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There are times when all the world’s asleep,

the questions run too deep

for such a simple man.

Won’t you please, please tell me what we’ve learned,

I know it sounds absurd,

but please tell me who I am.

Roger Hodgson, Rick Davies: The Logical Song





Zusammenfassung

Diese Dissertation untersucht die Komplexität von Entscheidungsproblemen
für eine Familie hybrider Logiken über verschiedenen Klassen von Strukturen.

Hybride Logiken sind Erweiterungen modaler Logik. Diese ist ein mächti-
ger, gut handhabbarer und wohluntersuchter Formalismus, mit dem man Ei-
genschaften von und Anforderungen an Anwendungen beschreiben kann, die
durch relationale Strukturen modellierbar sind – zum Beispiel das Verhalten
von Dingen mit der Zeit, das Wissen von Agenten oder die Verifikation von
Programmen. In all diesen Anwendungen bietet modale Logik eine lokale Per-
spektive, das heißt, man kann damit Dinge beschreiben, die in einzelnen Zu-
ständen relationaler Strukturen und in deren Nachfolgerzuständen stattfinden.
In Abhängigkeit von der jeweiligen Anwendung werden bestimmte Varianten
(oder Erweiterungen) modaler Logik verwendet – beispielsweise temporale,
epistemische oder dynamische Logik.

Hybride Logiken bieten mehr Ausdruckskraft durch Namen für Zustände
von Strukturen und direkten Zugriff auf diese Zustände. Das ist in vielen An-
wendungen begehrt. So ist es im temporalen Fall nur natürlich, Namen für Zeit-
punkte zu haben und, unabhängig von der ”später-als“-Relation, darauf zuzu-
greifen. Außerdem kann man mittels hybrider Logik viele temporal relevanten
Eigenschaften von Strukturen wie Irreflexivität, Antisymmetrie oder Trichoto-
mie axiomatisieren. Wegen dieser Eigenschaften sind hybride Sprachen sehr
begehrt, wann immer die modale Grundsprache an ihre Grenzen stößt.

Die Hauptbestandteile hybrider Logik, von einem temporalen Standpunkt
aus betrachtet, sind die folgenden Ausdrucksmittel.

• Zukunfts- und Vergangenheitsoperatoren – drücken aus:
“irgendwann in der Zukunft ϕ” oder “immer in der Vergangenheit ϕ”

• Until- und Since-Operatoren – drücken zum Beispiel aus:
“irgendwann in der Zukunft ψ, und von jetzt an bis dahin ϕ”

• Nominale – geben Punkten in einer Struktur feste Namen

• Sprungoperatoren – gestatten Sprünge zu benannten Punkten

• Binder – binden Namen dynamisch an Punkte

• die globale Modalität – drückt aus: “irgendwann ϕ”



In Abhängigkeit von der jeweiligen Anwendung ist es angebracht, die Klas-
se der Strukturen auf diejenigen einzuschränken, die die Anforderungen die-
ser Anwendung modellieren. Relevante Strukturenklassen für temporale oder
epistemische Anwendungen sind beispielsweise transitive Strukturen, transi-
tive Bäume, lineare Ordnungen, die natürlichen Zahlen, Strukturen mit Äqui-
valenzrelationen (ÄR-Strukturen) oder vollständige Strukturen.

Die Entscheidbarkeit und die Komplexität von Entscheidungsproblemen für
Logiken sind relevant für das automatisierte Lösen dieser Probleme. Wir un-
tersuchen systematisch das Erfüllbarkeitsproblem und das Model-Checking-
Problem für alle relevanten hybriden Sprachen, die beliebige Kombinationen
der oben aufgeführten Operatoren enthalten, bezüglich der genannten Struktu-
renklassen. Das schließt ein, eine Hierarchie aller dieser Sprachen aufzustellen,
Ergebnisse aus der Literatur dort einzuordnen und eigene Resultate beizusteu-
ern. Im Einzelnen beweisen wir die folgenden Hauptergebnisse unter Zuhilfe-
nahme einer breiten Palette von Techniken.

• Das Model-Checking-Problem für Sprachen mit Bindern bleibt PSPACE-
vollständig über allen genannten Strukturenklassen. (Kapitel 4)

• Das Erfüllbarkeitsproblem für hybride Until-/Since-Sprachen über tran-
sitiven Strukturen ist EXPTIME-hart und in 2EXPTIME. (Abschnitt 5.4)

• Das Erfüllbarkeitsproblem für fast alle Erweiterungen der kleinsten Bin-
dersprache über transitiven Strukturen ist unentscheidbar. (Abschn. 5.4)

• Das Erfüllbarkeitsproblem für hybride Until-/Since-Sprachen über tran-
sitiven Bäumen ist EXPTIME-vollständig. (Abschnitt 5.5)

• Das Erfüllbarkeitsproblem für alle Sprachen mit Bindern über transitiven
Bäumen ist nichtelementar entscheidbar. (Abschnitt 5.5)

• Das Erfüllbarkeitsproblem für hybride Sprachen ohne Binder über ÄR-
Strukturen ist NP-vollständig. (Abschnitt 5.8)

• Das Erfüllbarkeitsproblem für die Sprache mit allen Operatoren über ÄR-
Strukturen ist N2EXPTIME-vollständig. (Abschnitt 5.8)

• Das Erfüllbarkeitsproblem für alle übrigen hybriden Sprachen über ÄR-
Strukturen ist NEXPTIME-vollständig. (Abschnitt 5.8)

• Das Erfüllbarkeitsproblem für die bimodale Version der kleinsten Binder-
sprache über vielen Strukturenklassen, darunter fast alle der oben ge-
nannten, ist unentscheidbar. (Kapitel 6)

Diese Dissertation enthält Material, das auf den Workshops ”Methods for Mo-
dalities“ (2005, für eine Sonderausgabe des ”Journal of Logic, Language and
Information“ angenommen) und ”Hybrid Logic“ (2006 und 2007) präsentiert
und in den zugehörigen Tagungsbänden veröffentlicht wurde.



Abstract

This dissertation examines the computational complexity of decision problems
for a collection of hybrid logics over different classes of frames.

Hybrid logics are extensions of modal logic that allow, in addition to the
usual perspective on states and their successors in relational structures, for
naming and accessing states of a structure explicitly. These features are very
desirable in many applications, for example, in the temporal or epistemic con-
text.

We will systematically examine decidability and the computational complex-
ity of satisfiability and the model-checking problem for a systematic collec-
tion of hybrid languages with respect to temporally and epistemically relevant
classes of structures. This includes establishing a hierarchy of all relevant lan-
guages over these classes, arranging results from the literature into this hier-
archy, and contributing our own results. In particular, we prove the following
main results, involving a wide range of techniques for establishing complexity
bounds of logics.

• The model-checking problem for all binder languages remains PSPACE-
complete over restricted classes of structures. (Chapter 4)

• The satisfiability problem for hybrid until/since languages over transitive
structures is EXPTIME-hard and in 2EXPTIME. (Section 5.4)

• The satisfiability problem for almost all extensions of the smallest binder
language over transitive structures is undecidable. (Section 5.4)

• The satisfiability problem for hybrid until/since languages over transitive
trees is EXPTIME-complete. (Section 5.5)

• The satisfiability problem for all binder languages over transitive trees is
nonelementarily decidable. (Section 5.5)

• The satisfiability problem for binder-free hybrid languages over ER struc-
tures is NP-complete. (Section 5.8)

• The satisfiability problem for the language with all operators over ER
structures is N2EXPTIME-complete. (Section 5.8)

• The satisfiability problem for all remaining hybrid languages over ER
structures is NEXPTIME-complete. (Section 5.8)



• The satisfiability problem for the bi-modal version of the smallest binder
language over many classes of structures, including many restricted ones,
is undecidable. (Chapter 6)

This dissertation contains material presented at, and published in the proceed-
ings of, the workshops “Methods for Modalities” (2005, accepted for a special
issue of the Journal of Logic, Language and Information) and “Hybrid Logic”
(2006 and 2007).
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Chapter 1

Introduction

1.1 Modal, temporal, and hybrid languages

Modal logic is a powerful, easily utilisable, well-understood, and well-be-
haved formalism for describing and specifying properties of any application
that can be modelled by relational structures. Such applications (and their cor-
responding relational structures) are, for example

(1) the behaviour of things over time

(points in time and the “later-than” relation);

(2) the knowledge of agents

(states describing the knowledge of the agent together with the relation
linking actual states with possible states);

(3) verification of programmes

(states of a machine and transitions between them given by executions of
programmes).

In all these applications, modal logic offers a local perspective, that is, it allows
for describing things that happen in individual states of relational structures
and their successor states. Depending on the particular application, certain
variants (or extensions) of modal logic are used — for example, temporal (1),
epistemic (2), or dynamic (3) logic.

This thesis will not consider logics for one certain application. Therefore we
will prefer an abstract view (in terms of relational structures) to a concrete one
(as given in the above examples). However, since many of the languages we
examine are useful for temporal applications, we will often speak about them
in terms of Example (1) from above. Until we provide a formal definition of
relational structures in Chapter 2, we will call them structures or frames, and
refer to their elements as states or points.



Chapter 1 Introduction

Hybrid languages are extensions of modal logic that allow for naming and ac-
cessing states of a structure explicitly. These features are very desirable in many
applications. Particularly in the temporal case, it is very natural to give names
to points in time and refer to them independently of the “later-than” relation.
Besides, by means of hybrid logic, it is possible to capture many temporally rel-
evant properties of structures, such as irreflexivity, antisymmetry, trichotomy,
directedness, etc. For these reasons, hybrid languages and hybrid temporal lan-
guages are of great interest where basic modal and temporal logic reach their
limits [BT99, Bla00b, ABM01, FdRS03].

Another reason for the interest in hybrid logic is discussed in [ABM99] and
[ABM00]. Hybrid languages are proof-theoretically well behaved and “inter-
nalise” labelled deduction [Bla00a], an apparatus that guides proof search in
modal logic [Gab96].

Hybrid Logic, as well as the foundations of temporal logic, goes back to
Arthur Prior [Pri67]. Since then, many — more or less powerful — languages
have been studied [Bul70, PT91, Bla93, GG93, BS95, Gor96, BS98, ABM99,
ABM00, ABM01, FdRS03]. The main features of hybrid logic that are of spe-
cial interest for this thesis are the following.

Nominals. They are special atomic propositions that give names to states — a
very natural thing for applications, particularly temporal ones. With the help
of nominals, it is possible to express properties of structures that are not ex-
pressible in modal logic, such as irreflexivity, asymmetry, etc.

The satisfaction operators. They allow for jumping to a point named by a
nominal, regardless of the accessibilities in the structure.

Hybrid binders. They allow for binding names to states dynamically and for re-
ferring to these states later on. This makes them a very powerful and desirable
means of expression, especially if they are combined with satisfaction opera-
tors. Unfortunately, due to this high expressive power, binders are dangerous
in terms of computational costs.

Furthermore, we will consider operators that occur in the context of modal
logic, too.

The “until” and “since” operators. They permit temporal statements such as:
“Until some point with property ψ, it is always the case that ϕ.” This notion
of “betweenness” cannot be expressed by the usual temporal operators, which
only allow for accessing some successor or predecessor state while immedi-
ately forgetting about the original one. Again, the increased expressivity makes
the until/since operators worthwhile, and fortunately, the computational costs
paid are not as dramatically high as in the case of hybrid binders.

2



1.2 Towards a systematic study of the complexity of hybrid logics

The global modality. It simply grants access to any point in the structure
and can thus be seen as a generalisation of satisfaction operators. Similarly
to the until/since operators, it adds expressive power to the language, which
sometimes makes reasoning harder.

1.2 Towards a systematic study of the complexity of

hybrid logics

This thesis systematically examines decidability and the computational com-
plexity of decision problems for a collection of hybrid languages with respect
to several classes of structures. More precisely speaking, we will establish, in
the usual terms of computational complexity theory, what amount of resources
(space, time) are necessary for an algorithm to decide each of these problems,
and whether such an algorithm exists at all. We will focus on the satisfiability
problem and provide results on the model-checking problem. These problems
ask whether a given formula from a certain hybrid logic is satisfiable in some
structure or a given structure, respectively. Decidability and the computational
complexity of decision problems are of great interest whenever those shall be
solved automatically, see [Wos85] for an introduction into automated reason-
ing.

Satisfiability for hybrid logic tends to have a high computational complex-
ity in general, which is due to the increased expressive power of hybrid lan-
guages. For instance, satisfiability for hybrid logic is known to require expo-
nential time [ABM00] in the presence of past or until operators, and to be even
undecidable if a fairly restricted form of a binder is admitted [ABM99]. This is
in contrast to modal logic, whose satisfiability problem is solvable in polyno-
mial space [Lad77]. Furthermore, model checking for modal languages is solv-
able in polynomial time, but in the presence of binders, polynomial time most
probably does not suffice because the model-checking problem is complete for
polynomial space here [FdR06].

It is well-known that many applications for modal or hybrid logic do not
require the full language or do not permit all possible frames. Hence, restrict-
ing the language and/or the class of relevant frames could be a way to “tame”
a very expressive logic. And indeed, there is much literature where very dif-
ferent complexities for more or less expressive hybrid languages over differ-
ent classes of frames have been established [ABM99, ABM00, FdRS03, tCF05b,
FdR06, MSSW05, MS07b, MS07a]. There are combinations of hybrid languages
and frame classes, for which the satisfiability problem, for instance, is known
to be complete for the complexity classes NP, PSPACE, EXPTIME, NEXPTIME,

3
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N2EXPTIME; nonelementarily decidable; or even undecidable. However, we
are not aware of any systematic study that involves several frame classes and,
independently from those, a self-contained collection of hybrid languages.

Such a systematic study is pursued by this thesis and will show problems that
have not been solved in the literature yet. We will fix a set of modal, temporal,
and hybrid operators and consider a hierarchy of all hybrid languages defined
by subsets of this set of operators. We will then arrange known results from
the literature into this hierarchy, separately for several classes of frames. This
will show that there are many combinations of languages and frame classes
whose complexity is not known. We will provide results for most of them,
applying a wide range of well-known techniques for establishing lower and
upper complexity bounds in modal and hybrid logic.

We do not claim that either collection (of frame classes or languages) is com-
plete, but, at least, our study covers all hybrid languages with the most com-
monly used operators and many temporally and epistemically relevant frame
classes. Here, the notion of the “relevance of frame classes for applications”
deserves a more precise explanation.

In view of temporal applications, it is apparent that only frames with “later-
than” relations satisfying certain properties need be considered. Such proper-
ties include — but are not restricted to — transitivity, irreflexivity, or trichotomy.
(The latter refers to the condition that given two distinct points, at least one
is related to the other.) One of the most special frame class in this context is
the class that consists of only one frame, namely the natural numbers with the
greater-than relation. This class underlies the widely used and well-understood
Linear Temporal Logic (see, e.g., [CGP01]) and represents a discrete view on
time. It is possible to consider the integers or the reals instead of natural num-
bers [Rey92]. Furthermore, there are two generalisations of these singleton
frame classes. One is the class of linear frames that merely requires the above
three properties and contains frames with discrete as well as dense flows of
time (among them, the natural numbers, integers, and reals). Another generali-
sation is the class of transitive trees that adds branching to the natural numbers
and underlies the expressive Computation Tree Logic (which is described in
[CGP01], too).

For epistemic applications, equivalence relations and weaker notions are nec-
essary to model knowledge and belief of agents [FHMV95, Section 3.1]. If the
states and accessibility relations in a frame are to represent possible worlds
of agents and if the agents’ knowledge or beliefs are assumed to satisfy cer-
tain soundness properties (in particular: only true things are known/believed,
and the agent is aware of what she knows/believes and what she does not
know/believe), then this is captured by equivalence relations. If some of the

4



1.3 The complexity of multi-modal hybrid logics

soundness properties are abandoned or weakened, then one has to use more
general kinds of relations.

For both kinds of applications, transitivity plays a very important rôle. First,
in all of the above examples of temporally relevant frame classes, the future
relation is transitive (and has other properties as well). The class of transitive
frames is a general case of all these temporal applications. Second, transitivity
is similarly fundamental in epistemic applications because it corresponds to
the property that agents are aware of their knowledge or their belief. As in the
temporal case, other properties can — but need not — be added, but transitivity
is rarely left out.

Modal, hybrid, and first-order logics over transitive models have been stud-
ied recently in [ABM00, GMV99, ST01, Kie02, Kie03, IRR+04, DO05]. Although
the complexity of satisfiability for hybrid (temporal) logics has been extensively
examined [BS95, Gor96, ABM99, ABM00, FdRS03], there are highly expressive
hybrid languages for whose satisfiability problems only results over arbitrary,
but not over restricted, temporally or epistemically relevant frame classes have
been known. This confirms the need for a classification of complexity for satis-
fiability of hybrid logic over such frame classes.

Furthermore, for the (general) model checking problem, only results over
arbitrary frames have been known [FdR06]. We will find out whether the
above mentioned level of complexity for binder languages persists if we re-
strict the class of frames. (The word “general” means that we will examine
the model-checking problem considered in [FdR06], restricted to certain classes
of frames, as opposed to the linear-time model-checking problem from [SC85]
and [FdRS03].)

The frame classes that we will consider are the class of all frames, transitive
frames, transitive trees, linear frames, the natural numbers, frames with equiv-
alence relations, and complete frames.

1.3 The complexity of multi-modal hybrid logics

The classification of the satisfiability problem for hybrid languages over differ-
ent frame classes will show that satisfiability for the language with the more
restricted form of a hybrid binder, which is undecidable over arbitrary frames
[ABM99], will become decidable over transitive frames [MSSW05]. We will not
only show that satisfiability for languages combining this binder with other
operators is undecidable over transitive frames. We will also examine another
extension of this binder language over a wide range of frame classes, namely
its multi-modal version. Our (undecidability) results will cover, among others,

5



Chapter 1 Introduction

frame classes that are important for epistemic applications, because the multi-
modal setting corresponds to multi-agent scenarios.

1.4 Legend to this thesis

This thesis is organised as follows. In Chapter 2, we will give all definitions and
notations that are necessary for modal, temporal, hybrid, and first-order logic.
We will also introduce the basic concepts of computational complexity and
tools used to establish complexity bounds of certain logics. Chapter 3 is con-
cerned with expressivity issues and establishes hierarchies of hybrid languages
over different classes of frames. Chapters 4 and 5 examine the model-checking
problem and satisfiability of hybrid languages over these frame classes. Sat-
isfiability of multi-modal binder logic is considered in Chapter 6. Chapter 7
gives an overview of all achieved results and contains remarks on each group
of results from the previous chapters.

Parts of this thesis have appeared in proceedings of workshops or in jour-
nals. In particular, Sections 5.4 and 5.5 contain results from [MSSW05] and
[MSSW07], Section 5.8 has appeared as [MS07a], and Chapter 6 improves on
[MS07b].

6
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Chapter 2

Preliminaries

2.1 Hybrid logic

We define the basic concepts and notations of modal and hybrid logic that are
relevant for this thesis. The fundamentals of modal logic are mainly taken from
[BdRV05]; those of hybrid logic from [ABM99, Bla00b, AtC06].

2.1.1 Syntax

As indicated in the previous chapter, the hybrid language does not exist. Rather
there are several extensions of the modal language that allow for explicit ref-
erences to states and incorporate very restricted versions of first-order quan-
tifiers — hence the attribute “hybrid”. We will introduce the largest and most
expressive hybrid language that will interest us in this thesis. It contains four
temporal operators, two hybrid binders, satisfaction operators, and the global
modality. Later on, we will define fragments of this full language.

We will give the syntax of hybrid logic inductively in the usual manner. For
Boolean, modal, and hybrid operators that appear in duals, Definition 2.1 gives
only the “existential” operators ⊥, ∨, F, etc. in the induction and defines the
remaining operators as abbreviations.

Definition 2.1 Let PROP be a countable set of propositional atoms, NOM be a
countable set of nominals, SVAR be a countable set of state variables, and let
ATOM = PROP∪NOM∪ SVAR.

(1) The full hybrid language HL(F, P, U, S, ↓, ∃, @, E) is the set of all formulae of
the form

ϕ ::= a | ⊥ | ¬ϕ | ϕ ∨ ϕ′ | Fϕ | Pϕ | ϕUψ | ϕSψ | ↓ x.ϕ | ∃x.ϕ | @t ϕ | Eϕ ,

where a ∈ ATOM, t ∈ NOM∪ SVAR, and x ∈ SVAR.
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(2) We use the following abbreviations.

	 = ¬⊥ Gϕ = ¬F¬ϕ

ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ) Hϕ = ¬P¬ϕ

ϕ → ψ = ¬ϕ ∨ ψ ∀x.ϕ = ¬∃x.¬ϕ

ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ) Aϕ = ¬E¬ϕ

(3) Let ϕ be a formula and x be a state variable.

• For any occurrence of the ↓ or ∃ operator in ϕ that begins a subfor-
mula ↓ x.ψ or ∃x.ψ of ϕ, its scope is ψ.

• Any occurrence of x in ϕ is called bound iff it is within the scope of
some occurrence of the ↓ or ∃ operator in ϕ.

• x is free in ϕ iff it does not occur bound in ϕ.

(4) A hybrid formula is called

• pure iff it contains no propositional atoms;

• nominal-free iff it contains no nominals; and

• a sentence iff it contains no free state variables.

(5) For each formula ϕ, we use PROP(ϕ), NOM(ϕ), and SVAR(ϕ) to denote,
respectively, the set of all atomic propositions, nominals, and state vari-
ables that occur in ϕ.

It is common practice to denote propositional atoms by p, q, . . . ; nominals by
i, j, . . . ; and state variables by x, y, . . . . The operators F, G, P, H, U, and S are
called temporal operators, ↓, ∃, and ∀ are called hybrid binders, @t are satisfaction
operators, and E and A are referred to as global modalities. The operators ∧, G, H,
∀, and A are said to be the duals of ∨, F, P, ∃, and E, respectively.

2.1.2 Semantics

Semantics is defined in terms of Kripke models. In order to evaluate formu-
lae with binders, an assignment from the set of all state variables to the set of
states is necessary. This assignment can be omitted whenever binder-free sub-
languages or only sentences are considered.

Definition 2.2

(1) A frame is a pair F = (M, R) with the following components.

8



2.1 Hybrid logic

• M is a nonempty set of states.1

• R ⊆ M × M is a binary relation — the accessibility relation.

(2) A (hybrid Kripke) model is a triple M = (M, R, V), where (M, R) is a frame,
and V : PROP → P(M) is a function — the valuation function. It is re-
quired that, for each i ∈ NOM, |V(i)| = 1.

(3) Given a frame F = (M, R) and a model M = (M, R, V), we say that M
is based on F and F underlies M.

(4) An assignment for a model M = (M,R, V) is a function g : SVAR → M.

(5) Given an assignment g, a state variable x, and a state m, an x-variant gx
m of

g is defined by

gx
m(x′) =

{
m if x′ = x,

g(x′) otherwise.

In order to define satisfaction and satisfiability, we use the meta-logical symbols
&, or, ⇒, ⇔, ∃©, and ∀© in order to distinguish connectives and quantifiers of the
meta-language (i.e., “and”, “or”, “implies”, “if and only if”, “there exists a state
from M”, and “for all states . . . ”, respectively) from the operators in our logic.
In addition, wherever space is short and misunderstandings are impossible, we
will omit the addition “∈ M” from quantified meta-variables.

Definition 2.3
(1) For any atom a, let

[V, g](a) =

{
{g(a)} if a ∈ SVAR,

V(a) otherwise.

(2) Given a hybrid model M = (M, R, V), an assignment g for M, and a
state m ∈ M, the satisfaction relation is as follows.

M, g, m � a iff m ∈ [V, g](a), a ∈ ATOM

M, g, m � ⊥ never

M, g, m � ¬ϕ iff M, g, m � ϕ

M, g, m � ϕ ∨ ψ iff M, g, m � ϕ or M, g, m � ψ

M, g, m � Fϕ iff ∃©n ∈ M(mRn & M, g, n � ϕ)

M, g, m � Pϕ iff ∃©n ∈ M(nRm & M, g, n � ϕ)

M, g, m � ϕUψ iff ∃©n
(
mRn & M, n � ψ & ∀©s(mRsRn ⇒ M, s � ϕ)

)
M, g, m � ϕSψ iff ∃©n

(
nRm & M, n � ψ & ∀©s(nRsRm ⇒ M, s � ϕ)

)
1 We predominantly prefer “states” to “worlds” because this seems to be the most neutral,

application-independent term.

9
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M, g, m � ↓ x.ϕ iff M, gx
m, m � ϕ

M, g, m � ∃x.ϕ iff ∃©n ∈ M(M, gx
n, m � ϕ)

M, g, m � @t ϕ iff M, g, n � ϕ, where [V, g](t) = {n}

M, g, m � Eϕ iff ∃©n ∈ M(M, g, n � ϕ)

(3) If all states from M satisfy ϕ under g, we write M, g � ϕ and say that ϕ

is globally satisfied by M under g.

(4) A formula ϕ is satisfiable if there exist a model M = (M, R, V), an assign-
ment g for M, and a state m ∈ M, such that M, g, m � ϕ.

(5) A formula ϕ is globally satisfiable if there exist a model M = (M, R, V) and
an assignment g for M, such that M, g � ϕ.

2.1.3 Other operators of interest

Whenever the choice of temporal operators is restricted to F and G, it is com-
mon to write � and � instead of F and G, respectively. This reflects the fact
that modal and hybrid logic are used for far more purposes than only to ex-
press temporal properties. We will often use these more general operator names
when working with “non-temporal” languages.

Besides the full hybrid language and fragments thereof, two generalisations
will be of interest for this thesis. The first is multi-modal hybrid logic. This is
non-temporal hybrid logic with several operators ��, ��, � = 1, . . . , n, for some
positive integer n. In this case, the concepts of a frame and a model have to be
extended. Instead of one accessibility relation, we have a tuple (R1, . . . , Rn) of
accessibility relations. Now, of course, the satisfaction relation for ��-formulae
refers to R�.

The second generalisation concerns the until/since operators. In [ABM00], a
variant, U+ and S+, is introduced in order to “simulate” transitive accessibility
relations syntactically. We will make use of a further modification which we call
U++ and S++. The resulting temporal language is an even closer simulation of
transitivity, as we will see in Section 5.4.1.

Definition 2.4 Given a binary relation R over some set M, we use

(1) R+ to denote the transitive closure of R, that is,

R+ = {(m, n) ∈ M × M |

∃©p0, . . . , pk ∈ M with p0 = m, pk = n, p0R . . . Rpn};

(2) R∗ to denote the reflexive transitive closure of R, that is,

R∗ = R+ ∪ {(m, m) | m ∈ M}.

10



2.1 Hybrid logic

frame class abbr. properties of each member (M, R) of this class
arbitrary frames — —
trees tree acyclic, connected,

each point has at most one R-predecessor

transitive frames trans R is transitive
transitive trees tt R = S+, where (M, S) is a tree
linear orders lin R is transitive, irreflexive, and trichotomous

— trichotomy:
(

∀©xy(xRy or x=y or yRx)
)

natural numbers (N, >) (M, R) = (N, >)

ER frames ER R is an equivalence relation
complete frames compl R = M × M

Table 2.1: Relevant frame classes, their abbreviations and definitions

Definition 2.5 Given a model M = (M, R, V) and a state m ∈ M, the satisfac-
tion relation for the new until/since operators is defined as follows.

M, m � ϕU+ψ iff ∃©n
(
mRn & M, n � ψ & ∀©s(mR+sR+n ⇒ M, s � ϕ)

)
M, m � ϕS+ψ iff ∃©n

(
nRm & M, n � ψ & ∀©s(nR+sR+m ⇒ M, s � ϕ)

)
M, m � ϕU++ψ iff ∃©n

(
mR+n & M, n � ψ & ∀©s(mR+sR+n ⇒ M, s � ϕ)

)
M, m � ϕS++ψ iff ∃©n

(
nR+m & M, n � ψ & ∀©s(nR+sR+m ⇒ M, s � ϕ)

)

2.1.4 Properties of models and frames

Definition 2.6 introduces the frame classes that are relevant for our consider-
ations. Parts (1)–(4) carry over straightforwardly to the multi-modal case by
replacing R by R� and requiring that the defined frame properties hold for each
(M, R�).

Definition 2.6 Let M = (M, R, V) be a hybrid model with the underlying
frame F = (M, R).

(1) For any subset M′ ⊆ M, we write R�M′ and V�M′ for the restrictions of R
and V to M′.

(2) The frame classes used in this thesis and their abbreviations are given in
Table 2.1. The properties from Column 3 are used for frames as well as for
models.

In addition, we will need two more basic concepts connected with models.

11
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Definition 2.7 Let M = (M, R, V) be a model.

(1) A submodel of M is a model M′ = (M′, R′V′) with M′ ⊆ M, R′ = R�M′ ,
and V′ = V�M′ .

(2) A cluster of M is a maximal complete submodel, that is, a submodel
M′ = (M′, R′, V′) such that R�M′ = M′ × M′, and for each set M′′ with
M′ ⊆ M′′ ⊆ M, it holds that R�M′′ ⊂ M′′ × M′′.

(3) Given a state m0 ∈ M, the submodel of M generated by m0 is the smallest
submodel M′ = (M′, R′V′) that contains m0 and satisfies the condition
that, for each m, n ∈ M, if m ∈ M′ and mRn, then n ∈ M′.

Such a submodel is also called point-generated, and m0 is its root.

It is well-known [BdRV05] that the truth of formulae from ML(�) is preserved
under taking point-generated submodels, that is, whenever M, m0 � ϕ, then
M′, m0 � ϕ, where M′ is the submodel of M generated by ϕ. This property
carries over to hybrid languages without Past, satisfaction operators and global
modalities.

2.1.5 Hybrid languages and their decision problems

In this thesis we examine decision problems of hybrid languages over those
classes of frames that were introduced in Subsection 2.1.4. “Languages” refers
to fragments of the full hybrid language HL(F, P, U, S, ↓, ∃, @, E) as well as the
generalisations introduced in Subsection 2.1.3. The following conventions en-
sure a uniform notation of all relevant languages, introduce frame properties
and corresponding frame classes, and establish decision problems of hybrid
logics.

We will denote fragments of the full hybrid language simply by omitting
those operators that are not in the respective language. The fragment HL(�) =
HL(F) is referred to as the minimal hybrid language. Multi-modal languages are
denoted by HLn(�, . . . ), where n is the number of modalities.

Whenever we have neither nominals, nor binders, nor satisfaction operators
in our language, we use ML(. . . ) to denote the respective (modal) language.
The fragment ML(�) is called the basic modal language. Furthermore, we de-
note the pure fragments (i.e., without atomic propositions) of ML(·) and HL(·)

by PML(·) and PHL(·), respectively.
Each hybrid language has decision problems over each class of frames. This

thesis will mainly be concerned with satisfiability, but also with model check-
ing. Definition 2.8 introduces these two problems, as well as the global satisfia-
bility problem, which we will occasionally refer to, too.
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2.1 Hybrid logic

Definition 2.8 Let L be a hybrid language and F be frame class.

(1) The satisfiability problem L-F-SAT is defined as follows: Given a formula
ϕ ∈ L , is ϕ satisfiable in a model based on a frame from F?

(2) The global satisfiability problem L-F-GLOBSAT is this: Given a formula ϕ∈

L , is ϕ globally satisfiable in a model based on a frame from F?

(3) The model-checking problem L-F-MC is defined as follows: Given a formula
ϕ ∈ L, a finite model M based on a frame from F, and an assignment g
for M, is there a state m in M such that M, g, m � ϕ?

(4) If F is the class of all frames, then F may be left out of either notation.

This notation is demonstrated by the following examples.

• The satisfiability problem over linear orders for the hybrid until/since
language with the @ operator is denoted by HL(U, S, @)-lin-SAT.

• The satisfiability problem over transitive frames for the bi-modal hybrid
↓ language is denoted by HL2(�, ↓)-trans-SAT.

• The global satisfiability problem for the basic modal language is denoted
by ML(�)-GLOBSAT.

• The model-checking problem over arbitrary frames for the full hybrid lan-
guage is denoted by HL(F, ↓, E)-MC — with the remark that HL(F, ↓, E)

is already as expressive as the full hybrid language, with an efficiently
computable translation function, as will be shown in Chapter 3.

2.1.6 Bounded model properties

The following properties are helpful for establishing decidability or upper com-
plexity bounds of satisfiability for logics.

Definition 2.9 Let L be a hybrid language, F be a class of frames, and f : N →

N be a computable function.

(1) L has the f -size model property with respect to F iff every formula ϕ ∈

L-F-SAT is satisfiable in a model from F that has at most f (|ϕ|) states,
where |ϕ| denotes the length of ϕ.

(2) L has the bounded model property with respect to F iff it has the g-size model
property with respect to F, for some computable function g.

(3) L has the finite model property with respect to F iff every formula ϕ ∈

L-F-SAT is satisfiable in a model from F that has finitely many states.

When we speak of L having the O( f )-size model property, we mean that it has
the g-size model property for some computable f ∈ O(g).

13
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2.2 First-order logic

2.2.1 Basic concepts

Modal and hybrid logic can be embedded into fragments of first-order logic
(FOL). Since we will make use of such embeddings, we define the basic no-
tions of FOL here following the standard notation as introduced, for example,
in [EFT96, Fit96].

Definition 2.10 Let VAR be a set of variables. For each n ∈ N, let FUNCn be a
set of n-ary function symbols. For each n ∈ N − {0} , let RELn be a set of n-ary
relation symbols.

(1) A term has the form
t ::= x | f (t1, . . . , tn),

where x ∈ VAR, n ∈ N, and f ∈ FUNCn .

(2) The first-order language FOL is the set of all formulae of the form

α ::= ⊥ | t1 = t2 | R(t1, . . . , tn) | ¬α | α ∨ α′ | ∃x.α,

where n ∈ N− {0} , R ∈ RELn , x ∈ VAR, and ti are terms.2

(3) A formula α containing exactly the free variables x1, . . . , xn is denoted by
α(x1, . . . , xn).

We use the abbreviations 	, ∧, →, ↔, and ∀ from Definition 2.1 (2). The
terms scope, bound/free variable, and sentence are analogous to those from Def-
inition 2.1 (3)–(4).

First-order logic is interpreted in terms of models and assignments.

Definition 2.11

(1) A model is a pair M = (D, I) with the following components.

• D is a nonempty set, the domain.

• I, the interpretation, is a mapping that assigns

− to every n-ary function symbol f ∈ FUNCn some n-ary function
f I : Dn → D, and

− to every n-ary relation symbol R ∈ RELn some n-ary relation
RI ⊆ Dn.

2 In the case of binary relations, we prefer the infix notation xRy to R(x, y).
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2.2 First-order logic

(2) Given a model M=(D, I), an assignment for M is a function g : VAR→D.

(3) Given a model M = (D, I), two assignments g, h for M, and a variable
x; h is an x-variant of g iff h assigns the same values to every variable
except possibly for x.

The combination of an interpretation and an assignment makes it possible to
define values for arbitrary terms as follows.

Definition 2.12 Given a model M = (D, I), an assignment g for M, and a
term t, the value tI,g of t is given as follows.

• For a variable x, xI,g = g(x).

• For a function symbol f ∈ FUNCn,
(

f (t1, . . . , tn)
)I,g

= f I
(
tI,g
1 , . . . , tI,g

n
)
.

Definition 2.13 Let M = (D, I) be a model and g an assignment for M.

(1) The satisfaction relation is defined as follows.

M � ⊥ [g] never

M � t1 = t2 [g] iff tI,g
1 and tI,g

2 are equal

M � R(t1, . . . , tn) [g] iff (tI,g
1 , . . . , tI,g

n ) ∈ RI

M � ¬α [g] iff M � α [g]

M � α ∨ β [g] iff M � α [g] or M � β [g]

M � ∃x.α [g] iff M � α [h] for some x-variant h of g

(2) Given a formula α(x1, . . . , xn) and elements d1, . . . , dn ∈ D, we also write
M � α [d1, . . . , dn] instead of M � α [g], provided that g(xi) = di for each
i = 1, . . . , n.

(3) In the case of (2), if the assignment g is denoted by d1, . . . , dn, then the
expression d1, . . . , dn, x �→ d stands for that x-variant of g which assigns d
to x, where x ∈ VAR and d ∈ D.

(4) A formula α is satisfiable iff there exist a model M and an assignment g
for M such that M � α [g].

(5) The satisfiability problem FOL-SAT is the following: Given a formula α, is
α satisfiable?

Note that, for sentences, satisfaction is independent of assignments. This leads
to the notion of truth.

Definition 2.14 If a sentence α is satisfied in some model M (under any as-
signment), we write M � α and say that α is true in M.
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2.2.2 Fragments of FOL and the standard translation

To embed hybrid logic into first-order logic, it is sufficient to restrict the vocabu-
lary to nullary function symbols (constant symbols), unary and binary relation
symbols and, if no binders are present, a constant number of variables. We do
not discuss further restrictions here that are sufficient for such an embedding.

We will denote fragments of FOL in the style of [BGG97]. We only introduce
that part of the terminology which is relevant for the following chapters of this
thesis.

Definition 2.15 Let a, b, c ∈ N.

(1) The fragment of FOL that permits no equality, no relation symbols other
than a unary ones and b binary ones, and no function symbols other than
c nullary ones, is denoted by [all, (a, b), (c)].

If equality is permitted, we write [all, (a, b), (c)]=.

We abbreviate [all, (a, b), (0)] by [all, (a, b)].

(2) The satisfiability problem [all, (a, b), (c)]-SAT is the following: Given a for-
mula α ∈ [all, (a, b), (c)], is α satisfiable?

(3) The satisfiability problem [all, (a, b), (c)]-trans-SAT is the following: Given a
formula α ∈ [all, (a, b), (c)], is α satisfiable in a model that interprets each
binary relation symbol by a transitive relation?

Hybrid logic (and hence modal logic) can be embedded into first-order logic.
Let us first consider the full hybrid language minus the until/since operators.
This language can be embedded canonically into the fragment [all, (ω, 1), (ω)],
restricted to two variables, via the Standard Translation ST [tCF05b]. This trans-
lation consists of two functions STx and STy, defined recursively. Since STy is
obtained from STx by exchanging x and y, we only give STx here.

STx(p) = P(x) STx(Fϕ) = ∃y.
(
xRy ∧ STy(ϕ)

)
STx(t) = t= x STx(Pϕ) = ∃y.

(
yRx ∧ STy(ϕ)

)
STx(⊥) = ⊥ STx(↓v.ϕ) = ∃v.

(
x=v ∧ STx(ϕ)

)
STx(¬ϕ) = ¬ STx(ϕ) STx(∃v.ϕ) = ∃v.

(
STx(ϕ)

)
STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ) STx(@t ϕ) = ∃y.

(
y= t ∧ STy(ϕ)

)
STx(Eϕ) = ∃y.

(
STy(ϕ)

)
Here, p ∈ PROP, t ∈ NOM∪ SVAR, and v ∈ SVAR.
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2.3 Computational complexity

name of class TM model restriction
P deterministic polynomial time
NP nondeterministic polynomial time
PSPACE deterministic polynomial space
NPSPACE nondeterministic polynomial space
EXPTIME deterministic exponential time
NEXPTIME nondeterministic exponential time
2EXPTIME deterministic doubly exponential time
N2EXPTIME nondeterministic doubly exponential time

Table 2.2: An overview of complexity classes used in this thesis

The operators U and S, as well as their variants from Definition 2.5, require
three variables for an embedding. Hence, for until/since languages, ST consists
of three functions STx, STy, and STz, where STx is extended as follows. STy and
STz are defined by exchanging x, y, z cyclically.

STx(ϕUψ) = ∃y.
[
xRy ∧ STy(ψ) ∧ ∀z.

(
(xRz ∧ zRy) → STz(ϕ)

)]
STx(ϕSψ) = ∃y.

[
yRx ∧ STy(ψ) ∧ ∀z.

(
(yRz ∧ zRx) → STz(ϕ)

)]
STx(ϕU+ψ) = ∃y.

[
xRy ∧ STy(ψ) ∧ ∀z.

(
(xR+z ∧ zR+y) → STz(ϕ)

)]
STx(ϕS+ψ) = ∃y.

[
yRx ∧ STy(ψ) ∧ ∀z.

(
(yR+z ∧ zR+x) → STz(ϕ)

)]
STx(ϕU++ψ) = ∃y.

[
xR+y ∧ STy(ψ) ∧ ∀z.

(
(xR+z ∧ zR+y) → STz(ϕ)

)]
STx(ϕS++ψ) = ∃y.

[
yR+x ∧ STy(ψ) ∧ ∀z.

(
(yR+z ∧ zR+x) → STz(ϕ)

)]

2.3 Computational complexity

In order to establish how many resources are necessary to solve decision prob-
lems of hybrid logics, we use the common terminology from complexity theory,
which is based on Turing machines and includes — amongst others — concepts
on which we build our considerations, namely decision problems, complexity
classes, and reductions. An introduction into this terminology can be found,
for instance, in [Pap94].

In this section, we will not explain the classical concept of a Turing machine,
but we will introduce complexity classes and reductions. We will always speak
of decision problems, as opposed to computation problems, counting problems,
etc.
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Definition 2.16

(1) Complexity classes are defined according to Table 2.2: For each row from
the table, the class with the name from Column 1 is the set of all prob-
lems decidable by some Turing machine with the property from Column 2
whose runtime or tape length is restricted as given in Column 3.

(2) A problem is elementary iff it is decidable by some Turing machine whose

runtime is restricted by 22·
··

2n

, for some finite number of exponents. A
problem is nonelementarily decidable iff it is decidable and not elementary.

(3) A problem is in CORE iff it is the complement of a recursively enumerable
problem.

(4) A problem A ⊆ X is polynomial-time reducible to a problem B ⊆ Y, written
A �P

m B, iff there is a polynomial-time computable function f : X → Y
such that for all x ∈ X the following equivalence holds.

x ∈ A ⇔ f (x) ∈ B

(5) The problems A and B are polynomial-time equivalent, written A ≡P
m B, iff

A �P
m B and B �P

m A.

(6) Let C be a complexity class and A be a problem. A is called C-hard iff, for
each C ∈ C, C �P

m A. A is called C-complete iff it is C-hard and contained
in C.

It is well-known that each complexity class C from Definition 2.16 is closed
under polynomial-time reductions, that is, whenever B ∈ C and A �P

m B, then
A ∈ C. This allows to show containment in C for some problem A by reducing
it to a problem already known to be in C.

Theorem 2.17 The following inclusions between complexity classes hold.

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆

⊆ 2EXPTIME ⊆ N2EXPTIME ⊆ CORE

Furthermore, each decidable problem is in CORE.

2.4 Tools used for establishing complexity bounds

2.4.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) is a formula of the form

α = Q1x1 . . . Qnxn.β,

18
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where Qi ∈ {∃, ∀}, for each i = 1, . . . , n, and β is a Boolean formula with only
x1, . . . , xn as propositional variables. We use the abbreviation QBF for the set
of all QBF as well. The problem to decide whether a given QBF is valid is
a well-known PSPACE-complete problem and is widely used for establishing
complexity bounds.

Definition 2.18

(1) The validity of a QBF is defined inductively as follows.

• The QBF ∃x1.β is valid iff β is satisfiable.

• The QBF ∀x1.β is valid iff β is a tautology.

• The QBF ∃x1Q2x2 . . . Qnxn.β is valid iff Q2x2 . . . Qnxn.β[x1/⊥] or
Q2x2 . . . Qnxn.β[x1/	] is valid.

• The QBF ∀x1Q2x2 . . . Qnxn.β is valid iff Q2x2 . . . Qnxn.β[x1/⊥] and
Q2x2 . . . Qnxn.β[x1/	] are valid.

In these statements, the term β[γ1/γ2] denotes the formula obtained by β

by substituting γ2 for each occurrence of γ1.

(2) The validity problem for QBF is the following.

QSAT = {α ∈ QBF | α is valid}

Theorem 2.19 ([Sto77]) QSAT is PSPACE-complete.

2.4.2 Propositional dynamic logic for sibling-ordered trees

Kracht [Kra97] introduced a variant of propositional dynamic logic, which was
referred to as “propositional dynamic logic for sibling-ordered trees” (PDLtree)
in [ABD+05], where its complexity was examined. We will use the latter result
for showing an upper complexity bound of HL(U, S, E)-tt-SAT in Section 5.5.
This subsection defines syntax and semantics of PDLtree .
PDLtree is the language of propositional dynamic logic with four atomic pro-

grammes left, right, up, and down that are associated with the relations “left
sister”, “right sister”, “mother”, and “daughter” in trees. Formulae and pro-
grammes are defined in a mutually inductive manner as follows.

Definition 2.20 Let PROP be a countable set of propositional atoms.

(1) The language PDLtree is the set of all formulae of the form

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ′ | 〈π〉 ϕ ,

where p ∈ PROP and π is a programme.
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(2) Programmes are given by

π ::= left | right | up | down | π; π′ | π ∪ π′ | π∗ | ϕ? ,

where ϕ is a formula.

(3) We use the abbreviations 	, ∧, →, ↔ from Definition 2.1 (2), as well as

[π] ϕ = ¬〈π〉 ¬ϕ and

a+ = a; a∗,

for atomic programmes a.

PDLtree is interpreted over multi-modal models. Although there are infinitely
many programmes and therefore infinitely many 〈·〉 operators, accessibility re-
lations for 〈down〉 and 〈right〉 suffice. They are extended inductively to arbitrary
programmes. This induction and the induction for the satisfaction relation in-
tertwine.

Definition 2.21

A PDLtree model is a bi-modal model M =
(
T, (Rdown, Rright), V

)
, where

• T is a finite, nonempty set;

• (T, Rdown) is a tree (see Table 2.1) with an order relation on all immediate
successors of any node; and

• Rright is the “next-sister” relation describing that order.

The relations (which are meant to correspond to 〈down〉 and 〈right〉) are ex-
tended to arbitrary programmes as follows.

Rup = R−
down Rπ∪π′ = Rπ ∪ Rπ′

Rleft = R−
right Rπ∗ = R∗

π

Rπ;π′ = Rπ ◦ Rπ′ Rϕ? = {(m, m) | M, m � ϕ}

(The notation R− stands for the converse of R, and R1 ◦ R2 denotes the set of all
pairs (a, b) for which there is some c with aR1cR2b.)

Definition 2.22

(1) Given a PDLtree model M =
(
T, (Rdown, Rright), V

)
and a state m ∈ M,

the satisfaction relation is defined by

M, m � p iff m ∈ V(p), p ∈ PROP

M, m � ⊥ never

M, m � ¬ϕ iff M, m � ϕ

M, m � ϕ ∨ ψ iff M, m � ϕ or M, m � ψ

M, m � 〈π〉 ϕ iff ∃©n ∈ T(mRπn & M, n � ϕ)
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(2) A formula ϕ ∈ PDLtree is satisfiable if there exists a PDLtree model M =(
T, (Rdown, Rright), V

)
with M, m � ϕ, where m is the root of (T, Rdown).

(3) The satisfiability problem PDLtree-SAT is the following: Given a PDLtree

formula ϕ, is ϕ satisfiable?

Theorem 2.23 ([ABD+05]) PDLtree-SAT is in EXPTIME.

2.4.3 First-order logic over strings

Let Σ be a non-empty set, called alphabet. The language of first-order logic over
strings is the fragment of FOL with predicates restricted to two binary ones
<, =, and unary ones Pσ for each σ ∈ Σ. It is interpreted over structures
(Dn, Is), where n ∈ N and s = w0 . . . wn−1 is a string with wi ∈ Σ, for each
i = 0, . . . , n − 1. Furthermore, these structures satisfy the following conditions.

Dn = {0, . . . , n − 1}

Is(<) = {(i, j) ∈ D × D | i < j}

Is(Pσ) = {i | wi = σ}

We will use FOL-Strings-SAT to denote the satisfiability problem of first-order
logic over strings, although this does not completely conform with the conven-
tions under which we normally use this kind of notation.

Theorem 2.24 ([Sto74]) FOL-Strings-SAT is nonelementarily decidable.

2.4.4 Tilings

Domino tiling problems are useful for establishing lower complexity bounds
for logics. They have been proposed by Hao Wang [Wan61] and are defined in
the following.

Definition 2.25 Let C be a non-empty set whose members are called colours.

(1) A tile is a unit square, divided into four triangles by its diagonals.

(2) A tile type t is a quadruple t =
(

left(t), right(t), top(t), bot(t)
)
∈ C4.

(3) A tile is of type t iff its left, right, upper, and lower side have colours
left(t), right(t), top(t), and bot(t), respectively.

It is clear that, after a rotation, a tile of type t is not necessarily of type t again.

A tiling is a complete covering of a given subset of the Z×Z grid with tiles
having certain types, such that each point (x, y) is covered by exactly one tile
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and adjacent tiles have the same colour at their common edges. This is put
more formally in Definition 2.26.

Definition 2.26 Let T be a set of tile types and A ⊆ Z×Z.
A T-tiling for A is a function τ : A → T satisfying the following conditions for
all (x, y) ∈ A.

If (x + 1, y) ∈ A, then right
(
τ(x, y)

)
= left

(
τ(x + 1, y)

)
. (2.1)

If (x, y + 1) ∈ A, then top
(
τ(x, y)

)
= bot

(
τ(x, y + 1)

)
. (2.2)

In order to easily refer to the set of tile types matching the type of a given tile
in a tiling, we introduce the following notation.

Definition 2.27 Let T be a tiling and t ∈ T a tile type.

RI(t, T) = {t′ ∈ T | right(t) = left(t′)}

UP(t, T) = {t′ ∈ T | top(t) = bot(t′)}

Conditions (2.1) and (2.2), then, are equivalent to

If (x + 1, y) ∈ A, then τ(x + 1, y) ∈ RI
(
τ(x, y)

)
.

If (x + 1, y) ∈ A, then τ(x, y + 1) ∈ UP
(
τ(x, y)

)
.

Definition 2.28

(1) Let A ⊆ Z×Z.

The A-tiling problem is the following question: Given a finite set T of tile
types, is there a T-tiling of A ?

(2) Let n ∈ N.

The square tiling problem is the following question: Given a finite set T
of tile types and a string 1n of n consecutive 1s, is there a T-tiling of
{0, . . . , n − 1} × {0, . . . , n − 1}?

In [Rob71] it was shown that the N×N-tiling problem and the Z×Z-tiling prob-
lem are equivalent. We will refer to this problem as the unbounded tiling problem,
whereas we will call A-tiling problems for finite sets A — including the square
tiling problem — bounded.

Theorem 2.29

(1) The unbounded tiling problem is coRE-complete. [Ber66]

(2) The square tiling problem is NP-complete. [SvEB84]
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Reductions from the unbounded tiling problem have, for instance, been used
to prove undecidability of satisfiability for modal logics [Spa93a], products of
modal logics [Mar99, GKWZ05], hybrid logics [BS95, Gor96, ABM99], and de-
scription logics with binders [Mar99]. We will establish such reductions in
Chapter 6.

The square tiling problem is only one of many examples of the great variety
of bounded tiling problems. Examples can be found in [Chl86, vEB97]. Since
there are bounded tiling problems of many complexity levels, they have widely
been used as a convenient tool for establishing lower complexity bounds for
logics, see [Chl86], or [GKWZ03] and the references therein.

Revisiting the proof of Theorem 2.29 (2) in [SvEB84] shows that the proof
technique, which translates Turing machine computations into tilings, is very
robust. Hence, simple variants of the square tiling problem can analogously be
shown to be complete for larger classes. We will consider the following variant,
which we will call the 22n

-tiling problem. Given a finite set T of tile types and a
string 1n, is there a T-tiling of the 22n

× 22n
square?

Corollary 2.30 The 22n
-tiling problem is N2EXPTIME-complete.
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Chapter 3

Expressivity

In this thesis, we consider hybrid logics with temporal operators F, P, S, U;
hybrid binders ↓, ∃; satisfaction operators @t; and the “somewhere” modality
E. In order to classify the complexity of decision problems for all languages
constructed by subsets of these operators, it is essential to ask what languages
there are and what their inclusion structure is. Hierarchies of hybrid languages
have been established, for example, in [BS95], [Gor96], and [FdRS03]. Building
on the expressivity results from those papers, we will establish the inclusion
structure of all fragments of the full hybrid language that are relevant for this
thesis, with respect to several frame classes.

3.1 Towards a hierarchy of hybrid languages

From a naı̈ve point of view, arbitrary combinations of these eight operators
should yield 28 = 256 hybrid languages. Fortunately enough, certain oper-
ators can be simulated using others, which decreases the number of different
languages dramatically and leads to inclusions between hybrid languages. Fur-
thermore, even more languages coincide over restricted frame classes.

The informal statement “an operator X can be simulated using (one or more)
other operators Y” will be stated more precisely later on and makes use of the
following definition of the relation ≡.

Definition 3.1 Let ϕ1, ϕ2 be formulae from two hybrid languages HL(X1) and
HL(X2), respectively. The relation ϕ1 ≡ ϕ2 holds if and only if for any model
M = (M, R, V), any assignment g for M, and any state m ∈ M:

M, g, m � ϕ ⇔ M, g, m � ϕ′.

The following simulations between temporal, modal, and hybrid operators are
well-known, see, for instance, [FdRS03].
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Fact 3.2 Let ϕ, ψ be hybrid formulae, t ∈ NOM∪ SVAR, and x, a, b ∈ SVAR,
where neither a nor b occurs free in ϕ or ψ. Then the following propositions
hold.

(1) @t ϕ ≡ E(t ∧ ϕ)

(2) ↓ x.ϕ ≡ ∃x.(x ∧ ϕ)

(3) ∃x.ϕ ≡ ↓ a. E↓ x. E(a ∧ ϕ)

(4) Eϕ ≡ ∃a.(@a ϕ)

(5) Fϕ ≡ 	Uϕ

(6) Pϕ ≡ 	Sϕ

(7) ϕUψ ≡ ↓ a. F↓b.
(
ψ ∧ @aG(Fb → ϕ)

)
(8) ϕUψ ≡ ↓ a. F

(
ψ ∧ H(Pa → ϕ)

)
(9) ϕSψ ≡ ↓ a. P

(
ψ ∧ G(Fa → ϕ)

)
(10) Pϕ ≡ ↓ a. E(ϕ ∧ Fa)

(11) ϕUψ ≡ ∃a.
(
F(a ∧ ψ) ∧ G(Fa → ϕ)

)

We first examine the inclusion structure of all hybrid languages with no tempo-
ral operators other than F. We consider all languages that contain F and arbi-
trary combinations of the ↓, ∃, @, and E operators. Although there are 24 = 16
such combinations, Fact 3.2 (1)–(4) causes some of them to coincide, where the
term “coincidence” is formalised as follows.

Definition 3.3 Let L, L′ be two hybrid languages. We write L � L′ iff for each
ϕ ∈ L, there is some ϕ′ ∈ L′ such that ϕ ≡ ϕ′. If L � L′ and L′ � L, we write
L ∼ L′.

We have the following coincidences.

• HL(F, ↓, ∃, @, E)
(1), (3)
∼ HL(F, ↓, E)

(3)
∼ HL(F, ↓, ∃, E)

(1), (3)
∼ HL(F, ↓, @, E)

• HL(F, ↓, E)
(2), (3)
∼ HL(F, ∃, E)

(1)
∼ HL(F, ∃, @, E)

• HL(F, ∃, @)
(1), (3)
� HL(F, ↓, E)

(4)
� HL(F, ↓, ∃, @)

(2)
� HL(F, ∃, @)

• HL(F, @, E)
(1)
∼ HL(F, E)

• HL(F, ↓, ∃)
(2)
∼ HL(F, ∃)

Hence there are only seven relevant languages. Fact 3.2 (1)–(4) also causes
inclusions between them, as shown in Figure 3.1 (a), where the abbreviation
“HL” as well as parentheses and commas have been omitted.

In addition to non-temporal operators, we will not consider all possible com-
binations of temporal operators. Instead, we will restrict our attention to the
languages HL(F, X), HL(F, P, X), HL(U, X), HL(U, P, X), and HL(U, S, X),
where X stands for any of the above combinations of the four non-temporal
operators. The reason for this restriction is that all other languages coincide
with, or are mirror images of, one of these languages, where “mirror image”
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F

F@

FE

F↓

F∃F↓@

F↓E

F

U FP

UP

US

(a) Without temporal operators (b) With only temporal operators

Figure 3.1: Parts of a hierarchy of hybrid languages

means that F is replaced by P, U is replaced by S, and vice versa. For instance,
HL(P, U) is the mirror image of HL(F, S), which coincides with HL(F, P, S).
The mentioned coincidences are due to Fact 3.2 (5)–(6), which is also responsi-
ble for the inclusion structure of the five languages as shown in Figure 3.1 (b).

If we now combine each temporal language with each non-temporal lan-
guage, this should yield 5 · 7 = 35 combinations. Fortunately, due to Fact 3.2,
some of them coincide.

• HL(F, P, ↓)
(5)
� HL(U, P, ↓)

(6)
� HL(U, S, ↓)

(8), (9)
� HL(F, P, ↓)

• HL(F, ∃)
(5), (11)
∼ HL(U, ∃)

• HL(F, P, ∃)
(5)
� HL(U, P, ∃)

(6)
� HL(U, S, ∃)

(8), (9), (2)
� HL(F, P, ∃)

• HL(F, ↓, @)
(5), (7)
∼ HL(U, ↓, @)

• HL(F, P, ↓, @)
(5)
� HL(U, P, ↓, @)

(6)
� HL(U, S, ↓, @)

(8), (9)
� HL(F, P, ↓, @)

• HL(F, ↓, E)
(5)
� HL(U, ↓, E) � HL(U, P, ↓, E)

(6)
� HL(U, S, ↓, E)

(8), (9)
� HL(F, P, ↓, E)

(10)
� HL(F, ↓, E)

Hence there are 23 languages of interest, whose inclusion structure is given in
Figure 3.2. The picture from Figure 3.1 (b) appears as a substructure in Fig-
ure 3.2 several times. It is distorted there, which will allow for plotting the
borders between complexity results more clearly in Section 5.2.
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FP

UP

US

F@

U@

FP@

UP@
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FE

UE

FPE

UPE

USE

F↓

U↓

FP↓
F∃

FP∃

F↓@

FP↓@

F↓E

Figure 3.2: A hierarchy of hybrid languages over arbitrary frames
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3.2 Hierarchies over restricted frame classes

Over transitive trees or linear frames, more languages coincide. This is so
for several reasons. First, it is easily observed that ↓ is useless over any class of
acyclic frames, as long as it is accompanied only by F or U. This is because it is
not possible to reach a state to which some state variable has been bound, once
this state has been left. Hence every formula ϕ from HL(F, ↓) (or HL(U, ↓)) is
≡-equivalent to ϕ′ from HL(F) (or HL(U), respectively), where ϕ′ is obtained
from ϕ as follows [FdRS03].

• Replace each occurrence of any state variable x in the scope of some F (or
U) operator which is in the scope of “↓ x.” by ⊥.

• Replace each other occurrence of any state variable x by 	.

• Remove each occurrence of “↓ x.”, for any state variable x.

Second, over transitive trees, the E operator can be simulated using F and P:
Eϕ ≡ ϕ ∨ Pϕ ∨ PFϕ [ABM00]. Over linear frames, Eϕ ≡ Pϕ ∨ ϕ ∨ Fϕ suffices.
This causes the following equalities.

• HL(F, P) ∼ HL(F, P, @) ∼ HL(F, P, E)

• HL(U, P) ∼ HL(U, P, @) ∼ HL(U, P, E)

• HL(U, S) ∼ HL(U, S, @) ∼ HL(U, S, E)

• HL(F, P, ↓) ∼ HL(F, ↓, E) ∼ HL(F, P, ↓, @) ∼ HL(F, P, ∃)

In contrast to all previous ones, this simulation causes an exponential blowup.
Therefore, for a classification of the complexity of decision problems, it is not
helpful to merge entries in the hierarchy according to the above equalities. In-
stead, we have indicated these coincidences in Figure 3.3 by small halfcircles.

However, as for the satisfiability problem, it is helpful to know that, over
these frame classes, the E operator can be simulated using F, P, and linearly
many additional atomic propositions — provided that no binder is in the lan-
guage. This simulation does not satisfy the relation ≡, but preserves satisfiabil-
ity and is computable in polynomial time. The details are given in [ABM00].

Over ER frames, temporal operators other than F do not add any expressive
power. It is obvious that P and S are needless — they can be replaced by F and U

because the accessibility relation is symmetric. Furthermore, ϕUψ ≡ Fψ ∧ Gϕ.
For these reasons, the languages over ER frames and their inclusion structure
are the same as given in Figure 3.1 (a). We will often use � instead of F in the
absence of other temporal operators.

If only complete frames are considered, then Eϕ ≡ Fϕ. Hence, there are only
the languages HL(F) and HL(F, ↓) with the inclusion HL(F) � HL(F, ↓).

29



Chapter 3 Expressivity

F

U

FP

UP

US

F@

U@

FP@

UP@

US@

FE

UE

FPE

UPE

USE

FP↓
F∃

FP∃

F↓@

FP↓@

F↓E

Figure 3.3: A hierarchy of hybrid languages over transitive trees and linear
frames
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Chapter 4

Model Checking

In this chapter, we classify the computational complexity of the model-checking
problem of all fragments of the full hybrid language with respect to different
frame classes. This problem has been exhaustively examined over arbitrary
frames by Franceschet and de Rijke in [FdR06]. Their results can be sum-
marised as follows. For binder-free languages, model checking is solvable
in polynomial time, and for languages with binders, it is PSPACE-complete.
Since the upper bounds of these problems carry over if we restrict the class of
frames, there is only one interesting question left: Does model checking remain
PSPACE-hard for binder languages over restricted frame classes? Our contribu-
tion is the answer “yes” for the frame classes we consider.

The hardness results by Franceschet and de Rijke hold for PML(F, ↓)-MC.
With a slight modification of their proof technique, it is possible to establish the
same lower bound over complete frames. If we consider acyclic frame classes,
there are three minimal binder-free languages. Hence we have to establish the
lower bounds for PML(F, P, ↓), PML(F, ↓, @), and PML(F, ∃) over (N, >).

4.1 Complete frames and above

Lemma 4.1 PML(�, ↓)-compl-MC is PSPACE-hard.

Proof. We will give a polynomial-time reduction from QSAT, which is de-
fined in Section 2.4.1. Consider an arbitrary instance α = Q1x1 . . . Qnxn.β of
QSAT. Let M = (M, R, ∅) consist of two states that form an equivalence class,
namely M = {1, 2} and R = M × M. Let g be an arbitrary assignment for
M. (The choice of g is irrelevant, since the reduction function will produce
sentences only.)

The central idea is to bind a state variable t (denoting “true”) to some state
(say, 1) such that, when evaluating β, each variable xi will be treated as true
iff it is bound to 1. For this purpose, we define a translation function τ from
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unquantified and quantified Boolean formulae to formulae from PML(�, ↓)
as follows.

τ(⊥) = ⊥ τ(xi) = �(xi ∧ t)

τ(¬γ) = ¬τ(γ) τ(∃xi.γ) = �↓ xi.τ(γ)

τ(γ1 ∨ γ2) = τ(γ1) ∨ τ(γ2) τ(∀xi.γ) = �↓ xi.τ(γ)

From α we construct a sentence f (α) = ↓ t.τ(α), which ensures that t is bound
to some state. Clearly, f is computable in polynomial time.

It remains to show that α ∈ QSAT if and only if M, g, 1 � f (α). (Since the
states 1 and 2 of M satisfy the same sentences, it is correct to fix the state 1.)
This property is a consequence of the following claim.

Claim. For each assignment g for M with g(t) = 1 and each α ∈ QBF:

α ∈ QSAT if and only if M, g, 1 � τ(α)

Proof of Claim. We will proceed by induction on α.

For the base case, suppose α = ∃x.β. The ∀ case is analogous. The line of proof
is by the following chain of equivalent statements.

α ∈ QSAT (1)⇔ β is satisfiable
(2)⇔ β is true under the assignment {x} or {¬x}
(3)⇔ M, gx

1, 1 � β or M, gx
2, 1 � β

(4)⇔ M, gx
1, 1 � β[x/�(x ∧ t)] or M, gx

2, 2 � β[x/�(x ∧ t)]
(5)⇔ M, gx

1, 1 � τ(β) or M, gx
2, 2 � τ(β)

(6)⇔ M, g, 1 � ↓ x.τ(β) or M, g, 2 � ↓ x.τ(β)

(7)⇔ M, g, 1 � �↓ x.τ(β)

These equivalences are justified as follows.

(1) Definition of QSAT.

(2) Definition of satisfiability for propositional formulae.

(3) Obvious.

(4) Since M is a complete model, the formula �(x ∧ t) is true under gx
1 and

false under gx
2 everywhere in M.

(5) Since x is the only variable of β, τ(β) = β[x/�(x ∧ t)].

(6) Definition of satisfaction for ↓.

(7) Definition of satisfaction for �, together with the construction of M.
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For the induction step, suppose α = ∃yQ1x1 . . . Qnxn.β. Again, the ∀ case is
analogous. We use the following chain of equivalent statements.

α ∈ QSAT
(1)⇔ Q1x1 . . . Qnxn.β[y/⊥] ∈ QSAT or Q1x1 . . . Qnxn.β[y/	] ∈ QSAT
(2)⇔ M, g, 1 � τ(Q1x1 . . . Qnxn.β[y/⊥]) or

M, g, 1 � τ(Q1x1 . . . Qnxn.β[y/	])

(3)⇔ M, g, 1 � τ(Q1x1 . . . Qnxn.β)[�(y ∧ t)/⊥] or

M, g, 1 � τ(Q1x1 . . . Qnxn.β)[�(y ∧ t)/	]

(4)⇔ M, gy
1, 1 � τ(Q1x1 . . . Qnxn.β) or M, gy

2, 1 � τ(Q1x1 . . . Qnxn.β)

(5)⇔ M, gy
1, 1 � τ(Q1x1 . . . Qnxn.β) or M, gy

2, 2 � τ(Q1x1 . . . Qnxn.β)

(6)⇔ M, g, 1 � ↓y.τ(Q1x1 . . . Qnxn.β) or M, g, 2 � ↓y.τ(Q1x1 . . . Qnxn.β)

(7)⇔ M, g, 1 � �↓y.τ(Q1x1 . . . Qnxn.β)

These equivalences are justified as follows.

(1) Definition of QSAT.

(2) Induction hypothesis.

(3) Construction of τ.

(4) Since M is a complete model, the formula �(y ∧ t) is true under gy
1 and

false under gy
2 everywhere in M.

(5) Since τ(. . . ) is a �- or �-formula and M is complete, τ(. . . ) is true at 1 iff
it is true at 2.

(6) Definition of satisfaction for ↓.

(7) Definition of satisfaction for �, together with the construction of M.
❏

The following theorem is a consequence of Lemma 4.1 and [FdR06, Theo. 4.5].

Theorem 4.2 Let X ∈
{
{�, ↓}, {�, ↓, @}, {�, ∃}, {�, ↓, E}

}
and F be a class of

frames with compl ⊆ F.
Then (P)ML(X)-F-MC and (P)HL(X)-F-MC are PSPACE-complete.

Corollary 4.3
(1) Let X ∈

{
{�, ↓}, {�, ↓, @}, {�, ∃}, {�, ↓, E}

}
.

(P)ML(X)-compl-MC and (P)HL(X)-compl-MC are PSPACE-complete.

(2) Let X ∈
{
{F, ↓}, {U, ↓}, {F, P, ↓}, {F, ↓, @}, {F, P, ↓, @}, {F, ∃}, {F, P, ∃},

{F, ↓, E}
}

.

(P)ML(X)-trans-MC and (P)HL(X)-trans-MC are PSPACE-complete.
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4.2 Natural numbers and above

Lemma 4.4

(1) PML(F, P, ↓)-(N, >)-MC is PSPACE-hard.

(2) PML(F, ↓, @)-(N, >)-MC is PSPACE-hard.

(3) PML(F, ∃)-(N, >)-MC is PSPACE-hard.

Proof. We will give polynomial-time reductions from QSAT, analogously to
the proof of Lemma 4.1. Consider an arbitrary instance α = Q1x1 . . . Qnxn.β of
QSAT. Let M = (N, >, ∅) and g be an arbitrary assignment. Again, we will
bind a state variable t (“true”) to a state different from 0, such that, when eval-
uating β, each variable xi will be treated as true iff it is bound to this state. The
overall technique for all three languages will essentially be the same. We will
only give the polynomial-time computable translation and reduction functions.
The remaining technical details are analogous to the proof of Lemma 4.1, with
only slight modifications according to the frame class and the set of operators
available.

(1). The reduction function is given by f (ψ) = ↓ s.F ↓ t.P
(
s ∧ τ(ψ)

)
, and the

translation τ(·) is defined as follows.

τ(⊥) = ⊥ τ(xi) = F(xi ∧ t)

τ(¬β) = ¬τ(β) τ(∃xi.β) = F↓ xi.P
(
s ∧ τ(β)

)
τ(β1 ∨ β2) = τ(β1) ∨ τ(β2) τ(∀xi.β) = G↓ xi.P

(
s ∧ τ(β)

)
(2). This case can be treated exactly as case (1) if we replace each occurrence
of P(s ∧ ϑ) in the definitions of τ(·) and f (ψ) by @sϑ.

(3). The reduction function is given by f (ψ) = ∃t.
(
Ft ∧ τ(ψ)

)
, and the trans-

lation τ(·) is defined as follows.

τ(⊥) = ⊥ τ(xi) = F(xi ∧ t)

τ(¬β) = ¬τ(β) τ(∃xi.β) = ∃xi.
(
Fxi ∧ τ(β)

)
τ(β1 ∨ β2) = τ(β1) ∨ τ(β2) τ(∀xi.β) = ∀xi.

(
Fxi → τ(β)

)
❏

The following theorem is a consequence of Lemma 4.4 and [FdR06, Theo. 4.5].

Theorem 4.5 Let X ∈
{
{F, P, ↓}, {F, ↓, @}, {F, P, ↓, @}, {F, ∃}, {F, P, ∃},

{F, ↓, E}
}

and F be a class of frames with (N, >) ∈ F.
Then (P)ML(X)-F-MC and (P)HL(X)-F-MC are PSPACE-complete.
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Chapter 5

Satisfiability

5.1 Introduction

In this chapter, we classify the computational complexity of the satisfiability
problem of all fragments of the full hybrid language with respect to different
frame classes. Our contribution mainly concerns all languages over ER frames
as well as many binder and until/since languages over transitive frames and
transitive trees.

It goes without saying that decision problems for richer logics (such as hy-
brid languages) require more resources than those for simpler ones (such as
the basic modal language). Satisfiability for ML(F) and ML(F, P) over arbi-
trary as well as over transitive frames are PSPACE-complete [Lad77, Spa93b]. In
contrast, ML(F, E)-SAT is EXPTIME-complete [Spa93a]. Over more restricted
frame classes, satisfiability for ML(F) and ML(F, P) is NP-complete [Lad77,
ON80, SC85]. In contrast, the known part of the complexity spectrum of hybrid
satisfiability reaches up to undecidability.

Many complexity results for hybrid logics have been established in [ABM99,
ABM00]. It was proven in [ABM99] that HL(F, @)-SAT is PSPACE-complete
and HL(F, P)-SAT is PSPACE-complete and remains so when @ or E is added.
The same authors show that these problems have the same complexity (or drop
to PSPACE-complete or NP-complete, respectively) if the class of frames is re-
stricted to transitive frames (or transitive trees, or linear frames, respectively)
[ABM00].

Undecidability results for hybrid languages containing the restricted binder ↓
originate from [BS95, Gor96]. The strongest such result — for the pure nominal-
free fragment of HL(F, ↓) — is given in [ABM99].

In a recent paper [tCF05b], it has been demonstrated that the decidability
of HL(F, ↓, @) over arbitrary frames can be regained under certain syntactic re-
strictions concerning the interaction of ↓ and the modal operator �. In the same
paper, decidability has been recovered by restricting the frame class to frames
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of bounded width (i.e., frames where the number of successors of each state is
bounded). Other semantic restrictions by means of temporally relevant frame
classes have been shown to sustain decidability in the following contexts. Over
transitive trees and linear orders, the ↓ operator on its own is useless [FdRS03].
The class of transitive frames and the class of complete frames are further frame
classes over which the ↓ language is “tamed”, as was shown in [MSSW05].

Since, apparently, we can “restore” decidability for HL(F, ↓) by restricting
the frame class, it is natural to ask whether decidability persists if we enrich the
language, which can be done in several ways. One possibility is to include other
operators, such as @, P, or E. We will examine the complexity of satisfiability
of the thus extended languages and prove, among other results, undecidability
over transitive frames, nonelementary decidability over transitive trees, and
decidability (completeness for NEXPTIME or N2EXPTIME, depending on the
language) over ER frames.

Another enrichment is the multi-modal version of the ↓ language, which will
be considered in Chapter 6. We will show undecidability even of HL2(�, ↓)
over a wide range of frame classes, of which the classes of transitive frames,
transitive trees, linear frames, and ER frames are prominent examples.

5.2 A map of the results for satisfiability

The pictures in this section illustrate all results that will be cited and established
in this chapter. Figures 5.1–5.6 show the complexity results for satisfiability
of all fragments of the full hybrid language over arbitrary frames, transitive
frames, transitive trees, linear frames, the natural numbers, ER frames, and
complete frames.

In the pictures, each coloured region is labelled by a complexity class (in bold
face type) and corresponds to completeness with respect to this class. The only
exception to this rule is the label “nonelementarily decidable”, which is in the
sense of Definition 2.16 (2). Regions that are left white and have two labels
point out that these two complexity bounds are not tight. Red coloured nodes
mark results established in the following sections; the results for the remaining
nodes will be cited.

The following sections of this chapter will systematically examine satisfia-
bility for all languages, separated by frame classes and in the same order as in
Figures 5.1–5.6. Note that there will not be a specific section on complete frames
because the results for the two remaining languages HL(F) and HL(F, ↓) fol-
low from Section 5.8 and [MSSW05], respectively.
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Figure 5.1: Complexity results for satisfiability over arbitrary frames
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Figure 5.2: Complexity results for satisfiability over transitive frames
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Figure 5.3: Complexity results for satisfiability over transitive trees

39



Chapter 5 Satisfiability

F

U

FP

UP

US

F@

U@

FP@

UP@

US@

FE

UE

FPE

UPE

USE

FP↓
F∃

FP∃

F↓@

FP↓@

F↓E

U

U@

UE F∃

NP PSPACE

decidable,
PSPACE-hard

nonelementarily
decidable

Figure 5.4: Complexity results for satisfiability over linear frames

40



5.2 A map of the results for satisfiability

F

U

FP

UP

US

F@

U@

FP@

UP@

US@

FE

UE

FPE

UPE

USE

FP↓
F∃

FP∃

F↓@

FP↓@

F↓E

F∃

NP PSPACE

nonelementarily
decidable

Figure 5.5: Complexity results for satisfiability over the natural numbers

41



Chapter 5 Satisfiability

F

F@

FE

F↓

F∃F↓@

F↓E

�

�@

�E

�↓

�∃�↓@

�↓E

NP NEXPTIME

N2EXPTIME

�

�↓

NP

NEXPTIME

(a) ER frames (b) Complete frames

Figure 5.6: Complexity results for satisfiability over ER and complete frames

5.3 Arbitrary frames

Over arbitrary frames, the complexity of almost all fragments of the full hybrid
language is known. The following theorem summarises all these cases.

Theorem 5.1

(1) HL(F)-SAT and HL(F, @)-SAT are PSPACE-complete. [ABM99]

(2) HL(F, P)-SAT and HL(F, P, @)-SAT are EXPTIME-complete. [ABM99]

(3) Let X ∈
{
{U}, {U, @}, {U, P}, {U, P, @}, {U, S}, {U, S, @}

}
.

Then HL(X)-SAT is EXPTIME-complete. [ABM00]

(4) HL(F, E)-SAT and HL(F, P, E)-SAT are EXPTIME-complete.
[Spa93a, ABM00]

(5) Let X ∈
{
{F, ↓}, {U, ↓}, {F, P, ↓}, {F, ∃}, {F, P, ∃}, {F, ↓, @}, {F, P, ↓, @},

{F, ↓, E}
}

.

Then HL(X)-SAT is CORE-complete. [ABM99]

In the cases of Parts (2) and (3), EXPTIME-hardness — in the presence of one
nominal only — has been shown in [ABM99] and [ABM00], respectively. For
the corresponding upper bound, the authors refer to an embedding into the
(loosely) guarded fragment with two or three variables, whose satisfiability
problem is EXPTIME-complete [Grä99]. As pointed out by Balder ten Cate (per-
sonal communication), the canonical embedding via the Standard Translation
does not map into this fragment in the presence of nominals. Since guarded
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fragments do not have constants, nominals have to be translated into existen-
tially quantified variables. Hence the restriction in the number of variables is
insufficient.

However, membership in EXPTIME follows from the fact that satisfiability
for (loosely) guarded formulae with predicates of bounded arity is EXPTIME-
complete as well [Grä99]. This fragment is appropriate for an embedding of
HL(U, S, @) via the Standard Translation.

Regarding Part (4) of Theorem 5.1, the lower bound follows from EXPTIME-
hardness of ML(F, E) [Spa93a], and the upper bound is due to [ABM00].

As for the remaining three languages with U and E, they cannot be straight-
forwardly embedded into any guarded fragment because the existential quan-
tifier in the Standard Translation of the E operator is not guarded. However,
we can establish EXPTIME-membership of their satisfiability problems via a re-
duction to HL(U, S, @)-SAT using the spypoint technique [BS95, ABM99].

Theorem 5.2 Let X ∈
{
{U, E}, {U, P, E}, {U, S, E}

}
.

Then HL(X)-SAT is EXPTIME-complete.

Proof. It suffices to show EXPTIME-membership of HL(U, S, E)-SAT. In order
to simulate the E operator using @, we use a spypoint. This is an additional
state s named by the nominal i, from which all other states are accessible. The
E operator can thus be replaced by a jump to s followed by an R-step, where
R is the accessibility relation. The translations of the U and S operators have to
ensure that only states that are visible from the spypoint are accessed.

More formally, we will define a translation function (·)t : HL(U, S, E) →

HL(U, S, @) inductively. It preserves atoms and Boolean operators. The opera-
tors U, S, and E are translated as follows (where Fϕ abbreviates 	Uϕ).

(ϕUψ)t = ϕtU(Pi ∧ ψt)

(ϕSψ)t = ϕtS(Pi ∧ ψt)

(Eϕ)t = @iFϕt

Now, a polynomial-time computable reduction function f : HL(U, S, E) →

HL(U, S, @) is

f (ϕ) = i ∧ GGPi ∧ GH(¬i → Pi) ∧ G¬Fi ∧ Fϕt. (5.1)

The first conjunct ensures the existence of the spypoint. Due to the second and
third conjunct, for every state m accessible from s, every other state connected
to s (via arbitrarily many, possibly reverse, R-edges) is accessible from s, too.
The fourth conjunct ensures that s and every state accessible from s does not
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see s. Finally, the last conjunct enforces the existence of a state reachable from s
in which ϕt is true. Clearly, f is computable in polynomial time. It remains to
prove that for each formula ϕ ∈ HL(U, S, E),

ϕ ∈ HL(U, S, E)-SAT ⇔ f (ϕ) ∈ HL(U, S, @)-SAT.

“⇒”. Suppose ϕ ∈ HL(U, S, E)-SAT. Then there exist a model M = (M, R, V)

and a state m0 ∈ M, such that M, m0 � ϕ. From M we construct a model
M� = (M�, R�, V�), such that M� = M� {s},1 R� = R∪ {(s, m) | m ∈ M}, and
V� = V ∪

{(
i, {s}

)}
. It is immediately clear that M�, s satisfies all conjuncts of

f (ϕ), except for the last one. Hence, it remains to show M�, s � Fϕt, which is
a consequence of the following claim and the fact that sR�m0.

Claim. For each subformula ψ of ϕ, each m ∈ M: M, m � ψ ⇔ M�, m � ψt.

Proof of Claim. We use induction on ψ with the Boolean cases being straight-
forward and the U case being analogous to the S case. The S and E cases are
treated by the following chains of equivalent statements:

M, m � αSβ

(1)⇔ ∃©n ∈ M
(
nRm & M, n � β ∧ ∀©� ∈ M(nR�Rm ⇒ M, � � α)

)
(2)⇔ ∃©n ∈ M

(
nRm & M�, n � βt ∧ ∀©� ∈ M(nR�Rm ⇒ M�, � � αt)

)
(3)⇔ ∃©n∈M�

(
sR�n & nR�m & M�, n � βt ∧ ∀©�∈M(nR�Rm ⇒ M�, � � αt)

)
(4)⇔ ∃©n ∈ M�

(
sR�nR�m & M�, n � βt ∧ ∀©� ∈ M�(nR�

�R�m ⇒ M�, � � αt)
)

(5)⇔ M�, m � αtS(Pi ∧ βt)

These equivalences are justified as follows.

(1) Definition of satisfaction for the S operator.

(2) Induction hypothesis.

(3) Construction of M� and R�.

(4) Since nR�, but not nRs, we have that (� ∈ M and nR�Rm) if and only if
(� ∈ M� and nR��R�m).

(5) Definition of satisfaction for the P, S, ∧ operators, and for nominals.

M, m � Eψ

⇔ ∃©n ∈ M(M, n � ψ) (definition of satisfaction for E)

⇔ ∃©n ∈ M(M�, n � ψt) (induction hypothesis)

⇔ ∃©n ∈ M�(sR�n & M�, n � ψt) (construction of M� and R�)

⇔ M�, m � @iFψt (definition of satisfaction for F and @)

1 The symbol � denotes the disjoint union of two sets.
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“⇐”. Suppose f (ϕ) ∈ HL(U, S, @)-SAT. Then there exist a model M =

(M, R, V) and a state s ∈ M, such that M, s � ϕ. Because of the first four con-
juncts of f (ϕ), s is named i, and all properties given after Equation (5.1) hold.
The last conjunct enforces the existence of a state m0 ∈ M with M, m0 � ϕt.

From M we construct a model M� = (M�, R�, V�), such that M� = {m ∈

M | sRm}, R� = R�M� , and V� = V �M� . It remains to show M�, m0 � ϕ,
which is a consequence of the following claim.

Claim. For each subformula ψ of ϕ, each m ∈ M�: M, m � ψt ⇔ M�, m � ψ.

Proof of Claim. Again, we use induction on ψ and only demonstrate the S and
E cases.

M, m � αtS(Pi ∧ βt)

(1)⇔ ∃©n ∈ M
(
nRm & sRn & M, n � βt ∧ ∀©� ∈ M(nR�Rm ⇒ M, � � αt)

)
(2)⇔ ∃©n∈M

(
nRm & sRn & M, n � βt ∧ ∀©�∈M�(nR�

�R�m ⇒ M, � � αt)
)

(3)⇔ ∃©n ∈ M�
(
nR�m & M, n � βt ∧ ∀©� ∈ M�(nR�

�R�m ⇒ M, � � αt)
)

(4)⇔ ∃©n ∈ M�
(
nR�m & M�, n � β ∧ ∀©� ∈ M�(nR�

�R�m ⇒ M�, � � α)
)

(5)⇔ M�, m � αSβ

These equivalences are justified as follows.

(1) Definition of satisfaction for the P, S, ∧ operators, and for nominals.

(2) Because of sRn and the conjunct GGPi of f (ϕ), we have that (� ∈ M and
nR�) if and only if (� ∈ M� and nR��).

(3) Due to the construction of M� and R�, we have that (sRn and nRm and
n ∈ M) is equivalent to nR�m and n ∈ M�).

(4) Induction hypothesis.

(5) Definition of satisfaction for the S operator.

M, m � @iFψt

⇔ ∃©n ∈ M(sRn & M, n � ψt) (definition of satisfaction for F and @)

⇔ ∃©n ∈ M�(M, n � ψt) (construction of M�)

⇔ ∃©n ∈ M�(M�, n � ψ) (induction hypothesis)

⇔ M�, m � Eψ (definition of satisfaction for E)

❏

This completes the analysis of hybrid languages over arbitrary frames.
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5.4 Transitive frames

Over transitive frames, there have been fewer languages for which the com-
plexity of satisfiability has already been known. These are summarised in the
following theorem.

Theorem 5.3
(1) Let X ∈

{
{F}, {F, @}, {F, E}

}
.

Then HL(X)-trans-SAT is PSPACE-complete. [ABM00]

(2) Let X ∈
{
{F, P}, {F, P, @}, {F, P, E}

}
.

Then HL(X)-trans-SAT is EXPTIME-complete, even in the presence of one
nominal. [ABM00]

(3) HL(F, ↓)-trans-SAT is NEXPTIME-complete. [MSSW05]

We examine the remaining cases in two groups.

5.4.1 Binder-free until/since languages

As for the lower bound, we establish a result as general as possible, namely
EXPTIME-hardness of ML(U)-trans-SAT and ML(U)-tt-SAT.

Lemma 5.4 ML(U)-trans-SAT and ML(U)-tt-SAT are EXPTIME-hard.

Proof. We will reduce ML(�)-GLOBSAT to both problems using the same
reduction function. ML(�)-GLOBSAT is EXPTIME-hard, which follows from
the proof of EXPTIME-hardness for ML(�, E)-SAT [Spa93a].

It may seem difficult to try to reduce this problem over arbitrary frames to
our satisfiability problem over transitive frames. The critical point lies in mak-
ing a non-transitive model transitive: taking the transitive closure of its rela-
tion would lead to new accessibilities that would disturb satisfaction of ¬�-
formulae. Fortunately though, the U operator enables us to distinguish the ac-
cessibilities in the original model from those that have been added to make the
relation transitive. Hence, a translation of �ϕ should demand: “Make sure that
the current state sees a state in which the translation of ϕ holds, and that there
is no state in between.” This translates as ⊥U(ϕt) into the modal language.

In order to construct the required reduction, we define a translation function
(·)t : ML(�) → ML(U) as follows.

⊥t = ⊥ (ϕ ∨ ψ)t = ϕt ∨ ψt

pt = p, p ∈ PROP (�ϕ)t = ⊥U(ϕt)

(¬ϕ)t = ¬(ϕt)
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Using (·)t, we construct a polynomial-time computable reduction function
f : ML(�) → ML(U) via f (ϕ) = ϕt ∧ Gϕt. (Note that G is expressible using
U, see Fact 3.2 (5).) It is straightforward to prove the following two claims for
each ϕ ∈ ML(�).

(1) If ϕ ∈ ML(�)-GLOBSAT, then f (ϕ) ∈ ML(U)-tt-SAT.

(2) If f (ϕ) ∈ ML(U)-trans-SAT, then ϕ ∈ ML(�)-GLOBSAT.

Since each transitive tree is a transitive model, (1) and (2) imply the claim of
this theorem.

(1). Suppose ϕ is satisfied in all states of some Kripke model M = (M, R, V).
By considering the submodel generated by some arbitrary state, we can assume
w.l.o.g. that M has a root m0.

Due to the tree model property [BdRV05] there exists a tree-like model (a model
whose underlying frame is a tree) that satisfies ϕ at all states. Hence we can as-
sume M itself to be tree-like. From this model, we construct M� = (M, R+, V),
which is clearly a transitive tree.

Because of the tree-likeness of M, we observe that for each pair (m, n) ∈ R,
there exists no � ∈ M between m and n in terms of R+, that is, no � such that
mR+� and �R+n. By means of this observation, we show that for all states
m ∈ M and all formulae ψ ∈ ML(�): M, m � ψ iff M�, m � ψt. This claim
implies that M�, m0 � ϕt ∧ Gϕt. It is proven by induction on the structure of
ψ. The only interesting case is ψ = �ϑ, and the necessary argument can be
summarised as follows.

M, m � �ϑ (1)⇔ ∃©n ∈ M(mRn & M, n � ϑ)

(2)⇔ ∃©n ∈ M(mRn & M�, n � ϑt)

(3)⇔ ∃©n ∈ M
(
mR+n & M�, n � ϑt & ¬ ∃©� ∈ M(mR+

�R+n)
)

(4)⇔ M�, m � ⊥U(ϑt)

These equivalences are justified as follows.

(1) Definition of satisfaction for the � operator.

(2) Induction hypothesis.

(3) See the above observation.

(4) Definition of satisfaction for ⊥ and U.
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(2). Let M = (M, R, V) be a transitive model and m0 ∈ M such that M, m0 �
f (ϕ). We restrict ourselves to the submodel generated by m0. Hence all states
of M are accessible from m0.

Define a new Kripke model M� = (M, R�, V) with R� = {(m, n) ∈ R |

¬ ∃©� ∈ M(mR�Rn)}. We show that for all states m ∈ M and all formulae ψ ∈

ML(�): M�, m � ψ iff M, m � ψt. Again, we use induction on the structure
of ψ with the only interesting case ψ = �ϑ and the following argument.

M�, m � �ϑ (1)⇔ ∃©n ∈ M(mR�n & M�, n � ϑ)

(2)⇔ ∃©n ∈ M
(
mRn & ¬ ∃©�(mR�Rn) & M�, n � ϑt)

(3)⇔ ∃©n ∈ M
(
mRn & ¬ ∃©�(mR�Rn) & M, n � ϑt)

(4)⇔ M, m � ⊥U(ϑt)

These equivalences are justified as follows.

(1) Definition of satisfaction for the � operator.

(2) Construction of R�.

(3) Induction hypothesis.

(4) Definition of satisfaction for ⊥ and U.

Since M, m0 � ϕt ∧ Gϕt, we conclude that for all states m ∈ M, M, m � ϕt.
The previous claim implies that M� satisfies ϕ at all states. ❏

In order to establish upper bounds for the languages with U (and S), we aim for
an embedding into an appropriate fragment of first-order logic — if possible,
the guarded fragment or an extension thereof [Grä99, GW99]. Since the usual
first-order formula enforcing transitivity is not guarded, it is necessary to make
a “detour” around transitivity by syntactic means, namely using the operators
U++ and S++ defined in Section 2.1.3.

Lemma 5.5 For every X ⊆ {@, E}, the problems HL(U, S, X)-trans-SAT and
HL(U++, S++, X)-SAT are polynomially reducible to each other.

Proof. Either problem can be reduced to the other via a simple bijection f :
HL(U, S, X) → HL(U++, S++, X) or its inverse, respectively. This function
merely replaces every occurrence of U (or S, respectively) in the input for-
mula by U++ (or S++, respectively). Obviously, f and f−1 can be computed
in polynomial time. It is straightforward to inductively verify the following
two propositions.
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5.4 Transitive frames

(1) For every ϕ ∈ HL(U, S, X) : If ϕ is satisfied in a state m of some transitive
model M, then M, m � f (ϕ).

(2) For all ϕ ∈ HL(U++, S++, X) : If ϕ is satisfied in a state m of some model
M = (M, R, V), then the transitive model M′ = (M, R+, V) satisfies
f−1(ϕ) at m.

❏

Now we have reduced the original problems to the goal of embedding lan-
guages containing U++ (and S++) over arbitrary frames into an appropriate
fragment of FOL. Unfortunately, U++ and S++ rely on the transitive closure
R+ of the accessibility relation R. In order to express xR+y, we have to use fix-
point operators, which lead us out of FOL. A natural fragment for our purpose
is the loosely guarded fragment of first-order logic enhanced by fixpoint op-
erators, μLGF. Its satisfiability problem is 2EXPTIME-complete in general and
EXPTIME-complete if the number variables is bounded [GW99]. An embed-
ding of our languages cannot satisfy the latter condition, as already observed
in Section 5.3. Since there is currently no EXPTIME-completeness result for sat-
isfiability of μLGF with predicates of bounded arity, our embedding leaves a
gap between EXPTIME-hardness and 2EXPTIME-membership.

It is straightforward to embed even HL(U++, S++, @) into μLGF. The lan-
guages with the E operator require a more careful analysis that will be similar
to that in Section 5.3.

Lemma 5.6 HL(U, S, @)-trans-SAT is in 2EXPTIME.

Proof. For the embedding of HL(U++, S++, @) into μLGF, we recall from Sec-
tion 2.2.2 that the Standard Translation ST consists of the rule

STx(ϕU++ψ) = ∃y.
[
xR+y ∧ STy(ψ) ∧ ∀z.

(
(xR+z ∧ zR+y) → STz(ϕ)

)]
for the U++ operator and an analogous rule for S++. Since this expression is
“almost” loosely guarded, it remains to take care of the R+ expressions. But
xR+y can be expressed by

[
LFP W(x, y).

(
xRy ∨ ∃z.(zRy ∧ xWz)

)]
xy,

yielding a μLGF-sentence with three variables. (If U++ operators are nested,
variables can be “recycled”.) The constants from the translations of nominals
can be eliminated introducing new, existentially quantified variables as usual.
The whole translation only requires time polynomial in the length of the input
formula. ❏
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Lemma 5.7

(1) HL(U, E)-trans-SAT �P
m HL(U, @)-trans-SAT.

(2) HL(U, P, E)-trans-SAT �P
m HL(U, P)-trans-SAT.

(3) HL(U, S, E)-trans-SAT �P
m HL(U, S)-trans-SAT.

Proof. We proceed similarly to the proof of Theorem 5.2, invoking a spypoint
argument. We only give the changes here; the technical details are analogous.

(1) Here we use the same translation function (·)t (without the S case, of
course) and the reduction function f (ϕ) = i ∧ ¬Fi ∧ Fϕt.

(2) Here we use the translation function (·)t that preserves atoms, Boolean
operators, and the U operator. The operators P and E are translated as
follows.

(Pϕ)t = P(Pi ∧ ϕt)

(Eϕ)t = P(i ∧ Fϕt)

The reduction function is f (ϕ) = i ∧ ¬Fi ∧ GH(¬i → Pi) ∧ Fϕt.

(3) We use the translation function from (2), minus the rule for P plus the rule
(ϕSψ)t = ϕtS(Pi ∧ ψt), and the same reduction function.

❏

Lemmata 5.4–5.7 yield the following result.

Theorem 5.8

(1) Let X ∈
{
{U}, {U, P}, {U, S}, {U, @}, {U, P, @}, {U, S, @}, {U, E}, {U, P, E},

{U, S, E}
}

.

Then HL(X)-trans-SAT is EXPTIME-hard and in 2EXPTIME.

(2) With only a bounded number of nominals, all these problems are EXP-
TIME-complete.

It is not known whether in the case of a bounded number of variables, but an
arbitrary number of constants, satisfiability for μLGF-sentences also decreases
from 2EXPTIME to EXPTIME, as is the case for the fragment without the μ oper-
ator [tCF05a]. If there were a positive answer to this question, EXPTIME-com-
pleteness of all satisfiability problems from Theorem 5.8 (1) would follow.
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Figure 5.7: A zig-zag transition

5.4.2 Languages with binders

If we consider satisfiability over transitive frames, we cannot sustain decidabil-
ity when enriching HL(F, ↓) with @ or P, or when proceeding to HL(F, ∃). We
prove CORE-completeness for all languages strictly above HL(F, ↓) in our hier-
archy — except for HL(U, ↓) — , making a detour via an undecidable fragment
of first-order logic. The notation of such fragments is given in Section 2.2.2.

We proceed in two steps. First, we will show that [all, (4, 1)]-trans-SAT is un-
decidable. This will be accomplished by a reduction from [all, (0, 1)]-SAT. The
undecidability of the latter is a consequence of the undecidability of contained
traditional standard classes [BGG97]. The second step will consist of reductions
from [all, (4, 1)]-trans-SAT to HL(F, ↓, @)-trans-SAT; HL(F, P, ↓)-trans-SAT; and
HL(F, ∃)-trans-SAT; respectively. To be more precise, the ranges of these reduc-
tions will be the fragments of the respective hybrid languages consisting of all
nominal-free sentences.

Lemma 5.9 [all, (4, 1)]-trans-SAT is CORE-complete.

Proof. The upper bound follows from CORE-completeness of FOL-SAT. In
order to obtain the required reduction from [all, (0, 1)]-SAT, we will transform
a (not necessarily transitive) model satisfying α into a transitive one. Simply
taking the transitive closure adds new pairs to the interpretation of the relation
in general and is not sufficient for keeping the information which pairs were in
the “old” relation and which pairs were not. This problem does not arise if we
instead use a variation of the zig-zag technique successfully applied in [ABM00]
in a reduction from ML(�)-GLOBSAT to HL(F, P)-trans-SAT. The core idea of
this technique is shown in Figure 5.7. The shown construction simulates an R-
step t1Rt2 in the original model M = (D, I) by a zig-zag transition in a model
M� = (D�, I�), where I�(R) is transitive.

We define a reduction function f : [all, (0, 1)] → [all, (4, 1)] using extra pred-
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icate symbols 0, 1, 2, 3 as follows.

f (⊥) = ⊥

f (xRy) = ∃abc.
(
xRa ∧ bRa ∧ bRc ∧ yRc ∧ 0(x) ∧ 1(a) ∧ 2(b) ∧ 3(c) ∧ 0(y)

)
f (¬α) = ¬ f (α)

f (α ∨ β) = f (α) ∨ f (β)

f (∃x.α) = ∃x.
(
0(x) ∧ f (α)

)
The translation of the xRy-atoms exactly reflects the shown zig-zag transition.
It is now straightforward to prove the following claim: For each formula α, α is
satisfiable iff f (α) is satisfiable in some model that interprets R by a transitive relation.

Without loss of generality, we may assume that α has no free variables and
that each variable is quantified exactly once. This can always be achieved by
additional existential quantification and renaming, respectively.

“⇒”. Suppose α is satisfied by some model M = (D, I). We construct a new
model M� = (D�, I�), where D� = D0 ∪ · · · ∪ D3 with Di = {di | d ∈ D}, for
i = 0, 1, 2, 3. The interpretation I� is defined by

I�(R) = {(x0, x1), (x2, x1), (x2, x3), (y0, x3) | (x, y) ∈ I(R)} and

I�(P) = DP, P = 0, 1, 2, 3.

I�(R) codes an I(R)-transition from element x to y in the domain of M as a
sequence of backward and forward transitions from x0 to y0 via x1, x2, x3 as
shown in Figure 5.7. It is easy to see that I�(R) is transitive, since there is no
domain element with incoming and outgoing I�(R)-edges.

We will now show that for all subformulae β(x1, . . . , xm) of α and for all
d1, . . . , dm ∈ D: M � β [d1, . . . , dm] iff M� � f (β) [d0

1, . . . , d0
m]. This immedi-

ately implies that M� satisfies f (α). We will proceed by induction on β. The
base case, β = xRy, is clear from the construction of I�(R). The Boolean cases
are obvious. The case β = ∃x.γ is treated by the following chain of equivalent
statements.

M � ∃x.γ [d1, . . . , dm]

(1)⇔ ∃©d ∈ D
(
M � γ [d1, . . . , dm, x �→ d]

)
(2)⇔ ∃©d ∈ D

(
M� � f (γ) [d0

1, . . . , d0
m, x �→ d0]

)
(3)⇔ ∃©d ∈ D�

(
M� �

(
0(x) ∧ f (γ)

)
[d0

1, . . . , d0
m, x �→ d]

)
(4)⇔ M� � ∃x.

(
0(x) ∧ f (γ)

)
[d0

1, . . . , d0
m]

These equivalences are justified as follows.
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(1) Definition of satisfaction for the ∃ quantifier.

(2) Induction hypothesis.

(3) Construction of R�. (“⇐”: Since x is interpreted by d′ and 0(x) is satis-
fied, d is indeed some d0.)

(4) Definition of satisfaction for ∧ and ∃.

“⇐”. Let M = (D, I) be a model satisfying f (α), where I(R) is transitive. We
construct a new model M� = (D�, I�), where D� = I(0) and

I�(R) =
{
(d, e) ∈ (D�)2 | ∃©abc ∈ D

(
(d, a), (b, a), (b, c), (e, c) ∈ I(R)

& a ∈ I(1) & b ∈ I(2) & c ∈ I(3)
)}

.

We will now show that for all subformulae β(x1, . . . , xm) of α and for all
d1, . . . , dm ∈ D: M� � β [d1, . . . , dm] iff M � f (β) [d1, . . . , dm]. This immedi-
ately implies that M� satisfies α. Again, the proof is via induction on β. The
base case, β = xRy, is clear from the construction of I�(R) and the fact that the
translation of xRy requires 0(x) and 0(y). The Boolean cases are obvious. The
case β = ∃x.γ is treated by the following chain of equivalent statements.

M� � ∃x.γ [d1, . . . , dm]

(1)⇔ ∃©d ∈ D�
(
M� � γ [d1, . . . , dm, x �→ d]

)
(2)⇔ ∃©d ∈ I(0)

(
M � f (γ) [d1, . . . , dm, x �→ d]

)
(3)⇔ ∃©d ∈ D

(
M �

(
0(x) ∧ f (γ)

)
[d1, . . . , dm, x �→ d]

)
(4)⇔ M � ∃x.

(
0(x) ∧ f (γ)

)
[d1, . . . , dm]

These equivalences are justified as follows.

(1) Definition of satisfaction for the ∃ quantifier.

(2) Induction hypothesis.

(3) “⇒”: Obvious.
“⇐”: Since x is interpreted by d and 0(x) is satisfied, d ∈ I(0).

(4) Definition of satisfaction for ∧ and ∃.

This proves the above claim. Since f is a polynomial-time computable reduc-
tion function, we have established undecidability for [all, (4, 1)]-trans-SAT. ❏

Lemma 5.10

(1) HL(F, ↓, @)-trans-SAT is CORE-hard.

(2) HL(F, P, ↓)-trans-SAT is CORE-hard.

(3) HL(F, ∃)-trans-SAT is CORE-hard.
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Proof. We reduce from [all, (4, 1)]-trans-SAT, invoking the spypoint technique
(see also proofs of Theorem 5.2 and Lemma 5.7). Since our reduction will not
make use of any nominals other than the nominal i denoting the spypoint s,
our undecidability result will even hold for the nominal-free fragments of the
hybrid languages in question. We will simply treat i as a state variable and bind
it to s.

(1). We define a translation function (·)t from [all, (4, 1)] to HL(F, ↓, @) as
follows.

⊥t = ⊥ (¬α)t = ¬(αt)

(xRy)t = @xFy (α ∨ β)t = αt ∨ βt(
P(x)

)t = @x p (∃x.α)t = @iF↓ x.αt

The polynomial-time computable reduction function f is defined by

f (α) = ↓ i.
(
¬Fi ∧ αt).

In order to argue that each formula α is satisfiable iff f (α) is satisfiable, we
assume w.l.o.g. that α is a sentence (see proof of Lemma 5.9). For the “⇒” di-
rection, suppose α is satisfied by a model M = (D, I). By adding the spypoint
s to D, we obtain the hybrid model M� = (M�, R�, V�), where M� = D ∪ {s},
R� = I(R) ∪ {(s, d) | d ∈ D}, and V�(p) = I(P). It can be shown via straight-
forward induction that M� satisfies f (α) at s — under any assignment, since
f (α) is a sentence.

For the “⇐” direction, suppose f (α) is satisfied at state s of some hybrid
model M = (M, R, V). The composition of f (α) enforces s to behave as the
spypoint. It is straightforward to show that M� = (M − {s}, I), where I(R) =

R�M−{s} and I(P) = V(p), satisfies α.

(2). We modify the reduction from (1) simulating the @ operator by means of
P, which is possible in the presence of a spypoint and transitivity. We simply
re-define (·)t as follows.

⊥t = ⊥ (¬α)t = ¬(αt)

(xRy)t = P
(
i ∧ F(x ∧ Fy)

)
(α ∨ β)t = αt ∨ βt(

P(x)
)t = P

(
i ∧ F(x ∧ p)

)
(∃x.α)t = P(i ∧ F↓ x.αt)

The rest of the proof is the same as for (1).
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(3). Here we assume w.l.o.g. that any formula α ∈ [all, (4, 1)] is in prefix no-
tation, that is, it is of the form α = Q1x1 . . . Qnxn.β, where each Qi is either ∃

or ∀, and β is a quantifier-free formula. The idea is to simulate the first-order
quantifiers by means of the hybrid ones without leaving the spypoint. Then it
remains to simulate predicates by F-steps.

We define a translation function (·)t from [all, (4, 1)] to HL(F, ∃) as follows.

⊥t = ⊥ (¬α)t = ¬(αt)

(xRy)t = F(x ∧ Fy) (α ∨ β)t = αt ∨ βt(
P(x)

)t = F(x ∧ p) (∃x.α)t = ∃x.(Fx ∧ αt)

The polynomial-time computable reduction function f is defined by

f (α) = ↓ i.
(
¬Fi ∧ αt).

❏

The following result is a consequence of Lemma 5.10 and the CORE-complete-
ness of FOL-SAT.

Theorem 5.11 Let X ∈
{
{F, P, ↓}, {F, ↓, @}, {F, P, ↓, @}, {F, ∃}, {F, P, ∃},

{F, ↓, E}
}

. Then HL(X)-trans-SAT is CORE-complete.

The complexity of HL(U, ↓)-trans-SAT is still open. Theorem 5.3 (3) implies
NEXPTIME-hardness of this problem, while CORE-membership is obvious.

5.5 Transitive trees

The situation over transitive trees is similar to that over transitive frames inso-
far as for the same languages, the complexity of satisfiability has been known.
(Remember from Section 3.2 that HL(F, ↓) and HL(U, ↓) coincide with HL(F)

and HL(U), respectively.)

Theorem 5.12 Let X ∈
{
{F}, {F, @}, {F, E}, {F, P}, {F, P, @}, {F, P, E}

}
.

Then HL(X)-trans-SAT is PSPACE-complete. [ABM00]

As in the previous section, we examine the remaining cases in two groups.

5.5.1 Binder-free until/since languages

We will now examine satisfiability over transitive trees for all binder-free un-
til/since languages. EXPTIME-hardness follows from Lemma 5.4. For EXP-
TIME-membership, we use an embedding of HL(U, S, E) into PDLtree , which
is introduced in Section 2.4.2.
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Lemma 5.13 HL(U, S, E)-tt-SAT is in EXPTIME.

Proof. We reduce HL(U, S, E)-tt-SAT to PDLtree-SAT and define a translation
(·)t : HL(U, S, E) → PDLtree as follows (where nominals are translated into
atomic propositions).

pt = p, p ∈ ATOM

⊥t = ⊥ (Eϕ)t = 〈up∗; down∗〉 ϕt

(¬ϕ)t = ¬(ϕt) (ϕUψ)t =
〈
(down; ϕt?)∗; down

〉
ψt

(ϕ ∨ ψ)t = ϕt ∨ ψt (ϕSψ)t =
〈
(up; ϕt?)∗; up

〉
ψt

Since PDLtree has no nominals, we must enforce that the translation of each
nominal is true at exactly one point by requiring

ν(i) = 〈down∗〉 i ∧ [down∗]
(

i →
(
[down+]¬i ∧ [up+]¬i

∧ [up∗; left+; down∗]¬i ∧ [up∗; right+; down∗]¬i
))

to hold for each nominal i. As a reduction function, we have

f (ϕ) = 〈down∗〉 ϕt ∧
∧

i∈NOM(ϕ)

ν(i).

It is clear that f is computable in polynomial time and straightforward to show
that f is indeed a reduction function: Suppose ϕ is satisfiable in some finite
transitive tree model M = (M, R, V) based on the tree (M, R′) with root m.
Then f (ϕ) is satisfiable in m of the PDLtree model based on the tree (M, R′),
equipped with the valuation V. For the converse, if f (ϕ) is satisfied at the root
of some PDLtree model M = (M, Rdown, Rright, V), then ϕt is true at some point
m, and each nominal is true at exactly one point of M. Hence (M, R+

down, V) —
where R+

down is the transitive closure of Rdown — is a hybrid transitive tree model
satisfying ϕ at m.

Now there is one drawback in the reduction via f . According to our defini-
tion of a tree, it is not necessary that a (transitive) tree is finite or has a root.
A node can have infinitely many successors, or there may be an infinitely long
forward or backward path from some point. For most practical applications
these cases are certainly hardly of interest, but we strive for a more general
result. If we do allow for infinite depth or width, the above embedding into
PDLtree — which is interpreted over finite, rooted trees — is not sufficient.

To overcome finiteness, it suffices to re-examine the proof for the EXPTIME

upper bound of PDLtree-satisfiability in [ABD+05]. This proof in fact covers
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Figure 5.8: Making predecessors successors

a more general result, too, namely that satisfiability of PDLtree formulae over
(not necessarily finite) trees is in EXPTIME.

To incorporate the fact that “our” trees do not need to have roots, we first
observe that satisfiability over rooted transitive trees is reducible to satisfiability
over (arbitrary) transitive trees, because a root is expressible by PH⊥ in our
language. (Note that the lower bound from Lemma 5.4 holds with respect to
rooted transitive trees, hence it holds for arbitrary ones, too.)

In order to obtain the upper bound with respect to arbitrary transitive trees,
we propose a modification of the above reduction via f . The basic idea is to turn
the backward path from the node m (that is to satisfy ϕ) into a forward path,
such that m becomes the root of the transformed model. Thus all predecessors
of m (and their predecessors etc.) become successors and must be marked by a
fresh proposition �. (See Figure 5.8.)

As a first step, we construct a new translation (·)t� from (·)t retaining all but
the U/S-cases. For U/S, we replace all occurrences of the programmes down

and up by programmes that incorporate the new structure and the fact that for
�-nodes, their predecessors used to be their successors, and their �-successors
used to be their predecessors. Hence, we define

(ϕUψ)t� =
〈
(dn′; ϕt�?)∗; dn′

〉
ψt�, where dn′ = (down;¬�?) ∪ (�?; up) ,

(ϕSψ)t� =
〈
(up′; ϕt�?)∗; up′

〉
ψt�, where up′ = (¬�?; up) ∪ (�?; down; �?) .

Note that we do not change the translation of Eϕ. It only remains to enforce that
there is exactly one path at whose every node � is true. This means that � must
be true at the root node and at exactly one successor of each node satisfying �.
This can be expressed by

β = � ∧ [down∗]
(
� →

(
[left+]¬� ∧ [right+]¬� ∧ 〈down〉 �

))
∧ [down∗]

(
¬� → [down]¬�

)
.
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It is now straightforward to show that f �, given by

f �(ϕ) = ϕt� ∧ β ∧
∧

i∈NOM(ϕ)

ν(i) ,

is indeed a polynomial-time computable reduction function. (Note that ϕt� re-
places 〈down∗〉 ϕt�, because we have turned m into the new root node.) ❏

The following theorem is a consequence of Lemmata 5.4 and 5.13.

Theorem 5.14 Let X ∈
{
{U}, {U, P}, {U, S}, {U, @}, {U, P, @}, {U, S, @},

{U, E}, {U, P, E}, {U, S, E}
}

.
Then HL(X)-tt-SAT is EXPTIME-complete.

5.5.2 Languages with binders

Decidability of satisfiability over transitive trees for even the full hybrid lan-
guage is an immediate consequence of the decidability of the monadic second-
order theory of the countably branching tree, SωS, [BGG97]. However, we
have to face a nonelementary lower bound for the smallest binder languages
HL(F, ↓, @), HL(F, P, ↓), and HL(F, ∃). For the two ↓-languages, we will ob-
tain this by a reduction from HL(F, P, ↓)-(N, >)-SAT, which is nonelementarily
decidable [FdRS03]. For the ∃-language, we will show a more general result,
covering a whole range of frame classes. This will be accomplished by a reduc-
tion from FOL-Strings-SAT (see Section 2.4.3), modifying a reduction from the
latter to HL(F, ↓, @)-lin-SAT given in [MSSW07].

Lemma 5.15

(1) HL(F, P, ↓)-(N, >)-SAT �P
m HL(F, P, ↓)-tt-SAT.

(2) HL(F, P, ↓)-(N, >)-SAT �P
m HL(F, ↓, @)-tt-SAT.

Proof.

(1). The frame (N, >) is a special case of a transitive tree. Our language
is strong enough to enforce that any given transitive tree model is based on
(N, >). All we have to do is require two properties:

(i) Every point has at most one direct successor.

(ii) The underlying frame is rooted.

Property (ii) is expressed by PH⊥. Property (i) can be formulated as follows.
For any state x, whenever x has some successor, then we name one of the direct
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successors y and ensure that all direct successors of x satisfy y. This translates
as

λ = F	 → F1↓y.P1G1y,

where F1, P1, and G1 can be expressed by means of U and S, for example F1ϕ ≡

⊥Uϕ. But ϕUψ and ϕSψ can be simulated in HL(F, P, ↓), as is shown in Fact
3.2 (8)–(9).

Hence λ is expressible in our language and of constant length. A polynomial-
time computable reduction function f is given by f (ϕ) = ϕ ∧ λ ∧ Hλ ∧ HGλ ∧

PH⊥. It is straightforward to show that ϕ is satisfiable in some model based on
(N, >) iff f (ϕ) is satisfiable in some transitive tree.

(2). In the case of HL(F, ↓, @)-tt-SAT, we first have to simulate the P operator.
This achieved via a variation of the spypoint technique. We simply label one
point in the transitive tree by a fresh nominal i and simulate P using ↓, a fresh
state variable v, and i. This is done in the following translation function (·)t :
HL(F, P, ↓) → HL(F, ↓, @).

⊥t = ⊥ (Fψ)t = F(ψt)

at = a, a ∈ ATOM (Pψ)t = ↓v.@iF(Fv ∧ ψt)

(¬ψ)t = ¬(ψt) (↓ x.ψ)t = ↓ x.(ψt)

(ψ1 ∨ ψ2)
t = ψt

1 ∨ ψt
2

It is easy to see that for each model M based on (N, >), for each point x ∈

N, and for each formula ϕ ∈ HL(F, P, ↓): whenever M, 0 � i, then M, x �
ϕ ⇔ M, x � ϕ′.

The point s labelled i represents the initial state of the frame (N, >). In the
language HL(F, ↓, @), it is not possible to express Property (ii). This is in fact
not necessary because the translation function (·)t never refers to the past of
s. This is in particular ensured by the definition of (Pψ)t. It remains to ensure
Property (i). This is done by replacing λ by

λ′ = F	 → ↓ x.F1↓y.@xG
1y

and again expressing F1 and G1 by means of U (as shown for F1 and G1 above),
and simulating U in HL(F, ↓, @) as given in Fact 3.2 (7). Now, a polynomial-
time computable reduction function is f ′, where f ′(ϕ) = ↓ i.(Fϕt ∧μ∧λ′ ∧Gλ′).

❏

Lemma 5.16 For each class F of frames with (N, >) ∈ F ⊆ trans, it holds that
FOL-Strings-SAT �P

m HL(F, ∃)-F-SAT.
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Chapter 5 Satisfiability

Proof. Let α be an arbitrary formula from the language of first-order logic
over strings. Without loss of generality, we assume that α is a sentence in pre-
fix notation, that is, it is of the form α = Q1x1 . . . Qmxm.β, where each Qi is
either ∃ or ∀, and β is a quantifier-free formula whose free variables are among
x1, . . . , xm. Now it is straightforward to encode α in HL(F, ∃) — provided that
each satisfying model has a discrete linear submodel that consists of states
0, . . . , n, where the states 1, . . . , n correspond to the positions of letters in the
string, and 0 acts as a spypoint without name. These properties of the satisfy-
ing model will be enforced by the reduction function.

The encoding of α is given by the following translation function (·)t from the
first-order fragment to HL(F, ∃).

⊥t = ⊥ (¬γ)t = ¬(γt)(
Pσ(x)

)t
= F(x ∧ pσ) (γ1 ∨ γ2)

t = γt
1 ∨ γt

2

(x = y)t = F(x ∧ y) (∃x.γ)t = ∃x.(Fx ∧ γt)

(x < y)t = F(x ∧ Fy)

Now the polynomial-time computable reduction function is given by

f (α) = αt ∧ ENDPOINT ∧ SUCC∧ PRED∧NOBRANCH ∧ UNIQUE,

where the five additional conjuncts enforce that each satisfying transitive model
has a submodel whose states behave exactly as the positions in a string. In
particular, the conjuncts require (in this order)

• the existence of an endpoint (expressing a finite length of the string);

• each state to have at least one direct successor;

• each state to have at least one direct predecessor;

• each state to have at most one direct successor; and

• the occurrence of exactly one alphabet symbol per position.

(Note that, while we need to complement the second requirement by the third,
a “mirror image” of the fourth one will not be necessary.) To express these
requirements, we introduce a fresh nominal e that marks the last position of the
string, and define the five conjuncts as follows (where G∗ϕ = ϕ ∧ Gϕ).

ENDPOINT = Fe

SUCC = G∗
(
Fe → ∃x.(F(x ∧ Fe) ∧ ¬FFx)

)
PRED = ∀x.

(
F(x ∧ Fe) → F(Fx ∧ ¬FFx)

)
NOBRANCH = G∗∀x.∀y.

(
(Fx ∧ ¬FFx ∧ Fy ∧ ¬FFy) → F(x ∧ y)

)
UNIQUE = G

∨
σ∈Σ

(
σ ∧

∧
σ′ �=σ

¬σ′
)
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Let α be a sentence of first-order logic over strings. We will show two proposi-
tions, which immediately imply the statement of this lemma.

(1) If α is satisfiable over a string, then f (α) is satisfiable in some model based
on (N, >).

(2) If f (α) is satisfiable a transitive model, then α is satisfiable over a string.

(1). Suppose α is satisfied by M = (Dn, Is) with n ∈ N and s = w0 . . . wn−1 ∈

Σn. From M we construct the hybrid model M� = (N, >, V�) with V�(pσ) =

{k + 1 | k ∈ Is(Pσ)} and V�(e) = n. It is easy to see from this construction
that for any assignment g for M, it holds that M�, g, 0 � ENDPOINT ∧ SUCC∧

PRED ∧ NOBRANCH ∧ UNIQUE. The missing fact M�, g, 0 � αt can be shown
via a straightforward induction.

(2). Suppose there exist a transitive hybrid model M = (M, R, V), an assign-
ment g for M, and a state m ∈ M such that M, g, m � f (α). The conjuncts
ENDPOINT, SUCC, PRED, NOBRANCH of f (α) cause m to have finitely many
successors m0, . . . , mn−1 forming a discrete linear order mRm0R . . . Rmn−1 with
V(e) = {mn−1}. Now the first-order structure M� = (Dn, I), where I(Pσ) =

V(pσ), is an appropriate structure, due to UNIQUE. By a straightforward induc-
tion, it can be shown that M� satisfies α. ❏

The following theorem is a consequence of Lemmata 5.15 and 5.16, and the
remarks at the begin of this subsection.

Theorem 5.17

Let X ∈
{
{F, P, ↓}, {F, ↓, @}, {F, P, ↓, @}, {F, ∃}, {F, P, ∃}, {F, ↓, E}

}
.

Then HL(X)-tt-SAT is nonelementarily decidable.

5.6 Linear frames

Known complexity results for satisfiability over linear frames are the following.

Theorem 5.18

(1) Let X ∈
{
{F}, {F, @}, {F, E}, {F, P}, {F, P, @}, {F, P, E}

}
.

Then HL(X)-lin-SAT is NP-complete. [ABM00]

(2) Let X ∈
{
{F, P, ↓}, {F, P, ↓, @}, {F, P, ∃}, {F, ↓, E}

}
.

Then HL(X)-lin-SAT is nonelementarily decidable. [FdRS03]

(3) HL(F, ↓, @)-lin-SAT is nonelementarily decidable. [MSSW07]
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Chapter 5 Satisfiability

The complexity of the remaining language with binders, namely HL(F, ∃), is
an immediate consequence of Lemma 5.16 and Theorem 5.18 (2).

Theorem 5.19 HL(F, ∃)-lin-SAT is nonelementarily decidable.

It remains to examine binder-free until/since languages. Their satisfiability
problems are all PSPACE-hard, which is implied by the following result.

Theorem 5.20 ([Rey03]) ML(U)-lin-SAT is PSPACE-complete.

We will now show how to carry over the upper bound to HL(U, E).

Lemma 5.21 HL(U, E)-lin-SAT �P
m ML(U)-lin-SAT.

Proof. In order to find an appropriate reduction, we have to simulate nom-
inals and the E operator. It has been shown in [ABM00] how to transform
HL(F, P, E)-formulae into equisatisfiable HL(F, P)-formulae of length quadrat-
ic in the size of the original formula. We extend this technique such that it works
in the absence of past operators and permits to express nominals as well. The
underlying idea is not difficult, but the exact proof of the correctness of the
reduction will require some technical details.

The first step is the introduction of a spypoint. Every linear structure remains
so when adding a spypoint s. Since it will not be necessary to jump to s, we do
not need a nominal for it.

Once we have the spypoint, it is straightforward to replace each nominal i
by a new atomic proposition i′. Let ϕ ∈ HL(U, E). Then the following formula
enforces that, for each i ∈ NOM(ϕ), i′ behaves as a nominal.

NOMINALS =
∧

i∈NOM(ϕ)

(
Fi′ ∧ G(i′ → G¬i′)

)

Let ϕ′ be the formula obtained from ϕ by replacing each occurrence of any
nominal i by i′. Then Fϕ′ ∧ NOMINALS ∈ ML(U, E), and it is easy to see that
ϕ ∈ HL(U, E)-lin-SAT if and only if Fϕ′ ∧NOMINALS ∈ ML(U, E)-lin-SAT.

In order to simulate the E operator, let Eψ1, . . . , Eψn be all E-subformulae of
ϕ′. Now again we can successively replace each Eψk by a fresh atomic proposi-
tion ek, provided that we enforce ek to behave exactly as Eψk.

For each subformula ϑ of ϕ, let ϑ′′ be the formula obtained from ϑ by first
replacing nominals as above and then substituting ek for each maximal occur-
rence of some Eψk. (We call an occurrence of Eψk in ϑ maximal if it is not a
subformula of any other Eψ�.) Furthermore, let

E-OP =
n∧

k=1

(
(Fψ′′

k → Gek) ∧ (¬Fψ′′
k → G¬ek)

)
.
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5.6 Linear frames

Clearly, neither ϕ′′ nor E-OP contain any occurrence of the E operator.
Let f (ϕ) = Fϕ′′ ∧ NOMINALS ∧ E-OP. From this construction it is clear that

f (ϕ) ∈ ML(U), and that the size of f (ϕ) is quadratic in the size of ϕ. It remains
to show that ϕ ∈ HL(U, E)-lin-SAT if and only if f (ϕ) ∈ ML(U)-lin-SAT.

“⇒”. Suppose ϕ ∈ HL(U, E)-lin-SAT. Then there exist a hybrid model M =

(M, R, V) (based on a linear frame) and a state m0 ∈ M such that M, m � ϕ.
From M we construct a model M� = (M�, R�, V�), where

M� = M � {s}

R� = R ∪ {(s, m) | m ∈ M}

V�(p) = V(p), for any p ∈ PROP

V�(i′) = V(i), for any i ∈ NOM

V�(ek) =

{
M if ∃©m ∈ M(M, m � ψk)

∅ otherwise
for k = 1, . . . , n

This definition ensures that M� is based on a linear frame, too. Clearly, M�, s �
NOMINALS. It is also the case that M�, s � Fϕ′′. This is a consequence of sRm0,
M, m0 � ϕ, and the following claim.

Claim. For each subformula ϑ of ϕ and each state m ∈ M: M, m � ϑ if and
only if M�, m � ϑ′′.

Proof of Claim. We use induction on ϑ. The cases for ⊥, atomic propositions,
nominals, ¬, and ∨ are obvious, where latter two simply require the easy ob-
servation that, for instance, ¬(ξ ′′) = (¬ξ)′′.

• ϑ = Eψk .

M, m � Eψk ⇔ ∃©n ∈ M(M, n � ψk) (satisfaction for E)

⇔ V�(ek) = M (construction of V�)

⇔ M�, m � ek (“⇐”: construction of V�)

• ϑ = ξ1Uξ2 .

M, m � ξ1Uξ2

(1)⇔ ∃©n ∈ M
(
mRn & M, n � ξ2 & ∀©� ∈ M(mR�Rn ⇒ M, � � ξ1)

)
(2)⇔ ∃©n ∈ M

(
mRn & M�, n � ξ ′′2 & ∀©� ∈ M(mR�Rn ⇒ M�, � � ξ ′′1 )

)
(3)⇔ ∃©n∈M�

(
mR�n & M�, n � ξ ′′2 & ∀©�∈M�(mR�

�R�n⇒M�, � � ξ ′′1 )
)

(4)⇔ M�, m � ξ ′′1 Uξ ′′2
(5)⇔ M�, m � (ξ1Uξ2)

′′

These equivalences are justified as follows.
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Chapter 5 Satisfiability

(1) Definition of satisfaction for the U operator.

(2) Induction hypothesis.

(3) Due to the construction of M�, R�, and because of m ∈ M, the prop-
erty (n ∈ M and mRn) is equivalent to (n ∈ M� and mR�n). The
same holds for � in place of n.

(4) Definition of satisfaction for the U operator.

(5) Obvious.

This finishes the proof of the claim.
It remains to show that M�, s � E-OP. We will prove M�, s � Fψ′′

k → Gek,
for k = 1, . . . , n. The remaining conjuncts of E-OP are treated analogously.

M�, s � Fψ′′
k ⇒ ∃©m ∈ M(M�, m � ψ′′

k ) (construction of M�, R�)

⇒ ∃©m ∈ M(M, m � ψk) (previous claim)

⇒ V�(ek) = M (construction of V�)

⇒ ∀©m ∈ M(M�, m � ek) (definition of satisfaction for ek)

⇒ M�, s � Gek (construction of M�, R�)

“⇐”. Suppose f (ϕ) ∈ ML(U)-lin-SAT. Then there exist a Kripke model M =

(M, R, V) (based on a linear frame) and a state s ∈ M such that M, s � Fϕ′′ ∧

NOMINALS∧ E-OP. Due to the first conjunct, there is a state m0 ∈ M with sRm0

and M, m0 � ϕ′′. We construct a hybrid model M� = (M�, R�, V�) as follows.

M� = {m ∈ M | sRm} V�(p) = V(p) ∩ M�, for any p ∈ PROP

R� = R�M� V�(i) = V(i′) ∩ M�, for any i ∈ NOM

The correctness of the definition of V�(i) is ensured by NOMINALS. It remains
to show that M�, m0 � ϕ, which is a consequence of M, m0 � ϕ′′ and the
following claim.

Claim. For each subformula ϑ of ϕ and each state m ∈ M�: M, m � ϑ′′ if and
only if M�, m � ϑ.
Proof of Claim. Again, we use induction on ϑ. All cases except for ϑ = Eψk

are obvious or analogous to the proof of the previous claim. For ϑ = Eψk, we
only show the “⇒” direction using the 2k-th of the 2n conjuncts of E-OP. The
opposite direction is shown analogously, starting from M, m � ek and applying
conjunct 2k − 1 of E-OP.

M, m � ek ⇒ M, s � G¬ek (since m ∈ M�)

⇒ M, s � ¬Fψ′′
k (conjunct 2k of E-OP)

⇒ M, s � Fψ′′
k (satisfaction for ¬)
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5.7 Natural numbers

⇒ ∃©n ∈ M�(M, n � ψ′′
k ) (construction of M�)

⇒ ∃©n ∈ M�(M�, n � ψk) (induction hypothesis)

⇒ M�, m � Eψk (satisfaction for E)

This finishes the proof of the claim. ❏

The following theorem is a consequence of Theorem 5.20 and Lemma 5.21.

Theorem 5.22 Let X ∈
{
{U}, {U, @}, {U, E}

}
.

Then HL(X)-lin-SAT is PSPACE-complete.

Unfortunately, the cases with U and Past operators are unsolved. Hardness
for PSPACE, of course, follows from Theorem 5.20, and decidability is due to
Theorem 5.18 (2).

5.7 Natural numbers

If we consider satisfiability over the frame (N, >), the complexity of all lan-
guages but HL(F, ∃) has been known. We can contribute a result for the latter.
All results are summarised in the following theorem.

Theorem 5.23

(1) Let X ∈
{
{F}, {F, @}, {F, E}, {F, P}, {F, P, @}, {F, P, E}

}
.

Then HL(X)-(N, >)-SAT is NP-complete. [Mar04, ABM00]

(2) Let X ∈
{
{U}, {U, P}, {U, S}, {U, @}, {U, P, @}, {U, S, @}, {U, E}, {U, P, E},

{U, S, E}
}

.

Then HL(X)-(N, >)-SAT is PSPACE-complete. [SC85, ABM00]

(3) Let X ∈
{
{F, P, ↓}, {F, P, ↓, @}, {F, P, ∃}, {F, ↓, E}

}
.

Then HL(X)-(N, >)-SAT is nonelementarily decidable. [FdRS03]

(4) HL(F, ↓, @)-(N, >)-SAT is nonelementarily decidable. [MSSW07]

(5) HL(F, ∃)-(N, >)-SAT is nonelementarily decidable.

As for Part (1), the lower bound is clear. The upper bound is due to NP-
membership of ML(F, P)-(N, >)-SAT [Mar04] plus the fact that, over each class
of linear frames, nominals and the E operator can be simulated by F and P with-
out a blowup in formula size [ABM00].

The lower bound for Part (2) is an immediate consequence of PSPACE-hard-
ness of ML(U)-(N, >)-SAT [SC85]. The upper bound follows from PSPACE-
membership of ML(U, S)-(N, >)-SAT [SC85] plus the same simulation result
as in the previous case.

Finally, Part (5) is an immediate consequence of Lemma 5.16 and Part (3).
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5.8 Frames with equivalence relations

As already observed in Section 3.2, there exist only seven hybrid languages
over the class of all ER frames. In this section, we provide complexity results for
satisfiability for all of them. In order to obtain results as general as possible, we
also consider the pure fragment of each language HL(X), denoted by PHL(X).

5.8.1 Languages without binders

We show NP-completeness of satisfiability for all pure and non-pure languages
without binders, which is the same complexity as for modal logic over ER
frames [Lad77]. The lower bound is almost trivial, and the upper bound is
due to the O(n2)-size model property, which is established by a generalisation
of the selection procedure given in [Lad77].

Theorem 5.24 Let X ∈
{
{�}, {�, @}, {�, E}

}
.

Then HL(X)-ER-SAT and PHL(X)-ER-SAT are NP-complete.

Proof. For the lower bound, we reduce from the satisfiability problem SAT

for propositional logic to PHL(�)-ER-SAT. Let ϕ be a propositional formula
with atomic propositions p1, . . . , pn. The polynomial-time computable reduc-
tion function simply replaces each pk by a nominal ik. We call the resulting
hybrid formula ϕ′. Clearly, if ϕ is satisfiable, then there exists a satisfying as-
signment β for all atomic propositions. Then a satisfying hybrid ER model for
ϕ′ consists of states M = {0, 1}, the relation R = M × M, and the valuation
function defined by V(ik) = {β(pk)}.

Conversely, if ϕ′ is satisfiable in a state m of some hybrid ER model M =

(M, R, V), then a satisfying assignment β for ϕ is obtained by setting β(pk) = 1
iff V(ik) = {m}.

For the upper bound, we first prove that HL(�, E) has the O(n2)-size model
property with respect to ER frames.

Let ϕ ∈ HL(�, E)-ER-SAT. Then there exists a hybrid model M = (M, R, V)

and a state m0,0 ∈ M such that M, m0,0 � ϕ. Let Eψ1, . . . , Eψk and �ϑ1, . . . , �ϑ�

be all E- and �-subformulae of ϕ. Now, for each Eψi that is satisfied at m0,0,
there is a state mi,0 satisfying ψi. For every other Eψi choose mi,0 = m0,0. Fur-
thermore, for each of these mi,0 and each �ϑj that is satisfied at mi,0, there is
a state mi,j in the cluster of mi,0 satisfying ϑj. For every other �ϑj , choose
mi,j = mi,0.

Now let M′ be the restriction of M to all mi,j with i, j = 0, . . . , n. This
model clearly has at most (n + 1)2 states and contains m0,0. The crucial fact
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M′, m0,0 � ϕ follows from the claim that for each subformula ψ of ϕ and each
mi,j: M, mi,j � ψ iff M′, mi,j � ψ. This claim can be proven by a straightfor-
ward induction on ψ.

Let ϕ be a formula from HL(�, E) of length n. Due to the O(n2)-size model
property, it suffices to guess a model of size O(n2) and verify whether it satisfies
ϕ. The last step can be done in time polynomial in n, due to [FdR06, Theorem
4.3]. ❏

5.8.2 Languages with binders and without E

We consider the languages HL(�, ↓), HL(�, ↓, @), and HL(�, ∃) and show
that satisfiability is NEXPTIME-complete (Theorem 5.28). Using the hierar-
chy of the languages, it suffices to prove that HL(�, ↓)-ER-SAT is NEXPTIME-
hard (Lemma 5.25), and that HL(�, ↓, @)-ER-SAT and HL(�, ∃)-ER-SAT are in
NEXPTIME (see Lemmata 5.26 and 5.27).

Lemma 5.25 HL(�, ↓)-ER-SAT is NEXPTIME-hard.

Proof. It was shown in [MSSW05] that HL(�, ↓)-compl-SAT is NEXPTIME-
complete. A complete frame is an ER frame with one cluster only. It is straight-
forward to reduce HL(�, ↓)-compl-SAT to HL(�, ↓)-ER-SAT. The polynomial-
time computable reduction function defined by f (ϕ) = ϕ∧

∧
i∈NOM(ϕ) �i maps

ϕ to a formula that enforces that a satisfying ER model can be restricted to one
cluster. ❏

Lemma 5.26 HL(�, ↓, @)-ER-SAT is in NEXPTIME.

Proof. It suffices to reduce HL(�, ↓, @)-ER-SAT to HL(�, ↓)-compl-SAT, be-
cause the latter is known to be NEXPTIME-complete [MSSW05]. This reduction
will rely on two basic observations. First, it suffices to consider sentences only,
because free state variables can be replaced by nominals without affecting sat-
isfiability. Second, a satisfying ER model for an HL(�, ↓, @) sentence ϕ consists
w.l.o.g. of not more clusters than there are nominals in ϕ plus one.

To put the last observation more formally, let ϕ be an HL(�, ↓, @) sentence
with nominals i1, . . . , in. If ϕ is satisfied in a state m of a model M, then ϕ is
satisfied in the restriction of M to the clusters that contain m and all V(ik). This
is so because other clusters are not accessible by means of � or @.

Hence we can assume w.l.o.g. that a satisfying model for ϕ consists of at
most n + 1 clusters, where n � |ϕ|. Such a model can be transformed into a
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model consisting of one “new” cluster being the union of the “old” clusters. The
latter can be distinguished by fresh atomic propositions c0, . . . , cn , which help
simulate � and @ using only �. This simulation is captured by the following
translation from HL(�, ↓, @) to HL(�, ↓) using a fresh state variable x.

⊥t = ⊥

at = a (a ∈ ATOM) (�ϕ)t = ↓ x.�
( ∧n

k=0
(
ck ↔ �(x → ck)

)
∧ ϕt

)
(¬ϕ)t = ¬ϕt (@v ϕ)t = �(v ∧ ϕt)

(ϕ ∧ ψ)t = ϕt ∧ ψt (↓v.ϕ)t = ↓v.ϕt

Using (·)t, we define the polynomial-time computable reduction function f :
HL(�, ↓, @) → HL(�, ↓) by

f (ϕ) = ϕt ∧ c0 ∧ �

n∨
k=0

ck ∧ �(ik → ck)

∧
∧

k,�=0,...,n
k �=�

(
�(ck ↔ c�) ∨�

(
(ck → ¬c�) ∧ (c� → ¬ck)

))
,

where the conjuncts following ϕt express that ϕ is satisfied in cluster 0; each
state of the new cluster belongs to some old cluster; nominal ik is true in cluster
k; and two clusters k, � are either equal or disjoint. It remains to prove

ϕ ∈ HL(�, ↓, @)-ER-SAT iff f (ϕ) ∈ HL(�, ↓)-compl-SAT.

“⇒”. Suppose ϕ ∈ HL(�, ↓, @)-ER-SAT. This means that there exist a model
M = (M, R, V), some state m0 ∈ M, and an assignment g0 for M such that
M, g0, m0 � ϕ. Without loss of generality, M has only those clusters that are
determined by m and all V(ik). Let V(ik) = mk, for k = 1, . . . , n. We construct
a model M� = (M�, R�, V�), where M� = M, R = M� × M�, and define V�

by V�(a) = V(a) for a ∈ PROP∪NOM, and V�(ck) = {m ∈ M | mRmk} for
k = 0, . . . , n. Furthermore, for each assignment g for M, define the assignment
g� for M� by g�(y) = y for each y �= x, and g�(x) = m0.

We have to show that M�, g�
0, m0 � f (ϕ). It is immediately clear from the

construction that the conjuncts following ϕt in f (ϕ) are satisfied in m0 of M�

under g�
0. The fact that M�, g�

0, m0 � ϕt is a consequence of the following claim.

Claim. For each subformula ψ of ϕ, for each state m ∈ M, and for each assign-
ment g for M:

M, g, m � ψ if and only if M�, g�, m � ψt.
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Proof of Claim. We proceed by induction on the structure of ψ. The atomic and
Boolean cases follow immediately from the construction. The cases for @ and
↓ are straightforward. It remains to discuss the only interesting case ψ = �ϑ,
which is done via the following chain of equivalent statements.

M, g, m � �ϑ

(1)⇔ ∃� ∈ M[mR� & M, g, � � ϑ]

(2)⇔ ∃� ∈ M[mR� & M�, g�, � � ϑt]

(3)⇔ ∃� ∈ M[mR� & M�, (g�)x
m, � � ϑt]

(4)⇔ ∃� ∈ M�
[
∀k � n

(
� ∈ V�(ck) ⇔ m ∈ V�(ck)

)
& M�, (g�)x

m, � � ϑt]
(5)⇔ ∃� ∈ M�

[
M�, (g�)x

m, � � ∧n
k=0

(
ck ↔ �(x → ck)

)
& M�, (g�)x

m, � � ϑt]
(6)⇔ M�, (g�)x

m, m � �

( ∧n
k=0

(
ck ↔ �(x → ck)

)
∧ ϑt

)
(7)⇔ M�, g�, m � ↓ x.�

( ∧n
k=0

(
ck ↔ �(x → ck)

)
∧ ϑt

)
(8)⇔ M�, g�, m � (�ϑ)t

These equivalences are justified as follows.

(1) Definition of satisfaction for �.

(2) Induction hypothesis.

(3) Since x is bound in ϑt.

(4) Construction of M�, V�.

(5) Definition of satisfaction for atoms, Boolean operators, and �.

(6) Definition of satisfaction for ∧ and �.

(7) Definition of satisfaction for ↓.

(8) Definition of (·)t.

“⇐”. Suppose ϕ ∈ HL(�, ↓)-compl-SAT. This means that there exist a model
M = (M, R, V), some state m0 ∈ M, and an assignment g0 for M such that
M, g0, m0 � f (ϕ). Due to the conjuncts after ϕt in f (ϕ), the variables ck “almost
partition” M in the following sense. Let Clk = V(ck). Then m0 ∈ Cl0; for each
state m ∈ M there is some k � n with m ∈ Clk; V(ik) ⊆ Clk; and for two disjoint
k, � � n, either Clk = Cl� or Clk ∩Cl� = ∅.

Hence the following construction of a model M� = (M�, R�, V�) is correct.
Let M� = M, R� = {(m, �) | ∀k � n(m ∈ Clk ⇔ � ∈ Clk)}, and V� be the
restriction of V to (NOM∪PROP) −

⋃
{ck}. Furthermore, for each assignment

g for M, let g� = g, which is an assignment for M�.
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It remains to show M�, g�
0, m0 � ϕ, which is a consequence of M, g0, m0 � ϕt

and the following claim.

Claim. For each subformula ψ of ϕ, for each state m ∈ M, and for each assign-
ment g for M:

M, g, m � ψt if and only if M�, g�, m � ψ.

Proof of Claim. We proceed by induction on the structure of ψ. Again, the
atomic and Boolean cases follow immediately from the construction, and the
cases for @ and ↓ are straightforward. It remains to discuss the only interesting
case ψ = �ϑ, which is done via the following chain of equivalent statements.

M,g, m � (�ϑ)t

(1)⇔ M, g, m � ↓ x.�
( ∧n

k=0
(
ck ↔ �(x → ck)

)
∧ ϑt

)
(2)⇔ M, gx

m, m � �

( ∧n
k=0

(
ck ↔ �(x → ck)

)
∧ ϑt

)
(3)⇔ ∃� ∈ M

[
M, gx

m, � � ∧n
k=0

(
ck ↔ �(x → ck)

)
& M, gx

m, � � ϑt
]

(4)⇔ ∃� ∈ M
[
∀k � n

(
� ∈ Clk ⇔ m ∈ Clk

)
& M, gx

m, � � ϑt]
(5)⇔ ∃� ∈ M�[mR�

� & M, gx
m, � � ϑt]

(6)⇔ ∃� ∈ M�[mR�
� & M, g, � � ϑt]

(7)⇔ ∃� ∈ M�[mR�
� & M�, g�, � � ϑ]

(8)⇔ M�, g�, m � �ϑ

These equivalences are justified as follows.

(1) Definition of (·)t.

(2) Definition of satisfaction for ↓.

(3) Definition of satisfaction for ∧ and �.

(4) Definition of satisfaction for atoms, Boolean operators, and �.

(5) Construction of M�, V�.

(6) Since x is bound in ϑt.

(7) Induction hypothesis.

(8) Definition of satisfaction for �.

This ends the proof. ❏

Lemma 5.27 HL(�, ∃)-ER-SAT is in NEXPTIME.
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Proof. The ∃ binder can bind state variables to states that are not accessible
using �. In this case, the bound variable evaluates to false. Therefore, if ϕ ∈

HL(�, ∃)-ER-SAT and M, g0, m0 � ϕ, we can modify M = (M, R, V) into a
model M′ = (M′, R′, V′) as follows. Let C be the cluster that contains m0, and
let s be a new state outside of M.

M′ = C � {s}

R′ = R�M′

V′(p) = V(p) ∩ M′, for p ∈ PROP

V′(i) =

{
V(i) if V(i) ⊆ M′,

{s} otherwise,
for i ∈ NOM

For each assignment g for M, the corresponding assignment g′ for M is ob-
tained from g by binding all those variables to s that are bound to states outside
of C by g. It is straightforward that M, g, m � ψ if and only if M′, g′, m � ψ, for
any state m ∈ C, any assignment g for M, and any subformula ψ of ϕ (proof
by induction). This implies M′, (g0)

′, m0 � ϕ.
Now, M′ is a model with two clusters only. We can proceed as in the proof

of Lemma 5.26 to construct an appropriate complete model. Thereby we obtain
a reduction from HL(�, ∃)-ER-SAT to HL(�, ↓)-compl-SAT, where the latter is
in NEXPTIME [MSSW05]. ❏

From Lemmata 5.25, 5.26, and 5.27 we obtain the complete characterisation of
the satisfiability problems for hybrid logics with binders and without E.

Theorem 5.28 Let X ∈
{
{�, ↓}, {�, ∃}, {�, ↓, @}

}
.

Then HL(X)-ER-SAT is NEXPTIME-complete.

5.8.3 The full language

In contrast to the other binder languages, the complexity of HL(�, ↓, E)-ER-SAT

is one exponential level higher. The main reason for this property is the fact that
small formulae can enforce satisfying models of doubly exponential size. We
will show that it is possible, but not quite straightforward, to enforce a tiling in
such big models, which establishes N2EXPTIME-hardness. On the other hand,
we will prove that each satisfying model for an HL(�, ↓, E)-formula ϕ can be
restricted to a submodel of doubly exponential size that still satisfies ϕ. This
will allow a guess-and-check procedure running in N2EXPTIME.
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Figure 5.9: The behaviour of the counters C and D in an ER model

Lemma 5.29 For each n ∈ N there is a formula ϕn ∈ HL(�, ↓, E) with the
following properties.

(i) |ϕn| ∈ O(n2)

(ii) ϕn ∈ HL(�, ↓, E)-ER-SAT

(iii) Each satisfying ER model for ϕn has at least 22n
clusters with 2n states

each.

Proof. In order to enforce a model of the required size, we will proceed in
two steps. In the first step, we will implement a counter C to take on values
0, . . . , 2n − 1 within each cluster. This will make it possible, for each cluster,
to distinguish 2n states. The counter C will be realised by atomic propositions
cn−1, . . . , c0 whose truth values, in this order, constitute the binary representa-
tion of the value of C at the respective state. (The “truth value” of ci at the state
m is 1 if m ∈ V(ci), and 0 otherwise, as usual.)

In the second step we will implement a counter D that ranges over the values
0, . . . , 22n

− 1 and distinguishes 22n
clusters (not states). It will be realised by

one atomic proposition d. Given a cluster X, the binary representation of the
value of D at X will be determined by the truth values of d at the states in X, in
the order given by their C-values. Such a doubly exponential counter has been
used in [GLW06] to establish lower bounds on the size of certain concepts in
description logics.

The required behaviour of C and D in a satisfying model for ϕn is visualised
in Figure 5.9, where points and “sausages” represent states and clusters, respec-
tively. The values of C and D in each state are displayed next to it. In the case of
C, the shown number determines the truth values of all ci as described above,
and in case of D the given number is the truth value of d. The respective value
of the whole counter D becomes readable after turning the D column counter-
clockwise by 90 degrees. The state with C = 0 in the cluster with D = 0 shall
be the state that satisfies ϕn. It is marked by a larger point.
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5.8 Frames with equivalence relations

All these enforcements, of course, will make heavy use of the ↓ operator com-
bined with E. We will now show how to achieve the required behaviour of C
and D. This will be via several formulae whose conjunction results in ϕn. We
will start with the conjuncts enforcing that each cluster has exactly 2n states
among which every value of C between 0 and 2n − 1 occurs once. In order to
keep notation short, we will introduce some abbreviations. First, we would like
to refer to specific C-values directly, as follows.

(C = 0) = ¬c0 ∧ . . . ∧ ¬cn−1 (C �= 2n − 1) = ¬c0 ∨ . . . ∨ ¬cn−1

Second, it will be necessary to express that, for some x ∈ SVAR, the C-value at
the current state equals one plus the C-value of the state to which x is bound.(
Recall that @xψ abbreviates E(x ∧ ψ).

)

(C = Cx + 1) =
n−1∨
k=0

[
ck ∧ @x¬ck ∧

k−1∧
�=0

(¬c� ∧ @xc�) ∧
n−1∧

�=k+1

(c� ↔ @xc�)
]

In addition, we will use analogous shortcuts C � Cx expressing that the C-
value at the current state is less than, equals, or is greater than the C-value of
the state to which x is bound. The following conjuncts enforce the required
behaviour of each cluster with respect to C.

� At the state satisfying ϕn, C = 0 holds.

CZERO1 = (C = 0)

� In each cluster there is a state with C = 0.

CZERO2 = A�(C = 0)

� Each cluster has at most one state of each C-value.

CUNIQUE = A↓ x.�
(
(C = Cx) → x

)
� For each state of C-value c < 2n − 1, there is a state of C-value c + 1 in the

same cluster.

CSUCC = A
[
(C �= 2n − 1) →↓ x.�(C = Cx + 1)

]
We will now construct the part of ϕn that implements the counter D. This re-
quires expressing that the value of D in the cluster of the current state equals
one plus the value of D in the cluster of the state assigned to some state variable
x. The appropriate macro proceeds as follows (see also Figure 5.10).

Name the current state y. Name the state in the x-Cluster with ¬d and lowest
possible C-value z. For the state in the y-Cluster with the same C-value as
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Figure 5.10: Incrementation of the D counter

z (which we call w only in this description and in the picture), require three
things:

(a) d must hold at w;

(b) ¬d must hold at all states of the y-Cluster with C-value less than the C-
value of w;

(c) every state v of the y-Cluster with C-value greater than the C-value of w
must agree in d with the states of the x-Cluster that have the same C-value
as v.

(D= Dx + 1) = ↓y.@x� ↓ z.
[(
¬d ∧�((C<Cz) → d)

)
→[

@y�
(
(C=Cz) →

[
d ∧�

(
(C<Cz) → ¬d

)
∧�

(
(C>Cz) →↓v.@x�((C=Cv) → (d ↔ @vd))

)])]]
We easily obtain the two remaining conjuncts for ϕn.

� The state satisfying ϕn belongs to a cluster with D = 0.

DZERO = �¬d

� For each cluster X of D-value d < 22n
− 1, there is a cluster Y of D-value

d + 1.

DSUCC = A↓ x.
(
�¬d → E(D = Dx + 1)

)
Now let ϕn = CZERO1 ∧ CZERO2 ∧ CUNIQUE ∧ CSUCC ∧ DZERO ∧ DSUCC.
Since each of the above abbreviations is of at most quadratic size and they do
not occur nested in ϕn, Part (i) of the theorem is satisfied. For (ii), it is easy to see
that the following model satisfies ϕn at the state (0, 0) under any assignment.

74



5.8 Frames with equivalence relations

Construct M = (M, R, V) as follows.

M = {(x, y) | x, y ∈ N; 0 � x < 22n
; 0 � y < 2n}

R = {
(
(x1, y1), (x2, y2)

)
| x1 = x2}

V(ci) = {(x, y) | the i-th bit in the binary representation of y is 1}

V(d) = {(x, y) | the y-th bit in the binary representation of x is 1}

In order to show (iii), let M = (M, R, V) be an ER model with m0,0 ∈ M and g
be an assignment for M such that M, g, m0,0 � ϕn. Now the four C-conjuncts
enforce that C = 0 at m0,0, and that each cluster of M contains exactly one state
of C-value c for each c = 0, . . . , 2n − 1. Due to DZERO, the D-value of m0,0’s
cluster equals 0, and DSUCC successively enforces the existence of a cluster of
D-value d for each d = 0, . . . , 22n

− 1. (Note that the value of D in each cluster is
uniquely determined by V(d) and the order of the states of the cluster induced
by their C-values.) Hence M has at least 22n

clusters with 2n states each. ❏

Corollary 5.30 HL(�, ↓, E) does not have the 2poly(n)-size model property with
respect to ER frames.

Lemma 5.31 HL(�, ↓, E)-ER-SAT is N2EXPTIME-hard.

Proof. We reduce the 22n
-tiling problem to HL(�, ↓, E)-ER-SAT. The reduc-

tion uses the techniques enforcing doubly exponentially large satisfying mod-
els from the proof of Lemma 5.29. In order to encode a tiling for the 22n

× 22n
-

square in an ER model M, we will first enforce that M has 22n+1
clusters with

2n+1 states each, using the same construction of counters C and D, but with
parameter n + 1. The tiled square itself will be encoded in the states of C-value
0 of all clusters. Hence row 0 of the square will be in the clusters of D-values
0, . . . , 22n

− 1; row 1 will be in the clusters of D-values 22n
, . . . , 2 · 22n

− 1; etc.;
see Figure 5.11. The horizontal adjacencies in the original square can be ex-
pressed referring to pairs of clusters with successive D-values. In contrast, for
the vertical adjacencies, pairs of clusters whose D-values differ by 22n

will have
to be compared.2

For the required reduction, we will show how to transform an instance (T, n)

of the tiling problem into a formula ψT,n such that there is a T-tiling of the

2 Note that this is not the standard way to encode tilings in models, insofar as not every
state of the model corresponds to a position in the grid. However, this modification of the
standard way is not new, since it relies on ideas developed by Chlebus in [Chl86] to encode
the rectangle tiling problem with exponential parameter into a more intricate version of a
bounded tiling problem that he called “High Tiling”.
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Figure 5.11: Enforcing a tiling in an ER model of doubly exponential size

22n
× 22n

-square if and only if ψT,n is satisfiable. As in the proof of Lemma 5.29,
this formula will consist of several conjuncts. The first of them will be the for-
mula ϕn+1 from that proof, enforcing the required structure of the model. In
order to keep the remaining conjuncts short, we will use the same abbrevia-
tions again, but with n + 1 instead of n. Furthermore, D = Dx + 22n

denotes
that the D-value of the current state’s cluster equals 22n

plus the D-value of the
cluster containing the state to which x is bound. This abbreviation is defined
analogously to the shortcut D = Dx + 1.

Now we are ready to give the conjuncts that enforce the tiling. Let T be a set
of tile types. For each t ∈ T we will use an atomic proposition t to denote that
a tile of type t lies at the respective position.

� At each state with C-value 0 lies exactly one tile.

TILE = A
(
(C = 0) →

∨
t∈T

(
t ∧

∧
t′∈T
t′ �=t

¬t
))

� Tiles match horizontally.

HOR = A
[(

(C = 0) ∧�(¬cn ∧ d)
)
→

↓ x.
( ∧

t∈T

→ A
(
((C = 0) ∧ (D = Dx + 1)) →

∨
t′∈RI(t,T)

t′
))]

(The �-subformula requires that the corresponding position of the current
state does not belong to the last column of the square.)

� Tiles match vertically.

VER = A
[(

(C = 0) ∧�(cn ∧ ¬d)
)
→

↓ x.
( ∧

t∈T

→ A
(
((C = 0) ∧ (D = Dx + 22n

)) →
∨

t′∈UP(t,T)

t′
))]
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� The borders of the square are white.

WHITE = A
[(

�(cn → ¬d) →
∨
t∈T

bot(t)=white

t
)

∧
(
�(cn → d) →

∨
t∈T

top(t)=white

t
)

∧
(
�(¬cn → ¬d) →

∨
t∈T

left(t)=white

t
)

∧
(
�(¬cn → d) →

∨
t∈T

right(t)=white

t
)]

Now let ψT,n = ϕn+1 ∧ TILE ∧ HOR ∧ VER ∧WHITE. Each conjunct is of size at
most O(n2 + |T|2). From their definitions it is clear that ψT,n can be computed
in time polynomial in n + |T|. It remains to show that there is a T-tiling of the
22n

× 22n
-square if and only if ψT,n ∈ HL(�, ↓, E)-ER-SAT.

“⇒”. Suppose there is a tiling τ for the 22n
× 22n

square. We construct a model
M = (M, R, V) for ψT,n as follows.

M = {(x, y) | x, y ∈ N; 0 � x < 22n+1
; 0 � y < 2n+1}

R = {
(
(x1, y1), (x2, y2)

)
| x1 = x2}

V(ci) = {(x, y) | the i-th bit in the binary representation of y is 1}

V(d) = {(x, y) | the y-th bit in the binary representation of x is 1}

V(t) = {(22n
· i + j, 0) | 0 � i, j < 22n

; τ(i, j) = t}, for t ∈ T

Now it is easy to see that M, g, (0, 0) � ψT,n for any assignment g: The first
conjunct, ϕn+1, is treated in the proof of Lemma 5.29 (ii). The remaining con-
juncts hold at (0, 0) due to the definition of V, the fact that τ is a function, and
the tiling conditions.

“⇐”. Suppose ψT,n ∈ HL(�, ↓, E)-ER-SAT. Then there exist a model M =

(M, R, V), an assignment g for M, and a state m0,0 ∈ M such that M, g, m0,0 �
ψT,n. Due to the conjunct ϕn+1 of ψT,n, consulting the proof of Lemma 5.29 (iii)
shows that for every x < 22n+1

and every y < 2n+1, there are clusters Clx with
states mx,y ∈ Clx such that C has value y in each mx,y, and D has value x in each
Clx. This allows for constructing a tiling τ from the states mx,0 via

τ(i, j) = t ⇔ mx,0 ∈ V(t) (for x = 22n
· i + j).

The correctness of this definition is ensured by the conjunct TILE. Due to the
remaining conjuncts, τ defines a permissible tiling. ❏

We will now establish the corresponding upper bound, showing that the full
hybrid language has a doubly exponential size model property over ER frames.
This will make it possible to decide satisfiability using a straightforward guess-
and-check procedure and involving results for model checking.
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Lemma 5.32 HL(�, ↓, E) has the 222n+2
-size model property with respect to ER

frames.

Proof. Intuitively, the proof relies on the following considerations: Call the
set of propositional variables and nominals that hold at a given state of a model
the type of this state. Let the C-type of a cluster be the set of types of all points
of this cluster. If there was no ↓ in our language, then two states of the same
type that belong to the same cluster would not be distinguishable, that is, they
would satisfy the same formulae. Even two states of the same type that belong
to two different clusters of the same C-type would not be distinguishable. This
would enable us to restrict clusters to at most one state per possible type and to
restrict a whole satisfying model for some formula ϕ to at most one cluster per
possible C-type without affecting satisfiability of ϕ.

In the presence of the ↓ binder, this argumentation must be refined and re-
quires a certain amount of technical details. Let ϕ be a formula of size n and
M = (M, R, V) be a satisfying model for ϕ. First, there are at most 2n possible
types of states. Since an assignment for M might bind all state variables occur-
ring in ϕ to different states of the same type, only up to n + 1 states of the same
type belonging to the same cluster are distinguishable. Hence, it is legitimate
to restrict each cluster of M to at most n + 1 states of each type in the first step,
which leads to an exponential bound in the size of clusters.

In the second step, we modify the notion of a C-type of a cluster X to be
the multiset containing as many copies of each type as there are states of this
type in X, but not more than n + 1. It is legitimate, too, to restrict the whole
model to at most n + 1 clusters of each C-type. Since there are at most (n + 2)2n

many different C-types, the number of clusters — and, hence, states — of the
restricted model is bounded by 22O(n)

.

The formal proof of the 222n+2
-size model property requires quite some notation.

Let ϕ ∈ HL(�, ↓, E)-ER-SAT be of size n. Then there exist an ER model M =

(M, R, V), an assignment g0 for M, and a state m0 ∈ M such that M, g0, m0 �
ϕ. Let Ci ⊆ M, i ∈ I, be all clusters of M, for an appropriate index set I that
contains 0, such that m0 ∈ C0. Let x1, . . . , xs be all state variables occurring
in ϕ. Analogously, let a1, . . . , at be all other atoms in ϕ. Clearly s, t � n. A
ϕ-type is a subset of {a1, . . . , at}. Let A1, . . . , A2t be an enumeration of all ϕ-
types, such that m0 is of type A1. (A state m is of type A� iff for each j = 1, . . . , t:
(m ∈ V(aj) ⇔ aj ∈ A�). Furthermore, we will deliberately speak of “(C-)types”
instead of “ϕ-(C-)types” whenever no confusion may arise.) Given a cluster C,
we divide it into 2t “type layers” C�

i =
{

m ∈ Ci | m is of type A�}, as shown in
Figure 5.12.
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Figure 5.12: Dividing a cluster into “type layers”

We define a function f : I × {1, . . . , 2t} → P(M) that assigns a set of states to
each pair (i, �) of a cluster number i and a type number �, such that f (i, �) is a
subset of Ci. The union of all possible f (i, �) will constitute the first restriction
of M. The function f is defined as follows, where #C�

i denotes the number of
states in C�

i . If #C�
i � s + 1, then f (i, �) = C�

i . Otherwise, f (i, �) is some subset
of C�

i of size at most s + 1 that satisfies the following conditions.

(i) For each j = 1, . . . , s: if g0(xj) ∈ C�
i , then g0(xj) ∈ f (i, �).

(ii) m0 ∈ f (0, 1).

Such a subset always exists. For any cluster Ci, let f (Ci) denote the union of all
f (i, �). Due to the definition of f , f (Ci) ⊆ Ci, and f (Ci) has at most (s + 1) · 2t

states. We denote the union of all f (Ci) by M′.
After restricting the cluster size, we will restrict the number of the clusters.

Let A be the multiset containing s + 1 copies of each type A�. Call each sub-
set of A a ϕ-C-type. The power set P(A) contains (s + 2)2t

elements. Let
A1, . . . ,A

(s+2)2t be an enumeration of all ϕ-C-types, such that f (C0) is of C-
type A1. (The C-type of a cluster Ci is determined by the number of states of
each type in its restriction f (Ci).) We divide M′ into (s + 2)2t

“C-type layers”
C� being the union of f (Ci) for all Ci of C-type A�.

Now define a second choice function f ′ :
{

1, . . . , (s + 2)2t}
→ P(M′) that

assigns a set of states to each C-type number such that f ′(�) is a union of (re-
stricted) clusters. The union of all possible f ′(�) will constitute the second re-
striction of M. The function f ′ is defined as follows. If there are not more than
s + 1 clusters of C-type A�, then f ′(�) = C�. Otherwise, f ′(�) is the union of
s + 1 restricted clusters of type A� satisfying

(i) For each j = 1, . . . , s:
if g0(xj) ∈ f (Ci) for some Ci of type A�, then f (Ci) ⊆ f ′(�).

(ii) f (C0) ⊆ f ′(1).
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Such a set always exists. Due to the definition of f ′, each f ′(�) contains at most
s + 1 restricted clusters and, hence, (s + 1)2 · 2t states. We now construct a
new model M′′ = (M′′, R′′, V′′) from M, where M′′ is the union of f ′(�) for
all C-types A�, and R′′ and V′′ are the restrictions of R and V to M′′. Now the
following facts about M′′ are obvious. It is still an ER model, whose clusters are
restrictions of clusters of M. It contains m0, because m0 ∈ f (C0) ⊆ f ′(1). The
assignment g0 is an assignment for M′′. Since there are (s + 2)2t

C-types, M′′

contains (s + 2)2t
· (s + 1)2 · 2t states. This number is limited by 222n+2

because
s, t � n.

It remains to show that M′′, g0, m0 � ϕ. For this purpose, we make use
of an auxiliary statement. This statement uses the concept of agreement in a
pair of assignments. We say that two states m and m′ from M agree in two
assignments g/g′ for M iff {xk | g(xk) = m} = {xk | g′(xk) = m′}. Two
clusters Ci and Ci′ agree in g/g′ iff they are of the same C-type, and for each A�,
each m ∈ C�

i , there is some m′ ∈ C�
i′ that agrees with m in g/g′.

Claim 1. For each subformula ψ of ϕ; for each two assignments g, g′ for M;
for each C-type A�; for each two clusters Ci and Ci′ that agree in g/g′; for each
type A�; and for each m ∈ C�

i and m′ ∈ C�
i′ that agree in g/g′; it holds that

M, g, m � ψ iff M, g′, m′ � ψ.

Proof of Claim 1. By induction on ψ. Direction “⇒” suffices because of the
symmetry of the conditions on m and m′. The atomic and Boolean cases of the
induction are immediate and easy, respectively. The E case is trivial, and the
↓ case is straightforward if one considers the fact that, since m and m′ agree in
g/g′, they also agree in gx

m/(g′)x
m′ for any state variable x. The only interesting

case is the � case, with the following argumentation. Suppose M, g, m � �ϑ.
Then there exists some m ∈ Ci with M, g, m � ϑ. Let A�′ be the ϕ-type of m.
Then C�′

i and, hence, C�′

i′ is not empty. Because Ci and Ci′ agree in g/g′, there
is some m′ ∈ C�′

i′ that agrees with m in g′/g. Due to the induction hypothesis,
M, g′, m′ � ϑ. Hence, M, g′, m′ � �ϑ.

Now the required fact M′′, g0, m0 � ϕ is a consequence of the following claim.

Claim 2. For each subformula ψ of ϕ, for each m ∈ M′′, for each assignment g
for M”, it holds that M, g, m � ψ iff M′′, g, m � ψ.

Proof of Claim 2. Since m ∈ M′′, there is some i ∈ I such that m ∈ f (Ci) ⊆ M′′.
Let A� be the C-type of Ci. We prove the claim by induction. The atomic cases
follow from the facts that M′′ is a restriction of M and that g is an assignment
for both M and M′′. The Boolean cases are straightforward. So is the ↓ case if
one considers the fact that gx

m is still an assignment for M′′. For the remaining
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cases for � and E, the “⇐” direction is trivial. We will only prove the “⇒”
direction.

Case ψ = �ϑ. Suppose M, g, m � �ϑ. Then there exists some m′ ∈ Ci with
M, g, m′ � ϑ. Let the type of m′ be Ak. There are three cases to distinguish.

(1) #Ck
i � s + 1. Then m′ belongs to f (i, k) and, hence, to f (Ci). Hence

m′ ∈ M′′ and mR′′m′. Together with the induction hypothesis, this im-
mediately yields M′′, g, m � �ϑ.

(2) #Ck
i > s + 1 and, for some j = 1, . . . , s, g(xj) = m′. Since g is for M′′, we

obtain m′ ∈ M′′ and mR′′m′, which yields M′′, g, m � �ϑ as in case (1).

(3) #Ck
i > s + 1 and, for no j = 1, . . . , s, g(xj) = m′. Due to the size of Ck

i and
the construction of f , there is some m′′ ∈ f (i, k) not affected by g either.
Since m′ and m′′ are of the same type and agree in g/g, Claim 1 implies
that M, g, m′′ � ϑ. The remaining argumentation is the same as in case
(1), with m′′ instead of m′.

Case ψ = Eϑ. Suppose M, g, m � Eϑ. Then there exists some m′ ∈ M with
M, g, m′ � ϑ. Let the type of m′ be Ak, and let m′ be from Ci′ , the latter being of
C-type A�. As in the � case, there are three subcases to distinguish.

(1) There are at most s + 1 clusters of C-type A�. Then Ci and, hence, m′

belong to M′′. Together with the induction hypothesis, this immediately
yields M′′, g, m � Eϑ.

(2) There are more than s + 1 clusters of C-type A� and, for some j = 1, . . . , s,
g(xj) ∈ f (Ci′). Since g is for M′′, we obtain f (Ci′) ⊆ M′′, which yields
M′′, g, m � Eϑ as in case (1).

(3) There are more than s + 1 clusters of C-type A� and, for no j = 1, . . . , s,
g(xj) ∈ f (Ci′). Due to the “large enough” number of clusters of C-type A�

and the construction of f ′, there is some cluster Ci′′ ⊆ f ′(�) not affected by
g either. Since Ci′ and Ci′′ agree in g/g, there is some m′′ ∈ f (Ci′′), having
the same type as m′ and agreeing with m′ in g/g. Hence, due to Claim 1,
M, g, m′′ � ϑ. Here we have to distinguish the same three subcases as
in the � case. The argumentation is analogous and leads to the required
result M′′, g, m � Eϑ. ❏

Theorem 5.33 HL(�, ↓, E)-ER-SAT is N2EXPTIME-complete.

Proof. The lower bound follows from Lemma 5.31. For the upper bound,
let ϕ be an arbitrary instance of HL(�, ↓, E)-ER-SAT. In order to determine
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whether ϕ ∈ HL(�, ↓, E)-ER-SAT, we guess a model M = (M, R, V), an as-
signment g, and a state m ∈ M, and check whether M, g, m � ϕ. Let n = |ϕ|.
If ϕ ∈ HL(�, ↓, E)-ER-SAT, then, due to Lemma 5.32, it has a satisfying model
with state space M of size at most 222n+2

. Hence, in time O(222n+2
) we can guess

a model M = (M, R, V) of size at most 222n+2
and check whether R is an equiv-

alence relation. An assignment g can be guessed in time O(23n+2). All the

guesses together take time O(22k′ ·n
) for a constant k′.

Finally, checking whether there exists a state m such that M, g, m � ϕ can
be accomplished using the procedure MCFULL from [FdR06]. By [FdR06, Theo-
rem 4.5] this takes time O(|ϕ| · (|M| + |R|) · |M|k) = O(n · (222n+2

+ (222n+2
)2) ·

(222n+2
)k) = O(22k′′ ·n

) for an appropriate constant k′′. Altogether, we have a
nondeterministic algorithm that runs in doubly exponential time. ❏

5.8.4 Pure languages with binders

Satisfiability for all pure languages with binders is PSPACE-complete. Hardness
is due to an easy reduction from QSAT similar to that for the model checking
problem in Lemma 4.1. The upper bound will use a polynomial-size model
property obtained in a similar manner as the 222n+2

-size model property for
HL(�, ↓, E) in Lemma 5.32. Note the following subtle difference in reasoning.
While the 222n+2

-size model property of HL(�, ↓, E) implies an N2EXPTIME up-
per bound for satisfiability, the polynomial-size model property of any binder
language does not imply an NP upper bound for satisfiability. The reason be-
comes clear if we recall the complexity results for model checking over arbi-
trary frames from [FdR06]: In the presence of binders, this problem is PSPACE-
complete, but an upper time bound is O(|ϕ| · |M|2|ϕ|). If the model is large
compared to the formula, as in the case of HL(�, ↓, E), then the factor |ϕ| in
the exponent is unimportant. In the case of a polynomial-size model property,
however, the upper time bound for model checking only yields an exponential
time bound for the whole guess-and-check algorithm deciding satisfiability.

Theorem 5.34 Let X ∈
{
{�, ↓}, {�, ↓, @}, {�, ∃}, {�, ↓, E}

}
.

Then PML(X)-ER-SAT and PHL(X)-ER-SAT are PSPACE-complete.

Proof. For PSPACE-hardness, we reduce PML(�, ↓)-compl-MC (see Lemma
4.1) to PML(�, ↓)-compl-SAT. (Note that the problems PML(�, ↓)-compl-SAT

and PML(�, ↓)-ER-SAT are identical, because the truth of �-↓-formulae is pre-
served under taking generated submodels.) Let (M, g, ϕ) be an instance of the
model-checking problem, consisting of a complete model M having n states, an
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assignment g, and a formula ϕ. Since the reduction in the proof of Lemma 4.1
produces sentences only, we may assume w.l.o.g. that ϕ is a sentence. From this
instance, we construct a formula ϕ′ = f (M, g, ϕ) that uses fresh state variables
x1, . . . , xn to enforce that each satisfying model has exactly n states (i.e., equals
M). This is achieved by the following polynomial-time computable reduction
function.

f (M, g, ϕ) = ↓ x1.�↓ x2. · · ·�↓ xn.
( ∧

i,j=1,...,n
i �=j

�(xi → ¬xj) ∧�

∨
i=1,...,n

xi

)
∧ ϕ

Now it is straightforward to show that (M, g, ϕ) ∈ PML(�, ↓)-compl-MC if
and only if ϕ′ ∈ PML(�, ↓)-compl-SAT. Suppose M, g, m � ϕ, for some state
m. Then M, g, m � ϕ′. For the converse, suppose M′, g′, m � ϕ′, for some
model M′ and some assignment g′ for M′. Since the first part of ϕ′ enforces
M′ to have n states, M and M′ are identical. Since ϕ is a sentence, it follows
that M, g, m � ϕ.

Membership in PSPACE follows from the O(n2)-size model property of the
logic PHL(�, ↓, E) with respect to ER frames. The proof of this property is
analogous to the proof of Lemma 5.32, but with one fundamental difference.
Since our language is pure, the number of types decreases to one. Hence, in
each cluster, at most n + 1 different states can be distinguished by means of
state variables. This means that there are only n + 1 C-types (representing clus-
ters with 1, 2, . . . , n + 1 states), and, again, only n + 1 clusters of each C-type can
be distinguished. This leads to a (n + 1)2-size model property. The technical
details are essentially the same as in the proof of Lemma 5.32.

Now a model can be guessed in polynomial time and checked in polynomial
space (Lemma 4.1). Since NP ⊆ PSPACE, the upper bound follows. ❏
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Chapter 6

Satisfiability of Multi-Modal

Downarrow Logic

6.1 Introduction

The quintessence of this chapter can be informally expressed by the following
warning.

Warning 6.1 When hybridising a multi-modal logic Ln, expect it to become
undecidable — even if only frame classes are considered over which the uni-
modal hybridised L is decidable.

We will begin with an explanation and a more precise formulation of this state-
ment.

This chapter examines the effects of the interaction between the hybrid ↓

operator and multiple modalities on the decidability of the satisfiability prob-
lem of hybrid languages. In the previous chapters, we have seen that ↓ is a
very powerful means of expression, which is dangerous in terms of computa-
tional costs. In general, HL(�, ↓) is undecidable [ABM99]. However, over re-
stricted frame classes, such as transitive frames, transitive trees, linear orders,
ER frames, or complete frames, ↓ is either of no use at all, or the expressive
power added does not lead to undecidability (see Chapter 5). We will show
that for these and other frame classes, satisfiability becomes undecidable in the
bi-modal case.

Table 6.1 summarises complexity results for satisfiability of the smallest bind-
er language, namely HL(�, ↓), over different frame classes. It contains the
frame classes examined in Chapter 5 and classes of frames of bounded width
(see [tCF05b]). All names of complexity classes stand for completeness results.

The contribution of this chapter is to consider extensions of ML along two
axes — allowing for multiple modalities and adding the ↓ operator — , which
by themselves are benign in terms of decidability over restricted frame classes,
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arbitrary transitive transitive linear equivalence width finite
frames frames trees orders relations 0, 1 width � 2

CORE [1] NEXPTIME [4] PSPACE [2, c] NP [2] NEXPTIME [4] NP [3] NEXPTIME [3]

Legend. [1] [ABM99]
[2] [FdRS03]

[3] [tCF05b]
[4] [MSSW05]

c. conclusion

Table 6.1: Complexity results for the hybrid downarrow language with respect
to different frame classes

and to point out that their combination does not necessarily behave benignly,
too. This is the intended meaning of Warning 6.1.

Precisely speaking, we prove the following results.

(1) For each frame class containing one particular linear frame, satisfiability
of the bi-modal ↓-language is undecidable.

(2) For each frame class containing one particular ER frame, satisfiability of
the bi-modal ↓-language is undecidable.

These results are given in Table 6.2 (in bold face type), together with known
results for hybrid languages extended along only one of the above mentioned
axes.

It is worth noting that each of these two statements involves a wide range
of frame classes, including temporally (in the first case) and epistemically (in
the second case) relevant ones. This is remarkable because it is not always
possible that techniques used to establish complexity results for modal or hy-
brid logics apply (or are transferable) to different frame classes. For instance,
complexity results for hybrid languages have been proven in the literature ei-
ther over single frame classes [ABM99, FdRS03, MS07a] or separately by frame
classes [ABM00, MSSW05]. However, many positive examples of complexity
or (un)decidability results for satisfiability of modal logics involving more than
one frame class can be found, for instance, in [Lad77, Spa93a, Wol96, Wol97,
HHK02, GKWZ05, LW05, HR07].

In the presence of ↓, it is possible to achieve general results because of the
enormous expressive power of this operator: We will see that there are ↓-
formulae enforcing that each satisfying model has very specific properties —
it is based on F , where F is one of the frames mentioned above in (1) and (2).
Since each F belongs to a very restricted frame class, a single reduction from the
classical tiling problem to HL(�, ↓)-{F}-SAT can easily be extended to cover
HL(�, ↓)-F-SAT for each class F of frames containing F .
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hybrid arbitrary transitive linear ER
lang. frames frames orders frames

HL(�) PSPACE [1] PSPACE [2] NP [2] NP [5, c.]
HLn(�) PSPACE [1] PSPACE [2] NP-hard [7] PSPACE [4, c.]

HL(�, ↓) CORE [1] NEXPTIME [6] NP [3] NEXPTIME [6]
HLn(�, ↓) CORE [1, c.] CORE (6.2) CORE (6.2) CORE (6.4)

Legend. [1] [ABM99]
[2] [ABM00]
[3] [FdRS03]
[4] [HM92]

[5] [Lad77]
[6] [MSSW05]
[7] [ON80]

c. conclusion
from surrounding results

(a.b.c) Theorem (a.b.c)

Table 6.2: An overview of complexity results for multi-modal hybrid logics

Result (2) is of relevance for epistemic applications of hybrid logic, because
the class of all multi-modal ER frames and its superclasses are important for
modelling knowledge and belief of multi-agent scenarios, see also Section 1.2.

In contrast, we cannot accredit such a practical relevance to Result (1). Al-
though some of the covered classes of frames are important for temporal appli-
cations in the uni-modal setting, it is hard to see the use of frames with several
accessibility relations that are, say, transitive trees or linear orders. However,
Result (1) is of the same theoretical interest as Result (2) in that they both demon-
strate the “dangerous” behaviour of the combination of ↓ and multiple modal-
ities described above.

Before we prove the announced results, we will try to provide an intuition
why the two extensions of the minimal hybrid language lead to undecidabil-
ity when combined. For this purpose, it is helpful to understand what makes
HL(�, ↓) behave “benignly” over restricted frame classes.

• In models based on acyclic frames (linear orders or transitive trees), states
named by ↓ can never be reached again. Hence ↓ is useless. In contrast,
in a frame with two acyclic accessibility relations, cycles are possible.

• Over transitive frames, the proof of NEXPTIME-membership for satisfi-
ability of HL(�, ↓) relies on the fact that each cycle is a cluster, that is,
a complete subframe. But in a transitive frame for a bi-modal language,
there can be cycles consisting of edges of different accessibility relations
which are not necessarily clusters.

• Over ER frames, HL(�, ↓) is equivalent to a fragment of first-order logic
(the monadic class). This equivalence cannot be established for the bi-
modal language.
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Hence, while for some frame classes proof techniques for the uni-modal mini-
mal hybrid language can straightforwardly be extended to its multi-modal ver-
sion, this is not possible in the presence of ↓.

Furthermore, the natural reduction from multi-modal to uni-modal logic,
which implies that, in general, satisfiability for the former cannot be harder
than for the latter, does not work on transitive frames. This reduction is de-
scribed in [KW97] and goes back to S. K. Thomason [Tho74]. For each modality
�i, it introduces a new atomic proposition pi and replaces each edge mRin by
a sequence mR�i

m,nRn, where �i
m,n is a new state in which pi is true. This re-

placement transforms every multi-modal model into a uni-modal one. Hence,
replacing each occurrence of �iψ in a given formula ϕ by �(pi ∧�ψ) preserves
satisfiability of ϕ. This technique fails in the case of transitive frames or a sub-
class thereof, because the addition of the new states destroys transitivity. If we
require the new model to be based on a transitive frame again, we cannot just
take the transitive closure. This would add extra accessibilities that were not
present in the original model.

The bi-modal language with ↓ is in fact strong enough to encode tilings (see
Section 2.4.4) on any of the frame classes covered by Results (1) and (2). Tilings
have been used in the literature to establish undecidability for satisfiability
of different hybrid ↓ languages. Blackburn and Seligman [BS95] showed un-
decidability of HL4(�, ↓)-SAT involving the spypoint technique. The results
of this chapter are a generalisation of that result, decreasing the number of
modalities to two and restricting the class of frames. Furthermore, Goranko
[Gor96] showed undecidability of HL(�, ↓, E)-SAT. This and the previously
mentioned result were generalised by Areces, Blackburn, and Marx [ABM99],
who reduced the global satisfiability problem of a certain modal logic (whose
undecidability was shown via a reduction from the tiling problem in [Spa93a])
to HL(�, ↓)-SAT. Reviewing these results, ten Cate and Franceschet showed
undecidability of the fragment of HL(F, P, ↓, @) without nested occurrences of
↓ via a reduction from the tiling problem in [tCF05b].

All these reductions have the same standard procedure in common, which
consists of two basic steps: to enforce a satisfying model to behave like the
N×N grid, and to encode the tiling in the states of this model. The first step
consists in forcing the states of the model to behave like the nodes of the grid
and mimicking the upper and right successor function by the accessibility re-
lation(s). The second step must ensure that atomic propositions corresponding
to tiles are assigned to the states of the model in such a way that the tiling con-
ditions are satisfied. Deviations from this “standard procedure” can, of course,
lead to appropriate reductions as well, see, for instance, [GKWZ05] — or Sec-
tion 5.8.3 of this thesis, which contains a technically more involved reduction
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from a bounded tiling problem.
We will use the “standard procedure” (although the encoding of the grid

will not be trivial), and combine it with a modification of the spypoint tech-
nique [BS95, ABM99], which we will modify into a spypoint-sinkpoint argu-
ment for Result (1).

6.2 Linear orders and above

In this section, we show that HL2(�, ↓) is able to encode tilings of N×N on any
frame class containing one particular linear frame, which we will call Grid in
the following. This ability is not too surprising if one considers the fact that ↓ is
powerful enough to force the two accessibility relations to behave as the “right
neighbour” and “upper neighbour” relations in the N×N grid. Since we are in-
terested in a result as general as possible, we will have to insist on Grid having
two linear (i.e., transitive, irreflexive, and trichotomous) accessibility relations
when constructing this frame. As remarked in Section 6.1, such a frame condi-
tion is a bit artificial, but by considering it we will be able to cover a wide range
of frame classes.

In order to construct Grid, we start with two accessibility relations Rh (“hori-
zontal”) and Rv (“vertical”). The frame will consist of points (x, y) ∈ N2, where
(x, y)Rh(x′, y′) whenever x < x′ and y = y′, and (x, y)Rv(x′, y′) whenever
x = x′ and y < y′. This situation is shown in Figure 6.1 (a), where a full line
denotes an Rh edge, and a dashed line stands for an Rv edge. Note that the
transitive closure of both relations is implicit. Clearly, Rh and Rv are irreflexive.
For reasons just stated, we will make them trichotomous by adding extra edges
as given in Figure 6.1 (b) and taking the transitive closure again. More precisely
speaking, we make each point on the nth row see each point on the mth row via
Rh, for each m > n; and we make each point on the nth column see each point
on the mth column via Rv, for each m > n.

We will need to refer to the lower left point (the “origin” of the grid) sev-
eral times. For this purpose, we introduce a variant of the spypoint technique.
Apart from the fact that the “origin” behaves almost as a spypoint — that is,
all other points in Grid are accessible from it via some Rh-Rv-path —, we will
add a sinkpoint to the model that is accessible from all other points via Rh and
that sees the spypoint via Rv, cf. Figure 6.1 (c). Note that the spypoint-sinkpoint
construction does not destroy irreflexivity or trichotomy.

Let ∞ denote the sinkpoint. We formally define Grid =
(

N, (Rh, Rv)
)
, where

N = (N×N) ∪ {∞}, and the accessibility relations are given as follows, using
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s

t

(a) Transitive
and irreflexive

(b) In addition,
trichotomous

(c) The frame Grid

with spy-/sinkpoint

Figure 6.1: Simulating the N×N grid with two relations. The transitive closures
are not drawn.

the abbreviation N2 = N×N.

Rh =
{(

(x, y), (x′, y′)
)
∈ (N2)2 | (y = y′ and x < x′) or y < y′

}
∪

(
N

2×{∞}
)

Rv =
{(

(x, y), (x′, y′)
)
∈ (N2)2 | (x = x′ and y < y′) or x < x′

}
∪

(
{∞}×N

2)
Clearly, Grid is a linear frame. Whenever we construct a model based on Grid,
we will name the spypoint s and the sinkpoint t, where s and t are nominals.
This is reflected in Figure 6.1 (c), too. We now formulate our result such that it
covers as many frame classes as possible.

Theorem 6.2 Let F be a bi-modal frame class with Grid ∈ F.
Then HL2(�, ↓)-F-SAT is CORE-complete.

Proof. It suffices to show CORE-hardness because CORE-membership fol-
lows from the embedding of HL2(�, ↓) into FOL, see Section 2.2.2. Let T be a
set of tile types. We define a formula ϕT that enforces each satisfying model to
behave like the N×N grid, and that encodes the tiling. This formula has to be
equipped with two properties. First, it must be satisfied in some model based
on Grid, given a T-tiling. Second, ϕT has to enforce that each satisfying arbitrary
model behaves as the T-tiled N×N grid. Hence, when constructing ϕT, we will
have to enforce properties like for example transitivity or convergence that hold
naturally in Grid, while we do not need to enforce, for instance, trichotomy.

We start with the conjuncts of ϕT responsible for the grid.
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� The spypoint and sinkpoint are as given in Figure 6.1 (c).

SPY = s ∧�h
(
t ∧�vs

)
Before we proceed, we define a useful abbreviation that allows us to refer only
to points that are not the sinkpoint.

�
¬t
h ψ = �h(¬t ∧ ψ) �

¬t
h ψ = ¬�

¬t
h ¬ψ

Another shortcut is used for the “reflexive closure” of the modal operators.

�
∗
vψ = ψ ∨�vψ �

∗
vψ = ¬�

∗
v¬ψ

�
∗
hψ = ψ ∨�

¬t
h ψ �

∗
hψ = ¬�

∗
h¬ψ

Note that �
∗
h is defined to contain �

¬t
h as a disjunct, hence we do not need to

state “¬t” explicitly whenever we use �
∗
h or �

∗
h.

From now on, we will call all points other than the sinkpoint that are acces-
sible from s via a sequence consisting of at most one Rv edge and at most one
Rh edge Rv-Rh-reachable. Within the set of all Rv-Rh-reachable points, we can
simulate the @ operator. Suppose x is bound to such a point, then we can as-
sert @xψ at any other point by going directly to the sinkpoint, from there to the
spypoint and then to the point to which x is bound. This idea is captured by
the following definition.

@xψ = �h

(
t ∧�v

(
s ∧�

∗
v�

∗
h(x ∧ ψ)

))
Note that @xψ only works if the point to which x is bound is Rv-Rh-reachable.
On the other hand, the point y at which @xψ is satisfied, is enforced to see the
sinkpoint horizontally. (As an aside, we could even simulate the “somewhere”
modality E if we left out x on the right-hand side of the above definition.)

For the @ operator and subsequent conjuncts to function properly even on
arbitrary frames, it will be necessary to require that every point accessible from
Rv-Rh-reachable points is Rv-Rh-reachable again. This is ensured by the follow-
ing formula enforcing that both relations are transitive within the grid.

� For every Rv-Rh-reachable point x, each point accessible from x via two
Rv (or Rh) edges is accessible from x in one Rv (or Rh) step.

TRANS = �
∗
v�

∗
h ↓ x.

(
�
¬t
h �

¬t
h ↓y.@x�hy ∧�v�v ↓y.@x�vy

)
At first glance, the fact that TRANS uses the @ operator, while the @ opera-
tor seems to act on the assumption that the relations are transitive, appears to
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expose a cyclic definition. This is not the case because TRANS operates in an
inductive manner, which will become clear further below when the tiling is
constructed from a model satisfying ϕT.

We will need to refer to neighbours of points. A point y is a right neighbour
of x if xRhy and there is no z such that xRhzRhy. Upper neighbours are defined
analogously. In order to refer to neighbours, we define “next” operators to be
the following abbreviations.

©hψ = ↓ a.�¬t
h ↓b.

(
@a¬�h�hb ∧ ψ

)
©vψ = ↓ a.�v ↓b.

(
@a¬�v�vb ∧ ψ

)
Whenever ©h and ©v are employed in the following, a and b must be substi-
tuted by fresh state variables. Note that these operators are diamond-style. We
will not introduce an abbreviation for their duals. After we have required every
Rv-Rh-reachable point to have exactly one right and one upper neighbour, the
new next operators can be used box-style, as well.

� Every Rv-Rh-reachable point has exactly one right and exactly one upper
neighbour.

NEIGH = �
∗
v�

∗
h ↓ x.

(
©h ↓y.@x¬©h¬y ∧ ©v ↓y.@x¬©v¬y

)
� For every Rv-Rh-reachable point x, the unique point y that is the right

neighbour of the upper neighbour of x coincides with the upper neigh-
bour of the right neighbour of x.

CONV = �
∗
v�

∗
h ↓ x.©v©h ↓y.@x©h©vy

Having enforced the grid, it is straightforward to encode the tiling on it. For
each tile type, we will use an atomic proposition to denote that a tile of that
type lies at a given point. For the sake of short notation, we will deliberately
confuse tile types with their associated atoms.

� At each point in the grid lies exactly one tile.

TILE = �
∗
v�

∗
h

∨
t∈T

(
t ∧

∧
t′ �=t

¬t′
)

� The tiling conditions are met.

MATCH = �
∗
v�

∗
h

∧
t∈T

(
t →

( ∨
t′∈UP(t,T)

©vt′ ∧
∨

t′∈RI(t,T)

©ht′
))
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Let ϕT = SPY ∧ TRANS ∧ NEIGH ∧ CONV ∧ TILE ∧ MATCH. In order to prove
the statement of this theorem, it is sufficient to show that the following two
propositions hold:

(1) If T admits a tiling, then ϕT is satisfiable in Grid.

(2) If ϕT is satisfiable in an arbitrary model, then T admits a tiling.

Proof of (1). Suppose T is given and admits a tiling of N2. Then there exists a
function τ : N2 → T such that for all (x, y) ∈ N2, the tiling condition holds. We
construct a model M =

(
N, (Rh, Rv), V

)
based on Grid, where V is defined by

V(s) = {(0, 0)}, V(t) = {∞}, and V(t) = {(x, y) | τ(x, y) = t} for each t ∈ T.
We claim that M, (0, 0) |= ϕT and show that each conjunct of ϕT is satisfied

at (0, 0) in M. Conjunct SPY follows directly from the definitions of Rh and Rv

of Grid. Since both relations are transitive, TRANS holds. Conjuncts NEIGH and
CONV are satisfied because they express basic properties of Rh and Rv that are
based on N2. TILE and MATCH hold due to the tiling.

Proof of (2). Let M =
(

M, (Rh, Rv), V
)

be an arbitrary model satisfying ϕT.
Since s, t are nominals, there exist points m0, m∞ ∈ M such that V(s) = {m0}

and V(t) = {m∞}. Conjunct SPY implies m0Rhm∞ and m∞Rvm0. We now
define a mapping f : N2 → M − {m∞} that satisfies the following conditions
for all (x, y) ∈ N2.

(3) If x � 1, then f (x, y) is the right neighbour of f (x − 1, y).

(4) If y � 1, then f (x, y) is the upper neighbour of f (x, y − 1).

(5) If x = 0 and y � 1, then m0Rv f (0, y).

(6) f (x, y) is Rv-Rh-reachable.

(7) f (x, y)Rhm∞.

We construct f by induction on n = x + y, that is, diagonal-wise with respect to
N2. The base case consists of n = 0, 1. For n = 0, we set f (0, 0) = m0. Since m0

is Rv-Rh-reachable, NEIGH together with @ implies that m0 has a unique right
neighbour m1,0 and a unique upper neighbour m0,1. Due to the definition of @,
they both see the sinkpoint via Rh. Set f (1, 0) = m1,0 and f (0, 1) = m0,1. Now
Conditions (3)–(7) are satisfied up to the first diagonal.

For the induction step, suppose that f (x, y) has already been defined for all
(x, y) with x + y � n (i.e., from the 0th to the nth diagonal), n � 1, and Condi-
tions (3)–(7) hold up to here. Consider the points on the nth diagonal, namely
mi,n−i = f (i, n − i) for i = 0, . . . , n. Because of (6), NEIGH applies and implies
that each mi,n−i has a unique horizontal successor mi+1,n−i and a unique vertical
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m0

m0,n

mn,0

mi,n−i
mi+1,n−i

m′
i,n+1−i

m0

mi−1,n−i
mi,n−i

m′
i,n+1−i

mi,n+1−i

mi−1,n+1−i

c
b

a

nth diagonal

(a) Points on the nth diagonal
and their enforced successors

(b) Coincidence of mi−1,n+1−i
and m′

i−1,n+1−i

Figure 6.2: The diagonal-wise construction of the grid

successor m′
i,n+1−i, see Figure 6.2 (a). Note that the @ operator works because

each mi,n−i satisfies (6).
Now for each i = 1, . . . , n − 1, the points a = mi,n+1−i and b = m′

i,n+1−i
coincide. To justify this claim, let c = f (i − 1, n − i) (lying on the (n − 1)st
diagonal). Since c has the horizontal successor mi,n−i which has the vertical
successor b, and c has the vertical successor mi−1,n+1−i which has the horizontal
successor a, and (6) holds for c, CONV implies a = b. See also Figure 6.2 (b).

Let f (0, n + 1) = m′
0,n+1 and f (i, n + 1− i) = mi,n+1−i, for all i = 1, . . . , n + 1.

It follows from this construction that Conditions (3), (4), and (7) are satisfied for
the “new” (x, y) from the (n + 1)st diagonal. To end the inductive construction,
we have to show that the “new” (x, y) also satisfy (5) and (6).

Condition (5) has to be shown for (0, n + 1). Since according to the induction
hypothesis, m0Rv f (0, n), TRANS applied to m0 yields m0Rv f (0, n + 1).

Condition (6) for (0, n + 1) follows from (5). For the remaining (i, n + 1 − i),
we argue as follows. Due to the induction hypothesis, mi−1,n+1−i is Rv-Rh-
reachable. Hence there is some point a which is accessible from m0 in at most
one Rv step and from which mi−1,n+1−i is accessible in at most one Rh step. If
the last “at most one” is in fact 0, then we are done. If it is 1, then mi,n+1−i is ac-
cessible from a in two Rh steps. Since a is Rv-Rh-reachable, too, TRANS applied
to a yields aRhmi,n+1−i, hence mi,n+1−i = f (i, n + 1 − i) is Rv-Rh-reachable.

With f at our disposal, we can easily define a function τ : N2 → T as follows.
Let τ(x, y) = t if and only if f (x, y) ∈ V(t), for each (x, y) ∈ N2 and each t ∈ T.
The correctness of this definition is ensured by the construction of f and TILE.
Because of MATCH, τ satisfies the tiling conditions. ❏
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Please observe that the formula ϕT occurring in the proof uses only two nomi-
nals s and t. Those can in fact be replaced by two more bound state variables.
Furthermore, ϕT does not contain any free state variables. Hence, the statement
of Theorem 6.2 does in fact hold for the nominal-free fragment of all sentences
of HL2(�, ↓). Furthermore, Theorem 6.2 has the following implication.

Corollary 6.3 HL2(�, ↓)-trans-SAT and HL2(�, ↓)-lin-SAT are CORE-complete.

6.3 Frames with equivalence relations and above

In this section, we show that HL2(�, ↓) is able to encode tilings on any frame
class containing one particular ER frame, which we will call Grid2 in the fol-
lowing. For the sake of an easy definition of the accessibility relations, we will
consider tilings of the whole Z×Z grid here.

Before we again state a result that covers a wide range of frame classes,
we give a construction of Grid2 and formally define this bi-modal frame to be
Grid2 =

(
N, (R1, R2)

)
, whose components are given as follows.

• N = (Z×Z) ∪ (Z2 ×Z2 × {+}) ∪ {s}, where Z2 = {2z | z ∈ Z}.

Let N′ denote N − (Z×Z).

• R2 =
⋃

k,l∈Z

minicluster(2k + 1, 2l + 1) ∪ (N′ × N′),

where minicluster(i, j) = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)}2.

• R1 =
⋃

k,l∈Z

Minicluster(2k, 2l),

where Minicluster(i, j) = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1), (i, j, +)}2.

These definitions are visualised in Figure 6.3, where a full line denotes an R1

edge, and a dashed line stands for an R2 edge. Note that due to symmetry, no
arrowheads appear. Furthermore, many edges implied by transitivity have not
been drawn for the sake of clarity.

The idea behind the construction of N needs a detailed explanation. First,
each pair (x, y) ∈ Z×Z is a state and represents the point (x, y) from the Z×Z

grid. These points are drawn in Figure 6.3 (a), where R1 and R2, each restricted
to Z×Z, are shown as well. We call every unit square in the same drawing a
minicluster. Second, for every R1-minicluster, with (2i, 2j) as its lower left point,
there is an additional point (2i, 2j, +) that belongs to the same R1-cluster. We
call these new points local spypoints and collect them in Z2 ×Z2 × {+}. Finally,
there is a spypoint s that sees all local spypoints via R2. This situation is shown
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s
R1 R2

t

s

p

q

a b

cd

r

p

q a b

cd

r

p

q

a b

cd

r

(a) The grid (b) The spypoint construction

Figure 6.3: Simulating the Z×Z grid with two equivalence relations. Each line
represents a bidirectional arrow. The transitive (and hence, reflex-
ive) closures are not drawn.

in Figure 6.3 (b). Note that this somewhat intricate construction is necessary in
order to distinguish directions, to distinguish direct neighbours from indirect
ones, and to have access from s to each point in the grid at once — all in the
presence of equivalence relations.

Whenever we will construct a model based on Grid2, we will name the spy-
point s, where s is a nominal. The point (0, 0) is named by the nominal t, and
the local spypoints are labelled by the atomic proposition r. Furthermore, we
will use the atomic propositions p and q to label those points that lie on an even
column or row, respectively. This will enable us to distinguish between four
directions. For this purpose, we define the following abbreviations.

a = p ∧ q ∧ ¬r even row and even column
b = ¬p ∧ q ∧ ¬r even row and odd column
c = ¬p ∧ ¬q ∧ ¬r odd row and odd column
d = p ∧ ¬q ∧ ¬r odd row and even column

All these settings are reflected in Figure 6.3 (b), too. Again, we formulate our
result such that it covers as many frame classes as possible, namely each class
of frames containing Grid2. This includes the class of ER frames.
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6.3 Frames with equivalence relations and above

Theorem 6.4 Let F be a bi-modal frame class with Grid2 ∈ F.
Then HL2(�, ↓)-F-SAT is CORE-complete.

Proof. Again, it suffices to show CORE-hardness. Let T be a set of tile types.
We define a formula ϕT that enforces each satisfying model to behave like the
N×N grid, and that encodes the tiling — again using an atomic propositions t
for each t ∈ T. In order to keep every part of ϕT short, we define two kinds of
abbreviation.

First, we will have to refer to R1-successors that are not local spypoints, and
to R2-successors that are local spypoints. This is done via new modal operators
�

′
i, �

′
i and �

r
i , �

r
i , where i = 1, 2, which are defined as follows.

�
′
iψ = �i(¬r ∧ ψ) �

r
i ψ = �i(r ∧ ψ)

�
′
iψ = ¬�

′
i¬ψ �

r
i ψ = ¬�

r
i¬ψ

Second we define abbreviations that give us direct access to the left, right, up-
per, and lower neighbour of a given point.

�lψ =
(
a ∧�2(b∧ψ)

)
∨

(
b ∧�1(a∧ψ)

)
∨

(
c ∧�1(d∧ψ)

)
∨

(
d ∧�2(c∧ψ)

)
�rψ =

(
a ∧�1(b∧ψ)

)
∨

(
b ∧�2(a∧ψ)

)
∨

(
c ∧�2(d∧ψ)

)
∨

(
d ∧�1(c∧ψ)

)
�uψ =

(
a ∧�2(d∧ψ)

)
∨

(
b ∧�2(c∧ψ)

)
∨

(
c ∧�1(b∧ψ)

)
∨

(
d ∧�1(a∧ψ)

)
�dψ =

(
a ∧�1(d∧ψ)

)
∨

(
b ∧�1(c∧ψ)

)
∨

(
c ∧�2(b∧ψ)

)
∨

(
d ∧�2(a∧ψ)

)
As usual, the duals are defined by �xψ = ¬�x¬ψ, x ∈ {l, r, u, d}. Note that we
are not forced to use �

′
1 instead of �1 in these definitions, because ¬r is already

required in a, b, c, d.
From now on, we call a point accessible if it is reachable from the spypoint

using an R2 edge to a local spypoint and from there using an R1 edge, where
both edges are bidirectional. Hence, ψ is satisfied at every accessible point if
�

r
2�

′
1ψ is satisfied at the spypoint. Now, the formula ϕT consists of the follow-

ing conjuncts.

� The spypoint is named s. It does not satisfy r and sees itself via R2. The
origin is accessible. It is named t and satisfies a. Every point R2-accessible
from the spypoint is labelled r.

SPY = s ∧ ¬r ∧�2s ∧�
r
2�

′
1(t ∧ a ∧�

r
1�

′
2s) ∧�2(¬s → r)

� Each accessible point has a unique left, right, upper, and lower neighbour,

97



Chapter 6 Satisfiability of Multi-Modal Downarrow Logic

respectively. Each of these four neighbours is accessible again.

NEIGH = �
r
2�

′
1 ↓ x.

[
�l ↓y.�r

1�
′
2

(
s ∧�

r
2�

′
1
(
y ∧�r(x ∧�ly)

))
∧�r ↓y.�r

1�
′
2

(
s ∧�

r
2�

′
1
(
y ∧�l(x ∧�ly)

))
∧�u ↓y.�r

1�
′
2

(
s ∧�

r
2�

′
1
(
y ∧�d(x ∧�ly)

))
∧�d ↓y.�r

1�
′
2

(
s ∧�

r
2�

′
1
(
y ∧�u(x ∧�ly)

))]

� Convergence holds, that is, for each accessible point x, the (unique) point
that is the right neighbour of the upper neighbour of x coincides with the
upper neighbour of the right neighbour of x.

CONV = �
r
2�

′
1�u�r ↓ x.�l�d�r�ux

(Note that it suffices to replace the prefix �
r
2�

′
1�u�r by �

r
2�

′
1, but the

given definition of CONV simplifies the considerations at the end of this
proof.)

� At each point in the grid lies exactly one tile.

TILE = �
r
2�

′
1

∨
t∈T

(
t ∧

∧
t′ �=t

¬t′
)

� The tiling conditions are met.

MATCH = �
r
2�

′
1

∧
t∈T

(
t →

( ∨
t′∈UP(t,T)

�ut′ ∧
∨

t′∈RI(t,T)

�rt′
))

Let ϕT = SPY ∧ NEIGH ∧ CONV ∧ TILE ∧ MATCH. Note that we only have to
require certain properties of Grid2, but not all of them. For example, it is not nec-
essary to enforce that the Ri are equivalence relations or that each four points
that correspond to an R1-minicluster from Grid2 have a common local spypoint.
The properties enforced by ϕT are chosen such that they are satisfied by Grid2

on the one hand, and sufficient for a satisfying model to encode a tiling on the
other hand. More precisely, it remains to prove the following two propositions.

(1) If T admits a tiling, then ϕT is satisfiable in Grid2.

(2) If ϕT is satisfiable in an arbitrary model, then T admits a tiling.

Proof of (1). Proposition (1) is shown as in the proof of Theorem 6.2.
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Proof of (2). Let M =
(

M, (R1, R2), V
)

be an arbitrary model satisfying ϕT

at m0. Because of SPY, V(s) = {m0}. SPY also implies that there is an accessible
point m0,0 satisfying t and a. We define a mapping f : Z×Z → M satisfying the
following conditions for all (x, y) ∈ Z×Z.

(3) f (x, y) is accessible

(4) (i) 2 | x ⇔ M, f (x, y) � p

(ii) 2 | y ⇔ M, f (x, y) � q

(5) (i) x � 1 ⇒
(
M, f (x−1, y) � p ⇒ f (x−1, y)R1 f (x, y)R1 f (x−1, y)

)
(ii) x � 1 ⇒

(
M, f (x−1, y) � ¬p ⇒ f (x−1, y)R2 f (x, y)R2 f (x−1, y)

)
(iii) y � 1 ⇒

(
M, f (x, y−1) � q ⇒ f (x, y−1)R1 f (x, y)R1 f (x, y−1)

)
(iv) y � 1 ⇒

(
M, f (x, y−1) � ¬q ⇒ f (x, y−1)R2 f (x, y)R2 f (x, y−1)

)
We construct f by induction on n = |x|+ |y|. For a given n ∈ N, all points (x, y)

satisfying |x| + |y| = n lie on a square that is rotated by 45 degrees and whose
corners are (n, 0), (−n, 0), (0, n), and (0,−n). In the considerations to follow,
we shall restrict ourselves to the first quadrant, that is, N×N. The arguments
for the other three quadrants are analogous. (This might seem to suggest that
it would have been easier to encode tilings of the N×N grid in the first place.
However, it is not, because we would have to treat the boundaries of the grid
separately when defining R1, R2, and NEIGH.)

The base case consists of n = 0, 1. Set f (0, 0) = m0,0. Now NEIGH implies that
there exist accessible m1,0, m0,1 ∈ M such that M, m1,0 � b; M, m0,1 � d; and
there exist R1-edges in both directions between m0,0 and each of these two new
points. Set f (1, 0) = m1,0 and f (0, 1) = m0,1. Clearly, Conditions (3)–(5) hold
for all x, y with x + y � 1.

For the induction step, suppose that f (x, y) has already been defined and
satisfies Conditions (3)–(5) for all (x, y) with x + y � n. Consider the points on
the nth diagonal, namely mi,n−i = f (i, n − i) for i = 0, . . . , n. Because of (3),
NEIGH applies, hence each mi,n−i has a unique right neighbour mi+1,n−i and a
unique upper neighbour m′

i,n+1−i, see Figure 6.4.
With the same justifications as in the proof of Theorem 6.2, we conclude from

CONV that mi,n+1−i and m′
i,n+1−i coincide for each i = 1, . . . , n. Set f (0, n + 1) =

m′
0,n+1 and f (i, n + 1 − i) = mi,n+1−i, i = 1, . . . , n + 1. Now this construction

and NEIGH imply (3)–(5) for all x, y with x + y � n + 1.
Now we define τ : Z×Z → T as follows. Let τ(x, y) = t if and only if

f (x, y) ∈ V(t), for each (x, y) ∈ Z×Z and each t ∈ T. The correctness of this
definition is ensured by the construction of f and TILE. Because of MATCH, τ

satisfies the tiling conditions. ❏
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m0

m0,n

mn,0

mi,n−i
mi+1,n−i

m′
i,n+1−i

Figure 6.4: Points on the nth diagonal and their enforced successors

The note from the end of Section 6.2 applies here as well. Furthermore, Theo-
rem 6.4 has the following implication.

Corollary 6.5 HL2(�, ↓)-ER-SAT is CORE-complete.
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Chapter 7

Conclusion

In this thesis, we have systematically and almost exhaustively examined the
computational complexity of model checking and the satisfiability problem for
a collection of hybrid languages over several frame classes relevant for tempo-
ral and epistemic applications. Our “collection of languages” comprises all rel-
evant combinations of those modal, temporal, and hybrid operators that were
defined in Section 2.1 — namely F, P, U, S, ↓, ∃, @, and E. The frame classes we
have considered are the classes of arbitrary frames, transitive frames, transitive
trees, linear orders, {(N, >)}, and the class of ER frames. We have collected
results from the literature and complemented them by new results for almost
all combinations that have been open.

For model checking, we have contributed the result that PSPACE-hardness
for binder languages does not only hold over arbitrary frames [FdR06], but
also over restricted frame classes. For satisfiability, we have completely classi-
fied the complexity over ER frames by our own results and have shown that
complexity over transitive frames and transitive trees increases dramatically if
the ↓ language is extended by other operators. Furthermore, we have estab-
lished the complexity of satisfiability for hybrid until/since languages over the
last-mentioned frame classes. All these results are visualised in Figures 5.1–5.6.

For establishing our results on model checking and the satisfiability prob-
lem, we have applied many well-known techniques such as reductions from
tiling problems, the spypoint technique, encoding counters, and reductions
from or to decision problems in modal logic, hybrid logic, fragments of first-
order logic, and fixpoint logic. With the exception of satisfiability of until/since
languages over transitive frames, all complexity bounds established in our re-
sults are tight. In addition to this gap, there remain two open questions, namely
the complexity of satisfiability for HL(U, ↓) over transitive frames and of un-
til/past and until/since languages over linear frames.

Furthermore, we have examined satisfiability for multi-modal hybrid binder
languages over the frame classes given above, except for transitive trees and
(N, >). Our undecidability results even include all classes of frames containing
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one particular bi-modal linear or ER frame.
The classification we have provided gives rise to several further questions

worth examining. For instance, languages with other hybrid operators such
as the binders ⇓, Σ [BS95] could be incorporated into the hierarchies, and the
complexity of their decision problems could be solved. It is also worthwhile
considering other frame classes, such as epistemically relevant superclasses of
the class of ER frames. Both these extensions could be examined in a more
general way by considering combinations of first-order formulae in place of
combinations of (first-order definable) hybrid operators and frame classes. By
means of this abstraction, a classification of complexity for all such possible
combinations could be approached.

In case of the very expressive binder languages, which have been shown
to have very high complexity, restrictions other than via the class of frames
could be considered. A promising approach is to systematically restrict the
set of permitted Boolean operators in the language, as was done for classical
propositional satisfiability in [Lew79], or, more recently, for modal satisfiability
in [BHSS06] and satisfiability for linear temporal logic [BSS+07].

For our results on multi-modal hybrid logics, it is interesting to ask whether
they carry over to other classes of frames. In particular, multi-modal frame
classes with compatibility conditions between the accessibility relations can be
considered. Many-dimensional modal logics are multi-modal logics with spe-
cial cases of such conditions. Much is known about their properties and their
complexity [GKWZ03], but there are many open problems in this field. It is cer-
tainly worthwhile to extend such logics by hybrid operators and find out how
this affects the complexity of decision problems.

Finally, other decision problems, such as logical implication, the linear-time
model checking problem, or problems connected with conservative extensions
(see, for instance, [GLW06] in connection with description logics) could be ex-
amined.
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