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1. Introduction

The effective dimensionality and electron correlations determine the properties of in-
teracting electron systems. Furthermore, correlation effects increase as the number of
effective dimensions decreases: for example, in three-dimensional metallic systems, the
low-energy electronic states behave as Fermi liquid quasiparticles, whereas in one di-
mension, even weak interactions break the quasiparticles into collective excitations. The
concept of a Luttinger liquid [Tomonaga’50, Luttinger’63] has recently been established
as vital to our understanding of the behavior of one-dimensional quantum systems. This
concept has led to a number of theoretical breakthroughs, in particular, this theory
characterizes the low-energy excitation spectrum as consisting entirely of independent
spin and charge density fluctuations. Over the last decade its descriptive power has
been confirmed experimentally, when high quality quantum wires have been fabricated
displaying all characteristic Luttinger liquid properties [Bockrath’99, Ishii’03].

The variety of exotic ground states, new phases of matter and quantum effects dom-
inating thermal fluctuations are only some of the phenomena that the low-dimensional
systems offer to enrich solid state physics. Moreover, the theoretical treatment is suf-
ficiently simplified in a reduced dimension allowing to solve many theoretical models
exactly. For more than 30 years the experimental realization of (quasi-)low-dimensional
compounds is not a real problem anymore: anisotropy of exchange coupling obtained
in organic spin systems reaches the values of 104:1 [Dietz’71]. It has also to be men-
tioned that the huge fundamental work made in the field of low-dimensional systems is
of great importance in three-dimensional systems as well. One of the recent examples
is given by the three-dimensional cubic system Tl2Ru2O7 which has been supposed to
evolve into a one-dimensional spin-one system with a spin gap below T = 120 K [Lee’06].
The appearance of the gap was predicted by Haldane in 1983 as an inherent property
of integer spin chain systems [Haldane’83]. But low-dimensional systems are not only
interesting from a fundamental physics point-of-view. They offer unique opportunities
for practical applications, for example building of quantum computers, high-capacious
data-storage elements and superconductors. Therefore, understanding the properties of
low-dimensional spin systems is one of the central problems in quantum magnetism.

Nevertheless, despite the fact that the field of low-dimensional magnetism developed
into one of the most active areas of today’s solid state physics, the number of unexplained
phenomena tends to increase with time. Their understanding needs a more detailed study
of the physics underlying these phenomena. In this thesis we will characterize the spin
relaxation mechanisms in one-dimensional spin systems using the electron spin resonance
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1. Introduction

spectroscopy. This technique allows to directly access the spin of interest and gain
information on its relaxation processes and, in particular, on the exchange interaction
with its neighbors. The systems chosen for the present study are all structurally different
but reveal a clear one-dimensional character in their magnetic properties. In spite of
structural differences, we will show the close similarity of their relaxation behavior and
identify the dominant sources of spin relaxation common in all compounds.

Two of the systems investigated are the members of the sodium-vanadium bronze
series NaxV2O5 which acquired a paradigmatic status. The possibility to tune the vana-
dium valence between V4+ (3d1) and V5+ (3d0) allows the realization of a variety of
spin-1/2 systems with strong quantum effects. Moreover, the rich structural chemistry
of these systems, where the V ions can occur in pyramidal, tetrahedral, or octahedral
coordination, gives rise to the formation of very interesting chain-like and ladder-like
structures. β-Na1/3V2O5 which shows a metal-to-insulator transition and superconduc-
tivity under pressure is only one member of this series. This study focuses on two other
compounds with higher Na concentration: α′-NaV2O5 and η-Na9/7V2O5. The former
system reveals charge ordering phenomena [Grenier’02] and has been intensively studied
during the last decade. The latter one came only recently into the focus of interest and
we will show that its ground state can be understood in terms of exotic spin objects.

Strictly speaking, both of these systems are not ideal spin chains. α′-NaV2O5 repre-
sents a prototypical two-leg spin-ladder system, and η-Na9/7V2O5 can be described as
a zigzag-like chain. In order to make this study more conclusive, a linear spin chain
compound, TiOCl, was considered as well. The properties of this system are even more
exciting. TiOCl exhibits a spin-Peierls-like dimerization [Pytte’74] with the highest tran-
sition temperature known at the moment [Shaz’05] and undergoes a metal-to-insulator
transition under pressure [Kuntscher’06]. Furthermore, electron doped TiOCl has been
suggested to exhibit unconventional superconductivity with a TC of about room temper-
ature [Craco’06].

The course of this thesis is the following: First, we give an introduction to the micro-
scopical theory of superexchange in Chapter 2, including the generalized schemas of the
Dzyaloshinsky-Moriya and the pseudodipolar exchange. In Chapter 3, we briefly review
the properties of low-dimensional systems necessary for the following analysis. The basic
ideas of electron spin resonance spectroscopy in concentrated spin systems are given in
Chapter 4. In the following Chapters we consider three spin-chain systems: α′-NaV2O5,
where the spin relaxation can be explained by only one type of exchange interaction is
treated first, in Chapter 5. The next Chapter deals with the more involved situation in
TiOCl. Chapter 7 treats then the η-Na9/7V2O5 system. The electron spin resonance
data in this compound are even richer in features, but are crucial in determining the
nature of the low-temperature ground state. Chapter 8 is devoted to conclusions. It
is followed finally by an Appendix which contains the explicit derivation of exchange
constants in terms of a perturbation theory.
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2. Microscopic Theory of Superexchange

Exchange interaction, the major source of magnetic ordering in solids, constitutes the
head stone of the theory of magnetism. The concept of exchange coupling arose in
1927 with the Heitler-London theory of the chemical bonds [Heitler’27], and was at once
applied by Heisenberg [Heisenberg’28] to the theory of ferromagnetism. The Heisenberg
model of exchange interaction became the foundation for most of the current theoretical
treatments of cooperative magnetic phenomena. The principal feature of this model
is the assumption that the interaction Hiso between two magnetic atoms a and b in
a crystal can be expressed as Hiso = J(Sa · Sb), where J is an exchange integral and
Sα is the spin operator for the respective atom. Obviously, the sign and magnitude
of J are extremely important in determining the transition temperatures, the magnetic
structures, and indeed practically all of the fundamental magnetic properties of a crystal.
But this model does not account for any anisotropic effects.

Generally, the exchange interaction

Hex =
∑
ij

Jij Sa,iSb,j

(
i, j = {x, y, z} )

(2.1)

contains two anisotropic terms as well

Hex = J(Sa · Sb) +
1
2

∑
ij

Dij

(
Sa,iSb,j + Sa,jSb,i

)
+

(
d · [Sa × Sb]

)
. (2.2)

The second term describes the symmetric anisotropic exchange and the third term –
the Dzyaloshinsky-Moriya (antisymmetric) interaction. Both of them are considerably
smaller than the isotropic Heisenberg exchange (the first term), but have a profound
impact on the magnetic properties of crystals. Among others, they produce canted spin
arrangements and can even lead to phase transitions in the systems of lower dimen-
sion, as for instance the Berezinsky-Kosterlitz-Thouless transition in two-dimensional
lattice. Moreover, the anisotropic parts of exchange interaction seem to be the origin
of magnetism-induced ferroelectricity. A particular importance they get in spin-1/2
systems, where they represent the only one source of anisotropy.1

1 (i) Double exchange interaction which cannot be written using spin variables is beyond the scope of
this work and will only be mentioned briefly in chapter 2.2.5.
(ii) In case S > 1/2, this equation may only be the leading term of a series expansion with respect
to the total spin operators Sa and Sb, in which higher terms such as biquadratic (Sa,iSb,j)

2 occur.
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2. Microscopic Theory of Superexchange

In spite of the remarkable success in the general theory of cooperative phenomena,
any rigorous treatment of exchange interactions in three-dimensional systems lies behind
the classical statistical theory. But the difficulties of quantum-mechanical treatment can
be overcome in a lower dimension: The recent field-theory calculation of the spin-1/2
quantum antiferromagnetic chain by Oshikawa and Affleck [Oshikawa’02] gives an unique
opportunity to study the exchange interactions in spin chain compounds using the rig-
orous theoretical basis. On the other hand, the large isotropic exchange (J/kB ∼ 102 K)
characteristic for one-dimensional spin systems serves as a background for compara-
tively small anisotropic contributions and makes it difficult to access them by means of
magnetic susceptibility or by inelastic neutron scattering. But the spin-spin relaxation,
measured by the electron spin resonance spectroscopy, is driven primarily by the local
fields produced by the anisotropic parts only. That makes the electron spin resonance
an ideal tool to study these fine effects.

One of the main purposes of this thesis is to investigate the influence of the exchange
interaction on the spin relaxation in low-dimensional systems both from the experimental
and the theoretical side. In this chapter we will discuss a theoretical approach, which
allows to estimate their magnitude microscopically and allows in the most ocular (and
correct) way to deal with the exchange interactions.

2.1. Exchange Mechanisms

Spin exchange correlations may only occur if the wave functions of the electron of interest
have a non negligible overlap. In case of direct overlap of the orbitals of neighboring
magnetic ions one speaks about direct exchange.

2.1.1. Direct Exchange Interaction

The Hamiltonian of direct exchange between the ions a and b has generally the form
[Eremin’72]

Hdir = −1
2
(HP + PH)

+
1
2

(∑
H|ψ1ψ2〉〈ψ1ψ2|P +

∑
P|ψ1ψ2〉〈ψ1ψ2|H

)
. (2.3)

Theoretical [Anderson’59, Gondaira’66] as well as experimental [Harris’63] estimates of this contri-
bution give the value, which is two orders of magnitude smaller than the bilinear part (2.1). In this
work we will concern only S = 1/2 systems for which this expression is fully correct. The quantities
entering into Eq. (2.2) are

J =
1

3

X
i

Jii, Dij = Jsym
ij − Jδij , J sym

ij =
1

2

`
Jij + Jji

´
;

dx =
1

2
Jasym

yz , dy =
1

2
Jasym

zx , dz =
1

2
Jasym

xy , Jasym
ij =

1

2

`
Jij − Jji

´
.
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2.1. Exchange Mechanisms

Here |ψ1ψ2〉 ≡ |ψ1〉|ψ2〉 means the product of the wave functions of interacting electrons,
the permutation operator P =

∑
ij Pij interchanges two electrons i and j. Let us discuss

the case of one electron on each site (see Fig. 2.1). The total Hamiltonian then reads

H =
p2
1

2m
+

p2
2

2m
− Zae

2

ra1
− Zbe

2

rb2
− Zbe

2

rb1
− Zae

2

ra2
+

e2

r12
. (2.4)

Figure 2.1.: Schematical representation of two interacting electrons 1 and 2 belonging to
the ions a and b, respectively.

In terms of spin operators the Hamiltonian of direct exchange between two electrons
in the states η and ζ reads

Hηζ
dir = J dir

ηζ

[
1
2

+ 2 (sη · sζ)
]
, (2.5)

where the parameter J dir
ηζ is determined by [Schastnev’75]

J dir
ηζ = −〈η1ζ2| e2

r12
|η2ζ1〉 + 2Re 〈η|ζ〉 〈η| p2

2m
|ζ〉 − (2.6)

− | 〈η|ζ〉 |2
[
εη + εζ − 〈η|U2|η〉 − 〈ζ|U1|ζ〉 + 〈η1ζ2| e2

r12
|η1ζ2〉

]
.

Sηζ ≡ 〈η|ζ〉 represents the overlap integral. U1 and U2 are the Coulomb energies of
electrons in the field of the other atoms, εη and εζ – the Hartree-Fock energies of the
electrons in the states η and ζ, respectively:

U2 = −Zbe
2

rb1
+ 〈ζ2| e2

r12
|ζ2〉, εη|η1〉 ≡

(
p2
1

2m
− Zae

2

ra1

)
|η1〉. (2.7)

The first term in Eq. (2.6) represents the potential exchange as introduced by Anderson
[Anderson’59]. It is always negative and favors a ferromagnetic spin alignment. Detailed
calculations show [Freeman’61, Freeman’62] that J dir

ηζ is negative only in case of zero
overlap of the neighboring orbitals Sηζ = 0, otherwise the last two terms in Eq. (2.6)
will dominate and lead to an antiferromagnetic coupling.

5



2. Microscopic Theory of Superexchange

Figure 2.2.: Channel model of exchange interaction [Eremin’77]. The exchange coupling
of each pair of spins Jαα′ is supposed to be mutually independent that allows
their algebraical summation (2.9).

The microscopical expression (2.6) corresponds to the exchange between a pair of spins.
In case of several electrons on one site the exchange operator is usually approximated
by the sum of individual exchange integrals J dir

ηζ depicted in Fig. 2.2: Hdir =
∑Hηζ

dir.
For detailed discussion of this ’channel model’ we refer to [Eremin’77, Eremin’80]. Here
we will consider only the case of interacting ions in the ground state what is usually the
case in magnetic resonance measurements. According to Hund’s rule they possess the
maximal spin value sη = 1

2Sa
Sa, sζ = 1

2Sb
Sb, and, hence, the spin dependent part of the

Hamiltonian of direct exchange reads

Hdir = J dir (Sa · Sb) , (2.8)

where the effective exchange integral is given by

J dir =
1

2SaSb

∑
ηζ

J dir
ηζ . (2.9)

The exchange integral (2.9) scales with the overlap squared and decreases exponen-
tially with the distance r between the spins. Therefore, direct exchange plays a large role
only for radicals [Musin’76] and in case of 90◦ metal-ligand-metal exchange geometry.
For 3d-ions it becomes negligible already at r ∼ 2.7 − 3 Å. In practice, magnetic ions a
and b are always separated by diamagnetic ions c, so that no appreciable direct overlap
is to be expected in this case. That led Kramers [Kramers’34] to propose that a strong
admixture of the cation’s and intermediate anion’s wave functions could be invoked to
couple the cations indirectly.

2.1.2. Indirect Exchange Mechanisms

It is tempting to assume, by analogy with the case of direct exchange, that exchange
coupling in case of three-center system a − c − b will be proportional to the product
of the overlap integrals Jηζ ∝ S2

ηκS2
κζ (κ is the state of the intermediate diamagnetic

6



2.1. Exchange Mechanisms

ion c). This contribution referred as Yamashita-Kondo’s mechanism is nevertheless only
marginal because the overlap integrals Sηκ are usually small compared to the covalency
parameters (i. e. hopping integrals tηκ, see Eq. A.17).

The hopping integrals tηκ characterize the kinetic energy of electrons or their desire
to delocalize. Whenever their repulsion predominates and prevents metallic conduction,
the tendency to delocalize can gain energy by spreading electrons into nonorthogonal
overlapping orbitals, naturally leading to the antiferromagnetic spin ordering. This
problem was first considered by Kramers who developed a unique method of handling
configuration interactions [Kramers’34]. The idea by Kramers is displayed in Fig. 2.3(i).
The excited configuration in which an electron has been removed from the nonmagnetic
center c and placed on a leaves an unpaired spin on c and b leading to a spin coupling
due to the direct overlap of these charge densities. The magnitude of this type of indirect
exchange can be estimated as Jηζ ∝ t2ηκS2

κζ .
Twenty years later Pratt [Pratt’55] could show that such polarization effects cannot

produce the actual antiferromagnetic spin-ordering and proposed another scheme shown
in Fig. 2.3(ii): two electrons of the diamagnetic ion are simultaneously transferred to
the magnetic ions providing an antiferromagnetic coupling. An attempt to compare the
effectiveness of all possible mechanisms of superexchange was made by Yamashita and
Kondo [Yamashita’58], but it was not possible to single out the most efficient one. In
1959, Anderson [Anderson’59] simplified and unified the various mechanisms giving rise
to superexchange interaction. He showed that the superexchange mechanism, where the
ionic configuration a+b− is obtained (see Fig. 2.4), strongly dominates all others. On
the one hand, the energy of this ionic state is higher than the energy of the unperturbed
state by an amount U = Δab, corresponding to the average electrostatic repulsion energy
for two electrons on the same site. On the other hand, the system gains kinetic energy
Jηζ ∝ t2ηκt2κζ . This delocalization stabilizes the singlet configuration, because the two

Figure 2.3.: Schematic representation of the indirect exchange between two magnetic
ions a and b via a diamagnetic ion c proposed by (i) Kramers in 1934
[Kramers’34] and (ii) Pratt in 1955 [Pratt’55]. The green arrows denote the
virtual hoppings of electrons. Numeration corresponds to the sequence of
the electron transfers.
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2. Microscopic Theory of Superexchange

electrons at site b must necessarily pair up. Anderson’s approach to the theory of
superexchange interactions has become classical and will be considered in more detail in
the next section.

2.2. Isotropic Exchange Interaction

The following consideration generalizes Anderson’s approach [Anderson’59] by account-
ing directly for the states of an intermediate ion. It is based on the method of canonical
transformations which allows in a natural way to derive the constants of exchange in-
teractions using a perturbation theory. The detailed description of this method can be
found in appendix A. Here we will only use the results of these calculations, which are
needed to discuss the underlying physical processes.

First, let us introduce some notations: a+
η (aη′) and b+

ζ (bζ′) are the creation (annihi-
lation) operators of electrons on the magnetic ions, c+

κ (cκ′) – on the intervening dia-
magnetic ions. With η, ϕ, ξ we denote the orbital and spin states of the magnetic ion a
[η ≡ (nηlηmηsη)] and with ζ, θ, λ the corresponding states of the magnetic ion b. The
letters κ, ρ signify the one-electron states of the diamagnetic ion c.

2.2.1. Classical Concept: Antiferromagnetic Spin Ordering

The most effective mechanism of the isotropic superexchange between two magnetic
ions a and b via the intervening ion c as first described by Anderson [Anderson’59] is
illustrated in Fig. 2.4. By counting the involved electronic hopping processes, it becomes
evident that this mechanism corresponds to the forth order of perturbation theory with
respect to the energy of the electron hoppings.

Figure 2.4.: Schematic representation of the ”superexchange” between two magnetic ions
a and b via a diamagnetic ion c proposed by Anderson [Anderson’59]. The
green arrows denote the virtual hoppings of electrons. The Greek letters
denote the orbital states of an electron on the corresponding ion.

8



2.2. Isotropic Exchange Interaction

Consequently, this process can be described by the Hamiltonian (A.22), which is de-
rived in the appendix. Here, we add a factor of two to this Hamiltonian

Hkin = 2 · tηρtρζtζκtκη

Δ2
acΔab

(
−1

2
+ 2(sη · sζ)

)
, (2.10)

because we also take into account the electron transfer from site a to site b. Moreover,
tηρ denotes the hopping (transfer) integral between the orbital states η and ρ, Δab ∼ U
and Δac are the electron transfer energies from ion a to the cation b and to the anion
c, respectively. The expression (2.10) represents the kinetic exchange in Anderson’s
notation and was considered to be intrinsically antiferromagnetic. This type of exchange
constitutes an isotropic antiferromagnetic exchange interaction

Hηζ
iso = Jηζ (sη · sζ) −→ Hiso = J (Sa · Sb), (2.11)

where the constant of isotropic exchange is given by

Jηζ = 4 · tηρtρζtζκtκη

Δ2
acΔab

and J =
1

4SaSb

∑
ηζ

Jηζ . (2.12)

The direct exchange (2.8) is also isotropic, but negligible as compared to the kinetic
exchange because of the large distance between the interacting ions. It is worth not-
ing, that the isotropic exchange is strongly antiferromagnetic only in case of 180◦ bond
geometry (all three ions are lying on a straight line). The deviations of the bond an-
gle θ from 180◦ can be described by introducing geometrical factors like, for example,
t(θ) ∝ −tσcosθ − tπsinθ. As we will discuss in the following, competition and quantum-
interference effects between different exchange paths can occur in some cases and can
lead to a strong ferromagnetic coupling of spins [Bencini’90, Krug’02].

2.2.2. Ferromagnetic Superexchange

Following Anderson, ferromagnetic coupling can be obtained considering two major pro-
cesses: (i) potential exchange and (ii) transfer of the electron to the unoccupied orbital of
the neighboring ion. The indirect potential exchange is, as a matter of fact, of the same
nature as the corresponding direct process. It describes the electrostatic energy of the
system as a spin-spin interaction in the basis of one-electron wave functions. Anderson’s
treatment allows to separate the part of the interaction containing the spreading of the
orbitals of the d-electrons into the neighboring ions by the modification of the local wave
functions. The exchange effect then appears as a consequence of the direct overlap of
the new longer-ranging orbitals. But this process only plays a minor role compared to
the following one.

The second mechanism is shown schematically on the left side of Fig. 2.5. This is a
fifth-order effect of transfer together with the internal exchange coupling V

(1)
mm′ = JH (see

9



2. Microscopic Theory of Superexchange

Figure 2.5.: Two possible mechanisms favoring ferromagnetic exchange. Left: transfer
of an electron to the empty orbital state of the neighboring ion, the spins
will be aligned parallel in accordance with the Hund’s rule. Right: Scheme
of the electron transfer from the fully-filled orbital state of ion b into the
half-filled orbital of ion a, the ferromagnetic configuration will be minimized
due to the Pauli principle as well as the Hund’s rule.

appendix A). Therefore, its order of magnitude in comparison with the antiferromagnetic
isotropic exchange (2.11) can be estimated as

JFM ≈ −J · JH

Δab
. (2.13)

Here, JH represents the matrix element of the Coulomb interaction on the involved
pair of orbitals. E.g. JH(dxy, dx2−y2) = C, JH(dxy, dyz) = JH(dxy, dxz) = 3B + C,
JH(dxy, d3z2−r2) = 4B + C [Griffith’71], where B and C are the Racah parameters. An-
derson estimated JH/Δab to be about 0.1 ÷ 0.2 and supposed that this interaction is
negligible in comparison with the potential exchange [Anderson’59]. However, the anal-
ysis of experimental data has shown the importance of this mechanism for formation of
the magnetic structure in many dielectrics: Goodenough [Goodenough’58] has empha-
sized the key role of empty and filled orbitals, and proposed two processes depicted in
Fig. 2.5 for the formation of the ferromagnetic ground state. In the following we will
give some examples in which the exchange coupling between the excited states and the
ground states exceeds in orders of magnitude the exchange between ground states only,
favoring a ferromagnetic coupling of spins.

2.2.3. Quantum Interference of Superexchange Interactions

As described above the traditional approach to superexchange in dielectrics is based on
the three-centre (metal-ligand-metal) model [Anderson’63]. It is assumed tacitly that
the resulting interaction is the algebraical sum of all contributions from the bridging
ligands. In this chapter we would like to emphasize that, in general, superexchange is not
additive. In fact, an interference occurs in superexchange via two or more intermediate
ions, which can suppress as well as amplify Anderson’s conventional superexchange.

10



2.2. Isotropic Exchange Interaction

Figure 2.6.: Electron-transfer schemes illustrating various superexchange mechanisms
via anions c1 and c2 between cations a and b. (i), (ii), (iii) and (iv) re-
fer to transfer sequences.

This statement is easily to substantiate in terms of the ’four centers - six electrons’
model. Various sequences of one-electron transfers responsible for superexchange be-
tween magnetic ions a and b via the diamagnetic ions c1 and c2 are shown in Fig. 2.6.
The scheme (i) describes Anderson’s additive superexchange through several ligands
[Anderson’63]. Three other sequences correspond to essentially four-centre exchange
mechanisms. All the mechanisms specified contribute naturally to the fourth-order per-
turbation and therefore their effect should be of the same order of magnitude.

The looped exchange of the type (ii) is the interference process to the usual Anderson’s
exchange (i). If the product of all transfer integrals is positive, it provides an antiferro-
magnetic contribution. Correspondingly, the contribution becomes ferromagnetic, if the
product is negative. Note that if the ligands c1 and c2 are equivalent, this contribution
doubles as well as completely suppresses the Anderson type of exchange [Eremin’82a].

Figure 2.7.: Schemes of overlapping orbitals having (i) the same and (ii) different sym-
metries in the case of two bridging ligands. In the former case the product
of transfer integrals for ring-like processes is positive favoring antiferromag-
netic coupling, in the latter one it is negative providing a ferromagnetic
contribution.

11



2. Microscopic Theory of Superexchange

These two extreme cases are shown in Fig. 2.7(i) and (ii), respectively. This effect is
called quantum interference of superexchange interaction.

Two other types of exchange processes shown in Fig. 2.6(iii),(iv) are not reducible to
the exchange looped paths. They should be rather called the interference processes with
regard to Pratt’s mechanism shown in Fig. 2.3(ii). However, with the transfer energy
of two electrons from one ligand being higher than the transfer energy of electrons from
different ligands, mechanisms (iii) and (iv) of Fig. 2.6 dominate the Pratt’s exchange
mechanism. The effective Hamiltonian of this type of exchange has the form [Eremin’82b]

H(iii,iv) =
∑ 1

|Δη−κ+ρ+ζ− |
(

t′ηρtζκ

Δζκ
+

t′ζκtηρ

Δηρ

)(
t′ρζ′tκη′

Δκη′
+

t′κη′tρζ′

Δρζ′

)
· aη′a+

η bζ′b
+
ζ , (2.14)

where ρ and κ belong to different anions. Using (2.14) one can conclude that the exchange
in the case Fig. 2.7(ii) is ferromagnetic and estimate the exchange constant as Jxy,x2−y2 ∼
−3(Δπ + Δσ)/(ΔπΔσ)2 · t2π(t′σ)2. Exact calculations showed that this contribution is
considerable and amounts e.g. for the Cu2+ dimers [Voronkova’83] to Jxy,x2−y2/kB ≈
−475 K.

2.2.4. Exchange at Small Charge-Transfer Energy

In the previous chapters we focused on the cases when the isotropic exchange interaction
leads to the ferromagnetic coupling of spins. Let us now discuss a further generalization
of the classical Anderson’s one electron per site theory [Anderson’63] and show that
in multi-electron systems the kinetic exchange is essentially antiferromagnetic only, if
the charge transfer energies exceed by far the inter-term splittings. If this condition is
not fulfilled, the averaging of the transfer energies over all configurations is not justified
anymore (in other words, the energy denominator in Eq. (A.18) cannot be factored
out). That affects the spin-dependent part of the exchange Hamiltonian which from the
standard Anderson’s form (Eq. 2.10) is transformed to [Eremin’80, Eremin’81]

H(sm.Δ)
ex ∝ 1 − Sa(Sa + 1) − Sa(Sa + 1) − 3

4

Sa(Sa + 1)
· Sb(Sb + 1) − Sb(Sb + 1) − 3

4

Sb(Sb + 1)
(Sa · Sb) ,

(2.15)
where Sk and Sk denote the spin of the ion k in the ground and excited (with charge
transfer) states, respectively. This factor depends on the particular type of excitation.
Since we are interested in one-electron transfer, possible excited spin states are Sk =
Sk ± 1/2. Therefore, there are only four types of spin operators corresponding to the
charge transfer processes illustrated in Fig. 2.8.

The first process corresponds to the Anderson’s exchange, and the spin operators in
the last three terms have an unusual form. The type of magnetic ordering due to kinetic
exchange depends now on competing contributions. The second and the third type
of the exchange processes favor a ferromagnetic coupling, whereas the other ones are
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2.2. Isotropic Exchange Interaction

Figure 2.8.: Four possible types of one-electron charge transfer. Sa and Sb represent
the change of the total spin of the ions a and b, respectively. In the fourth
column the corresponding spin part (2.15) of the exchange Hamiltonian is
given.

responsible for antiferromagnetic spin alignment. The resulting coupling is determined
by the first term only in the case of 180◦ exchange between equivalent ions with half-
filled orbitals. Otherwise, couplings of other types may contribute, and the exchange
may become ferromagnetic. This conclusion agrees with numerous experimental data.

Let us consider an example of Cu2+-Mn2+ pair in KZnF3 in order to clarify the
previous discussion. Exchange coupling between the ions in the ground state has been
found to be antiferromagnetic J/kB ≈ 187 K, whereas Mn2+ excitation to the 4A1 state
results in ferromagnetic exchange J/kB ≈ −144(±7) K [Ferguson’71]. Ferromagnetism in
the excited state cannot be rationalized within the traditional exchange theory frame. In
particular, the Goodenough-Kanamory rules are obviously violated in this case. The pair
under consideration is characterized by a relatively low charge-transfer energy (Δab ≈
5 eV), which is of the same order of magnitude with the energy of the 4A1 state (3 eV).
Therefore, the exchange interaction should be analyzed using Eq. (2.15) rather than
Eq. (2.10). The quantitative analysis [Eremin’80] explained the negative J by showing
that the Mn2+ ion being in a state of lower than maximum multiplicity gives rise to
the exchange process SCu = SCu − 1/2, SMn = SMn + 1/2 (case 2 in Fig. 2.8), which is
intrinsically ferromagnetic.
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2. Microscopic Theory of Superexchange

2.2.5. Double Exchange: Extreme Case of Free Charge Transfer

Having considered the exchange coupling at low energy of transfer, let us discuss shortly
the limiting case of free charge transfer. Zener [Zener’51] has shown for the first time that
the indirect coupling of incomplete d-shells via conducting electrons is ferromagnetic.
This mechanism called double exchange is explained in Fig. 2.9 by the example of a
Mn4+-Mn3+ pair.

Figure 2.9.: The double-exchange schema by the example of a Mn4+-Mn3+ pair. Both
manganese ions are in the spin state with highest multiplicity in compliance
with Hund’s rule. Since the eg electron carries its spin unchanged as it
wanders from one ion to another, the energy of the pair will be lower when
the spins of both ions are parallel.

The first semiclassical consideration of double exchange was performed by Anderson
and Hasegawa [Anderson’55] in terms of a pure spin model. They concluded that this
exchange results in the equidistant energy spectra ES ∝ −|JDE |(S+1/2). The quantum-
mechanical treatment of it can be found in [Karpenko’76]. The double exchange is
kinematic and therefore cannot be written in form of an effective spin-Hamiltonian as
an interaction of spin or orbital moments. But using the Eq. (A.14) we can easily write
its Hamiltonian in the second quantization representation:

HDE =
∑

tζη′b+
ζ aη′ +

1
2

∑(
1

Δκζ
+

1
Δκη

)
tζκtκη′b+

ζ aη′ + h.c. (2.16)

The first term here corresponds to the direct hopping of an electron from one magnetic
ion to another, the second – to the cascade transfer via intermediate anions. The typical
values of the exchange constant JDE ≈ t2αα′/Δαα′ are usually about 0.1 eV.

This indirect coupling involving real electron transfer should not be confused with
the superexchange. The double exchange is inherently degenerate owing to the presence
of the magnetic ions of two charges. Therefore, this mechanism is linked inseparably
with the electrical conductivity, which is not the case for superexchange. Since we are
interested in dielectric materials, we will not account for double exchange in the present
work.
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2.3. Anisotropic Exchange Interaction

2.3. Anisotropic Exchange Interaction

The isotropic exchange interaction, which was discussed so far, does not depend on
the direction of spins with respect to the crystal axes. Exchange interaction becomes
anisotropic when the exchange Hamiltonian includes the spin-orbit (SO) coupling. Due
to SO coupling the excited orbital states are always admixed to the ground state of the
electron making it sensitive to the local crystal environment. This admixture can be
accounted for in terms of the given perturbation expansion (for details see appendix A)
by including an additional V (1) term acting on one site (k) – the SO coupling

H(k)
LS = λk(lk · sk) (2.17)

besides four hopping terms (2.10). The SO coupling constant λ is of the order of 102 K
[Abragam’70]. The resulting fifth- or higher order effect will be notably smaller as
compared to the four-order isotropic exchange (2.11) but nevertheless makes a profound
impact on magnetism and relaxation dynamics of many compounds.

Taking into account a single on-site excitation due to the SO interaction results in
the so-called Dzyaloshinsky-Moriya (antisymmetric) anisotropic exchange interaction.
The effect of two excitation due to SO coupling is symmetric in the spin variables and,
therefore, is called symmetric (pseudo-dipole) anisotropic exchange.

2.3.1. Antisymmetric Part of Anisotropic Exchange

The combination of the on-site SO coupling HLS and isotropic exchange Hiso can be
expressed by the effective Hamiltonian

H(5)
eff = −

∑
m′

|H(a)
LS + H(b)

LS |m′〉〈m′|Hiso| + |Hiso|m′〉〈m′|H(a)
LS + H(b)

LS |
Δmm′

, (2.18)

where m and m′ are the ground and the excited states involved into the exchange process,
respectively. The term of this Hamiltonian, which is quadratic with respect to the spin
variables, can be expressed as a cross-product of spin operators

(la · sa)(sa · sb) =
1
4
(la · sb) + i (la[sa × sb]) . (2.19)

Therefore, the effective contribution of (2.18) to the exchange interaction is given by

HDM = d · [Sa × Sb] (2.20)

with [Eremin’UP]

dj =
1

2SaSb

i

Δηζ

(
1

ΔκηΔρη
+

1
ΔκζΔρζ

)(
tζρtρη

〈η|λalj |ϕ〉
Δηϕ

tϕκtκζ − tηκtκζ
〈ζ|λblj |θ〉

Δζθ
tθρtρη

)
,

(2.21)
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2. Microscopic Theory of Superexchange

Figure 2.10.: Possible pathways of the DM interaction between the spins in the η and
ζ states on the ions a and b, respectively, via the excited orbital states ϕ
and θ. The transition due to the SO coupling is represented by the blue
dashed line, the electron hoppings with the transfer integral tαα′ – by the
solid green lines.

where j = {x, y, z}, tαα′ are the effective hopping integrals between the states |α〉, |α′〉
and a sum over all states of an intermediate ion (|κ〉, |ρ〉) is implied. We also assumed
that the charge-transfer energy Δab ≡ Δηζ from site a to site b is large compared to
the crystal-field splittings Δcf ≡ Δηϕ, Δζθ and the energy of the charge transfer to
the intermediate ion Δac ≡ Δκη,Δρη... These virtual hopping processes are displayed
schematically in Fig. 2.10, where e.g. the frame (iii) corresponds to the first term of
Eq. (2.21): the electron on site b is transferred to the empty state ϕ at site a and
interacts via SO coupling with the electron in the corresponding ground state η. Then,
one of the electrons hops to the initial state ζ.

The existence of this kind of anisotropic interaction was pointed out by Dzyaloshinsky
[Dzialoshinski’58] on the basis of symmetry analysis and the microscopic derivation of
the interaction was done by Moriya [Moriya’60]. Therefore, this interaction is called the
antisymmetric exchange interaction of Dzyaloshinsky-Moriya (DM). When the point
bisecting the straight line connected two interacting ions is not a center of inversion one
can expect that the Dzyaloshinsky-Moriya vector d 	= 0. A very useful rule to determine
the direction of the DM vector has been given by Keffer [Keffer’62, Moskvin’77]: dab is
an axial vector perpendicular to the plane spanned by the interacting magnetic ions a,
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2.3. Anisotropic Exchange Interaction

b and the intermediate diamagnetic ion c

dab = dc · [nac × nbc], (2.22)

where the unit vectors nac and nbc connect the spins a and b with the bridging ion
c, respectively, as it is shown in Fig. 2.11. Note that dc is a numerical parameter
dependent on the distance between the ions but not on the bond angle. The information
about the bond geometry is contained now only in the so-called ”geometrical factor”
Gc = [nac × nbc] which can be easily calculated.

The rough estimation of the strength of DM interaction using ESR can be obtained in
the following way: Let us consider e.g. a Cu2+ ion placed in an octahedron with a strong
tetragonal distortion along the z-axis and estimate the magnitude of the DM vector dz

along the z axis. Knowing the ground state η = dx2−y2 and the corresponding exited
one ϕ = dxy of a hole in such an environment, the expression (2.21) can be simplified in
this case as

dz 
 2i
λ 〈η|lz|ϕ〉

Δηϕ
· 4 tϕκtκζtζρtρη

Δ2
acΔab

=
4λ

Δηϕ
· Jϕζζη =

4λ

Δηϕ
· Jηζζη

tϕκ

tηκ
=

4λ

Δηϕ
· J tϕκ

tηκ
, (2.23)

where we used 〈η|lz|ϕ〉 = 〈dx2−y2 |lz|dxy〉 = −2i and the definition (2.12) of the exchange
integral. The hopping integrals of an electron to the diamagnetic ion from the ground
and excited orbital of the magnetic ion are denoted by tηκ and tϕκ, respectively (see
Fig. 2.10). The value of the g factor along the z axis gives us the possibility to estimate
λ/Δηϕ by [Abragam’70]

gz = 2 − 8
λ

Δηϕ
→ λ

Δηϕ
=

2 − gz

8

 1

4
Δg

g
, (2.24)

where we have used g = 2 as the g-factor for the free electron value and Δg denotes the
deviation of the experimental g-value from the pure spin value.

Figure 2.11.: Direction of the DM vector for the interaction between the ions a and b via
the intermediate ion c following Keffer [Keffer’62].
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Hence, the magnitude of the Dzyaloshinsky-Moriya vector can be estimated as

|d| = dz 
 Δg

g
· J tϕκ

tηκ
. (2.25)

The well-known expression by Moriya [Moriya’60]

|d| ≈ Δg

g
· J, (2.26)

(J is the integral of the usual isotropic exchange) can be obtained then using the as-
sumption of the equal hopping integrals between the ground tηκ and excited tϕκ levels
(see Fig. 2.10). Despite the fact that this assumption is not justified in general case
[Moskvin’77], it was widely used by many authors and, consequently, the DM interaction
was accepted to be the dominant source of anisotropy [Ikebe’71, Yamada’89, Kato’05]. In
section 4.5.3 we give several experimental examples, where the DM interaction plays only
a minor role in spin relaxation. These findings are in accordance with recent theoretical
investigations [Choukroun’01, Oshikawa’02] which strongly support that the symmetric
and the antisymmetric part of the anisotropic exchange in low-dimensional transition
metal compounds are at least of equal importance.

2.3.2. Symmetric Anisotropic Exchange Interaction

Let us consider now the next order of perturbation theory taking into account four
virtual electron transfer and two times the effect of SO coupling. As we will show later,
in case of orbital order and reduced dimensionality this type of exchange can dominate
all other anisotropic spin-relaxation mechanisms. Proceeding just as described in the
previous section, we rewrite the general Hamiltonian

H(6)
eff =

∑
m′m′′

|H(a)
LS |m′′〉〈m′′|Hiso|m′〉〈m′|H(a)

LS |
Δmm′Δmm′′

, (2.27)

considering only the terms which are quadratic in the spin variables,

(
la · sa

)(
sa · sb

)(
la · sa

) −→ 1
4

∑
ij

la,ila,j

(
sa,isb,j + sa,jsb,i

)
(2.28)

as

H(i)
AE =

λ2
a

8SaSb

∑ 〈η|li|ϕ〉
Δηϕ

tϕρtρζtζκtκξ

Δ2
acΔab

〈ξ|lj |η〉
Δηϕ

(Sa,iSb,j + Sa,jSb,i) . (2.29)

Introducing the exchange parameter D of the AE this expression can be written in the
form

HAE = Sa · D · Sb. (2.30)
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2.3. Anisotropic Exchange Interaction

Figure 2.12.: Possible paths for the symmetric anisotropic exchange between two sites
a (with ground state |η〉, exited states |ϕ〉, |ξ〉) and b (|ζ〉 and |θ〉, |λ〉,
respectively). Solid arrows correspond to the effective hopping integrals,
dashed arrows indicate the matrix elements of the spin-orbit coupling. The
process of type (v) is represented in more detail at the bottom, where all
hopping integrals tαα′ and matrix elements of SO coupling 〈α|li|α′〉 are
explicitly indicated.
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2. Microscopic Theory of Superexchange

Being a tensor of second rank, D does not allow for a simple graphical illustration.
This process was considered first by Bleaney and Bowers in 1952 [Bleaney’52] in case

of one electron placed on each site. The schematic graphical representation of this
process is given in Fig. 2.12(i). This picture represents the conventional symmetric
anisotropic exchange (AE) process [Bleaney’52, Yosida’96]: electron at site a is excited
via SO coupling from the ground state η into the state ϕ, is transferred to the ground
state ζ at site b and then retraces its steps returning to the initial state. It is obvious
that the SO coupling can take place on the ion b as well. That case is represented in
Fig. 2.12(ii), the respective Hamiltonian can be obtained from (2.29) by substituting
{a, η, ϕ, ξ} → {b, ζ, θ, λ}.

All other processes shown in Fig. 2.12 were pointed out by Eremin et al. [Eremin’05].
All such combinations of the interaction operators lead to the effective symmetric anisotropic
exchange as well. The general expression for the exchange constant of AE between the
ions a and b then reads

Dij(η → ζ) =
1

2ΔabΔ2
ac

(〈η|λali|ϕ〉
Δηϕ

tϕρtρζtζκtκξ
〈ξ|λalj |η〉

Δηϕ
+

+ tϕρtρλ
〈λ|λbli|ζ〉

Δζλ

〈ζ|λblj |θ〉
Δζθ

tθκtκη +
〈η|λali|ϕ〉

Δηϕ
tϕρtρζ

〈ζ|λblj |θ〉
Δζθ

tθκtκη +

+ tηρtρθ
〈θ|λbli|ζ〉

Δζθ
tζκtκϕ

〈ϕ|λalj |η〉
Δηϕ

+ tηρtρζ
〈ζ|λbli|θ〉

Δζθ
tθκtκϕ

〈ϕ|λalj |η〉
Δηϕ

+

+
〈η|λali|ϕ〉

Δηϕ
tϕρtρθ

〈θ|λblj |ζ〉
Δζθ

tζκtκη

)
. (2.31)

Here Sa = Sb = 1/2 and the sum over all possible excited states is implied. The exchange
constant Dij(ζ → η) for the reverse processes b → a has the same magnitude in case of
equal ions a and b.

The Moriya relation [Moriya’60] for D ∼ (Δg/g)2J implies that the transfer integrals
in the ground and excited states are of the same order of magnitude, i.e. D ∝ t2ηζ . Here,
we would like to emphasize that the actual transfer integrals which enter into expression
(2.31) are given by

D(i-iv) ∝ t2ϕζ , D(v,vi) ∝ tζηtθϕ. (2.32)

These terms can deviate considerable from tηζ . For example, in case of two bridging ions
(no 90◦-exchange) shown in Fig. 2.7(ii) the transfer integral in the exited state tϕζ =
txy,x2−y2 exceeds the transfer integral in the ground state tηζ = tx2−y2,x2−y2 by orders of
magnitude. Moreover, the exchange in the excited state is strongly ferromagnetic clearly
showing that the approximate relation D ∼ (Δg/g)2J neither gives the correct order of
magnitude nor the right sign of the interaction.

The generalization of the classical AE schema is of particular importance in the case of
spin-chain systems. This is related to the fact that in linear chain systems the overlap be-
tween the ground and excited states is negligible tϕζ ≈ 0. Therefore, the ’ring-exchange’
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2.3. Anisotropic Exchange Interaction

processes [Fig. 2.12(v,vi)] containing the electron transfer between the states with the
same symmetry play a major role.

The foregoing discussion shows that estimations of exchange parameters, especially
in low-dimensional systems, demand special care. For a reliable estimation microscopic
considerations of involved orbital states and exchange paths are necessary. In the fol-
lowing such an analysis will be presented for several low-dimensional systems, which
evidence that AE constitutes one of the main sources of spin relaxation.
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3. Physics of Low-Dimensional Systems

The field of low-dimensional magnetism can be traced back some 80 years ago. In
1925, Ernst Ising [Ising’25] tried to provide a microscopic justification for Weiss’ molec-
ular field theory in one-dimensional (1D) case; in 1931, Hans-Albrecht Bethe [Bethe’31]
suggested a method to calculate the exact quantum mechanical ground state of the an-
tiferromagnetic Heisenberg chain [Heisenberg’28]. Both papers were actually not to the
complete satisfaction of their authors: The 1D Ising model failed to show any sponta-
neous order and Bethe did not succeed to extend the method to cover three-dimensional
(3D) lattices. In spite of this not very promising beginning, the field of low-dimensional
magnetism developed into one of the most active areas of today’s solid state physics.
Theorists are attracted by the possibility to find exact solutions using the advantage of
lower dimension [Mermin’66, Baxter’71], experimentalist are excited by exotic properties
of low-dimensional systems.

A low-dimensional system is one where the motion of microscopic degrees-of-freedom,
such as electrons, phonons, or photons, is restricted from exploring the full three dimen-
sions of our world. Physics in low-dimensional systems is often different than in three
dimensions and the interest in these systems is constantly quickened by the discovery
of their new unusual properties. In the mid eighties it was the high-temperature su-
perconductivity which turned out to be intimately connected to to the strong magnetic
fluctuations which are possible in low-dimensional materials. Further progress of mate-
rial science triggered interest in spin ladders, objects staying ”in between” one and two
dimensions [Dagotto’96]. At present many of these phenomena remain unexplained and
it seems certain to say that low-dimensional magnetism will be an active area of research
good for surprises in many years to come.

In this chapter we will discuss the general features of quantum chains and ladders.
The spin-Peierls transition as well as magnetic and thermal properties of spin chains will
be described in more detail because they are necessary for the analysis of the systems
investigated in the present work.

3.1. Spin Chains

A one-dimensional line of spins is known as a spin chain. Spin chains can be approxi-
mately realized in crystals, if the crystal structure is such as to keep the spins from the
different chains reasonably far apart. The single ion anisotropy due to the crystal field
may constrain the spins to lie parallel or antiparallel to a particular direction z (Ising
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spins), or in a fixed plane xy (XY spins), or leave them free to point in any direction
(Heisenberg spins). The corresponding Hamiltonians read

HIsing =
∑
i,j

JijSi,zSj,z, (3.1)

HXY =
∑
i,j

Jij

[
Si,xSj,x + Si,ySj,y

]
, (3.2)

HHeisenberg =
∑
i,j

JijSiSj . (3.3)

Very often these systems show three-dimensional long range order at low temperatures,
because there are always some small interchain interactions which couple the chains
together. For example, KCuF3 shows 3D long range magnetic order below 39 K, never-
theless, there is a wide region of temperatures above the crossover to a 3D region, where
the magnetic behavior is that of a 1D system.

The properties of spin chains depend strongly on the value of spin. For example,
integer-spin Heisenberg AFM systems have a gap in the excitation spectrum [Haldane’83],
the magnitude of which is inversely proportional to the spin value, whereas uniform half-
spin chains are gapless. In the present work we will deal only with S = 1

2 systems, which
will be considered in the following in more detail. What makes these chains interest-
ing is not their ordering (according to the Mermin-Wagner theorem [Mermin’66], there
cannot be any antiferromagnetic (AFM) long range order at finite temperature), but
their excitations. In 3D Heisenberg magnets the excitations are S = 1 magnons, which
are bosons. In Heisenberg spin chain, the excitations are known as spinons. They have
S = 1

2 and are fermions. The dispersion relation is given by

�ω = π|J sin(ka)|, (3.4)

where a and k are the lattice constant and wave vector, both measured along the chain
direction, respectively. Equation (3.4) corresponds to the thin blue line in Fig. 3.1(ii).
One can see that a S = 1

2 antiferromagnetic chain is generally gapless. But it is sus-
ceptible to an analogous kind of instability that occurs in one-dimensional metals which
can open up a gap. This occurs at the spin-Peierls transition [Pytte’74].

3.1.1. Spin-Peierls Transition

The driving force of this intrinsic lattice instability is the magnetoelastic coupling be-
tween the one-dimensional electronic structure and the three-dimensional lattice vibra-
tions (phonons). This coupling arises because the exchange energy of the chains is a
function of the separation between the adjacent lattice sites and a distortion of the
lattice influences the magnetic energy of the system.
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3.1. Spin Chains

Figure 3.1.: (i): Schematic representation of an uniform (above) and an alternating
J1,2 = J(1± δ) (below) chain. (ii): Dispersion curves for a S = 1/2 Heisen-
berg antiferromagnetic chain with δ = 0 (the blue thin line) and δ = 1/3
(the red bold line) [Bonner’82]. Note that in the later case only excitations
with gap occur. (iii): Characteristic zero-field susceptibility for a system
showing a spin-Peierls transition. Above the transition the system behaves
as an assembly of uniform Heisenberg antiferromagnetic chains (for details
see Fig. 3.2(i)). Below the transition, TSP, χ drops sharply, going exponen-
tially to zero, whereas the uniform curve, now shown dashed, continues on
to a nonzero value, χ0.

The name spin-Peierls reflects the similarity with the Peierls distortion in 1D metals
[Peierls’55]: an instability associated with the fact that the periodic modulation of the
electron density charge with wave vector q = 2kF opens a gap at the Fermi surface and
leads to a lowering of the total energy. Then the gained electronic energy outweighs the
elastic energy cost of the dimerization which can occur spontaneously.

Above the transition temperature TSP, there is a uniform antiferromagnetic nearest-
neighbour exchange in each chain. Below TSP there is an elastic distortion resulting in
a dimerization, and, hence, two unequal alternating exchange constants J1,2 = J(1 ± δ)
(see Fig. 3.1(i)). The dimerization increases progressively as the temperature is lowered
and reaches a maximum at zero temperature. The alternating chain possesses an energy
gap Δ between the singlet ground state S = 0 and the lowest lying band of triplet
excited states. Thus the magnetic susceptibility χ(T ) shows a knee at TSP, with a
rather abrupt fall of χ below TSP, corresponding to the opening of the gap (Fig. 3.1(iii)).
While the normal Peierls distortion occurs at TP ∼ EF/kB · exp(−1/λ), where λ is
the electron-phonon coupling constant, the spin-Peierls transition will occur at TSP ∼
|J |/kB ·exp(−1/λ), where J is the exchange interaction between the adjacent spins. Since
J/kB ∼ 102 K and the Fermi energy EF/kB ∼ 103 K, TSP is always small in comparison
with TP. In the framework of the mean field theory [Grüner’94, Bray’75]

χ(T ) ∝ e−Δ(T )/T ,
|Δ(T )|
|Δ(0)| = 1.74

(
1 − T

TSP

)1/2

,
2Δ(0)
kBTSP

= 3.53, (3.5)
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3. Physics of Low-Dimensional Systems

TSP = 3.73 |J |/kB · exp(−1/λ) and δ = 0.61 · Δ(T )/J . However, it should be stressed
at this point that serious deviations from the mean field treatment can be expected be-
cause of the low-dimensional character of the materials of interest and the relatively short
coherence lengths which result from the high transition temperatures. The quantum-
mechanical treatment of the spin subsystem [Cross’79] results in quite different predic-
tions for the transition temperature and the gap value

TSP = 0.8
|J |
kB

λ, Δ(0) ∼ δ2/3J1/3. (3.6)

Nevertheless, the thermodynamic properties such as the specific heat and susceptibility
were shown to be roughly the same as the mean field values. For small H < Hc ≈
1.45 TSP(0)/gμB the transition temperature was predicted to scale with the magnetic
field squared TSP(H)/TSP(0) ≈ 1 − 0.11 (gμBH/TSP(0))2 [Bulaevskii’78].

Very often the antiferromagnetic chains become three-dimensionally ordered at low
temperature due to the interchain coupling. Only in a small number of materials the
spin-phonon coupling is able to dominate the interchain spin-spin coupling and allows the
formation of a spin-Peierls ground state. Examples of such materials include a number
of organic systems such as MEM(TCNQ)2 (TSP = 18 K) [vanBodegom’81] and TTF-
CuS4C4(CF3)4 (TSP = 12 K) [Bray’75] and an inorganic system CuGeO3 (TSP = 14 K)
[Hase’93]. A candidate for the second inorganic system is TiOCl showing the spin-
Peierls-like transition to a non-magnetic state below Tc1 = 67 K. This system will be
considered in Chapter 6 in more detail.

3.1.2. Magnetic and Thermal Properties

Let us return to the case of uniform S = 1
2 chains and consider basic theoretical results

concerning their magnetic and thermal properties. One of the most important works is
represented by the numerical calculation of chains up to N = 11 atoms made by Jill
Bonner and Michael Fisher [Bonner’64]. The behavior of infinite chains was estimated
by extrapolation which was shown to be accurate at T ≥ 1

4J/kB. The calculated tem-
perature dependence of the spin susceptibility of an uniform AFM Heisenberg chain is
depicted in Fig. 3.2(i) by the dashed line. The solid line in the same Figure represents
the prediction of a low-temperature field-theoretical treatment [Eggert’94]. Both curves
coincide at high temperatures and can be fitted by an expression [Estes’78]

χ(x) =
Ng2μ2

B

kBT

0.25 + 0.074975x + 0.075235x2

1 + 0.9931x + 0.172135x2 + 0.757825x3
(3.7)

with x ≡ |J |/kBT . This curve coincides perfectly with the Bonner-Fisher curve for all
T > 0.04J/kB (see the thin blue line in Fig. 3.2(i)). The limiting susceptibility for
infinite chains displays a rounded maximum of height

χmax = 0.147
Ng2μ2

B

|J | at Tmax = 0.641
|J |
kB

, (3.8)

26



3.1. Spin Chains

Figure 3.2.: (i): The dashed black curve: estimated temperature dependence of suscep-
tibility for an infinite N = ∞ AFM Heisenberg chain based on the numerical
results for N ≤ 11 by Bonner and Fisher [Bonner’64], the solid thick red line:
χ(T ) obtained using the Bethe ansatz and field-theory methods [Eggert’94].
The blue thin line corresponds to the fit using Eq. (3.7). (ii): Estimated
variation with temperature of specific heat for infinite antiferromagnetic
Heisenberg chains taken from [Bonner’64].

decreasing at high temperatures as χ ∝ 1/T . The situation at low temperatures as
zero is approached is more complicated. Bonner and Fisher predict the low-temperature
behavior with higher uncertainty about 5% in the range T < 1

4 |J |/kB. The highly ac-
curate results, obtained using the Bethe ansatz [Griffiths’63] and field-theory methods
[Eggert’94], showed the presence of an inflection point at T ≈ 0.087|J |/kB in the temper-
ature dependence of the susceptibility with the slope of χ(T ) approaching ∞ as T → 0
(the solid line in Fig. 3.2(i)). Nevertheless, the value at T = 0

χ0 =
1
π2

Ng2μ2
B

|J | ≈ 0.101322
Ng2μ2

B

|J | (3.9)

was shown to coincide with the Bonner-Fisher prediction.
The profound work by Bonner and Fisher [Bonner’64] covers the variation of the

specific heat C with temperature as well. Fig. 3.2(ii) displays the expected behavior of
C for an antiferromagnetic S = 1

2 Heisenberg spin chain. The maximum

Cmax = 0.35 NkB at Tmax = 0.481
|J |
kB

(3.10)

lies again in the well defined region T ≥ 1
4J/kB, and the calculated behavior at low
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3. Physics of Low-Dimensional Systems

Figure 3.3.: Schematic sketch of a two-leg spin ladder. The inset shows the temperature
dependencies of the susceptibility in a spin chain, a dimer and a ladder
system with J‖ = J⊥ [Johnston’00, Barnes’94].

temperatures reads

C (T <
|J |

10kB
) = 0.7 NkB

kBT

|J | . (3.11)

3.2. Spin Ladders

The spin ladder systems serve as a bridge between one- and two-dimensional spin sys-
tems. Consider two parallel spin chains with bonds between them such that the in-
terchain coupling J⊥ is of comparable strength to the intrachain coupling J‖. Such a
system is known as a two-leg spin ladder (see Fig. 3.3). It has a finite gap in the exci-
tation spectrum, which is easy to see in the ’strong-rung’ limit in which J⊥ � J‖. In
this case the ground state consists simply of spin singlets along each rung of the ladder.
To create an excitation, you must promote a rung-singlet into a rung-triplet, hence the
energy gap Δ ∼ J⊥. Exact calculations give, e.g. in the case J⊥ = J‖, Δ ≈ J⊥/2
[White’94, Troyer’94]. It is believed that a gap appears as soon as J⊥ is non-zero, no
matter how small it is. In particular, the inset of Fig. 3.3 shows that the susceptibility
of a ladder with J⊥ = J‖ coincides at low temperatures T � J/kB with the dimer one
[Bleaney’52]

χDimer(T ) =
Ng2μ2

B

kBT
· 1
3 + exp(J/kBT )

. (3.12)

There is an interesting feature associated with ladder systems, when more than two
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legs are coupled. Namely, the ladders with an even number of legs have a spin gap, while
odd-leg ladders are gapless, which is a quantum manifestation of the fact that an even
number of half-integer spins can be arranged into a spin singlet. The model systems for
the n-leg ladders are Srn−1Cun+1O2n compounds [Dagotto’96]. With increasing number
of legs we arrive at two dimensions, but the magnitude of the spin gap goes to zero.
This is an indication why only few two-dimensional systems exhibiting the spin gap are
known.

The interest in spin ladders derives mainly from the fact they have a gap in their
excitation spectrum, they can become superconducting (e.g. Sr14−xCaxCu24O21), and
yet are simple well defined systems which theorists can try to model. Hence, these
systems may shed light on the problem of high-Tc superconductivity. The ladder system
considered in this work, NaV2O5, undergoes, however, another type of phase transition,
charge ordering, which will be considered in Sec. 5.1.2 in more detail.
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4. Electron Spin Resonance Spectroscopy

E. K. Zavoiski first observed electron spin resonance (ESR) in 1944 [Zavoiski’45]. His
proposal was to measure paramagnetic relaxation, which was an important subject in
magnetism at that time, using a resonance phenomenon in a frequency region of MHz.
Later, however, the ESR technique has become mainly used for the spectroscopy of
magnetic ions in the microwave region due to the progress of microwave techniques
and theoretical developments of magnetic resonance. Its application now is not only
to physics of magnetism but also to a variety of scientific fields like chemistry, biology,
geology and anthropology [Kawamori’02].

Often, the terms Electron Paramagnetic Resonance (EPR) and (Anti)FerroMagnetic
Resonance (A)FMR are used depending on the magnetic state of the sample. EPR exper-
iments that were intensively performed during the 1950’s contributed to establish spin-
Hamiltonians and relaxation mechanisms of diluted transition-metal ions [Abragam’70,
Pake’73] that are still important concepts in magnetism. The relaxation mechanisms
were discussed phenomenologically by Bloch [Bloch’46], microscopically by Van Vleck
[vanVleck’48] and Anderson [Anderson’53] and summarized in a general theory by Kubo
and Tomita [Kubo’54]. FMR was investigated mainly for interests in the spin wave re-
laxation mechanism and AFMR contributed to study of anisotropic energy of magnetic
materials [Rado’63]. In the last decades the interest was turned to the investigation of
magnetically concentrated systems in the paramagnetic regime. A very useful review
on the development of ESR experiments and theory before the year 1990 is provided by
Bencini and Gatteschi [Bencini’90].

In the following only a short introduction to the magnetic resonance of exchange
coupled spins will be given, necessary to understand the results presented in this work.
A particular emphasis will be put on the effect of the anisotropic exchange interaction on
the ESR absorption in low-dimensional systems. Starting from the Zeeman interaction
of a single spin we will describe the quantities measured by ESR and turn finally to the
theoretical approaches which are necessary for a description of the ESR linewidth.

4.1. Resonance Effect

4.1.1. Zeeman Effect

An electron spin S interacts via its magnetic moment μ = −gμBS with an external static
magnetic field H, resulting in an equidistant splitting of the 2S+1 spin eigenstates, which
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4. Electron Spin Resonance Spectroscopy

is known as Zeeman effect. The corresponding Hamiltonian is given by

HZ = −μ · H = gμBS · H = gμBHSz (4.1)

where μB = (e�)/(2mc) denotes the Bohr magneton with elementary charge e, electron
mass m, Planck’s constant �, and light velocity c. Here CGS units are used to be
compatible with the majority of ESR literature. For a free electron the g value is
g = 2.0023. Choosing the direction of the static field along the z axis, the eigen energies
read

EmS = gμBHmS , −S ≤ mS ≤ S. (4.2)

A magnetic microwave field h cos(ωt) of frequency ν = ω/(2π) and amplitude h � H
applied transversal to the static field, e.g. along the x direction, results in a perturbation

HMW = gμBh cos(ωt) · Sx = gμBh cos(ωt) · 1
2
(S+ + S−). (4.3)

The spin operators S+ = Sx + iSy and S− = Sx − iSy increase respectively decrease the
magnetic quantum number mS by 1 and, therefore, induce dipolar transitions ΔmS = ±1
between neighboring Zeeman levels, if the microwave energy equals the corresponding
energy difference (see Fig. 4.1(i)). Resonance absorption takes place at the Larmor
frequency

ωL = gμBH/� = γH. (4.4)

Another association of the Larmor frequency is obtained from the equation of motion of
the spin operator in the Heisenberg picture:

dS
dt

=
i

�
[HZ,S] = −γ[S × H]. (4.5)

The spin feels a torque from the magnetic field and, hence, precesses with the Larmor
frequency around the field direction like a mechanical gyroscope in the gravitation field.

Experimentally, in continuous-wave ESR the microwave frequency ω is kept constant
and the external magnetic field H is changed continuously (for details see Sec. 4.3).
By detecting the power absorbed by the sample as a function of the magnetic field,
the resonance spectra (Fig. 4.1(ii)) are recorded when sweeping through the resonance
condition Hres = �

gμB
ω. One observes not a δ-peak but an absorption line with a

finite width. That arises due to interactions of spins with their surroundings. The
experimentally observed ESR line shapes in a large variety of materials can often be
fitted by a Lorentzian line shape. A simple phenomenological derivation of such a line
shape can be given using the modified Bloch equations.
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4.1. Resonance Effect

Figure 4.1.: (i): Zeeman splitting and resonance condition of a spin S = 1/2 in a mag-
netic field H. (ii): Lorentzian lineshape generated using Eq. (4.14) with
α = 0, Hres = 3360 Oe and ΔH = 500 Oe. (iii): Comparison of the
field derivatives of Lorentzian (α = 0) and Dysonian (α = 1) lineshapes
generated using Eq. (4.15) with the same parameters Hres = 3360 Oe and
ΔH = 500 Oe.

4.1.2. Bloch Equations

Let’s consider a system of N spins with magnetic moments μi interacting with each
other and the crystal lattice. The dynamics of the magnetization M =

∑
i μi/N may

then be approximated by a set of modified Bloch equations, where the equilibrium state
of the magnetization is always parallel to the momentary magnetic field Hges [Krug’97,
Barnes’81]:

d

dt
Mz = −γ [M × Hges]z − (M − χ0Hges)z

T1
, (4.6)

d

dt
Mx,y = −γ[M × Hges]x,y − (M − χ0Hges)x,y

T2
, (4.7)

with Hges = H + h. In comparison with the equation of motion for a single spin
given by Eq. (4.5), a second term appears in the above Bloch equations that accounts
for the relaxation phenomena occurring due to the interaction of the spins with their
surroundings in a crystal. In momentary equilibrium the magnetization is given by
χ0Hges and, since we assume h � H, the magnetization M0 
 χ0H is parallel to the
constant magnetic field H. The changes in the occupation of the Zeeman levels induced
by the microwave field h drive the system out of equilibrium and, hence, relaxation
processes occur to restore this state. One distinguishes between the longitudinal or spin-
lattice relaxation time T1, where the spin system relaxes by transferring energy to the
lattice, and the transversal or spin-spin relaxation time T2, which describes all relaxation
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phenomena that tend to destroy the coherence of the spin components rotating in the
(xy)-plane. Note, however, that this strict distinction between T1 and T2 is not possible,
usually. By using h = heiωt and M+ = Mx + iMy the linearized equation of motion for
the transversal component is given by

d

dt
M+ =

(
iωL − 1

T2

)
· (M+ − χ0heiωt

)
. (4.8)

A solution can be obtained by the ansatz M+ = χ(ω)heiωt and the corresponding com-
plex susceptibility χ(ω) = χ

′ − iχ
′′

reads:

χ(ω) = χ0

(
1 +

ω(ωL − ω)
(ωL − ω)2 + (1/T2)2

− i
ω/T2

(ωL − ω)2 + (1/T2)2

)
(4.9)

Experimentally, the static magnetic field H = ωL/γ is varied at a constant microwave
frequency and one derives

Pabs(H) =
1
2
ωh2V χ

′′
xx(ω) ∝ ΔH

(H − Hres)2 + ΔH2
, (4.10)

a Lorentzian lineshape at the resonance field Hres = ω/γ with half-width-at-half-maximum
linewidth ΔH = 1/γT2, which is related to the peak-to-peak linewidth by ΔHpp = 2√

3
ΔH.

4.2. Measured Quantities

Eq. (4.10) contains all basic quantities measured by ESR: the position of the resonance
line Hres, its width ΔH and the absorbed power Pabs(H). In this section we will consider
each of them in detail and will discuss which information they allow to obtain.

4.2.1. Resonance Field

Recalling the resonance condition �ω = gμBH (Eq. 4.4) with the microwave frequency
ω and magnetic field H, one has to take into account that local magnetic fields Hloc will
be present at the spin’s site in addition to the external magnetic field Hext. Hence, the
fit parameter Hres = Hext + Hloc or the resulting effective g-factor geff and its shift Δg
with regard to the g-factor of the free electron ge = 2.0023

geff =
�ω

μBHres
, Δg = geff − ge (4.11)

provide a measure for local fields at the spin’s site. For strongly exchange coupled
systems, where these local fields are assumed to originate from perturbations Hint that
are small compared to the Zeeman HZ and exchange Hiso energies (see Sec. 4.4.1), the
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standard formula to calculate the shift of the resonance in linear response theory is given
by the first moment of the absorption which has been derived by Nagata and Tazuke
[Nagata’72]

Δω =
1

2�2

〈[S−, [S+,Hint]]〉
〈Sz〉 , (4.12)

where the expectation value 〈. . . 〉 is defined with respect to the full Hamiltonian H.
A very useful tool for describing the g tensor is represented by a program package

CAMMAG based on the angular overlap model (AOM). Using the local symmetry
data and several ligand-field parameters the program calculates the eigenenergies of the
spin on different crystal-field levels together with the principal values of the g tensor.
Moreover, the comparison with the experimentally determined values allows to estimate
the reduction of the spin-orbit coupling due to covalency of the metal-ligand bonds. A
more detailed description of AOM can be found in appendix B.

4.2.2. Linewidth and Lineshape

The line width ΔH is a measure of spin relaxation processes. To evaluate this quantity
rigorously, a quantum-mechanical treatment is necessary. The corresponding theories
have been developed by Kubo and Tomita [Kubo’54] and Mori and Kawasaki [Mori’62]
about 50 years ago. The discussion of these results and of possible spin-relaxation mech-
anisms in concentrated spin systems will be given in section 4.4. Here, we will consider
a phenomenological approach that allow to describe the non-Lorentzian lineshape (4.10)
often observed in a large variety of materials:

In the case of semiconductors and metals the skin effect drives electric and magnetic
microwave components out of phase and leads to an admixture of dispersion (given by
χ

′
) into the absorption spectra as derived by Dyson [Dyson’55]. With α denoting the

dispersion-to-absorption ratio the Dysonian lineshape is given by:

Pabs(H) ∝ ΔH + α(H − Hres)
(H − Hres)2 + ΔH2

. (4.13)

For samples which are small compared to the skin depth one expects a symmetric ab-
sorption spectrum (α = 0), whereas absorption and dispersion are of equal strength for
samples larger than the skin depth yielding an asymmetric resonance line (α = 1) shown
in Fig. 4.1(iii) [Barnes’81].

If the linewidth ΔH is of the same order of magnitude as the resonance field Hres,
both circular components of the exciting linearly polarized microwave field h have to be
taken into account. Therefore, the resonance at the reversed magnetic field −Hres has
to be included into the fit formula for the ESR spectra:

Pabs(H) ∝ ΔH + α(H − Hres)
(H − Hres)2 + ΔH2

+
ΔH − α(H + Hres)
(H + Hres)2 + ΔH2

. (4.14)
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Usually, the field-derivative of the absorption line is observed in the experiment due
to the use of lock-in technique (Fig. 4.1(iii)). Therefore, the following fit formula has
been used to evaluate the ESR spectra:

dP

dH
= A ·

(−2x + α(1 − x2)
(1 + x2)2

+
−2y − α(1 − y2)

(1 + y2)2

)
+ C + B · H (4.15)

with x =
H − Hres

ΔH
, y =

H + Hres

ΔH
.

The linear term C + B ·H takes into account the effects of oscillations of the cavity due
to the modulation of the external magnetic field.

Although or because this asymmetric lineshape allows to evaluate the resonance spec-
tra of a large variety of different materials, one has to be extremely careful with the
interpretation and use of the asymmetry parameter α as a free fitting parameter, espe-
cially, because sometimes α > 1 or even negative values occur:

(i) The resonance field Hres and α strongly depend on each other as it is illustrated in
Fig. 4.1(iii) for the case of a purely Lorentzian lineshape (α = 0) and a Dysonian
lineshape (α = 1). Therefore, variations in the resonance field always have to be
cross-checked with corresponding features in α and the resistivity.

(ii) Asymmetric Dysonian lineshapes rather than Lorentzian ones have been observed
in low-dimensional compounds. An additional contribution to the asymmetry of
the resonance line can arise from the fact that ΔH is of the same order of magni-
tude as Hres, because then not only the overlap with the resonance at −Hres but
the usually neglected nondiagonal elements of the dynamic susceptibility influence
the lineshape [Benner’83]. A more rigorous treatment of this analysis of the asym-
metry of ESR spectra has only recently attracted again attention from theorists
[Maeda’03, Choukroun’03].

(iii) In anisotropic polycrystalline samples the superposition of Lorentzian lines can
also account for the Dysonian lineshape.

4.2.3. ESR Intensity

The ESR intensity IESR

IESR =

∞∫
0

Pabs(H)dH ∝ χ0 (4.16)

is a measure for the static spin susceptibility χ0 of the system. In the case of a Lorentzian
lineshape given by Eq. (4.10) one obtains IESR = A · ΔH2. If a small admixture of
dispersion (α � 0) is present in the resonance spectra, one has to correct the absorptive
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part resulting in IESR = A · ΔH2 · √1 + α2. In the case of metallic samples where α
approaches 1, the skin depth has to be taken into account to estimate the necessary
volume correction.

Absolute values for the spin susceptibility measured by ESR can only be obtained by
comparison with the intensity of a reference compound the linewidth of which is of the
same order of magnitude. Thus, the effective moments can be obtained by ESR and
compared to dc-susceptibility measurements.

An important difference between IESR and dc-susceptibility χ0 in the case of 3d transi-
tion metal ions in solids is the following. For these ions the orbital angular momentum is
quenched in the ground state, which is realized by the crystal-field splitting [Yosida’96].
Nonetheless, the magnetic field polarizes the orbitals and imparts an induced paramag-
netism to the ground state. This effect is no more than the second-order perturbation of
the Zeeman energy HZ = μB(L + 2S) ·H for the orbital angular momentum. This gives
a temperature independent (anisotropic) paramagnetic susceptibility, which is called the
Van Vleck orbital paramagnetism. The Van Vleck orbital paramagnetism gives a non-
negligible contribution to the dc-susceptibility, if the energy of the excited states is not
too high and can be calculated as

χ
(VV)
i ≈ 2

(
2μB

�

)2 ∑
n�=0

|〈n|Li|0〉|2
En − E0

, (4.17)

presuming En − E0 � kBT [Emin’91]. The ESR intensity IESR measures the splitting
of the ground state only and, thus, does not contain the van Vleck contribution.

4.3. Experimental Setup

The ESR measurements were performed using a Bruker ELEXSYS 500 CW spectrom-
eter working at X-band (ν ∼ 9.3 GHz) and Q-band (ν ∼ 34 GHz) frequencies. The
experimental setup is shown in Fig. 4.2. As microwave generator a Dual Gunn-oscillator
bridge is used. The resonator (Bruker ER4102ST) is a TE102 rectangular cavity with
an eigenfrequency of 9.48 GHz. A water cooled electromagnet allows for field sweeps
up to 18 kG. The microwave diode detects the power absorption Pabs of the samples
from the magnetic microwave field h as function of the static magnetic field H applied
perpendicular to microwave field (Faraday configuration). The reference power keeps
the diode current in the operating regime of 200 μA. To improve the signal-to-noise ra-
tio, one records the field derivative of the absorption dPabs/dH by means of the lock-in
technique with field modulation on the frequency of 100 kHz.

For the measurements in the temperature range from 3.8 K to 300 K an Oxford
Instruments ESR900 continuous flow cryostat for liquid He was used. The liquid He
is supplied from a Dewar through an insulated transfer tube. It flows through a heat
exchanger where the helium is evaporated and heated up to the required temperature
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Figure 4.2.: Schematic sketch of the ESR setup: The incoming microwave (the wine lines)
induces magnetic dipole transitions at the site of the sample (the red point)
centered in the cavity. The reflected power of the microwave is measured on
a diode as a function of the external magnetic field H (green).

and then supplied to the sample space. The heater is mounted on the heat exchanger
and is used with a temperature controller ITC 501 (Oxford Instruments) to balance the
cooling power of the cryogen and to control the temperature of the gas before it reaches
the sample space. The temperature is measured by a thermocouple with liquid nitrogen
as reference temperature.

Additionally, for the measurements in the temperature range from 110 K to 700 K a
Bruker Digital ER4131VT Control System was used. The Digital temperature Control
System ER4131VT makes use of liquid (110÷ 700 K) or gaseous (300÷ 600 K) nitrogen
as coolant.

The spectrometer is equipped with a computer-controlled goniometer (resolution about
0.125◦), which allows high-precision recording of angular dependent spectra in single
crystals.

At low-temperatures T < 300 K the samples were mounted into a small tube from
Suprasil glass and fixed with paraffin. At measurements above room temperature NaCl
powder was used to fix the sample. Some measurements of the angle and temperature
dependence were not possible inside a small glass tube due to the size of the single
crystal. In this case the crystal was glued from outside on a particularly flattened glass
tube using GE Varnish (General Electrics).
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4.4. Spin Relaxation Mechanisms

The theory of ESR line broadening and exchange narrowing was initially developed by
van Vleck [vanVleck’48] and treated more generally by Anderson and Weiss [Anderson’53],
and by Kubo and Tomita (KT) [Kubo’54]. Here, we will restrict the discussion to the
result of the KT approach, the details of this theoretical treatment can be found in
[Oshikawa’02, Deisenhofer’05].

4.4.1. The Kubo-Tomita Formula

The spin Hamiltonian is given by

H = HZ + Hiso + Hint, (4.18)

where HZ = −(g/�)μBHSz denotes the Zeeman interaction for the total spin operator
Sz =

∑
i Si,z and Hiso the isotropic Heisenberg exchange J

∑
(i,j) Si ·Sj between spins at

sites i and j. These two terms leave the line completely sharp, and the linewidth in the
system is determined only by the symmetry-breaking anisotropic interactions represented
by Hint. Assuming that these interactions can be treated as small perturbations with
regard to the isotropic exchange, the final KT formula for the linewidth can be written
as follows:

ΔHKT(T ) =
χ0(T )
χ(T )

ΔH∞ (4.19)

with the Curie susceptibility χ0 = C/T , where C = Ng2μ2
BS(S + 1)/3kB denotes the

Curie constant, and the measured dc-susceptibility χ(T ), which accounts to a large extent
for the temperature dependence in the paramagnetic regime [Huber’99]. Given the fact
that χ0(T )/χ(T ) → 1 for T → ∞, the temperature independent parameter ΔH∞ can be
identified with the high-temperature limit of the ESR linewidth. The KT approach is a
high-temperature approximation and its assumptions can be justified for temperatures
T � J/kB, where ΔH∞ can be calculated explicitly in the infinite-temperature limit by

ΔH∞ ∼ 1
J

〈
[Hint, S

+][Hint, S
−]

〉
∞ , (4.20)

where S+ denotes the total spin of the system and 〈. . . 〉∞ is the expectation value with
respect to the density matrix at infinite temperatures ρ∞ = 1/Tr 1. The appearance
of the isotropic exchange coupling J in the denominator arises due to the assumption
that J determines the time-scale of the exponential decay of the spin correlations in
a three-dimensional magnet. This phenomenon is the so called exchange narrowing
derived by Anderson and Weiss using the method of moments to calculate the linewidth
[Anderson’53]. Therefore, the KT formula is often written as

ΔH∞ ≈ �
2

gμB

M2

J
with M2 =

1
�2

〈[H, S+][H, S−]〉∞
〈S+S−〉 . (4.21)
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where M2 =
〈
(ν − νres)2

〉
is the second moment of the absorption line.

Due to the fact that these results are obtained in the high-temperature approximation,
when all states are equally populated, additional considerations are necessary concerning
the temperature regime, where this approximation fails. In strongly exchange-coupled
systems this approximation is only valid at temperatures exceeding the exchange-integral
value J . For three dimensional magnets this restriction is not very severe, because at
temperatures kBT ∼ J long-range order is established. Only on approaching magnetic
order in the regime of critical fluctuations the temperature dependence of second moment
and exchange frequency have to be treated with care. However, in one-dimensional
magnets long-range order, if it exists, is established only due to the weak inter-chain
interactions at kBT � J . Thus, there is a wide temperature range in the paramagnetic
state where antiferromagnetic correlations have to be taken into account. This case will
be considered in Sec. 4.5 in more detail.

4.4.2. Main Sources of the Line Broadening

Before we will turn to the particular case of low-dimensional systems, let us discuss the
major line broadening sources in strongly exchange coupled systems and compare their
magnitudes in the high-temperature limit using Eq. (4.21). An example how the second
moment can be expressed via the parameters of the corresponding interaction is given
in appendix C.

Usually, one of the most important origins is represented by the crystal field HCF =
Sa · Dcf · Sa. But this single-ion source of anisotropy is absent for S=1/2 systems that
constitute the topic of this work. The further perturbation which should always be taken
into account is the anisotropic Zeeman interaction HAZ = μBS · g · H. It arises, if the
magnetic lattice contains inequivalent sites with different g tensors, each of them gives
an absorption line in different field due to difference in the Zeeman energies. However,
for sufficiently strong exchange interaction the spectrum narrows into one single line
with a linewidth [Pilawa’97]

ΔHAZ(kOe) ≈ gμBH2
res

| J ′ |
(

Δg

g

)2

≈ 6.7
g [Hres(104 Oe)]2

J ′(K)

(
Δg

g

)2

, (4.22)

Note that for the anisotropic Zeeman interaction the exchange constant J ′ between
two places with different g values (Δg = g1 − g2) is responsible for the narrowing. If
it is the case for the sites with a weak exchange coupling (e.g. from the neighboring
chains in a quasi-one-dimensional material) this broadening can be considerable, at least
at Q-band ESR frequencies. An estimation using J ′/kB = 3 K, Δg ∼ 0.4 results in
ΔHAZ(f ≈ 9 GHz) ∼ 10 Oe and ΔHAZ(f ≈ 34 GHz) ∼ 102 Oe for X- and Q-band
frequencies, respectively.

Other sources of the line broadening are narrowed by the isotropic exchange J which
can be very large in low-dimensional materials (J/kB ∼ 10− 103 K). For this reason, all
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sources involving the nuclear spins (the hyperfine interaction, the nuclear Zeeman effect,
the nuclear quadrupolar coupling) can usually be neglected. It should be nevertheless
noted that the hyperfine coupling HHF = S · Ahf · I, the largest of this interactions, can
became remarkable if the isotropic exchange J is suppressed, e.g. in the low-temperature
dimerised phase. Then the resulting linewidth can be estimated as ΔHHF ∼ 1

gμB
A2/J ,

where A denotes the hyperfine constant (see e.g. [Altshuler’64]).
The dipole-dipole interaction is one of the most important line broadening sources in

magnetically diluted systems. It describes the mutual influence of the spins by their
locally generated magnetic dipolar fields:

HDD = g2μ2
B

∑
a>b

1
r3
ab

{
Sa · Sb − 3

(
Sa · rab

rab

)(
Sb · rab

rab

)}
, (4.23)

where the vector rab connects the sites a and b at the distance rab. Neglecting the
geometrical factors the corresponding high-temperature linewidth is of the order

ΔHDD ∼ g3μ3
B

J

N2
nn

r6
nn

, (4.24)

with the number Nnn of nearest-neighbor spins at distance rnn. For rnn = 4 Å, Nnn =
6, J/kB = 10 K this contribution is only about ΔHDD ∼ 40 Oe and overwhelmed
by the broadening due to anisotropic exchange interactions [Pilawa’97, Yamada’98].
Estimations of their magnitude result in values at least two orders of magnitudes higher
than for the other sources of line broadening. A detailed theoretical description of
anisotropic spin-spin interactions has already been given in Chapter 2.3. In the following
we will give several experimental examples which show that the constants of anisotropic
exchange can reach values of about several Kelvin which corresponds to a linewidth of
about 10 − 103 Oe assuming J/kB ∼ 100 K.

4.5. ESR in Low-Dimensional Spin Systems

Low-dimensional magnetic materials have been an interesting object for ESR since the
initial stage of development. Especially, the one-dimensional magnetic systems that
are supposed to have no magnetic ordering at finite temperature theoretically, but show
short-range order below the temperature corresponding to the main exchange interaction,
attracted much attention. The corresponding concepts developed in 1970’s for ESR of
one-dimensional magnets were the Long-Time-Tail of the relaxation proposed by Dietz
et al. [Dietz’71] (see the next section) and the anomalous g-shift calculated by Nagata
and Tazuke [Nagata’72] (see Sec. 4.2.1). Subsequently, the questions of EPR have been
considered as almost solved. Recently, however, new type of low-dimensional materials
that show interesting quantum effects1 have been found and ESR became again an

1 e.g. spin-Peierls transition in CuGeO3 [Hase’93] and charge ordering in NaV2O5 [Isobe’96]
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important tool to investigate them. In particular, ESR can give an unique information
on the anisotropic part of exchange interactions in such a system, what represents the
main topic of this work.

4.5.1. Spin Diffusion at High Temperatures

An expansion of the ESR-linewidth theory to the case of one-dimensional systems is
a very difficult task up to now (cf. [Bencini’90] and references therein). Besides the
question how to treat appropriately the temperature regime kBT < J , even in the high-
temperature approximation the general problem appears that the spin correlations do
not decay fast enough.

It is qualitatively clear that, if the inter-chain exchange J ′ is very small, the spin
excitations remain on a single chain for a long time. The ESR line shape will no longer
be Lorentzian, but will lie somewhere between a Gaussian and a Lorentzian, reflecting the
diffusive behavior of the spins along the chain. A self-consistent theory [Hennessey’73,
Reiter’75, Lagendijk’77] gives in the range 0.001 < J ′/J < 0.05 the estimate for the
linewidth

ΔH ∼ �
2

gμB

M2

J ′(J ′/J)1/3
. (4.25)

Since J ′/J � 1, the 1/3 exponent has a large effect, making the linewidth much larger
than predicted by the Kubo-Tomita formula (4.21).

This effect was experimentally observed in several quasi-one-dimensional compounds
[Hennessey’73, Lagendijk’77], for example, in tetramethylammonium manganese trichlo-
ride TMMC [Dietz’71, Cheung’78], where J ′ is more than four orders of magnitude
smaller than J . But in the quasi one-dimensional transition-metal oxides treated in
the present work, the inter-chain exchange J ′ is usually only about one or two or-
ders of magnitude smaller than the intra-chain exchange J , for example in NaV2O5

J ′/J ≈ 0.03 − 0.16 [Smolinski’98, Suaud’00, Gros’05]. The inter-chain exchange of
that magnitude almost recovers the Lorentzian shape of the ESR line with renormal-
ized linewidth (Eq. 4.25). Thus, for quasi-one dimensional systems with sufficiently
strong inter-chain interaction J ′, the Kubo-Tomita approach works at least in the high-
temperature approximation kBT � J , but the experimentally observed linewidth may
exceed the expected value estimated from Eq. (4.21).

4.5.2. Low-Temperature Field-Theory Approach

An expansion of the ESR-linewidth theory to the case of low-dimensional systems at tem-
peratures kBT < J was performed e.g. by Soos [Soos’77] who included the temperature
dependence of the spin-correlation functions within the traditional formalism. Recently,
Oshikawa and Affleck [Oshikawa’02] used field-theory methods to derive the temperature
dependence of the ESR linewidth in the spin-1/2 quantum antiferromagnetic chain at
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low temperatures T � J/kB. One relevant result of these papers is that, if the ESR
linewidth is due to a single anisotropic interaction, then the temperature dependence of
the linewidth is an isotropic function. This means that for all temperatures the relative
anisotropy of the ESR linewidth ΔH should be the same as in the high-temperature
approximation T → ∞, i.e.

ΔH(T, ϑ, ϕ) = F (T ) · ΔH(ϑ, ϕ)|T→∞ . (4.26)

The isotropic function F (T ) approaches unity at high temperatures T � J/kB.

Figure 4.3.: Temperature dependence of the linewidth taken from Oshikawa and Affleck
[Oshikawa’02] for relaxation via (i) symmetric anisotropic exchange or (ii)
staggered Dzyaloshinsky-Moriya interaction. The relevant exchange con-
stants are denoted by δ.

The behavior of the function F (T ) at finite temperatures depends on the origin of the
anisotropic interaction which causes the line broadening (see Fig. 4.3). For the case of
symmetric anisotropic exchange interaction, F (T ) was predicted to increase linearly with
increasing temperature at kBT � J and to saturate at high temperatures kBT � J ,
while for the staggered Dzyaloshinsky-Moriya interaction with dj = (−1)j d a diver-
gence ∝ 1/T 2 is expected at low temperatures [Oshikawa’02]. The exact temperature
dependence of F (T ) is unknown and in Fig. 4.3 only the simplest possible scenario is
illustrated. However, Eqs. (4.19) and (4.26) allow us to write down a simple expression
for the normalized linewidth

ΔH(T, ϑ, ϕ)
ΔH(T,H ‖ l)

=
ΔH(ϑ, ϕ)|T→∞
ΔH(H ‖ l)|T→∞

=
M2(ϑ, ϕ)|T→∞
M2(H ‖ l)|T→∞

. (4.27)

Here l is some fixed direction. As it follows from Eq. (4.27), the normalized linewidth
should be temperature independent as long as only one type of interaction is responsible
for it. It is also free from the uncertainty in the definition of the exchange frequency ωex.
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Figure 4.4.: Temperature dependence of the linewidth ΔH for the external field ap-
plied along the three orthorhombic crystal axes in LiCuVO4, CuGeO3 and
NaV2O5. The dashed lines fit ΔH(T ) by Eq. (4.28) with (i) LiCuVO4:
C1 = 60 ± 5 K (J/kB = 45 K) and C2 = 15 ± 5 K without (with, shown by
the solid line) a critical contribution (T − TN )−α, where α = 0.55 ± 0.05;
(ii) CuGeO3: C1 = 235 ± 5 K (J/kB = 120 K) and C2 = 40 ± 2 K; (iii)
NaV2O5: C1 = 420 ± 20 K (J/kB = 578 K) and C2 = 80 ± 10 K.

The price for this simplicity is that we can obtain only ratios of microscopic Hamiltonian
parameters, once we express second moments in (4.27).

4.5.3. Crossover Temperature Regime

There are no theoretical predictions at the moment for the temperature dependence
of the ESR linewidth at temperatures intermediate between the regions covered by
Oshikawa-Affleck’s calculations T � J/kB on one side and by the Kubo-Tomita the-
ory T > J/kB from other side. Fig. 4.3 represents only the simplest possible variant of
this crossover. However, the scenario given in Fig. 4.3 can be confirmed by experimental
investigation of the variety of one-dimensional spin systems.

Fig. 4.4 displays the temperature dependence of ESR linewidth in three quasi-one-
dimensional systems: the spin-chain compound LiCuVO4 [Krug’02], the double-chain
system CuGeO3 [Eremina’03] and the spin-ladder system NaV2O5 [Lohmann’00]. For
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all compounds the linewidth increases monotonously with increasing temperature in the
paramagnetic regime and approaches saturation in the high-temperature limit. Differ-
ences appear only at low temperatures, where the linewidth increases again below the
spin-Peierls transition in CuGeO3 and below the charge-order transition in NaV2O5,
because the singlet formation inhibits the exchange narrowing of the residual magnetic
centers, but diverges already for T < 20 K in LiCuVO4 due to the critical spin fluctua-
tions on approaching magnetic order.

In all three compounds it is possible to parametrize the temperature dependence of
the linewidth above the transition into the ground state by the empirical expression
[Eremina’03]

ΔHKvN(T ) = ΔH(∞) exp
(
− C1

T + C2

)
, (4.28)

where ΔH(∞), C1, and C2 are treated as fitting parameters. For LiCuVO4 an additional
critical divergence at TN has been added typical for the onset of magnetic order. Note
that the parameter C1 corresponds to the order of magnitude of the isotropic exchange
constant. This is reasonable, because the parameter C1 indicates the transition from the
strongly correlated one-dimensional regime at low temperatures T � J/kB to the purely
paramagnetic regime T � J/kB, where the high-temperature approximation is valid.
The parameter C2 indicates the influence of the low-temperature phase-transition on the
line broadening. But it is necessary to recall that this purely empirical parametrization
has no underlying microscopic picture, yet.

Nevertheless, the general feature of the observed temperature dependence, i.e. an
approximately linear increase at temperatures small compared to the exchange constant

Figure 4.5.: The temperature dependence of the ESR linewidth in [PM-
Cu(NO3)2(H2O)2]n taken from Zvyagin et al. [Zvyagin’05]. The
experimental points coincide with theoretical predictions by Oshikawa and
Affleck [Oshikawa’02] (solid lines) for the dominant relaxation via DM
interaction.
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T � J/kB but large compared to any phase-transition temperature and a saturation
behavior in the high-temperature regime T � J/kB coincides with the theoretically
expected temperature dependence for the case of dominant relaxation via AE.

The theoretical expectations in case of dominant relaxation via DM interaction were
recently confirmed experimentally by Zvyagin et al. [Zvyagin’05]. The multifrequency
ESR study of copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain, has shown
an excellent quantitative agreement between the theoretical predictions and experiment
(see Fig. 4.5) confirming both the temperature ∝ 1/T 2 and the field ∝ H2 dependence
of ΔH due to the staggered DM interaction.

4.6. Other Experimental Techniques

The use of a resonant cavity provides the highest sensitivity of ESR spectroscopy. But
with one cavity only a single frequency can be investigated. E.g. the X- and Q-band
setups used in the present work allow the measurements at νESR ≈ 9.3 and 34 GHz,
respectively. To go beyond these limits, additional experimental techniques have to be
used.

An alternative method is given by the quasi-optical technique where the electromag-
netic wave, generated by a monochromatic source, propagates through ”free space” (i.e.
is unguided in contrast to ESR) and is detected by a suitable detector after passing (or
being reflected by) the sample. The experimental arrangement used in this work is simi-
lar to that of a Mach-Zehnder interferometer. This setup allows the measurement of the
frequency dependence of both the transmission and the phase shift of a monochromatic
electromagnetic beam through the sample. The frequency range 40-1100 GHz is covered
continuously by ten tuneable narrow-band backward-wave oscillators.

At frequencies lower than νESR the broadband dielectric spectroscopy was used in
the present work [Lunkenheimer’00]. By dielectric spectroscopy, dynamic processes can
be detected that involve the reorientation of dipolar entities or the displacement of
charged entities. Relaxation processes of such entities occur if they are subjected to
an electric field E changing with time. In the region of some μHz up to several MHz,
essentially the capacitance and conductance can be measured. The sample has to be
prepared in this case as a capacitor. Then the frequency-response analyzer (Novocontrol
α-analyzer) measures directly the sample voltage and the sample current using lock-in
techniques. Between 1 MHz and about 10 GHz, the coaxial reflection method is best
suited. Here the sample is connected to the end of a coaxial line, thereby bridging inner
and outer conductor. The impedance analyzer (Agilent E 4991A) measures, after a
proper calibration, the complex reflection coefficient.

The results of both quasi-optical and dielectric spectroscopy measurements are usually
presented by the complex dielectric permittivity ε∗ = ε′ − iε′′.2 The temperature and

2 ε∗ can be defined by D∗(ν) = ε∗ε0E
∗(ν) with D∗ the dielectric displacement, E∗ the electric field
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frequency dependence of the conductivity can be calculated as σ(T, ν) = 2πνε0ε
′′(T, ν),

where ε0 is the permittivity of vacuum. The exceptionally broad frequency window,
accessible with quasi-optical and dielectric spectroscopy, makes them powerful tools to
describe the charge dynamics and relaxation mechanisms.

A further important experimental method used in the present work is the measure-
ment of the magnetic susceptibility χ = M/H, where M is the magnetization of a sample
in an external magnetic field H. This technique helps to reveal information, for example,
about the electronic structure, interactions between neighboring ions or the character of
a transition between two phases of the material. In this work we used a superconducting
quantum interference device (SQUID), the probably most sensitive device available for
measuring magnetic fields. This magnetometer is capable of resolving changes in mag-
netic field that approach 10−15 tesla, yet can operate in fields as large as 7 tesla. The
operating range of temperatures is 1.9 - 400 K. To avoid confusions, we will give the rela-
tion of the used CGS units to the corresponding SI ones: 1 emu/mol = 4π ·10−6 m3/mol.

The specific-heat data were obtained by the adiabatic calorimetry. This method di-
rectly follows the classical definition of heat capacity Cp = limdT→0 (dQ/dT )p, where
dQ is the heat input that causes a subsequent temperature rise dT in the sample. The
Physical Property Measurement System (PPMS) from Quantum Design allows to mea-
sure very small samples (with the mass larger than 1 mg) fully automatically in the
broad temperature range 1.9 - 300 K. The specific heat is governed by the manner in
which the internal energy is distributed in the system and allows to address a wide range
of phenomena. For example, in solid materials the phonons (lattice vibrations) provide
the main contribution to the specific heat, in metals the thermal energy of electrons can
be measured. The magnetic contribution, which is important for this study, is related
to the thermal excitations of spin waves to higher energy states. The corresponding
theoretical predictions for the case of spin chains can be found in section 3.1.2.

and ε0 the permittivity of vacuum. Here the star superscripts denote the use of complex quantities,
a common practice to include phase information in frequency-dependent quantities. The real part ε′

is the frequency dependent dielectric constant. The imaginary part ε′′ is proportional to the part of
D′ that is out of phase with the electric field with a phase difference of π/2. It is proportional to the
’loss’ of energy from the applied field into the sample (in fact this energy is dissipated into heat) and
therefore denoted as dielectric loss.
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5. Symmetric Ring Exchange in α′-NaV2O5

In recent years α′-NaV2O5 has raised a great deal of interest as being the second inor-
ganic compound, after CuGeO3, where a quantum antiferromagnetic state is achieved
at the expense of a lattice distortion [Isobe’96]. However, the subsequent investigations
[Ohama’99] have shown that NaV2O5 cannot be considered as a conventional spin-Peierls
compound and much efforts have been provided to understand the mechanism of the
spin-gap formation and the nature of this phase transition.

In this chapter we will discuss the ESR results that can contribute to the determination
of the spin-gap, the isotropic exchange constant, the crystal-field splitting schema and,
most importantly, to the estimation of the anisotropic parts of the exchange interaction.
We will reveal an unconventional nature of this spin-spin interaction and a strong increase
of inter-ladder anisotropic exchange on approaching the phase transition.

5.1. Sample Characterization

The single crystals were grown in a two step process [Lohmann’97]: First pellets of a
nearly stoichiometric mixture of high purity NaVO3 and VO2 were pressed and heated
in an evacuated quartz tube at 620◦C for four days. Then the material was heated above
the melting temperature and, in a temperature gradient, was cooled down at a cooling
rate of 7◦C/h. The crystal used in this work was characterized by Debye-Scherrer x-ray
diffraction and Laue diffraction, which showed the material to be single phase.

5.1.1. Crystal Structure

A phase transition occurs in α′-NaV2O5 at TCO ≈ 34 K. The charge redistribution taking
place at this temperature affects dramatically all physical properties of this system. In
order to lay the basis for the following discussion of this phenomenon, let us discuss first
the crystal structure of this compound and its changes at TCO.

According to the recent crystallographic investigations [vonSchnering’98, Smolinski’98],
at high temperatures the structure is centrosymmetric with the space group D13

2h−Pmmn
(lattice parameters a = 11.325 Å, b = 3.611 Å, and c = 4.806 Å) with all V atoms
crystallographically equivalent at room temperature. In Fig. 5.1(i) we show the ion ar-
rangement for NaV2O5. The high-temperature structure can be seen as a set of layers
of two-leg vanadium ladders running along the b direction with the rungs along the a
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Figure 5.1.: Crystal structure of α′-NaV2O5 at high temperatures T > TCO (i) and in
the charge-ordered phase (ii). Oxygen pyramids around V ions and rows
of Na ions are shown. At the bottom of each picture the schematic rep-
resentation of V atoms arrangement is given. At T > TCO all V have the
equal valence +4.5 (the cyan circles/pyramids), at T < TCO the zigzag-like
charge redistribution takes place into V4+ (light cyan) and V5+ (dark cyan).
With large probability, the low-temperature crystal structure consists of lay-
ers with different charge arrangements (A-D) stacking along the c direction
[Grenier’02].

direction. The V ions are located inside oxygen squared-base pyramids whose corners
shared with neighboring pyramids. The cations Na+ are located between the layers.

This compound is a mixed-valence system with an average valence of V4.5+ (3d1/2)
and can be considered as a quarter-filled two-leg ladder system. The ladders running
along the crystallographic b axis are responsible for the one-dimensional character of
this compound observed in magnetic susceptibility measurements (Sec. 5.1.3). Each d
electron, supplied by the two V ions forming a rung of the ladder, is not attached to a
particular V site but is shared in a V-O-V molecular bonding orbital along the rung.

At TCO the crystal structure changes and a lattice distortion with a supercell of 2a×
2b × 4c results. The refinement of the low-temperature crystal structure is strongly
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hindered by the large size of the supercell, including 16 unit cells, and, therefore, by
the large number of atoms necessary to consider. Most likely, it belongs to the space
group Fmm2 and contains stacking faults separating regions corresponding to the four
possible patterns of zigzag-like charge ordering in each layer (Fig. 5.1(ii)) [Grenier’02].

Nevertheless, no matter how the real low-temperature structure looks like exactly, the
zigzag form of the local charge order in each separate ladder seems to be an established
fact. It is confirmed by a number of experiments and theoretical calculations, part of
that will be discussed in the following section.

5.1.2. Charge Ordering Phenomenon

A long range order of different metal oxidation states in a crystal lattice may be im-
portant to the mechanism of superconductivity, colossal magnetoresistances and other
phenomena in oxides. However, there is still little known about physics underlying this
effect. First envisaged over 70 years ago [Wigner’34], charge order (CO) has been firmly
evidenced by neutron diffraction studies only in the last decade. These results clearly
show that in all cases CO is far from complete, lying for the most of materials in the
range %CO = 20 − 60% [Attfield’06, Goto’03].1 But no correlations of %CO with TCO,
type of magnetic ordering, average oxidation state or structural frustration of CO have
been evident. First theoretical attempts to gain some insight into the various ground
states were made from calculation of the Madelung energy of the assembly of charged
ions. But electron-lattice coupling seems to dominate over pure electron-electron repul-
sions, enabling, in particular, CO states to be switched and tuned by internal lattice
effects and external fields. At present a microscopical description of this phenomenon is
still lacking.

Whatever the reason for this phase transition and the reduced charge separation could
be, CO occurs in α′-NaV2O5 at TCO ≈ 34 K. In particular the 51V NMR results, which
gave just one line for T > TCO show the presence of two inequivalent V4+ and V5+ below
the transition temperature [Sawa’02]. More precisely, the real charge separation between
these two sites, calculated using the bond valence sum method [Attfield’06], amounts to

1 Here the idealised CO formula was used [Attfield’06]

%CO =
V2 − V1

V2 + V1

FH + FL

FH − FL
· 100%,

where FH and FL are the formal valences in the higher and lower states (e.g. FH = 5 for V5+ and
FL = 4 for V4+). V1 and V2 are the lower and higher bond valence sums calculated from experimental
bond distances di from each metal site to the coordinating ligand ion

Vn =
X

i

exp

„
dn − di

B

«
.

B is a global constant and dn is the bond valence parameter for the metal in an assumed oxidation
state n.
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Figure 5.2.: (i): Temperature dependence of the relative sound velocity of the c66 mode
(propagation along the b axis with polarization along the a axis), the dash
line indicates the background [Schwenk’99]. (ii): Temperature dependence
of the energy of the 422 cm−1 Raman mode in (bb) light polarization, taken
from [Fischer’99]. (iii): Temperature dependence of the integrated intensity
of the far-infrared absorption I =

∫ 12 THz
1 THz β(ν)dν, β being the absorption

coefficient [Smirnov’99]. (iv): Temperature dependence of the optical con-
ductivity at ω = 115 cm−1 for E ⊥ chain [Damascelli’00]. All quantities
mark the onset of charge-ordering fluctuations in α′-NaV2O5 at tempera-
tures far above TCO ≈ 34 K (shown by the black dot lines).
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%CO≈ 59% (corresponding to V4.2+ and V4.8+ [Grenier’01]).
The symmetry analysis [Goto’03] of the enlarged unit cell in the ordered region favors

a zigzag structure of CO depicted in Fig. 5.1(ii), in accordance with the calculations
based on the Hartree approximation for both on-site and intersite Coulomb interactions
[Seo’98]. This CO pattern is corroborated by the results of X-ray diffraction [Grenier’02]
and by neutron-scattering experiments [Grenier’01], where the occurrence of two magnon
branches along the a axis was observed.

A very powerful method for the investigation of the lattice effects related to the CO
is represented by the ultrasonic measurement of the elastic constants. Due to coupling
to charge-ordering modes they allow to draw conclusions not only about the CO pattern
but also about the onset and development of charge fluctuations. Fig. 5.2(i) shows
that in α′-NaV2O5 the softening of the c66 mode starts to develop already at T ∼
100 K [Schwenk’99]. The very broad temperature region of preexisting CO fluctuations
(Fig. 5.2(ii)) was revealed also by the frequency shift of the 422 cm−1 mode in Raman
scattering [Fischer’99] and by the change of the refractive index at different infrared
frequencies [Smirnov’99] (Fig. 5.2(iii)). Moreover, the optical investigation in the range
4 meV – 4 eV [Damascelli’00] provided direct evidences for a charge disproportionated
electronic state at T � TCO. The strong increase of CO fluctuations affects apparently
also the low-temperature magnetic and thermodynamic properties that will be discussed
in the next section.

5.1.3. Magnetic and Thermodynamic Properties

Fig. 5.3(i) displays the temperature dependence of IESR up to 650 K [Hemberger’98].
The absolute value was determined by comparing the room-temperature value of the
ESR data to SQUID measurements on the same single crystal. IESR(T ) is preferable
to χSQUID in this case because of the small mass of the single crystals. The Bonner-
Fisher curve (Eq. 3.7) adequately describes the ESR data at T > 250 K assuming
the exchange constant J = 578 K, somewhat larger than J (Isobe) = 560 K obtained
from susceptibility measurements by Isobe and Ueda [Isobe’96]. Also the maximum
value χ

(BF)
max ≈ 4 · 10−4 emu/mol predicted by Eq. (3.8) is in good agreement with the

experimentally observed value χ
(exp)
max ≈ 4.2 ·10−4 emu/mol. This kind of behavior allows

to conclude, that α′-NaV2O5 is a good 1D spin system at high temperatures.
At T < 200 K significant deviations from the expected behavior are observed resulting

in a considerable exponential drop of susceptibility at TCO ≈ 34 K. The gap value
Δ/kB ≈ 98 K coincides well with published results giving Δ/kB ≈ 90±20 K [Vasilev’97,
Luther’98, Fujii’97]. This result indicates significant deviations from the weak-coupling
limit 2Δ(0)/(kBTCO) = 3.53 (Eq. 3.5) and yields a ratio 2Δ(0)/(kBTCO) = 5.9.

The heat capacity also shows an anomaly at TCO ≈ 34 K. Fig. 5.3(ii) shows this peak
with the background line. The background was obtained using two contributions: the
linear Bonner-Fisher term calculated from the exchange interaction (Eq. 3.11) and the
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5. Symmetric Ring Exchange in α′-NaV2O5

Figure 5.3.: (i): Temperature dependence of the ESR intensity (spin susceptibility) in
single-crystalline α′-NaV2O5 (open squares) as compared to the predictions
of the Bonner-Fisher model (solid red line). Inset: Spin susceptibility at
low temperatures around TCO ≈ 34 K, the solid line represents a mean-field
fit (Eq. 3.5) with a gap of 98 K. (ii): Heat capacity in NaV2O5 plotted
as C/T vs. T 2. The dashed wine line is a sum of a phonon term and a
small linear magnetic contribution as predicted by the Bonner-Fisher model
[Hemberger’98].

Debye T 3-term (with ΘD = 281 K and the number of degrees of freedom N = 15). Note
that the obtained specific-heat anomaly ΔC ≈ 14RkBTCO/J strongly exceeds the value
expected in mean-field approximation ΔC ≈ RkBTCO/J just as the gap value.

5.2. ESR in α′-NaV2O5

Having already discussed the intensity of the ESR signal (Fig. 5.3(i)) we will introduce
further ESR results in this section, analyzing the temperature and angular dependencies
of the resonance field as well as of the linewidth. Let us start with presenting the ESR
spectra in α′-NaV2O5.

5.2.1. Resonance Spectra

Resonance spectra for the paramagnetic regime are presented in Fig. 5.4, illustrating
their evolution with temperature as well as the angular dependence with respect to the
direction of the external magnetic field. The spectra consist of one exchange narrowed
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5.2. ESR in α′-NaV2O5

Figure 5.4.: ESR spectra of α′-NaV2O5. (i): two different orientations at room temper-
ature. (ii): temperature evolution of the ESR spectrum from a temperature
near the phase transition T = 40 K to the one of the highest measured tem-
perature T = 600 K. Solid lines represent fits using Lorentzian line shape.

resonance line, nearly symmetric with respect to the resonance field. In the whole
temperature range they can be described using a single Lorentzian line shape (solid lines
in Fig. 5.4), i. e. by Eq. (4.13) with α = 0.

The absorption line appears at a magnetic field of 3430 Oe which corresponds to the
effective g value of about 2, characteristic for spin systems with only small contribution
from orbital moments. The angular and temperature dependencies of the resonance field
will be discussed in the next section.

5.2.2. Analysis of the g Tensor

Fig. 5.5(i) shows that the g-factors in α′-NaV2O5 are almost temperature independent.
They can be described using anisotropic g values gc ≈ 1.93, ga ≈ gb ≈ 1.97, characteristic
of V4+ ions in strong octahedral fields [Abragam’70].

Note that these values were obtained at X-band frequencies (ν ∼ 9.3 GHz). Using
higher Q-band frequencies (ν ∼ 34 GHz) allows to get more reliable data. In particular,
an angular dependence of the g factor in the (ac)-plane measured at T = 50 K is given in
Fig. 5.5(ii). In the following we will describe the angular dependence of the g factor and
calculate the energy level scheme of the V4+ ion in α′-NaV2O5 in terms of the angular
overlap model (Sec. 4.2.1) using the improved g values gc ≈ 1.918(4), ga ≈ gb ≈ 1.969(3).

The magnetic ion in the system under consideration is placed in a VO5 pyramid. The
necessary crystallographic data can be taken from [Carpy’75] and the spin-orbit coupling
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5. Symmetric Ring Exchange in α′-NaV2O5

Figure 5.5.: (i): Temperature dependencies of the effective g-factors in α′-NaV2O5 mea-
sured at X-band frequency (ν ≈ 9.34 GHz). (ii): An angular dependence of
the g factor at T = 50 K in the (ac)-plane measured at Q-band frequency
(ν ≈ 34 GHz).

Table 5.1.: Left column: Observed and calculated g tensors in NaV2O5. Right column:
Relative energies of the d orbital states calculated by means of the AOM
model as well as using the LDA+U approximation from [Yaresko’00].

Orbital state EAOM [eV] ELDA+U [eV]
Experiment AOM d3z2−r2 3.78 2.2 ÷ 4.4

ga 1.970(3) 1.9731 dx2−y2 2.41 0.7 ÷ 4.4
gb 1.970(3) 1.9706 dxz 1.03 0.8 ÷ 1.8
gc 1.918(4) 1.9184 dyz 0.98 0.7 ÷ 1.6

dxy 0 −0.3 ÷ 0.3

Table 5.2.: Angular overlap model parameters for the [V4+O5] complex in α′-NaV2O5.

λ [cm−1] eσ(O3) eπ(O3) eσ(O2) eπ(O2) [103 cm−1] kx ky kz

190 32 8 12 3 0.65 0.65 1
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5.2. ESR in α′-NaV2O5

constant for a free V4+ ion is equal to λfi = 248 cm−1 [Abragam’70]. In order to reduce
the number of parameters we will distinguish two types of ligands: apical oxygen ions O3

located above the basal plane and oxygen ions O2, which form the basal quadrangles of
the VO5 pyramids (see Fig. 5.1). The average metal-ligand distance amounts to 1.54 Å
and 1.87 Å, respectively. Assuming the variation of eσ as a function of bond distance
eσ ∼ r−52 we obtain

eσ(O2) =
(

1.87
1.54

)−5

eσ(O3) ≈ 0.38 · eσ(O3). (5.1)

Then, for the eπ bounding parameters one has

eπ(O3) =
eσ(O3)

4
; eπ(O2) =

eσ(O2)
4

= 0.095 · eσ(O3) ≈ eσ(O3)
10

. (5.2)

The given set of parameters allows to describe the anisotropy of the g-factor very well
(see the left side of Table 5.1). Note that the distribution of electrons in the (xy)-plane,
i. e. the plane of the ladders, plays an important role in NaV2O5 and results in the
strong reduction of SO interaction kx,y < 1. The calculated relative energies of the
orbital states are listed on the right side of Table 5.1. For comparison, the results of
the band calculations [Yaresko’00] are also given. The quantitative coincidence is clearly
seen although our calculations can give only the ”centre of mass” for the energy of the
electron on the respective band.

5.2.3. ESR Linewidth

At T < 500 K the linewidth in α′-NaV2O5 increases monotonously from a value of
10 Oe at TCO ≈ 34 K up to several hundreds Oe above room temperature (Fig. 5.6(i)).
In section 4.5.3 it was shown that this saturating behavior (Eq. 4.28) is related to the
dominant spin relaxation via symmetric anisotropic exchange. Below TCO the ESR line
strongly broadens due to the weakening of the exchange narrowing on dimerization of
the majority of spins leaving only weakly interacting residual magnetic moments. At
high temperatures3 T > 500 K a peculiar change from a negative to positive curvature is
observed at about 600 K, which is displayed in Fig. 5.6(i). This increase can be described
by adding an exponential term to the spin-chain contribution (Eq. 4.28)

ΔH(T ) = ΔHKvN(T ) + ΔHexp(T ) = (5.3)

= ΔHKvN(∞) exp
(
− C1

T + C2

)
+ ΔHexp(∞) exp

(
− ΔESR

kBT

)
.

2 That is consistent with the measurements of the pressure dependence of the electronic spectra of most
of the metal oxides (see [Figgis’00] and App. B).

3 The measurement at T > 600 K were performed using a high-temperature ESR set-up in Lousanne
in collaboration with Prof. László Forró and Dr. Titusz Feher.
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5. Symmetric Ring Exchange in α′-NaV2O5

ΔESR = 0.4 eV and the parameters used for ΔHKvN are given in the caption of Fig. 4.4.
The exponential nature of the additional contribution is highlighted in Fig. 5.6(ii), where
only the contribution ΔHexp(T ) is plotted in Arrhenius representation.

The similar temperature behavior of dielectric conductivity depicted in the same figure
allows to speculate about the reasons of that broadening. The Arrhenius law of the
conductivity σ ∝ exp(−Δσ/(2kBT )) indicates the thermal activation of charge carriers
into a level with an activation energy Δσ ≈ 0.86 eV. The experimental charge-transfer
gap is nevertheless considerably larger and amounts to about 3 eV [Damascelli’00]. At
the same time a strong electronic absorption is observed in both optical reflectivity and
conductivity at the energy Δ ∼ 1.1 ± 0.4 eV [Damascelli’00]. Moreover, this gap value
is very close to the energy of the first almost degenerate crystal-field levels xz and yz,
calculated in Sec. 5.2.2. This might indicate the involvement of excited orbital states in
this relaxation process. It is also worth noting at this point, that in CuSb2O6 a similar
temperature dependence of the linewidth with Δ(CuSb2O6)

ESR = 0.13 eV was observed and
explained in terms of a thermally activated dynamic Jahn-Teller process [Heinrich’03].
However, a rigorous theoretical treatment of this effect has not yet been undertaken. To
finally decide about the origin of the high-temperature relaxation, additional theoretical
efforts as well as structural investigations at these temperatures are necessary.

The probably most peculiar feature of the low-temperature ESR linewidth data is a
crossover at about 60 K, emphasized in Fig. 5.6(iii). At higher temperatures ΔH reaches
its maximum for H ‖ c with ΔHc/ΔHa,b ∼ 1.8. The crossover results in the broadest
spectra for H ‖ a at TCO < T < 60 K (Figs. 5.7(i,ii)). It is related to the change of
the spin relaxation mechanism, in particular, to the increase of inter-ladder anisotropic
exchange. In order to understand this effect let us discuss first all relaxation mechanisms
and exchange paths involved.

5.3. Analysis of Relaxation Mechanisms

All possible origins for the line broadening ΔH in low-dimensional spin systems were
considered in Sec. 4.4.2. In accordance with those estimations, single-ion, dipolar, hyper-
fine and spin-lattice relaxation were shown to be less important in NaV2O5 ([Yamada’98,
Zvyagin’01, Hemberger’98]). The anisotropic Zeeman-effect is not relevant, because of
nearly equivalent g tensors for all vanadium sites. Therefore, only two sources remain to
account for the broadening of the ESR spectra in α′-NaV2O5 – the symmetric anisotropic
exchange (AE) and the antisymmetric Dzyaloshinsky-Moriya exchange (DM) interaction.

These contributions have been already estimated and discussed by Yamada et al.
[Yamada’98] on the basis of the conventional approach suggested by Moriya [Moriya’60].
But in view of recent theoretical results [Choukroun’01, Oshikawa’02] discussed in sec-
tion 2.3, such conventional estimations have to be taken with care. In particular, the
DM interaction was found to produce a divergence in the temperature dependence of
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Figure 5.6.: (i): Temperature dependence of the ESR linewidth in α′-NaV2O5. The
fit by Eq. (5.3) is shown by a solid red line, the ΔHKvN(T ) contribution
is emphasized by a dash line. (ii): Reduced contribution ΔHexp(T ) =
ΔH(T ) − ΔHKvN(T ) compared to conductivity as Arrhenius plot. (iii):
Inset emphasizes a crossover of ΔHa and ΔHc at low temperatures.

Figure 5.7.: Angular dependence of the ESR-linewidth in α′-NaV2O5 at different tem-
peratures.
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5. Symmetric Ring Exchange in α′-NaV2O5

the linewidth ΔHDM ∝ T−2 for T � J/kB. This is in contrast to the monotonic in-
crease of ΔH with increasing temperature in NaV2O5. Such a behavior, however, is in
agreement with the theoretical expectation for a dominant AE [Oshikawa’02]. Exper-
imental investigations of related compounds (see sections 4.5.3 and 5.3.2) corroborate
this expectation, too. In the following we will provide detailed microscopical estimations
of this term in α′-NaV2O5 and show that the angular and temperature dependencies of
ΔH can be completely described in terms of this relaxation mechanism, only.

5.3.1. Exchange Pathways

It is important to recall that NaV2O5 contains quarter-filled spin-ladders where each
rung consists of two vanadium ions sharing one electron. Hence, the ground-state wave
function is built by the superposition of two neighboring 3dxy orbitals hybridized with
the intermediate oxygen 2py orbital on the same rung, as depicted in Fig 5.8(i). Note
that the conventional AE processes shown in Fig. 2.12(i-iv) do not contribute to the
symmetric anisotropic exchange within one ladder due to the orthogonality of the in-
volved wave functions. Therefore we will concentrate now on ’ring-exchange’ processes
(Fig. 2.12(v,vi)), that involve exchange between orbital levels with the same symmetry.
In particular, the superexchange between the ground states |η〉 = cl |dxy〉 − cr |dxy〉 and
|ζ〉 = c′l |dxy〉−c′r |dxy〉 on the neighboring rungs A and A’ is transferred via π bonds with
the interconnecting oxygen 2px orbitals, as it is illustrated in Fig. 5.8(i). Most relevant
for the symmetric anisotropic exchange is the strong antiferromagnetic superexchange
between the excited states |ϕ〉 = cl |dx2−y2〉−cr |dx2−y2〉 and |θ〉 = c′l |dx2−y2〉−c′r |dx2−y2〉
transferred via σ bonds with the oxygen 2py orbitals (Fig. 5.8(ii)). Here cl, cr and c′l,
c′r denote the distribution coefficients of the wave functions for the left (l) and right (r)
vanadium site on rung A and neighboring rung A’, respectively.

Thus, the ring AE process in NaV2O5 can be described as follows: The electron
e.g. couples from the |η〉 ground state to the |ϕ〉 excited state via spin-orbit coupling
HLS (Eq. 2.17) by lz, is transferred (t′σ) to the excited |θ〉 state of the neighboring
rung, couples via HLS to the corresponding |ζ〉 ground state and returns (tπ) to the
starting orbital. Due to the spin-orbit coupling between 3dxy and 3dx2−y2 states via the
z component of the orbital momentum < dx2−y2 | lz | dxy >= −2i, the only non zero
matrix element of the symmetric AE is given by

Dintra
zz = 8λ2 tπt′σ

Δ2
x2−y2,xy

ΔAA′
[c∗l c

′
l + c∗rc

′
r]

2. (5.4)

Here ’∗’ denotes the complex conjugation. True to literature, the crystal field splitting
amounts to about Δx2−y2,xy ≈ 0.36 eV [Ohama’97, Mazurenko’02] and for the charge-
transfer energy between neighboring rungs on finds ΔAA′ = 3 eV [Golubchik’97]. The
hopping integral t′σ between the excited states is difficult to estimate, but as a lower
boundary one can approximate it by the hopping integral between the ground states
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Figure 5.8.: Schematic pathways of the exchange coupling in NaV2O5 (blue big spheres:
V, red small spheres: O) y axis running along the chains. (i): In the
ground state the electron occupies the dxy orbital. (ii): Anisotropic spin-
spin coupling via excited V dx2−y2 states. (iii): Inter ladder coupling.

t′σ ≈ tπ = 0.17 eV [Smolinski’98]. Using the free ion value of the spin-orbit coupling
λ = 31 meV, one obtains Dzz ≈ 0.6 meV at high temperatures, where the electrons
are equally distributed on each rung, i.e. cl = cr = 1/

√
2. This yields a characteristic

linewidth of about ΔH = 300 Oe.
For the exact description of the data it was necessary to take into account the cor-

rections due to the inter-ladder interactions. Possible exchange paths are shown in
Fig. 5.8(iii). These exchange paths involve a 90◦-bond geometry, which has been shown
[Krug’02, Eremina’03] to produce sizable symmetric anisotropic exchange contributions,
as well. For more detailed discussion of a 90◦-exchange we refer to [Yushankhai’99,
Tornow’99]. Considering all possible exchange paths, one obtains a maximum inter-chain
xx component corresponding to an enhancement of the linewidth for the field applied
along the crystallographic a direction. That allows to fit accurately the experimental
data as we will show in the next chapter.

5.3.2. Symmetric Anisotropic Exchange in α′-NaV2O5

Having identified and estimated the source of the ESR line broadening in NaV2O5,
we will now apply this model to the experimental data. The analysis of the angular
dependencies in terms of second moments (Sec. 4.4.1) can be found in appendix C.

The leading zz diagonal element of the symmetric AE tensor gives rise to a 2:1
anisotropy with respect to the corresponding crystallographic c axis. Taking into account
the corrections due to inter-ladder AE, we can fit the experimental angular dependencies
of ΔH (Fig. 5.9) deriving the ratio of two essential fit parameters Dinter/Dintra for the AE
parameters between and within the ladders, respectively. Fig. 5.11 shows the tempera-
ture dependence of the ratio Dinter/Dintra together with the linewidth ratios ΔHa/ΔHc,
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5. Symmetric Ring Exchange in α′-NaV2O5

Figure 5.9.: Angular dependence of the ESR-linewidth at different temperatures. Fit
curves (lines) are described in the text. (i): Normalized to the linewidth
for the magnetic field applied along the c axis. (ii): Illustration of the con-
tributions of intra- and inter-ladder AE to the linewidth far above (dashed
blue line) and near TCO (solid red line).

Figure 5.10.: Angular dependence of the ESR-linewidth in LiCuVO4 (i) and CuGeO3

(ii) described in terms of symmetric anisotropic exchange [Krug’02,
Eremina’03]. The relevant parameters are indicated in the Figures.
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Figure 5.11.: Right ordinate: temperature dependence of the linewidth-ratio for the mag-
netic field applied along a or b axis normalized to ΔHc. Left ordinate:
temperature dependent ratio of the inter- to intra-ladder AE constants
obtained from the fitting of the angular dependencies of ΔH.

Figure 5.12.: Temperature dependence of the linewidth ratios in LiCuVO4 (i), CuGeO3

(ii) from [Krug’02, Eremina’03].
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ΔHb/ΔHc (remember that only the ratio of the exchange parameters can be determined
from the ESR linewidth at temperatures T < J/kB as discussed in Sec. 4.5.2). It can
be clearly seen that at high temperatures (T > 150 K) the dominant contribution to
the line broadening is given by the intra-ladder AE. On decreasing temperature, below
150 K, the ratio strongly increases and the inter-ladder contribution becomes dominant.
This can be understood taking into account the strong dependence of the AE parameters
from the coefficients cl, c

′
l, cr, c

′
r which describe the electronic occupation on the vana-

dium sites. That means e.g. that for Dintra = Dzz (Eq. 5.4) the coefficient [c∗l c
′
l + c∗rc′r]

is equal to 1 for the case V 4.5+ − V 4.5+, and vanishes for the ”zigzag” charge order
(V 5+ − V 4+) realized below TCO.

The observed increase of the Dinter/Dintra ratio already far above TCO indicates that
precursors of the developing CO set in at about 150 K, weakening considerably the
intra-ladder AE. There are many evidences supporting this conclusion. In sections 5.1.2
and 5.1.3 we have shown that the elastic constants, the susceptibility, and the refractive
index show an anomalous behavior already at T < 200 K corresponding to the strong
fluctuations in the system far above TCO.

The experimentally observed linewidth is in good agreement with the theoretical pre-
diction (5.4), as one can see in Fig. 5.9. But we would like to point out that the value
of Dzz ≈ 0.6 meV may be somewhat overestimated because of the uncertainty in the
used values of Δx2−y2,xy and ΔAA′ . Most likely, such a large linewidth results from
the partly inhibited exchange narrowing in NaV2O5, as discussed in Sec. 4.5.1. This
effect is typical for chain systems with small enough inter-chain exchange and produces
a stronger broadening as compared to the predictions of the Kubo-Tomita theory. In
any case, the conclusion concerning the temperature dependence of Dinter/Dintra ratio
remains unchanged.

The dominance of AE in the ESR line broadening in spin chain systems is supported
by the investigation of LiCuVO4 and CuGeO3. These compounds show a similar temper-
ature (Fig. 4.4) as well as angular dependence of the linewidth which can be accounted
for using the same microscopical method as used before for NaV2O5. In [Krug’02] and
[Eremina’03] all necessary calculations were done and it was concluded that ESR line
broadening can be explained in terms of AE only. Two examples of angular dependen-
cies of ΔH with the corresponding fit curves are given in Fig. 5.10. The obtained ratios
of exchange parameters and the reduced linewidths reflect the presence of fluctuations
in the systems on approaching the phase transitions (Fig. 5.12), too. The estimations
given in Sec. 4.4.2 and 5.3 and the similar behavior of spin relaxation on all of these
compounds favor strongly a common relaxation source. In this respect LiCuVO4 plays
a key role, because the DM interaction can be completely ruled out by its crystal sym-
metry. Therefore, we believe that the proposed symmetric anisotropic ’ring’ exchange is
the correct source of the immense ESR line broadening in α′−NaV2O5.
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5.4. Summary

The anisotropy and temperature dependence of the resonance field and the width of
the ESR absorption line have been investigated in the paramagnetic phase of NaV2O5.
Analyzing the g tensor we calculated the crystal-field splittings of the V4+ ion and the
covalence reduction of spin-orbit interaction in this system. Moreover, we have identified
the symmetric anisotropic super-exchange to be the source of the immense ESR line
broadening in NaV2O5. In this microscopic picture the dominant process consists of the
simultaneous virtual hopping of electrons between the ground states and excited states
of vanadium ions on neighboring rungs of the ladder involving the spin-orbit coupling
on both rungs. This novel unconventional exchange process has not been considered
in the discussion of ESR line broadening before. The corresponding AE parameter is
found to be of the order of 1% of the isotropic exchange constant resulting in a high-
temperature limit of the ESR linewidth of approximately 102 Oe. On the basis of this
microscopic analysis we have shown that the ESR data can be entirely described in
terms of the symmetric anisotropic exchange only. The temperature dependence of the
linewidth and derived exchange parameters evidences the presence of charge fluctuations
in α′−NaV2O5 up to 150 K on a microscopic level.
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6. Superexchange Competition in TiOCl

Recently, the fascinating system TiOCl came into focus as another possible candidate
where orbital ordering induces a quasi-one-dimensional magnetic behavior and a spin-
Peierls transition to a non-magnetic state below Tc1 = 67 K [Seidel’03]. Later on, this
transition was shown to have a more complex nature. In particular, it is strongly af-
fected by the frustrated interchain coupling, which also has to account for the first-order
character of this phase transition and existence of strong fluctuations in the non ordered
high-temperature phase [Hemberger’05]. This chapter concentrates on the spin relax-
ation mechanisms in this compound, which can be identified in the broad temperature
region Tc1 < T < 500 K on the basis of ESR data.

6.1. Sample Characterization

Single crystals of TiOCl were prepared by chemical vapor transport. Based on the
procedure described by Schäfer et al. [Schäfer’58], the parameters were optimized over a
period of more than two years. It was found that the best results can be achieved using
the starting reactants Ti, TiO2 and TiCl4 (acts also as a transport agent). The detailed
data for temperature profiles and durations of the different transport stages can be found
in [Hoinkis’07]. Typical dimensions of the obtained crystals are 4 mm×2 mm×0.1 mm.
Very thin TiOCl crystals have a red color, whereas thicker ones appear black. The red
color can be explained by the optical gap of ≈ 2 eV [Rückamp’05a]. The samples have
been characterized with various experimental techniques (x-ray diffraction, scanning
electron microscopy, energy dispersive x-ray analysis, Laue diffraction), evidencing the
samples to be of the highest quality. Additionally, the quality of the crystals has been
clearly confirmed by the susceptibility measurements which reveal a hysteresis at the
first-order transition at Tc1 = 67 K which had not been reported previously (Fig. 6.3).

6.1.1. Crystal Structure

The crystal structure of TiOCl belongs to the orthorhombic space group Pmmn with
a = 3.789(1) Å, b = 3.365(1) Å and c = 8.060(3) Å at room temperature. It consists
of Ti-O bilayers within the (ab)–plane (see Fig. 6.1(ii)) [Beynon’93] that repeat in the
c direction of the crystal. The bilayers are well separated by Cl ions mediating only a
weak van der Waals interaction between successive bilayers. Within each bilayer, Ti and
O form two layers of buckled chains, where Ti is always on the outer side with respect
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Figure 6.1.: Crystal structure of TiOCl at room temperature (space group Pnma). Fig-
ure (i) displays the strongly distorted [TiO4Cl2] octahedra, Figure (ii) em-
phasizes the double [TiO]-layers in the (ab)-plane separated by Cl ions.

Figure 6.2.: (i): Intensities of the superlattice reflections showing up in TiOCl below
Tc2 ≈ 92 K observed by x-ray diffraction [Krimmel’06]. (ii): Temperature
dependence of the intensity of the (0, 1.5, 0) superlattice reflection of TiOCl
in the vicinity of the first phase transition around Tc1 = 67 K. Shown are
measurements in a zero field (closed red circles) and in an external field of
H = 10 T (open black squares), respectively.
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to the bilayer. The O-Ti-O bond angle is 153◦. Each Ti ion is surrounded by a distorted
octahedron of O and Cl ions (Fig. 6.1(i)). These octahedra are formed by two O ions
belonging to the same Ti-O chain, two O ions belonging to neighboring chains, and two
Cl which lie outside the bilayer. They are corner sharing in the a direction along the
Ti-O-Ti chains and edge sharing in the b direction along the Ti-Ti chains.

At low temperatures a detailed single crystal x-ray diffraction study [Krimmel’06]
observed a number of superlattice reflections along the chain direction (0, k + 0.5, 0)
with k = 0, 1, 2. The strongest intensity was found for the (0, 1.5, 0)-reflection, which
is characteristic for a doubling of the unit cell along the b axis. Fig. 6.2(ii) shows that
the intensity of this reflection decreases strongly at Tc1 = 67 K evidencing the transition
to be of first order. Above Tc1 = 67 K the (0, 1.5, 0)-reflection does not disappear
(Fig. 6.2(i)), but splits into two incommensurate satellites, which can be monitored up
to Tc2 ≈ 92 K. Apart from the incommensurability, the structural modulation in the
temperature region Tc1 < T < Tc2 is characterized by rather large displacements along
the b axis and comparable small (about one order of magnitude weaker) amplitudes along
the a axis. At T > Tc2 the undistorted orthorhombic structure of the paramagnetic phase
is completely recovered.

6.1.2. Magnetic and Thermal Properties

The high-temperature T > 130 K part of the susceptibility data displayed in Fig. 6.3
can be fitted by a Bonner-Fisher-curve (Eq. 3.7), using the nearest-neighbor exchange
J ≈ 660 K. That indicates the existence of one-dimensional spin-1/2 chains in TiOCl.
By LDA+U and LDA+DMFT calculations it was concluded that the magnetic behavior
is dominated by the direct exchange between Ti ions along the b axis and the interchain
coupling effects mediated by oxygen ions along the a axis are likely to be weak [Seidel’03].

At Tc1 = 67 K a sharp drop in χ(T ) is clearly seen. In a picture based on one-
dimensional spin chains, such a drop must be interpreted as a spin-Peierls transition
(Sec. 3.1.1) into a nonmagnetic, dimerized ground state. This conclusion is strongly
supported by the doubling of the unit cell along the b axis at T < Tc1. Moreover, a weak,
but noticeable magnetic field effect found for this phase transition (ΔTc1 = −0.13 K in
H = 10 T [Krimmel’06]) is in accordance with the theoretical expectations.

On the other hand, the results of specific-heat measurements [Hemberger’05] depicted
in Fig. 6.4 reveal that the entropy change ΔS (∼ 0.01 R) through this transition is sur-
prisingly small. And also in itself the first order of the phase transition at Tc1 contradicts
with the conventional spin-Peierls scenario. In addition, a noticeable inflection point in
the susceptibility and a peak in the specific heat at 91 K correspond to a second phase
transition of second order, which forestalls the structural dimerization but carries the
major part of the transition entropy. However, this entropy contribution ΔS ∼ 0.12 R is
still vanishingly small compared to R ln 2 expected for a spin S = 1/2 system, indicating
the existence of strong fluctuations in a broad temperature range. This conclusion is
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Figure 6.3.: Temperature dependence of the magnetic susceptibility of TiOCl measured
by SQUID magnetometry compared to the intensity of the ESR signal. (i):
Raw data (red empty squares) and data (blue solid line) after subtraction
of a constant offset and a Curie contribution (green dot line). The empty
black circles are the IESR. (ii): The cooling and heating curves without
Curie subtraction in a reduced temperature range [Hoinkis’05].

Figure 6.4.: Heat capacity of TiOCl, plotted as C/T versus T . (i): Experimental data
and fit of specific heat taking into account the spin- as well as the phonon
contributions. (ii): Difference between calculated and measured heat ca-
pacities. The area under the curve corresponds to the released entropy
[Hemberger’05].
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supported by Raman, NMR and infrared spectroscopy measurements discussed in the
next chapter.

6.1.3. Fluctuations in the High-Temperature Phase

Fig. 6.5(i) shows that the temperature dependence of the phonon-mode parameters ex-
tends over a broad temperature range well above Tc1 [Caimi’04]. The overall temperature
dependence mainly develops below 200 K and tends to saturate below 100 K, indicating
the presence of an extended fluctuation regime, which has been recognized in NMR data
[Imai’03], as well.

The relaxation rates of 35Cl sites show dynamic lattice distortion with onset at 200 K,
while for the 46,49Ti sites, 1/T1T , which probes the spin degrees of freedom, forms a
maximum at about T ∗ = 135 K (Fig. 6.5(ii)). Therefore, the interplay between the
lattice and spin degrees of freedom must be already taking place at high temperatures.
The temperature dependence of 1/T1T implies a pseudogap phase in the homogeneous
state of the spin system with an estimated pseudogap Δ(NMR)

fluct /kB ≈ 430 K.
Additionally, the depletion of spectral weight over an energy range of the order of 400 K

is very much reminiscent of a similar behavior in the Raman spectra, occurring over
the same energy interval with decreasing temperature and associated with the spin-gap
opening [Lemmens’04]. The resulting spin gap Δ(optic,Raman)

fluct /kB ≈ 215 K corresponds to
the reduced gap ratio 2Δ/kBT ∼ 4.6 and 6.7 for Tc2 and Tc1, respectively. With respect
to the mean field result 3.53 (Eq. 3.5), they are more reasonable than those obtained
from NMR measurements.

Summing up, TiOCl does not display a canonical spin-Peierls behavior. Two distinct
phase transitions and an incommensurate phase at intermediate temperatures arise in
this structure as a result of frustration between a spin-Peierls pairing on chains of Ti
atoms as driving force and elastic coupling between neighboring chains mediated by the
oxygen atoms [Rückamp’05b, Schönleber’06]. The major part of the transition entropy
is, however, released at higher temperatures. Strong short-range ordering fluctuations
persisting in the high-temperature phase affect the magnetic, thermal and electrody-
namic properties considerably already below 200 K.

6.2. ESR in TiOCl

The early ESR study in TiOCl [Kataev’03] revealed a strongly exchange-narrowed res-
onance line with geff ∼ 2 and suggested that there might be significant changes in the
splittings of the d-orbitals between Tc2 and room temperature, based on the temperature
dependence of the anisotropic g-values.

In contrast, significant orbital fluctuations have been discarded by optical spectroscopy
studies and polarization dependent ARPES measurements as discussed previously. There-
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Figure 6.5.: (i): Temperature dependence along the a axis of the change with respect
to 300 K for the resonance frequencies ω0j (upper frame), the oscillator
strengths ωpj (middle frame), and the dampings γj (lower frame) of the
phonon modes in TiOCl (identified in the legend by their respective reso-
nance frequency in cm−1) [Caimi’04]. (ii): (lower frame) 1/T1 (empty cir-
cles) and 1/T1T (filled circles) at 47,49Ti sites of TiOCl measured by NMR.
Solid and dashed curves are guides for eyes, T ∗ ≈ 135 K. (upper frame) The
same 1/T1T data plotted in a semi-log scale. Solid line is an exponential fit
with the activation energy Eg = 430 K [Imai’03].

72



6.2. ESR in TiOCl

fore using ESR we reinvestigated TiOCl in detail and found temperature-independent
g values up to room temperature. Moreover, we will discuss possible spin relaxation
processes in this compound and analyze the temperature and angular dependence of the
ESR linewidth in terms of the anisotropic exchange interactions.

6.2.1. Resonance Spectra and Absorption Intensity

ESR spectra obtained for TiOCl in the paramagnetic regime at different temperatures
are displayed in Fig. 6.6. The spectra consist of a broad, exchange-narrowed resonance
line, which is well fitted by a single Lorentzian line shape.

Figure 6.6.: Temperature evolution of the ESR spectrum in TiOCl for H ‖ a. Solid lines
represent fits using a Lorentzian line shape.

The temperature dependence of the intensity of the ESR signal IESR is shown in
Fig. 6.3(i). It is proportional to the static susceptibility (Sec. 4.2.3) and, hence, exhibits
also the sharp drop at Tc1 and the kink at Tc2. Note that in contrast to the static spin
susceptibility χ, the ESR signal does not contain temperature independent van Vleck
contributions, showing directly the system to be non-magnetic below Tc1.

6.2.2. g-Factor and ESR Linewidth

The temperature dependent ESR linewidth ΔH at X- and Q-band frequencies is depicted
in Fig. 6.7(i). It shows an anisotropic behavior with the external magnetic field H applied
along the three crystallographic axes of the orthorhombic structure. Above T 
 90 K
both data sets almost coincide and the linewidth is largest when H‖a while the values
for H‖b and H‖c are almost equal. The linewidth increases monotonously for all three
directions for T > Tc2, however, a peculiar change from a negative to positive curvature
is observed at about 250 K. Below T 
 90 K there is a crossover of the linewidth
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Figure 6.7.: ESR linewidth (i) and g-factor (ii) as a function of temperature for the
magnetic field applied along the three crystallographic axes measured at X-
band (ν ≈ 9.34 GHz, the empty large symbols) and at Q-band frequency
(ν ≈ 34 GHz, the filled small symbols). The lines in panel (i) represent a
fit by Eq. (6.9) using parameters listed in Table 6.3, the error bars in panel
(ii) are given assuming the uncertainty in the resonance field as 5% of the
linewidth.
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data resulting in the broadest spectra for H‖b. Possible reasons for this effect as well
as for discrepancies between X- and Q-band data will be discussed in section 6.4 in
detail. On approaching the first-order transition at Tc1, the linewidth for all directions
drops down to a value of about 50 Oe. This corresponds to the residual signal due
to paramagnetic impurities which will not be further discussed. Focusing on the high-
temperature behavior above 250 K we find that the anisotropy of the linewidth becomes
smaller and vanishes at about 430 K.

Notably, at the same temperature the anisotropy of the effective g-factor at the X-band
frequency vanishes, too (see Fig. 6.7(ii)), and we obtain g(430 K) ∼ 1.96 for all three
directions. Concomitantly with the change of curvature of the linewidth at 250 K the
temperature dependencies of the g-factor show a steep increase above 250 K, while the
g-tensor is nearly constant in the temperature range Tc2 < T < 250 K. Measurements
in Q-band confirmed these finding showing an almost temperature independent g tensor
below room temperature. This behavior differs from previously published results where
a much larger and temperature dependent anisotropy of the g-factor was reported for
Tc2 < T < 300 K and interpreted in terms of changes of the energy splittings [Kataev’03].
Unfortunately, no spectra were shown in [Kataev’03], making it difficult to judge where
this discrepancy comes from, especially, because the spectra were fitted with a single
Lorentzian line shape in both cases.

Concerning the uncertainty of the obtained g-values, one has to take into account
the strong increase of the linewidth with temperature, because the uncertainty of the
g-value becomes larger as the order of magnitude of the linewidth becomes comparable
to the resonance field of the ESR spectrum (see e.g. [Deisenhofer’02, Deisenhofer’03]).
Therefore, we assume the uncertainty in the resonance field as 5% of the linewidth
and obtain the error bars shown in Fig. 6.7(ii). Correspondingly, the uncertainty at the
frequency ν ≈ 34 GHz is about three times smaller. Despite these error bars our g-values
at room temperature ga = 1.937, gb = 1.923, and gc = 1.910 differ considerably from the
ones presented in [Kataev’03]. Here, we would like to emphasize that we investigated
several samples, which were shown to be of very high-quality by clearly revealing the
hysteresis at Tc1 in the magnetic susceptibility.

Note that the largest discrepancy for the g-values is found for ga, i.e. with the external
field applied along the a-axis. Interestingly, for this case there is also a slight deviation
in the temperature dependence of ΔHa in comparison to our data, suggesting that
ΔHa 
 ΔHb at room temperature, which we can exclude from our data. Hence, the
given error for the g-value in [Kataev’03] might have been somewhat underestimated.
Moreover, none of the calculated sets of g-values obtained by using an angular overlap
model could reproduce ga = 2.01 from [Kataev’03], while the corresponding orbital
energy levels seem to be in agreement with optical data [Rückamp’05b]. Instead, the
values obtained from the AOM in case of isotropic π-interaction (model A in [Kataev’03])
describe our g-values very nicely. Therefore, we conclude that our g-factors correctly
reflect the properties of TiOCl and exclude relevant changes in the crystal-field splitting
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Table 6.1.: Left column: Observed and calculated g tensors. Right column: Rela-
tive energies of the d orbital states in [eV] calculated by means the AOM
model (EAOM), using the LDA (ELDA) [Saha-Dasgupta’04, Leonov’PR] and
cluster approximations (Eclust), as well as the point-charge model (Epc)
[Rückamp’05a]. Experimentally (Eoptic) only the energies of the dx2−y2 and
|+〉 ≡ (dxz + dyz)/

√
2 levels can be determined [Rückamp’05a].

Orbital E EAOM Eclust ELDA Epc Eoptic

Experiment AOM d3z2−r2 - 2.80 2.11 2.27 1.28 -
ga 1.937(4) 1.9366 dx2−y2 Δ0 1.41 1.24 1.73 0.34 1.5
gb 1.925(3) 1.9252 |+〉 Δ2 0.70 0.69 0.59 0.68 0.65
gc 1.910(3) 1.9098 |−〉 Δ1 0.38 0.25 0.22 0.39 -

dxy 0 0 0 0 0 0

up to room temperature. This is in agreement with direct optical measurements of the
d-level splittings [Rückamp’05a] and the fact that x-ray diffraction measurements did
not detect significant changes of the crystal structure with temperature [Shaz’05].

With regard to the increase of the g-values towards higher temperatures one has to
take into account the larger uncertainty due to the broadening of the line. In principle,
however, such a shift could indicate a change of the local structure of the TiO4Cl2-
octahedra. To decide about this possibility, additional structural investigations for T >
300 K are desirable.

6.3. Crystal-Field Splittings of Ti3+

Recalling the above discussion about the increase of uncertainty in the g-values with
increasing temperatures (see Fig. 6.7(ii)), we will restrict the following evaluation to
the g-values ga = 1.937(4), gb = 1.925(3), and gc = 1.910(3) obtained below room
temperature at Q-band frequency. Note that the absence of any significant temperature
dependence of the g-factor up to room temperature allows to apply the following results
in this temperature range with good accuracy.

Table 6.2.: AOM parameters for the TiO4Cl2-octahedron in TiOCl. The bounding pa-
rameters eσ,π are given in the units of [103 cm−1].

λ [cm−1] eσ(O1) eπ(O1) eσ(O2) eπ(O2) eσ(Cl) eπ(Cl) kx ky kz

175 13 3.25 6.5 1.625 5 1.25 0.70 0.84 0.87
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To analyze our experimental g-factors, we can again use the angular overlap model
(App. B). Each Ti3+(3d1) ion is surrounded by two chlorine and four oxygen ions, build-
ing an octahedron with a strong contraction along the a-axis. According to [Schäfer’58],
there are three different bond lengths: the Ti-O1 bound along the a axis nO1 
 1.95 Å,
the second Ti-O2 bound in the (bc)-plane nO2 
 2.25 Å and the Ti-Cl bound in the same
plane nCl 
 2.37 Å. Therefore, all other bounding parameters can be connected to the
eσ(O1) as follows:

eσ(O2) =
(

2.25
1.95

)−5

eσ(O1) ≈ 0.50 · eσ(O1), eπ(O2) =
eσ(O2)

4
≈ eσ(O1)

8
,

eσ(Cl) =
(

2.37
1.95

)−5

eσ(O1) ≈ 0.38 · eσ(O1), eπ(Cl) =
eσ(Cl)

4
≈ eσ(O1)

10
,

and eπ(O1) = eσ(O1)/4. Taking additionally into account the covalency of Ti-ligand
bonds (see Table 6.2 for the used fit parameters), we are able to reproduce very well the
observed anisotropy of the g tensor. The results are listed in Table 6.1 together with the
predictions made in terms of the LDA+U [Saha-Dasgupta’04, Leonov’PR], the cluster
and the point-charge models [Rückamp’05a]. These calculations can be compared to the
experimental results obtained by optics measurements [Rückamp’05a] given in Table 6.1
as well. Two absorption peaks at Δ2 = 0.65(±0.15) eV and Δ0 = 1.5(±0.1) eV seen in
those measurements were attributed to orbital excitations into the |+〉 ≡ (dxz +dyz)/

√
2

and dx2−y2 levels, respectively.
While the energies of the transitions to the second and third excited levels can be

experimentally detected, the transition to the first excited state is not directly infrared-
active. But its energy is critical in order to determine, whether orbital fluctuations
are a correct explanation for the interesting physics observed in TiOCl. Therefore, it
is important to know the uncertainty of the calculated value Δ(AOM)

1 = 0.38 eV. In
particular, because the used AOM approximation does not take properly into account
the anisotropy of orbital reduction (given by the parameters ki) in the calculation of
energy levels.

In order to do so, let us use a more simple schema and consider the local environment
of the Ti3+ ion as a TiO4Cl2-octahedron with a strong tetragonal distortion along the
a-axis. Then we can express the g value parallel (g‖) and perpendicular (g⊥) to the
direction of tetragonal distortion as follows [Abragam’70]:

g‖ = 2 − 8
λ‖
Δ0

, g⊥ = 2 − 2
λ⊥
Δ′ . (6.1)

Here λ‖ (λ⊥) and Δ0 (Δ′) denote the spin-orbit (SO) coupling parameter and the relevant
crystal-field splitting, respectively, for the magnetic field applied parallel (perpendicular)
to the a-axis.
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Identifying the experimental value of ga with g‖ = 1.937(4) and substituting λ‖ by
the isotropic free-ion value λfi/kB = 224 K for Ti3+ [Abragam’70], we derive the en-
ergy splitting between the ground state and the dx2−y2 level to be Δ0 = Δx2−y2 ≈
2.4(2) eV.1 In comparison to the value Δ(opt)

x2−y2 = 1.5 eV obtained by optical measure-
ments [Rückamp’05a] the value derived from our g-factor is too large. Therefore, we have
to take into account a covalence reduction of the spin-orbit coupling λ‖ [Abragam’70].

To estimate the reduction factor we use the experimental value Δ(opt)
x2−y2 and obtain

λ‖/kB 
 140 K for TiOCl, considerably smaller than the free-ion value λfi but in agree-
ment with literature [Abragam’70, Kataev’03]. This large splitting allows to discard the
scenario of dx2−y2 being the first excited state approximately 0.34 eV above the ground
state (point-charge model), in favor of cluster calculations predicting the first excited
state to be |−〉 ≡ (dxz − dyz)/

√
2 [Kataev’03, Rückamp’05a].

To obtain lower and upper limits for the energy splittings, we can use λ⊥ = 140 K and
the free ion value λfi = 224 K for the magnitude of SO coupling within the (bc)-plane.
Starting with λ⊥ ≡ λ‖ = 140 K and g⊥ = (gb+gc)/2 ≈ 1.918(10) we derive Δ′

λ‖ ≈ 0.3 eV
for the energy splitting of the doublet dxz, dyz with respect to the ground state. In the
real structure this doublet splits into the lower antisymmetric (dxz − dyz)/

√
2 ≡ |−〉

(energy Δ1) and higher symmetric (dxz + dyz)/
√

2 ≡ |+〉 (energy Δ2) state. Using
2/Δ′ = 1/Δ1 + 1/Δ2 and the experimental value Δ2 = 0.65(±0.15) eV [Rückamp’05a],

we finally obtain the lower limit Δ
(λ‖)

1 = 0.2(1) eV. Analogously, we derive the upper
limit Δ(λfi)

1 = 0.4(1) eV, narrowing down the energy of the first excited state to Δ1 =
0.2 − 0.4 eV. This is in good agreement with the other theoretical estimates listed in
Table 6.1.

Thus, by means of ESR we can exclude the degeneracy of the first and second excited
states in TiOCl, as indicated by band-structure results [Seidel’03, Saha-Dasgupta’04],
corroborating the results obtained by optics and ARPES measurements [Rückamp’05a,
Hoinkis’05].

6.4. Spin Relaxation in TiOCl

Having identified the character and splitting of the ground and low lying excited states
via the g-factors, we will now discuss the angular and temperature dependence of the
linewidth above Tc1, which provides information on the microscopic spin dynamics in-
volving these energy levels. The behavior of the ESR linewidth in TiOCl can be clearly
divided into the three regimes T < 90 K, 90 K < T < 250 K, and T > 250 K. In the
temperature range Tc1 < T < 90 K the linewidth is almost constant (for H‖a, c) or
decreases (for H‖b) on increasing temperature. This behavior changes at about 90 K

1 The local coordinate frame {xyz} is chosen so that z‖ − a, and the x and y axes are rotated by 45o

with respect to the c and b axis, respectively (Fig. 6.8).
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together with a change of the linewidth anisotropy (see Fig. 6.11) to the monotonous
increase for all directions. At high temperatures T > 250 K a strong additional increase
of ΔH(T ) dominates this saturation behavior (see Fig. 6.10) and the anisotropy of the
line vanishes (Fig. 6.7). We attribute these different regimes to the competition of relax-
ation mechanisms prevailing at different temperatures, which will be discussed in detail
in the following. Generally, the important mechanisms for the ESR line broadening in
low-dimensional strongly correlated spin systems have been discussed in section 4.4.2.
Let us now single out and estimate the relevant interactions which drive the relaxation
in TiOCl:

Single-ion anisotropy is absent for Ti3+ (S=1/2). Other sources of line broadening
such as dipolar interaction or hyperfine coupling are negligible as a result of the large
isotropic exchange J/kB = 660 K. Taking into account the average distance between the
Ti-ions of about 3.355 Å [Shaz’05] and the value of the hyperfine constant ATi3+ = 6·10−4

cm−1 [Altshuler’64] we can estimate the contribution to the linewidth from these sources
as 10−1 Oe and 10−5 Oe, respectively. A larger contribution to the ESR linewidth could
be expected for the anisotropic Zeeman interaction in case of different Ti3+ sites in
adjacent layers [Pilawa’97]. However, this broadening strongly depends on the value of
the resonance field Hres. At X-band frequency used in our experiment (Hres ∼ 3 kOe) the
resulting contribution is less than 1 Oe for any reasonable choice of parameters (e.g. an
interlayer coupling Jinter ≈ 0.05 · J [Saha-Dasgupta’04] and Δg ∼ 0.3).

The remaining relevant contributions stem from the anisotropic exchange interactions.
Conventional estimations [Moriya’60] of their magnitude result in values at least two or-
der of magnitudes higher as for the other sources of line broadening. Note, however, that
the applicability of such estimations for low-dimensional systems like TiOCl has been
questioned, recently (Sec. 2.3). Hence, one has to analyze carefully these interactions in
TiOCl on a microscopic level. In the following it will be done for symmetric as well as
antisymmetric anisotropic exchange contributions.

6.4.1. Symmetric Anisotropic Exchange

In section 2.3.2 we have emphasized the importance of AE for low-dimensional systems.
But in order to take properly into account this relaxation source one needs a careful
analysis of both the exchange geometry and the energies of the involved orbital states.

Crystal-field splittings of the relevant excited states have been already estimated above
(see Sec. 6.3) and in order to illustrate the exchange geometry via these orbital levels
we show the charge-distribution pictures for the pathways of AE for the intra-chain and
inter-layer exchange in Figs. 6.8(i) and 6.8(ii), respectively. The inter-chain AE within
one layer is not effective here because of the orthogonality of the ground-state orbital
with respect to the direction of the exchange.

In analogy to the estimations made for NaV2O5 in Sec. 5.3.1 we argue that the path-
ways of AE shown in Fig. 6.8 are by far the most relevant ones. The first exchange
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Figure 6.8.: Schematic pathway of the symmetric anisotropic exchange between Ti ions
in TiOCl. Big blue spheres denote Ti ions, small red and green spheres –
O and Cl ions, respectively. (i): The most relevant intra-chain (‖ b-axis)
exchange paths. Left one – between the ground state dxy-orbital on one site
and the excited dx2−y2-orbital on the other site, second one – between two
excited |−〉-orbitals on both sites. (ii): Two dominating exchange paths
of the inter-chain AE between a Ti ion in the dxy-state and the nearest-
neighbor Ti ion from the adjacent chain in the excited states |−〉 (left) or
|+〉 (right).

process between neighboring Ti ions in the chain (depicted at the left side of the panel
(i)) with an electron transfer between dx2−y2 and dxy-orbitals becomes important as a
result of the strong σ-bounding between the titanium d– and the oxygen p-orbitals. The
importance of the second intra-chain AE process (at the right side of the panel (i) of
Fig. 6.8) via |−〉-orbitals is due to the small energy Δ1 of the involved excited state. Note
that only the exchange paths between the excited |−〉-states are shown in the second
case, since the second path closing the exchange loop (see Fig. 2.12(v-vi)) is given by the
hopping between the ground dxy-orbitals with J/kB ≈ 660 K. In Fig. 6.8(ii) the domi-
nating exchange paths of the inter-layer AE are presented: the left one being between
|−〉 and dxy-orbitals and the second between |+〉 and dxy-orbitals. These processes are
of the same order of magnitude as the intra-chain exchange and cannot be neglected.

The non-zero elements of the exchange tensors can be determined via the spin-orbit
operators included in this process (Sec. 2.3.2). For the first intra-chain AE process
(via the dx2−y2-orbital) the excited state is connected to the ground state dxy of the
same Ti ion via spin-orbit coupling with only one nonzero matrix element, namely
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〈dx2−y2 |lz|dxy〉 = −2i. Following Eq. (2.31), all AE processes via this level contribute to
Dzz only. Taking now into account the relation for the diagonal components of the AE
tensor

∑
Dαα = 0 (see Eq. 2.2) we obtain for this process

D(x2−y2)
zz = −2D(x2−y2)

xx = −2D(x2−y2)
yy . (6.2)

All other AE processes which make a considerable contribution to the linewidth in
TiOCl involve the |−〉 or |+〉-orbitals (|±〉 ≡ {dxz±dyz}/

√
2), which are connected to the

ground state orbital dxy via the matrix elements 〈dxz|lx|dxy〉 = i and 〈dyz|ly|dxy〉 = −i.
The resulting nonzero elements Dxx and Dyy of the AE tensor have the same magnitude
because of symmetry reasons and they have the same sign, because the expression for
Dαβ (Eq. 2.31) depends on the square of the orbital momentum. Thus, we can write the
AE tensor for these processes as D

(|−〉,|+〉)
zz = −2D

(|−〉,|+〉)
xx = −2D

(|−〉,|+〉)
yy . It becomes

clear that the maximal component of the anisotropic exchange tensor is Dzz. Therefore,
we would expect the maximal linewidth for H‖z in agreement with the experimental
data for T > 90 K.

Consequently, we can describe the resulting angular dependence of ΔH in terms of
the moment method (see section 4.4.1 and appendix C.2)

ΔHAE(T, θ) = ΔHAE(T )(1 + cos2θ), (6.3)

where θ is the polar angle of H with respect to the a ≡ −z axis and ΔHAE(T ) is
proportional to the strength of the AE interaction. This parametrization does not allow
to obtain the exact values of the anisotropic exchange parameters, but it is valid for
all temperatures and, hence, we will apply it to describe our data using ΔHAE as a fit
parameter.

Concerning the temperature dependence of the ESR linewidth produced by AE ex-
change interaction, clear theoretical predictions do only exist in two limiting cases:

• For the high-temperature regime T > J/kB, the linewidth approaches the result
of the Kubo-Tomita theory (Sec. 4.4.1) ΔH

(T>J/kB)
AE (T ) → ΔHAE(∞) ∝ D2

αβ/J =
const,

• the result ΔH
(T�J/kB)
AE (T ) ∝ (ΔHAE(∞)/J) · T in the case T � J/kB for the

S = 1/2 quantum antiferromagnetic chain (Sec. 4.5.2).

To model the crossover regime we will use the empirical expression (Eq. 4.28) which
has already provided a successful description for several low-dimensional systems like
α′-NaV2O5 [Chapter 5], CuGeO3 [Eremina’03], LiCuVO4 [Krug’02] and Na1/3V2O5

[Heinrich’04]:

ΔHAE(T ) = ΔHAE(∞) · e−
C1

T+C2 . (6.4)

Thus, the fit parameters to describe the contribution of the AE are ΔHAE(∞), C1, C2.
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db(0,1,0)

db(0,-1,0)

da
(O)(-1,0,0)

da
(O)(1,0,0)

da
(Cl)(-1,0,0) da

(Cl)(1,0,0)

Figure 6.9.: Next-neighbor bonds of the Ti ion together with the associated parameters
of the antisymmetric anisotropic exchange. db, d

(O)
a and d

(Cl)
a denote the

Dzyaloshinsky-Moriya parameters for the exchange along the a-axis, along
the b-axis via the oxygen ion and along the b-axis via the chlorine ion, respec-
tively. Components of the DM vectors are given in the depicted cartesian
coordinate system {a,b,c}. Big blue spheres denote Ti ions, small red and
green spheres – O and Cl ions, respectively.

6.4.2. Dzyaloshinsky-Moriya Interaction

The contribution of the DM interaction to the ESR line broadening in one-dimensional
systems is a heavily debated topic at the moment. The well-established approaches
widely used in the 3D case fail apparently in the 1D spin systems. The right order of
magnitude and the temperature dependence of this relaxation mechanism are of partic-
ular interest to understand the physics of many low-D compounds.

A general discussion of DM interaction can be found in section 2.3.1, and in that
follows we will analyze its contribution into the ESR line broadening in TiOCl, using the
structural data of Shaz et al. at room temperature [Shaz’05]. All next-neighbor bonds
of the Ti ion together with the corresponding DM vectors are shown in Fig. 6.9. Only
interactions of Ti ions in the same layer give rise to the antisymmetric exchange in TiOCl
because of the existence of an inversion center between the Ti ions from adjacent layers.
The two remaining contributions arise from the chains of the Ti ions along the b and a
directions. The first one, which results in a component of d in the a direction, has been
considered in [Kato’05] as the dominating source of the line broadening. However, we
would like to point out that there are two different bridging ions (Cl− and O2−) leading
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6.4. Spin Relaxation in TiOCl

to DM vectors with opposite sign in this case. Although the two paths are asymmetric
(nTi-Cl 
 2.393 Å, nTi-O 
 2.187 Å at T = 295 K [Shaz’05]) and, hence, lack inversion
symmetry, one can assume that the opposite DM vectors will partially compensate each
other. If we denote the respective DM parameters d(l) as d

(O)
a and d

(Cl)
a for the exchange

via the O2− and Cl− ions, respectively, only its difference Δda = d
(O)
a −d

(Cl)
a will give rise

to the ESR line broadening and can be detected experimentally (see e.g. the discussion
about the cancelation of DM interaction in LiCuVO4 [Krug’02]). Looking now at the
contribution of the inter-chain DM interaction (between two neighboring Ti3+ sites along
the a axis via the oxygen ion lying in the same (ac)-plane), we can conclude that the
corresponding DM vector is pointed along the b-axis (see Fig. 6.9).

The general expression for the M2 due to the DM interaction is given in appendix C.1.
In the case of TiOCl only two intra-chain and two inter-chain contributions must be taken
into account by the calculation of the respective ESR line broadening. Estimation of the
”geometrical factors” G(l) = [nil × njl] yields:

(i) for the inter-chain exchange G
(O)
b = ±0.501 ≈ 1/2,

(ii) G
(O)
a = ±0.98 ≈ 1 and G

(Cl)
a = ±0.99 ≈ 1 for the intra-chain exchange via the O2−

and Cl− ions, respectively.

Therefore, we obtain the following expression for the second moment of the DM inter-
action in the crystallographic system:

MDM
2 (θ, ϕ) ∝ (db · 1/2)(1 + sin2θcos2ϕ) +

+(Δda · 1)(1 + cos2θ), (6.5)

where θ and ϕ are the polar and azimuthal angles of H with respect to the a axis.
Finally, the ratios of the linewidth along the three crystallographic axes read

ΔHb : ΔHa : ΔHc = M2

(π

2
, 0

)
: M2 (0, ϕ) : M2

(π

2
,
π

2

)
=

2 + (2Δda/db)
2

1 + (2Δda/db)2
:

1 + 2(2Δda/db)2

1 + (2Δda/db)2
: 1. (6.6)

Simplifying this expression for the case Δda/db → 0, one gets ΔHb : ΔHa : ΔHc = 2 :
1 : 1 and the angular dependence

ΔH
(Δda/db→0)
DM (T, θ, ϕ) = ΔHDM (T )(1 + sin2θcos2ϕ), (6.7)

where ϕ is the azimuthal angle of H in (bc)-plane with respect to the b axis and
ΔHDM (T ) is proportional to the strength of the DM interaction.

Regarding the temperature dependence of ΔHDM , we will use the result obtained by
Oshikawa and Affleck ΔH

(T�J/kB)
DM (T ) ∝ J2/T 2 obtained for the case of a staggered DM
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interaction H(ij)
DM =

∑
i di · [Si × Si+1] with di = (−1)id for T � J/kB [Oshikawa’02].

Assuming that this temperature dependence also holds for a uniform DM interaction
along the chain as in our case, we will apply the power law

ΔHDM (T ) = ΔHDM (∞)
(

J

kBT

)2

(6.8)

to fit the experimental data using ΔHDM (∞) as a fit parameter. An analytical expres-
sion for the crossover behavior from this power-law (valid for T � J/kB = 660 K) to
the constant high-temperature value of the Kubo-Tomita approach has not been derived
up to now. Therefore, we extrapolate the power law up to T = J/kB and identify
ΔHDM (T = J/kB) = ΔHDM (∞) in order to compare the experimental values to the
theoretical estimates of the Kubo-Tomita approach. We would like to recall that the
ratio of ΔH along different axes in Eq. (6.6) evaluated in the high-temperature limit
does not depend on the form of the temperature dependence.

6.4.3. Competition of Relaxation Mechanisms

We remember that the temperature dependence of the ESR linewidth above the Tc1 can
be clearly divided into three regions: Tc1 < T < 90 K, 90 K< T < 250 K and T > 250 K
(see Sec. 6.7). In the following we will show that the anisotropy and the temperature
dependence of the linewidth for Tc1 < T < 250 K can be described as a competition
of AE and DM interactions discussed above. But the change of curvature (Fig. 6.7(i))
for T > 250 K clearly shows that an additional relaxation channel dominates at higher
temperatures. Before we discuss the low-temperature data in detail, we shortly comment
on possible reasons for this high-temperature behavior.

In order to determine the temperature dependence more accurately up to 500 K, we
additionally performed measurements of crushed single crystals (see Fig. 6.10). This was
necessary because of the fact that the single crystals of TiOCl are thin platelets of small
mass and that the linewidth above room temperature is already very large, resulting in
only very weak signals.

It turns out that the strong increase of the ESR linewidth with temperature can
be very well accounted for by adding an exponential term ΔHexp · e−ΔESR/kBT to the
temperature dependence of the anisotropic exchange interactions (Eqs. 6.4, 6.8):

ΔH(T ) = ΔHAE(∞) · e−
C1

T+C2 + ΔHDM (∞)
(

J

kBT

)2

+ ΔHexp · e−
ΔESR
kBT . (6.9)

The resulting fit is shown as a solid line in Fig. 6.10(i), yielding ΔESR = 0.28 eV. The
exponential nature of the additional increase is highlighted in Fig. 6.10(ii), where the
reduced linewidth data ΔHexp are plotted after subtraction of the contributions of the
AE and DM interactions (dashed line in Fig. 6.10(i)).
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6.4. Spin Relaxation in TiOCl

Figure 6.10.: (i): Temperature dependence of the ESR linewidth for a powder sample
together with a fit by Eq. (6.9). The obtained fit parameters are given
in Table 6.3. ΔHKvN(T ) = ΔHAE(T ) + ΔHDM (T ) is shown as a red
dashed line. (ii): Reduced contribution ΔHexp(T ) = ΔH(T )−ΔHKvN(T )
compared to conductivity as Arrhenius plot.

Pointing out the similarity with the high-temperature behavior in α′−NaV2O5 (com-
pare to Eq. (5.3) and Fig. 5.6) one can state that the origin of that behavior is not clear
at the moment. An additional relaxation channel via thermally activated charge carri-
ers might cause an exponential increase of ΔH(T ), as it has been discussed for doped
manganites [Shengelaya’00], and at the metal-to-insulator transition in β-Na1/3V2O5

[Heinrich’04]. In both cases the leading contribution to the temperature dependence
is determined by the Arrhenius law of the conductivity e−Δσ/2kBT . The corresponding
temperature behavior of the dc-conductivity could be obtained from dielectric measure-
ments (see Sec. 4.6). In an Arrhenius representation one can extract an activation energy
Δσ/2 ≈ 0.31 eV (see Fig. 6.10(ii)). Although this value is similar to the one obtained
from the ESR linewidth, it is by far too small compared with the experimental gap
value of about 2 eV observed by optical spectroscopy [Rückamp’05b]. Therefore, such
a scenario appears rather unlikely. Alternatively, the exponential increase can be again
interpreted in terms of a thermally activated dynamic Jahn-Teller process [Heinrich’03]
or as relaxation via the first excited orbital state, whose energy has a comparable mag-
nitude Δ1 = 0.2 − 0.4 eV (Sec. 6.3).

Leaving the question about the nature of this divergency open, we fix now the value
ΔESR = 0.28 eV and proceed to describe the anisotropic temperature dependence of
the linewidth for the main orientations of the single crystal. Note that ΔESR should
not depend on the orientation of the magnetic field with respect to the crystal axes,
justifying the further use of this value for the single crystal. The resulting fit curves are
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Figure 6.11.: (i): Temperature dependence of the ESR linewidth in TiOCl for the mag-
netic field applied parallel to the three crystallographic axes. The fit curves
were obtained by the sum of ΔHAE(T ) and ΔHDM (T ) (Eqs. 6.4, 6.8) with
the parameters listed in Table 6.3. The dashed and dotted lines represent
the contributions from the AE and DM interactions, respectively. (ii):
Angular dependence of the ESR linewidth ΔH in TiOCl for the magnetic
field applied within the (ab)-plane at different temperatures between 70
and 150 K. The solid lines represent the fit by the Eq. (6.10), where the
fitting parameters are taken from Table 6.3.

Table 6.3.: Parameters determined from fits on the temperature (Figs. 6.7, 6.10, 6.11(i))
and angular (Fig. 6.11(ii)) dependencies of the linewidth by the Eq. (6.9)
and (6.10), respectively. The parameters C1 = 129.12 K, C2 = −38.1 K,
ΔESR = 0.28 eV, ΔHexp = 0.87 MOe are assumed to be isotropic. The
parameter SAE used by the fit of the angular dependence of ΔH in the (ab)-
plane is equal to 1.05.

ΔHAE(∞) [Oe] ΔHDM (∞) [Oe]
H‖ a (single crystal) 1429 1.397
H‖ b (single crystal) 765 2.319
H‖ c (single crystal) 930 1.344
crushed single crystal 990 1.344
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shown in Fig. 6.7 and the obtained fit parameters are given in Table 6.3. The agreement
between fit and data below 250 K is excellent (see also Fig. 6.11(i)), but at higher
temperatures deviations are clearly visible for H‖ a and H‖ b. The anisotropy inferred
from the AE and the DM interaction below 250 K is somewhat larger than the observed
one. The gradual suppression of the anisotropy with increasing temperature may result
from the thermal occupation of higher lying d-levels, which is also in agreement with
the disappearance of the anisotropy of the g-tensor (Fig. 6.7(ii)). A similar effect was
observed at the transition from a cooperative static JT-effect to a dynamic JT-phase in
(La:Sr)MnO3 [Kochelaev’03].

Let us turn to the discussion of the anisotropic exchange contributions which dominate
the relaxation below 250 K. Using the obtained fit parameters we additionally fitted the
angular dependence of the linewidth data for the single crystal in the crystallographic
(ab)-plane (Fig. 6.11(ii)) by using

ΔH(ab)(T, θ) = ΔH
(H‖ a)
DM (∞) ·

(
J

kBT

)2

(1 + sin2θ) +

+
1

SAE
· ΔH

(H‖ b)
AE (∞) · e−

C1
T+C2 (1 + cos2θ) + (6.10)

+ΔHexp · e−
ΔESR
kBT ,

where θ denotes the angle in the (ab)-plane with respect to the a axis. Here, we took
into account only the DM contribution along the crystallographic b-axis (see Sec. 6.4.2).
Concerning the AE interaction, we had to introduce the additional fit parameter SAE ≈
ΔH

(H‖ a)
AE (∞)/[2 · ΔH

(H‖ b)
AE (∞)] = 1.05 which indicates the deviation from the theoret-

ically expected ratio of 1, if only the AE paths described above are taken into account
(i.e. Dzz = −2Dxx = −2Dyy). The fact that SAE = 1.05 can be explained by small
contributions of the other relaxation processes. Thus, we were able to corroborate the
validity of the fit parameters given in Table 6.3 by a consistent description of the tem-
perature and angular dependence of the linewidth. Moreover, we find a good agreement
of the ratios of the obtained high-temperature fit parameters for the DM interactions
ΔH

(H‖ b)
DM (∞) : ΔH

(H‖ a)
DM (∞) : ΔH

(H‖ c)
DM (∞) ≡ ΔH

(fit)
b : ΔH

(fit)
a : ΔH

(fit)
c = 1.72 : 1.04 :

1 with the theoretically expected ratio 2 : 1 : 1.
Looking at the corresponding contributions of AE and the DM interactions shown in

Fig. 6.11(i), it becomes clear that the dominant relaxation mechanism for T > 90 K
is the AE, while the DM interaction takes over for Tc1 < T < 90 K. This competition
is nicely evidenced by the corresponding orientation dependencies and the crossover at
about 90 K (Fig. 6.11(ii)). However, significant contributions of the DM interactions
can already be anticipated below 135 K where the linewidth for H ‖ b already becomes
larger than the one for H ‖ c. Here, we have to emphasize that our analysis of the DM
interaction is based on the room-temperature structure and does not take into account
a possible structural phase transition at Tc2. Since the linewidth data does not reveal a
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discontinuity at Tc2 but a smooth crossover, we conclude that the structural changes do
not significantly alter the involved relaxation processes.

6.5. Summary

In this chapter we have considered ESR data in TiOCl in the broad temperature range
Tc1 < T < 500 K. From the g values we derived the energy of the first excited state as
Δ1 = 0.2 − 0.4 eV, in good agreement with theoretical estimations. Furthermore, we
described the angular and temperature dependence of the linewidth as a competition
of the anisotropic exchange interactions and an additional exponential increase for T >
250 K that might be related to thermally activated lattice fluctuations. We could show
that the line broadening is dominated by the symmetric anisotropic exchange for 90 K
< T < 250 K which produces the maximal linewidth along the a direction, while the
antisymmetric DM interaction leads to the crossover at about 90 K with the maximal
linewidth along the b direction.
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7. Multi-Spin Chains in η-Na9/7V2O5

While in chapter 5 charge ordering in α′−NaV2O5 was investigated, we will turn now
to a related material η-Na9/7V2O5. This system came recently into the focus as a
unique example of a low-dimensional spin-gap system [Isobe’99]. The opening of the
spin-gap below 100 K cannot be described by any known model for spin-gap systems
[Duc’04]. In this chapter we will propose a model of the gapped state in this compound.
Moreover, we will characterize the spin relaxation mechanisms on the basis of electron
spin resonance, specific heat, susceptibility and dielectric conductivity measurements in
the broad temperature range 4 K < T < 570 K.

7.1. Crystal Structure

The crystals used in this work were prepared using the same procedure as for α′-NaV2O5,
changing accordingly the appropriate amounts of NaVO3 and VO2. The characterization
of the samples by Debye-Scherrer x-ray diffraction showed the polycrystalline material
to be single phase, whereas the single crystals have a small amount (less than 0.5%) of
ferromagnetic impurities.

The room-temperature structure of η-Na9/7V2O5 is monoclinic with space group P2/c.
As depicted in Fig. 7.1 the structure consists of edge sharing VO5 pyramids with their
apical oxygens pointing up and down alternately to form a zigzag chain running along
the a axis. These chains exhibit a crystallographic step at every five edge-sharing VO5-
VO5 units. The zigzag chains are bridged by VO4 tetrahedra in the (ac)-plane to form
the V2O5 layers which are connected by the Na ions along the b axis. It is worth noting
that the VO4 tetrahedra contain the non-magnetic V5+ ions bridging the chains of the
magnetic vanadium ions. These chains excluding the steps are structurally similar to
those of the α′-NaV2O5, but have a larger average vanadium valence. Nine out of ten
V ions are tetravalent except for two neighboring V ions on the structural step, which
share one electron and, therefore, have an average valence +4.5 at high temperatures.

The low-temperature x-ray study [Duc’04] has shown a doubling of the unit cell along
the b axis below 100 K suggesting charge ordering (CO) on the two V4.5+ sites placed
on the structural step (see Fig. 7.6(ii)). But the nature of the resulting gapped state
(evidenced by a drop down of the susceptibility at T < 100 K depicted in Fig. 7.3(i))
remained rather mysterious, if one takes into account the odd number of spins on each
structural element. To understand the physics of this phase, it is necessary to charac-
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Figure 7.1.: High-temperature crystal structure of η-Na9/7V2O5. Dark dots denote Na
ions, cyan (dark cyan) pyramids correspond to V4+ (V4.5+) ions surrounded
by the O2− ions, the light grey VO4 tetrahedra contain non-magnetic V5+

ions. In addition to the monoclinic coordinate system {a, b, c} the local
coordinate system of VO5 pyramids {a′, b′, c′} (cf. Fig. 7.4) is used in the
work.

terize first the system at higher temperatures. Therefore, in the next section we will
discuss the spin relaxation mechanisms in η-Na9/7V2O5 on the basis of ESR data. Then,
in Sec. 7.3, we will turn to the temperature region 30 K < T < 100 K, where charge-
ordering fluctuations play an important role. Finally, specific heat and susceptibility
data will be used in section 7.4 to characterize the low-temperature T < 30 K ground
state of this compound.

7.2. ESR in η-Na9/7V2O5

7.2.1. Experimental Survey

The temperature evolution as well as the angular dependence of ESR spectra at 300 K
are shown in Fig. 7.2. In the whole temperature range measured, 4 K < T < 570 K,
the absorption line can be well fitted using the Lorentzian line shape. The temperature
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dependent effective g-factor and the ESR linewidth ΔH are depicted in Figs. 7.3(ii) and
7.3(iii), respectively. The previous results [Chabre’05] cover only temperature depen-
dencies of ΔH in two directions up to room temperature without regard to the most
interesting crystallographic c′ direction. At T > 100 K the g-factor is nearly temper-
ature independent and shows a pronounced anisotropy with the characteristic values
gb′ = 1.93 ± 0.006, ga′ ≈ gc′ = 1.96 ± 0.005. The CO transition affects the g tensor
anisotropy, but all the changes observed lie in the experimental error which is taken as
5% of the linewidth. The intensity of the ESR signal IESR (see Fig. 7.3(i)) which is
proportional to the static susceptibility [Abragam’70] shows significant deviations from
the Bonner-Fisher law (Eq. 3.7) falling down below 30 K very sharply.

Figure 7.2.: ESR spectra of η-Na9/7V2O5. (i): Temperature evolution of the ESR spec-
trum for H ‖ a′. (ii): ESR spectra at room temperature for the external
magnetic field parallel to the main crystallographic axes. Solid lines repre-
sent fits using Lorentzian line shape.

The linewidth shows an anisotropic behavior with the external magnetic field H
applied along the three crystallographic axes as well. Above room temperature the
linewidth increases monotonously for all three directions. It reveals a pronounced
anisotropy with respect to the b′ axis, where the linewidth is larger by a factor of about
1.5 as compared to the other two axes. Below room temperature ΔHb′ increases slowly
with decreasing temperature showing a smooth peak at 86 K, in accordance with previ-
ously published results [Chabre’05]. In both other crystallographic directions this peak
is essentially suppressed. Moreover, the low-temperature behavior of the linewidth along
the c′ direction deviates strongly from the others two. It increases monotonously to low
temperatures following a power law, what results in a crossover of the linewidth data at
T 
 59 K. All curves reach their maximal value around 15-23 K and fall down at lower
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Figure 7.3.: Temperature dependence of the parameters of the ESR line in Na9/7V2O5

measured at X-band frequency (ν ≈ 9.3 GHz) for the magnetic field applied
along the three crystallographic axes. (i): The ESR intensity IESR. The
dashed blue line is a fit of Ic′ by the Bonner-Fisher model (Eq. 3.7) with
J = 200 K. The solid black line fits Ib′ by the alternating spin chain model
[Johnston’00] with J1/J2 = 0.9. (ii): The effective g-factor. The error
bars are given assuming the uncertainty in the resonance field as 5% of the
linewidth. (iii): The ESR linewidth ΔH. The dashed line emphasizes the
1/T divergence of ΔHc′ .
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Table 7.1.: Left column: Observed and calculated g tensors in Na9/7V2O5. Right col-
umn: Relative energies of the d orbital states calculated by means the AOM
model. For comparison the results of a LDA+U calculation for the almost
isostructural compound α′-NaV2O5 is given [Yaresko’00].

Orbital state EAOM [eV] ELDA+U [eV]
Experiment AOM d3z2−r2 3.78 2.2 ÷ 4.4

gb′ 1.928(5) 1.926 dx2−y2 2.41 0.7 ÷ 4.4
gc′ 1.959(4) 1.960 dxz 1.03 0.8 ÷ 1.8
ga′ 1.964(4) 1.964 dyz 0.98 0.7 ÷ 1.6

dxy 0 −0.3 ÷ 0.3

temperatures. The signal at T < 7 K has the Curie-like temperature dependence of the
intensity and almost the same anisotropy of the linewidth and the g-factor as at high
temperatures.

7.2.2. Splittings of Crystal-Field Levels

First, we will discuss briefly the anisotropy of the g tensor. It is almost temperature
independent in the measured temperature range and can be used to get information
about splittings of the crystal-field levels of V4+(3d1) ions in η-Na9/7V2O5 in terms of
the angular overlap model (appendix B).

The given anisotropy (Fig. 7.3(ii)) resembles the one in α′-NaV2O5 (Fig. 5.5). Indeed,
the local crystallographic environment, a VO5 pyramid, is the same in both compounds.
Consequently, the g tensor can be fitted using the same bounding parameters as for
α′-NaV2O5 (see Tables 7.1 and 7.2). The only difference is the anisotropy of the cova-
lence reduction. In α′-NaV2O5, the distribution of electrons between two V ions in the
(xy)-plane affects strongly the covalence reduction in this plane (see Table 5.2). In η-
Na9/7V2O5, the covalence reduction is isotropic and amounts to k = λ/λfi = 203/248 ≈
0.82.

Table 7.2.: Angular overlap model parameters for the [V4+O5] complex in η-Na9/7V2O5.

λ [cm−1] eσ(O3) eπ(O3) eσ(O2) eπ(O2) [103 cm−1] k

203 32 8 12 3 0.82
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7.2.3. Exchange Interactions

Having got the information on the orbital level energies from the anisotropy of the
g tensor, we will analyze now the temperature and angular dependence of the ESR
linewidth in order to determine the main spin relaxation mechanisms in η-Na9/7V2O5.

The necessary estimations of all possible broadening sources have been performed
already for the related compound α′-NaV2O5 (see Sec. 5.3). It was concluded that
by analogy with many other low-dimensional systems with strong exchange interaction
the main mechanisms of the spin relaxation are the anisotropic exchange interactions:
symmetric part of the anisotropic exchange (AE) and Dzyaloshinsky-Moriya (DM) in-
teraction.

Concerning AE interaction, we would like to point out that a step at every fifth edge-
sharing VO5 unit and an additional separation of the neighboring chains by the VO4

tetrahedra presented in η-Na9/7V2O5 do not change significantly the exchange paths as
compared to α′-NaV2O5. The detailed description of AE in this system can be found
in section 5.3. On the basis of the microscopical estimations it was concluded that
symmetric exchange is the main line-broadening source at high temperatures T > TCO

with a characteristic linewidth of several hundreds Oersted. The exchange between
the neighboring vanadium ions along the a′ direction produces the linewidth along the
b′ direction by a factor of 2 larger as compared to the other two axes, whereas the
inter-chain exchange along the crystallographic c direction reduces this anisotropy by
broadening the ESR line in the (a′c′) plane.

The most important difference between these two structures lies in the different average
oxidation state of the VO5 pyramids. The average vanadium valence in α′-NaV2O5 is
equal to +4.5, at that the electron is actually localized at the ladder rungs causing
a negligible DM interaction compared to the AE. In η-Na9/7V2O5 only every tenth
vanadium ion placed in a pyramid lacks an electron. Note that the electron in that
case is always localized and at all temperatures down to the temperature where the spin
dimerization takes place it has a neighboring spin. This fact allows the existence of the
DM interaction in this structure which plays an important role in the relaxation at low
temperatures as we will show below.

DM interaction in low-dimensional spin systems recently has come into the focus of
interest and is now under heavy debate (see Sec. 2.3). In particular, the commonly
used conventional relation for the DM-vector |d| ≈ (Δg/g)|J | [Moriya’60] has been
shown to overestimate its magnitude strongly. The only reliable way to determine the
correct order of magnitude is the microscopical estimation using Eq. (2.23). But this
procedure becomes involved for complicated exchange geometries and in the case of
many competing exchange processes. The probably most evident way to determine the
spin relaxation source in low-dimensional systems was recently suggested by Oshikawa
and Affleck [Oshikawa’02]. It is based on the different temperature dependence of the
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ESR linewidth produced by them. On quite general grounds it can be shown that the
linewidth decreases in case of AE and increases in case of DM interaction with decreasing
temperature at T < J (Sec. 4.5.2). Namely, for the case of DM interaction in S = 1/2
antiferromagnetic chains the linewidth is given by

ΔHDM(T ) =
1

gμB

d2

J

[
a + b

J

T
+ O

(
J2

T 2

)]
, (7.1)

where a and b are positive constants for an antiferromagnet, μB denotes the Bohr mag-
neton. Note that for TiOCl (Chapter 6) only the term ∼ 1/T 2 was considered because it
dominates the line broadening at temperatures T � J . In the present case, the influence
of DM interaction becomes visible already at temperatures comparable with the value
of the exchange integral J ≈ 200 K.

Figure 7.4.: Nearest-neighbor bonds of the vanadium ion placed (i) away from the struc-
tural step of the V-chain and (ii) on the structural step of the V-chain. The
black arrows indicate the direction of the corresponding DM vectors. The
blue big spheres denote V ions, the small red spheres – O ions.

As it was already mentioned above, the DM interaction has to be always present in η-
Na9/7V2O5 in contrast to α′-NaV2O5. Moreover, the CO the pattern, whatever the form
it has, should not change the exchange geometry significantly because only two lattice
sites near the structural steps are affected by CO. Thus, η-Na9/7V2O5 gives a good
opportunity to study the effect of DM interaction on the ESR linewidth in comparison
with the system which has the same AE geometry but a suppressed antisymmetric
interaction.

The double chain structure of η-Na9/7V2O5 leads to two possible paths of the DM
interaction: between the neighboring V ions along the chain (”intra-chain” exchange)
and between the V ions from the neighboring chains (”inter-chain” exchange). Note,
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that the antisymmetric interaction is lacking for V ions placed away from the structural
step because of the existence of an inversion center between them and V ions from the
neighboring chain. Only the ions placed on the structural step give a non-negligible con-
tribution to the DM interaction. Fig. 7.4(ii) shows that the corresponding DM vector is
directed along the chain direction. The geometry of the intra-chain exchange is displayed
in Fig. 7.4(i). d points perpendicular to the chain direction lying approximately in the
(a′c′)-plane.

The geometry of these interactions (bond angles and distances between the interacting
ions) is almost identical, but the number of corresponding bonds is sufficiently different.
The average number of intra-chain bonds is by a factor of 4 larger than the number of
inter-chain bonds, what leads to the maximal broadening of the linewidth perpendicular
to the chain direction. A more precise calculation gives ΔHa′ : ΔHb′ : ΔHc′ 
 1 : 1 : 1.8.

7.2.4. Analysis of the Linewidth

Having analyzed all essential ESR line-broadening sources we will now apply these find-
ings and discuss the temperature as well as the angular dependence of ΔH in order to
determine the dominant source of spin relaxation in η-Na9/7V2O5.

Looking at the experimental results (Fig. 7.3(iii)) it becomes clear that the anisotropy
at high temperatures T > 200 K is governed by the symmetric anisotropic exchange.
Fig. 7.5(i) emphasizes that the anisotropy of the linewidth is temperature independent
and follows the predicted anisotropy at T > 100 K. Below this temperature, strong
deviations are observed that indicate the influence of another spin relaxation mechanism
in this temperature region.

On the basis of the previous consideration (Sec. 7.2.3) this source of line broadening
can be unambiguously determined to be the antisymmetric DM interaction:

(i) The maximum of the linewidth at T < 60 K is observed approximately along the
c′ axes, i. e. in the direction of the DM vector. Fig. 7.5(i) clearly shows that the
ratio of the linewidth ΔHa′ : ΔHb′ : ΔHc′ approaches the theoretically expected
value 1 : 1 : 1.8 for the line broadening due to the antisymmetric interaction.

(ii) The characteristic temperature dependence of the DM interaction (Eq. 7.1), an
increase to the lower temperatures with a power law, can be clearly seen along the
c′ axes, the direction most affected by this interaction. It can be well fitted by 1/T
down to 30 K where the spin dimerization takes place (see Fig. 7.3(iii)).

Two additional features of the temperature dependence of the linewidth are of par-
ticular interest: the peaks at about 15-23 K and 86 K. The features in ΔH(T ) below
30 K has been recently shown to be simply related to the way in which the magnetic
susceptibility and the memory function depend on temperature, rather than to a specific
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Figure 7.5.: (i): Temperature dependence of the linewidth for the magnetic field applied
along the c′ and b′ axes normalized to ΔHa′ . (ii): Temperature dependence
of the memory function F ∝ χα · ΔHα · T for H ‖ α (α = {a′, b′, c′}).

magnetic origin [Chabre’05]. Fig. 7.5(ii) shows that the ’memory function’1 smoothes
away the sharp low-temperature peak seen in ΔH(T ). Therefore in the present work we
will focus our attention only on the second feature at about 86 K. In the next section it
will be shown that this feature is closely related to charge ordering in this structure.

7.3. Charge Fluctuations

7.3.1. Cross-Relaxation via a Mixed Valence Fragment V4.5+δ-V4.5−δ

The peak on ΔHb at 86 K was first observed by Chabre et al. [Chabre’05], where this
behavior was supposed to arise due to magnetic correlations accompanying the second-
order phase transition. In the following we will show that this feature can be explained
by cross-relaxation of the whole spin system via V4.5+δ-O2−-V4.5−δ elements placed on
the structural steps.

Fig. 7.6(ii) displays the results of an x-ray analysis [Duc’04]: below T ∼ 100 K one
can clearly see the appearance of superstructure reflections at the reduced wave vector
q = (0, 1/2, 0). That indicates the occurrence of a structural phase transition resulting
in the doubling of the unit cell in the b direction. This transition occurs due to CO on
the two V4.5+ sites placed on the structural steps. At T < 50 K the electron, uniformly
distributed between two V4.5+ sites at high temperatures, undergoes a lock-in transition

1 a sum of four-spin correlation functions, Eq. (4.20), calculated at a finite temperature.
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Figure 7.6.: (i): Peak on the temperature dependence of the linewidth with the mag-
netic field H applied parallel to the b axis at X- and Q-band frequencies.
Note, that the high-temperature linewidth of 332 Oe is subtracted from the
experimental data. The solid red line represents the fit by the Eq. (7.6) with
Nf ≡ 1 + tanhT−85

15 and T1f = T−α ≡ T−5 functions presented by the green
dash and blue dot curves, respectively. (ii): Peak intensity of the symmetry
equivalent (1 3.5 4) superstructure reflection in η-Na9/7V2O5 as a function
of temperature taken from [Duc’04].

localizing on one of the VO5 pyramids.
An important question for describing the spin relaxation mechanism is whether elec-

tron motion in the V4.5+δ-V4.5−δ pairs is thermally activated or not. If this process is
thermally activated, the position of the peak maximum should depend on frequency. But
the measurements at 34 GHz (see Fig. 7.6(i)) do not reveal any changes in the position
of the peak. This kind of behavior is a sure sign of a tunneling nature of the electron
motion.

The Hamiltonian of such a paramagnetic center (two VO5 pyramids with a tunneling
electron between them) can be written as for a dimer with a mixed valence (see, e.g.,
[Borras’99, Eremin’01] and therein):

H0 =
P 2

M
+

Mω2

2
q2 + (V q + F )(a+a − b+b) + t(a+b − b+a). (7.2)

Here q = Qa − Qb is a vibrational coordinate which describes the difference in local
displacements of the surrounding ions corresponding to the localization of the electron on
the left a or on the right b hand side (or, in other words, the intersite oxygen vibrations).
V is the parameter of the linear vibronic interaction, t – the transfer integral and F is
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Figure 7.7.: (i): Projection of the η-Na9/7V2O5 structure onto (ac)-plane. V4.5+δ-V4.5−δ

elements are shown by dark-cyan pyramids, the V4+O5 pyramids are light-
cyan. (ii): Cross-relaxation scenario. Energy relaxation paths of the V4+

spins (s) and the V4.5+δ-V4.5−δ pairs (t). (iii): Schematic drawing of the
ground vibration states of an electron in a two-well potential.

the molecular field parameter which describes the difference of the crystal field energy
of an extra electron on the a or b positions. The adiabatic potential

U(q) =
Mω2

2
q2 ±

√
(V q + F )2 + t2 (7.3)

has two minima at some q ≈ ±q0 as depicted schematically in Fig. 7.7(iii). The electron
can migrate from one minimum to the other. The amplitude of the migrating charge is
given by

δ =
1
2
[V q0 + F ]/

√
[V q0 + F ]2 + t2. (7.4)

If the tunneling frequencies ωt = 2
√

(V q + F )2 + t2/� are in the range of the phonon
spectrum, the very fast relaxation to the lattice occurs via Raman and multi-phonon
processes. The corresponding relaxation time will have a power-law temperature depen-
dence T1f ∼ T−α with α = 5 ÷ 9 [Abragam’70].

In the absence of the fast-relaxing V4.5+δ-V4.5−δ centers, the remaining V4+ spins
placed away from structural steps relax more slowly with the relaxation time T 0

2s char-
acteristic for the pure spin-spin relaxation processes. The exchange coupling J ′ ∼ J of
this subsystem to the tunneling spin will accelerate the relaxation. The effect of the
additional random torque due to impurities with the fast spin-lattice relaxation rate RtL

on the relaxation rate of a host system (see Fig. 7.7(ii)) was investigated by Nagata et al.
[Nagata’78]. According to that calculation the linewidth of the host system is given by

ΔHcross ≈ 32 s(s + 1)
3γ

(
J ′

�

)2

Nf τ0, (7.5)
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where Nf is the concentration of the fast-relaxing spins s, γ – the effective electronic
gyromagnetic ratio and � denotes the Plank’s constant. At low temperatures the number
of the fast relaxing V4.5+δ−V4.5−δ centers Nf in η-Na9/7V2O5 reduces exponentially. To
estimate the relative number of the CO centers, the intensity of the x-ray signal Ix−ray

represented in Fig. 7.6(ii) can be used. Approximating this temperature dependence
by Nf (T ) ≡ 1 + tanhT−85

15 and substituting the explicit temperature dependence of the
relaxation time τ0 = T1f we get finally

ΔHcross(T ) ∝ Nf · T1f ∼
(

1 + tanh
T − 85

15

)
· T−α. (7.6)

Fig. 7.6(i) shows that this function can well describe the additional peak on the temper-
ature dependence of ΔHb′ .

Now the question arises: why does this peak show up only for the magnetic field applied
along the b′ direction, whereas for two other crystallographic directions it is considerably
suppressed? Fig. 7.5(i) emphasizes the cancelation of the peak by dividing the linewidths
by each other, what means the intensity of this peak has the same anisotropy as the main
broadening source of the linewidth - anisotropic exchange interaction. In section 2.3 we
have discussed that the anisotropy of exchange arises due to spin-orbit (SO) interaction.
Du et al. [Du’95] has shown SO coupling to be the main source of the orientation
dependence of the spin-lattice relaxation rate going via two-phonon Raman processes as
well. Qualitatively, it can be explained as follows:
When the external magnetic field is applied along the b′ direction (i. e. along the z
axis of a local VO5 pyramid) SO coupling mixes to the ground dxy state an exited state
dx2−y2 , the state with the same electron spin state. Whereas if the field is applied in the
perpendicular plane it adds a contribution from dxz and dyz, from the orbital functions
with the opposite electron-spin state as that of the dx2−y2 contribution. Since spin-lattice
relaxation requires a change in electron-spin state, relaxation in the second case will be
more efficient. Hence, the relaxation time (and consequently the linewidth, see Eq. 7.6)
will be larger along the b′ axis as compared to the a′ and c′ directions, in accordance
with the experimental observations.

Summing up, we have shown that the peak on the temperature dependence of the
linewidth at T ∼ 86 K arises due to cross-relaxation of the spin system. This additional
relaxation channel is given by the mixed valence elements V4.5+δ-V4.5−δ placed on the
structural steps. The tunneling motion of the electron causes the very fast relaxation to
the lattice, which influences the remaining spin system via the strong isotropic exchange
interaction.

Having considered the influence of the CO transition on the ESR line, let us discuss
now the results of specific heat and dielectric conductivity measurements, which allow to
characterize this transition in more detail. It should be noted, that these measurements
were performed on polycrystalline samples because of the very small mass of single
crystals available. X-ray and magnetization measurements have shown these samples

100



7.3. Charge Fluctuations

to be single-phase, as also the temperature dependence of the ESR line shows all the
features presented in single crystals.

7.3.2. Changes in Dielectric Conductivity

The results of measurements in the frequency range 5 Hz < ν < 90 GHz are summa-
rized in Fig. 7.8. The behavior is dominated by charge transport, a dc conduction,
approximately represented by the 5 Hz curve, and an ac contribution increasing with
frequency. This contribution exhibits a weaker temperature dependence and can be
ascribed to hopping transport of charge carriers. The characteristic barrier energy be-
tween these localized states can be estimated on the basis of the presented data to be

Figure 7.8.: (i): Temperature dependence of the real part of the dielectric conductivity
for various frequencies in a polycrystal of η-Na9/7V2O5. (ii): Temperature
dependence of the relaxation time for the peak denoted by the black arrows
in frame (i). The line represents the fit by an exponential function with an
activation energy Δ = 0.05 eV.
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about 0.2 eV. However, as indicated by the arrows, superimposed to these contributions
there are shoulders, indicating underlying peaks. They shift towards lower temperatures
with decreasing frequency. Such a peak represents a typical signature of an additional
relaxation mechanism [Fichtl’05].

Most likely, this peak is related to the localization of electrons in the V4.5+δ-V4.5−δ

pairs taking place in this temperature range. The motion of electrons in those pairs
contributes to the ac conductivity at the frequency of their hoppings, which increases
with increasing temperature. The plot of the relaxation time τ = 1/2πν for such a
peak in the Arrhenius representations would give a straight line for a purely thermally
activated process. Fig. 7.8(ii) clearly shows that it is the case in η-Na9/7V2O5. Moreover,
the slope of τ(T ) allows to estimate the energy barrier between two V4.5+ ions (shown
as the dark cyan pyramids in Fig. 7.1) as 0.05 eV.

Note, that at 40 GHz (the frequency used in ESR) the peak appears at T ∼ 140 K.
At this temperature an electron still has enough energy to overcome the barrier between
V4.5+δ-V4.5−δ sites. At lower temperatures only the tunneling motion is possible, in
accordance with ESR data.

The appearance of the second peak denoted by the red arrows in Fig. 7.8(i) is rather
unexpected. It may indicate a redistribution of charges at about 30 K (note, that also
the susceptibility drops down very sharply at this temperature). But to finally decide
about its origin, additional measurements at T < 20 K are necessary.

Finally, we would like to point out that, in contrast to x-ray data (Fig. 7.6(ii)), the
changes in dielectric conductivity become remarkable already below 150 K. That indi-
cates the very broad temperature range of preexisting CO fluctuations in this structure.
In the next section we will show how it affects the entropy released when going via this
transition.

7.3.3. Specific Heat Measurements

Figure 7.9(i) shows the central result of this investigation, the heat capacity (given as
C/T ) as function of temperature. At low temperatures T < 30 K the specific heat is
characteristic for a three-dimensional solid with a Debye temperature of ΘD = 152 K.
This contribution arises due to acoustical phonons and has the characteristic T 3 tem-
perature dependence of specific heat at T < ΘD/10. ΘD can be easily estimated from
the linear fit of C/T vs T 2 as it is shown in Fig. 7.9(ii). Using ΘD = 152 K we can
proceed with the fit of the specific heat in the complete temperature regime investi-
gated. For the fit we will use only the experimentally determined heat-capacity values
for 100 K < T < 300 K, because in the temperature range 50 K < T < 100 K a structural
transition takes place.

As it can be seen from Figure 7.9(i), above T ∼ 30 K the contribution of optical
phonons becomes remarkable. Introducing two modes of optical phonons, with the
Einstein temperatures ΘE1 = 310 K and ΘE2 = 850 K, we can describe the total heat
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capacity quite well. Note that the spin-chain contribution modelled by Bonner and
Fisher (Sec. 3.1.2) is negligible at high temperatures. The difference between calculated
and measured heat capacities clearly seen below 100 K allows to estimate the entropy ΔS
being released at the CO transition to be about 0.16 R. Such a small value of the released
entropy is expected, taking into account that only one electron of nine participates in
the CO and that CO fluctuations extend over a very wide temperature range.

Perhaps the most striking feature of the results is a considerable linear contribution to
the specific heat at low temperatures (see Fig. 7.9(ii)). Such a temperature dependence
can (i) result from a residual free-electron contribution or (ii) come from the energy
of the S = 1/2-chain (see Sec. 3.1.2). The first possibility may be excluded, because
the dielectric measurements have shown that the electrical conductivity of the sample is
negligibly small (Fig. 7.8). It is surprising because the spin structure is assumed [Duc’04]
to be fully dimerised at such a low temperature. The estimations of this contribution
give nevertheless γexp ≈ 5 mJ/molK2, approximately 1/6 of the value predicted by the
calculations of Bonner and Fisher (Eq. 3.11)

γBonn =
C (T < |J |

10kB
)

T
=

0.7 R

|J |/kB
≈ 5.82 J/molK

200 K
≈ 29.1 mJ/molK2 (7.7)

for the exchange energy of an infinite S = 1/2 antiferromagnetic chain. If this contribu-
tion stems really from some kind of spin chain in this structure, the second prediction
by Bonner and Fisher has to be fulfilled as well – an approximately temperature in-
dependent contribution to the susceptibility given by Eq. (3.9). In order to verify this
assumption, we have to reexamine the susceptibility data published so far.

7.4. Exotic Low-Temperature Ground State of η-Na9/7V2O5

The magnetic behavior of η-Na9/7V2O5 was first examined by Isobe et al. [Isobe’99].
They pointed out that such behavior of the susceptibility χ(T ) is attributable to low-
dimensional systems with spin gaps. However, they failed to fit χ(T ) by theoretical equa-
tions for a spin-ladder or a dimer system. Later on, Duc et al. [Duc’04] have repeated
that measurement supplementing it by ESR data. They claimed the susceptibility goes
to zero at very low temperatures. This result was obtained by fitting the low-temperature
increase of χ(T ) by a Curie-Weiss law, χimp = C/(T − θ), with θ = −3.35 K. However,
the mechanism of the gap opening remained unclear because of the odd number of spins
per structural unit in η-Na9/7V2O5. In this section we will show that the magnetic
properties of η-Na9/7V2O5 can be understood in terms of a spin chain model which ex-
plains both the decrease and the low-temperature behavior of the susceptibility. Here,
we would like to emphasize that we investigated several high-quality samples. In partic-
ular, a kink on χ(T ) at 102 K, observed in [Duc’04] and associated with the structural
and CO transition taking place in this temperature range, turned out to be related to
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Figure 7.9.: (i): Heat capacity of η-Na9/7V2O5 plotted as C/T vs T . The contribution
of acoustical Debye-phonons is indicated by the dashed black line, contribu-
tions of two Einstein modes by the blue dot and wine short-dot lines. The
expected S = 1/2-chain contribution (multiplied by a factor of 10) is shown
by the cyan dash-dot line. The sum of all contributions (the red solid line)
represents the best fit to the experimental results. Frame (ii) emphasizes
the Debye and spin-chain contributions at low temperatures.

the presence of ferromagnetic impurities in the samples. The best samples investigated
in this work do not reveal this feature.

We have carried out the measurements of the susceptibility under a magnetic field of
0.05 and 5 T. In addition, ESR data were used to characterize the magnetic properties.
Fig. 7.10(iii) shows that the renormalized IESR(T ) coincides with χ(T ) at high tempera-
tures very well. Let us concentrate now on the low temperature region T < 20 K where
differences between the curves are clearly seen.

An increase of susceptibility to lower temperatures usually arises owing to a small
amount of paramagnetic impurities present in the samples. However, in η-Na9/7V2O5

fitting of the low-temperature data points to a Curie law χimp(T ) = C/T is possible
only by introducing an additional temperature independent contribution χ0. There are
several possible origins of such a behavior:

(i) Saturated ferromagnetic moments. If the impurity spins present in the sample
belong to a ferromagnetic phase, they can be responsible for a temperature inde-
pendent magnetic ’background’. Their contribution can easily be determined by
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Figure 7.10.: Temperature dependence of the magnetic susceptibility χ of η-Na9/7V2O5.
The lines represent fits by a sum of the Curie χC = C/T and temperature
independent term χ0 and emphasize additionally the χ0 term. The light
gray symbols demonstrate the behavior of χ at higher temperatures and
are not used for the fit. (i): χSQUID(T ) in a polycrystal measured by
SQUID magnetometry under a magnetic field H = 0.05 T (green stars)
and H = 5 T (dark-red triangles). (ii): Intensity of the ESR signal IESR

in a polycrystal (dark-yellow cross stars) and in a single crystal for the
magnetic field applied along the three crystallographic axes. Frame (iii)
shows that both χSQUID and IESR coincide at high temperatures. The black
dashed line fits χ to the Bonner-Fisher curve (Eq. 3.7). The red dotted
line is the expected contribution of multi-spin chains at low temperatures.

measurements in different magnetic fields. A hundred times larger magnetic field
H reduces the susceptibility χ = M/H of the saturated ferromagnetic moments
M also by a factor of 100. Fig. 7.10(i) shows, however, that the temperature
independent background is almost equal for χ measured under H = 0.05 and 5 T.

(ii) Pauli paramagnetism is observed in metals and is due to the fact that conduction
electrons have magnetic moments that can be aligned with the applied field. The
key characteristic of Pauli paramagnetism is that the χ value is nearly independent
of temperature. But usually it has a very small value. In case of η-Na9/7V2O5 this
contribution is negligible because of a very low conductivity of the sample (see
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Fig. 7.8).

(iii) Van Vleck paramagnetism χVV is another type of paramagnetism that is also
nearly independent of temperature. Van Vleck paramagnetism (see Sec. 4.2.3)
is associated with thermal excitations to low-lying states. The big advantage of
ESR is that the intensity of the absorption signal does not contain that contribu-
tion. As one can see in Fig. 7.10(ii) the temperature independent background in
IESR(T ) is indeed considerably smaller. But it is still remarkable and amounts to
χ

(exp)
0 ≈ 1 · 10−4 emu/mol.

(iv) To all appearance, only one possible origin of this background is the spin chain
contribution modelled by Bonner and Fisher (Sec. 3.1.2). It is predicted to be
almost temperature independent and finite at zero temperature. Let us discuss it
now on a more quantitative basis.

η-Na9/7V2O5 is not a prototypical S = 1/2 spin chain. Its zigzag structure and
structural steps are not taken into account in the calculations by Bonner and Fisher.
Nevertheless, the predicted temperature dependence of the susceptibility describes the
experimental data very well. Fig. 7.3(i) displays a fit of IESR for the magnetic field
applied along the c′ axis by the Bonner-Fisher curve (Eq. 3.7). Even charge ordering in
the pairs V4.5+δ-V4.5−δ at temperatures 50 K< T < 100 K does not seem to affect the
magnetic properties of the spin chains significantly. According to Eqs. (3.8) and (3.9),
the value of χ(T = 0) is expected to be

χ
(Bonn)
0 =

0.101322
0.147

· χmax ≈ 0.69 · χmax ≈ 8.28 · 10−4 emu/mol, (7.8)

where we have used the experimental value of χmax ≈ 12 · 10−4 emu/mol (Fig. 7.10(iii)).
However, at lower temperatures considerable deviations of the susceptibility from the

Bonner-Fisher behavior are observable. χ(T ) decreases rapidly at T ∼ 30 K and the
experimental temperature independent contribution to susceptibility χ

(exp)
0 is only 12%

of the expected value. It is useful to recall at this point that the linear contribution to
the specific heat γexp, the second prediction made by Bonner and Fisher for a spin chain,
amounts in η-Na9/7V2O5 to 17% of the theoretically expected value γBonn.

Note, that both of these predictions were made using the high-temperature value of the
exchange constant J . However, its magnitude as well as the number of spins N sharing
in the thermal and magnetic properties can be different in the low-temperature phase.
Both of these quantities depend only on the ratio of N and J (cf. Eqs. 3.9 and 3.11)

χ
(Bonn)
0 =

g2μ2
B

π2
·
(

N

J

)
, γexp = 0.7 k2

B ·
(

N

J

)
. (7.9)

Therefore, only the change of this ratio can be determined comparing the expected and
experimental values of χ and γ in the high- and low-temperature phase of η-Na9/7V2O5.
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Figure 7.11.: (i): Schematic spin structure of the proposed ground state in η-Na9/7V2O5

at T � 10 K. Overlap of the local antiferromagnetic spin clusters (ten lat-
tice sites with a net magnetic moment of μB) gives rise to a spin chain
with long-range AFM order. All spins (red arrows) occupy the VO5 pyra-
mids (medium gray). These chains are separated along the c and b axes
by non-magnetic V5+O4 tetrahedra (light grey) and Na ions (not shown),
respectively. (ii): Schematic representation of the spin structure which
appears near an unpaired spin. The arrows represent the average spin
projections at the lattice sites.

Taking 1/7 ≈ 0.143 as an average value between 0.12 and 0.17 obtained from the sus-
ceptibility and the specific heat data, respectively, we get

N∗

J∗ =
1
7
· N

J
→ J∗

J
= 7 · N∗

N
. (7.10)

In other words, the exchange integral in the low-temperature phase J∗ normalized to
its high-temperature value J is by a factor of 7 larger than the respective change in the
number of spins.

For example, if we assume that the spin dimerization takes place in η-Na9/7V2O5 at
T ∼ 30 K and only one spin survives on each structural element N∗/N = 1/9, the
exchange constant between them along the chain would be J∗ = 7/9 ·J , still comparable
to the one in the non-dimerized state. Obviously, such a large value of the exchange
integral is impossible if some of spins building a chain are fully dimerized and break it
off.
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Nevertheless, the large value of exchange integral can be understood, if we take into
account the onset of the local staggered magnetization near a non-dimerized spin. The
formation of such ”spin clusters”, shown schematically in Fig. 7.11(ii), is confirmed
theoretically [Fukuyama’96] near the ends of spin chain segments in the diamagnet-
ically diluted CuGeO3 and experimentally in the Cu1−xMgxGeO3 [Glazkov’05] and
Pb(Ni1−xMgx)2V2O8 [Smirnov’02]. The spins within these clusters have nonzero av-
erage spin projections with a net magnetic moment equal to μB. The length L of such a
cluster (the extension of short range antiferromagnetic ordering) along the chain direc-
tion depends on temperature

JS2e−2L/ξ ∼ kBT (7.11)

and is of the order of the correlation length ξ, which is estimated to be of about ten
interspin distances.

In η-Na9/7V2O5 each structural segment possesses an odd number of spins. Hence,
one of them (every ninth one) is uncompensated and serves as an impurity spin S∗ =
1/2. This magnetic moment will spread out on the neighboring spins building spin
clusters. Note, that the resulting clusters overlap strongly because the characteristic
magnetic correlation length is of the order of the segment length. Therefore, the order
parameter has to be coherent along the whole chain (see Fig. 7.11). The magnetic and
thermal properties of this effectively antiferromagnetic chain consisting of such multi-
spin clusters are expected to be quantitatively different from the original chain because of
the considerably smaller average magnetic moment on each site Saver = S∗/10. But the
exchange energy of this structure with an almost unchanged local exchange constant can
still produce a linear contribution to the specific heat and a temperature independent
contribution to the susceptibility. The experimental results evidence the presence of
these contributions. They are about one order of magnitude smaller than the values
expected for the full S = 1/2 chain realized at high-temperatures, in accordance with
the theoretical considerations.

The proposed multi-spin state successfully explains the puzzling controversy between
the originally suggested singlet ground state and the odd number of spins per unit cell in
the structure. Note that in the case observed in doped spin-Peierls and Haldane chains
[Glazkov’05, Smirnov’02], these spin clusters are diluted and randomly distributed in the
lattice. That gives rise to impurity induced local magnetic order and phase separation.
In contrast, η-Na9/7V2O5 provides a regular lattice of such spin clusters, what leads to
the formation of a new exotic ground state, not observed before.

7.5. Summary

In this chapter we have presented a detailed study of the spin-relaxation mechanisms
in η-Na9/7V2O5. Basing on the angular and temperature dependencies of the ESR
linewidth we identify the dominant spin-relaxation mechanism at high temperatures to
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be the symmetric anisotropic exchange, whereas at T < 60 K it changes to the anti-
symmetric anisotropic interaction. The measurements of the specific heat and dielectric
conductivity allow to estimate the entropy released by the charge-ordering transition at
60 K < T < 100 K and the energy barrier between two sites where the charge ordering
takes place. Additionally, the temperature dependence of the ESR linewidth gives the
possibility to address the cross-relaxation of the spin system via mixed-valence pairs
V4.5+δ-V4.5−δ.

In contrast to previous studies, we present evidence that the dimerization of spins
is far from complete at T < 10 K, and the unpaired vanadium spins give a constant
contribution to the susceptibility and a linear contribution to the specific heat. The
ground state of η-Na9/7V2O5 can be understood in terms of ”multi-spin clusters” building
a linear chain along the crystallographic a axis.
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8. Conclusions and Perspectives

The spin relaxation mechanisms were considered in three one-dimensional spin systems
– α′-NaV2O5, TiOCl and η-Na9/7V2O5 – by using electron spin resonance spectroscopy.
A close similarity of the relaxation behavior was observed and explained as due to
anisotropic exchange interactions. All experimental data were successfully described on
the basis of the microscopical theory of superexchange. This treatment allowed not only
to determine the form but also to estimate the magnitude of the dominant exchange
interaction.

Calculation of the broadening sources of the electron spin resonance line in α′-NaV2O5,
using the suggested microscopical analysis, gave an unexpected result. The symmetric
exchange of a particular type, with simultaneous spin-orbit coupling on both magnetic
sites, was found to play the major role in spin relaxation. The corresponding exchange
constant is almost two orders of magnitude larger than the one obtained from conven-
tional estimations [Moriya’60]. Based on this result we systematically evaluated the
anisotropy of the electron spin resonance linewidth in the whole paramagnetic range in
terms of the symmetric anisotropic exchange only.

Having this information at hand and taking into account the recent theoretical achieve-
ments [Oshikawa’02] we were able to determine the contribution of the Dzyaloshinsky-
Moriya interaction in TiOCl. We described the temperature dependence of the linewidth
as due to the competition of symmetric and antisymmetric anisotropic exchange and
show that the non-staggered Dzyaloshinsky-Moriya interaction broadens the linewidth
towards lower temperatures as well as the staggered one. Additionally, the anisotropy
of the resonance field indicates a stable orbital configuration below room temperature
and allows us to estimate the energy of the first excited state, ruling out a possible
degeneracy of the orbital ground state.

The universal relaxation behavior due to anisotropic exchange in spin chains enables
to study more complex systems. An advanced example of application of this knowl-
edge is given by η-Na9/7V2O5. The electron spin resonance data allow to address the
spin-gap opening process and to investigate the cross-relaxation via the mixed-valent
segments of the structure. Moreover, combining the results of specific heat, suscepti-
bility, electron spin resonance and dielectric conductivity measurements we show that
the gapped ground state can be understood in terms of multi-spin objects building up a
linear chain. In spite of the small total spin, their spatial extent results in an exchange
constant comparable to the one in the non-dimerized state.

An outstanding challenge for further study is given by KCuF3. This pervoskite system
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8. Conclusions and Perspectives

Figure 8.1.: (i): Crystal structure of KCuF3. (ii): Temperature dependence of the ESR
linewidth at X- (ν ≈ 9.34 GHz) and Q-band (ν ≈ 34 GHz) frequencies.

(see Fig. 8.1(i)) is presumably one of the best inorganic realizations of a one-dimensional
antiferromagnetic Heisenberg chain. This fact is even more astonishing, because the
effective magnetic dimensionality is a direct consequence of the orbital ordering in this
compound [Kugel’72]. Recently, it has been shown by a detailed inelastic neutron scat-
tering investigation that fingerprints of a Luttinger liquid, namely the spinon excitation
continuum, exist up to temperatures of about 200 K [Lake’05]. Moreover, these specifi-
cally one-dimensional features are still observable below the antiferromagnetic ordering
at TN = 39 K, indicating the strong quantum nature of magnetism in KCuF3. Surpris-
ingly, even the high-temperature crystal structure of this compound is not known at
the moment exactly [Hidaka’98]. In this regard, the correct microscopical description
of the electron spin resonance data (Fig. 8.1(ii)) may play a decisive role, resolving the
up to now puzzling inconsistencies between the magnetic [Yamada’94] and crystallo-
graphic [Hidaka’98] structures and, consequently, for the whole physics related to this
prototypical system.
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Appendix A. Canonical-Transformations
Perturbation Method

The Hamiltonian of the electronic subsystem can be expressed as

H =
∑

〈iα|h|jβ〉c+
iαcjβ +

1
2

∑
〈iα1jβ2|g12|kα′

1lβ
′
2〉c+

iαc+
jβckα′clβ′ , (A.1)

where i, j, k, l represent the lattice sites, and greek letters indicate the orbital substates
of a shell. c+

iα is a fermion operator in the second quantization and creates an electron
at the site i in the state α, ciα is the annihilation operator for the same electron. The
localized orbitals φiα are assumed to form a complete orthogonal set.

We divide H = H0 + V into the unperturbed Hamiltonian H0 and the perturbation
V with

V =
∑

〈iα|δh|jα′〉c+
iαcjα′ +

1
2

∑
〈iα1jβ2|δg12|kα′

1lβ
′
2〉c+

iαc+
jβclβ′ckα′ , (A.2)

where
δh = h − h̃, 〈iα|h̃|jα′〉 = δiα,jα′

∑
δαβ

〈iβ|h|jβ〉
2[β]

, (A.3)

and
δg12 = g12 − g̃12, (A.4)

〈iα1jβ2|g̃12|kα′
1lβ

′
2〉 = δiα,kα′δjβ,lβ′

∑
δατ ′δβτ 〈iτ ′

1jτ2|gαβ
12 |iτ ′

1jτ2〉, (A.5)

gαβ
12 =

g12 (1 − P12)

2[β]
(
2[α] − δα,β

) . (A.6)

Here [α], [β] are the orbital degeneracy or the number of states in the subshell (so that
the subshell α is complete when the number of electrons is equal to 2[α]). The operator
P12 exchanges two electrons, and the eigenvalues of H0 are the average energies of the
electrons in the Hartree-Fock approximation.

The perturbation V can be rewritten as a sum of two terms V = V (1) + V (2). V (2)

is the part of the Hamiltonian with nonzero matrix elements between the excited (with
electron transfer) and ground (with some electron excitations on the same site) state
configurations. In other words, using the definitions introduced in Fig. A.1, V

(2)
mm′ ≡

V
(2)
ll′ ≡ 0, V

(2)
ml 	= 0. Note that the energy scheme pointed out in Fig. A.1 corresponds to
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Appendix A. Canonical-Transformations Perturbation Method

Figure A.1.: Sketchy energy schema supposed in our analysis. Possible on-site excita-
tions (denoted by m,m′, ..) have a much smaller energy compared to the
excitation with transfer to the neighboring site (denoted by l, l′, ..).

the large energy distance between the excited and ground states Δab with respect to the
energy splitting of each of them ΔE � Δab, what is usually very well fulfilled in real
systems. The case ΔE ∼ Δab is briefly discussed in chapter 2.2.4.

Hoppings of electrons to the other site can be described by

V (2) =
∑

tiα,jβc+
iαcjβ , (A.7)

where tiα,jβ are the transfer integrals determined by

tiα,jβ = 〈iα|h|jβ〉 +
∑ nτ

2[τ ]
〈iα1lτ2|g12 (1 − P12) |jβ1lτ2〉. (A.8)

Here nτ is the number of electrons in the shell τ .
The operator V (1) contains all interactions which do not change the number of elec-

trons on site. Therefore, it acts within quasi-degenerate states of excited and ground-
state configurations: V

(1)
ml ≡ 0, V

(1)
mm′ 	= 0, V

(1)
ll′ 	= 0. The most important of them are the

Coulomb interaction and the crystal field:

V (1) =
1
2

∑
〈iα1iβ2|δg12|iα′

1iβ
′
2〉c+

iαc+
iβciβ′ciα′ + 〈iα|δh|iα′〉c+

iαciα′ . (A.9)

Here we would like to emphasize, that in an excited state (with changed number of
electrons on the site) the crystal field can be much larger than in the ground state.

In order to take into account the electron transfers we employ the canonical Schrieffer-
Wolff transformations: i. e. we transform the initial Hamiltonian H by using an unitary
operator e−S =

∑∞
n=0

1
n!S

n into the effective exchange Hamiltonian

Heff = e−SHeS = H + [H, S] +
1
2

[[H, S] , S] +
1
6

[[[H, S] , S] , S] + ... =
∞∑

n=0

1
n!

[H, S](n) .

(A.10)
The Hamiltonian Heff describes all effects of spin exchange between different sites. By
a peculiar choice of the S matrix we can cancel all hopping terms of this Hamiltonian
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(Heff)lm ≡ 0, thereby describing the effects of the electron transfer as a perturbation to
the ground state energy of localized spin. This approximation assumes naturally that
V (2), V (1) � Δab, what is usually well fulfilled.

For determination of the S-matrix we perform the following iteration procedure

S = S(1) + S(2) + S(3) + S(4) + S(5), (A.11)

where the indices 1, 2, .. correspond to the order of perturbation theory. By this trans-
formation the hopping terms V

(2)
ml vanish in the new basis if:

[H0, S
(1)] = −V (2),

[H0, S
(2)] = −[V (1), S(1)], (A.12)

[H0, S
(3)] = −[V (1), S(2)] − 1

3
[[V (2), S(1)], S(1)],

[H0, S
(4)] = −[V (1), S(3)] − 1

3
[[V (2), S(1)], S(2)] − 1

3
[[V (2), S(2)], S(1)],

[H0, S
(5)] = −[V (1), S(4)] − 1

3
[[V (2), S(1)], S(3)] − 1

3
[[V (2), S(3)], S(1)] −

−1
3
[[V (2), S(2)], S(2)] +

1
45

[[[[V (2), S(1)], S(1)], S(1)], S(1)].

These equations give us the following expressions for the matrix S:

S
(1)
ml = − V

(2)
ml

E
(0)
m − E

(0)
l

≡ −V
(2)
ml

Δml
, (A.13)

S
(2)
ml = − [V (1), S(1)]ml

Δml
=

1
Δml

[∑
m′

V
(1)
mm′V

(2)
m′l

Δm′l
−

∑
l′

V
(2)
ml′V

(1)
l′l

Δml′

]
,

S
(3)
ml =

1
Δml

[
−

∑
m′m′′

V
(1)
mm′V

(1)
m′m′′V

(2)
m′′l

Δm′lΔm′′l
−

∑
l′l′′

V
(2)
ml′′V

(1)
l′′l′V

(1)
l′l

Δml′Δml′′
+

+
∑
l′m′

1
Δm′l′

(
1

Δml′
+

1
Δm′l

)
V

(1)
mm′V

(2)
m′l′V

(1)
l′l +

+
1
3

∑
nl′

(
2

Δml′Δnl
− 1

Δl′nΔnl
− 1

Δml′Δl′n

)
V

(2)
ml′V

(2)
l′n V

(2)
nl

]
, ..

Putting the relations (A.11-A.12) into the Eq. (A.10), one gets for the effective ex-
change operator

Heff = H0+V (1)+
1
2
[V (2), S]− 1

24
[[[V (2), S], S], S]+

1
144

[[[[[V (2), S], S], S], S], S]. (A.14)

This is the most general form of the interaction Hamiltonian including all terms up to
the sixth order of the perturbation theory.
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Eq. (A.14) is very convenient for estimations of exchange integrals. In order to demon-
strate it, we will give the corresponding expression for the integral of isotropic exchange
Hiso = J (Sa · Sb)

J =
1

2SaSb

[ ∑
Jηζ +

∑
Jηζ(μ) +

∑
Jηζ(ν)

]
(A.15)

between two magnetic ions in the ground states with the maximal spin values. Jηζ are
the individual channel contributions for pairs of half-filled orbitals η and ζ of the ions
a and b, respectively (see Fig. 2.2). The exchange integrals Jηζ(μ) and Jηζ(ν) may be
called correlation integrals, since they depend on the spatial distribution of the electrons
of vacant (μ) and filled shells (ν) of interacting ions. After substituting necessary terms
instead of V (1) (Eq. A.9) and V (2) (Eq. A.7) into (Eq. A.14), the quantities Jηζ =
Jηζ(a → b) + Jζη(b → a) read [Eremin’90]

Jζη(b → a) = −1
2
〈η1ζ2|g12|ζ1η2〉 + |Bζη|2Δζη −

∑
κρ

Mηκ〈ζ1κ2|g12|η1ρ2〉Mρζ −

−
∑

κ

[
〈ζ1η2|g12|κ1η2〉Mκζ − Mζκ〈κ1η2|g12|η1ζ2〉

]
−

∑
κρ

MζκMρζ〈η1κ2|g12|ρ1η2〉 +

+
∑

κ

MηκMκζBζη(Δζη + Δκζ + Δκη) +

+
∑
κρ

MηκMκζMζρMρη

[
ΔκζΔρζ

Δζη
+

(Δρη + Δκζ)(Δρζ + Δκη)
2Δηκρζ

]
−

−
∑
κρ

MηκMκζMζρMρη
(Δρη + Δκζ)(Δρζ + Δκη)

2|Δηκρζ |2 〈κ1ρ2|δg12|ρ1κ2〉. (A.16)

This expression includes all types of contributions: direct exchange, indirect Yamashita-
Kondo’s exchange, Kramers’s exchange, Anderson’s superexchange (see chapter 2.1.2).
The introduced dimensionless quantities Mηκ = tηκ/Δηκ and Bζη can be expressed in
terms of overlap integrals Sηκ and covalence parameters γηκ by the following relations:

Mηκ = −
(

γηκ +
Sηκ

2

)
, (A.17)

Bζη = −
(

γζη +
Sζη

2

)
+

1
2

∑
κ

|Δκζ |
|Δζη|

(
γζκ +

3
4
Sζκ

)
Sκη +

1
2

∑
κ

Sζκ

(
γκη +

3
4
Sκη

) |Δκη|
|Δζη| .

All parameters entering into these expressions can be determined from the experimental
data obtained by electron-nuclear double resonance and optic measurements. Formulas
for estimates of Jηζ(μ) and Jηζ(ν) are given in [Eremin’83].
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The term corresponding to the Anderson’s model of exchange interaction (chap-
ter 2.2.1) can be written in accordance with (A.16) as

Hiso(b → a) =
∑ tκη′c+

κ aη′ · tζκ′b+
ζ cκ′ · tρζ′c

+
ρ bζ′ · tηρ′a

+
η cρ′

Δκη′Δκκ′Δκζ′
. (A.18)

The shell of the intervening diamagnetic ions (e.g. O2−, F−) is assumed to be fully filled,
i.e. in the initial ground state there are always two electrons with opposite spins on
the p (or s) orbital of the ligand ion. Therefore, the following relations can be used to
simplify the Hamiltonian (A.18):

c+
κ cκ′ = δκκ′ , c+

κ c+
ρ cρ′cκ′ = δκκ′δρρ′ − δκρ′δρκ′ . (A.19)

The result is given by

Hiso(b → a) =
1

Δ2
caΔab

∑
tκη′tζκtρζ′tηρ · aη′b+

ζ bζ′a
+
η , (A.20)

where Δab(Δca) denote the energy of the electron transfer between the magnetic ions
(between the diamagnetic and magnetic ions). That energy can be factored out, because
it is large with respect to the distance between the orbital levels. Obviously, the electron
does not change its spin at hopping that results in additional conditions: sη′ = sζ and
sη = sζ′ . Then, using the usual relations between the spin operators s(z), s± ≡ s(x)±is(y)

and the Fermi operators a+
s(z) , as(z) :

s(z) =
1
2

(
a+
↑ a↑ − a+

↓ a↓
)

, s+ = a+
↑ a↓, s− = a+

↓ a↑, (A.21)

and a+
↑ a↑ + a+

↓ a↓ = 1, we obtain finally

Hiso(b → a) =
1

Δ2
caΔab

∑
tηρtρζ′tζκtκη′

(
−1

2
+ 2(sa · sb)

)
, (A.22)

in accordance with the classical Anderson’s result [Anderson’55]. The values of hopping
integrals entering this expression can be estimated, e. g., using the LDA+U approach
[Yaresko’02] or from magnetic susceptibility data.

Use of the perturbation theory allows to describe the anisotropy of exchange inter-
action, too. The spin-orbit (SO) interaction (2.17) which provides coupling to the lat-
tice is going into the effective exchange Hamiltonian (A.14) as an additional on-site
perturbation V (1) = HLS beside four hopping terms V (2). The resulting expressions
corresponding to the fifth

H(5)
eff ∝

∑
m′

(
H(4,hop)

eff

)
mm′

· V
(1)
m′m

Δmm′
=

∑
lnl′m′

V
(2)
ml V

(2)
ln V

(2)
nl′ V

(2)
l′m′

ΔmlΔlnΔnl′
· V

(1)
m′m

Δmm′
, (A.23)
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and the sixth orders of perturbation theory

H(6)
eff ∝

∑
m′m′′ll′n

V
(1)
mm′

Δmm′
· V

(2)
m′lV

(2)
ln V

(2)
nl′ V

(2)
l′m′′

Δm′lΔlnΔnl′
· V

(1)
m′′m

Δmm′′
. (A.24)

give the Hamiltonians of antisymmetric and symmetric parts of anisotropic exchange,
respectively (see chapter 2.3).
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Appendix B. Angular Overlap Model and
the Program Package
CAMMAG

The conceptual framework of AOM is a simple molecular orbital approach which is now
most widely used to discuss the general chemistry of the transition metals. This describes
the metal-ligand bounding in terms of covalent σ and π bounding interactions, rather
than using the electrostatic perturbations of crystal-field theory. It may be argued that
the AOM is superior to the crystal-field theory because its basis – that weak covalent
interactions between the ligand orbitals and metal d orbitals cause properties such as
color – is closer to physical reality than is the electrostatic basis that underlies the
crystal-field theory. But it is important to recognize that the AOM involves severe
approximations [Figgis’00] as well and was never meant to be a quantitative method of
calculating physically real values of the energy levels in transition-metal complexes. The
resulting parameters are always derived from experiment.

The major advantage of an approach such as the AOM, which parameterizes the ligand
field in terms of individual metal-ligand interactions, is that it can readily be used to
form the basis of a general computer program to calculate properties derived from the
energy levels and wavefunctions of a metal complex. This would be much harder using
a global crystal-field model, for which the ligand-field parameters are a function of the
symmetry of the complex, which is often, formally at least, low.

The first ligand-field programm to be widely used, CAMMAG, was developed by
Gerloch and co-workers [Gerloch’72]. Basically, the positions and the orientations of the
ligands in the complex are defined using information from the crystal-structure analysis.
To each ligand a set of bounding parameters is assigned. These, together with the d
configuration of the metal and appropriate Racah and spin-orbit coupling parameters,
are used to calculate the energy levels and associated wavefunctions of the metal in the
complex. The energy levels can be compared with the observed electronic spectrum
of the complex. The wavefunctions are used to estimate the molecular g values and
their orientations both in a defined molecular coordinate system and with respect to the
crystal axes. If desired, the molecular and crystal magnetic susceptibilities may also be
calculated at specified temperatures.

This program represents a powerful tool for the interpretation of the ESR data: it
allows to calculate the relative energies of all crystal-field levels of a transition metal
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ion using the anisotropy of its g factor, exclusively. As it was mentioned already the
parameters CAMMAG takes use of are:

(i) Structural data for the local environment of the magnetic ion,

(ii) Racah parameters B and C,

(iii) SO coupling constant λ,

(iv) Orbital reduction factors ki (i = {x, y, z}),
(v) Bounding parameters eσ and eπ.

The typical values of the Racah parameters and λ for every ion can be taken e. g. from
[Abragam’70]. But reduction of the SO coupling due to the covalency of the metal-ligand
boundings as well as the reduction factors ki are in fact used as fitting parameters. Keep-
ing in mind other parameters – eσ and eπ (formally, individual for every ligand ion!) it
becomes obvious that additional restrictions are required to be imposed, or the sys-
tem will be underdetermined. Here we can use an important advantage of the AOM:
all bounding parameters in the framework of this model are universal for the particu-
lar type of the bond and can be transferred from one situation to another. Only one
correction must be made for differences in the metal-ligand bond length. Experiments
[Minomura’61] as well as theoretical considerations [Smith’69, Berrejo’83] suggest that

eσ ∼ r−x, (4 < x < 6). (B.1)

Another restriction gives eπ in relation to eσ. For π-bonding it is common to use
[Glaum’96, Figgis’00]

eπ ≈ 0.25 · eσ. (B.2)

This program is used to calculate the energy of the orbital states for all systems discussed
in the present work.
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Appendix C. Kubo-Tomita Approach and
Method of Moments

Here we will outline the approach used to analyze the angular dependence of the ESR
linewidth in the high-temperature approximation. It is based on the Kubo-Tomita for-
mula introduced in section 4.4.1

ΔH =
1

gμB

M2

J
with M2 = −Sp

(
[Hint, S

+][Hint, S
−]

)
Sp [S+, S−]

. (C.1)

This approach allows to calculate ΔH in case of strong exchange narrowing (Hiso � Hint)
at temperatures T > J/kB. The linewidth depends only on the value of the second
moment of the absorption line M2 which can be estimated by using Eq. (C.1). These
calculations are rather straightforward but somewhat tedious. Therefore, in the following
we will give only the final expressions obtained for the cases of dominant relaxation via
symmetric as well as antisymmetric anisotropic exchange interactions.

C.1. Second Moment of Dzyaloshinsky-Moriya Interaction

Within the coordinate system, where the z̃ axis is determined by the external magnetic
field H, the second moment due to DM interaction is calculated as

MDM
2 =

2
3
S(S + 1)

[
(d̃x)2 + (d̃y)2 + 2(d̃z)2

]
. (C.2)

After transformation into the crystallographic system (x, y, z) ‖ (a, b, c) one gets

MDM
2 =

2
3
S(S + 1)

[
d 2

x

(
1 + sin2θ cos2ϕ

)
+ d 2

y

(
1 + sin2θ sin2ϕ

)
+ d 2

z

(
1 + cos2θ

)
+ dxdy sin2ϕ sin2θ + (C.3)

+ dxdz sin2θ cos2ϕ + dydz sin2θ sin2ϕ

]
,

where θ and ϕ are the polar and azimuth angles of the z̃ ‖ H direction with respect
to the crystallographic system. Note that the isotropic g value was assumed for this
transformation. For the calculation of the linewidth, each bond of the ion of interest
has to be considered by applying Eq. (C.3), then the sum of the second moments is
substituted into Eq. (C.1).
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C.2. Second Moment of Symmetric Anisotropic Exchange

Here we give the explicit expression for the second moment M2 of symmetric anisotropic
exchange in a spin chain with equivalent magnetic sites. In coordinates x̃, ỹ, z̃, where
the z̃-axis is defined by the direction of the applied magnetic field H, M2 reads [Soos’77,
Pilawa’97]:

MAE
2 = 2

S(S + 1)
3

{
f1(2D̃zz − D̃xx − D̃yy)2 + f2 · 10(D̃2

xz + D̃2
yz) +

+f3[(D̃xx − D̃yy)2 + 4D̃2
xy]

}
. (C.4)

The factor 2 appeared due to the summation over nearest-neighbors. The symbols
f1, f2, and f3 denote the so-called spectral-density functions, as introduced by Pilawa
[Pilawa’97]. f1 corresponds to the secular part, whereas f2 and f3 correspond to non-
secular parts. On the one hand these factors account for the reduction of the nonsecular
parts in the case that the Zeeman energy is large compared to the exchange energy.
On the other hand they include the possible effect of spin diffusion which enhances the
secular part.

On transformation of the anisotropic exchange parameters to the crystallographic
coordinates (x, y, z) one obtains in equation (C.4):[

2D̃zz − D̃xx − D̃yy

]2 =
[
Dzz(3 cos2 β − 1) + Dxx(3 sin2 β cos2 α − 1)

+Dyy(3 sin2 β sin2 α − 1)
]2

,

D̃2
xz + D̃2

yz =
[
(Dxx cos2 α + Dyy sin2 α − Dzz) cos β sinβ + 2Dyz cos 2β sinα]2

+[(Dyy − Dxx) sin β cos α sinα
]2

,

[
(D̃xx − D̃yy)2 + 4D̃2

xy

]
=

[
Dxx(cos2 β cos2 α − sin2 α) + Dyy(cos2 β sin2 α − cos2 α)

+Dzz sin2 β
]2 + (Dyy − Dxx)2 cos2 β sin2 2α.

Here it has been taken into account that the g factor is usually anisotropic and therefore

cos α =
A√

A2 + B2
, cos β =

C√
A2 + B2 + C2

,

where

A = gxx sin θ cos ϕ, B = gyy sin θ sinϕ, C = gzz cos θ.

This describes the full angular dependence of the second moment dependent on polar
angle θ and azimuth angle ϕ.
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A. Revcolevschi, Reexamination of the microscopic couplings of the quasi-one-dimensional
antiferromagnet CuGeO3, Physical Review B 57, 1102-1107 (1998).

[Ferguson’71] J. Ferguson, H. J. Guggenheim, E. R. Krausz, Optical absorption by Cu-Mn pairs
in KZnF3, Journal of Physics C: Solid State Physics 4, 1866-1873 (1971).

[Fichtl’05] R. Fichtl, V. Tsurkan, P. Lunkenheimer, J. Hemberger, V. Fritsch, H.-
A. Krug von Nidda, E.-W. Scheidt, A. Loidl, Orbital freezing and orbital glass state in
FeCr2S4, Physical Review Letters 94, 027601 (2005).

[Figgis’00] B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Applications, Wiley-
VCH, New York (2000).

[Fischer’99] M. Fischer, P. Lemmens, G. Els, and G. Guntherodt, E. Ya. Sherman, E. Morre,
C. Geibel, and F. Steglich, Spin-gap behavior and charge ordering in α′ −NaV2O5 probed
by light scattering, Physical Review B 60, 7284-7294 (1999).

127



Bibliography

[Freeman’61] A. J. Freeman, R. E. Watson, Theory of Direct Exchange in Ferromagnetism,
Physical Review 124, 1439-1454 (1961).

[Freeman’62] A. J. Freeman, R. K. Nesbet, R. E. Watson, Two-Electron Heisenberg Exchange
Interaction between Neighboring Atoms, Physical Review 125, 1978-1981 (1962).

[Fujii’97] Y. Fujii, H. Nakao, T. Yosihama, M. Nishi, K. Nakajima, K. Kakurai, M. Isobe,
Y. Ueda and Hiroshi Sawa, New inorganic spin-Peierls compound NaV2O5 evidenced by
x-ray and neutron scattering, Journal of the Physical Society of Japan 66, 326-329 (1997).

[Fukuyama’96] H. Fukuyama, T. Tanimoto, M. Saito, Antiferromagnetic long range order in
disordered spin-Peierls systems, Journal of the Physical Society of Japan 65, 1182-1185
(1996).

[Garivullina’72] R. L. Garivullina, M. V. Eremin, A. M. Leushin, Direct exchange interaction
between ions with unfilled 3d-shells, Fizika Tverdogo Tela 14, 382-391 (1972).

[Gerloch’72] M. Gerloch, Magnetism and Ligand-Field Analysis, Chapman-Hall, London (1972).

[Glazkov’05] V. N. Glazkov, A. I. Smirnov, H.-A. Krug von Nidda, A. Loidl, K. Uchinokura,
T. Masuda, Field-controlled phase separation at the impurity-induced magnetic ordering
in the spin-Peierls magnet CuGeO3, Physical Review Letters 94, 057205 (2005).

[Glaum’96] R. Glaum, M. A. Hitchman, On the Bonding Behaviour of Transiton Metal Ions in
Inorganic Solids – Optical and E.P.R. Spectroscopic Studies on Anhydrous Phosphates and
Phosphate-Silicates of Ti3+, Australian Journal of Chemistry 49, 1221-1228 (1996).

[Golubchik’97] S. A. Golubchik, M. Isobe, A. N. Ivlev, B. N. Mavrin, M. N. Popova,
A. B. Sushkov, Y. Ueda and A. N. Vasil’ev, Raman, infrared and optical spectra of the
spin-Peierls compound NaV2O5, Journal of the Physical Society of Japan 66, 4042-4046
(1997).

[Gondaira’66] K.-I Gondaira and Y. Tanabe, A note on the theory of superexchange interaction,
Journal of the Physical Society of Japan 21, 1527-1548 (1966).
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