1973) in Ghana. The regression analyses show the results of time series analyses of 13 sites data set (Table 5-1) with two variables "Monthly total dry litter fall quantity vs. Monthly precipitation": Over all the 13 sites, there is a statistically significant relationship between two variables at the 99% confidence level. The correlation coefficient equals -0.51, indicating a moderately strong relationship between the two variables in agreement with Sonwa (2004) and Mulindabigwi (2006). Because of the time lag, the largest litter fall is recorded during the dry season.

Serial Nr.	LF t/ha	Rain mm	H cm	Veco m³/ha	N-Lat.	E-long.	Elev.
Boranglf	5.67	1137	380	37985	7.20	2.06	183
lafolf	7.88	1185	845	84516	6.98	2.13	87
latelf	8.37	1185	1767	176747	6.98	2.17	69
pofolf	8.00	1214	1176	117579	6.97	2.68	104
nfolf	7.81	1160	688	68831	9.76	2.35	317
nmglf	3.58	1160	760	76000	9.79	2.71	394
sefolf	9.02	1283	1245	124490	9.70	1.67	439
sefalf	1.72	1283	514	51350	9.70	1.67	439
secashlf	4.55	1283	633	63330	9.70	1.67	439
dfolf	4.10	1250	670	67020	9.02	1.94	384
dfalf	3.02	1250	514	51350	9.02	1.94	384
dcashlf	2.65	1250	633	63330	9.02	1.94	384
dorlf	3.78	1250	700	70000	9.02	1.94	384

Table 5-1 Litter fall (LF) data across 13 sites in Benin as related to different ecological parameters

Boranglf = Bohicon: orange, lafolf = Lama: forest, latelf = Lama forest, pofolf = Pobé forest, nfolf = N'dali forest, nmglf = N'dali mango, sefolf = Sérou forest, sefalf = Sérou fallow, secashlf = Sèrou cashew, dfolf = Dogué forest, dfalf = Dogué fallow, dcashlf = Dogué cashew, dorlf = Dogué orange. Veco = eco-volume of forest, plantation or fallow.

Multiple regressions for 13 sites to determine the annual total litter fall quantity (LF in t/ha): Precipitation (mm), height (cm) or latitude alone could determine relatively strongly LF. Two or three combined parameters yielded some better models.

LF = 0.00117854*Rain + 0.00484474*H

Model 5-1 Litter fall (LF) in relation to precipitation (Rain) and plant height (H)

For example, model 5-1explains 91.1% of the variability of LF. There is a statistically significant relationship between the variables at the 99% confidence level (Figure 5-1).

As plant height is closely related to vegetation indicators like bio-volume and ecovolume, it follows that litter fall plays a major role in determining the vegetation dynamics within the Oueme basin. Moreover, its relation with rainfall should also be considered as a central element in vegetation dynamics.

Figure 5-1 Relation between observed and predicted annual litter fall (LF in t/ha) data related to annual precipitation (mm) and tree height (cm) as independent variables

Litter fall could be related to other variables through simple regressions across six sites. The best single determining variable was a biological stand parameter: planting density (here the Nr. of trees per hectare), with a correlation coefficient = 0.98. When comparing with other site and climate parameters, the biological stand parameters like bio-volume (Vbio-m³/ha), eco-volume, DBH could fit and explain the LF and its variation better than climate parameters like average annual precipitation. Within the site parameters, only elevation as related to litter fall was almost as good as Vbio and DBH. The soil parameter carbon percent within a 20 cm deep soil layer had relative weak relations with LF.

Table 5-2 Litter fall (LF) across 6 sites in Benin as related to important soil and growth characteristics *

			DBH	Sum BA	Height		Vbio				
Serial Nr.	LF kg/ha	Rain mm	cm/tree	m²/ha	cm	PD	m³/ha	N-Lat.	E-long.	Elev.	Soil C %
Boranlf	5675	1137	11	11	380	215	1	7.20	2.06	183	0.56
lafolf	7878	1185	15	20	845	344	6	6.98	2.13	87	2.49
latelf	8371	1185	28	62	1767	944	103	6.98	2.17	69	1.25
pofolf	7998	1214	10	111	1176	589	77	6.97	2.68	104	1.34
nfolf	7807	1160	17	39	688	656	18	9.76	2.35	317	0.91
nmglf	3583	1160	7	8	760	100	1	9.79	2.71	394	2.73

* Serial Nr. as in Table 1. BA = basal area; PD = planting density; Vbio = bio-volume; C% = carbon %

Multiple regressions for six sites to determine LF: The annual precipitation was the best single parameter for determining LF. Even with only one parameter like precipitation, DBH, BA, Planting density, Vb, eco-height, or carbon percent, the fitted models without constant could explain the variability of LF relatively well. Among all

the parameters of three categories: biology, climate and site, different combinations of parameters yielded different models with and without constant, which explained easily more than 90% of variability for LF at 99% confidence level, even only with two parameters,

LF = 6.42646*PD + 462.14*Latitude

Model 5-2 Litter fall (LF) in relation to planting density (PD) and latitude

For instance, for model 5-2 a statistically significant relationship could be found between the variables at the 99% confidence level. The R-Squared statistic indicates that the model explains 96.1% of the variability in LF.

In model 5-3 the relationship between LF and both DBH and precipitation is described.

LF = 163.629*DBH + 3.8467*Precipitation

Model 5-3 Litter fall (LF) in relation to diameter at breast height (DBH) and precipitation

Here again, there is a statistically significant relationship between the variables at the 99% confidence level and a determination coefficient as high as 97.2% (Figure 5-2).

Figure 5-2 Prediction model for annual litter fall (kg/ha) using tree DBH and annual precipitation as independent variables

Caution should be taken when interpreting above regressions because of apparent low number of degrees of freedom. In fact, each recorded result was the average of 10-20 litter traps. Finally, soil carbon content (C%) as related to annual litter fall quantity showed a statistically significant relationship at the 95% confidence level.

LF = 3352.72*Soil C %

Model 5-4 Litter fall (LF) in relation to soil carbon content (Soil C%)

Model 5-4 has a determination coefficient of only 67.5% (Figure 5-3). This litter fall to soil carbon relation is central to the theory of Nye & Greenland (1960). The moderate determination coefficient points to the fact that both the humification and mineralization coefficients were different in the various agricultural and natural systems. It also follows that the mineralization to humification rates are not constant and/or that the recorded agricultural and natural systems are not at equilibrium.

Figure 5-3 Prediction model between soil carbon (C%) and annual litter fall quantity (kg/ha)

5.4 Partial conclusions

Tree litter fall is the major above-ground input of carbon (and nutrients) into the forest and plantation floor. In our studies, the annual litter fall flux has been found to correlate with site, stand, and climate characteristics like planting density, annual precipitation, latitude, DBH, height and to a lesser degree with carbon content in the soil. Comparatively to site parameters like soil properties, the biological stand parameters are easy to measure and can be combined with large scale climate parameters to predict annual litter fall dynamics reasonably over the regions. This opens the possibility of making models for predicting tree litter fall on regional scale, both in forests and plantations where it is not measured directly. Since vegetation adapts more to long term climate conditions than short term climate conditions, the monthly dynamics of litter fall quantity are more difficult to predict than annual litter fall quantity. The different site specific rainfall regimes should be taken into account in future research.

Vegetation dynamics have monthly and annual characteristics according to site specificity as indicated by litter fall. It is to be considered as a key factor when describing relations between soil and vegetation as well as between soil and ecovolume.

6 Spatial Vegetation Dynamics

6.1 Introduction

6.1.1 Objective

In the previous chapter the relation between litter fall and soil carbon content was only moderate but with precipitation it was stronger. Which indicators of vegetation dynamics other than litter fall (e.g. biomass, eco- and bio-volume) would present a better response to precipitation, soil nutrition and population dynamics at the regional scale?

6.1.2 Hypothesis

6-1: Eco-volume, bio-volume and biomass should correlate closely and positively among each other at different spatial levels, as all of them are comparable vegetation parameters for plant communities. That implies that knowing one of them suffices to predict the other one.

6-2: Vegetation dynamics should respond differently to the environmental parameters at different spatial levels/scales. That implies first, that correlation coefficients should differ at different levels. And secondly, the different zoning approaches should distinguish different parameters of vegetation dynamics, agro-ecological factors with different discriminating degrees.

6-3: Annual precipitation, vegetative length, soil carbon content and longitude should influence biomass, bio- and eco-volume positively and directly. But the sensibilities of these three vegetation dynamics indicators in response to the environmental parameters should be different.

6-4: Population density and GDP per capita should influence vegetation dynamics negatively.

6.2 Material and method

To test the suitability of three indicators for vegetation dynamics as interconnecting parameters, based on the own field measurements of vegetation parameters in four

Communes i.e. Pobe in South-Oueme, Bohicon and Save in Middle-Oueme and N'dali in North-Oueme Basin. Other available statistic and satellite data were also compiled at communal level. Since field research was implemented from 2003 to 2005, the year 2004 was selected as pivot year and consequently, all data used in this chapter were of year 2004. Only area estimation data from GLC2000 was from year 2000, which, were then complemented by the annual agricultural statistics of year 2004 and reconstructed as described under Chapter 3. Secondly, the parameter mean values of ten departments and six AEZs were also analyzed concerning their correlations. Then the correlations of parameters within the three Impetus zones were tested. In the following part the calculation of eco-volume value (Ve) is described in detail. The other two indicators, bio-volume and biomass followed the same compiling procedures as eco-volume.

Also, the soil litter (SL) and four selected soil parameters including: 1) Total carbon percent (=TC1% t_t), 2) Sum of 4 cations (=sum 4cations t_t), 3) PH-value in water (=pH H2O t_t) and 4) Effective phosphor (= P t_t) followed the same compiling procedures. But by compiling soil parameters, only vegetation areas were taking into account. That implied that the communal average unit soil parameters were weighted by the different area shares of vegetation types to the total vegetation areas. The assumption taken here was, that the corresponding soil parameters under these vegetation type covers do change consequently in relation to vegetation type change. The 150 sampled soil parameters were listed in the annexe 13.

For each of 62 communes of Oueme Catchments, the weighted total eco-volume values of the whole commune were calculated. Then, the communal average unit Vec values of each 62 communes were obtained, whereby the total Ve of a certain commune is divided by the whole area values of this commune.

The compiling was as follows: The first step is to carry out the average Ve values (m³/ha) of three classified vegetation types ((i) forest, (ii) savannah+fallow+plantation and (iii) annual crops) in four selected representative Communes. Secondly, these average Ve values of three vegetation types in four communes were grouped into three categories: North-, Middle- and South-Oueme Basin in accordance with the Impetus zoning approach (Chapter 3). The average Ve values of annual crops were then weighted by the percentage share of different principle annual crops to the total

annual crops area in three different sub-regions of the whole Oueme Basin, which, were obtained by the field research interviews as described in Chapter 4 dealing with Farming Systems. The weighted average Ve values of annual crops, together with the other two average Ve values of the forest and savannah (= savannah + fallow + plantation), were then used to estimate the total Ve values of all 62 communes of Oueme catchment. Thirdly, the area data of land use change from the IMPETUS Project remote sensing group and the statistics of the annual agricultural used area from the MAEP (Ministry for Agriculture Benin's) of 62 Oueme communes have to be corrected at first for CIC (Cropping Intensity Coefficient), by the results of chapter 4. Fourthly, the average Ve values in three vegetation type classes and three Oueme Basin sub-regions were weighted by the percentage shares of the three vegetation types areas to total communal area of 62 communes. The whole Ve value of a commune was divided by the total area value of this commune to obtain the communal average unit Vec value, which will be submitted to the static regression analysis in this chapter.

6.3 Results and discussion

6.3.1 Vegetation parameters in four test communes

In this part, the measured and then compiled vegetation parameters in four tested communes were presented.

6.3.1.1 Measured vegetation parameters

The table 6-1 shows the measured vegetation parameters of different plants in North-Oueme, commune of N'dali. Sorghum happened to be intercropped between maize. The table 6-2 shows the measured vegetation parameters of different plants in Middle-Oueme, commune of Save. The table 6-3 shows the measured vegetation parameters of different plants in Middle-Oueme commune Bohicon.

U			
Crop	Vb m³/ha	Ve m³/ha	BM t/ha
Manioc	18.65	23182.00	26.81
Cotton	6.07	11554.99	4.77
Maize	15.17	20831.67	7.40
Sorghum	25.30	22262.10	2.12
Soya	5.58	7136.67	7.55
Yam	1.22	2425.00	7.70
Fallow	27.31	10539.57	4.29
Plantation (mango)	61.08	72095.59	46.42
Forest	269.13	79075.00	60.91

 Table 6-1 Measured vegetation parameters of different plants in N'dali

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare.

Table 6-2 Measured vegetation parameters of different plants in Save

Crop	Vb m³/ha	Ve m³/ha	BM t/ha
Manioc	10.50	23012.38	13.88
Cowpea	0.51	3511.46	1.94
Groundnut	0.16	2825.58	3.64
Maize	8.07	20888.18	3.34
Rice	10.03	10320.00	3.39
Sorghum	23.34	34016.49	21.23
Soya	0.51	3867.84	5.07
Sugar cane	133.62	26021.73	49.19
Voandzou	2.02	2275.00	3.18
Yam			3.39
Fallow	145.06	16330.00	5.99
Plantation (cashew, mango)	131.24	76668.09	76.46
Forest	283.72	109705.46	60.35

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare.

	Table 6-3 Measured	I vegetation	parameters of	different	plants in	Bohicon
--	--------------------	--------------	---------------	-----------	-----------	---------

Crop	Vb m³/ha	Ve m³/ha	BM t/ha
Manioc	1.55	18920.00	13.88
Cowpea	0.37	3006.91	2.26
Groundnut	0.14	2059.91	1.01
Maize	4.09	15850.42	1.76
Sorghum	30.02	34218.93	27.13
Fallow	19.80	18235.57	3.32
Plantation (cashew, orange, oil palm)	251.28	57287.49	21.44
Forest	630.08	179522.06	160.78

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare

The table 6-4 shows the measured vegetation parameters of different plants in South-Oueme commune Pobe.

Table 0-4 Measured Vegetation parameters of different plants in Fobe								
Crop	Vb m³/ha	Ve m³/ha	BM t/ha					
Manioc	14.15	23527.08	34.75					
Cowpea	1.06	4510.48	1.41					
Groundnut	0.23	3048.23	0.87					
Maize	17.91	18713.08	4.33					
Sorghum	30.02	34218.93	18.48					
Soya	1.77	3597.14	1.17					
Sweet potato	0.11	1890.91	2.43					
Taro	197.49	14117.78	6.28					
Yam	0.32	31000.00	1.64					
Pigeon pea	50.59	33753.85	14.15					
Fallow	218.69	15385.93	7.16					
Plantation (oil palm)	757.65	147750.00	10.46					
Forest	1305.87	155623.33	92.15					

 Table 6-4 Measured vegetation parameters of different plants in Pobe

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare.

6.3.1.2 Weighted parameters of annual crops

The table 6-5 shows the weighted vegetation parameters of annual crops by using area percent as weighting factor in North-Oueme, commune of N'dali. The table 6-6 shows the weighted vegetation parameters of annual crops by using area percent as weighting factor in Middle-Oueme, commune of Save.

Crop	Area%	Vb	Ve m³/ha	BM	Vb_aav	Ve_aav	BM_aav
		m³/ha		t/ha			
Yam	11.24	1.22	2425.00	7.70	0.137	272.625	0.865
Soya	2.53	5.58	7136.67	7.55	0.141	180.522	0.190
Cotton	12.65	6.07	11554.99	4.77	0.767	1461.423	0.602
Maize	48.48	15.17	20831.67	7.40	7.352	10099.670	3.588
Sorghum	5.34	25.30	22262.10	6.33	1.350	1188.814	0.337
Manioc	8.15	18.65	23182.00	26.81	1.520	1889.483	2.185
Ananas	0.06	6.07	11554.99	4.77	0.003	6.495	0.003
Cowpea	2.25	5.58	3400.00	3.02	0.125	76.447	0.0679
Dohi	0.00	5.58	3400.00	3.02	0	0	0
Goussi/	0.84	5.58	3400.00	3.02	0.047	28.667	0.0255
sesame							
Groundnut	4.50	5.58	3400.00	3.02	0.251	152.894	0.136
Millet	1.97	25.30	22262.10	6.33	0.497	437.984	0.126
Pigeon pea	0.28	18.65	23182.00	26.81	0.052	65.154	0.0754
Rice	0.00	5,58	3400.00	3.02	0	0	0
Sweet potato	0.28	1.22	2425.00	7.70	0.003	6.815	0.0216
Taro	0.00	1.22	2425.00	7.70	0	0	0
Vegetables	1.15	5.58	3400.00	3.02	0.064	39.179	0.0348
(tomato,							
chili, gombo,							
onion)							
Voandzou	0.28	5.58	3400.00	3.02	0.015	9.555	0.0085
Annual	100.00				12.331	15915.740	8.268
• Vb=t	oio-volume	of singula	r crop on a	hectare, \	/e=eco-volu	ime and BM=b	iomass of

Table 6-5 Weighted vegetation parameters of annual crops in N'dali by surface percentages

VD=bio-volume of singular crop on a nectare, ve=eco-volume and BM=biomass of singular crop on a hectare.
Area% in this table means the percentage of surface of each annual crops to whole

 Area% in this table means the percentage of surface of each annual crops to whole annual agricultural used area of this site, which was calculated using the results of farmer interviews.

• The crops which were not measured directly were approximated by using the similar measured crops, for ex., soya to dohi. etc.

• Vb_aav=average bio-volume weighted by annual Area%; the rest may be deduced by analogy.

Crop	Area	Vb	Ve m³/ha	BM	Vb_aav	Ve_aav	BM_aav	
	%	m³/ha		t/ha				
Ananas	0.02	0.16	2825.58	3.64	2.57E-05	0.455	0.0006	
Cotton	0.00	0.16	2825.58	3.64	0	0	0	
Cowpea	9.73	0.51	3511.46	1.94	0.049258	341.836	0.1889	
Dohi	2.29	0.16	2825.58	3.64	0.003653	64.668	0.0833	
Goussi/sesame	4.50	0.16	2825.58	3.64	0.007177	127.059	0.1636	
Groundnut	10.36	0.16	2825.58	3.64	0.016541	292.828	0.3771	
Maize	27.91	8.07	20888.18	3.34	2.251123	5829.973	0.9327	
Manioc	13.93	10.50	23012.38	13.88	1.461635	3204.561	1.9322	
Millet	0.00	23.34	34016.49	21.23	0	0	0	
Pigeon pea	2.42	10.50	23012.38	13.88	0.253756	556.347	0.3355	
Rice	4.42	10.03	10320.00	3.39	0.443135	455.746	0.1496	
Sorghum	3.87	23.34	34016.49	21.23	0.902984	1315.812	0.8211	
Soya	7.80	0.51	3867.84	5.07	0.040077	301.597	0.3956	
Sweet potato	0.00	0.16	2825.58	3.64	0	0	0	
Taro	0.00	10.50	23012.38	13.88	0	0	0	
Vegetables	3.00	0.16	2825.58	3.64	0.004785	84.706	0.1091	
(tomato,								
chili,								
Gombo,								
onion)								
Voandzou	2.80	2.02	2275.00	3.18	0.05677	63.800	0.0893	
Yam	6.96	1.22	2425.00	3.39	0.08508	168.845	0.2361	
Annual	100.00				5.57599	12808.240	5.8146	
• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of								

Table 6-6 Weighted vegetation parameters of annual crops in Save by surface percentages

singular crop on a hectare.

• Area% in this table means the percentage of surface of each annual crops to whole annual agricultural used area of this site, which was calculated using the results of farmer interviews.

The crops which were not measured directly were approximated by using the similar • measured crops, for ex., soya to dohi. etc.

• Vb_aav=average bio-volume weighted by annual Area%; the rest may be deduced by analogy.

The table 6-7 shows the weighted vegetation parameters of annual crops by using area percent as weighting factor in Middle-Oueme, commune of Bohicon.

Crop	Area%	Vb	Ve	BM	Vb_aav	Ve_aav	BM_aav
		m ³ /ha	m ³ /ha	t/ha			
Ananas	0.00						
Cotton	0.00						
Cowpea	15.12	0.37	3006.91	2.26	0.055783	454.5753	0.34191
Dohi	0.00						
Goussi/sesame	0.00						
Groundnut	32.46	0.14	2059.91	1.01	0.045942	668.598	0.32848
Maize	42.91	4.09	15850.42	1.76	1.754192	6802.199	0.75471
Manioc	2.93	1.55	18920.00	13.88	0.045459	555.0819	0.40709
Millet	0.00						
Pigeon pea	0.00						
Rice	0.00						
Sorghum	4.05	30.02	34218.93	27.13	1.214839	1384.728	1.09776
Soya	1.85	0.37	3006.91	2.26	0.006844	55.76989	0.04194
Sweet potato	0.67						
Taro	0.00						
Vegetables	0.00						
Voandzou	0.00						
Yam	0.00						
Annual	100.00				3.123058	9920.952	2.97192
1.71				1	1/1 1 1		

Table 6-7 Weighted vegetation parameters of annual crops in Bohicon by surface percentages

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare.

• Area% in this table means the percentage of surface of each annual crops to whole annual agricultural used area of this site, which was calculated using the results of farmer interviews.

• The crops which were not measured directly were approximated by using the similar measured crops, for ex., soya to dohi. etc.

• Vb_aav=average bio-volume weighted by annual Area%; the rest may be deduced by analogy.

The table 6-8 shows the weighted vegetation parameters of annual crops by using area percent as weighting factor in South-Oueme, commune of Pobe.

Crop	Area	Vb	Ve m³/ha	BM	Vb_aav	Ve_aav	BM_aav
	%	m³/ha		t/ha			
Maize	27.66	17.91	18713.08	4.33	4.954	5175.502	1.1971
Groundnut	5.49	0.23	3048.23	0.87	0.013	167.217	0.0476
Cowpea	10.97	1.06	4510.48	1.41	0.117	494.8637	0.1549
Vegetables	20.23	1.06	4510.48	1.41	0.215	912.4049	0.2857
(tomato,							
chili, gombo,							
onion)							
Manioc	9.71	14.15	23527.08	34.75	1.375	2285.488	3.3760
Goussi/sesame	7.09	1.06	4510.48	1.41	0.075	319.5995	0.1000
Yam	5.14	0.32	31000.00	1.64	0.017	1594.286	0.0841
Sorghum	0.00	30.02	34218.93	18.48	0	0	0
Pigeon pea	4.00	50.59	33753.85	14.15	2.024	1350.154	0.5661
Cotton	3.89	0.67	3651.30	1.90	0.026	141.8789	0.0737
Taro	2.63	197.49	14117.78	6.28	5.191	371.0959	0.1651
Sweet potato	1.94	0.11	1890.91	2.43	0.002	36.73766	0.0473
Soya	0.11	1.77	3597.14	1.17	0.002	4.11102	0.0013
Rice	0.69	1.06	4510.48	1.41	0.007	30.92898	0.0096
Ananas	0.46	1.06	4510.48	1.41	0.005	20.61932	0.0064
Dohi	0.00	1.06	4510.48	1.41	0	0	0
Millet	0.00	1.06	4510.48	1.41	0	0	0
Voandzou	0.00	0.67	3651.30	1.90	0	0	0
Annual	100.00	321.38	202742.91	97.79	14.020	12904.89	6.12

Table 6-8 Weighted vegetation parameters of annual crops in Pobe by surface percentages

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare.

• Area% in this table means the percentage of surface of each annual crops to whole annual agricultural used area of this site, which was calculated using the results of farmer interviews.

• The crops which were not measured directly were approximated by using the similar measured crops, for ex., soya to dohi. etc.

• Vb_aav=average bio-volume weighted by annual Area%; the rest may be deduced by analogy.

6.3.1.3 Aggregated parameters of three vegetation types

The table 6-9 shows the aggregated vegetation parameters of three vegetation types in four tested communes. Note the poor biomass of savannah in Pobe.

Communes	Vegetation type	Vb m³/ha	Ve m³/ha	BM t/ha
N'dali	Annual crop	12.33	15915.74	8.27
	Savannah	44.20	41317.58	25.35
	Forest	269.13	79075.00	60.91
Save	Annual crop	5.58	12808.24	5.81
	Savannah	138.15	46499.05	41.23
	Forest	283.72	109705.46	60.35
Bohicon	Annual crop	3.12	9920.95	2.97
	Savannah	142.85	41229.31	24.05
	Forest	422.26	137632.10	100.52
Pobe	Annual Crop	14.02	12904.89	6.12
	Savannah	488.17	81567.96	8.81
	Forest	1305.87	155623.33	92.15

 Table 6-9 Aggregated average vegetation parameters of three vegetation types

• Savannah means the average value of fallow, savannah and plantation crops.

• Vb=bio-volume of singular crop on a hectare, Ve=eco-volume and BM=biomass of singular crop on a hectare.

6.3.2 Integrated vegetation parameters of 62 communes

The following table shows the integrated average unit vegetation parameter value of 62 Oueme communes in year 2004, which were carried out with the calculation procedure described in the materials and methods of this chapter.

Commune	Vbc	Vec	BMC	Commune	Vbc	Vec	BMC
Abomey-Calavi	254	50625	23	Ouake	64	33976	24
Allada	271	53612	21	Cotonou	16	3041	1
Kpomasse	44	15452	8	Athieme	277	54826	19
Ouidah	319	60974	24	Bopa	277	54626	16
So-Ava	229	40968	22	Come	285	54995	21
Toffo	109	27679	10	Grand-Popo	377	70397	27
Tori-Bossito	428	78205	43	Houeyogbe	204	43236	13
Ze	266	52937	20	Lokossa	277	54519	18
Bembereke	76	38333	28	Adjara	498	89304	48
Kalale	73	37471	28	Adjohoun	403	73975	45
N'Dali	83	41145	31	Aguegue	322	59519	28
Nikki	72	37055	27	Akpro-Misserete	297	57003	35
Parakou	21	18655	11	Avrankou	446	80894	46
Perere	82	40537	30	Bonou	438	79880	42
Sinende	79	39529	29	Dangbo	328	61891	39
Tchaourou	101	46186	34	Porto-Novo	563	98981	56
Bante	92	43425	32	Seme-Kpodji	407	74822	34
Dassa-Zoume	128	40832	30	Adja-Ouere	110	27489	15
Glazoue	69	35888	26	Ifangni	422	76790	49
Ouesse	172	64644	43	Ketou	137	47631	32
Savalou	129	41308	30	Pobe	454	81800	52
Save	150	48089	35	Sakete	175	37678	22
Aplahoue	253	51162	14	Abomey	86	30914	21
Djakotomey	125	30405	9	Agbangnizoun	242	49414	14
Dogbo-Tota	257	51698	16	Bohicon	86	30755	21
Klouekanme	240	49081	14	Cove	102	34743	25
Lalo	256	51637	14	Djidja	125	40174	29
Toviklin	174	38340	11	Ouinhi	296	57827	22
Bassila	96	45066	34	Zangnanado	126	44011	30
Kopargo	75	38138	28	Za-Kpota	119	39263	28
Djougou	84	41197	31	Zogbodome	304	59334	18

Table 6-10 Integrated average unit vegetation parameters of 62 OuemeCommunes in year 2004

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level

The other agro-ecological data sets used in followed statistic analyses were listed as Annexe 13.

6.3.3 Integrated vegetation parameters and agro-ecological factors in ten departments

The table 6-11 shows the spatially integrated mean values of vegetation, agroecological parameters in ten Oueme-Department.

Departement	TC1 %	Sum	pH	Р	Vbc	Vec	BMC	SLC
	t_t	4cations	H2O	t_t				
		t_t	t_t					
Litorral	0.84	4.98	6.30	0.45	15.60	3041	0.81	0.18
Mono	0.94	5.77	6.42	0.46	281.09	55198	18.73	3.47
Atlantique	1.06	6.75	6.57	0.47	239.72	47951	20.67	3.27
Oueme	1.12	7.09	6.54	0.42	403.74	74033	40.59	4.00
Kouffo	0.93	5.80	6.45	0.48	235.71	48386	13.58	3.38
Plateau	1.09	6.80	6.77	0.55	198.05	50062	32.60	3.60
Zou	0.94	5.49	6.67	0.57	165.61	44183	25.49	3.29
Collines	1.15	6.22	6.95	0.84	126.56	46984	33.43	3.01
Donga	1.40	6.99	7.15	1.13	88.24	42528	31.71	2.36
Borgou	1.36	6.90	7.11	1.08	82.78	40507	29.85	2.31
Departement	C-	POPD04	LON	LAT	ELE	Rain_04	GDP/cap	
	veg.04							
Litorral	0.52	8489.30	2.42	6.37	4.10	1234	2961.50	
Mono	0.52	234.49	1.83	6.55	24.06	1213	500.80	
Atlantique	0.56	273.02	2.22	6.61	46.61	1252	919.20	
Oueme	0.62	605.43	2.55	6.62	27.97	1343	942.90	
Kouffo	0.61	226.48	1.78	7.01	109.11	1242	493.60	
Plateau	0.60	132.86	2.62	7.20	110.23	1145	1337.50	
Zou	0.58	120.49	2.11	7.28	105.08	1236	522.40	
Collines	0.56	41.78	2.20	8.14	195.02	1261	920.20	
Donga	0.51	33.46	1.81	9.33	358.58	1154	823.30	
Borgou	0.48	30.90	2.77	9.80	346.46	1207	1221.10	

Table 6-11 Integrated vegetation parameters and agro-ecological factors of tenOueme departments

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at departmental level

• TC1 % t_t = total soil carbon percentage

• Sum 4 cations t_t = sum of 4 cations (Na, K, Ca, Mg)

• pH H2O t_t = pH values in water

• P t_t = effective phosphorus values of soil sample

6.3.4 Relations among vegetation parameters

Correlations between vegetation indicators have been calculated at different scales of spatial arrangement.

6.3.4.1 Communal level

The table 6-12 shows simple correlations between each pair of variables at communal level. These correlation coefficients range between 0.5 and 0.9 and indicate relative strong linear relationships between the vegetation indicators i.e. bio-volume, eco-volume, bio-mass, and soil litter.

	Vbc	Vec	BMC	SLC
Vbc		0.9312 (62) 0.0000	0.5214 (62) 0.0000	0.8454 (62) 0.0000
Vec	0.9312 (62) 0.0000		0.7351 (62) 0.0000	0.8492 (62) 0.0000
BMC	0.5214 (62) 0.0000	0.7351 (62) 0.0000		0.5116 (62) 0.0000
SLC	0.8454 (62) 0.0000	0.8492 (62) 0.0000	0.5116 (62) 0.0000	

Table 6-12 Relations among vegetation indicators at communal level

Correlation

(Sample Size)

P-Value

 Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

The table 6-13 shows the linear regression models to estimate BMc using only Vec or Vbc. Since the P-values of ANOVA were all less than 0.01, relationships between the variables were statistically significant at the 99% confidence level. Biomass was correlated closer with eco-volume ($R^2 = 54\%$) than with bio-volume and soil litter. From Tables 6-12 & 6-13, hypothesis 6-1 can be accepted at the communal level.

Table 6-13 Simple linear regression models estimating biomass using other indicators of vegetation dynamics at communal level (n=62)

Model	R-squared%	P-value (Model)
BMc = 3.07183 + 0.000477173*Vec	54.0	0.00
BMC = 17.0353 + 0.0452696*Vbc	27.2	0.00
BMC = 2.47104 + 7.67841 * SLC	26.2	0.00

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

6.3.4.2 Department level

As shown in table 6-14, the correlation coefficients ranged from 0.27 to 0.86. But since the P value between BMc and Vbc was greater than 0.05, there was no significant correlation at the 95% level at the departmental level although there existed a highly significant correlation at communal level ($R^2 = 0.52^{**}$).

	VDC	Vec	BMC	SLC
Vbc		0.8626	0.3840	0.8226
		(10)	(10)	(10)
		0.0013	0.2733	0.0035
Vec	0.8626		0.7451	0.9438
	(10)		(10)	(10)
	0.0013		0.0134	0.0000
BMc	0.3840	0.7451		0.6369
	(10)	(10)		(10)
	0.2733	0.0134		0.0477
SLC	0.8226	0.9438	0.6369	
	(10)	(10)	(10)	
	0.0035	0.0000	0.0477	

Table 6-14 Relations among vegetation indicators at department level

Correlation (Sample Size)

P-Value

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at departmental level; SLc = Soil litter

The table 6-15 shows the linear regression models to estimate the unit biomass quantity of a department (BMc: t/ha) using the other vegetation dynamics indicators such as eco-volume (Vec) or bio-volume (Vbc). Also at department level, biomass was correlated closer with eco-volume than with bio-volume and soil litter. Combining the results in above two tables, it is likely that at department level, Vec and Vbc are still positively closely correlated, but the BMc is not closely correlated with Vbc again as it was at communal level, even though BMc was still positively and closely correlated with Vec.

Table 6-15 Simple linear regression models estimating biomass using other indicators of vegetation dynamics at department level (n=10)

Model	R-squared%	P-value (Model)
BMc = 2.46505 + 0.00049199*Vec	55.5	0.01
BMc = 17.5027 + 0.0394282*Vbc	14.7	0.27
BMC = 5.066 + 6.81676*SLc	40.6	0.05

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

6.3.4.3 Within Impetus zones

Here the relations between vegetation parameters at communal level are presented as nested within North, Middle and South Oueme zones. The relationships between vegetation parameters within three Impetus zones were closer than those in the whole Oueme Basin. This implies that this zoning approach was meaningful in order to classify all Oueme communes into more homogenous groups. Based on the above results, it could be concluded that hypothesis 6-1 was confirmed.

6.3.4.3.1 North Oueme

As shown in tables 6-16 & 6-17, the relations between vegetation parameters within the North Oueme basin were closer as those in the whole Oueme Basin. There exists a very strong regression between biomass and eco-volume ($R^2 = 0.95^{**}$).

	Vbc	Vec	BMC	SLC
 Vbc		0.9927	0.9441	0.9962
		(15)	(15)	(15)
		0.0000	0.0000	0.0000
Vec	0.9927		0.9769	0.9786
	(15)		(15)	(15)
	0.0000		0.0000	0.0000
BMC	0.9441	0.9769		0.9122
	(15)	(15)		(15)
	0.0000	0.0000		0.0000
SLC	0.9962	0.9786	0.9122	
	(15)	(15)	(15)	
	0.0000	0.0000	0.0000	

Table 6-16 Relations among vegetation indicators within North Oueme

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

Table 6-17 Simple linear regression models estimating biomass using other vegetation parameters within North Oueme (n = 15)

Model	R-squared%	P-value (Model)
BMc = 1.22346 + 0.000695354*Vec	95.4	0.00
BMc = 12.2415 + 0.204053*Vbc	89.1	0.00
BMc = -10.5831 + 17.088*SLc	83.2	0.00

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

6.3.4.3.2 Middle Oueme

Within Middle Oueme, also strong and positive correlations as well as simple regressions are observed (Tables 6-18 & 6-19).

	VDC	Vec	BMC	SLC
Vbc		0.9716 (10) 0.0000	0.9991 (10) 0.0000	0.8439 (10) 0.0021
Vec	0.9716 (10) 0.0000		0.9806 (10) 0.0000	0.9468 (10) 0.0000
BMC	0.9991 (10) 0.0000	0.9806 (10) 0.0000		0.8654 (10) 0.0012
SLC	0.8439 (10) 0.0021	0.9468 (10) 0.0000	0.8654 (10) 0.0012	

Table 6-18 Relations among vegetation indicators within Middle Oueme

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

Table 6-19 Simple linear regression models estimating biomass using other vegetation parameters within Middle Oueme (n = 10)

Model	R-squared%	P-value (Model)
BMc = -0.278263 + 0.000717244*Vec	96.2	0.00
BMc = 2.95773 + 0.213154*Vbc	99.8	0.00
BMc = -26.8283 + 17.0832*SLc	74.9	0.00

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

6.3.4.3.3 South Oueme

Within South Oueme, the vegetation stands at communal level are relatively less homogenous as is the case in North and Middle Oueme, but the relations between vegetation parameters were still strongly and positively correlated.

	VDC	Vec	BMC	SLC
Vbc		0.9959	0.9063	0.8436
		(37)	(37)	(37)
		0.0000	0.0000	0.0000
Vec	0.9959		0.8882	0.8870
	(37)		(37)	(37)
	0.0000		0.0000	0.0000
BMc	0.9063	0.8882		0.7412
	(37)	(37)		(37)
	0.0000	0.0000		0.0000
SLC	0.8436	0.8870	0.7412	
	(37)	(37)	(37)	
	0.0000	0.0000	0.0000	

Table 6-20 Relations among vegetation indicators within South Oueme

• Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

Table 6-21 Simple linear regression models estimating biomass using other vegetation parameters within South Oueme (n = 37)

Model	R-squared%	P-value (Model)
BMC = -9.84859 + 0.000629299*Vec	78.9	0.00
BMc = -5.27598 + 0.105625*Vbc	82.1	0.00
BMc = -22.4331 + 13.7873*SLc	54.9	0.00

 Vbc=bio-volume, Vec=eco-volume and BMc=biomass of total vegetation on a hectare, respectively at communal level; SLc = Soil litter

6.3.5 Relations between vegetation dynamics and agro-ecological factors

6.3.5.1 Communal level

To test the relationships between different vegetation dynamics parameters and environmental parameters at communal level, the statistic method "backwards selection procedure with constant" of the multiple regression module was selected to yield the comparable regression models. At beginning all the environmental parameters in Annexe 13 were put into the analysis module. This theoretic logical criterion was followed in all steps of the implemented statistic analyses. Among the different agro-ecological factors it is hoped to find the major driving forces regulating vegetation dynamics. Since the relationship between vegetation and precipitation was one of the major concerns of this study, effort was paid especially to find out such possible empirical relationship. Only a few selected models at communal level are presented.

6.3.5.1.1 Bio-volume

For the model 6-1 the followed parameters were considered: Vbc=bio-volume, TC1%t_t=total carbon in soil, C_veg_04=vegetative duration coefficient in year 2004, POPD04=population density in year 2004, Rain_04=precipitation in year 2004, ELE=elevation of communes, LAT=latitude and LON=longitude. GDP0_cap=GDP per capita was not used here since it was only available at provincial/department level. Determination approached 75% (Table 6-22).

```
Vbc = 3748.31 + 699.241*TC1 % t_t - 686.598*pH H2O t_t + 534.693*C_veg_04 - 0.0186086*POPD04
```

Model 6-1 Bio-volume (Vbc) to TC1%t_t, PH-value, C_veg_04 and POPD04

Table 6-22 Statistic results of model 6-1

Dependent variable: Vbc

		Standard	 Т	
Parameter	Estimate	Error	Statistic	P-Value
CONSTANT	3748.31	405.19	9.25075	0.0000
TC1 % t_t	699.241	90.9345	7.68951	0.0000
pH H2O t_t	-686.598	64.1395	-10.7048	0.0000
C_veg_04	534.693	185.67	2.8798	0.0056
POPD04	-0.0186086	0.00783157	-2.37611	0.0209

Analysis of Variance					
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	830091.0 278600.0	4 57	207523.0 4887.72	42.46	0.0000

Total (Corr.) 1.10869E6 61

R-squared = 74.8713 percent R-squared (adjusted for d.f.) = 73.1078 percent Standard Error of Est. = 69.9122 Mean absolute error = 50.6398 Durbin-Watson statistic = 1.8251 (P=0.1831) Lag 1 residual autocorrelation = 0.0869172

Figure 6-1 Predicted against observed values of bio-volume in model 6-1

In the model 6-2 all soil parameters were removed to check if other environmental parameters used in model 6-1 could explain the variability of Vbc. The results showed obviously that soil parameters were dominant in this context. Since the constant had P-value=0.86, it was removed and the model 6-3 was obtained.

Vbc = 46.6248 + 0.477849*Rain 04 - 57.6279*LAT

Model 6-2: Bio-volume (Vbc) as to precipitation and latitude (LAT) without soil parameters

Dependent variak	ole: Vbc				
		St	andard	т	
Parameter	Estimate		Error	Statistic	P-Value
CONSTANT	46.6248	2	55.632	0.18239	0.8559
Rain_04	0.477849	0.	171123	2.79244	0.0070
LAT	-57.6279	1	1.2757	-5.11082	0.0000
	Analysis	of Va	riance		
Source	Sum of Squares	D£	Mean Square	e F-Ratio	P-Value
Model	507968.0	2	253984.0	24.95	0.0000
Residual	600723.0	59	10181.7	1	
Total (Corr.)	1.10869E6	61			
R-squared = 45.8	8169 percent				
R-squared (adjus	sted for $d.f.$ = 43.9	9802 r	ercent		
Standard Error o	f Est = 100.905	<u>-</u>			
Mean absolute en	$rror = 73 \ 9042$				
	$1 = 10 \cdot 10 = 20$				

Table 6-23 Statistic results of model 6-2

Durbin-Watson statistic = 2.01798 (P=0.4166) Lag 1 residual autocorrelation = -0.0133092

Model 6-3 presents a simple relation between bio-volume and both rain and latitude with a determination of 84% (Table 6-24).

Vbc = 0.507485*Rain_04 - 56.3513*LAT Model 6-3 Bio-volume (Vbc) as to precipitation and latitude (LAT) without constant term

Table 6-24 Statistic results of model 6-3

Dependent vari	able: Vbc				
Parameter	Estimate	St	andard Error S	T Statistic	P-Value
Rain_04 LAT	0.507485 -56.3513	0.0 8	532542 .76878	9.52947 -6.42635	0.0000 0.0000
	Analysis	of Va	riance		
Source	Sum of Squares	D£	Mean Square	F-Ratio	P-Value
Model Residual	3.26164E6 601062.0	2 60	1.63082E6 10017.7	162.79	0.0000
 Total	3.8627E6	62			

R-squared = 84.4393 percent

R-squared (adjusted for d.f.) = 84.18 percent Standard Error of Est. = 100.088 Mean absolute error = 73.9687 Durbin-Watson statistic = 2.02607 Lag 1 residual autocorrelation = -0.0175341

Figure 6-2 Predicted against observed values of bio-volume in model 6-3

6.3.5.1.2 Eco-volume

Using the same procedures like for bio-volume, the following regression models were obtained for eco-volume (Vec) with a lower determination of only 46%.

Vec = 500469.0 + 95273.2*TC1 % t_t - 82773.0*pH H2O t_t - 3.81358*POPD04 Model 6-4 Eco-volume (Vec) as to soil and population parameters

Dependent variab	ole: Vec				
Parameter	Estimate	Sta	andard Error S	T Statistic	P-Value
CONSTANT TC1 % t_t pH H2O t_t POPD04	500469.0 95273.2 -82773.0 -3.81358	6 1 1 1	4934.5 7659.1 1885.2 .51738	7.70729 5.39513 -6.96439 -2.51327	0.0000 0.0000 0.0000 0.0148
	Analysis	of Va	riance		
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	9.11917E9 1.07175E10	3 58	3.03972E9 1.84785E8	16.45	0.0000
Total (Corr.)	1.98367E10	61			

Table 6-25 Statistic results of model 6-4

R-squared = 45.9713 percent

R-squared (adjusted for d.f.) = 43.1767 percent Standard Error of Est. = 13593.6

Mean absolute error = 9656.03

Durbin-Watson statistic = 1.62968 (P=0.0538)

Lag 1 residual autocorrelation = 0.184161

Figure 6-3 Predicted vs. observed eco-volume in model 6-4

Without soil parameters the variability of eco-volume (Vec) could only be explained for 24.9% by other environmental factors as shown in model 6-5.

Vec = -25884.2 - 44.8973*ELE + 64.9981*Rain_04 Model 6-5 Eco-volume (Vec) as to elevation (ELE) and Precipitation

Since in the model 6-5 the constant was not significant, it was removed and the following model 6-6 was obtained.

```
Vec = -49.7294*ELE + 44.8172*Rain_04
Model 6-6 Eco-volume (Vec) as to ELE and Rain04 without constant term
```

Table 6-26 Statistic results of model 6-6

Dependent vari	able: Vec				
Parameter	Estimate	St	andard Error	T Statistic	P-Value
ELE Rain_04	-49.7294 44.8172	1 2	5.3109 2.24976	-3.24797 19.9209	0.0019 0.0000
	Analysis	of Va	ariance		
Source	Sum of Squares	D£	Mean Square	e F-Ratio	P-Value
Model Residual	1.55233E11 1.50362E10	2 60	7.76163E10 2.50603E8) 309.72 3	0.0000
 Лоtэl	1 70260F11	62			

R-squared = 91.1692 percent R-squared (adjusted for d.f.) = 91.022 percent Standard Error of Est. = 15830.4 Mean absolute error = 11091.6 Durbin-Watson statistic = 2.0467 Lag 1 residual autocorrelation = -0.0247726 Another alternative model 6-7 using Rain_04 and LAT could also explain the variability of Vec. Since the constant was not significant with a P-value of 0.85 by this simulation, it was removed. Determination of model 6-7 is about 90%.

Vec = -4029.93*LAT + 63.7345*Rain_04 Model 6-7 Eco-volume (Vec) as to Rain 04 and LAT

Table 6-27 Statistic results of model 6-7

Dependent vari	able: Vec			
Parameter	Estimate	Standard Error	l T Statistic	P-Value
LAT Rain_04	-4029.93 63.7345	1411.04 8.5695	4 –2.85599 5 7.43737	0.0059 0.0000
	Analysis	of Variance	2	
Source	Sum of Squares	Df Mean	Square F-Ratio	P-Value
Model	1.54705E11	2 7.73	3524E10 298.20	0.0000

Model	1.54705E11	2	7.73524E10	298.20	0.0
Residual	1.5564E10	60	2.594E8		
Total	1.70269E11	62			

R-squared = 90.8591 percent R-squared (adjusted for d.f.) = 90.7068 percent Standard Error of Est. = 16105.9 Mean absolute error = 11563.4 Durbin-Watson statistic = 2.03894 Lag 1 residual autocorrelation = -0.0220197

6.3.5.1.3 Biomass

Using the same procedures as used for eco- and bio-volume, the model 6-8 for biomass (BMc) was obtained with a poor determination of only 35%.

BMc = -29.1135 + 38.2855*TC1 % t_t + 7.88057*LON - 0.0319893*ELE Model 6-8 Biomass (BMc) as related to soil carbon, elevation and longitude

Without soil parameters the following model 6-9 explains only 24.8% of the variability in BMc.

BMc = -44.1996 + 11.5741*LON + 0.0358175*Rain_04 Model 6-9 Biomass (BMc) as to environmental factors LON and rain

6.3.5.1.4 Summary

Comparing the results of multiple regression for modelling Vec, Vbc and BMc, it could be concluded that at communal level:

- The soil parameters affected generally dominantly the vegetation dynamics at communal level.
- The bio-volume has been responding more sensitive to the soil and other selected environmental parameters, followed by eco-volume and biomass.
- Combining precipitation with only one of three geographic coordinates could yield relatively sufficient models explaining vegetation dynamics.
- Combing soil parameters, population density and vegetative length were significant for estimating static communal vegetation dynamics.

6.3.5.2 Department level

Since the soil data were strongly integrated, and at the provincial level the sample numbers were only 10, the analyses results with only soil parameters were not shown in following section, in spite of the fact that models at communal and departmental level tend to concur. Consequently, most attention was geared towards the relations between vegetation and other social, environmental factors, such as precipitation, population and coordinates.

6.3.5.2.1 Bio-volume

As models in table 6-28 shows, bio-volume could be explained well by population density and latitude at departmental level ($R^2 = 74\%$). Also precipitation and population density could explain variability of bio-volume at department level

relatively good in comparison to those at communal level. Here the vegetative duration coefficient alone could explain ca. 43% variability of bio-volume.

Table 6-28 Multiple regression models predicting bio-volume (Vbc) at department level (n = 10)

Model	R- squared%	P- value (Mode)
Vbc = 760.261 - 0.0323777*POPD04 - 72.5623*LAT	74.03	0.009
Vbc = -1247.37 + 1.18305*Rain_04 - 0.0220946*POPD04	55.90	0.057
Vbc = -695.527 + 1581.36*C_veg_04	43.54	0.038

• C_veg_04 = vegetation duration coefficient in 2004

6.3.5.2.2 Eco-volume

At department level, eco-volume could also be correlated closely with population density and precipitation as shown in Table 6-29. About 78% variability of eco-volume could be explained by population density and latitude variation. Also GDP per capita combined with longitude could explain ca 75% variability of eco-volume.

Table 6-29 Multiple regression models predicting eco-volume (Vec) at department level

Model	R- squared%	P- value (Mode)
Vec = -105064.0 + 127.033*Rain_04 - 5.62609*POPD04	81.79	0.003
Vec = 93811.8 - 6.36218*POPD04 - 5612.4*LAT	78.48	0.005
Vec = 22824.3 - 24.218*GDP/cap + 21621.3*LON	75.27	0.008
Vec = 65407.9 - 18.9058*GDP/cap	61.00	0.008
Rain_04 = 1038.61 + 0.0217435*POPD04 + 0.00370795*Vec	47.43	0.105

• GDP/cap = GDP per capita

6.3.5.2.3 Biomass

Biomass variability could be explained more by population density or GDP combined with longitude (Table 6-30).

level	
Table 6-30 Multiple regression models predicting biomass (BMc) at departm	ent

Model	R- squared%	P- value (Mode)
BMc = -3.70465 - 0.00353758*POPD04 + 14.3679*LON	69.83	0.015
BMc = -12.5877 + 23.2066*LON - 0.0135684*GDP/cap	61.93	0.034
BMc = -130.015 + 7.93576*LAT + 171.428*C_veg_04	52.68	0.073

Comparing the results using communal and department average unit values of compiled parameters, it could be concluded:

- At department level and without soil indicators, population density combined with precipitation could explain properly vegetation dynamics, which was consistent with those at communal level. Moreover, population density combined with latitude or longitude could explain vegetation dynamics properly too. But at department level, even if the models had higher determination than those at communal level, the variance of variables at department level was far smaller than those at communal level as only 10 departments were part of the analyses.
- At communal level:
 - a. The soil parameters affected generally dominantly the vegetation dynamics.
 - b. The bio-volume has been responding more sensitive to the soil and other selected environmental parameters, followed by eco-volume and biomass.
 - c. Using precipitation with only one of 3 geographic coordinates, relatively satisfactory models explaining vegetation dynamics were obtained.
 - d. Combining soil parameters, population density and vegetative length appears meaningful in relationship to vegetation dynamics.

6.3.5.3 Within Impetus zones

6.3.5.3.1 Bio-volume

6.3.5.3.1.1 North Oueme

Within North Oueme, bio-volume variability could be reasonably explained by only two soil parameters i.e. Sum of 4 cations and total carbon content (Table 6-31).

Model	R- squared%	P- value (Mode)	
$Vbc = -3907.9 + 385.027*Sum 4 cations t_t - 446.867*P$	99 8	0 000	
t_t - 700.253*TC1% t_t + 390.396*pH H2O t_t	.0	0.000	
$Vbc = -1829.71 + 430.225*Sum 4cations t_t - 339.803*P$	99 7	0 000	
t_t - 503.383*TC1 % t_t		0.000	
$Vbc = -1651.39 + 440.745*Sum 4cations t_t -$	00 /	0 000	
956.705*TC1 % t_t	<i>JJ</i> .4	0.000	
Vbc = -150.77 + 174.327*TC1 % t_t	30.9	0.032	
Vbc = 62.2583*TC1 % t_t	90.6	0.000	
$Vbc = -509.856 + 86.6156*Sum 4 cations t_t$	50.8	0.002	
$Vbc = -87.5324 + 364.078*C_veg_04 - 0.206222*POPD04$	51.0	0.014	
Vbc = 190.686*C_veg_04 - 0.21419*POPD04	94.0	0.000	
Vbc = 0.0679039*Rain_04	88.5	0.000	

 Table 6-31 Multiple regression models predicting bio-volume (Vbc) within North

 Oueme

• n=15

6.3.5.3.1.2 Middle Oueme

Within middle Oueme the phosphor was unexpectedly negatively correlated with biovolume. It could be explained by the more important vegetation in southern Benin where soils happen to have lower phosphorus content as up north (Annexes 11 & 12).The population density showed more strong impact on bio-volume (Table 6-32).

Table 6-32 Multiple regression models predicting bio-volume within Middle Oueme

Model	R- squared%	P- value (Mode)	
$Vbc = -3426.62 + 25.0643*Sum 4cations t_t +$	99.8	0.000	
556.326*pH H2O t_t - 585.136*P t_t	, , , , , , , , , , , , , , , , , , ,		
$Vbc = 520.004 - 647.348*P t_t$	97.1	0.000	
Vbc = 131.002 - 0.0597297*POPD04	68.1	0.003	
Vbc = 0.0977673*Rain_04	96.4	0.000	

• n=10

6.3.5.3.1.3 South Oueme

Within South Oueme, the relationship between precipitation and bio-volume was relative weak (Table 6-33).

Model	R- squared%	P- value (Mode)
Vbc = 114.54 + 223.652*pH H2O t_t - 2823.78*P t_t	75.9	0.000
Vbc = -1168.08 + 6604.14*TC1 % t_t - 824.044*Sum 4cations t_t	71.3	0.000
Vbc = 242.561*pH H2O t_t - 2843.11*P t_t	96.4	0.000
Vbc = 1399.3 - 2442.53*P t_t	70.8	0.000
Vbc = 275.477*TC1 % t_t	85.6	0.000
Vbc = 1515.81 - 2660.23*P t_t - 0.0264148*POPD04	81.0	0.000
Vbc = -248.757 + 1044.08*C_veg_04 - 1.47489*ELE	24.5	0.008
Vbc = 605.016*C_veg_04 - 1.31021*ELE	88.3	0.000
Vbc = 0.227817*Rain_04	86.4	0.000

Table	6-33	Multiple	regression	models	predicting	bio-volume	within	South
Ouem	е	-	-					

• n=37

Within North, Middle and South Oueme separately, bio-volume was obviously correlated with soil parameters. Without soil parameter, bio-volume was likely more correlated with population density and vegetative length than with precipitation directly. The direct correlation between bio-volume and precipitation was non-significant with constant term but significant without constant term.

6.3.5.3.2 Eco-volume

6.3.5.3.2.1 North Oueme

Within North Oueme, again the soil parameters were dominant among relations with eco-volume. Also the population density affected the eco-volume stronger than environmental factors other than soil parameters (table 6-34).

Model	R- squared%	P- value (Mode)
Vec = -1.07287E6 - 186905.0*TC1 % t_t + 107058.0*Sum 4cations t_t + 106604.0*pH H2O t_t - 117849.0*P t_t	99.9	0.000
Vec = -505387.0 - 133147.0*TC1 % t_t + 119400.0*Sum 4cations t_t - 88613.3*P t_t	99.8	0.000
Vec = -458884.0 - 251363.0*TC1 % t_t + 122143.0*Sum 4cations t_t	99.5	0.000
Vec = -43019.0 + 62078.2*TC1 % t_t	42.4	0.008
Vec = -158959.0 + 29099.7*Sum 4cations t_t	62.7	0.000
Vec = 44423.7 - 75.1518*POPD04	45.4	0.006
Vec = 88658.9*C_veg_04 - 73.032*POPD04	98.0	0.000
Vec = -6557.46 + 101648.0*C_veg_04 - 72.4351*POPD04	59.3	0.004
Vec = 32.9482*Rain_04	95.0	0.000

Table 6-34 Multiple regression models predicting eco-volume within North Oueme

• n=15

6.3.5.3.2.2 Middle Oueme

The different regression models at communal level within the South Oueme region are summarized in Table 6-35.

Table	6-35	Multiple	regression	models	predicting	eco-volume	within	Middle
Ouem	е							

Model	R- squared%	P- value (Mode)
Vec = -1.02908E6 + 19100.2*Sum 4cations t_t +	00 0	0.000
157207.0*pH H2O t_t - 163829.0*P t_t	99.0	
Vec = 46031.3 + 19671.6*Sum 4cations t_t - 184570.0*P	99 /	0 000
t_t	JJ.4	0.000
Vec = 149168.0 - 176445.0*P t_t	84.8	0.000
Vec = 43149.3 - 16.3287*POPD04	59.8	0.009

• n=10

6.3.5.3.2.3 South Oueme

The different regression models at communal level within the South Oueme region are summarized in Table 6-36.

Model	R- squared%	P- value (Mode)
Vec = 22371.9 + 35872.2*pH H2O t_t - 441027.0*P t_t	68.2	0.000
Vec = 39565.4*pH H2O t_t - 444804.0*P t_t	96.4	0.000
Vec = 191467.0 + 35584.7*TC1 % t_t - 380069.0*P t_t	67.9	0.000
Vec = 1.21641E6 + 259826.0*TC1 % t_t - 219536.0*pH	65.8	0.000
H2O t_t		0.000
Vec = -170957.0 + 1.02363E6*TC1 % t_t - 127593.0*Sum	63.4	0.000
4cations t_t		
Vec = 228437.0 - 379879.0*P t_t	63.3	0.000
Vec = 199501.0 - 421319.0*P t_t + 87777.9*C_veg_04 -	81 9	0 000
4.86351*POPD04	01.9	0.000
Vec = 169904.0 - 381456.0*P t_t + 101967.0*C_veg_04	69.2	0.000
Vec = 43.906*Rain_04	89.8	0.000

Table	6-36	Multiple	regression	models	predicting	eco-volume	within	South
Ouem	е	-	-					

• n=37

Eco-volume within the North, Middle and South Oueme regions separately was obviously correlated with soil parameters. In the absence of soil parameters, ecovolume was more correlated with population density and vegetative length than with precipitation directly.

6.3.5.3.3 Biomass

6.3.5.3.3.1 North Oueme

Here biomass was more likely to be explained by vegetation length as by precipitation. Also population density affected biomass more obviously than was the case in South and Middle Oueme (table 6-37).

Model	R- squared%	P- value (Mode)
BMc = $-591.414 - 94.0483*TC1 \% t_t + 61.4106*Sum$ 4cations t_t + 54.6104*pH H2O t_t - 57.343*P t_t	99.9	0.000
$BMc = -300.708 - 66.5093*TC1 \% t_t + 67.733*Sum$ $4cations t_t - 42.3664*P t_t$	99.9	0.000
BMc = $-278.475 - 123.029*TC1 \% t_t + 69.0446*Sum$ 4cations t_t	99.8	0.000
$BMc = -131.677 + 23.5047*Sum 4 cations t_t$	83.3	0.000
$BMc = -43.396 + 54.1519*TC1 \% t_t$	63.8	0.000
$BMc = -15.538 + 42.535*P t_t$	62.0	0.000
$BMc = -318.144 + 49.0589*pH H2O t_t$	68.9	0.000
BMc = 3.41778 + 58.5231*C_veg_04 - 0.0620513*POPD04	73.3	0.000
BMc = 65.2933*C_veg_04 - 0.0617402*POPD04	98.8	0.000
BMc = 32.7697 - 0.0636155*POPD04	64.2	0.000

 Table 6-37 Multiple regression models predicting biomass within North Oueme

• n=15

6.3.5.3.3.2 Middle Oueme

Within middle Oueme and without soil parameters, population density also impacted relatively strongly on biomass (table 6-38).
Model	R- squared%	P- value (Mode)
$BMc = -734.728 + 6.88167*Sum 4 cations t_t + 118.388*pH$	99 8	0 000
H2O t_t - 124.487*P t_t	.0	0.000
BMc = 74.906 + 7.31195*Sum 4cations t_t - 140.107*P t_t	99.4	0.000
BMc = 66.9382 + 59.2284*TC1 % t_t - 153.825*P t_t	99.3	0.000
BMc = 113.242 - 137.087*P t_t	95.6	0.008
BMc = 159.39 + 76.2535*Sum 4cations t_t - 575.194*TC1 %	95.6	0.000
t_t	2010	
BMc = 30.8647 - 0.0126518*POPD04	67.1	0.004
• n=10		

Table 6-38 Multiple regression models predicting biomass within Middle Oueme

6.3.5.3.3.3 South Oueme

Within South Oueme, biomass was still closely related with soil parameters. But population density alone could not explain biomass variability again as within North and Middle Oueme (table 6-39). This could be partially explained by the fact, that in South Oueme, the population densities of different communes were already relatively high compared with those in North and Middle Oueme. The positive relation of biomass with longitude was very interesting here.

Model	R- squared%	P- value (Mode)
BMc = -250.176 + 67.8506*pH H2O t_t - 367.199*P t_t	90.0	0.000
BMc = 752.611 + 218.646*TC1 % t_t - 146.496*pH H2O	88 5	0 000
t_t	00.0	0.000
BMc = -173.788 + 731.523*TC1 % t_t - 85.5549*Sum	86.9	0 000
4cations t_t	00.9	0.000
BMc = 67.8928 - 251.908*P t_t + 69.009*TC1 % t_t	89.6	0.000
BMc = 139.588 - 251.54*P t_t	55.3	0.000
BMc = -35.3524 + 27.1925*LON	43.5	0.000
BMc = 26.755*LON - 5.13467*LAT	86.7	0.000
BMc = -77.0896 + 94.3242*C_veg_04 + 52.7524*TC1 % t_t	51 0	0 000
- 0.158363*ELE	51.0	0.000
BMc = 78.5022 - 0.00256119*POPD04 + 18.8524*LON -	76 3	0 000
205.703*P t_t	, 0 . 0	0.000
07		

Table 6-39 Multiple regression models predicting biomass within South Oueme

• n=37

6.4 Partial conclusions

For the spatial vegetation dynamics, the following conclusions can be made:

Relations among vegetation parameters:

- Generally, biomass as standard reference parameter had closer relation with ecovolume than with bio-volume. Eco-volume was much closer to bio-volume (correlation coefficient bigger than 90%). That implies that knowing eco-volume or bio-volume, biomass could be estimated reasonably and precisely.
- At communal and department levels, vegetation parameters were relatively closely related.
- Within three Impetus zones, the relationships between vegetation parameters were closer than those in the whole Oueme Basin. This implies that this zoning approach was meaningful in order to classify all Oueme communes into more homogenous groups.
- Hence, hypothesis 6-1 can be accepted.

Relations between vegetation dynamics and agro-ecological factors:

- At communal level:
 - a. The soil parameters affected generally dominantly the vegetation dynamics. Soil carbon content correlated positively with three vegetation parameters (biomass, bio-volume and eco-volume).
 - b. The bio-volume has been responding more sensitively to the soil and other selected environmental parameters, followed by eco-volume and biomass.
 - c. Using precipitation with only one of three geographic coordinates could yield relatively sufficient models explaining vegetation dynamics.
 Precipitation, vegetation length and longitude influenced vegetation parameters positively.
 - d. Combining with soil parameters, population density and vegetative length became significant in relationships to vegetation dynamics. Population density influence vegetation parameters negatively.
- At department level:
 - a. Without soil indicators, population density combined with precipitation could explain properly vegetation dynamics, which was consistent with those at communal level.
 - b. Population density combined with latitude or longitude could explain vegetation dynamics properly, too. But at department level, models had higher R² than these at communal level; the variance of variables at department level was far smaller than these at communal level, as only 10 departments were considered in the analyses.
- Within three Oueme zones:
 - a. Across over all three Oueme zones, bio-volume, eco-volume and biomass could be estimated sufficiently through soil parameters.
 - b. Without soil parameter, three vegetation parameters were likely more correlated with population density negatively and with vegetative length positively than with precipitation directly.
 - c. For three Oueme zones, vegetation parameters in Middle and North Oueme could still sufficiently be estimated through social environmental factors without soil indicators.
 - d. The direct correlation between vegetation parameters and precipitation

was relatively weak.

- e. Bio-, eco-volume and biomass performed differently within different Oueme zones.
- Further hypotheses could accepted such as:
 - a. Hypothesis 6-2: This hypothesis can be accepted as at different spatial levels the relations between three vegetation parameters and agroecological factors were different. For instance, the vegetation length itself was significant in relation to vegetation parameters within the Impetus zones, whereas it was only significant with vegetation parameters at communal level in so far combined with soil parameters.
 - b. Hypothesis 6-3: Generally, this hypothesis can be accepted at all spatial levels. The bio-volume responds generally more sensitively to the other agro-ecological factors.
 - c. Hypothesis 6-4: The latter hypothesis can be accepted at the Departmental level as population density and GDP impacted negatively on vegetation dynamics such as soil parameters

7 Temporal and Spatial Vegetation Dynamics

7.1 Introduction

7.1.1 Objective

From the previous chapter it appears that vegetation dynamics present a fair amount of spatial coherence across the Oueme basin. In this chapter the spatial relations will be analyzed across a time span of 18 years. Relations among three vegetation parameters, available precipitation, vegetative duration coefficient and population density will be analyzed both spatially and temporally.

7.1.2 Hypotheses

7-1: Bio-volume, eco-volume and biomass dynamics should correlate closely with each other across the region and over time.

7-2: Bio-volume, eco-volume and biomass dynamics should respond to population, precipitation and vegetative length dynamics differently across the region and over time.

7.2 Material and method

The analyses are based on four time series data sets of 18 years (1987-2004), including all 62 Oueme communes:

- three vegetation parameters (Vbc, Vec and BMc);
- annual precipitation;
- annual vegetative duration coefficient (C_veg) and
- population density.

The compiling procedures were the same as used in the chapter on spatial vegetation dynamics. During this study, only above mentioned time series data sets were available.

7.3 Results and discussion

7.3.1 Relations among vegetation parameters

7.3.1.1 Within the whole Oueme Basin

As shown in table 7-1, all vegetation parameters were closely correlated. BMc was more closely correlated with Vec than with Vbc. This result was consistent with the results of chapter 6 on spatial vegetation dynamics.

	VbC	Vec	BMC	SLC
Vbc		0.9263	0.4847	0.8447
		(1105)	(1105)	(1105)
		0.0000	0.0000	0.0000
Vec	0.9263		0.7175	0.8474
	(1105)		(1105)	(1105)
	0.0000		0.0000	0.0000
BMc	0.4847	0.7175		0.4803
	(1105)	(1105)		(1105)
	0.0000	0.0000		0.0000
SLC	0.8447	0.8474	0.4803	
	(1105)	(1105)	(1105)	
	0.0000	0.0000	0.0000	

Table 7-1 Relations among vegetation indicators of whole Oueme Basin

The same tendency could be observed in table 7-2 as that for the static spatial models. Biomass was correlated closer with eco-volume than with bio-volume and soil litter.

 Table 7-2 Simple linear regression models estimating biomass using other vegetation parameters at communal level

Model	R-squared%	P-value (model)
BMC = 3.11594 + 0.000481104*Vec	51.5	0.000
BMc = 18.3217 + 0.0424765*Vbc	23.5	0.000
BMc = 4.14936 + 7.37962*SLc	23.1	0.000

• n = 1105

Figure 7-1 Observed vs. predicted plot of simple linear model estimating biomass using Vec

Since logically, the constant terms in above models could be removed, yielding corrected models which fitted obviously better, resulting in higher determination coefficients. Also statistically, such models could be optimized using autocorrelation option or choosing other non linear models.

7.3.1.2 Relations by General Linear Model

Using General Linear Model (GLM), it could be tested quickly if a zoning approach was meaningful or not.

7.3.1.2.1 Within Impetus zones

As shown in the following models and tables (models 7-1, 7-2 & 7-3; tables 7-3, 7-4 & 7-5), a stronger relation could be found out within the whole Oueme Basin when all 62 Oueme communes are nested into 3 Impetus zones.

BMc = -2.18287 + 5.34872*I1(1) + 4.43451*I1(2) + 0.000659345*Vec where I1(1) = 1 if Zone=1, -1 if Zone=3, 0 otherwise I1(2) = 1 if Zone=2, -1 if Zone=3, 0 otherwise

Model 7-1 General Linear Model estimating biomass in relation to eco-volume (Vec) within Impetus zones

Table 7-3 ANOVA for biomass (BMc) in relation to eco-volume (Vec) within Impetus zone

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	126438.0 27101.8	3 1101	42145.9 24.6156	1712.16	0.0000

Total (Corr.)	153539.0	1104
---------------	----------	------

Туре	III	Sums	of	Squares
------	-----	------	----	---------

Source	Sum of Squares	D£	Mean Square	F-Ratio	P-Value
Zone Vec Residual	47403.3 120533.0 27101.8	2 1 1101	23701.6 120533.0 24.6156	962.87 4896.62	0.0000 0.0000
Total (corrected)	153539.0	1104			

R-Squared = 82.3486 percent

R-Squared (adjusted for d.f.) = 82.3005 percent

Standard Error of Est. = 4.96141

Mean absolute error = 3.62122

Durbin-Watson statistic = 0.144581 (P=0.0000)

Figure 7-2 Observed vs. predicted plot of Model 7-1

BMc = 9.45869 + 11.5584*I1(1) + 5.8117*I1(2) + 0.112972*Vbc where I1(1) = 1 if Zone=1, -1 if Zone=3, 0 otherwise I1(2) = 1 if Zone=2, -1 if Zone=3, 0 otherwise

Model 7-2 General Linear Model estimating biomass (BMc) in relation to biovolume (Vbc) within Impetus zones

Table 7-4 ANOVA for biomass (BMc) in relation to bio-volume (Vbc) within Impetus zones

Source	Sum of Squares	Df	Mean Sqi	Jare	F-Ratio	P-Valı	le
Model Residual	129441.0 24098.6	3 1101	4314 21	46.9 .888	1971.26	0.000	00
Total (Corr.)	153539.0	1104					
Type III Sums of S	Squares						
Source	Sum of	Squares	D£	Meai	n Square	F-Ratio	P-Value
Zone Vbc Residual	1	93368.9 23536.0 24098.6	2 1 1101		46684.4 123536.0 21.888	2132.88 5644.03	0.0000 0.0000
Total (corrected)	1	53539.0	1104				

R-Squared = 84.3046 percent R-Squared (adjusted for d.f.) = 84.2618 percent Standard Error of Est. = 4.67846 Mean absolute error = 3.5678 Durbin-Watson statistic = 0.172493 (P=0.0000) BMc = -14.4476 + 11.7205*I1(1) - 2.45728*I1(2) + 14.1863*SLc where I1(1) = 1 if Zone=1, -1 if Zone=3, 0 otherwise I1(2) = 1 if Zone=2, -1 if Zone=3, 0 otherwise Model **7.3** Coneral Linear Model estimating biomass (**BM**e) in relation to soil

Model 7-3 General Linear Model estimating biomass (BMc) in relation to soil litter (SLc) within Impetus zones

Table 7-5 ANOVA for biomass (BMc) in relation to soil litter (SLc) within Impetus Zone

Source	Sum of Squares	D£	Mean Sq	uare	F-Ratio	P-Valu	ie
Model Residual	89541.1 63998.3	3 1101	298 58.	47.0 1275	513.48	0.000	00
Total (Corr.)	153539.0	1104					
Type III Sums of S	quares						
Source	Sum of	Squares	Df	Mea	n Square	F-Ratio	P-Value
Zone SLC Residual		54116.0 83636.7 63998.3	2 1 1101		27058.0 83636.7 58.1275	465.49 1438.85	0.0000 0.0000
Total (corrected)	1	53539.0	1104				
R-Squared = 58.318	percent						

R-Squared (adjusted for d.f.) = 58.2044 percent Standard Error of Est. = 7.62414 Mean absolute error = 5.6335 Durbin-Watson statistic = 0.124874 (P=0.0000)

After Impetus zoning, biomass could estimated better with eco- and bio-volume than with soil litter. Comparing the regression results according to Impetus zoning approach with those without zoning within whole Oueme Basin, the Impetus zoning yield better fitted models.

Comparing these results with those of Impetus zoning and AEZ, the classifying communes into departments yielded the similar results as Impetus zoning. Since Impetus zoning grouped all 62 Oueme communes only into three zones, such models were simpler and still included large variance of variables, so it was considered as the best zoning approach for relating vegetation parameters with each other at temporal and spatial dimensions.

Comparing the analyzed relation within vegetation parameters with and without zoning process, the follows are summarized:

• Eco-volume, then followed by bio-volume and soil litter could be used to estimate biomass properly, and this range hold on across all zoning approaches.

• The best fitted models were those obtained through classifying vegetation parameters into three Impetus zones.

Among vegetation parameters, the relation between eco-volume and biomass - as standard reference parameter - was closer than relations between bio-volume and biomass. Even if by definition, *ceteris paribus*, eco-volume contains only information about height of given vegetation, in comparison, bio-volume contains information about height and density of given vegetation.

7.3.2 Relations between vegetation dynamics and agro-ecological factors

7.3.2.1 Relations within four test communes

Using 18 years time series data of four tested communes, the results are presented in this section (Tables 7-6 up to 7-9).

 Table 7-6 Multiple regression models estimating vegetation parameters of

 N'dali commune

Model	R-squared%	P-value (model)
Vbc = 44.1842 - 0.170496*POPD	45.2	0.002
Vec = 41310.2 - 136.209*POPD	45.3	0.002
BMc = 25.3454 - 0.0914764*POPD	45.2	0.002

• n = 18

 Table 7-7 Multiple regression models estimating vegetation parameters of Save commune

Model	R-squared%	P-value (model)
Vbc = 152.059 - 0.410439*POPD	37.0	0.007
Vec = 51892.9 - 104.267*POPD	37.0	0.007
BMc = 43.5467 - 0.109901*POPD	37.0	0.007

• n = 18

Model	R-squared%	P-value (model)
Vbc = 171.701 - 0.100456*POPD	70.0	0.000
Vec = 47695.1 - 22.5106*POPD	70.0	0.000
BMc = 28.4059 - 0.0151567*POPD	70.0	0.000
10		

 Table 7-8 Multiple regression models estimating vegetation parameters of

 Bohicon commune

• n = 18

 Table 7-9 Multiple regression models estimating vegetation parameters of Pobe commune

Model	R-squared%	P-value (model)
Vbc = 123525.0 - 116.871*POPD	47.7	0.001
Vec = 63.2793 - 0.0303712*POPD	26.4	0.029
BMc = 4.32799 - 0.00211735*POPD	49.2	0.001

• n = 18

Dependent variables are bio-volume (Vbc), eco-volume (Vec) and biomass (BMc); independent variables are population density (POPD), precipitation and vegetative duration coefficient. For statistical analyses the multiple regression module is selected. Since the precipitation and vegetative duration coefficient are statistically not significant in relationship to vegetation parameters, such models are not presented. Comparing the models for the four tested communes, it can be concluded that population is the dominant driving force for the vegetation dynamics. This is a consequence, as with growing population the demand on land exploitation has been expanding. This result is in coinciding with the results of M'Barek (2005) and Doevenspeck (2004). The commune Bohicon with the population density from 502 to 869 inhabitants per km² from 1987 to 2004 was the highest within four tested communes. In Bohicon the relationships between vegetation dynamics and population were also stronger than those in other three communes.

7.3.2.2 Relations by Multiple Regression

7.3.2.2.1 Within the whole Oueme Basin

The results in table 7-10 show that bio-volume could be estimated better with available data than eco-volume and biomass. According to T-statistic values, longitude was the most influencing variable among the independent variables,

followed by population density. But precipitation and vegetative duration coefficient were also significant. The fourth model in the table 7-10 has been selected to predict vegetation dynamics scenarios till year 2025. It was discussed more in details in the chapter 8 on "Scenario of vegetation dynamics".

Table 7-10 Multiple regression models estimating vegetation parameters within	۱
whole Oueme Basin	

Model	R-squared %	P-value (model)
Vec = 26814.7 + 6.76903*Rain - 4.5541*POPD +	27.7	0.000
11758.2*LON - 65.9679*ELE	2,.,	0.000
Vbc = 351.645 + 0.0437651*Rain - 0.0215931*POPD	18.8	0 000
+ 80.5633*LON - 41.2452*LAT - 0.371619*ELE	40.0	0.000
Vbc = 567.047 + 0.0382258*Rain - 0.0219657*POPD +	48.1	0 000
95.9236*LON - 80.2588*LAT	10.1	0.000
Vbc = 253.749 + 0.0565757*Rain - 0.0171858*POPD	44 6	0 000
- 0.721665*ELE	11.0	0.000
BMC = -9.66523 + 0.00559963 * Rain - 0.00186846 * POPD	24.6	0.000
+ 13.9248*LON		
4405		

• n = 1105

7.3.2.2.2 Within Impetus zones

Further models are presented for the three sub-regions in Tables 7-11, 7-12 and 7-13.

Table 7-11 Multiple models estimating vegetation parameters using other driving forces within North Oueme

Model	R-squared %	P-value (model)
Vbc = 262.059 - 0.188817*POPD + 8.50157*LON -	10 6	0 000
19.6173*LAT	40.0	0.000
Vec = 91076.1 - 63.5425*POPD + 2278.77*LON -	15 6	0 000
5447.42*LAT	45.0	0.000
BMc = 59.6876 - 0.0511604*POPD + 1.18975*LON -	55 5	0 000
3.09906*LAT		0.000

• n = 1105

 Table 7-12 Multiple models estimating vegetation parameters using other

 driving forces within Middle Oueme

Model	R- squared %	P-value (model)
Vbc = 14.7263 - 0.0453753*POPD + 40.4281*LON +	51 5	0 000
0.196697*ELE	JT.J	0.000
Vbc = -0.0438639*POPD + 45.7031*LON + 0.216693*ELE	98.6	0.000
Vec = 4201.2 - 11.7169*POPD + 14533.3*LON +	55 1	0 000
47.673*ELE	55.1	0.000
Vec = -11.2858*POPD + 16038.2*LON + 53.3777*ELE	98.9	0.000
BMc = 5.31765 - 0.00952697*POPD + 9.00992*LON +	52 2	0 000
0.0409011*ELE	JZ • Z	0.000

• n = 1105

Table 7-13 Multiple models estimating vegetation parameters using other driving forces within South Oueme

Model	R-squared %	P-value (model)
Vbc = -31.6919 - 0.0288623*POPD + 164.904*LON - 0.432097*ELE	29.5	0.000
Vbc = -0.0287017*POPD + 151.971*LON - 0.485189*ELE	90.2	0.000
Vec = 6077.45 - 5.61053*POPD + 25707.0*LON - 60.3266*ELE	28.7	0.000
Vec = -5.64133*POPD + 28187.1*LON - 50.1452*ELE	92.4	0.000
BMC = -7.45359 - 0.00271598*POPD + 30.1246*LON - 4.80192*LAT	49.6	0.000
BMc = -0.00276707*POPD + 29.9104*LON - 5.83862*LAT	87.9	0.000

• n = 1105

Within three Oueme zones, population density was the most dominant driving force for the vegetation dynamics. Combining population density with normally two of coordinates could yield models to estimate vegetation dynamics reasonably. Comparing the results after Impetus zoning with those without zoning, only the models for North and Middle Oueme became some better, for the South Oueme the models were quit similar as those without zoning. Within whole Oueme communes, bio-volume was likely the best indicator, which could be estimated relatively properly by other available data of driving forces.

7.3.2.3 Relations by General Linear Model within Impetus Zones

Model 7-4 up to model 7-6 and table 7-14 up to table 7-16 present the results of the relations between three vegetation parameters and environmental driving forces by using General Linear Model (GLM). Within the three Impetus zones, the bio-volume could be estimated using GLM as a function of available agro-ecological driving forces better than for the two other vegetation parameters. Comparing the results for modelling vegetation parameters within Impetus zones, departments and AEZs (results at department and AEZ level were not presented here), it could be concluded that classifying Oueme communes into 3 Impetus zones yielded the best models, which could explain vegetation dynamics by other available environmental driving forces logically and with relatively strong relation.

7.3.2.3.1.1 Bio-volume

Vbc = 157.872 - 29.9459*I1(1) - 59.7707*I1(2) + 0.035084*Rain - 0.0237218*POPD - 21.7801*LAT + 79.9365*LON - 0.189806*ELE

where

11(1) = 1 if Zone=1, -1 if Zone=3, 0 otherwise 11(2) = 1 if Zone=2, -1 if Zone=3, 0 otherwise

Model 7-4 General linear model estimating bio-volume (Vbc) within three Impetus zones

 Table 7-14 Analysis of Variance for Vbc using other driving forces within three

 Impetus zones

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	1.20148E7 7.97786E6	7 1097	1.7164E6 7272.43	236.01	0.0000
Total (Corr.)	1.99926E7	1104			

Type III Sums of Squares

Source	Sum of Squares	D£	Mean Square	F-Ratio	P-Value
Zone	2.26455E6	2	1.13227E6	155.69	0.0000
Rain	53936.4	1	53936.4	7.42	0.0065
POPD	561041.0	1	561041.0	77.15	0.0000
LAT	30652.3	1	30652.3	4.21	0.0401
LON	809191.0	1	809191.0	111.27	0.0000
ELE	33889.0	1	33889.0	4.66	0.0309
Residual	7.97786E6	1097	7272.43		
Total (corrected)	1.99926E7	1104			

R-Squared = 60.096 percent R-Squared (adjusted for d.f.) = 59.8414 percent Standard Error of Est. = 85.2785 Mean absolute error = 59.0603 Durbin-Watson statistic = 0.271411 (P=0.0000)

7.3.2.3.1.2 Eco-volume

Vec = 51511.5 + 4948.46*I1(1) - 8487.8*I1(2) + 5.29748*Rain -5.05088*POPD + 13027.3*LON - 4278.04*LAT - 31.9809*ELE where I1(1) = 1 if Zone=1, -1 if Zone=3, 0 otherwise I1(2) = 1 if Zone=2, -1 if Zone=3, 0 otherwise

Model 7-5 General linear model estimating eco-volume (Vec) within three Impetus zones

Table 7-15 Analysis of Variance for Vec using other driving forces within three Impetus zones

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	1.1814E11 2.23318E11	7 1097	1.68771E10 2.03571E8	82.91	0.0000
Total (Corr.)	3.41458E11	1104			

Type III Sums of Squares

Source	Sum of Squares	D£	Mean Square	F-Ratio	P-Value
Zone	2.29438E10	2	1.14719E10	56.35	0.0000
Rain	1.22971E9	1	1.22971E9	6.04	0.0140
POPD	2.54351E10	1	2.54351E10	124.94	0.0000
LON	2.14917E10	1	2.14917E10	105.57	0.0000
LAT	1.18258E9	1	1.18258E9	5.81	0.0159
ELE	9.62102E8	1	9.62102E8	4.73	0.0297
Residual	2.23318E11	1097	2.03571E8		

3.41458E11 1104

Total (corrected)

R-Squared = 34.5987 percent R-Squared (adjusted for d.f.) = 34.1814 percent Standard Error of Est. = 14267.8 Mean absolute error = 10029.6 Durbin-Watson statistic = 0.257857 (P=0.0000)

7.3.2.3.1.3 Biomass

BMc = 36.0446 + 9.65129*I1(1) - 1.14388*I1(2) + 0.00526979*Rain -0.00203514*POPD + 14.7401*LON - 5.89945*LAT where I1(1) = 1 if Zone=1, -1 if Zone=3, 0 otherwise I1(2) = 1 if Zone=2, -1 if Zone=3, 0 otherwiseModel 7-6 General linear model

estimating biomass (BMc) within three Impetus zones

 Table 7-16 Analysis of Variance for biomass (BMc) using other driving forces

 within three Impetus zones

Source Sum of Squares Df Mean Square F-Ratio P-Value

Model	45180.9	6	7530.15	76.30	0.0000
Residual	108358.0	1098	98.6871		

Total (Corr.) 153539.0 1104

Type III Sums of Squares

Source	Sum of Squares	D£	Mean Square	F-Ratio	P-Value
Zone	7341.2	2	3670.6	37.19	0.0000
Rain	1228.76	1	1228.76	12.45	0.0004
POPD	4131.42	1	4131.42	41.86	0.0000
LON	34914.5	1	34914.5	353.79	0.0000
LAT	5658.07	1	5658.07	57.33	0.0000
Residual	108358.0	1098	98.6871		

153539.0 1104

Total (corrected)

R-Squared = 29.4263 percent R-Squared (adjusted for d.f.) = 29.0406 percent Standard Error of Est. = 9.93414 Mean absolute error = 7.62574 Durbin-Watson statistic = 0.218655 (P=0.0000)

Different zoning approaches yielded different models estimating vegetation dynamics. Impetus zoning approach classifies 62 Oueme communes into North, Middle and South zone, which yielded already relatively proper models estimating relations among vegetation parameters and relations between vegetation dynamics and other available environmental driving forces such as population dynamics, precipitation dynamics and variation of vegetative length combining with geographic coordinates.

Throughout all analyses, population has been the dominant driving force among factors such as precipitation and vegetative length. Since spatial rainfall pattern affects the population distribution over the region, one part of effect of population on vegetation might refer back to rainfall. By the former chapter, it was observed that when combined with soil parameters, precipitation became statistically significant in relationship to vegetation dynamics, as precipitation alone was not statistically significant to vegetation dynamics. So it was expected that if some temporal information about soil could be put in the analyses, such models should predict vegetation dynamics more precisely.

In this study, bio-volume was more suitable to indicate vegetation dynamics across time and space than eco-volume and biomass, since it responded more sensitively to population and precipitation dynamics.

Theoretically, vegetation should correlate more directly with evapotranspiration (EP).

Such data were not available during the period of this study, but for the further research this could be a very interesting point to test if bio-volume dynamics correlate with EP dynamics better than eco-volume and biomass dynamics with EP. As observed in the chapter 6, depending on data compiling and zoning approaches, eco-volume, bio-volume and biomass as indicators have responded differently to other driving forces. It is interesting to know, how those vegetation dynamics indicators would respond to more specific compiled driving forces likes EP and plant available water.

As described in Material & Methods, the calculation of vegetation dynamics was based on several observed data sets, i.e. the agro-statistics, LUC-satellite data, climatologic data and measured data. But considering its compiling procedures, it has also a reconstructive character. This was treated as observed vegetation dynamics. But theoretically, by each step of compiling processes, there were different possibilities to reconstruct the vegetation dynamics with different approaches, which might yield different reconstructed vegetation scenarios. Even if a vegetation dynamics scenario, based on a model selected in chapter 8, showed relative moderately strong coincidence with the observed vegetation dynamics, the need for fine-tuning the model does remain.

7.4 Partial Conclusion

In accordance with above results and discussion, the *a priori* stated hypotheses:

(i) Hypothesis 7-1: Bio-volume, eco-volume and biomass dynamics correlated closely with each other across the region and over time. Among vegetation parameters, the relations between eco-volume and biomass were closer than those between bio-volume and biomass.

(ii) 7-2: Bio-volume, eco-volume and biomass dynamics responded to population, precipitation and vegetative length dynamics differently across the region and over time. In this study, bio-volume was more suitable to indicate vegetation dynamics across time and space than eco-volume and biomass, since it responded more sensitively to population and precipitation dynamics.

8 Scenarios of Vegetation Dynamics and Eco-precipitation

8.1 Introduction

8.1.1 Objective

Temporal and spatial vegetation dynamics is a crucial issue in relationship with climate change and regional water cycle in the tropical Oueme Basin Benin, as is the case in the Sahel. Globally, the function of vegetation, especially the possible contribution of forest to precipitation is an old debate (Kerfoot O. 1968, Stone P. H. and Quirk W. T. 1975, Lee R. 1978, Huang B.W. 1981, Charney J G. Anthes A.1984, Sandstrom K. 1998, Shi P.L. Yan J.Zh. 2001). There are controversies about possible influences of forest on horizontal (occult) and vertical precipitation processes. There are large observations used as contrary evidences, - even about the possible influences of forest on the surface runoffs -, but still there is no simple answer of "yes" or "no" (Hewlett J.D., Helvey J.D. 1970, Bosch J.M. 1979, Bosch J.M., Hewlett J D. 1982, Hewlett J D, Bosch M. 1985, Scott. F 1997, Giambelluca. W, Fox J, Yarnasarn S, et al. 1999, Calder 2000, Kiersch 2000, Los, S. O. & Weedon G. P., et al. 2006).

However, the former research results about this issue, especially about the feedbacks of vegetation and precipitation of a catchment region, made following agreements possible: beyond the analytic methods (empirical or modelling), the research results about the feedbacks between vegetation and precipitation depend specifically on selected regional climate regimes, ground surface roughness, soil-hydro-atmospheric water cycles, thermal dynamics, human activities, bio-physiological characters of vegetation stands, spatial scales of catchment and forest area, and finally on the temporal scale of datasets. The results obtained from a region could not be transferred easily to other regions and still most theories about this issue are hardly to be generalized.

Even so, as described by Sandstrom (1998) for a semi-arid tropical region, the feedback between vegetation and precipitation might be strong enough to be identified. This was the reason, why the Oueme Basin in Benin, West-Africa is selected to study the feedback between vegetation and precipitation dynamics. Since the interaction between vegetation and precipitation should be affected, -even

103

covered-, by a complex of other influencing factors, for instance climate and geographic conditions, it is crucial for the study to extract possibly the evidence of feedback between vegetation and precipitation.

8.1.2 Hypothesis

To test the relationship between vegetation, precipitation and population dynamics within the Oueme Basin, the following hypotheses were tested with two built up scenarios:

8-1: Temporally and spatially, bio-volume should correlate positively with precipitation but negatively with population dynamics in the Oueme Basin.

8-2: Micro-climate, especially the eco-precipitation, should be influenced by ecovolume dynamics in the Oueme Basin, as shown in figure 8-1.

Figure 8-1 Hypothesis of eco-volume as related to eco-precipitation

8.2 Material and method

Based on the results of chapters 7 and 8 and using the same data sets (1987-2004), the model predicting vegetation dynamics was discussed more in detail in this chapter using the vegetation dynamics indicator bio-volume as an example and using datasets as described under Chapter 3. The scenario of eco-precipitation was discussed in relationship with eco-volume.

Initially, Janssens, Deng and Mulindabigwi (2004) defined eco-precipitation (Pe') as the difference between observed and minimum precipitation (Pe'=P-P_min; P=observed precipitation in a concrete year; P_min=simulated precipitation, whereby vegetation = zero). In this study the Eco-precipitation (Pe) is defined as the difference between the predicted precipitations, which are caused by variation of vegetation dynamics, from bare (zero) fallow vegetation up to eco-climax vegetation. Together with the definition of eco-volume, it is an attempt to extract the direct feedbacks between vegetation and precipitation. A concrete eco-precipitation (Pe_ac) in a certain year is defined as the simulated precipitation (P_f) in a certain year minus predicted precipitation at minimum/zero vegetation cover (P_min) in equation 8-1.

Equation 8-1

The theoretic maximum eco-precipitation (Pe_max) could be obtained as: predicted maximum precipitation at maximum eco-volume (P_max) minus predicted precipitation by minimum eco-volume (P_min) in equation 8-2.

Pe_max = P_max – P_min Equation 8-2

Since the maximum eco-volume should theoretically be obtained from an eco-climax stand, the measured forest eco-volume values in the tested sites were used as maximum eco-volume values, as eco-climax stands could only be approximated in one single case in this study.

8.3 Scenarios of vegetation dynamics

8.3.1 Model description

The followed selected model to estimate temporal and special bio-volume dynamics based on the facts, that the time series of soil and economic indicators were not

available for this study, but the geographic distribution of such indicators were relative regular by the preliminary explorative descriptive statistic analyses. The ANOVA for bio-volume as an example shows the mathematic details about the relationship between vegetation dynamics and climate, anthropogenic driving forces and elevation variation in space and time. As can be recognized in the model 8-1 and figure 8-1, temporally and spatially, bio-volume correlates positively with precipitation but negatively with population dynamics in the Oueme Basin.

Vbc = 253.749 + 0.0565757*Rain - 0.0171858*POPD - 0.721665*ELE

Model 8-1 Selected model to predict bio-volume (Vbc) dynamic scenario

Table 8-1 ANOVA for bio-volume (Vbc) estimated by precipitation (Rain), population density (POPD) and elevation (ELE)

e: Vbc				
Estimate	St	andard Error	T Statistic	P-Value
253.749 0.0565757 -0.0171858 -0.721665	17.8324 0.0150455 0.00311086 0.0243136		14.2297 3.7603 -5.52443 -29.6816	0.0000 0.0002 0.0000 0.0000
Analysis	s of Va	riance		
Sum of Squares	D£	Mean Squar	e F-Ratio	P-Value
8.91694E6 1.10767E7	3 1101	2.97231E 10060.	6 295.44 6	0.0000
	e: Vbc Estimate 253.749 0.0565757 -0.0171858 -0.721665 Analysis Sum of Squares 8.91694E6 1.10767E7	e: Vbc Estimate 253.749 1 0.0565757 0.0 -0.0171858 0.00 -0.721665 0.0 Analysis of Va Sum of Squares Df 8.91694E6 3 1.10767E7 1101	e: Vbc Standard Estimate Error 253.749 17.8324 0.0565757 0.0150455 -0.0171858 0.00311086 -0.721665 0.0243136 Analysis of Variance Sum of Squares Df Mean Square 8.91694E6 3 2.97231E 1.10767E7 1101 10060.	Standard T Estimate Error Statistic 253.749 17.8324 14.2297 0.0565757 0.0150455 3.7603 -0.0171858 0.00311086 -5.52443 -0.721665 0.0243136 -29.6816 Analysis of Variance Sum of Squares Df Mean Square F-Ratio 8.91694E6 3 2.97231E6 295.44 1.10767E7 1101 10060.6

Total (Corr.) 1.99936E7 1104

R-squared = 44.599 percent

R-squared (adjusted for d.f.) = 44.448 percent Standard Error of Est. = 100.302

Mean absolute error = 73.4598

Durbin-Watson statistic = 1.69361 (P=0.0000)

Lag 1 residual autocorrelation = 0.153018

Figure 8-2 Estimated surface diagram using model 8-1

8.3.2 Observed vegetation dynamics

The figure 8-3 shows the trend line of observed bio-volume dynamics of all Oueme communes from 1987 to 2004. Since for each year the 62 communes were ranged from South to North, it could be seen that within the observation period, bio-volume values were diminishing south-north-wards. Across time, bio-volume values were slightly diminishing, too.

Figure 8-3 Observed bio-volume dynamics (Vbc) of 62 Oueme communes: 1987-2004

Figure 8-4 showed the same trend lines as shown in the figure 8-3, but only with five year's interval data.

The trend line of bio-volume in year 2004 (figure 8-5) showed clearly that bio-volume was diminishing along a south-north gradient.

Observed Bio-volume (Vbc) in 1989, 1994, 1999 & 2004

Figure 8-4 Observed bio-volume dynamics (Vbc) of 62 Oueme communes in five years interval: 1989-2004

Figure 8-5 Observed bio-volume dynamics (Vbc) of 62 Oueme communes in year 2004

8.3.3 Predicted vegetation dynamics

Predicted Bio-volume (Vbc_f): 1987-2025

Figure 8-6 Predicted bio-volume dynamics (Vbc_f) of 62 Oueme communes: 1987-2025

Figure 8-7 Predicted bio-volume dynamics (Vbc_f) of 62 Oueme communes in five years interval: 2005-2025

As shown in the figures 8-6 and 8-7, the bio-volume dynamics were diminishing over time and along a south-north trend. Within the predicted values, in the north department Donga, two communes Ouake and Kopargo would firstly become negative in year 2017. The south-north trend could be seen more clearly in figure 8-8.

Figure 8-8 Predicted bio-volume (Vbc_f) dynamics of 62 Oueme communes in year 2004

8.3.4 Observed vs. predicted

The figure 8-9 shows the observed versus predicted bio-volumes from 1987 to 2004. The figures 8-10 and 8-11 show more clearly the details of the observed versus predicted bio-volumes. Even if the predicted bio-volume values were higher than observed values in middle and lower than those in north Oueme Basin, and the model did not take soil and economic dynamics into account, the scenario of bio-volume based on hypothesis 8-1 showed identical trends in comparison with observed values. Bio-volume was diminishing both for observed and predicted values, within the observation period (1987-2004), along a south-north-wards gradient. And across the time, observed and predicted bio-volume values were coincidently diminishing, too. Thus it can be concluded that the hypothesis 8-1 was

confirmed: temporally and spatially, bio-volume correlated positively with precipitation but negatively with population dynamics in the Oueme Basin.

Figure 8-9 Observed and predicted bio-volume of 62 Oueme communes: 1987-2004

Figure 8-10 Observed and predicted bio-volume of 62 Oueme communes in five years interval: 1989-2004

Bio-volume: observed (Vbc) vs. predicted (Vbc_f): 2004

Figure 8-11 Observed and predicted bio-volume of 62 Oueme communes in years 2004

8.4 Scenarios of eco-precipitation

8.4.1 Model description

8.4.1.1 Static regional model

The following model 8-2 was selected to estimate spatial precipitation variability throughout 62 Oueme communes, which used eco-volume and three geographic coordinates as independent variables. In the analyses each commune was put into simulation as one unit. Even if the model could explain only 26.5% variability of precipitation, the model was statistically significant with a P-value of 0.001.

Rain_04 = 1543.11 + 0.00133381*Vec - 73.2149*LAT + 51.7085*LON +

0.529908*ELE

```
Model 8-2 Selected model predicting regional precipitation variability at communal level
```

Table 8-2 ANOVA for precipitation (Rain_04) estimated by eco-volume (Vec) and three geographic coordinates

Dependent variable: Rain_04 Standard т Statistic P-Value Parameter Estimate Error CONSTANT 1543.11 186.157 8.28932 0.0000 0.00133381 0.000573837 2.32437 0.0237 Vec LAT -73.2149 32.9114 -2.2246 0.0301

LON ELE	51.7085 0.529908	2 0.	6.6283 309212	1.94186 1.71374	0.0571 0.0920		
Analysis of Variance							
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value		
Model Residual	105027.0 290569.0	4 57	26256.8 5097.71	5.15	0.0013		

Total (Corr.) 395596.0 61

R-squared = 26.5491 percent

R-squared (adjusted for d.f.) = 21.3946 percent

Standard Error of Est. = 71.3982

Mean absolute error = 52.034

Durbin-Watson statistic = 1.84352 (P=0.2007)

Lag 1 residual autocorrelation = 0.0706761

Figure 8-12 Estimated response surface using model 8-2

As defined in the section 8.2 Material and Method, the actual eco-precipitation (Pe_ac) is proportionally identical with the coefficient of eco-volume in the model 8-2, which implies that by calculating Pe_ac, the effects of geographic variation on precipitation are removed and the final effects show directly the precipitation variability induced by eco-volume variation.

There are lots of studies on the relations between vegetation dynamics and rainfall variability, but most of them are about the vegetation response to the rainfall (Klein & Roehrig, 2006, Zhang et, 2005, Vanacker et, 2005, Budde et, 2004, White et, 1997). There are few studies about the interactive feedback between vegetation and rainfall variability. Wang et al (2006a & 2006b) analysed relations between the normalized difference vegetation index (NDVI) anomalies early in the growing season and the precipitation and surface temperature later in summer over the North American Grasslands. They concluded that vegetation may influence summertime climate

variability via the land-atmosphere hydrological cycles over these semi-arid grasslands. In comparison to other research, the model 8-2 in this study estimates only the feedback of the *spatial* vegetation dynamics to the regional precipitation variability. More differently in this study, the eco- and bio-volume are used instead of NDVI in most other studies. The eco- and bio-volume have different physical means as NDVI. Moreover, eco- and bio-volume are carried out by combining data of field measurement, agricultural statistics and satellite observation. Hence, eco- and bio-volume are validated indicators that might be more suitable to test the feedback between vegetation and precipitation. Even though in this study the precipitation variability was estimated only by eco-volume variability and geographic coordinates. There remain several steps to yield a better estimation. The thermal dynamics, i.e. the temperature variability, thus the variability of evapotranspiration should contribute to estimating precipitation variability. Also the precipitation data are known as containing unaccounted "noises", which could be normalized and standardized and should improve estimating the relation between precipitation and vegetation.

8.4.1.2 Temporal and regional model

Using General Linear Model (GLM) the following model (model 8-3) was obtained, as year was set as a categorical variable, which means that the relationship between precipitation, eco-volume and three geographic coordinates was analyzed within each of the 18 years (1987-2004). The same relationships were found by using only the data of year 2004 as presented in model 8-2. That implies that the relationship between precipitation, eco-volume and three geographic coordinates held on throughout the period of 18 years. As can be identified in table 8-3, throughout 18 years, 55.02% variation of precipitation could be explained by the variability of eco-volume and three geographic coordinates. The figure 8-3 shows that throughout 18 years the precipitation was influenced by eco-volume dynamics in the Oueme Basin.

Rain = 1369.12 + 80.3592*11(1) + 227.48*11(2) + 142.964*11(3) - 79.7901*11(4) + 104.593*11(5) - 214.046*11(6) - 54.5553*11(7) - 105.733*11(8) + 91.5283*11(9) + 2.13254*11(10) + 133.447*11(11) - 222.388*11(12) + 215.699*11(13) - 189.722*11(14) - 247.902*11(15) - 19.4445*11(16) + 54.2362*11(17) + 0.000763527*Vec + 51.3034*LON - 59.9905*LAT + 0.703544*ELE where 11(1) = 1 if Year=1987, -1 if Year=2004, 0 otherwise

I1(2) = 1 if Year=1988, -1 if Year=2004, 0 otherwise
I1(3) = 1 if Year=1989, -1 if Year=2004, 0 otherwise
I1(4) = 1 if Year=1990, -1 if Year=2004, 0 otherwise
I1(5) = 1 if Year=1991, -1 if Year=2004, 0 otherwise
I1(6) = 1 if Year=1992, -1 if Year=2004, 0 otherwise
I1(7) = 1 if Year=1993, -1 if Year=2004, 0 otherwise
I1(8) = 1 if Year=1994, -1 if Year=2004, 0 otherwise
I1(9) = 1 if Year=1995, -1 if Year=2004, 0 otherwise
I1(10) = 1 if Year=1996, -1 if Year=2004, 0 otherwise
I1(11) = 1 if Year=1997, -1 if Year=2004, 0 otherwise
I1(12) = 1 if Year=1998, -1 if Year=2004, 0 otherwise
I1(13) = 1 if Year=1999, -1 if Year=2004, 0 otherwise
I1(14) = 1 if Year=2000, -1 if Year=2004, 0 otherwise
I1(15) = 1 if Year=2001, -1 if Year=2004, 0 otherwise
I1(16) = 1 if Year=2002, -1 if Year=2004, 0 otherwise
I1(17) = 1 if Year=2003, -1 if Year=2004, 0 otherwise

Model 8-3 General Linear Model for estimating precipitation variability (Rain) using eco-volume (Vec) and three geographic coordinates from 1987 to 2004

Table 8-3 ANOVA for precipitation (Rain) in relation to eco-volume (Vec) and three geographic coordinates from 1987 to 2004

Source	Sum of Squares	D£	Mean Sq	uare	F-Ratio	P-Value	9
Model Residual	2.47019E7 2.01925E7	21 1083	1.176 186	28E6 44.9	63.09	0.000)
Total (Corr.)	4.48943E7	1104					-
Type III Sums of S	quares						
Source	Sum of	Squares	D£	Mean	Square	F-Ratio	P-Value
Year	2.	36197E7	17	1.	3894E6	74.52	0.0000
Vec	1	55121.0	1	15	5121.0	8.32	0.0039
LON	3	25969.0	1	32	25969.0	17.48	0.0000
LAT	3	03068.0	1	30	3068.0	16.25	0.0001
ELE	4	81805.0	1	48	31805.0	25.84	0.0000
Residual	2.	01925E7	1083	1	.8644.9		

Total (corrected) 4.48943E7 1104

R-Squared = 55.0222 percent

R-Squared (adjusted for d.f.) = 54.1501 percent

Standard Error of Est. = 136.546

Mean absolute error = 100.963

Durbin-Watson statistic = 1.81885 (P=0.0013)

Figure 8-13 Estimated response surface using model 8-3

8.4.2 Observed vs. predicted precipitation 2004

In followed section, the results based on model 8-2 are presented.

The figure 8-14 shows the values of predicted versus observed annual precipitation of all 62 Oueme communes in year 2004. The residues of precipitation in the figure 8-15 mean the predicted precipitation minus the observed precipitation. Even the selected model 8-2 explained only ca. 26% variability of precipitations across the Oueme communes with positive precipitation residues could mean that these were the communes where eco-volume had been diminishing faster than recorded statistic or monitored satellite data.

Precipitations: observed (P) vs. Predicted (P_f) (2004)

Figure 8-14 Observed precipitation (P) versus predicted precipitation (P_f) in years 2004 of 62 Oueme communes

Figure 8-15 Residues of precipitation when subtracting observed precipitation (P) from predicted precipitation (P_f) in year 2004 of 62 Oueme communes

It could be seen in the figure 8-16, that the observed precipitation values were out of the range of predicted precipitations with minimum and maximum eco-volumes, since the model did not take atmospheric circulation into account. Precipitations: observed vs. predicted (2004)

Figure 8-16 Observed (P) and predicted (P_f), minimum (P_min) and maximum (P_max) precipitations in year 2004 of 62 Oueme commune

Figure 8-17 Predicted concrete Eco-precipitation (Pe_ac) vs. observed eco-volume (Vec) in year 2004 of 62 Oueme commune

According to model 8-2, the figure 8-17 shows clearly that predicted concrete ecoprecipitations varied consistently with observed eco-volume in 2004 throughout the whole Oueme Basin. Even if for the whole Oueme Basin, only 26% variability could be explained, using the same multiple regression module as for model 8-2, the specific models for South-, Middle- and North-Oueme Basin show the difference (table 8-4). The sub-regional models show generally higher determination grades as this for the whole Oueme Basin (model for South-Oueme: R^2 =49%, Middle-Oueme: R^2 =82%, North-Oueme: R^2 = 22%). According to model 8-2, over all communes in the Oueme Basin, 10000 m³/ha eco-volume mean 13.34 mm precipitation, which means that 1 m of eco-height would contribute to a supplement of 13.34 mm precipitation.

Sub-	Model	R ²	P-value
region		(%)	(model)
South	Rain_04 = 2599.66 + 0.00115957*Vec + 118.083*LON	49.5	0.000
	- 256.036*LAT + 1.23222*ELE		
Middle	Rain_04 = 817.5 - 0.00267803*Vec - 261.194*LON +	81.8	0.043
	152.105*LAT - 0.462239*ELE		
North	Rain_04 = 1629.97 - 0.000819803*Vec +	22.3	0.559
	17.2942*LON - 47.8743*LAT + 0.0873224*ELE		

Table 8-4 Sub-regional models estimating relationship between precipitation (Rain_o4) and eco-volume (Vec) in year 2004

Contrary to figure 8-17, the figure 8-18 shows the relationship between ecoprecipitation by its primary means (=Pe', Janssens et al 2004) and eco-volume (Vec) in year 2004 of 62 Oueme commune. The fitted regression model for whole Oueme Basin (Pe' = 0.00133291*Vec) has a determination of 51%. The sub-regional models are Pe' = 0.00140099*Vec for South-Oueme, Pe' = 0.000514667*Vec for Middle-Oueme and Pe' = 0.00150874*Vec for North-Oueme (Figure 8-18).

The figure 8-19 shows, the predicted communal maximum precipitations with maximum eco-volumes ranged from 126.9 to 195.6 mm north-south-ward. The actual eco-precipitations in 2004 ranged from 4.0 to 132.0 mm in Cotonou und Porto-Novo, especially.

Initial Eco-precipitation (Pe') vs. Eco-volume (Vec)

Figure 8-18 Initial eco-precipitation (Pe') vs. eco-volume (Vec) in year 2004 of 62 Oueme commune

Figure 8-19 Concrete (Pe_ac) versus maximum (Pe_max) eco-precipitation in year 2004 of 62 Oueme communes

The figure 8-20 shows, the ratios of concrete eco-precipitation (Pe_ac) to predicted precipitation in year 2004 in 62 Oueme communes ranged from 0.3% to 9.8% in Cotonou and Porto-Novo, respectively. The ratios of actual to maximum eco-precipitation ranged from 2.1% to 68.5% in Cotonou and Ouesse; to the contrary, the ratios of maximum eco-precipitation to predicted precipitation in 2004 ranged from 10.0% to 16.2% in Ouesse and Cotonou. The ratios of the average concrete eco-precipitation to the average observed and average predicted precipitation were 5.25% and 5.23%, respectively.

Figure 8-20 Ratios of concrete (Pe_ac) to maximum (Pe_max) ecoprecipitations and these to predicted precipitation (P_f) in 2004

Even if only 26.5% variability of precipitation across whole Oueme Basin in year 2004 could be explained by the static regional model 8-2 using eco-volume and three geographic coordinates as independent variables, the model was statistically significant with a P-value of 0.001. Moreover, the sub-region models had generally higher determination grades than that of the whole Oueme Basin (model for South-Oueme: R^2 =49%, Middle-Oueme: R^2 =82%). The model 8-3 showed, 55.02% variation of precipitation could be explained by variability of eco-volume and three geographic coordinates across Oueme Basin and throughout 18 years. The results in
this empirical study are similar as the results of Paeth (2006) and Wang et. (2006a and 2006b) using modelling approach applied in tropical and northern Africa, and North-America grasslands, respectively. The notion of eco-precipitation (Pe) defined as the predicted precipitation (P f) minus predicted precipitation by minimum/zero vegetation cover (P min) supplies a promising tool together with the notion of ecovolume to detect the relationship between precipitation and vegetation for empirical study, which base on the field researches and combine field, statistic and satellite data sets. Since by this definition the concrete eco-precipitation (Pe_ac) is proportionally identical with the coefficients of eco-volume in the model 8-2 and model 8-3, which implies that by calculation of Pe ac, the effects of geographic variation on precipitation are removed and the final effect shows the precipitation variability induced only by eco-volume variation. In this study the precipitation variability was estimated only by eco-volume and geographic coordinates. Further steps remain to provide a better estimation. The thermal dynamics, i.e. the temperature variability, thus the variability of evapotranspiration should contribute to estimate precipitation variability. Also the precipitation data was known as containing "noise", which could be normalized and standardized and should improve estimating the relation between precipitation and vegetation. Distinguishing precipitation data into "wet" and "dry" years might improve also deeper understanding of feedback between vegetation and precipitation. Considering above results, the Hypothesis 8-2 can be accepted: micro-climate, especially the eco-precipitation, was influenced by eco-volume dynamics in the Oueme Basin.

8.5 Partial Conclusion

Results agreed largely with the initial hypotheses:

According to Hypothesis 8-1: Temporally and spatially, bio-volume correlated positively with precipitation but negatively with population dynamics in the Oueme Basin.

According to Hypothesis 8-2: Micro-climate, especially the eco-precipitation, was influenced by eco-volume dynamics in the Oueme Basin.

9 General Conclusion

To investigate "Vegetation Dynamics in Oueme Basin, Benin, West-Africa", and more particularly the possible feedback between vegetation and precipitation empirically, a new quantitative vegetation appraisal was developed. The newly defined concepts of eco-volume and bio-volume were used as alternative vegetation indicators as opposed to the standard biomass indicators. The portion of precipitation variability originating from vegetation variability was defined as eco-precipitation. The *in situ* measured agro-ecological and farming system parameters of all three vegetation types were used to validate the agricultural statistics and the satellite land cover data. Accordingly, the temporal and spatial vegetation dynamics of the Oueme Basin in Benin, West-Africa were reconstructed. The general conclusions are as follows:

- The farming systems in the Oueme Basin are experiencing an ongoing intensifying process according to observed CIC and R values.
- Regarding litter fall the relation with rainfall was only moderate but strong with soil carbon content.
- Spatial vegetation dynamics in 2004 were characterized in a twofold way:
 - a. All three vegetation indicators were positively and closely correlated across time and space. That implies that knowing one of them suffices to reasonably and precisely predict the other one. Among them, biomass correlated more closely with eco-volume than with bio-volume.
 - Among all considered environmental parameters, soil parameters determined almost dominantly the vegetation, followed by geographic coordinates, population density, precipitations and vegetation length.
- Temporal and spatial vegetation dynamics from 1987 to 2004 showed similar tendencies as the spatial vegetation dynamics in 2004:
 - a. The different zoning approaches (= different scaling methods) affected the relationships between vegetation and other environmental driving forces. Generally, the Impetus zoning was more satisfactory than both the Department and the AEZ zoning approaches. The Impetus zoning yielded already relatively proper models estimating relations within vegetation parameters and relations between vegetation dynamics and other available environmental driving forces such as population dynamics, precipitation

dynamics and variation of vegetative length combining with geographic coordinates. However, within IMPETUS zones, the relationship between vegetation and precipitation became statistically not significant whereas the relationship between vegetation and vegetative length (C_veg) became significant.

- b. Within vegetation parameters, the relation between eco-volume and biomass -as standard reference parameter - was closer than the relation between bio-volume and biomass.
- c. Throughout all analyses, population has been the dominant driving force among factors such as precipitation and vegetative length.
- d. Bio-volume responded better to environment driving forces than ecovolume and biomass across time and space. Bio-volume, as well as ecovolume and biomass correlated positively with precipitation but negatively with population density and showed negative trends along the latitude and altitude gradients.
- Prospective development scenarios were simulated:
 - a. The scenarios of bio-volume in relation to precipitation and population dynamics showed that within the observation period (1987-2004), biovolume diminished spatially from South to North, and temporally from 1987 to 2004. From simulation runs, this trend extended through to 2025. In the northern department Donga, two communes, Ouake and Kopargo would firstly reach zero bio-volumes in the year 2017.
 - b. The scenarios of precipitation versus eco-volume showed that from a static regional approach, eco-volume together with three geographic coordinates could explain 26% of the variability of precipitation in the whole Oueme Basin in year 2004 by the model 8-2. By adding a temporal dimension to the latter model, the GLM model 8-3 could explain 55.02% of the precipitations by the independent variables eco-volume and three geographic coordinates across Oueme Basin and throughout 18 years. When relating eco-volume directly with initial eco-precipitation, determination reached 51% for the whole Oueme basin.

Based on the vegetation dynamics and on the significant relation between ecovolume and eco-precipitation across the Oueme basin, the major hypothesis as to the positive reciprocal feedback between vegetation and precipitation could be accepted, even if R-squared values of models were generally low.

10 References

Adapted Farming in West Africa: Issues, Potentials and Perspectives. Final Report (1986-1999) of the Special research Programme 308 "Adapted Farming in West Africa". / Frieder Graef, Peter Lawrence and Matthias von Oppen (Eds). - Verlag Grauer, Stuttgart, 2001.

Akker, van den E. 1998. Benin: Einsatz technischer und institutioneller Innovationen in der kleinbäuerlichen Landwirtschaft. In: Technischer Fortschritt im Spannungsfeld von Ernährungssicherung und Ressourcenschutz. Tropentag 1997. Universität Hohenheim.

Akker, van den E. 1999. Major crops and their regional distribution in Benin. www.uni-hohenheim.de/~atlas308/c_benin/projects/c3_2/html/english/btext_en_c3_2.htm

Akker, van den E. 2000. Makroökonomische Bewertung der Auswirkungen von technischen und institutionellen Innovationen in der Landwirtschaft in Benin. Beuren und Stuttgart, 2000. P. 332.

Alchian, A. A. and Demsetz, H. 1972. Production, Information Costs and Economic Organization. American Economic Review, December 1972: 777-95pp.

Anthes A., Enhancement of convective precipitation by mesoscale variations in vegetative covering in semi-arid regions[A]. J. Clim. Appl. Meteor., 1984, 23:541 \sim 554.

Bohlinger, B. 1998. Die spontane Vegetation in traditionellen Anbausystemen Benins – ihre Bedeutung und Möglichekeiten des Manaegements. PLITS 16 (1) 1998, Stuttgart. P. 175.

Bosch J M, Hewlett J D., Review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration [J]. Journal of Hydrology, 1982, $55:3 \sim 23$.

Bosch J M., Treatment effects on annual and dry period stream flow at Cathedral Peak [J]. S. Afr. For. J., 1979, 108: 29-38.

Budde M E, G Tappan, J Rowland, J Lewis & L L Tieszen, 2004. Assessing land cover performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis. Journal of Arid Environments, 59 (3): 481-498.

BulletindesRessoucesPhytogénétiques.No.133.www.ipgri.cgiar.org/pgrnewsletter/articlefr.asp?idarticle=100&idissue=133.

Calder. Land Use Impacts on Water Resources [EB/OL]. Land Water Linkages in Rural Watersheds Electronic Workshop, 18 Sept.-27 Oct. FAO, 2000.

Cellule Macroeconomique de la presidence de la Republique du Benin (1997): Rapport sur l'état de l'Economie Nationale. Cotonou, Benin.

Charney J G, Stone P H, Quirk W T, Drought in the Sahara: a biogeophisical feedback mechanism [J].Science, 1975,187(4175): 434~435.

Cheung, S.N.S. 2003. Economic Explanation. <u>www.stevenxue.com</u>.

Cheung, Steven N S, 1998. "Deng Xiaoping's Great Transformation," Contemporary Economic Policy, Oxford University Press, vol. 16(2), pages 125-35, April.

Cheung, Steven N. S. Will China Go 'Capitalist'?: an Economic Analysis of Property Rights and Institutional Change. London: The Institute of Economic Affairs, 1982.

Chimhowu A. and Woodhouse P. 2006. Customary vs. private property Rights? Dynamics and Trajectories of Vernacular Land Markets in Sub-Saharan Africa. Journal of Agrarian Change 6 (3), 346–371.

Coase, R. H. 1937. The Nature of the Firm. Economica (NS), November 1937: 386-405pp.

De la Roussilhe, F. (1980) Le Manguier. G.P. Maisonneuve et Larose, Paris, 312 p.

De Laethauwer, B. 2004. Estimation de la biomasse et de l'indice foliaire du manguier dans le bassin du Haut-Ouémé au Bénin. Diploma-Thesis. Hogeschool Gent.

DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and the Environment: Vol. 2, No. 5 pp. 249–257

Deng, Zh.X. & Janssens, M.J.J., 2006. Litter Fall Production in West-African Forests and Plantations. In: "Prosperity and Poverty in a Globalized World: Challenges for Agricultural Research". Tropentag 2006, October 11 - 13, Bonn, Germany.

Deng, Zh.X., Janssens, M.J.J. 2004. Shaping the future through pruning the mango tree?--A case study in Upper-Ouémé, North Benin. International Conference on integrated water resource management of tropical river basins, October 2004, Cotonou, Benin.

Diederich, Malte 2007. The precipitation datasets: 1). The climatologic precipitation dataset from 1987 to 2004 for the 62 Oueme communes; 2). The precipitation data from 2005 to 2025 for the 62 Oueme communes, simulated by the REMO-Model and based on the assumptions of IPCC-A1B with strong forcing scenarios and strong FAO land use change assumptions. Personal communication. The Meteorological Institute of the University Bonn, Germany.

Doevenspeck, M. 2004. Migration im ländlichen Benin Sozialgeographische Untersuchungen an einer afrikanischen Frontier. Dissertation, Bayreuth. P. 274.

DPP/MAEP, 2006, Annuaire statistique, campagne agricole 1987-2005.

FAOSTAT 2004. www.fao.org.

Financial Daily from THE HINDU group of publications. Tuesday, May 20, 1997. http://www.indiaserver.com/businessline/1997/05/20/stories/12200032.htm

Foley JA, DeFries RS, Asner, GP, et. (2005) Global Consequences of Land Use. Science 309 (5734), 570.

Fresco, L. and E. Westphal. (1988). 'Hierarchical classification of farming systems', Experimental Agriculture 24: 399-419.

Frieder Graef, Peter Lawrence and Matthias von Oppen, 2001. Adapted Farming in West Africa: Issues, Potentials and Perspectives. Final Report (1986-1999) of the Special research Programme 308 "Adapted Farming in West Africa". / (Eds). - Verlag Grauer, Stuttgart, 2001.

Fritz, C. 1996. Boden- und Standortsmuster in geomorphen Einheiten Süd-Benins (Westafrika). Hohenheimer Bodenkundliche Hefte, 29. Universität Hohenheinm, Stuttgart. P. 143.

Giambelluca. W, Fox J, Yarnasarn S, et al. Dry season radiation balance of land covers replacing forest in northern Thailand [J]. Agricultural For Meteorology, 1999, 95(1): $53\sim65$.

Heldmann, Moritz 2007. Population projection data from 1987 to 2025 for the 62 Oueme communes, based on projection of the census data of Benin in year 1992 and 2002. Personal communication. The Institute of Ethnology of the University of Cologne, Germany.

Herrmann, L. 1996. Staubdeposition auf Böden West-Afrikas. Eigenschaften und Herkunftsgebiete der Stäube und ihre Einfluss auf Boden- und Standortseigenschaften. Hohenheimer Bodenkundliche Hefte, 36. Universität Hohenheim, Stuttgart. P. 239.

Hewlett J D, Bosch.M. The dependence of storm flows on rainfall intensity and vegetal cover in South Africa [J], Journal of Hydrology, 1984, 75: $365 \sim 381$.

Hewlett J D, Helvey J D., Effects of forest clearfelling on the storm hydrograph [J]. Water Resources Research.1970, 6(3): 768 \sim 782.

Huang B.W., Estimating the function of forest more explicitly [J], Geoscience, 1981, (1): $1 \sim 3$.

IMPETUS 2007. Databank, University of Cologne. www.impetus.uni-koeln.de.

Janssens, M.J.J., Deng, Zh.X. & Mulindabigwi, V. 2004. Contribution agronomique à la validation des scénarios hydrologiques du bassin de l'Ouémé. International

Conference on integrated water resource management of tropical river basins, October 2004, Cotonou, Benin.

John D.M. 1973. Accumulation and decay of litter and net production of forest in tropical West Africa. –OIKOS 24: 403-445.

Judex, Michael 2007. The satellite land cover data of Global Landcover Classification (GLC2000) of year 2000. Personal communication. The Remote Sensing Centre of the University Bonn, Germany.

Kerfoot O.,1968. Mist precipitation on vegetation [J]. Forestry Abstract, 1968, 29: 8-20.

Kiersch 2000. Land use impacts on water resources; literature review [EB/OL]. Land Water Linkages in Rural Watersheds Electronic Workshop, 18 Sept.~27 Oct. FAO, 2000.

Kirk, M. & S. Adokpo-Migan, 1995. The Role of Land Tenure and Property Rights in Sustainable Resource Use: Studies on Benin, in: DSE/GTZ (eds.) Market-based Instruments of Environmental Management in Developing Countries, Berlin, P. 43-60. http://www.mekonginfo.org/mrc/html/kirk_ben/kiba_1.htm

Kirk, M. & S. Adokpo-Migan, 1996. The Role of Land Tenure and Property Rights in Sustainable Resource Use: The Case of Benin (Pilot Project "Institutional Development in Environment" PVI/GTZ), Eschborn/Bonn.

Klein. D, and Roehrig. J., 2006. How does vegetation respond to rainfall variability in a semi-humid west african in comparison to a semi-arid east african environment? <u>http://www.zfl.uni-bonn.de/earsel/papers/149-156_klein.pdf</u>.

Kuhn, Arnim 2007. The GDP statistics for all Departments of the Oueme basin. Personal communication. The Institute for Food and Resource Economics of University Bonn, Germany.

Lee R.: Forest Microclimatology [M]. Columbia University Press, 1978

Liu, M. F., 1996. "Mango Cultivation". Taiwan. 289p.

Los, S. O., G. P. Weedon, P. R. J. North, J. D. Kaduk, C. M. Taylor, and P. M. Cox (2006): An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel, *Geophys. Res. Lett.*, 33, L16402, doi: 10.1029/2006GL027065.

MAEP / DPP 2005. Annuaire Statistique. Compagne 2004-2005. Tome 1: Production Végétale. Cotonou, Benin.

MAEP 1987-2005. The agriculture statistics of Benin. Benin.

Mäkelä, A. and Valentine, H.T., 2001. The ratio of NPP to GPP: evidence of change over the course of stand development. Tree Physiology. 21: 1015-1030pp.

Matson PA., Parton WJ, Power AG, and Swift MJ, 1997. Agricultural Intensification and Ecosystem Properties. Science 277 (5325), 504.

M'BAREK, R.; BEHLE, C.; MULINDABIGWI, V.; SCHOPP, M.; SINGER, U. (2005): Sustainable resource management in Benin embedded in the process of decentralisation. In: Physics and Chemistry of the Earth, Special Issue, Vol. 30, Issues 6-7, S. 365-371. <u>authors.elsevier.com/sd/article/S1474706505000306</u>.

MDR/DAPS, 1998. Annuaire Statistique. Campagne 1997-1998. Tome 1: Production Végétale. Cotonou, Benin.

Mulindabigwi, Valens, 2006. Influence des systèmes agraires sur l'utilisation des terroirs, la séquestration du carbone et la sécurité alimentaire dans le bassin versant de l'Ouémé supérieur au Bénin. Göttingen, Germany.

Myneni, R. B., F. G. Hall, P.J. Sellers, and A.L. Marshak (1995) 'The interpretation of spectral vegetation indexes', IEEE Transactions on Geoscience and Remote Sensing, 33, 481-486.

Neef, A. and Heidhues, F. 1994. The role of land tenure in agro-forestry: lessons from Benin. Agro-forestry Systems 27, pp. 145-161. <u>www.uni-hohenheim.de/~atlas308/a_overview/a3_1/html/english/a31ntext.htm</u>

NSAE 2003: Troisième Recensement Général de la Population et de l'Habitat de Février 2002. La population des communes de Tchaourou, N'dali, Parakou, Bassila, Djougou. Cotonou.

Nye, P.H. and Greenland, D.J. 1960. The Soil Under Shifting Cultivation. Farnham Royal, Bucks: Commonwealth Agricultural Bureau.

Okibgo, B.N. and Greenland, D.J. 1977: Intercropping systems in tropical Africa. In Multiple Cropping, ed. Stelly, M. ASA Special Publication, 26. pp 63–101

Okigbo, B.N. 1981: Agriculture and food production in tropical Africa. Paper presented at the USAID/ADC Seminar on Improving the Developmental Effectiveness of Food Aid. 23–26 August 1981. Abidjan

Okigbo, B.N. 1982: Shifting cultivation in tropical Africa. A conceptual framework of the term. Lead paper presented at FAO/UI Workshop on Shifting Cultivation. Teaching and Research at University level. Ibadan, University of Ibadan

Okigbo, B.N. 1984. Improved permanent production systems as an alternative to shifting intermittent cultivation. FAO Improved Production Systems as an Alternative to Shifting Cultivation, FAO Soils Bulletin 53: 1-100.

Okigbo, B.N. 1985. Food self-sufficiency in West Africa: an overview with agenda for the future. In K. Ewusi, ea., Towards Food Self-sufficiency in West Africa. Tema: Tema Press of the Ghana Publishing Corporation.

Okigbo, B.N. 1986. Cropping systems and land degradation in the tropics. Ibadan: IITA. Mimeo.

Okigbo, B.N. 1993. The African dilemma and the quest for appropriate technologies for sustainable agriculture and food. In: Marini-Bettolo, ea., Study Week on Agriculture and the Quality of Life: New Global Trends, 17-22 October, pp. 53-96.

Paeth, H. (2006): The climate of tropical and northern Africa – a statistical-dynamical analysis of the key factors in climate variability and the role of human activity in future climate change. - In: Bonner Meteorologische Abhandlungen 61, 340 S.

Penning de Vries, F.W.T. 1975. The cost of maintenance processes in plant cells. Ann. Bot. 39: 77-92pp.

Penning de Vries, F.W.T.1974. Substrate utilization and respiration in relation to growth and maintenance in higher plants. Neth. J. Agric. Sci. 22: 40-44pp.

Raemaekers, R. (Ed.) 2001. Crop Production in Tropical Africa. Directorate General for International Co-operation, Brussels, Belgium pp. 1540

Reya, J.Y., Diallob, T. M. et al. 2004. La mangue en Afrique de l'Ouest francophone : variétés et composition variétale des vergers. Fruits 59 (2004) : 191-208pp. http://www.edpsciences.org/articles/fruits/abs/2004/03/I4018/I4018.html

Röhrig, Julia 2007. The vegetative duration coefficient data from 1987 to 2004 for the 62 Oueme communes. Personal communication. The Remote Sensing Centre of University Bonn, Germany.

Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering (1973) 'Monitoring vegetation systems in the Great Plains with ERTS', Third ERTS Symposium, NASA SP-351 I, 309-317.

Rouse, J.W., Jr., R.H. Haas, J.A. Schell, and D.W. Deering. 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Prog. Rep. RSC 1978-1, Remote Sensing Center, Texas A&M Univ., College Station, 93p. (NTIS No. E73-106393

Ruthenberg (H.) 1976: Farming systems in the tropics. Oxford, Clarendon Press, 329 p.

Sandstrom Klas, Can forests provide water: widespread myth or scientific reality? [J].AMBIO, 1998, 27(2): 132-138.

Schlippe (P. de) 1956 : Shifting cultivation in Africa - the Zande system of agriculture. London Routhledge and Kagan Paul, 304 p.

Scott F, Lesch W., Stream flow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experiments, South Africa [J]. Journal of Hydrology, 1997, 199:360 \sim 377.

Shi P.L. and Yan J.Zh., Possible effects of forest on precipitation: results comparison with deferent annalistic approaches. Journal of Natural Resources, 2001, 16(5): 188-196.

Sonwa, Denis Jean. Biomass management and diversification within cocoa agroforests in the humid forest zone of Southern Cameroon. Ph.D. dissertation, University of Bonn. Göttingen, 2004.

STATGRAPHICS Plus Base System Manual. 2001.

Thornley, J.H.M. and J.R. Johnson. 1990. Plant and crop models. Clarendon Press, Oxford, 669p.

Thornley, J.H.M. and M.G.R. Cannell. 2000. Modelling the components of plant respiration. Ann. Bot. 85: 55-67pp.

Tucker, C.J. 1979 'Red and Photographic Infrared Linear Combinations for Monitoring Vegetation', Remote Sensing of Environment, 8(2),127-150.

Vanacker, V., Linderman, M., Lupo, F., Flasse, S., & Lambin, E. 2005. Impact of short-term rainfall fluctuation on interannual land cover change in sub-saharan Africa. Global Ecology and Biogeography, 14: 123-135.

Vermeersch, Hans. 2005. Estimation of Biomass and Leaf Area Index for P.biglobosa (néré) in Central Benin. Diploma-Thesis. Hogeschool Gent.

von Maydell, H.-J., 1986. "Trees and Shrubs of the Sahel-Their characteristics and uses". Rossdorf. 325-327 pp.

Wang, W., B. T. Anderson, N. Phillips, R. K. Kaufmann, C. Potter, and R. B. Myneni, 2006a. Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands: 1. Statistical Analysis, Earth Interactions, 10, Available online at Earth Interactions

Wang, W., D. Entekhabi, D. Huang, R. K. Kaufmann, C. Potter, and R. B. Myneni, 2006b. Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands: 2. A Coupled Stochastic Model, Earth Interactions, 10, Available online at Earth Interactions

Wezel, A., Bohlinger B. and Böcker R. 1999. Vegetation zones in Niger and Benin - present and past zonation.

White, M A, P E Thomton, & S W Running, 1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical cycles, 11 (2): 217-234.

Xu, Sh. P., 1996. Mango Cultivation. Hainan. 188p.

Zhang X, M A Friedl, C B Schaaf & A H Strahler, 2005. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM

instruments. Journal of geophysical research 110. D12103, doi:10.1029/2004JD005263.

11 Annexes

Annexe 1 Example of interview questionnaire in Abomey Calavi 1. Family and Labour

	Name			
	Gender			
	Age / Religion		/	
	Number of Wives			
	Number of Sons			
Householder	Number of Girls			
Number of Family member				
Number of persons in house	ehold			
Labour		Female	Male	
	under 16 years			
	16-55			
Number of regular labour	older than 55			
Number of season labour				

2. Location

Name of Village			
Name of Arrondissement			
GPS-Village	Elevation (feet)	E.:	N.:
GPS-Farm	Elevation (feet)	E.:	N.:
Distance from Farm to:	City (km)	Main Road (km)	Local Market (km)

3. How much land areas have you used for the last small rainy season (09–11.2003)? For which crops?

Crop	Land Area	Soil Type	Soil Quality	Chiendent	Land	Yield
Crop	(hectare)	1=F+sableux	1=verv good	Imperata	property	(Kg)
		2=H+deltaique	2=good	cylindrica	rights:	
		3=F+colluvial	3=poor	Yes / No	Own	
		4=F+H	4=very poor		Non-	
			21		own	
Mais local						
Mais improved						
Manioc						
Patate douce						
Taro						
Rice						
Arachide/						
groundnut						
Haricot/						
cowpean						
Voandzou						
Soja						
Onion						
Amaranthus						
Solanum/						
Gboman						
Vernonia						
/Amanvive						
Sésame/						
cucurbitacee						
Gombo/Fevi						
Piment						
Concombre						
Laitue						
Tomato						
Carotte						
Aubergine						
Autre épice						
Oil Palm						
Manguier						
Banane						
Oranger						
Ananas						
Bread Fruit						
Tree						
Fallow						

4. How much land areas have you used for the last big rainy season (03-07.2004)? For which crops?

Crop	Land Area	Soil Type	Soil	Chiendent	Land	Yield
	(hectare)	1=F+sableux	Quality	Imperata	property	(Kg)
		2=H+deltaique	1=very	cylindrica	rights:	
		3=F+colluvial	good	<u>Y</u> es / <u>N</u> o	<u>O</u> wn	
		4=F+H	2=good		<u>N</u> on-	
			3=poor		own	
			4=very			
			poor			
Mais local						
Mais improved						
Manioc						
Patate douce						
Taro						
Rice						
Arachide/						
groundnut						
Haricot/cowpean						
Voandzou						
Soja						
Onion						
Amaranthus						
Solanum/Gboman						
Vernonia /						
Amanvive						
Sésame/						
cucurbitacee						
Gombo/Fevi						
Piment						
Concombre						
Laitue						
Tomato						
Carotte						
Aubergine						
Autre épice						
Oil Palm						
Manguier						
Banane						
Oranger						
Ananas						
Bread Fruit Tree						
Fallow						

- 5. Which additive new cultures are you going to plant in the following 1-5 years? Why?
- 6. Which cultures are principal for you? Why?
- 7. Which mixing culture patterns do you use?

1	
2	
3	
4	
5	

Questionary Abomey Calavi: Sep. 2003—Sep. 2004

8. When do you usually sow and harvest the following cultures?

o. mon ao jou usuni o		no Gitt MOTTOT	1,41,00.		_						
Cultures	Januar	<u>Y</u> February	March /	AprilM	ay Jur	leJuly	August	September	October	November	December
Mais local	Sowing										
	Harvest										
Mais improved	Sowing										
	Harvest										
Manioc	Sowing										
	Harvest										
Patate douce	Sowing										
	Harvest										
Taro	Sowing										
	Harvest										
Rice	Sowing										
	Harvest										
Haricot/cowpean	Sowing										
	Harvest										
Arachide/groundnut	Sowing										
	Harvest										
Voandzou	Sowing										
	Harvest										
Sésame/cucurbitacee	Sowing										
	Harvest										
Onion	Sowing										
	Harvest										
Amaranthus	Sowing										
	Harvest										
Solanum/Gboman	Sowing										
	Harvest										
Vernonia /Amanvive	Sowing										
	Harvest										

Questionary Abomey Calavi: Sep. 2003—Sep. 2004

9. Which	Season			Year	Ř			Year	В			Year	C			Year	D		
crop rotat	Big	rainy	Season																
ion do you	Smal1	rainy	season																
use?	Big	rainy	Season																
	Small	rainy	season																
	Big	rainy	Season																
	Small	rainy	season	1															
	Big	rainy	Season																
	Small	rainy	season																
	Big	rainy	Season																
	Small	rainy	season																
	Big	rainy	Season																
	Small	rainy	season																

141

-• 10:40

Questionary Abomey Calavi: Sep. 2003—Sep. 2004

10. For men: Which off-farm activities concerning income have you done during September 2003 to September 2004? How much have you earned from each activity? Zemidjan:

House Building:

Sodabi-processing:

Animal keeping:

Kpaka:

Other:

11. For women: What are your main sources of income? Food processing

Farming

Animal husbandry

Retail selling:

12. For women: Activities description: Activity 1: How much carrying capital are you using now?

What is the rhythm of your carrying capital?

What are the purchasing prices of inputs?

What are the selling prices of your processed products?

Activity 2: How much carrying capital are you using now?

What is the rhythm of your carrying capital?

What are the purchasing prices of inputs?

What are the selling prices of your processed products?

Dec.							<u>Groundnut</u>			<u>Sweet</u>	potato		Tomato						
Nov.			Maize																
Oct.																			
Sept.		Maize				Groundout		Sweet	potato			Tomato							
Aug.	u		Maize				Groundnut								Cowpea				
July	ainy seaso									Sweet	Potato		Tomato						
June														Cowpea					
May																			
April		Maize		Cassava	<u>Cassava</u>	Groundhut		Sweet	potato			Tomato				Ananas			
March																			
Feb.											_							ables	ables
Jan.	Bush fire																Ananas	Veget	Veget
Commune							iv	ele	2-/	λәι	uo	dA							

Annex 2 Cropping Calendar in the south Oueme: Abomey-Calavi: sowing and harvest periods

(Yellow means harvesting season and green means sowing season. Manioc is harvested after 12-18 months of sowing)

эс.																	si																												
Ď																	G o u s			Yam																									
Νον.			Maize				Cowpea								Taro	e -													Gombo			Tomato							Banana						
Oct.									S round nut	5													A m a ra n th										romato										<mark>) range</mark>		
Sept.													o ta to			Goussi						A m a ran th	/		O n io n						^{>} eper										^{>} a p a y a				
Aug.		Maize				Cowpea		Groundnut			R ice										Yam			O n io n	<u> </u>			Gombo													-				
July	son		Maize																				Amaranth							Peper		T o m a to													
June	Rainy sea								Groundnut	5		o ta to	o tato									Amaranth			O n io n				G om bo				Fomato									O range		O il palm	
May							owbea) n io n			olanum				eper					nanas	nanas								
April		//aize										otato											v m a ra n th			solanum	U)				<u>a</u>				bolo Bolo	4	4								
March				assava	assava	owpea		roundnut		9				aro				geonpea				maranth	1					o m b o		eper		om ato		b o lo				anana		apaya					
Feb.					<u>о</u>																	A						U		٩.		Ē		<mark>ഗ</mark>				B		<u> </u>					
Jan.	3 u sh fire																		^{>} ig e o n p e a																										n i n a l m
C o m m n e			1	1		1			1	1	1	1	1	1				1	<u></u>		1	ſ	əq	od		1				1	(1		1	1			1					<u>_</u>

Annex 3 Cropping Calendar in the south Oueme: Pobe

Dec.												Dec.		Yam			Maize				Groundnut				Goussi							
Nov.			Maize		Cowpea		Groundnut		Sorghum	Soya		Nov.											Cowpea				<u>Soya</u>		Sorghum			
Oct.												Oct.																			Rice	
Sept.												Sept.																				
Aug.		Maize	Maize									Aug.				Maize				Groundnut		Cowpea		Goussi								
July	ainy season			Cowpea		Groundnut	Groundnut					July	ainy season		Yam		Maize						Cowpea		Goussi							Cashew
June	R									Soya		June	R								Groundnut					Soya				rice		
May					Cowpea							May							Cassava									Sorghum				
April		Maize		Cowpea		Groundnut		Sorghum			Pigeonpea	April				Maize		Cassava		Groundnut		Cowpea		Goussi								
March												March																				
Feb.												Feb.																				
Jan.	Bush fire										Pigeonpea	Jan.	Bush fire																			
Commune					uo	oid	og	I				Commune														θVI	вS					

Annex 4 Cropping calendar in the middle Oueme: Bohicon and Save

Commune										ils	p .	N											
Jan.	Bush fire			Yam																			
Feb.																							
March																							
April																							
May						Maize		Cassava		Groundnut												Goussi	
June	ŭ	Coton										Sorghum				Soya	Rice	Cowpea		Tomato			
July	ainy seasor																						
Aug.	_				Yam									Millet					Cowpea				
Sept.											Groundnut					Soya							
Oct.			Coton				Maize														Tomato		
Nov.									Cassava				Sorghum		Millet		Rice						
Dec.																							

Annex 5 Cropping calendar in the north Oueme: N'dali

Village / Arrondissment	Soil	Yea	.	Yea	۲ د	Yea	¥r.3	Yea	r 4	Yea	5	Yea	e e
		Big season	Small season	Big season	Small season	Big season	Small season	Big season	Small season	Big season	Small season	Big season	Small season
Yevie)											
ZINVIE	black	[Maize	Maize+ Cassava	[<	[Maize	Maize+ Cassava	[<						
								R.					
Dossounou	ferralitic, sandy	IMaize	Maize 1	[Maize	Maize]	[Maize + Groundnut+ Cassava	Cassava>			Fallow 2-3	vears		
HEVIE													
Kpanroun	ferralitic, sandy	[Maize]	[Maize]	[Maize]	[Maize]	[Maize]	[Maize]	[Maize + Cassava			Fallow 5	years	
KPANROUN													
	farralitic				[Maiza+	<cncaae< th=""><th>[Maize+</th><th></th><th>Maizat</th><th><caccocc< th=""><th></th><th></th><th></th></caccocc<></th></cncaae<>	[Maize+		Maizat	<caccocc< th=""><th></th><th></th><th></th></caccocc<>			
Agongbe	sandy	[Maize]	[Maize]	[Maize]	Cassava	+ Maize]	Cassava	+ Maize]	Cassava	+ Maize]	Ë	allow 5 year	S
GLO-DJIGBE													

Annex 6 Crop rotation pattern in different villages of the Commune Abomey-calavi

Means of the different symbols and colours:

Main module	End phase module	Short season crops (culture derobee)	Crypto-fallow	Fallow	Deplete module

age / ondissment Soi		na	na	loar	we san	v e	- s	5	ferru	eita ferr	ouyeye	ferri	hyd	5	re hyd	ouyeye		19 00 10 a b a	feri	
_		dy		ny	dy		dv loam		ugineus	ugineus		ugineus	rom orph		rom orph	eux			rugineus	
	B ig season	[Maize		[Maize	[Maize		I M aize		[Maize	[Maize		[Tomate, Pepper	Maize		[Maize	Rice		Cow pea	Cassava	
ear 1	Sm all season	Cow pea, Groundnut]		Maize]	Cow pea, Groundnut, Goussij		Cow pea, Goussi, Groundnut, Gombo, Tomato,		Cow pea, Goussi]	M aize]		Maize]	Cow pea, Goussi, Groundnut, Gombo, Tom ato, Penneri		Cow pea, Com bo]	<		Maize	<	
×	B ig season									[Maize		[Maize+ Cassava								
ar 2	Sm all season	continua		continua			continua			Maize]		^						continua		
×e	B ig season	lly repeat		Ily repeat	continu		Iv rebeat	, model ([Maize+ Cassava		Maize					1	IIIY repeat		
ar 3	Sm all se ason				ially repeat					^		Cassava +Oil palm								
	Big season	[Maize		[Maize			E E E E E E E E E E E E E E E E E E E	זי		[Yam		۸								
ear 4	Sm all season	Cow pea, Groundnut]		Maize]			e e o u o e	5		> +Groundnut, Maize								Maiz continu.		
	Big season				[Maize				continually				continually	(continually		1	ally repeat		
ear 5	Sm all season				Cow pea, Groundnut, Goussi]		e D D D D D D D D D D D D D D D D D D D	5	repeat	o			re De Provensional Transformation Tr	500	repeat			+ cnemical 1		
Year	B ig se a so n	Fallow		After 10			P D D D D D D D D D D D D D D D D D D D	5		il palm + C		Fallow f						eruizer		
9	Small seaso Bi n se	for 4 yea		vears mai			U B B B B B B B B B B B B B B B B B B B	5		ow pea		or 5-6 yea	-							
Year	g Sm ason se	 rs (+0il pa		ze 5 years	Fall		aize Pe		_	->Fallow fo		_ 	-				_	-		
	all Bi ason se	 lm)		fallow	wo		w pea, ussi, oundnu 3 om bo, mato, fM	[]	_	or 5 years		-	-					b years te		
Year	ig S ason S						⊐ ⊐ ⊐ ⊐ ⊐ ⊐ ⊐	0	_			-	-				-	allow		
	m all eason						.ow pea, ioussi, iroundnu Gombo, omato,													

Annex 7 Crop rotation pattern in different villages of the Commune Pobe

Village / Arrondissment	Soil	Ye	ar 1	¥	ear 2	ЭХ	ear 3	¥	ear 4	×	ear 5	×	ear 6	Yea	r 7
		č	Small	Big	Small	Big	Small	Big	Small	Big	Small	Big	Small	Big	Small
		BIG season	season	season	season	season	season	season	season	season	season	season	season	season	season
			Cow pea.												
Madje		[Maize	Groundnut]				continually r	epeats till	10 years, the	en 6 years	fallow (Teak,	Orange)			
		Groundnut,	Groundnut,												
SODOHOME		Cow pea,	Cow pea,												
	laomy	Cotton	>												
		Groundnut,	Groundnut,												
		Cow pea,	Cow pea,		Groundnut,		Groundnut,		Groundnut,		Cow pea,				
Avogbanna	ferralitic	Dohi	Dohi	[Maize	Cow pea]	[Maize	Cow pea]	[Maize	Cow pea]	[Maize	Groundnut]	Pige	eonpea	Pigeo	npea
AVOGBANNA															
	N .	ι.	r.												
		Groundnut,	Groundnut,		Groundnut,										
Masse-Gbame	ferralitic	Cow pea,	Cow pea,	[Maize	Cow pea]										
PASSAGON															
		Groundnut,	Groundnut,												
Flely	ferrugineus	Cow pea,	Cow pea,	[Maize	Cow pea]	[Maize	Cow pea]	[Maize	Cow pea]			Fallow of	4 years		
AGONGOINTO															

Commune Bohicon
the
of
villages
different
<u> </u>
pattern
rotation
8 Crop
nex
An

Village / Arrodissment	Soil	,	ear 1	~	ear 2	۶	ar 3	۲e	ar 4	Yea	r 5	>	ear 6
		Big season	Small season	Big season	Small season	Big season	Small season	Big season	Small season	Big season	Sm all season	Big season	Small season
0 Kewo	sandv		am]	[Mais	Cow pea + Groundnut, Goussi, Dohi, Vouanzou 1	Mais	ICassava	^	î	Groundnut	Groundnut]	Fallow	for 4 years
OKPARA				Groundnut	Cow pea + Cassava	^							
										Cashe	~		
	bar fon	[Rice	[<										
Dani		[Cow pea, Groundnut, Vouanzou, Dohi	Maize]	Maize + Sorghum	^	[Goussi	M aize + G round nut]	Pige	onpea	Pigeo	npea		
	sandy			Maize +			Goussi, Cow pea, Groundnut, Vouanzou,	Ċ		c		years, than fa	ules for further 3 llow with cashew
OFE				L assava	~>	>	non	Pige	onpea	р Р I G e o	npea		
			Yam]								Fallov	v with cashew	
lg b o d ja			(am]	[Mais	Groundnut, Cow pea, Goussi]		cont	inually repe	at till 5 yea	<u>د</u>		Fallow v	vith Cashew
BESSE	after old fallow	< Cassava	^	Groundnut, Cow pea, Goussi	Groundnut, Cow pea, Goussi								
		Groundnut, Cow pea, Goussi	Groundnut, Cow pea, Goussi										
		[Mais	Groundnut, Cow pea, Goussi]		continually repe	eat till 3 years		Pige	onpea	Pigeo	npea	Repeats mod years, than 1	ules for further 3 0 years of fallow
	forest plateau	[Yam] + Goussi	^										
		Goussi	Groundnut, Tomato										
		Cassava	>+ pepper										
			Moiol					ation live on	0 1 1 1 1 C	0.50			
	valley	[M als	Mais J				CO		eat till 15 ye	ars			
		רוכם											

Annex 9 Crop rotation pattern in different villages of the Commune Save

Annex 10 Crop rotation pattern in different villages of the Commune N'dali

Village / Arrodissment	Soil	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
			Maize, or		Maize,					
			Maize +		Sorghum,	Groundnut	Cowpea,	3 years	fallow, or	cashew,
Mama Imorou		[Yam	Soghum]	[Yam	Millet]	, Soya	Soya		mango	
N'DALI										
					Maize,					Fallow,
		[Yam,			Sorghum,		Cowpea,	Yam,	Maize,	Cashew,
	ferrugineus	Cotton	Maize]	[Cotton	Millet]	Groundnut	Soya	Cotton	Cassava	Mango

Annex 11 Chemic and physical parameters of soil samples in Oueme Basin-1

											mval	mval	mval	mval		I	K_av	
Serial						20-	50-	200-			K/	Na/	Mg/100	Ca/		DU KO	mg/100	P_eff
Nr. 1	LAT 7 27	2 00	172 52 Sandy	0-2µ 4 53	2-20µ	2 17	200µ	2000µ 24.78	1C %	IN %	100g	100g	g 0.30	100g	PH H2O 6 14	5 18	9 6.46	mg/100g 0.15
2	7.25	2.07	217.32 Sandy	5.20	0.00	2.17	72.59	19.88	0.49	0.03	0.02	0.00	0.72	0.94	6.75	5.91	1.56	0.13
3	7.23	2.13	202.39 Sandy Sandy	5.49	0.00	2.01	70.83	21.59	0.48	0.04	0.02	0.00	0.45	1.04	6.46	5.56	1.26	0.12
4	7.17	2.07	136.25 loam	11.46	4.84	3.18	54.39	26.01	0.69	0.05	0.06	0.03	0.55	1.87	6.32	5.39	4.02	0.42
5	7.23		205.13 Sandy	1.58	3.68	2.52	66.41	25.72	0.48	0.04	0.05	0.02	0.42	0.83	6.62	5.62	4.44	0.20
6	7 10	2.14	Sandy	5.45	0.78	2.49	66.//	24.41	0.53	0.04	0.02	0.01	. 0.4/	1.14	6.52	5.64	1.46	0.09
,	7.19	2.15	Sandy	J.12	7.95	5.90	44.02	50.19	0.00	0.05	0.05	0.02	. 0.97	2.70	0.45	5.01	1.00	0.87
8	7.17	2.07	111.25 loam	13.09	0.79	2.76	54.88	28.37	0.60	0.05	0.03	0.00	0.40	1.14	5.83	4.73	1.22	0.19
9	7.23	2.09	205.13 Sandy	6.98	1.29	1.99	68.35	21.30	0.43	0.03	0.02	0.00	0.30	0.73	5.99	4.90	1.34	0.13
10	7.24	2.17	194.77 Sandy	5.46	2.60	2.00	65.85	24.01	0.61	0.04	0.05	0.01	0.55	1.56	6.43	5.58	3.50	0.91
11	7.16	2.08	151.18 Sandy 219.46 Sandy	4.92 6.94	2 57	0.99	74.52 64 94	24.53	0.51	0.04	0.04	0.00	0.67	1.66	6.70	5.91	2.64	0.25
12	,,	2.55	Loamy	0.51	2.57	0.55	01.51	21.55	0.57	0.01	0.02	0.01	0.02	1.10	0.12	5.55	1.10	0.12
13			sand Loamy	8.96	0.79	5.57	47.77	36.68	0.69	0.05	0.10	0.17	1.79	3.33	6.65	5.42	5.48	1.74
14			sand Loamy	2.49	8.20	5.49	46.82	36.78	0.61	0.05	0.11	0.03	0.87	3.12	6.44	5.56	7.40	0.20
15			sand	8.37	0.79	6.03	53.09	31.47	0.91	0.07	0.10	0.27	1.47	3.85	6.81	5.38	6.56	0.16
16			Loamy	8 62	3 40	6 77	50.63	30 31	1 50	0 10	0.28	0.03	177	5 41	6 56	5 73	21 20	0.43
17			Loamy	4.62	5.12	4 10	46.55	20.22	1.00	0.10	0.12	0.00	0.97	2.05	6 54	5.00	11 12	0.20
10			Loamy	6.21	2 27	3 70	59.24	20.14	0.66	0.07	0.12	0.02	1.05	3.55	6.40	5.52	11.12	0.20
10			Sandy	11.12	2.57	5.79	40.12	27.14	0.00	0.05	0.12	0.01	1.05	4.70	0.40	5.55	0.50	0.15
19			Sandy	11.12	5.95	5.22	40.13	37.36	0.86	0.06	0.11	0.02	1.2/	4.78	6.49	5.43	9.50	0.15
20			loam Sandy	12.40	9.30	9.67	23.03	44.57	0.87	0.06	0.11	0.10	1.62	5.51	6.55	5.47	10.04	0.35
21			loam Sandy	13.82	8.19	9.83	28.83	39.49	0.93	0.06	0.12	0.21	1.50	6.45	6.70	5.53	9.56	0.47
22			loam Sandy	13.31	5.89	10.57	30.51	40.15	1.04	0.07	0.15	0.09	1.79	6.13	6.50	5.38	12.98	0.48
23	7.99	2.39	143.26 loam Loamy	9.86	3.29	7.04	47.90	31.31	1.83	0.11	0.39	0.04	1.40	9.88	7.63	7.02	28.68	6.05
24	7.94	2.40	117.04 sand Loamv	5.55	2.77	5.81	51.33	34.45	1.12	0.07	0.17	0.02	0.95	4.89	7.83	7.16	14.96	0.62
25			sand Sandv	9.05	1.76	7.96	41.99	39.38	1.11	0.07	0.19	0.02	1.12	6.65	7.95	7.22	16.86	1.26
26	7.99	2.39	131.06 loam	12.86	5.40	10.87	22.92	46.57	1.50	0.09	0.27	0.04	1.32	6.76	6.91	6.13	20.52	0.74
27	7.94	2.39	129.54 sand	3.54	6.32	5.83	47.64	36.19	0.78	0.06	0.14	0.03	1.10	3.53	7.22	6.28	13.70	0.35
28	7.94	2.62	112.17 sand	7.07	0.51	5.81	49.62	36.15	0.91	0.06	0.12	0.02	0.90	4.16	7.38	6.50	12.94	0.31
29	8.04	2.57	176.17 Sandy	5.04	0.51	4.13	69.57	19.55	1.05	0.08	0.15	0.02	0.67	3.12	6.96	6.28	14.26	0.45
30	7.94	2.40	167.03 Sandy	4.30	1.77	4.12	69.67	19.39	1.02	0.07	0.10	0.01	. 0.47	1.77	6.23	5.57	11.22	0.23
31			loam	9.36	1.01	9.23	32.35	46.90	0.95	0.07	0.11	0.02	1.00	4.05	6.71	5.91	9.38	0.15
32			loam	10.13	0.51	6.81	39.49	42.65	0.83	0.06	0.19	0.03	1.10	3.43	6.82	5.96	17.16	0.30
33	7.95	2.53	126.19 sand	6.35	0.51	4.63	60.24	27.72	1.15	0.07	0.07	0.02	0.72	2.70	6.16	5.24	8.04	0.12
34	7.99	2.39	182.27 loam Sandy	10.26	11.72	10.55	33.48	33.54	1.61	0.10	0.16	0.06	1.02	3.85	5.86	4.88	33.14	6.66
35	7.99	2.39	145.08 loam	14.35	5.13	8.61	39.36	32.20	2.04	0.12	0.45	0.04	1.37	11.02	7.56	6.77	13.40	0.52
36	7.98	2.39	144.78 loam	7.11	6.10	8.05	46.74	31.67	0.97	0.07	0.19	0.01	1.99	5.72	6.94	6.10	9.60	0.19
37	7.96	2.57	123.75 loam	9.12	4.82	9.24	24.79	51.64	0.92	0.08	0.20	0.03	1.12	3.85	6.93	5.97	10.78	0.19
38	7.94	2.46	171.60 Sandy Loamy	3.60	1.03	4.93	58.19	32.06	0.83	0.07	0.26	0.00	0.80	2.60	7.38	6.65	21.68	0.62
39	7.92	2.46	170.69 sand	5.04	4.03	5.08	50.28	35.35	0.75	0.03	0.19	0.02	0.65	2.81	7.04	6.31	16.06	0.37
40	7.92	2.57	171.60 Sandy	3.02	4.53	4.35	58.58	29.55	0.78	0.02	0.19	0.03	0.67	2.50	6.84	6.15	15.82	0.32
41	7.94	2.59	181.66 Sandy	4.04	3.79	3.39	65.81	23.90	0.71	0.02	0.13	0.01	. 0.75	2.60	6.73	6.09	11.28	0.33
47	8 16	2 66	231 65 loam	7 68	6 65	14 25	19 79	49 79	0 90	0.03	0.16	0.05	0.85	1 98	5.80	4 70	14 16	0.23
43	8.09	2.70	402.89 Sandy	5.27	2.01	2.65	76.39	12.75	0.91	0.02	0.15	0.01	0.85	3.22	6.87	6.07	12.50	0.23
44	8.04	2.59	Loamy 169.77 sand	6.86	1.53	5.84	62.21	23.73	0.91	0.01	0.15	0.01	0.97	4.05	6.65	5.72	12.68	0.44
45	8.14	2.62	Loamy 235.31 sand	6.84	0.51	3.41	59.69	28.59	1.22	0.01	0.13	0.02	1.27	4.78	6.85	6.18	10.86	0.36
			Loamy															
46 47			sand Sandy	8.09 3.03	2.78 8.83	4.37 3.87	54.56 68.37	29.61 16.57	1.63 1.46	0.08 0.09	0.18 0.32	0.01 0.02	1.67 1.40	5.51 8.11	7.02 7.79	6.24 7.18	14.20 22.68	0.36 0.71
48	8.05	2.59	Loamy 172.82 sand	6.02	2.51	3.37	63.24	24.58	0.96	0.06	0.12	0.02	1.02	3.43	6.76	5.94	11.32	0.19
49	8.16	2.55	211.53 Sandy Loamy	5.05	0.51	2.42	76.95	14.26	1.22	0.08	0.13	0.32	0.77	5.61	6.92	6.20	11.42	0.23
50	8.03	2.39	207.26 sand Loamy	6.31	1.26	3.63	64.21	23.38	1.39	0.08	0.17	0.32	1.30	7.28	7.02	6.25	15.04	0.47
51	7.98	2.46	140.82 sand Loamy	7.78	4.27	6.27	47.20	32.85	0.77	0.05	0.10	0.31	0.72	3.53	6.86	5.88	11.28	0.13
52	7.92	2.46	172.52 sand Loamy	4.76	2.25	3.84	65.69	21.73	0.77	0.05	0.25	0.33	1.00	4.89	7.47	6.84	23.54	1.36
53	7.91	2.09	160.02 sand	8.15	0.51	5.38	53.10	30.98	0.98	0.06	0.17	0.33	0.82	4.68	6.38	5.30	14.58	0.35

Annex 12 Chemic and physical parameters of soil samples in Oueme Basin-2

												mval	mval	mval	mval			K_av	
Serial Nr.	LAT	LON	ELE m	Texture	Ο-2μ	2-20µ	20- 50µ	50- 200µ	200- 2000µ	TC %	TN %	K/ 100g	Na/ 100g	Mg/100 g	Ca/ 100g	PH H2O	РН КСІ	mg/100 g	P_eff mg/100g
76	7.97	2.40	124.97	' sand Sandy	6.14	4.09	7.12	32.87	49.49	0.68	0.05	0.10	0.35	1.25	4.68	6.56	5.34	5.38	0.16
77	7.99	2.67	141.43	loam	6.51	9.02	10.82	28.84	44.35	0.75	0.05	0.12	0.35	0.72	3.01	6.20	4.88	6.44	0.27
78	7.18	2.66	88.09	sand	6.25	1.82	4.00	62.81	24.95	1.26	0.09	0.10	0.33	1.42	4.26	7.21	6.57	6.40	0.75
79	7.17	2.67	86.56	loam Sandy	11.08	7.81	12.09	15.29	53.25	0.89	0.06	0.10	0.34	1.32	7.38	6.95	6.12	5.74	0.24
80	7.20	2.75	96.01	loam	18.38	12.84	9.91	18.85	39.60	1.99	0.14	0.20	0.34	3.02	15.49	7.25	6.72	11.58	0.36
81	9.80	2.65	381.00	loam	7.68	6.93	7.85	50.59	26.62	0.62	0.05	0.09	0.31	0.45	2.70	6.17	5.79	5.28	0.23
82 83	7.13	2.70	67.97	' Sandy	5.99	0.00	1.00	33.49	12.22 59.47	2.35 0.94	0.18	0.17	0.42	0.87	3.33	6.18	5.17	10.00	0.64
84	6.99	2.17	55.17	day loam	23.57	10.76	8.12	15.02	41.86	1.51	0.12	0.11	0.37	4.01	21.42	6.52	5.55	5.92	0.24
85 86	6.98	2.71	68.58 67.36	day loam	38.77	12.65	7.66	18.68	21.94	1.25	0.11	0.19	0.33	2.54	5.82	6.57	5.35	9.68	0.24
87	7.17	2.67	97.84	Sandy	4.93	6.16	4.97	55.79	28.01	0.89	0.06	0.06	0.32	1.67	6.03	7.50	6.81	3.36	0.63
88	7.20	2.67	112.47	Sandy Ioam	18.89	7.91	12.01	14.33	45.96	1.96	0.13	0.17	0.34	3.14	10.81	7.01	6.25	9.74	0.17
89	9.65	2.13	385.88	Sandy Ioam	12.50	5.61	8.57	48.03	24.93	1.99	0.10	0.18	0.35	1.45	11.33	7.02	6.32	10.04	1.23
90	6.97	2.59	79.55	Clay	53.80	21.63	7.01	5.85	11.67	2.22	0.16	0.25	0.42	3.96	10.08	6.39	5.11	12.36	0.19
91 92	7.18	2.59	59.13 41.15	Clay Clay	57.17 60.50	13.34 8.87	5.75 6.45	8.80 3.52	15.18 20.40	3.77	0.24	0.43	0.38	1.97 1.87	11.44 14.03	7.24	6.21 6.47	25.64	2.29
02	7 10	2.01	106.07	Sandy	9.01	0.76	5.62	47.05	26.10	0.06	0.07	0.07	0.72	1.07	4 90	7.01	6.15	4.40	0.21
93	7.18	2.00	100.07	Sandy	8.91	0.76	5.62	47.85	30.03	0.96	0.07	0.07	0.33	1.07	4.89	7.01	0.15	4.40	0.21
94	7.17	2.67	109.42	Loamy	8.83	8.83	8.48	26.96	40.50	0.99	0.07	0.07	0.32	1.35	6.97	7.18	0.3/	4.04	0.15
95 96	7.18 6.97	2.13 2.64	104.55 86.56	sand Clay	5.31 48.17	2.78 18.57	4.61 11.37	67.28 7.89	19.82 13.66	0.87 2.49	0.06 0.18	0.06 0.26	0.31	0.82 3.84	4.78 8.73	7.02 6.35	6.30 5.24	3.92 13.16	0.24 0.33
97	9.58	2.64	356.31	Loamy sand	4.76	6.01	7.94	53.65	27.55	0.58	0.04	0.09	0.33	0.40	2.08	6.52	5.46	5.44	0.07
98	9.58	2.66	360.27	' sand Sandy	4.87	4.10	7.39	60.28	22.66	0.55	0.04	0.12	0.34	0.40	1.98	6.59	5.59	6.28	0.08
99	9.88	2.75	363.63	loam Sandy	7.31	7.81	10.64	50.58	23.26	0.94	0.07	0.16	0.34	0.82	4.99	6.73	5.94	9.08	0.25
100	9.80	2.66	384.05	loam Sandy	11.36	6.17	10.90	41.51	29.61	0.92	0.06	0.19	0.34	0.65	5.93	6.70	6.08	11.32	0.17
101	9.88	2.70	369.11	loam Sandy	5.95	7.93	8.56	53.54	23.67	1.06	0.07	0.14	0.33	0.62	6.97	6.40	5.88	6.62	0.41
102	9.78	2.71	383.74	loam Sandy	8.85	2.60	10.99	47.92	29.21	0.76	0.06	0.17	0.31	0.60	4.89	6.15	5.35	9.06	0.13
103	9.79	2.71	394.41	loam Sandy	11.68	10.13	7.98	50.04	19.84	2.73	0.17	0.18	0.33	1.42	7.80	8.09	7.40	10.10	3.52
104				loam Loamy	14.44	11.91	9.24	37.18	26.78	2.16	0.13	0.32	0.33	1.37	15.07	7.11	6.37	19.64	0.75
105	7.17	2.71	107.29	sand Loamv	6.23	0.52	6.48	47.56	38.95	0.77	0.06	0.09	0.29	0.87	5.61	7.05	6.28	5.02	0.27
106	7.18	2.68	123.14	sand	6.93	0.51	5.42	45.25	41.67	0.77	0.06	0.06	0.29	0.95	4.26	6.85	6.06	3.58	0.25
107	6.97	2.67	103.63	loam	7.38	8.40	3.67	29.91	50.88	1.34	0.13	0.07	0.30	1.37	6.34	6.21	5.54	3.56	0.23
108	6.96	2.67	101.80	sand	11.44	3.12	1.75	29.31	54.30	0.85	0.09	0.07	0.30	0.87	3.85	6.01	5.23	2.90	0.19
109	6.96	2.75	114.30	loam	15.92	4.70	2.26	33.25	43.69	1.84	0.18	0.21	0.31	1.74	13.83	7.21	6.71	12.28	0.75
110	9.80	2.72	378.87	' loam	10.17	7.88	10.98	44.50	25.85	0.57	0.04	0.13	0.27	0.45	4.26	6.52	5.73	8.22	0.08
111	9.80	2.70	391.36	loam	7.76	8.53	11.91	41.72	29.55	0.94	0.06	0.10	0.24	0.60	2.39	6.12	5.17	5.10	0.07
112	9.78	2.70	377.34	loam	12.32	7.96	10.59	40.23	28.45	0.90	0.06	0.30	0.29	1.10	5.20	6.86	5.83	17.72	0.10
113	9.78	2.71	380.70	Sandy Ioam	11.60	10.57	9.65	40.97	26.83	1.71	0.11	0.45	0.30	1.55	11.54	7.02	6.16	24.52	0.39
114	7.18	2.70	110.64	sand	6.28	7.49	4.18	41.76	40.12	0.71	0.05	0.06	0.30	0.87	4.99	6.93	6.18	2.90	0.15
115	7.04	2.67	61.87	' Sandy Loamy	5.67	1.29	1.73	26.43	64.74	1.27	0.10	0.24	0.29	1.27	8.21	6.63	5.87	12.56	0.64
116	7.18	2.65	97.54	sand	7.34	5.32	6.08	52.94	28.02	1.35	0.10	0.11	0.30	1.77	7.28	7.02	6.33	5.88	0.48
117	7.04	2.73	74.68	Loamy	54.55 17.76	22.30 24.81	3.87 9.03	6.40 12.20	35.84	2.04 1.53	0.17	0.20	0.39	1.07	4.05	4.89	4.57	9.32 3.92	0.24
119	6.99	2.64	114.60	Loamy	8.05	6.03	2.90	33.42	49.59	0.58	0.05	0.05	0.28	0.27	0.52	5.18	4.04	1.88	0.10
120	6.98	2.64	137.16	Sandy Ioam	11.20	3.49	2.87	27.12	55.21	0.59	0.05	0.04	0.30	0.92	3.85	6.86	6.03	1.68	0.15
121	7.05	2.62	197.90	Loamy	/4./4 7 72	17.07	2.96	2.05	3.06	2.25	0.19	0.21	0.54	06./	13.51	5.99	4.57	10.00	0.67
122	0.04	2.35	102.00	Sandy	10 54	11 07	5.44 1F FF	24 50	26 04	1.03	0.00	0.07	0.31	1.90	7.07	7.4/	6 20	2.08	0.31
123	5.70	2./1	204.19	Sandy	10.54	11.03	10.00	24.08	20.04	1.04	0.09	0.35	0.29	1.9/	7.90	7.08	0.30	22.14	0.25
124	9.81	2.70	392.58	Sandy	8.10	8.60	10.45	42.95	29.45	1.38	0.08	0.24	0.27	1.15	6.55	6.81	6.03	13.92	0.19
125	9.75	2.71	382.83	loam	14.12	4.44	8.28	41.66	31.13	0.88	0.06	0.14	0.29	0.77	3.74	6.63	5.39	8.22	0.08

Image: bit in the sector of the sec	ent Commune JE Abomey-Calavi JE Klada JE Kpomasse JE Cuida	Zone AE	ح TC1 م م م ک	% t_t 46 1.07 1.20 0.96 0.96	Sum ations pt 6.39 5.89 5.89 5.89	HH20 6.58 6.85 6.41 6.41	00.555 P	bc Vec 154 50625 171 53612 44 15452 119 60974 106874	BMC SLC 23 3.43 21 3.53 8 2.28 24 3.58 27 2.00	Vbc_M Vec 132 26 155 30 155 30 155 31 171 32	207 207 619 361 714 005	₩22248 21248 21777	C-V 78 7.02 224 224 222	eg.04 C - 0.52 0.554 0.554 0.554	• veg.3-6 °C 0.45 0.39 0.39 0.43	PPD04 L0 681 2.3 681 2.3 250 2.1 138 2.0 388 2.2		8 8 9 9 0 1 10 3 8 0 0 1 10 3 8 0 0 1 10 3 8 0 0 1 1 10 3 8 0 0 1 0 1	Rain_04 6 1197 1248 1303 1330	GDP/cap. 919 943 919 919	Rain 04 	Rain 04 eff 773 773 789 849 855 855	-
MCM 1	E Toffo E Toffo E Tori-Bossito E Ze Bembereke Kalale		ითიიათ	0.110	6.85 6.20 6.85 6.81	6.70 6.54 6.49 7.09	0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	29 40900 09 27679 128 78205 166 52937 76 38333 73 37471	22 2.00 10 2.91 43 4.16 20 3.50 28 2.23 28 2.23	11/ 21 67 16 224 40 155 30 34 17 35 17	921 921 961 039 888 961 896	102271 10120 11150		0.51 0.52 0.58 0.44 0.48	0.52 0.52 0.50 0.50	115 118 118 118 118 118 118 118 118 117 117	1 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	7 337 337 337 337 337 337	1228 1227 1228 1196	919 919 919 1221 1221	1103 1103 1148 1083 1012	772 772 758 758 708 708 708	
Tronent To a process by the process of th	N'Dall N'Dall Nikki Parakou Perere		ነጣጣኮጣ፣	1.33 1.33 1.32 1.33	6.97 6.80 6.91	7.14 7.07 6.71 7.13	1.12	83 41145 72 37055 21 18655 82 40537	31 2.31 27 2.20 30 2.29	40 19 34 17 10 19 12 91 12 911	735 672 1340			0.5090	0.52	81 91 92 92 92 93 93 93 93 93 93 93 93 93 93 93 93 93	0.0000	000544 3888 397 397	1221 1207 1232 1232	1221 1221 1221 1221	1115 1115 1117 11190	781 781 782 782 782 782 782	
Onester 1 5 0.13 7.03 0.13 7.04 0.13 7.	Sinende Tchaourou Bante Dassa-Zoume Glazoue		ოიიიი	1.37 1.40 0.94 1.30	6.90 7.02 5.38 6.73	7.11 7.15 7.15 6.78 7.03	1.09 1.13 1.13 1.00 1.00	79 39529 01 46186 92 43425 28 40832 69 35888	29 2.27 34 2.52 32 2.41 30 3.18 26 2.18	36 18 52 23 50 23 74 23 39 20	026 927 632 124	113 113 113 113 113 113 113 113 113 113	.03 .28 .33 .22	0.46 0.51 0.58 0.58 0.56	0.46 0.50 0.51 0.48 0.48	90 2 2 3 4 7 2 2 3 9 2 3	201 201 201 201 201 201 201 201 201 201	7 348 7 320 9 129 8 178	1220 1210 1345 1215 1243	1221 1221 920 920	1125 1100 1215 1123 1112	788 770 850 786 778	
Combin-Trick 7 6 0.73 5.77 6.43 0.77 7.64 1.03 7.75 1.03 1.75 1.03 1.75 <	Ouesse Savalou Save Aplahoue Diakotomev		ບບບບແ	1.33 0.94 0.91 1.06	7.02 5.39 5.59 6.90	7.09 6.78 6.78 6.41	1.03 0.60 0.57 0.57 0.57	72 64644 29 41308 50 48089 53 51162 25 30405	43 3.41 30 3.20 35 3.47 14 3.44 9 2.97	95 35 71 22 87 27 154 31 76 18	674 886 921 278 419	4 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 2		0.55 0.55 0.58 0.61	0.51 0.52 0.54 0.53	37 2.4 45 1.8 130 1.6 433 1.6	81 80 90 C	239 0 180 169 147 99	1219 1334 1186 1285 1200	920 920 494 494	1078 1255 1070 1138 1057	754 879 749 796 740	+
Constrol 1 4 1.35 6.84 7.09 10.5 7.13 10.44 10.35 6.84 7.13 10.44 10.35 6.84 7.13 10.44 10.35 6.84 7.14 10.35 6.84 7.14 10.35 6.84 7.14 10.35 6.84 7.14 10.35 6.84 7.14 10.35 6.83 10.34 10.34 10.35 10.34 10.35 10.34 10.35 10.34 1	Dogbo-Tota Klouekanme Lalo Toviklin Bassila	 ოოოო⊣	nocoo	0.93 0.92 1.00 1.43	5.77 5.72 5.60 6.39 7.07	6.43 6.43 6.51 7.18	0.50 0.50 1.16	 57 51698 40 49081 56 51637 74 38340 96 45066 	16 3.46 14 3.39 14 3.45 11 3.15 34 2.45	151 30 146 29 156 31 106 23 51 23	374 919 372 668	0 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	03 11 	0.59 0.61 0.61 0.53	0.53 0.53 0.53 0.53 0.53	255 1.7 255 1.8 255 1.8 202 1.9 1.8 1.8 1.8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 53 4 130 122 327 327	1190 1248 1203 1224 1129	494 494 494 823	1080 1120 1082 1088 1088	756 784 757 762 762	
Come 3 7 0.09 5-45 6-37 0.46 2-30 0.47 2-00 1-95 6-7 1-96 5-71 0.06 5-45 0.53 0.34 2-30 0.53 1-36 </td <td>Kopargo Djougou Ouake Cotonou Athieme</td> <td></td> <td>44400</td> <td>1.35 1.40 0.84 0.96</td> <td>6.84 6.97 6.66 5.95 5.95</td> <td>7.09 7.15 7.01 6.30 6.45</td> <td>1.06 1.13 0.97 0.45 0.46</td> <td>75 38138 84 41197 64 33976 16 3041 177 54826</td> <td>28 2.23 31 2.31 24 2.12 1 0.18 19 3.54</td> <td>36 18 41 20 31 16 31 16 8 1 147 29</td> <td>499 200 583 040</td> <td>41101</td> <td>.08 .04 .10 .88</td> <td>0.49 0.49 0.53 0.53</td> <td>0.53 0.54 0.46 0.46 0.46</td> <td>62 1.5 49 1.8 75 1.4 8489 2.4 151 1.7</td> <td>0.0.0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0</td> <td>8 423 8 381 0 410 7 44 14</td> <td>1232 1171 1167 1234 1084</td> <td>823 823 823 823 2962 501</td> <td>1141 1076 1078 1112 985</td> <td>798 753 779 779 690</td> <td></td>	Kopargo Djougou Ouake Cotonou Athieme		44400	1.35 1.40 0.84 0.96	6.84 6.97 6.66 5.95 5.95	7.09 7.15 7.01 6.30 6.45	1.06 1.13 0.97 0.45 0.46	75 38138 84 41197 64 33976 16 3041 177 54826	28 2.23 31 2.31 24 2.12 1 0.18 19 3.54	36 18 41 20 31 16 31 16 8 1 147 29	499 200 583 040	41101	.08 .04 .10 .88	0.49 0.49 0.53 0.53	0.53 0.54 0.46 0.46 0.46	62 1.5 49 1.8 75 1.4 8489 2.4 151 1.7	0.0.0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0	8 423 8 381 0 410 7 44 14	1232 1171 1167 1234 1084	823 823 823 823 2962 501	1141 1076 1078 1112 985	798 753 779 779 690	
Multical 7 1.03 6.73 6.74 7.72 <t< td=""><td>Bopa Come Grand-Popo Houeyogbe Lokossa Adjara</td><td></td><td>NNN0N01</td><td>0.89 0.96 0.93 1.093 1.093</td><td>5.45 5.91 6.23 7.8 7.8 7.8 7.8</td><td>6.37 6.43 6.52 6.41 6.41</td><td>000.46 0.000.45 0.000.45 0.000.4000.40 0.000.4000000</td><td>277 54626 285 54995 777 70397 204 43236 277 54519 98 89304 103 73975</td><td>16 3.44 21 3.32 27 3.82 13 3.26 18 3.43 48 4.43 45 4.08</td><td>144 28 150 28 178 33 178 33 146 28 314 56 314 56</td><td>311 929 138 743 2753 204</td><td>3301 1318 3301 1318 3301 1318</td><td>78 </td><td>0.52 0.53 0.53 0.53 0.63 63 0.63 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.5</td><td>0.39 0.39 0.51 0.51 0.51 0.51 0.51 0.52 0.52</td><td>200 1.9 371 1.5 154 1.8 324 1.8 842 2.6</td><td>00400000 04000000</td><td>7 0 0 0 0 0 1 8 1 0 4 6 1 0 1 8 1 0 4 6 6 1 4</td><td>1184 1385 1378 1195 1128 1387</td><td>501 501 501 501 943 943</td><td>1086 1260 1250 1106 1039 1250</td><td>760 875 774 727 875 875 875</td><td></td></t<>	Bopa Come Grand-Popo Houeyogbe Lokossa Adjara		NNN0N01	0.89 0.96 0.93 1.093 1.093	5.45 5.91 6.23 7.8 7.8 7.8 7.8	6.37 6.43 6.52 6.41 6.41	000.46 0.000.45 0.000.45 0.000.4000.40 0.000.4000000	277 54626 285 54995 777 70397 204 43236 277 54519 98 89304 103 73975	16 3.44 21 3.32 27 3.82 13 3.26 18 3.43 48 4.43 45 4.08	144 28 150 28 178 33 178 33 146 28 314 56 314 56	311 929 138 743 2753 204	3301 1318 3301 1318 3301 1318	78 	0.52 0.53 0.53 0.53 0.63 63 0.63 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.5	0.39 0.39 0.51 0.51 0.51 0.51 0.51 0.52 0.52	200 1.9 371 1.5 154 1.8 324 1.8 842 2.6	00400000 04000000	7 0 0 0 0 0 1 8 1 0 4 6 1 0 1 8 1 0 4 6 6 1 4	1184 1385 1378 1195 1128 1387	501 501 501 501 943 943	1086 1260 1250 1106 1039 1250	760 875 774 727 875 875 875	
Seme-kpodi 3 7 0.08 5.97 6.38 0.53 117 819 31170 819 Age-veck 3 7 1 0.98 5.97 6.38 0.53 110 7482 311 31170 819 Age-veck 3 8 1.21 8.09 6.88 0.53 110 7482 31 2.06 0.55 2.66 50 312 338 1126 788 Revou 3 6 1.22 8.09 6.68 0.43 437 614 782 733 127 65 70 1338 1238 1338 1338 1338 1338 1338 1338 1338 1338 1338 1338 1338 1328 756 614 757 614 753 1338 1328 751 753 753 753 753 753 753 753 753 753 753 753 753 753 753	Aujour Aguegue Akpro-Misserete Avrankou Bonou Dangbo Porto-Novo	าตตตตต	~~~~~~~	1.23 1.03 1.23 1.23 1.23	6.37 6.37 7.20 8.08 8.08 6.81	6.45 6.73 6.73 6.73 6.73 6.49 6.43	00000 4444400 000111600	103 /37/3 122 59519 146 80894 138 79880 138 79880 128 61891 163 98981	40 4.23 35 3.67 46 4.23 39 3.79 39 3.79 56 4.54	233 75 192 35 191 36 281 50 278 50 177 33 347 61	685 467 974 773 348 016	2222321 31723322 3252332	922 136 167 167 100 100 100 100 100 100 100 100 100 10	0.60 0.60 0.63 0.54 0.63 0.63	0.55	270 2.1 270 2.1 997 2.1 126 2.4 448 2.4 4717 2.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 8 8 7 7 8 9 1 9 8 7 9 8 1 1 9 8 7 7 8 9	1335 1316 1425 1304 1356 1356	944 943 943 943 943	1196 1279 1274 1223 1223 1223	837 895 892 892 856 856	
Bolleon 2 6 0.97 5.54 6.77 0.64 6.23 1.50 0.51 1.50 0.54 1.173 0.52 0.045 5.44 98 1.164 5.22 1.173 0.52 0.045 0.52 0.045 0.53 1.173 0.57 0.54 1.173 0.57 0.54 1.173 0.57 0.54 1.174 5.25 0.046 5.23 1.061 1.25 1.061 1.25 1.061 1.25 1.061 1.25 0.55 0.46 83 2.54 1.173 805 7.44 81 1.164 5.22 1.105 805 7.44 805 1.164 5.22 1.105 805 7.44 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 805 7.64 </td <td>Seme-Kpodji Adja-Ouere Ifangni Ketou Pobe Sakete Abomey Agbomey</td> <td></td> <td>ر م م م م م م م م</td> <td>0.98 1.21 1.25 0.98 0.97 0.97</td> <td>8.00 8.00 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7</td> <td>6.38 6.682 6.68 6.79 6.79 6.77</td> <td>0.600.623</td> <td>(10774822 (1027489) (1027489) (1027489) (1027489) (1027489) (1027489) (102748) (1027</td> <td>34 3.93 15 2.94 49 4.16 52 4.29 52 4.29 21 2.96 21 2.31 21 2.96 21 2.31 21 2.31 21 2.31 21 2.31 21 2.31 23 2.31 32 2.31 32 2.31 32 2.31 32 2.31 32 2.31 32 3.31 32 3.51 32 3.5</td> <td>251 46 71 17 71 17 78 27 78 27 78 27 78 27 78 27 78 27 110 23 110 23 135 27 135 27</td> <td>123 761 622 143 201 8811 8811 527</td> <td>242222242</td> <td></td> <td>0.62 0.65 0.57 0.53 0.54 0.53</td> <td>0.51 0.55 0.55 0.53 0.553 0.553 0.553</td> <td>577 2.6 208 2.6 62 2.6 568 1.9 568 1.9 568 1.9 568 1.9</td> <td></td> <td>4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>1321 1258 1388 1388 1156 1156 1232 1232</td> <td>943 1338 1338 1338 1338 1338 1338 522 522</td> <td>1170 1126 1251 877 1023 11184 1119</td> <td>819 788 716 875 875 8716 783 793 793 793</td> <td></td>	Seme-Kpodji Adja-Ouere Ifangni Ketou Pobe Sakete Abomey Agbomey		ر م م م م م م م م	0.98 1.21 1.25 0.98 0.97 0.97	8.00 8.00 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7	6.38 6.682 6.68 6.79 6.79 6.77	0.600.623	(10774822 (1027489) (1027489) (1027489) (1027489) (1027489) (1027489) (102748) (1027	34 3.93 15 2.94 49 4.16 52 4.29 52 4.29 21 2.96 21 2.31 21 2.96 21 2.31 21 2.31 21 2.31 21 2.31 21 2.31 23 2.31 32 2.31 32 2.31 32 2.31 32 2.31 32 2.31 32 3.31 32 3.51 32 3.5	251 46 71 17 71 17 78 27 78 27 78 27 78 27 78 27 78 27 110 23 110 23 135 27 135 27	123 761 622 143 201 8811 8811 527	242222242		0.62 0.65 0.57 0.53 0.54 0.53	0.51 0.55 0.55 0.53 0.553 0.553 0.553	577 2.6 208 2.6 62 2.6 568 1.9 568 1.9 568 1.9 568 1.9		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1321 1258 1388 1388 1156 1156 1232 1232	943 1338 1338 1338 1338 1338 1338 522 522	1170 1126 1251 877 1023 11184 1119	819 788 716 875 875 8716 783 793 793 793	
	Bonicon Cove Djidja Ouinhi Zangnanado Za-Kpota Zogbodome	<u> </u>	യാനപനരം	0.99 0.99 0.93 0.93 0.93 0.95 0.95	5.55 5.09 5.09 5.46 5.45 5.45 5.45 5.45 5.45 5.45 5.45	6.77 6.78 6.78 6.78 6.78 6.78 6.78	0.00.64	86 30755 02 34743 25 40174 96 57827 26 44011 19 39263 19 59334	21 2.95 25 3.04 22 3.17 22 3.17 30 3.17 30 3.17 28 3.18 28 3.18 18 3.63	52 10 60 20 70 22 73 25 73 25 69 22 178 34	700 381 680 848 848 848	2478781 2478781	80 79 101 13 86	0.61 0.59 0.58 0.58 0.58 0.58 0.58	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	889 2.1 833 2.2 833 2.2 118 2.4 2 1.9 2 233 2.2 91 2.1 91 2.1		2007444 2017444 2017444 2017444 2017444 2017444 201744 200	1250 1164 1215 1215 1151 1235	522 522 522 522 522 522 522 522 522 522	11151 1151 1005 1082 1025 1114	785 704 758 758 718 718 745 780	

Annex 13 Data sets of vegetation, environmental and demographic parameters used in chapter spatial vegetation dynamics

CURRICULUM VITAE

Name: Date of birth: Nationality: Civil status: Email: Zhixin Deng 16.02.1970 Chinese single deng_zhi_xin@yahoo.com.cn

Education

- 09.1988-06.1992 Bachelor study in the Department of Plant Protection in Southern China University of Tropical Agriculture
- 04.1993-10.1993 MBA correspondence courses of China University of Science and Technology
- 04.1998-09.2001 Scholar of the DAAD (German Academic Exchange Service), Master study in the Institute of Tropical Technology of University of Applied Sciences Cologne, Germany: Master of Engineering in the field of Project Management (including Geography and Area Planning in the Tropics, Economic and Social Systems, Instruments of Planning and Deciding, Economy and Marketing, Development and Technology Transfer and Languages) and a selective field in Principles of Agricultural Production and Food Technology; Study language: German
- 2001.09 2002.09 Student in the Department of Economic Computer Science of University of Applied Sciences Cologne, Germany. Reading literatures about New Institutional Economics (Steven N.S. Cheung, Ronald Coase, Armen Alchian, Harold Demselz, Douglas North, Joseph E. Stiglitz, Xiaokai Yang, Yifu Lin, Qiren Zou)
- 09.2002-08.2003 Master study in University Bonn, Germany: ARTS (Agriculture Sciences and Resource Management in the Tropics and Subtropics), Master of Science; Study language: English
- 09.2003-07.2007 Ph.D. in the Institute of Crop Science and Resource Conservation of University Bonn, Germany

Professional experiences

03.1992-03.1994	Staff in the Hainan Food Industry development Company of the Hainan Provincial Development and Construction Inc. (the biggest state owned company in Hainnan Province), China
04.1994-09.1994	Project leader of the First Experimental Botanical Garden in the Hainan Company of the Washington Investment Group of USA, in charge of the designing, building up and managing the whole garden, China
06.1995-08.1995	Consultant in the Hainan Company of the Washington Investment Group of USA and responsible for planning and technicians training of the 1000 ha Mango Plantation Project in Hainan, China
09.1994-04.1998	Researcher of Mango Research Institute of Hainan Hengtai Mango Industry Corporation (the first private agricultural joint- stock company coming into the Shanghai Stock Market); Vice director of the Experimental Plantation; Vice director of Dongfan County's Comprehensive Technological Renovation Plantation; Manager of the Technical Service Department (independent contractor with responsibility); Participated in planning and implementing the Mango and Passion Fruit Comprehensive Project, China
10.2000-02.2001	Practice in the GTZ Project "Rehabilitation and Protection of Forests in Hainan, southern Yunnan; and Sichuan", China
11.2001-09.2003	Scientific assistant in the Institute for Fruit and Vegetable Cultivation of the University Bonn, Germany
09.2003-06.2007	Scientific staff in the Institute of Crop Science and Resource Conservation of the University Bonn. Research Fellow in the Social Economic Group of the IMPETUS-Project (an integrated approach to the efficient management of scarce water resources in West Africa), Benin and Germany

Membership

Since Sep. 2006 Chairman of Rhine Academic Forum (NGO), Germany

Since Oct.2006 Member of Chinese Association of Environment and Energy, Germany
