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Chapter 1

Introduction

What are colloids? The word origin kolla (glue) and eidos (form, shape) suggests to

some extent the connection to the field of soft matter within statistical physics, but

it does not capture the rich variety of phenomena and properties. The term colloidal,

in general, describes a class of particles with size from a few nanometers to typically

a few microns that are dispersed in a medium. More than one hundred years ago

colloids played an important role in the development of the idea of the discontinuous

structure of matter, or, that is to say to the existence of atoms. In 1905 A. Einstein

predicted that small particles visible by a microscope due to thermal molecular mo-

tions are subject to Brownian motion [1]. A few years later J. Perrin experimentally

confirmed the kinetic theory and thereby showed the existence of atoms [2]. From

sedimentation experiments he could determine Avogadro’s number NA, or equiva-

lently, the Boltzmann constant kB. In 1926 J. Perrin and in 1925 R.A. Zsigmondy

received the Nobel Prize for their work on the discontinuous structure of matter and

the heterogenous nature of colloid solutions, respectively. In the following period,

atoms, the quantum character of matter, and the nucleus became of increasing inter-

est. It took several decades until the study of colloidal systems underwent a recent

renaissance based on the development of experimental techniques, the availability

of extensive computer simulations, and well-developed theoretical approaches. The

latest developments allow one to consider colloids as model atoms [3,4] because they

provide tunable interparticle interactions and the underlying length and time scales

allow one to directly study aspects of atomic systems. Moreover, from a technological

point of view, the relevance of micro- and nanostructured materials and the presence

of colloids in nature and everyday life motivates study of this rich field. Colloids can

be found, for instance, in paint, in blood, and in many industrial processes.

The solvent in which the colloidal particles are immersed can itself consist of a

variety of particles such as atoms, ions, macromolecules, polymers, and other species
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2 1. Introduction

of colloids. The interaction between the colloidal particles is affected by the prop-

erties of the solvent and can be described by an effective interaction that originates

from integrating out the degrees of freedom of the solvent. This requires a good

understanding of the solvent behavior to consider its contribution to the effective

interaction. In order to achieve this, we study the behavior of mixtures of colloids

such as spherical particles, polymer coils, needles and platelets in various situations:

in the bulk we benefit from the model character of colloids and achieve a means to

handle the tunable nature of their mutual interactions; at planar walls additional

surface contributions give rise to further effects; in confinement the phase behavior

of the fluid will affect the force on the confining walls; analogously, the solvent prop-

erties might strongly influence the interaction between two fixed big colloids at close

distance.

From an experimental point of view, colloidal mixtures are of appealing size and

well-developed experimental techniques allow one to synthesize and study particles of

different size and shape. It is possible to choose particles that are matched in density

and refractive index and to study systems with vanishing dispersion forces. Electro-

static or steric stabilization yields particles with a strong short-ranged repulsion and a

weak long-ranged interaction. From a theoretical point of view, such colloids [5,6] are

successfully described by the hard-core model. Hard-sphere fluids are widely studied

and theory provides very accurate results when compared with computer simulations.

One example is the equation of state for the one-component hard-sphere fluid [7, 8].

The construction of a theory for mixtures is more demanding, particularly for mix-

tures of particles of different species. For mixtures of hard spheres and ideal polymer

Asakura and Oosawa [9,10] and independently Vrij [11] introduced a successful model

that serves as a starting-point for various approaches. Several different routes have

been developed to describe the structure and thermodynamics of such mixtures. Den-

sity functional theory (DFT), integral equation theory and perturbation theory allow

us to select an approach most suitable for a given physical situation. In DFT [12]

the framework of fundamental measure theory (FMT) provides a successful reference

model to treat particles with interactions that are dominated by strong repulsion [13].

Within FMT it is possible to add to the hard-sphere fluid additional species that to-

gether act as a depletion agent [14]. Upon integrating out the degrees of freedom of

the depletion agent, the solvent effects can be mapped onto the effective interaction

between the remaining particles. For hard-sphere solvents [15–18] and different kinds

of soft particles [19–22] this method has been applied successfully. The effective one-

component treatment in some cases is simpler to treat as compared to the full mixture

and one may employ different routes which often involve a perturbation theory.
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If the solvent is composed of a mixture of small colloids c, modeled as hard spheres,

and ideal polymer p the solvent exhibits phase separation between a colloid-rich and

a colloid-poor phase. In such systems fluid–fluid demixing can be experimentally

observed by confocal microscopy [23], and the rich phase behavior of mixtures of col-

loids and depletion agent has been observed by other experimental techniques [23–31].

When two big colloids of type b are immersed into a colloid-polymer (cp) mixture

then the mapping of the solvent onto an effective one-component system of parti-

cles of the species b has to deal with a rich phenomenology. Computer simulations

provide insight into the properties of colloidal mixtures, but if the particle sizes are

highly asymmetric the different length and time scales of the problem lead to slow

convergence and simulations have to be performed with care [32–34]. In contrast,

density functional theory for such mixtures is well developed and various inhomoge-

neous situations, such as fluids near planar walls [22], confined in narrow slits [35] or

in porous media [36] have been studied.

The phase behavior of the colloid-polymer (cp) mixture with monodisperse com-

ponents is widely studied for various types of depletion agents [23,24,26–29,31,37–39]

including spherical polymers, needles, and platelets. A pure hard-sphere fluid exhibits

a fluid–solid phase separation at sufficiently high packing fractions [40]. Adding a

depletion agent d favors the phase separation and widens the region in the phase dia-

gram with metastable and unstable states while the regions with the stable fluid and

the stable solid phase shrink. Moreover, for mixtures of colloids (diameter σc) and a

spherical depletion agent (diameter σd) with a symmetric size ratio q = σd/σc ≃ 1 a

fluid–fluid phase separation is stable with respect to crystallization. By introducing

polydispersity, i.e., species with a continuously varying size or shape distribution,

the mixture shows even richer phase behavior that has been demonstrated in exper-

iment [30, 41] and theory [42–50]. For the cp mixture with monodisperse particles,

a recent approach based on FMT [51] provides a good starting-point to introduce

polydispersity because multi-component mixtures with different size or geometry can

be considered from the outset. It is not known a priori how polydispersity, for ex-

ample introduced by varying size or shape of the depletion agent particles, affects

the phase behavior. By introducing different length scales the phase diagrams can

possess two fluid–fluid critical points [52–55]. The distinct length scales are typically

introduced directly via the interparticle interaction potential. Here, we address the

question whether similar effects can be seen, if the length scales are introduced in

terms of a bimodal size distribution of the depletion agent.

In contact with walls a colloid-polymer mixture exhibits a complex surface phase

behavior. Within the Asakura-Oosawa-Vrij (AOV) model for the mixture for weak
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size asymmetry, a series of layering transitions and a wetting transition have been

found [22]. When confined in narrow slit-like pores, depending on the interaction

of the confining planar walls, a fluid can undergo capillary condensation [56–58] or

evaporation [59, 60]. In experiments, narrow pores can be studied using the surface

force apparatus [61,62] or two mica plates [63–65]. In theoretical calculations for the

AOV model both capillary condensation and evaporation have been observed [35,66].

Combining the results for the AOV mixture at a single wall and in a narrow pore,

we address the question in which range of the slit-width of the pore the various

effects compete. One can expect a competition between the gas phase, the layering

phase and the liquid phase. Since the confined fluid exerts an excess pressure on

the confining walls, we study how the layering transitions and capillary condensation

affect forces between the walls of a slit-like pore.

In order to study mixtures of different species one can in some cases consider the

full mixture, i.e., each species explicitly. In many cases this approach is complicated

and demanding. If one is mainly interested in the behavior of one component of

the mixture then it is convenient to integrate out the degrees of freedom of the

remaining species. Although this procedure is restricted to particular situations,

e.g., asymmetric size ratios for hard-sphere mixtures, one ends up with a problem

that is simpler to treat. The resulting effective interaction potentials between the

remaining particles capture the influence of the solvent in addition to the direct

interaction. Effective interactions between two particles or between a particle and

a wall are widely studied for simple solvents. In the case of a hard-sphere solvent

one obtains a depletion potential with oscillatory decay [18, 67]. In the case of an

ideal polymer solvent, the interaction potential is of finite range and known even

exactly [9,10]. The effective interaction potentials have been studied in other systems,

e.g., for charged particles [68], for long-ranged and for soft interactions [19,69]. Once

the effective interaction is known, integral equation techniques or perturbation theory

can be employed to study the structure and the phase behavior of the effective one-

component fluid.

For solvents with rich phase behavior the mapping onto an effective interaction

potential is more complicated. The structure, the thermodynamic properties, and the

phase behavior of the colloid-polymer mixture described by the AOV model of one

colloid and one polymer component are widely studied. For that reason, the colloid-

polymer mixture provides an appropriate model to introduce a complex solvent in a

colloidal suspension of big particles. When a big colloid is brought close to a wall

or a second big particle then the solvent-mediated interaction must reflect the rich

behavior of the solvent and it is evident that integrating out the degrees of freedom
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of the solvent particles becomes a challenging task. In particular, near the phase

coexistence of the solvent one will face rich phenomenology.

This thesis is structured as follows. In Chapter 2 we present a brief introduction

into the basic principles used throughout the thesis, including some thermodynamic

foundations, density functional theory with focus on fundamental measure theory,

and free-volume theory. In Chapter 3 we present results for the bulk phase behavior

of a mixture of colloids and a depletion agent. We also introduce a general approach

in which the depletion agent can be polydisperse. In the case of bimodal distributions

we find a novel phase and complex phase diagrams with two stable critical points. The

phase behavior of a monodisperse colloid-polymer mixture in confined geometry is

treated in Chapter 4. There we describe the competition between layering transitions

found at a single hard wall and capillary condensation, which can be found in narrow

slits. The influence of the solvent phase behavior on the interaction between the walls

is also studied. The interaction between a big colloid and a planar hard wall in a

solvent of an AOV mixture is presented in Chapter 5. We study the behavior of a

colloid-polymer mixture close to phase coexistence near two big colloids and near one

ellipsoidal particle in Chapter 6. We conclude in Chapter 7.
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Chapter 2

Statistical Mechanics of Colloidal

Mixtures

In this chapter we give an introduction to the framework and basic principles that

we use for treating colloidal mixtures. Starting from the elementary grounds of equi-

librium thermodynamics we describe their basic quantities and concepts. We briefly

review density functional theory (DFT), which allows us to treat inhomogeneous clas-

sical fluid mixtures. Originally, DFT has been developed by Hohenberg and Kohn [70]

to study electronic systems at temperature T = 0 and was generalized by Mermin [71]

to non-zero, positive temperature, T >0. Several approaches to describe non-uniform

classical fluids, such as integral equation techniques, variational principles, diagram

representations of the grand partition function expansions and cluster theory, have

been developed at the same time [72–75] but it took more than ten years until the

density functional formalism was introduced to describe inhomogeneous classical flu-

ids [76, 77]. Refs. [12] and [78] give an excellent review to foundations of this topic

and Ref. [79] provides a recent overview to a wide range of applications of density

functional theory. One of the main issues within DFT is to find reliable approxima-

tions for the free energy that take into account the interparticle interactions. For

a particular kind of colloids, which exhibit strong short-ranged repulsion and weak

long-ranged interactions, the core contribution in the interparticle interaction po-

tential can be modeled by a hard-core reference system and the potential tail can

be treated in a perturbative manner [80]. For colloids with very weak or vanishing

long-ranged interactions the pure hard-core model provides a suitable approximation.

Within that model the temperature scales out, as βV (r) only takes the values 0 or ∞,

and the behavior of the system is driven by entropy. Mixtures of particles with hard-

core potentials can be described within fundamental measure theory (FMT) going

back to the work of Rosenfeld [13]. It is possible to base the FMT on different equa-

7



8 2. Statistical Mechanics of Colloidal Mixtures

tions of state [67,81–83]. We present an outline of the main ideas for that approach.

Within the same framework we can add to the hard-sphere colloids another species,

say a polymer substance or colloidal rods, which acts as a depletion agent [14,84]. A

recent approach [51] which combines FMT and the free-volume theory (FVT) allows

us to treat bulk phase behavior of colloids in a sea of arbitrarily shaped depletion

agent [37] and is presented at the end of this chapter.

2.1 Thermodynamics and phase transitions

From a phenomenological point of view classical statistical systems in equilibrium

are described by a small number of variables. In the case of bulk, or equivalently

homogeneous, systems such as colloidal mixtures of ν components i connected to a

heat bath and particle reservoirs the temperature T , the volume V and the chemical

potentials µi are sufficient. In the grand canonical ensemble the thermodynamic

potential is given by

Ω(T, V, {µi}) = −pV, (2.1)

where p is the bulk pressure. In the canonical ensemble with fixed particle numbers

Ni the corresponding Helmholtz free energy F (T, V, {Ni}) is related to Ω by

Ω = F −
∑

i

µiNi. (2.2)

In the description of colloids throughout the current work we focus on a model in

which temperature scales out due to particle interaction potentials βVij(r) = ∞ in

the range of r < σij = (σi + σj)/2, where σi is the diameter of component i, and

0 otherwise. The thermodynamic properties based on such type of interactions are

determined by entropy alone. Hence we omit relations based on a variation of T .

Both the grand potential Ω and the Helmholtz free energy F play a central role in

the description of the phase behavior of colloidal mixtures. In the homogeneous case

the pressure p and the chemical potentials µi are given by

p = −∂F

∂V

∣

∣

∣

T,{Ni}
(2.3)

and

µi =
∂F

∂Ni

∣

∣

∣

T,V
. (2.4)

Two different bulk phases α and β, which for example differ from each other by their

densities ρi = Ni/V , i = α, β, can coexist if their pressures and chemical potentials

are equal: pα = pβ and µα
i = µβ

i . The equation of state describes the relation between



2.1. Thermodynamics and phase transitions 9

the pressure and the density. For a one-component hard-sphere system the following

equations of state proved to be successful. The one-component Percus-Yevick (PY)

compressibility equation of state [7] in terms of the packing fraction η = (π/6)σ3ρ of

the colloids is given by

β pPY = ρ
1 + η + η2

(1 − η)3
, (2.5)

and the more accurate Carnahan-Starling (CS) equation of state reads [85]

β pCS = ρ
1 + η + η2 − η3

(1 − η)3
. (2.6)

The CS equation of state and its generalization to mixtures yields better agreement

with simulations than the PY equation of state, especially at sufficiently high values

of η and for multi-component mixtures. The corresponding chemical potentials can

be obtained via the Maxwell relation, (∂µi/∂V )T = −(∂p/∂Ni)T . In the following

we consider a single-component colloidal system in a sea of depletion agents. Those

are particles that mimic polymer coils or colloids of different shape such as needles

or platelets. After integrating out their degrees of freedom the colloids interact via

an effective interaction, the so-called depletion potential. The depletion agent is

connected to a reservoir and its density in the reservoir plays the role of the inverse

temperature.

In Fig. 2.1 a sketch of the phase diagram of a colloid-polymer mixture is shown in

the (ηc,η
r
d)-representation where ηc = (π/6)σ3

cρc is the packing fraction of the colloids

and ηr
d = (π/6)σ3

dρ
r
d is the reservoir packing fraction of the depletion agent modeling

the polymer. At low values of ηr
d we find a stable fluid and a stable solid. The

fluid–solid coexistence is indicated by the full lines in the region of large values of ηc.

For values above the critical point (full circle) the fluid can phase-separate into a gas

(G) and a liquid (L) phase. The full line near the critical point shows the fluid–fluid

coexistence line. In the representation chosen in Fig. 2.1, state-points at that line

which are connected by horizontal tie lines coexist. The thermodynamic stability of

the system can be expressed in terms of an inequality [37]

∂2F

∂N2

∣

∣

∣

T,V
=

∂µ

∂N

∣

∣

∣

T,V
=

V

N2

1

κT

≥ 0, (2.7)

with the isothermal compressibility κT . The region with non-stable states w.r.t. fluid–

fluid phase separation, i.e., κT < 0, is bound by the spinodal line (dashed line). At

sufficiently high values of ηr
d one finds three coexisting states. At the triple point

(indicated by the dotted line) we find the gas (poor in colloid, but rich in polymer),

the liquid (rich in colloid, but poor in polymer) and the solid (S) phase.
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crit.pt. S

LG

F

ηc

η
r d

0.60.40.20

0.6

0.4

0.2

0

Figure 2.1: Sketch of a phase diagram of a colloidal c suspension in a sea of
depletion agent d which one can for example obtain within the framework of
free-volume theory. The packing fractions ηr

d of the depletion agent in the
reservoir plays the role of the inverse temperature. For low values of ηr

d a
fluid (F) and a solid (S) phase are stable. At intermediate values of ηr

d a
colloid rich phase (liquid, L), a colloid poor phase (gas, G) and the colloidal
solid phase are stable. The dotted tie line connects the three coexisting state
points at the triple point, the full circle shows the position of the critical
point. The full lines denote coexistence lines while the dotted line (spinodal)
encloses the region with non-stable state-points, the spinodal region.

If the system is subjected to an external potential, which can model a fixed particle

or a confining geometry, the density distribution ρi(r) is no longer constant. Due to

the confinement the centers of the fluid particles can take the values of a set of points

which we refer to as the system S [86]. The grand potential Ω in the fluid phase

away from the critical point and away from wetting or drying transitions are, for

short-ranged external potentials, well approximated by the form [86]

Ω[S] = −pV [S] + σA[S] + κC[S] + κ̄X[S], (2.8)

with σ the surface tension at the planar wall and the bending rigidities κ and κ̄.

The corresponding geometrical measures are the volume V [S] of the system and the

surface area A[S], the integrated mean curvature C[S] and the Euler characteristic

X[S] of the system walls. It is important to note that this description holds when

the system is sufficiently big as compared to the length scales of the fluid particles,

correlations or interactions.

An excess quantity that describes the inhomogeneity caused by S is the excess
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surface grand potential per unit area

γ =
1

A
(Ωinh. − Ωb) (2.9)

and the excess adsorption

Γi = − ∂γ

∂µi

∣

∣

∣

T,V
=

1

A

∫

V

dr (ρi(r) − ρi), (2.10)

which in its general form follow directly from Eqs. (2.9) and (2.8). Ωinh. denotes the

grand potential of the inhomogeneous system whereas Ωb = −pV describes the bulk

fluid.

Phase coexistence between two phases α and β of a fluid in confined geometry,

e.g., for a fluid in a slit-like pore of two parallel planar plates, occurs if the grand

potential and the chemical potentials are equal [58,87], Ωα = Ωβ and µα
i = µβ

i . Fluids

at surfaces or in confined geometry can exhibit rich and more complex phase behavior

as compared to bulk.

2.2 Density functional theory

We describe a classical system of N identical particles in an external field by its

Hamiltonian HN = Tkin + U + Vext , which is composed of the kinetic energy Tkin , a

term describing the interactions U between the particles and one term for the exter-

nal potential Vext . The generalization to mixtures of different particles is straight-

forward. In this section we focus on the one-component system to highlight the

basic principles. Thermodynamic quantities of the system follow from the parti-

tion function Ξ. In phase space (q3N , p3N) with the canonical variables qi and pi,

the equilibrium probability density is given by f0 = 1
Ξ

exp (−β(HN − µN)), where

Ξ = Trcl exp (−β(HN − µN)) and the classical trace Trcl can be written as

Trcl ≡
∞
∑

N=0

1

N !h3N

∫

dq1 . . . dq3N dp1 . . . dp3N , (2.11)

where h3 is a unit of phase volume in the phase space. We consider the following

functional of the probability density Ω̄[f ] and find [12]

Ω̄[f ] = Trclf
(

HN − µN + β−1 ln f
)

, (2.12)

which, for the equilibrium distribution f0, equals the grand potential of the system

Ω = Ω̄[f0] = −β−1 log Ξ. For any other distribution f 6= f0 one finds Ω[f ] ≥ Ω[f0].

Given a Hamiltonian of the form introduced above one can show that the equilibrium
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probability density f0 is a unique functional of the equilibrium one-particle density

ρ0(r). Accordingly, the system is completely described by the functional Ω[ρ] which

depends on the density distribution ρ(r),

Ω[ρ(r)] = F [ρ(r)] +

∫

dr ρ(r)(Vext(r) − µ). (2.13)

F [ρ(r)] denotes the intrinsic Helmholtz free energy. In equilibrium, the minimum

property for Ω[ρ] gives rise to the variational principle

δΩ[ρ(r)]

δρ(r)

∣

∣

∣

ρ0(r)
= 0 (2.14)

and, accordingly,
δF [ρ(r)]

δρ(r)

∣

∣

∣

ρ0(r)
= µ − Vext(r). (2.15)

We divide the Helmholtz free energy into two terms

F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)]. (2.16)

The ideal gas contribution Fid is known exactly,

βFid[ρ(r)] =

∫

dr ρ(r)
(

ln(λ3ρ(r)) − 1
)

, (2.17)

with the thermal wavelength λ =
√

βh2/2mπ of a particle of mass m. The excess

(over ideal gas) contribution Fex contains the interactions between the particles. We

present a general approach to treat mixtures of hard spheres and ideal polymer within

DFT in the following section.

2.3 Fundamental measure theory

In nature colloidal particles appear in a great variety and their interparticle inter-

actions may be described by different potentials. For spherical colloids which are

immersed in a molecular fluid and which feature a strong short-ranged repulsion and

a weak long-ranged interaction, the hard-sphere model represents a suitable refer-

ence system. The interaction potential between two spheres of species i and j with

diameters σi and σj , respectively, is described by

βVij(rij) =

{

∞, |rij| < (σi + σj)/2,

0, otherwise.
(2.18)

The density functional in the low density limit is known exactly,

lim
ρi→0

βFex[{ρi(r)}] = −1

2

∑

ij

∫

dr

∫

dr′ ρi(r)ρj(r
′)fij(r − r′). (2.19)
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We use this finding as a starting-point for the construction of the density functional

for finite densities, ρi > 0. The Mayer-f function, fij(r) = exp(−βVij(r)) − 1, for

hard-sphere mixtures is given by

fij(r) =

{

−1, |rij| < (σi + σj)/2,

0, otherwise,
(2.20)

= −Θ((σi + σj)/2 − |ri − rj |), (2.21)

where Θ(x) denotes the Heaviside function. We take into account the limit of the

two-body direct correlation function c
(2)
ij (r) at low densities and we extrapolate to

higher densities using thermodynamic relations into quantities that depend on the

geometry of a single species only. This is achieved by [13]

Θ((σi + σj)/2 − |ri − rj |) = w
(3)
i ⊗ w

(0)
j + w

(2)
i ⊗ w

(1)
j + w

(1)
i ⊗ w

(2)
j

+ w
(0)
i ⊗ w

(3)
j −w

(2)
i ⊗ w

(1)
j −w

(1)
i ⊗ w

(2)
j ,

(2.22)

where the four scalar functions w
(α)
i and the two vector functions w

(α)
i are given by

w
(3)
i (r) = Θ(σi/2 − |r|),

w
(2)
i (r) = δ(σi/2 − |r|),

w
(1)
i (r) =

1

2πσi
w

(2)
i (r),

w
(0)
i (r) =

1

πσ2
i

w
(2)
i (r),

w
(2)
i (r) =

r

|r|δ(σi/2 − |r|),

w
(1)
i (r) =

1

2πσi
w

(2)
i (r).

(2.23)

The convolution of in each case two scalar or two vector functions is defined as follows

w
(α)
i ⊗ w

(β)
j ≡

∫

dxw
(α)
i (ri − x) · w(β)

j (rj − x). (2.24)

After inserting the Mayer-f function into the low density expression we extract a

composition of terms of the following form

nα(r) =

ν
∑

i=1

∫

dr′ ρi(r
′) w

(α)
i (r − r′). (2.25)

Those are called the weighted densities nα. Accordingly to the structure of the

weight functions we have four scalar and two vector-valued functions with dimension
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[nα] = (length)α−3. Rosenfeld introduced the approximation for the excess free energy

based on a function Φ depending on the set of weighted densities {nα(r)}

βFex[{ρi(r)}] =

∫

dr Φ({nα(r)}). (2.26)

We note that besides the decomposition Eq. (2.22) with the weight functions intro-

duced above in Eq. (2.23), it is also possible to decompose the Heaviside function

from Eq. (2.21) with different weight functions that do not contain vector-valued

expressions [88, 89], but involve derivatives of the δ-functions instead. Obtaining

an explicit expression for Φ({nα}) requires to commit oneself to further approxima-

tions. To obtain the functional for hard spheres we can use the structure of the exact

one-dimensional functional of hard-rod mixtures [90, 91]. An approximate expres-

sion for the function Φ({nα(r)}) for spherical particles can be obtained from various

approaches. Rosenfeld’s original formulation [13] employs the dimensional ansatz

Φ({nα}) = f1n0 + f2n1n2 + f3 (n1 · n2) + f4n
3
2 + f5n2 (n2 · n2). The coefficient func-

tions f0, f1, f2, f3 and f5 which depend only on n3 follow by considering the excess

chemical potential in the limit limRi→∞ µi/Vi which, according to the scaled particle

theory (SPT), must be equal to the total pressure inside the system. This results in

SPT differential equations. The integration constants can be fixed when considering

the low density, Eq. (2.19), and the (three-body diagram in the) two-body direct

correlation function c
(2)
ij (r) which must be regular for r → 0. The final result is given

by

Φ({nα}) = −n0 ln(1 − n3) +
n1n2 − n1n2

1 − n3
+

n3
2 − 3n2(n2 · n2)

24π(1 − n3)2
. (2.27)

The equation of state that follow from the above expression corresponds to the Percus-

Yevick compressibility equation of state. A more accurate approach, which is based

on the Mansoori-Carnahan-Starling-Leland (MCSL) equation of state, yields [67]

ΦWB({nα}) = −n0 ln(1 − n3) +
n1n2 − n1n2

1 − n3

+
n3

2 − 3n2(n2 · n2)

36πn2
3(1 − n3)2

(

n3 + (1 − n3)2 ln (1 − n3)
)

. (2.28)

From the excess free energy functional we can obtain a whole hierarchy of n-body

correlation functions

c(n)(r1, . . . , rn) =
δc(n−1)(r1, . . . , rn−1)

δρ(rn)
= −β

δnFex[ρ(r)]

δρ(rn) . . . δρ(r1)
. (2.29)

The one-body correlation function can be regarded as an effective potential.

The density functional Eq. (2.13) within FMT, Eq. (2.26), is given by

Ω[{ρi(r)}] = β−1

∫

dr Φ({nα(r)})+Fid[{ρi(r)}]+
∑

i

∫

dr ρi(r)(V i
ext(r)−µi), (2.30)
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with the ideal gas contribution βFid[{ρi(r)}] =
∑

i

∫

dr ρi(r) (ln(λ3
i ρi(r)) − 1) for

mixtures. Having an explicit expression for the free energy density Φ, it is now

possible to calculate ρ(r) by minimizing the grand potential Ω[ρ(r)] for arbitrary

external potential.

An important finding is that the effective potential between particles of one species

b of the mixture, which results from integrating out the degrees of freedom of the

remaining components i 6= b, can be expressed in an elegant fashion via the insertion

method [18]. The depletion potential in terms of the one-body direct correlation

functions is given by

βW (r) =
(

c
(1)
b (r → ∞) − c

(1)
b (r)

)

{µi6=b},µb→−∞
. (2.31)

From the definition Eq. (2.29) and the knowledge of the free energy density Φ({nα})

the direct correlation function yields

c
(1)
b (r) = −

∑

α

∫

dr′
β∂Φ({nα})

∂nα(r′)
wα

b (r′ − r). (2.32)

It is important to notice that the density profiles at the particle fixed in the origin

which enter the weighted densities describe the system before insertion of the particle

at position r.

Hard-Spheres and Depletion Agent

Based on the excess free energy density for hard-sphere mixtures we can also derive an

expression for a mixture of hard-sphere colloids (c) and an ideal depletion agent (d).

The interaction potentials are given by

βVij(rij) =

{

∞, |rij| < (σi + σj)/2

0, otherwise,
(2.33)

for ij = cc, cd, dc, i.e., the colloid-colloid and colloid-depletion agent interaction is

described by pure hard-core repulsion (see Fig. 2.2). The interaction between particles

of the depletion agent vanishes

βVdd(rdd) = 0, (2.34)

such that they can overlap freely. The diagrammatic expansion of the two-body direct

correlation function c
(2)
ij (r) up to second order in the density contains the following

information: c
(2)
cc (r) is linear in the density ρd of the depletion agent [84]

c(2)
cc (r) =

c c
+ ρc

c

c c

+ ρd

d

c c

+ O(ρ2), (2.35)
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Figure 2.2: Sketch of a model mixture of colloids and depletion agent within
the AOV model. The big dark particles (colloids) cannot overlap, while the
smaller particles, the depletion agent, may overlap freely among themselves.
The light shell around a colloid shows the volume excluded to the depletion
agent. In this example the size ratio between the spherical depletion agent
and the colloid is σd :σc = 1:2.

c
(2)
cd (r) and c

(2)
dc (r) are independent of ρd

c
(2)
cd (r) =

c c
+ ρc

c

c d

+ O(ρ2), (2.36)

and c
(2)
dd (r) vanish to first order in ρ:

c
(2)
dd (r) = 0 + O(ρ2). (2.37)

The full symbols denote coordinates of integration and all symbols are connected

by Mayer-f bonds [92]. The determination of the higher order coefficients in the

expansions, Eqs. (2.35)-(2.37), is a difficult task and based on the truncation of the

expansion after the second order, or equivalently third virial level, a simple choice for

the Helmholtz free energy is apparent. For the mixture of colloids and depletion agent

the total weighted densities are defined as nα = nc
α +nd

α with now two different sets of

weighted densities {nc
α} and {nd

α}. The linearization of the hard-sphere mixture free

energy w.r.t. the density of the depletion agent gives the following expression [14,84]

ΦAOV({nc
α}, {nd

α}) = ΦHS({nc
α}) +

∑

β=0,1,2,3,1,2

∂Φ({nc
α})

∂nc
β

· nd
β, (2.38)
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and the resulting Helmholtz free energy is given by

βFex[{ρc
i(r), ρd

i (r)}] =

∫

dr ΦAOV({nc
α(r), nd

α(r)}). (2.39)

For the Rosenfeld formulation, Eq. (2.27), and within the White Bear version of

the free energy, Eq. (2.28), the second derivatives in Eq. (2.29), c
(2)
ij (r), possess the

properties required for the present interaction potential, Eqs. (2.35)-(2.37). For the

mixture of different species the variational principle yields two equations

δΩ[ρc, ρd]

δρc(r)
= 0, and

δΩ[ρc, ρd]

δρd(r)
= 0, (2.40)

which must be solved simultaneously.

2.4 Free-volume theory

To describe the phase behavior of colloidal mixtures we consider a system with a

fixed number of big spherical colloidal particles Nc that is coupled to a reservoir of

depletion agent at chemical potential µd or fugacity zd = eβµd , respectively [37]. In

this description the mixture of colloids and depletion agent is treated within the semi-

grand canonical ensemble [93]. The density ρr
d of the depletion agent in the reservoir

is fixed and the corresponding density in the system, ρd, depends on the free volume

available to the depletion agent or equivalently on the occupation by the colloids,

ρd = ρd(ρc). The Helmholtz free energy is given by

FAOV
ex [ρc, ρd] = FAOV

ex ([ρc]; zd). (2.41)

The latter can be decomposed into two terms,

βF (Nc, V, zd) = βF (Nc, V, zd = 0) +

∫ zd

0

dz′d

(

∂βF (Nc, V, z′d)

∂z′d

)

, (2.42)

where the first term denotes the contribution of pure colloids. By Taylor expansion

of the integrand of the second term in Eq. (2.42) up to first order in zd we obtain

an expression for the volume available to the depletion agent particles in a system

of Nc colloids at low concentrations of the depletion agent, the so-called free volume

denoted by αV . In this limit of small fugacity of the depletion agent, we can rewrite

Eq. (2.42) as

βF (Nc, V, zd) = βF0(Nc, V ) − ρr
d(zd)αV, (2.43)

where ρr
d is the reservoir density of the depletion agent. Within the AOV model the

free-volume fraction α depends only on the geometry of the depletion agent, e.g., the
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size ratio q = σd/σc if the depletion agent consists of spherical polymer coils, and on

the packing fraction of the colloidal spheres, ηc = πσ3
cNc/(6V ).

For the calculation of the phase diagram of the colloidal mixture we need the

chemical potential of the colloid component µc and its osmotic pressure p. In the

bulk two phases α and β coexist if they are in chemical and mechanical equilibrium,

i.e., if µα
c = µβ

c and pα = pβ. The chemical potential µc and the pressure p follow

from the Helmholtz free energy via [37]

µc =
∂F

∂Nc

∣

∣

∣

∣

V,zd

= µ0(ηc) − ρr
d(zd)

(

∂α

∂ηc

)

πσ3
c

6
(2.44)

and

p = −∂F

∂V

∣

∣

∣

∣

Nc,zd

= p0(ηc) + ρr
d(zd)

(

α − ηc
∂α

∂ηc

)

. (2.45)

The chemical potential and the pressure of the pure reference system, labeled by µ0

and p0, are described accurately by the Carnahan-Starling expressions in the fluid

phase. To assure thermodynamic consistency the free-volume fraction α must also

be calculated from the equation of state of the reference system, i.e., the Carnahan-

Starling equation of state [51]. Besides coexisting fluid states, i.e., points on the bin-

odal line in phase diagram, we calculate the spinodal line which separates metastable

states from thermodynamically unstable ones (see Fig. 2.1). For thermodynamically

unstable states the second derivative of the Helmholtz free energy w.r.t. the colloid

packing fraction ηc is negative and for points on the spinodal line it vanishes,

∂2F

∂η2
c

= 0. (2.46)

For the fluid–solid coexistence we need the chemical potential and the equation

of state of a reference (fcc) hard-sphere crystal, which is described by [94]

βµ0 = 2.1306 + 3 ln

(

ηcηcp

ηcp − ηc

)

+
3ηcp

ηcp − ηc
(2.47)

with ηcp = π
√

2/6 ≈ 0.74, the packing fraction for close packing, and [95]

βp0vs =
3ηcηcp

ηcp − ηc
. (2.48)

Fundamental Measure Approach within Free Volume Theory

For discrete mixtures of two species the excess Helmholtz free energy density in bulk,

Φ = βF/V , is constructed from two sets of weighted densities {nc
i} and {nd

i }, one for

the colloids c and one for the depletion agent d. In homogeneous bulk fluids i labels

four scalar weighted densities in contrast to inhomogeneous fluids where α denotes
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additionally two vector-valued weighted densities. The weighted densities for the bulk

case can be identified as the scaled-particle theory variables ζi of the N -component

mixture [13, 96, 97]

ni ≡ ζi =

N
∑

ν=1

g(i)
ν ρν . (2.49)

The geometrical measures of component ν are the volume g
(3)
ν ≡ vν , the surface

area g
(2)
ν ≡ aν , the integrated mean curvature g

(1)
ν ≡ cν and the Euler characteristic

g
(0)
ν ≡ Xν .

The expression for the bulk free energy density of the colloidal mixture in the

limit of low density of the depletion agent (AOV) can be obtained by expanding the

hard-sphere mixture free energy with weighted densities ni = nc
i + nd

i up to linear

order in the density ρd. We show the result for the bulk mixture explicitly as it will

be used in the following chapter,

ΦAOV({nc
i}, {nd

i }) = ΦHS({nc
i}) +

3
∑

k=0

∂Φ({nc
i})

∂nc
k

nd
k. (2.50)

In order to relate the terms in Eq. (2.50) to the free-volume fraction α we transform

the excess Helmholtz free energy density, which is given in Eq. (2.42) in the semi-

grand canonical ensemble, into the canonical ensemble and obtain in terms of the

colloid packing fraction ηc and the density ρd

Φ(ηc, ρd; q) = Φ(ηc) − ρd ln (α(ηc; q)). (2.51)

By direct comparison of Eq. (2.50) and Eq. (2.51) we obtain a FMT expression for

the free-volume fraction [51]

α(ηc; {g(i)
ν }) = exp

(

−
3
∑

k=0

∂Φ({nc
i})

∂nc
k

g
(k)
d

)

. (2.52)

The partial derivatives of the free energy w.r.t. the weighted densities are thermody-

namic quantities of the (pure) colloids, namely, the pressure p0, the surface tension σ

at a planar hard wall and the bending rigidities κ and κ̄, which describe the effect on

the free energy due to curved interfaces. The depletion agent enters the expression

for the free-volume fraction α only through its geometrical measures g
(k)
d . For the

free energy density we employ Rosenfeld’s original formulation of FMT [13] and the

more accurate White Bear version from Ref. [67, 81]

Φ({ni}) = −n0 ln(1 − n3) +
n1n2

1 − n3
+

n3
2 (n3 + (1 − n3)

2 ln (1 − n3))

36πn2
3(1 − n3)2

, (2.53)



20 2. Statistical Mechanics of Colloidal Mixtures

which is based on the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equa-

tion of state [8, 98]

βpBMCSL =
n0

1 − n3
+

n1n2

(1 − n3)2
+

n3
2

12π(1 − n3)3
− n3n2

36π(1 − n3)3
. (2.54)

Note that Eq. (2.53) results from Eq. (2.28) in the bulk limit, i.e., for homogeneous

densities. In this case the vector-valued weighted densities vanish, n1(r) = 0 and

n2(r) = 0.



Chapter 3

Bulk Phase Behavior

Colloidal suspensions modeled as one-component hard-sphere systems crystallize at

high densities [40] despite the fact that the interactions between the fluid particles

are purely repulsive. Moreover, if depletion agent is added the mixture can phase

separate into a (colloidal) gas and a (colloidal) liquid phase — see Fig. 2.1 for a

sketch. Figures 3.1 and 3.2 display results for mixtures of colloids and spherical de-

pletion agent. Still in this system all mutual particle interactions are purely repulsive.

This simple two-component model already shows quite rich phase behavior. In the

present approach we employ the combination of free-volume theory with fundamen-

tal measure theory. Constructed for discrete mixtures we generalize this technique to

continuous distributions of the depletion agent. For one- and two-dimensional deple-

tion agents we give explicit expressions that play a central role within FVT. For the

three-dimensional particles we show numeric results for different ways of introduc-

ing polydispersity, i.e., size- and morphology-polydispersity, and discuss the effect of

fractionation. We apply the general approach to ternary mixtures of one (monodis-

perse) colloidal species and two polymer components. The latter are introduced by

a bimodal or a bidisperse distribution. By fine tuning the distributions we present

phase diagrams that exhibit two stable critical points and richer phase behavior as

compared to monodisperse distributions.

3.1 Generalization to polydispersity

Fundamental measure theory is by construction a theory to treat mixtures. We

introduced its basic principles in Sec. 2.3 and presented the free-volume approach

based on its bulk expressions in Sec. 2.4. For mixtures of colloids and ideal depletion

agent we now employ multiple parameters qi to parameterize the geometry of particles

of the depletion agent components. Although it is straightforward within FMT to

21
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Figure 3.1: Phase diagram of a mixture of colloids and spherical depletion
agent with size ratio q = σd/σc of the spherical particles in the AOV approach
based on the free-volume theory. For both the Percus-Yevick and Carnahan-
Starling equation of state the fluid–fluid coexistence is stable for the more
symmetric value of q. For highly asymmetric values of q only the fluid–solid
coexistence is stable. Note that coexisting points are connected by horizon-
tal tie lines. Within the semi-grand canonical treatment ηr

d = (π/6)q3σ3
cρ

r
d

denotes the packing fraction of the depletion agent in the reservoir.

treat general mixtures of νc colloid and νd depletion agent components, we are going

to restrict our studies to the simpler case of one single colloid species with packing

fraction ηc. For the depletion agent we start by considering a discrete number of

νd components. Within the semi-grand canonical ensemble the free-energy density,

analogous to Eq. (2.51), is given by

Φ(ηc, {ρr
d,i}; {qi}) = Φ(ηc) −

νd
∑

i=1

ρr
d,iα(ηc; {qi}), (3.1)

and the set {g(i)
ν } of geometrical measures as introduced in Sec. 2.4 is characterized by

the set of parameters {qi}. To obtain some insight into the influence of polydispersity

in the depletion agent on the phase behavior it might be sufficient to consider a

discrete mixture, however we prefer to introduce continuous distributions, which can

represent experimental systems more accurately than a discrete distribution. In the

following we restrict the set {g(i)
ν } to depend on a single parameter q only. We

introduce d(q) as a continuous distribution of the depletion agent in the reservoir, and

require that
∫

d(q)dq = 1. The density distribution of the depletion agent in reservoir

follows directly from ρr
d(q)dq = ρr

d d(q)dq. By specifying the fundamental geometrical



3.2. Distribution functions 23
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Figure 3.2: Phase diagrams of a mixture of colloids and spherical depletion
agent within the AOV model. For symmetric length scales of the colloids
and the depletion agent the fluid–fluid coexistence is stable. We find lit-
tle difference between the approach based on the Rosenfeld and the White
Bear version of the functional within FMT, or equivalently between results
based on the PY and the CS equation of state except for the fluid–solid
coexistence.

measures of the depletion agent as function of q we obtain, similar to Ref. [99],

Φpd(ηc, ρ
r
d; [d]) = Φ(ηc) − ρr

d

∫

dq d(q) α(ηc, vd(q), ad(q), cd(q), Xd(q)), (3.2)

which is a functional of the distribution d(q). Note that the precise meaning of q is

unspecified so far and can refer to a size ratio, in the case of spherical mixtures, or

to a parameter that specifies the shape of the depletion agent in a more complicated

manner. We return to this point later. Analogous to Eq. (2.43) we call the integral

on the r.h.s. of Eq. (3.2) the effective free-volume fraction αeff and we obtain

Φpd(ηc, ρ
r
d; [d]) = Φ(ηc) − ρr

d αeff(ηc; [d]). (3.3)

3.2 Distribution functions

To study the phase behavior of a mixture of spherical colloids and a polydisperse

depletion agent we focus on frequently used distributions, namely the Schulz (S), the

(cut) Gaussian (G), the Hat-type (H) and the Log-normal (L) distribution. These

are characterized by two parameters corresponding to their first and second moment.
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The average asymmetry ratio is given by q̄ = σ̃d/σc, with the colloid diameter σc

and a length-scale of the depletion agent σ̃d. The parameter z describes the degree

of polydispersity: the limiting case, z → ∞, equals the monodisperse fluid and by

decreasing the value of z the distribution is broadened. A component is a species

of the mixture for which the amount or concentration can be varied independently,

e.g., a monodisperse species described by the Dirac-δ function or a contribution in

a bimodal distribution of a polydisperse depletion agent. The distributions under

consideration here lead to explicit expressions for the effective free-volume fraction

αeff(ηc; d(q; q̄, z)), if the geometry of the depletion agent is simple. For more compli-

cated shapes the integration has to be performed numerically. In terms of q̄ and z,

the distributions considered here are given by

dS(q; q̄, z) =

(

z

q̄

)z

qz−1 exp (−zq/q̄)

Γ(z)
, z ≥ 1, (3.4)

dG(q; q̄, z) =
z√
π

exp (−(q − q̄)2z2) 2 Θ(q)/[erf(zq̄) + 1], (3.5)

dH(q; q̄, z) =
z

2
Θ
(

q − q̄ + z−1
)

Θ
(

−q + q̄ + z−1
)

, q̄z > 1, (3.6)

dL(q; q̄, z) =
z√
πq

exp (−( ln q − µ(q̄))2z2). (3.7)

It is evident that q > 0 is required in all distributions and the integration in

αeff(ηc; d(q; q̄, z)) is performed in the limits from 0 to ∞. In the case of a Gaus-

sian distribution one can obtain simpler explicit expressions by imposing the full

integration range q ∈ (−∞,∞). The result d′
G is similar to that of the cut Gaussian

distribution dG

d′
G(q; q̄, z) =

z√
π

exp (−(q − q̄)2z2). (3.8)

The Log-normal distribution, for which q̄ = eµ+σ2/2 and σ = q̄/
√

z, decays slower for

large values of q than other distributions considered here.

3.3 Effective free-volume fraction

3.3.1 Explicit expressions for rod- and disk-like particles

The equations for the chemical potential µc and the osmotic pressure p from

Eqs. (2.44) and (2.45) for polydisperse size distributions contain integrals over the

distribution. For the calculation of the phase diagram these equations must be solved

simultaneously. In general, this must be done numerically. In the case of one- and

two-dimensional depletion agents, such as infinitely thin rods or platelets, their ge-

ometry is sufficiently simple so that the effective free-volume fraction αeff can be
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Dim Depletion agent Geometry vd ad cd Xd

1 prolate ellipsoid c = q σc/2, b → 0, a → 0 0 0 c
2

1

1 spherocylinder L = q σc, R → 0 0 0 L
4

1

2 oblate ellipsoid a = b = q σc/2, c → 0 0 2πa2 π
4
a 1

2 cylinder, spherodisk, cut sphere R = q σc/2, L → 0 0 2πR2 π
4
R 1

2 hexagonal platelet R = q σc/2, L → 0 0 3
√

3R2 3

4
R 1

Table 3.1: Geometrical measures for one- and two-dimensional depletion
agents. All lengths are measured in units of the diameter σc = 2Rc of the
spherical colloids. For ellipsoids a, b and c denote the half-axes, in the
other cases R is the radius, L the thickness or length of the depletion agent,
respectively. The asymmetry ratio q plays the role of the size ratio with
respect to the colloid size in this limiting case.

calculated explicitly. Infinitely thin needles, which represent one-dimensional deple-

tion agents, can be obtained as limiting case from, e.g., prolate ellipsoids or sphero-

cylinders. Infinitely thin platelets, which represent two-dimensional depletion agents,

can be obtained as limiting case from, e.g., oblate ellipsoids, cylinders, spherodisks,

cut spheres or hexagonal platelets. The geometric measures for these geometries are

given in Tab. 3.1. In the following we show explicit expressions for αeff for one- and

two-dimensional depletion agents based on some of the distributions given above.

As aforementioned, we obtain the thermodynamic quantities of the pure hard-sphere

fluid that enter the free-volume fraction αeff from the excess free energy density

Φ of the White Bear version of FMT [67, 81]. These quantities are the pressure

βp = ∂Φ/∂n3, the surface tension βσ = ∂Φ/∂n2 and bending rigidities βκ = ∂Φ/∂n1

and βκ̄ = ∂Φ/∂n0.

The explicit expressions for the effective free-volume fraction in the case of in-

finitely thin needles for the Schulz, the Gaussian, and the Hat-type distribution,

Eqs. (3.4)-(3.6), read

αeff,S
(ηc; q̄, z) =

2zzz

(q̄κ σc/2 + 2 z)z eκ̄
, (3.9)

αeff,G
(ηc; q̄, z) = exp

(

−κ̄ − q̄κσc/4 +
κ2σ2

c

64z2

)

× 1

erf(zq̄) + 1

(

1 − erf

(−z2q̄ + κ σc/8

z

))

, (3.10)

α′

eff,G
(ηc; q̄, z) = exp

(

−κ̄ − q̄κσc/4 +
κ2σ2

c

64z2

)

, (3.11)

αeff,H
(ηc; q̄, z) =

4z

κσc
exp (−κ̄ − q̄κσc/4) sinh

(κ σc

4z

)

. (3.12)

Since only κ and κ̄ enter these expressions for one-dimensional depletion agents, there
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is no difference between an approach based on the PY or the BMCSL equation of

state. In terms of the colloid packing fraction ηc, the average asymmetry ratio q̄ and

the polydispersity parameter z we obtain

αeff,S
(ηc; q̄, z) = (2z)z (1 − ηc)

(

3
q̄ηc

1 − ηc

+ 2 z

)−z

, (3.13)

αeff,G
(ηc; q̄, z) = (1 − ηc) exp

(

− 3q̄ηc

2(1 − ηc)
+

9ηc
2

16z2 (1 − ηc)2

)

× 1

erf(zq̄) + 1

(

1 − erf

(

−zq̄ +
3ηc

4z(1 − ηc)

))

, (3.14)

α′

eff,G
(ηc; q̄, z) = (1 − ηc) exp

(

− 3q̄ηc

2(1 − ηc)
+

9ηc
2

16z2 (1 − ηc)2

)

, (3.15)

αeff,H
(ηc; q̄, z) =

2z(1 − ηc)
2

3ηc
exp

( −3q̄ηc

2(1 − ηc)

)

sinh

(

3ηc

2z (1 − ηc)

)

. (3.16)

The effective free-volume fraction is unity for vanishing colloid packing fraction,

ηc → 0. In this case the complete volume V is accessible to the particles of the

depletion agent. αeff decreases upon increasing ηc since a part of the system volume

is occupied by colloids. An example for αeff for a one-dimensional depletion agent

with q̄ = 1.0 and three different values of the parameters z of the Schulz distribution

is plotted in Fig. 3.3. We show results for z = 2, 10 and ∞, which corresponds to

the monodisperse case. The influence of polydispersity on the effective free-volume

fraction is small for low values of ηc and is larger for higher values of ηc (see Fig. 3.3).

However, for the distributions introduced above and for the parameters used here,

the differences between the various results remain small. For more asymmetric values

of the size ratio q = L̄/σc or broader size distributions the difference between results

increases.

In the present study we restrict the product q̄z to sufficiently large values. For

the Hat-type distribution we require q̄z > 1 which ensures
∫∞

0
dq d(q) = 1. In the

case of the Gaussian distribution d′
G we require q̄z > 1 since for small values of q̄z

the contribution of the distribution from values q < 0 increases, e.g., for q̄ = 0.5 and

z = 3 we obtain
∫ 0

−∞
dq dG(q) . 10−2.

In the case of two-dimensional depletion agents, which we can obtain from the

limiting case of vanishing thickness of various objects (see Tab. 3.1), the geometric

measures can differ for different geometry of the depletion agent: for circular and

hexagonal platelets ad and cd differ, while those of cut sphere and cylinder equal. For

that reason results for αeff are shown in a general form. The effective free-volume

fractions within the BMCSL approach are given by

αeff,S
(ηc; q̄, z) =

(

z

q̄

)z

(−2χ2)−z/2 exp

(

− χ2
1

8χ2
+ χ0

)

D−z

( −χ1√−2χ2

)

, (3.17)
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Figure 3.3: The effective free-volume fraction αeff(ηc; d(q; q̄, z)) in the case
of infinitely thin polydisperse rod-shaped depletion agents for the Schulz
and the Log-normal distribution. The average size asymmetry ratio q̄ =
L̄/σc = 1.0. z, the parameter describing the degree of size polydispersity,
is 2, 10 and ∞, whereby the latter corresponds to the monodisperse limit.
Results corresponding to different values of z deviate from each other at
intermediate and high values of the colloid packing fraction ηc. The curves
for the Log-normal distribution (zL = 2) and the Schulz distribution with
z = 10 almost collapse. The Gaussian and Hat-type distributions yield very
similar behavior (not shown in this figure). Note that hard spheres in three
dimensions reach close-packing at ηc = ηcp = π

√
2/6 ≈ 0.74. For reasons of

simplicity we plot αeff(ηc) in the whole range of 0 ≤ ηc ≤ 1.

αeff,G
(ηc; q̄, z) = exp

(

z2q̄2χ2 + χ0 z2 − χ0 χ2 + z2q̄χ1 + χ1
2/4

z2 − χ2

)

×
(

erf

(

z2q̄ + χ1/2
√

z2 − χ2

)

+ 1

)

z

2[erf(zq̄) + 1]
√

z2 − χ2

, (3.18)

α′

eff,G
(ηc; q̄, z) = exp

(

z2q̄2χ2+χ0z
2−χ0χ2+z2q̄χ1+χ1

2/4

z2 − χ2

)

z
√

z2−χ2

, (3.19)

αeff,H
(ηc; q̄, z) =

z

4

√

π

−χ2

exp

(

χ0 −
χ2

1

4χ2

)

×
2
∑

n=1

(−1)nerf

(

2χ2(q̄ − (−1)n) + χ1z

2z
√−χ2

)

, (3.20)

where χ2 = −βγad/q
2, χ1 = −βκcd/q and χ0 = −βκ̄Xd. The geometrical measures

ad, cd and Xd are given in Tab. 3.1. D−z(x) with z > 0 denote the parabolic cylinder

functions.
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Figure 3.4: The effective free-volume fraction αeff for polydisperse spherical
depletion agent and different underlying distributions. The first and the
second moment are equal in all cases. Although we observe slightly different
behavior between the various distributions in the intermediate range of the
colloid packing fraction ηc, and in particular for low ηc for the Gaussian
distribution (see text), the different distributions yield very similar results.

3.3.2 Results for spherical depletion agent

In the case of a three-dimensional depletion agent, e.g., spherical particles which

model polymer coils, the integration in Eq. (3.2) in the considered cases cannot be

performed analytically. For a spherical depletion agent we show results to demon-

strate the dependence on the different types of distribution, the influence of the

broadness of the distribution and the influence of the size asymmetry between the

colloids and the depletion agent. Figure 3.4 shows the effective free-volume frac-

tion αeff based on the Schulz, the Gaussian and the Hat-type distribution. In all

cases q̄ = 0.5 and we consider equal second moments, i.e., zS = 5.000, zG = 3.157

and zH = 2.582 for the different distributions. For increasing values of ηc we find a

stronger decrease of αeff in case of the three-dimensional particles as compared to

rod-like (one-dimensional) particles. The spheres can fill the space better. Note that

for pure hard spheres the fluid phase is stable up to ηc ≈ 0.49 and for ηc & 0.54 the

hard spheres are in the crystalline phase. In the case shown in Fig. 3.4 no cut-off is

applied to the Gaussian (G) distribution which is the reason for the deviations at low

ηc. We observe an overall similarity for the different distributions.

In the following we focus on the Schulz distribution as this is widely studied in

theory and describes real systems better: it avoids unphysical properties that appear
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Figure 3.5: For fixed polydispersity, z = 10, we compare the effective free-
volume fraction αeff for various values for the degree of asymmetry between
the colloid and the depletion agent. In the asymmetric case, q̄ = 0.25, the
curve is nearly linear for low ηc and exhibits low slope. For more symmetric
cases the accessible volume to the larger depletion agent decreases stronger
and we find steeper curves with strong decrease to low values of the free
volume.

in the Hat-type distribution or due to the cut-off in the Gaussian distribution. Unless

expressed explicitly the parameters z and q̄ refer to the Schulz distribution in the

following.

For fixed polydispersity, z = 10, and three different values of size asymmetry,

q̄ = 0.25, 0.5 and 1.0, we show the effective free-volume fraction αeff in Fig. 3.5. In

the highly asymmetric case the curve is flatter than in the more symmetric cases,

and in a wider range the former exhibits nearly linear decrease. The free volume

decreases steeper for more symmetric depletion agent.

When we study systems with fixed average size, q̄ = 0.25, and varying polydis-

persity described by the parameter z we observe little difference. However, in the

following sections we demonstrate that this difference has a significant influence on

the phase diagram. Figure 3.6 displays that for low degree of polydispersity (z = 50)

in the range of low ηc we observe almost linear behavior. Upon increasing polydis-

persity, i.e., for lower values of z, the curve has a more negative slope for small ηc but

the effective free-volume fraction αeff exhibits larger values at intermediate colloid

packing fractions ηc. The results refer to the CS equation of state. For z = 10 and

q̄ = 0.25 we compare the results based on the CS and the PY equation of state.
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Figure 3.6: For fixed average size of the depletion agent, q̄ = 0.25, we show
the influence of polydispersity on the behavior of the effective free-volume
fraction αeff. For low degree of polydispersity (z = 50) we observe almost
linear behavior at low values of ηc. Upon increasing polydispersity, i.e.,
decreasing the value of z, for low ηc the curve exhibits a more negative slope
and a larger deviation from the linear behavior. The values of αeff are larger
at intermediate range of ηc as compared to the case of a narrow distribution
(dash-dotted line). In one case, z = 10, we show the comparison between
results based on the PY (dashed line) and the CS (full line) equation of
state.

3.4 Phase diagrams

3.4.1 Influence of size polydispersity

In this section we study the phase diagrams of a mixture of (monodisperse) colloids

and polydisperse spherical ideal polymer [9–11] as depletion agent. As we showed

in the previous section the effective free-volume fraction αeff cannot be obtained

explicitly in contrast to some cases of one- and two-dimensional depletion agents.

Once we have the effective free-volume fraction, we evaluate the phase diagram by

solving Eqs. (2.44) and (2.45) simultaneously which, in any case, must be performed

numerically. We describe the polymer polydispersity by means of the Schulz distri-

bution, cf. Eq. (3.4). The Schulz distribution is frequently used in theoretical studies

of polydispersity. It is described by the mean value q̄ and the standard deviation

σ = q̄/
√

z.

The equations of state of the pure reference system and the free-volume fraction

α respectively, and hence the chemical potential µc and the osmotic pressure p of the
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colloids, are based on the free energy density Φ of the White Bear version of FMT,

cf. Eq. (2.53).

In the case of a spherical ideal polymer as monodisperse depletion agent, the

free-volume fraction is given explicitly by [51]

αCS = (1−ηc) exp

(

−ηc (1+ηc+η2
c−η3

c )

(1 − ηc)
3 q3−

(

3 ln (1−ηc) +
6ηc−3η2

c

(1 − ηc)2

)

q2− 3ηc

1−ηc
q

)

.

(3.21)

In Fig. 3.7(a) we show phase diagrams of polydisperse AOV mixtures obtained

within our approach. We vary the polydispersity and keep the size ratio q̄ = 〈σd〉/σc =

0.25 fixed, where σd is the diameter of the spherical depletion agent. For this size

ratio, the fluid–fluid phase separation in the monodisperse case is metastable w.r.t. the

fluid–solid coexistence [38]. We display phase diagrams for z = 50, 10 and 2. The

corresponding polymer size distributions in the reservoir are plotted in Fig. 3.7(b).

For z = 50 the phase diagram is very similar to that of a mixture of colloids with

monodisperse polymer and the fluid–fluid coexistence remains metastable (full lines).

Upon decreasing z, which broadens the size distribution, the fluid–fluid and the fluid–

solid coexistence lines approach each other and almost touch each other for z = 10

(dashed lines). By further increasing the degree of polydispersity the fluid–fluid

coexistence becomes stable, as we display in Fig. 3.7(a) for z = 2 (dotted lines).

The critical point is shifted to lower colloid packing fractions ηc as the value of z

decreases. We like to highlight that the small difference in the effective free-volume

fractions (see Fig. 3.6) result in a considerable shift of the coexistence lines and the

appearance of a stable critical point.

We have compared these results to the treatment of the phase behavior completely

based on the PY compressibility equation of state and find qualitatively similar re-

sults. In the present approach this is achieved by employing the free energy density

Φ of Rosenfeld’s original formulation of FMT to evaluate αeff and the pressure and

chemical potential of a pure reference system. Figure 3.8 shows the corresponding

result for q̄ = 0.3 and three values for the degree of polydispersity, z = 50, 10 and 2.

For low degree of polydispersity (z = 50) the fluid–fluid coexistence is situated in the

metastable regime (full lines) as expected from the description of the results based

on the CS equation of state. Again, for highly polydisperse depletion agent, z = 2,

the fluid–fluid coexistence is stabilized (dotted lines). This is already the case for the

intermediate value, however, slightly different value of q̄ is chosen here which is the

reason for the difference to the results above. For q̄ = 0.3 we find that the fluid–fluid

coexistence regime is already stable at z = 10.

The polymer distribution in the system differs from that in the reservoir [42],

which is a phenomenon known as fractionation. For spherical polymer we find results
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Figure 3.7: (a) Phase diagrams of mixtures of colloids and a polydisperse
spherical depletion agent with an average size ratio q̄ = 0.25 and (b) the
corresponding distributions. We employ a free-volume theory based on the
BMCSL equation of state. For low degrees of polydispersity, correspond-
ing to z = 50 (full lines), the fluid–fluid phase separation is metastable
w.r.t. fluid–solid coexistence. Upon increasing the degree of polydispersity,
corresponding to z = 10 (dashed lines) and z = 2 (dotted lines), the fluid–
fluid coexistence is stabilized.
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Figure 3.8: (a) Phase diagrams of mixtures of colloids and a polydisperse
spherical depletion agent with an average size ratio q̄ = 0.3 and (b) the
corresponding distributions. In this case we employed the mixture PY equa-
tion of state. For large values of z = 50 (full lines), i.e., for low degree
of polydispersity, the fluid–fluid coexistence is metastable. Upon increasing
polydispersity to z = 10 (dashed lines) and further to z = 2 (dotted lines)
the fluid–fluid coexistence is stabilized.
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Figure 3.9: Density distributions ρ(q) for spherical depletion agent with
q̄ = 0.25 and a high degree of polydispersity, z = 2. The three curves
correspond to the three different values of ηc at the triple point obtained
from the approach based on the BMCSL equation of state. For increasing
colloid packing fraction the maximum of the density distributions is shifted
to lower values of q.
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Figure 3.10: Density distributions ρ(q) for spherical depletion agent with
q̄ = 0.3 and a very high degree of polydispersity, z = 2. In this case the PY
equation of state is employed. The three curves correspond to the three dif-
ferent values of ηc at the triple point, and in a similar fashion to the BMCSL
results (see Fig. 3.9) for increasing colloid packing fraction the maximum of
the density distributions is shifted to lower values of q.
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Figure 3.11: Density distributions for different type of the depletion agent.
In all cases we employ the Schulz distribution with z = 10 and q̄ = 1.0. The
colloid packing fractions ηc are approximate values of the triple point. We
show curves for the phase with intermediate density, i.e., the liquid phase
and ηa.t.p.

c = 0.45. For three-dimensional particles (spheres) we observe the
strongest shift of the curve. Two-dimensional particles (platelet-like thin
disks) and one-dimensional particles (needle-like thin rods) exhibit smaller
shift.

equivalent to those from Ref. [42]. At low packing fractions of the colloids the size

distribution of (spherical) polymer follows closely the reservoir distribution. As the

colloid packing fraction increases, the maximum height of the polymer size distribu-

tion decreases significantly and shifts towards smaller polymer radii. In Figs. 3.9 and

3.10 we show results for the density distribution ρ(q) = d(q) α(q; ηc = ηt.p.
c ) for the

examples given above, i.e., z = 2 and q̄ = 0.25 for the CS and z = 2 and q̄ = 0.3 for

the PY equation of state. The three different curves correspond to the three different

values of the colloid packing fraction ηt.p.
c at the triple point.

In principle we observe a qualitatively similar but less pronounced behavior also

in the case of platelet-like or rod-like depletion agents. The maximum of the size

distribution of the depletion agent becomes smaller and moves to smaller sizes as the

colloid packing fraction in the system increases. In Fig. 3.11 we present results for

the density distribution for one-, two- and three-dimensional depletion agents, i.e.,

spheres, thin disks and thin rods. The degree of polydispersity is equal, z = 10,

in all cases and q̄ = 1.0. The colloid packing fraction is taken at the intermediate

of the approximate values for the triple point, ηa.t.p.
c = 0.45. The shift observed in

Fig. 3.11 was expected, because one- or two-dimensional depletion agents require less
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Figure 3.12: Phase diagrams for polydisperse depletion agent with varying
morphology. The volume vd is fixed, while the surface area ad and the inte-
grated mean curvature cd depend on the parameter q, which is distributed
with d(q). For low and high values of q the depletion agent becomes ellip-
soidal. The average value q̄ = 1.0 and σd = 0.25σc. To compare with the
spherical depletion agent the BMCSL equation of state is employed. For low
degree of polydispersity (z = 50) the fluid–fluid coexistence is situated in
the metastable regime and is stabilized upon increasing the degree of poly-
dispersity (z = 2).

free volume to fit between colloids than spherical polymer.

3.4.2 Influence of morphology polydispersity

In the previous sections we have considered size polydispersity in the distribution

of the depletion agent. In this section we focus on the influence of a depletion

agent with varying particle shapes or, in other terms, on the influence of morphol-

ogy polydispersity on the phase behavior. To this end we consider ellipsoids, with

half-axes a = b = σd/(2
√

q) and c = qσd/2, for which the geometrical measures

can be obtained explicitly [51]. The length scale σd is fixed and in the following

set to σd = 0.25σc. In this relatively simple case a single parameter q character-

izes the shape. Obviously, more complicated scenarios are possible. Note that for

this choice of half-axes the volume vd = πσ3
d/6 is kept fixed, while the surface area

ad = πσ2
d(1/q + q3/2(arccosh 1/q3/2)/

√

1/q − q2)/2 and integrated mean curvature

cd = σd(q + (arccos q3/2)/
√

q − q4)/4 depend on q. The Euler characteristic Xd = 1

is independent of q. The parameter q describes the degree of deviation of the shape
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Figure 3.13: Phase diagrams for polydisperse depletion agent with varying
morphology. In this case, all fundamental measures (except Xd) depend on
the parameter q. The volume is linear in q. The shape of the depletion agent
is ellipsoidal and its polydispersity is described by the Schulz distribution
with q̄ = 1.0 while σd = 0.25σc. The increase of the degree of polydispersity
from z = 50 to z = 1 stabilizes the fluid–fluid coexistence.

from a sphere: for small values of q we obtain lens-shaped depletion agent (oblates),

while for large values of q the particles become cigar-shaped (prolates). Similarly to

the case of size polydispersity, we observe that an increasing degree of shape polydis-

persity stabilizes the fluid–fluid phase separation w.r.t. fluid–solid decomposition (see

Fig. 3.12). It seems that polydispersity in general favors a stable fluid–fluid phase

separation because the polydisperse depletion agent can fill the free volume of the

system more effectively than a monodisperse one. Even if the bigger particles of the

distribution cannot find free volume in the system, the smaller ones might still do.

In terms of the depletion potential this would result in a longer range of the effective

attraction between colloids [43], giving rise to a more negative effective second virial

coefficient Beff
2 which increases the tendency for fluid–fluid phase separation [100].

This effect seems to be robust against details of introducing polydispersity as

we also observe that the fluid–fluid coexistence is stabilized for an ellipsoidal de-

pletion agent with a = b = σd/2 and c = qσd/2, where all geometrical measures,

except the Euler characteristics, depend on q. In this case vd = π/6σ3
cq ∝ q,

ad = (1 + q2 arccosh(1/q)/
√

1 − q2) π/(2σ2
c ), cd = (q + arccos(q)/

√

1 − q2) σc/4 and

Xd = 1. The phase diagrams are shown in Fig. 3.13.
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3.5 Ternary mixtures

3.5.1 Phase diagrams for bimodal and bidisperse distribu-

tions

In experimental systems of colloid and polymer mixtures polydispersity in general

can result from imperfection in the synthesis process and practical limitations. If two

spherical polymer components with significant different sizes are mixed with colloids

one would obtain a ternary mixture. The sizes of the polymer would now be described

by a bimodal distribution dS(q; x, q̄, Q̄, zq̄, zQ̄) = x dS(q; q̄, zq̄) + (1 − x) dS(q; Q̄, zQ̄)

with a mixing parameter x and two averaged size ratios q̄ and Q̄. For simplicity we

assume the width of both parts of the distribution to be equal, zq̄ = zQ̄ = 5. In

Figs. 3.14–3.17 we show phase diagrams in the (ηc,η̃
r
d)–representation for different

values of the mixing parameter x. We choose q̄ = 0.25 and Q̄ = 2.0. The polymer

reservoir packing fraction is given by η̃r
d = π

6
〈q〉3σ3

cρ
r
d, where 〈q〉 = x q̄ + (1 − x) Q̄.

For x = 0.9999 (see Fig. 3.14) the phase diagram is similar to the polydisperses case

studied above [see Fig. 3.7(a) for z = 2 and 10]. Upon decreasing x, the fraction of the

polymer with average size ratio Q̄ increases, and the spinodal exhibits two minima,

one corresponding to the stable critical point (triangle) and the other corresponding

to an additional metastable fluid–fluid phase separation (diamond) — see Fig. 3.15.

Further decreasing the value of the mixing parameter to x = 0.9935 (Fig. 3.16) leads

to a phase diagram with two stable critical points and two triple points. At one triple

point, a gas, a liquid, and a solid phase coexist, while at the second triple point a

gas phase and two liquid phases with different densities coexist. There is a novel low

density liquid phase in the region between the two critical points with ηc = 0.0177

and 0.251. Upon varying the value of x the triple points are shifted. According to

Gibbs’ phase rule a four-phase coexistence between the gas, the low density liquid,

the high density liquid and the solid is also possible. For our system it is expected

for x between the values used in Fig. 3.15 and 3.16, i.e., between x = 0.995 and

0.9935. In Fig. 3.17 for x = 0.98 we also observe two critical points. The critical

point with lower colloid packing fraction (diamond) is stable — see Fig. 3.17 for the

phase diagram and Fig. 3.18 for the corresponding bimodal distribution d(q). The

second critical point at higher colloid packing fraction (triangle) is now situated in

the metastable regime and vanishes upon further decreasing the values of x. For

these systems one liquid phase and one triple point are stable. Further decrease of

the values of x approximately below 0.8 lead to a shift of the coexistence region to

higher values of η̃r
d. For x ≪ 1 the fluid–fluid binodal lies in the region of the fluid

with monomodal polydisperse depletion agent with Q̄ = 2.0.
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Figure 3.14: Phase diagram for the bimodal distribution of the spherical
depletion agent. The degree of polydispersity of both parts in the distribution
with q̄ = 0.25 and Q̄ = 2.0 is equal, z = zq̄ = zQ̄ = 5. The results are based
on the BMCSL equation of state. The mixing parameter is x = 0.9999 and
the smaller component dominates the mixture. The phase diagram is very
close to the one for a monomodal distribution with q̄ = 0.25.
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Figure 3.15: Phase diagram for the bimodal distribution of the depletion
agent. As it is the case in Fig. 3.14, the distribution is described by z = 5,
q̄ = 0.25 and Q̄ = 2.0. The mixing parameter is x = 0.995. We find two
minima (filled symbols) of the spinodal line (dashed line). The fluid–fluid
coexistence exhibits one stable minimum (triangle).
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Figure 3.16: For a mixing parameter of x = 0.9935 the phase diagram with
z = 5, q̄ = 0.25 and Q̄ = 2.0 exhibits two stable critical points (filled symbols)
and three fluid phases: the colloidal gas (G), the low density liquid (LDL)
and the high density liquid (HDL).
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Figure 3.17: Upon increasing the fraction of the depletion agent with larger
values of q in the bimodal distribution, x = 0.98, we find one critical point at
intermediate values of ηc shifted to higher values of ηr

d and into the metastable
regime. The distribution is described by z = 5, q̄ = 0.25 and Q̄ = 2.0. One
liquid phase remains stable as compared to higher values of x, where we can
find a low and a high density liquid. For further decreasing the value of x
the critical point with higher ηc (triangle) vanishes.



3.5. Ternary mixtures 41

We observe similar behavior for a mixture of colloids and two monodisperse poly-

mer components, i.e., zq and zQ → ∞. For the same size asymmetries as above,

q̄ → q = 0.25 and Q̄ → Q = 2.0, the critical point is metastable when x = 1, or

equivalently 〈q〉 = 0.25. Upon decreasing the value of x a second critical point occurs

at low values of ηc. For the value x = 0.995 — see Fig. 3.19 — we show the phase

diagram which exhibits two critical points and observe that one of those is stable

(diamond) and one lies in the metastable regime. According to this finding one gas,

one liquid and one solid phase are stable. The low density liquid (LDL) and the high

density liquid (HDL) phase separation is metastable w.r.t. fluid–solid coexistence.

For the more symmetric case with q = 0.5 and Q = 2.0 there is a stable critical

point for x = 1. Similarly to the polydisperse case described above, decreasing x

leads to a second stable critical point at an intermediate range of x — see Fig. 3.20.

In a similar manner as compared to the bimodal polydisperse mixture, besides the

gas and the solid phase we observe two stable liquid phases, namely the low density

and the high density liquid. To summarize, we find that both by choosing the degree

of polydispersity and by accounting for size asymmetry we can study a model fluid

which exhibits one or two (stable) critical points and one or two (stable) liquid phases.

Furthermore, we have verified that it is possible to generate two critical points and

hence three fluid phases by using depletion agents of different than spherical geometry.
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Figure 3.18: The bimodal distribution of the depletion agent with z = 5,
q̄ = 0.25 and Q̄ = 2.0. For the mixing parameter x = 0.98 only little
contribution comes from high values of q. However, this suffices to generate
significant effect on the phase diagram.
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Figure 3.19: Phase diagram of a (discrete) ternary AOV mixture with one
colloid species and two (monodisperse) species of the depletion agent with
size ratios q = 0.25 and Q = 2.0. At an intermediate mixing parameter,
x = 0.995, we observe, similarly to the bimodal distribution of the depletion
agent, two critical points. However, only one of those is stable (diamond)
while the second lies in the metastable regime (triangle) w.r.t. fluid–solid
coexistence. Also, the low and the high density liquid phases are located in
the metastable regime (see the dashed lines).

3.5.2 Trajectories of critical points

In the previous section we have studied the full phase diagrams of mixtures of colloids

and polydisperse depletion agent with a bimodal distribution. For four values of the

mixing parameter x we show the phase diagrams of the ternary mixture. In the

following we focus on the critical points in the whole range of values of the mixing

parameter x. We obtain the critical points from evaluating the (local) minimum

values in the spinodal line. As we have already done in the example before, we

concentrate on the case z = zq̄ = zQ̄ = 5. In Fig. 3.21 we show the trajectory

of critical points in a phase diagram for the whole range from x = 1 to 0. For

x = 1 a critical point is found at high values of ηc. Decreasing x, i.e., increasing

the contribution of the component corresponding to Q̄ = 2.0, leads to a shift of the

critical point to lower vales of ηc. At a certain value of x we observe a second critical

point indicated by the two filled squares. For further decreasing x both critical points

become stable and finally the one with higher values of ηc disappears (filled circle).

For very low values of x the critical point is shifted to the position from the pure case
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Figure 3.20: Phase diagram of a (discrete) ternary AOV mixture with one
colloid species and two (monodisperse) species of the depletion agent with
size ratios q = 0.5 and Q = 2.0. The size ratio between the two species of
the depletion agent is less asymmetric as compared to Fig. 3.19. For x = 1,
where only the component with q = 0.5 is present, the fluid–fluid coexistence
is stable in contrast to the mixture with q = 0.25 (cf. Figs. 3.1 and 3.19).
For slightly decreasing the mixing parameter to x = 0.98 we find a phase
diagram which is qualitatively very similar to that of a bimodal distribution
of the depletion agent and q̄ = 0.5 and Q̄ = 2.0: We observe two stable
critical points (diamond and triangle) and three stable fluid phases, the gas,
the low density liquid and the high density liquid.

of a distribution with average value for Q̄ = 2.0. For decreasing asymmetry between

both components, i.e., for lower ratio Q̄/q̄, the gap in the trajectory becomes smaller

— see the dashed line in Fig. 3.21. The open squares (x = 0.9668) and the open

circles (x = 0.97) for q̄ = 0.5 have analogous meaning to the case where q̄ = 0.25

(x = 0.9786 and 0.9966). Upon further decreasing the size asymmetry to q̄ = 0.5

and Q̄ = 1.5 the trajectory of the critical points in the phase diagram is continuous

in the whole range of the mixing parameter, x ∈ [0, 1], and we find only one (stable)

critical point for all values of x. Figure 3.22 displays the colloid packing fractions

ηc of the trajectories of the critical points for a wide range of the parameter x. The

symbols have the same meaning as in the phase diagram, cf. Fig. 3.21. In the (x,ηc)-

representation we can more clearly see that for the more asymmetric distributions we

find a range of x where two critical points appear simultaneously.

In the limiting case of a bidisperse distribution where zq̄ → ∞ and zQ̄ → ∞, i.e.,

the discrete ternary mixture, we observe similar behavior of the trajectory of critical
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Figure 3.21: Trajectories of critical points in phase diagram for varying mix-
ing parameter x in the bimodal distribution dS(q; x) with z = 5. For x = 1
the critical point takes the highest value of ηc. For decreasing x the critical
points move to lower ηc and, for the asymmetric cases, we observe two critical
points in the range bound by the squares and the circles that occur simul-
taneously for a certain value of x. As we have shown in the phase diagrams
(see Fig. 3.16) for q̄ = 0.25 and Q̄ = 2.0 we find a range of x where two
critical points are stable at the same time. In the symmetric case (dotted
line) the trajectory is continuous. Only one critical point can occur for these
parameters.

points.

3.6 Conclusions

In this chapter we have presented three main results. Firstly, we have generalized

a novel approach to free-volume theory [51] based on FMT [13, 96, 97] to treat a

depletion agent of arbitrarily shaped particles with a continuous distribution. Here,

we introduced one parameter, q, to specify a continuously varying distribution of

depletion agent. Secondly, we employed our approach to treat mixtures of colloids

and polydisperse depletion agent of various shape. And thirdly, we used the general

character of our approach to study ternary mixtures of one colloid species and two

species of the depletion agent.

To evaluate the phase diagram within FVT an expression for the free-volume

fraction is required. In the case of polydisperse size or shape distributions for the

depletion agent, one can obtain an effective free-volume fraction, which in general
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Figure 3.22: Colloid packing fraction of the critical points for varying mixing
parameter x in the bimodal distribution dS(q; x) with z = 5. The symbols
have equal meaning as in the trajectories in phase diagram — see Fig. 3.21.
In the range between the squares and the circles we find two critical points.
Note that stability is not shown in this figure. For high asymmetry (full line)
the range with two critical points is x ∈ [0.9786, 0.9966], for intermediate
asymmetry (dashed line) we find x ∈ [0.9668, 0.97].

has to be calculated numerically. In the cases of infinitely thin needles or platelets we

presented explicit expressions for the effective free-volume fraction αeff for various

distributions. Beside size polydispersity, we have also considered morphology poly-

dispersity. To this end we have calculated phase diagrams of a mixture of colloidal

spheres and ellipsoidal depletion agent. Based on our results we confirm that poly-

dispersity has the tendency to stabilize the fluid–fluid coexistence region w.r.t. crys-

tallization. This finding is in agreement with earlier studies [42, 101, 102] for size

polydisperse spherical polymer coils. Moreover, we have shown that a similar behav-

ior can be found for the case of shape polydispersity. Upon increasing the degree

of polydispersity the fluid–fluid binodal crosses the fluid–solid coexistence line, and

one obtains a stable critical point with associated liquid and gas phases and a triple

point. This effect seems to be robust against various ways to incorporate polydisper-

sity, which can be rationalized by the fact that particles of a polydisperse depletion

agent can fill the available free volume in a system better than a monodisperse species.

The presented results are based on the White Bear version of FMT and the

corresponding BMCSL equation of state (e.o.s.). As that e.o.s. is used for evaluating

the effective free-volume fraction αeff and for the pressure, our approach provides
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a consistent route. It is also possible to base the free-volume theory on a recent,

slightly more consistent, mixture equation of state [82, 83]. We have studied the

phase behavior based on expressions for pressure from the equation of state and from

∂Φ/∂n3. We confirm that both routes give very similar results and the original White

Bear version provides a consistent and accurate route.

We presented a remarkable result in Sec. 3.5 for mixtures of colloids and two

components of polydisperse (spherical) polymer coils. The polymers were described

by a bimodal distribution consisting of two polydisperse distributions, which within

our approach can be done in a straightforward manner. For the averaged size ratios

of the polymer components chosen here, q̄ = 0.25 and Q̄ = 2.0, we find for each of

the values a fluid–fluid coexistence line in distinct parts of the phase diagram, i.e., in

the two limiting cases x = 1, when only the smaller polymer species is present, and

x = 0, when only the larger polymer species is present. For x = 0 the corresponding

fluid–fluid phase separation is stable independent of the degree of polydispersity. In

the second limiting case, x = 1, the fluid–fluid phase separation has to be stabilized

by a sufficient degree of polydispersity. We choose zq̄ = zQ̄ = 5 and find for a range

of the mixing parameter x two stable liquid phases: Beside the gas phase, which is

diluted in the density of colloids, we find a low density and a high density liquid phase.

The fluid–fluid coexistence region is w shaped in this case, and the phase diagram

exhibits two stable critical points and two triple points. For systems with two length

scales in the inter-particle interactions, such as short-range repulsion and long-range

attraction, Hemmer and Stell [52,53] found that two stable critical points may occur.

More closely related to our situation is a system of star polymers [55] in which similar

features of the phase diagrams are reported, since the effective interaction potential

is comparable to those of the model of Stell and Hemmer. For other model fluids

similar effects were observed [54, 103, 104]. We point out that our findings are not

restricted to a polydisperse depletion agent. We find similar results for a ternary

mixture in which we consider one colloid component and two distinct monodisperse

components of depletion agent.

In theoretical and experimental studies polydispersity of any kind often is con-

sidered an undesirable side-effect. In experiments polydispersity may originate from

imperfections of the particle synthesis. Based on our findings it is possible to make

use of polydispersity by stabilizing fluid–fluid phase separations. Moreover, control-

ling the degree of polydispersity allows one to some degree to tune the phase diagram.

From this point of view one might speculate about the opportunity of designing the

phase behavior of colloidal mixtures by specifying the polydisperse distribution of the

depletion agent.



Chapter 4

Fluids in Confined Geometry

When a bulk gas is confined in a narrow capillary with strongly attractive wall-particle

interaction (hydrophilic pore) one might find a stabilized fluid phase and hence con-

densation [35, 56–58] of the fluid. On the other hand, when a bulk liquid is confined

in a pore with strongly repulsive wall-particle interactions (hydrophobic pore) one

might observe evaporation [59, 60, 66]. This observation is found for a wide range of

fluids. A colloid-polymer (cp) mixture in the bulk exhibits fluid–fluid phase separa-

tion into a colloid poor (gas) and a colloid rich (liquid) phase and features phenomena

observed also in simple fluids. For the AOV model we presented results concerning

the bulk phase behavior in the previous chapter. In the following chapter we restrict

ourselves to the cp mixture with monodisperse colloid and polymer components. All

particles have spherical geometry. When the AOV mixture is brought to a single wall

one finds rich surface phase behavior with layering transitions [22] and wetting [105]

phenomena. This leads to the interesting question what happens when the AOV

mixture is confined in a narrow slit-like pore as one expects a competition between

the gas, the layering and the liquid phase. An analogous situation concerning the

competition between capillary condensation and pre-wetting for simple fluids [106]

is described in literature. In experiment confocal scanning microscopy allows one to

study colloid-polymer mixtures in confined geometry [29].

The confined fluid in a slit-like pore exerts an excess pressure on the confining

walls. Experimentally such an excess pressure, expressing itself in solvation forces,

can be accurately measured by the surface force apparatus [61, 62] and in fluids

confined between two mica plates [63, 64] which has also been applied to situations

where capillary condensation occurs [65]. In addition to the phase behavior in the

narrow pore we study its influence on the solvation force between two walls.

47
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4.1 Phase behavior of the confined colloid-polymer

mixture

4.1.1 Bulk phase behavior

In the previous chapter we presented the bulk phase behavior of the colloid-depletion

agent mixture in detail. In this chapter we focus on a depletion agent which models

polymer coils and we study mixtures of colloids c and polymer p. Within the semi-

grand canonical ensemble the phase diagram is described in terms of the packing

fraction ηc of the colloids in the system and the packing fraction ηr
p of the polymer

in the reservoir. For a wide range of values of the size ratio q = σp/σc between

the diameter of the spherical polymer and the diameter of the spherical colloids we

showed the bulk phase diagrams in Figs. 3.1 and 3.2. We choose q = 0.6 in the

following study. Many results are known for that particular value as it is frequently

used in DFT studies and simulations [38, 84].

In Fig. 3.2 the dashed line shows the phase diagram for q = 0.6 based on the

Carnahan-Starling equation of state obtained via free-volume theory. We find phase

coexistence for chemical and mechanical equilibrium, i.e., if µI
c = µII

c and pI = pII ,

respectively. At vanishing polymer packing fraction ηr
p = 0, i.e., for the pure one-

component hard-spheres, one finds a fluid phase for ηc . 0.494 and a (colloidal)

crystal for ηc & 0.54. Upon increasing the polymer density above the critical point

we find fluid–fluid phase separation into a gas (colloid poor) phase and a liquid (colloid

rich) phase. Upon further increasing the polymer density a three-phase coexistence

between the gas, the liquid, and the solid phase occurs. At values of ηr
p above the

triple point the gas–solid coexistence is stable. In this representation the polymer

density in the reservoir takes the role of an inverse temperature. Increasing ηr
p leads

to a more pronounced colloid-colloid attraction.

4.1.2 Phase behavior at walls

A bulk colloid-polymer mixture modeled by the AOV fluid at a state-point close to

the fluid–fluid coexistence undergoes further transitions when it is brought in contact

with a substrate. For the case of a planar hard wall we can observe a series of layering

transitions labeled τi−j between layering states λi and λj. At the transition τ0−1 we

find coexistence between a gas phase and a gas with one liquid like layer λ1 adsorbed

at the hard wall. Further transitions between states with more than one adsorbed

liquid layer are possible. Accordingly, i and j denote the number of the adsorbed

liquid layers, in these terms i = 0 denote the gas (with no liquid layer adsorbed). At
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Figure 4.1: Layering line which displays the position of the transition between
the (colloidal) gas phase and the first layering state for a colloid-polymer
mixture with size ratio q = 1.0. The result is based on the MCSL equation
of state. For values of ηc below the layering line (full line) we find a stable
gas phase. Above the transition line τ0−1 the first layer is stable. Note that
transitions between further layering states are not considered in this figure.
The dashed lines display the region where for ηc below the layering line the
layering occurs but is metastable, and for ηc above the layering line the gas
can be found but is metastable. The dotted line displays the corresponding
fluid–fluid binodal in bulk. The arrow in the inset points to the region of the
layering states.

the transitions we find a jump in the excess adsorptions of the colloids Γc and the

polymer Γp. However, the grand potential Ω is continuous but non-analytic upon

increasing the colloid packing fraction ηc, for example. At this first order phase

transition the equality of the grand potential Ω = −pV + γA leads to a continuous

but non-analytic surface tension γ. Hence, we find the coexistence lines by equating

the surface tensions for the two different phases. The same relations hold for the

transitions τ1−2, τ2−3, and so forth, between states which differ by one layer. At a

lower value of ηr
p we also find a point of complete wetting. In the following we choose

state-points sufficiently far away from this point.

In Figs. 4.1 and 4.2(a) we show layering lines for q = 1.0 and 0.6. For q = 0.6 and

the PY equation of state we display the transition by the line τ0−1 in Fig. 4.2(b). We

confirm and highlight that results based on both, the PY and the MCSL, equations of

state exhibit layering transitions to states with more than one liquid like layer, τ1−2,

τ2−3, and so forth (not shown in the figures for clarity of display). In the following we
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Figure 4.2: (a) We display the layering line τ0−1 (full line) for the MCSL
equation of state and q = 0.6 in a wide range of ηr

p. The dashed lines show
the region where two phases may exist, one being metastable. Note that
further layering transitions (τ0−2 and so forth) are not shown. The inset
shows the position of layering states as compared to the fluid–fluid binodal
(dotted line). (b) We compare the results based on the PY (full lines) and
the MCSL (dotted lines) equation of state. Both, the layering line and the
fluid–fluid binodal, apart from a vertical shift, exhibit similar behavior in the
two cases.
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focus on the result corresponding to the MCSL equation of state. Within DFT this

is achieved by the White Bear version of FMT. As the layering lines between states

with more than one layer are very close to the bulk fluid–fluid coexistence we restrict

our considerations to τ0−1. At the layering lines [full lines in Figs. 4.1 and 4.2(a)] it

follows from equality of the grand potentials in both phases that the corresponding

surface tensions are equal: γλi = γλj . The dashed lines display regions in which both

phases, which coexist at τ0−1, can occur. However, for ηc below the transition the

layering λ1 is metastable. For ηc above the transition the gas phase is metastable. In

an analogous fashion the same behavior is found at other transitions τ . Obviously,

the surface phase diagram which contains all the layering transitions is very rich. We

focus on the transition between the gas and one layer and indicate its location in the

bulk phase diagram w.r.t. the fluid–fluid phase coexistence in the insets of Figs. 4.1

and 4.2.

Influence of polydispersity on layering

Before we study the AOV mixture confined in a slit of two planar hard walls we rise

the question how robust or generic the layering behavior is. We already pointed out

that for different underlying equations of state, namely the PY and the MCSL e.o.s.,

we find layering transitions which exhibit little difference apart from a vertical shift.

As the colloid-polymer mixture is a two component fluid we study the influence of

the many-component character of a mixture and the effect of polydispersity. To this

end we introduce a discrete Gaussian distribution with a finite number of compo-

nents. Since FMT in constructed to treat mixtures this system can be studied in a

straightforward fashion.

First we consider the λ1 liquid layer, i.e., the phase with one layer. The polydis-

perse distribution is given by Eq. (3.8). We study four possible cases: i) monodisperse

colloid and monodisperse polymer, ii) polydisperse colloid and monodisperse poly-

mer, iii) monodisperse colloid and polydisperse polymer, and iv) polydisperse colloid

and polydisperse polymer. Note that within the DFT approach polydispersity is

modeled by a discrete distribution of single monodisperse components. The degree

of polydispersity is given by zc = 100 and zp = 100. In Eq. (3.8) the parameter z

describes the broadness of the distribution and the subscript labels the polydisperse

species. Note that the fugacity is sometimes labeled by the same symbol. The colloid

distribution is described by 21 components and η̄c = 0.0263 if the colloids are poly-

disperse, otherwise ηc = 0.0263. Analogously, the polymer distribution is described

by 25 components and η̄p = 0.581166 if the polymer species is polydisperse, otherwise

ηp = 0.581166.

In Figs. 4.3 and 4.4 we show the colloid density profiles ρc(z) and the polymer
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Figure 4.3: Colloid density profiles ρc(z) of the colloid-polymer mixture with
q = 〈σp〉/〈σc〉 = 0.6 at a planar hard wall. The state-point is fixed and lies
in the region of the first layering state λ1. The full line shows the profile for
monodisperse components c and p. The remaining profiles ρc(z) show results
for either polydisperse colloids or polydisperse polymer. The inset diplays
the polydisperse size distribution of the colloids. The dashed line shows the
profile of the component σc/〈σc〉 = 1.0 of the discrete distribution. The
components σc/〈σc〉 = 1.25 (dotted line) and σc/〈σc〉 = 0.75 (dash-dotted
line) display stronger or weaker layering structure, respectively, as compared
to the component with σc/〈σc〉 = 1.0. In the case of monodisperse colloid
and polydisperse polymer the profile is shown by the double-dashed line. In
all profiles we find layering behavior.

density profiles ρp(z), respectively, for the cases i), ii) and iii). In Fig. 4.3 we show

results for the monodisperse reference system and for three selected components of

the distribution of polydisperse colloids (see inset) with σc/〈σc〉 = 1.25, 1.0 and 0.75.

The double-dashed line shows the result for monodisperse colloids and polydisperse

polymer. When both species are polydisperse higher layering states or wetting seems

to be preferable.

Accordingly, we find layering behavior in the polymer density profiles — see

Fig. 4.4. The monodisperse reference system (full line) and the result for polydisperse

polymer are similar — see the profiles for the component with σp/〈σc〉 = 0.75, 0.45

and those with maximum contribution σ∗
p = 0.6〈σc〉. See the inset for the distribu-

tion of the polymer. The double-dashed line displays the behavior for monodisperse

polymer and polydisperse colloids.

In all cases we find layering behavior. The liquid layer state λ1 seems to be robust
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Figure 4.4: Polymer density profiles ρp(z) of the colloid-polymer mixture at
a planar hard wall. For a state-point in the first layering regime λ1 we show
results for one polydisperse species. The monodisperse reference system is
shown by the full line. The profile of the component at maximum packing
fraction σp/〈σc〉 = 0.6 in the distribution is shown by the dashed line. For
smaller (σp/〈σc〉 = 0.45) or larger (σp/〈σc〉 = 0.75) size of the polymer the
profiles are shown by the dotted or dash-dotted lines, respectively. For a
comparison with the effect of monodisperse polymer and polydisperse colloids
(with the distribution from Fig. 4.3) we display the corresponding result by
the double-dashed line. All profiles display layering structure corresponding
to the λ1-state.

against varying the description of the colloid-polymer mixture. Moreover, we also

find layering states of higher order when polydispersity is introduced. We confirmed

this finding up to the forth layering transition and a distribution with zc = 50.

4.1.3 Phase behavior in slit-like pores

In contrast to the bulk phase behavior, where we considered homogeneous (constant)

densities, we employ the DFT route to obtain the phase behavior in the slit geometry

for inhomogeneous density profiles. To this end we employ the FMT formalism for

colloid-polymer mixtures. The density functional for the mixture is given by

Ω[ρc, ρp] = β−1

∫

drΦAOV ({nc
α, np

α}) +
∑

i=c,p

Fid[ρi] +
∑

i=c,p

∫

drρi(r)
(

V i
ext(r) − µi

)

.

(4.1)

We use the linearized (w.r.t. the polymer density) version of the White Bear version

of FMT to describe ΦAOV ({nc
α, np

α}) given in Eq. (2.38). The ideal gas contribution
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Figure 4.5: A colloid-polymer mixture confined between two planar parallel
plates of infinite surface area A and at distance L. The colloids (filled circles)
are restricted to the system indicated by the thick dashed line. Within the
semi-grand canonical description the polymer component (open circles) is
in contact with a reservoir at temperature T and chemical potential µp. As
indicated by the thick dashed line the polymer can exchange position between
the system and the reservoir.

for the mixture with components i is a straightforward generalization of Eq. (2.17)

and we get βFid[ρi] =
∫

drρi(r)(ln λ3
i ρi(r)− 1). For the mixture with species c and p

the minimization condition results in two coupled equations (2.40) which have to be

solved simultaneously.

In the semi-grand canonical ensemble the narrow slit-like capillary is filled with

colloids c and polymer p, see Fig. 4.5. The polymer is connected to a reservoir at

temperature T and chemical potential µp. The (infinite) surface area of the pore

amounts to 2A. We consider one fixed planar hard wall and one planar hard wall

at separation L. Due to packing effects and phase transitions one finds an excess

pressure on the walls of the system. Positive values of the excess pressure fs, or

equivalently the force Afs, represent repelling walls.

We obtain the phase behavior in the capillary from thermodynamic quantities

that follow from the minimization procedure. From the density profiles we obtain

the excess adsorption of the component i from

Γi =
1

A

∫

V

dr(ρi(r) − ρbulk
i ). (4.2)

The excess contribution to the grand potential due to confinement originates from
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the fact that inhomogeneous density profiles develop. It is described by the surface

tension which is defined as

γ =
1

A
(Ω[ρc, ρp] + pV ) . (4.3)

Both, Γi and γ, are related via the Gibbs adsorption theorem

Γi = −
(

∂γ

∂µi

)

T,V

. (4.4)

It is important to note that the surface tension and the excess adsorption depend on

the definition of the dividing interface. We choose the position of the planar hard

wall as the dividing interface.

As already mentioned above, the presence of two confining walls may lead to

capillary condensation of a bulk gas. The transition between the gas g and liquid l

phase happens for state-points in the vicinity of the bulk fluid–fluid binodal. In both

phases the grand potential for the mixture confined in the capillary in terms of the

pressure pα and the surface tension γα in each phase is approximated by

Ωα ≈ −pαAL + 2γαA. (4.5)

For very narrow slits correlations between the walls require further corrections. Note

that 2A is the total surface area that originates from the two confining walls. At

coexistence the grand potentials of both phases are equal,

Ωg(L) = Ωl(L), (4.6)

and from Eq. (4.5) we obtain the wall-wall separation

Lcond ≈ 2γwg − 2γwl

pg − pl
(4.7)

at which capillary condensation occurs. Close to the bulk coexistence we can observe

condensation at large values of the slit width Lcond, which comes from the fact that

the difference between the pressures is small near coexistence and vanishes right at

the coexistence. For small values of L correlation effects between the two confining

walls can be significant. These corrections in the grand potential have to be taken

into account when very narrow pores are studied. The above treatment strictly

holds only for wide slits. Indeed, for very narrow slits correlation effects due to the

strong confinement lead to a shift of the layering line, which itself is a surface phase

transition. The shift δηc in the layering line exhibits exponential behavior on L, in

a similar fashion to the findings for the pre-wetting line, δηc ∝ exp (−L/ξ), where
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Figure 4.6: Colloid density profiles ρc(z) of a colloid-polymer mixture with
size ratio q = 0.6 confined between two parallel planar hard plates at distance
L = 20σc. The lines show profiles of three different phases: the gas (G), the
layering (λ1) and the liquid (L) phase. For the chosen state-point, ηc =
0.0262 and ηr

p = 0.65, the layering is stable.

the decay length ξ is in the range of the correlation length of the gas, ξ ≈ ξgas.

Equation (4.7) can be rewritten into a one-component Kelvin equation [107] and

∆µc = (2/L)(γwl − γgl)/(ρl
c − ρg

c). We find ρl
c − ρg

c ∝ 1/L and, to compare with the

findings for the shift of the layering line, δηc ∝ 1/L at fixed polymer packing fraction

ηr
p. The different behavior of the gas–liquid transition, where we find a power law

behavior 1/L in the shift of the transition, as compared to the layering transition,

where we find exponential shift, indicates a rich behavior due to the competition of

both transitions.

In order to demonstrate the competition between the layering transitions and

capillary condensation we choose a fixed value of the wall-wall distance L and a

state-point where both effects play a significant role. We restrict our consideration

to the size ratio q = 0.6, but we have checked that similar effects can be observed for

other size ratios where we find fluid–fluid phase separation and layering. We choose

ηr
p = 0.65. For this value the layering line is in suitable distance from the fluid–fluid

binodal and the state-points are far away from the layering critical point.

In the following we consider two routes. For a fixed state-point we vary the slit

width L, or for fixed slit-width L we vary the state-point by varying the value of ηc at

fixed ηr
p = 0.65. The latter route corresponds to trajectories along horizontal tie lines

in the (ηc, η
r
p) representation of the phase diagram. In Fig. 4.6 we show three density
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Figure 4.7: Colloid density profiles ρc(z) of a colloid-polymer mixture with
size ratio q = 0.6 confined between two hard walls. The state-point is fixed
in all cases, ηc = 0.0262 and ηr

p = 0.65, while the wall-wall separation is
varied L = 20σc, 15σc and 10σc. For the largest separation (L = 20σc)
we find a stable gas phase (full line) and metastable layering and liquid
phase (not shown in this figure). Upon decreasing the separation (L =
15σc) we observe stable layering structure (full line) while the gas phase
has become metastable (dashed line). At small separations (L = 10σc) we
observe capillary condensation and the liquid phase is stable (full line) while
the colloidal gas phase (dashed line) and the layering are metastable.

profiles ρc(z) of the colloid component for fixed L = 20σc and fixed state-point. We

find three density profiles for ηc = 0.0262, however, those for the gas phase (G) and

the liquid (L) are metastable w.r.t. layering λ1. The stability follows from comparing

the values of the resulting grand potentials: Ωλ1
< Ωg and Ωλ1

< Ωl. We study the

stability in more detail in the next section.

Figure 4.7 shows colloid density profiles for three different values of the slit width

L = 20σc, 15σc and 10σc. At high values of L we show a profile of a stable colloidal

gas (full line). Upon reducing the wall-wall separation we observe the transition τ0−1

and we show the stable layering profile for L = 15σc. For this parameter the gas

became metastable. When L is further decreased the mixture undergoes capillary

condensation as it is shown by the profile of the confined stable liquid for L = 10σc.

Note that for all values of L the full lines denote the profile of the stable state and

we did not show all metastable phases at each value of L.

We have presented a variety of phenomena which manifest themselves in the

density profiles. This has been achieved for selected state-points. From studying the
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Figure 4.8: Phase diagram in the (L, ηc)-representation for a confined colloid-
polymer mixture with size ratio q = 0.6 and fixed polymer packing fraction
in the reservoir, ηr

p = 0.65. We observe three stable phases at large wall-
wall separations: the gas (G), the layering (λ1) and the liquid (L) phase.
Upon decreasing L we find a triple point (filled circle) between these phases.
At low values of L the layering is metastable and we find stable gas–liquid
coexistence.

grand potential Ω within the minimization procedure of DFT in a wide range of slit-

widths L and colloid packing fractions ηc, we are able to evaluate the phase diagram of

the confined AOV mixture in the (L, ηc)-representation. Figure 4.8 shows the result.

We observe three regimes which we denote the colloidal gas (G), the layering (λ1)

and the liquid (L) phase. The full lines show the lines between two coexisting phases.

The bulk fluid–fluid coexistence is indicated by the dotted line. At high values of

L we find three stable regimes — compare these results to a trajectory with fixed

ηr
p = 0.65 in the surface phase diagram in Fig. 4.2(a). Below the triple point (t.p.)

the layering λ1 becomes metastable and only the gas–liquid coexistence remains. The

coexistence lines display power law and exponential dependence on L as described

above, little of the latter is visible for large L and the gas–layering coexistence line

is almost described by a straight line. At low values of L the gas–liquid coexistence

displays strong correlation effects which also manifest themselves in the oscillations

of one curve.
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4.2 Competition between layering and capillary

condensation

4.2.1 Influence of confinement on the coexistence lines

We highlight the competition between the layering transition and capillary conden-

sation by studying the shift of corresponding state-points of coexistence due to con-

finement in more detail. As we already pointed out, we expect an exponential shift

of the gas–layering coexistence state-point, i.e., points where Ωλ1
= Ωg. In Fig. 4.9

we show the shift log |ηlay
c −ηlay

c,wall| of the layering point as a function of the slit width

L. In the logarithmic representation we find a straight line for the shift (full line)

in accordance with the prediction. The fit (dashed line) serves as guide to the eye.

Moreover, from the fit we can extract the inverse decay length ξ ≈ 2.5σc/2. This

is in good agreement with the inverse decay length a0 ≈ 2.4σc/2 which describes

the exponential monotonic decay of structural properties for state-points in the same

region of the phase diagram. Note that we show results for small widths L which de-

note a branch of the coexistence line that lies in the metastable regime (cf. Fig. 4.8).

Due to the exponential decay we cannot resolve the decay at values of L above the

triple point for the chosen parameters. Our observation shows that in the region

where the gas–layering transition is stable the value of ηc is only weakly dependent

on L; see the regime for L above the triple point in Fig. 4.8 where the coexistence

line is almost horizontal. As mentioned above we find that the exponential behavior

for the layering is similar to that for the behavior of the pre-wetting line in confined

geometry.

In Fig. 4.10 we display the shift of the capillary condensation as compared to the

bulk fluid–fluid binodal, ηcond
c,bulk − ηcond

c . Depending on the slit width we can observe

transitions from the gas phase or from the layering to the confined liquid phase.

Figure 4.10 shows those lines upside down and shifted vertically as compared to the

phase diagram Fig. 4.8. The gas–liquid coexistence (full line) and the layering–liquid

coexistence (dashed line) are well described by the power law behavior indicated by

the fitted lines (dotted and dash-dotted line). In Figs. 4.11 and 4.12 the power law

behavior of the shift of the liquid–gas coexistence line is more clearly visible when

we plot δηc vs. 1/L or L vs. 1/δηc, respectively. We find good agreement with the

prediction from Eq. (4.7) above.

The present results show the behavior for values along a horizontal line in the bulk

phase diagram with ηr
p = 0.65. This value has been chosen since on the one hand

the layering line and the (bulk) fluid–fluid binodal are sufficiently separate, and, on

the other hand, we are far away from the layering critical point. For higher values of
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Figure 4.9: Exponential shift of the layering line ηlay
c for the confined fluid

with q = 0.6 and ηr
p = 0.65. In the logarithmic representation log |ηlay

c −
ηlay

c,wall| we find linear behavior in the whole range (full line) in which the
gas–layering transition can be found for these parameters. The dashed line
is a linear fit and serves as guide to the eye. Due to the exponential behavior
it is difficult to resolve the shift of the layering line for wall-wall separations
L > 9σc.
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Figure 4.10: Shift δηc = ηcond
c,bulk − ηcond

c (L) of the gas–liquid (full line) and the
layering–liquid (dashed line) coexistence. The dotted and the dash-dotted
lines are guide to the eye and each line results from the fit δηc = b̄/(L + c̄).
We find clear agreement.
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Figure 4.11: Power law behavior of the shift δηc = ηcond
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gas–liquid (full line) and the layering–liquid (dashed line) coexistence for the
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Figure 4.12: Power law behavior of the shift δηc = ηcond
c,bulk − ηcond

c (L) of the
gas–liquid (full line) and the layering–liquid (dashed line) coexistence. The
dashed and the dash-dotted lines show a linear fit to the data with 1/(δηc) =
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the polymer packing fraction ηr
p in reservoir we find a narrow layering region and the

triple point (t.p.) in the (L, ηc) phase diagram (cf. Fig. 4.8) moves to larger values of

L. Analogously, for decreasing ηr
p the triple point moves to smaller values of L. When

plotted in the (ηc, η
r
p) phase diagram one finds that the trajectory of the triple points

is close to the layering line τ0−1. The reason for this result is the exponential behavior

of the shift of the layering line (cf. Fig. 4.2). Below the layering critical point at a

single wall the gas–layering coexistence line also disappears in the slit geometry.

4.2.2 Stable vs. metastable phases

The phase diagram in Fig. 4.8 shows the coexistence lines between the three phases,

namely the gas, the layering, and the liquid. The density profiles in Figs. 4.6 and 4.7

reveal that the full phase diagram which includes a metastable regime and spinodal

lines is complex. We obtained the coexistence lines from demanding the equality

of the grand potential of the two phases. The metastable regime is obtained from

studying the adsorption isotherms. Figure 4.13 shows the result for fixed L = 15.5σc

and varying colloid packing fraction ηc. At low values of ηc we find low excess colloid

adsorption Γc which corresponds to the gas phase. At high values of ηc we find high

excess adorption of the colloids in the pore which reflects the filled liquid pore. In

between, the system undergoes phase transitions. The parameters are chosen such

that three stable phases occur and two transitions take place. When following the

gas branch of the adsorption isotherm at the value ηc ≈ 0.025941 we observe the

transition τ0−1 from gas to layering. Slightly above, at ηc ≈ 0.02616, the mixture

undergoes the second transition from layering to liquid. The gas–liquid transition at

η∗
c ≈ 0.02614 is in the metastable regime w.r.t. layering.

As it is displayed in Fig. 4.13 we find metastable regions of each phase which are

bounded by the dashed vertical lines. These endpoints for various values of L and

ηc denote the spinodal lines. In Fig. 4.14 we show the whole phase diagram for the

colloid-polymer mixture in the slit geometry. Coexistence lines between two phases

are displayed by the full lines. As compared to the result in Fig. 4.8 we see the gas–

layering coexistence in the full range L > 5.25σc. In the vicinity of the triple point

the gas–liquid and the layering–liquid coexistence almost coincide and can hardly be

distinguished. The dashed and the dash-dotted lines display the spinodal regions.

The gas phase is stable for values of ηc below the top dashed curve (at ηc ≈ 0.02624

for L > 8σc) and we can observe the liquid phase for ηc above the bottom dashed

curve (at ηc ≈ 0.0148 for large values of L). The dash-dotted lines bound the regime

in which layering can occur, but only in the region above the triple point we find

stable layering.
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Figure 4.13: Colloid excess adsorption Γc in a slit pore. The wall-wall sep-
aration L = 15.5σc and the polymer packing ηr

p = 0.65 are fixed. Upon
varying the colloid packing fraction ηc we find stable regimes of the gas, the
layering and the liquid phase. The transitions between the stable states, i.e.,
the gas–layering and the layering–liquid transitions, are shown by full verti-
cal lines. The (gas–liquid) transition between metastable states is shown by
the dashed vertical line. At the endpoints of each branch of the adsorption
isotherm the spinodal is indicated by the dotted vertical lines.

We highlight the region in the vicinity of the triple point to figure out the behavior

of the coexistence lines around this point (see Fig. 4.15). The full (almost) horizontal

line at ηc ≈ 0.025941 shows the gas–layering coexistence. The full line at low values

of L, which ends at the upper dashed line, is the gas–liquid binodal and the full

line at high L, which ends at the bottom dash-dotted line, shows the layering–liquid

coexistence. In this figure we clearly see the three distinct lines.

Fixed slit width L

The competition between different phases close to phase transitions manifests itself

in thermodynamic quantities. We study the surface tension γ to determine the state-

points of coexistence and the excess colloid adsorption Γc to obtain in addition the

spinodal regions. We show both quantities in Fig. 4.16(a) and (b), respectively. The

slit width is L = 15.5σc and we observe three stable phases. Note that (a) shows a

part of the gas–layering transition regime from Fig. 4.13. The three vertical dashed

lines show the three transitions of which those with the lowest value of ηc and the

highest value of ηc describe transitions between stable phases. Figure 4.16(b) clarifies

this result as we find three branches of the surface tension γ corresponding to the
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Figure 4.14: Phase diagram in the (L, ηc)-representation for a confined cp
mixture for the same system as discussed in Fig. 4.8. Besides the coexistence
lines (full lines) we show the spinodal regions. The gas–liquid, the gas–
layering and the layering–liquid coexistence are shown over the whole range
— see Fig. 4.8 for the stable part of each line. The dash-dotted lines show
the layering spinodal. Below the dashed line at low values of ηc the liquid is
unstable, above the dashed line at high values of ηc the gas is unstable.

different phases. However, for a given value of ηc the phase with the lowest value

of γ is stable. At low ηc the gas phase takes the lowest value and is stable. Upon

increasing ηc up to the first dashed vertical line we find a gas–layering transition.

Above ηr
p ≈ 0.025941 the branch corresponding to layering takes the lowest values

until the intersection point with the line corresponding to the liquid phase. From

that figure we can infer in which regions one or two additional metastable phases and

further transitions occur.

For a series of slit widths L/σc ∈ [12, 17] we show the surface tensions for the

three different phases [Fig. 4.17(a)-(g)]. For narrow slits, L = 12σc, only the gas and

the liquid phase are stable, at high values of ηc we observe a broad range in which the

layering phase is stable. In between, at L = 14.25σc we find that the three branches

intersect in a single point, the triple point. The vertical lines indicate the state-point

with lowest value of ηc for layering, the intersection point between the gas and the

layering branch, and the state-point with highest value of ηc for the gas phase.

Fixed state-point

It is instructive to study variable slit width L as it is easier in experiment to control
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Figure 4.15: Phase diagram for a confined cp mixture in the vicinity of the
triple point (t.p.). The full lines show the two-phase coexistence lines which
intersect at the triple point where the gas, the layering and the liquid phase
can coexist. The dashed horizontal line displays the gas spinodal and the
dash-dotted horizontal line displays the layering spinodal. The values of L
chosen in Fig. 4.17 are illustrated by the vertical lines.

this property than the state-point. From the (L, ηc) phase diagram we know that

the gas–layering coexistence τ0−1 line is almost horizontal for large values of L, and

therefore, one has to choose a state-point in the vicinity of this line to observe a

transition triggered by varying slit width. We select three values of the colloid packing

fraction ηc: 0.0257, 0.025941, and 0.0262. Only the intermediate value is sufficiently

close to the transition line τ0−1. In Fig. 4.18(a) we show the difference in the grand

potentials Ωg − Ωl and Ωλ1 − Ωl. For negative values of the difference in the grand

potential we find stable gas g or layering state λ1, respectively. For ηc = 0.0257 and

ηc = 0.0262 we observe for values of L above the point of capillary condensation one

stable phase, i.e., the gas or the layering. For ηc = 0.025941, which is close to the

transition τ0−1, the lines corresponding to gas and layering almost coincide and can

hardly be distinguished. The difference increases at low values of L which is, however,

in the metastable regime w.r.t. the liquid. The vertical lines display the location of

the transitions. In the inset we display the region where the gas and the layering

become unstable. Note that the oscillations originate from the contribution of the

liquid.

In Fig. 4.18(b) at high and intermediate wall-wall separations L we observe that

the colloid excess adsorption is basically constant. This means that the adsorption
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Figure 4.16: (a) Colloid adsorption Γc in a slit-like pore for the same parame-
ters as in Fig. 4.13, L = 15.5σc. The region where the gas–layering transition
takes place is enlarged. The dotted vertical lines indicate the layering spin-
odal and the gas spinodal at low and high ηc, respectively. The dashed lines
indicate the transitions between the three phases. (b) Shown are the cor-
responding surface tensions. The three full lines correspond to the gas, the
layering and the liquid phase. Clearly, for the chosen parameters we find
three intersection points which correspond to the three possible transitions:
gas–layering, layering–liquid and gas–liquid. In this case the latter is in the
metastable regime while the former two are stable.

originates from the two independent separate walls. The locations of the transitions

are indicated by the arrows. Only for small L, i.e., in the metastable regime, we find

an increase in the adsorption by roughly 10%. In contrast to the gas and the layering

phase we see that the adsorption of the liquid is linear in L. This can be explained by

the fact that for capillary condensation the pore is completely filled with the colloidal

liquid. Deviations occur at small widths L.

Further layering transitions

Above we have discussed results for the layering transition τ0−1. As already pointed

out in Sec. 4.1.2 and Fig. 4.2(b) one finds layering states with more than one liquid

layer adsorbed at the wall [22]. We confirmed such states for the White Bear version

of FMT. As for increasing number of layers the layering lines in the (ηc, η
r
p) phase

diagram are very close to the bulk fluid–fluid binodal it follows that the triple point

between gas, layering (λi>1) and liquid is in a region where L is very large. Moreover,

it is demanding to consider further layering states and to figure out the full (L, ηc)
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Figure 4.17: Surface tensions γ of the colloid-polymer mixture confined between two
walls at selected wall-wall separations L/σc ∈ [12, 17]. For large separation (L = 17σc)
we find three stable phases bounded by the intersection points of the three branches
of γ: the gas, the layering and the liquid phase. For small separations (L = 12σc) we
find two stable phases (gas and liquid) as layering is metastable w.r.t. condensation.
At intermediate values of L the competition between the three phases implies complex
behavior (see text). For the value L = 14.25σc we see the intersection between three
lines at the triple point.
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Figure 4.18: Grand potential Ω and colloid excess adsorption Γc of a colloid-polymer
mixture confined between two parallel walls. The size ratio q = 0.6 and the state-point
is fixed. We show the results for three different values of ηc and fixed ηr

p = 0.65. For
ηc = 0.0257 the gas phase is stable, for ηc = 0.0262 we find stable layering behavior.
At the intermediate value ηc ≈ 0.025941 we are in the gas–layering coexistence regime.
In (a) we show the difference between the grand potentials of the layering and the
liquid phase, Ωλ1 − Ωl, and of the gas and the liquid phase, Ωg − Ωl, respectively.
For ηc = 0.0257 we find a stable gas phase above the transition at L∗ ≈ 13.0σc; for
ηc = 0.0262 we observe stable layering above L∗ ≈ 15.8σc. At ηc ≈ 0.025941 the
branch for the gas and the layering almost coincide in this representation. In (b) we
show the corresponding colloid adsorptions. The lines at σ2

c Γc ≈ 0.7 result for the
gas phase, those at σ2

c Γc ≈ 1.3 correspond to the layering state λ1. The lines with
(almost) linear behavior correspond to capillary condensation. The transitions are
indicated by the arrows. Note that for stability considerations one has to confer to
(a).
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Figure 4.19: Solvation force fs between two planar hard walls which con-
fine a colloid-polymer mixture with size ratio q = 0.6 and ηr

p = 0.65. The
state-point is chosen such that for large L the gas phase is stable (full line).
ηc = 0.0257 which is slightly below the gas–layering coexistence line. Upon
decreasing the wall-wall separation we find a transition to the liquid phase
shown by the vertical full line. Below that value of L the liquid phase is
stable (full line). The transition between the layering and the liquid phase
is indicated by the vertical dotted line. However, the layering is metastable
in the whole range (middle dotted line).

phase diagram because many metastable regimes can overlap. We have confirmed

that similar behavior to that presented above for λ1 can be found for λ2. However,

studying the first layering transition already provides the relevant insights.

4.3 Solvation forces

4.3.1 Effect of solvent phase separation

The adsorption in the slit-like pore is closely related to the force between the two

confining walls. We study the solvation force for the AOV mixture and, in particular,

we focus on its complex behavior due to the rich phase behavior of the confined fluid.

In the slit an infinitesimal variation of the grand potential has the following form

dΩ = −pdV − SdT −
∑

i=c,p

Nidµi + 2γdA − AfsdL. (4.8)

The last term describes the variation due to variations of the slit-width and the force

Afs describes the following interactions: the wall-wall, the wall-fluid, and the fluid–
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Figure 4.20: Solvation force fs between two planar hard walls confining a cp
mixture. The size ratio q = 0.6 and ηr

p = 0.65. The colloid packing fraction
is chosen such that the state-point lies on the gas–layering coexistence line,
ηc ≈ 0.025941. Due to the exponential dependence of the shift of the layering
line on L only a small variation δηc suffices to result in a state-point below
or above the coexistence line. As we cannot resolve the exponential behavior
for the wall-wall separation above the triple point we find for ηc ≈ 0.025941
a transition between the gas phase and the layering state. This finding is
indicated by the dashed lines and the short full vertical line. At small L we
observe capillary condensation (full vertical line) and a stable liquid phase.

fluid interactions. The effect of the latter two contributions is called the solvation

force. In these terms fs denotes a surface excess pressure and is given by

fs = − 1

A

(

∂Ω

∂L

)

µi,T,A

− pbulk. (4.9)

To obtain a directly measurable expression for fs, we use the following relation

− 1

A

(

∂Ω

∂L

)

µi,T,A

= −
∫

dV
δΩ

δ(µ − Vext(r))

∂Vext(r)

∂L
, (4.10)

where δΩ/δ((µ − Vext(r)) = −ρ(r). For planar hard walls this reduces to [108]

βfs(L) =
∑

i=c,p

[ρi,L(0+) − ρi,∞(0+)]. (4.11)

From the contact values ρi,L(0+) and ρi,∞(0+) of each component of the AOV mixture

at finite L and L → ∞, respectively, we can evaluate the solvation force.

In Figs. 4.19, 4.20 and 4.21 we show the solvation force Afs for three different

state-points ηc = 0.0257, 0.025941, and 0.0262. The polymer packing fraction in the
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Figure 4.21: For q = 0.6, ηr
p = 0.65, and ηc = 0.0262 we find a jump in the

solvation force fs due to the transition from layering to liquid (full vertical
line). Above that value the layering is stable (full line), below we observe
capillary condensation (full line). The dotted lines display the metastable
regimes. The dotted vertical line shows the position of the transition from
gas to liquid, which for the chosen parameters corresponds to a transition
between metastable states.

reservoir ηr
p = 0.65 and the size ratio q = 0.6. We show the solvation force fs(L) in

the range L/σc ∈ [3, 25]. For the value ηc = 0.0257 we find two regimes of fs. For

large slit widths we observe a low and almost constant value of the solvation force

Afs (full line). This is in accordance with the observation of the exponential decay of

structural properties in this region of the phase diagram that manifests in the density

profiles and depletion potentials in the AOV mixture. Upon decreasing the value of

L we find a jump in the solvation force at L = 13.02σc (full vertical line) arising from

capillary condensation (see the phase diagram in Fig. 4.15). At the slightly larger

value L = 13.11σc we indicate the transition between the (metastable) layering and

the liquid by the dotted vertical line. Further decreasing of the wall-wall separation

L leads to pronounced oscillations in the solvation force due to the filled pore. The

wavelength of the oscillations is similar to the size of the colloids, σc.

For the largest value, ηc = 0.0262, similar behavior occurs. However, at large slit

widths we find stable layering (see the phase diagram Fig. 4.15) and the solvation

force follows the full line which takes larger absolute values than for the corresponding

gas phase. In a similar fashion we observe a transition to the liquid at L = 15.78σc,

while the transition between the stable liquid and the metastable gas occurs at the

slightly larger value L = 15.92σc. At small L the behavior on the liquid branch is



72 4. Fluids in Confined Geometry

very similar to the case of lower ηc = 0.0257.

We find a competition between the layering and gas phases for ηc ≈ 0.025941, i.e.,

at a state-point which is very close to the gas–layering coexistence. At high values

of L only a tiny variation suffices to trigger the transition from gas to a layering

state. We indicated the transition by the short full line for an exemplary value

L = 19σc. Below this point the layering is stable until we decrease L below 14.25σc

where condensation occurs and the liquid fills the pore. This regime is similar to

the cases discussed in the previous paragraphs. Close to gas–layering coexistence we

can find solvation forces which exhibit two jumps ∆fs, each related to a transition.

This finding is in accordance with theoretical predictions as the jump in adsorption

is adjoined by a jump in the solvation force [57, 87]. We discuss this point in the

following section.

4.3.2 Thermodynamic relations

We have observed that at the state-points of the transitions we find a jump in the

excess adsorptions which is accompanied by a jump in the solvation forces. We study

a quantitative relation between ∆Γc and ∆fs at the state-points of the gas–layering

(g–λ1), the layering–liquid (λ1–l) and the gas–liquid (g–l) coexistence. Moreover, we

investigate whether at the transitions we find different types of dependence of ∆fs on

the slit-width L in a similar fashion to the shift of the coexistence lines due to con-

finement where we observed qualitatively different behavior (see Figs. 4.9 and 4.11).

The Gibbs adsorption equation [87] for a binary mixture of colloids and polymer

is given by

dΩ = 2Adγ + 2AsdT + A
∑

i=c,p

Γidµi + 2γdA − (Afs)dL (4.12)

which is appropriate for our situation. In the following we recall some arguments from

Ref. [87]. The surface area of the walls A is fixed. From the Gibbs-Duhem equation
∑

i=c,p ρbulk
i dµi = 0 at constant pressure p and temperature T we can eliminate dµp

and obtain 2dγ + Γr
cdµc + fsdL = 0 [109]. The relative colloids adsorption w.r.t. the

polymer is defined as Γr
c,α = Γc,α − Γp,αρbulk

c /ρbulk
p . At coexistence and by equating γ

for the two phases α and β one obtains

(Γr
c,α − Γr

c,β)dµc + (fs,α − fs,β)dL = 0. (4.13)

At fixed pressure and fixed temperature the Clapeyron relation in terms of the dif-

ference in the adsorption and the difference in the solvation force reads

∂L

∂µc

∣

∣

∣

∣

T,p

= −
Γr

c,α − Γr
c,β

fα − fβ
. (4.14)
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Figure 4.22: Jump in the solvation force ∆fs between two walls which confine
a cp mixture for state-points along the coexistence lines. We show the result
for the three possible lines allowing to compare the order of magnitude be-
tween the results corresponding to the different transitions. At state-points
along the gas–layer coexistence line we find exponential decay with increasing
L (full line). For the gas–liquid coexistence line we find oscillatory power law
decay (dashed line) while along the layer–liquid coexistence line we observe
monotonic power law behavior of ∆fs (dotted line).

With the considerations exposed in 4.1.3 by use of Young’s equation γwg = γwl +

γgl cos Θ we obtain, in terms of a general expression for two coexisting phases α and β,

(2γαβ cos θ)/L = ∆µc(ρc,α − ρc,βρp,α/ρp,β). Then, for the difference in the (relative)

adsorption and the difference in the solvation force between coexisting phases α and

β follows that Γr
c,α − Γr

c,β ∼ L(ρc,α − ρc,βρp,α/ρp,β) ∝ L and fα − fβ ∼ −∆µ2(ρc,α −
ρc,βρp,α/ρp,β) ∝ −1/L. In our case, these arguments hold for transitions where α = l.

In Fig. 4.22 we show the jump in the solvation force at all the transitions (g-l, g-λ1,

λ1-l) in the whole range of L where they occur. At the transitions to the liquid phase

we find slower decay as compared to the result along the g-λ1 coexistence line. Both

results, g-l and λ1-l, are of very similar character at intermediate and large values of

L. For small slit-widths, L < 7.5σc, we observe correlation induced oscillations.

We can verify the 1/L dependence of the jump in ∆fs in the log-log plot. We

display the result in Fig. 4.23 where we plot ∆fs vs. 1/L. In this representation

the curves follow a line which demonstrates the power law. The region with small

L is on the right hand side of the plot. Note that the 1/L behavior follows from

a macroscopic formula [87] which strictly holds only for sufficiently large values of
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Figure 4.23: The power law behavior of the jump in the solvation force ∆fs

is captured in a wide region of state-points along the gas–liquid (full line)
and the layering–liquid (dashed line) coexistence. At low values of 1/L we
find good agreement with the power law behavior. At higher values of 1/L,
or equivalently low values of L, we observe the oscillatory structure in the
jump of the solvation force.

L. In the region of small L we observe deviations in the form of oscillations. It is

remarkable that for both cases, the gas–liquid and the layering–liquid transition, we

find similar results.

In contrast to the gas–liquid phase separation, that can occur in the bulk, the

gas–layering transition is a surface phase transition. Already at one surface we find

a jump in the contact values of the colloid and the polymer density profile. Note,

however, that the sum of the contact densities equals the bulk pressure and does not

jump. We study the behavior of the jump in ∆fs from the contact values in slit

geometry and at one single planar hard wall which, according to sum rules, equals

the bulk pressure. In the logarithmic representation we show the result in Fig. 4.24.

In the whole range that we can resolve (L < 9.5σc), we find good agreement to

exponential decay of ∆fs. The exponential decay reflects the previous observations

of the shift in the layering line and exhibits a comparable shift as a pre-wetting line

in confined geometry. In a similar fashion to the shift in the layering line and the

gas–liquid coexistence lines we find two types of decay for the present transitions.
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Figure 4.24: Logarithmic representation of the jump in the solvation force
∆fs between two walls for the same parameters as in Fig. 4.22. For state-
points at gas–layering coexistence we find good agreement with the expo-
nential behavior indicated by the fit (dashed line). Note that it is difficult
to resolve the difference for wall-wall separations L > 9.5σc.

4.4 Conclusions

Within our model, the AOV mixture of colloids and polymer with its simple in-

teraction between particles, we recover a rather complex phase behavior and a rich

variety of phenomena in the bulk, at one single wall, and in confinement. On a sin-

gle planar hard wall we observe layering effects. The layering transitions are robust

against variation which can be due to the underlying equations of state or due to a

polydisperse size distribution which can describe experimental situations more realis-

tically than the binary colloid-polymer mixture. In confined geometry we find distinct

phase transitions. Capillary condensation occurs due to a shift of the bulk fluid–fluid

binodal whereas layering effects exhibit less pronounced influence. This rises the

question of the competition between those two effects. When studying the depen-

dence of thermodynamic quantities on L we find qualitatively different behavior. For

capillary condensation we find power law dependence for the shift of the gas–liquid

coexistence and for jumps in the solvation force. At the layering line we observe

exponential dependence of the same quantities on L. In narrow pores the capillary

condensation will suppress layering effects, while those will arise for sufficiently large

pores. The complexity of the phase diagram manifests in various coexistence lines

and regimes of metastable phases. Results from both routes, varying L or varying
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the state-point, may be of relevance for experimental verifications. We expect that

similar competition also takes place in confined geometries which are more complex

than the narrow pore, such as, for instance, porous media.



Chapter 5

Effective Interactions

Phase behavior, equilibrium structure, and thermodynamic properties of colloidal sys-

tems are determined by the mutual interaction between the particles of the involved

species. The thermodynamics can be studied via various approaches [37, 80, 93, 110].

For mixtures the situation is more complex than for systems with one single species

of solute particles. One way to treat mixtures is to map (n − 1) species of a n-

component mixture onto effective interaction potentials and reduce the complexity of

the full problem to a remaining effective one-component system. This procedure can

be employed in different situations, however, one has to consider the range in which

the mapping is accurate or even valid, in particular, for phase separating solvents

and bridging phenomena [111,112]. For ideal polymer [9,10], interacting solvent par-

ticles [113], additive [15, 17, 18] or non-additive hard-sphere mixtures [20, 100], and

systems with soft interactions [19,114] accurate mapping routes are known under cer-

tain special assumptions. For mixtures of hard spheres or the AOV mixtures when

the size ratio is too symmetric, many-body interactions have to be taken into ac-

count which reduces the accuracy of the mapping. We employ a mapping procedure

for the interaction between a planar hard wall and a big colloidal particle immersed

in a solvent. For hard-sphere solvents or within the AO approximation, i.e., for the

ideal polymer solvent, the mapping has been done successfully and provides accurate

results in the region of the phase diagram where no wetting and bridging phenomena

occur [18,20,22,105]. For the full mixture of colloids and polymer one inevitably has

to take its phase behavior into account. We study the effective interaction between

a spherical colloidal particle and a substrate with particular focus on the solvent

properties.

77
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c
b
p

Figure 5.1: Sketch of an AOV mixture of colloids c and polymer p at a planar
hard wall. A big colloid b is immersed in the solvent. The size ratio in the
sketch between the particles of the different species is σp : σc : σb = 1 : 1 : 5.
The solvent particles consist of two species indicated by open and small filled
circles. The interaction potentials among colloids are of hard-core type while
the polymer may overlap freely among each other. The thin lines indicate
regions not accessible to the (centers of the) smaller species c and p.

5.1 Depletion potentials in colloid-polymer mix-

tures

In this section we study the interaction between a big colloidal particle b, modeled as a

hard sphere, and a planar hard wall w. The colloid is immersed into an AOV mixture

of smaller colloids c and ideal polymer p (see Fig. 5.1). The intrinsic interaction

potential Vij(rij) of the solvent is the same as that used throughout the previous

chapter and given in Eq. (2.33) for ij = cc, cp, pc and Vpp(rp) = 0. In the limiting

case, ρc → 0, where the solvent is composed of ideal polymer only, the effective

interaction potential between the wall and the big colloid b is known exactly. For

a pure hard-sphere solvent, ρp → 0, the interaction potential can be described by

accurate expressions within a general approach [18]. In the case of a solvent described

by a full AOV mixture we have to treat the ternary bcp mixture of colloids b, colloids c

and polymer p. In this case the effect of phase separation of the cp mixture has to

be taken into account when we address the interaction between the wall and the big

colloidal particle. We may ask in which region of the phase diagram the colloids c

or the polymer p play a dominant role in the effective wall-colloid interaction Vwb(z).

We show results which relate Vwb(z) to the phase behavior of the solvent cp mixture.

The depletion potential between a big colloid, denoted by b, and a planar hard
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wall can be obtained once the density profile of the component b in the dilute limit,

ρb → 0, is known [17, 18],

βW (z) = − lim
µb→−∞

ln

(

ρb(z)

ρb(∞)

)

− βVb(z) + βVb(∞). (5.1)

The depletion potential in terms of the one-body direct correlation functions c
(1)
b (z)

is given by [18]

βW (z) = c
(1)
b (z → ∞; {µi 6= b}; µb → −∞) − c

(1)
b (z; {µi 6= b}; µb → −∞), (5.2)

and follows from the density profiles of the cp solvent via Eq. (2.32). Within the

FMT approach we use the route of Eq. (5.2) to evaluate the depletion potentials.

In Figs. 5.2(a) and 5.2(b) we show depletion potentials for state-points following a

horizontal line in the phase diagram, i.e., at fixed polymer packing fraction in the

reservoir ηr
p = 0.63 and increasing colloid packing fraction ηc. All solvent particles are

of equal size, σc = σp, while the size of the inserted big colloidal particle is σb = 5σc.

Figure 5.2(a) shows a deep potential and little oscillatory effects for low concentrations

of the colloid c (full line). Upon increasing ηc the potential at intermediate distance

z becomes significantly deeper. At contact, z = 2.5σc, however, the depth of the

potential decreases for larger values of ηc (dashed and dotted lines). In Fig. 5.2(b)

we find that upon increasing ηc further (full line) the potential becomes less deep

at contact and the oscillations are more pronounced. At ηc = 0.3, the largest value

shown here, we find strong oscillations and the depletion potential exhibits similar

behavior to the one of a binary hard-sphere mixture [18] as the polymer species has

little influence. Note that the value of the depletion potential at contact increases at

first for increasing ηc, while it decreases for very high ηc. Besides those at the axis with

ηc = 0 we did not find depletion potentials with purely monotonic behavior in the

whole z-range. The oscillations in the range of small and intermediate distance z also

occur for very low values of ηc, though they are of small amplitudes in that regime. In

the asymptotic regime, z → ∞, for low values of ηc the depletion potential exhibits

monotonic exponential decay, while for higher values of ηc the increasing contribution

of hard spheres leads to oscillatory exponential decay. The line in the phase diagram

which separates regions with those two different types of decay in the structure and

in the depletion potential is called the Fisher-Widom (FW) line [115].

5.2 Surface virial coefficient

The phase behavior of a one-component fluid is determined by the mutual inter-

action potential between the particles. The virial coefficient B2 relates both, the
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Figure 5.2: Depletion potentials between a spherical colloidal particle b and
a planar hard wall w. The solvent is the AOV mixture of smaller colloids c
and polymer particles p. The size ratio among the different components is
σp :σc :σb = 1 : 1 : 5. We show results for state-points on a horizontal line in
the fluid phase of the phase diagram with ηr

p = 0.63. In (a) we show results
for lower values of the colloid packing fraction ηc. Figure (b) shows depletion
potentials for higher values of ηc. In the limit ηc → 0 the depletion potential
within the AO approximation is known exactly (not shown here).
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phase behavior and the interaction potentials, as it appears in expansion approaches

to the equation of state and is based on the interparticle interaction potential,

B2 = −1/2
∫

f(r)dr, where f(r) is the Mayer-f function. For a solvent with rich

phase behavior it is interesting to figure out how much of the phase behavior can be

described by the complex interactions that capture the solvent influence in terms of

an expansion approach. We study the virial coefficient which relates the bulk phase

behavior of the solvent to the depletion interaction between a planar hard wall w and

a big colloid b immersed in the AOV mixture, which in bulk for a symmetric size

ratio between the colloids c and the polymer p exhibits fluid–fluid phase separation.

To this end we use the following definition of the second surface virial coefficient

B̂2 = −1

2

∫

[exp (−βVwb(z)) − 1] dr, (5.3)

with Vwb(z) = VHW (z) + W (z). We divide the wall-particle interaction Vwb(z) into

two terms, one describing the hard-core repulsion between the hard wall and the

big colloid, VHW (z), and a second describing the effective potential W (z) due to the

solvent, and obtain

B̂2 =
A

2

∫ σbb/2

0

[1 − exp (−βVHW (z))]dz +
A

2

∫ ∞

σbb/2

[1 − exp (−βW (z))]dz. (5.4)

The first term equals Aσbb/4, while the second expression contains the contributions

due to the effective interactions of the solvent and is more difficult to obtain. We

define the effective interaction potential contribution B̃2 to the second surface virial

coefficient,

B̃2 ≡
∫ ∞

σbb/2

[1 − exp (−βW (z))]dz. (5.5)

Note that the depletion potential W (z) and hence the virial coefficient B̃2 are known

exactly for a big colloid b immersed in a solvent composed of the ideal polymer p only.

In Fig. 5.3 we show the result for state-points at a trajectory in the phase diagram with

ηc + ηr
p = 0.3 and the size ratios σp :σc :σb = 1:1 :5. For pure ideal polymer, ηc → 0,

we find the (analytic) minimum of B̃2, and increasing the colloid packing fraction

leads to increasing values of B̃2 — see the depletion potentials shown in Fig. 5.4 for

the same trajectory in the phase diagram. The full line shows the result for very low

colloid packing fraction, ηc = 0.001, which is very close to the exact result. Though

the depletion potentials for intermediate and large values of ηc exhibit pronounced

oscillations, the value at contact becomes more negative and determines the behavior

of B̃2. At intermediate colloid packing fractions ηc (dotted lines) the negative region

of W (z) is narrower and the absolute value is lower. Hence, the virial coefficient B̃2

increases and is maximal at approximately ηc = 0.13. Upon further increasing ηc,
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Figure 5.3: The effective interaction potential contribution to the second
surface virial coefficient B̃2 along a trajectory in phase diagram, ηc+ηr

p = 0.3.
The full line shows the result for an AOV mixture with size ratio between
the solvent particles σp : σc = 1 : 1. The size of the big particle is σb = 5σc.
We observe one minimum at ηc = 0 and one at ηr

p = 0, or equivalently at

ηc = 0.3. In the intermediate regime we find a maximum value of B̃2.

i.e., equivalently upon reducing the contribution ηr
p of the polymer, the oscillatory

behavior in the potential becomes more pronounced. It is important to note that

the value of the depletion potential at contact decreases when further increasing ηc

(cf. the dash-dotted lines in Fig. 5.4). In Fig. 5.3 we find a local minimum in B̃2 for

the maximum value of ηc considered here and the limit value of a pure hard-sphere

solvent.

So far we have shown results for B̃2 for state-points in the (bulk) fluid phase of

the AOV mixture, i.e., for sufficiently low polymer density. In Fig. 5.5(a) we show

results for a range of both packing fractions, ηc and ηr
p respectively. Due to the strong

increase of the absolute value of B̃2 for high packing fractions we show the data also

in a logarithmic representation, log |B̃2/σc|, in Fig. 5.5(b). In both representations,

the linear and the logarithmic, we find lines of extremal values in the (ηc, η
r
p)-plane.

When we follow horizontal trajectories in the phase diagram, i.e., we keep ηr
p fixed

and vary ηc, we find a maximum value of the virial coefficient B̃2 and accordingly a

minimum value for log |B̃2/σc|. Figure 5.6 shows contour lines to the result of the

logarithmic representation shown in Fig. 5.5(b). Along path A, i.e., for low values of

ηr
p, the value of B̃2 decreases in the whole range shown. The depletion potentials close

to the axis, ηc = 0, are flat such that upon increasing the values of ηc the influence
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Figure 5.4: Depletion potentials between a spherical colloidal particle b and
a planar hard wall. The selected state-points are on a line in phase diagram
with ηc + ηr

p = 0.3 and σp = σc. The diameter of the inserted big colloidal
particle is σb = 5σc. We find low values of the potentials at contact for
very high and very low values of ηc. In the intermediate regime of ηc the
oscillations are more pronounced than for low values, however, the absolute
value at contact is low and leads to small contributions to the surface virial
coefficient B̃2.

on the depletion potential due to the hard-sphere colloids is increased gradually and

B̃2 exhibits monotonic behavior. For the path B, i.e., at an intermediate value of ηr
p,

for low values of ηc we find increasing B̃2 and a decrease in B̃2 for larger ηc. Along

this path for low ηc the influence of the polymer is stronger than for path A and the

depletion potential has a deep minimum at contact. For increased colloid packing

fraction we find a competition between the polymer and the colloid contribution to

the depth of the depletion potential. At low values of ηc the value of the depletion

potential near contact is strongly negative and leads to strong negative values of B̃2.

At intermediate values of ηc the contact value of W (z) is less negative, which gives

smaller contribution to B̃2, but due to pronounced oscillations we have an additional

contribution to B̃2. The sum of both contributions leads to increasing B̃2 in that

range of ηc. For large values of the colloid packing fraction ηc the oscillations become

more pronounced and the value of the depletion potential at contact becomes strongly

negative. In this range the contribution of the colloids to the surface virial coefficient

B̃2 becomes very strong and due to the deep minimum at contact the value of B̃2

becomes strongly negative. The contour lines in Fig. 5.6 visualize the behavior of
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Figure 5.5: (a) Surface virial coefficient B̃2 for the same parameters as in
Fig. 5.3 but now in a wide range of packing fractions ηc and ηr

p of the solvent
species. At horizontal lines in the phase diagram, i.e., fixed ηr

p, we find

points with maximum values of B̃2. Upon increasing packing fractions the
(absolute) value of B̃2 increases strongly. In Fig. (b) we show the virial
coefficient B̃2 in logarithmic representation. For increasing packing fractions
we find very strong increase. Note that the critical point is in the same
region, ηc = 0.103 and ηr

p = 0.635, and the strong increase occurs in the
vicinity of the fluid–fluid binodal (cf. Fig. 3.2).
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the surface virial coefficient B̃2 in the whole (ηc, η
r
p)-plane. The maximum values of

the contour lines in the (ηc, η
r
p) representation yield a line which divides the phase

diagram into regions where the virial coefficient B̃2 increases (above the full line)

upon increasing ηc and where B̃2 decreases (below the full line) upon increasing ηc.

In Fig. 5.6 we compare this line of the maxima (full line) to the Fisher-Widom line

(dashed line) which separates regions in phase diagram with purely monotonic and

oscillatory exponential decay of the depletion potential. We find that both lines

exhibit similar behavior.
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Figure 5.6: Contour lines of the logarithmic representation of the virial coeffi-
cient B̃2. From bottom to top the lines show increasing log |B̃2/σc|. Along the
path A we find increasing values only, however, path B indicates increasing
values log |B̃2/σc|, i.e., increasing B̃2 for low ηc and decreasing B̃2 for larger
values of ηc. Points with vanishing slope of the contour lines yield a line
which separates the phase diagram into two regions (full line). Following a
path at fixed ηr

p, the latter line equals points with maximum B̃2. The dashed
line is the Fisher-Widom line which separates regions in phase diagram with
oscillatory and monotonic exponential decay for large z of density profiles
and the depletion potential.

5.3 Effective interaction and phase behavior

In the previous section we found a maximum value of the virial coefficient B̃2 in

the fluid regime of the phase diagram and numerical results which display a strong

increase of the absolute value of B̃2 if the packing fractions ηr
p are sufficiently high.

In this section we relate the virial coefficient B̃2 to thermodynamic bulk properties

and analytically study the strong increase in the vicinity of the fluid–fluid phase

separation. The effective interaction between a big colloidal particle b and a planar
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hard wall in a sea of smaller colloid c and polymer p is given by [18]

βW (z) = − lim
µb→−∞

ln

(

ρb(z)

ρb(∞)

)

. (5.6)

The second surface virial coefficient [116–119] then reads

1

A
B̂2 =

σbb

4
+

1

2

∫ ∞

σbb/2

[

1 − lim
µb→−∞

(

ρb(z)

ρb(∞)

)]

dz (5.7)

=
σbb

4
+

1

2
lim

µb→−∞

∫ ∞

σbb/2

[

1

ρb(∞)
(ρb(∞) − ρb(z))

]

dz. (5.8)

We relate the virial coefficient to the excess adsorption, which in the following is

defined as Γi =
∫∞

0
(ρi(z)−ρi(∞))dz, and obtain for the integral in the latter equation

lim
µb→−∞

∫ ∞

σbb/2

(

ρb(z)

ρb(∞)
− 1

)

dz = σbb/2 + lim
µb→−∞

Γb

ρb(∞)
(5.9)

and finally the second surface virial coefficient is given by

1

A
B̂2 = −1

2
lim

µb→−∞

Γb

ρb(∞)
. (5.10)

The adsorption is related to the wall-fluid surface tension via the Gibbs adsorption

theorem

Γi = −∂γwf

∂µi

∣

∣

∣

∣

T,V,µj 6=i

, (5.11)

where we set i = b and j = c, p in our situation. In the limit of vanishing density ρb

of the big colloidal component, or equivalently µb → −∞, we obtain

lim
µb→−∞

∂γwf

∂µb

∣

∣

∣

µj 6=b

∝ lim
ρb→0

[
∫ ∞

σbb/2

(

1 − ρb(z)

ρb(∞)

)

dz

]

. (5.12)

As the variation of the surface tension w.r.t. the chemical potential is not known

directly we employ the chain rule to split the derivative in the latter expression into

the following series of products

Γj = − ∂γ

∂µj

∣

∣

∣

{µk 6=j},V,T
(5.13)

= −
∑

i

∂γ

∂ρi

∣

∣

∣

{µk 6=j},V,T

∂ρi

∂µj

∣

∣

∣

{µk 6=j},V,T
. (5.14)

Within FMT the pressure p, the surface tension γ and the bending rigidities κ and κ̄

are related to derivatives of the excess free energy density Φ. For mixtures of colloids

and polymer we employed a linearized w.r.t. polymer density expression for Φ. Then
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the first factor in Eq. (5.14), which we do not need in the following, is given by the

following approximate expression

β
∂γ

∂ρi

∣

∣

∣

{µk 6=j},V,T
=

∂

∂ρi

(

∂φex({nc
α, np

α})

∂nc
2

)
∣

∣

∣

∣

{µk 6=j},V,T

. (5.15)

This relation strictly holds only for low values of the density ρp as βγ = ∂φex/∂nc
2

is linear in ρp. In a more accurate description one should also consider higher order

terms. The second factor with µj = ∂f/∂ρj and βf = φex + f id yields

∂µj

∂ρi
=

∂2φex

∂ρi∂ρj
+ δij

1

ρj
. (5.16)

We insert these expressions into Eq. (5.14) and obtain the following result

∂γ

∂µj

∣

∣

∣

µk 6=i

≈
∑

i=b,c,d

[

∂

∂ρi

∂φex

∂nc
2

] [

∂2φex

∂ρi∂ρj

+ δij
1

ρj

]−1

. (5.17)

Note that second factor denotes an inverse matrix. Taking this fact into account

we may express the latter result for the second surface virial coefficient in terms of a

nominator N and denominator D, − 2
A
B̂2 = N

D
. We obtain diverging values of B̂2 when

we consider D = 0. In this limiting case of a divergent value of the second surface

virial coefficient, we find an implicit equation which relates the packing fraction of

the colloid c and the polymer p

ηp =
(1 − ηc)

4(2ηc + 1)/ηc

12(1 − ηc)3 + 15q(1 − ηc)2(2ηc + 1) + 6q2(1 − ηc)(2ηc + 1) + q3(2ηc + 1)3
,

(5.18)

with q = σp/σc the size ratio of the solvent particles. The result is shown in Fig. 5.7 for

a solvent with q = 0.6 and upon employing the linearized AOV version of Rosenfeld’s

expression for the excess free energy. The result in Eq. (5.18) equals the explicit

expression for the fluid–fluid spinodal within the same formulation of FMT. This is

not surprising since the equation for the spinodal is given by ∂2f/∂ρi∂ρj = 0 [see

Eq. (2.46)].

5.4 Conclusions

We showed the influence of the phase behavior of a colloid-polymer solvent onto

the interaction between a big colloidal particle and a planar wall. We find that

the corresponding depletion potential exhibits rich behavior. For state-points near

phase coexistence we find long-ranged behavior when still short-ranged structure

occurs in the density profiles. The depletion interaction reflects the phase behavior



88 5. Effective Interactions

|B̂2| → ∞

ηc

η
r p

0.50.450.40.350.30.250.20.150.10.050

1

0.9

0.8

0.7

0.6

0.5

0.4

Figure 5.7: Divergence of the second surface virial coefficient B̂2 based on
the implicit expression in Eq. (5.18). The line shows values in phase diagram

where the denominator of B̂2 vanishes, D = 0. The explicit expressions for
the line with diverging surface virial coefficient, |B̂2| → ∞, and the one for
the fluid–fluid spinodal coincide.

of the AOV mixture in bulk. Via the second surface virial coefficient we find a

relation between the depletion interaction mediated by the solvent and its bulk phase

behavior. These findings establish a basis for further study of the effective interactions

between particles immersed in a phase-separating solvent.



Chapter 6

Complex Solvents

It is a demanding task to figure out the effective interaction a phase-separating solvent

mediates between two colloids [120–122], or between a particle and a flat planar wall

as shown by means of simulations [111] or DFT calculations [112]. An appropriate

model to treat phase-separating many-component fluids is the AOV model. The

influence of a complex solvent onto the mapping procedure has been studied in various

cases. Size-polydisperse hard-sphere solvents exhibit strong influence on the effective

interaction between two very big colloids [47], and simulations for particles with

the repulsive part of the Lennard-Jones potential show that wetting effects induce

depletion attraction [123]. In this chapter we study the rich phenomenology of a

colloid-polymer mixture at two big colloids and at one ellipsoidal particle. We study

some aspects of the influence of the rich solvent properties on the interaction and

thermodynamics of colloids. To this end we employ the AOV model to describe the

solvent as it covers many effects. We can benefit from the fact that the approaches to

treat AOV mixtures are well-developed [14,38,84] as presented in the three previous

chapters in the case of bulk and inhomogeneous mixtures. In the following we focus

on the mixture PY equation of state and Rosenfeld’s original formulation of FMT

for the hard spheres and the corresponding linearized Rosenfeld formulation of FMT

[Eqs. (2.38) and (2.39)] for the AOV mixture.

6.1 Two colloids in a phase-separating solvent

In Chapter 4 we presented results from density functional theory for a mixture con-

fined between two parallel plates. In that case we used the symmetry of the system,

ρ(r) = ρ(z), for a DFT approach. Exploiting symmetries makes the DFT approach

numerically efficient and more accurate. Usually, the depletion potential is calculated

using the insertion approach, where one particle is fixed at the origin and turned into

89
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an external potential and the second particle is inserted into the inhomogeneous sol-

vent [Eqs. (5.1) and (5.2)]. The inserted particle is described as a further component

in the limit ρb → 0. When we evaluate the depletion potential between two parti-

cles b in a sea of a solvent within the present DFT approach, the density profiles

required for the evaluation of the depletion potential via Eqs. (5.1) and (5.2) are

those of a system of one fixed particle. For a further species of the same particles

one considers ρb → 0 and the second particle is not yet inserted into the system. To

this end we employ the fundamental measure approach within DFT for systems with

rotational symmetry. Then, the density profile ρ(r) = ρ(z, r) and both particles of

species b are inserted into the system when the density profiles are evaluated. We

show results in three different situations: Firstly, a one-component hard-sphere fluid

around two large colloids which corresponds to a binary hard-sphere mixture in the

low density limit of the larger component, ρb → 0. Secondly, we show results for a

colloid-polymer solvent around two colloids and turn our attention on the influence

of solvent phase separation, and thirdly, we present results for the AOV mixture at

an ellipsoidal particle.

Depending on the shape of the fixed particle, which is considered as an external

potential in the DFT route, one usually employs appropriate coordinate systems, e.g.,

spherical coordinates for one fixed spherical colloid or bispherical coordinates for two

fixed spherical colloids. In contrast to those commonly used coordinates we gener-

ate a grid from triangulation of the space in which Vext = 0 and regions which are

required for the convolutions within FMT. We employ the Tanemura-Ogawa-Ogita

algorithm. For carrying out the integrations we use a Gaussian quadrature in high

order, which for evaluating weights, must be performed only once. Special care has

to be taken for particles which intersect the symmetry axis. Based on this general

procedure we are able to represent any object with hard-core repulsion and rotational

symmetry around one axis. However, we have to pay the price for this comfort by

a considerable numerical effort. In contrast to the Fast-Fourier-Transform for which

in one dimension the convolutions can be performed in O(N log N) operations, in

real-space it takes O(N2). For the two-dimensional grids in real-space the convolu-

tions take O(N4) operations. Moreover, studying layering and wetting phenomena

dramatically increases the number of iterations in the minimization procedure within

DFT. For example, for an AOV mixture around two colloids it takes 104 iterations

for a state-point far from layering effects and increases to 3.5 · 105 in the vicinity of

layering. Due to this fact we consider the systems with up to 7 ·104 grid points which

is roughly 265 points for each direction. In Fig. 6.1 we show a part of an example

grid.



6.1. Two colloids in a phase-separating solvent 91

x/σc

y
/σ

c

5432

-7

-8

-9

-10

-11

Figure 6.1: Triangular grid generated via the Tanemura-Ogawa-Ogita algo-
rithm. In the top left corner there are no points, here Vext = ∞ and in
addition the points are not accessed in the convolutions. Only a cut-out
of the complete grid for two large colloids as external potential is shown,
which in this example contains much less points than the ones in the DFT
calculations below.

We consider two big colloids b in a sea of a one-component hard-sphere fluid of

colloids c. This situation corresponds to a binary hard-sphere mixture in the dilute

limit, ρb → 0. We choose σc : σb = 1 : 10. A natural question is to study the grand

potential which can be employed to evaluate the depletion potential between the big

colloids W (r) = Ω(r)−Ω(r → ∞) [124,125]. In our approach we use a different grid

for each distance 2L of the big colloids which leads on the one hand to a low accuracy

of W (r) in the intermediate and the asymptotic regime of r. However, on the other

hand we gain results for the adsorption of the small colloids when the separation

between the big colloids becomes smaller. At contact, L = 5σc, we find a maximum

of |W (r)| and a decrease for increasing distance. A minimum appears at L ≈ 5.35σc

and the following maximum we can resolve is at L ≈ 5.6σc. More directly we can

benefit from our approach, ρ(r) = ρ(z, r), when we compare to the density profiles

from the case when employing radial symmetry, ρ(r) = ρ(r). The asymptotic behav-

ior of the density profile ρ(z, r) is shown in Fig. 6.2 in the logarithmic representation,

log |σ3
c (ρc(z, r)−ρbulk

c )|. We find eight oscillations which correspond to the radial dis-

tance from one of the big colloids u = 4σc. According to Refs. [126–128] this range for

u is sufficient to describe the onset of the asymptotic behavior of quantities which are

related to the structure of the fluid, e.g., the density profile and depletion potentials.
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Figure 6.2: Density profile of a one-component hard-sphere fluid of col-
loids c around two bigger colloids b with diameter 10σc in the logarith-
mic representation log |σ3

c (ρc(z, r) − ρbulk
c )| (top) and in the linear repre-

sentation ρc(z, r) (bottom). Dark color denotes regions of higher values of
log |σ3

c (ρc(z, r) − ρbulk
c )| or ρc(z, r), respectively. This case corresponds to a

binary hard-sphere mixture in the dilute limit ρb → 0 and the colloid pack-
ing fraction ηc = 0.3. Within this approach we can resolve oscillations in the
density up to 4σc in the radial direction from one of the big colloids.
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c
b
p

Figure 6.3: Sketch of a solvent modeled by the AOV mixture of colloids c
and ideal polymer p in the vicinity of two big colloids labeled b. The size
ratio between the diameters of the particles is σp : σc : σb = 1 : 1 : 5. The
polymer may overlap freely among themselves. All the other interactions
are hard-core type and no overlap is possible. The thin lines around the big
colloids show the free volume which cannot be accessed by center of mass of
the solvent particles. Note that only one single line each is needed in this
example as σc = σp.

Influence of solvent phase separation on the interparticle interaction

For mixtures of colloids and polymer treated as an AOV fluid a phase separation

between a gas (colloid poor) and a liquid (colloid rich) phase can occur for appropriate

size ratios of the solvent components (cf. the phase diagrams in Chapter 3). In contact

with walls and other big particles a rich surface phase behavior is found and capillary

phenomena affect the phase behavior in narrow pores. We study a system of two big

colloids labeled b in a sea of an AOV type solvent with one colloid c and one polymer

p species (see Fig. 6.3). As for that solvent we find phase separation into two bulk

fluid phases we primarily focus on phenomena associated with this finding. To this

end one can consider to study the system following two different routes. In the first

setup we fix the state-point and vary the distance L between the two big colloids.

Thereafter, we study the system with fixed distance L and vary thermodynamic

variables, i.e., the state-point. As layering and wetting effects are known from an

AOV mixture brought in contact with walls, we pay special attention to that issue.

Throughout the following study we keep the size ratios between the particles fixed at

σp :σc :σb = 1:1 :10.

As we already pointed out above, for the binary hard-sphere mixture our approach

due to low numerical accuracy for varying the distance L between the colloids is best
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suitable for a fixed grid, i.e., fixed distance L and varying state-points. Analogously

to the pure hard-sphere solvent in the case of the solvent AOV mixture, we find

richer structure in the density profiles ρc(z, r) and ρp(z, r) in the interspace between

the two big colloids as compared to profiles around two separated particles. That

finding affects the adsorption and the (mean) contact values of the solvent. We find

increased colloid density in the circular wedge-like zone when the two big colloids are

close to each other. We find that the depletion potential of two big colloids immersed

in an AOV mixture for low ηc is very similar to the one obtained from the insertion

method.

In the following we focus on a fixed distance of the big colloids and vary the state-

point. Via that route we can more clearly show the influence of the phase separation

of the solvent on the thermodynamic properties of the system. We keep the reservoir

packing fraction ηr
p of the polymer fixed and vary the colloid packing fraction ηc

which means following horizontal tie lines in the (ηc, η
r
p) representation of the phase

diagram. The size ratio σp : σc = 1 : 1 is fixed, while σc : σb = 1 : 10 or 1 : 20 and the

packing fraction of the polymer in reservoir ηr
p is considered to be a parameter. The

surface-to-surface distance of the two big colloids is fixed, h = 2L − σb = 1.5σc. For

the selected polymer packing fractions ηr
p = 0.98, 0.9 and 0.8 and low values of the

solvent colloid packing fraction ηc we consider state-points in the gas phase of the

phase diagram. Upon increasing ηc we follow a path along horizontal tie lines in phase

diagram — see the inset in Fig. 6.5(a). In Fig. 6.4(a) we show the resulting adsorption

isotherm for σc : σb = 1 : 10 and ηr
p = 0.98. For high colloid packing fractions ηc we

find a series of transitions between different states. When we examine the density

profiles and the difference in the jumps of the adsorption this observation corresponds

to layering effects. However, the state-point is in the metastable regime w.r.t. bulk

fluid–fluid phase separation. For larger diameters of the big colloids, σc :σb = 1 : 20,

the series of jumps is shifted to lower values of ηc [see Fig. 6.5(a)]. The layering lines

(at a single sphere) move as a function of the size ratio σc : σb, i.e., the smaller the

value of σb, the closer one finds the layering lines to the critical point. This behavior

is similar to curvature dependence of the pre-wetting line on a curved wall [129]. Due

to increasing computational effort we cannot increase the size of the big colloids b

further. In Fig. 6.5(a) for ηr
p = 0.9 and 0.8 we show a series of transitions in the

adsorption Γc at higher values of ηc.

The grand potentials Ω for the same state-points are shown in Fig. 6.5(b). In all

four cases studied here we find kinks at the positions of the jumps in the adsorption,

or equivalently a remainder of a first order phase transition. In the situation of

a curved wall we describe a finite number of particles and observe a pseudo phase
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Figure 6.4: Figure (a) shows the excess adsorption Γc of the solvent colloid
in a system of an AOV mixture at two big colloids. The size ratio between
the particles is σp :σc :σb = 1:1 :10. The separation between the big colloids
b is fixed, L = 11.5σc, and we choose state-points on horizontal tie lines in
phase diagram. The series of jumps corresponds to layering effects. For very
high values of ηc the adsorption is disturbed by boundary effects. In Fig. (b)
we show the corresponding grand potential. We find regions with different
slopes which indicate intersection points at lower values ηc than shown in the
jumps of the adsorption in Fig. (a).
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Figure 6.5: In Fig. (a) we show the excess adsorptions Γc of the solvent colloid
in a system of an AOV mixture at two big colloids with fixed distance. For
state-points on horizontal tie lines in phase diagram we observe a series of
jumps for various parameters of the depletion agent packing fraction ηr

p and
size of the big colloid b. For increasing size σb the transitions are shifted to
lower values of ηc. Upon decreasing ηr

p the curves are shifted to higher values
of ηc. The inset shows the position of the tie lines in the phase diagram. The
full line is the fluid–fluid binodal for the AOV mixture with size ratio σp/σc =
1 based on the PY equation of state. The arrows illustrate the paths along
horizontal tie lines with fixed packing fraction of the polymer, ηr

p = 0.98, 0.9
and 0.8, and varying colloid packing fraction ηc. The grand potentials for the
same parameters are shown in Fig. (b). We find sections with different slopes
which lead to intersection points. These points mean the transitions between
the layering states which are at slightly lower colloid packing fractions ηc than
indicated by the jumps in the adsorptions in Fig. (a).
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Figure 6.6: Average colloid contact values ρ̄ c
c at state-points on horizontal tie

lines in phase diagram. The kinks correspond to layering transitions and the
complete wetting regime. At the plateau the contact value of the condensed
phase is reached.

transition. Figure 6.4(b) clarifies the situation and we see that two branches of the

grand potential (dashed lines) intersect at a slightly lower value of ηc than indicated

by the jump in the adorption. Note that only the data shown by the full lines are

calculated. The dashed lines, which serve as guide to the eye, are extrapolations

of the full lines. Some of the data points (full lines) are apparently located on a

metastable branch. Similar behavior is found for the case of larger big particle b and

state-points with lower ηr
p. In the average contact values ρ̄ c

c of the solvent colloids

and the values ρ̄ c
p of the solvent polymer we find jumps at the transitions (see the

inset in Fig. 6.7). The sum ρ̄ c
p + ρ̄ c

c , however, is almost independent of ηc (see Fig. 6.7)

but displays discontinuous behavior at the positions of the transitions indicated by

the intersection points of the different branches of Ω. Upon following the path along

a tie line and increasing ηc the contact values ρ̄ c
c increase strongly and for large ηc we

find a regime which is weakly dependent on ηc.

The density profiles ρc(z, r) for systems with fixed distance 2L = 11.5σc between

the big colloids and for a path along tie lines in the phase diagram exhibit rich

structure. For six values we show the results in Fig. 6.8. The values ηc = 0.008, 0.0099,

and 0.01024 correspond to the lowest branch in the adsorption shown in Fig. 6.4(a).

For ηc = 0.01025 and 0.01027 we have chosen state-points which correspond to the

branch after the first and in the case ηc = 0.01033 after the second jump. At ηc =

0.008 we find the colloidal gas phase. The region between the big colloids is enriched
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Figure 6.7: Sum of average contact values ρ̄ c
p + ρ̄ c

c at state-points on tie lines
in phase diagram. The inset shows the single contributions of the colloids
ρ̄ c

c (line labeled c) and the polymer ρ̄ c
p (line labeled p). The sum is almost

constant in the whole range of ηc shown, however, we observe jumps with
small amplitude at the positions of the transitions.

in the solvent colloid species. According to this finding the density of the polymer is

reduced (not shown in the figures). This effect cannot be captured by a DFT route

for spherical symmetry and a ternary mixture of species p, c, and b. Upon increasing

the colloid packing fraction ηc further the smaller colloids are accumulated in this

region, and for higher values of ηc we find a condensed region between the two big

colloids (see Fig. 6.8). The structure clearly exhibits oscillations in this region. The

overall shape of the liquid region is dumbbell shaped for lower ηc and prolate shaped

for higher values. Upon further increasing ηc the volume of the liquid region increases,

as indicated by the adsorption in Fig. 6.4(a). For very high values of ηc the complete

space is filled by the colloid liquid phase.

6.2 Behavior of a colloid-polymer solvent at curved

surfaces

Thermodynamic properties of a fluid depend strongly on the curvature of the objects

inserted into the fluid. For example, at planar hard walls layering effects in an

AOV fluid are known to be stable while they vanish when very small hard spheres

are immersed in an AOV mixture. In the case of objects with non-constant local
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Figure 6.8: Density profiles ρc(z, r) of the colloid component of an AOV
mixture around two big colloids. The size ratio between the solvent and
the big particles is 1 : 10 and ηr

p = 0.98. In the series of density profiles
we fix the distance between the big particles and choose state-points on a
horizontal tie line in phase diagram. The colloid packing fraction is varied,
ηc = 0.008 (top left), 0.0099 (top right), 0.01024, 0.01025, 0.01027, and
0.01033 (bottom right). Note the increase in colloid accumulation when ηc is
slightly increased from 0.01024 to 0.01025 shown by the plots in the middle
row and compare to the jump in the adsorption [Fig. 6.4(a)]. For all values
we find a strong enrichment of the solvent colloidal particles in the region
between the big colloids. The oscillatory structure of the condensed phase
is apparent. Corresponding to these results the polymer component of the
AOV mixture is repelled from the interspace (not shown here).
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Figure 6.9: Excess adsorption Γc of the colloid component of an AOV mixture
at a prolate ellipsoid — see (a). The size ratio among the two solvent species
is 1. For fixed geometry of the ellipsoid we follow state-points on horizontal
tie lines in phase diagram. We find a jump in the adsorption which indicates
two different states. The situation is clarified when considering the grand
potential Ω. Figure (b) shows the grand potential along the same path
in phase diagram. At high and at low values of ηc we find regions with
different slopes. Assuming the lines continue linearly, we find an intersection
at ηc ≈ 0.0103. When we compare to the adsorption in (a) we find an
indication of a transition between states of different density.
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Figure 6.10: Density profiles ρc(z, r) of an AOV mixture at a prolate ellip-
soidal particle with half-axes a = 8σc and b = 5σc. For low packing fractions
ηc = 0.008 (top) we find similar behavior in the normal direction at all surface
points. Upon increasing ηc the local density at the short half-axes increases
stronger and we observe layer-like structure (ηc = 0.01 and 0.0105). When
increasing the packing fraction further, ηc = 0.0111 (bottom), we find a jump
in the adsorption and the whole space is filled with a colloid rich (condensed)
phase. In the bottom figure we use different palette for clarity of display.
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curvature the thermodynamics is demanding to study. In Ref. [86] a general approach

is presented to describe the thermodynamic properties of a fluid in contact with

curved walls. The surface tension γ = σ + κH̄ + κ̄K depends on the averaged mean-

and Gaussian curvatures. The coefficients σ, κ and κ̄ can be evaluated when using

simple geometry. Further thermodynamic quantities can also be expressed in terms

of the curvature, for example the average contact value in a general form is given by

ρ̄c = βp + 2βσH̄ + βκK̄. Density profiles, however, locally depend on the curvature

— see Ref. [130] for more details.

In this section we study the behavior of the AOV mixture close to a curved wall.

The geometry is kept fixed and we vary the state-point in the same manner as in the

case of the two big colloids presented above. We consider the fluid at a big ellipsoidal

particle with half-axes a = 8σc and b = 5σc, where the long half-axis is parallel to the

symmetry axis in our numerical procedure. The size ratio of the solvent components

is σp : σc = 1 : 1. For the packing fraction of the depletion agent ηr
p = 0.98 and for

sufficiently low packing fractions of the solvent colloid ηc, we choose a state-point in

the gas phase of the bulk phase diagram. We increase the value of ηc and follow a

horizontal tie line in phase diagram. In Fig. 6.9(a) we observe a continuous increase

of the excess adsorption of the colloids Γc while increasing the value of ηc. In the

region ηc ≈ 0.0105 we find a dramatic increase in Γc. As no data are available for

this regime we refer to the grand potential Ω. In a similar manner to the case of two

big colloids treated in the previous section, we find two regimes with different slopes.

Assuming both branches to continue in a well-behaved fashion an intersection point

is located at η∗
c ≈ 0.0103. Around this point we find a continuous behavior of the

adsorption isotherm at a low value of Γc. Both findings indicate a (first-order) pseudo

phase transition in this finite system. For the ellipsoidal geometry we have chosen

σp : σc = 1 : 1 such that the surface of contact of the colloid c with the ellipsoidal

particle and the surface of contact of the polymer p with the ellipsoidal particle are

equal. The average contact value of the colloids ρ̄c
c exhibits similar behavior to the

case of two big colloids. We find increasing values of ρ̄c
c until we reach η∗

c . For higher

values, ηc > η∗
c , we have little data but we find a smaller slope for values above

η∗
c . The local density profiles ρc(z, r) directly show the influence of curvature (see

Fig. 6.10). At low colloid packing fractions (ηc = 0.008) the profile is similar in every

direction normal to the surface. Upon increasing ηc we find a strong increase of the

colloid density at the position with lower curvature, i.e., at the short half-axis of the

ellipsoid, z = 0. Increasing the colloid packing fraction further (ηc = 0.0105) leads

to a layer-like structure in this region while we find vanishing layering structure at

the region with largest degree of the curvature. The local contact value of the colloid
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component shows structure along the surface. Note that many thermodynamical

relations are — in terms of sum rules — based on all components. Here the result

should illustrate the behavior of the structure along one trajectory. At r = 0 and

z = 8.5σc we find minimum values of ρ c
c . Upon continuously decreasing z for the

values at contact the colloid density increases until we find a plateau-like behavior.

Further decreasing z leads to a small variation of ρ c
c . According to this observation

the region enriched by the colloids is depleted in the polymer component.

6.3 Outlook

In the case of big colloids immersed in a phase-separating solvent modeled by the

AOV mixture we find a rich variety of effects. Layering and bridging effects between

two colloidal spheres reveal that mapping of a colloidal mixture of big colloids im-

mersed in a solvent close to phase separation onto an effective one-component system

requires much caution. Our approach provides a method to describe many aspects

of thermodynamics of colloids like a test of the insertion method or the study of

three-body forces. Moreover, we presented results for fluids at ellipsoidal particles

and confirmed that curvature effects strongly affect thermodynamic properties.
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Chapter 7

Conclusions and Outlook

In this thesis we have studied the phase behavior and effective interactions of colloidal

suspensions in bulk, in contact with surfaces, and in confined geometry. Colloidal

systems cover a broad range of materials as, in general, colloids are defined by their

size range. For mixtures of particles with hard-core interactions the AOV model

provides an appropriate starting-point. Based on that model we have employed the

free-volume theory and the density functional theory.

In experimental systems one faces particles that do not possess well defined char-

acteristics but rather differ in various properties such as the size or shape that arise

for example in imperfections of the fabrication process. To capture that issue we

have generalized an approach for treating binary mixtures of colloids and a depletion

agent [51] to an approach that is capable to cover mixtures with a discrete number of

depletion agent components. To describe natural and experimental situations better,

we have generalized this approach further to a continuous distribution of the deple-

tion agent. Within the free-volume theory we obtain an effective free-volume fraction

αeff. For particles of simple geometry and some commonly used size distributions we

have derived explicit expressions for αeff. In the case of three-dimensional depletion

agent particles and spherical colloids, αeff has to be obtained numerically. We have

presented results for the bulk phase diagram. Based on our results we conclude that

polydispersity favors fluid–fluid phase separation. This finding seems to be robust

against the way polydispersity is introduced, as demonstrated for different distribu-

tions of the depletion agent, for different underlying equations of state, for size and

morphology polydispersity.

We have obtained a remarkable result for bulk mixtures in Sec. 3.5 where we have

applied our generalized approach to study ternary mixtures of one colloid component

and two species of the polydisperse depletion agent. When the size ratio between

the two depletion agent components is asymmetric enough, we find that the phase

105
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diagram may exhibit two stable critical points, two triple points and three fluid

phases, namely the gas phase, the low density and the high density liquid. This finding

seems to be of general character as we find similar results also for two monodisperse

species of the depletion agent and for particles of different than non-spherical shape.

Though the AOV model describes a simple fluid — a mixture of hard spheres

and ideal polymer — the phenomenology is rather rich. The AOV mixture brought

in contact with a wall leads to layering and wetting effects. When confined in a

narrow pore one finds capillary condensation. In Chapter 4 we have presented results

which highlight the competition between the layering transitions and the capillary

condensation. Both effects depend differently on the pore width. The competition

between both effects manifests itself in thermodynamic properties like the excess

colloid adsorption and the solvation force between the two confining walls. The

effects found for a fluid confined in simple geometry, i.e., for the narrow slit-like pore,

might play a significant role for more complex confinement like in the case of big

colloids with radius R/σc ≫ 1 immersed in a colloid-polymer mixture or for porous

media filled with a colloidal suspension.

What is the effect of a solvent phase separation on the interparticle interaction

between solute particles? This is a challenging question when one keeps in mind

that the entropically driven interaction between two spherical particles in an ideal

polymer solvent (with vanishing mutual interactions) has been obtained by Asakura

and Oosawa in the fifties [9, 10] but it took about four decades until an accurate

description was presented for the interaction between two spherical particles in a

sea of small hard spheres [17, 18]. When we consider a mixture of hard spheres and

ideal polymer one finds that its phase behavior is rather rich. We have presented

the influence of the solvent described by an AOV mixture on the solute particle

interactions in the wall-sphere and sphere-sphere geometry. In all situations the rich

behavior of the solvent manifests itself in a large variety of phenomena. This holds

in particular for the solvent near phase coexistence. In that regime many approaches

to describe the fluid break down. To highlight the applicability of the presented

route, we have studied the behavior of a complex solvent around two colloids at close

distance and the effect of curvature on thermodynamic quantities at an ellipsoidal

particle.

The colloidal suspensions we have studied here exhibit rather complex behavior,

though the underlying AOV model describes a simple fluid. The next step could be

to consider a more realistic description based on a theory of polymer with excluded

volume interactions. Although we have investigated an idealized model system we

believe that the results are robust to the introduction of perturbations and hold for
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more realistic systems. As colloids cover a wide range of materials the presented

methods and results may provide a basis to study the formation of glasses and gels or

the dynamics of time-dependent phenomena. The tunable character of interactions

between colloids may also be used to study aspects of atomic systems by the use of the

underlying larger length and time scales in colloidal systems as compared to atoms.

From an experimental point of view the techniques to study colloidal suspensions are

well-developed. Small-angle neutron and X-ray scattering provide useful techniques

to study the structure of physical as well as biological systems. In the slit geometry

the surface force apparatus and two mica plates allow one to measure solvation forces.

Moreover, as it is possible to measure the pull-off force on the one-particle level by

means of atomic force microscopy and the demixing in colloid-polymer mixtures can

be observed directly by confocal microscopy, we hope to stimulate future studies.
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Zusammenfassung

Was sind Kolloide? Der Wortursprung kolla (Leim) und eidos (Aussehen, Gestalt)

deutet eine Nähe zum Bereich der Weichen Materie in der Statistischen Physik an,

spiegelt jedoch nicht die ganze Vielfalt an Eigenschaften wider. Der Ausdruck kolloi-

dal beschreibt allgemein einen Zustand der Unterteilung und damit speziell in einem

Medium dispergierte Teilchen, welche in mindestens einer Richtung von der Größen-

ordnung einiger Nanometer bis hin zu typischerweise einigen Mikrometern sind. Vor

etwa einem Jahrhundert spielten Kolloide eine bedeutende Rolle bei der Entwicklung

der Vorstellung der diskontinuierlichen Struktur der Materie, d.h. der Existenz von

Atomen. A. Einstein sagte voraus, dass aufgrund der thermischen Molekularbewe-

gung kleine Teilchen der Brown’schen Bewegung unterliegen und diese so stark ist,

dass sie mit einem Mikroskop beobachtet werden könne. Einige Jahre später gelang es

J. Perrin die Voraussagen der Kinetischen Theorie experimentell zu bestätigen und die

Existenz von Atomen zu zeigen. Nach der Verleihung der Nobelpreise an R.A. Zsig-

mondy 1925 und an J. Perrin 1926 für Arbeiten an Kolloiden bzw. der diskontinu-

ierlichen Struktur der Materie folgte in der Zeit danach eine intensive Erforschung

des Atommodells, des Quantencharakters der Materie und des Atomkerns. Erst seit

kurzer Zeit erfreut sich die Untersuchung kolloidaler Systeme einer Renaissance. Die

Entwicklung experimenteller Verfahren, die Verfügbarkeit von Computersimulationen

und ausgereifte theoretische Zugänge bilden eine Grundlage dafür. Kolloide sind au-

ßerdem von technologischer Bedeutung um mikro- und nanostrukturierte Materialien

herzustellen und zu kontrollieren. Gleichzeitig regt die Vielfalt der in der Natur und

im Alltag vorkommenden Kolloide, wie etwa in Farben, als rote Blutkörperchen oder

in diversen industriellen Prozessen, an, dieses Gebiet zu erforschen.

Kolloidale Systeme können verschiedene Phasenübergänge durchlaufen und etwa ei-

ne gasförmige oder kristalline kolloidale Phase haben. Für das Phasenverhalten der

Kolloide spielt deren gegenseitige Wechselwirkung eine Rolle. Dabei hat das Lösungs-

mittel, in dem sich die Kolloide befinden, einen starken Einfluss auf die gegenseitige

Wechselwirkung. Seine Rolle fasst man in Form einer effektiven Wechselwirkung zwi-

schen den einzelnen Kolloid-Teilchen zusammen. Weist dabei das Lösungsmittel selbst
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ein komplexes Phasenverhalten auf, so ist es sehr aufwändig, die effektive Wechsel-

wirkung zu bestimmen. Für spezielle Spezies von Kolloiden gibt es jedoch erfolgreiche

Ansätze, um diese Aufgabenstellung zu behandeln. Sterisch oder elektrostatisch sta-

bilisierte Kolloide können eine starke kurzreichweitige aber verschwindende langreich-

weitige Wechselwirkung aufweisen und deshalb bei sphärischer Geometrie als harte

Kugeln beschrieben werden. Es lassen sich außerdem Teilchen wählen, bei denen

die Dichte und der Brechungsindex angepasst werden kann, und es können Syste-

me mit verschwindenden Dispersionskräften untersucht werden. Experimentell lassen

sich solche Teilchen mit verschiedenen Methoden herstellen und weisen näherungs-

weise die genannten Eigenschaften auf. In der Anwendung bildet dieser Ansatzpunkt

eine Grundlage für weiterreichende Theorien, störungstheoretisch etwa lassen sich zu

einem solchen Referenzsystem attraktive Beiträge einbauen. Basierend auf der Dich-

tefunktionaltheorie im Rahmen der Fundamentalmaßtheorie (FMT) können beliebige

Mischungen von harten Kugeln beschrieben werden. Zusammen mit dem Modell der

idealen Polymere, eingeführt von Asakura und Oosawa und, unabhängig davon, von

Vrij (AOV), kann die FMT auf Mischungen von Kolloiden und Polymeren erweitert

werden. Darauf basierend können wir eine Kolloid-Komponente betrachten, die in

einem Lösungsmittel aus weiteren Kolloid-(c) und Polymer(p)-Komponenten gelöst

ist. Das cp-Lösungsmittel spielt dabei die Rolle eines komplexen Lösungsmittels, da

dieses System reichhaltiges Phasenverhalten zeigt. Dies ist experimentell, als auch

theoretisch gut untersucht worden. Wir verwenden diese Grundlage, um das komple-

xe Verhalten von kolloidalen Suspensionen zu untersuchen.

Die Darstellung der Ergebnisse dieser Arbeit ist in vier Kapitel unterteilt. Bevor

wir zu den Ergebnissen kommen, geben wir eine kurze Einführung in die wichtigsten

theoretischen Grundlagen und die Prinzipien in Kapitel 2. Wir beginnen mit grundle-

genden Aussagen der Thermodynamik und aus der Theorie der Phasenübergänge. An-

schließend geben wir eine Einführung in die Dichtefunktionaltheorie im Abschnitt 2.2

und eine detailliertere Beschreibung des Zugangs für kolloidale Systeme sowohl in

der Harte-Kugel-Näherung als auch für Mischungen von Kolloiden und Polymeren

im Abschnitt 2.3. Der in dieser Arbeit verwendete Zugang für die Beschreibung des

bulk-Phasenverhaltens basiert auf der FMT. Wir führen die Grundlagen der Freien-

Volumen Theorie (FVT) im Abschnitt 2.4 ein.

Im Kapitel 3 zeigen wir Ergebnisse für das bulk-Phasenverhalten von Mischungen aus

Kolloiden und einer weiteren Komponente, die als Medium, oder Agens, auftritt und

als depletion agent bezeichnet wird. Für einige Fälle ist das Phasenverhalten bekannt.
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Um einen allgemeinen Zugang zur Bestimmung des Phasenverhaltens zu formulieren,

der einerseits unterschiedliche Formen des depletion agent und gleichzeitig eine konti-

nuierliche Größen- und Formverteilung von Teilchen erlaubt, verallgemeinern wir die

Theorie einer kürzlich erschienenen Publikation für Zwei-Komponenten-Systeme. Die-

se vereint die Fundamentalmaßtheorie mit der Freien-Volumen Theorie und erlaubt in

eleganter Weise das Phasenverhalten zu bestimmen. Die Beschreibung erfolgt dabei

im Semi-Großkanonischen Ensemble: Wir betrachten eine feste Anzahl der Kolloide

und ein depletion agent, der an ein Reservoir gekoppelt ist. Die fundamentale Größe

ist hier der freie Volumenbruch α, den die depletion agents einnehmen können unter

der Berücksichtigung der Besetzung vom Volumen durch die Kolloide. Durch eine

Verallgemeinerung der depletion agents auf eine kontinuierliche Verteilung erhalten

wir in diesem Zugang einen effektiven freien Volumenbruch αeff. Dieser spielt die

Rolle von α, beinhaltet jedoch eine Integration über den Parameter der Verteilung.

Die Verteilung des depletion agents kann in verschiedenen Formen eingeführt wer-

den. Eine natürliche Größe, wie sie typischerweise in Experimenten vorkommt, ist

die Partikelgröße. Ein Parameter q stellt in diesem Fall das Radienverhältnis dar.

Es ist jedoch auch vorstellbar, dass andere Größen verschieden sein können, wie et-

wa die Länge von stäbchenförmigen Teilchen bei gleichbleibender Dicke, oder der

Durchmesser von Plättchen bei fester Dicke.

Für einige Arten von Teilchen können wir Ausdrücke für den effektiven freien

Volumenbruch αeff in expliziter Form erhalten. Für stäbchenförmige Teilchen und

Plättchen, jeweils im Grenzfall vernachlässigbarer Dicke, erhalten wir für verschiedene

zugrunde liegende Verteilungen der Stäbchenlänge bzw. des Plättchendurchmessers

explizite Ausdrücke für αeff. Dabei verwenden wir häufig verwendete Verteilungen

wie die Schulzverteilung, die Gaussverteilung, die Stetige Normalverteilung und die

Log-Normalverteilung.

Im Fall von dreidimensionalen Teilchen, wie z.B. von Kugeln im einfachsten Fall,

lassen sich keine expliziten Ausdrücke für αeff finden und der freie Volumenbruch

muss numerisch bestimmt werden. Ist diese Größe einmal bestimmt, so können wir

daraus das Phasenverhalten der zugrunde liegenden Mischung berechnen. Bei der Be-

rechnung der Phasenverhaltens beschränken wir uns auf die Schulzverteilung. Diese

eignet sich aus theoretischer als auch experimenteller Sicht gut für weitere Untersu-

chungen.

Wir untersuchen Polydispersität verschiedenen Ursprungs. Im ersten Fall betrach-

ten wir eine Mischung aus einer Teilchensorte von monodispersen Kolloiden und einer

größen-polydispersen Spezies von depletion agents. Für asymmetrische monodisper-

se Mischungen dieser Teilchen ist bekannt, dass eine flüssig–flüssig Phasenseparation
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gegenüber der flüssig–fest Phasenseparation nicht stabil ist. Unter Einfluss der Polydi-

spersität finden wir jedoch, dass eine stabile flüssig–flüssig Phasenseparation auftritt,

vorausgesetzt dass die Verteilung breit genug ist. In diesem Fall finden wir einen sta-

bilen kritischen Punkt und einen Tripelpunkt zwischen den drei Phasen gasförmig

(kolloid-arm), flüssig (kolloid-reich) und fest (kristallin). Es ist jedoch auch denk-

bar, Polydispersität in einer anderen Form einzuführen. Dies erlaubt uns unser ver-

allgemeinerter Ansatz. Wir können in einfacher Weise Morphologie-Polydispersität

einführen, d.h. Teilchen bei denen andere geometrische Größen als die Teilchengröße

variieren. Wir betrachten dabei ellipsoidförmige Teilchen, bei denen die Halbachsen

von q abhängen, so dass wir in einem Fall das Teilchenvolumen konstant und in ei-

nem anderen Fall linear von q anhängig lassen. In ähnlicher Form, wie schon für

kugelförmige depletion agents, finden wir eine stabile fluid–fluid Phasenseparation,

wenn die Polydispersität einen bestimmten Grad erreicht hat. Insgesamt können wir

zusammenfassend sagen, dass Polydispersität der depletion agents die Phasensepa-

ration zwischen zwei fluiden (der gasförmigen und der flüssigen) Phasen begünstigt.

Die Untersuchung des Verhaltens von Grenzfällen, gezeigt am Beispiel von Stäbchen

und Plättchen mit verschwindender Dicke, untermauern diese Beobachtung.

Der Schritt von einer einfachen Verteilung, wie der eben beschriebenen Schulzver-

teilung, zu einer beliebigen Verteilung, wie sie in physikalischen Systemen realisiert

werden kann, ist in unserem Zugang einfach durchzuführen. Diese Eigenschaft ma-

chen wir uns zunutze und verwenden eine bimodale Verteilung dS(q; x, q̄, Q̄, zq̄, zQ̄) =

x dS(q; q̄, zq̄) + (1 − x) dS(q; Q̄, zQ̄), d.h. eine Verteilung, die zwei separate polydi-

sperse Komponenten kombiniert. Ist das Verhältnis der Längenskalen q̄ und Q̄ groß

genug und der Überlapp der Teilverteilungen klein, so können wir von einer ternären

Mischung aus einer Kolloidkomponente und zwei Spezies von depletion agents spre-

chen. Wir können die Phasendiagramme für die Mischungsparameter x = 1 und

x = 0 so wählen, dass sie jeweils eine stabile fluid–fluid Phasenseparation haben. Das

lässt sich durch Polydispersität oder durch geeignete Größenverhältnisse zwischen

den Komponenten erreichen. Doch was passiert für die zusammengesetzte Vertei-

lung 0 ≤ x ≤ 1? Wir finden für Werte aus dem Zwischenbereich ein reichhaltiges

Phasenverhalten: Neben der Gasphase und dem kristallinen Zustand beobachten wir,

dass zwei stabile Phasen auftreten können. Wir finden eine flüssige Phase niedrige-

rer Dichte (low density liquid) und eine flüssige Phase höherer Dichte (high density

liquid). Im gleichen Parameterbereich finden wir dann zwei stabile kritische Punk-

te und zwei Tripelpunkte. Phasendiagramme mit ähnlichem Verhalten findet man

auch in einkomponentigen Systemen, in denen die Wechselwirkungspotentiale zwei

Längenskalen aufweisen [52–55]. In unserem Fall führen wir zwei Längenskalen über
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die verschiedenen Größen der depletion agents ein. Wenn wir diese Längenskalen

symmetrischer machen und die beiden Beiträge der einzelnen Verteilungen zur bi-

modalen Verteilung stark überlappen, so verschwindet dieser Effekt wieder. Dass das

Auftreten von solch komplexem Phasenverhalten nicht allein durch Polydispersität

zustande kommt, zeigen wir bei Untersuchungen von zwei monodispersen Spezies der

depletion agents einerseits und durch Untersuchung von Teilchen anderer Geometrie

andererseits.

Im Kapitel 4 untersuchen wir Phänomene von kolloidalen Suspensionen in einge-

schränkter Geometrie. Der Einschluss eines fluiden Systems kann, abhängig von der

Wechselwirkung zwischen dem Fluid und den einschliessenden Wänden, zu verschie-

denen Phasenübergängen führen, wie etwa zur Kapillarkondensation [56–58] oder der

Kapillarverdampfung [59, 60]. Das Oberflächenphasenverhalten des Fluids an einer

Wand spielt die zentrale Rolle. Für eine Mischung aus Kolloiden und Polymeren ist

bekannt, dass Layering- und Benetzungseffekte an einer Wand auftreten können [22].

Ein geeignetes Modell für diese Kolloid-Polymer-Mischungen ist das AOV Modell,

welches in der Dichtefunktionaltheorie im Rahmen der FMT diese Effekte an einer

Wand aufweist. In eingeschränkter Geometrie einer schmalen Pore aus zwei parallelen

Wänden können für dieses System Kapillarkondensation und Kapillarverdampfung

beobachtet werden [35, 66]. Betrachtet man nun eine Kolloid-Polymer-Mischung in

eingeschränkter Geometrie, so führt der Wettbewerb des Oberflächenphasenverhal-

tens, also der Layeringeffekte, und der Kapillarkondensation zu einer interessanten

Phänomenologie.

Wir zeigen zunächst, dass Layeringphänomene von genereller Natur sind, indem

wir für eine thermodynamische Beschreibung verschiedene Zustandsgleichungen ver-

wenden. Darüber hinaus untersuchen wir ob dieser Effekt robust gegenüber dem

Einführen von Polydispersität ist. Für eine Kolloid-Polymer-Mischung zwischen zwei

ebenen harten Wänden finden wir ein Phasenverhalten, welches, abhängig vom Grad

der Einschränkung, folgende drei Phasen aufweisen kann: das kolloidale Gas, die Laye-

ring Phase und die kolloidale Flüssigkeit. Für große Abstände der beiden Wände,

also ein niedriges Ausmaß der Einschränkung, finden wir alle drei Phasen. Für kleine

Abstände, also für eine starke Einschränkung, finden wir nur zwei thermodynamisch

stabile Phasen, die Gasphase und die flüssige Phase. Im Übergangsbereich beobachten

wir einen Tripelpunkt, an dem drei verschiedene Phasen koexistieren. Betrachtet man

das gesamte Phasendiagramm einschließlich der metastabilen Phasen, so finden wir

ein komplexes Phasendiagramm. Der Grad der Einschränkung spiegelt sich in dem

Wettbewerb zwischen den Layeringübergängen und der Kapillarkondensation wider.
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Beide Effekte weisen eine unterschiedliche Anhängigkeit von der Porengröße, in un-

serem Fall des Abstands der beiden Wände, auf. Während etwa die Verschiebung der

fluid–fluid Koexistenzlinie im Phasendiagramm mit einem Potenzgesetz, δηc ∝ L−1,

vom Wandabstand abhängt, so zeigt das Layering eine exponentielle Abhängigkeit,

δηc ∝ exp (−L/ξ). Dieses unterschiedliche Verhalten führt zu unterschiedlich star-

ken Beiträgen bei großen bzw. kleinen Wand-Wand-Abständen. Das Konkurrenzver-

halten zwischen den Layeringübergängen und der Kapillarkondensation äußert sich

auch in weiteren thermodynamischen Größen, wie etwa der Kolloidadsorption in der

Pore und der Solvationskraft zwischen den beiden Wänden. Diese wird durch einen

zusätzlichen Druck aufgrund der Korrelationen des Lösungsmittels verursacht. Durch

das komplexe Phasenverhalten des eingeschlossenen Fluids finden wir sprunghafte

Änderungen der Solvationskraft, wenn ein Phasenübergang durchlaufen wird. Wie in

anderen thermodynamischen Größen finden wir ein Potenzgesetz und einen exponen-

tiellen Zusammenhang der Sprunghöhe in der Solvationskraft am Phasenübergang in

Abhängigkeit des Wand-Wand-Abstandes.

Nachdem wir das bulk-Phasenverhalten des Lösungsmittels für polydisperse Verteilun-

gen und das Verhalten der Kolloid-Polymer-Mischung in eingeschränkter Geometrie

für diskrete Mischungen untersucht haben, betrachten wir die effektiven Wechsel-

wirkungen, zu welchen die depletion agents zwischen weiteren Teilchen führen. Im

Kapitel 5 untersuchen wir deshalb ein System, in dem ein Kolloid in einem Lösungs-

mittel, das aus einer Mischung aus kleineren Kolloiden und Polymeren besteht, in die

Nähe einer ebenen harten Wand gebracht wird. Das System aus zwei großen kolloida-

len Teilchen, suspendiert in einem Lösungsmittel, welches komplexes Phasenverhalten

zeigen kann, untersuchen wir im Kapitel 6.

Im Rahmen der Dichtefunktionaltheorie ist es möglich, Dichteprofile von mehr-

komponentigen Flüssigkeiten aus Kolloiden und Polymeren an einer ebenen Wand zu

bestimmen. Sind die Dichteprofile bekannt, so kann daraus das Potential der entro-

pischen Kraft (depletion potential) einer Komponente zwischen der Wand und einer

Teilchensorte b im Grenzfall verschwindender Dichte, ρb → 0, bestimmt werden. Das

Potential der entropischen Kraft W (z) kann ohne der expliziten Bestimmung des

Dichteprofils der Komponente b mit Hilfe der Einfügemethode (insertion method)

bestimmt werden. Wir verwenden diese Methode und untersuchen Potentiale der

entropischen Kraft von Mischungen aus Kolloiden und Polymeren. Letztere weisen

als bulk-System eine Phasenseparation in zwei fluide Phasen auf, die kolloidale Gas-

phase und die kolloidale Flüssigkeit. Bleibt man jedoch in der fluiden Phase, d.h. un-

terhalb des kritischen Punktes in der (ηc, η
r
p)-Darstellung des Phasendiagramms, so
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beobachten wir bei Potentialen der entropischen Kraft entlang horizontaler Pfade im

Phasendiagramm für kleine Anteile an Kolloiden nahezu monotones Verhalten. Bei

Zunahme des Kolloidanteils gegenüber dem Polymeranteil sehen wir eine Zunahme

des oszillatorischen Verhaltens. Für Pfade, die in der Nähe des kritischen Punktes ver-

laufen, beobachten wir außerdem, dass für kleine Normalabstände z von der Wand die

Potentiale W (z) stark von der Nähe des Zustandes zu Phasenübergängen beeinflusst

werden und deshalb flach und langreichweitiger verlaufen. Um einen Zusammenhang

zwischen den Potentialen der entropischen Kraft W (z) und dem Phasenverhalten

herzustellen, untersuchen wir den Oberflächenvirialkoeffizienten B̂2. Mit unserer De-

finition, Gln. (5.5) und (5.8), nimmt der Betrag des Koeffizienten B̂2 mit Zunahme der

Packungsdichten zu. Bemerkenswert ist, dass dann wenn wir in die Nähe des Bereichs

der fluid–fluid Phasenseparation kommen, der Betrag von B̂2 sehr stark zunimmt. Wir

finden aber noch einen weiteren Zusammenhang zum Phasenverhalten. Das Phasen-

diagramm der Kolloid-Polymer-Mischung wird durch die Fisher-Widom-Linie in zwei

Bereiche geteilt. In einem Bereich fallen Korrelationen gij(r) im asymptotischen Be-

reich (r → ∞) monoton und exponentiell ab, im anderen oszillatorisch und exponen-

tiell. Andere strukturelle Größen wie z.B. Dichteprofile, Potentiale der entropischen

Kraft und Solvationskräfte zeigen dasselbe asymptotische Verhalten. Betrachtet man

nun das Verhalten von B̂2, so finden wir ebenfalls eine Linie im Phasendiagramm an

der der Oberflächenvirialkoeffizient maximal wird. Diese Linie weist eine auffallende

Nähe zur Fisher-Widom-Linie auf.

Durch die Definition von B̂2 erhalten wir einen Zusammenhang zur Adsorption der

Spezies b an der ebenen Wand. Mit Hilfe des Gibbs’schen Adsorptionstheorems und

der exzess Helmholtz’schen Freien Energiedichte Φex können wir den Grenzwert von

B̂2 → ∞ untersuchen. Wir finden, dass die Zustände im Phasendiagramm, die diese

Eigenschaft aufweisen, auf der Spinodalen liegen, also auf der Linie, die nichtstabile

Zustände im Phasendiagramm begrenzt.

Der Einfluss des Phasenverhaltens des Lösungsmittels auf die Wechselwirkung

zwischen zwei Teilchen ist komplex. Für einfache Systeme, etwa eine binäre Hartku-

gelmischung, ist das Phasenverhalten in weiten Bereichen hinreichend einfach, so dass

bei asymmetrischen Mischungen die Freiheitsgrade der kleinen Komponente ausinte-

griert werden können, und das System als eine effektiv einkomponentige Flüssigkeit

mit effektiver Wechselwirkung beschrieben werden kann. Für Mischungen, bei denen

das Lösungsmittel eine Phasenseparation aufweist, muss das Ausintegrieren der Frei-

heitsgrade dieses berücksichtigen, was nicht einfach zu erreichen ist, da die Einfüge-

methode Effekte wie Kapillarkondensation oder Bridging nicht richtig beschreiben

kann. Wir untersuchen deshalb das Verhalten einer AOV Mischung in der Nähe von
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festgehaltenen Teilchen, welche als das externe Potential für die Mischung wirken.

Dabei betrachten wir einerseits zwei große sphärische Kolloide in kleinem Abstand

und andererseits ein ellipsoidförmiges Teilchen. Um das Problem numerisch zu lösen,

berücksichtigen wir die Rotationssymmetrie und führen ein trianguliertes Gitter für

die Durchführung von Faltungsintegralen ein, welche für die gewichteten Dichten in

der FMT benötigt werden. Wir merken an, dass es numerisch deutlich aufwändiger

ist, die Dichteprofile ρi(z, r) zu berechnen als radialsymmetrische Profile gi(r) in

der Nähe eines einzigen Kolloids. Durch die numerischen Einschränkungen können

wir kein stark asymmetrisches System betrachten. Für zwei große Kolloide b in ei-

ner phasenseparierenden AOV Mischung als Lösungsmittel betrachten wir dabei ein

System aus zwei fixen großen Teilchen b und variieren die Zustandsvariablen indem

wir die Packungsdichte ηc der Kolloid(c)-Komponente des Lösungsmittels ändern.

Für niedrige Werte von ηc finden wir eine geringe Abhängigkeit der Dichteprofile

von der Krümmung des Kolloids b. Bei Zunahme von ηc finden wir eine Reihe von

Sprüngen in den Adsorptionen Γi der Komponenten des Lösungsmittels. An gleicher

Stelle schneiden sich jeweils zwei Kurven des Großkanonischen Potentials. Ein Blick

auf die Dichteprofile veranschaulicht (in diesem endlichen System) diese Pseudopha-

senübergänge. Wir sehen eine sprunghafte Anreicherung der Kolloiddichte ρc(z, r) im

Bereich zwischen den fixierten Teilchen b bei geringfügiger Änderung der Packungs-

dichte ηc. Wir merken an, dass wir wegen des numerischen Aufwands maximal ein

Radienverhältnis von 1:20 zwischen den Teilchen des Lösungsmittels und der großen

Kolloide verwenden können, und wir uns für bestimmte Fälle im metastabilen Bereich

des Phasendiagramms der Kolloid-Polymer-Mischung befinden. Einen analogen Pfad

im Phasendiagramm verfolgen wir für ein ellipsoidförmiges Teilchen, das sich in einer

phasenseparierenden AOV Mischung als Lösungsmittel befindet. Auch hier beobach-

ten wir einen Sprung in den Adsorptionen der Lösungsmittelteilchen und Bereiche

des Großkanonischen Potentials mit unterschiedlichen Steigungen. Fallen die Poten-

tiale verschiedener Bereiche in einem Schnittpunkt zusammen, so kommt es zu einem

Pseudophasenübergang für dieses endliche System. Deutlich zu sehen ist in diesem

Beispiel die Abhängigkeit der Dichte ρc(z, r) von der Position an der Oberfläche des

ellipsoidförmigen Teilchens b. Für ein prolates Teilchen finden wir Bereiche mit einem

Layeringverhalten im Dichteprofil in der Nähe der kurzen Halbachse, während das

Dichteprofil in Richtung der langen Halbachsen keine Layeringstrukturen zeigt. Wir

sehen in den beiden Fällen, dem AOV Lösungsmittel in der Nähe von zwei großen

Kolloiden und in der Nähe eines ellipsoidförmigen Teilchens, dass das Phasenver-

halten des Lösungsmittels eine große Rolle spielt und das Verhalten der effektiven

Wechselwirkung stark beeinflusst.
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Kolloidale Systeme beschreiben eine breite Klasse von Teilchen, da sie hauptsächlich

über ihre Größe definiert sind. Für Teilchen, die sich mit Hard-Core-Potentialen be-

schreiben lassen, wie etwa kugelförmige Kolloide, Polymerknäuel oder dünne Plätt-

chen, bildet das AOV Modell einen geeigneten Ausgangspunkt für theoretische Unter-

suchungen. Basierend auf diesem Modell läßt sich eine verallgemeinerte Freie-Volumen

Theorie und Dichtefunktionaltheorie zur Beschreibung verschiedener kolloidaler Sys-

teme und deren Verhaltens anwenden.

Zum einem spielt es für die Beschreibung der Naturvorgänge und von Experi-

menten eine wichtige Rolle, Verteilungen verschiedener Teilchen zu beschreiben. Wir

konnten mit einem verallgemeinerten Zugang den Effekt der Polydispersität unter-

suchen. Gleichzeitig erlaubte es unser Zugang, beliebige Verteilungen zu verwenden,

und wir konnten für bimodale und bidisperse Mischungen aus depletion agents ein

unerwartet komplexes Phasendiagramm mit zwei kritischen Punkten und drei fluiden

Phasen finden.

Obwohl das AOV Modell ein einfaches Fluid beschreibt weist es doch zahlrei-

che Effekte auf. Eine wichtige Einflussgröße auf thermodynamische Eigenschaften ist

der Einschluss einer Kolloid-Polymer-Mischung in eingeschränkten Geometrien. Für

das hier verwendete Modell konnten wir dabei einen Wettbewerb verschiedener Pha-

senübergänge untersuchen. Abhängig vom Grad der Einschränkungen, wie z.B. der

Porengröße, tritt dabei Layering-Verhalten bzw. Kapillarkondensation auf. Wir konn-

ten bestätigen, dass beide Übergänge in unterschiedlicher Art von der Einschränkung

abhängen.

Was ist der Effekt der Phasenseparation eines Lösungsmittels auf die effektive

Wechselwirkung zwischen Teilchen der gelösten Substanz? Wir haben eine Kolloid-

Polymer-Mischung als Lösungsmittel verwendet, um den Einfluss des komplexen Pha-

senverhaltens zu studieren. Unser Zugang machte es möglich den Effekt der Phasen-

separation an zwei großen Kolloiden und Krümmungseffekte direkt zu untersuchen.

Ein weiterer Schritt um realistischere Systeme zu beschreiben wäre etwa die

Berücksichtigung von Polymeren mit Ausschlussvolumen-Wechselwirkungen (exclu-

ded volume interactions). Die AOV Mischung, welche wir für viele Untersuchungen

zu Grunde gelegt haben, beschreibt ein simples Modellsystem. Dennoch glauben wir

das die Ergebnisse sich auch unter Einführung von Störungen übertragen lassen und

für realistischere Modelle gelten. Der einstellbare Charakter der Wechselwirkungen

zwischen den Kolloiden kann außerdem dazu verwendet werden, um Aspekte von ato-

maren Systemen zu untersuchen. Dabei kann man die zu Grunde liegenden größeren

Längen- und Zeitskalen als sie bei Atomen vorkommen nutzen. Vom experimentellen
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Standpunkt aus lassen sich Kolloide mit diversen weit entwickelten Methoden unter-

suchen. Kleinwinkel-Neutronen- und Kleinwinkel-Röntgenstreuung bieten jeweils eine

Methode zur Untersuchung der Struktur von physikalischen als auch biologischen Sys-

temen. In der eingeschränkten Geometrie, speziell der schmalen Pore, kann mit dem

sog. surface force apparatus oder dem Glimmerplättchen die Solvationskraft gemessen

werden. Es ist außerdem möglich auch deutlich kleinere Systeme, bis hin zu einzel-

nen Teilchen, mit der Atomkraftmikroskopie zu untersuchen oder die Entmischung in

Kolloid-Polymer-Mischungen mit der konfokalen Mikroskopie direkt zu beobachten.

Wir hoffen mit unseren Ergebnissen zukünftige Arbeiten anregen zu können.
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