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Abstract

Embedded systems are prevalent in today’s society and promise to be even more

pervasive in the future. Applications vary from airplane jet or car controllers, commu-

nication devices like cellular phones to consumer electronics like set-top boxes. The

steadily increasing number of functional requirements lead to a complex embedded

hardware and software architecture. Often, applications not only have to compute

correct results but have to achieve this within a given time period. Timing behavior

is an important requirement if the application has to react to signals from the envi-

ronment. To safely and tightly verify timing behavior is very challenging for today’s

complex embedded designs.

Caches are small memories close to the processor and they are needed to increase

the processor performance but their influence on execution time is difficult to pre-

dict because of their complex behavior. Preemptive scheduling is popular in real-time

systems to guarantee short response times and a high processor utilization. An addi-

tional cache-related preemption delay has to be considered when several tasks share

the same cache and when preemptive task scheduling is used. Cache improvements

can be strongly degraded by frequent replacements of cache blocks.

There are several approaches to make caches more predictable and efficient. Cache

partitioning and cache locking strategies are used to make cache behavior partly or-

thogonal. These approaches require larger caches and main memories to become ef-

fective. However, caches are usually small in embedded systems because of their high

cost. While these approaches are certainly a very useful add-on to improve cache pre-

dictability and efficiency, they do not solve the problem of cache behavior prediction

if all tasks shared the cache.

This thesis makes several contributions to instruction and data cache timing be-

havior. First, we propose a novel schedulability analysis for fixed priority preemptive

scheduling to consider timing effects for associative instruction caches at a context

switch. The preemption delays are calculated by considering the preempted as well

as the preempting task. The proposed schedulability analysis bounds the number of
preemptions more tightly by excluding infeasible cache interferences. The analysis is

conservative, e.g. determines a safe upper bound of the preemption delay, and has a

low time complexity.
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As a refinement, the cache interference by multiple task preemptions is analyzed.

While previous approaches calculate the worst-case preemption point and assume that

each preemption takes place at this preemption point, we consider the preemption his-
tory in the calculation of the total cost for multiple task preemptions. The advantage

is that the bound of the total preemption delay for multiple task preemptions can con-

sider the preemption history.

Execution time verification is often used on different levels of the system design.

Less precise estimates are acceptable in early design stages while highly accurate

ones are necessary for verification of hard real time constraints. Two approaches to

bound the preemption delay have been proposed which both use data flow techniques

but differ significantly in respect to time-complexity and analysis precision. In this

thesis we combine these two approaches in a single scalable precision cache analysis

to scale the analysis precision and the time-complexity.

In an automotive case study we found out that control intensive applications de-

signed with ASCET-SD and Matlab/Simulink models contain only sequential code

without loops. Caches cannot increase the performance for such applications because

linear code significantly limits the spacial and temporal locality of memory accesses

for which a cache is optimized. Existing timing analyses focus on a single task execu-

tion. However, embedded applications are activated very frequently if not regularly.

Cache lines from a previous task activation might still be available in the cache and

need not be loaded during a subsequent task execution. This effect of multiple task
execution can result in a significantly reduced number of cache misses. In this the-

sis we estimate a conservative bound of the cache contents at the beginning of task

activation and consider the effect in instruction cache timing behavior.

While previous analysis techniques focus on instruction caches, we also provide a

novel timing analysis for data caches. Data cache behavior is more difficult to predict

because it depends on control flow of the application but also on the input data. While

instruction addresses are fixed, a single instruction can access different data memory

addresses, for example operations on an array. In this thesis we propose a static timing
analysis for data caches which considers input data dependency of memory accesses.

Finally, we integrate instruction and data cache timing analysis in a

measurement-based WCET-analysis tool, which has been developed in previous work.

Measuring the execution time requires insertion of instrumentation points which dis-

turbs the temporal behavior of an application. In this thesis we present a novel instru-
mentation methodology that reduces the number of instrumentation points.



Kurzfassung

Eingebettete Systeme sind in unserem Alltag allgegenwärtig und werden in der

Zukunft noch eine bedeutendere Rolle spielen. Anwendungen reichen vom Flugzeug

und Mikro-Controller im Auto, über mobile Anwendungen wie dem Handy bis hin

zu Multi-Media Anwendungen, wie der Settop-Box. Die immer steigendenen funk-

tionalen Anforderungen an eingebettete Systeme schlagen sich im immer komplex-

eren Design der Software und Hardware nieder. Jedoch müssen Anwendungen nicht

nur das korrekte Ergebnis liefern, sondern oft müssen diese Berechnungen innerhalb

einer bestimmten Zeitdauer durchgeführt werden. Beispiele für Echtzeit (real-time)-

Anforderungen reichen von harten (hard real-time) Bedingungen, wie etwa beim

Airbag im Fahrzeug oder sicherheitskritischer Navigation im Flugzeug bis hin zu

weichen Echtzeit-Bedingungen (soft real-time), die auch Quality-Of-Service genannt

werden, wie etwa die Übertragung von Wort und Bild in der Telekommunikation. Die

Vorhersage der Einhaltung dieser Zeitbedingungen ist eine große Herausforderung für

heutige komplexe Mikroprozessoren.

Caches sind kleine Speicher in der Nähe des Prozessors, die notwendig sind, um

die Performance zu erhöhen. Sie überbrücken den Geschwindigkeitsunterschied zwis-

chen einem langsamen Speicherzugriff und der hohen Prozessor-Taktrate. Die Vorher-

sage des Zeitverhaltens einer Anwendung, oder auch Task genannt, wird dadurch

um ein Vielfaches schwieriger, weil das Cache-Verhalten sehr dynamisch ist. Das

unterbrechende Scheduling ist eine geeignete Methode der Ressourcenverwaltung in

Echtzeitsystemen, weil sich kurze Antwortzeiten und eine hohe Auslastung erreichen

lässt. Unterbrechendes Scheduling bedeutet, dass eine Anwendung unterbrochen wird

um beispielsweise eine Anwendung mit einer höheren Priorität auszuführen.

Der unterbrechende und unterbrochene Task können die gleichen Cache Blöcke

im Cache benutzen. Die durch den unterbrechenden Task ersetzten Cache Blöcke

müssen dann ggf. vom unterbrochenen Task wieder nachgeladen werden. Die Dauer

für das Nachladen von Cache Blöcken wird als Cache-abhängige Unterbrechungszeit

(cache-related preemption delay) bezeichnet.

Als Alternative gibt es einige Verfahren um das Cache-Verhalten vorhersagbarer

zu machen. Cache Partitionierung und Cache Locking sind zwei Techniken, um das

Zeitverhalten des Caches unabhängig von anderen Tasks zu gestalten. Jedoch wer-
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den größere Caches und größere Hintergrund Speicher benötigt, damit diese Tech-

niken effektiv sind. In eingebetteten Systemen sind Caches jedoch aus ökonomischen

Gründen meist klein. Diese Ansätze sind sicher sehr attraktiv, um das Zeitverhalten

deterministischer zu machen, sie lösen jedoch nicht das Problem, wenn alle Anwen-

dungen gemeinsam einen Cache benutzen.

Diese Dissertation beschäftigt sich mit der Analyse des Zeitverhaltens von Befehls-

und Datencaches. Zunächst, wird eine innovative Schedulability-Analyse für unter-

brechendes Scheduling mit festen Prioritäten vorgestellt, die das Zeitverhalten von

assoziativen Befehlscaches beim Task-Wechsel berücksichtigt. Die Bestimmung der

Unterbrechungskosten berücksichtigt das Cacheverhalten der unterbrochenen als auch

der unterbrechenden Anwendung. Im Vergleich zu früheren Arbeiten, wird die An-

zahl der Cache-Beeinflussung durch unterbrechende Anwendungen genauer jedoch

konservativ abgeschätzt. Konservativ bedeutet, dass eine obere Schranke angegeben

wird. Weiterhin ist die Zeitkomplexität diese Methode sehr gering.

Als weitere Verbesserung werden mehrere Unterbrechungen im Zusammenhang

betrachtet. Während frühere Ansätze jede Unterbrechung an der teuersten (worst-

case) Unterbrechungsstelle annehmen, wird in dieser Arbeit die teuerste Kombination

für eine Menge von Unterbrechungskosten bestimmt. Der Vorteil liegt darin, dass die

Abschätzung der Kosten von allen Unterbrechungen kleiner sein kann als die Summer

der Kostenabschätzungen jeder einzelnen Unterbrechung.

Die Abschätzung der Unterbrechungskosten kann durch Datenflussanalysen bes-

timmt werden. In der Literatur gibt es zwei Ansätze, die jeweils Datenflussanalysen

verwenden, die sich hinsichtlich ihrer Analysegenauigkeit und Zeitkomplexität je-

doch stark unterscheiden. In dieser Dissertation werden beide Ansätze in einem Ver-

fahren kombiniert, um die Genauigkeit und die Zeitkomplexität skalieren zu können.

In einer Studie zur Bestimmung des Cacheeinflusses in Kontroll-basierten Anwen-

dungen im Fahrzeug hat sich gezeigt, dass der automatisch generierte C-Code lin-

ear ist und keine Schleifen enthält. Aufgrund dieser Struktur kann ein Cache die

Ausführungzeit nicht verbessern weil weder zeitliche noch räumliche Lokalität der

Speicherzugriffe vorliegt, für die Caches optimiert sind. In früheren Laufzeitanaly-

sen wird von einer einzelnen Ausführung einer Anwendung ausgegangen. In einem

eingebetteten System werden Anwendungen jedoch nicht nur einmal, sondern sehr

häufig ausgeführt. Cache Blöcke, die von einer früheren Ausführung noch im Cache

vorhanden sind, müssen in einer zweiten Ausführung nicht geladen werden und re-

duzieren so die Cachezugriffszeit. In dieser Arbeit wird ein Verfahren vorgeschlagen,
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in dem mehrfache Ausführungen von Anwendungen in der Berechnung der Cachev-

erhaltens berücksichtigt werden.

Die oben genannten Analysen bezogen sich auf den Befehlscache. Nun schlagen

wir eine innovative Analyse des Zeitverhaltens für Datencaches vor. Die Heraus-

forderung bei Datencaches liegt in der weitaus stärkeren Abhängigkeit von Eingabe-

daten. Während bei Zugriffen im Befehlscaches die Speicheraddresse des Befehls

konstant ist, kann die mehrfache Ausführung des gleichen Befehls auf unterschiedliche

Datenworte zugreifen, beispielsweise Operationen auf einem Array. In dieser Arbeit

wird ein Verfahren vorgestellt, um die Eingabendaten-Abhängigkeit von Speicherzu-

griffen zu analysieren. Diese Effekte werden dann in der Analyse des Zeitverhaltens

von Datencaches berücksichtigt.

Abschließend integrieren wir die oben vorgestellen Cache-Analyse Verfahren in

einem bestehende Tool zur Laufzeitanalyse. Das darin verwendete Methodik basiert

auf eine Kombination aus Messung und statischer Analyse. Die Messung von Lauf-

zeiten erfolgt auf realer Hardware und die eingefügten Messpunkte beeinflussen das

zeitliche Verhalten der Anwendung. Um die Messungenauigkeit zu reduzieren, schla-

gen wir ein Verfahren vor, das die Anzahl der Messpunkte reduziert.

Um zusammenzufassen, in dieser Dissertation wird das Zeitverhalten von Befehls-

und Datencaches in einbetteten Systemen mit unterbrechendem Scheduling genau

analysiert. Damit steht ein umfangreiches Analyse-Framework zur Verfügung, um

das komplexe Zeitverhalten von Caches für Echtzeitanwendungen zu berücksichtigen.
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cially I would like to thank Bettina Böttger, Ina Niedermayer, Gaby Gorajski and Jan

Pietrzyk.

I would like to thank researchers and practitioners in the real-time community for

their support, especially Isabelle Puaut, Tulika Mitra, Guillem Bernat, Christian Fer-

dinand, Reinhard Wilhelm, Frank Mueller, Adam Betts, Raimund Kirner and Rainer

Schlör. I would like to express my thanks to many anonymous reviewers for their

comments and conference participants for fruitful discussions.

Thanks to all friends for having a joyful time: Kathleen Tschernatsch, Mathias

Tauchert, Anja Andrea Kerber, Redouane Msaad, Anne and Grit Tölke, Susanne

Fiedler, Alexandra Wilke, Steffen Dressler, Mathias Korn, Konstantin von Keitz,

Christiane Börstinghaus, Jan Zänker, Robert Köhler, Ana Maria Racu, Alexandra
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Chapter 1

INTRODUCTION

Embedded systems are prevalent in today’s society and promise to be even more

pervasive and found in many of the things we interact with in our daily lives in the

near future [122]. Applications vary from today’s airplane jet or car controllers, and

communication devices like cellular phones to the future’s autonomous kitchen ap-

pliances, and intelligent vehicles. The trend in semiconductor industry is that the In-

ternet and e-commerce will change our lives and impact the semiconductor industry

even further. A market forecast [29] of the structure of worldwide electronic produc-

tion in 2010 is presented in figure 1.1. It shows that 60% of electronic production will

be among embedded applications. One sector that stands out of the embedded market

is communications (30%), while consumer (15%), industrial (12%) and automotive

and defense (14%) have about the same percentage.

A second trend is that in the five key industrial sectors with a high share of micro-

electronics, software plays a more and more important role [54]. The prediction for

the total growth from 2002 to 2015 is to 128% and more than doubles the total re-

search and development (R&D) investment growth. Industries where software played

a minor role in 2002 (automotive, medical equipment) will increase their effort to

more than a third of their R&D volume and sectors which have already a high soft-

ware rate ( consumer electronics, telecom equipment) will raise the software R&D

budget to over 60%. These figures show that the market share for embedded systems

is growing and a high portion of industrial research and development activities will

be dominated by embedded systems [65]. The complexity of embedded systems will

inevitably increase to meet numerous demanding requirements.



2 Introduction

Industrial
12%

Consumer
15%

Automotive
10%

Defense
4%Computer

29%

Communication
30%

Source: Jean-Philippe Dauvin, MEDEA / DAC, May 2005

Total:
$1500B

Figure 1.1. Structure of worldwide electronic production in 2010 [29].

1.1 Embedded system requirements
Embedded systems have to satisfy an increasing number of requirements. The

time-to-market period is getting especially important as product life-cycles are con-

stantly decreasing, such as in multimedia, telecommunication and consumer electron-

ics. A rapid development is crucial for a successful product placement while func-

tional as well as non-functional requirements are essential. The embedded system

development process is studied from an economic viewpoint in [65].

Functional requirements

Correctness is a fundamental requirement to guarantee that an embedded system

properly operates. Many hardware- and software-tests are carried out to verify func-

tional behavior.

Flexibility is used in two different senses: configurability and re-configurability.

The advantage of a configurable system is that the manufacturer can simplify the

development for a variety of product lines. Re-configurability gives the customer the

ability to use a device for different applications. For example, a firmware update

is much less expensive than the exchange of hardware components in case software

errors are detected.
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Reliability varies strongly for different embedded systems. While a system crash of

a cellular phone is acceptable once a year, a similar rate for safety-critical systems like

in aerospace applications would be disastrous. Fault tolerance and quality of service

(QoS) are terms used to describe the necessary robustness of an embedded system.

Non-functional requirements

Timing behavior denotes the time delay within a software task finishes its com-

putation. For most embedded applications, a calculation has not only to be correct

but has to finish before a specified time period. The term timing behavior covers a

broad spectrum: from best effort strategies and quality of service, e.g. in network-

ing domain, real-time constraints, e.g. for MPEG video processing, to safety-critical

requirements, e.g. airbag in automotive.

The term real-time is often used when the embedded application reacts to signals

from its environment. Such systems are further distinguished into soft real-time and

hard real-time systems. In soft real-time systems, timing behavior is considered an

important aspect yet is not essential to correct functional behavior. The quality can

be reduced in case of timing bottlenecks and it is considered as correct functional

behavior. As an alternative, the software task could be switched to a different pro-

cessing mode, in which less accurate results are computed within a shorter time. In

hard real-time systems, the application must finish before a pre-defined deadline. The

term deadline denotes the longest acceptable time period before the computation has

to finish. Examples are engine control software in automotive, flight control software

in avionics systems and pacemakers.

Micro-systems with real-time behavior have been developed to make driving more

secure. Micro-systems are embedded systems, in which electronic components are

combined with micro-mechanical, micro-optical or micro-fluidic components. The

automotive supplier Continental-Temic developed a lane-keeping system that auto-

matically controls the car navigation. Another product by Ibeo is the Alasca XT laser,

which observes the area in front of a vehicle from 30cm to 200 meters and can com-

pute up to seven different functions simultaneously [33] [41].

A low power consumption is essential for mobile devices. A lower power dissi-

pation allows lighter and smaller products as well as longer operation times. Other

important product requirements are size, weight and design.

In order to meet these requirements, an appropriate hardware and software architec-

ture has to be chosen. Often requirements have opposite goals: a short time-to-market
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window versus an efficient hardware and software design. This thesis focuses on tim-

ing requirements and discusses the challenges of advanced hardware architectures.

1.2 Architecture and application properties
In this section we survey properties of modern embedded architectures including

processors, memory hierarchy and operation systems. Then, we discuss their impact

on the timing behavior of software applications.

Architectures

Embedded architectures consist of one or several processors with several memory

devices and peripheral units. An example of an embedded architecture is shown in

figure 1.2. The TriCore 1796 processor [51] is used in the automotive domain for en-

gine control units (ECU)s. It consists of three cores, an instruction cache, scratch-pad

memory, other memory units, several IP components, for example a CAN bus inter-

face and several busses. The scratch-pad RAM, which is a SRAM memory, holds

frequently executed instructions, e.g. of the operating system, to prevent cache re-

placements.

EBUEBU

SRAM (48 KB)
ICache (16 KB)
SRAM (48 KB)
ICache (16 KB)

System Peripheral Bus

TriCore
(TC1M)

TriCore
(TC1M)

BridgeBridge

CAN Bus
Interf. (4)

CAN Bus
Interf. (4)

System
Timer

System
Timer

Data RAM
(64 KB)

Data RAM
(64 KB)

SRAM
(80 kB)

SRAM
(80 kB)

Peripheral
Core

Processor

Peripheral
Core

Processor PortsPorts

ROM (16 KB)
Flash (2 MB)

ROM (16 KB)
Flash (2 MB)

RAM
(16 KB)
RAM

(16 KB)
Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus interfaceBus interface DMADMAASC(2)ASC(2)

SSC(2)SSC(2)

ADC(3)ADC(3)

GPTA(2)GPTA(2)

programmable
processors

weakly prog.
co-processors

reused
components(IP)

memories

interface&
control

Figure 1.2. TriCore 1796 Architecture [51].

Such highly integrated systems are also called system-on-chip (SoC) because many

components are integrated on a single chip.



Architecture and application properties 5

Digital signal processors (DSP) are used for certain application domains, dedicated

or weakly-configurable co-processors (ASICs respectively FPGAs).

The notion of a Network-on-Chip is been used to extend the classical bus-based

interconnection, which is still the dominant interconnect structure for SoC’s, into a

dedicated, segmented and, possibly, packet-switched network fabric [12] [79].

Processor speed as well as fast memory access times are essential goals in proces-

sor design. As main memory is usually slow but cost-efficient, a hierarchy of memory

devices are used.

Caches

Caches are small memory devices to bridge the gap between fast processor speed

and slow main memory [45]. Frequently used memory blocks are stored in the cache

while the capacity is significantly smaller than main memory. The time to access

data in the cache from the processor is very fast, e.g. a single clock cycle, if the

requested data is available in the cache. Otherwise, the cache controller has to request

the data from main memory, which takes much longer, typically 20 - 100 or more

clock cycles. This introduces a highly dynamic timing behavior because it is statically

difficult to predict the cache contents. In a Harvard architecture, a cache is separated

for instructions and data. Instruction caches hold only the program code and are

only read from the processor while data caches hold the data, which are read and

written from the processor. We give an overview of different cache architectures in

section 2.1.

Operating systems

Embedded systems usually compute several tasks in parallel. For example, the fol-

lowing tasks have to be calculated at the same time in a mobile phone: estimating the

current position, searching an address in the organizer, receiving an incoming phone

call and responding to user interaction. An operating system schedules several tasks

that request a resource at the same time. This process is also called scheduling. Three

major classes of scheduling strategies can be distinguished. First, non-preemptive

static execution scheduling. It is mainly used for highly regular digital signal process-

ing (DSP) applications. Second, preemptive priority-driven scheduling. Preemptive

scheduling means that task execution can be interrupted by another task, e.g. with a

higher priority, which is then executed. When the higher priority task has finished,

the preempted task resumes.
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Preemptive priority-driven scheduling is often used in reactive systems operating

in dynamic environments. Priorities can be assigned statically, for example where

priority assignment follows rate-monotonic scheduling (RMS), or dynamically, for

example where priority assignment follows earliest deadline first strategy.

A third class of scheduling strategies are preemptive time-slicing techniques. These

techniques assert a fair distribution of the resource among all tasks but are less effi-

cient, because unrequested time slots are wasted. Static time-division media access
(TDMA) scheduling with fixed length time slots, can be distinguished from more dy-

namic round robin (RR) scheduling with variable-length time slots. While all schedul-

ing strategies have their merits, we focus on RMS scheduling in this thesis. RMS is

very popular in embedded systems because of its efficiency and its ability to guar-

antee short response times. For example, ERCOSek [31] is used in automotive and

VxWorks [138] is used and telecommunications.

Real-time operating systems are operating systems which guarantee a pre-defined

longest acceptable response time (deadline) for a task. Often preemptive scheduling

policies are used to guarantee short response times. A scheduler interrupts the exe-

cution of the currently running task and then assigns the processor to a different task.

This process is also called a context switch. It requires an additional time overhead,

which is also called preemption delay, for saving the hardware state, e.g. the program

counter and the register values, and for executing the scheduler itself. In section 2.3

we further discuss different scheduling policies.

Cache related preemption delay

If caches are used, the preemption delay is increased due to the cache interference

of the preempting and preempted task. As an example, figure 1.3 shows a schedule

where a task τ1 is preempted by a task τ2.

�2

�1

Figure 1.3. Task preemption and cache-related preemption delay (CRPD).

If the preempting task replaced cache blocks of the preempted task, then these

cache blocks might have to be reloaded by the preempted task (solid blocks in the
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figure). This delay is called cache-related preemption delay (CRPD). Cache blocks

are not loaded at once after the preempted task τ1 resumes but rather on demand

when the processor accesses these cache blocks. In section 2.4.1 we describe in detail

different techniques to bound this CRPD. This work will make several contributions

to a tighter and more time-efficient calculation of the CRPD than previous approaches.

As an alternative to allow all tasks to share the entire cache, cache partition and

cache locking strategies can be used to make the timing behavior partly orthogonal

for different tasks. We discuss the applicability of these techniques in more detail in

section 2.2.

Software development

Complex embedded software is typically developed by different vendors and is

combined by a system-integrator. Model-based design tools, for example Matlab/

Simulink [82] and ASCET-SD [9] with automatic code generators, e.g. TargetLink

[126], are used. Typically not all software components are known to the system inte-

grator because of intellectual property restrictions. This limits also a full system level

performance analysis which a priori assumes all necessary information.

Multiple task execution

An other property of embedded software is its regular execution frequency. For ex-

ample, in an engine control unit in automotive domain [111], tasks are activated every

1ms, 10ms and 100ms periods and some tasks are activated synchronous to the engine

rotation counter. Automatically generated source code, e.g. from Matlab/Simulink,

consists of sequential code without loops. An instruction cache, such as found in the

TriCore microprocessor, would only marginally increase the execution time, because

cache blocks are not re-used. However, if some cache blocks remain in the cache from

a previous task execution, than the cache accesses would result in frequent cache hits.

1.3 Challenges for real-time analysis

The demanding requirements for embedded systems and the complexity of the soft-

ware and hardware architecture of embedded systems lead to challenging problems in

real-time performance analysis. The requirement for short response times and a high

utilization makes preemptive scheduling very attractive. Today’s microprocessors use

instruction and data caches to bridge the speed gap between slow memory access time

and high processor frequency. The combination of preemptive scheduling techniques

processors with caches are common in embedded systems.
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State-of-the-art in industry to determine the timing behavior is to simulate an appli-

cation on real hardware or on a processor simulator using stimuli data. The hope is to

cover all relevant execution scenarios. While typical timing behavior can, of course,

be obtained by software tracing and simulation, execution time guarantees cannot be

made.

On the other hand, it would be possible to restrict cache usage or use non-preemptive

scheduling. For example, cache locking and cache partitioning can be used to make

cache behavior orthogonal to several tasks. However, these techniques need usually

larger caches and main memory to become effective, but caches are typically small

compared to main memory in embedded systems to reduce cost. Non-preemptive

scheduling is rarely an option to highly reactive embedded systems, since short re-

sponse time are required.

WCET- and schedulability analysis

As an alternative to simulation and testing, formal methods are being used to prove

certain temporal properties of an embedded system [55]. To gain full flexibility of

preemptive scheduling and speed-up by caches, performance analyses have been ex-

tended to consider cache timing effects. Such performance analyses are structured

in a higher-level schedulability analysis and a lower-level worst-case execution time
(WCET) analysis. While schedulability analysis considers the scheduling policies

and system level parameters and abstracts the timing behavior of a single task, WCET-

analysis focuses on a single task execution and simplifies global system level effects.

The following simplifications in WCET-analysis and schedulability analysis lead to

pessimistic overestimations, when caches are used. On the one hand, WCET-analyses

assume a single task execution and thus assume an empty cache at task activation [1]

[8] [71] [127] [141]. Memory access times and cache miss penalties are considered to

take always the worst case time. It is assumed that task is not interrupted by any other

task. This means that only intrinsic cache effects are considered, e.g. only during a

single task execution.

On the other hand, schedulability analyses assume the WCET to be available. For

preemptive task scheduling on architectures with caches, cache-related preemption

delays increase the worst-case execution time, and have to be considered as context

switch times. But these delays depend on the cache behavior of tasks, which is the

domain of WCET analyses. Existing cache-aware schedulability analyses [19] [67]

[92] assume that each preemption takes place at the worst-case preemption point.
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The challenge is to tightly bound the preemption delay and cache timing behavior

and not just to deliver a bound. For this reason, the strict separation of schedulability

analysis and WCET analysis has to be overcome. Valuable information in each anal-

ysis has to be made available for the other one. We identify the following challenges

for schedulability and WCET-analysis.

Multiple task activation

As noted in the last section, we studied control intensive applications which contain

only sequential code without loops. Caches cannot increase the performance for such

applications, because linear code significantly limits the spacial and temporal locality

of memory accesses for which a cache is optimized. However, a task is not executed

only once. It is executed repeatedly. Previous cache blocks might be available from

previous task activations and could reduce the prediction of cache misses in a WCET

analysis.

Multiple preemptions

Second, if a task is preempted multiple times, it is unlikely that it will be preempted

always at the worst case preemption point. In the approach by [66] the most expensive

preemption points have been determined but only the preempted task was considered.

Even this modeling leads to an overestimation, because the preemption history is

important. For example, a cache block that is replaced at a preemption point cannot be

replaced a second time, if the preempted task did not reload this cache block between

the first and second preemption point.

Indirect preemptions

In schedulability analysis it is often assumed that each task preemption causes a

cache interference [67] [19]. However this is not necessarily always the case. When a

task τ is interrupted by a task τk, then τ is suspended. If the task τk is interrupted itself

several times by an even higher priority task τi, only the first task interruption by τi

might remove some cache blocks of τ . Since the task τ is suspended no cache blocks

are reloaded between the preemptions of the task τk. And thus further preemptions by

task τi have no negative cache effect for task τ .

Time complexity of schedulability analyses

Another challenge for real-time analyses are their time complexity. The time com-

plexity of a formal analysis technique is crucial when designing larger embedded
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systems. There have been analysis approaches for cache-related preemption delay

analysis which are very time-consuming but accurate [89] and less accurate ones with

a lower time-complexity [66] []. From the design perspective, different levels of anal-

ysis precision are desirable.

Data caches

Data caches have been a great challenge in static timing analysis. Their behavior

is more difficult to predict, because it depends on control flow of the application but

also on the input data. While instruction addresses are fixed, a single instruction can

access different data memory addresses, for example operations on an array.

Measurement-based WCET analysis

Measurement-based WCET analysis approaches, such as [14] [91] [139] [135], are

attractive to meet industrial strength requirements, as they are easy to re-target and

cost-efficient. The principle is to measure the execution time of an application on real

hardware by inserting intrusive instrumentation probes. The main drawback in using

instrumentation probes is that they disturb the temporal behavior of the application,

i.e. the execution time of the program differs when the probes are removed. Further-

more, the initial hardware state is difficult to assert during the measurements. The

main challenge is to minimize the measurement overhead.

1.4 Contributions
This dissertation makes the following contributions:

First, we propose a novel schedulability analysis for fixed priority preemptive

scheduling to consider timing effects for associative instruction caches at a con-

text switch. The preemption delays are calculated by considering the preempted

as well as the preempting task. The proposed schedulability analysis bounds the

number of preemptions more tightly by excluding infeasible cache interferences

by considering indirect preemptions. The analysis is conservative, e.g. determines

a safe upper bound of the preemption delay, and has a low time complexity.

As a refinement, the cache interference by multiple task preemptions is analyzed.

While previous approaches calculate the worst-case preemption point and assume

that each preemption takes place at this preemption point, we consider the pre-

emption history in the calculation of the total cost for multiple task preemptions.

The advantage is that that the bound of the total preemption delay of a multiple
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task preemptions can be smaller than the sum of the preemption delay bounds of

each preemption.

Execution time verification is often used in different levels in system design. Less

precise estimates are acceptable in early design stages while highly accurate ones

are necessary for verification of hard real time constraints. Two approaches to

bound the preemption delay have been proposed which both use data flow tech-

niques but differ significantly in respect to time-complexity and analysis precision.

Existing timing analyses focus on a single task execution. However, embedded

applications are activated very frequently if not regularly. Cache lines from a

previous task activation might still be available in the cache and need not be loaded

during a subsequent task execution. This effect of multiple task execution can

result in a significantly reduced number of cache misses. In this thesis we estimate

a conservative bound of the cache contents at the beginning of task activation and

consider the effect in instruction cache timing behavior.

While the previous analysis techniques focus on instruction caches, we also pro-

vide a novel timing analysis for data caches. Data cache behavior is more difficult

to predict, because it depends on control flow of the application but also on the

input data. While instruction addresses are fixed, a single instruction can access

different data memory addresses, for example operations on an array. In this the-

sis we propose a static timing analysis for data caches which considers input data

dependency of memory accesses.

Finally, we integrate instruction and data cache timing analysis in a measurement-

based WCET-analysis tool, which has been developed in previous work. Measur-

ing the execution time requires insertion of instrumentation points which disturbs

the temporal behavior of an application. In this thesis we present a novel instru-

mentation methodology that reduces the number of instrumentation points.

1.5 Overview
This thesis is structured as follows. Background information on cache memories,

predictable cache usage, previous cache-aware schedulability analyses as well as pre-

emption delay analyses is presented in chapter 2. The novel cache-ware response time

analysis for instruction caches considering indirect preemptions, multiple preemp-

tions and multiple task activations is presented in chapter 3. The scalable precision

cache analysis is presented in chapter 4 for direct mapped as well as for associative

instruction caches. Data cache analysis is presented in chapter 5 and in chapter 6 we
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present the novel instrumentation point selection method before we summarize and

conclude in chapter 7. In Appendix A we describe the prototype SymTA/P for WCET

calculation and a case study.



Chapter 2

CACHE BEHAVIOR IN EMBEDDED SYSTEMS

In this chapter, we provide background information about cache behavior and

performance analysis for embedded systems. The architecture and functionality of

caches are presented in section 2.1. Predictable cache usage techniques are described

in 2.2. Then, we review scheduling techniques and schedulability analyses in general

in section 2.3 and describe cache-aware schedulability analyses in section 2.4.

The last part of this chapter, section 2.5, explains the technical intricacies of data

flow algorithms. These algorithms are employed in the thesis in various parts: in

section 3.3.3 to calculate the delay for preemption scenarios for instruction caches, in

section 4.1 to motivate the scalable precision cache analysis for instruction caches, in

section 5.4.2 to compute persistent cache blocks for data cache analysis, and finally

in appendix A.1.3 as part of the SymTA/P analysis framework.

2.1 Cache memories

Caches are small memories close to the processor. They increase the performance

because they bridge the gap between fast processor speed and long memory access

time [45]. In this section we discuss the basics of semiconductor memories in sec-

tion 2.1.1, common cache architectures in section 2.1.2, and cache access mechanisms

in section 2.1.3. In section 2.1.4 we summarize which cache effects are considered in

this thesis.

2.1.1 Semiconductor Memories

The ideal memory would be low cost, high performance, high density, with low

power dissipation, random access, non-volatile, easy to test, and highly reliable [95].
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Unfortunately, a single memory having all these characteristics has not yet been de-

veloped, however, a system combining dynamic RAM and static RAM memories

achieves many of these characteristics.

A DRAM (dynamic random access memory) is a MOS memory (Metal Oxide

Semiconductor) which stores a bit of information as a charge on a capacitor [95].

Since this charge decays away in a finite length of time a periodic refresh is needed

to restore the charge. The advantages of a DRAM is its small size, since a basic

memory cell consists of a single transistor and a capacitor and thus a low cost per bit.

The disadvantage of a DRAM is that it is volatile. The memory cells do need to be

refreshed.

A static RAM (SRAM) cell consists of a basic bistable flipflop circuit containing

four transistors. No periodic refresh is required. The only disadvantage compared to

DRAMs is that of size and, as a result, of cost. The advantage is a faster memory

access time than a DRAM.

The processor performance and the memory bandwidth demand is constantly in-

creasing because of higher processor frequency and super scalar execution. The ad-

vances of DRAM technology to increase memory access time are by no means suf-

ficient to cope with the increased bandwidth demand. With a relatively small, but

very fast SRAM memory or a memory hierarchy, it can be achieved, that a system

with slow DRAM main memory operates as fast as a system with fast SRAM as main

memory [11]. Such a small memory device is called a cache.

2.1.2 Cache architecture and functionality

Principle of locality

A cache is a small fast memory close to the processor. The principle of locality has

driven its architecture design. The principle of locality comes in two flavors: temporal

and spacial locality. First, temporal locality means that a cache block is used several

times during a short time period, e.g. in loops. Second, spacial locality means that if

a memory word is requested than it is likely that other memory words near by will be

accesses too.

Architecture

A cache consists of several cache blocks, also called cache lines, which represent

several memory words. Typically, the size of a cache block ranges is 4, 8 or 16

memory words in embedded caches. When a memory block is requested from the

processor, then the entire cache block is loaded to the cache. Then, an access to
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memory blocks within this cache block can be serviced by the cache and no main

memory traffic is necessary.

A memory block can be placed in the cache in different cache blocks. A cache

can be direct mapped, n-way associative or full-associative. For an n-way associative

cache, n cache blocks are organized in a cache set, as shown in figure 2.1. In a direct

mapped cache each cache set has exactly one cache block, e.g. the associativity is

one. A memory block can be placed in any block in the cache set it is mapped to.
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Figure 2.1. Cache architectures.

The address in a cache is split in block address and block offset, in which the block

address is further divided into the tag field and index field. The block offset field

selects the desired data from the block, the index field selects the set, and the tag field

is used to compare the address of the requested memory block.

While instructions can only be read, data can be read and written. Thus, a cache

is often separated into a data and an instruction cache. This architecture is called a

Harvard architecture. If the cache is unified, it is called a von Neumann architecture.

Functionality

When the address matches the tag, the cache access is called a cache hit, otherwise

a cache miss. In this case, the entire cache block is requested from main memory.

The time-delay to access main memory is called cache miss penalty. When a miss

occurs, the cache controller must select a block to be replaced with the desired data.
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For direct mapped caches, there is only a single choice. In associative caches, a

replacement strategy decides which block is discarded. Common strategies are least

recently used (LRU), random or round robin (as used in Intels 80200 Xscale processor

[53]).

When a data is written to the cache, write policies often distinguish cache designs.

There are two basic options when writing to the cache: A write through (or store

through) cache writes the information to both the block in the cache and to the block

in main memory. A Write back (also called copy back or store in) cache writes the

information only to the block in the cache. The modified cache block is written to

main memory only when it is replaced. A dirty bit is commonly used to reduce the

frequency of writing back blocks on replacement. To reduce writing stall time, write

buffers are used, which allows the processor to continue as soon as the data is written

to the buffer, thereby overlapping processor execution with main memory updating.

For example, a write buffer of eight 64-bit entries is used in ARM1020E [47] in the

32kB data cache. The write policy is configurable write through or write back. The

Trimedia [132] has a 16kB 8-way associative write allocate dual ported data cache

supporting two parallel accesses (load/store).

Since a memory block is not needed on a write, there are two common options on a

write miss: First, Write allocate (also called fetch on write) where the block is loaded

on a write miss, followed by the write-hit actions, and second, no-write allocate (also

called write around) where the block is modified in the main memory and not loaded

into the cache.

Generally, write-back caches use write allocate (hoping that subsequent writes to

that block will be captured by the cache) and write-through caches often use no-write

allocate (since subsequent writes to the block will still have to go to memory).

2.1.3 Improving cache performance

Much research has focused on improving cache performance. The techniques can

be organized in three categories: reducing cache miss rate, reducing the miss penalty

and reducing the hit penalty. We briefly explain some techniques. A more detailed

description can be found in [45].

Reducing cache miss rate

The cache miss rate can be reduced by a larger block size, higher associativity, a

victim cache, a pseudo-associative cache, hardware prefetching, compiler controlled

prefetching, or compiler optimizations. Larger blocks take advantage of spatial lo-
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cality. At the same time, larger blocks increase the miss penalty, thus there is an

optimum for a given architecture depending on the cache miss penalty. The reasons

for a miss rate improvement by higher associativity can be summarized as follows:

First, an eight-way associative cache is for practical purposes as effective in reducing

misses as a fully associative. The second observation, called 2:1 cache rule of thumb,

is that a direct-mapped cache of size N has about the same miss rate as a 2-way set-

associative cache of size N/2. However, greater associativity can come at the cost of

increased hit time [46].

Victim cache

A third miss rate reduction technique are victim caches. The idea is to add a small,

fully associative cache between a cache and its refill path. This victim cache con-

tains only blocks that are discarded from a cache because of a miss (victims) and are

checked on a miss to see if they have the desired data before going to main memory.

If it is found there, the victim block and the cache block are swapped. Jouppi [58]

found that victim caches of one to five entries are effective at reducing conflict misses.

Pseudo-associativity

Another approach to get the miss rate of set-associative caches and the hit speed

of direct mapped caches is a pseudo-associative (or column associative) cache. A

cache access proceeds just as in a direct-mapped cache. On a cache miss, another

cache entry is checked to see if it matches there. A simple way is to invert the most

significant bit of the index field to find the other block in the ’pseudo-set’ [2].

Prefetching and other techniques

Another approach to reduce the miss rate without affecting the processor clock rate

is to prefetch items before they are requested by the processor. For example the Al-

pha AXP 21064 fetches two cache blocks on a miss: the requested block and the next

consecutive block. Prefetching relies on utilizing memory bandwidth that otherwise

would be unused, and can actually decrease the performance if it interferes with de-

mand misses. Compiler controlled prefetching can reduce useless prefetching and,

finally, compiler optimizations can reduce miss rate without any hardware changes

by code reordering including merging of arrays, interchanging nested loops or fusing

loops.
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Reducing miss penalty

To reduce memory traffic, only sub-blocks can be replaced. A valid bit is added to

units smaller than the full block, called sub-blocks. Only a single sub-block has to

be read on a miss. The valid bits specify some parts of the block as valid and some

parts as invalid, so a match on the tag does not mean the word is necessarily in the

cache, as the valid bit for that word must also be on. For example, the instruction

cache of TriCore 1775 micro-processor [50] uses sub-block placement at the size of

double-words.

While sub-block placement requires extra hardware, the following two techniques

are based on the observation that just one word of the cache block is needed by the

processor at a time. Early restart: As soon as the requested word of the block arrives,

it is sent to the processor and the processor can continue execution. Critical word
first: The missed word is requested first from memory and is sent to the processor as

soon as it arrives; the processor can continue execution while filling the rest of the

words in the block.

For example, the embedded processors TriCore [52] [145], e.g. 1775 [50] and 1796

[51], Trimedia [132], ARM920 [7] ARM1020E [47] and Intel 80200 (Xscale), [53],

support critical word first.

Another way to reduce the miss penalty is the hierarchical design of caches. By

adding another level of cache between the original cache and main memory, the first-

level cache can be small enough to match the clock cycle time of the fast processor,

while the second-level cache can be large enough to capture many accesses that would

go to main memory, thereby lessening the effective miss penalty. For example, the

PowerPC 750GX includes 1 MB of internal L2 cache, which is 4-way set-associative,

running at core frequency, which can be locked at the granularity of ways in all cache

sets, and additional L1 and L2 cache buffers allowing up to four data miss operations

[49].

Reducing hit penalty

Hit time is crucial because it affects the clock rate of the processor; on many ma-

chines the cache access time limits the clock cycle rate, even for machines that take

multiple clock cycles to access the cache. A time-consuming portion of a cache hit

is using the index portion of th address to read the tag memory and then compare it

to the address. A guideline is to keep the cache simple, such as using direct mapped

cache, especially for data caches. A main benefit of direct mapped caches is that the

designer can overlap the tag check with the transmission of the data.
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2.1.4 Considered cache effects
This thesis assumes the following cache architectures and execution models:

A Hardward architecture with separate instruction and data caches.

Associative instruction caches with LRU replacement strategy. We assume a con-

stant cache hit and cache miss penalty.

Direct mapped data caches with write through, no-write allocate write miss strat-

egy and a constant cache hit and cache miss penalty.

Hardware prefetching, write-buffers and multi-level caches are not considered.

Replacement of the entire cache lines is assumed. The advanced features critical-

word first and sub-block placement are not considered.

The entire cache is shared by all applications.

While, critical-word first, sub-block placement, and pseudo-LRU replacement strate-

gies are certainly very useful to improve cache performance, they need not be consid-

ered in the principles in the proposed cache analysis as these features are determinis-

tic. The proposed cache analysis uses local cache simulation, and thus an extension of

the cache simulation module would be sufficient. How our analysis could be extended

to more complex hardware and software cache optimizations is discussed in section 7.

The proposed analysis framework considers the following cache effects: First, the

cache effects at context switches are analyzed in a cache-aware response time analysis

in section 3.2. In section 3.3 multiple preemptions are more tightly bounded than

assuming for each preemption the worst case preemption delay.

Then, the effects due to multiple task execution are considered in section 3.4:

Cache lines from a previous task execution might be available when the task is acti-

vated and thus a non-empty cache state can be considered in the worst-case execution

time analysis.

In chapter 4 we take a closer took at the computation complexity to analyze the

cache effects for preemption delay analysis.

While the above cache effects considered instruction caches, we further analyze

data cache timing behavior during a single task execution in chapter 5. We focus

on input-data dependency, because this is the main reason for the dynamic cache

behavior.
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2.2 Predictable cache usage
There are several approaches to make caches more predictable and efficient. They

can be classified in cache partitioning, cache locking and the usage of scratch-pad

RAM. A detailed overview of different techniques can be found in [107].

2.2.1 Cache partitioning
The advantage of cache partitioning techniques is that cache blocks do not have

to be reloaded after interrupts and between consecutive executions of the same task.

Also, cache behavior becomes (partly) orthogonal for tasks and, therefore, more pre-

dictable. Cache partitioning can be controlled by hardware or software.

Hardware based partitioning

Kirk [61] describes a hardware partitioning technique dividing a fully associative

instruction cache memory into a static part that is pre-loaded at a context switch and

a regular LRU-part. The idea is to guarantee a certain hit-ratio because some cache

blocks are fixed resulting in a certain amount of cache hits. Whether a cache block

is placed in the static or the LRU-part is decided either statically at compile-time or

dynamically at run-time by maintaining frequency counters. In [62], a partitioning

scheme called SMART (strategic memory allocation for real-time) is proposed with

a shared segment and a number of private segments for each task. A private segment

will eliminate extrinsic cache interference and reduces cache related preemption de-

lay at a context switch. In [63] Kirk and Strosnider describe an implementation of

SMART on a MIPS R3000 CPU with a 16kB direct mapped instruction cache. The

extra hardware needed to handle the partitioning renders a 15% performance loss on

a 25MHz processor.

Another hardware-oriented approach is to use a modified hash function for a direct

mapped data cache [88]. The partitioning of a cache by additional hardware has the

drawback that specially designed cache hardware is necessary. Data coherency must

also be maintained since data structures can be duplicated in more than one partition.

Software based partitioning

As an alternative, a cache can be partitioned by software. Wolfe suggests in [144]

[143] to partition instructions to memory addresses. Mueller [86] automates Wolfe’s

ideas by letting the compiler and linker assign tasks to addresses. Instruction parti-

tioning is solved by non-linear control-flow transformations and the data partitioning

uses transformations of data references. Large tasks may not entirely fit into their
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partition, so the code must be located in memory such that it will only be mapped to

its cache partition. Separated code sections are connected with unconditional jumps,

which are inserted by the method. The advantage of this approach is that a task cannot

suffer from cache related preemption delays. Nevertheless, the task will suffer from

intrinsic cache misses: the more tasks having their own partition, the smaller the size

of their partition, and consequently the higher the number of intrinsic cache misses.

A hybrid instruction cache partitioning technique is presented by Busquets-Mataix

and Wellings in [17]. It describes a technique, which partially partitions a cache.

It either provides a task with a private partition or assigns several tasks to a shared
partition. For the shared partition the preemption delay of these tasks in accounted for

in a cache-aware schedulability analysis. The assignment of cache partitions to tasks

in an optimization problem which is exponential to the number of tasks.

Optimizing task layout

Task layout techniques are suggested which aim at minimizing the inter-task in-

terference in the instruction cache. Task sets which may not be schedulable when

the layout of tasks in main memory is arbitrarily chosen, might become schedulable

provided that the layout minimizes the CRPD. From this viewpoint, task layout can

be considered as an advanced form of (software) partitioning.

In [28] a technique is proposed to find out the optimal task layout which minimizes

the worst case response time of one task and satisfies the deadline of all the other

tasks. The method uses ILP (integer linear programming) formulations and the ex-

perimental results show that the method renders better performance than arbitrarily

chosen layouts. The method is only feasible on direct mapped instruction caches with

task sets containing periodic tasks.

Instead of allowing all tasks to share the cache, Lin and Liou propose in [74] to

disable the cache to all tasks but the most privileged or frequently used ones. Intrinsic

cache misses as well as CRPD are eliminated. The authors claim that if a task that

does not fit into the cache, it will yield about the same WCET as in a system without

a cache. However, in [8] is is shown that this approach is too pessimistic and that

the worst case performance is better for a cached system compared to a non-cached

system. Also a dynamic cache partitioning technique has been proposed in [120].

2.2.2 Cache locking

Another approach for predictable cache behavior is to lock frequently used cache

blocks. The ability to lock cache blocks is available in most common processors
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(ARM9 [7], ARM1020E [47], Intel’s XScale [53], PowerPC 7448 [37], PowerPC 440

families [94] modern G2,G3, G4 CPUs [102], Motorola Cold Fire MCF5249, MIPS32

and others). Each processor implements cache locking in several ways, allowing static

locking (the cache is loaded or locked at system start) and dynamic locking (the state

of the cache is allowed to change during the system execution). Examples how a cache

can be locked is given in the following. In Intel’s 80200 XScale processor 32-way

instruction and data caches, each of the 32 sets, 0-28 ways can be locked, unlocking

ways are replaceable via a round robin policy. The PowerPC 750G allows locking

the 4-way associative cache by way and the ARM1020E’s 32kB 64-way associative

instruction and data-caches support locking by line. Therefore, the cache contents is

known and the time required for a memory access is predictable.

Campoy et al. propose in [25] a genetic algorithm to choose which instructions to

lock in the instruction cache. They represent each memory block by one bit, which

flips between zero and one (in/out of the cache). Static cache locking is not a suitable

solution for data caches because it is difficult to evaluate the data cache timing behav-

ior which is much more difficult than instruction cache behavior [134]. The use of the

genetic algorithm causes a long computation time.

Two low-complexity algorithms for static cache locking have been presented in [97]

[96]. In contrast to [25], the proposed algorithms select the contents of the locked

cache in a non-blind manner, by using the tasks memory access patterns of the in-

struction flow. Both algorithms optimize the worst-case behavior of a task set: the

first one aims at minimizing the CPU utilization of a task set, and does not prescribe

any particular schedulability analysis method, whereas the second one, designed for

fixed-priority schedulers, aims at reducing the interferences between tasks due to pre-

emptions.

The algorithms lock all cache blocks to some program lines. Typically the program

is much larger than the cache and thus only a small part of the program will always
be in the cache. All other program lines will never be in the cache and require a

time-consuming main memory access.

Both approaches [97] and [25] have been compared regarding analysis precision

and time-complexity in [24]. Both algorithms deliver about the same analysis preci-

sion whereas the algorithm by [97] is much faster than the genetic algorithm of [25].

2.2.3 Scratch-pad RAM

Cache partitioning and cache locking approaches increase area and power cost as

they require greater caches and main memory to become effective. Therefore, het-
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erogeneous memory architectures with caches and scratch-pad SRAM have been in-

troduced, for example TriCore [52] as shown in figure 1.2. A scratch-pad can hold

frequently used cache blocks. Compiler techniques for such architectures have been

proposed e.g. by Panda, Dutt and Nicolau [90], Udayakumaran and Baruah [131] and

Angiolini, Benini and Caprara [5].

2.2.4 Discussion
While cache partition and cache locking strategies are certainly a very useful add-

on to improve cache predictability and efficiency, they do not solve the general cache

interference problem which is critical for large task sets. Embedded caches are small

and thus partitioning or locking would increase intrinsic cache interference. Processor

schedulability analyses have been extended to analyze the cache behavior where all

tasks share the cache.

2.3 Scheduling and schedulability analysis
When multiple tasks share a single resource, then two or more task may request

the resource at the same time. Scheduling resolves these conflicting requests. To

properly design an embedded real-time system it is important to understand the effect

that scheduling has on overall performance [20] [56] [101].

2.3.1 Scheduling
When multiple software tasks execute on a single processor, a scheduling policy

decides how often and how long a task is executed. A deadline is defined for each

task in real-time systems that denotes the longest execution time under which the

functionality of the application can be guaranteed.

A software task is activated due to an activation event. Activating events include

expiration of a timer, external or internal interrupt, and task chaining. The purpose of

a scheduler is to arbitrate between multiple tasks that want to simultaneously use the

same resource. A scheduler selects a task to which it grants the resource out of the

set of active tasks according to some scheduling policy [21]. Other active tasks have

to wait. The most complex schedulers are part of an operating system that schedule

software tasks on embedded processors. But schedulers are also implemented in hard-

ware to control access to other types of resources. For example communication via a

shared bus requires bus access scheduling. Memory bandwidth can be considerably

increased for certain types of memories, e.g. SDRAM, if memory-accesses are sched-

uled smartly [43]. Three major classes of scheduling strategies can be distinguished

[21]:
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1 Non-preemptive static execution order scheduling. It is mainly used for highly

regular digital signal processing (DSP) applications.

2 Priority-driven scheduling. It is often used in highly reactive systems operating

in dynamic environments. Here we further distinguish scheduling with fixed pri-

orities and scheduling with dynamic priorities. In the fixed-priority case, prior-

ity assignments often follow a rate-monotonic scheduling (RMS) or deadline-
monotonic scheduling (DMS) strategy, in the dynamic-priority case, priority as-

signments often follow an earliest deadline first (EDF) strategy.

3 Preemptive time-slicing techniques. These are used for a fair distribution of the

resource among all tasks. Here we further distinguish static time-division media
access (TDMA) scheduling with fixed length time slots, and more dynamic round
robin (RR) scheduling with variable-length time slots

A major advantage of static execution order scheduling is that it requires no run-

time scheduler and hence incurs no scheduling overhead. However, the flexibility

that is needed in modern embedded systems, as well as data-dependent task execution

times and increased interaction with the system environment more and more necessi-

tate dynamic scheduling. Static scheduling is thus typically limited to highly regular

applications. An example is ERCOSEK [31], in which tasks with the same period are

statically ordered and can be preempted by other tasks with a different period.

TDMA scheduling essentially separates a real resource into multiple independent

virtual resources, each with a guaranteed fraction of the available processing time or

communication bandwidth. This is considered attractive for real-time applications

in domains such as automotive, in particular because prediction of response times is

easy, and because faults in one virtual subsystem cannot impact in a different virtual

subsystem. However, TDMA scheduling is inefficient in the presence of dynamically

changing loads, since a time-slice large enough to handle a worst-case load remains

partially unused in all other cases. TDMA is also poorly suited to achieve short re-

sponse times. Unless a system is globally synchronized, which is problematic , an

activation may wait for a full turn (the sequence of all time slots) in the worst-case

until it is granted a TDMA resource. It will also be interrupted for additional turns

if it does not complete within one time slot. Round Robin (RR) scheduling [125] re-

solves the problem of unused TDMA resources , but short response times still cannot

be achieved. Additionally, the calculation of worst- and best-case response times is

complex. RR scheduling is rarely used in hard real-time applications.
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Reactive, priority-based scheduling does not have the inefficiencies of TDMA. In

particular, it is well suited for multi-processor systems, where a task is activated by

the arrival of data from a different task. High priority tasks can immediately react

to data arrival, thus ensuring short response times. The tasks also do not waste re-

sources if they are idle, instead leaving a resource full to lower-priority task. While

EDF-scheduling has been proven to be theoretically optimal in the sense that if EDF

cannot guarantee that all deadlines are met, no other strategy can [22], it produces

considerable scheduler overhead, since priorities have to be frequently re-calculated.

Static priority scheduling is theoretically less efficient, but scheduler implementation

is simple, and the smaller scheduler overhead often compensates for the theoretical

inefficiencies [22].

2.3.2 Schedulability analysis
Schedulability analysis calculates the worst case task response times (WCRT). The

WCRT is the time between task activation and task completion, for all tasks sharing a

resource under the control of a scheduler. Schedulability analysis guarantees that all

observable response times will fall into the calculated interval. We therefore say that

schedulability analysis is conservative.

Worst case response times can then be compared against deadlines. If all deadlines

are met in the worst case, then they will be met in all cases, thus guaranteeing that a

system will satisfy all deadline constraints.

In this thesis we focus on fixed priority preemptive scheduling. Several schedula-

bility analysis techniques have been proposed for fixed-priority preemptive schedul-

ing [76] [57] [69] [129]. Liu and Layland [76] show that the rate monotonic priority

assignment where a task with a shorter period is given a higher priority is optimal

when task deadlines are equal to their periods. They also give the following sufficient

condition for schedulability for a task set consisting of n periodic tasks τ1, · · · ,τn:

U =
n

∑
i=1

Ci

Pi
≤ n(21/n −1) (2.1)

where Ci is the worst case execution time (WCET) of τi and Pi its period.This condi-

tion states that if the total utilization U of the task set is lower than the given utilization

bound (n(21/n −1)), the task set is guaranteed to be schedulable under the rate mono-

tonic priority assignment. Later Lehoczky et al. develop a necessary and sufficient

condition for schedulability based on utilization bounds [69].

Due to the maximum utilization bound of 0.69 for a task set with infinite number

of tasks, [16] [57] have developed an iterative response time analysis. The worst
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case response time occurs when all tasks are released at the same time point (critical

instant). The approach allocates in a time window Ri the task τi’s WCET Ci, the tasks

blocking time Bi and the interference produced by the execution of higher priority

tasks. The blocking time is the maximum time that a task can be delayed by lower

priority tasks due to resource contention.

Rn+1
i = Ci +Bi + ∑

j∈hp(i)

⌈
Rn

i
Pj

⌉
·Cj (2.2)

The term hp(i) denotes the set of tasks with a higher priority than task τi. The process

is iterative because in every step the interference is added to the current window Rn
i ,

resulting in a longer time window Rn+1
i that might include greater interference in the

next step. The process is finished when the window stops growing (Rn+1
i = Rn

i ). If the

resulted response time for any task is greater than its deadline (Rn+1
i = Rn

i = Ri > Di),

the task-set is not schedulable.

2.4 Cache effects in schedulability analysis
To consider cache effects when all tasks share the cache, schedulability analyses

have been extended by cache-related preemption delays.

2.4.1 Cache related preemption delay analysis
In an embedded system with cache the context switch time depends on the contents

of the cache. Measurement-based approaches have been proposed by [84] [27] [108]

but safe bounds can not be guaranteed in general, because simulation depends on

completeness of input data. Simulation has also been used to identify preferred pre-

emption points [109]. During program simulation an upper bound on the number of

active cache blocks is computed and preemption points with minimum reload times

are identified. Preemption is then only allowed at these preemption points. However,

simulation relies on test coverage. For full path coverage, all execution paths have to

be covered, which is very time-consuming and costly. If not every path were tested,

a critical scenario might be omitted which could then lead to an underestimated re-

sponse time.

As an alternative to simulation-based approaches, time delays resulting from a pre-

emption have been integrated into schedulability analysis. Basumallick and Nilsen [10]

extend Liu and Layland’s [76] schedulability condition by an additional term for the

cache interference. One drawback of such a technique is that it suffers from the pes-

simistic utilization bound 0.69 for larger task sets. The actual time delay for cache
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interference is not further analyzed. Many task sets that have a total utilization higher

than this bound can be successfully scheduled [69].

In [19] five possible ways to determine the CRPD are given: 1.) The time to refill

the entire cache. 2.) The time to refill the cache blocks displaced by the preempting

task. 3.) The time to refill the cache blocks used by the preempted task. 4.) The time

to refill the maximum number of useful cache blocks that the preempted task may

hold in the cache when a preemption occurs. Useful blocks are those cache blocks

that are could to be used again [73]. 5.) The time to refill the intersection of cache

blocks of the preempting and preempted task [67].

The approach in [19] considers the penalty according to number 1 and 2 of this list.

The response time approach of [129] is extended by an additional term for the cache

related preemption delay.

To compare several cache-aware response time analyses we introduce the following

notation for the response time equation:

Rn+1
i = Ci +Bi + ∑

j∈hp(i)

(⌈
Rn

i
Pj

⌉
·Cj + crpd( j, i,Rn

i )
)

(2.3)

where

Ri denotes the response time of task τi

Bi denotes the blocking times of task τi

Ci denotes the worst case execution time of task τi

Pj denotes the period of task τ j

hp(i) denotes the set of tasks whose priorities are greater than the priority of τi.

The term crpd( j, i,Rn
i ) denotes the preemption delay when task τ j preempts (the

lower priority tasks {τ j−1, ·,τi}) during the time window Rn
i . It has been defined

differently in the related work, as will be explained in equation 2.4 as in [19], equa-

tion 2.5 as in [67], equation 2.6 as in [92],. We will give two definitions in this thesis,

one simplified estimation in equation 3.3 in section 3.2.1 and one more accurate cal-

culation in equation 3.7 in section 3.2.2.

In the approach by [19] the term crpd(i, j) is bounded by the maximum number of

used cache blocks of the preempting task τ j (denoted by γ j):

crpd( j, i,Rn
i ) =

⌈
Rn

i
Pj

⌉
· γ j · tmiss (2.4)
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The time to reload a cache block is denoted with tmiss (cache miss penalty). This

estimation is based on a pessimistic assumption that each cache block used by τ j

replaces a memory block that is needed by a preempted task.

reaching
CB (RMB)

live CB 
(LMB)

useful
CB

used
CB

cache related
preemption

delay (CRPD)

�

�

reaching
CB (RMB)

preempted task

preempting task �2

�1

Figure 2.2. Schematic overview of cache-related preemption delay (CRPD) calculation.

Lee et al. [66] [68] introduced the term useful cache block to consider the pre-

empted task. A useful cache block is defined as a cache block that is available before

a preemption occurs and may be referenced again before being replaced by another

memory block. As a consequence, the intersection of useful cache blocks of the pre-

empted task and the used cache blocks of the preempting task bound the crpd( j, i,Rn
i )

[67].

crpd( j, i,Rn
i ) =

⌈
Rn

i
Pj

⌉
·δ j,i · tmiss (2.5)

This calculation is schematically shown in figure 2.2. Data flow analysis algorithms

are set up to bound the preemption delay δ j,i when a task τ j preempts a task τi. A

reaching memory block (RMB) analysis applied to the last node of the control flow

graph(CFG) calculates the maximum set of used cache blocks. The set of useful cache

blocks can is computed by the intersection of reaching memory blocks and live cache

blocks (LMB). In section 2.5.1 and section 2.5.2 we describe two different data flow

techniques to calculate the RMB and LMB.

The schedulability analysis by Lee is based on [19] and integer linear program-

ming (ILP) formulation is used to bound the number of preemptions more tightly by

considering task phasing. Task phasing means to consider the relationship between

task activations of preempting tasks during the response time of the preempted task.
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Instead of assuming all activations of higher priority tasks replacing cache blocks,

sets of tasks executing during the preemption are considered.

This refines equation 2.5 in the sense that not every task activation is considered

as cache interference. If for example two tasks, which use the same n cache blocks,

preempt another lower priority task, than the replaced cache blocks of the preempting

tasks are first merged and then intersected with the useful cache blocks of the pre-

empted task. This results to a preemption delay of n cache blocks (provided that these

are useful). In the simplified version (equation 2.5 a maximum preemption delay of

2n would be the result (provided that all cache blocks are useful). Please refer to [67]

for the details of computing the term crpd( j, i,Rn
i ) in this case.

��

��

��

Time

Figure 2.3. Example task schedule.

An example schedule is shown in figure 2.3. We consider only the first activation of

τ1. This task is preempted once by τ2 and twice by τ3. Instead of calculating each pre-

emption pair, task τ2 and τ3 are considered as a set. This reduces the overestimation,

if these tasks share common cache blocks.

To address this problem, a technique is presented, that takes into account the rela-

tionship between a preempted task and the set of tasks that execute during the preemp-

tion. For this purpose, preemptions of a task are categorized into a number of disjoint

groups according to which tasks execute during a preemption. The number of such

disjoint groups is 2k − 1 where k denotes the number of higher priority tasks. Then,

the preemption cost for different preemption scenarios is calculated. More advanced

constraints are set up to eliminate infeasible preemption scenarios.

However, some of the invocations of a higher priority task cannot be involved in

any preemption of a lower priority task even when we assume the worst-case response

time of the lower priority task. This is also shown in figure 2.3. The third task
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invocation of τ3 does not preempt any other task. To consider such effects the ILP is

extended by advanced constraints using the hyper-period formed by τ3 and τ1.

The main drawbacks of this approach are that it scales exponentially with number

of tasks due to the categorization in disjoint groups of preempting tasks and that best

case response times (BCRT) are assumed to be known. However, the BCRT analysis

is a complicated problem where only approximative solutions have been proposed for

the general case [44][40] and the BCRT determination is not described by the authors,

instead the best-case execution time (BCET) is used. BCRT can, of course, always be

set to zero but then task phasing is not effective.

Tan and Mooney [123] [124] propose a path analysis on the preempted and pre-

empting task, which the authors call intra- and inter-task cache analysis, to estimate

the single preemption delay. The schedulability analysis is based on [19]. One draw-

back of this approach is that strictly all program paths of the preempted and preempt-

ing task have to be considered.

2.4.2 CRPD analysis refinements
Cache analysis approaches have been proposed which address only certain as-

pects in cache-aware response time analysis. First, [130] and [89] propose an ap-

proach for single preemption delay analysis without considering schedulability anal-

ysis. Tomiyama et al. [130] consider cache effects of the preempting task and ignore

the preempted task. They determine the program execution path which uses the max-

imum number of cache blocks using an ILP technique. Mitra et al. [89] extend the

technique of Lee et al. [67] to bound the maximum number of useful cache blocks

more accurately by using a state-based approach for the preempting and preempted

task. This approach is described in more detail in section 2.5.2. Both approaches

target at direct mapped instruction caches.

Second, schedulability analyses by [19] [92] have been proposed with simplified

assumptions for single preemption delay. The aforementioned approach by Busquets-

Mataix et al. [19] considers as single preemption delay the time to refill the cache

blocks used by the preempting task.

Petters presents in [92] an approach that considers the useful cache blocks of pre-

empted task. The response time of a task is computed by substituting in the general

equation 2.3:

crpd( j, i,Rn
i ) = Δk

i, j(R
n
i ) (2.6)

when the Nk
i, j preemptions have been considered. Let



Cache effects in schedulability analysis 31

Nk
i, j be the number of preemption points still to be considered at step (k) of the

iterative procedure; Initially N0
i, j = �Rn

i
Pj
�.

Sk
i, j be the set of tasks which potentially suffer from a preemption by task τ j instead

of τi. Initially, S0
i, j = τi ∪Hi ∩L j, with L j the set tasks with lower priority than τ j

and Hi the set of tasks with higher priority than τi.

Δk
i, j(R

n
i ) the preemption delay at iteration k, initially 0.

Then Δk
i, j(R

n
i ) is computed iteratively:

m : usefulm = max(use f ull|τl ∈ Sk
i, j)

Sk+1
i, j = Sk

i, j −{τm}

Nk+1
i, j = Nk

i, j −
⌈

Rm

Pj

⌉
·
⌈

Rn
i

Pm

⌉

Δk+1
i, j (Rn

i ) = Δk
i, j(R

n
i )+min

(
Nk

i, j,

⌈
Rm

Pj

⌉
·
⌈

Rn
i

Pm

⌉)
·use f ulm · tmiss

First, the total number of preemption delays is bounded by the number of activa-

tions of τ j during Rn
i . Second, the number of useful cache blocks of all lower priority

tasks is computed. The number of useful cache blocks is approximated by a constant

percentage of all used cache blocks. And finally, the maximum number of useful

cache blocks among the lower priority tasks is assumed to be replaced. The drawback

of this approach is that for larger caches where the preempting and the preempted

tasks share only small parts of the cache, this modeling can lead to a pessimistic

overestimation.

Unfortunately this technique cannot be applied when the CRPD is calculated as

the intersection of used cache blocks of the preempted and useful cache blocks of the

preempting task. This can be explained by a simple schedule, as shown in figure 2.3.

Consider the first preemption by τ3 on τ2 and τ3 and the preemption by τ2 on task τ1.

Assuming that the set of useful cache blocks USEτ2 of τ2 are greater than USEτ2 of

task τ2, we get for the total delay by τ3 and τ2: USEτ1 +USEτ1 . If we denote, for

the moment, the intersection of used cache blocks of τ j and useful cache blocks of

τi by δ j,i we would get according to Petters: δ3,2 + δ2,3 assuming δ3,2 > δ3,1. This

is an underestimation because the indirect preemption of τ3 on τ1 is not considered.

The correct delay would be δ3,2 + δ3,1 + δ2,3. This insight motivates our proposed

cache-aware schedulability analysis in chapter 3.
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2.4.3 Intrinsic and extrinsic cache analysis
The reviewed approaches analyze the extrinsic cache behavior, by calculating the

additional CRPD. On the other hand, intrinsic effects are those cache effects that

take place during a single task execution. Intrinsic cache effects have been studied

intensively, e.g. in [1] [8] [71] [127] [141]. All these approaches assume an empty

cache at task activation or an equivalent worst case initial cache state (e.g. for data

cache).

To overcome the pessimistic empty cache assumption, [59] propose a static pre-

runtime scheduling technique considering available cache blocks from a previous task

execution. However, the important class of preemptive scheduling is not supported.

In [81] a technique is presented to combine intrinsic and extrinsic cache analy-

sis. One drawback is that only the preempted task is considered for extrinsic cache

analysis and an empty cache at task activation is assumed for intrinsic cache analysis.

A scheduling technique based on simulated annealing and program path analysis

integrating intrinsic and extrinsic cache effects is presented by [77]. The preemption

delay is computed by considering all used cache blocks of the preempting and pre-

empted task. A drawback of this approach is that all program paths in the CFG have

to be considered, which leads to exponential time complexity.

2.4.4 Discussion
In summary, three main sub-problems have to be addressed for cache-aware schedu-

lability analysis:

1) accurate analysis of single preemption delay

2) time-efficient integration of CRPD analysis into schedulability analysis

3) integration of intrinsic and extrinsic cache analysis.

Concerning the first problem, the approaches of [67] and [89] provide the most ac-

curate analysis by considering the preempted as well as the preempting task. Concern-

ing the second problem, the time complexity of the extended schedulability analysis

by [67] grows exponentially with the number of tasks and the technique described by

[92] is not extensible to a preemption delay analysis considering both the preempted

and preempting task. The path analysis by [123] grows with the number of program

paths and is, therefore, limited in the size of applications. The approaches by [92]

[67] [123] assume a fixed preemption delay for each preemption. Finally, for the third

problem, the approaches that integrate intrinsic and extrinsic cache effects suffer from
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unprecise single preemption delay analysis and the empty cache assumption [81] and

from a high time complexity [77].

The proposed cache-aware schedulability analysis in chapter 3 makes the following

contributions:

First, the analysis identifies those preemptions that do not cause a cache interfer-

ence. If a task is suspended and is preempted several times, only the first preemp-

tion can replace cache blocks.

Second, preemption delay analysis is integrated into the schedulability analysis in

low time complexity.

Third, the preemption delay considers both: the preempting and preempted task.

These contributions are presented in section 3.2. In the previous analysis techniques

[67] [92] [19], each preemption is assumed at the worst case preemption point. In

section 3.3 a methodology is described to bound the worst case preemption delay for

multiple preemptions by searching for the worst case preemption scenario. A novel

inter- and intra-cache analysis is presented in section 3.4 which considers multiple

task activations.

All previous analysis approaches target instruction caches. The main difficulty in

data cache analysis is the input data dependency of memory accesses. Related work

about data cache analysis is reviewed in section 5.1.1.

The preemption delay analyses by Lee [66] and Mitra [89] use data flow techniques

which differ in their time-complexity and analysis precision. In the next section we

describe both approaches in detail.

2.5 Data flow analysis techniques
In this section we review cache analysis approaches that use data flow analysis

techniques. Data flow analysis is a technique used in optimizing compilers to stati-

cally analyze source code properties for exploration of common sub-expressions or

dead-code elimination [3]. It has been applied to CRPD analysis by [67] and [89]

based on the CFG of the task and to single task analysis by [141].

First, we review the set-based preemption delay analysis by Lee et al.

[66], [67] in section 2.5.1. Second, we present in section 2.5.2, the approach by

Mitra et al. [89] which is based on cache states. Both approaches lay the founda-

tion for the new schedulability analysis in chapter 3 and the scalable precision cache

analysis in chapter 4. Finally, we review the single task cache analysis by [141] in

section 2.5.3 which will be used in section 3.4 to consider multiple task activations.
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2.5.1 Set-based preemption delay analysis
The technique for estimating the number of useful and used cache blocks is based

on data flow analysis [3] over the task’s program expressed in a flow graph. In a flow

graph, each node represents a basic block. A basic block is a sequence of consecutive

instructions in which flow of control enters at the beginning and leaves at the end

without halt or possibility of branching except at the end [3]. The edges of the graph

represent potential control flow between basic blocks.

We explain the data flow analysis on the example in figure 2.4. It shows a loop-

statement with two if-then-else statements. A node Bi lists the memory blocks

that correspond to the assembly instructions of basic block Bi. For example, the

memory blocks m1, m2 and m3 are loaded to the cache during execution of basic

block B2. We assume a direct mapped cache with 4 cache sets. The mapping of

memory blocks to cache sets is given on the right side in figure 2.4.

m0

m1
m2
m3

m4
m5

m6

m8
m9
m10

m6
m7

m11

B1

B2
B3

B6

B4

B5

B7

Cache Mapping

c0 : m0 m4 m8
c1 : m1 m5 m9
c2 : m2 m6 m10
c3 : m3 m7 m11

Figure 2.4. Control flow graph with memory blocks and cache mapping for direct mapped instruction

cache with 4 blocks.

As described in the last section, cache lines might have to be reloaded after a con-

text switch. The preemption delay depends on the used cache blocks of the preempt-



Data flow analysis techniques 35

ing as well as the useful cache blocks of the preempted task. This approach has been

shown in figure 2.2.

The definition of useful cache blocks is motivated by an example. Consider basic

block B4 in figure 2.4. At basic block B4 the memory block m0 (from B1) and m3 (from

B3) and other memory blocks could be available in cache set c0 and c3, respectively,

because they are loaded via some incoming path of B4. Second, on a possible outgoing

paths of B4, memory block m0 may be alive in the next iteration of the loop at B1

without being replaced. This is the case when the task continues on path B5,B7,B1

where no cache allocations to cache set co occur. On the other hand, memory block

m3 cannot be used again because via any outgoing path because it is replaced by m11

at basic block B7. Therefore, m0 is useful at B4 but m3 is not.

For a more formal description, reaching memory blocks (RMB) and live memory
blocks (LMB) are defined for each cache set. These terms are similar to reaching

definitions and live variables as used in traditional data flow analysis [3]. The set of

reaching memory blocks of cache set c at point B, denoted by RMBc[B], contains all

possible contents of cache set c at point B, where a possible contents corresponds to

a memory block that may reside in the cache set at the point. For a memory block

to reside in cache set c, first, it has to be mapped to c. Second, it has to be the last

reference to the cache set in some execution path reaching B.

The set of live memory blocks of cache set c at point B, denoted by LMBc[B],
is defined similarly and is the set of memory blocks that may be the first reference

to cache set c after B. With these definitions, a cache block is useful, denoted as

USEc
lee[B] at point B if it is an element of RMBc[B] and LMBc[B].

To formulate the problem of computing RMB as a data flow problem, a set of

generated memory blocks, genc[B] , is defined as either empty or containing a single

memory block. It is empty if basic block B does not have any reference to memory

blocks mapped to cache set c. On the other hand, if the basic block B has at least one

reference to a memory block mapped to c, genc[B] contains as its unique element the

memory block that is the last reference to the cache set c at the end of the basic block

B.

As an example, consider basic block B3 in figure 2.4. Assuming that the instruction

cache is direct mapped and has four sets

genc0 [B3] = {m4}, genc1 [B3] = {m5}
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and the other gen-sets are empty. In the following description we abbreviate the gen-

sets with a vector for all cache sets and, thus:

gen[B3] = [{4},{5},{},{}]

All gen-sets for figure 2.4 are summarized in table 2.1.

Bi gen[Bi] Bi gen[Bi]

B1 [{0},{},{},{}] B5 [{},{},{6},{7}]
B2 [{},{1},{2},{3}] B6 [{8},{9},{10},{}]
B3 [{4},{5},{},{}] B7 [{},{},{},{11}]
B4 [{},{},{6},{}]

Table 2.1. Gen-sets for the flow graph in figure 2.4.

Calculation of reaching memory blocks (RMB)

With genc[B] defined in this manner, the RMB of c just before the beginning of B
and just after the end of B, which are denoted by RMBc

in[B] and RMBc
out [B], respec-

tively, can be computed by the following two equations:

RMBc
in[B] =

⋃
p is a pred of B

RMBout [p] (2.7)

RMBc
out [B] =

{
genc[B] i f genc[B] �= /0

RMBc
in[B] otherwise

(2.8)

The first equation states the memory blocks that reach the beginning of a basic block

B are those those that reach a predecessor of B. The second equation states that

RMBc
out [B] is equal to genc[B] if genc[B] is not empty and RMBc

in[B] otherwise. Equa-

tion 2.8 can be rewritten as

RMBc
out [B] = genc[B]∪ (RMBc

in[B]− killc[B]) (2.9)

which is commonly used in traditional data flow analysis. The set killc[B] is the set of

memory blocks of cache set c which are replaced in basic block B. The killc[B]-set is

calculated as follows. It is empty if genc[B] is empty, or it is Mc −genc[B] if genc[B]
is not empty. The term Mc denotes the set of all memory blocks mapped to cache set

c of a program.

To show that equation 2.9 is equal to equation 2.8 we distinguish whether genc[B] =
/0 or not. In case genc[B] = /0 then RMBc

out [B] = RMBc
in[B]. In the other case, where
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genc[B] �= /0, equation 2.9 can be rewritten (RMBc
in[B] ⊂ Mc, genc[B] ⊂ Mc)

RMBc
out [B] = genc[B]∪ (RMBc

in[B]− (Mc −genc[B]))

= genc[B]∪ (RMBc
in[B]∩genc[B]) = genc[B]

These data flow equations can be solved using a well-known iterative approach [3].

It starts with

RMBc
in[B] = /0 and RMBc

out [B] = genc[B]

for all basic blocks B and cache sets c. Then, equations 2.7 and 2.8 are repeatedly

applied until the values of RMBc
in[B] and RMBc

out [B] converge. The iterative process

is described by the iterative algorithm in figure 2.5, assuming that the set genc[B] has

been computed for each basic block B and cache set c.

(1) for each basic block B do
(2) for each cache set c do begin
(3) RMBc

in[B] = /0; RMBc
out [B] := genc[B];

(4) end
(5) change := true;

(6) while change do begin
(7) change := false;

(8) for each basic block B do
(9) for each cache set c do begin
(10) RMBc

in[B] :=
⋃

P a pred of B

RMBc
out [P];

(11) oldout := RMBc
out [B];

(12) if (genc[B] �= /0) then RMBc
out [B] := genc[B];

(13) else RMBc
out [B] := RMBc

in[B];
(14) if RMBc

out [B] �= oldout then change := true;

(15) end
(16) end

Figure 2.5. Iterative data flow algorithm for RMB calculation.

The algorithm performs for each iteration of the while loop O(|E||C|) union opera-

tions, where E is the set of (directed) edges of the flow graph and C is the set of cache

blocks used in the program. The maximum number of iterations of the while loop

is equal to the length of the longest acyclic path of the flow graph, or O(|V |), where
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V is the set of nodes (basic blocks) of the flow graph [3]. this gives the total time

complexity of O(|V ||E||C|). However, it is shown in [42] that, when the flow graph is

reducible, and the basic blocks are processed in the reverse postorder of a depth-first

spanning tree of the flow graph, the maximum number of iterations of the while loop

is bounded by d +2, where d is the number of back edges in the depth-first spanning

tree, which is usually introduced because of loops and recursions.

The data flow algorithm in figure 2.5 is demonstrated on the example flow graph

of figure 2.4. Initially all RMBc
in[B] are empty and RMBc

out [B] are initialized with the

genc[B] sets. The results are summarized in table 2.2. The RMB sets of the third

iteration are the same as in the second iteration, therefore, they are omitted. The

results are graphically represented in figure 2.6 for the second iteration.

Bi RMBout(Bi) 1st iteration RMBout(Bi) 2nd iteration

B1 [{0}, /0, /0, /0] [{0},{1,5,9},{6,10},{11}]
B2 [{0},{1},{2},{3}] [{0},{1},{2},{3}]
B3 [{4},{5}, /0, /0] [{4},{5},{6,10},{11}]
B4 [{0,4},{1,5},{6},{3}] [{0,4},{1,5},{6},{3,11}]
B5 [{0,4},{1,5},{6},{7}] [{0,4},{1,5},{6},{7}]
B6 [{8},{9},{10},{3}] [{8},{9},{10},{3,11}]
B7 [{0,4,8},{1,5,9},{6,10},{11}] [{0,4,8},{1,5,9},{6,10},{11}]

Table 2.2. Reaching cache blocks RMBout [Bi] for set-based approach by Lee.

We demonstrate one execution of the while loop for basic block B4 in the second

iteration. In this case the RMBout sets of B2 and B3 are merged and cache set c2 is

replaced with gen2[B4]:

RMBin[B4] = [{0},{1},{2},{3}]∪ [{4},{5},{6,10},{11}]
= [{0,4},{1,5},{2,6,10},{3,11}]

RMBout [B4] = [{0,4},{1,5},{6},{3,11}]
Note, that the RMBout [B4] shows that m0 and m3 are reached at B4 as claimed in the

motivating example.

Calculation of live memory blocks (LMB)

The computation of live memory blocks LMBc[B] is similarly to the calculation of

RMBc[B]. The difference is that the LMB are solved by a backward data flow analysis

in that the in sets (LMBc
in[B]), are computed from the out sets (LMBc

out [B]), whereas

the RMB problem is a forward data flow problem, in that the out-sets are computed
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[{4},{5},{6,10},{11}]

[{0},{1,5,9},{6,10},{11}]

[{0},{1},{2},{3}]

B1

B2 B3

[{0,4},{1,5},{6},{3,11}]

[{0,4},{1,5},{6},{7}]

[{0,4,8},{1,5,9},{6,10},{11}]

B4

B5

B7

[{8},{9},{10},{3,11}]B6

Figure 2.6. RMB calculation by Lee.

from the in-sets. In the LMB problem, the genc[B]-set is either a set with only one

element corresponding o the memory block whose reference is the first reference to

cache set c in basic block B, or empty if none of the references of B are mapped

to c. Using genc[B]-sets defined in this way, the following two equations relate the

LMBin[B] and LMBout [B]:

LMBc
out [B] =

⋃
s is a succ of B

LMBc
in[s] (2.10)

LMBc
in[B] =

{
genc[B] i f genc[B] �= /0

LMBc
out [B] otherwise

(2.11)

An iterative algorithm similar to the one for computing RMB can be used to solve

the backward data flow problem. The difference is that the algorithm starts with

LMBc
out [B] = /0 and LMBc

in[B] = genc[B] for all B and c and uses the above two equa-

tions. This algorithm has the same time complexity as the one for computing RMB.

The backward flow algorithm for equations 2.10 and 2.11 is demonstrated on the

example flow graph of figure 2.4. The values of the sets LMBin[Bi] and LMBout [Bi]
are shown in table 2.3. The LMBout [Bi] are shown because they are necessary for the
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calculation of the useful cache blocks. Note, that m0 is a live memory block in B4 but

m3 is not.

Bi LMBin[Bi] 1st iter. LMBin[Bi] 2nd iter. LMBout [Bi] 2nd iter

B1 [{0},{1,5},{2,6},{3,7,11}] [{0},{1,5},{2,6},{3,7,11}] [{0,4,8},{1,5},{2,6},{3,7,11}]
B2 [{8},{1},{2},{3}] [{0,4,8},{1},{2},{3}] [{0,8},{1,5,9},{6},{7,11}]
B3 [{4},{5},{6},{7,11}] [{4},{5},{6},{7,11}] [{0,8},{1,5,9},{6},{7,11}]
B4 [{8},{9},{6},{7,11}] [{0,8},{1,5,9},{6},{7,11}] [{0,8},{1,5,9},{6,10},{7,11}]
B5 [ /0, /0,{6},{7} [{0},{1,5},{6},{7} [{0},{1,5},{2,6},{11}]
B6 [{8},{9},{10},{11}] [{8},{9},{10},{11}] [{0},{1,5},{2,6},{11}]
B7 [ /0, /0, /0,{11}] [{0},{1,5},{2,6},{11}] [{0},{1,5},{2,6},{3,7,11}]

Table 2.3. Live cache blocks LMBin[Bi] and LMBout [Bi] for approach by Lee.

Calculation of useful cache blocks

It is shown in [66] that the number of useful cache blocks is the same at all ex-

ecution points in a basic block. Once the RMB and LMB are computed, the useful

cache blocks USEτ
lee[p] at each execution point p can be determined by taking the

intersection of RMB[B] and LMB[B] of task τ .

USEτ
lee[B] = RMBout [B]∩LMBout [B] (2.12)

Throughout this thesis we will use the notation USEτ [p] or USE[p] when we are

concerned about the useful cache blocks in general (without specifying which data

flow analysis technique is used) or when it is clear (or not important) which task is

preempted.

The total number of useful cache blocks is given by |USEτ
lee[B]|+ 1. The one

additional block is required because if a task is preempted within a memory block,

the cache block mapped by the memory block is definitely useful at the preemption

point.

The useful cache blocks for the example in figure 2.4 are shown in table 2.4. The

values for RMBout [B] and LMBout [B] are given in table 2.2 and table 2.3.

A preemption at basic block B1, B4 or B7 would require 4 additional cache blocks

assuming the preempting task removes all cache blocks. If the preemption would

occur at B6 the CRPD would be bounded by one cache block. Preferred preemp-

tion points have been analyzed in [109] to minimize the total preemption delay. We

elaborately described the example because we will revise this analysis in section 4.1.
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Bi USElee(Bi) |USElee(Bi)|
B1 [{0},{1,5},{6},{11}] 4

B2 [{0},{1}, /0, /0 2

B3 [ /0,{5},{6},{11}] 3

B4 [{0},{1,5},{6},{11}] 4

B5 [{0},{1,5},{6}, /0] 3

B6 [ /0, /0, /0,{11} 1

B7 [{0},{1,5},{6},{11}] 4

Table 2.4. Useful cache blocks USEτ
lee[Bi] for approach by Lee.

Calculation of used cache blocks

If a preemption occurs, only those useful cache blocks are reloaded that are used by

the preempting task. The reaching cache block algorithm is applied to the preempting

task τ ′ and the RMBτ ′ [end] of the last basic block of the program, denoted by end,

represents an upper bound of all used cache blocks.

Calculation of preemption delay

Finally, the set of useful cache blocks USEτ [p] at each execution point p is inter-

sected with the set of used cache blocks of the preempting task τ ′. This is schemati-

cally shown in figure 2.2:

crpdlee(τ,τ ′) = max{ |USEτ
lee[B]∩RMBτ ′ [end]| | B ∈ BB(τ)} (2.13)

in which BB(τ) is the set of all basic blocks of task τ . The total CRPD is bounded

by multiplying the number of cache blocks crpdlee(τ,τ ′) with the (constant) cache

miss penalty.

2.5.2 State-based preemption delay analysis
The motivation of the work by [89] is to consider execution path information in the

calculation of the CRPD. Supposing that a cache has two cache sets and the possible

states of the cache when a task τ is preempted are as {[m0,m1], [m2,m3]}, memory

blocks m0,m2 map to cache set c0 and m1,m3 map to cache set c1 assuming a direct

mapped cache. Lee’s approach would result a possible cache content of cache set c0 =
{m0,m2} and c1 = {m1,m3}. This representation corresponds to the following cache

states: {[m0,m1], [m0,m3], [m2,m1], [m2,m3] which can lead to an over-approximation
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because only two of them are possible. We demonstrate the difference in CRPD

calculation later in an extended example.

Definitions

A cache state is defined to denote the contents of all cache blocks. Mitra et al.

provide an analysis for direct mapped instruction caches. For a direct mapped cache

with S blocks, a cache state is a vector of S elements c[0, · · · ,S−1] in which c[i] = m
if cache block i holds memory block m. Otherwise , if the ith cache block does not

hold any memory block we denote this as c[i] =⊥. Thus, a cache state is a vector of

length S where each element of the vector belongs to M ∪{⊥}. M is the set of all

memory blocks. In the extension of notation, we assume that any operation � over

M ∪ {⊥} can be applied to cache states by applying the operation pointwise to its

elements. For example, if � denotes a binary operation over M ∪{⊥} and c,c′ are

cache states then c′′ = c� c′ where c′′[i] = c[i]� c′[i].
Similar to Lee, a reaching cache state is defined at a basic block B of a program

denoted as RCS[B] , is the set of possible cache states when B is reached via any

incoming program path. Given a program, the Live cache states at a basic block B,

denoted as LCS[B], is defined as the possible first memory references to cache blocks

via any outgoing program path from B.

Calculation of reaching cache states (RCS)

A preemption is considered at the end of each basic block as a possible preemp-

tion point, as in Lee et al. [66]. The calculation of RCS and LCS involves some

modifications of the work of [66] [67], because the notion of cache states is more

elaborate. To compute RCS[B], the quantities RCSin[B] and RCSout [B] are computed

as a least fixed point. Once the fixed point is reached, RCS[B] = RCSout [B]. Initially

RCSin[B] = /0 and RCSout [B] = gen[B]. For each basic block B, the gen-set is defined

as gen[B] = [m0, · · · ,mS−1] where mi = m if m is the last memory block in B that maps

to cache block i and ⊥ if no memory block in B maps to cache block i. Thus, gen[B]
represents all the memory blocks loaded to the cache by basic block B. The iterative

equations are as follows:

RCSin[B] =
⋃

p∈pred(B)

RCSout [p] (2.14)

RCSout [B] = {r�gen[B]|r ∈ RCSin[B]} (2.15)

c� c′ =

{
c′ i f c′ �=⊥
c otherwise

(2.16)
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The � operation is defined in equation 2.16 over memory blocks m and m′. It is

extended to cache states by applying the operation to each cache set. The data flow

algorithm of figure 2.5 can be used to calculate the fixed point.

Calculation of live cache states (LCS)

The calculation of LCS[B] is similar. The same fixed point algorithms are used to

compute LCSout [B] and LCSin[B]. Once the fixed point is reached, LCS[B] = LCSout [B].
Initially, LCSout [B] = /0 and LCSin[B] = gen[B]. For each basic block B, the gen-set is

defined as gen[B] = [m0, · · · ,mn−1] where mi = m if m is the first memory block in B
that maps to cache block i and ⊥ if no memory block in B maps to cache block i. The

iterative equations are as follows:

LCSout [B] =
⋃

s∈succ(B)

LCSin[s] (2.17)

LCSin[B] = {l �gen[B]|l ∈ LCSout [B]} (2.18)

The operation � is defined as in the computation of RCSB.

Calculation of useful cache blocks

If a task resumes after a preemption, those cache blocks are reloaded which are

useful. The useful cache blocks are computed, as in Lee et al., by the intersection of

LCS and RCS. To formally capture this notion for the representation of cache states,

a cache utility vector CUV [B] defined for basic block B.

CUV [B] = {l ≈ r|l ∈ LCS[B],r ∈ RCS[B]} (2.19)

The operator ≈ is the equality predicate over memory blocks, e.g. can be applied to

the elements of LCS[B] and RCS[B], that is m ≈ m′ = 1 iff m = m′. It is extended to

cache states by applying the operator ≈ pointwise to its elements. This results in a

boolean vector of length n, where n denotes the number of cache blocks in a cache.

The set CUV contains |LCS[B]| · |RCS[B]| boolean vectors, since each cache state in

LCS[B] is compared to each cache state in RCS[B]. Each boolean vector in CUV [B]
represents the useful cache blocks at basic block B:

USEmitra[B] = max{cnt ones(c) | c ∈CUV [B]} (2.20)

where cnt ones(d) returns the number of 1s in bit vector c. One cache block is added

to account for the currently used cache block as in the approach by Lee et al..
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Calculation of used cache blocks

The useful cache blocks determine how many cache blocks can potentially be

reloaded after the preempted task resumes. However, only those blocks are replaced

which are actually used by the preempting task. A final usage vector FUVτ ′ is defined

to represent the cache states with all used cache blocks. We can use the same fixed

point algorithms described above to calculate the reaching cache blocks RCSend at the

last basic block end of the preempting task.

FUVτ ′ = {used(r)|r ∈ RCSend} (2.21)

The function used() is defined over all cache states as used(r) = r′ where r′ is the

following bit-vector:

r′[i] =

{
1 i f r[i] �=⊥
0 otherwise

(2.22)

Calculation of preemption delay

Given the useful cache blocks CUV [B] at each basic block of the preempted task τ
and the used cache blocks FUVτ ′ of the preempting task τ ′ , the preemption delay is

computed by the intersection at all possible preemption points:

delay(τ,τ ′) =
⋃

B∈BB(τ)

{c∧ f |c ∈CUV [B], f ∈ FUVτ ′} (2.23)

The ∧ operator is the AND operator and is applied to boolean vectors and BB(τ) is

the set of all basic blocks of τ . Thus, if a cache block contains a useful memory block

of τ and it is used by task τ ′ then it can cause an additional cache miss:

crpdmitra(τ,τ ′) = max{cnt ones(d)|d ∈ delay(τ,τ ′)} (2.24)

where cnt ones(d) returns the number of 1s in bit vector d. The number of cache

blocks crpdmitra(τ,τ ′) is multiplied by the (constant) cache miss penalty. An example

for this calculation of these bit-vectors can be found in [89]. In this section we focus

on the calculation of the data flow properties RCS and LCS.

Example

We explain the reaching cache block, live cache block and useful cache block cal-

culation for the CFG in figure 2.4. The reaching cache blocks RCSout [B] are summa-

rized in table 2.5. The fixed point is also reached in the third iteration. These results

correspond with the second column in table 2.5 and are represented graphically in

figure 2.7.
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Bi RCSout(Bi) 1st iteration RCSout(Bi) 2nd iteration

B1 [0,⊥,⊥,⊥] [0,1,6,11],[0,9,10,11],[0,5,6,11]
B2 [0,1,2,3] [0,1,2,3]
B3 [4,5,⊥,⊥] [4,5,6,11],[4,5,10,11]
B4 [0,1,6,3],[4,5,6,⊥] [0,1,6,3], [4,5,6,11]
B5 [0,1,6,7],[4,5,6,7] [0,1,6,7],[4,5,6,7]
B6 [8,9,10,3] [8,9,10,3],[8,9,10,11]
B7 [0,1,6,11],[4,5,6,11],[8,9,10,11] [0,1,6,11],[4,5,6,11],[8,9,10,11]

Table 2.5. Reaching cache states RCSout [Bi] for state-based approach by Mitra [89].

We explain the calculation of RCS of equations 2.14- 2.16 for the second iteration

at basic block B4:

RCSin[B4] = {[0,1,2,3], [4,5,6,11], [4,5,10,11]}
RMBout [B4] = {[0,1,6,3], [4,5,6,11]}

Memory block m6 is mapped to cache set c2. Note, that the number of cache states

reduces because the duplicated cache states are removed ([4,5,6,11]).

[4,5,6,11] [4,5,10,11]

[0,1,6,11] [0,5,6,11] [0,9,10,11]

[0,1,2,3]

B1

B2 B3

[0,1,6,3] [4,5,6,11]

[0,1,6,7] [4,5,6,7]

[0,1,6,11] [4,5,6,11] [8,9,10,11]

B4

B5

B7

[8,9,10,3] [8,9,10,11]B6

Figure 2.7. RCS calculation by Mitra.
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The results for the backward data flow analysis for the live cache states LCSin[Bi]
are summarized in table 2.6. The results for the live cache states LCSout [Bi] and the

Bi LCSin[Bi] 1st iteration LCSin[Bi] 2nd iteration

B1 [0,1,2,3],[0,5,6,7],[0,5,6,11] [0,1,2,3],[0,5,6,7],[0,5,6,11]
B2 [⊥,1,2,3],[8,1,2,3] [0,1,2,3],[8,1,2,3]
B3 [4,5,6,7],[4,5,6,11] [4,5,6,7],[4,5,6,11]
B4 [⊥,⊥,6,7],[8,9,6,11] [0,1,6,7],[0,5,6,7],[8,9,6,11]
B5 [⊥,⊥,6,7] [0,1,6,7],[0,5,6,7]
B6 [8,9,10,11] [8,9,10,11]
B7 [⊥,⊥,⊥,11] [0,1,2,11],[0,5,6,11]
Table 2.6. Live cache states LCSin[Bi] for state-based approach by Mitra et al. [89].

cache utility vector are shown in table 2.7.

Bi LCSout [Bi] USEmitra USElee

B1 [4,5,6,7],[4,5,6,11],[0,1,2,3],[8,1,2,3] 3 4

B2 [0,1,6,7],[0,5,6,7],[8,9,6,11] 2 2

B3 [0,1,6,7],[0,5,6,7],[8,9,6,11] 2 3

B4 [8,9,10,11] , [0,1,6,7],[0,5,6,7] 3 4

B5 [0,1,2,11],[0,5,6,11] 2 3

B6 [0,1,2,11],[0,5,6,11] 1 1

B7 [0,1,2,3],[0,5,6,7],[0,5,6,11] 3 4

Table 2.7. Live cache states LCSout [Bi], number of useful cache blocks USEmitra of state-based ap-

proach by Mitra and USElee of set-based approach by Lee.

A comparison of useful cache blocks by Mitra’s approach USEmitra with the result

by Lee’s approach in table 2.4 shows that in most cases Mitra’s approach yields a more

accurate bound than Lee’s approach. It is crucial to understand this difference: While

in Lee’s approach all memory blocks that map to the same cache set are merged,

the state-based approach uses a separate cache state to distinguish this case. This

obviously leads to a higher time- and space-complexity. In chapter 4 we will develop

a scalable precision cache analysis where the number of cache states at each node

is bounded and thus the time- and space-complexity as well. As a key result, we

demonstrate in section 4.3.5 that a high analysis precision can be accomplished with

already a small number of cache states.
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2.5.3 Intrinsic cache analysis
Intrinsic cache analysis consideres the timing behavior of the instruction or data

cache during a single execution of a task. It is assumed that the cache is in its worst

case hardware state regarding timing behavior when program execution starts. In the

last decade, there have been many approaches published to determine an upper bound

of the execution time for processors with caches, e.g. [1] [8] [10] [34] [70] [36] [136]

[127] [87], [107].

In previous work [139] [141] [140] [142], a static timing and cache analysis frame-

work has been developed at our institute by Ye, Wolf, Ernst and Staschulat, which

will be overviewed now. It uses a similar data flow algorithms as in preemption delay

analysis for reaching cache blocks RMB, as presented in section 2.5.1.

A cache definition is a content modification of a cache set. The gens[PrS]-sets are

the sets containing the last definitions for each cache set when executing the program

segment (PrS). A program segment is a more general notation for basic blocks. The

gens[PrS] is computed by local cache simulation.

The kills[PrS]-set are the sets containing the destroyed definitions for the cache

sets of the disjoint program segment. A definition from a disjoint PrS is destroyed

when the same cache set is defined by the current PrS and the line block from the

disjoint PrS is removed from the set as it was selected by the replacement strategy.

The kills[PrS]-sets can be computed by local cache simulation. The ins[PrS]-sets are

the sets containing the cache set definitions of reaching the program segment PrS.

The outs[PrS]-sets are the sets containing the cache set definitions leaving the PrS.

The cache prediction approach consists of three steps.

In a first step, cache behavior is simulated for every PrS starting with a first miss

scenario ins[PrS] =. Local cache hits and misses for the address sequence of the PrS

are found by local simulation and the gens[PrS]-sets and kills[PrS]-sets are computed

by this address sequence.

In a second step, local data flow analysis defines the outs[PrS] from gens[PrS] and

kills[PrS] and ins[PrS] as follows:

ins[PrS] =
⋂

p is a pred of PrS

outs[p] (2.25)

outs[PrS] = gens[PrS]∪ (ins[PrS]− kills[PrS] (2.26)

For the worst case analysis, only those definitions occurring on all previous PrS are

propagated and, therefore, the intersection operator ∩ is used. These equations are

solved by forward data flow algorithms [3]. The basic algorithm has been shown

in figure 2.5 in section 2.5.1 to compute the set of reaching cache blocks. For this
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problem, the corresponding lines are replaced with equations 2.25 and 2.26. The

algorithm terminates when the contents of the out-sets converges. When data flow

analysis is finished, the ins[PrS]-sets contain a subset of the propagated definitions for

worst case analysis.

In a third step, worst case analysis finds the cache definitions in the ins[PrS] that

PrS-simulation has classified as misses for the first reference due to the conservative

cache state, namely empty ins[PrS] at the beginning. These cache definitions are

classified as cache hit.

The execution time ci for the cache behavior for each program segment i is given

by:

ci = chit
i · thit + cmisses

i · tmiss (2.27)

in which thit denotes the cache-hit and tmiss the cache-miss access time. chit
i and cmiss

i

denote the number of cache hits and misses for the worst case that have been calcu-

lated by the above data flow analysis. Then, worst case path of the program is found

by implicit path enumeration:

max
n

∑
i

cixi ∑
s∈successor(PrS)

e(PrSi,s) = xi = ∑
p∈predecessor(PrS)

e(p,PrSi) (2.28)

where xi is the execution count of program segment PrSi and n the total number of

program segments. The (structural) constrains are given by the fact that the incoming

flow and the outgoing flow have to be equal to the execution count xi of each program

segment PrS. These equations can be solved by integer linear programming [13].



Chapter 3

CACHE-AWARE RESPONSE TIME ANALYSIS

3.1 Background and Motivation
Accurate timing analysis is key to efficient embedded system synthesis and inte-

gration. Caches are needed to increase the processor performance but they are hard to

predict because of their complex behavior especially for preemptive scheduling. Cur-

rent approaches use simplified assumptions to bound the cache related preemption

delay or propose a scheduling analysis which scales exponentially with the number

of tasks. In this chapter we make three contributions to cache-aware response time

analysis:

First, we propose a novel schedulability analysis for fixed priority preemptive

scheduling to consider timing effects for associative instruction caches at a con-

text switch. The preemption delays are calculated by considering the preempted

as well as the preempting task. The proposed schedulability analysis bounds the
number of preemptions more tightly by excluding infeasible cache interferences.

The analysis is conservative, e.g. determines a safe upper bound of the preemption

delay, and has a low time complexity.

As a refinement, the cache interference by multiple task preemptions is analyzed.

While previous approaches calculate the worst-case preemption point and assume

that each preemption takes place at this preemption point, we consider the pre-
emption history in the calculation of the total cost for multiple task preemptions.

The key observation is that the bound of the total preemption delay for multiple

task preemptions can be smaller than the sum of the preemption delay bounds for

each preemption.
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In an automotive case study we found out that control intensive applications de-

signed with ASCET-SD and Matlab/Simulink models contain only sequential code

without loops. Caches cannot increase the performance for such applications, be-

cause linear code significantly limits the spacial and temporal locality of memory

accesses for which a cache is optimized. Existing timing analyses focus on a sin-

gle task execution. However, embedded applications are activated very frequently

if not regularly. Cache lines from a previous task activation might still be avail-

able in the cache and need not be loaded during a subsequent task execution. This

effect of multiple task execution can result in a significantly reduced number of

cache misses. In this thesis we estimate a conservative bound of the cache con-

tents at the beginning of task activation and consider the effect in instruction cache

timing behavior.

Scope and Limitations

We assume fixed priority preemptive task scheduling, constant time delay for cache

miss and cache hit penalty and LRU replacement strategy for associative instruction

caches.

Overview

This chapter is structured as follows. A novel response time analysis which con-

siders indirect preemptions for cache interference is presented in section 3.2. Pre-

emption delay analysis for multiple preemptions is proposed in section 3.3 to bound

the total delay more tightly. Multiple task activations are analyzed to calculate the

worst case initial cache contents in section 3.4. Results from experiments are shown

in section 3.5, and finally we give concluding remarks in section 3.6.

3.2 Cache-aware schedulability analysis

Existing schedulability analyses either give a simplified account on preemption

delay calculation, like Busquets et al. [19] (assuming only the preempting task) and

Petters et al. [92] (assuming only the preempted task), or integrate preemption delay

analysis (considering both: the preempted as well as the preempted) but with high

time complexity, like Lee et al. [67]. In this section we present a cache-aware schedu-

lability analysis that considers the preempted as well as the preempting task in the

preemption delay calculation and which more tightly bounds the number of cache

interferences in a low time complex algorithm.
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This section is structured as follows. First, we propose a conservative approxima-

tion in section 3.2.1. Then, we present our novel schedulability analysis considering

indirect task preemptions in section 3.2.2.

3.2.1 Simplified approach
Motivational example

An example schedule with four tasks under fixed priority and fixed periodic pre-

emptive scheduling policy is shown in figure 3.1. Task τ4 has the highest and task τ1

the lowest priority. An arrow signals task activation and preemption delays are de-

noted by a solid block. For simplicity, the preemption delay is drawn as a single time

block even though cache blocks are reloaded separately after task resumption and the

time during suspension is not distinguished.

��
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Time
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Figure 3.1. Example schedule simplified ap-

proach.

E4,1 = 5 E3,1 = 2

E4,2 = 3 E3,2 = 1

E4,3 = 2 E2,1 = 1

E1,1 = 1

Figure 3.2. Task activations E j,i.

A simplified conservative calculation is to consider every task preemption as a
cache interference. We will use the notation of δ j,i for an upper bound of the pre-

emption delay when task τ j preempts a task τi exactly one time. These delays can

be calculated for examples by approaches of Busquets et al. [19], Lee et. al [67],

and Mitra et al. [89]. In chapter 4, we will present a new method to compute these

preemption delays.

For the given schedule in figure 3.1 we only have to count how many task preemp-

tions occur:

δ4,1 ·5+δ4,2 ·3+δ4,3 ·2 ·2 (3.1)
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Task τ4 is activated 5 times during R1, and τ4 is activated 3 times during R2, therefore

δ4,1 is multiplied 5 times and δ4,2 3 times. Task τ3 is activated twice during R1 and

can be preempted twice by τ4. We will formulate now the general case.

Considering all task preemptions

The total response time for fixed priority preemptive scheduling can be calculated

using iterative fixed point algorithms. Recall the general response time equation 2.3

on page 27:

Rn+1
i = Ci +Bi + ∑

j∈hp(i)

(⌈
Rn

i
Pj

⌉
·Cj + crpd( j, i,Rn

i )
)

(3.2)

The same notations as in equation 2.3 are being used. The worst case execution

time Ci could be obtained by a WCET-analysis, e.g. by SymTA/P (SYMbolic Timing

Analysis for Processes) [141] as described in appendix A. The term crpd( j, i,Rn
i ) is

computed in equation 3.3.

crpd( j, i,Rn
i ) = Δs

j,i(R
n
i ) =

j−1

∑
k=i

δ j,k ·En
j,k ·En

k,i · tmiss (3.3)

We use the following new notations:

δ j,i. The maximum time delay due to a cache interference, if task τ j preempts τi

once.

En
j,i denotes the maximum number of activations of task τ j during the interval Rn

i .

For fixed priority, periodic scheduling this term is equal to En
j,i =

⌈
Rn

i
Pj

⌉
. If the term

is computed for the time window of some task τk, which iteration has finished,

we define En
j,k =

⌈
Rk
Pj

⌉
. The main reason for the super-script n is to consider the

correct value of Rn
i in the iterative response time equation.

Δs
j,i(R

n
i ) denotes an upper bound of the total cache-related preemption delay for

cache interferences when task τ j preempts all lower priority tasks {τ j−1, · · · ,τi}
during the time window Rn

i .

Proof. Task τ j can possibly preempt a lower priority task τk at most En
j,k times

during its response time Rk. During the response time Rn
i , τk is activated at most En

k,i
times and, therefore, the preemption delay δ j,k is multiplied by En

j,k ·En
k,i. It represents

the conservative assumption that the number of preemptions is equal to the number of

cache interferences.
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The proof the iterative response time equation in equation 3.3 is based on the crit-

ical instant, e.g. that the longest response time is given when all tasks are activated

at the same time. This would not be conservative when cache interference is consid-

ered. The worst case occurs when the lowest priority task is activated just before the

next highest priority task and so on. This has been shown in [99] and is sketched

in figure 3.1: first task τ1, then τ2, τ3 and finally τ4 are activated. Nevertheless, the

argument of the proof is correct when the preemption delay is always considered,

especially when all tasks are activated at the same time.

Motivational example continued

We demonstrate this simplified approach for the example. For the schedule in fig-

ure 3.1, the equation 3.3 is applied for the preemption delay terms Δs
4,1(R1), Δs

3,1(R1)
and Δs

2,1(R1). Note, that the preemption delay in line 3.4 is equal to the earlier com-

puted result in equation 3.1. The values of En
j,i are summarized in figure 3.2. In this

example we omit the superscript n in Rn
i and assume that the fixed point has been

reached We use only R1 as the response time of task τ1.

Δs
4,1(R1) =

3

∑
k=1

δ4,k ·E4,k ·Ek,1 = δ4,1 ·E4,1 ·E1,1 +δ4,2 ·E4,2 ·E2,1

+δ4,3 ·E4,3 ·E3,1 = δ4,1 ·5+δ4,2 ·3+δ4,3 ·4 (3.4)

Δs
3,1(R1) =

2

∑
k=1

δ3,k ·E3,k ·Ek,1 = δ3,1 ·E3,1 ·E1,1 +δ3,2 ·E3,2 ·E2,1

= δ3,1 ·2+δ3,2 ·1
Δs

2,1(R1) = δ2,1 ·E2,1 ·E1,1 = δ2,1

3.2.2 Indirect preemptions
Subsection 3.2.1 described the underlying response time analysis assuming that

each preemption causes a cache interference. However, if a task is suspended, multi-

ple preemptions can only replace the cache contents once. This reasoning assumes an

upper bound for all used cache blocks of the preempting task.

Schedule A in figure 3.3 shows an example of indirect preemptions: The second,

third and fifth task activation of τ4 cannot replace cache blocks of τ1 and the sec-

ond activation of τ4 cannot replace cache blocks of τ2 because the preempted task is

suspended.

The goal is to distinguish between the number of cache interferences and the num-

ber of preemptions. In figure 3.3 there are 12 task preemptions but only 8 cache

interferences. Now consider schedule B in figure 3.4. It shows the same schedule
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Figure 3.3. Schedule A.
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Figure 3.4. Schedule B.

where task τ3 and τ2 finish earlier than their WCET. Here, the second and the fifth

activation of τ4 are not interfering with task τ1. The total number of task preemp-

tions caused by τ4 is 10 and the maximum number cache interferences is 8. In both

examples the number of cache interferences is the same, however, the value of the

preemption delay is different:

Δ4(R1) = δ4,1 ·2+δ4,2 ·2+δ4,3 ·4 for Figure 3.3 (3.5)

Δ4(R1) = δ4,1 ·3+δ4,2 ·2+δ4,3 ·3 for Figure 3.4 (3.6)

We show how the number of cache interferences can be bounded in the following

Lemma. Based on the general schedulability equation 2.3 on page 27, we define a

new schedulability analysis by considering indirect preemptions. We will substitute

the term
⌈

Rn
i

Pj

⌉
by En

j,i and

crpd( j, i,Rn
i ) = Δ j,i(Rn

i ) · tmiss (3.7)

Lemma 3.1. Given a set of tasks T scheduled by a fixed priority preemptive

scheduling policy. A task τi is schedulable and the response time is given by the fol-

lowing equations, if the response time Rn
i = Rn+1

i converges for some n and is smaller

or equal to its deadline Di. Otherwise, the calculation terminates and no statement

about schedulability is made. If all task of the set are schedulable, the task set is said

to be schedulable.

Rn+1
i = Ci +Bi + ∑

j∈hp(i)
(En

j,i ·Cj +Δ j,i(Rn
i ) · tmiss) (3.8)



Cache-aware schedulability analysis 55

Δ j,i(Rn
i ) is given by the following equations:

Δ j,i(Rn
i ) =

Xj,i(Rn
i )

∑
k=1

maxkD j,i(Rn
i ) (3.9)

Xj,i(Rn
i ) ≤ ∑

k∈Hi∩L j∪{τ j}
En

k,i (3.10)

D j,i(Rn
i ) =

⋃
k∈Hi∩L j∪{τi}

{
δ

En
j,k·En

k,i
j,k

}
(3.11)

Hi = {τ ∈ T |p(τ) > p(τi)} (3.12)

L j = {τ ∈ T |p(τ) < p(τi)} (3.13)

En
j,k =

⌈
Rk

Pj

⌉
Rk = Rn

k if τk is being iterated (3.14)

The above notations have the following meaning:

Ci denotes the core execution time of task τi including the instruction cache effect

during execution.

Bi denote potential blocking times for task τi.

Δ j,i(Rn
i ) is an upper bound of the worst case cache interference caused by task τ j re-

garding all lower priority tasks than τ j and higher or equal to task τi: {τ j−1, · · · ,τi}
during response time Rn

i .

Xj,i(Rn
i ) denotes an upper bound of the total number of cache interferences when τ j

preempts any tasks of the set {τ j−1, · · · ,τi} during response time Rn
i . Note that the

task τ j is explicitly included in the sum index k.

∑k maxkM denotes the sum of the k largest elements of a set M. For example:

∑3
k=1 maxk{1,2,3,4,5,6} evaluates to 15.

D j,i(Rn
i ) denotes the set of preemption delays. It contains all possible preemption

delays when τ j preempts the tasks {τ j−1, · · · ,τi} at maximum frequency during

response time Rn
i . We use the power notation for multiple occurrences of an ele-

ment in a set. For example, {δ j,k,δ j,k,δ j,k} is abbreviated as {δ 3
j,k}. Note that the

task τi is explicitly included in the sum index k.

Hi denotes the set of tasks with a strictly higher priority then task τi. The term p(τi)
denotes the priority of task τi.
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Li denotes the set of tasks with a strictly lower priority then task τi. The term p(τi)
denotes the priority of task τi.

En
j,k denotes the number of task activations of task τ j during the response time of task

τk. Pj denotes the period of taskτ j. The definition of E j,k distinguishes between Rk

and Rn
k . If task τk is being iterated in equations 3.9-3.11 (e.g. k = i) then the most

recently computed response time Rn
k is taken. Otherwise the response time of a

(higher priority) task τk has already been calculated and the fixed-point has been

reached. In this case, no index n can be given since n denotes the latest response

time of task τi �= τk.

Example

The lemma is applied to an example before the proof is given. Assume the follow-

ing task set as specified in table 3.1. To simplify the calculations of this example, we

assume one time unit as cache miss penalty, hence the reloading time for e.g. three

cache blocks is three time units.

Task τi τ1 τ2 τ3

Priority p 1 2 3

Period Pi 100 500 1500

Execution time Ci 20 50 100

Preemption delays δ j,i δ1,2 = 2 δ2,3 = 12

δ j,i δ1,3 = 10

Table 3.1. Example task set configuration.

The response time for task τ1 is 20 time units, since it is the highest priority task

and no preemptions can occur. The response time for task τ2 is computed as follows:

R0
2 = 50

R1
2 = 50+E0

1,2 ·C1 +Δ1,2(R0
2) = 50+1 ·20+2 = 72

Δ1,2(R0
2) =

X1,2(R0
2)

∑
k

maxkD12(R0
2) = max1{2} = 2

X1,2(R0
2) = ∑

k∈{τ1}
E0

k,2 = E0
1,2 =

⌈
R0

2

P1

⌉
=

⌈
50

100

⌉
= 1

D1,2(R0
2) =

⋃
τk∈{τ2}

δ
E0

1,k·E0
k,2

1,k = {δ 1·1
1,2 } = {2}



Cache-aware schedulability analysis 57

The next iteration for R2 converges with a total response time of 72 time units for task

τ2:

R2
2 = 50+E1

1,2 ·C1 +Δ1,2(R1
2) = 50+1 ·20+2 = 72

Δ1,2(R1
2) =

X1,2(R1
2)

∑
k

maxkD1,2(R1
2) = max1{2} = 2

X1,2(R1
2) = ∑

k∈{τ1}
E1

k,2 = E1
1,2 =

⌈
R1

2

P1

⌉
=

⌈
72

100

⌉
= 1

D1,2(R1
2) =

⋃
τk∈{τ2}

δ
E1

1,k·E1
k,2

1,k = {δ 1·1
1,2 } = {2}

For task τ3 four iterations are necessary. The first iteration initializes with the core

execution time C3 while the second is shown in the following:

R0
3 = 100

R1
3 = C3 +E0

1,3 ·C1 +Δ1,3(R0
3)+E0

2,3 ·C2 +Δ2,3(R0
3)

= 100+1 ·20+12+1 ·50+12 = 194

E0
1,3 =

⌈
R0

3

P1

⌉
=

⌈
100

100

⌉
= 1 E0

2,3 =
⌈

R0
3

P2

⌉
=

⌈
100

500

⌉
= 1

E0
1,2 =

⌈
R2

P1

⌉
=

⌈
72

100

⌉
= 1 E0

3,3 =
⌈

R0
3

P3

⌉
=

⌈
100

1500

⌉
= 1

Δ1,3(R0
3) =

X1,3(R0
3)

∑
k

maxkD1,3(R0
3) = 2+10 = 12

X1,3(R0
3) = ∑

k∈{τ1τ2}
E0

k,3 = E0
1,3 +E0

2,3 = 1+1 = 2

D1,3(R0
3) =

⋃
τk∈{τ2,τ3}

δ
E0

1,k·E0
k,3

1,k = {δ 1·1
1,2 ,δ 1·1

1,3 } = {2,10}

Δ2,3(R0
3) =

X2,3(R0
3)

∑
k

maxkD2,3(R0
3) = 12

X2,3(R0
3) = ∑

k∈{τ2}
E0

k,3 = E0
2,3 = 1

D2,3(R0
3) =

⋃
τk∈{τ3}

δ
E0

2,k·E0
k,3

2,k = {δ 1·1
2,3 } = {12}

Note in the calculation of E0
1,2 that the calculation of the response time of task τ2 has

been finished, thus just R2 is used (not R0
2!), The index n is only valid for the task
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whose response time is being computed. For the third and fourth iteration we only

sketch the calculation. The interested reader is asked to verify these values.

R2
3 = C3 +E1

1,3 ·C1 +Δ1,3(R1
3)+E1

2,3 ·C2 +Δ2,3(R1
3)

= 100+2 ·20+22+1 ·50+12 = 224

R3
3 = C3 +E2

1,3 ·C1 +Δ1,3(R2
3)+E2

2,3 ·C2 +Δ2,3(R2
3)

= 100+3 ·20+32+1 ·50+12 = 254

As a result, the response time for task τ3 including all delays due to cache interference

is 254 time units.

Proof of Lemma 3.1

The proof is organized in two parts. In the first part, it is shown that Δ j,i(Rn
i ) is an

upper bound of the cache interference caused by τ j during Ri. In the second part, it

is shown that the total preemption delay caused by tasks τ j, · · ·τi+1 during Ri is given

by Δ j,i(Rn
i ) + · · ·+ Δi+1,i(Rn

i ). In the following, we will assume that the task-id is

chosen corresponding to its priority, e.g. task τ1 has the lowest priority in the task

system (e.g. the task with id 1 has the lowest priority) and we assume that task τ j has

a higher priority than task τi (lower task-id means lower priority). These notations are

used in the proof to simplify the description.

Part 1. The first part is organized as a proof by induction. The equations 3.9-3.11

are first translated into an iterative version, shown in equations 3.15-3.17.

Δ j,i(Rn
i ) =

X j−1
j,i (Rn

i )

∑
k=1

maxkD j−1
j,i (Rn

i ) (3.15)

Xk
j,i(R

n
i ) ≤ Xk−1

j,i (Rn
i )+En

k,i i < k ≤ j−1 (3.16)

Dk
j,i(R

n
i ) = Dk−1

j,i (Rn
i )∪{δ

En
j,k·En

k,i
j,k } i < k ≤ j−1 (3.17)

The term Xk
j,i(R

n
i ) denotes the number of cache interferences where τ j preempts

the lower priority tasks {τi, · · · ,τk} during response time Rn
i . It is initialized with the

number of preemptions when task τ j preempts only task τi: Xi
j,i(R

n
i ) = En

j,i which is

equivalent to the number of task activations of task τ j during the response time Rn
i

(En
j,i).

The term Dk
j,i(R

n
i ) denotes the set of all possible preemption delays if τ j preempts

the tasks {τi, · · · ,τk} at maximum frequency during response time Rn
i . It is initial-
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ized with Di
j,i(R

n
i ) = {δ

En
j,i

j,i } which corresponds to the set of preemption delays if τ j

preempts only task τi at maximum frequency during response time Rn
i .

The proof starts by considering the cache interference of τ j and the lower priority

task τi. Then each iteration considers the next intermediate task τk between τi and τ j

in a bottom-up fashion. The calculation of the number of cache interferences, Xk
j,i(R

n
i )

and the set of preemption delays, D j,i(Rn
i )

k, are now computed.
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Figure 3.5. Induction start.
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Figure 3.6. Case 1 - zero preemptions.
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Figure 3.7. Case 2 - single preemption.
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Figure 3.8. Case 3 - multiple preemptions.

Induction start. We consider the preemption delay when τ j only preempts the

lowest priority task τi of the task set. This scenario is shown in figure 3.5. The

induction start is given by Xj,i(Rn
i ) = En

j,i and D j,i(Rn
i ) = {δ

En
j,i

j,i }. The number of

cache interferences is given by the number of task activations of τ j during Rn
i . In

the schedule, we use the abbreviated notation n3,1(2) = 5 instead of X2
3,1(R

n
1). Then

term D j,i(Rn
i ) contains E j,i times the single preemption delay δ j,i: D j,i(Rn

i ). The

equation 3.15 results to the sum of all these terms, which is correct.

Induction step for τk−1 → τk. We assume that the tasks {τi, · · · ,τk−1} have been

considered and the terms Xk−1
j,i (Rn

i ) and Dk−1
j,i (Rn

i ) have been calculated. First we

proof equation 3.16 by showing, that the number of cache interferences increases by

at most one for each task activation of τk during Rn
i . Then, En

k,i +Xk−1
j,i (Rn

i ) represents

all task activations of {τk,τk−1, · · · ,τi} during Rn
i . Three possible schedules have to

be analyzed:

Case 1: Task τk executes and finishes before a preemption by τ j occurs. This is

shown in figure 3.6. In this case, no additional preemption delays occur. However,
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incrementing the number of cache interferences by one is safe (n3,1(2) = 6). This is

the reason for the in-equality operator in equation 3.16 and 3.10.

Case 2: Task τk executes just as long as such that exactly one activation by τ j inter-

feres. This is shown in figure 3.7. The number of cache interferences is incremented

by one (n3,1(2) = 6). All remaining preemptions by τ j affect lower priority tasks and,

consequently, have already been considered in Xk−1
j,i (Rn

i ).

Case 3: Task τk executes for some time such that τ j preempts τk p-times, where

p is in the range of 2 ≤ p ≤ En
j,k. This is shown in figure 3.8 (where p = E3,2 = 3).

For the first preemption, the number of cache interferences is increased by one, as in

case 2. For all remaining p−1 preemptions, the number of cache interferences would

be increased by p− 1. However, these preemptions cannot affect any lower priority

tasks because these tasks are suspended. Also, the preemption delay refers the the

worst case execution path of τ j, hence a second activation of τ j can be considered as

using the same (upper bound of) cache blocks as in its first execution. Thus, τ j cannot

replace any additional cache blocks of lower priority tasks. Therefore, the preemption

delay δ j,i has to include all paths in the calculation to consider all used cache blocks

of the preempting task. A path-based cache analysis, as described in [89], does not

meet this requirement. Thus, p− 1 would be subtracted from the number of cache

interferences. None of the remaining En
j,i − p preemptions require additional cache

reloads for τk because τk is preempted exactly p times and the delay for a lower

priority task has been considered in Xk−1
j,i (Rn

i ) according to the induction assumption.

In summary, the total number of additional cache interferences increases by one for

each activation of task τk (n3,1(2) = 6).

We have shown that for each activation of τk, the number of cache interferences

increases by at most one. Thus, the in-equation 3.16 is correct.

Set of preemption delays. The set Dk
j,i(R

n
i ) contains all possible preemption de-

lays. The equation 3.17 represents the worst case scenario, that τk is preempted by

τ j at maximum frequency. This frequency is given by the product of the number of

activations of τ j during a single execution of τk (En
j,k) and the number of activations

of τk during Rn
i (En

k,i). Therefore, the preemption delay (δ j,k) is inserted into the set

Dk
j,i(R

n
i ) En

j,k ·En
k,i-times.

Maximum operation. The iterative process is finished for k = j − 1 and equa-

tion 3.15 is calculated. The term Xj,i j−1(Rn
i ) denotes the maximum number of pre-

emption delays and D j−1
j,i (Rn

i ) all possible preemption delay costs that are caused by

task τ j regarding the tasks {τ j−1, · · · ,τi} during Rn
i . The maximum delay is given by
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the sum of the X j−1
j,i (Rn

i ) greatest elements of the set D j−1
j,i (Rn

i ). Note, that this set

includes the case when a task completes before its worst-case execution time.

Part 2. The equation 3.8 requires to calculate Δ j,i(Rn
i ) for each task τ j in i < j ≤ h,

where τh shall denote the highest priority task. The calculation of Δ j,i(Rn
i ) is carried

out independently. This might be a cause for overestimation, because the maximum-

operation in equation 3.9 (3.15 respectively) chooses the maximum preemption de-

lays only considering τ j and, therefore, assumes implicitly a specific schedule. This

might lead to an overestimation because the implied schedules in the calculation of

Δ j1,i(R
n
i ) and Δ j2,i(R

n
i ) might be excluding. However, in order to solve this problem,

all (implicitly assumed) schedules would had to be tested which is an NP-complete

optimization problem and exponential in number of tasks. The author decided to

accept the overestimation in favor of a reduced analysis complexity. �

3.2.3 Time complexity
In this section we evaluate the time complexity of the simplified approach of sec-

tion 3.2.1 and the advanced approach of section 3.2.2. For timing complexity consid-

erations we use the simplified notation of E j,i instead of E j,i and Ri instead of Rn
i . We

will use n for the number of tasks in the system.

The time complexity for calculating Δs
j,i(Ri) is O(n). The calculation was given in

equation 3.3 which consists of a sum of j − 1 summands. Each summand involves

two multiplications. The time to add as well as to multiply is considered as constant.

Thus we have

O(Δs
j,i(Ri)) = O((2 ·1) ·n+n ·1) = O(n) (3.18)

The time-complexity for calculating the preemption delay Δ j,i(Ri) of the schedula-

bility analysis in section 3.2.2 is

O(Δ j,i(Ri)) = O(n ·E j,i · log(E j,i ·n) (3.19)

where n denotes the number of tasks and E j,i the number of task activations of task τ j

during the response time of task τi.

We evaluate the complexity of the equations 3.9, 3.10, and 3.11 in bottom up fash-

ion. The time complexity of equation 3.11 depends on inserting the preemption costs.

The preemption costs δ j,k are inserted E j,k ·Ek,i times in the set Cj,i. An upper bound

of this product is E j,i, the total number of task activations of a higher priority task

j. The equation is evaluated j− 1− i times, which can be bounded by n. The time

complexity for this operation is O(n ·E j,i · tinsert), in which tinsert is the time to insert
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an element. In our implementation, we use a single-linked list to represent a set, in

which elements are appended at the end. This takes constant time: O(n ·E j,i ·1).
The time complexity of equation 3.10 depends on adding j− 1− i ≤ n elements.

It can be assumed that adding two integers takes constant time. Thus, the time com-

plexity is bounded by O(n ·1).
The time complexity of equation 3.9 depends on repeatedly choosing the maximum

element of a set and adding them. The number of elements in the set Cj,i(n− 1) is

bounded by n ·E j,i (see above). Taking the maximum involves sorting the set. These

operations can be done in in O(M logM) where M denotes the number of elements in

the set. In this case, we have: O(n ·E j,i · log(n ·E j,i)). In summary, we get:

O(Δ j,i(Ri)) = O(n ·E j,i)+O(n)+O((n ·E j,i) · log(n ·E j,i))

= O(n ·E j,i +n+n ·E j,i · log(n ·E j,i))

= O(n ·E j,i · log(n ·E j,i))

In this section we have presented a cache-aware response time analysis for fixed

priority preemptive scheduling. For this response time analysis, the cost for each

preemption has to be calculated. This is described in the next section.

3.3 Delay for multiple preemptions
In previous cache analysis approaches, each preemption has been assumed at the

worst case preemption point. In early work, an entire cache flush is assumed [19], in

more recent work, the intersection of used cache blocks of the preempting task and

useful cache blocks of the preempted task has been calculated [67] [89] [111]. Lee et

al. analyze in [66] the preemption cost of different preemption points, but take only

the preempted task into account.

However, cache behavior is highly dynamic and multiple preemptions cannot al-

ways remove the worst case number of cache blocks. The bound of the total delay of

two preemptions can be smaller than the sum of the bounds of the delay of each pre-

emption. Further, all preemptions might not occur at the same worst case preemption

point in general.

Until we better understand the dynamic cache behavior at a context switch, we

will not understand the larger question of accurate timing analysis for instruction

caches which is necessary for a precise schedulability analysis. If cache behavior

is unpredictable, caches would be switched off for real-time applications leading to

inefficient designs.
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Preemption delay for multiple preemptions depends on the execution history of a

task as well as its preemption history. Cache blocks that are replaced by a preemption

cannot be replaced a second time thus reducing the total delay for multiple preemp-

tions.

In this section we make the following contribution. The preemption delay for in-

struction caches is calculated for multiple preemptions. We use the term of a preemp-
tion scenario in this context. Section 3.3.1 describes the system model and provides a

motivating example of the proposed three-step approach. First, an iterative optimiza-

tion algorithm which determines the worst case preemption scenario is described in

section 3.3.2. Second, a data flow analysis which calculates an upper bound of the

preemption delay for a specific preemption scenario is presented in section 3.3.3. Fi-

nally, the schedulability analysis is revisited to consider multiple preemption costs in

section 3.3.5.

3.3.1 System model and motivating example
The analysis is based on the following assumptions. The preempted task τi as well

as the preempting task τ j are represented by its control flow graph. Each basic block

contains the memory addresses of the corresponding assembly instructions, which

can be extracted from a memory map file, after compiling and linking the source code

of each task. Disassembling tools like fromelf of the RealView from ARM [6] have

been used for this purpose. Like in the previous section, the only instruction caches

are considered. An analysis for data caches is presented in chapter 5. Further, we

assume that the total number of preemptions is given by a schedulability analysis.

As described in section 3.2, only information necessary is the total number of task

preemptions.

In previous approaches [67] [92] [123] [19], each preemption has been assumed to

take place at the worst case preemption point with a maximum delay of δ j,i. This con-

servative approximation was also used in the simplified cache-aware schedulability

analysis of section 3.2.1 in equation 3.3 as well as in the cache-aware schedulability

analysis of section 3.2.2 which considers indirect preemptions in equation 3.11.

Thus the total delay for n preemptions, when task τ j preempts task τi is given by:

n ·δ j,i (3.20)

There are two reasons why this upper bound can be improved: First, all preemptions

might not take place at the worst case preemption point. For example, not every

preemption can occur within a loop, where the preemptions costs are usually high.
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Second, preemption delays are not additive. In Lee et al. [66] the preemption de-

lay for several preemption points has been computed and sorted descendently. Then,

those preemption points where chosen (e.g. in possibly different loops) with the high-

est costs. If two preemptions occur shortly after each other and each preemption

replaces the entire cache for simplicity, then the total delay for these two preemptions

would be estimated as the time for two cache flushes with equation 3.20. However, if

the task does not reload sufficiently many cache lines between these two preemptions,

the second preemption cannot replace the entire cache again and the total time delay

for two preemptions is much less than the time for two cache flushes. Therefore,

we say that preemption delays are not additive but the total time delay for multiple

preemptions has to be computed.

Example

m1

m2
…
m5

m6

fn

m6m2
…
m5 fn

m1 m2 m3 m4 m5

m1

m1 m6

m1

cs1

�	4

�	1

cs2

preemption

cs3

cs4

Cache state (8 cache sets)

Control flow graph task �i

Figure 3.9. Corelation of preemption delay of multiple preemptions.

Figure 3.9 shows a control flow graph and the corresponding cache state of a direct

mapped cache with eight sets for some program execution points. A function call

is abbreviated by f n. The useful memory blocks are shown for each basic block as

well as the cache state at some points of the program execution. After executing basic

block 1 and 2, cache state cs1 contains memory blocks m1, · · · ,m5. We assume that a
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preemption removes 5 memory blocks m2, · · · ,m6, resulting to a preemption delay of

4 cache blocks (m2, · · · ,m5). The resulting cache state is shown in cs2. Then, basic

block 3 is executed. The cache contents is shown in cs3. If a second preemption

occurs after basic block 3, it causes a delay of only one cache block (m6), because the

cache blocks of the function call have already been removed.

Notations

We define the following terms.

A preemption scenario, Sn
j,i is defined it as:

Sn
j,i = (τ j,τi,{p1, p2, · · · , pn}) (3.21)

where task τ j preempts τi n times. The actual preemption points pk correspond to

some basic blocks in the preempted task τi.

The total preemption delay for a preemption scenario Sn
j,i is denoted by δ (Sn

j,i).

The term δ j,i(n) denotes the n-th marginal preemption cost. It corresponds to the

preemption delay at the nth preemption point in the worst case preemption sce-

nario δpn((τ j,τi p1, · · · , pn)) while considering all preemptions at the preemption

nodes {p1, · · · pn−1}. This delay will be calculated in equation 3.24.

The variable n j,i denotes the frequency how often a task τ j preempts τi in a single

execution of task τi.

For the example, the preemption scenario of figure 3.9 is given by S2
j,i = (τ j,τi,{B2,B3}).

and δ (S2
j,i) = 5 is the total preemption delay for the scenario.

Overview of methodology

With these definitions, we can formulate the problem. Given the number of task

preemptions n j,i when task τ j preempts τi, we want to find the preemption scenario

Sn j,i
j,i with the maximum preemption delay. This addresses the two issues for the over-

estimation in equation 3.20. First, we determine the worst case preemption points,

and second, we consider the preemption history in the calculation of the preemption

delay for each preemption point.

In the approach by Lee [66] the n-th greatest preemption costs are calculated in

isolation and then used in the schedulability analysis but this calculation considers

only the useful cache blocks of the preempted task. In a more recent paper [67], Lee
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Response time for system of  tasks
(schedulability analysis)
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(branch and bound algorithm)
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Figure 3.10. Overview of multiple preemption delay analysis.

consider both, the preempted as well as the preempting task, but assume the worst

case preemption point for each preemption again.

Figure 3.10 shows an overview of the analysis. First, schedulability analysis re-

quests for the preemption delay, when task τ j preempts task τi for n times. Second,

the worst case preemption points are identified using a branch and bound algorithm.

This is described in section 3.3.2. Third, the branch and bound algorithm requests

the preemption delay for each preemption scenario. The calculation for each preemp-

tion scenario is presented in section 3.3.3 that considers the preemption history. The

revised schedulability analysis for nth marginal preemption delays is presented in in

section 3.3.5.

3.3.2 Preemption scenarios
This section describes an algorithm to find the worst case preemption scenario.

A preemption scenario S1
j,i with a single preemption at node pk and the cache-

related preemption delay δ is denoted by:

S1
j,i = (τ j,τi,{pk})) δ ((τ j,τi,{pk}))

The time delay for a preemption scenario with multiple preemptions was defined as

δ ((τ j,τi,{p1, · · · , pn})) in equation 3.21. The calculation of these time delays is pre-

sented in section 3.3.3. In section, we propose to use the branch and bound algorithm

to determine which preemption points pk to choose.
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If all possibilities were evaluated, this would be too time-consuming: Given a con-

trol flow graph with m nodes there are
(m

n

)
possible combinations of preemption points

for n preemptions, assuming one preemption at each node. Such a problem can be

solved by an optimization algorithm which finds the optimum value.

A branch and bound algorithm is such an algorithm. It consists of two components,

the branching and bounding step. The branching step decomposes the problem into

sub-problems by creating a tree-structure. A solution is represented by a path from

the root node to a leaf node. If a solution is found, it is saved as a lower bound.

Then, the algorithm continues to backtrack in a different sub-tree. The bounding step

compares this lower bound with an approximation of the upper bound for the current

sub-tree. If the upper bound is smaller than the lower bound of an existing solution,

then this sub-tree can be discarded and the search continues in a different sub-tree.

The hope is to bound as many sub-trees as possible very early during the search. In

the worst case, the algorithm has to evaluate every path in the subtree, which takes

exponential time, however, if the branching and bounding criteria are well designed,

the optimization algorithm converges very fast.

The branch and bound algorithm starts with the computation of the single preemp-

tion delay δ ((τ j,τi,{pk})) for each preemption point pk of the control flow graph.

Then, the nodes are sorted descendently according to their preemption delays in a

node list L. Every node of a loop li is inserted LBi times in L. The maximum number

of loop iterations LBi has to be specified manually. Then, a tree is constructed, where

nodes represent preemption points pi and the depth represents the number of preemp-

tions. Nodes on the same level k are possible candidates for the kth preemption. A

path from the start-node to a leaf node represents a preemption scenario. A node is a

leaf node, if its level is equal to the number of preemptions n j,i.

Initially, the node pk with the maximum preemption cost is inserted at the root

node. Branching is decided by the single preemption cost C(nk). As the next preemp-

tion point, the node is chosen, with the highest cost among the available nodes of node

list L. This can be done in O(1) because the node with the largest preemption delay

is the first element of L. The bounding step is controlled by comparing a lower bound

of an existing solution with an upper bound of a possible solution. A sub-tree at pre-

emption point pk is bounded (and discarded), if the estimated cost for k preemptions

plus the upper bound of possible n− k preemptions is smaller than the lower bound

lb of an existing solution. In this case the search backtracks at the k−1th level.
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Example

Figure 3.11 illustrates an example of finding the worst case preemption delay for

three preemptions. The control flow graph is shown on the left side and the decision

diagram is shown on the right side of the figure. We assume the single preemption

delays of 10 cache blocks for nodes 6,7,8, this is reasonable when node 6 and 9

contains a function call, like in figure 3.9. A preemption at node 3 causes two cache

misses, for example because the same cache block is used in node 2 and 3. All other

nodes have a single preemption delay of one cache block. First, the root node is

.
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Figure 3.11. Example for branch and bound algorithm.

created. The list L of possible nodes is maintained during the algorithm. Refer to

table 3.2 for a complete listing of each step. Initially, L = (6,7,8,3,2,4,5,9,10),
according to the assumed preemption delays and the lower bound lb is zero.

The branching step chooses always the first element of node list L, in this case

node 6. Then, the bounding step evaluates if the current cost (0) plus an upper bound

of expected costs is lower than the lower bound lb. The upper bound is given by

the sum of the largest single preemption delays of the list L. The term 0 + (10 +
10 + 10) = 30 ≤ 0 = lb is evaluated to false, thus this node is not bounded and node

6 is inserted. The preemption delay δ (τ j,τi,{6}) = 10 is computed as described

in section 3.3.3 (compare to Step 1 in table 3.2). Then, the node list is updated:
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Step L Upper bound Action S δ (S) lb

1 (6,7,8,3,1, · · ·) 0+(10+10+10) insert 6 {6} 10 0

2 (7,8,3,1, · · ·) 10+(10+10) insert 7 {6,7} 11 0

3 (8,3,1, · · ·) 11+(10) insert 8, bt 7 {6,7,8} 12 12

4 (3,1, · · ·) 11+(2) insert 3, bt 7 {6,7,3} 13 13

5 (1, · · ·) 11+(2) bound 1, bt 6 13

6 (8,3,1, · · ·) 10+(10+2) insert 8, {6,8} 11 13

7 (3,1, · · ·) 11+(2) bound 3, bt 6 13

8 (3,1, · · ·) 10+(2+1) bound 3, bt root 13

9 (7,8,3,1, · · ·) 0+(10+10+2) insert 7 {7} 10 13

10 (8,3,1, · · ·) 10+(10+2) insert 8 {7,8} 11 13

11 (3,1, · · ·) 11+(2) bound 3, bt 7 13

12 (3,1, · · ·) 10+(2+1) bound 3, bt root 13

13 (8,3,1, · · ·) 0+(10+2+1) bound 8, 13

Table 3.2. Branch and bound algorithm. Node list L, term for upper bound, action, preemption sce-

nario (S), total preemption delay δ (S) of scenario S, and lower bound (lb).

L = (7,8,3,1, · · ·). For the presentation of the example, we will use this reduced

list to save space. The remaining nodes 2,4,5,9,10 have the same cost and are not

important for the demonstration of the algorithm. Node 7 is chosen in step 2, and the

bounding step evaluates 10 + (10 + 10) ≤ 0 to false, thus inserting node 7 with the

total preemption cost δ (τ j,τi,{6,7}) = 11. The cost is not 20, because cache blocks

at not 6 are removed once and cannot be removed a second time. Here we assume

an additional cost of one cache block for node 7. In step 3, the node list contains:

L = (8,3,1, · · ·). The branching step chooses node 8 and the bounding step evaluates

11 + (10) = 21 ≤ 0 to false, thus node 8 is inserted and the total preemption delay

is assumed to be δ (τ j,τi,{6,7,8}) = 12. As the leaf node is reached (level=3), the

lower bound is set to 12 and the search backtracks at node 7. In step 4, the available

nodes are L = (3,1, · · ·) and node 3 is inserted with new lower bound of 13 cache

blocks. Then, the algorithm backtracks at node 7. In step 5, the available nodes are

L = (1, · · ·) and the bounding step results true for the comparison (13 ≤ 13), thus

node 1 is bounded and the search backtracks at node 6. The data for all steps of the

analysis is shown in table 3.2.

In summary, 13 computations of the upper bound (bounding step) and 7 computa-

tion of the preemption delay for a scenario were necessary compared to
(

10
3

)
= 120

possible combinations. This significant reduction was possible because many sub-

trees were bounded very early.

The algorithm does not test whether the preemption scenario is feasible. For this

example, the scenario (τ j,τi,{6,7,3}) is not feasible, because node 3 is located in
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a different branch. Such an additional check could be provided by a reachability

algorithm, but would increase the complexity. Currently, such a feasibility check has

not been implemented in the branch and bound algorithm.

3.3.3 Delay for preemption scenarios

Methods to calculate the preemption delay which consider the preempted as well

as the preempting task have been proposed by Lee et al. [67] and Mitra et al. [89], see

also section 2.5.1 and section 2.5.2. Each preemption is assumed to take place at the

worst case preemption point.

Even though, these methods provide safe upper bounds, they are not tight. As mo-

tivated in section 3.3.1, the total bound of the delay for multiple preemptions can be

smaller than the sum of each bound of the preemption delay. If the preemption history

is not considered in cache-related delay analysis, the response time for a task could

be overestimated which consequently would lead to an inefficient system design.

In this section we present a method to consider the preemption history. Instead of

an isolated calculation of the preemption delay, we determine the delay for preemption

scenarios.

Insertion of preemption nodes

Possible preemption points are specified by a preemption scenario. Each node pk

in a preemption scenario S = (τ j,τi,{p1, · · · pn}) represents a preemption point of the

preempted task τi by the preempting task τ j. We insert a node containing all used

cache blocks of the preempting task τ j after each preemption point and re-calculate

the properties of useful cache blocks of the preempted task.

Example

Figure 3.12 shows an example for the preemption scenario of figure 3.11. The

modified graph is shown for the worst case preemption scenario S = (τ j,τi,{3,6,7}).
In this case, preemption nodes were inserted after B3, B6 and B7.

Revised data flow analysis

The data flow analysis for calculation the useful cache blocks has to be modified.

If it were not, the set of useful cache blocks could contain some cache blocks of the

preempting task. This would increase the preemption delay, because cache blocks of

the preempting task would be subject to a preemption itself, which is incorrect.
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Figure 3.12. Control flow graph with preemption scenario (τ j,τi,{3,6,7}).

In the following, we use the data flow analysis technique by Lee et al., as presented

in section 2.5.1, to compute the set of useful cache blocks. The technique by Mitra et

al. could have been used as well. In chapter 4 we propose a scalable precision cache

analysis which combines these two methods to trade off analysis time complexity and

analysis precision.

The calculation of useful cache blocks involves the calculation of reaching cache

blocks (RMB) and live cache blocks (LMB) (figure 2.2). The genc[P]-set of each pre-

emption node P is defined by the used cache blocks of the preempting task RMBτ j [end],
in which end is the last node of the preempting task τ j. The RMB calculation for all

preemption nodes P is modified by replacing equation 2.9 (shown here again):

RMBc
out [B] = genc[B]∪ (RMBc

in[B]− killc[B])

by equation 3.22, in which P denotes a preemption node.

RMBc
out [P] = RMBc

in[P]− killc[P] (3.22)

Note, that equation 3.22 is only used for preemption nodes, for all other nodes

the equation 2.9 is used. The new equation 3.22 reflects the fact that cache blocks

loaded by the preempting task, e.g. the genc[P], are not inserted in the RMBc
out [P] set,

however, the genc[P] as part of the killc[P]-set can remove cache blocks. Analogously

the calculation for LMB is modified.
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Finally, the useful cache blocks of the preempted task are computed by the inter-

section of reaching cache blocks (RMB) and live cache blocks (LMB), according to

section 2.5.1.

The preemption delay for a preemption scenario S with a set of preemption points

{p1, · · · , pn} is then calculated by the sum of preemption delays at each preemption

node:

δ ((τ j,τi p1, · · · , pn)) =
n

∑
i=1

USEτi [pi]∩RMBτ j [end] (3.23)

In which end is the last node of the preempting task τ j. We use the general nota-

tion USEτi . It can be substituted by USElee (equation 2.12 on page 40), USEmitra

(equation 2.20 on page 43) or by the scalable analysis USEscale (equation 4.18 on

page 4.18).

Equation 3.23 represents the entire delay for all n preemptions. In the branch-and

bound, and later in the schedulability analysis, the nth marginal preemption cost is

of interest. In addition to equation 3.23 we define the preemption cost at node pn,

assuming that a preemption took place at preemption nodes p1, · · · , pn−1, by

δpn((τ j,τi p1, ·, pn)) = USEτi [pn]∩RMBτ j [end] (3.24)

It represents the preemption cost at node pn, while preemption nodes have been in-

serted at p1, · · · , pn−1 and the data flow analysis properties have been re-calculated.

Iteration space in loops

Basic blocks can be executed more than once for example in loops. The control

flow graph represents only the structure of a program and different iteration spaces

in loops cannot be distinguished. The insertion method of preemption nodes in the

CFG, as described in the last section, has to be revised.

We explain the problem with an example, in which a task has a loop with node n1

and n2 and a loop bound of 2 iterations. Assuming that the task is preempted 2 times.

For example, consider a preemption scenario S1 = (τ j,τi,{n1
1,n

1
2}), in which the task

τi is preempted by τ j once at node n1 and once at node n2. We further assume that

the single preemption delay at node n1 and n2 is 5 cache blocks while the delay at n2

is only one cache block, if there was a preemption at n1. Figure 3.13 shows the CFG

and the iteration space for the first and second loop iteration.

According to the insertion method, a preemption node is inserted after n1 and after

n2. The preemption delay is calculated as 1 ·5+1 ·1 = 6 cache blocks. This implicitly

assumes that both preemptions occurred in the same loop iteration (upper part in fig-

ure 3.13. If the preemptions would take place in different iterations, e.g. a preemption
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Figure 3.13. CFG with preemption points and un-rolled loop.

at n1 in the first and the preemption at n2 in the second, as shown in the lower part

in figure 3.13 the preemption delay would be: 1 · 5 + 1 · 5 = 10. Thus, the insertion

method is not conservative in this case.

A solution to this problem is calculate the preemption delay of multiple preemp-

tions in loops separately if the number of the same preemption point is less then the

iteration bound. The DFA provides a conservative result, if the different preemption

points are placed in the same iteration.

We distinguish two cases:

1.) The number of each preemption point pl in the preemption scenario appears as

often as the iteration bound lb. Then, a preemption scenario can be written as

S j,i = (τ j,τi,{plb
l1 , · · · , plb

ln ,}) where pl1 to pln are loop nodes.

2.) There exist some preemption points whose number is smaller than the loop bound.

A preemption scenario can be written as

S j,i = (τ j,τi,{px1

l1 , · · · , pxn
ln , pk1

, · · · , pkm})

in which at least one xi for a preemption point pli is smaller than the iteration

bound lb and in which the preemption points pk1
, · · · , pkm are located outside the

loop.
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In the first case, the insertion method is correct. In the second case, we calculate

the preemption delay as follows:

δ ((τ j,τi,{px1

l1 , · · · , pxn
ln , pk1

· · · pkm})) = δ ((τ j,τi,{pl1})) · x1

+ · · ·
+ δ ((τ j,τi,{pln})) · xn

+ δ ((τ j,τi,{pk1
· · · pkm})) (3.25)

Equation 3.25 states that for each preemption point within the loop, (pl1 · · · pln), the

preemption delay is calculated in isolation without considering the preemption history.

The remaining preemption points, pk1
· · · pkm , outside the loop can be considered as a

preemption scenario again.

This simplification, of course, leads potentially to an overestimation. The experi-

ments in 3.5.3 will show that the analysis gain for analyzing loops is very small. Often

loop bounds are much larger than the number of preemptions. Already for two small

nested loops with each 100 loop iterations, there need to be more than 10000 preemp-

tions before the scenario sensitive analysis would yield tighter results. It is unlikely

that such task which are as frequently preempted, are scheduled for real-time.

The author believes that an analysis considering preemption scenarios in loops

would require much more effort, especially if nested loops should also be addressed,

while the potential analysis gain is very limited. It would involve to unroll all loops

and to analyze preemption scenarios distinguishing preemption points for different

loop iterations. This would require a time-consuming analysis, but could be imple-

mented if analysis precision of the above described simplification is not considered as

sufficiently accurate. As an alternative the preemption delay could be approximated.

This is described in the next section.

3.3.4 Approximation of multiple preemption delays
In this section we provide an alternative way to calculate the z-th preemption

cost. If the methodology for the branch-and-bound algorithm should be too time-

consuming for larger tasks, this alternative method can be used. For the following

considerations we do not consider function calls.

We propose a static algorithm to consider the zth greatest preemption delays. The

key idea is to distinguish between loops and linear code. For linear code the maximum

number of useful cache blocks is one, i.e. the current block.

Based on the data flow analysis of section 3.3.3 we calculate the zth greatest pre-

emption delay δ j,i(z) by sorting all preemption delays in decreasing order and choos-
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ing the z-th greatest one. The total preemption delay for z preemptions δ multi
j,i (z), as

used in the experimental section, is given by δ multi
j,i (z) = ∑z

k=1 δ j,i(z).

Sequential code

For each node within sequential code the number of useful cache blocks is at most

one cache block, e.g. if the cache block was loaded in an earlier basic block and used

later. This simplification does not hold for programs with sub-functions.

Loops

In section 3.3.3 we pointed out the difficulty of a static analysis of preemption

delays in loops. Because the iteration space cannot be modeled with a simple control

flow graph we provide a conservative approximation. If the number of preemptions is

larger than the loop bound, then the total number of cache blocks that can be replaced

by n preemptions within a loop li is given by

(lbi −1) ·USE[Bi]+ (n− lbi +1) (3.26)

The maximum number of loop iterations is given by lbi and the node with the max-

imum number of useful cache blocks USE[Bi] is denoted by Bi. It states, that if in

each iteration a preemption occurs then the cost of any further preemption can be

considered as one, because the path between Bi from the last to the current iteration

is sequential code. In sequential code, the maximum number of useful cache blocks

is one (see above).

3.3.5 Revised schedulability analysis
The schedulability analysis in section 3.2.1 and 3.2.2 assumed that a preemption

of a task τi by a task τ j occurs at the worst case preemption point. In the last sections,

we have developed an analysis to compute a bound for the total preemption delay for

multiple preemptions by considering the preemption history. Refer also to figure 3.10.

In this section, we extend the schedulability analyses to consider the n-th marginal

preemption delay.

As shown in the previous sections, the preemption delay is given for a preemption

scenario S j,i(n) for n preemptions. Then, we can calculate the nth marginal pre-

emption delay δ j,i(n) by using the alternative calculation of the preemption delays in

equation 3.24, which results the delay for the nth preemption point.
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Simplified schedulability analysis

In section 3.2.1 we have presented a simplified schedulability analysis, in which

all preemptions cause a cache interference. In order to consider multiple preemption

delays, the equation 3.3 is replaced by equation 3.27:

Δs
j,i(Ri) =

j−1

∑
k=1

((
E j,k

∑
n=1

δ j,k(n)

)
·Ek,i

)
(3.27)

Instead of multiplying the preemption delay δ j,k with E j,k times the n-th marginal

preemption delay is used. The total preemption delay is tighter but still conservative,

because the maximum preemption delay is always taken.

Cache interference of Indirect preemptions

In section 3.2.2 the scheduling approach had been revisited to distinguish between

cache interferences and task preemptions. In order to consider multiple preemption

delays, the equation 3.11 is replaced by equation 3.28 which is initialized by Cj,i(i) :=
{δ j,i(1), · · · ,δ j,i(E j,i)}.

Cj,i(k) = Cj,i(k−1)∪{δ j,k(1), · · · ,δ j,k(E j,k ·Ek,i)} for k. i < k ≤ j−1 (3.28)

The difference is that the same worst-case preemption delay δ j,k is not inserted mul-

tiple times (e.g. E j,k ·Ek,i times), but the nth greatest preemption delays are inserted.

This modification results in a tighter but still conservative bound of the preemption

delay.

3.4 Multiple task activation
This subsection focuses on multiple executions of a single task with the goal to

overcome the pessimistic empty cache assumption for single task cache analysis. In-

trinsic cache effects have been intensively studied, for example [8] [71] [127] [141]

but always with the empty cache assumption at task activation. Current approaches

for CRPD analysis (extrinsic cache analysis), for example [19], [67], [89], assume an

empty cache at task activation as well. In the following we extend single task cache

analysis and CRPD analysis to consider a warm cache at task activation.

3.4.1 Cache content propagation
The number of available cache blocks depends on cache behavior of a previous task

activation and the cache usage of the tasks that execute between two task activations.

In preliminary work [115] [111] we have partly addressed this issue but not integrated
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the results in the cache-aware response time analysis. We assume the conservative ap-

proximation that all higher and lower priority tasks of a system execute. We model

the execution of intermediate tasks τ j1 , · · · ,τ jk as a sequence of task executions be-

cause the order and frequency of task executions does not change the available cache

blocks at the second task activation. This is shown in section 3.4.2.

The available cache blocks at the end of the execution of task τi are given by the

maximum number of reaching cache blocks, denoted by RMBτi [end] of each task. The

term RMBτi [end] is computed in section 3.3.3. The set of cache states RMBτi [end] of

task τi is inserted in the first node of task τ j1 . In general the cache content RMBτ jk [end]
of task τ jk is inserted in the first node of task τ jk+1

. The last task in this chain is τi.

Figure 3.14 shows two activations of τ2 and an intermediate execution of a task τ3.

b1 bend…
…

RMB�2[end]

CFG of �2

b1 …
…

CFG of �3

bend
b1 bend…

…
CFG of �2

RCS�3[end]

Figure 3.14. Cache content propagation for multiple task activation.

The cache state of RMBτ2 [end] at the end of task τ2 is propagated to the first node of

the τ3. Then, global data flow analysis determines the RCS states for all nodes of task

τ3. The cache state at the last node RMBτ3 [end] is then propagated to the first node of

τ2. This procedure is repeated for each intermediate task.

3.4.2 Cache usage of intermediate tasks
To apply the cache content propagation we show the following lemma.

Lemma 3.2. The order and the frequency of intermediate task executions does not

change the cache access behavior for the second task execution.

Proof of Lemma 3.2. We show the independence for n-way associative instruction

caches in two steps.

CBτi
s (· · · ,τk,τk, · · ·) = CBτi

s (· · · ,τk, · · ·) (3.29)

CBτi
s (· · · ,τk,τl, · · ·) = CBτi

s (· · · ,τl,τk, · · ·) (3.30)

Where CBτi
s (τk1

, · · · ,τkn) denotes a unique upper bound of the worst case cache con-

tents of τi in cache set s after the execution of tasks τi,τk1
, · · · ,τkn . Note, this set
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contains only the cache blocks of τi, but not the cache blocks of {τk1
, · · · ,τkn}. Equa-

tion 3.29 states that multiple executions of τk can be reduced to a single execution

of τk. Equation 3.30 states that the remaining cache blocks of τi are independent of

the execution order of intermediate tasks. Thus, any execution sequence of arbitrary

order and frequency can be transformed to a canonical sequence of task executions

without repetitions.

We assume an associative instruction cache with LRU replacement strategy. It

suffices to show both equations for a cache set because cache sets are controlled in-

dependently. At this point we exclude complex cache architectures that install a set

dependency, such as victim caches or pseudo-associative caches. A conservative data

flow analysis, as presented in section 2.5.3, can be used to calculate the worst case

cache behavior. Using that data flow analysis, it is not necessary to evaluate every

execution path which would be exponential in time complexity.

When a cache block Bi is loaded to a full cache set, the LRU strategy replaces the

least recently used cache block with Bi. If cache block Bi is already in the cache set

and requested again by the CPU, then only the order of all cache blocks is changed.

Suppose that a cache set holds n cache blocks. Further let K, L, and I denote the

number of cache blocks of task τk, τl , and τi respectively. Let M be the total number

of new cache blocks that are mapped to a cache set. First, τk then the intermediate

tasks τk and τl are executed, and finally τi is executed again.

We consider three cases:

1 M ≥ n. The number of new cache blocks is greater than the associativity. This

means particularly that all I cache blocks of τi are replaced.

2 M ≤ n− I. All new cache blocks fit in the cache set and none of the I cache blocks

of task τi are replaced.

3 n− I < M < n. The number of new cache blocks is larger then the vacant positions

of the cache set, but smaller than the total number of cache blocks. In this case,

I +M−n cache blocks of τi are replaced.

First, we show that equation 3.29 holds. To show that executing task τk once has the

same effect as executing τk twice. We assume that in the cache are K cache blocks,

e.e. those cache blocks of task τk. Hence we set M = K. For case 1. the number of

remaining cache blocks of task τi is zero, if task τk is executed once or twice. For

case 2. no cache blocks of τi are replaced after one execution of τk. Also during the
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second execution of τk no cache blocks are replaced. For case 3 we have to show

∀m′ ∈CBτi
s (τk,τk) → m′ ∈CBτi

s (τk) (3.31)

∀m′ ∈CBτi
s (τk) → m′ ∈CBτi

s (τk,τk) (3.32)

Suppose ∃m′ ∈ CBτi
s (τk,τk) and m′ �∈ CBτi

s (τk). During execution of τk no cache

blocks of τi are loaded, consequently m′ cannot be in the cache set. So m′ �∈CBτi
s (τk,τk)

which is a contradiction. For equation 3.32 suppose m′ ∈ CBτi
s (τk) arbitrarily, which

means after the execution of τk m′ is still in the cache set. During the second exe-

cution of τk the access to all its cache blocks mk1
, · · · ,mkK are all cache hits, because

M < n. So only a reordering according to LRU strategy can occur. Particularly no

cache block of τi is replaced, so m′ ∈ CBτi
s (τk,τk). We have now shown that for all

cases equation 3.29 holds.

Equation 3.30 holds for case 1 and 2: In this case we consider the case, that task τk

and τl have loaded their cache blocks to the cache. Using the above general notation of

M, we set M = K +L. In case 1 all cache blocks of τi and in case 2 no cache blocks are

replaced. For case 3 assume m′ ∈CBτi
s (τk,τl). So the least K +L−n cache blocks are

replaced. No cache blocks of τk can be replaced by τl since K +L < n. Consequently,

all K + L− n cache blocks are replaced from τi. Similarly it follows from the LRU

strategy that the L +K −n cache blocks being replaced during execution of τl and τk

must be from τi. The order of the I cache blocks of τi cannot change during execution

of τk and τl and execution of τl and τk because the I cache blocks are loaded before

the execution of τl and τk. This proves equation 3.30 for case 3 and completes the

proof that equations 3.29 and 3.30 are true. �

3.4.3 Revisited single task cache analysis
The effect of a multiple task execution is not only interesting for preemption de-

lay calculation. In traditional WCET-analysis for cache behavior, an empty cache is

assumed. For example the intrinsic cache analysis by [141], as shortly reviewed in

section 2.5.3.

As the framework to consider cache blocks from a previous task activation is avail-

able, this intrinsic cache analysis can be modified as well. In order to consider a

non-empty cache content, the first node in the control flow graph is modified by in-

serting the cache lines, which are available from the previous task activation. In the

next section we provide experimental results, that this improvement yields to tighter

analysis results.
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3.5 Experiments
This section provides experiments for the presented cache-aware response time

analysis framework. First, we describe the experimental setup in section 3.5.1. Then,

we provide results for preemption delays for single preemptions for different cache

configurations and benchmarks in section 3.5.2. Preemption delays for multiple pre-

emptions is provided in section 3.5.3. Results for the analysis of multiple task activa-

tions is presented in section 3.5.4 and the experiments for the cache-aware response

time analysis are presented in section 3.5.5.

3.5.1 Setup

Id Mem C-Ln WCET Type Description

τ1 316 83 0.432 sequential linear

τ2 2864 260 7.561 sequential statemate

τ3 888 180 115.7 loop fast Fourier transform

τ4 296 275 489.6 loop packet receiver

τ5 1023 286 1078 loop whetstone

Table 3.3. Benchmark Description with Memory Usage[B], c-lines and WCET[103clk] for 1KB di-

rect mapped instruction cache and code type.

Table 3.3 states for each benchmark the memory usage, number of c lines, the

worst case execution time (WCET) for a 1KB direct mapped instruction cache and

whether the task contains loops or not (e.g. sequential code). The benchmarks are

mainly taken from [23] [67]. The WCET was determined by a cycle accurate ARM9

processor simulator of the ARM developer suite (ADS) [6] [141]. Cache access time

was determined by cache analysis with Symta/P assuming a 20 cycles cache miss

penalty, a cache block size of 8 byte and a fixed instruction length of 32 bit. For the

CRPD analysis we generated the control flow graph from source code with Symta/P

and mapped the memory lines of assembly instructions to the corresponding nodes by

disassembling the binary with fromelf, a tool provided by ADS.

The results of the experiments can be generalized using a cache footprint, which

describes the relation of memory usage of an application and the cache size. The

cache footprint is defined as the average number of tasks that use a single cache block.

Table 3.4 presents footprint for several preemption scenarios and for all tasks of ta-

ble 3.3. For example, both tasks τ3 and τ6 occupy the entire 256B cache, hence, the

footprint is 2.
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PrS 256B 1 kB 4 kB 16 kB

τ3 τ6 2.00 1.98 0.73 0.18

τ6 τ5 2.00 2.0 0.98 0.25

τ5 τ3 2.00 1.97 1.14 0.28

τ4 τ5 1.53 1.13 0.73 0.18

all 4.5 2.69 0.83 0.26

Table 3.4. Cache footprint of preemption scenarios (PrS) and of all tasks in table 3.3 for direct mapped

instruction cache.

3.5.2 Single preemption delays
The preemption delay for different tasks are given in table 3.5 for 256B, 1kB, and

4kB direct mapped instruction cache. A preemption scenario (PrS) is a pair of the

preempting and preempted task. For each PrS (example: τ3 τ6) and cache size, the

number of used cache blocks (US) of the preempting task (τ3), the number of useful

cache blocks (UF) of the preempted task (τ6) and the cache related preemption delay

when τ3 preempts τ6 (D). The PrS are organized by the code structure type (loop(l),

sequential (s)).

PrS Type 256B 1 kB 4 kB

US UF PD US UF PD US UF PD

τ3 τ6 l-l 32 32 32 125 128 125 228 129 1

τ6 τ7 l-l 32 17 17 128 66 66 147 66 1

τ6 τ4 l - s 32 1 1 128 1 1 147 1 1

τ6 τ5 l - s 32 1 1 128 1 1 147 1 1

τ5 τ6 s - l 32 32 32 128 128 128 356 129 129

τ5 τ3 s - l 32 32 32 128 79 79 356 79 61

τ4 τ5 s - s 17 1 1 17 1 1 17 1 1

Table 3.5. Preemption delay for several cache sizes for direct mapped cache, used cache blocks of

preempting task (US), useful cache blocks of preempted task (UF), and preemption delay (PD)

With increasing cache size the number of used and useful cache blocks increases

until the cache is large enough to hold all cache blocks. Then, the cache usage is

stable. For smaller caches the CRPD is the minimum of used and useful cache blocks.

If a linear code is preempted the preemption delay is always one. For larger caches the

CRPD is much smaller than used and useful number of cache blocks which reflects
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the fact that the preempting and preempted task share only a small part of the cache

which is also represented by the cache footprint (refer to table 3.4).

The influence of the associativity on CRPD is shown in table 3.6. Only the PrS

with loops are considered, because a preemption delay for linear tasks is at most one.

With increasing associativity the number of used and useful cache blocks increases.

The reason is that fewer cache sets that are available and a conservative analysis has

to consider the worst case execution path.

PrS 1-way 4-way 16-way

US UF PD US UF PD US UF PD

τ3 τ6 228 129 1 228 138 126 512 512 512

τ6 τ7 147 66 1 147 66 66 512 66 66

τ5 τ6 356 129 129 356 131 130 356 512 356

τ5 τ3 356 79 61 356 138 138 356 507 356

Table 3.6. Preemption delay for associative caches with 4 kB. used cache blocks of preempting task

(US), useful cache blocks of preempted task (UF), and preemption delay (PD)

3.5.3 Multiple preemption delays
The effect of multiple preemptions as described in section 3.3 is presented in ta-

ble 3.7. Again we consider only loop-tasks, because for linear tasks the preemption

delay is at most one cache block. The table shows the total delay for different num-

bers of preemptions for a 1kB and 4kB direct mapped instruction cache as the ratio
δ multi

j,i
n·γ j,imax , where δ j,i is defined in section 3.3. A ratio of 1.00 states that the consider-

ation of multiple preemption delay computed the same result. The ratio of 1.00 for

the 4kB cache in PrS (τ3 τ6) and (τ6 τ7) is because the total preemption delay is in

these cases one cache block, which is already optimal. The results show that if a task

is preempted 100 or 1000 times the proposed consideration of different preemption

delays shows a significant improvement (for PrS (τ5 τ3) the improvement is 97%).

The proposed analysis can reduce the preemption delay by an order of magnitude for

tasks that are preempted very frequently.

3.5.4 Multiple task activation for single task execution
The effect of multiple task executions, as described in section 3.4.3 on single task

cache behavior is shown in table 3.8. We consider three assumptions: an empty cache

at task activation (empty), all tasks of the table 3.3 execute between two activations

(warm), no task executes between two task activations (lock). The term lock denotes
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PrS 1 kB 4 kB

1 10 100 1000 1 10 100 1000

τ3 τ6 1.00 1.00 0.70 0.08 1.00 1.00 1.00 1.00

τ6 τ7 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00

τ5 τ6 1.00 1.00 0.70 0.08 1.00 1.00 0.70 0.08

τ5 τ3 1.00 1.00 0.93 0.91 1.00 1.00 0.17 0.03

Table 3.7. Multiple preemption delay ratio for 1kB and 4kB direct mapped instruction cache.

the fact that all cache blocks available in cache at the end of the first activation are not

removed by other tasks. The term lock is motivated by locking the cache lines.

Task linear statemate fft

empty warm lock empty warm lock empty warm lock

256B 332 332 47 6861 6861 6861 173529 173529 173529

1kB 332 332 47 6861 6861 6861 65742 65742 65343

4kB 332 332 47 6861 5056 648 65742 65248 62949

16kB 332 47 47 6861 3441 648 65742 64127 62949

Table 3.8. Cache access time[clk] for multiple task activations for an empty cache at task activation

(empty), assuming that all tasks of the system execute between two activations (warm), and assuming

that no task executes between two task activations (lock)

The results show a significant reduction of cache access time to 14% and 9% for

locking cache blocks for linear and statemate, respectively, which are bench-

marks with sequential code. MATLAB/Simulink generated code which is used in

automotive control applications often has this property. For the conservative assump-

tion that all tasks of the system execute between two task activations the cache access

time for 16kB cache is reduced to 14% and 50% respectively. For the loop-task fft

control structures within loops lead to several paths within a loop. For a worst case

analysis we cannot assume that the worst case path during the second activation had

been executed during the first activation too. For tasks consisting of loops with com-

mon code (e.g. without branches) the improvement of analysis precision would be

significant. All memory blocks that are on a common path will be detected by the

analysis. For example, if a loop contains a long sequential section followed by some

if-then-else statement, then all memory blocks from the sequential section will be

detected and forwarded to the next task activation.

3.5.5 Cache-aware schedulability analysis
Finally, we integrate the CRPD analysis into response time analysis, as described

in section 3.2. We compare the response time to the approaches by [92] and [18]. In
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Petter’s approach only the preempted task is considered, however, the actual number

of useful cache blocks is not analyzed but assumed to a constant proportion of the

total memory usage (e.g. 30%). For a fair comparison of the response time results

of Petter’s algorithm and our algorithm, we apply our data flow analysis to compute

the useful cache blocks. The approach by Busquets is based on the number of used

cache blocks of the preempting task. However, in the experiments they assume that

the entire cache is flushed. For a comparison we apply Busquets’ algorithm with

the actual number of used cache blocks which was determined by data flow analy-

sis. A comparison to the more sophisticated scheduling analysis of [67] was out of

scope, because the algorithm needs best case execution times which were not avail-

able. Figure 3.15 shows the total response time of the task system specified in table 3.3
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Figure 3.15. Response time of lowest priority task (τ5) for system setup of table 3.3.

for Petter’s approach, Busquets approach, the simple summation model SimpleSum of

section 3.2.1 and the analysis of indirect preemptions IndirectPr of section 3.2.2. The

periods have been chosen to create different system loads for a 1kB direct mapped in-

struction cache. The approach SimpleSum delivers much shorter response times than

Petters but longer response times than Busquets because many separate CRPD terms

are considered. Compared to Busquets, the response time by the approach that con-

siders indirect preemptions (IndirectPr), is about 30% smaller for 70% system load

and about the same for the other system loads.

In a second experiment, shown in figure 3.15, we consider a warm cache at task ac-

tivation for several cache sizes assuming that all tasks of the system execute between

two task activations with a system load of 70%. The ratio of Warm and Petters ranges

from 0.27 till 0.16 and the ratio of Warm and Busquets from 0.73 till 0.30 for the 1kB

and 16kB cache, respectively. These results show a significant reduction of response

time by 70% compared to the best previous approach for 16kB warm cache.
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The analysis time of the cache-aware schedulability algorithm is evaluated with

a larger set of hypothetical tasks. These tasks are characterized by the period Pi ,

the worst-case execution time Ci, number of useful and used cache blocks, shown in

table 3.9.

Task ID Pi Ci

1,2,3,4 15 0.1

5,6,7,8 100 4

9,10,11,12 1000 20

13,14,15,16 10000 200

17,18,19,20 100000 2000

Table 3.9. Task setup. Period Pi, WCET Ci in 103 clk.

We assume that 20% of the WCET is due to core execution time and 80% is due

to memory accesses. With these assumptions we set the parameters used(τi) = 4
5

Ci
CMP

and use f ul(τi) = 0.3 · used(τi). The total response time is partitioned into response

time tresp and total preemption delay tcrpd . The core execution time of a task includes

the worst-case execution time Ci and the execution time of higher priority tasks.

Table 3.10 shows the response time and analysis time for a set of 5, 10 and 20 tasks

for a 8KB instruction cache with 512 cache blocks and a cache miss penalty (CMP)

of 10 clock cycles (clk).

Approach n = 5 n = 10 n = 20

tresp tcrpd tana tresp tcrpd tana tresp tcrpd tana

Petters 2390 327 0.14 5382 1690 0.50 24495 22269 5.61

Busquets 2377 114 0.12 5172 502 0.28 14268 3008 1.02

SimpleSum 2376 40 0.11 5153 326 0.12 14857 4672 0.94

IndirectPr 2376 38 0.14 5144 244 0.38 14040 2449 5.76

Table 3.10. Response time tresp, preemption delay tcrpd in 103 clk and analysis time tana in seconds

The number of tasks is given by n.

The results show, that the analysis time is very small (all schedulability analyses

finish within seconds), while the precision of preemption delay is improved by an or-

der of magnitude compared to Petters and about 20% compared to Busquets approach

for the set of 20 tasks.

3.6 Conclusion
In this section we have proposed a novel cache-aware response time analysis in-

cluding cache related preemption delay for fixed priority preemptive scheduling for
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direct mapped and associative instruction caches. The time-complexity is O(n ·E j,i ·
log(n ·E j,i), in which in denotes the number of tasks and E j,i the number of task ac-

tivation of preempting task τ j during the response time of task τi. Then, we have

proposed an analysis for multiple preemptions. The preemption history was consid-

ered by determining the worst case preemption scenario with a branch and bound

algorithm and computing the preemption delay for multiple preemptions with a mod-

ified data flow analysis. Finally, we have considered cache blocks from a previous

task activation. We have shown that the number and order of intermediate tasks is

irrelevant to the cache behavior at the second task activation. In several experiments

we have demonstrated the applicability of theses new analysis algorithms which show

a significant improvement over previous conservative analysis approaches.



Chapter 4

SCALABLE PRECISION CACHE ANALYSIS

During the design process of an embedded system, engineers focus on different

levels of abstraction and accuracy of overall system performance. In the design space

exploration phase, rough estimates of the system performance are sufficient, while

more accurate estimates are necessary in the last steps of system integration. One part

of the response time of a task is the cache-related preemption delay which had been

considered in schedulability analysis in chapter 3.

The approach by Lee et al. [66] and the approach by Mitra et al. [89] are two recent

approaches to calculate the cache-related preemption delay which consider both: the

preempted as well as the preempting task. While Lee et al.’s approach is very time-

efficient but overestimates the preemption delay, the approach by Mitra et al. is more

precise but requires a higher time-complexity. because (possibly) exponential number

of cache states are stored at each node. Both approaches have been discussed in

section 2.5.1 and 2.5.2 in detail.

Even in the last phase of system integration, an analysis approach with a high time-

complexity might not be acceptable because of an ever decreasing time-to-market

window. Then, the only alternative would be the less precise Lee et al.’s approach

or approaches that consider only one task, such as [130] [92] [18]. The resulting

overestimated response times could lead to an over-dimensioned and more expensive

system design.

In this section we provide a scalable precision cache analysis where the precision

scales with the time-complexity. The data flow technique uses the number of cache

states that are stored at each node as scaling parameter. Results from experiments
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shows a minimum loss of precision at significant computation time reduction. Parts

of this chapter has been previously published in [116] and [117].

This section is structured as follows. A motivating example is given in section 4.1.

Then, we describe a new cache model in section 4.2. We present the scalable precision

cache analysis first for direct mapped instruction caches in section 4.3, and then for

associative instruction caches in section 4.4. In section 4.5, the overall framework for

real-time analysis is described. Experiments are presented in section 4.6 before we

summarize and conclude in section 4.7.

4.1 Motivational example
We motivate our scalable precision analysis with a comparison of Lee’s and Mitra’s

approach for the RCS calculation.

m0

m1
m2
m3

m4
m5

m6

m8
m9
m10

m6
m7

m11

B1

B2
B3

B6

B4

B5

B7

Cache Mapping

c0 : m0 m4 m8
c1 : m1 m5 m9
c2 : m2 m6 m10
c3 : m3 m7 m11

Figure 4.1. Control flow graph with memory blocks and cache mapping for direct mapped instruction

cache with 4 cache blocks.

A task is represented by its control flow graph (CFG) where nodes represent ba-

sic blocks and edges specify the control flow between basic blocks. An example

control flow graph is shown in figure 4.1. It shows a a loop-statement with two

if-then-else statements. A node Bi lists the memory blocks that correspond

to the assembly instructions of basic block Bi. For example, the memory blocks m1,

m2 and m3 are loaded to the cache during execution of basic block B2. For this ex-

ample, we assume a direct mapped cache with 4 cache sets. The mapping of memory

blocks to cache sets is also given in figure 4.1.



Motivational example 89

4.1.1 Set-based approach by Lee

[{4},{5},{6,10},{11}]

[{0},{1,5,9},{6,10},{11}]

[{0},{1},{2},{3}]

B1

B2 B3

[{0,4},{1,5},{6},{3,11}]

[{0,4},{1,5},{6},{7}]

[{0,4,8},{1,5,9},{6,10},{11}]

B4

B5

B7

[{8},{9},{10},{3,11}]B6

Figure 4.2. RMB calculation by Lee.

[4,5,6,11] [4,5,10,11]

[0,1,6,11] [0,5,6,11] [0,9,10,11]

[0,1,2,3]

B1

B2 B3

[0,1,6,3] [4,5,6,11]

[0,1,6,7] [4,5,6,7]

[0,1,6,11] [4,5,6,11] [8,9,10,11]

B4

B5

B7

[8,9,10,3] [8,9,10,11]B6

Figure 4.3. RCS calculation by Mitra.

The approach by Lee uses a set of memory blocks to store multiple memory blocks

in a cache set. Figure 4.2 shows the RMB sets after the data flow analysis has con-

verged. Table 2.1 summarized the gen sets for the example. To abbreviate the no-

tation we use only the index of memory blocks. The notation of the cache state at

B4 [{0,4},{1,5}{6},{3,11}] represents a cache in which m0 and m4 are available in

cache set c0, memory blocks m1 and m5 are available in cache set c1, m6 is available in

cache set c2, and m3 and m11 are available in c3. In the data flow analysis, the contents

of each cache set is propagated via the edges and is merged for each cache set.

The data flow algorithm is demonstrated on the example flow graph of figure 4.1.

Initially all RCSc
in[B] are empty and RCSc

out [B] are initialized with the genc[B] sets. The

results are summarized in table 2.2 for the first and second iteration. Since the RMB

sets of the third iteration are the same as in the second iteration, they are omitted.

We explain the calculation of RCS of equations 2.14- 2.16 for the second iteration

at basic block B4. In this case the RCSout of B2 and B3 are merged and cache set c2 is

replaced with genc2 [B4]:

RCSin[B4] = [{0},{1},{2},{3}]∪ [{4},{5},{6,10},{11}]
= [{0,4},{1,5},{2,6,10},{3,11}]

RCSout [B4] = [{0,4},{1,5},{6},{3,11}]
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4.1.2 State-based approach by Mitra
As an alternative, the approach by Mitra [89] uses several cache states when more

memory blocks are available in a cache set. The output for the RCS calculation is

shown in table 2.5 and is graphically represented for the second iteration in figure 4.3.

A cache state consists of cache sets, that are either empty (⊥) or contain a single

memory block mi. The data flow analysis is, again, described at basic block B4: The

contents for all cache sets is given in the following:

RCSin[B4] = {[0,1,2,3], [4,5,6,11], [4,5,10,11]}
RCSout [B4] = {[0,1,6,3], [4,5,6,11]}

Memory block m6 is mapped to cache set c2. Note, that the number of cache states re-

duces because the duplicated cache states are removed ([4,5,6,11]). Since gen[B4] =
[{},{},{6},{}], the third cache set, containing m2,m6,m10 is replaced by m6. In this

approach, the cache states are duplicated if some cache sets are not equal resulting in

an increased number of cache states. For example, node B5 and B6 contain two cache

states, but basic block B7 has three cache states. This increase of cache states scales

exponentially with the number of branches in a task. This higher time-complexity

comes with the gain of a higher analysis precision.

4.1.3 Comparison and discussion
To directly compare the approaches we calculate the useful cache blocks USE[B4]

for basic block B4. These results were taken from the tables 2.2, and 2.5. The com-

putation of LCS has not been shown because of space requirements, but the compu-

tation is analogous to the RCS calculation. The set of useful cache blocks calculated

by Lee’s approach USElee[B4] is given by:

RMBout [B4] = [{0,4},{1,5},{6},{3,11}]
LMBout [B4] = [{0,8},{1,5,9}{6,10},{7,11}]
USElee[B4] = RMBout [B4]∩LMBout [B4] = [{0},{1,5},{6},{11}] (4.1)

Assuming that all useful cache blocks are used by the preempting task, the total pre-

emption delay would be 4 cache blocks. The set of useful cache blocks calculated by
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Mitra’s approach USEmitra[B4] is given by:

RCSout [B4] = {[0,1,6,3], [4,5,6,11]}
LCSout [B4] = {[8,9,10,11][0,1,6,7][0,5,6,7]}
USElee[B4] = max(RMBout [B4]∩LMBout [B4])

= [0,1,6,3]∩ [0,1,6,7] = [0,1,6,⊥] (4.2)

Assuming that all useful cache blocks are removed by the preempting task, the to-

tal cache-related preemption delay would be three cache blocks. This is one cache

block less, or 25% in relative terms, than in Lee’s approach. The number of useful

cache blocks are shown in table 4.1 for all basic blocks. In most cases the number of

useful cache blocks computed by state-based approach is smaller than the set-based

approach. The reason for a higher precision is the greater number of cache states that

captures execution path information.

Basic block USEmitra USElee

B1 3 4

B2 2 2

B3 2 3

B4 3 4

B5 2 3

B6 1 1

B7 3 4

Table 4.1. Comparison of useful cache blocks of state-based approach by Mitra USEmitra and of set-

based approach by Lee USElee.

To conclude, Mitra performs the analysis over a richer domain of cache states,

while Lee uses a set-based representation. The analysis precision of Mitra can be

higher than the precision by Lee, while the computation time is higher compared to

Lee. The question arises, whether the analysis precision of the state-based approach

could be accomplished with a fewer number of states? If not the same analysis pre-

cision can be reached, then how does the precision scale with the time-complexity?

How many cache states would be necessary for sufficiently accurate results?

To answer these questions, we propose an scalable precision cache analysis that

limits the number of cache states at each node. Whenever the number of cache states

is larger then a given bound, cache states are merged. This technique bounds the time-

complexity because the number of cache states is bounded while possibly reducing
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the analysis precision. A new cache model which is necessary to provide a sufficiently

general data structure is described in the next section.

4.2 Scalable precision cache model
In the following we define a cache state c and a cache set ci that are used in the

scalable precision cache analysis for direct mapped and associative instruction caches.

Definition. A cache state c is defined as a vector of cache sets ci: c = [c1, · · · ,cS]
where S denotes the total number of cache sets.

Definition. A cache set ci is defined as a vector of sets of memory blocks M:

ci = [M, · · · ,M] The length of the vector is given by the associativity n of the cache.

The cache set ci[1] for a direct mapped cache at execution point p contains the memory

blocks m1, · · · ,mk if these memory blocks may have been mapped to ci at execution

point p: ci[1] = {m1, · · ·mk}, otherwise ci = /0. Analogously the nth element of cache

set ci[n] for associative caches is defined as containing the nth most recently used

cache blocks.

For a direct mapped cache, the vector ci has exactly one element, because there is

only one cache set to which a memory block can be mapped: ci = [M]. For example,

a cache state of a direct mapped cache with four sets is defined as:

c = [[M], [M], [M], [M]] (4.3)

As a second example, a cache state for a 2-way associative cache with four sets is

defined as

c = [[M,M], [M,M], [M,M], [M,M]] (4.4)

The usage of all memory blocks M for each cache set can be refined for complexity

considerations because not every memory block can be mapped to every cache set.

Cache set ci contains only those memory blocks that map to this cache set, e.g. ci =
[Mi,Mi,Mi,Mi] in which Mi denotes the set of memory blocks that map to cache set

ci. This definition allows us to tighten time- and space complexity considerations

because the number of elements of Mi is given by |Mi| = |M|
S (S denotes the total

number of cache sets).

4.3 Preemption delay analysis for direct mapped
caches

Data flow techniques to bound the total preemption delay have been proposed by

the state-based approach by Mitra et al. [89] and the set-based approach by Lee et

al. [66]. While the approach by Lee simplifies the notion of a cache contents by
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using sets which leads to a low time-complexity; the approach by Mitra distinguishes

between different execution paths by using cache states which potentially leads to a

large number of cache states at each basic block. Our approach combines the strengths

of both approaches by limiting the number of cache states at each basic block, thereby

scaling the time-complexity as well as the analysis precision. Whenever the threshold

of the maximum number of cache states is exceeded, cache states are merged reducing

the time-complexity but also reducing the accuracy of cache content prediction. We

start by describing the scalable data flow analysis.

4.3.1 Scalable data flow analysis
Based on the general data flow analysis, we present the new scalable precision

cache analysis.

Computing reaching cache states

We adopt the presentation of the iterative data flow algorithms from Mitra For the

RCS property, we define RCSin[B] and RCSout [B] as the cache state of reaching cache

blocks just before and just after the execution of basic block B. After the fixed point

is reached we set RCS[B] = RCSout [B]. Initially

RCSin[B] = /0 RCSout [B] = gen[B] (4.5)

For each basic block B, the gen[B] is defined as a vector with n elements gen[B] =
[[M0], · · · , [Mn−1]] where Mi = {m} if m is the last memory block in B that maps to

cache block i and /0 if no memory block in B maps to cache block i. The number of

cache blocks which is equal to the number of cache sets for direct mapped caches, is

given by n. Thus, gen[B] represents all the memory blocks that are available in the

cache at the end of the execution of basic block B. The iterative equation 2.14-2.16

are modified as follows:

RCSin[B] = boundZ

⎛
⎝ ⋃

p∈pred(B)

RCSout [p]

⎞
⎠ (4.6)

RCSout [B] = {r�gen[B]|r ∈ RCSin[B]} (4.7)

c� c′ =

{
c′ i f c′ �= /0

c otherwise
(4.8)

For the proposed cache model, c�c′ denotes a binary operation on memory blocks

M and is applied for each cache set. The cache set csi is represented by a vector with a

single element: csi = [M] thus c = csi[1] and c′ = cs′i[1]. If the gen[B] set is not empty,
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then the result is gen[B], otherwise the set of memory blocks is replaced by RCSin[B].
The function boundZ(C) reduces the number of total cache states of C to Z elements,

where C is a set of cache states. Its implementation is described in section 4.3.2

Computing live cache states

Similarly the LCS property is computed by an iterative fixed point algorithm, the

only difference is that the LCSout [B] is defined in terms of LCSin[B] of all successors

of basic block B: Initially,

LCSout [B] = /0 LCSin[B] = gen[B] (4.9)

For each basic block B, gen[B] is defined as gen[B] = [[M0], · · · , [Mn−1]] where Mi =
{m} if m is the first memory block in B that maps to cache block i and /0 if no memory

block in B maps to cache block i. The iterative equations are:

LCSout [B] = boundZ

⎛
⎝ ⋃

s∈succ(B)

LCSin[s]

⎞
⎠ (4.10)

LCSin[B] = {l �gen[B]|l ∈ LCSout [B]} (4.11)

The operation � is defined as in the computation of RCSB.

4.3.2 Bounding number of cache states
The number of cache states is bounded with a function boundZ . The function

boundZ(C) reduces the number of states of set C to Z elements, if |C| > Z otherwise

boundZ(C) = C. The idea is to merge those cache states which are almost equal.

We formalize this idea by using a distance metric over cache states, that characterizes

the number of different elements of two cache states. Then, we repeatedly choose two

elements with minimum distance and merge them until the total number of elements in

C is equal to Z. The objective is to reduce the number of cache states while remaining

a many different states as possible.

The implementation of the boundZ algorithm is shown in figure 4.4. In line 2 two

elements ci, c j ∈C with the minimum distance min{d(ck,cl)|ck,cl ∈C} , are chosen.

In line 3 these elements are removed from C. In line 4 the merged cache state ci ∪ c j

is inserted to C. Therefore, the number of elements of C decreases by one in each

iteration and, thus, the algorithm always terminates.
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// input: set of cache states C
// output: set of cache states C with |C| ≤ Z
void bound(Z, C) {
1 while (|C| > Z) do {
2 choose (ci,c j) with d(ci,c j) minimal, ck ∈C
3 C = C \{ci}\{c j}
4 C = C∪{ci � c j}
5 }
6 }

Figure 4.4. boundZ(C) algorithm.

Distance metric

The function d(a,b) of two cache states a,b is defined as a metric that delivers

the difference of two cache states. Several metrics are possible. We present a simple

metric d1 and a more complex metric d2. The simple metric d1 only counts the number

of different cache sets ignoring how many elements in each set are different. This is

shown in equation 4.12 where S denotes the total number of cache sets.

d1(a,b) =
S

∑
k=1

{
1 i f ak[1] �= bk[1]
0 otherwise

(4.12)

The variable ak[1] denotes the set of memory addresses of cache set ck. The scalable

precision cache model for a direct mapped cache represents each cache set as a vector

with one set (refer to section 4.2), thus we have to use the first element of the vector.

The time-complexity of the calculation of d1 is

O(d1) = O(S ·X) (4.13)

where X denotes the maximum number of elements of the set ak[1]. Equality test of

two sets can be computed in linear time. We use the O notation to express the time-

complexity [26]. A bound for the maximum number of memory blocks X is discussed

in section 4.3.4.

As an alternative, a more sophisticated metric d2 is proposed to count the number

of different memory blocks of each cache set with the symmetric difference. The

definition of d2 is given in equation 4.14.

d2(a,b) =
S

∑
k=1

|(ak[1]∪bk[1])\ (ak[1]∩bk[1])| (4.14)
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The complexity of d2 is given by taking S times the union of two cache sets with

X elements; by taking the intersection S times of two sets with at most X elements

each and by taking the set difference of a set with 2X elements and X elements. We

bound the time-complexity for the intersection of two sets with at most X elements

by O(X2). Efficient implementations with O(X logX) also exist.

O(d2) = O(S · (t∪(X ,X)+ t∩(X ,X)+ tsetdi f f (2X ,X)) = O(S ·X2) (4.15)

Cache state selection

There are several selection strategies to choose candidates of cache states of C. One

strategy, Sel1, is to maintain only one merged set, such that the metric is computed

between pure cache states (singleton sets) and one cache state that might contain sets

with more than one element. This favors the idea to maintain as many pure cache

states as possible. The complexity of the selection function Sel1 is proportional to the

number of cache states O(Sel1) = O(|C|).
A second selection strategy, Sel2, is to choose from all cache states of C. This met-

ric Sel2 requires to compare all pairs of cache states leading to quadratic complexity

O(Sel2) = O(|C|2). The metric Sel2 is expected to yield more accurate results than

Sel1 because more elements are considered. An example for applying these metrics is

given in section 4.3.5.

Merging of cache states

The merge-operation � for two cache states is used in the algorithm boundZ in

figure 4.4 as well as in the iterative data flow algorithm for RCS and LCS calculation

in equation 4.8.

We define the operation � over M (M denotes the set of all memory blocks). It

can also be used for cache states by applying it pointwise to its elements. Two cache

states a and b with S cache sets can be merged by applying the union operator for sets

to each element:

a�b = ((a1[1]∪b1[1]), · · · ,(aS[1]∪aS[1])) (4.16)

The time complexity of the merge-operation � scales with the number of elements in

each cache set X and the number of cache sets S of the cache:

O(a�b) = O(S · (t∪(X ,X)) = O(S ·X2) (4.17)
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Preemption delay calculation

The cache related preemption delay is computed by the intersection of useful cache

blocks of the preempted task τ and the used cache blocks of the preempting task τ ′.
The same methodology of the approach by Mitra et al. can be applied. For a complete

treatment we specify the set of useful cache blocks:

USEτ
scale[Bi] = RCSτ

out [Bi]∩LCBτ
out [Bi] (4.18)

Finally, the preemption delay crpdττ ′
scale is given in equation 4.19 in which Bend de-

notes the last basic block of a task.

crpdττ ′
scale = max{USEτ

scale[Bi]∩RCSτ ′
out [Bend ] | ∀Bi ∈ task τ} (4.19)

4.3.3 Time complexity
The time complexity of the boundZ algorithm in figure 4.4 is determined by the

following steps.

1 complexity for counting number of cache states (line 1)

2 complexity for choosing ci,c j with d(ci,c j) minimal (line 2)

3 complexity for removing and inserting a new cache state to C (line 3,4)

4 complexity for merging two cache states ci and c j (line 4)

5 number of iterations of while-loop (line 1-5)

Complexity for each step

First, we describe the time-complexity for each step within the and a while-loop,

then we calculate the maximum number of while-loop iterations. All values of the

time-complexities are summarized in table 4.2.

Step 1 can be implemented in linear time relative to the number of elements of

C. In the RCS (LCS) algorithm, as shown in equation 4.6 (equation 4.10), |C| is

bounded by the number of predecessor (successor) nodes. The maximum number of

predecessor nodes can be bounded by 2, because if-then-else statements and

loop-constructs like for, while create at most two branches. A switch-case

statement, even though potentially many branches are created, can be represented by

multiple if-then-else statements. Therefore, we can bound |C| < 2Z because

the RCS (LCS) each predecessor (successor) node has at most Z cache states.

Step 2 is determined by the time-complexity of the selection algorithm Seli mul-

tiplied with the time-complexity of the distance metric di plus finding the minimum
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element. The time-complexity for each algorithm is summarized in table 4.2. Then,

the smallest element can be found in O(2Z) or O((2Z)2) depending on the selection

method ( Sel1 or Sel2).

Step Operation Complexity

1 count O(2Z)

2 Sel1 O(2Z)
2 Sel2 O((2Z)2)
2 d1 O(S ·X)
2 d2 O(S ·X2)

3 insert O(2Z)
3 remove O(2Z)

4 union O(S ·X2))

5 loop bound Z
Table 4.2. Complexity of analysis steps for boundZ algorithm for direct mapped instruction cache. Z
denotes the maximum number of cache states at a node, X denotes the maximum number of memory

blocks of a cache set, S denotes the number of cache sets in a cache.

Step 3 is determined by inserting and removing an element from a set. This can

be done in linear time, assuming that there are at most 2Z elements in set C we get:

O(2Z). Step 4 is determined by the complexity for taking the union of each cache set

with X elements: O(S ·X2)).
Finally, we bound the maximum number of while-loop iterations. Since |C| < 2Z

there are at most Z loop iterations, because in each iteration the number of elements

in C decreases by one element and the loop terminates when |C| ≤ Z.

Overall time complexity

In summary, the complexity of the entire boundZ algorithm is given by multiplying

the sum of counting number of elements, choosing the element with the minimum

distance, removing and inserting an element and taking the union of two sets with the

maximum number of loop iterations:

O(boundZ) = Z ·O(2Z)+O(Seli) ·O(di)+O(Seli)+2O(Z)+O(S ·X2) (4.20)

For distance metric d1 and selection metric Sel1 ,the complexity of the boundZ algo-

rithm evaluates to:

O(boundZ(d1,Sel1)) = O(Z2 ·X +Z ·X2)) (4.21)
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For the configuration of the distance and selection metric d2 and Sel2, the complexity

evaluates to:

O(boundZ(d2,Sel2)) = O(Z3 ·X2) (4.22)

To conclude, the complexity scales quadratically with the number of cache states Z
with the configuration d1,Sel1 and cubicly with Z for the configuration d2,Sel2 when

we assume that X is a small constant. We will argue below that X is a small constant

for most embedded applications.

4.3.4 Bounding number of memory blocks
To tightly bound the maximum number of memory blocks X in a cache set si is

difficult. A naive upper bound would be the number of memory blocks that map to

cache set si, which is bounded by the total number of memory blocks M divided by

the number of cache sets S: M
S . But this is obviously an overestimation because a

single access in a basic block to cache set si replaces all memory blocks of si by a

single memory block, namely gen[B]. In irregular time periods, the number of cache

blocks X will be reduced to one. Formally determining the length of this time period

is complex.

We focus now on the question, at which basic blocks the number of memory blocks

will increase. If the cache sets si(p1) and si(p2) in both predecessor nodes p1 and p2

of a basic block B are not empty and if no cache blocks are mapped to si during the

execution of basic block B, then the number of memory blocks increases. The worst

case number of memory blocks in si occurs after the deepest nested if-then-else

structure, with a full tree (each then and else branch exists), and a memory block

is accessed in each branch at the lowest nested level. Assuming that d denotes the

highest level of nested branch statements, then there can be 2d memory blocks in si

at all successor nodes bk (after the deepest nest level) that do not access si, e.g. all bk

with genbk = /0. Then, X is bounded by the in-equation 4.23:

X ≤ min(2d ,
M
S

) (4.23)

For time-complexity considerations, we have to assume that the maximum number

of elements occurs at each node. However, even if the maximum number of 2d mem-

ory blocks is reached in a program, it will only be valid for a small number of nodes:

e.g. the longest path where no accesses occur to cache set si. But, it is very difficult

to formally determine how many basic blocks lie on that path.

As an alternative, we give some intuitive argument: The instruction cache size is

significantly smaller than the number of all memory blocks (factor 10 to 100). There
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will be frequent accesses to the same cache set si which reduces the total number of

elements in a cache set to 1. It is likely that the average number of elements in a cache

set is small.

4.3.5 Example
We apply the scalable precision cache analysis to the example control flow graph

in figure 4.1 and bound the number of cache states to Z = 2. First, we calculate the

sets of RCS and LCS and, then, we compare the number of useful cache blocks to the

results in the approaches by Lee and Mitra.

Calculation of reaching cache states

[{4},{5},{6},{11}]
[{4},{5},{10},{11}]

[{0},{1,5},{6},{11}]   [{0},{9},{10},{11}]

[{0},{1},{2},{3}]

B1

B2 B3

[{0},{1},{6},{3}]   [{4},{5},{6},{11}]

[{0},{1},{6},{7}]
[{4},{5},{6},{7}]

[{0,4},{1,5},{6},{11}] [{8},{9},{10},{11}]

B4

B5

B7

[{8},{9},{10},{3}]
[{8},{9},{10},{11}]

B6

Figure 4.5. RCS calculation for scalable precision cache analysis.

Table 4.3 shows the result of the RCSout [Bi] for each node of the forward iterative

data-flow analysis of equations 4.6-4.8. The result after the fixed point has reached is

shown in figure 4.5.

Two iterations are sufficient until the algorithm converges in this example. Initially

all RCSin[Bi] = /0. The gen[Bi] for the control flow graph in figure 4.1 have been shown

in figure 2.1.

The RCS of the second iteration are shown graphically in figure 4.5. We apply the

scalable data flow analysis to this example starting at B1 in the first iteration. Because
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Bi RCSout(Bi) 1st iter. RCSout(Bi) 2nd iter.

B1 [{0, /0, /0, /0] [{0},{1,5},{6},{11}]
[{0},{9},{10},{11}]

B2 [{0},{1},{2},{3}] [{0},{1},{2},{3}]
B3 [{4},{5}, /0, /0] [{4},{5},{6},{11}]

[{4},{5},{10},{11}]
B4 [{0},{1},{6},{3}] [{0},{1},{6},{3}]

[{4},{5},{6}, /0] [{4},{5},{6},{11}]
B5 [{0},{1},{6},{7}] [{0},{1},{6},{7}]

[{4},{5},{6},{7}] [{4},{5},{6},{7}]
B6 [{8},{9},{10},{3}] [{8},{9},{10},{3}]

[{8},{9},{10},{11}]
B7 [{8},{9},{10},{11}] [{0,4},{1,5},{6},{11}]

[{0,4},{1,5},{6},{11}] [{8},{9},{10},{11}]
Table 4.3. Reaching cache states RCSout [Bi}] for scalable precision cache analysis with Z = 2.

the in set is empty, RCSout [B1] = gen[B1]. For basic block B2, the incoming edge

from B0 is evaluated and equation 4.7 is applied. The result is shown in the second

column in line 2 in table 4.3. Analogously, all other RCSout [Bi] are computed for

B3,B4,B5,B6. The calculation at B7 is different because via the two incoming edges

from B5 and B6 there are 3 cache states but only Z = 2 states are allowed and, thus,

the bound2 algorithm is applied:

RCSin[B7] = bound2([c1 = {0},{1},{6},{7}],c2 = [{4},{5},{6},{7}],
c3 = [{8},{9},{10},{3}])

RCSin[B7] = {[{0,4},{1,5},{6},{7}][{8},{9},{10},{3}]}
We use Sel2 and d1 as selection method and distance metric throughout this example:

d1(c1,c2) = 2 d1(c1,c3) = 4, d1(c2,c3) = 4

Therefore, c1 and c2 are merged because their distance is the smallest (2). Note that

the cache set RCSin[B7][0] and RCSin[B7][1] contain two memory blocks. Since the

gen[B7] contains m11 in the last cache set, only the memory blocks in the last cache

set are replaced. The RCSout [B7] is shown in table 4.3 in the last line of the second

column (in bold face).

The calculation in the second iteration of RCSout [Bi] is straight forward for B1,B2,B3.

At B4 cache states have to be merged, because there are three states available via in-
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coming edges from B2 and B3:

RCSin[B4] = bound2[c1 = [{0},{1},{2},{3}]c2 = [{4},{5},{6},{11}],
c3 = [{4},{5},{10},{11}]

RCSin[B4] = {[{0},{1},{2},{3}], [{4},{5},{6,10},{11}]} (4.24)

Again we use Sel2 and d1: d1(c1,c2) = 4, d1(c1,c3) = 4 and d1(c2,c3) = 1. The cache

states c2 and c3 are merged because they result in minimum distance of 1. The result is

shown in equation 4.24. The RCSout [B4] is shown in table 4.3 in the third column. We

point out the replacement by gen[B4] = {6}-set in bold face. The analysis continues

with B5 and B6 and, finally, the last merge-operation occurs at B7. The four incoming

states from B5 and B6 are evaluated using Sel2 and d1 metric. The result is shown in

the last line in the second column in table 4.3.

Calculation of live cache states

Bi LCSin[Bi] LCSout [Bi]

B1 [{0},{1},{2},{3}] [{0,8},{1},{2},{3}]
[{0},{5},{6},{7,11}] [{4},{5},{6},{7,11}]

B2 [{0},{1},{2},{3}] [{0},{1,5},{6},{7}]
[{8},{1},{2},{3}] [{8},{9},{6},{11}]

B3 [{4},{5},{6},{7}] [{0},{1,5},{6},{7}]
[{4},{5},{6},{11}] [{8},{9},{6},{11}]

B4 [{0},{1,5},{6},{7}] [{0},{1,5},{6},{7}]
[{8},{9},{6},{11}] [{8},{9},{10},{11}]

B5 [{0},{1},{6},{7}] [{0},{1},{2},{11}]
[{0},{5},{6},{7}] [{0},{5},{6},{11}]

B6 [{8},{9},{10},{11}] [{0},{1},{2},{11}]
[{0},{5},{6},{11}]

B7 [{0},{1},{2},{11}] [{0},{1},{2},{3}]
[{0},{5},{6},{11}] [{0},{5},{6},{7,11}]

Table 4.4. Live cache states LCSin[Bi] and LCSout [Bi] for scalable data flow analysis with Z = 2.

The results for the LCSin and LCSout of the scalable data flow algorithm are shown

in table 4.4. The LCS calculation uses a backward data flow analysis and has been

given in the equations 4.10 and 4.11.

Merge operations were necessary at B1 in the first iteration and at B4 and B1 in the

second iteration. Note the difference between LCSout [Bi] and LCSin[Bi]. The former
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represents the live cache states before the memory blocks of Bi are loaded to the cache

and the latter represents the live cache states after the memory blocks of Bi are loaded

to the cache.

Calculation of useful cache blocks

Bi USEscale USEmitra USElee

B1 3 3 4

B2 2 2 2

B3 2 2 3

B4 3 3 4

B5 2 2 3

B6 1 1 1

B7 4 3 4

Table 4.5. Useful cache blocks USEscalefor scalable analysis with Z = 2. Comparison with state-

based approach USEmitra and set-based approach USElee from table 4.1.

The useful cache blocks USEscale[Bi] are computed by the intersection of reaching

cache states RCSout [Bi] and live cache states LCSout [Bi]. The total number of useful

cache blocks according to equation 4.18 are summarized and compared to the results

of Lee and Mitra’s approach in table 4.5

The result is is in most cases equal to the tighter result of USEmitra and in one case

equal to the result of USElee (at basic block B7).

4.4 Preemption delay analysis for associative caches
The general description in section 4.3 considered only direct mapped caches. This

section extends the proposed analysis to set-associative caches. In a n-way associative

cache a memory block can be placed into n cache blocks within its designated cache

set. This set-associative cache organization requires a policy called the replacement

policy that decides which block to replace when a new memory block is mapped to

the cache set when all cache blocks are occupied. The least recently used (LRU)

policy, which replaces the block that has not been referenced for the longest time, is

a commonly used strategy.

Associative caches are common place in embedded architectures but have mainly

be ignored in preemption delay analysis. In [89] [92] [18] target direct mapped in-

struction caches. Only in [66] associative caches have been considered. However,

their description contains a flaw, which we point out in section 4.4.5. In the follow-
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ing, we present the analysis for associative instruction caches with LRU replacement

strategy based on the new scalable precision cache model.

4.4.1 Scalable data flow analysis
According to our definition in section 4.3, the RCSB contains all possible cache

blocks at basic block B. In the case of direct-mapped caches, a cache set can hold only

one memory block. This model has to be extended. In the following we formulate the

computation of reaching cache states RCS. The extension of LCS is analogous.

We define RCSc
in[B] and RCSc

out [B] as the sets of all possible cache states of cache

set c at the beginning and the end of basic block B, respectively. The set genc[B]
represents a vector of n sets of memory blocks:

genc[B] = (genc
1[B],genc

2[B], · · · ,genc
n[B])

The genc[B] set contains the last memory blocks that are accessed during the exe-

cution of basic block B. More formally, each genc
i [B] is either empty or genc

i [B] = {m}
if m is the ith most recently accessed memory block in B. The set gens

n[B] contains

the most recently accessed cache block and gens
1[B] the least recently one. With this

definition of genc[B], the sets RCSc
in[B] and RCSc

out [B], are related as follows:

RCSin[B] = boundZ(
⋃

p∈pred(B)

RCSout [p])) (4.25)

RCSc
out [B] =

⋃
r∈RCSc

in[B]

LRUgenc
1
(· · ·((LRUgenn(r))) ∀c.1 ≤ c ≤ S (4.26)

The function boundZ(C) is the same as in figure 4.4. The replacement algorithm

for the scalable precision cache model LRUm(c) for an n-way associative cache is

presented in section 4.4.3. Note that the RCSin[B] is defined for each cache state

and RCSc
out [B] is defined for each cache set c. However, this is only a matter of

presentation.

The LRUm(r) function models the cache behavior for loading a single memory

block m to the cache state r. In a n-way associative cache, there can be n elements

mapped to the same cache set during the execution of basic block B. The function

LRUm(r) is applied as often as there are non zero elements in genc
i -set.

4.4.2 Bound algorithm for associative caches
In the following we extend the distance metric, selection algorithm and merge op-

eration for associative caches based on the presentation in section 4.3.2 for the boundZ

algorithm.
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Distance metric

The function d(a,b) of two cache states a,b is defined as a metric that delivers the

difference of two cache states. The metrics d1 and d2 are applied to n-way associative

caches as follows:

d1(a,b) =
S

∑
s=1

{
1 i f∃i. as[i] �= bs[i] ∀ ≤ i ≤ m
0 otherwise

(4.27)

The complexity of metric d1 is

O(d1) = O(S ·m ·X) (4.28)

where X denotes the maximum number of elements of the set as[i]. Equality test of

two sets can be computed in linear time [26]. A bound for the maximum number of

memory blocks X is discussed in section 4.3.4. The metric d2 counts the number of

different memory blocks of each cache set with the symmetric difference:

d2(a,b) =
S

∑
s=1

n

∑
nn=1

|(as[nn]∪bs[nn])\ (as[nn]∩bs[nn])| (4.29)

The complexity of d2 is given by taking S · n times the following operations: 1) the

union of two sets with totally 2X elements; 2) the intersection of two sets with at most

2X elements; and 3) the set difference of a set with 2X elements and X elements.

O(d2) = O(S ·m · (t∪(X ,X)+ t∩(X ,X)+ tsetdi f f (2X ,X)) = O(S ·m ·X2)) (4.30)

Cache state selection

The selection methods Sel1 and Sel2 are independent of the associativity. There-

fore, the complexity is the same as in section 4.3.2: O(Sel1) = O(|C|) and O(Sel1) =
O(|C|2).

Merging of cache states

The merge-operation � has already been defined for direct mapped caches in sec-

tion 4.3.2. For an n-way associative cache the � operation is applied pointwise to

every vector element ai[1], · · · ,ai[n] of a cache set ai. The time complexity is given

by:

O(a�b) = O(S ·n · (t∪(X ,X)) = O(S ·n ·X2)) (4.31)
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4.4.3 LRU algorithm for scalable precision cache
model

The replacement algorithm LRUgenc
i
(r) for cache set c of cache state r is defined in

the following equation 4.32:

LRUgenc
i
(r) =

{
r i f genc

i = /0

LRUm(r) i f genc
i = {m} (4.32)

The function LRUm(r) models the LRU replacement strategy for the scalable precision

cache model. The pseudo-code is shown in figure 4.6.

Input: cache set c, memory block m Output: cache set c’

0 function LRUm(c)
1 Initialization ∀i. c′[i] = /0

2 if(m �∈ c)

3 c′[n] = {m}
4 c′[ j] = c[ j +1] ∀ j. n > j ≥ 1

5 else

6 c′[n] = {m}
7 ∀i.m ∈ c[i] do

8 c′[ j] = c′[ j]∪ c[ j +1] ∀ j. n > j ≥ i
9 c′[ j] = c′[ j]∪ c[ j] ∀ j. i > j ≥ 1

10 if ( ∃m′ �= m. m′ ∈ c[i])
11 c′[ j] = c′[ j]∪ c[ j +1] ∀ j. n > j ≥ 1

12 remove memory block m from all c′[ j]. ∀n > j ≥ 1

Figure 4.6. LRU algorithm for scalable cache model.

Lemma 4.1. The algorithm in figure 4.6 computes the LRUm(c) replacement strat-

egy, when memory block m is mapped to cache set c. Provided that c is a vector

of sets: c = [c1,c2, · · · ,cn], ci ⊂ M, where M is the set of all memory blocks and c1

denotes the least recently used and cn the most recently used cache block of cache set

c.

Example

We apply the algorithm to the control flow graph of figure 4.1 with an 4-way as-

sociative instruction cache with 2 cache sets. For demonstration we compute the

reaching cache states (RCS) for each node. Figure 4.7 shows the same control flow

graph with the possible cache states. A cache state consists of two cache sets c0
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and c1 with each four positions. For example, in basic block B3 memory block m0

and m4 are mapped to cache set c0 and memory block m5 to cache set c1. To save

space, mi is abbreviated as i and an empty set is denoted with −. In order to demon-

strate the cache state reduction, we restrict the number of cache states to Z = 2. In

B4 two cache states are reached and only the memory block m6 is mapped to c0

(genco [B4] = [{},{},{},{m6}). Since m6 �∈ c0 in both cache states the condition in

line 2 is true and the lines 3-4 of LRU algorithm in figure 4.6 are executed. All mem-

ory blocks move one position to the left and m6 is placed at the most recently used

position. Cache set c1 is not modified. These two cache states are propagated to B5

and B6, where m6,m7 and m8,m9,m10 are accessed respectively.

B1
B2 B3

B6B5

B7

B4

c0 : - - 0 4
c1 : - - - 5

c0 : - - 0 2
c1 : - - 1 3

c0 : - 0 2 6
c1 : - - 1 3

c0 : - 0 4 6
c1 : - - - 5

c0 : - 0 2 6
c1 : - 1 3 7

c0 : - 0 4 6
c1 : - - 5 7

c0 : 2 6 8 10
c1 : - 1 3 9

c0 : 4 6 8 10
c1 : - - 5 9

c0 : - - - 0
c1 : - - - -

cs1

cs2

cs3

cs4

c0 : 2

c1 : 1    3         11

6
0

8
2

10
6

9
7

c0 : 4

c1 : - 5        11

6
0

8
4

10
6

9
7

315 cscscs 
	 426 cscscs 
	

Cache Mapping

c0: m0 m2 m4 m6 m8 m10
c1: m1 m3 m5 m7 m9 m11

Figure 4.7. Reaching Cache States for 4-way associative instruction cache with two sets.

When the algorithm computes the RCSin[B7], according to equation 4.25, four

cache states cs1,cs2 cs3,cs4 are available on incoming edges, but only two are al-

lowed. Therefore, two of the cache states with the minimum distance, according to

equation 4.14, will be merged. We assume for this example the selection method

Sel2, which compares all cache states, and distance metric d2, which computes the



108 Scalable precision cache analysis

symmetric difference.

d2(cs1,cs2) = 5 d2(cs1,cs3) = 5 d2(cs2,cs3) = 10

d2(cs1,cs4) = 10 d2(cs2,cs4) = 5 d2(cs3,cs4) = 5

The cache states cs1 ∪ cs3 and cs2 ∪ cs4 are merged:

cs′′5 = cs1 ∪ cs3 =

{
c0 [{2},{0,6},{2,8},{6,10}]
c1 [ /0,{1},{3},{7,9}]

cs′′6 = cs2 ∪ cs4 =

{
c0 [{4},{0,6},{4,8},{6,10}]
c1 [ /0, /0,{5},{7,9}]

In basic block B7 memory block m11 is mapped to c1. Note that m11 �∈ c1, such

that all elements are only shifted one position to the left by the LRU operator cs′5 =
LRUm11

(cs′′5) and cs′6 = LRUm11
(cs′′6). These cache states are shown in basic block B7.

To save space several elements within a set at a position are aligned vertically, such

as m6 and m10 in cache set c0.

In the second iteration of the data flow analysis, we start again with basic block B1.

Now m0 ∈ c0 in both cache states c′′5 and c′′6. Therefore, the loop in line 7 is executed

once, the contents of cache set c0[2] to c0[4] are moved one position to the left and m0

is placed in the c0[4] slot. This results to the new cache states cs5 and cs6:

cs5 = LRUm0
(cs′5) =

{
c0 [{2,6},{2,8},{6,10},{0}]
c1 [{1},{3},{7,9},{11}]

cs6 = LRUm0
(cs′6) =

{
c0 [{4,6},{4,8},{6,10}{0}]
c1 [ /0, /0,5,{7,9}]

As the last example of the algorithm, we show the RCS computation for the cache

state cs5 at basic block B2 with genc0 [B2] = [ /0, /0, /0,{m2}] and genc1 [B2] = [ /0, /0,{m1},{m3}].
Now the LRU algorithm is applied three times:

RCSout [B2] = LRUm3
(LRUm2

(LRUm1
(cs5)))
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We show the computation in three steps and denote each intermediate cache state as

cs′, cs′′ and cs′′′ respectively:

cs′ = LRUm1
(cs5) =

{
c0 [{2,6},{2,8},{6,10},{0}]
c1 [{3},{7,9},{11},{1}] (4.33)

cs′′ = LRUm2
(cs′) =

{
c0 [{6,8},{6,10},{0},{2}]
c1 [{3},{7,9},{11},{1}] (4.34)

cs′′′ = LRUm3
(cs′′) =

{
c0 [{6,8},{6,10},{0},{2}]
c1 [{7,9},{11},{1},{3}] (4.35)

The access of LRUm1
(cs5) shows a reordering in cache set c1 where m1 is placed in

the last recently used position c1[3]. The result is shown in equation 4.33.

The access of LRUm2
(cs′) is shown in equation 4.34, which is somewhat more

difficult to explain because m2 ∈ c1[1] and m2 ∈ c1[2]. We explain the algorithm by

expanding all possible cache states that are represented by cs′, then we apply the

LRU algorithm and finally we compare the result with the LRU algorithm for the

scalable precision model. We leave out all in-valid states for cache set c0: [2,2,6,0],
[2,2,10,0], [6,2,6,0] and [6,8,6,0] because a memory block mi occurs several times.

If we apply the standard LRU algorithm to the remaining cache states, we get:

LRUm2
[2,8,6,0] = [8,6,0,2] LRUm2

[2,8,10,0] = [8,10,0,2]

LRUm2
[6,8,10,0] = [8,10,0,2] LRUm2

[6,2,10,0] = [6,10,0,2]

The union of the above resulting cache states is then the conservative cache state cs′′

that is computed by the algorithm in figure 4.6 (lines 6-12).

Finally, LRUm3
(cs′′) is applied in equation 4.35, which is a reordering for cache set

c1.

Note, that the set-based cache model may lead to an overestimation, because the

model includes cache states that are invalid. However, the representation is conser-

vative, such that the actual cache related preemption delay is always smaller than the

estimated one.

Proof of Lemma 4.1

Proof of Lemma 4.1. The proof is presented over the structure of the cache set

elements. We start with the restriction that all ci contain only one element (|ci| ≤ 1)

and extend this model step-wise to ci ⊂ M.

Part I. We assume ∀ci. |ci| ≤ 1.

This case represents an ordinary cache state, with n sets for a n way set-associative
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cache. We distinguish if there exists ci with m ∈ ci or not.

(a) ∀ci. m �∈ ci. The cache block in c1 will be replaced and the elements will be

reordered, such that c′ = [c2, · · · ,cn,{m}]. This is implemented in lines 2-4 in fig-

ure 4.6.

(b) ∃ci. m ∈ ci. From assumption |ci| ≤ 1 follows that ci is unique and the loop in

line 7 will be executed exactly once. The memory block m ∈ ci is placed at the most

recently used position cn and all ci+1 · · ·cn elements shifted one position to the left

(lines 6-8): (c1, · · · ,ci−1,ci,ci+1, · · · ,cn)m = (c1, · · · ,ci−1,ci+1, · · · ,cn,{m}).
Note, that the contents of the cache does not change. All elements left from ci do

not change their position (line 9). The condition in line 10 will always evaluate to

false, because |ci| ≤ 1. Finally, the memory block m is removed from the positions 1

to n−1 of the cache set vector (line 12). Thus, we have shown that if all |ci| ≤ 1 the

LRUm(c) is correct.

Part II. Assumption ∀ci. m �∈ ci : |ci| ≤ 1.

All ci that do not contain m are singleton sets, only those ci with m ∈ ci may contain

more elements.

(a) m �∈ ci∀ci this has been shown in (I.)

(b) there exists a unique ci. m ∈ ci. If |ci| ≤ 1 , refer to I, otherwise the case |ci| =
d ≥ 1 is detected in lines 10-11 in the algorithm. We have to distinguish two cases:

(b1) (c1, · · · ,ci−1,{m},ci+1, · · · ,cn)

(b2) (c1, · · · ,ci−1,{mk},ci+1, · · · ,cn),∀mk ∈ ci.mk �= m

For (b1) we have shown already in I. that LRUm(c) is correct. In the case of (b2) there

are d −1 possible cache states, where m �∈ c. This means that the least recently used

memory block c1 is replaced, the contents of ci, i = 2, · · · ,n move one position to the

left, and cn = {m}.

(c) There exist several ci.m ∈ ci. Note that in the set representation there may be

several sets that contain m, but there cannot be an original cache state with m ∈ ci,m ∈
c j, i �= j. Thus we can apply lines 8-11 to each cache set ci that contains m separately

and take the union of the resulting cache set c′. Let us apply the algorithm to some

ci, and there exist c j1 , · · · ,c jk other sets that contain m. We can formally construct

the set of all possible cache states that are described by this cache set and apply the

LRU strategy to each cache state, as in part I, and take the union of the resulting cache

states. This is implemented in lines 8-9.

Part III. Induction step: All ci may have more then one element.

In Part II we have shown that the LRUm(c) algorithm is correct when all ci that do

not contain m are singleton sets. If a ci contains more than one element, we construct
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every possible cache state and apply Part II for each state, then the union is taken (line

10-11).

This completes the proof. �

4.4.4 Time complexity
The time complexity for n-way associative caches is similar to the complexity dis-

cussion in section 4.3.3.

The complexity of the boundZ algorithm as shown in figure 4.4 depends on the

same steps. The complexity of each step is summarized in table 4.6.

Step Operation complexity

1 count O(2Z)

2 Sel1 O(2Z)
2 Sel2 O((2Z)2)
2 d1 O(S ·n ·X)
2 d2 O(S ·n ·X2)

3 insert O(Z)
3 remove O(Z)

4 union O(S ·n ·X2))

5 loop bound Z
Table 4.6. Time-complexity of analysis steps for boundZ algorithm for n-way associative instruction

caches. Z denotes the maximum number of cache states at a node, X denotes the maximum number of

memory blocks of a cache set, S denotes the number of cache sets in a cache

The time complexity for the LRU algorithm is calculated easily examining each

line of the algorithm in figure 4.6:

O(LRUm(r)) = max(1+X ·n, 1+2 · t∪(X ,X) ·n+X +n · trem(X))

O(LRUm(r)) = 2O(X2) ·n+O(X)(n+1)+1 = (C2 ·n) (4.36)

The computation time for a union operator is denoted by t∪(X ,X) and for the remove-

operator by trem(X). To conclude, the LRU algorithm scales quadratically with the

number of cache states C times the degree of associativity.

In summary, the complexity of the entire boundZ algorithm is given by

O(boundZ) = Z · (O(Seli) ·O(di)+O(Seli)+2O(2Z)+O(cs ·m ·X2)) (4.37)
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For the distance and selection metric d1 Sel1 the complexity of the boundZ algorithm

evaluates to:

O(boundZ) = O(Z2 ·X +Z ·X2)) (4.38)

and the complexity for the distance and selection metrics d2 and Sel2 evaluates to:

O(boundZ) = O(Z3 ·X2) (4.39)

To conclude, the complexity scales quadratically with the number of cache states with

the configuration d1,Sel1 and cubicly with d2,Sel2 when we assume that X is a small

constant. This is the same time-complexity as for direct mapped caches.

4.4.5 Lee’s approach contains a flaw
The approach by Lee et al. [66] extends the data flow analysis to set-associative

caches. The proposed solution is principally correct, but contains a flaw which we

would like to point out. If a basic block accesses a memory block that already ex-

ists in the RMBin set then this cache block can occur multiple times in the proposed

algorithm by Lee [66] (section 7.1). The correct solution would be to reorder the

memory blocks. In [87] the program line reordering for LRU has been considered for

cache analysis for instruction caches. In the following we briefly review the algorithm

by [66] and give an example.

The reaching cache states are denoted by RMBc
in[B] and RMBc

out [B] for the incom-

ing and outgoing reaching cache blocks of cache set c at basic block B. A state of

a cache set for an n-way set-associative cache is defined as a vector (mi1 , · · · ,min),
where mi1 is the least recently referenced block and min the most recently referenced

block. The genc[B] contains the state of cache set c generated in basic block B. It is

either empty when none of the memory blocks mapped to cache set c are referenced in

basic block B or a singleton set whose only element is a vector: (genc
1[B], · · · ,genc

n[B]).
In the vector genc

n[B] is the memory block whose reference in basic block B is the last

reference to the cache set c in B.

We give the an example for a 4-way associative cache with the following assump-

tions about RMBc
in[B] and genc[B] at some basic block B in cache set c:

RMBc
in[B] = (m1,m2,m3,m4) genc[B] = (null,null,m3,m5)

Note, that m3 is reached via some incoming path and is referenced in basic block B.

The RMBc
out [B] is defined in Lee’s algorithm depending on the contents of the gen-set.

We give the data flow equations for RMBin and RMBout only for the case that applies
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to this example:

RMBc
in[B] =

⋃
p∈pred(B)

RMBout [p]

RMBout [B] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⋃
rmb∈RMBc

in[B]{(rmbn−1,rmbn,genc
n1

[B],genc
n[B])}

if genc
1[B], · · ·genc

n−2[B] = /0

and genc
n−1[B],genc

n[B] �= emptyset
· · · otherwise

(4.40)

For the above example, the RMBc
out [B] is given by

RMBc
out [B] = (rmb3,rmb4,genc

3[B],genc
4[B]) = (m3,m4,m3,m5)

however, when the memory blocks m3 → m5 are loaded to cache set c, the LRU

replacement algorithm will result to:

(m2,m4,m3,m5)

The mistake occurs for memory block m3 which is reordered by the LRU algorithm.

In the algorithm by Lee the gen-sets and RMBin sets are not examined for equal el-

ements. Therefore, m3 occurs in RMBc
out [B] multiple times and m2 is missing which

might result in an underestimation of the CRPD.

4.5 Cache analysis framework for real-time
verification

The verification of real-time behavior involves the computation of worst case re-

sponse times. Typically, several embedded applications run on an embedded micro-

controller with an real-time operating system, such as ERCOSEK [31] for automotive

applications. The response time analysis has to be extended to consider the preemp-

tion delays due to cache reloads.

4.5.1 Cache-aware response time analysis
Preemption delay analysis alone does not solve the cache behavior problem. A

cache-aware response time analysis has to calculate how often a task is activated and

how often a task is preempted for a given set of tasks.

Several cache-aware response time approaches have been proposed[19] [92] [67].

The approach by [19] considers only the preempting task while the approach by [92]
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consider only the preempted task. However, the advantage is that the time-complexity

is about the same as the time complexity of for solving the fixed point of the underly-

ing iterative response time equations. In the approach by [67] the preempted as well

as the preempting task are considered, but the cache-aware response time analysis

scales exponentially with the number of tasks in the system.

In previous work we have developed a cache-aware response time analysis [113]

for fixed priority preemptive scheduling. It computes the total number of preemptions

in a given schedule in a polynomial time-complexity. Therefore, it suits a framework

with an overall low time-complexity. The preemption delay is computed by a state-

based data flow analysis [111]. It has been turned out that the complexity of the

state-based approach was too large for greater sets of software tasks.

Therefore, we replace the time-consuming preemption delay analysis of [111] by

the scalable precision cache analysis as presented in this section. In this section we

apply the cache-aware response time analysis in several experiments to the results for

the scalable precision cache analysis.

4.5.2 Pseudo-LRU replacement strategy

Sometimes 4-way associative caches and above, processors implement pseudo

LRU (section 2.1.3). As long as this replacement strategy is deterministic, the re-

placement algorithm in figure 4.6 can be adapted accordingly.

4.5.3 Guidance to choose scaling parameter

We give more guidance about how to choose the scaling parameter in the following.

The maximum number of memory blocks within a cache set occurs in the deepest

nested branch statement as described in section 4.3.4. This value 2d , where d is the

nest level, can be used as a reference. However, in reality, a much smaller number

will suffice, because the nested branch is not a full tree and cache references do not

occur to the same cache set in every leaf node of the branch tree.

4.6 Experiments

This section presents the experimental results for the described analysis method for

five benchmarks, taken from [66], [89] and [23] and five preemption scenarios (PrS).

Table 4.7 summarizes the benchmark characteristics: main memory usage in Bytes

[B], the number of C source code lines and the WCET in 103 clock cycles [clk] for a

4-way set associative 1KB instruction cache. The worst case execution time of each
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Id Mem C-Ln WCET Description

τ1 376 83 1.401 square root calculation

τ2 144 34 39.23 exchangesort

τ3 888 180 15.34 fast Fourier transform

τ4 296 275 1.617 packet receiver

τ5 1023 286 4051 whetstone

Table 4.7. Benchmark Description with Memory Usage[B], c-lines and WCET[103clk].

task was determined with SymTA/P1 using the cycle accurate ARM945 processor

simulator2 for the different instruction cache architectures with a 20 cycle cache miss

penalty. Each instruction is four byte long and cache block size is fixed to eight byte,

such that two instructions fit in a cache block. Since these benchmarks are rather

small compared to a real application, the cache size has to be adjusted accordingly.

However, if both the application size and cache size are considered using a cache

footprint index, our results can be scaled to larger applications.

The cache footprint index determines how many tasks use on average a single cache

block. Table 4.8 shows this index for the evaluated preemption scenarios for a direct

mapped cache and varying cache sizes.

PrS Preempting, preempted task 256B 512B 1024B 2048B

A τ1 τ2 1.53 0.95 0.47 0.24

B τ1 τ3 2.0 1.68 1.31 0.83

C τ1 τ5 2.0 1.68 1.34 1.17

D τ4 τ3 2.0 2.0 1.97 1.23

E τ4 τ5 2.0 2.0 2.0 1.57

Table 4.8. Cache footprint index for a direct mapped cache for different preemption scenarios (PrS)

and cache sizes.

For example in the PrS B, both tasks τ1 and τ2 fully utilize the 256B cache, hence

the footprint index is 2. The footprint of 1.17 for PrS C and 2KB cache shows that on

average a cache block is used by one task only. For PrS A and 2KB cache the footprint

index of 0.24 represents a small application and a large instruction cache. The cache

footprint index can be used to generalize the results for real-size applications, since

1www.ida.ing.tu-bs.de/research/projects/symta
2RealView development suite. www.arm.com
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the cache behavior depends on its utilization, and not just on cache size or application

size alone.

4.6.1 Preemption delay analysis
We have implemented the analysis approach described in the preceding sections for

direct mapped and associative instruction caches. We assume the distance d2 metric

of equation 4.14 and the strategy Sel2, that compares all possible cache states.

The following diagrams show he analysis precision and analysis time compared to

previously published approaches by other researchers. First, we compare the bound

of the preemption delay considering only the preempted, only the preempting and

both (preempting as well as preempted) task. Then, we evaluate the influence of the

scaling parameter (the number of cache states which are at most allowed at each node

during data flow analysis) on analysis precision. We describe the effects for changing

the cache size, associativity and different benchmarks. Third, we show the impact

of the scaling parameter on analysis time and memory consumption. Finally, we

report the measured number of memory blocks of each set, as defined in equation 4.23

which influences the timing complexity of the intersection and merge operation (see

section 4.3.4).
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The following results show the estimated preemption delay if a task preempts an-

other task once. Figure 4.8 shows the number of used cache blocks of the preempting
task, the number of useful cache blocks of the preempted task and the cache related

preemption delay (CRPD), as computed in equation 4.19 for the preemption scenarios

in table 4.8. See also figure 2.2 and section 4.3.2.0 for a graphical overview and the

formulas.

The curves for used and useful cache blocks are very similar and its shape can be

structured in several phases. In the first phase, the cache size is the limiting factor. The

number of cache blocks (used, useful) increases with the size of the cache (number of

cache blocks is not sufficient). In the second phase, all useful cache blocks fit in the

cache and the curves remaines on a constant level.

The crpd-curve can be structured in three phases. First, the curve increases with

the cache size, as for the used- and use f ul-curve, since the cache size is the limiting

factor until the curve reaches a maximum. In the second phase, the crpd values are

decreasing because the use f ul and used cache blocks do not fully overlap (smaller

cache foot print index). In the third phase, the crpd value is zero. This is because, the

used and use f ul cache blocks of the preempting and preempted task respectively, are

mapped to different cache sets and do not overlap. Note also, to reach phase three for

a given preemption scenario it is not necessary that both tasks entirely fit in the cache.

These results clearly show, that just considering the used or just use f ul alone will

lead to a pessimistic bound of the preemption delay.

As the next observation we note that the crpd value is bounded by the minimum

value of the used- and use f ul-curve. Its important to note, that the use f ul-curve is

not below the used-curve because they are computed for different tasks (for example

PrS B and C). Of course, use f ul(τi) ≤ used(τi) for the same task τi.

Figure 4.9 shows the influence of the cache associativity. The used curve might

increase with higher associativity while the use f ul-curve remains at the same level.

Figure 4.10 shows the bound of the preemption delay for a single preemption in

number of cache blocks for increasing cache sizes. Observe the three phases of the

crpd curve. In phase one the value increases with the cache size; e.g. for 256B most

preemption scenarios have the same value (total number of cache blocks of the cache.

In the second phase the values decrease. In phase three, the preemption delay crpd is

zero.

The next figures 4.11, 4.12, and 4.13 show the impact of the scaling parameter.

Figure 4.11 shows the impact when z = 1,10,20,∞ for different cache sizes for a

2-way associative cache.
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For z = 1 the results represent one cache state at each basic block as in approach

by Lee [67]. The merge operation will operate exclusively on a single set.

For z = ∞, the results represent all possible cache states. The merge operation will

never be applied. Thus this modeling is equivalent to the approach by Mitra et al
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Figure 4.11. Impact of number of cache states.

[89]. In all the other cases, the parameter z corresponds to the bounded number cache

states.

Figure 4.11 shows in most cases no improvement of the crpd estimation. The

increase of CRPD in the scenario D for 256B cache at z = 10 is due to the ambiguity

of the merging operation: If for different cache states, the metric will yield the same

value and the CRPD of the merged states are different, then it can occur that a higher

number of cache states can result in a higher CRPD bound. This is exmpained by

an example for a direct mapped cache with two cache blocks. Assume a node in the

control flow graph, where four cache states are reached and we are using metric d2,

as defined in equation 4.14, which counts the number of different cache blocks. The

cache states shall be defined as follows:

c1 = [ /0,{m1}] c2 = [ /0,{m2}] c3 = [{m3}, /0] c4 = [{m4}, /0]

Then, d2(ci,c j) = 2 for all pairs of cache states ci c j (i �= j). If z = 2, we could choose

to merge c1 and c2 and in a second step c3 and c4 resulting to

choosing z = 2 : c1,2 = [ /0,{m1,m2}] c3,4 = [{m3,m4}, /0]

The preemption delay (CRPD) would in both cases be one, provided that both blocks

are removed by the preeempting task. On the other hand, if we now choose z = 3,
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we could merge c1 and c4, because the metric results the same value for all states,

resulting to the three cache states:

choosing z = 3 : c1,4 = [{m4},{m1}] c2 = [ /0,{m2}] c3 = [{m3}, /0]

Thus the CRPD would be two cache blocks, provided that both blocks are removed by

the preempting task. This change depends on the selected metric. If a pure decreasing

CRPD value is desired, the definition of the metric must be improved to reflect the

CRPD (for example a better metric might consider the number of non-empty cache

blocks to avoid this non-monotonic behavior).
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Figure 4.12. Impact of cache size.

For a higher associativity, figure 4.12 shows an improvement at already a small

number of states. For PrS D and E no value for z = ∞ could be calculated because the

memory consumption was too large (see figure 4.15). Note, the crpd-value for z = 20

is the same as for z = ∞ for all cases.

Figure 4.13 shows that for increasing associativity the analysis results are very

similar.
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4.6.2 Analysis time and memory consumption
In this subsection, the performance of the analysis framework itself is evaluated

in terms of analysis time, memory consumption and other statistical measures. The

analysis framework was executed on a 1.7 GHz machine with 4GB RAM.

Figure 4.14 shows the analysis time in seconds for a typical setup (e.g. 1-way

associative cache) for different cache sizes and preemption scenarios. Note the log-

arithmic scale. This highlights the exponential growth in running time (PrS C took

several hours). Only for the smaller benchmark, we could execute the analysis for

z = ∞, no results could be obtained for PrS D and E. For caches with a higher asso-

ciativity the analysis times are slightly higher (not shown in diagram).

Figure 4.15 shows the memory consumption of the analysis framework for a typical

setup. While the memory consumption is about 3 to 100 MB for z = 1 to z = 20, the

memory consumption for the larger task τ5 in PrS C is in the range of Giga bytes for

z = ∞; for PrS D and PrS E no results have been obtained because too many cache

states were necessary.

Figure 4.16 and figure 4.17 show the maximum and average number of memory

blocks in each set, as defined in section 4.3.4. While there exists a higher number of

memory lines (about 20 for PrS E), the average number of memory blocks is between
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Figure 4.14. Analysis time.

one and two for all benchmarks and cache sizes. This has been checked for all setups,

but cannot be shown here. These results give strong evidence that the number of X
can be considered as a small constant for the timing complexity analysis as suggested

in section 4.3.4.
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Figure 4.15. Memory consumption.

4.6.3 Response time analysis
Finally, we integrate the scalable CRPD estimation into a response time analysis

as proposed in [113]. It reveals the impact of the cache related preemption delay on

the total response time of a task. Our approach is compared to the approaches by

Busquets-Mataix et al. [19] and Petters [92]. Busquets assumes that all used cache

blocks of the preempting task are removed. However in their experiments they assume

that the entire cache is flushed. In the following experiments we use the actual number

of used cache blocks of the preempting task, which is computed by the global data

flow analysis. Petters’ presentation is based on the number of useful cache blocks.

However the author only assumes a fixed percentage of cache content to be useful

without performing any analysis. Again, because we have the total number of useful

cache blocks available from global data flow analysis we use this number in Petters’

computation. The approach by [67] needs an exponential number of equations for the

ILP formulation and a re-implementation would have been too time-consuming for

comparison purposes.

We compute the worst case response time for the task set τ1,τ2,τ3,τ4 with τ1 as

highest priority task and τ4 as lowest priority task. The execution time of the whet-

stone benchmark was much greater than the other four, which is why we left it out.
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Figure 4.16. Maximum number of memory blocks per set.

Figure 4.18 shows the total preemption delay in clock cycles during the entire sched-

ule for several cache sizes for a 4-way set associative cache. Compared to Busquets

the data flow analysis with scaling factor 15 shows an improvement of 57%, 35%,

22% and 31% for 256B, 512B, 1KB and 2KB cache respectively. Compared to Pet-

ters our analysis shows an improvement of 39%, 43%, 59% and 70% for the given

cache sizes.

The response time of task τ4 is shown in figure 4.19. This value includes the pre-

emption delay (CRPD) of figure 4.18 as well as the core execution times of each task

and the time of higher priority tasks according to equation 2.3. The total preemption

delay is calculated by the previously developed cache-aware response time analysis

[113].

The vertical scale shows the response time in percentage of the response time that

was calculated by Busquets approach. The reason is that the response times for dif-

ferent cache sizes are significantly different, such that a linear scale would be inap-

propriate. The value for Busquets is zero in all cases, because all other values were

normalized to it. Nevertheless, we kept it in the figure to compare it to our results.
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Besides Busquets, the results in Petters’ approach, the set-based approach with

scaling factor 1 and scaling factor 15 are depicted. The analysis precision for scaling

factor 15 improves between 5% for 1KB cache and 21% for 256 Bytes cache.



126 Scalable precision cache analysis

4.7 Conclusion
Cache memory introduces unpredictable interference to task execution in real-time

computing systems with preemptive scheduling. In this section we have proposed a

scalable precision cache analysis for direct mapped and associative instruction caches.

Then, we applied these results to a previously developed cache-aware response time

analysis. The experiments have shown that a high analysis precision is already reaches

for a small number of cache states, hence with a low time complexity. The approach is

well suited for early design space exploration as well as for highly accurate real-time

performance verification.

Assumptions and Limitations

Data caches are not considered. A timing analysis for data caches has been pro-

posed e.g. in [133] [99] [112] and a preemption delay analysis for data caches

in [98].

The approach is based on the control flow graph of a task which is constructed

from the source code. Often software is secured by IP rights and is not available in

source code. In this case, an a control flow graph of the application with associated

instruction addresses could be an interface to our cache analysis technique.

As the control flow graph is used to represent the task execution, we only consider

in-order issuing single-processors and constant cache miss penalty. Timing analysis

of out-of-order pipelines and parallel resource allocation can lead to timing anoma-

lies [105] and are more difficult to analyze.



Chapter 5

DATA CACHE ANALYSIS

5.1 Introduction

While processor speed is steadily increasing, main memory access time remains

slow. Caches can significantly reduce the average memory access time, leading to a

total shorter execution time. Timing behavior is becoming a serious problem in many

embedded systems. In soft and hard real-time systems, timing guarantees are neces-

sary to verify the functional behavior as well as to efficiently use hardware resources.

Current practice is to use cache simulation to determine the typical timing behav-

ior, which is unsafe because not all program paths can be covered. A full coverage

would require an exponential number of test data and would be too time consuming.

Therefore, only a subset of all program paths is tested. An alternative approach is

static timing analysis that delivers safe bounds of the worst case execution time. In

the last decade, many techniques have been proposed for tasks running on a single

processor architecture with a complex design, including pipelines [106], caches [71],

and branch predictors [15].

There are several approaches to make caches more predictable and efficient. One

approach is to partition the cache sets and to reserve these partitions for individual

tasks [72]. The advantage is that cache lines do not have to be reloaded after inter-

rupts and between consecutive executions of the same task. Also, cache behavior

becomes (partly) orthogonal for tasks and, therefore, more predictable. Task layout

techniques are suggested in [28], which aim at minimizing the inter-task interference

in the instruction cache. Another approach is to lock frequently used cache blocks.

Such techniques have been investigated in [62] [25] [97]. These approaches increase

area and power cost as they require larger caches and main memory to become ef-
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fective. Therefore, heterogeneous memory architectures with caches and scratch-pad

SRAM have been introduced, like TriCore, where the scratch-pad can hold frequently

used cache blocks. Compiler techniques for such architectures have been proposed

by [90]. While cache partition and lock strategies are certainly a very useful add-on

to improve cache predictability and efficiency, they do not solve the general cache

analysis problem in which all tasks share the entire cache.

For a single task execution, the timing behavior for instruction caches has been

extensively studied [71] [141]. However, data cache behavior has often been restricted

in static worst case timing analysis. Previous approaches have focused on predictable

memory access pattern, for example [38] [133] [99], or have simplified the timing

behavior for input dependent memory accesses [78] [36].

The contribution is a worst case timing analysis for data caches that classifies mem-

ory accesses as predictable and unpredictable. For unpredictable memory accesses we

propose a novel timing analysis framework that tightly bounds the impact on the ex-

isting cache contents as well as the number of cache misses for unpredictable memory

accesses itself. For predictable memory accesses, we propose a local cache simulation

and data-flow techniques. As a second contribution, we describe an implementation

of the analysis framework. Finally, we compare the new approach with a previous

approach and cache simulation.

The key benefit of the proposed approach is a re-target-able analysis framework

to verify the timing behavior of data caches that considers input dependent memory

accesses. The framework can be used for design space exploration as well as system

level optimization.

5.1.1 Related work

In early work by [60] a heuristic argument of the pigeon-principle is proposed for

direct mapped data caches. We explain the principle by an example where a memory

access to an array occurs in a loop with a maximum of 100 iterations. Supposing that

the array has ten elements, it can be concluded that 10 cache misses and 90 cache hits

will occur given the following assumptions: 1.) the entire array fits in the cache, 2.)

the cache is direct mapped and 3.) none of the array elements are replaced during

program execution. Because none of the array elements are replaced there can be at

most 10 (compulsory) cache misses all other have to be cache hits.

An integer linear problem (ILP) formulation was proposed by [70] for direct mapped

data caches. A cache conflict graph is constructed in which each memory address cor-

responds to a variable in the equation system. Because the complexity scales with the
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data size of arrays, is is unclear how efficient this approach will be for larger arrays.

The dependency of index variables and array ranges are assumed to be given. This

restricts the application domain to fully predictable array accesses. Unfortunately, no

results from experiments are presented.

Abstract interpretation is used to predict data cache behavior in [36]. A persistence

analysis determines the maximum number of cache blocks that remain in cache. This

is used to calculate a lower bound on cache hits. Value analysis is used to calculate the

possible range of array accesses. For an unpredictable array access, it is assumed that

all cache blocks of an array are accessed, which replace many other cache blocks. This

means, that a single access to an unpredictable array is modeled as if all elements of

the array would have been accessed. However, only one cache block can be replaced.

The method is only described in theory without providing experimental results.

Data flow analysis techniques have been applied to data cache analysis by [136].

The address range of data references is performed on low-level representation after

code generation and all optimizations. Unknown data references are not considered

and array ranges would have to be annotated by the user.

A symbolic simulation technique is proposed by [78] to detect predictable and

unpredictable memory accesses. Unpredictable data structures are tagged as non-

cache-able and consequently always require a cache miss. The main drawback is that

input dependent memory accesses are classified as non-cache-able and are treated as

always cache miss.

A different approach is to use cache miss equations(CME). Introduced by [38] and

developed by [133], these CME compute re-use vectors to calculate cache accesses

within loops. It is assumed that all array accesses are affine functions of loop in-

duction variables and that loops are perfectly nested. In [99] the CME-framework

is extended to consider scalar variables and to allow more sophisticated loop struc-

tures. However, the CME frameworks always assume that array index variables do

not depend on input data.

5.1.2 Principle of analysis

The main open problem in data cache analysis is the timing behavior of unpre-

dictable memory accesses. Trace-based simulations would be too time-consuming

to cover the worst case. Existing data-cache frameworks exclude input dependency,

such as the CME frameworks [38][133][99], or classify input dependent memory ac-

cesses as non-cache-able [78]. In [36] the impact of unknown data accesses on the

cache contents is simplified by assuming that all elements of an array are loaded to
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the cache for each array access. However, only one array element will be loaded to

the cache.

To reduce this overestimation, we classify array accesses as predictable and unpre-

dictable memory accesses, if the index expression can be statically computed or not.

Each scalar variable is predictable, because the memory location is fixed. An unpre-

dictable memory access has two influences on cache behavior. First, it has an impact

on the current cache contents by possibly replacing some other cache block. Second,

the access itself requires an additional cache miss, if the element is not in the cache.

For the first impact, a cache miss counter Cm is defined for each unpredictable

memory access. The counter represents possible replacements of some cache blocks.

We refine this idea, by incrementing Cm only if a useful cache block can be replaced

by some element of the array. A useful cache block is a cache block that contains a

data variable that is used a second time after the unpredictable access occurred. Only

these cache blocks will require an additional cache miss in the future execution.

For the second impact, we bound the number of cache misses by comparing the

array size and the execution counts as suggested in [60]. The key difference in this

approach is the computation of the set of persistent cache blocks. In [60] no memory

blocks are allowed to be replaced. We apply the pigeon-hole principle to those arrays

whose elements are all persistent (e.g. are never replaced by other memory blocks).

For all predictable memory accesses we use local cache simulation and global data

flow analysis. Finally, we set up an integer linear problem (ILP) to consider pre-

dictable and unpredictable memory accesses. Additional constraints for the pigeon-

hole principle are added to the ILP formulation.

5.1.3 Framework overview

The analysis framework is shown schematically in figure 5.1. The analysis is based

on the source code of an application. An intermediate representation, the abstract

syntax tree, is generated from the source code. Based on this representation, data

dependency analysis identifies single data sequences and a control flow graph is con-

structed (section 5.2). In a second step, the actual memory addresses are extracted

using the linked object code and are mapped to the control flow graph (section 5.3).

Then, follows a cache behavior analysis for predictable and unpredictable data ac-

cesses (section 5.4) and, finally, the timing analysis computes the worst case program

execution path (section 5.5).

Experimental results are provided in section 5.6. and section 5.7 concludes this

section.
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Figure 5.1. Overview of analysis framework.

5.2 Data dependency analysis
Data cache behavior has been simplified in worst case timing analysis because of

unpredictable data accesses. A single instruction might access different memory loca-

tions during the execution of a program. In such cases, it is already difficult to predict

which memory locations are accessed, and it becomes very complicated to decide

whether such accesses are cache hits or misses. However, sometimes memory loca-

tions, for example array elements, are accessed in a predictable order. Two conditions

are necessary: first, an input data independent control flow and, secondly, input data

independent memory accesses.

We say that a program segment contains a single data sequence (SDS) if it contains

only input independent control structures and input independent memory accesses. A

program segment is a sequence of basic blocks, in which basic blocks are the smallest

entity of a program [3]. An example source code is shown in figure 5.2. The for-loop

in lines 11-12 contains such a SDS, because the condition i < 100 does not depend on

input (or global data) and the index variable of b[i] does not depend on input data. On

the other hand, the program segment in lines 6-10 do not contain a SDS, because the
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condition a < 2 depends on global variable a. Also, the array access in line 9 depends

on the global variable a.

1 int a; // global variable
2 int b[100]; // global array
3 int main(){
4 int i;
5 int k;
6 if (a<2){
7 k = 10;
8 } else {
9 b[a] = 0; // input dependent access

10 }
11 for (i=0;i<100;i++){
12 b[i] = i; // input independet access
13 }
14 return 0;
15 }

Figure 5.2. Source code example.

In this section we present a methodology to identify SDSes. First, we discuss

the proper analysis level in section 5.2.1. Then, we describe how to identify input

dependent control structures in section 5.2.2 and input dependent memory accesses

in section 5.2.3. Finally, we construct a control flow graph with SDS in section 5.2.4.

5.2.1 Analysis abstraction level
Single data sequences require input independent control structures and memory ac-

cesses. These properties can be computed by data dependency analysis which could

be performed either on source code or on object code level. A source code level

analysis would be based on a control flow graph, where nodes contain assignment

statements in high level language. The drawback is that actual memory addresses

cannot be derived because instruction set of the assembly language, linking infor-

mation, compiler options and memory layout are not available. The exact memory

mapping has to be derived in a second step from the actual binary by disassembling

the object code. For a correct source code correspondence, optimizations beyond ba-

sic block level are not allowed. An approach to analyze input-dependency for high

level programming language has been proposed by [39].

As an alternative, data dependency analysis could be executed on object code level

where the actual memory layout information is available. From the object code a

control flow graph can be generated, as suggested in [36][136][70]. However, data

dependence analysis is difficult, because of indirect register addressing and the de-
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pendence on the instruction set. For example the ARM instruction set contains condi-

tional instructions, which makes value analysis complicated. Second, such an analy-

sis is limited to the analyzed instruction set only, for every new processor a new data

dependency module would be necessary.

We chose the first alternative, in which the data dependency analysis is done on

source code level because it is hardware independent and value analysis is simpler

than on object code level. The lack of actual memory addresses is resolved by anno-

tating the control flow graph with the memory addresses using cache simulation in a

second step (section 5.3.
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Figure 5.3. Abstract syntax tree.

For data dependency analysis, an abstract syntax tree (AST) [3] is generated from

the source code program. The abstract syntax tree is used because it keeps direct

correspondence between program segments and the control flow hierarchy [141]. An

AST contains hierarchical nodes representing statements and edges that represent the

hierarchy of statements. For a part of the source code of figure 5.2 a simplified abstract

syntax tree is shown in figure 5.3. Edges connect a node with a lower-hierarchy node,

for example, to a then, an else expression, or connect a node to the next node (n)

on the same hierarchy level. The for statement has edges to the init-, condition-,

body-, update and next-expression. An assignment expression contains a left value

(lv), operator (op) and a right value (rv). An array expression (arExp) has two

sub-expressions: the name of the array (b) and the index expression (i).
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5.2.2 Program path classification

The execution path of a program depends on input data which makes it difficult to

predict precise worst case timing bounds. But often a program contains only a single

feasible program path. An example is a fast Fourier transformation (FFT) or a FIR

filter algorithm. In such structures the control flow only depends on the internal state,

but not on input data. For example, a loop with several if-then-else statements

that only depend on the loop iteration variable. In this case we can use trace-based

simulation. In previous work we have presented a methodology to identify single

feasible paths (SFP)[139] and proposed a timing analysis for instruction caches [141].

An SFP is determined by analyzing the conditions of each control structure in

the abstract syntax tree. A control structure that does not contain other hierarchical

control structures is called a SFP, if the condition does not depend on input data,

otherwise it is called a multiple feasible path (MFP). A control structure with an input

independent condition that contains substructures with MFPs is also classified as a

MFP.

The input dependency of conditions is determined by a symbolic simulation algo-

rithm on the abstract syntax tree. Each variable is either classified as input dependent

or input independent. As the algorithm traverses the tree, the left value of an assign-

ment is classified as input dependent if at least one variable on the right value is input

dependent. A symbol table stores the classification of each variable. If a node has

several predecessors like a then or an else branch, a variable is also classified as

unpredictable if it contains different values in the symbol tables of the predecessor

nodes. Loops are analyzed twice to propagate assignment-statements to higher level

hierarchic nodes.

A control structure is input dependent if it contains at least one input dependent

variable in the condition, otherwise it is classified as input independent (SFP). Fig-

ure 5.4 shows a control flow graph (CFG) on the left side, where the loop nodes are a

SFP, because the loop condition does not depend on input data.

5.2.3 Memory access classification

The prediction of memory accesses for a data cache is more difficult than for in-

struction cache behavior because a single instruction may access a range of memory

locations. To detect single data sequences, data cache memory accesses are classified

as predictable and unpredictable. Memory accesses by scalar variables and prede-

fined array accesses are classified as predictable. Otherwise, accesses are classified as

unpredictable.
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In section 5.2.2 we described a symbolic simulation algorithm on the abstract syn-

tax tree to determine the input dependency of control structures. A similar algorithm

can be used to determine the input dependency of memory accesses.

Initially, all scalar variables are classified as predictable, because the memory ad-

dress is constant. Then, the analysis proceeds as described above, propagating the

input classification of each variable in the abstract syntax tree.

Instead of using the condition expression, the index expression of the array access

expression determines if the memory location is input dependent or not. We define a

memory access by an array as predictable if all variables of the index expression are

input independent, otherwise it is classified as not predictable.

For example, the array expression in line 9 of figure 5.2 is unpredictable, but the

one in line 12 is predictable. The output of the data dependency analysis is a CFG

constructed from AST which is shown in figure 5.4 (middle). For each array variable a

boolean variable signals the data dependency. For example, the assignment b[a]=0

is data dependent (b 1) but the assignment k=b[i] is not.
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For each node a tree traversal algorithm on the AST identifies whether an array

access is predictable or not. Furthermore, the c-lines of each expression are annotated.

5.2.4 Single data sequence construction
A single data sequence (SDS) is defined by the program path classification (sec-

tion 5.2.2) and memory access classification (section 5.2.3): A single feasible path

that contains only predictable data structures is a SDS. An example of a SDS is shown

in figure 5.4 (right).

At the end of this analysis step, a control flow graph is available where nodes con-

tain single data sequences or unpredictable array accesses. In each node it is specified

whether an array access is predictable or not. Our implemented algorithm stores the

c-lines as well, but for a better understanding of the methodology we omitted the

c-lines in this presentation.

5.3 Memory address mapping
In section 5.2, single data sequences have been constructed based on source code.

The actual memory addresses are necessary for a data cache analysis. In this section,

we describe how memory addresses are computed.

The methodology consists of three steps. First, instruction addresses are mapped

to the CFG (section 5.3.1). Second, the memory access trace of instruction and data

addresses is generated by a processor simulator (section 5.3.2). And finally, the data

accesses of the memory trace are mapped to the nodes of the CFG (section 5.3.3).

5.3.1 Instruction address mapping
In the first step, instruction addresses are mapped to the control flow graph. A map-

file is constructed that contains a table of memory addresses of assembly instructions

and the corresponding c-lines. In the proposed data-cache analysis methodology we

assume that compiler optimizations beyond basic block boundaries are not used. With

a debugging tool, e.g. addr2line1, the correspondence of memory addresses to c-

lines can be computed. Then, instruction addresses are mapped those nodes in the

control flow graph which have the same c-line. Figure 5.5 shows a part of the map

file for the example source code.

1Binutils tool suite http://www.gnu.org/software/binutils/
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address c-line address c-line

80a8 9 80e8 11

80ac 9 80ec 12

80b0 9 80f0 12

80b4 9 80f4 13

80b8 10 ...

...

Figure 5.5. Memory map file.

5.3.2 Memory trace generation
Trace generation is used to collect the addresses of the predictable data accesses.

Because the addresses are constant, profiling with branch coverage is sufficient. The

memory trace of a software program is computed by an off-the-shelf processor sim-

ulator. For this study, we use the RealView development suite [6], which is a cycle

accurate processor simulator. In general, it suffices to use a functional simulator that

outputs the memory trace. The simulator comes with the option to trace instruction

and data addresses.

IT 000080A8 e59f0050 LDR r0,0x8100
MNR4____ 00008100 00008414
IT 000080AC e5900000 LDR r0,[r0,#0]
MNR4____ 00008414 00000000
IT 000080B0 e3500002 CMP r0,#2
IS 000080B4 aa000001 bge 0x80c0
IT 000080B8 e3a0200a MOV r2,#0xa
...
IT 000080EC e59f0010 LDR r0,0x8104
MNR4____ 00008104 00008418
IT 000080F0 e7801101 STR r1,[r0,r1,LSL #2]
MNW4____ 00008418 00000000
...
IT 000080EC e59f0010 LDR r0,0x8104
MNR4____ 00008104 00008418
IT 000080F0 e7801101 STR r1,[r0,r1,LSL #2]
MNW4____ 0000841C 00000001
...

Figure 5.6. Memory access trace.

An example of a memory access trace is shown in figure 5.6. The first letters denote

the memory access type: IT/IS denotes instruction taken/skipped, MNR4 denotes a

memory access read (4 byte) and MNW4 denotes a memory access write (4byte). The
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second column states the address fetched, the third the hex code and the rest of the

line is the mnemonic assembly instruction.

Sufficient test patterns for a complete branch coverage are necessary. Branch cov-

erage of a program means that each branch is executed taken and not-taken. The

number of test patterns of a full branch coverage scales linearly with the number of

branches while a full path coverage requires exponential number of test data.

5.3.3 Data address mapping
The objective is to map data accesses to control flow nodes. The instruction ad-

dresses were mapped to the nodes and can be used as identifiers. If one or more data

addresses follow an instruction address di in the memory trace, then these data ad-

dresses are mapped to the nodes that contains di. We assume an in-order execution

model of the processor. Otherwise, it would be more difficult to identify the instruc-

tion requesting a data address. For predictable data structures, especially in single

data sequences, all data accesses are mapped to the corresponding nodes.

For unpredictable memory addresses this is not possible because a different test

pattern would result in a different access pattern. Therefore, we have to assume that all

memory locations are possible. The symbol table of the disassembled binary contains

the start address and the size of each variable, for example the array b[] has the start

address 8418 and a size of 0x190h. This information is used to compute the range

of possible memory accesses for unpredictable data accesses and is mapped to the

corresponding nodes.

Table 5.1 summarizes the address mapping of instruction as well as data accesses

for two nodes. The last column states whether the node is a single data sequence(SDS)

or not. Note that the unpredictable array access in B3 is annotated by its start address

and its size. For the SDS in B5, the exact simulation trace is used. Because of space

restrictions, only a small part is shown and the array access is annotated with the

actual sequence of data addresses.

Table 5.1. Memory address mapping summary

Bid c−line I-address D-address SDS

3 9 80a8, 80ac 8100 8414 no

80b0 80b4 8418/0x190
5 11,12 80EC 80F0 8104 8418 yes

· · · 80EC 80F0 · · · 8104 841C
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5.4 Cache behavior analysis
The key idea of our approach is the observation that an access to an unknown data

structure can remove at most one cache block. While the previous approach by [36]

assumes that all cache blocks of an unknown data structure are assumed to be loaded

to cache, we present a novel method to overcome this pessimism.

It consists of three steps. First, the analysis of the impact of unpredictable data

accesses on existing cache content (section 5.4.1), second, the analysis of data cache

behavior of unpredictable memory accesses themselves (section 5.4.2), and finally,

the analysis of predictable cache accesses (section 5.4.3).

5.4.1 Cache miss counter
In this section, we describe the influence of an unpredictable data access on existing

cache content. Assuming that an array has the size of ten cache blocks, any of these

ten cache blocks might be requested by an access to this array. Which cache blocks of

the current cache contents could be possibly replaced? The approach by [36] assumes

conservatively that all ten cache blocks are loaded to the cache and (possibly) replace

ten existing cache blocks. However, at most one cache block is actually removed, but

we cannot statically predict which one.

To overcome such overestimation, a miss counter Cm(Bi) is defined at node Bi.

Initially, the miss counter is zero. Whenever a cache access to an unknown data

structure occurs, the miss counter is incremented by one. This miss counter represents

the number of additional cache misses for (possibly) replaced cache blocks. Note that

this miss counter does not represent the number of cache misses for unpredictable data

accesses themselves. This will be described in section 5.4.2.

We give two algorithms to compute the cache miss counter. First, we could simply

assume that each access to an unknown data address replaces a cache block. This is

formalized in equation 5.1.

Cm(Bi) = |{d| ∀d ∈ Data(Bi)}| (5.1)

In other words, it is the cardinality of the set of unpredictable data accesses of node

Bi. The set of data accesses is given by Data(Bi) for basic block Bi. However, this

would be too conservative. An additional cache miss is only required if a useful cache

block is replaced. Useful cache blocks has been used by [66] [89] [111] to calculate

the cache related preemption delay for fixed priority preemptive scheduling. A cache

block is called useful if it may be available in basic block Bi (e.g. reaches this node)

and may be accessed a second time via some outgoing path of B (e.g. is a live cache
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block). Two data flow analysis algorithms are set up, one to compute the reaching

cache blocks RMB(Bi) and one to compute the live cache blocks LMB(Bi) at node Bi.

The intersection of these sets is the set of useful cache blocks UCB(Bi). The concept

of data flow algorithms are further explained in section 5.4.2.

We refine the calculation of additional cache misses by incrementing the miss

counter Cm(Bi) only if there exists at least one useful cache block in the range of

an unpredictable data access. This is shown in Equation 5.2:

Cm(Bi) = |{d|UCB(Bi)∩ range(d) �= /0∀d ∈ Data(Bi)}| (5.2)

where range(d) is defined as the set of addresses of array d:

{address(d), · · · ,address(d)+ size(d)−1}

5.4.2 Persistence analysis of unpredictable accesses
In case memory access are input dependent, heuristic arguments can be applied in

a safe way. With the pigeon-hole principle, as described by [60], we can reduce the

number of cache misses even though very little is known about data cache accesses.

However, the three assumptions are very restrictive. In our novel analysis framework

we also assume that the cache is direct mapped and that the entire array fits in the

cache. These restrictions seem feasible. But the third assumption is too restrictive.

We will statically analyze by a persistence analysis which array addresses are never

replaced . This persistence analysis checks that all elements of an array are still in the

cache for all possible execution traces. The number of persistent cache blocks has

been calculated in the approach by [36] with the conservative assumption that all

cache blocks of unpredictable data structure are loaded to the cache. We use a similar

technique, but with the goal to apply the pigeon-hole principle in section 5.5.2.

Persistent cache blocks can be computed by data flow algorithms [3]. These data

flow algorithms have been used in preemption delay analysis by [66] [89] [111].

Given a control flow graph, and some property P, a data flow algorithm propagates

the property P to all nodes.

For persistence analysis, as described in [36], we define P as the set of reaching

cache blocks. An iterative algorithm is used to solve the following equations:

Pin[Bi] =
⋂

P∈pred(Bi)

Pout [P]) (5.3)

Pout [Bi] = {r�gen[Bi]|r ∈ Pin[Bi]} (5.4)

c� c′ =

{
c′ i f c′ �= /0

c otherwise
(5.5)
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The quantities Pin[Bi] and Pout [Bi] are computed for each basic block Bi. Initially,

Pin[Bi] = /0 and Pout [Bi] = gen[Bi]. The set gen[Bi] is defined by the set of cache

blocks that are loaded during the execution of basic block Bi by predictable and un-

predictable memory accesses. For unpredictable memory accesses we assume that all

cache blocks are accessed. We define P for the entire cache by considering each cache

set separately. The � operator replaces a cache block if gen[Bi] is not empty, other-

wise the cache block from some incoming path Pin[Bi] is taken. We set P[Bi] = Pout [Bi]
when the fixed point is reached which contains all persistent cache blocks at Bi.

The persistence analysis has to be performed for each unpredictable data access d.

The gen set for the node containing d is constructed by all possible addresses. During

the data flow analysis, d is ignored in all other nodes. Otherwise, some memory

addresses would be loaded to the cache and the persistence analysis would not deliver

the worst case.

5.4.3 Predictable data accesses
Global data flow analysis is used to calculate the data cache behavior for pre-

dictable memory accesses. The iterative data flow analysis, as described in sec-

tion 5.4.2, can be applied with the following modifications: The gen[Bi] set is defined

by the predictable data accesses only. The replaced cache blocks by unpredictable

array accesses can be ignored because their potential interference is accounted by the

miss counter Cm(Bi). At the end of this analysis step, the number of cache hits Bi(hits)
and misses Bi(misses) for each node Bi are computed.

5.5 Data cache timing analysis
After the cache access behavior for each node has been computed, we present now

the last step of the analysis framework: the global timing analysis. Integer linear

programming is used to calculate the worst case data cache behavior (section 5.5.1)

for the whole control flow graph. Unpredictable data accesses are then accounted by

applying the pigeon-hole principle (section 5.5.2. In section 5.5.3 we summarize the

assumptions and limitations of the whole analysis framework.

5.5.1 Integer linear programming
Integer linear programming (ILP) is an established method to find the worst case

execution path in timing analysis [71] [141]. Based on the control flow graph of a pro-

gram, a linear optimization problem is constructed that maximizes the flow through

the program. Each node Bi contributes a constant execution time ci and a variable

xi denotes the execution count of node Bi. In the following we focus on the contri-
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bution of data cache behavior and neglect instruction cache behavior. Therefore, our

approach can be combined with any existing static timing analysis approach, e.g. that

already considers instruction caches, pipelining and branch behavior. The objective

function of the ILP is defined as:

max : ∑
i∈B

ci · xi (5.6)

Where B denotes the set of all nodes of the control flow graph. A set of structural

constraints is set up to model that the incoming flow of each node is equal to the

outgoing flow:

∑
p∈pred(Bi)

ep,i = xi = ∑
s∈succ(Bi)

es,i (5.7)

where ei, j denotes an edge from node Bi to node B j. The set of all predecessors is

abbreviated as pred(Bi), and the set of successors as succ(Bi) for a node Bi. Addi-

tional constraints, e.g. for maximum number of loop iterations, can be defined by the

engineer. The cache access time ci for each basic block Bi is set to

ci = chit ·Bi(hits)+ cmiss ·Bi(misses) (5.8)

where Bi(hits) and Bi(misses) denote the worst case number of cache hits and misses

for basic block Bi of predictable data accesses, as computed in section 5.4.3. Cache

hit and miss penalty time is denoted by chit and cmiss respectively. For unpredictable

data accesses we apply the pigeon-hole principle.

5.5.2 Pigeon-hole principle
We extend the ILP to account for unpredictable memory accesses with the pigeon-

hole principle [60], as described in s:dc:relatedwork. For a node Bi with a data depen-

dent array dk the execution count is separated into hits and misses. Data(Bi) denotes

the set of unpredictable data accesses.

xi = xhit
ik + xmiss

ik ∀dk ∈ Data(Bi) (5.9)

For every persistent data access, which were computed in section 5.4.2 an additional

in-equation regarding the pigeon-hole principle is added to the ILP:

xmiss
ik ≤ range(dk) (5.10)

This in-equation reflects the fact that the number of misses is bounded by the maxi-

mum number of elements of the array since the array is persistent in cache. Then, the



Experiments 143

objective function is modified to

max : ∑
i∈B

(
∑

dk∈Data(i)

(
chit · xhit

ik + cmiss · xmiss
ik

))
+

cmiss ·Cm(Bi) · xi + ci · xi (5.11)

The second sum represent the cache behavior for unpredictable memory accesses

(pigeon-hole principle) together with equation 5.9and 5.10. The additional cache

misses regarding existing cache contents is modeled by term cmiss ·Cm(Bi) · xi which

multiplies the cache miss penalty cmiss with the cache miss counter Cm(Bi) and the

execution count xi of the basic block Bi. The last summand ci ·xi is the cache behavior

for predictable memory accesses (equation 5.8).

Figure 5.7 shows an example ILP for the CFG of figure 5.4. We assume that the

array b has 10 elements. Note, that the loop statement B5 is a SFP, therefore, no loop

bound is necessary.

max: c1x1 + c2x2 + chitxhit
31 + cmissxmiss

31 + cmissCm(B3)
+c4x4 + c5x5

subject to

x1 = 1; x1 = e1,2 + e1,3; // structural

x2 = e1,2 = e2,4; x3 = e1,3 = e3,4; // structural

x4 = e2,4 + e3,4 = e4,5; x5 = e4,5 // structural

x3 = xhit
31 + xmiss

31 // pigeon-hole

xmiss
31 <= 10 // pigeon-hole

Figure 5.7. Example ILP formulation.

5.5.3 Assumptions for data cache analysis
Our approach assumes a direct mapped data cache (write through, no-write allo-

cate), with a constant cache hit and cache miss penalty and an in-order execution

model of the processor. Further, we disable optimizations beyond basic block bound-

aries. We do not consider pointer arithmetics and dynamic data structures on the

heap. For memory trace simulation, test patterns for full branch coverage have to be

available. For the experiment, we supplied the test data manually. Branch coverage is

often required for functional verification and should therefore be available for timing

verification phase. The analysis framework does not support multiple function calls

at the moment.
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5.6 Experiments
This section presents results of the analysis framework for direct mapped caches.

Table 5.2. Benchmark description.

Task Code Data C-Ln Nodes Name

τ1 180 404 15 8 example1

τ2 180 44 15 8 example2

τ3 140 80 31 18 exchangesort

τ4 1852 256 181 89 fft

τ5 240 80 76 21 FIRFilter

Table 5.2 describes the benchmarks with total instruction memory (code) and data

memory (data) in Bytes, number of c-lines (C-Ln) and number nodes (Nodes) of the

control flow graph. The benchmark τ1 is the example of figure 5.2. Benchmark τ2 is

based on τ1 but the data access in the loop is input dependent and the size of the array

is 10 elements. The maximum number of loop iterations is 1000. The benchmark

τ3 is a public domain sorting algorithm and τ4, τ5 are taken from [66]. We use g++

v3.0.4 with the option -ast-original to generate the abstract syntax tree, which

is the input of data dependency analysis. We assume a 10 cycle cache miss penalty,

1 cycle cache hit time, and a fixed instruction length of 32 bits. In all experiments

we use a direct mapped cache. The memory access trace was computed with the

ARM9 processor simulator from ARM RealView Developer Suite, which contains

the instruction as well as data addresses. Therefore, we simulated a unified cache. It

could have also been applied to a separate data cache by filtering the data memory

addresses. In the following we denote as the worst case execution time (WCET) the

time to access this unified cache. The core execution time of the processor is not

considered.

Table 5.3. WCET for data cache in [103clk].

Task tcons tana tsim
tcons−tsim

tsim

tana−tsim
tsim

τ1 18.2 5.40 4.3 320% 25%

τ2 78.3 29.3 20.1 290% 46%

τ3 27.5 6.89 5.38 410% 28%

τ4 807 285 205 290% 39%

τ5 20.6 6.08 5.60 270% 8.6%
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Results for the data cache timing behavior of these benchmarks for a 512 Byte

direct mapped cache with block size of 16 bytes are shown in table 5.3 for a conser-

vative analysis approach tcons, for the proposed analysis framework tana and for cache

simulation tsim. The total worst case execution time (WCET) is given in 103 clock

cycles (clk). The conservative estimate tcons assumes two cache misses for each un-

predictable memory access. The last two column expresses the overestimation of the

conservative approach and our approach compared to cache simulation. The analysis

precision of our approach is an improvement of an order of magnitude compared to

the conservative approach.

Table 5.4. WCET in [103clk] for different cache sizes.

Cache, Task tcons tana tsim
tana−tsim

tsim

128−16 τ2 78.3 38.3 38.2 0.2%

512−16 τ2 78.3 29.2 20.1 45%

2048−16 τ2 78.3 29.3 20.1 46%

128−16 τ3 32.3 11.7 11.1 5.4%

512−16 τ3 27.5 6.89 5.38 28%

2048−16 τ3 27.5 6.89 5.38 28%

128−16 τ5 20.6 10.3 9.25 11%

512−16 τ5 20.6 6.08 5.60 8.6%

2048−16 τ5 20.6 3.77 3.54 6.5%

Table 5.4 shows the WCET for different cache sizes with 16 Byte cache block size

only for some tasks due to space restrictions. While the conservative approach is very

pessimistic, the proposed approach can be very close to the simulated results.

Table 5.5. WCET in [103clk] for different cache block sizes.

Cache, Task tcons tana tsim
tana−tsim

tsim

512−8 τ2 78.3 29.3 20.1 46%

512−16 τ2 78.2 29.2 20.1 45%

512−32 τ2 78.2 29.2 20.2 45%

512−8 τ3 27.7 7.13 5.49 30%

512−16 τ3 27.5 6.89 5.38 28%

512−32 τ3 27.2 6.67 5.38 24%

512−8 τ5 22.7 6.47 5.89 9.8%

512−16 τ5 20.6 6.08 5.60 8.6%

512−32 τ5 20.1 6.39 5.82 9.8%
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Table 5.5 shows the results for different cache block sizes for a 512 Byte cache

which shows that the deviation for different cache block sizes is small.

In summary, the results are improved by an order of magnitude compared to pre-

vious conservative analyses. Compared to cache simulation our approach yields an

overestimation of 8% to 46%. Note, that simulation results might not include the real

worst case behavior. Therefore, analysis results cannot directly be compared to simu-

lation results. A second reason is that nearly input independent data access behavior

cannot be detected by our analysis. E.g. memory accesses that are not fully input

independent but contain some regular access patterns.

The time-complexity of the analysis is very low. For each task, the entire analy-

sis including data dependency classification, memory mapping, data cache analysis,

construction and solution of the ILP took less than one minute for calculating all nine

cache configurations.

5.7 Conclusion
In this chapter we have proposed a novel worst case timing analysis framework for

data caches. Input data dependency has been addressed as the key issue to deliver tight

timing bounds. We have presented an analysis for unpredictable data accesses as well

as predictable data accesses. The analysis framework is a combination of data-flow

analysis, pigeon-hole principle and integer linear programming. Compared to previ-

ous conservative approaches, the results are an improvement of an order of magnitude

while compared to simulation results our approach shows up to 46% overestimation.

However, a direct comparison with simulation is not possible because some execution

paths might not have been measured, and hence the worst-case path could have been

omitted.



Chapter 6

INSTRUMENTATION POINT PLACEMENT

6.1 Introduction

Timing requirements are becoming increasingly important in embedded system

design. Control systems continuously interact with their environment. To accurately

implement a control function, these systems not only have to preform correctly but

also have to provide the computed results within specified time bounds. Driven by

the increased flexibility resulting from the use of microprocessors in control systems,

more and more functionality is integrated into electronic control units (ECU). The

automotive industry is one of the leading fields pushing these developments. Today, a

new car contains about 30 ECUs and in luxury cars up to 70 ECUs are embedded [30].

As a consequence, applications have to be mapped to ECUs. Several applications are

mapped to the same processor and thus have to be scheduled. Schedulability analyses

[93] can be applied to guarantee that an application finishes before a specified time

bound. As a key requisite, the worst-case execution time (WCET) has to be calculated

for each application.

A simple technique to estimate the timing behavior is software tracing and sam-

pling. Examples are RTA-Trace by ETAS [32], CodeTEST by Freescale [48], and a

hybrid tracing and sampling approach used by Nokia [83]. Measurement points are

inserted at the beginning and end of each function or around critical sections to mon-

itor special events. The program execution is stimulated with a set of test patterns.

However, safe timing bounds are difficult to guarantee, because only a subset of all

test patterns is used.

As an alternative to software tracing, many static timing analysis approaches have

been proposed, e.g. timing analysis language [85], timing schema [73], abstract inter-
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pretation [35], implicit path enumeration [71], and many more. Some timing analysis

tools are commercially available: aiT from Absint GmbH [4], Bound-T by Tidorum

Ltd [128] and Rapitime by Rapita Systems Ltd [100]. An overview of academic and

commercial WCET-tools can be found in [137].

Static analysis methods assume either cycle-level simulators or other precise hard-

ware models to compute the execution time of individual basic blocks. However,

the main difficulty is that precise hardware models are not available or would be too

expensive to construct. In fact, only very few static analyses are being adopted in

industry, despite the wealth of academic approaches.

Requirements for industrial strength WCET tools have been summarized in [64]:

The tool must work with minimal user interaction. It must support model-based soft-

ware development, e.g. Matlab/Simulink [82] with automatic code generation, e.g.

TargetLink [126]. The method must integrate into the development chain of cus-

tomers without modification of tools from the tool chain. And finally, the WCET

analysis method must be easy to re-target to different hardware settings, i.e economic

usability.

Measurement-based WCET analysis approaches, such as [14] [91] [139] [135], are

attractive to meet these requirements, as they are easy to re-target and cost-efficient.

The principle is to measure the execution time of an application on real hardware by

inserting intrusive instrumentation probes. The main drawback in using instrumen-

tation probes is that they disturb the temporal behavior of the application, i.e. the

execution time of the program differs when the probes are removed. Furthermore, the

initial hardware state is difficult to assert during the measurements.

To minimize the probe interference, measurement probes can be inserted only at the

beginning and at the end of a function, but this requires test data for a path coverage.

Path coverage means that every execution path has to be covered. The number of input

data increases exponentially with the software structure. For example, a path coverage

for 20 consecutive if-then-else statements would require 220 (about 1 million) test

patterns. In the following we use the term test patterns as a synonym of input data.

If the smallest structural entity of a program, also called basic blocks, were mea-

sured, test data for full branch coverage would be sufficient, but the increased mea-

surement frequency would lead to a significantly overestimated WCET. Branch cov-

erage means that each branch is executed both taken and non-taken. For the above

example, 2 ·20 = 40 test data would be sufficient for full branch coverage. Thus the

challenge is to select measurement points wisely, such that the effort to specify input

data is minimized and the measurement probe overhead is kept as low as possible.
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Three major contributions are presented. First, we propose a novel instrumentation

methodology that reduces the number of instrumentation points but yet requires only

test data for full branch coverage. The main advantage is the ability to measure longer

pieces of code than basic blocks, while still requiring only test data for full branch

coverage. As a second contribution, we present a WCET analysis framework, which

integrates the instrumentation methodology and which supports important industrial

requirements for WCET tools, including easy re-target-ability to new processors and

a seamless integration to existing embedded design tools. As a third contribution, we

present a case study of an automotive control application to demonstrate the applica-

bility of our approach.

The rest of this chapter is structured as follows. In section 6.2 we review related

work. In section 6.3 we present the novel instrumentation methodology. The ex-

periments for the instrumentation methodology and the case study are presented in

section 6.4 before we conclude in section 6.5.

6.2 Related Work
The related work for measurement-based approaches is presented in section 6.2.1

and our previous approach to WCET analysis is described in section 6.2.2.

6.2.1 Measurement-based WCET analysis
In measurement-based approaches, a program is partitioned into program seg-

ments, then the execution time for each program segment is measured on real hard-

ware, e.g. on an evaluation or emulation board. Sophisticated debugging and hard-

ware monitoring facilities, such as JTAG interface, provide low-intrusive measure-

ment environments. Finally, the worst case execution path is calculated based on

the execution time of each program segment. A program segment can be defined in

several ways: as a single basic block [80] [75], a measurement block [91] or as a

sequence of a varying number of basic blocks [135] [14] [139].

A source code instrumentation methodology MetaC, which is an extension of C,

is presented in [80]. Meta-programming techniques are used to automatically moni-

tor the program. The placement of instrumentation points or debugger statements is

configurable. It has been applied to WCET-analysis where instrumentation points are

inserted at each basic block. This framework could be combined with our proposed

measurement methodology by extending MetaC. Another approach which is based on

instrumenting basic blocks is presented in [75]. First, the program is instrumented at

each basic block to monitor the execution count. Then, all measurement points are

removed, and the execution time of the entire program path is measured. In a sec-
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ond step, an equation system of linearly independent equations is set up representing

the visited basic blocks as unknowns and the measured execution times of the pro-

gram. The approach assumes that the execution times of basic blocks is input data

independent. For complex pipelines and caches this approach is not applicable.

The approach by [91] is based on the granularity of measurement blocks. A mea-

surement block is a piece of code, e.g. several basic blocks. However, the partition

has to be done manually. Another algorithm to select instrumentation points is pre-

sented in [14]. Using the hardware debug interface Nexus restricts the selection of

instrumentation points. The paper discusses how these restrictions can be resolved.

The WCET estimation method in [135] automatically partitions the control flow

graph into program segments and automatically generates test data. The size of a

program segment is determined by a path bound b. This means that each program

segment contains at most b paths. The partition algorithm thus tradeoffs between the

number of instrumentation points and the number of necessary measurements. Test

data is automatically generated by a combination of genetic algorithms and model

checking.

Compared to our proposed approach, the execution time is measured for the entire

program segment, containing several paths. The worst case execution time for all

test patterns is taken as worst case for the segment. If the set of test patterns is not

complete, an underestimation is possible. Another difference is that our approach is

based on the control flow structure while this approach is based on program paths. An

example to clarify this difference is given in section 6.3.

6.2.2 SymTA/P approach

SymTA/P is hybrid analysis using static timing analysis and measurements [139] to

calculate an upper and lower execution time bound of a C program running on a single

processor. SymTA/P is an acronym of SYMbolic Timing Analysis for Processes. The

control flow graph is partitioned into program segments containing single feasible

paths (SFP). A SFP is a sequence of basic blocks, which is executed independently of

input data. For example, a loop-statement consisting of several if-then-else statements

whose conditions only depend on loop-iteration variables has a SFP. A FIRFilter and

fast Fourier transformation are further examples.

Then, the execution time is measured for each SFP either on real-hardware, e.g.

evaluation board using JTAG interface, or on a cycle true processor simulator. A

conservative overhead is added to each program segment to account for the worst

case hardware state, for example pipeline effects, at the beginning of each program
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segment. The precision is higher when the SFP program segments are longer. Finally,

integer linear programming (ILP) is used to calculate the best-case and worst-case

execution time of the program. A research prototype has been developed, however,

several limitations exist.

1 The partitioning into long SFP program segments is very limited for control in-

tensive software applications, e.g. in automotive ECUs. Automatically gener-

ated C source code, e.g. by TargetLink [126] or ASCET-SD [9], contains long

switch-case statements with frequent function calls in if-conditions. In

this case, a SFP program segment has the size of a basic block. This leads to more

frequent measurements and thus to a higher total overestimation. Other techniques

are necessary to construct longer program segments even in the presence of input

data dependency.

2 Program path analysis to identify SFPs is based on symbolic simulation and is

restricted to a subset of C programming language. Most important, sub-function

calls, switch-case statements, pre-compiler statements and break-statements

are not supported. A program path analysis supporting the full C language would

be necessary, if the WCET method were applied to automatically generated code.

3 Global WCET calculation has been limited to single functions. A WCET frame-

work supporting sub-function calls is essential to be applicable to larger software

applications.

The first limitation is addressed in section 6.3 in which a novel instrumentation

point algorithm is proposed. The second and third limitation are important when the

approach is going to be applied to an industrial project. These issues are resolved in

appendix A.1.

6.3 Instrumentation point methodology
The objective of our approach is to minimize the number of instrumentation points

while requiring only full branch coverage. Measuring all program paths, e.g. instru-

menting at the beginning and at the end of each function, is too time-consuming. An

exponential number of test patterns is necessary. On the other hand, instrumenting

each basic block would lead to too many instrumentation points.

The key idea of our approach is to partition the program into program segments,

which are longer than a single basic block, but short enough that test patterns for

full branch coverage are sufficient. As a motivating example, Figure 6.1 shows two

program segments S1 and S2. The if-condition statement is emphasized by c. S1
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Figure 6.1. Control flow graph and program segment graph.

contains two consecutive if-then-else statements and program segment S2 con-

tains three nested if-then-else-statements (an if-then-else-statement with

an if-then-else within the then as well as within the else branch). Both pro-

gram segments S1 and S2 contain four paths, thus would be considered as a single

program segment in [135]. The difference is the number of test patterns in terms of

branch and path coverage. Test patterns for full branch coverage are sufficient for S2,

while a path coverage is necessary for S1. Compared to the approach by [135], our

approach detects those segments where full branch coverage is sufficient, e.g. S2.
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Figure 6.2. Control flow graph with instrumentation points.
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The instrumentation methodology partitions the instrumentation probes into mea-
surement probes and branch probes. An example of an instrumented control flow

graph is shown in Figure 6.2 in three variations. Figure 6.2 a) shows a traditional

instrumentation at each basic block. Figure 6.2 b) shows the placement of measure-

ment probes and Figure 6.2 c) shows the placement of branch probes. The source

code snippet for this control flow graph is shown in Figure 6.3. Instead of separately

measuring 10 basic blocks we insert only 3 measurement probes.

This method has two gains. The first gain is a reduced number of time-critical

measurement probes for which a time-overhead has to be accounted for in the WCET

analysis. The purpose of the branch probes is to monitor which branch is taken during

program execution. The execution of of branch probes is not time-critical, because

only the c-line number is monitored during program execution. The second gain is

that test patterns for full branch coverage are sufficient.

The method is structured in the following phases. First, program segments are

identified and the control flow graph is partitioned in section 6.3.1. The placement of

measurement and branch probes is described in section 6.3.2. Then, the measurement

on real hardware is presented in section 6.3.3. Finally, the branch monitoring results

and measurement results are back-annotated to the graph in section 6.3.4.

6.3.1 Program segment partitioning

The methodology is based on the control flow graph (CFG), in which basic blocks

are represented by nodes control flow between basic blocks is represented by edges.

The CFG is constructed from the source code of the program. First, we define some

notations.

Definition. A program segment PS is defined by a sequence of basic blocks which

contains at most one branching basic block on the same structural hierarchy level.

Definition. A branching basic block is a basic block with two or more outgoing

edges. Then, Br(PSk) denotes all branching basic blocks of program segment PSk.

Definition. The structural hierarchy level of a basic block, abbreviated as level, is

given by its hierarchical depth level in the abstract syntax tree. The level of a basic

block can be calculated as follows. The root node has depth level 1. The depth level

increases by one for each branch statement and decreases by one when branches are

joined.

Definition. A control flow graph containing program segments as nodes is called

program segment graph (PSG).
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We use the notation PSk = (B1, · · · ,Bn,Bh), in which the basic blocks B1, · · · ,Bn

are the basic blocks of the program segment PSk and Bh the segment header of the

next program segment. The first basic block of a program segment is called segment
header. This definition simplifies the instrumentation methodology because measure-

ment points are inserted before segment headers.

1 bool A, B ; / / g l o b a l v a r i a b l e s
2 void f ( void ){
3 i n t c , d ; / / l o c a l v a r i a b l e s
4 i f (A == 1){
5 c = 0 ;

6 } e l s e {
7 c = 1 ;

8 }
9 i f (B == 1) {

10 d = 0 ;

11 } e l s e {
12 i f (A == 0){
13 d = 1 ;

14 } e l s e {
15 d = 2 ;

16 }
17 }
18 re turn c+d ;

19 }

Figure 6.3. Source code example.

An example program snippet is shown in Figure 6.3. It consists of two consecutive

if-then-else statements where the second one contains another if-then-else

statement. The CFG and the partitioned program segment graph are shown in Fig-

ure 6.4. The level of basic block B1,B4,B10 is 1, the level of B2,B3,B5,B6,B9 is 2

and the level of B7,B8 is 3. Branching basic blocks are B1,B4,B6 where branching

basic blocks B1 and B4 are on the same level. Therefore, the CFG is partitioned into

6 program segments, as shown in Figure 6.4 b). Note that the more than one branch

statement can belong to a program segment, e.g. PS (B4,B6,B7,B9,B10), because

branching basic blocks B4 and B6 are on different levels.

A graph traversing algorithm is used to identify segment headers. Starting from

the root node, the next branching basic block on the same hierarchy level is searched.

This search continues at the found segment header and is finished when the last node

of the control flow graph is reached. As a second step, all paths between two segments
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1,2,4 1,3,4

4,5,10 4,6,7,9,10 4,6,8,9,10

b)

Figure 6.4. Control flow graph and program segment graph.

headers form a program segment. Finally, a program segment graph is created where

the nodes are these program segments, and edges connect them.

6.3.2 Instrumentation probes
A measurement probe, Pm(Bi) at a basic block Bi is an instrumentation point de-

noted by a tuple Pm(Bi) = (li, t) in which li denotes the c-line and t a time stamp. In

terms of programming language, it is an instruction that reads the system timer and

stores it with the corresponding c-line li. A branch probe Pb(Bi) at a basic block Bi

is a tuple of the c-line li: Pb(Bi) = (li). It is implemented by an instruction that saves

the c-line li.
For an efficient system implementation, the basic blocks (bb), the branches (br),

and the (yet to be measured) execution time (time) of each program segment are

stored in a XML file. An example is shown in Figure 6.5.

Placement of instrumentation probes

Instrumentation probes are inserted before the segment headers of each program

segment. The placement of the measurement probes are shown in Figure 6.6 in the

source code and in Figure 6.2 b) in the control flow graph. In this example, three
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<PS i d =”1”> <bb> 1 ,2 ,4 </bb> <br> 2 </ br> <t ime ></ t ime>\>
<PS i d =”2”> <bb> 1 ,3 ,4 </bb> <br> 3 </ br> <t ime ></ t ime>\>
<PS i d =”3”> <bb> 4 ,5 ,10 </bb> <br> 5 </ br> <t ime ></ t ime>\>
<PS i d =”4”> <bb> 4 , 6 , 7 , 9 , 1 0 </bb> <br> 6 ,7 </ br> <t ime ></ t ime>\>
<PS i d =”5”> <bb> 4 , 6 , 8 , 9 , 1 0 </bb> <br> 6 ,8 </ br> <t ime ></ t ime>\>

Figure 6.5. XML structure for program segments

bool A, B ; / / g l o b a l v a r i a b l e s
void f ( void ){

i n t c , d ; / / l o c a l v a r i a b l e s
measurementProbe ( 4 ) ;

i f (A == 1){
c = 0 ;

} e l s e {
c = 1 ;

}
measurementProbe ( 9 ) ;

i f (B == 1) {
d = 0 ;

} e l s e {
i f (A == 0){

d = 1 ;

} e l s e {
d = 2 ;

}
}
measurementProbe ( 18 ) ;

re turn c + d ;

}

Figure 6.6. Source with measurement probes.

bool A, B ; / / g l o b a l v a r i a b l e s
void f ( void ){

i n t c , d ; / / l o c a l v a r i a b l e s
i f (A == 1){

b r a n c h P r o b e ( 5 ) ;

c = 0 ;

} e l s e {
b r a n c h P r o b e ( 7 ) ;

c = 1 ;

}
i f (B == 1) {

b r a n c h P r o b e ( 10 ) ;

d = 0 ;

} e l s e {
b r a n c h P r o b e ( 12 ) ;

i f (A == 0){
b r a n c h P r o b e ( 13 ) ;

d = 1 ;

} e l s e {
b r a n c h P r o b e ( 15 ) ;

d = 2 ;

}
}
re turn c + d ;

}

Figure 6.7. Source with branch probes.

measurement probes are sufficient. Note, that no additional probes are necessary for

the nested if-then-else statement in lines 11-16 in Figure 6.3.

Placement of branch probes

Branch probes are inserted in each branch. Figure 6.7 shows the source code with

inserted branch probes and Figure 6.2 c) shows the positions in the control flow graph.

The position of branch probes is given for each program segment PSk in Br(PSk).
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6.3.3 Execution time measurement
As described in the previous section, the source code is instrumented, first, with

measurement probes and, second, with branch probes. The probe instruction is trans-

lated to the actual hardware timing instruction. An example for a measurement probe

is given in the case study in section A.2. Then, the two source files are compiled and

separately executed on the evaluation board or processor simulator. In the next step

these timing results are back-annotated to the PSG.

6.3.4 Back-annotation of timing results
An example output of measurement probes is shown in Figure 6.8 a) and of branch

probes in Figure 6.8 c).

t i m i n g 4 1001

t i m i n g 9 1020

t i m i n g 18 1025

t i m i n g 4 1054

t i m i n g 9 1066

t i m i n g 18 1090

(a)

t i m i n g 4 9 19

t i m i n g 9 18 5

t i m i n g 4 9 12

t i m i n g 9 18 24

(b)

b r a n c h 5

b r a n c h 10

b r a n c h 7

b r a n c h 12

b r a n c h 13

(c)

Figure 6.8. Output of timing and branch probes.

Individual timing items are merged to a reduced timing item with the syntax:

timing lstart lend t, where lstart is the first and lend the last line of the program

segment. This is shown in Figure 6.8 b). The measured execution time between lstart

and lend is given by the variable t. The variable t is the difference between the two

system timer values of the timing statement at lend and lstart , as shown in Figure 6.8

a).

In the next step, the available branches and these timing-statements are annotated

back to the corresponding program segment. Then, the execution time t is annotated to

the matching program segment. This match is unique, because two program segments

with the same lstart and lend share at most a subset of branches. But the set of branches

cannot be the same, then it would be the same program segment. After this step, the

execution time for each program segment is available. A WCET analysis could then

be used to calculate the longest execution time of the program.
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6.4 Experiments
In this section we evaluate the instrumentation methodology for several bench-

marks. Table 6.1 lists the lines of code (LoC), the number of nodes in the control

flow and program segment graph, and the number of instrumentation points for each

benchmark.

task LoC graph nodes i-points red.[%]

BB-CFG PSG BB Pm Pb
BB−Pm

BB

paperExample 19 10 5 9 3 6 66%

parttrain 275 105 53 42 11 31 73%

fft 182 87 1 24 2 0 92%

jfdctint 375 95 3 14 5 0 64%

statemate 1276 538 305 272 148 124 46%

case study 5791 1102 893 865 354 511 59%

Table 6.1. Comparison number of graph nodes (CFG and PSG) for different benchmarks and lines of

code (LoC). Number of instrumentation points (i-points) at each basic block (BB), number of measure-

ment probes Pm, number of branch probes Pb, and reduction (red.) of time-critical measurement points

in %.

The benchmark paperExample is the example described earlier. Benchmark

parttrain is a packet receiver algorithm in a network server and fft is a Fast

Fourier Transformation algorithm, both are taken from [141]. The benchmark

statemate is automatically generated code of an automotive control application

and jfdctint is a discrete-cosine transformation on a 8x8 pixel block; both are

taken from Mälardalen WCET research group1. The case study is automatically

generated code of the case study which will be presented in section A.2.

The ratio program segments in the program segment graph and the number of ba-

sic blocks (BB) in a CFG for three benchmarks is about 0.5, while the ratio for the

benchmarks fft and jfdctint is about 0.03. This significant reduction is caused

by the detection of single feasible paths. Both algorithms consist of input indepen-

dent loops and thus entire functions are single feasible paths. Second, the number of

instrumentation points are compared. The number of instrumentation points at each

basic block (BB), the number of intrusive measurement probes Pm, and the number of

non-intrusive branch probes Pb. Intrusive means in this context that the insertion of

1http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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the probe disturbs the temporal behavior during program execution. Branch probes

are non-intrusive because only executed branches are monitored.

In the last column, the reduction of intrusive measurement points is shown. On

average, the number of intrusive measurement points is reduced by 67% compared

to an instrumentation at each basic block. Since in both cases, test patterns for full

branch coverage are sufficient, this reduction directly reduces the overestimation in

the WCET calculation method. The time complexity of the measurement methodol-

ogy is very low. The construction of the control flow graph from source code, the

partitioning into a program segment graph, and the instrumentation of measurement

and branch probes took less than one minute for each benchmark.

6.5 Conclusion
Performance validation is a key issue for real-time embedded systems. Measurement-

based WCET analysis approaches are an cost-efficient solution as the execution time

is measured on real-hardware. We have proposed a new instrumentation methodology

that minimizes the number of instrumentation points and requires only test patterns

for full branch coverage. The results for the instrumentation methodology show an

average reduction of 67% of intrusive measurement points compared to an instrumen-

tation at each basic block.





Chapter 7

SUMMARY AND OUTLOOK

7.1 Summary

Embedded systems are prevalent in today’s society and will be even more perva-

sive in the future. Then, requirements for an efficient system design will be more

demanding. Caches are needed to bridge the gap between slow main memory access

time and ever increasing processor clock frequency. Because of its complex design, a

cache leads to a dynamic timing behavior and is thus often avoided for real-time ap-

plications. Besides the dynamic timing effects within a single task execution, context

switch delays have to be considered when preemptive task scheduling is used. Since

fixed priority preemptive scheduling is very attractive for its ability to guarantee short

response times and a high utilization, timing verification approaches have to consider

their impact on cache behavior.

In this thesis we have presented methods to analyze timing behavior of associative

instruction caches for fixed priority preemptive scheduling. First, we have developed

a novel cache-aware schedulability analysis that bounds the preemption delay much

tighter than previous conservative approaches. The key idea is to distinguish between

task preemptions and actual cache interference and thereby reducing the total number

of preemptions. The additional time complexity to identify and to calculate the pre-

emption delay is bounded by O(n ·E j,i · log(E j,i · n)) in which n denotes the number

of tasks to be scheduled and E j,i denotes the number of task activations of a higher

priority task τ j during the response time of task τi. As the time delay for a single pre-

emption we used the state-of-the-art approach that considers the preempted as well as

the preempting task.
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As a refinement, we have focused on multiple task preemptions. While previous

approaches assume that each preemption takes place at the worst case preemption

point, we analyze all preemptions in context. We determine the worst case preemption

scenario, e.g. the set of worst case preemption points that yield the total worst-case

delay. The cache interference at a preemption point is analyzed in connection with all

previous cache interferences of the preemption scenario.

Motivated by an automotive case study, we analyzed the effect of multiple task ex-

ecutions on cache timing behavior. We presented an analysis that considers previous

task activations and thereby revised the empty cache assumption in previous cache

analysis approaches.

As a bound for a single preemption delay is the key factor for potential overestima-

tion, we studied the characteristics of two data flow analysis techniques which bound

the preemption delay most accurately among all related work. These techniques dif-

fer substantially in time-complexity and analysis precision. We presented a combined

analysis that allows to gradually scale the analysis precision and analysis time com-

plexity. The results have shown that a significantly higher analysis precision can be

achieved with only a small increase of time-complexity.

While the above techniques are geared to instruction caches, we have proposed a

timing analysis for direct mapped data caches for a single task execution. Input data

dependency of memory accesses are the main cause of unpredictability. A combina-

tion of symbolic execution, data flow techniques and integer linear programming is

used to bound the cache access time even for accesses to memory addresses that are

dependent on input data. Compared to previous conservative approaches, the results

show an improvement of an order of magnitude while compared to simulation results

our approach shows up to 46% overestimation. However, a direct comparison with

simulation is misleading because not all execution paths were simulated and thus the

worst-case path might not have been simulated.

Finally, we integrated the presented cache analyses into the SymTA/P prototype.

As SymTA/P is a measurement-based WCET-analysis approach, the precision de-

pends on the measurement overhead. We have presented a novel instrumentation

point methodology that reduces the number of instrumentation points while assuming

only full branch coverage. The results show a reduction of over 60% of instrumen-

tation points compared to previous instrumentation techniques that instrument each

basic block and which also requires a full branch coverage.



Outlook 163

7.2 Outlook
In this thesis we have presented a sophisticated analysis framework to make caches

more attractive for real-time systems. However, much research will still be necessary

until caches will be used in real-time or safety critical applications. First, we point

out some short-term goals which aim at improving the proposed analysis framework

and then we point out some long-term research goals.

Short term goals

The cache-aware scheduling analysis has been applied to fixed priority preemptive

scheduling. First, it would be valuable to apply the methodology to other scheduling

policies, such as TDMA or Round Robin.

In TDMA and Round Robin scheduling policies the task execution is sliced. For

preemption delay calculation, one has to search for the maximum delay only during

this time window instead for the entire task. This has the potential gain of tighter

bounds of the preemption delay. Also if the task sequence is known a priori, tighter

bounds can be given for initial cache state (warm cache state). If preferred preemption

points were used (e.g. in linear code and not during execution of loops) coupled with

time-slicing techniques, the cache-related preemption delay costs could further be

minimized.

Second, the analysis for multiple preemptions supports only single functions. An

extension for sub-functions is essential if the analysis is to be applied to more complex

applications.

Third, associative instruction caches with LRU replacement strategy are assumed.

Many cache architectures include complex features, like critical word first, sub-block

placement, streaming to CPU, write buffers, victim caches and multi-level caches.

Our analysis consists of a modular framework that captures the cache behavior in a

single module. Thus, this cache module could be extended feature by feature.

Third, we assumed direct mapped data caches in the timing analysis for input de-

pendent memory accesses. This analysis could be extended to associative caches.

Furthermore, the cache related preemption delay analysis framework could be ap-

plied to data caches. Currently, data cache analysis restricts the source code to single

functions. For larger applications, these limitations have to be resolved.

If these extensions were implemented, a sophisticated framework including sin-

gle task cache analysis and cache-related preemption delay analysis supporting both

instruction as well as data caches would be available. Such a framework could be

integrated into any WCET-analysis methodology, like SymTA/P, aiT by Absint or
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Rapitime by Rapitasystems. This integration would also be of great value for system

level analysis, like SymTA/S [56] [101].

Long term goals

Long-term research directions might include bounding main memory access times,

designing a real-time cache and comparing different cache prediction techniques.

In traditional schedulability analyses the WCET is assumed, while in WCET ap-

proaches the cache miss penalty and the memory access time are considered as con-

stant. The bound of memory access times has to be conservative, e.g. the worst case

memory access time. As memory access times are dynamically influenced by bus ar-

bitration and timing behavior of memory controller, assuming always the worst case

memory access time will lead to high overestimations of the WCET and, thus, to an

overestimated response time. In [119] [104] [103] it is discussed, how system level

schedulability analysis could be combined with lower-level WCET analysis to more

tightly bound memory access times.

Designing a cache that is fast but also predictable is a major challenge. It would

be very interesting to design an alternative cache architecture that meets high timing

requirements while being analyzable with an adequate static timing analysis.

Another future research direction would be to compare the cache performance of

cache locking approaches, cache partitioning approaches and cache-aware schedula-

bility analyses. Then, an optimal configuration using all three techniques could be

suggested for a given application.
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WCET Analysis

A.1 SymTA/P analysis framework
The SymTA/P methodology to calculate the WCET and its limitations have been

briefly described in section 6.2.2. In this section we describe the refined analysis

including the following main contributions:

1 The proposed instrumentation methodology is integrated in the SymTA/P.

2 The input dependency analysis for single feasible path identification is rigorously

revised. The proposed method is based on GNU GCC compiler’s abstract syntax

tree. The advantage is that the full C syntax is supported making SymTA/P feasible

for larger software projects.

3 The BCET and WCET calculation supports sub-functions. From practical per-

spective this issue is essential for larger software projects.

An overview of the framework is shown in Figure A.1. The hybrid approach con-

sists of a path analysis module (Frontend) based on source code, an execution time

measurement module (Backend) based on object code, a cache analysis module, and

a WCET calculation module (ILP solver). In the following each module is described

in more detail. A detailed description of the installation and usage of the tool can be

found in [114] and at the website of the institute [121].

A.1.1 Program path analysis (Frontend)
The program path analysis module corresponds to the Frontend in Figure A.1.

Based on the C source-code, the program path classification and the control flow

graph of a software task are created by a Frontend parser, as shown in Figure A.2.
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Frontend
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ILP solver

C-code

Execution time interval

Stimuli User

Figure A.1. Overview of SymTA/P analysis framework.
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Figure A.2. Frontend of SymTA/P.
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Figure A.3. Backend of SymTA/P.

This Frontend parser reads the abstract syntax tree, which is generated by GNU GCC,

and performs a symbolic simulation on the abstract syntax tree to determine input

data dependency.

A.1.2 Execution time measurement (Backend)
The execution time measurement, called Backend, is shown in Figure A.3. Off-the-

shelf processor simulators or cost-efficient evaluation boards can be used. Based on

the control flow graph and the path classification, the measurement instrumentation
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framework of section 6.3.1 is implemented in the Definition measurement

points phase.

If an evaluation board is used, the C source code is instrumented once with in-

strumentation probes and once with branch probes. Each probe is a function call,

that is defined in terms of hardware dependent assembly instructions. Then both in-

strumented programs are executed and the results are annotated back to the program

segment graph according to section 6.3.4. If a cycle accurate processor simulator is

used, a debugger script is automatically generated that starts and stops the execution

of the program. The output is back annotated to the program segment graph accord-

ing to section 6.3.4. During this measurement, a safe initial state cannot be assured

in all cases. Therefore an additional time delay is added to conservatively assume the

worst case. At the end of this module the execution time of each program segment is

available.

The Backend provides a framework that is easy to re-target to new processors. In

general the Backend requires the following: First, test patterns have to be specified for

full branch coverage. Usually these test patterns are already available from previous

functional test phase in industrial projects. SymTA/P does not provide a test pat-

tern generator. However, the WCET-calculation module highlights the source-code

lines that were not measured. Second, the implementation of the instrumentation

and branch probes have to be defined for the new target processor. And third, the

measurement framework has to be adapted to the new hardware. This includes the

communication to load the program to the board, to start and stop the program, to

access system timers, and to write back timing results to the host PC.

A.1.3 Cache Analysis

The cache analysis in SymTA/P is shown in Figure A.4.

Based on the control flow graph and the memory map file that is created from

the binary, a static cache analysis [141] computes the cache access behavior for each

segment. The requirements for cache analysis include the memory map file of the

program and the cache configuration, e.g. cache size, associativity, and block size.

A.1.4 WCET Computation (ILP Solver)

The longest and shortest paths in the control flow graph are found by an integer

linear programming (ILP). This module is shown in Figure A.5. The measured exe-

cution time and the cache access behavior are combined to the total execution for each

program segment. The ILP is constructed using structural constrains which are auto-
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Figure A.4. Cache analysis of SymTA/P.
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Figure A.5. WCET calculation (ILP Solver) of SymTA/P.

matically generated from the control flow graph. Loop bounds have to be specified

by the user to bound the maximum number of loop iterations.

Compared to previous work the ILP generation is extended for function calls. The

call tree of all functions is constructed. The ILP of the functions at leaf nodes, which

call no other functions, are constructed first. Then the ILP construction advances in a

bottom-up fashion until all functions are considered.

If for some program segments no execution time was assigned, the ILP solver

issues a warning. In this case, the user can specify additional test patterns (stimuli)
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and can re-run the timing measurement (Backend). Finally the total best-case and

worst-case execution time are available.

A.2 Case study
Setup

The WCET-analysis is applied to a safety critical automotive control application

for a micro-hybrid vehicle. It consists of a C-source file with about 5800 lines of

code. The largest function has about 4200 lines. Totally, there are 11 functions in the

application. Parts of the presented results have been previously published in [110].

Test patterns are manually defined using Matlab/Simulink environment [82]. The

test patterns are structured in test sets and test cases. A test case corresponds to a set

of input signals for a single simulation step of the application. A test set corresponds

to a sequence of input signals. Totally, 65 test sets are specified, with totally 272022

test cases (about 4185 test cases for each test set).

The measurement framework consists of a C167CR evaluation board, a C compiler

(Tasking), bootloader (I+ME Actia) and a tailor made measurement methodology for

the C167CR board. The C167CR evaluation board is equipped with 2kB internal (on-

chip) RAM for registers and stack and 256kB static RAM for code. The board does

not provide ROM. Communication is only possible over serial bus, JTAG or other

debug interfaces are not available.

Process description

We briefly describe each step in the SymTA/P analysis framework. In the path

analysis module, the control flow graph is constructed for each function and the code

is instrumented with measurement and branch probes. The implementation of these

probes for the C167CR processor is shown in Figure A.6. The measurement probe

is a macro which outputs a system timer value and the branch probe outputs only the

c-line.

# d e f i n e measurementProbe ( l ) T6CON &= ˜ ( 0 x0040 ) ; \
p r i n t f ( ” t i m i n g %u %lu00 \n ” , ( l ) , ( ( ( u n s i g n e d long i n t ) \
( T5 ) << 16 ) | T6 )∗ ( TICK NS / 1 0 0 ) ) ; T6CON |= 0 x0040 ;

# d e f i n e b r a n c h P r o b e ( l ) p r i n t f ( ” b r an c h %u\n ” , ( u n s i g n e d i n t ) l ) ;

Figure A.6. Implementation of probe functions for C167 evaluation board.
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In this case study, 354 measurement probes and 511 branch probes were inserted in

the source code. The control flow graph (for basic block instrumentation) consists of

1102 nodes and the program segment graph contains 893 program segments. These

numbers are totals, e.g. for all 11 functions.

Once the execution time has been measured on the C167 board, they are annotated

back to the program segment graph. Finally, the longest execution path is calculated

by integer linear programming. For a conservative timing analysis, the worst case

system state for each program segment has to be analyzed. The C167 processor has

a four-stage pipeline and the memory access to the static RAM can be considered

constant. The overhead is determined as follows: The time clock runs at half the speed

as the processor. Therefore the measurement precision is two instructions. Assuming

100 ns= 1 clock cycle, the total error is at most 400 ns. The measurement instruction

was measured to be 300-400 ns (=2 instructions, one instruction to start and one

instruction to stop the timer). The worst case pipeline state is to assume a pipeline

flush, which means a new instruction has to start at instruction fetch. This delay can

be bounded by 4 clock cycles (400ns). In summary, the measurement instruction

may take between 300-400 ns, which can be subtracted from the execution time for

a program segment. The additional overhead for a conservative pipeline state is 400

ns. Therefore the overhead of 100 ns (1 clk) is added to the execution time for each

program segment.

Results

Independent tracing was run with all test pattern to compare the static timing anal-

ysis by SymTA/P. The application was instrumented at the beginning and at the end of

the application. The distribution of the execution times for all test cases, which were

determined by simulation in Figure A.7. The longest execution time was 491 micro

seconds (μs). The range of execution time is between 326 and 491 μs. It can be seen,

that some execution times occur more frequent than others. This has motivated the

notion of process modes and the study of contest sensitive timing analysis, in which

for a given set of input data the execution time is determined [118].

The static timing analysis of SymTA/P determines the WCET of 797 μs which is

about 62% longer than the tracing result. However this cannot be considered as an

overestimation, because it cannot be guaranteed that the worst case path was actually

measured during tracing.

The time spent in each phase is summarized in table A.1. The total time was about

54 hours for the entire case study.
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Figure A.7. WCET calculation (ILP) of SymTA/P.

Nr Phase Time

1. Program Segment Clustering (CFG) 6min

1. Instrumentation of measurement points (Board) 1min

2. Configuration and compilation in Tasking EDE 5min

2. Execution on C167 board (measurementProbes) 22h

2. Execution on C167 board (branchProbes) 20h

3. Back-annotation of timing results 11h

4. WCET calculation (ILP Solver) 1min

Total 54 h

Table A.1. Time requirement for each analysis phase.

The execution on C167 board includes the communication via serial line. Most of

the time is due to this communication which is very slow. This running time could be

reduced, when the measurement results are stored in on-board static RAM. However,

the available C167CR evaluation board has only a 256kB RAM. The running time

could be significantly reduced by using a more sophisticated measurement method-

ology, e.g. JTAG interface or by using a board with sufficient on-board memory.

The bottleneck was the communication between C167 board and the host PC. The

back-annotation software is a prototype and has not yet been optimized, which is a

technical issue.
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Glossary

This glossary contains often used abbreviations and mathematical terms.

Abbreviations

BB,B Basic block

CFG Control flow graph

BCET Best case execution time

BCRT Best case response time

CRPD Cache related preemption delay

ILP Integer Linear Programming

LCS Set of live cache states in Mitra’s approach

LMB Set of live memory blocks in Lee’s approach

RCS Set of reaching cache states in Mitra’s approach

RMB Set of reaching memory blocks in Lee’s approach

SymTA/P Symbolic Timing Analysis for Processes

SymTA/S Symbolic Timing Analysis for Systems

USE Set of useful cache blocks

WCET Worst case execution time

WCRT Worst case response time



192 Glossary

Mathematical terms

Bi Blocking time of a task τi, 27

Ci Worst case execution time of a task τi, 27

crpd( j, i,Rn
i ) General term for preemption delay27

δ j,i Single preemption time delay if task τ j preempts τi, 52

δ j,i(n) n-th marginal preemption delay if task τ j preempts τi, 65

Δs
j,i(R

n
i ) Simplified calculation of preemption delays, 52

Δ j,i(Rn
i ) Advanced calculation of preemption delays, 55

En
j,i Number of activations of τ j during the interval Rn

i , 52

genc[B] Set of generated memory blocks at cache set c at B.

The definition depends on the data flow algorithm

hp(i) Set of higher priority tasks then task τi, 27

LCSc[B] Set of live cache states at B, 42

LMBc[B] Set of live memory blocks of cache set c at B, 35

Pi Period of task τi, 27

Ri Response time of a task τi, 27

RCSc[B] Set of reaching cache states at B, 42

RMBc[B] Set of reaching memory blocks of cache set c at B, 35

Sn
j,i Preemption scenario, if task τ j preempts τi n times, 65

tmiss Time to reload a single cache block, 28

USEτ
lee[B] Set of useful cache blocks at B in Lees approach, 40

USEτ
mitra[B] Set of useful cache blocks at B in Mitras approach, 43

USEτ
scale[B] Set of useful cache blocks at B in scalable approach, 97


