


Statistical Diffusion Tensor Imaging:

From Data Quality to Fiber Tracking.

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Susanne Heim

February 19, 2007



Bibliografische Information Der Deutschen Bibliothek 
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen 
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über 
http://dnb.ddb.de abrufbar. 

 

 
  
 
 

 
 

     Nonnenstieg 8, 37075 Göttingen 
      Telefon: 0551-54724-0 
      Telefax: 0551-54724-21 
      www.cuvillier.de 
 
Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung  
des Verlages ist es nicht gestattet, das Buch oder Teile 
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) 
zu vervielfältigen. 

Gedruckt auf säurefreiem Papier 
 

1. Auflage, 200  

  CUVILLIER VERLAG, Göttingen 2007 

1. Aufl. - Göttingen : Cuvillier, 2007 
Zugl.: München, Univ., Diss., 2007 
978-3-86727-326-8 

7

978-3-86727-326-8 

1. Berichterstatter: Prof. Dr. Ludwig Fahrmeir

2. Berichterstatter: Prof. Dr. Gerhard Winkler

Ausw. Berichterstatter: Prof. Dr. Brian Marx

Tag des Rigorosums: April 20, 2007



Abstract

Magnetic resonance diffusion tensor imaging (DTI) allows to infere the ultrastructure of

living tissue. In brain mapping, neural fiber trajectories can be identified by exploiting

the anisotropy of diffusion processes. Manifold statistical methods may be linked into the

comprehensive processing chain that is spanned between DTI raw images and the reliable

visualization of fibers. In this work, a space varying coefficients model (SVCM) using

penalized B-splines was developed to integrate diffusion tensor estimation, regularization

and interpolation into a unified framework. The implementation challenges originating in

multiple 3d space varying coefficient surfaces and the large dimensions of realistic datasets

were met by incorporating matrix sparsity and efficient model approximation. Superior-

ity of B-spline based SVCM to the standard approach was demonstrable from simulation

studies in terms of the precision and accuracy of the individual tensor elements. The in-

tegration with a probabilistic fiber tractography algorithm and application on real brain

data revealed that the unified approach is at least equivalent to the serial application of

voxelwise estimation, smoothing and interpolation. From the error analysis using boxplots

and visual inspection the conclusion was drawn that both the standard approach and the

B-spline based SVCM may suffer from low local adaptivity. Therefore, wavelet basis func-

tions were employed for filtering diffusion tensor fields. While excellent local smoothing

was indeed achieved by combining voxelwise tensor estimation with wavelet filtering, no

immediate improvement was gained for fiber tracking. However, the thresholding strategy

needs to be refined and the proposed model of an incorporation of wavelets into an SVCM

needs to be implemented to finally assess their utility for DTI data processing.

In summary, an SVCM with specific consideration of the demands of human brain DTI

data was developed and implemented, eventually representing a unified postprocessing

framework. This represents an experimental and statistical platform to further improve

the reliability of tractography.





Zusammenfassung

Die Diffusionsbildgebung durch Kernspintomographie erlaubt die ultrastrukturelle Cha-

rakterisierung von Gewebe in vivo. Unter Ausnutzung der stark anisotropen Diffusions-

prozesse, die vor allem in der weißen Substanz des Gehirns vorherrschen, können Ner-

venfaserverläufe identifiziert werden (Fasertracking). Statistische Methoden sind hier-

bei auf allen Verarbeitungsstufen zwischen DTI Rohbildern und der Faservisualisierung

notwendig. In der vorliegenden Arbeit wurde ein Modell mit räumlich variierenden Ko-

effizienten auf Basis von penalisierten B-splines (space varying coefficient model; SVCM)

entwickelt, das die gleichzeitige Schätzung, Regularisierung und Interpolation eines Diffu-

sionstensorfeldes leistet. Die Schwierigkeiten bei der Implementierung eines solchen Mo-

dells, die mit multiplen 3d variierenden Koeffizientenfeldern und großformatigen realen

Datensätzen einhergehen, wurden durch die Verwendung spezieller Speicherformate für

dünn besetzte Matrizen und durch eine effiziente Modellapproximation bewältigt. An-

hand von Simulationsdaten zeigte sich die höhere Genauigkeit der B-spline basierten

Tensorschätzung gegenüber der standardmäßigen voxelweisen Tensorschätzung. Im Wei-

teren wurde das B-spline basierte SVCM mit der bestehenden Implementierung eines

probabilistischen Trackingalgorithmus vereinigt. Bei der Anwendung auf Realdaten konn-

ten etwa gleichwertige Fasermuster erzielt werden wie mit der seriell verfahrenden Stan-

dardmethode. Der qualitativen Beurteilung der Tensorschätzung zufolge zeigten beide

Verfahren eine unzureichende lokale Adaptivität, so dass versucht wurde, diese über eine

Waveletfilterung des Tensorfelds zu optimieren. Durch eine Kombination aus voxelweiser

Schätzung und Waveletfilterung wurde erwartungsgemäß für die Simulationsdaten eine

deutlich höhere lokale Adaptivität erreicht; die Trackingergebnisse wurden hierbei je-

doch eher ungünstig beeinflusst. Mögliche Weiterentwicklungen bestehen in der Opti-

mierung des Thresholdingschritts bei der Waveletfilterung und der Implementierung des

vorgeschlagenen Wavelet basierten SVCMs, um das volle Potential von Wavelets für die

Analyse von DTI Daten auszuloten.

Zusammengefasst wurde ein Modell mit räumlich variierenden Koeffizienten unter beson-

derer Berücksichtigung der Dimensionalität und weiterer Eigenschaften von DTI Daten

entworfen und damit eine simultan vorgehende Methode zur DTI Datenverarbeitung zur

Verfügung gestellt. Unmittelbar daran können weitere statistische Funktionen und Simu-

lationsstudien zur Verbesserung von Fasertracking geknüpft werden.
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Outline

Diffusion tensor imaging (DTI) is an advanced magnetic resonance technique which has

opened a new avenue to assess the relationship between brain function, neuroanatomy

and pathology. Apart from monitoring major diseases, such as stroke, multiple sclerosis

and Alzheimer’s disease on the basis of several quantities describing ultrastructural tissue

properties, clinical neuroscience greatly benefits from the possibility to non-invasively map

detailed subsystems and circuits interconnecting neuronal centres. The latter application

is known as fiber tracking, also referred to as tractography. With its integrative capacity

for the build-up of atlases and, in conjuction with functional imaging for the investigation

of networking regions, fiber tracking allows for a better understanding of the human brain.

Biophysically, DTI and in particular fiber tracking relies on the strongly anisotropic dif-

fusion of water molecules in cerebral white matter. Using special acquisition schemes,

the local process can be assessed by calculating a (3× 3)-dimensional diffusion tensor for

each volume element (voxel) of the brain. The spatial tensor field provides information

on the extent of anisotropy and on local fiber orientation. Importantly, the typical size of

an imaging voxel (between 1 × 1 × 1 and 3 × 3 × 3mm3) largely exceeds the scale of the

reflected microscopical diffusion processes on the cellular level. The limited spatial reso-

lution of diffusion images leads to partial volume effects with a mixture of directionalities

within one voxel and consequently to ambiguity for fiber tracking algorithms. Various

sources of noise inherent to DTI data acquisition also contribute to the uncertainties in

the rough estimate of the average fiber orientation in space. Therefore, regularization

methods that are needed to denoise diffusion weighted images and/or tensor data should

make adequate use of neighbourhood information to utmostly preserve the underlying
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anatomical information. Also other applications such as voxelwise statistical analysis

of maps of diffusion tensor derivates and spatial normalisation algorithms would largely

benefit from edge preserving interpolation tools.

This application field poses considerable statistical and numerical challenges. In partic-

ular, the massive dimension of realistic data sets does represent a computational burden

if not broken down to voxelwise or sequential operations. To date, numerous concepts of

denoising have been suggested at different stages of DTI data processing, ranging from

anisotropic kernel methods and other adaptive filtering schemes to iterative or multilevel

procedures. These methods pursue the preservation of detailed anatomical structures and

the adequate consideration of the errors that follow a Rician distribution after Fourier

transformation. Efforts have been spent on the issue of tensor estimation with respect to

the positive definiteness and robustness as well as non-linearity of the model and mixing

distributions. In view of fiber tracking, polynomial interpolation techniques and basis

function approaches are in use. So far, not more than smoothing and interpolation have

been melted into one processing step in order to reduce error propagation. Therefore, the

main goal of this thesis is to offer a unified framework for DTI data processing with the

outlook to improve fiber tracking.

To facilitate the understanding to the reader unfamiliar with the given technology, Chap-

ter 1 provides fundamental background information on magnetic resonance tomography

and explains the biophysical principles of DTI. Apart from data acquisition the use of

derived quantities is illuminated. In Chapter 2, the impact of noise on data quality

is investigated using the non-parametric bootstrap method. The procedure allows to

quantify statistical uncertainties of DTI data and derived characteristics in dependence

on thermal noise and subject motion, either artificially increased or reduced by spatial

smoothing and the use of a vacuum device. Also, effects of gender and age are addressed

as potential confounds in group comparison studies. The extended use of bootstrap as

a tool for quality evaluation of tensor derived metrics and reconstructed fiber bundles

is reviewed. Chapter 3 deals with the three-stage processing pipeline towards trac-

tography. For the purpose of unified estimation, regularization and interpolating of the

diffusion tensor field, a space-varying coefficients model (SVCM) is developed on the ba-

sis of penalized B-spline basis functions. The joint modelling of the separate regression
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equations naturally takes into account spatial correlation by the use of basis functions

which also allow the tensor estimation at any arbitrary point in space. Yet, a naive

one-to-one implementation of the model formula is limited by the relatively large dimen-

sion of realistic data sets which typically contains multiple images of (128 × 128 × 24)

voxels. Tackling the problem of memory allocation, sparsity of the involved matrices of

tensor product B-splines and difference penalties had to be incorporated. In addition,

a sequential smoothing variant is considered as efficient alternative. A simulation study

compares the novel concept to standard procedures. The chapter closes with a tutorial on

the corresponding open-source software comprising both variants of the novel concept and

toy data. In Chapter 4, wavelets are explored for their utility in DTI data processing.

One- and two-dimensional examples serve for the derivation of the wavelet theory and the

illustration of the multiscale property. A wavelet filter which accounts for the positive

definiteness of diffusion tensors is established and examined for adaptive post-denoising

of the 3d tensor field estimated on a voxel-by-voxel basis from synthetic and experimental

data. Apart from replacing Gaussian kernel smoothing, wavelets could be used to sub-

stitute the B-spline basis functions in an SVCM. A proposal is made how this could be

accomplished. In Chapter 5, the SVCM for simultaneous tensor estimation, smoothing

and interpolation is finally linked to an existing tractography algorithm which is sketched

in brief. Examples of reconstructed fiber bundles of the human brain are visualized and

discussed. To conclude, an outlook is given on the exchange of B-spline with wavelet basis

functions.

This thesis initially originates from a cooperation with the research group of nuclear

magnetic resonance at the Max Planck Institute of Psychiatry, Munich. It directly picks

up the work by Christoff Gössl, also developed within the project Spatial Statistics of

the Collaborative Research Center Statistical Analysis of Discrete Structures. Financial

support was provided by the German Science Foundation (D. F. G.).
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1 Introduction to Magnetic Resonance

Imaging (MRI)

Nuclear magnetic resonance imaging deserves to be called a milestone in innovating di-

agnostic medicine. The chemist Paul C. Lauterbur and the physicist Sir Peter Mansfield

contributed the relevant findings throughout the 1970s and were awarded the Nobel Prize

in Medicine and Physiology in 2003. Medical engineering promoted the realization and

continues the improvement of the magnetic resonance tomograph (Fig. 1.1) which is ba-

sically equipped with a strong magnet, a radio frequency transmitter and receiver, and

gradient coils.

Figure 1.1: Patient positioned in an MR scanner for image acquisition of the human brain.
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The technique exploits the interaction of radio frequency pulses, a strong magnetic field

and body tissue. It comes with considerable advantages, in particular, when compared

to conventional, X-ray imaging techniques: The use of magnet resonance (MR) principles

allows the generation of extremely detailed 3d images from inside the human body in a

non-invasive way, without technical or health risk and without exposure to high-energy

radiation. As further benefit, imaging contrasts can be adapted in a flexible manner,

rendering MRI a powerful instrument to visualize and to quantify a large range of tissue

properties down to a microscopic scale.

In clinical practice, MRI enables disease diagnosis and monitoring. It offers techniques

that go beyond traditional imaging to show functional aspects of the investigated tis-

sue. Diffusion tensor imaging (DTI) is one of the more advanced techniques that en-

tered the clinical field in the 1980s. It has proven effective in studying aging processes

(Moseley, 2002) and a range of neurological disorders, comprising stroke (Sotak, 2002),

brain tumors, focal epilepsy, Alzheimer disease, and inflammatory diseases such as Multi-

ple Sclerosis (Horsfield and Jones, 2002). A very promising technique for neuroscience and

also clinical applications is fiber tracking, i. e. the visualization of neural fiber tracts in the

brain that connect different brain regions with each other and with the myelon. This may

become increasingly important in neurosurgery, when e. g. the effect of brain tumors on

neighboring fiber tracts is assessed for planning of surgery (Arfanakis et al., 2006; Schon-

berg et al., 2006). Fiber tracking also represents a final application field of the statistical

methods developed in this work (Chapter 5). In contrast, physicochemical properties such

as metabolite information are generally assessed by MR spectroscopy. Moreover, func-

tional MR imaging (fMRI), which has entered the field of neuroimaging in about 1992,

has greatly advanced the understanding of normal and abnormal brain function, includ-

ing sensorimotor functions but also cognitive and emotional processes. A core concept in

fMRI analysis is the functional connectivity, i. e. the interaction of brain regions during

a task.

At this point, DTI based tractography has become an important tool to demonstrate the

real underlying anatomical connectivity. Further research aims at localizing networks of

brain regions that are affected by pharmacological intervention, for example by antide-

pressive treatment. The outlook here is to identify, how pharmacons alter brain function
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and to improve treatment strategies for different neuropsychiatric conditions.

This chapter is organized in two sections: first, the basics of MR physics are introduced

in Section 1.1 and, second, the particular technique of DTI is explained in Section 1.2.

Basic questions will be answered such as what is measured and how an image is formed.

For more profound reading on both subjects, the book chapters 15 and 16 in Toga and

Mazziotta (2002) can be recommended as well as the contributions in Weickert and Hagen

(2006). Also, several excellent review articles provide fundamental understanding of DTI,

e. g. Le Bihan (2003), Mori and Barker (1999) and Basser and Jones (2002).

1.1 Basic principles of MRI

Hydrogen is omni-present and one of the most frequent elements in the human body. The

nucleus of a hydrogen atom consists of one single proton. Due to the intrinsic spin of the

proton, the rotating positive charge results in a current which in turn induces a magnetic

field. Hence, hydrogen protons have a magnetic dipole moment parallel to the rotating

axis and can be considered as tiny magnetic needles that react to external magnetic fields.

Under normal conditions, free proton spins are randomly orientated in space (Fig. 1.2,

left). In the presence of an external magnetic field, the protons take on one of the two

quantum mechanically possible energy levels, leading to parallel or antiparallel alignment

with the magnetic field (Fig. 1.2, right). This state is called equilibrium. With increasing

field strength, fewer protons are strong enough to align against the magnetic field. There

is a small excess of spins aligned parallel to the external field yielding an overall net

magnetization. In an MR scanning device, this magnetization vector points along the

human body and is therefore referred to as longitudinal magnetization, Mz.

Yet, the protons do not comply statically with the lines of magnetic flux as suggested by

Fig. 1.2, but precess, similar to tops, around the external field direction at an angular

frequency. This frequency is called Larmor frequency and depends on the atom specific

gyromagnetic ratio and the strength of the external magnetic field. At a magnetic field

strength of 1.5Tesla (T), commonly found in clinical MR scanners, the hydrogen spins

precess at 63.9MHz. The protons can change their spin direction if energy is added by



8 1. Introduction to Magnet Resonance Imaging (MRI)

Figure 1.2: Protons are naturally in a disordered state (left), but can be aligned with an external

magnetic field (right).

transmission of a suitable electromagnetic radio-frequency (RF) pulse. The RF needs

to match the Larmor frequency of the magnetic spins so that the spins can couple to

the magnetic component of the RF field (resonance condition) and exchange energy. The

resulting spin distortion is a nuclear magnetic resonance phenomenon, giving the technique

its name. After energy absorption the nuclei release this energy and return to their initial

state of equilibrium. The emitted energy establishes the MR signal that is a function of

contrast determining tissue parameters (proton density, relaxation times T1 and T2) and

the machine parameters (time to echo (TE ) and time to repetition (TR)), which will be

explained in the following.

The most common pulse sequences employed in MR imaging are spin echo sequences. A

90◦ RF pulse is applied for spin excitation, i. e. deflecting the magnetic moment by 90◦

from the direction of the external field. As a consequence, the longitudinal magnetization

is rotated into the xy-plane. Indeed, the excitation pulse causes the protons to precess

in-phase, generating a transversal magnetization Mxy. Since the transversal magnetic

moment also appears to be rotating at Larmor frequency, an MR signal voltage is induced

and can be measured by a receiver station. After the shortly lasting RF excitation pulse,

the transversal magnetization decreases and also the correpsonding signal intensity. The
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free induced signal decay (FID) occurs because individual spins lose their coherence and

dephase with time due to magnetic interaction among each other. Thus, the dephasing

mechanism is charaterized by the spin-spin relaxation time, denoted by T2. For the

purpose of signal detection, a 180◦ refocusing RF pulse is applied after duration τ of the

initial 90◦ excitation pulse, causing the spins to reverse their rotation direction. After

2τ = TE , the time to echo, the faster, now counterrotating spins have caught up with the

slower ones and the spin echo appears in dependence on the surrounding tissue properties.

For example, protons are very mobile in water and have less opportunity to exchange

energy. Therefore, the amount of transverse magnetization relaxes more slowly than

e. g. in fat. Water gives a stronger signal and appears brighter on the image than fat.

Nevertheless, there will be some intensity loss due to local field inhomogenities.

The recovery of the longitudinal magnetization occurs with the T1 relaxation time and

typically at a much slower rate than the T2 decay. The recovery process is driven by

energy exchange of the spins with their surroundings and is therefore also named spin-

lattice relaxation. Protons can efficiently interact with fatty acids (short T1) whereas in

liquids protons move too fast for notable energy transfer (long T1). Depending on the

kind of sequence used, this results in varying image brightness.

In summary, the signal intensity of the echo in a spin echo sequence is related to the

square of Mxy, given by:

Mxy(t = TE ) = Mxy(0) (1 − exp(−TR/T1)) exp(−TE/T2), (1.1)

where Mxy(0) denotes the transversal magnetization right after the first excitation which

is equal to the longitudinal magnetization Mz at time t = 0 and, thus, proportional to the

proton density. After later excitations, the signal intensity of the echo is essentially de-

termined by the first two factors, where the dependency on TR describes the longitudinal

magnetization rebuilt since the preceeding 90◦ pulse. For the moment being, it suffices

to know that TR denotes the time interval before the whole pulse sequence is repeated.

According to Eq. (1.1), the MR signal consists of three factors that can be down-regulated

or enhanced by control of TE and TR. Different image contrasts can be obtained, named

proton density weighting (short TE : 20ms, long TR), T1 weighting (short TE : 10–20ms,

short TR: 300–600ms), and T2 weighting (long TE : > 60ms, long TR: > 1600ms).

Figure 1.3 gives an impression of these basic MRI modalities by means of an axial slice
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