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1

General introduction

Competition for limited resources is one of the most important factors mediating population 

dynamics and, as a consequence, the distribution and coexistence of species. It is defined as 

‘The negative effects that one organism has upon another by consuming, or controlling access 

to, a resource that is limited in availability’ (Keddy 2001). In the case of intraspecific 

competition these effects are strongly density dependent with higher densities leading to 

reduced growth rates and fecundity (Dash and Hota 1980, Lewis et al. 2001, Lorenzen and 

Enberg 2002, Thomas and Eckmann 2007). Ontogenetic niche shifts on the other hand can 

relieve intraspecific competition (Persson and Greenberg 1990, Werner and Gilliam 1984). In 

the case of interspecific competition, two competing species can only coexist if the 

competition is not asymmetric or the overlap of the real niches is moderate. Otherwise the 

superior competitor displaces the inferior (Keddy 2001). 

The outcome of competition is strongly influenced by the competitors’ abilities and the 

prevailing environmental conditions. The competitor’s abilities are for instance its sensory 

abilities to detect prey under certain light conditions (Eiane et al. 1997). Other abilities can be 

its physiological capacities, e.g. to withstand or perform well under certain physical 

conditions like low temperature or low oxygen content (Bergman 1987) or morphological 

characteristics, such as a special jaw apparatus to be especially efficient in the exploitation of 

certain food resources (Liem 1975, Rice and Lobel 2003). Environmental conditions, 

however, are not stable, but can vary on short- or long-term scales. A short-term variation is 

for instance the day night cycle, which is coupled to variations in light intensity and 

temperature. In temperate zones we also find annual variations, which among others affect 

temperature, water level and nutrient dynamics. A long-term variation in aquatic systems can 

be the change in trophic status due to eutrophication and re-oligotrophication. This can be 

observed in Lake Constance and other large pre-alpine lakes (Figure I). Anthropogenic 

eutrophication increased rapidly from the mid-1950s due to the discharge of untreated or only 

partially treated sewage, and the run-off of fertiliser, resulting in a change in species 

composition, increased turbidity or oxygen depletion (Jeppesen et al. 2005, Persson et al. 
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1991, Wetzel 2001). In the 1960s and 1970s countermeasures were taken such as the 

installation of sewage treatment plants and the ban of phosphorous-containing detergents. 

These measures led to decreasing nutrient loads and consequently many of the pre-alpine 

lakes returned to oligotrophy. With these short- and long-term variations of environmental 

conditions, however, the advantage that one species gains over another through its particular 

abilities may also change, affecting which of the competing species is superior. 

A stable community composition has often developed over decades or centuries. Some 

species may have been displaced by their competitors, others may have altered their real 

niches by changing their habitat or their prey as a consequence of competition (Keddy 2001). 

When non-indigenous species are introduced into a system, their competitive abilities and 

their role in predator-prey interactions are key factors determining the fate of both, the non-

indigenous and the native species. If a non-indigenous species is capable of establishing a 

breeding population in its new ecosystem without further intervention by humans, it is in the 

following regarded as an invasive species. Invasive species can seriously harm and alter the 

existing community composition and are sometimes a severe threat for the native species 

(Simon and Townsend 2003). They can, for instance, carry new pathogens, outcompete the 

native species or heavily prey on them (Lodge et al. 2000, Mooney 2000). The colonisation 

and establishment of invasive species often follows a so-called boom-bust cycle (Strayer and 

Malcom 2006). Because natural predators are often missing, invasive species develop high 

population densities shortly after their introduction, often exceeding sustainable population 

densities. Intraspecific competition increases, predators may adapt and diseases establish. The 

population size will decrease again, until it balances at a stable level (Strayer and Malcom 

2006, Werner et al. 2005, Wolfe 2002). 

Especially in aquatic systems, invasive species have become a prominent problem (Simon 

and Townsend 2003). Intentional introduction of fish to enrich the present community, to 

increase yields with commercially attractive species or for bio-manipulation have been 

popular, disregarding of the price the introduction might have for the ecosystem. The 

connection of rivers with canals, release of ballast water from ships, the transfer of ships 

between water bodies especially by tourists, live bait for fishing and to maroon unpopular pets 

from the aquarium into the wild have rapidly increased the spread of aquatic species (Mooney 

2000). Meanwhile, the negative consequences for the native species, such as preying on eggs, 

outcompeting the native species, or serving as a vector for disease, became apparent. 

Consequently, the negative impact on the ecosystems and economically negative effects are 

feared (Lodge et al. 2000). Therefore the mechanisms underlying biotic interactions of 
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invasive and native species have become an important aspect of ecological research to 

understand and thus predict how invasive species might influence an ecosystem under 

different environmental conditions (Kolar and Lodge 2001). 

This study aims at understanding the mechanisms of competition for food between native 

perch (Perca fluviatilis L.) and invasive ruffe (Gymnocephalus cernuus (L.)) in Lake 

Constance under ongoing re-oligotrophication. In the 1980s the percid ruffe was accidentally 

introduced into several large lakes, including Lake Superior (USA), Loch Lomond (Scotland) 

and Lake Constance (Germany) (Maitland and East 1989, Pratt et al. 1992, Rösch and Schmid 

1996). In these lakes ruffe rapidly developed high population densities. In Europe Eurasian 

perch and in North America its sister species yellow perch (Perca flavescens (Mitchill)) are 

commercially important fish species. Therefore fisheries stakeholders feared that ruffe would 

negatively affect the growth of perch. Both species exploit benthic food sources. Ruffe are 

specialised benthivorous feeders throughout their life (Hölker and Thiel 1998, Kangur et al. 

1999), while the generalist perch undergoes an ontogenetic diet shift and feeds first on 

zooplankton then on zoobenthos and finally on fish (Radke and Eckmann 2001, Thorpe 

1977). Both species occur in the littoral zone of lakes and are assumed to be competitors for 

food resources (Bergman and Greenberg 1994, Fullerton et al. 1998). 

Figure I A Total phosphorus during spring circulation in Upper Lake Constance from 1951 to 2005 
(data from IGKB) B Yields of perch and ruffe from Upper Lake Constance after the statistics of 
commercial fishermen from 1980 to 2003 (Source: Rösch and Schmid 2005). 
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Studies of the fish community composition along the productivity gradient of lakes show 

that perch is favoured under mesotrophic conditions while ruffe prosper under meso- to 

eutrophic conditions (Bergman 1991, Jeppesen et al. 2000, Persson et al. 1991). In 

oligotrophic lakes ruffe is far less abundant than perch or even absent. Ruffe possess a very 

sensitive lateral line organ and a tapetum lucidum, which enables them to feed in a turbid or 

dark environment (Bergman 1988, Disler and Smirnov 1977, Janssen 1997), conditions 

expected to increase with increasing trophy (Wetzel 2001). Perch, by contrast, are visually 

oriented predators, which seem to be in advantage under well-lit, oligotrophic conditions 

(Diehl 1988, Thorpe 1977). Lake Constance was undergoing re-oligotrophication when ruffe 

was first detected in 1987. The population developed rapidly and ruffe soon became one of 

the most abundant fish species in the littoral zone of Lake Constance (Eckmann and Rösch 

1998, Fischer and Eckmann 1997a, Rösch and Schmid 2005). Under the mesotrophic 

conditions at the end of the 1990s ruffe even reached their highest abundances (Figure I). 

Moreover, during the last 20 years a decline in the growth of perch was observed, which is 

reflected in reduced perch yields in Lake Constance (Figure I) (Eckmann et al. 2006, Rösch 

and Schmid 2005). Eckmann et al. (2006) discuss the drastic reduction of nutrient loading 

accompanied by a decline in zooplankton abundance as main reasons for the decline in 

growth of perch. Additionally, growth of perch is negatively affected by an increase in pike 

worm (Triaenophorus nodulosus) infections due to a change of the zooplankton community 

composition towards a higher relative proportion of copepods, the main disease vector 

(Brinker and Hamers 2005, Eckmann et al. 2006). The competition with ruffe is discussed as 

an additional explanation, since the decline in growth and yield of perch coincided with the 

increase of ruffe abundance. Recent observations show, however, declining abundances of 

ruffe (Reyjol et al. 2005, Rösch and Schmid 2005). 

Despite many studies dealing with the competition between perch and ruffe, their 

competitive abilities and their performance while coexisting in a large oligotrophic lake are 

not studied in detail so far. The concept of a succession of community composition along a 

productivity gradient was developed focusing at the low to high productivity gradient. Re-

oligotrophication is expected to cause an inverse development of community composition, but 

the underlying mechanisms are not fully understood. The advantage ruffe may gain over 

perch due to its sensory abilities under turbid conditions, for instance, appears to be obvious. 

The decreasing importance of ruffe’s sensory abilities with ongoing water clarification, 

however, cannot fully explain the low abundances of ruffe in oligotrophic lakes. 
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Concerning Lake Constance some studies regarding the general performances of ruffe and 

their impact on the native species were carried out. From their field studies and laboratory 

experiments Rösch and Schmid (1996, 2005) and Schmid (1999) concluded that a negative 

impact of ruffe on the natural reproduction of whitefish is expected because of egg predation. 

They assumed further interspecific competition of ruffe with perch to be unlikely, because of 

perch feeding on zooplankton. They concluded that ruffe had occupied an empty niche. 

However, the field studies were conducted at the beginning of the 1990s, when Lake 

Constance was still mesotrophic. Re-oligotrophication has proceeded since then, and due to 

declining zooplankton abundance perch are likely to include benthos and fish again in their 

diet as prior to eutrophication. Dieterich et al. (2004a, 2004b) and Dieterich (2004) focused in 

their experiments on the influence of food availability on the outcome of competition between 

perch and ruffe over different substrate types. The authors concluded that under natural 

conditions with limited food resources, ruffe would forage efficiently over fine sediments and 

perch over coarse sediments. 

In this study I conducted laboratory and field experiments to enlighten the mechanisms 

underlying the interactions between both species under oligotrophic conditions. 

In a laboratory study, I investigated the influence of light on the competitive advantage 

perch and ruffe may gain due to their different sensory abilities under different feeding 

regimes. In single and mixed species treatments, I fed a limited food ration in three different 

feeding treatments: food was supplied only during the day, only during the night, or during 

both, day and night. I measured specific growth rates and analysed the feeding and agonistic 

behaviour by video recording, to differentiate between exploitative and interference 

competition. The differences in sensory abilities of perch and ruffe lead to the hypothesis that 

perch should be the superior competitor in clear, well-lit waters, whereas ruffe should be 

favoured in an environment with lower light intensity. The results of this study are presented 

in Chapter 1.

The specific growth rates for ruffe I measured in these feeding experiments were up to 3.5 

fold as high than growth rates measured by Henson and Newman (2000) under similar 

conditions. However, both experiments differed in the group size of experimental fish used. 

Henson and Newman (2000) used only a single ruffe in their experiments, while my 

experiments were performed with groups of four fish. Further, in preliminary tests for my 

growth experiments, perch and ruffe both displayed signs of stress and had longer 

acclimatisation times when only a single fish was in the aquarium. This led to the assumption 
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that there might be a group effect present in both species, which is described for a number of 

fish species in the literature. Higher oxygen consumption for isolated fish could explain the 

lower growth rates, as more energy is demanded for the routine metabolism and hence less 

energy can be invested into growth. To test for a group effect I performed, in cooperation with 

Susanne Haertel-Borer, respiration experiments with three different group sizes of fish 

(Chapter 2). We used either a single perch or ruffe, or single species groups of four and eight 

fish. Additionally to the daily oxygen consumption we analysed the activity patterns. 

In enclosure experiments I focused on the question whether i. littoral macroinvertebrate 

communities in a large oligotrophic lake are top-down controlled, ii. fish predation is 

influenced by competitive interactions, and iii. predatory impacts and competitive interactions 

are influenced by environmental conditions at the study sites (Chapter 3). These experiments 

were conducted in cooperation with Nicole Scheifhacken, who was responsible for the 

benthological part of the study. Cages were deployed in the littoral of Lake Constance and 

stocked with either perch, ruffe, or with both species, or they remained unstocked as controls. 

Benthos was sampled in each cage before and after the experiments. Fish stomach contents 

were analysed at the end of experiments. Since environmental conditions in the littoral zone 

of Lake Constance are very variable, we chose two representative study sites which differ not 

only in shore morphology and wind exposure but also in  benthos abundances and community 

composition. This enabled us to test the effect of the study site on both predatory impact and 

competitive interactions. 

Parallel to the experiments I accomplished a detailed field study to gain information on 

the performances of both species in the field and their niche overlap under ongoing re-

oligotrophication (Chapter 4). The main question concentrated on a possible diet change of 

perch to include zoobenthos again in its diet, which would result in interspecific diet overlap. 

I collected data on depth distribution, feeding activity and diet composition at the same two 

study sites as in Chapter 3. To obtain a fine temporal resolution on a seasonal and diel scale, 

surveys were carried out monthly from May to October 2004 at three different times of the 

day. In 2004 line transect scuba diving was performed additionally to the fishing campaigns 

to gain further information on the species’ depth distribution. These data are supplemented by 

data from additional fishing campaigns I conducted in 2003, 2005 and 2006, to test whether 

observed patterns were similar over time. 
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Chapter 1 

Competition between perch (Perca fluviatilis) and ruffe 

(Gymnocephalus cernuus): the advantage of turning night 

into day 

DIANA SCHLEUTER AND REINER ECKMANN

Freshwater Biology 51: 287-297 

SUMMARY

1. The outcome of interspecific competition for food resources depends both on the 

competitors’ sensory abilities and on environmental conditions. In laboratory 

experiments we tested the influence of daylight and darkness on feeding behaviour and 

specific growth rate (SGR) of two species with different sensory abilities. 

2. We used perch (Perca fluviatilis) as a visually-orientated, and ruffe (Gymnocephalus

cernuus) as a mechano-sensory oriented predator and tested their growth rates and 

behaviour under conditions of interspecific and intraspecific competition. Three 

different foraging conditions were used: food supplied (i) only during the day, (ii) only 

during the night or (iii) during both day and night. 

3. In perch neither SGR nor feeding behaviour were influenced substantially by 

interspecific competition during daylight. During darkness their foraging behaviour 

changed markedly and their access to the food source as well as their SGR were 

negatively affected by the presence of ruffe. 

4. Ruffe’s foraging behaviour did not change during either day or night with interspecific 

competition. During the night ruffe’s SGR was higher with interspecific competition, 

probably due to a release from intraspecific competition and the competitive inferiority 

of perch during the night. 

5. Because of its sensory abilities ruffe feeds predominantly at night, thereby reducing 

competitive interference from perch. 
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Introduction

Individuals exploit limited resources against a background of intra- and interspecific 

competition. The outcome of interspecific competition depends strongly on the sensory 

abilities and the behavioural plasticity of the species involved. Additionally, an individual’s 

competitive ability may be modulated by environmental conditions, which generally vary 

across spatial and temporal scales. Light intensity, for example, shows a regular day-night 

cycle. In aquatic habitats it is additionally affected by turbidity and wave action, and it 

decreases exponentially with water depth (Wetzel 2001). If two competitors belong to 

different functional groups such as visual, or mechano-sensory or tactile predators, their 

competitive success will depend on the competitors’ abilities to cope with the particular light 

conditions and their variation during a 24-h cycle. Eiane et al. (1997) developed a 

mathematical model describing general competition between fish, as visual and jellyfish as 

tactile planktivores. Their model demonstrates that the optical properties of the water column 

are of great importance for the outcome of such competition: visual planktivores outcompete 

tactile planktivores in clear water with low zooplankton abundance, whereas tactile 

planktivores gain an advantage with increasing light attenuation. Experimental studies on the 

influence of the light regime on interspecific competition are, however, scarce. 

To elucidate the influence of the light regime in aquatic systems on competition between 

species with different sensory abilities, we selected two co-occurring percids, namely perch 

(Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)), for laboratory experiments. 

Perch is a mobile, visually-oriented predator (Diehl 1988, Thorpe 1977) that undergoes an 

ontogenetic diet shift from planktivory through benthivory to piscivory (Collette et al. 1977, 

Persson 1986, Thorpe 1977). Ruffe in contrast has a very well developed lateral line organ 

and a light sensitive eye due to a tapetum lucidum in the retina (Bergman 1988, Collette et al. 

1977, Disler and Smirnov 1977, Gray and Best 1989, Janssen 1997). Ruffe almost exclusively 

feeds on benthic organisms (Bergman and Greenberg 1994, Collette et al. 1977, Hölker and 

Thiel 1998, Kangur et al. 1999). The differences in sensory abilities of perch and ruffe leads 

to the hypothesis that perch should be the superior competitor in clear, well-lit waters, 

whereas ruffe should be favoured in an environment with lower light intensity. 

Bergman (1988) demonstrated niche divergence of the two species in Swedish lakes, with 

perch occurring in the better illuminated zones of the upper littoral and the pelagic, while 

ruffe were more abundant in deeper zones with lower light intensity, but only in benthic 

habitat. In Lake Constance, however, both species co-occur in the shallow littoral zone 



Chapter 1  9 

(Fischer and Eckmann 1997b). This habitat overlap results in a considerable diet overlap, 

particularly between the juveniles of both species (D. Schleuter unpubl.). 

After ruffe was accidentally introduced into large lakes, including Lake Superior (USA), 

Loch Lomond (Scotland) and Lake Constance (Germany) in the 1980s (Maitland and East 

1989, Pratt et al. 1992, Rösch and Schmid 1996), numerous studies have investigated 

competition between ruffe and perch (or yellow perch Perca flavescens (Mitchill)) (Bergman 

and Greenberg 1994, Dieterich et al. 2004b, Fullerton et al. 1998, Fullerton et al. 2000, Kolar 

et al. 2002, Savino and Kolar 1996). Nevertheless, the competitive relationship between perch 

and ruffe is still not fully understood, perhaps partly due to the neglect, in earlier studies, of 

differences between the two species in their sensory physiology and foraging behaviour 

during day and night. For example, Fullerton et al. (1998, 2000) conducted 24-h experiments, 

but with their experimental set-up they could not analyse competition separately for day and 

night. They found that neither species was a clearly superior competitor. This is in contrast to 

the results of Savino and Kolar (1996), who observed that ruffe were far more aggressive than 

perch in laboratory experiments and they assumed that ruffe had a competitive advantage 

because they spent more time at the feeding station. However, their experiments were carried 

out only under well lit conditions. The results of Dieterich et al. (2004a, b), who found that 

perch is the superior competitor on complex substrates (e.g., mussel beds of Dreissena

polymorpha Pall.), are likewise only representative of daylight conditions. Bergman (1988) 

has demonstrated, in single species experiments, that food consumption by ruffe is less 

affected by decreasing light intensity, when compared with perch, but mixed species 

experiments testing for a competitive advantage of one or the other species as a function of 

light conditions are still lacking. 

Our study investigated the influence of light regime on the competitive abilities of perch 

and ruffe, assessing foraging efficiency and competitive behaviour of both species in single 

and mixed species set-ups. Three different foraging conditions were used: (i) fish were fed 

only during day, (ii) fish were fed only during the night, or (iii) fish were fed during both day 

and night. We proposed four different scenarios for the outcome of competition between the 

two species: (I) no competitive advantage for either species, because no competitor is superior 

either during the day or at night; (II) no competitive advantage for either species, because the 

competitive superiority of perch during the day is balanced by the competitive superiority of 

ruffe at night; (III) competitive advantage for one species, because its superiority during either 

day or night is not balanced by the other species being superior during the other part of the 
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cycle; (IV) competitive advantage for one species, because it is the superior competitor during 

both phases of the day-night cycle. 

Methods

The 1+ perch and 1+ ruffe used in this study were caught in Lake Constance, Germany with a 

lift net at least five months before the experiments started. The fish were acclimated to 

laboratory conditions in 100 L aquaria under a natural day-night cycle and they were fed with 

frozen chironomid larvae. 

The experiments were carried out in 72 L aquaria, the bottoms of which were covered 

with a 2 cm deep layer of sand and pebbles of up to 4 mm particle size. To avoid visual 

contact between experimental groups, the side walls of the aquaria were covered with black 

plastic film. The aquaria were supplied with filtered lake water at a rate of 0.4 L min-1, the 

water temperature was held constant at 19°C, and light from a daylight fluorescent tube was 

provided from 8:00 to 19:00 local time, so that the room was evenly illuminated with 600 lux. 

During night, complete darkness (0 lux) was reached through elimination of any source of 

light. During the experiments the fish were fed with living chironomid larvae, which were 

obtained from a commercial supplier every week. 

To provoke competition for food, fish were fed a suboptimal ration, which was calculated 

using the model Fish Bioenergetics 3.0 (Hanson et al. 1997). Because the physiology of 

Eurasian and yellow perch is very similar (Thorpe 1977), the model parameters for yellow 

perch were considered appropriate for Eurasian perch. Since no bioenergetics model for ruffe 

was available, the calculations for ruffe were also based on the model parameters for yellow 

perch. Hence, based on the yellow perch bioenergetics model, 75% (p = 0.75) of the 

maximum daily food ration was provided per day. In the experiments where food was 

provided during day and night, the daily food ration was separated into two equal halves, 

otherwise the entire ration was given at one time. 

The food was provided in sand filled Petri dishes of 14 cm diameter. The dishes were 

initially placed in a separate aquarium and each surrounded by a cylinder of gauze, which was 

slightly taller than the aquarium. Then the weighed (to 0.1 mg) rations of chironomids were 

poured into the cylinders. The chironomid larvae were allowed to burrow into the sand during 

daylight or during the night, respectively, then every morning and evening a new feeding dish 

with the surrounding gauze was introduced into each experimental aquarium. As soon as the 
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chironomids that had not burrowed into the sand (less than 5%) had settled down on top of the 

sediment, the gauze was removed so that the fish had access to the food source. Differences in 

borrowing behaviour of chironomids between day and night could not be observed. In 

treatments where food was provided only once per day, either during the light or the dark 

period, a sand filled Petri dish without food was introduced in the morning or evening, 

respectively, a procedure which was adopted to standardise experimental handling across all 

set-ups. To determine the food consumed during each feeding cycle, the chironomids 

remaining in the Petri dish at the end of the cycle were picked from the dish by hand and 

weighed to the nearest 0.1 mg. 

The experimental design was fully factorial with two factors at each of three levels: fish 

species (four perch, four ruffe, two perch plus two ruffe) and feeding regime (only during the 

day, only during the night, during both day and night). Thus, nine different factor 

combinations were used, and these were replicated three times, each replicate lasting for three 

weeks. The treatments were assigned randomly to the aquaria for each replicate. 

For behavioural analysis, video recordings were taken of experiments where fish were fed 

during the day and night with recordings being made for one day during each of the first and 

the third weeks of the second and third replicates. The aquarium was observed for 24 h, from 

above, using an infrared sensitive camera and a time-lapse video recorder. At night the visual 

field of the camera was illuminated with infrared lights (  > 850 nm), mounted around the 

camera lens. In addition to the time lapse recordings, fish behaviour was videotaped through 

the front wall of the aquarium at 8:00, 8:15, 8:30, 8:45, 9:00, 11:00, 13:00, 15:00, 17:00 for 

five minutes each time. 

For acclimatisation, fish of similar size and weight were transferred to the experimental 

aquaria one week before an experiment started. To allow for individual analyses of weight 

gain, fish were anaesthetised with 2-phenoxyethanol (0.3 mL L-1) and marked individually 

with fin clips. To adapt the fish to the experimental protocol, food was provided in the same 

way as during the experiments. The experimenter entered the room in the morning and 

switched on a dim light. The feeding dishes were removed from the aquaria, the fish were 

gently corralled with gauze frames to the front parts of the aquaria, and the new feeding 

dishes were put into place. When everything was ready, the gauze frames were removed, the 

room light was switched on, and the experimenter left the room. In the evening the same 

procedure was repeated with the room light switched off after the fish were allowed access to 

the feeding dishes. 
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On the evening before an experiment started, the fish were anaesthetised, measured to the 

nearest 0.1 cm and weighed to the nearest 0.1 g, having been starved for 24 h before weighing 

to ensure that they had empty stomachs (Henson and Newman 2000, Persson 1979). Initial 

mean standard length of perch was 8.3 ± 0.7 cm, initial mean body mass  8.1 ± 2.0 g 

(mean ± SD), of ruffe 7.3 ± 0.5 cm and 7.3 ± 1.5 g, respectively. After the three-week 

experiment the fish were starved for 24 h, anaesthetised and weighed again. The specific 

growth rate (SGR) for each fish was calculated as: SGR = (loge Y2 – loge Y1) / t, where Y1

and Y2 are the initial and final body masses, and t is the duration of the experiment in days 

(Busacker et al. 1990). 

The time-lapse video observations were analysed every half hour for 180 s. The variables 

measured were: frequency of visits to the feeding dish FV (mean number of visits per fish 

during 180 s), duration of visits to the feeding dish DV (mean time a fish spent at the dish per 

visit) and total time per fish at the feeding dish TT (mean total time per fish). TT is not simply 

the product of FV and DV, because the zero values of FV are not included in the calculation 

of DV. Hence, TT in some cases is lower than the product of FV and DV. Aggressive 

behaviour was examined from the video recordings through the front wall of the aquarium. 

Aggression was defined as one fish chasing another with an erect dorsal fin. The number of 

aggressive acts during five minutes was counted per species. In the mixed species set-ups, 

aggressive acts against conspecifics and heterospecifics were evaluated separately. 

The program JMP 4.0 was used for statistical analysis of the data. All data except for 

aggressive acts were analysed by one-way ANOVA. In cases of unequal variances, the data 

were arcsine-transformed (percentage of food consumed) or log-transformed (FV perch). For 

further comparisons between set-ups (post hoc tests), contrast analysis (ANOVA CA) was 

used (Bonferroni corrected). Before pooling data across replicates or across time within one 

experiment, replicates, or time of observation (video recordings during the first or third week 

of an experiment), were tested as additional factors. For the analysis of food consumption, 

mean values for an experiment, and for the analysis of feeding behaviour, mean values for the 

day and the night phases separately were used. Differences between species were tested with 

t-tests or Kruskal-Wallis ANOVA. 

Observations on aggressive behaviour were analysed separately for the first hour after 

food was given and then for the rest of the day (from 9:00 to 17:00). Differences between 

inter- and intraspecific competition, single and mixed species treatments and between species 

were compared with t-tests or Kruskal-Wallis ANOVA. 
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Results

Both the perch and ruffe adjusted well to the experimental protocol and showed no symptoms 

of stress after the second or third day of the acclimatisation period. They learnt quickly to 

look for food in the Petri dishes. 

Specific growth rates 

The SGRs of perch ranged from 0.28 ± 0.26 (mean ± SD) to 0.42 ± 0.18 in the single species 

set-ups and from -0.43 ± 0.24 to 0.41 ± 0.34 in the mixed species set-ups (Figure 1.1). The 

SGRs of the ruffe ranged from 0.69 ± 0.17 to 1.02 ± 0.08 in the single species set-ups and 

from 0.87 ± 0.15 to 1.43 ± 0.37 in the mixed species set-ups (Figure 1.1). Perch’s SGRs were 

lower in the mixed species set-ups compared to the single species set-ups (one-way ANOVA, 

p = 0.020) and decreasing from the treatment when food was provided only during the day to 

the treatment when food was provided only during the night (one-way ANOVA, p = 0.010). 

This trend was even more pronounced in the mixed species set-ups: when fed during the day, 

perch reached growth rates equal to those in the single species treatments (ANOVA CA, 

p = 0.931), but when fed only at night the perch grew less than in all other treatments  and lost 

weight (Figure 1.1). Ruffe, by contrast, grew least when fed only during the day (one-way 

ANOVA, p = 0.010), and they grew better in the mixed species set-up when compared with 

the single species treatments (one-way ANOVA, p = 0.003) (Table 1.1, Figure 1.1). 

Table 1.1 Results of one-way ANOVA, testing differences of specific growth rates of 
perch and ruffe, between species and for each species separately. 

Source d.f. SQ F-value P-value

Perch
1-/2-species setup 1 0.401 7.495 0.018
Time of feeding 2 0.753 7.040 0.009
1-/2-species setup  time of feeding 2 0.399 3.732 0.055
Residuals 12 2.195  

Ruffe
1-/2-species setup 1 0.488 9.106 0.011
Time of feeding 2 0.503 4.692 0.031
1-/2-species setup  time of feeding 2 0.148 1.382 0.288
Residuals 12 1.781  

Perch, ruffe (single and mixed)
Species 3 6.875 42.818 0.000
Time of feeding 2 0.148 1.384 0.270
Species  time of feeding 6 1.655 5.153 0.002
Residuals 35 9.963  
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Thus, the SGRs of perch and ruffe showed opposite trends under interspecific 

competition. Perch SGR decreased from the day to the night feeding treatment, while ruffe 

SGR increased. In all treatments the ruffe SGRs were significantly higher than those of perch 

(t-test, p < 0.05) (Figure 1.1). 

Figure 1.1 Mean (± SD) specific growth 
rates of perch (closed circles) and ruffe 
(open circles) in single and mixed species 
set-ups. d = feeding during the day, d + n = 
feeding during the day and at night, n = 
feeding during the night. 

Food consumption 

The foraging ability of perch was greatly reduced during darkness (Figure 1.2). In the single 

species treatment, perch consumed nearly all the chironomids (93.3 ± 4.8%; mean ± SD) 

when food was supplied during the day. However, they consumed significantly less when 

food was given during the day and night (76.0 ± 8.8%, ANOVA CA, p = 0.007), and when 

food was supplied only during the night (66.2 ± 16.5%, ANOVA CA, p = 0.000). In the ruffe 

and in the mixed species treatments, in contrast, always more than 90% of the chironomids 

were consumed irrespective of the feeding regime (ANOVA CA, p > 0.05) (Figure 1.2). 

Figure 1.2 Mean (± SD) of the 
percentage of chironmids con-
sumed in single perch, single ruffe 
and mixed species treatments. d = 
feeding during the day, d + n = 
feeding during the day and at 
night, n = feeding during the night. 
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Feeding behaviour 

Perch and ruffe showed different feeding behaviours. Perch swam to the feeding dish, 

inclined the body to pick up the chironomids they had spotted, and returned into a horizontal 

position in the water column. Quite often, particularly after introduction of the feeding dish, 

three or four perch approached the dish to feed at the same time. In contrast ruffe swam to the 

feeding dish and moved slowly around, close to the bottom. In most cases, no more than two 

ruffe visited the feeding place at the same time. 

The different behaviours of perch and ruffe can be described through the variables 

frequency of visits to the feeding dish (FV) (Figure 1.3A, Table 1.2) and duration of visits 

(DV) (Figure 1.3B, Table 1.2). For perch, the day values of both variables (mean ± SD) did 

not differ significantly between the single and mixed species treatments (FV: 2.5 ± 0.7 vs. 

2.1 ± 0.5, ANOVA CA, p = 0.475; DV: 15.2 ± 7.2 vs. 9.0 ± 3.4 s per fish, ANOVA CA, 

p = 0.414), while the night values did (ANOVA CA, FV: p < 0.001; DV: p < 0.001).  

Figure 1.3 Feeding behaviour of perch and ruffe (day + 
night feeding treatment). A Mean (± SD) of the number 
of visits to the feeding dish per fish per 180 s B Mean 
(± SD) of the duration of visits to the feeding dish per 
fish per 180 s C Mean (± SD) of total time spent at the 
feeding dish per fish per 180 s. Closed circles = perch 
in single species set-ups; closed triangles = perch in 
mixed species set-ups; open circles = ruffe in single 
species set-ups; ruffe = open triangles mixed species 
set-ups. d = observation during daytime, n = 
observation during the night. 
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Table 1.2 Results of one-way ANOVA, testing differences in feeding behaviour 
between perch and ruffe. Differences between single and mixed species treatments 
and the time of day are tested for the number of visits per fish to the feeding dish 
and time spent there. 

Source d.f. SQ F-value P-value

Frequency of visits (FV)
Perch
Time of day 1 2.287 152.933 0.000 
1-/2-species setup 1 0.326 21.823 0.001 
Time of feeding  1-/2-species setup 1 0.197 13.168 0.004 
Residuals 12 0.179   

Ruffe
Time of day 1 1.796 8.583 0.014 
1-/2-species setup 1 0.533 2.548 0.139 
Time of feeding  1-/2-species setup 1 0.022 0.106 0.751 
Residuals 11 2.302   

Duration of visit (DV)
Perch
Time of day 1 2 265.998 21.062 0.001 
1-/2-species setup 1 1 803.489 16.763 0.002 
Time of feeding  1-/2-species setup 1 903.754 8.400 0.013 
Residuals 12 1 291.045   

Ruffe
Time of day 1 349.621 2.096 0.176 
1-/2-species setup 1 800.678 4.801 0.051 
Time of feeding  1-/2-species setup 1 401.218 2.406 0.149 
Residuals 11 1 834.590   

Total time per fish (TT) 
Perch
Time of day 1 408.242 4.188 0.063 
1-/2-species setup 1 1 819.876 18.667 0.001 
Time of feeding  1-/2-species setup 1 94.868 0.973 0.343 
Residuals 12 1169.872   

Ruffe
Time of day 1 129.220 1.671 0.223 
1-/2-species setup 1 2.045 0.026 0.874 
Time of feeding  1-/2-species setup 1 13.801 17.031 0.018 
Residuals 11 850.824   

When together with conspecifics, perch visited the feeding dish less often during the night 

than during the day (FV: 0.7 ± 0.1 vs. 2.5 ± 0.7; ANOVA CA, p < 0.001), and they spent 

significantly more time at the feeding place during the night than during daytime (DV: 

54.1 ± 11.5 vs. 15.2 ± 7.2 s; ANOVA CA, p < 0.001). From the video recordings it was 



Chapter 1  17 

obvious that perch often rested in the feeding dish during the night and sometimes did not 

move at all during a 180 s observation period. 

When together with ruffe, however, the perch visited the feeding dish less often during 

the night when compared to the single species set-up (FV: 0.2 ± 0.1 vs. 0.7 ± 0.1, ANOVA 

CA, p < 0.001). The time perch spent at the feeding place during nights was similar to the day 

value, and was significantly lower when compared to the single species set-up (DV: 

17.8 ± 15.4 vs. 54.1 ± 11.5 s, ANOVA CA, p < 0.001). The total time perch spent at the 

feeding place did not differ significantly between day and night in the single and mixed 

species set-ups (Table 1.2). In the mixed species set-up, however, perch tended to spend less 

time at the feeding dish during the night (TT: 18.4 ± 8.6 vs. 3.5 ± 2.1 s), although the result 

was not significant (Table 1.2). Altogether perch spent significantly less time at the feeding 

dish when ruffe were present (Figure 1.3C, Table 1.2). 

When comparing the behaviour of these two species it can be seen that in the single 

species set-ups perch tended to visit the feeding dish more frequently during the day than did 

ruffe and, in all experiments, perch tended to visit the feeding place less frequently during 

night. However, the only significant difference was for FV during the night between the 

mixed species set-ups (t-test, p < 0.001) (Figure 1.3A). DVs were generally longer for ruffe 

than for perch (except for perch during the night in the single species set-up), but they were 

significantly different only between single species set-ups during daytime (DV: 15.2 ± 7.2 vs. 

38.8 ± 12.7 s; t-test, p = 0.018) (Figure 1.3B). TT did not differ between species in the single 

species set-ups (t-test, day: p = 0.388; night: p = 0.329). When together with ruffe, however, 

perch TT was significantly lower at night (TT: 3.4 ± 2.06 vs. 36.6 ± 12.5 s.; Kruskal-Wallis 

ANOVA, p = 0.021) (Figure 1.3C). 

Aggression

The numbers of aggressive acts (Figure 1.4) did not differ between perch and ruffe in the 

single species treatments (1.9 ± 1.9 aggressive acts per fish per 5 min for perch vs. 1.8 ± 1.5 

for ruffe; Kruskal-Wallis ANOVA, p = 0.901) but they decreased for perch and increased for 

ruffe in the mixed species treatments, although for both species the differences were not 

significant (Kruskal-Wallis ANOVA, perch: p = 0.131, ruffe: p = 0.855). When comparing 

the mixed species set-ups only, perch were less aggressive than ruffe (t-test: p = 0.050). 

Perch attacked their conspecifics more often than they attacked ruffe (0.9 ± 0.9 vs. 

0.3 ± 0.6 aggressive acts; Kruskal-Wallis ANOVA, p = 0.001), while ruffe did not 

discriminate between conspecifics and heterospecifics (1.4 ± 2.1 intra- and interspecific 
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aggressive acts; t-test, p = 0.929). For perch, the number of aggressive acts was similar 

directly after food supply and later in the day under both experimental set-ups (single species: 

t-test, p = 0.457; mixed species: Kruskal-Wallis ANOVA, p = 0.491). Ruffe, however, were 

more aggressive after food supply than later in the day (single species: t-test, p < 0.001; mixed 

species: Kruskal-Wallis ANOVA, p < 0.001). 

Figure 1.4 Mean number of aggressive acts per fish per 
5 min for single and mixed species treatments (day + 
night feeding treatment). Filled columns show intra-
specific aggression, clear columns show interspecific 
aggression. A perch B ruffe. 

Discussion

The results of this study demonstrate that the outcome of competition for food depends on the 

competitors’ sensory abilities to cope with particular environmental conditions. In the present 

case, the different abilities of perch and ruffe to detect prey, by visual or mechano-sensory 

cues respectively, were decisive for the species’ feeding success during day and night. During 

the day neither specific growth rates nor feeding behaviour of perch and ruffe were influenced 

substantially by interspecific competition. During the night, however, feeding behaviour and 

specific growth rates of perch were strongly negatively influenced by the presence of ruffe. 

For ruffe, in contrast, specific growth rates increased with interspecific competition, although 
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there was no significant effect on the variables describing feeding behaviour. Our results 

therefore supported the hypothesised scenario III, with ruffe being favoured due to its 

superiority during the night, while perch was an equal but not superior competitor during day. 

Several experiments have attempted to understand the feeding behaviour of perch and 

ruffe in daylight. Our experiments on the feeding behaviour of perch and ruffe in mixed 

species set-ups did not detect any effect of interspecific competition under daylight 

conditions, which is similar to the results of Savino and Kolar (1996). Whereas in the 

experiments of Savino and Kolar (1996) time per visit (DV) and total time (TT) spent at the 

feeding place decreased for ruffe with interspecific competition, in our study these variables 

also tended to decrease but the differences were not significant. However, the present study 

clearly showed how feeding behaviour of both species changed completely during darkness, 

and that these changes can only be detected when the night is explicitly considered in the 

experimental design. 

Intraspecific competition 

In the single species treatments the SGR of perch was reduced when they were fed only at 

night, most probably due to the small amount of food consumed (66%, cf. Figure 1.2). This is 

in accordance with the results of Diehl (1988) who observed similar low prey capture rates for 

perch during darkness. Our behavioural observations revealed reduced activity of perch 

during the night, with fewer but longer visits to the feeding dish (probably indicating resting 

behaviour). It is well known from field studies that perch are active during twilight and 

daytime and that they rest at night (Dörner et al. 1999, Imbrock et al. 1996, Jamet and Lair 

1991, Thorpe 1977). Accordingly, field observations of empty stomachs in the morning 

indicate no food intake during the night (Jamet and Lair 1991, D. Schleuter unpubl. data). In 

contrast, laboratory studies by, for example, Diehl (1988) and Janssen (1997), like the results 

presented here, reported food intake by perch during darkness. These observations should, 

however, be considered as laboratory artefacts caused by the experimental conditions where 

predators and prey were confined to a rather limited space. Under these conditions it is 

possible even for a predominantly visually oriented predator such as perch to find prey with 

its unspecialised - compared with ruffe - lateral line organ (Janssen 1997). For ruffe, which 

seem to detect their prey with their lateral line organ or through chemoreception rather than 

through vision, there was no influence of light regime in the intraspecific competition 

treatments. 
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Interspecific competition 

In the mixed species set-ups the effect of darkness on the feeding behaviour of perch was 

even more marked than in the single species set-ups. Perch visited the feeding dish even less 

frequently, but their visits were not longer than during the day because they were chased off 

by the ruffe. When food was only available during the night, perch seemed unable to consume 

enough food to meet their daily metabolic costs, leading to negative SGRs. The feeding 

behaviour of ruffe, in contrast, did not change with competition from perch. Although the 

total time spent at the feeding dish was the same as for the single species treatments, ruffe 

achieved higher growth rates in the mixed species treatments. This is probably due to higher 

food consumption by ruffe under interspecific competition where they consumed at least part 

of the perch’s ration as well. Hence, for ruffe, intraspecific competition had a stronger impact 

during the night than interspecific competition. In the mixed species set-ups, perch hardly 

visited the feeding dishes at all during the night, and thus ruffe experienced less competition 

than in the single species set-ups. Consequently, ruffe gained an additional advantage since 

they could invest more time in feeding because time needed to defend the food source was 

reduced.

Bergman (1988), in contrast, observed that the prey capture rate of ruffe decreased with 

decreasing light level, even though ruffe were less affected by changing light conditions than 

perch. The discrepancy between these results and our observations is probably due to the 

different prey organisms used in the two studies. Bergman used two mobile species as prey, 

Daphnia magna and Chaoborus obsuripes, while in the present study chironomid larvae were 

used. The chironomids had buried themselves in the sand where ruffe could easily detect them 

even in complete darkness by using their lateral line organ while gliding over the sediment 

(Gray and Best 1989, Janssen 1997). 

The fact that both species were equal competitors during the day is surprising. Based 

upon the model produced by Eiane et al. (1997), perch were expected to be the superior 

competitor during the day. Furthermore, earlier laboratory studies had shown that perch are 

more active (Bergman 1987, Bergman 1988, Savino and Kolar 1996) and have higher prey 

capture rates than ruffe under well lit conditions and at the same temperature (Bergman 1987, 

Bergman 1988). However, the high capture rates of perch in comparison to ruffe in the studies 

of Bergman might have been caused also by the readily visible prey types used in her 

experiments. Savino and Kolar (1996) and Fullerton et al. (2000), in contrast, had already 

observed that one species was not superior to the other, although Savino and Kolar (1996) 
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observed higher prey capture rates for ruffe. In addition, they measured shorter handling times 

for ruffe and observed kleptoparasitism. The aggressive behaviour of ruffe is the most likely 

reason for the lower capture rates by perch. In the present study, ruffe were more aggressive 

in the presence of perch and addressed their aggression equally to perch and to conspecifics. 

Perch, in contrast, aimed their aggression mainly at conspecifics, whereby they often 

restricted their access to the feeding dish. Frequently, the perch chased each other around the 

feeding dish; meanwhile ruffe were feeding. This kind of interference competition is probably 

less important in the field, because the daytime activity levels of ruffe were probably higher in 

our laboratory experiments than under natural conditions. Firstly, the fish had become used to 

daytime activity, since feeding and handling during acclimatisation to laboratory conditions 

was mostly conducted during the day, and secondly, the daytime activity of perch might have 

influenced ruffe activity as well. Most field studies indicate that ruffe mainly feed at night, as 

can be deduced from full stomachs in the morning and relatively scarcely filled stomachs in 

evening samples (Jamet and Lair 1991, Ogle et al. 1995). Additionally, low activity of ruffe 

during daytime was observed in Lake Constance, where ruffe were shoaling under 

footbridges, macrophytes or artificial reefs, moving very slowly if at all (A. Weber; D. 

Schleuter, personal observation). However, although agonistic behaviour in nature might be 

less pronounced compared to laboratory studies, it will still play an important role in 

competitive interactions, for example during twilight, when both species are active. In 

previous studies aggressive interactions were often neglected, but we could show the 

importance of including agonistic behaviour in the analysis of resource competition between 

perch and ruffe. 

In the Swedish lakes sampled by Bergman (1988), perch and ruffe avoided or reduced 

interspecific competition by the use of different habitats. Perch were found in the lighter, 

shallower regions of the lake, where they used the pelagic and benthic zones, whereas ruffe 

were more abundant in the darker parts of the lake where they used the benthic zone. 

Bergman (1991) and Bergman and Greenberg (1994) suggested that in turbid water ruffe 

would restrict the access of perch to the common benthic food source, and they showed that 

ruffe abundance increased with lake productivity. 

In Lake Constance both percid species live together in the littoral zone but they have 

different activity patterns (Fischer and Eckmann 1997b). Perch are active during twilight and 

during the day, whereas ruffe are active during twilight and at night. Therefore, ruffe can 

exploit food resources during the night very efficiently, while perch seem to be unable to 

catch up during day. Food consumption rates of perch during the day might, however, be 
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higher in the field than in our experiments, because the high activity of ruffe during daytime 

was probably an artefact of the laboratory conditions. However, the results of our night-

feeding treatments clearly show that ruffe have an advantage, because their interference 

competition seems to be greatly reduced due to the resting behaviour of perch during the 

night. Bergman (1987) found ruffe to be a temperature generalist in comparison to perch. This 

will play a minor role in Lake Constance, where both species co-occur in the same habitat. In 

our experiments we used 19°C, which is characteristic of the species’ habitat during the 

growing season. 

In conclusion, this study underlines the importance of considering the variability of 

environmental conditions during the diel cycle when designing laboratory studies aimed at 

analysing the behavioural mechanisms of resource competition. This is especially important 

when competitors with different sensory abilities are compared, because competitive success 

can be strongly dependent on a match between a competitor’s sensory abilities and the 

particular environmental conditions during different periods of the day. For example, the 

present results demonstrate the advantage that ruffe gain from a sensitive lateral line organ, 

which allows the fish to avoid interference competition from perch by feeding at night. In 

contrast to the Swedish lakes, where due to different habitat use of perch and ruffe 

interference and exploitative competition is reduced (Bergman 1988), in Lake Constance 

primarily interference competition is alleviated due to different activity patterns. 
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Respiration rates of Eurasian perch (Perca fluviatilis) and 

ruffe (Gymnocephalus cernuus): lower energy costs in 

groups
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ABSTRACT

The effect of group size on routine metabolic rate (RMR) and activity of the two shoaling 

percids Eurasian perch (Perca fluviatilis) and ruffe (Gymnocephalus cernuus) was studied 

using twin flow intermittent respirometry and time-lapse video techniques. In both species, 

we found a clear group effect. In isolated fish, oxygen consumption was up to two times as 

high as in groups of eight fish, with intermediate values in the groups of four fish. RMR was 

highest during twilight in both species, irrespective of group size. Perch consumed more 

oxygen and were more active during the day than during the night, whereas ruffe’s oxygen 

consumption and activity were higher during the night than during the day. With increasing 

group size, the differences between day and night decreased and the diel cycle was less 

pronounced.

Individual fish may benefit from the presence of conspecifics through a calming effect 

that reduces their energetic costs. We advise that the social behaviour of a species should be 

more thoroughly considered when planning behavioural, growth and respiration experiments. 

As bioenergetic model parameters for many species are based on data gained from isolated 

fish, we conclude that without considering group size the results of bioenergetic modelling 

may be severely biased. 
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Introduction

Environmental factors strongly impact the metabolic costs of animals (Keddy 2001). In fish, 

these impacts are widely studied through respiration measurements and the influence of 

abiotic factors such as temperature, salinity, and oxygen depletion on metabolism have been 

well described (e.g., (Hölker 2003, Ishibashi et al. 2005, Peck et al. 2005, Rao 1968). Among 

biological factors, the allometry of consumption and respiration are also well analysed (e.g., 

(Herrmann and Enders 2000, Hölker 2003, Hunt von Herbing and White 2002, Peck et al. 

2005). The influence on its metabolism of biotic factors relating to the fish’s ecology has, 

however, rarely been considered. Stress situations such as competition, inadequate habitat or 

predation risk can increase metabolic costs (Fischer 2000, Huuskonen and Karjalainen 1997, 

Keddy 2001, Woodley and Peterson 2003). Shoaling, on the other hand, can improve foraging 

success and reduce predation risk (Magurran 1990, Pitcher 1986, Pitcher and Magurran 1983) 

and thus may act as a calming, cost reducing factor (Parker 1973). 

An influence of group size on their metabolic costs has been found in several fish species 

(Itazawa et al. 1978, Klyashtorin and Salikzyanov 1981, Parker 1973, Ross et al. 1992, 

Schuett 1933, Smatresk and Herreid 1980), while it seems to be absent in others (Hölker 

2003, 2006, Konchin 1981). Irrespective of these findings, however, growth and respiration 

rates are often determined in laboratory experiments on single isolated individuals, regardless 

of the species’ social behaviour. The results obtained in these experiments may therefore not 

be representative of the species’ performance in the wild. 

Bioenergetic modeling has become an increasingly important tool with which to estimate 

fish growth or consumption, especially for the management of wild stocks, and the Wisconsin 

Model (Hanson et al. 1997) has been parameterised for an increasing number of species. 

Sensitivity analyses have demonstrated that for most species, including yellow perch (Perca

flavescens (Mitchill)), consumption and respiration parameters are decisive for the model’s 

output (Bartell et al. 1986, Horppila and Peltonen 1997, Kitchell et al. 1977). In a recent 

evaluation of bioenergetic models for yellow perch Bajer et al. (2003) found strong evidence 

of deficiencies in estimates of the metabolic rate. 

Irrespective of the sensitivity of bioenergetic model outputs to respiration parameters, and 

the potentially strong group effect on respiration, out of 32 parameter sets listed in Hanson et 

al. (1997) for different fish species and ontogenetic stages, only 25% are based on respiratory 

data gained from group experiments (Table 2.1). For solitary species like northern pike (Esox

lucius L.) respiratory experiments on a single fish are adequate, as experiments with grouped 
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fish would overestimate metabolic rates due to aggressive interactions (Wirtz and Davenport 

1976). For shoaling fish species like Coregonus spp. or Eurasian perch (P. fluviatilis L.), by 

contrast, respiration rates might be overestimated in experiments with isolated fish. Social 

behaviour can, however, change during ontogenesis. Reduced metabolic costs were found for 

example for ayu (Plecoglossus altivelis (Temminck and Schlegel)) in visual contact with 

conspecifics when they were smaller than 9 cm, but when they were larger they started to 

display aggressive behaviour and metabolic costs increased Umezawa et al. (1983). 

In experiments we conducted with Eurasian perch and ruffe (Gymnocephalus cernuus 

(L.)) we also found evidence of a group effect. In preliminary tests for behavioural 

experiments, perch displayed stressed behaviour, when only a single perch was in the aquaria. 

When small groups of four fish were used, acclimatisation time was shorter and fish appeared 

calmer. We further assumed that there is a group effect on the respiration rate of ruffe. 

Specific growth rates in laboratory experiments with groups of four ruffe (Schleuter and 

Eckmann 2006), were 3.5 times as high than in comparable experiments by Henson and 

Newman (2000), who used only single ruffe. 

In this study, we therefore focused on the effect of group size on the metabolism of these 

two shoaling freshwater fish species, Eurasian perch and ruffe. We measured respiration rates 

and activity in three different group sizes, using single, four and eight fish for both species. 

With increasing group size we expected decreasing oxygen consumption and activity through 

a calming effect. 
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Methods

The fish used in the experiments were caught in Lake Constance, Germany, with a portable, 

hand operated lift net (area: 1 m2; mesh size: 4 mm), at least two months before the 

experiments started. The fish species were kept separately in 100 L aquaria under the natural 

day-night cycle. For acclimatisation to experimental conditions, the fish were moved to the 

experimental room at least two weeks before they were used in the experiments. Until the 

experiments started they were held in 100 L aquaria under the same day-night cycle and 

temperature conditions as in the experiments and were fed with live chironomid larvae. 

Experimental set-up 

Respiration measurements were carried out in an intermittent, twin flow respirometer as 

described in detail by Fischer (2000). Two circular respiration chambers of transparent 

Plexiglas (diameter: 29 cm, height: 15 cm, respiratory volume: 9 933 mL minus the fish 

volume) were placed in parallel in a 1 000 L aquarium (1.5 m  0.5 m basedimensions) at a 

constant temperature. A barrier of black polyethylene was placed between the two chambers 

to avoid visual contact between the two experimental groups. Oxygen saturated water (100%) 

was supplied from a reservoir above the respiration chambers and the inflow into the 

chambers was regulated by computer-controlled solenoid valves. Oxygen concentration in the 

chambers was maintained between 8.6 and 8.2 mg L-1, which corresponded to saturation 

levels of 96 and 92%, respectively, at the water temperature of 19.4 ± 0.5°C (mean ± SD). 

Oxygen concentration was measured every 10 s with polarographic oxygen probes (WTW 

OXY-325). Daylight conditions were provided from 7:00 to 19:00 hours. To simulate 

twilight, the experimental room was illuminated with a dim light for half an hour before and 

after the daylight period. During the night, the chambers were illuminated by infrared lights 

(  = 910 nm) to enable 24-h video recording for activity measurements. The microprocessor 

controlling and recording oxygen, and the video recorder, were outside the experimental 

room. Thus, the experimenter had to enter the room during the experiment only once a day to 

feed the fish kept for later experiments. 

Three different group sizes of each species were tested (single, four and eight 

individuals), each in three replicates. The experiments were started in the morning. 

Experimental fish were chosen randomly from the holding aquaria, weighed and measured to 

the nearest 0.1 g and 0.1 cm, respectively. Mean total length and mass were 9.5 ± 0.3 cm 

(mean ± SD) and 7.4 ± 1.0 g in perch, and 9.2 ± 0.5 cm and 8.8 ± 1.6 g in ruffe. The mean 
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body mass of the individual fish did not differ between the groups (ANOVA: F[2, 36] = 0.521, 

p = 0.599 (perch); F[2, 36] = 0.584, p = 0.563 (ruffe)). The fish were then randomly introduced 

into one of the two respiration chambers through a gate valve in the cover. The fish were fed 

for the last time 24 h before an experiment started. The respiration of the fish was measured 

for two consecutive days: the first day was assigned as acclimatisation to the respiration 

chamber (acclimatisation day); the second day was used as measurement day to determine 

routine metabolic rate (RMR) as that of an unfed fish with spontaneous activity (Brett 1962, 

Herrmann and Enders 2000) and standard metabolic rate (SMR), defined as the minimum 

oxygen consumption for intact, absolutely quiescent, unfed fish (Fry 1971). Each fish was 

used only once in the experiments. Before and after each experiment, bacterial respiration was 

measured for at least 2 h during day and during night time for later correction of the 

respiration rates of the fish. To keep bacterial respiration low (mean bacterial respiration was 

15% of total respiration), the chambers were cleaned after each experiment with hydrochloric 

acid (10%) and all tubes were flushed with ethanol (100%) for at least 15 min. 

For activity measurements, each chamber was video-taped from below during the 

measurement day, with infrared sensitive cameras for 15 s every 16 min during twilight and 

every 32 min during day and night. The video recordings were analysed by placing a 

quadratic grid of 5  5 squares on the monitor and counting the movements between squares 

per time, in slow motion replay. A fish’s movement was counted as a transition between 

squares when both eyes had crossed a grid line. In the groups of eight fish, four fish were 

chosen randomly at the beginning of each sequence and followed individually over 15 s, 

otherwise all fish in the chamber were analysed. Due to technical problems, we could not 

analyse the night time activity data for all the replicates with eight ruffe and partly for one 

replicate each of the single and four fish set-ups of both species. 

Data analysis 

To calculate respiration rates in mgO2 kg-1 h-1, each data set was smoothed in order to 

eliminate outliers and to reduce system-induced fluctuations of the high-resolution oxygen 

measurement system (e.g., through sensor accuracy and from electrical interference through 

the power supply of the laboratory) by a running median procedure over six values (60 s), 

followed by a running mean procedure over eight values (80 s) (Fischer 2000). Based on these 

smoothed data, the decrease of oxygen concentration over time was calculated with a running 

regression analysis over eleven values, each value now representing 110 s. The respiration 

rates were finally calculated from the slopes of the regressions, corrected for bacterial 
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respiration, and standardised to milligram oxygen per kilogram fish weight per hour, and 

assigned to the median of the time base of each regression. 

The RMR and activity data were analysed for the effects of group size and phase of the 

day (day, dusk, night and dawn), separately for each species, by analysis of variance 

(ANOVA). For post hoc comparisons of the means contrast analysis (ANOVA CA) was used. 

The overall significance level was maintained by a sequential Bonferroni adjustment (Rice 

1989). In case the assumption of normality (Kolmogorov-Smirnov test) and equal variances 

(Bartlett’s test) were not met, the non-parametric Kruskal-Wallis test was applied (Bonferroni 

corrected when used as post hoc test). To test for differences in overall daily respiration 

between group sizes, we averaged their RMR over 24 h on the bases of hourly medians, 

except for the twilight conditions, where half-hourly medians were used. This test was 

computed for the acclimatisation and the measurement day. All other analyses were restricted 

to the measurement day. The effects of the time of day (day, night, dawn, dusk) and the group 

size (1, 4, 8) on RMR and activity were analysed comparing the medians of each phase of the 

day. A multiple linear regression analysis was computed to determine the dependency of the 

RMR on the activity. 

SMR was calculated after Herrmann and Enders (2000) and Hölker (2003) as the median 

of the lower 10% of the respiration rates (each covering a 110 s period after smoothing) 

observed during the measurement day of each replicate. 

For raw data processing (running mean, median, regression) and calculation of mean 

respiration rates or activities, the program SAS/IML, and for statistical analysis the program 

JMP 4.0 were used. 

Results

Group size affected both the variance and the frequency distribution of respiration rates 

throughout the measurement day (Figure 2.1). With decreasing group size, the range of 

respiration rates was broader and they were more evenly distributed. The frequency 

distribution of the respiration rates in groups of eight and four perch had a well defined 

maximum around 180 mgO2 kg-1 h-1, whereas the distribution of the single perch rates was 

broader, showing no clear peak. Maximum respiration rates were 410, 565 and 

1 150 mgO2 kg-1 h-1 for group sizes of eight, four and one perch, and 80% of the values lay 

between 109 and 228, 170 and 370, and 73 and 569 mgO2 kg-1 h-1, respectively. For ruffe, 
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relative frequencies of respiration rates were similarly influenced by group size. Groups of 

eight and four ruffe displayed clear peaks in the frequency distributions around 160 and 

200 mgO2 kg-1 h-1 and highest respiration rates were 456 and 514 mgO2 kg-1 h-1, respectively. 

For single ruffe the distribution was more variable with a less pronounced peak and a 

maximum respiration rate of 994 mgO2 kg-1 h-1. For the different groups of eight, four and one 

ruffe, 80% of the values fell between 118 and 216, 135 and 269, and 118 and 

462 mgO2 kg-1 h-1, respectively. 

Figure 2.1 Relative frequencies of respiration rates determined for sequential 110 s periods 
on the measurement day for different group sizes of A perch and B ruffe. Respiration rates 
are pooled into classes of 20 mgO2 per kilogram of fish weight per hour (i.e. 
0 to 20 mgO2 kg-1 h-1, 20 to 40 mgO2 kg-1 h-1, and so forth).

RMR averaged over 24 h differed with group size in both species (Figure 2.2). Mean 

daily oxygen consumption was always highest for the single fish and lowest, for fish in 

groups of eight. RMRs for groups of four fish were intermediate. For perch this group effect 

was significant on both the acclimatisation day (ANOVA: F[2, 6] = 9.837, p = 0.013) and the 

measurement day (ANOVA: F[2, 6] = 11.238, p = 0.009). For ruffe, by contrast, the group 

effect was most pronounced on the acclimatisation day (ANOVA: F[2, 6] = 40.246, p < 0.001), 

with the oxygen consumption of the single fish being more than twice that of a fish in the 

group of eight. On the measurement day the influence of group size on RMR averaged over 

24 h was only significant at the 10% level (ANOVA: F[2, 6] = 4.269, p = 0.070). 
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Figure 2.2 Mean ± SD routine metabolic rate 
(RMR) integrated over one day (mgO2 kg-1 h-1)
for A perch B ruffe. AD: Acclimatisation day, 
MD: Measurement day. Different letters within 
one day indicate differences of routine 
metabolic rate between group sizes (ANOVA 
CA: p < 0.05). 

For both species, RMR displayed a clear diel cycle (Figure 2.3A) and time of day 

significantly influenced RMR (Table 2.2). Independent of group size, perch RMRs were 

lower during the night than during day and twilight (ANOVA CA: p < 0.05, Table 2.2). 

Although oxygen consumption increased slightly during twilight compared to daylight 

conditions, this increase was not significant. Diel variation of ruffe RMRs, by contrast, 

depended on group size (Table 2.2). Respiration tended to be lowest during the day and 

highest during twilight, however, if the ruffe were in a group, the diel cycle was less 

pronounced. In single ruffe, the diel cycle was more pronounced than in groups of four and 

eight, and respiration during dawn was significantly higher than during the other phases of the 

day (ANOVA CA: p < 0.05, Table 2.2). 
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Table 2.2 Results of ANOVA for the effects of the four phases of the day 
(day, dusk, night, dawn), and the three group sizes (1, 4, 8) on routine 
metabolic rate (RMR; mgO2 kg-1 h-1) and activity (number of field 
changes per 15 s) during measurement day. 

Source d.f. SQ F-value P-value

Perch
Respiration

Time of day 3 161 803 9.134 0.001 
Group size 2 64 964 5.501 0.012 
Time of day  group size 6 77 782 2.195 0.084 
Residuals 21 124 002  

Activity
Time of day 3 191.161 8.524 0.001 
Group size 2 92.722 6.202 0.008 
Time of day  group size 6 166.810 3.784 0.011 
Residuals 20 149.500  

Ruffe
Respiration

Time of day 3 221 742 21.410 0.000 
Group size 2 119 380 17.290 0.000 
Time of day  group size 6 93 808 4.529 0.004 
Residuals 23 79 404  

Activity

Time of day 3 123.528 10.343 0.000 
Group size 2 292.604 36.748 0.000 
Time of day  group size 6 43.896 1.838 0.143 
Residuals 20 79.625  

The pattern of activity (field changes per 15 s) during the course of the day (Figure 2.3B) 

was similar to the pattern of the RMR. In both species, activity was significantly affected by 

group size and time of day (Table 2.2) with generally highest activity for the isolated fish 

compared to fish in groups. In perch, activity during the course of the day interacted with 

group size (Table 2.2): in single perch, activity was highest during the day and at dusk, and 

lowest during the night (ANOVA CA: p < 0.05), while dawn activity was intermediate. With 

increasing group size, activity was less variable during the course of the day. In groups of four 

perch, activity tended to be highest during twilight (ANOVA CA: p < 0.05; not significant 

after Bonferroni correction), and did not differ between day and night, while in groups of 

eight, the fish did not display a clear activity pattern. In ruffe the diel pattern of activity and 

group size did not interact (Table 2.2). Ruffe were less active during the day (ANOVA CA: 

p < 0.05) and their activity did not differ between twilight and night.  



Chapter 2  35 

A positive relationship was found between RMR and activity in both species and can be 

expressed through a linear regression (Figure 2.4). The coefficient of determination (R2) in 

perch was 0.62, while for ruffe it was 0.42. These regressions can thus only partly explain the 

effect of group size on RMR via decreasing activity. 

Figure 2.4 Regression between routine metabolic rate and activity. 
Values are based on the hourly medians of the measurement day. 
Closed circles, solid line: perch (Y = 18.88  X + 166.37; R2 = 0.62) 
open circle, dashed line: ruffe. (Y = 13.65  X + 143.90; R2 = 0.43) 

To test for effects of group size on respiration other than different activity patterns, RMR 

at low activity levels (very low activity: 0 transitions per 15 s, low activity: 1 to 5 transitions 

per 15 s) were compared between group sizes, for day and night separately. This comparison 

between different group sizes still revealed significantly lower RMRs for groups of eight fish 

(Figure 2.5). During the day, the oxygen consumption of inactive fish (activity level 0) was 

higher for the isolated fish than in groups of eight, while respiration of fish in groups of four 

was intermediate. However, these differences were only significant for ruffe, probably due to 

the small sample size of inactive solitary perch (Kruskal-Wallis test: 2
[2, 7] = 4.208, p = 0.122 

(perch); 2
[2, 9] = 8.827; p = 0.012 (ruffe)). In little active fish (activity level 1), the oxygen 

consumption for groups of eight was significantly lower compared to the single fish and the 
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group of four for both species (Kruskal-Wallis test: 2
[2, 34] = 17.286, p < 0.001 (perch); 

2
[2, 52] = 16.157; p < 0.001(ruffe)). At night this pattern changed: in little active perch the 

largest group still had the lowest RMRs, perch in the group of four, however, tended to have 

highest RMRs, and the single fish were intermediate (Kruskal-Wallis test: 2
[2, 21] = 6.803; 

p = 0.033). Although the trend was similar for inactive perch, group size did not influence 

respiration significantly (Kruskal-Wallis test: 2
[2, 30] = 4.046, p = 0.132). There are no data for 

ruffe during night, because they were more active during darkness (Figure 2.3B) and thus low 

activity levels were rarely observed. 

Figure 2.5 Mean ± SD of hourly based routine metabolic rates for different group sizes 
at the activity level 0 (very low movement, 0 grid line transitions) and the activity level 
1 (low movement, 1-5 grid line transitions): A perch day B perch night C ruffe day D
ruffe night. Different letters within one activity level indicate differences between 
RMRs of different group sizes within one day (Kruskal-Wallis test: p < 0.05).

SMR, the minimum oxygen consumption of an absolutely quiescent, fish, was 

36 ± 2 mgO2 kg-1 h-1 (mean ± SD) for perch and 90 ± 59 mgO2 kg-1 h-1 for ruffe. SMR was 

derived from the experiments with single fish, because in the experiments with groups of fish 
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respiration rates measured were higher and thus not representative of SMR (perch: 154 ± 40 

and 96 ± 67 mg O2 kg-1 h-1 for group sizes 4 and 8; ruffe: 118 ± 54 and 108 ± 11 mgO2 kg-1 h-1

for group sizes 4 and 8). We hold a methodological bias responsible for this result: With more 

fish in the chamber the probability that all fish are absolutely motionless at the same time 

decreases.

Discussion

We found a clear effect of group size on RMR and activity of juvenile perch and ruffe. For 

both species weight-specific RMR and activity decreased with increasing group size. In 

isolated fish, metabolic costs were up to two times higher than in groups of eight fish. This 

confirms the results of Geyer and Mann (1939) who found reduced metabolic rates when 

placing three perch instead of one in a respiratory chamber. We also demonstrated that this 

decrease of RMRs is partly caused by decreased activity in groups and, additionally, we found 

evidence of a calming effect. Decreasing activity with increasing group size was observed by 

Schleuter (2002), who studied the activity of juvenile perch in groups of 10, 20 and 40 fish in 

laboratory experiments and the calming effect of group size on respiration rates and activity is 

also known from other species (respiration: Itazawa et al. 1978, Parker 1973, Ross et al. 1992, 

Schuett 1933, Umezawa et al. 1983; activity: Anras et al. 1997, Fitzsimmons and Warburton 

1992). In our study, respiration was positively correlated with activity, suggesting that the 

individual fish could benefit from the presence of conspecifics through a calming effect that 

reduced activity and energetic costs. 

Decreased RMRs can, however, only partly be explained by decreased activity (R2 perch: 

0.62, ruffe: 0.42), so an additional ‘psychological’, calming effect seems to exist. Shlaifer 

(1939) attributed higher rates of oxygen consumption in isolated fish to ‘psychic unrest’. 

Parker (1973) quoted this term and was the first to describe the soothing effect of groups as a 

‘calming effect’. As individuals in groups are less vulnerable to predators (Magurran 1990, 

Pitcher 1986), sedation through the presence of conspecifics is reasonable. As early as 1934, 

Welty observed, in experiments on group behaviour in fish, that the group had a quietening 

effect on the individuals. Fright reactions were more common among isolated fish, while fish 

in groups moved more quietly. In field experiments, sea bass (Dicentrarchus labrax L.) not 

only decreased their activity when in groups, but switched from nocturnal to daytime activity 

(Anras et al. 1997). The foraging during darkness of a single fish can be explained by predator 
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avoidance behaviour, while grouped fish could calmly forage during daylight. In the 

experiments done by Fischer (2000), demersal burbot (Lota lota (L.)), which were not able to 

hide in adequate substrate and were thus more exposed to potential, but not actually present, 

predators, had elevated oxygen consumption rates and, as in our study, oxygen consumption 

rates were elevated independently from activity. 

Several results in our study emphasise the ‘psychological’ calming effect of groups. First, 

differences in RMRs between different sized groups were more distinct during acclimatisation 

than on the RMR day. Especially in ruffe, oxygen consumption on the acclimatisation day 

was elevated more for single and four group fish, while that of eight group fish remained 

rather similar. This agrees with the findings of Klyashtorin and Salikzyanov (1981) and 

indicates that stress situations, such as handling and new environments, seem to be better 

overcome in company. Second, in our experiments, the group effect was still present within a 

given activity level during daytime, indicating that activity is not the only determinant of 

respiration. During darkness, however, this group effect did not follow the daytime pattern in 

perch, as fish in groups of four had the highest RMRs. As it is known for other fish (Shlaifer 

1939, Umezawa et al. 1983), the group effect in perch seemed to be induced by visual contact 

with conspecifics. Field data on the behaviour of perch confirm that perch form shoals during 

twilight and daytime, but during darkness shoals break up and fish rest on the bottom 

(Imbrock et al. 1996). For ruffe we cannot confirm the need for visual contact for a group 

effect at a given activity level, as the fish were mostly active during night time. Nevertheless, 

we do assume that visual contact is not essential for ruffe because of their very sensitive 

lateral line organ (Gray and Best 1989, Jansen et al. 2002). Third, the frequency distribution 

of respiration rates was broader and more evenly distributed in the single fish than in groups 

of fish, which displayed a nearly dome-shaped frequency distribution at a comparatively low 

level, and the diel cycle (variability within the course of the day) was more pronounced in the 

single fish. The high variability and the washy pattern in the frequency distributions are 

regarded as evidence of anxious behaviour. 

The impact of group size on RMR and activity was already recognised in the 1930s, and 

studies on group effects were resumed at the end of the 1970s and the beginning of the 1980s. 

Astonishingly, following behavioural and growth experiments, as well as bioenergetics 

measurements, were still performed on single isolated fish in many cases (Table 2.1), which 

can give misleading results. Anras et al. (1997) concluded from their experiments, that it is 

almost impossible to use data gained from isolated individuals as input parameters for 

bioenergetics models, which are usually applied to model growth or consumption of fish in 
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groups and populations. Nevertheless, the respiration parameter values used in 75% of the 

parameter sets listed by Hanson et al. (1997) for the Wisconsin model are derived from 

isolated fish (Table 2.1). In circa 50% RMR was measured, the metabolic rate for which a 

potential group effect is relevant. In these cases, respiration might be overestimated. As 

bioenergetic model outputs are very sensitive to the respiration parameters in many species 

(Bartell et al. 1986, Horppila and Peltonen 1997, Kitchell et al. 1977, Madenjian et al. 2006), 

the resulting growth or consumption estimates may be severely flawed. The input parameter 

set for yellow perch listed in Hanson et al. (1997) was derived from Kitchell et al. (1977), 

who in turn based their model on the respiration measurements of Solomon and Brafield 

(1972) using isolated Eurasian perch. 

With the basic form of the respiration function of this model we calculated the oxygen 

consumption for perch with our experimental conditions. The calculated oxygen consumption 

of 262 mgO2 kg-1 h-1 exceeds the RMRs we measured for perch in groups of eight fish 

(182 mgO2 kg-1 h-1), that is by 44%. It was, however, similar to the rates measured with four 

perch (272 mgO2 kg-1 h-1) and lower than those measured with isolated perch 

(318 mgO2 kg-1 h-1). Following the model adjustment approach of Madenjian et al. (2006), we 

changed RA (intercept of respiration model) to fit measured and modelled RMRs. To adjust 

the modelled respiration rates to the respiration rates measured with eight perch, we had to 

reduce the value of RA from 0.0108 to 0.0074. Comparing now weight gain modelled with 

the common and the revised model for perch (duration: 30 days, body mass: 7.4 g, 

temperature: 19.4°C, prey energy density: 2 213 J g-1 wet weight) results in a underestimation 

of growth by 17% with the common model. The respiratory data in our group experiments 

may, however, still overestimate respiration in the wild under more natural conditions. 

 In addition to reduced oxygen consumption, the calming effect of groups should also 

be reflected in higher growth rates as more energy can be invested in biomass. The higher 

growth rates of ruffe found by Schleuter and Eckmann (2006) in experiments with groups of 

four as compared to Henson and Newman (2000), who used isolated fish, can thus at least 

partly be explained by the lower RMRs we found for ruffe in groups. 

 In our experiments we could confirm the group effect on RMR and activity for perch 

already shown by Geyer and Mann (1939), and we have demonstrated it for the first time for 

ruffe. We conclude that without considering potential group effects on physiological 

functions, the results of bioenergetics modelling and growth experiments may be severely 

biased. Social fish like perch and ruffe should be studied in groups. For solitary fish species, 

however, respiration rates may increase in groups (Wirtz and Davenport 1976). Preliminary 
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experiments are therefore essential to built up bioenergetics models that best reflect the social 

and ecological characteristics and preferences of the species studied. 
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Predation effects of the two competitive fish species 

Eurasian perch and ruffe on littoral benthic communities: 

the influence of study site and competition 

DIANA SCHLEUTER AND NICOLE SCHEIFHACKEN

ABSTRACT

In enclosure experiments we analysed the predation effects of perch and ruffe on benthic 

communities at two different sites of Lake Constance. We found strong effects of site and 

sampling date on benthos abundances and composition, but only weak predation effects. 

Benthos abundances and stomach fullness of perch and ruffe were higher at the exposed site 

with stony substrate compared to the more protected site with finer sediments. Differences in 

the benthic community structure were reflected in the composition of the fish diet. However, 

temporal benthic changes were not related to fish enclosure, and abundances were partly 

higher at the end of the experiment. We hold strong inherent processes, and a general low 

availability of benthic organisms to fish predators responsible for the weak predation effects 

observed.

Fish competition was tested through single and mixed species stocking. With interspecific 

competition, niche overlap of the two species decreased significantly at both sites. The 

influence of competition on stomach fullness, however, depended on the study site. At the 

sheltered site with more limited food resources, intraspecific competition was as strong as 

interspecific competition in both species. At the exposed site with higher benthos abundances, 

ruffe was the superior competitor. 
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Introduction

The effects of fish predation on macrobenthic communities are widely studied in freshwater 

systems. However, most studies refer on lotic systems, while studies on lentic systems are 

surprisingly rare and the results and conclusions drawn from these studies differ strongly. 

Some authors observed clear effects of predation (Crowder and Cooper 1982, Diehl 1995, 

Mittelbach 1988) while no top-down control was found by others (Baumgärtner and 

Rothhaupt 2005, Hanson and Leggett 1986, Thorpe and Bergey 1981). In some studies 

authors concluded variable predation effects, dependent on the macroinvertebrate taxa and 

size, sampling dates, presence or absence of macrophytes or predator species and density 

(Cobb and Watzin 1998, Gilinsky 1984, Hershey 1985, Macchiusi and Baker 1991, Persson 

and Svensson 2006). 

Various reasons for these controversial results have been proposed. Prey availability 

could be the main factor that influences predator success (Boisclair and Leggett 1985). It can 

be altered by habitat complexity through lower perception of prey organisms or restricted 

manoeuvrability of predators in vegetation stands (Crowder and Cooper 1982, Diehl 1992, 

Gilinsky 1984). Further, in response to chemical cues released by potential predators, the 

behaviour, morphology, and even life history traits of invertebrates can change and result in 

lower availability (Arnqvist and Johansson 1998, Baumgärtner et al. 2003, Crowl and Covich 

1990, Hölker and Stief 2005, Kolar et al. 2002). 

In addition to food availability, competition between predators can also influence diet 

composition and consumption rates (Bergman and Greenberg 1994, Bonesi et al. 2004, 

Hanson and Leggett 1986, Schleuter and Eckmann 2006). In Lake Constance, Eurasian perch 

(Perca fluviatilis L.) and the invasive fish species ruffe (Gymnocephalus cernuus (L.)), are 

common littoral fish species (Fischer and Eckmann 1997a, Reyjol et al. 2005) which are 

assumed to be competitors for macrozoobenthos (Bergman 1991, Bergman and Greenberg 

1994, Fullerton et al. 1998). Various aspects of intraspecific and interspecific competition for 

food of Eurasian perch or its sister species yellow perch (Perca flavescens (Mitchill)), 

respectively, and ruffe have been evaluated in several laboratory studies (Bergman and 

Greenberg 1994, Dieterich et al. 2004a, Dieterich et al. 2004b, Fullerton and Lamberti 2006, 

Fullerton et al. 1998, Fullerton et al. 2000, Savino and Kolar 1996, Schleuter and Eckmann 

2006). Dieterich et al. (2004a, b), for instance, focused on the influence of competition and 

food availability on food consumption over different substrate types. The authors concluded 

that under natural conditions with limited food resources, ruffe would forage efficiently over 
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fine sediments and perch over coarse sediments. Fullerton et al. (1998) conducted 

experiments on the influence of competition on prey selection. They found that compared to 

the single species treatments, the diet of fish was more diveres in the mixed species 

treatments. 

In the present study, we analysed the predatory impact of these two competitive fish 

species on the littoral benthic community of Lake Constance, a large, oligotrophic pre-alpine 

lake. As the littoral is very diverse and differs strongly between sites, we chose two 

contrasting study sites with differences in shore morphology, substrate types, and wind and 

wave exposure. We further focused on the influence of the different study sites on the 

competition between perch and ruffe. We hypothesised, that i. benthic communities are top-

down controlled, and expected alterations in size structure and community composition as a 

result of predatory impact, ii. we assumed fish predation to be influenced by competitive 

interactions and that iii. both, predatory impact and competitive interactions are influenced by 

study sites with different wave exposure. 

Methods

Study site 

The experiments were conducted in Upper Lake Constance, a large, oligotrophic (8 μg P L-1

during spring circulation) pre-alpine lake in central Europe (surface: 473 km2, mean depth: 

101 m, maximum depth: 254 m, shoreline: 186 km). Westerly winds prevail throughout the 

year, with a second less-dominant peak of easterly winds especially in winter (Bäuerle et al. 

1998). The littoral zone in Lake Constance is defined as the area of the shore with a maximum 

depth of 10 m and is restricted to less than 10% of the total lake area (Wessels 1998). It varies 

greatly, e.g., in width, slope, sediment composition, and wind exposure. We chose two 

representative, contrasting study sites: Site 1 (sheltered) near Konstanz (Litoralgarten 

47°41’26.7’’N, 9°12’18.4’’E) on the south western shore is more sheltered against wind and 

ferry- and leisure-boat-induced waves owing to its geomorphologic structure and slope; the 

littoral zone is broad, strong wind events are rare, and the substrate consists of cobble stones 

loosely embedded within fine sediments with a sparse macrophyte-cover of Chara spp. and is 

thus quite heterogeneous (Schmieder et al. 2004). Site 2 (exposed) near Meersburg 

(47°41’37.3’’N, 9°16’11.7’’E) on the north eastern shore is highly exposed to westerly winds 

and ferry- and leisure-boat-induced waves (Bäuerle et al. 1998). The shore is narrow, the 
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substrate is homogenous and consists of coarse stones, and macrophytes are lacking above 

5 m (Schmieder et al. 2004).  

Experimental design 

The experimental design involved two factors with two levels each, fish species (perch and 

ruffe) and competition (interspecific and intraspecific) plus a control treatment without fish. 

Three cages each were stocked with either perch or ruffe, both species or no fish (control), i.e. 

12 cages were randomly deployed in a block design. The littoral benthic community in Lake 

Constance fluctuates strongly on small time scales (Baumgärtner and Rothhaupt 2005, 

Scheifhacken et al. in press). To keep those time effects low, cages were only deployed for 

one week at each site (July 2004). To ensure a high predation pressure despite the short 

exposure time, we used high fish densities (12.5 fish per m2), i.e. 10 perch or 10 ruffe or 5 

perch plus 5 ruffe per cage. This density is similar to that used by Gilinsky (1984) as high 

density treatment (10 fish m-2) and exceeds natural fish densities in the littoral of Lake 

Constance, which range from 0 to 4.6 fish m-2 (S. Stoll, unpublished data). Thus, we could 

expect predatory impacts on the benthic community and competitive interaction between the 

fish stocked. 

Each cage consisted of a steel frame (1.0  0.8  0.4 m) covered with 0.8-mm mesh 

gauze, which allowed water to flow through the cage, but prevented large- and medium-sized 

macroinvertebrates and fish to enter or leave. The bottom was open to allow fish access to the 

sediment. The top cover could be opened for benthos sampling and fish removal, and had an 

additional opening with bayonet coupling (18 cm diameter) for fish stocking. The cages were 

set by scuba divers at a water depth of 1.0 m along a transect, with 1.5 m between the cages. 

At this depth cages were not exposed through water level fluctuations and the water column 

was entirely mixed. The cages were anchored in the sediment with 40 cm pegs at each corner. 

The bottom edges were sealed with sand-filled sacks of 90 cm length and 20 cm diameter 

placed on the outside and covered with pebbles. Before fish were introduced into the cages, 

divers sampled benthos (see next section) and removed any fish or crayfish from the cage 

bottom with a dip net; the top cover was then immediately closed. Minor perturbations of 

benthos by divers are likely, but all cages were treated alike, and fast resettlement and 

uniform redistribution within cages was visually observed. 
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Benthos

Benthos was quantitatively sampled (25  25 cm, Ao = 625 cm2) by scuba divers using a 

suction sampling device as developed and described by Baumgärtner (2004) and Mörtl 

(2003). All substrates or macrophytes within the sample frame were transferred into a hand 

net (200 μm) while the pump ran continuously. This minimised the escape of mobile 

organisms and allowed further sampling of the upper fine sediment layer. Invertebrates and 

suspended sediment were retained within a filter inlet (200 μm) and then added to the hard 

substrate fraction. Benthos in the cages was sampled immediately before fish were introduced 

into the cages. The sampled area was covered with concrete stones to mark the position and 

compensate for substrate removal. Benthos was re-sampled at the end of the experiment after 

fish removal. Benthos outside of the cages at the same depth stratum was sampled 

additionally at the end of the experiment to detect natural predation pressure. 

All samples were brought to the laboratory and processed immediately. Coarse stones 

were carefully brushed and rinsed within a bowl (200 μm) to remove attached invertebrates, 

which were stored in 70% ethanol. Fine sediments were repeatedly floated to suspend all 

invertebrates in the water column. Invertebrates were identified to the species level when 

possible or to the nearest taxonomic level using a dissection microscope (10  magnification), 

counted, and classified into three size classes (small, medium, and large) according to values 

of (Baumgärtner and Rothhaupt 2003) and standard determination literature. Values of 

unlisted taxa were based on our own extensive length/dry mass calculations, conforming to 

their methods. 

Fish

The perch (8.5 ± 0.6 cm, mean ± SD) and ruffe (8.0 ± 0.9 cm) used in this study were caught 

in Lake Constance with a hand lift net nine months before the experiments started and held in 

300 L aquaria under a natural day/night cycle. At least two weeks before the experiment 

started, the fish were transferred to 500 L outdoor tanks for acclimatisation to natural light 

intensities.  

Cages were stocked with fish by gently placing the fish into a Plexiglas tube that 

protruded the water surface and was docked to the additional opening in the top cover. The 

fish immediately swam downwards into the cage. The tube was removed, and the opening 

was sealed with a cap. At the end of the experiment, fish were removed late in the morning to 

ensure that the visual predator perch had time to feed and that the food ingested by ruffe 

during the night still remained in the stomach (D. Schleuter, personal observation). A frame 
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with a 4-mm mesh net was placed around the cage. The top of the cage was opened, and the 

fish were removed by electro fishing. The fish were anaesthetised with a lethal concentration 

of 1,1,1-trichloro-2-methyl-2-propanol-hemihydrate (2 g L-1). Formalin (10%) was injected 

into the body cavity to conserve the stomach contents; the fish were then stored in 4% 

formalin. In the laboratory, stomachs were removed and prey items were identified to the 

family or genus level. Insect larvae and amphipods were grouped into three size classes as 

described above. For the calculation of the stomach fullness (dry mass of stomach content 

(mg)/wet mass of fish (g)) dry mass of prey organisms was calculated using length dry mass 

regressions of (Baumgärtner and Rothhaupt 2003). Calculations for unlisted taxa were based 

on our own extensive length/dry mass calculations, conforming to their methods. For 

Dikerogammarus villosus we calculated the length/dry mass regression y = 0.0016  x3.2441

(R2 = 0.98), with y = dry-weight and x = body-length. For the leech Erpobdella spp. we 

determined the dry weight for the three size classes (big = 0.0098 g, medium = 0.0035 g, 

small = 0.0011 g). 

Data analysis 

Total benthos abundance, taxa density, diversity parameters, dominant taxa abundances, and 

size classes were examined with repeated measurement MANOVA, with site and treatment as 

factors (Bonferroni corrected). Variances were stabilised with log(x+1) transformation and 

tested for homogeneity with the Levene test. Tukey HSD post hoc tests were applied when 

significant effects were detected. For all multivariate calculations, the statistical package 

SPSS 13.0 was used. 

Predation effects on benthos community composition and fish stomach contents were 

examined with non-metric multidimensional scaling (nMDS) using the PRIMER 6b software 

package (Clarke and Warwick 2001). Benthos data were log(x+1) transformed to enhance the 

contribution of less-abundant taxa to overall community composition. Benthos from stomach 

contents, however, were computed as original data because the same order of magnitude was 

found in all samples (Clarke and Warwick 2001). Data were displayed in nMDS plots using 

the Bray-Curtis index for sample similarity calculations. A priori defined groups (site, 

treatment, and for benthos samples, also date) were tested with ANOSIM permutation 

statistics against random distribution. Species contribution was analysed using the SIMPER 

routine. The BVSTEP procedure was used to detect the influential prey items in stomach 

contents. With this procedure, the smallest possible species subset was determined whose 
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Bray-Curtis similarity matrix correlates at least at  = 0.95 (Spearman correlation coefficient) 

with the similarity matrix for the full set of species. 

Stomach fullness within sites was compared with one-way ANOVA and Tukey HSD post 

hoc tests (Program JMP 4.0), if the criteria of equal variances and normal distributions could 

be met with log(x+1) transformation. Otherwise, the Kruskal-Wallis test was utilised. Sites 

were compared using the t-test or the Kruskal-Wallis test. 

The selectivity of fish for prey items was calculated using Strauss’ preference index 

(Strauss 1979): Li = di-ei, where di is the ratio of food type i in the diet and ei the ratio in the 

environment. Negative values represent avoidance or inaccessibility, whereas positive values 

indicate preference for a prey type. 

Table 3.1. Species contribution to benthos community composition and 
average similarity between samples at Site 1 and Site 2 per sampling unit 
(25  25 cm). The Simper routine in PRIMER was used. SD standard
deviation, cut off by >90%. 

Species
Average

abundance
N

Average
similarity

(%)

SD Contribution

(%)

Site 1 (sheltered) – Litoralgarten, Konstanz 

Chironominae  597.3 23.5 2.3 47.8 
Chironomidae spec. 266.6 7.2 1.2 14.6 
Tinodes waeneri 97.6 5.9 0.9 12.0 
Tanypodinae 95.3 3.4 1.5 6.9 
Ostracoda 145.1 2.5 0.8 5.0 
Orthocladiinae 60.2 2.4 1.4 5.0 

           Site 2 (exposed) – Meersburg 

Chironominae  1 324.2 39.7 7.8 50.1 
Chironomidae spec. 499.2 13.8 5.0 17.5 
Tinodes waeneri 450.1 11.6 3.3 14.6 
Tanypodinae 188.9 4.5 2.3 5.6 
Ostracoda 161.6 4.0 1.9 5.1 

Results

Benthos communities 

The total benthic community abundance (mean ± SE per sample unit) pooled over both 

sampling dates and all sites was 4 594 (± 398) (range from 921 to 18 942) individuals. The 

number of taxa was 19 ± 0.4 (mean ± SE) out of a total of 47 species or higher taxonomic 

groups. The most abundant taxa were small non-definable Chironomidae larvae (795 ± 86), 
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followed by older larval stages of Chironominae (524 ± 59), Trichoptera Tinodes waeneri

(298 ± 33), Ephemeroptera Caenis spp. (105 ± 13), Oligochaeta (100 ± 16), Orthocladiinae 

(84 ± 9), Ostracoda (81 ± 27), Gammarus spp. (57 ± 10), Tanypodinae (56 ± 13), Dreissena 

polymorpha (19 ± 4), and Dikerogammarus villosus (19 ± 4) (Table 3.1, Figure 3.1). Benthic 

Cladocera (309 ± 71) were only counted at Site 1, after recognising this taxon from stomach 

contents of perch and ruffe as an unexpected important food source. As a trend, lower 

abundances of benthic Cladocera were found at Site 2, but quantification for Site 2 was not 

possible hereafter. However, the rank order of most of the taxa differed between sites and 

sampling dates. A variety of insect larvae, mainly of caddisflies and mayflies, and other 

invertebrates such as snails and leeches also regularly occurred, but in low numbers. 

Figure 3.1 Proportion of the main 
prey types by number found in fish 
stomachs and in the benthic 
community (overall average). A
Site 1 (protected), Litoralgarten, 
Konstanz B Site 2 (exposed), 
Meersburg. P perch, R ruffe. 

We found strong effects of site and sampling date (beginning/end of experiment) on 

benthos abundance, number of taxa, diversity parameters (except evenness) and benthos 

community composition, but only weak predation effects (Table 3.2, Figure 3.2). 
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Abundances of most taxa were significantly lower at the sheltered Site 1 than at the 

exposed Site 2 (Table 3.2). Exceptions were Ostracoda, Ephemeroptera without Caenis spp., 

Tanypodinae, and medium-sized Chironominae, which had significantly higher abundances at 

Site 1. Benthos community composition also showed clear site differences (Global R = 0.748, 

p < 0.001) compared to random distribution (range -0.12 to 0.24) (Figure 3.2A). The 

variability between samples was considerably higher at Site 1 than at Site 2 and average 

similarity between all samples was lower at Site 1 (49%) than at Site 2 (79%). Comparison of 

the two sites revealed a dissimilarity of 37% on average. Chironominae contributed 48% of 

total abundances at Site 1 and 50% at Site 2 (Figure 3.1), but total abundance was twice as 

high at Site 2 (Table 3.1). 

Surprisingly, abundances were generally higher at the end than at the beginning of the 

experiment, mainly due to non-definable Chironomidae (small), Caenis spp. (small, sum), and 

zebra mussel Dreissena polymorpha (small, sum) (Table 3.2). Significantly lower abundances 

on the second sampling date were only found for Tinodes waeneri (small), Dikerogammarus 

villosus (small), Caenis spp. (large), and Orthocladiinae (small). Differences of the benthos 

community composition were also significant between sampling dates at Site 1 (sheltered) 

and Site 2 (exposed), but weak (R = 0.324 and R = 0.366, respectively, both p < 0.001, 

treatment data pooled) compared to random distribution (range -0.12 to 0.24) (Figure 3.2A). 

Significant treatment effects (Table 3.2, rmMANOVA) were only found for two taxa. 

Small non-definable Chironomidae (cageless control/cage control p = 0.027) had higher 

values in cageless control samples. Large individuals of Tinodes waeneri showed significantly 

higher abundances in the cages stocked with only perch than in the mixed species cages 

(p = 0.003), the unstocked cages (p = 0.019), and the cageless controls (p = 0.005), but hardly 

in the cages stocked with only ruffe (p = 0.067). Significant treatment by site or treatment by 

date interactions were found for only few taxa within specific size classes: T. waeneri (large),

Caenis spp. (medium), Tanypodinae (all sizes), Orthocladiinae (small), Chironomidae non-

definable (small), Chironominae (large), and Ephemeroptera with and without Caenis spp. 

(Table 3.2). Treatment effects based on the benthic community composition were also tested, 

but separately for each site and date (Figure 3.2B, C). However, none of the combinations 

showed any effect compared to random distribution at both sites (Site 1, Site 2: Global 

R = 0.214, R = 0.222, range of random distribution -0.30 to 0.30 Site 1; -0.30 to 0.35 Site 2). 
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Figure 3.2 nMDS of benthos community composition based on abundance data. A
Sites 1 (sheltered) and Site 2 (exposed) combined. Site and sampling date are highlighted 
B Site 1, Litoralgarten, Konstanz C Site 2, Meersburg. In B and C treatments are 
highlighted separately. In A to C, sampling dates are indicated as follows: filled symbols, 
experimental start; open symbols, end of the experiment; open circle: control (outside 
cage at the end of experiment). All data are log(x+1) transformed and standardised to unit 
N; the Bray-Curtis similarity index was applied. 
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Table 3.2 Results of repeated-measurement MANOVA on total benthos abundance, number of taxa, 
diversity and dominant taxa (sum), including three size classes of most taxa. All data were log(x+1) 
transformed, except taxa and diversity. S1 Site 1 (sheltered), Litoralgarten, Konstanz; S2 Site 2 
(exposed), Meersburg; D1 experimental start, week 1, D2 experimental end, week 2. Categories: C
unstocked cages, N external controls, R ruffe only, P perch only, M (mixed) perch and ruffe together. 
Only significant results (p < 0.05) are shown. Values of the taxa sum are printed in bold. 
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Abundance N  0.007       S1<S2 
Number of taxa S  <0.00 0.001 S1<S2 
Species richness  D  0.003 <0.00 S1<S2 
Shannon diversity H'loge <0.00 0.002 0.019 S1<S2; 
Pielou’s evenness J' 0.045 0.007 D1<D2 
     
Chironominae sum    
 large  0.027 0.004 <0.00 S1<S2  
 medium  0.002 S2<S1  
 small  0.029   
Orthocladiinae sum  <0.00 S1<S2  
 small 0.019 <0.00 0.035 0.033 S1<S2;  
Tanypodinae sum  <0.00 S2<S1  
 large  0.007 0.009   
 medium  <0.00 S2<S1  
 small  <0.00 0.013 0.031 S2<S1  
Chironomidae spp. sum 0.017 <0.00 S1<S2;  
 small 0.009 <0.00 0.032 0.018 0.041 0.030 0.013 S1<S2; C<N p=0.027 
Tinodes waeneri sum 0.009 0.000 0.010 S1<S2;  
 large  <0.00 0.003 0.013 S1<S2 M=N=C=R<R=P 
 medium  <0.00 S1<S2  
 small 0.003 <0.00 0.015 0.037 S1<S2;  
Trichoptera excl. Tinodes sum 0.015 0.004 0.009 S1<S2;  
Caenis spp. sum <0.00 <0.00 0.050 0.009 S1<S2;  
 large 0.002 <0.00 0.001 S1<S2;  
 medium  0.025 0.003 0.021 0.019 0.025 S1<S2  
 small <0.00 <0.00 0.017 S1<S2;  
Ephemeroptera excl. sum 0.013 <0.00 0.001 0.048 S2>S1;  
Dreissena polymorpha sum <0.00 <0.00 S1<S2;  
 large    
 medium <0.00 S1<S2  
 small <0.00 0.002 0.004 S1<S2;  
Gastropoda sum 0.001 S1<S2  
Dikerogammarus villosus sum    
 large  0.001 S1<S2  
 medium  <0.00 S1<S2  
 small 0.033 D2<D1  
Gammarus spp. small 0.021 0.045 S1<S2; 
Oligochaeta sum  <0.00 S1<S2  
 large  <0.00 S1<S2  
Ostracoda sum 0.003 0.001       S2<S1;  
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Fish

Despite adverse conditions, due to waves from ferry and leisure-boat traffic (especially at the 

exposed Site 2) and the high water turbidity at the sheltered Site 1 caused by the fine 

sediments the overall recapture rate was high, with the recapture success lower at Site 1 

(perch: 58%; ruffe: 38%) than at Site 2 (perch: 73%; ruffe: 73%). Especially at Site 1 fish 

could barely be seen, and the escape of some fish could not be prevented. After three 

sampling rounds electrofishing was stopped. During the experiment at Site 2, one cage 

stocked with both species was lifted by a storm so that the bottom edges were not completely 

sealed during the remaining days. Only two perch and one ruffe were recaptured, along with 

two eels that had invaded the cage. This cage was excluded from further analysis.  

At Site 1 (sheltered), perch and ruffe preyed mainly on small Gammaridae, benthic 

Cladocera, and Chironomidae (percentage composition by number: single species/mixed 

species: perch 96/96%, ruffe 87/90%) (Figure 3.1A). With interspecific competition, the 

proportion of benthic Cladocera in the diet of perch was higher (60% compared to 44%) and 

the proportion of small Gammaridae was lower (20% compared to 33%). For ruffe, in 

contrast, the proportion of Cladocera was higher with intraspecific competition (49% 

compared to 6%) and the proportion of small Gammaridae was lower (61% compared to 

14%).

At Site 2 (exposed), both fish species preyed on types similar to those at Site 1 

(Figure 3.1B). Perch preyed mainly on small Gammaridae, benthic Cladocera, and 

Chironomidae (single species/mixed species: 94/89%). For ruffe, Trichoptera (22/20%) 

contribute next to Gammaridae, benthic Cladocera and Chironomidae to the main prey types 

(91/90%). Both species ingested a higher proportion of insect larvae at Site 2. Especially in 

the single species cages, more Chironomidae were consumed (Site 1/Site 2: perch: 18/37%; 

ruffe: 24/39%). The proportion of Ephemeroptera ingested was only slightly higher (up to 5% 

for both species). Perch consumed also a slightly higher proportion of Trichoptera at Site 2 

(up to 4%), but ruffe consumed up to 15% more Trichoptera (ruffe single/mixed: Site 1: 

6/7%; Site 2: 22/20%). However, differences between sites were only significant for ruffe in 

the single species treatment (ANOSIM: Global R = 0.233, p = 0.001). 

In the single species treatments stomach contents of perch and ruffe did not differ 

(ANOSIM: Global R = 0.125; sample range -0.08 to 0.10; Site 1: R = 0.018; Site 2: 

R = 0.097) (Figure 3.3A, B), but did differ in the mixed species treatments (ANOSIM: Global 

R = 0.243, sample range -0.16 to 0.22; Site 1 R = 0.374, p = 0.009; Site 2 R = 0.275, 

p = 0.024). The nMDS plot clearly divided perch and ruffe into two separate groups at both 
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sites, even though the variability of stomach contents within species was very high 

(Figure 3.3C, D). The high variability was also reflected in the relatively low Global R values. 

However, when we removed the ruffe individual that did not consume small Gammaridae at 

Site 1 (marked with an asterisk in Figure 3.3C) from the analysis, the ANOSIM results were 

far more pronounced (Global R = 0.846, p = 0.001). At Site 1 Gammaridae and benthic 

Cladocera were found to be mainly responsible for the differences in the mixed species 

treatment (BVSTEP:  = 0.973, p = 0.001). At Site 2, food items of different size classes 

caused the differences in stomach contents (BVSTEP:  = 0.955, p = 0.001). Perch fed more 

on Gammaridae, benthic Cladocera, and small Trichoptera. Ruffe, in contrast, consumed more 

Chironomidae, especially of medium- and large-size classes, and medium-sized Trichoptera. 

Figure 3.3 nMDS plots of abundance of each prey type in the different size classes in the fish 
stomachs. The Bray-Curtis similarity index was applied. A Site 1 (sheltered), Litoralgarten, 
Konstanz, single species B Site 2 (exposed), Meersburg, single species C Site 1, Litoralgarten, 
Konstanz, mixed species D Site 2, Meersburg, mixed species. * in C marks the outlying data point 
of the ruffe stomach contents. 

Stomach fullness as a proportion of body weight also differed between species and sites 

(Figure 3.4). At the sheltered Site 1, stomach content was low for all fish and there were no 

differences between species and treatments (Kruskal-Wallis: df = 3, 2 = 1.091, p = 0.779). At 

the exposed Site 2, stomach fullness differed between species and treatments (ANOVA 
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df = 3, F-value = 4.327, p = 0.008). The stomach fullness of perch and ruffe did not differ in 

the single species treatments. However, in the mixed species treatments, the stomach fullness 

of perch was significantly lower than that of ruffe (p < 0.05). The stomach fullness of perch 

tended to decrease and that of ruffe to increase from the single to the mixed species treatment, 

but this result was not significant (p > 0.05). Significant differences in stomach fullness 

between the two sites were only detected for ruffe (single species: Krukal-Wallis, p = 0.012; 

mixed species: t-test = 0.015). 

Figure 3.4 Median ± upper and lower 
quartile of the dry weight of the stomach 
contents relative to wet body weight. 

perch single species,  perch mixed 
species,  ruffe single species,   ruffe 
mixed species. Site 1 (sheltered): 
Litoralgarten, Konstanz; Site 2 (exposed): 
Meersburg.

Strauss’ selectivity index indicated in most cases an indifferent feeding of both species on 

specific prey organisms (Table 3.3). However, at both sites, ruffe and perch avoided small 

insect larvae in all cages (range: -0.21 to -0.59). At Site 1 (sheltered), ruffe further avoided 

benthic Cladocera in the cages stocked only with ruffe (-0.22 ± 0.14), and positively selected 

small Gammaridae in the mixed species cages (0.35 ± 0.15). Perch, however, positively 

selected Cladocera in both, in the single species and in the mixed species cages (0.27 ± 0.12; 

0.42 ± 0.29). At Site 2 (exposed), in contrast, ruffe preferred medium-sized insect larvae 

(0.25 ± 0.11; 0.24 ± 0.15) and perch positively selected small Gammaridae (0.46 ± 0.10; 

0.45 ± 0.21), but avoided Oligochaeta in cages stocked only with perch (-0.20 ± 0.04). 
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Table 3.3 Selectivity of prey items (mean ± SD) using the preference index of Strauss 
(1979). Negative values represent avoidance or inaccessibility; positive values represent 
preference of prey items. Values exceeding 0.20 or falling below -0.20 are in boldface. 

Group Size 
Ruffe
(single

species) 

Ruffe
(mixed
species) 

Perch
(single

species) 

Perch
(mixed
species) 

 Site 1 (sheltered) – Litoralgarten, Konstanz 

Oligochaeta small 0.04 ± 0.07 -0.00 ± 0.00 -0.02 ± 0.02 0.01 ± 0,02
Hirudinea medium 0.06 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Mollusca medium -0.03 ± 0.02 -0.02 ± 0.02 -0.03 ± 0.02 -0.01 ± 0.01

Insect larvae small -0.21 ± 0.02 -0.38 ± 0.07 -0.39 ± 0.13 -0.47 ± 0.04
Insect larvae medium 0.06 ± 0.09 -0.09 ± 0.02 -0.05 ± 0.04 -0.12 ± 0.11
Insect larvae large 0.03 ± 0.06 -0.05 ± 0.01 -0.02 ± 0.03 -0.02 ± 0.03

Gammaridae small 0.16 ± 0.11 0.35 ± 0.15 0.07 ± 0.10 0.03 ± 0.04
Gammaridae medium 0.12 ± 0.08 0.13 ± 0.16 0.18 ± 0.06 0.16 ± 0.15
Gammaridae large 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Cladocera small -0.22 ± 0.14 0.07 ± 0.07 0.27 ± 0.12 0.42 ± 0.29

 Site 2 (exposed) – Meersburg 

Oligochaetae small -0.13 ± 0.04 -0.07 ± 0.01 -0.20 ± 0.04 -0.07 ± 0.01
Hirudinea medium 0.00 ± 0.00 0.01 ± 0.03 0.00 ± 0.00 -0.01 ± 0.00
Mollusca medium -0.02 ± 0.03 -0.06 ± 0.05 -0.03 ± 0.01 -0.06 ± 0.05

Insect larvae small -0.37 ± 0.09 -0.59 ± 0.03 -0.54 ± 0.02 -0.57 ± 0.05
Insect larvae medium 0.25 ± 0.11 0.24 ± 0.15 0.09 ± 0.17 -0.02 ± 0.00
Insect larvae large 0.02 ± 0.04 0.04 ± 0.03 0.01 ± 0.04 0.03 ± 0.07

Gammaridae small 0.00 ± 0.08 0.14 ± 0.25 0.46 ± 0.10 0.45 ± 0.21
Gammaridae medium 0.11 ± 0.02 0.12 ± 0.07 0.06 ± 0.06 0.03 ± 0.05
Gammaridae large 0.01 ± 0.00 0.02 ± 0.03 0.01 ± 0.02 0.00 ± 0.00

Discussion

Spatial variability 

Overall benthos abundance, species richness, diversity and community structure clearly 

differed between the two study sites. Abundances of most of the dominant taxa, and diversity 

were higher at Site 2. The observed differences in benthos communities between sites were 

reflected in the fish diet, with higher abundance of Trichoptera (Tinodes waeneri) and 

Ephemeroptera Caenis spp. at Site 2 in both, the benthos samples and the fish stomachs. 

Further, stomach fullness relative to body mass was higher at Site 2 (except perch in the 

mixed species treatment). 
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Site 1 (sheltered) and Site 2 (exposed) differ strongly in their morphology, substrate 

composition, macrophyte and periphyton coverage. These patterns are indirectly caused by 

hydrodynamic processes, such as wave exposure and water level fluctuations and reflected in 

the different benthic communities. At the sheltered Site 1 with less frequent disturbance 

background the environment is more patchy and a fine sediment layer results on top of hard 

substrates or between the shallow macrophyte-stands of Chara spp.. At this more variable 

Site 1 the variability within benthos samples was also higher. At the exposed Site 2 substrate 

is homogenous and coarse with absent or only little developed macrophyte-cover. The amount 

of interstitial refuges is higher at this site and seems to support higher abundances of benthos 

as well as number of taxa (Lewin et al. 2004). Further, some taxa have certain habitat and 

substrate preferences: for instance the mayfly Caenis spp. feeds mainly on detritus and fine 

sediments as found at Site 1 (sheltered). Grazers, such as the mayfly Ecdyonurus dispar or the 

caddis flies Sericostoma personatum/flavicorne and Goera pilosa (Moog 1995), prefer for 

their feeding more turbulent conditions as found at the wind exposed Site 2. Differences in the 

benthic communities in nearby shallow littoral sites with differing hydrodynamic regimes 

were also described by Scheifhacken et al. (in press) during a one-year comparison. 

The differences in sediment composition of the two sites could have also influenced the 

fish stomach fullness. Owing to the finer sediments, turbidity is higher at Site 1, and this, 

along with lower benthos abundances at Site 1, could be a reason for the lower stomach 

content of the optically oriented perch (Schleuter and Eckmann 2006, Utne-Palm 2004). 

However, the low stomach contents of ruffe may be mainly caused by the low benthos 

abundances, as ruffe can feed in complete darkness using its sensory abilities (Janssen 1997, 

Schleuter and Eckmann 2006). 

Hydrodynamics can, however, also directly impact benthic communities and predator 

prey interactions. Scheifhacken (2006) found for instance strongly suppressed growth rates 

and activity of the common freshwater snail Radix ovata under experimental wave conditions. 

The influence on predator-prey interactions is known from lotic freshwater habitats (Hansen 

et al. 1991, Lancaster 1996, Peckarsky et al. 1990), but as a factor that mediates predator-prey 

interactions in lentic systems, hydrodynamic forces are still widely ignored. Next to changes 

in prey behaviour and foraging activities due to turbulence, consumption rates could increase 

due to higher energy requirements. In addition to higher benthos abundances, this fact might 

have attributed to higher stomach contents at Site 2 of both fish species in order to 

compensate for the higher metabolic costs within the exposed habitat. However, the energy 
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requirement of the fish under the different hydrodynamic conditions could not be determined 

in our experiments. 

Date effects 

Although we deployed the cages for one week only, we found a strong date effect on benthos 

abundance and community structure. Abundances were generally higher at the end of the 

experiment (e.g., non-definable Chironomidae (small), Caenis spp. (small, sum), and zebra 

mussel Dreissena polymorpha (small, sum)), leading to a size-class shift from large- to 

medium- or small-sized individuals, which could not be attributed to fish predation on large 

individuals, as it occurred also in controls and the abundance of smaller size classes increased. 

Some aquatic insects could have emerged, which would explain to some extent the lower 

abundance of large organisms at the end of the experiment. For the accumulation of small-

sized individuals we assume drift effects or hatching from eggs to be responsible in most 

cases. In addition, the observed increase in zebra mussel abundance reflects early instar larvae 

that recently underwent metamorphosis. These taxa could probably immigrate because of the 

relatively large mesh size of 0.8 mm of our cages. However, taxa like Tinodes waeneri 

(small), Caenis spp. (large), Orthocladinae spp. (small) and Dikerogammarus villosus (small) 

decreased equally in all cages. This might be a result of invertebrate predation (Lancaster et 

al. 1991), which was an uncontrolled factor in our experiments. A variety of invertebrate 

predators like flatworms (Hansen et al. 1991) and Chironomidae (Macan 1977) prey on other 

invertebrates.

Predation

Predatory effects of fish were weak and could only be observed within a few taxa and size 

classes. This clearly contradicts our hypothesis of expected strong predation effects resulting 

from a high density fish stocking and the findings of other authors (Crowder and Cooper 

1982, Diehl 1995, Mittelbach 1988). However, our results support the findings of others, who 

found no or only moderate predation effects on benthic communities by perch, ruffe, burbot 

or cyprinids (Baumgärtner and Rothhaupt 2005, Cobb and Watzin 1998, Okun and Mehner 

2005, Persson and Svensson 2006, Scheifhacken 2006). 

We expected a great proportion of large-sized prey to be consumed by perch and ruffe 

within the enclosures (Gilinsky 1984, Mittelbach 1988). We indeed observed a negative 

selection of small insect larvae and Oligochaeta. In a comparison of the predation effects on 

benthos abundances between treatments with the fish stomach contents, however, the results 
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revealed some discrepancies. The decrease of small insect larvae in some treatments, for 

instance, cannot be accredited to fish predation, as they were negatively selected. Since 

stomach contents could only be sampled at the end of the experiment because of the small fish 

used and the experimental set-up, we do not know whether the food ingested varied during the 

experiment. Invertebrate predation might also have contributed to variability. Several studies 

have shown that vertebrate exclosure leads to an increased invertebrate predation (Crowder 

and Cooper 1982, Gilinsky 1984, Macan 1977). 

Low food availability could be the main reason for the weak predation effects found in 

our experiments. The benthos exploitation rate depends on differences between potential and 

available food within the upper layer of soft sediment and on top of hardsubstrates or within 

the sparse Chara spp. stands. A much smaller proportion of food is visible and therefore truly 

available for foraging fish. Several factors might influence detection and consumption rates, 

such as colour, contrast, activity or antipredator behaviour of the prey organism (Baumgärtner 

et al. 2003, Hölker and Stief 2005, Macchiusi and Baker 1991, Utne-Palm 2004), specific fish 

preference, reactive distance, or gape restriction (De Vries et al. 1998, Mehner et al. 1998, 

Werner and Hall 1974). Boisclair and Leggett (1985) assumed that only 1% of total benthos 

biomass is actually available for fish consumption. They found evidence in their comparative 

study of 21 temperate lakes that daily and annual fish consumption rates of zoobenthos within 

the upper 5 m of the littoral zone were significantly lower than the reported benthic 

production/biomass ratios. Maybe weak predation effects might have occurred on top of 

substrates, but were unlikely to be detected by a quantitative benthos sampling device. The 

suction sampler also samples the upper interstitial layer of finer sediment, but has the 

advantage of high precision and repeatability (Baumgärtner 2004, Mörtl 2003). 

Our results emphasise low food availability as a reason for weak predation effects. First, 

both fish species consumed less food than expected, with some stomachs being empty and 

others containing only a few prey organisms. Fish were recaptured in the late morning, the 

time of the day when the perch and ruffe stomachs are full (D. Schleuter, personal 

observation). The low stomach contents could be a result of low availability of preferred 

benthic food sources. Second, the high amounts of ingested benthic Cladocera (especially at 

Site 1), allude to low food availability, as they are considered as low-quality food. Hanson 

and Leggett (1986) documented that the amount of consumed food items eaten by yellow 

perch (Perca flavescens) decreased with increasing perch density and led to an increased 

ingestion of inferior food. In their study, perch consumed 30 to 50% microcrustaceans when 

placed under high intraspecific competition, i.e. twice the natural density, and only < 1% 



Chapter 3  59 

when reared at low or natural densities. Third, in our study small insect larvae and 

Oligochaeta were negatively selected, although soft bodied organisms are known to be 

favoured by perch and ruffe (Fullerton et al. 1998). We attribute these results to low 

availability of the small soft-bodied organisms, which might live buried in the sand or in the 

interstitial layer, rather than to active avoidance and on the other hand to the better availability 

of the small Gammaridae, which move over the sediment. 

The adaptation of the investigated system to its occurring predators can also lower 

predation effects. According to Pierce and Hinrichs (1997), there is a difference between 

systems in which a new fish is introduced and the maintenance of an already existing 

community. Post and Cucin (1984), for instance, observed dramatic changes in the benthic 

community of Little Minnow Lake after introduction of yellow perch. In our experiments, 

however, we used fish that have co-inhabited the littoral benthic community of Lake 

Constance for the past 20 years. 

Competition between perch and ruffe 

We found clear evidence for interspecific competition between perch and ruffe for benthic 

food resources under in situ conditions. Effects of competition between the two species have 

only been observed under standardised laboratory or mesocosm conditions to date (Bergman 

and Greenberg 1994, Dieterich et al. 2004a, Dieterich et al. 2004b, Fullerton and Lamberti 

2006, Kolar et al. 2002, Schleuter and Eckmann 2006). In our experiments, in the single 

species treatments no significant difference between the diets of perch and ruffe were found 

after nMDS analysis. In the mixed species treatments, in contrast, niche overlap decreased, 

which is what we would expect under competitive conditions (Bergman and Greenberg 1994, 

Bonesi et al. 2004, Fullerton et al. 1998). However, the diet of the fish within the treatments 

varied greatly. Therefore, Global R values were lower than expected from the nMDS plots, 

where each species clearly formed its own group in the cages stocked with both species. If 

outlying points were removed, the Global R reached high values. 

Interspecific competition had strong effects on stomach fullness at Site 2 (exposed). 

Stomach fullness did not differ between perch and ruffe in cages stocked with a single 

species. However, in the mixed species cages, the stomach fullness of perch was lower, while 

that of ruffe was higher. Perch might have been restricted by interference competition, both 

intraspecific (Schleuter and Eckmann 2006) and interspecific (Savino and Kolar 1996, 

Schleuter and Eckmann 2006). At Site 1 (sheltered), no differences in stomach fullness 

between species or treatments were found. This could be caused by the more limited food 
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source at Site 1, thereby generally causing very low stomach contents for both species within 

both treatments, with a high proportion of benthic Cladocera in the stomach contents (Hanson 

and Leggett 1986). The high intraspecific competition at Site 1 probably superimposed the 

effects of interspecific competition. However, we would have expected a higher competitive 

ability of ruffe at Site 1, and of perch at Site 2 based on substrate preferences and conditions 

at the two sites (Dieterich et al. 2004a). Furthermore, ruffe should be able to detect prey more 

easily in the more turbid water at Site 1 because of its sensitive lateral line organ (Eiane et al. 

1997, Janssen 1997, Schleuter and Eckmann 2006); conversely, the use of this organ could 

restrict foraging success in water with high hydrodynamic action, as at Site 2. Additional in 

situ studies are necessary to further elucidate the influence of these variables on the outcome 

of competition between the two species. 

Conclusions

The contrasting sampling sites led to differences in benthos abundances and benthic 

community composition. These differences between sites were clearly reflected in the 

stomach contents of perch and ruffe. At the exposed Site 2, benthos abundances and stomach 

fullness were generally higher, as were the proportion of Trichoptera and Ephemeroptera. The 

outcome of competition for food is also influenced by study site. At the exposed Site 2 the 

stomach fullness of perch decreased with interspecific competition, while that of ruffe 

increased. At the sheltered Site 1, the stomach fullness was generally low and intraspecific 

competition was masking effects of interspecific competition. In large lakes like Lake 

Constance, it is therefore essential to choose study sites carefully, and if possible, to sample 

more than one representative sites. 

Further, our results lead to the assumption that predation effects on benthos is minor in 

Lake Constance and can be ignored in comparison to inherent benthos seasonal shifts, which 

were evident after one week only. Therefore, benthos is not likely to be controlled by top-

down processes. However, the opposite can be presumed for fish that are likely to be 

mediated by bottom-up effects of benthos availability that was concluded to be low. A top-

down control might only be relevant in systems that have not previously experienced fish 

predation (Post and Cucin 1984). In systems adapted to fish predation, predation effects are 

not pronounced enough to alter underlying benthic community structures. Based on the 

present study with perch and ruffe and a comparable study for juvenile cyprinids in similar 
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habitats (Scheifhacken 2006) we agree with the assumption of (Cobb and Watzin 1998) that 

this is a common pattern for temperate littoral zone communities of large lakes. 
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Generalist versus specialist: the performances of perch 

and ruffe in a lake of low productivity 

DIANA SCHLEUTER AND REINER ECKMANN
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ABSTRACT

To elucidate the performances of perch and ruffe in oligotrophic lakes, we carried out a field 

study in re-oligotrophic Upper Lake Constance. Both these percids used the same habitat, 

albeit with different activity patterns. Interspecific competition for food was only relevant in 

summer when both species fed on zoobenthos. Even then, niche overlap was low, while 

intraspecific diet overlap was moderate to high throughout the season. Perch did not perform 

fixed, ontogenetic diet shifts, but used a wide range of prey. During spring and early summer, 

all size classes were planktivorous, then switched to benthivory and cannibalism in summer, 

and part of the population reverted to planktivory in autumn. Ruffe, in contrast, fed mainly on 

chironomid larvae and pupae throughout the year. It is suggested that in lakes of low 

productivity the euryphagous characteristics of perch, including cannibalism, provides a clear 

advantage over the benthivorous specialist ruffe in two ways: (i) it allows perch to switch to 

alternative prey types if one prey type becomes scarce, and (ii) it reduces both intra- and 

interspecific competition for food. 



64  Chapter 4 

Introduction

The species composition of fish communities in temperate lakes of the northern hemisphere, 

and the relative proportions of different trophic guilds in the total fish biomass, change in a 

predictable way along a productivity gradient (Jeppesen et al. 2000, Jeppesen et al. 2005, Olin 

et al. 2002, Persson et al. 1991). Piscivorous species contribute more to the total fish biomass 

in oligotrophic lakes, while planktivorous species dominate the fish community under 

eutrophic conditions (Jeppesen et al. 2000, Jeppesen et al. 2005), resulting in a succession 

from salmonids to percids to cyprinids with increasing productivity (Persson et al. 1991). 

Within these taxonomic groups, however, the performance of certain species may differ in 

response to particular environmental conditions. Among the percids for example, perch 

(Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)) respond differently to 

increasing productivity. Perch attain their highest population biomass under mesotrophic 

conditions, while ruffe prosper under mesotrophic to eutrophic conditions (Bergman 1991, 

Jeppesen et al. 2000, Olin et al. 2002).

Since perch and ruffe are potential competitors for benthic food resources (Bergman and 

Greenberg 1994, Dieterich et al. 2004a, Fullerton et al. 2000, Schleuter and Eckmann 2006), 

the dominance of one percid species over the other is probably due to its competitive 

advantage at a certain level of lake productivity. At a given productivity level, either perch or 

ruffe may be the superior competitor due the species' sensory abilities. Perch, as a visually 

oriented predator, thrives best under well-lit mesotrophic conditions, but its foraging 

efficiency is severely reduced under turbid or dimly-lit conditions (Diehl 1988, Radke and 

Gaupisch 2005). Ruffe, in contrast, may forage efficiently under these latter conditions due to 

its very sensitive lateral line system and the light-reflecting tapetum lucidum in its eye 

(Collette et al. 1977, Janssen 1997). 

Empirical evidence for this concept came from a comparison by Bergman (1991) of perch 

and ruffe abundances among Swedish lakes of different productivity. She suggested that 

higher turbidity in the more productive lakes restricted the habitats available for perch and 

thus decreased their competitive success. Apart from these productivity-related differences in 

the abundances of perch and ruffe among lakes, a niche divergence within lakes was also 

attributed to the species' sensory abilities, with perch occurring in well-lit, shallow habitats 

and ruffe in darker, deeper parts of a lake (Bergman 1988). 

The succession from perch to ruffe with increasing lake productivity is thus well 

documented, and the mechanistic explanation for this pattern, based on foraging efficiency, is 
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well established. The low abundances of ruffe in oligotrophic lakes, however, have received 

less attention so far, and a mechanistic understanding of why ruffe abundances are low in 

these lakes is missing. Although it is obvious that the superior performance of ruffe under 

turbid and dark conditions does not convey any advantage over perch in nutrient-poor, and 

hence clear and well-lit lakes, this is not a sufficient explanation for the succession from ruffe 

to perch with decreasing lake productivity. To elucidate the factors that might contribute to 

lower ruffe abundances in oligotrophic lakes, we studied the performances of perch and ruffe 

in Upper Lake Constance (ULC), a large lake that has recently returned to oligotrophic 

conditions.

Ruffe was accidentally introduced into Lake Constance (Figure 4.1) in the 1980s, where it 

rapidly established large populations despite the lake’s ongoing re-oligotrophication (Rösch 

and Schmid 1996). In warm-monomictic ULC total phosphorous concentration measured 

during turnover in late winter (TPmix) had increased from the mid-1950s (TPmix<5μg/L) to the 

late 1970s (TPmix>80μg/L) as a result of anthropogenic eutrophication. This trend was 

reversed through the installation of sewage treatment plants and the ban on phosphorous-

containing detergents, leading to continuously decreasing nutrient loads during the 1980s and 

1990s, and consequently a return to oligotrophy (TPmix=7μg/L in 2006). When ruffe became 

established in ULC in the late 1980s, the lake was still considered to be mesotrophic, and 

ruffe became one of the most abundant species in the littoral zone by the mid-1990s 

(Eckmann and Rösch 1998, Fischer and Eckmann 1997b). The increase in ruffe population 

size coincided with a decrease in the growth rate of perch, the second most important 

commercial fish species in ULC (Eckmann et al. 2006, Eckmann and Rösch 1998), and 

stakeholders feared a negative impact of ruffe on perch (Eckmann et al. 2006, Eckmann and 

Rösch 1998). Recent observations, however, indicate that the population of ruffe is declining 

(Reyjol et al. 2005). 

During the eutrophication of Lake Constance, perch became more limnetic and deviated 

from their typical ontogenetic diet shift, i.e. from planktivory through benthivory to piscivory 

in oligotrophic Lake Constance in the 1930s (Nümann 1939), until, in the 1980s, all size 

classes of perch fed almost exclusively on zooplankton throughout the year (Eckmann et al. 

2006, Hartmann 1975, Hartmann and Nümann 1977). Hence, when ruffe became established 

in ULC, competition with perch for benthic resources was unimportant, and Schmid (1999) 

concluded that ruffe had occupied an "empty niche" in ULC. With ongoing re-

oligotrophication and decreasing zooplankton abundance, however, perch started recently to 

include benthos in their diet again, so that competition for food with ruffe might start to take 
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effect. The increasing potential for interspecific competition for food between perch and ruffe 

thus provided a unique opportunity to compare the performances of these two percids in a 

lake that is gradually advancing towards the lower end of the productivity gradient.

The aim of this study was, therefore, to compare the effects of re-oligotrophication on the 

foraging performances of, and the competitive interactions between, the two percids perch 

and ruffe, focussing on the question of which factors may cause the low abundances of ruffe 

relative to perch under oligotrophic conditions. We carried out fishing surveys in combination 

with line transect scuba diving and focussed especially on depth distributions, diurnal 

migration patterns and diet compositions of both species. To account for the possible seasonal 

patterns in these variables, sampling was performed monthly during the growing season of 

2004, when both species occur in the littoral zone.

Methods

Study sites 

Upper Lake Constance is a large (473 km²), deep (zmax = 254 m, zmean = 101 m), prealpine 

lake in Central Europe (Figure 4.1). The shoreline is 186 km long, and the littoral zone (from 

the shoreline to 10 m depth) comprises about 10% of the lake area. Down to a depth of 2.5 - 

3 m, the bottom has a more or less gentle slope, depending on the site, while the slope 

increases at greater depth. Water level fluctuates by about 1.5 m from the lowest level in 

February to the highest in summer. The main wind direction is from the west throughout the 

year, but during winter strong north-easterly winds may also occur. 

Because littoral width and slope, sediment composition, and wind exposure vary greatly 

along the shoreline, we chose two study sites on opposite shores with contrasting abiotic 

conditions (Figure 4.1). Site Swest (47°41’26.67’’N, 9°12’18.36’’E) is characterised by low 

wind exposure, a broad, gently sloping littoral zone, and heterogeneous substratum with a 

high fraction of fine sediment. Site Seast (47°41’37.25’’N, 9°16’11.66’’E), by contrast, is more 

exposed to the prevailing westerly winds, the littoral zone is narrow with a steep slope, and 

the substratum is more homogeneous, consisting mainly of coarse stones. The benthic 

communities differ between the two sites, with higher total macrozoobenthos abundance and 

higher proportions of chironomids, trichopterans and ephemeropterans at the more exposed 

site Seast (Scheifhacken 2006). 
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Figure 4.1 Map of Lake Constance, Europe. Study sites Seast near Meersburg and Swest near Konstanz 
are indicted. 

Fish sampling

Fish were sampled from both sites at the beginning of each month from May through October 

2004. Two bottom gill nets (1.6 m deep, 20 m long, mesh sizes 6, 9, 12, 15, 20 mm bar mesh) 

were set parallel to the shoreline at 2.5 and 10 m depth, respectively. To monitor diurnal 

changes of fish depth distribution and feeding activity, both nets were exposed three times on 

each sampling date for 1.5 h during dawn, day, and dusk. A third gill net (1.6 m deep, 10 m 

long, mesh sizes as before) was exposed perpendicular to the shoreline at less than 2 m depth 

from August to October at Swest and in September and October at Seast. Further samples were 

taken at Swest in August and October 2003, and at both sites in September 2005. Additional 

perch stomach samples were obtained during fishing campaigns in June and August 2006. 

Water temperature at 1 m water depth and Secchi depth were measured on each sampling 

date. Fish were removed from the nets immediately after they were lifted and transferred to a 

lethal dose of 1,1,1-trichloro-2-methyl-2-propanol-hemihydrate (2 g L-1). Formalin (10%) was 

injected into the body cavity and the fish were stored in 4% formalin for later processing. 
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Zooplankton

Zooplankton was sampled in 2004 at both sites during the day and after sunset. Triplicate 

samples from the upper 10 m of water were collected with an Apstein net (mesh size 100 m) 

and preserved in 4% sugar-formalin. Each sample was quantitatively flushed into a counting 

chamber, identified to species level and counted. Copepods and daphnids were grouped into 

two size classes,  0.8 mm and > 0.8 mm for copepods, and  1.6 mm and > 1.6 mm for 

daphnids, excluding setae and caudal spines, respectively. Total zooplankton abundances 

were similar between replicates, with a mean coefficient of variation of 0.15 (range: 0.02 to 

0.30). Therefore, data for each sampling site were averaged across the replicates and pooled 

over sampling time.    

Fish catch per unit effort 

In the laboratory, fish were measured and weighed to the nearest 0.1 cm and 0.1 g, 

respectively. Perch were divided into three size classes: P1:  9.5 cm (maximum total length 

of 0+ perch in ULC at the end of the year), P2: 9.5 cm < TL  13.0 cm (13.0 cm maximum 

total length of 1+ perch), P3: > 13.0 cm. Ruffe were divided into two size classes: R1:

 9.0 cm (maximum total length of 0+ ruffe in ULC at the end of the year), R2: > 9.0 cm. 

The gill net catches were standardized by calculating the catch per unit effort (CPUE)

as:

t
CaAACPUE us

where As = area of standard net (15 m2: area of the smallest net used), Au = area of the net 

used (m2), Ca = actual catch, t = fishing time (h). 

Depth distribution and activity 

Depth distributions of the fish were described separately for the different fishing times (dawn, 

day, and dusk) by the relative proportion of CPUE from the gill nets set at 2.5 and 10 m 

depth. Because perch are inactive during darkness and can therefore not be caught by gill nets 

during the night, depth distributions of fish during the night were analyzed based on line 

transect scuba diving surveys. These surveys were carried out monthly during day and at 

night as an alternative method to determine fish distribution. At both sites three parallel ropes 

were anchored with pegs perpendicular to the shoreline from 10 m to about 0.5 m water 

depth. The ropes were divided into 10 m sections by numbered marks. Since the inclination of 
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the shore is steeper at Seast, this resulted in five sections at Seast and seven sections at Swest.

During the day and after sunset a scuba diver swam slowly along each rope, always starting at 

10 m depth, counting all fish along each 10 m section that stayed within 50 cm on both sides 

of the rope. When fish abundance was too high to be counted (N = 50 or higher), it was 

estimated. For data analysis, fish were separated into those occurring at shallow depth 

( < 2.5 m water depth: 5 transects at Swest, 2 transects Seast) and those occurring at greater 

depth ( > 2.5 m water depth: 2 transects at Swest, 3 transects Seast). Fish counted per transect 

were averaged over the three parallel ropes at each site. Fish density in shallow water and at 

greater depth was then calculated by weighting the fish counts in the shallow and the greater 

depth by the number of transects surveyed in these depth strata (shallow, deep: N fish/ 10 m). 

Because absolute numbers of fish counted cannot be compared directly with CPUE from gill 

nets, relative proportions of fish in shallow and deep water were used in Figure 4.5 to 

compare fish distributions obtained by both methods.  

Diet analysis 

Stomachs of perch and ruffe were removed, and stomach fullness was assigned to one of three 

levels: 0 = empty, 1 = medium filled (prey items present, but stomach wall not stretched), 

2 = stomach full. Prey items were identified to the family, genus or species level. Copepods 

and daphnids were grouped into size classes as described in the section on zooplankton. 

Amphipods were grouped into three size classes (Gammarus roeseli: small  4 mm, 

4 mm < medium < 12 mm, large  12 mm; Dikerogammarus villosus: small  6 mm, 

6 mm < medium < 16 mm, large  16 mm). For all other prey, mean lengths were determined. 

Dry mass of prey organisms was estimated using length:dry mass regressions for zooplankton 

from Eckmann et al. (2002) and Laude (2002), and for macrozoobenthos from 

Baumgärtner & Rothhaupt (2003) and D. Schleuter & N. Scheifhacken (unpubl. data). For 

prey fish, the mean length of 0+ perch (the most common prey fish) of each monthly catch 

was determined and converted into dry mass after Hanson et al. (1997). 

 The stomach content percentage composition by biomass was determined for each size 

class of perch and ruffe for each sampling date and site. A fish size class was classified as 

planktivorous, benthivorous or piscivorous if more than 50% of the stomach content dry mass 

fell into one of these prey categories. When this criterion was not met, a fish size class was 

assigned to the two trophic guilds which contributed most to the stomach content dry mass. 

The average dry mass of each type of prey consumed (51 different prey types were 
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considered) was calculated separately for each size class of perch and ruffe for each sampling 

date and site. 

 Based on these data, intra- and interspecific diet overlap among the different size classes 

(perch: P1-P2, P2-P3, P1-P3; ruffe: R1-R2; perch-ruffe: P1-R1, P2-R1, P3-R1, P1-R2, P2-R2, P3-R2)

was calculated following Schoener (1971): 

ynixmixy ppC 5.01

where C = overlap index ranging from 0 (no overlap) to 1 (complete overlap), pxmi = the 

proportion of food type i used by size class m of species x, and pyni = the proportion of food 

type i used by size class n of species y. Index values < 0.05 were considered as zero, values 

from 0.05 to < 0.25 as low, values from 0.25 to < 0.5 as medium, and values  0.5 as high diet 

overlap, and the relative frequencies of the different index levels were calculated. 

To evaluate intraspecific diet overlap and individual dietary differences within each 

size class of each species, up to 10 individuals (minimum 4 individuals) per size class were 

randomly selected from the August and September samples from both study sites. Fish were 

chosen from those sampling times, when they were expected to have the fullest stomachs, 

resulting in perch being selected from the samples taken during day and at dusk, and ruffe 

being selected from samples taken during dawn. Diet overlaps were then calculated for all 

possible combinations of two out of 4 to 10 individuals,  resulting in 6 up to  45 overlap 

values. All data were pooled over sampling date and site. Low and medium index values for 

individual intraspecific diet overlaps were pooled as medium for further analysis. 

 The selectivity of perch for zooplankton was calculated according to Strauss (1979): 

ii edL

where di = the proportion of prey type i in the fish diet and ei = the proportion of prey type i in 

the environment. L ranges from –1 to +1, with L = 0 indicating unselective feeding while 

negative/positive values indicate that a prey type occurs less/more often in the diet than 

expected under random feeding. Index values < 0.25 were considered as low, values from 

0.25 to < 0.5 as medium, and values  0.5 as strong prey selection. 
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Results

Temperature, Secchi depth, zooplankton 

During the sampling period in 2004, temperature, Secchi depth and zooplankton abundance 

showed the typical seasonal pattern of lakes in the northern temperate zone (Figure 4.2). 

Temperatures were around 10 °C in May and peaked in August at around 23 °C. A clear water 

phase occurred in June, the time when daphnids were most abundant, with Secchi depths of 

9.7 m at Swest and 7.7 m at Seast. Secchi depth was lowest (3.0 m at Swest and 3.5 m at Seast) in 

August, after zooplankton abundance had decreased strongly during July. In August 

zooplankton abundance was low at Swest, while it was higher at Seast due to the predacious 

cladoceran Leptodora kindtii. A second peak of Secchi depth (about 7.0 m at both sites) and 

of daphnid abundance occurred in September. Secchi depth increased marginally in October 

while zooplankton abundance decreased towards the end of the growing season.

Figure 4.2 Temperature and Secchi depth (upper panels) and plankton abundance (lower 
panels) at the two study sites during the growing season 2004. Others: Bythotrephes 
longimanus, Leptodora kindtii, Bosmina spp. 
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Fish distribution 

At both sites perch was the most abundant species and contributed around 70% to the total 

catch (Figure 3A+B). The relative abundance of ruffe was slightly higher at Seast while the 

relative abundance of cyprinids (mainly dace Leuciscus leuciscus (L.) and bleak Alburnus

alburnus (L.)) was higher at Swest. The relative abundances of perch and ruffe based on counts 

by the scuba divers, by contrast, did not differ between sites. Gill net catches and the total 

numbers of fish counted by the scuba divers were higher at Seast than at Swest.
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Figure 4.3 Total numbers of fish caught with bottom gill nets exposed at 2.5 m and 10 m water depth 
at the two study sites in Lake Constance A from May to October 2004 and B in September 2005; C
total numbers of fish counted by scuba divers (averaged over the three transect lines ranging from 
10 to 0.5 m water depth) at the two study sites from May to October 2004. 

During 2004 a pronounced seasonal pattern was apparent in the abundance of perch 

(Figure 4.4). As the patterns were very similar at both sites, the data were pooled, but the gill 

net set at less than two meters water depth was not included, as it was only used during the 

second half of the season. During the first half of the season (May-July), perch abundances 

were very low. During the second half of the season (August-October) CPUEs and diver 

counts increased until October. This increase was mainly due to the appearance of young-of-

the-year (y-o-y) perch, which returned to the littoral zone after completion of their obligate 

pelagic phase. In the case of ruffe, by contrast, no consistent pattern in its abundance was 

detected, since CPUEs and diver counts differed markedly (Figure 4.4). CPUEs were high in 

May and June but remained low for the rest of the study period. The numbers of ruffe counted 

by scuba divers, however, increased until August and then decreased towards October. These 

marked differences were probably caused by an overrepresentation of ruffe in the gill nets 

during early summer, due to enhanced swimming activity during the spawning season.  



Chapter 4  73 

Figure 4.4 Mean CPUE and mean numbers of fish counted by scuba divers during 2004 in 
Lake Constance for perch and ruffe. Data from both sampling sites were pooled. 

Both species performed daily horizontal migrations (Figure 4.5). During the day, either no 

or only a few fish were caught (Figure 4.5B, J, N) or they were mainly caught in the deeper 

zone (except for perch in August at Seast, Figure 4.5F). Additionally, no fish were sighted by 

the scuba divers during the day except for perch in August and October at Seast. During 

twilight fish were caught at both depths, and at night they were sighted by scuba divers. 

In addition to the diurnal changes in depth distribution of perch, seasonal changes in their 

depth distribution were also apparent, independent of fish size (Figure 4.5A-H). In May, 

perch were mainly caught at 10 m depth. During summer (June-August) perch increasingly 

used the shallow littoral zone (higher CPUEs at 2.5 m depth) and, during August, some perch 

were even caught at 2.5 m depth during the day at both sites. In September, the distribution of 

perch shifted again towards the deeper littoral zone. This seasonal pattern was observed 

through the gill net catches as well as the line transect diving surveys. Ruffe, by contrast, did 

not show any seasonal changes in their daily migration pattern (Figure 4.5I-P). During 

twilight, they were mainly caught at shallow depths, while during the night more ruffe were 

counted along the deeper transects at Seast but not at Swest.

Diet 

Perch and ruffe had contrasting feeding activities (Figure 4.6). The former fed during the day, 

as the proportions of medium filled and full stomachs were highest during day and dusk 

(92/82%). During the night, perch ceased feeding and the relative number of perch with 

empty stomachs was highest at dawn (62%). Ruffe, by contrast, fed during the night, as 71% 

of the fish caught at dawn had full stomachs. This proportion decreased to 16% at dusk while 

the number of ruffe with empty stomachs increased from 4% to 56%. 
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Figure 4.5 Relative depth distribution at different times of the day for perch (A-H) and ruffe (I-P) at 
the two study sites in Lake Constance during 2004. For dawn, day and dusk CPUE data from bottom 
gill nets exposed at 2.5 and 10 m depth were used. For the night, scuba diver counts (averaged over 
the three transect lines ranging from 10 to 0.5 m water depth and weighted by number of transects in 
the shallow or deep area (N fish/10m)) were used. Numbers at the top of the bars indicate the sum of 
CPUE (n . 15 m-2 . h-1) of the shallow and the deep net or the total number of fish counted along the 
rope (~ = more than thousand). For Seast, CPUE data are missing for the dawn sampling in May and 
July.

0

20

40

60

80

100

shallow
deep

D
aw

n

0

20

40

60

80

100

Perch Swest Perch Seast

0

20

40

60

80

100

Pe
rc

en
ta

ge
  s

ha
llo

w
/ d

ee
p 

(%
)

D
ay

0

20

40

60

80

100

0

20

40

60

80

100

D
usk

0

20

40

60

80

100

0

20

40

60

80

100

N
ight

0

20

40

60

80

100

     1     1    6    9   17      5           6   10  33

3               2 1    6   1    4    8   35

8    1    4   8   13  38 1    3    1    7    9  33

6    7   21 387 119 188 12  31  25 327 250 ~

M
ay

Ju
ne

Ju
ly

S
epA
ug O
ct

0

20

40

60

80

100
5    7    1    5    2    2

0

20

40

60

80

100
     7         1    1   

Ruffe Swest Ruffe Seast

0

     0    0          0    0

                        0   

0

20

40

60

80

100

0    0    0    0    0   0
0

20

40

60

80

100
    1   

0    0    0    0         0

0

20

40

60

80

100
2    2    1    1    2    1

0

20

40

60

80

100
1    5    1    3    3    3

0

20

40

60

80

100
1    3    7   27 16   2

0

20

40

60

80

100
4   11   21 15   4    5

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

M
ay

Ju
ne

Ju
ly

S
epA
ug O
ct

M
ay

Ju
ne

Ju
ly

S
epA
ug O
ct

M
ay

Ju
ne

Ju
ly

S
epA
ug O
ct



Chapter 4  75 

Figure 4.6 Relative amount of 
perch and ruffe with empty, 
medium filled or full stomachs. 
Numbers at the top of the bars 
indicate number of fish analysed. 
Data were pooled from May to 
October 2004.  

 The diet composition of perch varied strongly during the season (Table 4.1, Figure 4.7). 

During the first half of the season (May-July) and in October zooplankton was their main 

food source, while in August zoobenthos and fish dominated in the diet of perch. In 

September, zoobenthos and zooplankton were of similar importance for small and medium 

sized perch (zoobenthos 54%, zooplankton 46%), while large perch remained piscivorous. 

The piscivory of the large perch and of some of the medium-sized perch by late July/early 

August coincided with the arrival of y-o-y perch in the littoral zone. The observed seasonal 

pattern in the diet of perch was not only found in 2004, but also in other years (Table 4.1). 

Ruffe fed nearly exclusively on zoobenthos throughout the entire study period. 

The zooplankton ingested by perch strongly depended on the zooplankton community 

composition (Figurs 4.2B and 7). In May, when the zooplankton community was dominated 

by copepods, the diet of perch was also dominated by copepods. In June, when daphnids had 

their highest abundance, perch mainly fed on daphnids. The selectivity indices largely 

confirm the opportunistic zooplankton consumption by perch: at both sites the mean index 

values for the different zooplankton taxa were generally low (mostly < 0.25) for all size 

classes of perch throughout the study period. 

The benthic diet of perch included a wide range of organisms, but the most important 

prey were gammarids (Figure 4.7). In August 2003, Gammarus roeseli contributed around 

30% to the diet of P1. In August 2004 and 2006, however, Gammarus roeseli was nearly 

entirely replaced by Dikerogammarus villosus, after the introduction of this pontocaspian 

gammarid into Upper Lake Constance and its rapid dispersal. Pupae of chironomids were the 

second most important benthic prey of perch. For ruffe, the most important prey were 

chironomids, either larvae or pupae, followed by the mollusc Radix ovata and other insect 

larvae such as trichopterans and ephemeropterans (Figure 4.7). Gammarids were only 

occasionally consumed in higher numbers. 
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Table 4.1 The main prey types of three size classes of perch on each sampling date. 
A main prey type contributes more than 50% to the dry mass of the fish diet. Data 
were pooled over both study sites. 

Year Month  9.5 cm 9.5 cm < x  13.0 cm > 13 cm 

2003 August benthos fish fish 
 October plankton plankton plankton 
2004 May plankton plankton plankton 
 June - plankton plankton 
 July - plankton plankton 
 August benthos fish fish 
 September benthos plankton fish 
 October plankton plankton fish 
2005 September plankton plankton fish 
2006 June plankton plankton plankton 
 August benthos benthos fish 

 The food choices of the two species resulted in medium or high interspecific diet overlap 

only in August and September (Table 4.2), when perch included benthic organisms in their 

diet. The only exceptions were medium index values in May at Seast for the diet overlap 

between medium-sized perch and both size classes of ruffe. Overall, the values for 

interspecific diet overlap between the different size classes of the two species reached values 

above 0.25 in only 11% (Swest) and 17% (Seast) of all cases. High diet overlap occurred 

predominantly between perch < 13.0 cm and ruffe, but as perch grew larger, and eventually 

became piscivorous, there was hardly any diet overlap between the species. Intraspecific diet 

overlap among size classes, however, was high throughout the year. The proportion of 

medium-high or high index values for intraspecific diet overlap in perch was 55% at Swest and 

38% at Seast and occurred mainly in spring and autumn, when perch fed primarily on 

zooplankton, or in summer among P2 and P3, when both size classes fed on fish. For 

intraspecific diet overlap in ruffe these proportions were even higher, 83% and 67%, 

respectively. 
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Figure 4.7 Percentage stomach content composition on a dry mass basis for perch and ruffe from 
both study sites sampled from May to October 2004. Numbers at the top of bars indicate the numbers 
of fish stomachs analysed. P1: perch  9.5 cm, P2: perch 9.5 cm < TL  13.0 cm, P3: perch > 13 cm, 
R1: ruffe  9.0 cm, R2: ruffe > 9.0 cm. 
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Table 4.2 Index values after Schoener (1971) for intra- and interspecific diet overlap among 
different size classes of perch and ruffe at both sampling sites based on 51 different prey types. 
Bold: high overlap (  0.5); bold italicized: medium overlap (0.25  C < 0.5); P1: perch

 9.5 cm; P2: perch 9.5 cm < TL  13.0 cm; P3: perch > 13 cm; R1: ruffe  9.0 cm; R2: ruffe 
> 9.0 cm. 

Year Month Perch Perch-Ruffe Ruffe
P1-P2 P1-P3 P2-P3 P1-R1 P2-R1 P3-R1 P1-R2 P2-R2 P3-R2 R1-R2

Swest 

2003 August 0.06 0.00 0.94 0.57 0.06 0.00
October 0.67 0.55 0.72 0.14 0.17 0.13 0.03 0.02 0.02 0.40

2004 May 0.81 0.66 0.82 0.08 0.06 0.02 0.08 0.06 0.03 0.51
June 0.15 0.24 0.57
July 0.76 0.01 0.00 0.08 0.08 0.29
August 0.15 0.01 0.85 0.27 0.08 0.01 0.05 0.00 0.00 0.28
September 0.14 0.01 0.01 0.25 0.07 0.00
October 0.50 0.07 0.07 0.00 0.02 0.00

2005 September 0.57 0.12 0.10 0.11 0.37 0.04

Seast

2004 May 0.33 0.30 0.47
June 0.76 0.05 0.07 0.05 0.07 0.45
July 0.01 0.00 0.06
August 0.07 0.01 0.42 0.39 0.07 0.02
September 0.59 0.00 0.00 0.33 0.22 0.00 0.14 0.01 0.00 0.29
October 0.53 0.04 0.43 0.06 0.06 0.03 0.04 0.04 0.02 0.42

2005 September 0.24 0.00 0.00 0.11 0.12 0.00 0.05 0.55 0.00 0.17

Diet overlap was also high within both size classes of ruffe (Figure 4.8). Medium index 

values predominated (71% and 66% of all comparisons), and individual feeding 

specializations that would result in no diet overlap at all were very rare. Small perch showed a 

similar pattern to ruffe, with most diet overlaps being medium (50%). However, 25% of the 

index values were zero, indicating individual feeding specialisations. In medium-sized perch, 

individual specialisations were even more apparent, resulting in high proportions of zero 

overlap (50%). In this size class of perch, medium index values hardly occurred, but high 

index values accounted for 34% of all comparisons. In these cases, perch fed mainly on larger 

prey such as gammarids, molluscs, and fish, and index values indicated almost complete diet 

overlap (values > 0.8). Averaged over all size classes of fish, perch consumed more prey 

items per fish than ruffe, as some perch fed heavily on small zooplankton organisms (up to 

2500 organisms per fish). Generally, the bigger size classes within each species consumed 
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less but heavier prey items. This was most pronounced in perch, who could feed on big prey 

organisms like fish or large gammarids due to their larger gape size. 

Figure 4.8 Intraspecific diet overlap 
after Schoener (1971) among 
individuals, within one size class for 
perch and ruffe during August and 
September. Data were pooled over two 
study sites, years and months. Index 
values < 0.05 are considered as zero, 
index values 0.05  C < 0.5 as medium 
and index values  0.5 as high overlap. 
P1: perch  9.5 cm; P2: perch 
9.5 cm < TL  13.0 cm; R1: ruffe 

 9.0 cm; R2: ruffe > 9.0 cm. 

Discussion

Perch and ruffe exhibited clearly contrasting feeding strategies. Ruffe met its reputation as a 

specialized benthos consumer (Hölker and Thiel 1998, Ogle et al. 1995, Rezsu and Specziar 

2006) feeding mainly on chironomid larvae and pupae, irrespective of the sampling date. 

Perch, in contrast, had resumed its omnivorous feeding strategy in parallel to the ongoing re-

oligotrophication of ULC, feeding on zooplankton, zoobenthos and fish. In lakes of low 

productivity, where food resources are limited and may get exploited rapidly, a euryphagous 

species like perch has the option to use alternative prey, whereas a food specialist like ruffe 

has no choice but to react to the reduced food supply through slower growth and/or lower 

reproductive investment. Furthermore, intraspecific competition also increases with 

decreasing food availability. Ontogenetic diet shifts and individual feeding specializations, 

however, which are both characteristic of the food generalist perch (Hjelm et al. 2000, Jamet 

and Lair 1991, Radke and Eckmann 2001, Rezsu and Specziar 2006), can relieve intraspecific 

competition (Quevedo and Olsson 2006, Werner and Gilliam 1984). The specialized benthos 

consumer ruffe, however, is forced into severe intraspecific competition when the food base is 

reduced, as it does not perform pronounced ontogenetic diet shifts, nor does it show marked 

individual feeding specialization. After a short plankton feeding stage as larvae, they switch 

to zoobenthos already with 2 cm body length, with chironimids being their preferred prey 

throughout their life (Rezsu & Specziar 2006, Hölker & Thiel 1998). In meso- or eutrophic 
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systems, where the food base for benthivorous fish is better, this inflexibility is probably less 

detrimental, whereas in lakes of low productivity ruffe will likely be at a disadvantage. 

Perch nowadays become cannibalistic in ULC at a length of 13 cm at the latest, yet 20 

years ago all size classes of perch fed mainly on zooplankton (Becker 1988). The increased 

importance of cannibalism corresponds with the findings of Jeppesen et al. (2000, 2005) and 

Persson (1991), who predicted a change from a planktivorous-dominated to a piscivorous-

dominated fish community with decreasing lake productivity. 

Consuming conspecifics can promote growth and reproduction in various ways because  

the nutritional requirements of the cannibalistic specimens are best met by conspecifics, since 

they supply all necessary compounds such as essential amino acids in optimal proportions 

(Meffe and Crump 1987). Furthermore, with increasing body size it becomes increasingly 

unprofitable for fish to have to cover their energy needs with small organisms such as 

zooplankton until the utilization of this resource will finally not allow for a net increase in 

biomass (Diehl 1993, Mittelbach 1983). If becoming cannibalistic, however, the larger 

specimens can utilize these energetically unprofitable resources via their transformation by 

smaller conspecifics into larger, and biochemically more adequate, prey. Cannibals not only 

benefit from the energy gained by feeding on their conspecifics, but also from reducing 

competition for shared resources. The substantial impact of cannibalism on population 

dynamics was shown for perch in a long term study by Persson et al. (2000). 

The food choice of perch not only differed between size classes, it also changed during the 

growth season in a typical pattern. In spring and early summer, perch consumed zooplankton, 

then switched to zoobenthos in August and consumed zooplankton again in October. Even the 

medium-sized and large fish, which became piscivorous in August, partly reverted to 

zooplanktivory in October. At least for the medium sized fish it could be, that the y-o-y 

outgrew their gape size. Hence, the ontogenetic diet shifts in perch are not as fixed as is often 

suggested (Hjelm et al. 2000, Jamet and Lair 1991, Rezsu and Specziar 2006); they are 

reversible, whereby perch can react very flexibly to a changing prey base. The notion that diet 

shifts are irreversible in perch may arise because field samples are often obtained only during 

summer, or because studies on food choice have mainly been carried out in lakes of high 

productivity, where a flexible reaction to changes in the prey base is not provoked (Radke and 

Eckmann 2001). 

The diet shift of perch in ULC from zooplanktivory to benthivory or piscivory in August 

may be caused either by low zooplankton abundance or by better availability of zoobenthos or 

fish. In August total zooplankton abundances were indeed low in all study years, but they 
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were even lower in July and October when perch did feed on zooplankton. Similarly, the shift 

to zoobenthos cannot be attributed to increased zoobenthos abundances, as they are generally 

lowest in August in the littoral of ULC (Baumgärtner 2004, Scheifhacken 2006). Temperature 

induced changes in the behaviour of benthic organisms, however, can enhance prey 

accessibility. Zoobenthos activity probably increases in August due to high water 

temperature, either through a direct effect on activity or through oxygen depletion in their 

refuges, forcing at least part of the macrozoobenthos community to abandon these refuges 

(Newell 1969, Winterbottom et al. 1997). During our study from 2003-2006, temperatures 

were always highest in August, and as a consequence enhanced prey encounter rates may 

have triggered a diet shift in perch from zooplankton to zoobenthos. The diet shift of the 

larger perch to piscivory coincided with the arrival of y-o-y perch in the littoral zone, and 

with the daytime feeding activity of smaller benthivorous perch. 

In contrast to small Swedish lakes where perch and ruffe use different habitats (Bergman 

1988), both species used the same habitat in ULC, albeit with partly opposed activity patterns. 

During the day both species were absent from the shallow littoral zone, but appeared there at 

dusk and disappeared at dawn. Ruffe arrived in the shallow littoral zone with empty stomachs 

to feed there during the night until their stomachs were well filled the next morning, whereas 

perch rested in the shallow littoral zone during the night (Imbrock et al. 1996). Perch fed 

almost exclusively during the day, which has been observed in other studies as well (Beeck et 

al. 2002, Jamet and Lair 1991, Schleuter et al. 2007). As both species feed in the warm, 

shallow littoral zone during summer, the advantage ruffe may gain in the Swedish lakes by 

being a temperature generalist (Bergman 1987), is of minor importance in Lake Constance. 

Despite this noticeable habitat overlap, competition for food between perch and ruffe was 

only marginal. Even during summer, when the smaller perch (< 13 cm) were benthivorous, 

interspecific diet overlap reached only moderate values, indicating efficient food partitioning, 

which was also observed by Rezsu & Specziar (2006). While gammarids contributed most to 

the diet of perch, ruffe fed predominantly on chironomids. Low interspecific diet overlap, 

however, can also result from niche divergence due to competition (Bonesi et al. 2004). 

Bergman and Greenberg (1994) demonstrated that an increased density of ruffe increased 

perch’s consumption of zooplankton and of less preferred prey items. However, perch and 

ruffe prefer similar, but not completely identical prey (Fullerton et al. 1998) and gammarids 

are known to be an important prey for perch (Cobb and Watzin 1998, Rezsu & Specziar 

2006). Yet, when zooplankton abundances seriously declined in the 1990s, the high 

abundances of ruffe might have delayed a shift of perch to zoobenthos.
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Intraspecific diet overlap between size classes was high for both species throughout the 

growing season. When perch fed on zoobenthos, intraspecific competition was probably 

relieved due to individual feeding specializations. Some individuals consumed only one type 

of prey, and prey types often differed between individuals. This was most pronounced for 

larger perch, where 50% of all comparisons of individual stomach contents showed no diet 

overlap at all. Quevedo & Olsson (2006) interpreted the high variability of isotopic 

composition of perch with a high specialization in resource use, which they considered to be a 

strategy to reduce intraspecific competition. The long term study of Svanbäck and Persson 

(2004) confirm these results. They found that individual specialization fluctuated with 

population density in response to changing resource levels. In ruffe, by contrast, diet 

variability between individuals was very low and individual diet overlap was mostly moderate 

to high. 

The diel migrations of ruffe in ULC can be attributed to the differences in light intensity 

and food availability between the shallow littoral and greater depths. In the shallow littoral 

zone, water transparency is high and macrophyte stands that provide shelter from predators 

are sparse (Eckmann et al. 2006). Hence, predation risk is lower in the deeper, darker zones. 

The extremely light-sensitive eyes of ruffe may be an additional reason for them to avoid 

shallow waters during the day. Ruffe is able to feed at greater depth during the day due to its 

sensory abilities, but zoobenthos abundances decrease with depth in ULC, and they are 

already very low at around 10 m depth (Baumgärtner 2004, Mörtl 2003). As a consequence, 

ruffe have to migrate into the shallow littoral zone at dusk to feed there until dawn. A similar 

migration pattern was described for adult ruffe in oligotrophic Lake Superior by Ogle (1995). 

Since prey capture rates of ruffe are low compared to those of perch (Becker 2000, Bergman 

1988), the restriction of their feeding time to the night is considered as an additional 

disadvantage for ruffe in oligotrophic lakes, particularly during summer when nights are 

short. In more productive, and hence more turbid systems, ruffe may feed continuously during 

day and night (Hölker and Temming 1996). 

Perch also lived in the deeper littoral zone during the day which, in the case of the smaller 

fish, is probably a behavioural reaction to the lack of, or only sparsely developed, macrophyte 

cover in the littoral zone. In contrast to ruffe, however, perch mainly fed on zooplankton, 

which is also abundant at greater depths. During August, when smaller perch preyed primarily 

on zoobenthos, they also utilized the shallow littoral zone during the day. 

The results of this study suggest that competition for food between perch and ruffe in a 

large, oligotrophic lake is of minor importance. The direct consequences of re-
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oligotrophication such as higher water transparency, a reduced food base, and the higher 

prevalence of parasite infection in perch are therefore considered to be the main factors that 

control the growth and population dynamics of perch and ruffe (Eckmann et al. 2006). Perch 

reacted very flexibly to seasonal changes in food availability, and they alleviated intraspecific 

competition through individual feeding specializations. These characteristics may allow them 

to maintain high population densities in spite of the generally lower food supply in lakes of 

low productivity. Ruffe, as a zoobenthos specialist, may not revert to other food resources 

when its food base decreases, and intraspecific competition is intense due to weak individual 

feeding specializations. And finally, ruffe do not become piscivorous as they grow larger, 

which is probably their most important disadvantage in lakes of low productivity. With 

increasing intraspecific competition ruffe is known for a trade-off between gonadal 

investment and somatic growth in terms of reducing fecundity and increasing size at 

maturation, which in turn will contribute to declining population densities (Devine et al. 

2000). With ongoing re-oligotrophication of ULC, intraspecific competition in ruffe is 

expected to become more intense, leading to further decreases in their population density, 

which will then translate into even weaker competition with perch.  
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General discussion and concluding remarks 

Many studies on the community succession along a productivity gradient focused on the 

gradient from low to high productivity. Re-oligotrophication is expected to cause an inverse 

development of community composition, but the underlying mechanisms are not fully 

understood. The relative abundances of the two competing percids Eurasian perch (Perca

fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)) both increase and then decrease with 

increasing productivity. Perch, however, is favoured under mesotrophic conditions while ruffe 

prosper under meso- to eutrophic conditions. The advantage ruffe may gain over perch under 

turbid conditions due to its sensory abilities seems to be understood. The mechanisms 

controlling the distribution going from high to low productivity, however, remain still 

unclear.

In this thesis I aimed at understanding probable mechanisms underlying the competition 

between perch and ruffe, and their general performances in a large re-oligotrophic lake. As an 

initial step I determined the influence of light on the outcome of competition. With ongoing 

re-oligotrophication water transparency increases and the competitive advantage ruffe may 

gain through its sensitive lateral line organ over the visual oriented perch under turbid or dark 

conditions might be of declining importance. In single species experiments Bergmann (1988) 

and Becker (2000) could show, that in contrast to perch, ruffe can feed during darkness, but 

mixed species experiments were still missing. In the laboratory growth experiments (Chapter 

1) I could show that the species competitive superiority strongly depends on the feeding 

regime. Ruffe is outcompeting perch when food is provided during darkness to the extend that 

perch looses weight. When food is provided during the day, however, neither specific growth 

rates nor feeding behaviour of perch and ruffe were influenced substantially by interspecific 

competition.

The growth experiments described in Chapter 1 entailed further experiments: the specific 

growth rates for ruffe I measured in these feeding experiments in groups of four fish were 3.5 

fold as high than growth rates measured by Henson and Newman (2000) under similar 

conditions but with isolated ruffe. In cooperation with Susanne Haertel-Borer, I performed 

respiratory experiments (Chapter 2), which clearly demonstrate, that in groups of fish routine 
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metabolism and activity significantly decreased for both species. However, reduced 

metabolism is not only explained by reduced activity, but also by a ‘psychological’ calming 

effect.

In a next step I moved to more realistic field conditions. In enclosure experiments in the 

littoral zone I investigated the competition for benthic resources between perch and ruffe in 

re-oligotrophic Lake Constance (Chapter 3). These experiments I performed in cooperation 

with Nicole Scheifhacken, who handled the benthological part. The experiments revealed that, 

if both species are kept together, interspecific competition between perch and ruffe actually 

occurs: diet composition of perch and ruffe did not differ in the single species cages, but in 

the mixed species cages the food composition of both species changed and differed 

significantly. We could further show that for the benthic community bottom-up effects seem 

to be more important than top-down effects. We hold strong inherent processes of the benthic 

community and a general low availability of benthic organisms to fish predators responsible 

for the weak top-down effects. 

Finally, in detailed field studies in several consecutive years I could gain information on 

the general performance of both species and their niche overlap under oligotrophic conditions. 

I could show that nowadays perch indeed includes zoobenthos again in its diet, as it was the 

case before eutrophication. Yet, this diet forces it into competition with ruffe (Chapter 4).

Interspecific diet overlap, however, is moderate and only relevant during summer, when both 

species feed on zoobenthos. In contrast to interspecific diet overlap, intraspecific diet overlap 

between different size classes remains high throughout the year. Compared to ruffe diet 

composition of perch is very flexible and differs not only between different size classes but 

also follows a seasonal pattern as a reaction to changing food abundances. Ruffe as a 

specialist in contrast is not able to react to a shortage of food resources. In conclusion, this 

could be a reason for the (compared to perch) low abundances of ruffe in oligotrophic lakes. 

General Discussion 

The results of the previous chapters show that the outcome of competition between perch and 

ruffe and their general performances are influenced by various factors such as light 

conditions, environmental conditions at the study site, and food availability. In the following 

these results will be discussed with special emphasis on the environmental conditions in a 

large oligotrophic lake. 
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An important factor influencing the outcome of competition between perch and ruffe are 

the predominant light conditions. In an oligotrophic lake, however, this factor seems to be of 

minor importance and the high water transparency could even lead to a disadvantage of ruffe. 

In single species experiments it was demonstrated that ruffe’s feeding efficiency is not at all 

or only slightly influenced by decreasing light intensity or increasing turbidity, while perch is 

only able to feed efficiently under well-lit conditions (Becker 2000, Bergman 1988, Janssen 

1997). However, under well-lit conditions due to high water transparency, perch capture rates 

are higher than ruffe’s. In the laboratory growth experiments (Chapter 1) I could show in 

mixed species set ups that also the competitive outcome is strongly influenced by the 

prevailing light conditions. In darkness perch was negatively influenced by the presence of 

ruffe, to the extend that perch lost weight when food was provided only during the night. 

These results could reflect the turbid conditions we find in eutrophic systems. Under the well-

lit conditions in contrast neither specific growth rates nor feeding behaviour of perch and 

ruffe were influenced substantially by interspecific competition, which is similar to the results 

of Savino and Kolar (1996). Hence, compared to turbid lakes neither species would 

theoretically be disadvantaged nor favoured in a clear lake with high water transparency. 

Under natural conditions in an oligotrophic lake, however, ruffe feeds only during 

twilight and night and is not active during the day, while perch feeds during twilight and day 

(Chapter 4). The activity of ruffe during the day in the growth experiments might have been 

enhanced by the particular laboratory conditions (Chapter 1). Day activity of ruffe is known 

from some field studies, which were conducted in turbid systems (Hölker and Temming 1996, 

Ogle et al. 1995). In the St. Louis River Estuary of Lake Superior some ruffe fed in deeper 

regions during day and night, whereas others, which migrated to the shallow littoral zone to 

feed there heavily during the night, did not feed during the day (1995). The latter behaviour is 

similar to what we find in Lake Constance (Chapter 4). 

This activity pattern in clear lakes may be of disadvantage to ruffe. Bergman (1988) and 

Becker (2000) demonstrated in their studies that capture rates of ruffe are generally low 

compared to perch, if perch is not limited by decreasing light intensity. In turbid systems, 

where ruffe feeds during day and night, it can compensate the lower ingestion rates. However, 

during summer, when temperatures are high and growth should be best, nights are short and 

the advantage to be a light generalist vanishes. 

Night activity and the daily migration pattern of ruffe in a large oligotrophic lake with 

high water transparency might be caused by light intensity and food availability. Ruffe seems 

to prefer crepuscular or dark light conditions probably due to predator avoidance behaviour 
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and maybe due to their light-sensitive eyes (Collette et al. 1977, Hölker and Thiel 1998). In 

the shallow littoral zone of a large oligotrophic lake, however, water transparency is high and 

macrophyte-stands as shelter from predators are sparse (Eckmann et al. 2006). Hence, the 

deeper, darker zones with reduced predation risk provide better chances for survival. Due to 

ruffe’s sensory abilities, feeding would be possible in these areas; however, in the deeper 

zones of Lake Constance benthic food resources are scarce (Baumgärtner 2004, Mörtl 2003). 

Below the long-term average of low water level the abundances of zoobenthos continuously 

decrease with depth and are very low in about 10 m. The highest abundances of benthic 

organisms ruffe prey on can be found between 0.4 m and 3 m depth. As a consequence, ruffe 

have to migrate into the shallower littoral zones to feed when light becomes more crepuscular 

there.

Perch also prefers the deeper littoral zone during the day, probably also as a replay to the 

absent or only sparse macrophyte-cover in the littoral zone. However, perch might not be as 

limited as ruffe in its food intake. During spring and autumn, when perch is mainly caught in 

the deeper zones, it predominantly feeds on zooplankton, which is abundant also in greater 

depth. The zooplankton-organisms can be spotted by the optical oriented perch because of 

their contrast against the background of the light from the surface (Eckmann 2004, Köder 

2006). During August, when perch prey primarily on zoobenthos, they utilise the shallower 

littoral zone also during the day. 

One factor which was not specifically investigated in the context of this thesis, but which 

should not remain unmentioned, is temperature. Ruffe is a temperature generalist, what 

should favour him over perch. Bergman (1987) found that ruffe’s foraging ability was far less 

influenced by different temperature regimes than perch’s. As a consequence, ruffe is able to 

occupy habitats of a wider temperature range. This tolerance against temperature, however, 

plays a subordinate role during the growing season in Lake Constance, where both species co-

occur in the same habitat at temperatures, which are suitable for both species. During winter, 

however, perch and ruffe use the deeper zones of the lake, where light intensity and 

temperature are low. During this time, ruffe gains advantage by being a light and temperature 

generalist (Eckmann 2004). 

The environmental condition at different study sites such as substrate composition, wind 

and wave exposure, and benthos community composition and abundance can also influence 

the competition between perch and ruffe and the fish species distribution (Chapter 3, 4).  The 

distinct influence of some of these variables, however, remains indifferent. I could show that 

if perch and ruffe were kept together in a cage, competition actually occurred (Chapter3). 



General discussion and concluding remarks  89 

However, the outcome of competition depended on the study site: At the more sheltered, 

sandy site, with more limited food resources, both, perch and ruffe, had little filled stomachs 

and intraspecific competition was as strong as interspecific competition. At the more exposed, 

stony site with higher zoobenthos abundances, in contrast, ruffe was the superior competitor. 

At this site, total abundance of fish and the relative proportion of ruffe were also higher 

(Chapter 4). That ruffe performed better at the stony site was surprising, considering the 

findings of Dieterich et al. (2004a), who showed in their laboratory experiments, that ruffe 

foraged more efficiently over fine substrates and perch over coarse substrates.

The main reason for the differences in the relative abundances of both species between 

the study sites could be prey availability. Chironomids and other insect larvae are the 

preferred prey organisms of ruffe (Chapter 3, Chapter 4, Hölker and Thiel 1998, Kangur et al. 

1999, Rezsu and Specziar 2006). The high abundances of these prey organisms at the stony 

study site may carry higher abundances of ruffe. Additionally, the stronger wave exposure of 

this site due to the prevailing westerly winds, the close ferry-track and the steep slope could 

partially contribute to the higher relative abundances of ruffe. Actually, the use of the 

sensitive lateral line organ while foraging could restrict the foraging success at an exposed 

stony site due to higher water turbulences (Dieterich et al. 2004b). However, since ruffe is 

absent in the littoral zone during the day and it forages there during the night only, it may be 

less exposed to hydrodynamic forces than diurnal species: in summer the relative frequency 

of occurrence of waves is very high during the day, mainly due to boat traffic, but also due to 

abating winds in the evening (Hofmann et al. submitted). But additional in situ studies are 

necessary to further elucidate the influence of these variables. 

Food availability is probably also the most decisive factor for the general performances of 

perch and ruffe in an oligotrophic lake. Both species exhibit very different feeding strategies. 

Ruffe meets its reputation as benthos specialist and feeds consistent with other studies mainly 

on chironomid larvae and pupae, irrespective of the sampling date (Chapter 4, Hölker and 

Thiel 1998, Ogle et al. 1995). Only if zooplankton abundances are high, it can also feed on 

zooplankton (Kalas 1995). In the case of a shortage of the preferred resources, as it is 

expected for oligotrophic lakes, it should be difficult for a specialist like ruffe to open up new 

food resources.

Perch in contrast return with ongoing re-oligotrophication from exclusively planktivory to 

omnivory and feed again on zooplankton, zoobenthos and fish. They further exhibit a strong 

seasonal pattern in diet composition independent of fish size. To be a flexible food generalist 

like perch can be advantageous in oligotrophic lakes like Lake Constance. Food resources get 
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exploited more rapidly, if they are limited; thus the probability that fish are forced to revert on 

other prey increases. Further, intraspecific competition generally increases with decreasing 

food availability. Ontogenetic diet shifts and individual food variability, however, can relief 

from intraspecific competition (Quevedo and Olsson 2006, Werner and Gilliam 1984). 

Ontogenetic diet shifts with increasing body size can further be supported by an energetic 

gain (Graeb et al. 2006). With increasing body size it may become unprofitable to cover the 

energy demand with small sized organisms like zooplankton, especially if abundances are 

low. 

Concluding remarks 

Since the beginning of the 1980s the nutrient load of Lake Constance is steadily decreasing. 

Ruffe was first recorded in 1987 and, despite re-oligotrophication, rapidly developed high 

population densities (Rösch and Schmid 1996). Already in the mid-1990s it was one of the 

most abundant fish species in the littoral zone (Eckmann and Rösch 1998, Reyjol et al. 2005). 

But recently a decline in the population of ruffe is observed. 

The increase in ruffe populations in the 1990s coincided with a decrease in the growth of 

perch (Eckmann et al. 2006). Stakeholders feared that ruffe was negatively impacting perch. 

However, during this time, perch mainly fed on zooplankton and competition for benthic food 

resources with ruffe was not occurring. With ongoing re-oligotrophication of Lake Constance 

perch includes again zoobenthos in its diet, forcing it into competition with ruffe (Chapter 4). 

Yet, I could show in consecutive years, that interspecific competition is only relevant in 

August and September, when both species feed on zoobenthos. Even then, interspecific diet 

overlaps reach only moderate values, indicating efficient food partitioning of perch and ruffe 

(Rezsu and Specziar 2006). Intraspecific diet overlap between different size classes, however, 

is high for both species throughout the growing season. 

I suggest that in re-oligotrophic Lake Constance rather consequences of re-

oligotrophication than interspecific competition are responsible for the reduced growth of 

perch and the decreasing population densities of ruffe. In the case of perch decreasing food 

resources and altering zooplankton composition due to re-oligotrophication result not only in 

increased intraspecific competition but also in higher pike worm infections and can thus lead 

to decreasing growth rates (Brinker and Hamers 2005, Eckmann et al. 2006). Under the 

oligotrophic conditions before the eutrophication of Lake Constance, growth of perch was 
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also lower than during eutrophication (Hartmann 1975, 1978). Nevertheless, its flexibility in 

prey selection as reaction to food availability may enable perch to maintain relatively high 

stable population densities despite decreasing growth rates and intraspecific competition. 

Competition with ruffe may also slightly influence perch. The high abundances of ruffe in 

the 1990s might have delayed a shift of perch to zoobenthos, when zooplankton abundances 

seriously declined. Bergman and Greenberg (1994) demonstrated, that an increased density of 

ruffe increased perch’ consumption of zooplankton and of less preferred prey items. Low 

interspecific diet overlap between species can also resume from niche divergence due to 

competition (Chapter 3, Bonesi et al. 2004). However, perch and ruffe consume similar 

bcompletely identical benthic prey (Fullerton et al. 1998). 

In ruffe, intraspecific competition increased steadily due to the rapid population 

development following its introduction and due to ongoing re-oligotrophication. Ruffe as a 

benthos specialist is not able to open up new food resources such as zooplankton or especially 

fish. However, when ruffe was introduced to Lake Constance its population density rapidly 

increased like in other large lakes, although some of these lakes were defined as mesotrophic 

or oligotrophic (Adams and Maitland 1998, Rösch and Schmid 1996). Such a rapid 

population development is often typical for invasive species (Strayer and Malcom 2006). 

Schmid (1999) concluded from his studies on the biology of ruffe in Lake Constance, that 

ruffe had occupied an empty niche, favouring rapid establishment and population expansion. 

During this time perch was not feeding on zoobenthos and other abundant benthivorous fish 

like burbot (Lota lota (L.)) prefer other benthic organisms than ruffe (Baumgärtner and 

Rothhaupt 2005, Wacker 2005). With increasing population size of ruffe, however, 

intraspecific competition increases and thus growth and reproductive success may decline 

(Devine et al. 2000, Lorenzen and Enberg 2002, Thomas and Eckmann 2007). Additionally, 

predators may adapt to the new prey species, and eventually diseases will establish, all 

leading to a decline of the population size (Wolfe 2002). In the case of ruffe it is known from 

Loch Lomond, that after the rapid population development, fecundity of ruffe decreased and 

weight at maturity was higher at high ruffe abundances (Devine et al. 2000). The authors 

interpret the changing maturity pattern with changing population size and thus intensity of 

intraspecific competition in terms of changing growth opportunity and a trade-off between 

gonadal investment and somatic growth. The intraspecific competition and the lower 

reproduction rates finally led to a smaller population size with intermediate fecundity. In Lake 

Constance a decline in population size was observed during the last years (Reyjol et al. 2005, 

Rösch and Schmid 2005), however we could not observe a decline in the growth of ruffe (S. 
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Haertel-Borer unpubl. data, personal observation). This reproductive strategy of ruffe to 

maintain high growth rates and to decrease fecundity with increasing intraspecific 

competition, might also differ from the strategy of perch, which seems to retain fecundity 

while growth rates decline. However, further research is needed to confirm this hypothesis. 

Several factors may interact in causing declining ruffe abundances following rapid 

population development after invasion in re-oligotrophicating Lake Constance (i) rapid 

increasing population size, exceeding a sustainable population size (ii) increasing intraspecific 

competition resulting in decreased growth and reproduction success (iii) increasing 

competition with other species (e.g., perch which feeds again on zoobenthos) and (iv) ongoing 

re-oligotrophication, resulting in more limited food resources. 

The good growth of ruffe under the turbid conditions is explained by their sensory abilities to 

feed during darkness. In systems with low water transparency, ruffe often feed during day and 

night. In oligotrophic lakes with high water transparency and sparse macrophyte-cover, ruffe 

are restricted to deeper, crepuscular water zones with low zoobenthos abundances during the 

day. At night they migrate to the shallow littoral zone to feed. The advantage over perch by 

being a generalist concerning temperature and light conditions is not relevant in this system. 

As a food specialist, ruffe is even disadvantaged. Perch, as a food generalist, can open up new 

food resources, if one gets exploited, while ruffe do not have the possibility to switch to 

zooplankton or fish as main food source, if benthic invertebrates get scarce. 

In summary, despite ruffe developed rapidly high population densities after its 

introduction to Lake Constance, the fear of the fisheries stakeholders did not come true. 

Schmid (1999) suggested that ruffe had occupied an empty niche. Further, if intraspecific 

competition is low, ruffe are known to have high fecundities and a low weight at maturation 

(Devine et al. 2000). Ongoing re-oligotrophication and low fecundity due to high intraspecific 

competition, contribute now to declining ruffe populations. In oligotrophic Lake Constance, 

ruffe might be able to sustain low population densities, but it will be of minor importance as a 

competitor for perch. 
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Summary

The central issue of this thesis is the understanding of the mechanisms underlying the 

competition and the general performances of the two percids perch (Perca fluviatilis L.) and 

ruffe (Gymnocephalus cernuus (L.)) in a large re-oligotrophic lake. Both species are potential 

competitors for benthic food resources. The visual predator perch is supposed to flourish best 

under mesotrophic conditions, whereas ruffe with its very sensitive lateral line organ performs 

best under meso- to eutrophic conditions. In oligotrophic lakes ruffe is far less abundant than 

perch or even absent. Many studies exist on the competition between perch and ruffe. These 

studies mostly focus on the gradient from low to high productivity. The competitive 

relationship between perch and ruffe under ongoing re-oligotrophication, however, has never 

been studied in detail. 

In the 1980s ruffe was accidentally introduced to Lake Constance and developed high 

population densities, despite the decreasing nutrient loading due to re-oligotrophictaion. The 

increase in ruffe populations coincided with a decrease in the growth of perch, a commercially 

important fish species in Lake Constance. In this regard, stakeholders feared that ruffe had a 

negative impact on perch. However, recent reports refer to declining ruffe abundances. In this 

study I conducted laboratory, enclosure and field experiments to enlighten the mechanisms of 

competition and the general performances of both species under oligotrophic conditions. 

In the laboratory growth experiments I focused on the influence of light on the competition 

between perch and ruffe and the advantage one species may gain through their different 

sensory abilities. In single and mixed species treatments using groups of four fish I could 

show, that the outcome of competition for benthic food resources strongly depends on the 

feeding regime. At night, feeding behaviour and specific growth rates of perch were 

negatively influenced by the presence of ruffe to the extent that perch lost weight when food 

was provided only during the night. However, when fed only during the day, both species 

turned out to be equal competitors, as neither specific growth rates nor feeding behaviour of 

perch and ruffe were influenced substantially by interspecific competition. 
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The specific growth rates I measured for ruffe in these feeding experiments in groups of 

four fish were 3.5 fold as high than growth rates known from the literature for isolated ruffe 

under similar conditions. Respiratory experiments were performed, to test for a possible 

calming effect in groups of fish, as more energy can be invested in growth, if less energy is 

demanded for routine metabolism. These experiments clearly showed that in both species 

routine metabolism and activity decreased for fish in groups compared to isolated fish. 

However, the reduced metabolism could not only be explained by a reduced activity in 

groups, but also by an additional ‘psychological’ calming effect. Since many growth 

experiments and bioenergetics measurements in the literature are still performed with isolated 

fish, irrespective of the species ecology, these findings could point out that the results can 

hence seriously be biased. 

The enclosure experiments in the littoral zone of re-oligotrophic Lake Constance showed 

that interspecific competition between perch and ruffe actually occurs if both species are kept 

in close sympatry. The diet composition of perch and ruffe did not differ in the single species 

cages, yet in the mixed species cages the diet composition of both species diverged and 

differed significantly. The outcome of competition and the diet composition of both species 

were influenced by differences between the study sites and the benthic community 

composition. Compared to these bottom-up effects, predatory impacts and evidence for a top-

down control were weak or even absent, probably due to a low availability of benthic food 

resources for the fish and strong inherent processes of the benthic community. 

The field studies finally revealed that nowadays perch includes zoobenthos again in its 

diet, as it was the case before but not during eutrophication. Yet this diet forces it into 

competition with ruffe. However, interspecific competition is only relevant during summer, 

when both species feed on zoobenthos, while intraspecific diet overlap remains high 

throughout the year. Compared to ruffe, food choice of perch is very flexible not only 

between different size classes, it also follows a seasonal pattern. Perch as a food generalist is 

able to open up new food resources if one gets scarce, which seems to be advantageous in 

oligotrophic lakes like Lake Constance. Ruffe as a food specialist in contrast is not able to 

switch to zooplankton or fish as main food resource, if benthic invertebrates get scarce. This 

marked difference in feeding strategies could explain the relative to perch low abundances of 

ruffe in oligotrophic lakes. 

From the experiments within this thesis I can draw the conclusions that competition between 

perch and ruffe for benthic food resources actually occurs in Lake Constance. In a large 
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oligotrophic lake, however, the advantage ruffe as a temperature and light generalist has over 

perch is of minor importance. In systems with low water transparency, ruffe often feed during 

day and night. In oligotrophic lakes with high water transparency and sparse macrophyte-

cover, ruffe are restricted to deeper, crepuscular water zones with low zoobenthos abundances 

during the day. At night they migrate to the shallow littoral zone to feed. As a food specialist, 

ruffe is even disadvantaged as it is not able like the flexible food generalist perch, to open up 

new food resources if one gets exploited. With ongoing re-oligotrophication, both species will 

suffer from increased intraspecific competition. Despite decreasing growth rates perch might 

be able to sustain high population densities, while population densities of ruffe will probably 

balance at a low level. In my opinion, compared to the consequences of re-oligotrophication, 

interspecific competition between perch and ruffe might be of minor importance concerning 

the decline in the growth of perch. 
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Zusammenfassung

Zentrales Thema dieser Dissertation ist das Verständnis der Mechanismen, die der 

Konkurrenz zwischen Flussbarsch (Perca fluviatilis L.) und Kaulbarsch (Gymnocephalus

cernuus (L.)) und ihrer Bestandsentwicklung in einem großen, re-oligotrophierenden See 

zugrunde liegen. Beide Arten konkurrieren potentiell um benthische Nahrungsressourcen. Der 

visuell orientierte Flussbarsch entwickelt unter mesotrophen Bedingungen seine höchsten 

Abundanzen, der Kaulbarsch hingegen, der ein sehr sensitives Seitenlinienorgan hat, unter 

mesotrophen und eutrophen Bedingungen. In oligotrophen Gewässern ist er im Vergleich zum 

Flussbarsch selten oder fehlt oft sogar ganz. Die meisten Studien und Experimente, die sich 

mit der Konkurrenz von Fluss- und Kaulbarschen beschäftigen, betrachten den Gradienten 

von niedriger zu hoher Produktivität. In der Phase der Re-oligotrophierung eines Gewässers 

wurde die Konkurrenz zwischen Fluss- und Kaulbarsch bisher jedoch noch nicht detailliert 

untersucht. 

In den 1980ern wurde der Kaulbarsch in den Bodensee eingeschleppt und entwickelte 

trotz der Re-oligotrophierung rasch hohe Populationsdichten. Zeitgleich ging das Wachstum 

des kommerziell wichtigen Flussbarsches zurück. Daher befürchteten Berufsfischer einen 

negativen Einfluss des Kaulbarsches auf das Wachstum des Flussbarsches. In den letzten 

Jahren wurde aber auch ein Rückgang der Kaulbarschabundanzen beobachtet. In dieser Arbeit 

habe ich Labor-, Käfig- und Freilandexperimente durchgeführt, um die Mechanismen der 

Konkurrenz und des generellen Verhaltens der beiden Arten unter oligotrophen Bedingungen 

zu untersuchen. 

In Laborexperimenten untersuchte ich, in wieweit Licht die Konkurrenz zwischen Fluss- und 

Kaulbarsch beeinflusst und welchen Konkurrenzvorteil die jeweilige Art durch ihre 

unterschiedlichen sensorischen Fähigkeiten hat. In Ein- und Zweiarten-Ansätzen konnte ich 

zeigen, dass der Ausgang der Konkurrenz stark von der Fütterungszeit abhängt. Nachts wurde 

sowohl das Fressverhalten, als auch das Wachstum der Flussbarsche negativ durch die 

Kaulbarsche beeinflusst. Wurde die Fütterung auf die Nacht beschränkt, verloren die 

Flussbarsche sogar an Gewicht. Wenn hingegen nur am Tag gefüttert wurde, beeinflusste 
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interspezifische Konkurrenz weder das Fressverhalten noch das Wachstum beider Arten 

wesentlich. 

Die spezifischen Wachstumsraten der Kaulbarsche, die in diesem Laborversuch an 

Gruppen von jeweils vier Fischen gemessen wurden, erreichten 3,5 mal höhere Werte als 

Referenzwerte aus anderen Veröffentlichungen, die an einzelnen Kaulbarschen unter 

ähnlichen Bedingungen gemessen wurden. Da mehr Energie in Wachstum investiert werden 

kann, wenn weniger für den Routinestoffwechsel verbraucht wird, wurden 

Respirationsexperimente durchgeführt, um auf einen Beruhigungseffekt durch die Gruppe zu 

testen. Mit diesen Experimenten konnte gezeigt werden, dass der Sauerstoffverbrauch sowie 

die Aktivität der Fische in Gruppen stark zurückgingen. Der reduzierte Sauerstoffverbrauch 

konnte aber nicht ausreichend durch eine geringere Aktivität in der Gruppe erklärt werden, 

vielmehr gab es Hinweise auf einen zusätzlichen „psychologischen“ Beruhigungseffekt. Diese 

Ergebnisse zeigen, dass viele Wachstumsexperimente und Messungen zur Bioenergetik 

angezweifelt werden können, da sie, unabhängig von der Ökologie der jeweiligen Art, an 

isolierten Fischen durchgeführt werden. 

In Käfigexperimenten im Litoral des oligotrophen Bodensees konnte gezeigt werden, dass 

es zu interspezifischer Konkurrenz zwischen Fluss- und Kaulbarsch kommt, wenn beide 

Arten zusammen gehalten werden. Die genutzten Nahrungsressourcen beider Arten waren 

sehr ähnlich, wenn die Käfige nur mit einer Art besetzt waren. Wenn sich aber beide Arten 

zusammen in einem Käfig befanden, unterschieden sie sich. Der Ausgang der Konkurrenz 

sowie die Nahrungszusammensetzung wurden stark von den Unterschieden zwischen den 

Untersuchungsgebieten und in der Benthosgemeinschaft beeinflusst. Verglichen mit diesen 

bottom-up Effekten, waren die top-down Effekte schwach oder nicht feststellbar. Dies liegt 

vermutlich an einer geringen Verfügbarkeit der benthischen Organismen für die Fische und 

der starken Eigendynamik der Zoobenthosgemeinschaft. 

Freilanduntersuchungen zeigten schließlich, dass sich der Flussbarsch wie vor der 

Eutrophierung auch von Zoobenthos ernährt, wodurch es zur Konkurrenz mit dem Kaulbarsch 

kommt. Während die interspezifische Konkurrenz jedoch nur im Sommer relevant ist, ist die 

intraspezifische Konkurrenz zwischen den verschiedenen Größenklassen das gesamte Jahr 

hoch. Im Vergleich zum Kaulbarsch ist der Flussbarsch bei der Nahrungswahl sehr flexibel 

und unterscheidet sich zwischen den verschiedenen Größenklassen und im Jahresverlauf. Als 

Nahrungsgeneralist kann der Flussbarsch aufgrund seiner hohen Flexibilität bei der 

Nahrungswahl auf Veränderungen im Nahrungsangebot reagieren, was in einem oligotrophen 

See von Vorteil ist. Der Kaulbarsch hingegen kann als Benthosspezialist bei einer 
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Verknappung der benthischen Nahrungsressourcen schlecht auf andere Nahrungsressourcen 

ausweichen. Dies könnte ein Grund für die, im Vergleich zu Flussbarschen, geringeren 

Bestandsgrößen der Kaulbarsche in oligotrophen Seen sein.

Die Ergebnisse der Experimente dieser Dissertation zeigen, dass es im Bodensee zur 

interspezifischen Konkurrenz zwischen Fluss- und Kaulbarsch kommt. In einem großen 

oligotrophen See sind aber die Vorteile, die der Kaulbarsch als Licht- und 

Temperaturgeneralist gegenüber dem Flussbarsch hat, von untergeordneter Rolle. In trüben 

Gewässern fressen Kaulbarsche oft am Tag und in der Nacht. In oligotrophen, klaren Seen mit 

geringem Makrophytenbewuchs sind die Kaulbarsche tagsüber jedoch auf Tiefenzonen mit 

geringer Lichtintensität beschränkt, in denen wiederum die Zoobenthosabundanzen gering 

sind. Nachts wandern sie dann ins flachere Litoral um zu fressen. Als Nahrungsspezialist ist 

der Kaulbarsch benachteiligt, da er nicht wie der Flussbarsch auf neue Nahrungsressourcen 

wie Zooplankton oder Fisch ausweichen kann. Mit fortschreitender Re-oligotrophierung des 

Bodensees wird die intraspezifische Konkurrenz beider Arten zunehmen. Es ist zu erwarten, 

dass der Flussbarsch trotz rückläufiger Wachstumsraten hohe Populationsdichten aufrecht-

erhalten kann, während sich die Populationsdichte der Kaulbarsche auf einem niedrigeren 

Niveau stabilisieren wird. Im Vergleich zu den Konsequenzen der Re-oligotrophierung spielt 

die Konkurrenz zwischen Fluss- und Kaulbarsch eine untergeordnete Rolle für den 

Wachstumsrückgang des Flussbarsches. 
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