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Chapter 1

Introduction

In many industrial processes the flow behaviour of liquids plays an important
role. The macroscopic flow properties as volume flux and pressure loss are
determined by the local structure of the flowing substance and production
efficiency, optimization processes, security, ecological aspects or quality man-
agement might be affected extremely. Within the production of many mate-
rials suspensions are involved. The filler material affects the properties of the
material that for instance may be paints and varnish, ceramics, pastes and
slurries, paper, certain foodstuffs or cosmetics. Also non-industrial fields as
medical science (blood circuits) and phenomena in nature like dunes formed
by sedimentation are connected with the streaming of a particle-laden fluid.
In the shear flow of a suspension hydrodynamic particle-particle interactions
lead to stochastic particle movements and the so-called hydrodynamic dif-
fusion takes place. A demixing might be generated if a systematic particle
migration orthogonal to the flow direction is induced by gradients of the inter-
action frequency and of the resistance force to transverse particle movement.
These phenomena were investigated experimentally and analyzed theoreti-
cally (for instance by Happel and Brenner [12]). A gradient of resistance
also affects the particle drift. Such a gradient originates in the vicinity of
solid boundary walls or a viscosity gradient. Near the wall the resistance
coefficient regarding particle movements orthogonal to the wall is increased.
An enhanced relative viscosity coming along for instance with an increased
particle concentration also leads to an increased resistance coefficient. A
laminar tube flow of a suspension at steady state develops a boundary layer
at the wall with a low particle concentration leading to the phenomenon of
pseudo wall slip resulting in a decreased pressure difference related to a con-
stant particle flux. Due to inhomogenity the local shear rates, velocities and
particle concentrations vary causing differing residence times in the tube and
different degrees of mechanical strain.

1



CHAPTER 1. INTRODUCTION 2

The overall object of this work was the development of a phenomenolog-
ical theory to describe the wall influence in a shear flow of a suspension
combined with an experimental investigation. Due to time constraints the
experimental analysis was confined to a chiefly qualitative character. As far
as the theory is concerned an approximation of the resistance force under
wall influence was set up leading to a new diffusion equation. The model was
employed in order to calculate the shear rate profiles, velocity profiles and
particle concentration distributions of a shear-flowing suspension including
wall influence and gravity as well as the time-dependant gravity effect of a
non-flowing suspension. By means of nuclear magnetic resonance (NMR)
methods suspensions and solutions were analyzed experimentally to evaluate
the model. This powerful technology allows the detection of spin densities of
nuclei operating non-invasively. The distinction between protons and non-
protons (H-NMR) makes the imaging of particle distributions and velocity
profiles in suspensions possible. In this regard a special shearing device fea-
turing an oscillating tube flow was constructed to realize a timely unlimited
shearing process.



Chapter 2

Theoretical Background

2.1 Rheological Basics

2.1.1 Definitions

The main topic of the rheology (greek rheos=flow) is the constitutive be-
haviour of fluids. The relation between resistance and deformation is mea-
sured (rheometry), described (phenomenological rheology), expressed by math-
ematical modelling (theoretical rheology) and interpreted investigating the
molecular processes (structure rheology).
The system response to a deformation consists of shear stresses τij parallel
to the surface areas and of normal stresses σii perpendicular to these (cp.
fig. 2.1). The representing stress tensor indicating the nomenclature is:

S =

⎛
⎝ σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎞
⎠

Usually an isotropic pressure p is separated from S

S = −pE + T

leading to

S =

⎛
⎝ −p + τxx τxy τxz

τyx −p + τyy τyz

τzx τzy −p + τzz

⎞
⎠ .

τ is called ′extra stress tensor′. A flowing fluid may experience varying normal
stresses. In this case the pressure is defined as:

p = −(σxx + σyy + σzz)

3

3
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σxxτzx

τyx
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z

τxyτzy

σyy

τxzσzz

τyz

Figure 2.1: Shear stresses and normal stresses of a volume element

x
y

F,A

H

u(y)

δ

Figure 2.2: Couette Flow

Torque balance proves that τij = τji. The kinematics of a simple shear flow
(fig. 2.2) results in the extra stress tensor

T =

⎛
⎝ σxx τ 0

τ σyy 0
0 0 σzz

⎞
⎠ .
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Below the definition of the typical rheological properties is explained con-
sidering a volume element of a substance between two parallel plates at a
distance of H as shown in fig. 2.2 (Couette flow). The element is sheared
by moving one of the plates. To pull the plate along the fluid a force F is
needed due to the occurring friction that results from molecular momentum
transport caused by momentum gradients and molecular interactions. The
shear stress τ is defined as the force F per area:

τ =
F

A

The shear strain γ is defined as the moved distance X per height unit (in
the case of a Couette flow it is constant due to the linear velocity profile):

γ(y) =
dX(y)

dy
= X/H = tan δ

Here at the plates no slip is presumed. The shear angle δ is

δ = arctan
X

H

The shear rate is the obtained strain per time:

γ̇(y) =
dγ

dt
=

d(u(y))

dy
=

U

H
(2.1)

A central rheological property is the dynamic viscosity η. Characterizing the
flowability of a substance it is defined as the proportionality factor linking
shear rate and shear stress:

η =
τ

γ̇
(2.2)

The dynamic viscosity strongly depends on temperature. When increasing
the temperature fluids show viscosity reduction as the dominating intermolec-
ular interactions are weakened whereas within gases a higher collision rate
makes the sliding by of the shear layers more difficult leading to a rise of
the viscosity. Furthermore considering suspensions the viscosity is a function
of particle size and fibre length, respectively shape of particles and other
properties of the system.

Shear rate dependance of viscosity Fig. 2.3 shows the viscosity de-
pendance on the shear rate of different types of material at steady state.
A special case is the newtonian fluid with a constant viscosity with respect
to time as well as to shear rate. The most famous example is water. At
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Figure 2.3: Shear rate dependance of viscosity function

higher shear rates the viscosity might decrease due to structural changes
within the molecular scale of the substance. This behaviour is called shear
thinning or pseudo plasticity showed by polymer solutions mostly. Shear
thickening substances basically including some highly concentrated suspen-
sions and dispersions, pastes and slurries, become more viscous at high shear
rates leaving the elements of the disperse phase not enough time to sidestep
each other generating transverse forces via momentum exchange. Some sub-
stances require a certain shear stress till they deform, the shear yield stress,
corresponding to an infinite zero-shear viscosity. A typical example for a fluid
with shear yield stress τF (Bingham fluid) is oil paint. Some shear thinning
substances also possess a yielding point. The two-viscosity model represents
substances developing two newtonian regions. A common characterization
of a non-newtonian fluid is given by the Power Law (Herschel-Bulkley):

η(γ̇) =
τF

γ̇
+ kγ̇n−1

τF = 0 delivers the Ostwald/de Waele law whereas n = 1 describes a Bing-
ham fluid.

Time dependance of viscosity Possible time dependances of the viscos-
ity if shearing starting from a state of rest are displayed in fig. 2.4. An
increase of the viscosity is called rheopexy, a decrease of the viscosity is
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Figure 2.4: Time dependance of viscosity function

called thixotropy. Both types of behaviour occur at disperse systems origi-
nating in the structure of the disperse phase. Thixotropy also might be the
consequence of changing molecular orientation or rearranging of molecular
structures. The responsible mechanisms may be reversible or irreversible.
Every point of the viscosity functions in fig. 2.3 is the asymptotic value of
the viscosity for t → ∞ in the diagram of fig. 2.4.

A non-newtonian substance generally shows different normal stresses de-
scribed by the first and the second normal stress difference:

N1(γ̇) = σ1(γ̇) − σ2(γ̇)

N2(γ̇) = σ2(γ̇) − σ3(γ̇)

The first and the second normal stress coefficients are defined as:

Ψ1 =
N1(γ̇)

γ̇2

Ψ2 =
N2(γ̇)

γ̇2

2.1.2 Disperse Systems

The viscosity function of suspensions is dependent on the viscosity of the
matrix fluid as well as on the volume concentration φ of the disperse phase.
A great amount of formulas was created to describe this relation. Our choice
is the Krieger-Dougherty equation stated by Krieger and Dougherty [26] valid
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for suspensions with a newtonian matrix fluid of the viscosity η0:

η(φ) = η0

(
1 − φ

φm

)−2

(2.3)

Maximum concentration φm is the theoretically maximal concentration at
which the transition to bulk solid takes place implicating an infinite viscosity.
Here φm = 0.68. The relative or reduced viscosity η(φ)/η0 relates η to the
viscosity of the matrix fluid.

Wall slip Most highly concentrated suspensions possess a yield stress. The
system might slide along the wall as between wall and particles a thin layer
of pure matrix fluid can be found. If the applied shear stress is less than
the yield stress either there is no flow or flow is pure plug flow and there
is no wall adhesion. Applying a shear stress higher than yield stress makes
internal shear flow possible and there may be a superposition of wall slip
and internal shear flow. It is possible to distinct these two by the method
of Mooney. It is assumed that the volume flow is composed of the flow rate
due to wall slip V̇W and the flow rate due to shear V̇S:

V̇ = V̇W + V̇S

Second assumption is the dependancy of the slip velocity uW solely on the
wall shear stress:

uW = f(τW )

Then the total flow rate of a shear flow through a capillary with length L
and radius R is:

V̇ = πR2uW +
πR3

τ 3
W

∫ τW

0

τ 3

η(τ)
dτ

⇔ V̇

πR3
=

uW

R
+ A(τW )

Measuring the volume flow using different capillaries with the same ratio
L/R (for example with a twin-capillary) gives the slip velocity as the slope
in the L/R,V̇ /πR3-diagram.

Pseudo wall slip If the shear rates near the wall are significantly higher
than farther away flow velocity increases fast within a short distance from
the wall. Macroscopical observation might lead to the (wrong) impression
that the system is sliding at the wall. This phenomenon is referred to as
pseudo wall slip [6].
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2.1.3 Rheometers

Devices for measuring rheological properties are called rheometers. There is
a great variety of them, each with its own specific advantages and disadvan-
tages. In this section only a small selection is described.
There are many types of rotational rheometers featuring an axially symmet-
rical design consisting of a rotating and a non-rotating component. Either
the torque and with it shear stress or the angular velocity and with it the
shear rate can be set obtaining in each case the other parameter being the
measured quantity as a response of the system (CSS: Controlled Shear Stress,
CSR: Controlled Shear Rate). Significant advantages are the realizability of
different geometries, different basic tests including oscillating shear, a wide
working range and the possibility of investigating the normal stresses. Within
the following specific description of rotational rheometers no slip is assumed.

Parallel Plate Rheometer

The rotating element is a plate (fig. 2.5). As the local angular velocity ω of

y r
R

Ω,M

ωH

Figure 2.5: Parallel plate rheometer

a layer of liquid is dependant on the position y and the angular velocity of
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the upper plate Ω

with ω(y) = Ω
y

H

and thus the circumferential velocity alike u(r, y) = r
Ω

H
y

the shear rate (2.1) is not constant in this case (for denotation cp. fig. 2.5).
Approximately the shear rate is:

γ̇ =
du

dy
=

rΩ

H
(2.4)

The shear stress can be determined out of the torque:

M =

∫ R

0

rτ(r)2πrdr .

In case of a Newtonian fluid with

τ(r) = ηγ̇(r) =
ηrΩ

H

the shear stress at the border is

τ(r = R) =
2M

πR3
.

For non-newtonian fluids a correction is needed to obtain τ(r = R) from M
[29].

Cone plate rheometer

The sensor is a rotating cone with a very flat cone angle α instead of a
plate (fig. 2.6). In contrast to the parallel plate rheometer the shear rate is
constant according to

γ̇ =
du

dy
=

drΩ

dr tan α
≈ Ω

α
(2.5)

since the height is h(r) = r tan α ≈ rα
and the circumferential velocity of the plate u(r) = rΩ.
With the torque equivalent to that of the parallel plate rheometer

M =

∫ R

0

rτ2πrdr (2.6)
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y
r

R

Ω,M

αh=h(r)

Figure 2.6: Cone plate rheometer

and the resulting shear stress

τ =
3M

2πR3
(2.7)

the viscosity measured is (2.5, 2.7):

η =
3M

2πR3

α

Ω

2.1.4 Shear Tests

Linear Shear

The most common shear tests are the creep experiment featuring steady shear
γ̇ = const and the stressing experiment characterized by constant shear stress
τ = const.
The time-dependant reaction τ(t) = G(t)γ after applying a shear strain step
(relaxation test) shows the capacity for remembering of the substance de-
scribed by the shear modulus G(t) comprising the characteristic relaxation
times λi and the associated individual values of the storage moduli gi accord-
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ing to

G(t) =
∑

i

gi exp(−t/λi) .

The relaxation spectrum (λi, gi) is not well-defined. Usually for a certain
system various sets of fitting relaxation times λi and corresponding moduli
gi can be found. Hereby the number of relaxation times (and moduli) may
vary as well.

Oscillatory Shear

The behaviour of a viscoelastic material undergoing oscillatory shearing is a
result of the combination of viscous and elastic characteristics of a material:

γ(t) = γ̂ sin(ωt)

γ̇(t) = γ̂ω cos(ωt)

The occurring shear stress consists of a viscous component represented by the
loss modulus G′′ and an elastic component described by the storage modulus
G′ (fig. 2.7):

τ(t) = G′γ̂ sin(ωt) + G′′γ̂ cos(ωt)

The elastically stored energy represented by the storage modulus G′ becomes
maximal at maximum strain, the maximum of the dissipated energy (viscous
behaviour) described by the shear loss modulus G′′ is the point of the maxi-
mum shear rate that is the the middle position being the zero-point of strain.
As a result the run of the shear stress is shifted by a phase difference δ(ω)
(τ̂ is the amplitude)

τ(t) = τ̂ sin(ωt + δ(ω))
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Figure 2.7: Frequency dependance of storage modulus and loss modulus
(oscillatory shear)
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2.2 Hydrodynamic Diffusion

Considering creeping shear flow without inertia from the Navier Stokes differ-
ential equations and the force and momentum equilibria of the particles fol-
lows zero transverse force acting on single floating neutrally buoyant spheres
[42].
The global dynamic lift force composed of

the Saffman force [40]: In case of non-neutrally buoyant spheres the density
difference induces a velocity slip. In vertically upward flow the velocity
profile of the particle system varies from that of the matrix fluid. If the
particle density is lower than that of the fluid they flow faster than the
fluid, if they possess a larger density than the fluid they are slower than
the fluid. The direction of the particle migration is determined by the
velocity difference between the particle and the flanking streamlines.
The particles migrate towards the larger difference where the pressure
is lower. Thus the interaction between slip velocity and shear causes a
transverse force.

the force due to a curvature of the velocity profile [23]: A curved velocity
profile (e.g the parabolic profile of a Poiseuille flow) leads to different
relative (to the particle velocity) fluid velocities tangent to the particle
causing again a pressure difference and a force-dipole. Particles migrate
in the direction of lower pressure and therefore towards larger relative
fluid velocities (corresponding to higher shear rates).

the Magnus effect / Rubinow-Keller force [43]: The interaction of particle
rotation and shear leads to a pressure reduction on the side with ro-
tation resulting in a tangential velocity pointing in the same direction
like the fluid velocity causing a transverse force directed likewise.

can be neglected because in all these cases the effects originate from inertia.
Still particles move transverse to the flow direction leading to demixing or
structuring eventually. The origin lies in the mechanism of hydrodynamic
diffusion.

2.2.1 Theory of Hydrodynamic Diffusion

According to the theory of hydrodynamic dispersion, also known as ′hydrodynamic
diffusion′, in shear flow of suspensions statistical velocity fluctuations occur
due to hydrodynamic particle interactions. This leads to a homogenous redis-
tribution of particles taking place continuously and possibly to a systematic
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particle drift transverse to flow direction.
Moving particles that come near each other are imagined to affect their paths.
They give way and return afterwards to their original courses if the interac-
tion was reversible (as arising from the linearity of the Stokes equations). In
reality the interactions are always irreversible. An explanation may be the
chaotical behaviour of the system. If the system is very sensitive relating to
the initial conditions a slight change of these or a small imperfectness entails
an extreme impact on the subsequent states. After the interaction the par-
ticle might end up on another streamline having experienced a displacement
at random direction in average. This leads in a suspension featuring a ho-
mogenous particle distribution without relevant gradients (cp. section 2.2.2)
to a continuous mixing of the disperse component.
This mechanism and effects of hydrodynamic diffusion is not to be confused
with the Brownian motion of the particles and the resulting interactions and
displacements described by Fick’s law.

2.2.2 Shear-Induced Particle Drift Transverse to Flow
Direction

We look at the creeping plane shear flow of a suspension without inertia
effects. The particles are monomodally distributed rigid spheres and big
enough for rendering the Brownian motion insignificant. That is diame-
ters are 1 − 10μm minimum depending on the present velocities. Certain
gradients might induce a systematic particle drift orthogonal to the shear
direction. The net particle transport is not connected with movements of a
single particle but a purely statistical and collective phenomenon related to
the entirety of the system. It is caused by gradients of interaction frequency
that come along with gradients of concentration and shear rate and by gradi-
ents of the dynamic viscosity that may be caused for example by a gradient
of the particle concentration.

Particle drift due to gradients of interaction frequency We pic-
ture the particles as passing by each other on neighboring streamlines. As a
particle-particle interaction results in moving the involved particles the prob-
ability of a particle changing its place is growing with increasing interaction
frequency. Thus an overall particle drift in the direction of lower interaction
frequency is generated. The interaction frequency φγ̇ is linearly dependant
on the particle volume concentration φ as the more particles pass by the more
interactions happen and also on the local shear rate γ̇ since the greater the
velocity difference of the two streamlines the more interactions take place in
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the same time interval. Thus the particles drift from higher to lower particle
concentrations and from higher to lower shear rates.

Particle drift due to gradients of resistance force The resistance
force F⊥ onto a particle moving across the shear direction determines the
distance a particle is dislocated by an interaction. The higher the resistance
force respectively the viscosity of the fluid the shorter is the covered distance.
As on the average particles moving in the direction of lower resistance force
move farther than particles moving in direction of higher resistance force, a
particle drift in the direction of lower resistance force is induced.

Particle drift due to curvature of streamlines The particle transport
in the direction of less streamline bending [4] is neglected here.

Diffusion Equation

Phillips et al. [33] have set up a diffusion equation to describe the shear-
induced particle migration.
The particle flux �Nf through an area element out of a volume element orthog-
onal to flow direction due to a gradient of interaction frequency is propor-
tional to the particle concentration. Additionally a dimensionless material
independent diffusion coefficient kf and, according to dimension-analytical
considerations, a factor a2 as the radius a of the particle is the relevant length
unit are needed. Therefore the local particle flux is calculated as

�Nf = −kfa
2φ∇(φγ̇) . (2.8)

The particle flux due to the gradient of the resistance coefficient
F⊥/uP = 6πηa scales with ∇(F⊥/up)

F⊥/uP
. Further proportionality factors are again

a2 and an adequate diffusion coefficient kη as well as the interaction frequency
and the particle concentration

�Nη = −kηa
2φ2γ̇

∇ (F⊥/uP )

F⊥/uP

. (2.9)

The total particle flux is
�N = �Nf + �Nη .

Here the resistance force acting on a particle is the Stokes force

FSt = 6πηauP . (2.10)

This was found independently by Navier [30] and by Stokes [44, 45] deduced
from the Navier-Stokes equations as the resistance force acting on a particle
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due to friction valid in an infinite expanded homogenous and parallel ap-
proaching flow field without inertia effects. up shall be the particle velocity
across the shear direction. With (2.10) the particle flux due to the gradi-
ent of resistance force corresponds to the gradient of the dynamic viscosity
(Leighton and Acrivos [27]):

∇ (F⊥/uP )

F⊥/uP

=
∇6πηa

6πηa
=

∇ η

η
(2.11)

and with (2.9)

�Nη = −kηa
2φγ̇

∇ η

η
(2.12)

The diffusion coefficients were determined experimentally by Leighton and
Acrivos [27] and others. The diffusion equation results from the mass balance:

∂φ(y, t)

∂t
= −∇ �N (2.13)

= −∇
(
−kfa

2φ∇(φγ̇) − kηa
2φ2γ̇

∇ η

η

)
In the case of a fully developed one-dimensional simple shear flow with flow
direction as x-direction and y-direction for direction of shear gradient, the
particle flux is limited to its y-component and the diffusion equation is

∂φ(y, t)

∂t
= − ∂

∂y
N (2.14)

= − ∂

∂y

(
−kfa

2φ
∂

∂y
(φγ̇) − kηa

2φ2γ̇

∂
∂y

(F⊥/uP )

F⊥/uP

)
(2.15)

= − ∂

∂y

(
−kfa

2φ
∂

∂y
(φγ̇) − kηa

2φ2γ̇

∂
∂y

η

η

)
.

This equation describes the temporal development of the particle concentra-
tion distributions due to hydrodynamic diffusion. At steady state the various
particle fluxes are balanced.
An alternative description of the shear-induced velocity fluctuations in monodis-
perse suspension is the concept of the ′granular temperature′ as a measure
of the extent of fluctuations (Jenkins and McTigue [25], enhanced by Nott
and Brady [31]). This model will not be used here.

2.2.3 (De)mixing and Structuring Phenomena

Various resulting phenomena originating in a net particle drift due to hy-
drodynamic diffusion were predicted theoretically, investigated by numerical
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simulations or observed experimentally. The applied experimental meth-
ods include visual registration of tracer particles (Eckstein et al. [14], van
Breedveld [11]), infrared spectroscopy, laser-Doppler techniques, ultrasonic
spectroscopy and nuclear magnetic resonance imaging. Numerical Simula-
tions of hydrodynamic and nonhydrodynamic interactions were performed
basing on the Stokesian dynamics investigating for instance the autocorrela-
tion functions or probability distribution functions of the transverse velocity
components [15, 10]. In 1836 Poiseuille [36] stated an inhomogenous radial
distribution of red and white corpuscles in blood flow implying a deviation
from ideal Poiseuille flow. Demixing in shear flow was observed first by Segré
and Silberberg [42] noticing a circular accumulation of particles in pipe flow
with small Reynolds numbers at approximately r = 0.62R (r is radial coordi-
nate, R is radius of tube). The reasons of the so-called ′tubular pinch effect′

are the transverse lift forces due to (weak) inertia and particle rotation, and
lift due to the curved velocity profile (cp. the beginning of section 2.2). Shear
induced particle migration phenomena due to hydrodynamic diffusion were
observed first by Gadala-Maria and Acrivos [16] showing as a long-term vis-
cosity decrease in a cylindrical Couette flow. Leighton and Acrivos [27] found
that the reason was a particle drift out of the gap into the reservoir beneath.
Furthermore they reported a short-term viscosity increase that also could be
traced back to diffusion processes respectively to particle drift along the shear
rate gradients. Beyond they noticed an accumulation of particles behind an
advancing meniscus during the procedure of filling in the rheometrical de-
vices. Since then various experimental investigations indicated nonuniform
particle distributions in shear flow. In tube flow particle depletion near the
wall coming along with a flattened velocity profile was detected by magnetic
resonance imaging (Hampton et al. [38]), by infrared spectroscopy (Hart-
mann [34]), by laser-Doppler techniques (Koh et al. [13], Abbott et al. [1])
and by the use of tracer particles (van Breedveld [11], Eckstein et al. [14]).
Some authors mention that in order to attain particle migration the particle
concentration has to overstep a certain threshold [35].

Tube flow As in Poiseuille flow the shear rates increase with decreasing
wall distance according to the diffusion model by Phillips et al. [33] parti-
cles are not homogenously distributed at steady state due to hydrodynamic
diffusion caused by shear rate gradients. Along the tube axis the particles
concentrate whereas at the wall a thin layer without particles can be found
(Lyon and Leal [28], [48]). This was observed by Abbott and coworkers [24]
per MRI. Hampton et al. [38] also analyzed particle distributions in tube
flow by MRI and found out that the diffusion model by Phillips fitted the



CHAPTER 2. THEORETICAL BACKGROUND 19

better the smaller the ratio of particle radius to tube radius r/R. The gen-
erated gradients of particle concentration and relative viscosity flatten the
velocity profile (Phillips et al. [33], Shauly [1]). The reduction of the integral
viscosity of a suspension flowing through a thin capillary coming along with
an assembling of particles at the tube axis due to shear rate gradients is
called ′sigma effect′ [41, 13].

Cylindrical Couette flow Phillips et al. [33] calculated that the particles
in a Couette flow migrate to the outer cylinder and verified this phenomenon
by the use of NMR similar to Abbott et al. [24]. Although experimental
investigations have shown that the particle drift is directed from higher to
lower shear rates the calculations of Haber and Brenner [21] predict that also
the contrary leading to a meta stable state might be the case under particular
circumstances. Furthermore they calculated the particle fluxes, velocity and
viscosity fields due to viscosity gradients in a Couette rheometer accompanied
by experiments.

Parallel plate flow and cone plate flow The theoretical models so far
lack in complexity to describe these flow situations sufficiently. The experi-
mentally investigated particle distributions in a parallel plate and in a cone
plate rheometer indicate that within parallel plate flow (e.g. measured per
MRI by Chow et al. [5]) particle migration seems to be weaker than in cone
plate flow.

Wall effects Wall slip effects and boundary layers in tube and Couette
flow have been observed by rheological measurements (e.g. Yilmazer [47]).

Resuspension of sedimented particles The shear-induced resuspension
of a sedimentated suspension due to hydrodynamic interparticle interactions
was observed by Schaflinger et al. [46] and by Leighton and Acrivos [27]. The
separation interface in terms of a discontinuity of the particle concentration
does not disappear completely.

Polydisperse suspensions Shauly [4] extended the concept from Phillips
to polydisperse suspensions. The calculation referring to a Couette flow lead
to a particle migration to the outer cylinder and an intern demixing of the
particles with the bigger particles located outwards. This was observed per
MRI by Abbott et al. [24].
An investigation of the correlation between hydrodynamic diffusion and ag-
glomeration is described in [7].
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2.3 Nuclear Magnetic Resonance (NMR)

2.3.1 The Quantum State of a Nucleus

The effect of nuclear magnetic resonance depends on the existence of a nu-
clear magnetic moment. Due to the interaction with a static magnetic field
there exists an energy splitting between the different allowed states of the
nucleus, being degenerate before. Electromagnetic irradiation at the right
frequency enables transitions between the different nuclear states. By chang-
ing population of the different nuclear energy levels as well as establishing
phase coherence between the magnetic moments in the sample leads to de-
tectable magnetization. As the magnetic moments undergo Larmor preces-
sion ω = γB an oscillating voltage may be detected by a detection coil.

In absence of a time dependant magnetic field

The spin quantum number I of a nucleus indicates the magnitude of its
angular momentum �I consisting of orbital angular momentum and eigen
angular momentum with

|�I| =
√

I(I + 1)�

(� =
h

2π
, h: Planck’s constant) .

The orientation of the quantization axis z of �I is determined by the hyperfine
interactions between nuclear momentum and applied polarizing magnetic
field. The z-component of �I is mI� quantized corresponding to the magnetic
quantum number mI = −I, (−I + 1), ..., I. The magnetic dipole moment is

�μ = γ�I with |�μ| = γ
√

I(I + 1)� .

γ is the gyromagnetic ratio of the nucleus. For instance the gyromagnetic
constant of a hydrogen proton has the value γH = 42.6MHz/T. Each value
of mI corresponds to a certain orientation of the nuclear spin. 2I + 1 is
the number of orientations. For a spin-1

2
-nucleus with I = 1

2
there are two

possible spin orientations referring to the quantization axis:

mI = +
1

2
(state denoted as α or ↑)

mI = −1

2
(state denoted as β or ↓)

The spin vector is located at a cone angle defined by |�I| and Iz, Ix and Iy

remaining undefined due to the uncertainty principle. The orientation of the
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nuclear magnetic moment �μ is alike. The probabilities of a spin adopting α-
or β-state obeys the Boltzmann equation. For example the nucleus might be
a proton (proton magnetic resonance / 1H-NMR). Considering a spin system
in the absence of a magnetic field the net magnetization is zero.

Spin system in a static magnetic field

Applying an external static magnetic field

�B0 = (0, 0, Bz)

only consisting of a z-component, energy changes of the α- and β-energy
levels take place. The quantization axis for all spins is now the z-axis. The
numbers of α- and β-spins differ causing a magnetization �M parallel to the
field. The z-component of the nuclear magnetic moment �μ is

μz = γIz = γ�mI .

The nuclear spin energy levels change to

EmI
= −�μ · �B = −γ�BzmI .

These equally spaced levels are called Zeeman energies. The resulting energy
separation of the two states α and β is

ΔE = Eβ − Eα =
1

2
γ�Bz −

(
−1

2
γ�

)
= γ�Bz .

According to the Planck Einstein equation ΔE = �ω it is reasonable to define
a frequency

ωL =
ΔE

�
= γBz .

The Larmor frequency ωL determines the expectation values of the transverse
components of nuclear spins corresponding to superpositions of α and β-state.
The number of α spins exceeds the number of β spins slightly according to
the Boltzmann distribution valid in thermal equilibrium

Nβ

Nα

= exp{−ΔE/kBT} = exp{−γ�Bz/kBT} . (2.16)

With the spin density

ρ =
Nα − Nβ

V
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it results in a macroscopic magnetization parallel to �B0:

Mz = ρ〈μz〉�ez

Curie’s law delivers with (2.16) and N = Nα + Nβ:

ΔN =
ργ2

�
2I(I + 1)

3kBT

Effect of an additional oscillatory field

If a circular polarized electromagnetic field in the xy-plane orthogonal to �B0

with the radio frequency ωRF = ωL is applied the resonance condition

ΔE = �ωRF = γ�Bz

is satisfied and the energy of the photons matches the energy separation of
the two states. Energy transfer comes into resonance with the radiation and
strongly absorbing α → β transitions take place. That means precessing
spins experience the field �B1 rotating with the frequency ωRF as steady as
they precess with the same frequency. Therefore they start to precess addi-
tionally around �B1.
Hereby the magnetic field �B1 rotates the magnetization �M out of the z-
orientation by an angle

α = γ| �B1|tP
tP is the duration of the HF pulse. If the duration of the pulse lets the spin
vectors rotate into the xy-plane (90◦ pulse, π

2
pulse) the new expectation val-

ues of the xy-components Mx,My of the magnetization �M might be detected
by a coil located in the xy-plane by the induced alternating voltage. As
the spin system is no more in thermal equilibrium it starts to relax towards
it. Thus magnetization relaxes longitudinally by β-spins becoming α-spins
again, the magnetization component Mz approaches its equilibrium value.
The corresponding longitudinal relaxation time is called T1. Further fanning
out of the spin vectors due to different precession rates and inhomogenity
of the field �B0 caused by local magnetic fields induced by the movement of
molecules lead to the disturbance of phase coherence and the expectations
values of the magnetization components Mx and My decrease. The relax-
ation time T2 refers to general transverse relaxation whereas T ∗

2 additionally

includes the effect of the inhomogenity of �B0. For a thin fluid T2 ≈ T1 whereas
a solid or a highly viscous fluid complies with T2 < T1. The decaying signal
is denoted as a free induction decay (FID).



CHAPTER 2. THEORETICAL BACKGROUND 23

In the simplest case the relaxation of �M proceeds corresponding to the fol-
lowing (Bloch) equation:

d �M

dt
= γ �M × �B − 1

T1

⎛
⎝ 0

0

Mz − | �M |

⎞
⎠ − 1

T2

⎛
⎝ Mx

My

0

⎞
⎠

The first term describes the precession of �M around the net magnetic field
�B = �B0 + �B1. The solution of the Bloch equation referring to the x′, y′, z′-
coordinate system rotating with the frequency ωL after a 90◦ pulse is:

Mx′ = Mx′(t = 0) exp{− t

T2

}

My′ = My′(t = 0) exp{− t

T2

}

Mz′ = Mz′(t = 0)

(
1 − exp{− t

T1

}
)

2.3.2 Pulse Techniques in NMR

Free induction decay (FID) Applying a 90◦ pulse to a spin system in
a static magnet field makes the spins rotate into the xy-plane. This makes
it possible to detect different resonance frequencies (for instance if belonging
to different kinds of molecules). The overall FID signal S(t) consisting of
signals with frequencies ω and intensities I(ω)

S(t) =

∫ +∞

−∞
I(ω) exp{ıωt}dω

delivers the harmonic components by Fourier transformation

I(ω) = 2�
∫ ∞

0

S(t) exp{ıωt}dt

whereas

Mx ∼ �{S(t)}
and My ∼ 
{S(t)} .

Spin echo Adding a 90◦ pulse to a field �B0 rotates the spins into the
xy-plane. As described in section 2.3.1 the phase coherence dwindles away
continually (T ∗

2 relaxation). Setting then a 180◦ pulse the spins refocus with

respect to the T2 relaxation. In this way the reversible effect of �B0 inho-
mogenities is eliminated and measurement of the relaxation time T2 excluding
inhomogenity effect is possible.
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T1 measurement A 180◦ pulse inverts the magnetization due to a �B0 field
by 180◦. Afterwards x- and y-component of �M still are zero. Longitudinal
relaxation proceeds till a 90◦ pulse is set. The following FID is recorded. By
varying the duration between the first and the second pulse the relaxation
time T1 can be determined.

Magnetic field gradients Overlaying a magnetic field gradient to the
constant field �B0 the total magnetic field and as a consequence thereof also
the Larmor frequencies become dependant on the position:

�B(�r) = �B0 + �G · �r
ωL(�r) = ω0 + γ �G · �r

The phase shift entails the additional twist angle

Δφ(�r, t) = γ

∫ t

0

�G · �rdt̃ = �k · �r .

The wave vector �k refers to the reciprocal �k space describing the integral

�k = γ

∫ t

0

�G(t̃)dt̃ .

Translational displacements �R of spins might also cause a phase shift under
certain circumstances (PGSE, narrow-pulse limit):

Δφ(�R, t) = γ

∫ t

0

�G · �Rdt̃ = 2π�q · �R

�q is the equivalent of �k.

PGSE / Imaging Using magnetic field gradients makes it in general pos-
sible to analyze the 1D, 2D or 3D structure (magnetic resonance imaging –
MRI) of a system as well as transport processes like flow or diffusion. The
spatial encoding is made by frequency applying a magnetic field gradient
during data acquisition and by phase inducing a phase shift by applying a
field nonconstant in space. The slice selection is controlled by the bandwidth
of applied frequencies of �B1. The intensity of signal

S(�k) =

∫ ∫ ∫
ρ(�r) exp{ı�k · �r}d�r
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leads by inverse Fourier transformation to the spin density ρ(�r). Analogous
the investigation of a moving system results from the signal

E(�q) =

∫ ∫ ∫
P̄ (�R, t) exp{ı�q · �R}d�R .

P̄ (�R, t) is the so-called mean propagator declaring the mean probability of

a particle experiencing a transitional displacement �R during the time t. Co-
herent translations, e.g. flow, have an impact on the phasing of the signal,
whereas noncoherent transport processes, e.g. diffusion, affect the amplitude.
Therefore in experiment distinction is possible alike the differing between �k
and �q space.



Chapter 3

Phenomenological Theory

We develop a new phenomenological theory in order to describe the effect
of solid boundary walls in sheared suspensions. According to experimental
results the presence of walls yields certain effects like structure formation
and demixing processes leading to the formation of a depleted boundary
layer along the wall and therewith pseudo wall slip (cp. section 2.1.2).

3.1 Approach

3.1.1 Modelling the Wall Effect

Starting Point

We start with an unidirectional creeping shear flow of a liquid containing
monodispersely distributed spheres neglecting Brownian motion and inertia.
Particle-particle interaction is assumed to be solely due to hydrodynamic
forces. The fluid is assumed as newtonian. To make sure that our exper-
imentally realized flows are creeping indeed we check the particle-related
Reynolds number that describes the ratio of inertia and friction:

Re =
ρF γ̇(2a)2

η0

(3.1)

If Re << 1 flow is creeping.
The Péclet number represents a comparison between shear stresses and Brow-
nian forces:

Pe =
η0γ̇(2a)3

kBT

If Pe >> 1 shear dominates and the Brownian motion can be left out.
The suspension is treated as a continuum and the concepts of continuum

26
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mechanics apply. This is justified as in general the length scale of the macro-
scopical properties we are interested in is considerably bigger than the length
scale of the particle size. More about the conditions suspensions have to meet
to justify continuum mechanical description is explained e.g. by Ohl [32].

Idea

According to the analytical theory of Happel and Brenner [12] near the wall
the resistance force differs from the usually assumed Stokes force. We pre-
sume that a particle very near the wall moving orthogonal to the wall ex-
periences an increased resistance force in comparison to farther particles as
the particle has to squeeze fluid out of the narrow gap between particle and
wall or, alternatively, fluid has to be retracted into the gap. That means the
resistance force F⊥ acting on a single particle related to transverse move-
ment is dependant from the distance to the wall y. (Shear flow is flowing
parallel to the wall, obviously.) We suggest the following expression based

on the Stokes force (2.10) provided with an additional factor
(

a
y

)
that is the

reciprocal wall distance made dimensionless with the particle radius:

F⊥(y) = 6πauP η0

(
1 +

(
a

y

)m)
(3.2)

With decreasing distance to the wall the resistance force increases till infinity.
For y → ∞ it becomes the Stokes force.

Validation

Happel and Brenner [12] have determined theoretically forces on particles
closeby a plane wall moving orthogonal to the wall and expressed the results
with a series expansion.
If we choose the exponent m in (3.2) as 1 the values for F⊥ agree with the
values calculated from the series expansion of Happel and Brenner by Raasch
[37] (fig. 3.1). Thus our proposed factor is appropriate (q.v. section A.1)
and we can use it to include the wall influence into the diffusion model of
Phillips et al. (section 3.1.2).
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Figure 3.1: The approximation (3.2) describing the wall influence on the
resistance force acting on particles moving perpendicular to the wall is in
agreement with the theoretical data of Happel and Brenner [12].
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Concentration Dependancy and Two Walls

Since we are concerned with suspensions the viscosity η(φ) is dependant
on the particle concentration. We choose the suggestion of Krieger and

Dougherty (2.3) and combine viscosity and wall influence factor
(

a
y

)
to the

new factor

η0

(
1

(1 − φ
φm

)2
+

(
a

y

))

that leads with (3.2) to the resistance force

F⊥(y, φ(y, t)) = 6πauP η0

((
1 − φ(y, t)

φm

)−2

+

(
a

y

))
. (3.3)

We neglect a further dependency on the particle distribution. In the presence
of two walls with gap width h (Couette flow, fig. 2.2) the resistance force is

increased by an additional term
(

a
h−y

)
due to the second wall and it follows:

F⊥(y, φ(y, t)) = 6πauP η0

((
1 − φ(y, t)

φm

)−2

+

(
a

y

)
+

(
a

h − y

))
(3.4)

This term is not valid if a particle is positioned directly at the wall
(y = 0 or y = h) since at this position the van der Waals forces make the
particle stick to the wall. Detaching would require forces beyond.

3.1.2 New Diffusion Equation

With (2.13) and the approximation (3.4) we set up a new diffusion equation
including the wall influence:

∂φ(y, t)

∂t
= −∇ �N (3.5)

with

�N = −kfa
2φ∇(φγ̇) − kηa

2φ2γ̇
∇

(
(1 − φ

φm
)−2 +

(
a
y

)
+

(
a

h−y

))
(
(1 − φ

φm
)−2 +

(
a
y

)
+

(
a

h−y

))
The particle flux due to gradient of resistance force is now a function of the
wall distance.
At this point we introduce some new variables for simplification. The vari-
ables of length y and h are made nondimensional by relating them to the
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particle radius and we define a concentration related to φm:
y∗ := y/a, h∗ := h/a, ϕ(y, t) := φ(y,t)

φm

With (3.5) we obtain for a plane Couette flow:

∂ϕ(y∗, t)
∂t

= − ∂

∂y∗

(
−kfφmϕ

∂

∂y∗ (ϕγ̇) − kηφmϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1)

(1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1

)

(3.6)
Basing on (2.2) the shear rate of a plane Couette flow follows from a shear
stress τ(t) and the viscosity η(φ) without wall dependance as flow is parallel
to the walls:

γ̇(t, ϕ(y∗, t)) =
τ(t)

η0

(1 − ϕ(y∗, t))2 (3.7)

This is the shear rate of the fluid. There is also an influence of the wall onto
the particle movement parallel to the wall making the velocity profile of the
particle system differ from the velocity profile of the fluid. A comparison
of the resulting particle concentration distribution and velocity profiles with
and without taking into account such an effect of the wall on particle velocity
parallel to the wall makes sure that this simplification is justified and we can
assume the velocity profile of the particle system identical to the velocity
profile of the fluid phase (cp. section A.2). With (3.7) and (3.6) we obtain:

∂ϕ(y∗, t)
∂t

= −τ(t)

η0

∂

∂y∗ [−kfφmϕ(y∗, t)
∂(ϕ(y∗, t)(1 − ϕ(y∗, t))2)

∂y∗

−kηφmϕ2(y∗, t)(1 − ϕ(y∗, t))2

∂
∂y∗ ((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)

(1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1
]

The solution of this partial differential equation considering appropriate ini-
tial and boundary conditions is the particle concentration ϕ(y∗, t). It can not
be solved analytically. The concentration profile as well as the gap width h∗

scale with the particle radius. The time scale on the other hand depends on
τ(t). Assuming τ(t) > 0 we define a new time scale:

T =
1

η0

∫ t

0

τ(t̃)dt̃

⇔ ∂T

∂t
=

τ(t)

η0

This leads to the modified particle concentration ϕT (y∗, T )
setting ϕT (y∗, T ) = ϕ(y∗, t):

ϕT (y∗, T )

∂T
=

∂ϕ(y∗, t)
∂t

∂t

∂T

=
∂ϕ(y∗, t)

∂t

η0

τ(t)
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With (3.5) and still the shear rate γ̇(y∗, t) being valid it follows

ϕT (y∗, T )

∂T
=

η0

τ(t)
(−∇ �N)

and

∂ϕT (y∗, T )

∂T
= − ∂

∂y∗ [−kfφmϕT (y∗, T )
∂(ϕT (y∗, T )(1 − ϕT (y∗, T ))2)

∂y∗

−kηφmϕ2
T (y∗, T )(1−ϕT (y∗, T ))2

∂
∂y∗ ((1 − ϕT (y∗, T ))2 + y∗−1 + (h∗ − y∗)−1)

(1 − ϕT (y∗, T ))−2 + y∗−1 + (h∗ − y∗)−1
]

This equation shows that the particle distribution is associated with the
total macroscopical shear strain function. During shear experiment at a
certain local shear strain always the same particle concentration ϕT (y∗, T )
occurs independently from the course of the experiment τ(t) at a fixed initial
particle concentration. The modified time scale is determined by the shear
stress function τ(t) respectively the shear strain γ(t) as to any shear stress
function τ(t) a shear strain function γ(t) corresponds. The modified shear
rate γ̇T (y∗, T ) follows from γT (y∗, T ) = γ(y∗, t):

γ̇T (y∗, T ) :=
∂γT (y∗, T )

∂T
=

∂γ(y∗, t)
∂t

∂t

∂T

=
1

ηr(ϕ)

(ηr is the relative viscosity ηr := η/η0.) Hence also the shear rate referring
to the new time scale is not a function of τ(t) but of the particle distribution
only.

3.1.3 Gravity Effect

If there is a density difference between the fluid and the disperse phase mean-
ing ρF − ρP �= 0 the gravity effect may influence the particle drift since the
particles then go up or down due to sedimentation or buoyancy respectively.
In the following we assume that the gravity direction is transverse to flow
direction (that is y direction) and parallel to the shear-induced particle drift.
The lift force due to gravity acceleration in case of buoyancy

FA = ρF g
4

3
πa3

balances with the mass force

FG = −ρP g
4

3
πa3
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gravitational force FG FA lifting force

F  resistance force⊥

uP

Figure 3.2: The force balance of a particle in a fluid moving transverse to a
wall below

and the resistance force F⊥(y∗, ϕ(y∗, t)) (equation (3.2)) (fig. 3.2). The
particle velocity results from the force balance:∑

F = 0

0 = F⊥(y∗, ϕ(y∗, t)) + FG + FA

0 = −6πη0((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)auP − ρP g
4

3
πa3 + ρF g

4

3
πa3

0 = −6πη0((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)auP + (ρF − ρP )g
4

3
πa3

⇒ up(y
∗, ϕ(y∗, t)) =

2(ρF − ρP )ga2

9η0

((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)−1 (3.8)

In case of the unmodified Stokes force acting the Stokes velocity would be
the result:

uSt =
2(ρF − ρP )ga2

9η0

(3.9)
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The particle flux due to gravity

Ng(y
∗, ϕ(y∗, t)) = uP (y∗, ϕ(y∗, t))φ(y∗, t)

=
2

9
a2(ρF − ρP )gη−1

0 ((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)−1φ(y∗, t)

is added to the total particle flux

N = Nf + Nη + Ng

= −kfaφ2
mϕ

∂

∂y∗ (ϕγ̇) − kηaφ2
mϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1)

((1 − ϕ)−2 + y∗−1)

+
2

9
a2(ρF − ρP )gη−1

0 ((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)−1φ

(3.10)

and leads with (3.6) to the following diffusion equation:

∂ϕ

∂t
= − ∂

∂y∗ [−kfφmϕ
∂

∂y∗ (ϕγ̇) − kηφmϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1)

(1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1

+
2

9
a(ρF − ρP )gη−1

0 ((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1)−1ϕ] (3.11)

(Here and further we use ϕ instead of ϕ(y∗, t) for the sake of easier readability
of long formulas.)
Again we obtain a nonlinear partial differential equation. A possible initial
condition may be ϕ(y∗, t = 0s) = const = 〈ϕ〉 (homogenity). A possible
boundary condition may be N(y∗ = 0, t) = 0 (if two walls present N(y∗ =

h∗, t) = 0 additionally). Alternatively 1
h∗

∫ h∗

0
ϕ(y∗, t)dỹ∗ = 〈ϕ〉 ∀ t may be

demanded.
At steady state

∂ϕ(y∗, t)
∂t

= 0

and thus (cp. equation (3.6))

∂N

∂y∗ = 0 and N = const .

Due to physical reasons the particle flux at a wall flanking the flow has to be
zero and the following boundary condition is valid:

N(y∗ = wall position) = 0 (3.12)

The problem (3.11) is quasi-linear and parabolic. It cannot be solved analyt-
ically. The numerical treatment of this kind of partial differential equation
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is problematic as the equation degenerates at ϕ = 0 and ϕ = 1 the second
derivative becoming zero causing extreme instabilities. It did not lead to
success here. Also an immensely complicated calculation of perturbations
delivered no usable result. So no general solution of the problem will be
presented here.
In the following chapter however special cases of sheared and non-sheared
suspensions with and without wall influence as well as gravity effects are
investigated basing upon the general diffusion equation (3.11).

3.2 Shear-Flowing and Non-Flowing Suspen-

sions under Wall Influence

Generally the diffusion equation (3.11) determines the properties of shear-
flowing suspensions including wall influence and gravity directed orthogonal
to the flow direction and to the wall(s).

3.2.1 Shear Flow without Gravity Effect

We consider a shear flow without gravitation effects. Thus particle transport
is induced solely by hydrodynamic interactions. The corresponding diffusion
equation basing on (3.11) is

∂ϕ(y∗, t)
∂t

= −∂(Nf + Nη)

∂y∗

= − ∂

∂y∗ [−kfφmϕ
∂

∂y∗ (ϕγ̇) − kηφmϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1)

(1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1
]

(3.13)

According to (2.8) and (2.9) the particle flux is

N = 0 = kfaφ2
mϕ

∂

∂y∗ (ϕγ̇) + kηaφ2
mϕ2γ̇

1

F⊥

∂F⊥
∂y∗

which, after some rearrangements, leads to

0 = kf
∂

∂y∗ ln(ϕγ̇) + kη

∂ ln
(

F⊥
6πauP η0

)
∂y∗ .
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Integration produces

C = kf ln(ϕγ̇) + kη ln
F⊥

6πauP η0

⇐⇒ eC/kf = ϕγ̇

(
F⊥

6πauP η0

)kη/kf

(3.14)

C being the integration constant.

No wall influence

Generally at steady state the mathematical description of a shear flow with-
out walls is equivalent to that of a system with walls but without wall influ-
ence. The boundary condition is different. It refers either to the wall position
or to the positional coordinate y∗ approaching infinity.
The steady state of a shear flow without wall influence follows from (3.14)
with

F⊥(ϕ) = 6πauP η0(1 − ϕ)−2

basing on (2.10), (2.3) and (2.2). The shear stress at steady state is called
τ0. This leads to

e
C
kf =

τ0

η0

ϕ(1 − ϕ)
2(1− kη

kf
)

with the only solution ϕ(y∗) = const. Therefore steady state is a homogenous
suspension whereas the integration constant C is determined by the average
particle concentration 〈ϕ〉.

One wall present

If we consider the case of a half-infinite shear flow with only one wall present
at the position y∗ = 0 a further boundary condition can be set up as ϕ(y∗ →
∞) = ϕ∞ at steady state determining the integration constant C with (3.14),
(3.7) and (3.3):

F⊥(ϕ = ϕ∞, y∗ → ∞) = 6πauP η0(1 − ϕ∞)−2

and eC/kf = ϕ∞
τ0

η0

(1 − ϕ∞)2(1−kη/kf )
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With (3.14), (3.7) and (3.3) follows:

F⊥(ϕ, y∗) = 6πauP η0(y
∗−1 + (1 − ϕ∞)−2)

and ϕ(1 − ϕ)2
(
y∗−1 + (1 − ϕ)−2

) kη
kf = ϕ∞(1 − ϕ∞)

2(1− kη
kf

)

(3.15)

⇐⇒ y∗ =
ϕ

kf
kη (1 − ϕ)

2
kf
kη

ϕ

kf
kη∞ (1 − ϕ∞)

2
(

kf
kη

−1
)
− ϕ

kf
kη (1 − ϕ)

2
(

kf
kη

−1
) (3.16)

The parameter ϕ∞ is the particle concentration at infinite distance from the
wall and therefore determines the average particle concentration. According
to Phillips et al. [33] k :=

kf

kη
takes a value of approximately 0.66 (this value

refers to a system with an average particle concentration 〈φ〉 = 0.55, there is
no dependance from particle size or fluid viscosity according to dimensional
analysis) (cp. section B.1). k = 0.66 will be used in all our calculations.
Equation (3.16) determines the stationary particle concentration profile in a
semi-finite shear flow without gravity effect including wall influence with one
wall present. The shear rate profile follows from the concentration dependant
viscosity (3.7). Further on the velocities u(y∗) theoretically can be obtained
by integration of the shear rate according to (2.1):

u(y∗) =

∫ y∗

0

γ̇(ỹ∗)dỹ∗ (3.17)

The integration constant results from the no slip condition at the wall
u(y∗ = 0) = 0 that is assumed. In this case the function γ̇(y∗) is not
available in an analytical form so the single velocity values are determined
from discrete data triples (ϕ(y∗), y∗, γ̇(ϕ(y∗))) (cp. section B.2). Fig. 3.3
shows the resulting particle concentration profiles, shear rate profiles and
velocity profiles at various boundary concentrations ϕ∞. (The behavior very
near the wall is to be seen more clearly in fig. 3.5.) The shear rate and the
velocity are made non-dimensional according to:

γ̇∗ = γ̇
η0

τ0

u∗ = u
η0

τ0

The concentration increases monotonously with increasing distance from the
wall approaching ϕ∞ at y∗ → ∞ at an infinite distance from the wall. Unlike
shear rate and velocity the concentration field is not dependant from τ0/η0.
At the wall there is a depletion of particles. The low particle concentration
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Figure 3.3: Particle concentration, shear rate and velocity profiles in a
steady half-infinite shear flow (one wall) without gravity effect at various
average particle concentrations

within the boundary layer implicates a low viscosity (equation (2.3)) and
high shear rates. This leads to a steep velocity profile in this area leading to
the phenomenon of pseudo wall slip (cp 2.1.2).

Very close to the wall If y∗ → 0 the leading term in the resistance force
is

F⊥(y∗) = 6πauP η0y
∗−1
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and with (3.14) and (3.7) it results

ϕ(1 − ϕ)2
(
y∗−1

)1/k
= ϕ∞(1 − ϕ∞)2(1−1/k)

⇔ ϕ ∝ y∗1/k

meaning that the particle concentration near the wall is proportional to a
power of the wall distance. With k = 0.66 it follows:

ϕ ∝ y∗−0.66

The behaviour of ϕ(y∗ → 0) becomes apparent in fig. 3.5.

Boundary layer If we define a boundary layer thickness δ∗90 = δ90/a as
the position y∗ at which the particle concentration is 90% of ϕ∞

δ∗90 := y∗(ϕ(y∗) = 0.9 ∗ ϕ∞) (3.18)

it follows with (3.16)

δ∗90 =
(0.9ϕ∞)k(1 − 0.9ϕ∞)2k

ϕk∞(1 − ϕ∞)2(k−1) − ϕk(1 − ϕ)2(k−1)
. (3.19)

The resulting boundary layer (fig. 3.4) is only a few particle radii thin. With
decreasing total concentration ϕ∞ the layer becomes wider.
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Figure 3.4: The width of the boundary layer is a function of the particle
concentration at infinite distance from the wall.

Discontinuities If we look closer at the concentration profiles at high mean
concentrations we realize that the analytical solution is no injective function.
At some positions more than one particle concentration is formally valid.
Physically this cannot be realized. The solution is mathematical and gives
the theoretical particle distribution resulting from equation (3.16). A possible
explanation might be the existence of a discontinuity within the area of non-
injectivity meaning concretely a step of the particle concentration. The new
non-ambiguous concentration profile is another valid and physically possible
solution satisfying equation (3.16) (fig. 3.5).
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Figure 3.5: The mathematically obtained particle concentration profiles in
steady half-infinite shear flow correspond to a discontinuity of the physically
realized particle concentration function.

The exact location of the discontinuity respectively the phase boundary is
not defined within our model. This result seems questionable as the discon-
tinuity is positioned less than one single particle radius near the wall. This
makes the macroscopic interpretation problematic. A statistical interpreta-
tion taking the particle concentrations as probabilities and the profile as a
probability function is meaningless due to the geometric structuring of the
particle distribution induced by the wall.
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Two walls present

Considering the steady state of a Couette flow (cp. fig. 2.2) including two
walls with (3.14), (3.4) and (3.7) follows:

F⊥(ϕ, y∗) = 6πauP η0((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1) (3.20)

and eC/kf = ϕ
τ0

η0

(1 − ϕ)2((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1)1/k (3.21)

As for the boundary condition we set the particle concentration at the center
of the gap ϕ(y∗ = h∗/2) = ϕ0 and obtain

eC/kf = ϕ0
τ0

η0

(1 − ϕ0)
2((1 − ϕ0)

−2 + h∗−1)1/k

leading with (3.21) to:

ϕ(1−ϕ)2
(
y∗−1 + (h∗ − y∗)−1 + (1 − ϕ)−2

)1/k
= ϕ0(1−ϕ0)

2((1−ϕ0)
−2+h∗−1)1/k

↔ 0 = y∗2−h∗y∗+h∗((ϕ−1(1−ϕ−2)ϕ0(1−ϕ0)
2)k((1−ϕ0)

−2+h∗−1)−(1−ϕ)−2)−1

Theoretically the particle concentration profiles can be determined through
this equation. Here they were obtained instead by the numerical solution
of the differential equation (3.14) with (3.20) and (3.7) employing a variable
order multistep solver using backward differentiation formulas suitable for
stiff problems. As described before the shear rate and velocity profiles follow
from the concentration profiles.
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Fig. 3.6 shows the results for a Couette flow with gap width h∗ = 30.
The particles tend to drift away from the walls and here also at the walls the
pseudo wall slip is recognizable.
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Figure 3.6: Particle concentration, shear rate and velocity profiles in a
steady Couette flow without gravity effect at various average particle
concentrations at h∗ = 30
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3.2.2 Shear Flow with Gravity Effect

In a shear flow with gravitation particle drift is induced by hydrodynamic
diffusion as well as gravity.

One wall present

The equation to be solved in order to obtain the instationary particle con-
centration distribution of semi-finite shear flow with gravity is the general
diffusion equation (3.11) limiting the wall influence to only one wall:

∂ϕ(y∗, t)
∂t

= − ∂

∂y∗ [−kfφmϕ
∂

∂y∗ (ϕγ̇) − kηφmϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1)

(1 − ϕ)−2 + y∗−1

+
2

9
a(ρF − ρP )gη−1

0 ((1 − ϕ(y∗, t))−2 + y∗−1)−1ϕ] (3.22)

At steady state with ∂
∂t

= 0 the particle concentration distribution in shear
flow of a suspension along a wall including gravity effect follows from (3.22)
with the boundary condition at the wall N(y∗ = 0) = 0:

N = 0 = −kfaφ2
mϕ

∂

∂y∗ (ϕγ̇) − kηaφ2
mϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1)

(1 − ϕ)−2 + (y∗−1)

+
2

9
a2φm(ρF − ρP )gη−1

0 ((1 − ϕ(y∗, t))−2 + y∗−1)ϕ (3.23)

from which we get:

dϕ

dy∗ =
−ϕ(1 − ϕ)2y∗−2 + 2

9
ag

φmτ0kη
(ρF − ρP )

−k((1 − ϕ)−2 + y∗−1)((1 − ϕ)2 − 2ϕ(1 − ϕ)) − 2ϕ(1 − ϕ)−1

This is an ordinary nonlinear differential equation of first order. It cannot
be solved analytically but a numerical solution is possible. Fig. 3.7 shows
the resulting particle concentration profiles, shear rate profiles and velocity
profiles if particle flux due to gravity is directed away from the wall (ρF−ρP >

0) with ag(ρF−ρP )
φmτ0kη

= 0.1 at various fluid contents. Δy∗
F denotes the layer width

of pure fluid (ϕ = 0) if ϕ = 1 elsewhere. For examplification we imagine
a system consisting of a layer of pure fluid of width Δy∗

F between a wall
and a half-infinite expanded particle ensemble with ϕ = 1. Hydrodynamic
diffusion during shearing generates a transition zone between ϕ = 0 and
ϕ = 1 at equilibrium. The velocity profile clearly shows the occurrence of
pseudo wall slip. Fig. 3.8 refers to gravity driving the particles towards
the wall (ρF − ρP < 0) with ag(ρF−ρP )

φmτ0kη
= −0.1 at various particle contents.
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Figure 3.7: Particle concentration, shear rate and velocity profiles in a
steady half-infinite shear flow with gravity flux directed away from the wall
at ag(ρF−ρP )

φmτ0kη
= 0.1 and various fluid contents

Δy∗
P is the layer width with ϕ = 1 of the system if ϕ = 0 elsewhere. Wall

influence is responsible for reaching ϕ = 0 at the wall whereas the gradually
changing particle concentration at steady state is governed by the equilibrium
of particle fluxes due to hydrodynamic diffusion and gravity. In this case a
negative wall slip occurs.
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Figure 3.8: Particle concentration, shear rate and velocity profiles in a
steady half-infinite shear flow with gravity flux directed towards the wall
at ag(ρF−ρP )

φmτ0kη
= −0.1 and various particle contents
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Two walls

The instationary particle concentration of a Couette flow with gravitation is
described by equation (3.11) and cannot be solved as explained in section
3.1.2. At steady state it is N = 0 and ∂

∂t
= 0 leading to:

0 = −kfaφ2
mϕ

∂

∂y∗ (ϕγ̇) − kηaφ2
mϕ2γ̇

∂
∂y∗ ((1 − ϕ)−2 + y∗−1)

(1 − ϕ)−2 + y∗−1

+
2

9
ga2φm(ρF − ρP )gη−1

0 ((1 − ϕ(y∗, t))−2 + y∗−1 + (h∗ − y∗)−1)ϕ

and

∂ϕ

∂y∗ =
−ϕ(1 − ϕ)2(y∗−2 − (h∗ − y∗)−2) − 2

9
(ρF−ρP )g
φmτ0kη

(1 − ϕ)

−k((1 − ϕ)−2 + y∗−1 + (h∗ − y∗)−1)((1 − ϕ)2 − 2ϕ(1 − ϕ)) − 2ϕ(1 − ϕ)−1

In order to obtain the concentration profiles the differential equation was
solved numerically. The particle concentration profiles, shear rate profiles
and velocity profiles with h∗ = 30 and 2

9
(ρF−ρP )ag

φmτ0kη
= −1 are shown in fig.

3.9 at different average concentrations. Fig. 3.10 shows the profiles with
h∗ = 30, 〈ϕ〉 = 0.3 and ag

φmτ0kη
= 1m3/kg varying (ρF − ρP ). The particles

have gone towards one wall (depending on the direction of gravity) but not
reached the wall totally because of the wall influence. Again, the transition
between pure liquid and particle-laden area is determined by the equilibrium
of particle fluxes.
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Figure 3.9: Particle concentration, shear rate and velocity profiles in a steady
Couette flow, gap width h∗ = 30, including gravity effect at 2

9
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and various average particle concentrations
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Figure 3.10: Particle concentration, shear rate and velocity profiles in steady
Couette flow, gap width h∗ = 30, including gravity effect at
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3.2.3 Time Dependant Gravity Effect, no Flow

In a non-flowing suspension the particles go up if particle density is lower
than fluid density (buoyancy) or down if particle density is higher than fluid
density (sedimentation). Particle transport is only due to gravity.

One wall present

Particle flux directed away from the wall We consider a diluted sus-
pension with gravity-induced particle movements directed away from a single
wall. That could be a suspension above a wall with particles going up or sed-
imentation in a suspension under a wall. Such according to (3.8) the velocity
of a particle orthogonal to the wall leaving out the concentration dependance
with one wall present is

up =
2(ρF − ρP )ga2

9η0

(1 + y∗−1)−1 . (3.24)

From the general definition of a velocity follows

up(y
∗) = a

dy∗

dt
(3.25)

and further on assuming that at the time t0 = 0s particles are located at
positions y∗

0 with (3.24) and (3.9):

1

a

∫ t̃=t

t̃=0s

dt̃ =

∫ ỹ∗=y∗

ỹ∗=y∗
0

1

up(y∗)
dỹ∗

⇔ t

a
=

1

uSt

∫ y∗

y∗
0

(1 + ỹ∗−1)dỹ∗

⇒ t =
a

uSt

(
y∗ − y∗

0 + ln
y∗

y∗
0

)
(3.26)

This equation indicates how long it takes a particle to move from a certain
position y∗

0 to a position y∗.

A particle volume balance of a layer of width dy∗ and area A yields:

∂

∂t
(Ady∗ϕ) = Aϕ(y∗)uP (y∗) − Aϕ(y∗ + dy∗)uP (y∗ + dy∗) (3.27)

⇔ ∂(ϕuP )

∂t
= −uP

∂(ϕuP )

∂y∗
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⇔ ∂(ϕuP )

∂t
+ uP

∂(ϕuP )

∂y∗ = 0

⇔ DN

Dt
= 0

This is the substantial derivative of the particle flux N = Ng = uP φmϕ. Thus
the particle flux is constant for an ′observing′ particle moving with velocity
uP (y∗) as time goes by. At a position y∗

0 at the time t0 the particle flux is
the same as the particle flux at the time t at the corresponding position y∗

the particle (having been positioned at y∗
0 before) is located at a the time t:

N(y∗, t) = N(y∗
0, t0)

ϕ(y∗, t)uP (y∗) = ϕ(y∗
0, t0)uP (y∗

0) (3.28)

With (3.24) and an initial homogenous particle distribution ϕ(y∗
0, t0 = 0s) =

ϕ0 = const follows:

(1 + y∗−1)−1ϕ(y∗, t) = (1 + y∗−1
0 )−1ϕ0

⇔ y∗
0 =

1
ϕ0

ϕ(y∗,t)
(1 + y∗−1) − 1

(3.29)

(3.26) and (3.29) lead to:

t =
a

uSt

(
y∗ − 1

ϕ0

ϕ(y∗,t)
(1 + y∗−1) − 1

+ ln

(
y∗

(
ϕ0

ϕ(y∗, t)
(1 + y∗−1) − 1

)))

⇔ t

tSt

=
1

2

(
y∗ − 1

ϕ0

ϕ(y∗,t)
(1 + y∗−1) − 1

+ ln

(
y∗

(
ϕ0

ϕ(y∗, t)
(1 + y∗−1) − 1

)))

This is an implicit equation describing ϕ(y∗, t) with ϕ(y∗
0, t0 = 0s) = ϕ0. The

Stokes time tSt := 2a
ust

is defined as the time a particle with Stokes velocity
needs to cross the distance of one particle diameter that is two particle radii
(2a) (cp. equation (3.9)). Fig. 3.11 shows the resulting start-up particle con-
centration development at various locations in a non-flowing suspension with
gravity driving particles away from a wall. The initial particle distribution
is homogenous (ϕ0 = 0.1). The closer to the wall, the faster the decrease
of particle concentration. As the particle ensemble moves away particles are
hold back by the wall: the closer a particle is situated to a wall the lower its
velocity. Thus particle movements due to gravity are slowed down by walls.
As the particles move away from the wall the particle ensemble is stretched.
If ϕ(y∗) ≡ 1 the particles form an infinitely expanded block and a steady
states persists as uP ≡ 0 (cp. equation (3.24)).
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Figure 3.11: Start-up particle concentrations in a non-flowing suspension at
various positions with gravity driving the particles away from the wall at an
initially homogenous particle distribution ϕ = 〈ϕ〉 = 0.1

Two walls present

In a diluted suspension with gravitation and two walls present with gap
width h∗ = 30 according to (3.8) the velocity of a particle leaving out the
concentration dependance for simplicity is

up =
2(ρF − ρP )ga2

9η0

(1 + y∗−1 + (h∗ − y∗)−1)−1. (3.30)

The calculation proceeds similarly to the one before including only one wall.
Through (3.25) we obtain

t =
a

uSt

(
y∗ − y∗

0 + ln
y∗(h∗ − y∗

0)

y∗
0(h

∗ − y∗)

)
.
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Figure 3.12: Start-up particle concentrations in a suspension at various
positions during buoyancy/sedimentation, gap width h∗ = 30, at an initially
homogenous particle distribution ϕ = 〈ϕ〉 = 0.1

(3.27) and therefore (3.28) are also valid here and lead with (3.30) at ho-
mogenous initial particle distribution to

(1 + y∗−1 + (h∗ − y∗)−1)−1ϕ(y∗, t) = (1 + y∗−1
0 + (h∗ − y∗

0)
−1)−1ϕ0 .

This equation describes only the very start-up of gravity drift in a diluted
suspension between two walls as the equation (3.30) is valid only for low par-
ticle concentrations. The influence of wall and gravity are opposed at some
locations whereas elsewhere they enforce each other. The particle concentra-
tion at some positions increases whereas at other positions it decreases (fig.
3.12).
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3.2.4 Characteristic Time Scales

In order to assess the time scales on which the demixing activities are tak-
ing place we define calculable characteristic times. The characteristic time
related to the wall effect caused by shear flow is independant from the char-
acteristic time related to gravity effect.

Characteristic time regarding gravitation The characteristic time re-
lated to the sedimentation or buoyancy of particles due to gravity is defined
as the time it takes a particle moving with Stokes velocity uSt (equation
(3.9)) to cover the distance of y∗

t = 2 particle radii:

tg =
ay∗

t

uSt

Characteristic time regarding wall influence In order to get a prop-
erty that characterizes the time it needs the wall effect to develop we consider
a Couette flow including two walls with an initially homogenous particle dis-
tribution without gravity. The characteristic time regarding wall effect is
defined as the time after which the particle concentration at the position
y∗

t = 2 has decreased to half its amount assuming a linear decrease:

tc =
〈ϕ〉 − 0.5〈ϕ〉

∂ϕ
∂t

(t = 0, y∗
t = 4)

with (according to (3.11))

∂ϕ

∂t
(t = 0s, y∗ = y∗

t )) =

2

9
a(ρF − ρP )gη−1

0 〈ϕ〉((1 − 〈ϕ〉)−2 + y∗−1
0 + (h∗ − y∗

t )
−1)−2(−y∗−2

t + (h∗ − y∗
t )

−2))

+ kηφm
τ0

η0

〈ϕ〉2(1 − 〈ϕ〉)2((1 − 〈ϕ〉)−2 + y∗−1
t + (h∗ − y∗

t )
−1)−1(−y∗−2

t + (h∗ − y∗
t )

−2)

The tables 3.1 and 3.2 show some examplary values of tc and tg with h∗ = 30,
a = 0.00035m, η0 = 32Pas, kητ0 = 10Pa at varying density differences and
average particle concentrations. The emphasized data corresponds to the
experimental situation described in chapter 4 and in section C.4. In this case
tc and tg are of the same order of magnitude. A shearing time of several
hours at least is needed to obtain a significant demixing effect.
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average concentration characteristic time
〈ϕ〉 [-] regarding wall effect tc [s]
0.3 166
0.4 218
0.5 343
0.6 669

Table 3.1: Characteristic times regarding wall effect at different average par-
ticle concentrations (emphasized data corresponds to experimental situation)

difference of densities characteristic time
ρF − ρP [g/cm3] regarding gravity tg [s]

0.01 8388
0.1 839

0.27 311

Table 3.2: Characteristic times regarding gravity effect at different density
differences (emphasized data corresponds to experimental situation)



Chapter 4

Experimental Investigation

4.1 Suspension

Various demands are made on the particle-fluid system. Particle size, density
and viscosity of the fluid determine together with the shear rate the Reynolds
number (equation (3.1)) that has to be low in order to keep the flow creeping.
The densities of particles and fluid, the particle size, the viscosity of the fluid,
and the particle concentration influence the gravitation effect on the particle
drift (equation (3.8)). Thus a suitable balance between these relevant param-
eters had to be found. In order to make optical recording possible, particles
and fluid had to be transparent or at least translucent. The fluid was desired
to be newtonian, the particles were requested to possess a spherical shape, a
smooth surface, a monodisperse distribution and they were to be non-toxic
and large enough to render the brownian motion insignificant. Also homoge-
nous mixing had to be possible. Last, but not least, both phases had to be
providable.
A literature research (for example Biederbick [9]) and own tests with water,
sugar solution, glycerine, silicone oil, Al2O3 spheres and PMMA (polymethyl-
methacrylate) spheres have shown that the best possible combination for our
purposes is invert sugar solution and PMMA spheres.

4.1.1 Fluid Phase: Sugar Solution

As for the fluid phase we use sugar solution of the Südzucker company that
consists of dissolved invert sugar and water. Invert sugar is fructose and
dextrose in equal shares obtained by hydrolysis of saccharose (C12H22O11).
The sugar mass concentration of the available solution is cS,0 = 72.7± 0.2%.
Its density is ρF,0 = 1.358g/cm3. Thus the density of the dissolved invert

55
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sugar is ρS = 1.59g/cm3 (cp. section C.1). The dynamic viscosity of the
solution is η0,0 = 450mPas (data at θ = 20◦C).

4.1.2 Disperse Phase: PMMA Spheres

As for the disperse phase we chose PMMA (polymethylmethacrylate) spheres,
density ρp = 1.118± 0.04g/cm3, obtained from the Brace GmbH in Alzenau.
An analysis of the particle size distribution with the laser diffraction spec-
trometer ′HELOS′ at the institute of mechanical process engineering and me-
chanics in Karlsruhe showed a particle diameter distribution of 100− 500μm
(fig. 4.1). Narrowing the distribution was not possible since dry sieving did
not work as due to the strong electrostatic charging of the particles imme-
diate agglomeration and blocking of the sieve occurred whereas wet sieving
did not work as then particles would get stuck in the pores and and clog the
sieve.

Analysis of the particle size
distribution of PMMA micro spheres
Charge No. 060202HB02-GK02 by 
means of laser diffraction
spectroscopie (HELOS) at the
Institute of Mechanical Process 
Engineering and Mechanics

equivalent diameter x [μm]
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Figure 4.1: Particle size distribution of the disperse phase

4.1.3 Preparation

In order to reach a suitable fluid density and fluid viscosity water was evap-
orated to increase the sugar concentration, that is to increase the viscosity
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and the density of the fluid. A suitable method of evaporating and mixing
had to be found. Tests with drying ovens proved to be unsatisfying as the
required evaporating time would be too long and also unpredictable. Tests
with vacuum chambers also turned out to be inappropriate as mixing with
the particles after evaporation would lead to air bubbles and inhomogenities
in the suspension. Mixing before evaporating also leads to inhomogenities.
Furthermore during the evaporation sedimenting or ascending of the particles
takes place what makes the suspension inhomogenous again. Homogenious
mixing was possible with a rotary evaporator type ′Laborota 4010 digital′

from Heidolph Instruments. Fluid and particles were filled in before evap-
oration and simultaneous rotation of the flask. The device had no built-in
vacuum pump. Instead it worked with a water jet pump at differing water
pressure what made operating difficult to control. Therefore an additional
vacuum pump with adjustable pressure difference was built in. If the set
temperature is too high, the ′Maillard reaction′ takes place and the sugar
solution is destroyed as the sugar decomposes. Within our experiments we
noticed that the reaction started already at an approximate temperature of
θ = 80◦C although the critical temperature found in literature are signif-
icantly higher. So we chose θ = 70◦C for the evaporation procedure. At
θ = 70◦C combined with a certain rotation rate air bubbles became elimi-
nated and a homogenous suspension was produced. The suspension had to
be prepared freshly before the experiments because after some days sugar
starts crystallizing and particles start swelling.
By setting the amount of evaporated water (density ρH2O) the new fluid den-
sity ρF respectively the sugar concentration cS (being associated with a cer-
tain viscosity η0) are adjustable as the sugar concentration cS,0 of the original
sugar solution and the density ρF,0 are known. The desired average concen-
tration 〈ϕ〉 is determined by the amount of particles added (cp. section C.1).
Within our tests the available information table relating sugar concentration
of our Südzucker solution to its viscosity turned out to be incorrect. Accord-
ing to our own rheometrical data at high sugar concentrations the viscosity of
the solution shows a high sensitivity regarding concentration changes. A sus-
pension containing sugar solution with sugar concentration cS = 88% leading
to the density ρF = 1.45g/cm3 and the viscosity η0 ≈ 35Pas and PMMA with
a concentration 〈φ〉 = 0.4 proved to be a good combination for experiments
with the RheoScope and our self-constructed capillary shearing device. In
the flow line to be investigated by NMR the original sugar solution with
sugar concentration cS,0 = 72.7% was used. The suspension concentration
was 〈φ〉 ≈ 0.33.
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4.2 NMR in Combination with a Capillary

Shearing Device

As the investigation with nuclear magnetic resonance methods proved to be
more suitable than employing an optical parallel plate rheometer the descrip-
tion of the experiments with the Rheoscope is found in the appendix only
(section C.4). All NMR measurements took place in the NMR1 laboratory
of the University of Karlsruhe under the direction of Dr. E.H. Hardy.

4.2.1 Experimental Setup

Both the suspension and a pure sugar solution are sheared in a tube that is
a removable part of a special capillary shearing device. Inserting the tube
in a NMR tomograph the magnetic resonance of 1H is detected allowing for
instance the determination of the particle distribution.

Marvin - A Special Capillary Shearing Device

Figure 4.2: The capillary shearing device

1Nuclear Magnetic Resonance
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The used capillary shearing device (fig. 4.2) was constructed meeting the
special demands in consequence of the NMR investigation. The suspension
in a tube (inner diameter 22mm, length approximately 40mm) is positioned
between two bulbs. In vertical position the tube together with an attached
weight glides downwards slowly due to gravity whereas the bulbs and the
overall volume holding the fluid remain fixed. Thus a laminar tube flow is
generated. The arrival of the tube below activates a magnetic position switch
that starts rotating the tube by the in-build engine at a fixed angular veloc-
ity. After rotating 180◦ another vertical position is reached the weight being
at the top activating a second switch that stops the rotation. The weight

translation/shear flow
(due to gravity)

rotation
(controlled by engine)

weight

tube

bulbs

g

Figure 4.3: Shearing principle of the capillary shearing device

starts coming down again and the described process begins anew (fig. 4.3).
The engine is a spur gear motor from the company SEW with the following
characteristics:
number of revolutions: 1380/min
power: 0.12kW
frequency: 50Hz
voltage: 230V While the resulting oscillatory movement of the tube gen-
erally means a recurrent reversal of the shear flow no turning back of the
particle diffusion is involved. The particle drift orthogonal to flow accumu-
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lates during the oscillatory shear process as the flow direction is irrelevant
regarding the relevant gradients. At the turning point the structure is fixed
since no Brownian motion occurs. A suspension with average particle con-
centration 〈ϕ〉 = 0.4 and a sugar concentration of cS = 88% as well as a pure
cS = 88% sugar solution were chosen. The particles ascend slow enough (cp.
table 3.2) not to override the hydrodynamic diffusion. While shearing the
particle rise is directed parallel to the flow direction and orthogonal to dif-
fusion. The rotation time during which gravity and diffusion have common
direction components is much shorter than the characteristic time regarding
gravity. Overall the gravitation effect does not disturb the diffusion process
significantly.

NMR Spectrometer

The employed Bruker spectrometer is based on a super-wide-bore cryo mag-
net of Bruker Spektrospin/Oxford Instruments. The bore is 150mm wide.
The console is an Avance 200. The diameters of the gradient system are
40mm (inner) and 72mm (outer). We used a wide-bore Micro 2.5 (inner di-
ameter 25mm) probe. The induction of the electromagnetic field is 4.7Tesla.
The gradient sensitivity was 0.025T/m/A and the maximum gradient was
1T/m. As for data processing the Paravision Software was applied. The
pulse sequences used were a multi slice multi echo (msme) and an imaging
sequence supplemented by a gradient coding the velocity (sevi) both provided
by the Bruker company.

4.2.2 Results

Demixing As the relaxation times of the protons in the aqueous sugar
solution differ from the one in the particles the spin density and hence the
intensity of the NMR signal corresponds to the particle distribution. Due
to the shorter T2 time of PMMA compared to the matrix fluid it is possible
to visualize the particle distribution in the suspension by MRI2 methods.
Up to five contiguous slices at a time perpendicular to the tube axis were
analyzed the slice thickness being 5mm, 10mm or 20mm. The field of view
was 25mm × 25mm. The cross-sectional multi slice spin echo images of the
tube filled with suspension before and after shearing with Marvin (fig. 4.4)
show that indeed a demixing took place. After shearing a lower signal at
the axis of the tube means an increased particle concentration there (cp. the
paragraph about the pure sugar solution and C2). This result is also visible

2Magnetic Resonance Imaging
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(a) (b)

Figure 4.4: MRI images of a suspension containing 88% sugar solution and
particles in a tube before (a) and after (b) shearing
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Figure 4.5: Intensity of the NMR signal of a suspension in a tube

in fig. 4.5 showing the average signals (summation over annuli) as a function
of the radial coordinate of the rotation-symmetrical system. By calculating
the average function the fluctuation originating in the particle distribution is
eliminated. At the circumference of the cross section the twelve equidistant
points of high intensity are artifacts due to the legs of the bird cage (more
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(a) (b)

Figure 4.6: Cross correlation of the suspension with 84% (a) and 88% (b)
solution, in each case 10 minutes elapsed between the correlated states
(white parable added for clarification)

clearly visible in fig. 4.11).

Cross correlation In order to be sure that while taking the NMR data
the suspension in the vertically positioned tube does not change its particle
distribution significantly we investigate the correlation of the measured signal
intensities �I1(z) = (I1,1(x1, z), I1,2(x2, z), ..., I1,n(xn, z)) and
�I2(z) = (I2,1(x1, z), I2,2(x2, z), ..., I2,n(xn, z)). The NMR signals are taken at
an interval of 10 minutes. We apply the cross correlation function defined as

�I1(z) � �I2(z) =

∫ ∞

−∞
�I1(z̃)�I2(z + z̃)dz̃ = F [F−1(�I1(z))F−1(�I2(z))] .

In this case the minimum value of the cross correlation gives the most prob-
able position at which the structure of the signal being positioned before at
z = 0 can be found within �I2. We calculate the cross correlations of the
MRI images before and after the measuring procedure of suspensions with
differing fluid viscosities. The result of the cross correlation using a suspen-
sion containing a 84% sugar solution and particles shows a vertical parabolic
translation (a white parable was added for clarification) (fig. 4.6a). This
means that the particle – fluid structure in the tube has moved parable-like
per approximately 800μm. This value is comparable with the translation Δz
of a particle moving with Stokes velocity uSt (cp. equation (3.9)):

Δz = uSt600s = 1350μm
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Most likely the ascension of particles due to gravity is represented here. Near
the wall the particle velocity is lower as there is a higher resistance to dis-
placement of the fluid. The fluid viscosity of this system is lower than the
fluid viscosity of the 88% solution that was used for the NMR measurement.
The suspension containing a 88% sugar solution shows no significant struc-
ture shift (fig. 4.6b). Thus recording the NMR data is not affected by particle
ascension due to gravity in the suspension.

Geometrical structuring In highly concentrated suspensions a certain
geometrical ordering due to the restriction imposed by the walls might take
place. It is expected to be similar to the geometrical structure established

0
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position y* [-]
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ε 
[-]

0,4

Figure 4.7: Porosity in a sphere packing with 〈φ〉 = 0.6 calculated by
Rottschäfer [39]

in sphere packings calculated by Rottschäfer [39] (fig. 4.7). The oscillating
structure starts at the wall with zero particle concentration. With increasing
distance to the wall the particle concentration oscillates with fading ampli-
tude. The distance between two peaks is slightly smaller than one particle
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Figure 4.8: Intensity of the NMR signal of a suspension in a tube after
shearing

diameter. Near the wall the average intensity of a NMR signal of a suspen-
sion in a tube representing the particle distribution shows similar peaks also
being spaced at intervals of one diameter (fig. 4.8). As the inherent noise was
eliminated by averaging we assume that the shape of the curve represents
the geometrical structure of the suspension.

Simulation Simulating the NMR signal of a suspension (spin density of
PMMA set to zero) with randomly distributed particles of quadratic shape
determined by the Monte Carlo method again demonstrates artifacts at the
phase boundaries near the wall and at the particle contours (fig. 4.9). The
simulation of discrete signal responses makes the identification of artifacts
generated by the fast Fourier transformation into reciprocal space possible.
The Gibbs artifacts develop around steps of the spin density function [17].
Here the NMR signal resulting from an ideal measurement was simulated.
In case of a tube (spin density set to zero) containing a pure solution (spin
density 1) the result (fig. 4.10) shows peaks being spaced at ≈ 200μm being
close to the average particle diameter. Hence also artifacts might be the origin
of the measured peaks of the suspension in fig. 4.8. To find out if that is the
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(a) (b)

Figure 4.9: Simulated spin density (a) and NMR signal (b) of a suspension
in a tube with randomly distributed particles of quadratic shape: the NMR
signal (b) shows artifacts at the phase boundaries near the wall and at the
particle contours
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Figure 4.10: The simulation of a NMR signal of a pure solution (spin density
1) in a tube (spin density 0) shows artifacts at the tube wall: (a) axial
cross-section of the tube (b) average intensity

case further measurements will be necessary. The distance between peaks
of the signal intensity distribution of suspensions containing particles with a
different average particle diameter would behave approximately proportional
to the particle diameter if the effect results from the geometric structure. If
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the oscillation of the signal intensity are Gibbs artifacts the distances are not
dependant on the particle diameter. Comparisons between the simulation
of the spin density and the NMR signal of a suspension with the average
concentration 〈ϕ〉 = 0.4 (not possible here due to the restricted computation
time) to the measured signal (fig. 4.8) might render interesting conclusions.

Pure sugar solution The spin echo of a pure sugar solution before and
after shearing reveals that the intensity of the NMR signal at the tube axis
also decreases while shearing (figs. 4.11 and 4.12). Here the signal difference

(a) (b)

Figure 4.11: MRI images of a 88% sugar solution in a tube before (a) and
after shearing (b) (axial cross-section of the tube)

(a) (b)

Figure 4.12: MRI images of a 88% sugar solution in a tube before (a) and
after shearing (b) (radial cross-section of the tube)
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apparently originates in a relaxation contrast (T2). There are several possible
explanations. The relaxation contrast might be generated by a crystallization
of the sugar whereas crystallization occurs only at the axis of the tube since
crystallization at the wall is prevented by high shear rates. Alternatively the
crystallization might occur in the whole tube creating a suspension consisting
of sugar solution and sugar crystals (average volume concentration 〈ϕS〉) that
arranges according to the principle of minimum energy dissipation in tube
flow as follows. The viscosity of a homogenous suspension is with (2.3):

η =
η0

(1 − 〈ϕS〉)2
(4.1)

Considering on the other hand a plane Couette flow with inhomogenous crys-
tal distribution (along the gap) with the same average crystal concentration
〈ϕS〉 the crystal concentration can be described as ϕS(y∗) = 〈ϕS〉 + δϕS(y∗)
with

∫ h∗

0
δϕS(ỹ∗)dỹ∗ = 0. In this case the average viscosity defined as

〈η〉 =

∫ h∗

0
η(y∗)dỹ∗

h∗

is

〈η〉 =
η0

h∗

∫ h∗

0

dỹ∗

(1 − (〈ϕS〉 + δϕS(ỹ∗)))2
(4.2)

from which we get:

〈η〉 =
η0

h∗

∫ h∗

0

dỹ∗

(1 − 〈ϕS〉)2 − 2〈ϕ〉(δϕS(y∗)) + (δϕS(y∗))2

=
η0

h∗

∫ h∗

0

dỹ∗

(1 − 〈ϕS〉)2 + (δϕS(y∗))2

Since (δϕS(y∗))2 ≥ 0 the macroscopical viscosity of a non-homogenous sys-
tem is the lower the more inhomogenous the crystal distribution. Thus the
maximum energy dissipation comes along with a homogenous distribution
and the signal distribution in figs. 4.11 and 4.12 might correspond approxi-
mately to a minimum energy dissipation.
Another cause of the low NMR signal at the axis might be inhomogenities
of the sugar solution characterized by differing sugar concentrations that
arrange again according to the described principle of minimum energy dis-
sipation. (Hereby it is assumed that here also the macroscopical viscosity
increases with decreasing homogenity.) The distinct areas of low signal vis-
ible left and right in fig. 4.12 are artifacts resulting from inhomogenities of
the B1 field most likely. Since the ratio of the signal difference between wall
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area and axis-area related to the average signal is considerably lower than
the corresponding value regarding the suspension it can be assumed that the
origin of the signal difference in the suspension is not a crystallization effect
but actual demixing (cp. section C.2).
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4.3 NMR in Combination with a Flow Line

4.3.1 Experimental Set-Up

The NMR measurements were performed using the equipment described in
section 4.2.1. A gravity-driven tube flow is led through the spectrometer
allowing to measure the spin density and the velocity profile of the suspension
during flow.

The Flow Line

The suspension is flowing out of a reservoir through a rubber hose passing
vertically through the tomograph into a second reservoir that is lower posi-
tioned than the first one (fig. 4.13). A peristaltic pump sends suspension

(a)

Δhg
reservoir

hose

tomograph

(b)

Figure 4.13:
Principle of the tube flow (b) leading through the spectrometer (a)

from the downward reservoir to the upper reservoir through another tube. In
the tube over the measuring volume a mechanical mixing device is positioned.
The inner diameter of the tube leading through the tomograph is 20mm. The
flow rate is controlled by adjusting the pressure difference determined by the
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difference of altitude regarding the two reservoirs. We did not generate the
flow through the tube with the pump directly due to the unwanted pulsation
of the generated flow. We used a suspension containing a 72% sugar solution
and PMMA with an average particle concentration 〈ϕ〉 = 0.4.

4.3.2 Results

In order to determine the spin density and the velocity profile of the flow-
ing suspension the spin echos in response to the msme respective sevi pulse
sequence were measured. The image matrix was 256 × 256. The results for
differing flow rates are shown in fig. 4.14. The particle concentration near
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Figure 4.14: Spin density and velocity profile in Poiseuille flow of a suspen-
sion determined by NMR

the tube wall is lower than along the axis of the tube. The velocity profile is
flater than the parabolic shape that is typical for Poiseuille flow. This is to
be expected as the inhomogenous particle distribution results in decreased
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shear rates at the center and increased shear rates near the wall. The faster
the flow the more pronounced are these characteristics of the velocity profile.
The asymmetry of the profiles and the artifacts at the centerline of the tube
may be caused by the imprecise centering of the tube related to the spec-
trometer opening. The shear rate profile of the flow is determined from the
velocity profile by equation (2.1). From the pressure loss

∂p

∂x
=

ρgΔhg

L

(Δhg being the effective difference (cp. fig. 4.13) of altitude and L being the
total length of the hose) the shear stress in laminar tube flow follows:

τ(r) =
∂p

∂x
r

Additionally we take into account a further pressure loss that is proportional
to the difference of altitude (cp. section C.5) while calculating the viscosity
from shear rate and shear stress with (2.2). Considering the fluidity f = 1/η
instead of the viscosity η minimizes the artifacts caused by γ̇(r = 0) = 0
and τ(r = 0) = 0 at the axis of the tube (fig. 4.15). Finally we obtain the
particle concentration profile from the viscosity that is a function of the con-
centration (equation (2.3)). The result agrees with the particle concentration
represented by the spin density (4.16). Furthermore it exhibits the theoret-
ically predicted depletion of particles near the wall (fig. 3.6). Whereas the
spin density results from the raw resonance data the alternative determina-
tion of the particle concentration profile is based on the rheological properties
of the system derived from the velocity profile. That way two independent
fields that are NMR and rheology are connected offering great multifaceted
potential so far not utilized.
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calculated from the velocity profile
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Numerical Simulation

5.1 Method

At the Institute of Computational Fluid Dynamics of the University of Stuttgart
simulations of sheared suspensions took place under the direction of Prof.
Herrmann [2]. For this a modified lattice-Boltzmann method was used. The
lattice Boltzmann method connects the Navier-Stokes equations with the dy-
namics of a diluted gas resulting in the Boltzmann equation transferred to a
discrete form. The phase interface between fluid and particles is defined by
a boundary condition that is a ′link-bounce-back′ collision rule. The particle
motion is described by the Newton equation. Certain special cases involv-
ing lubrication interactions or particles coming very near each other have to
be treated separately. In order to reduce the computing time the desired
system sizes are represented by a smaller size in combination with periodic
boundary conditions. Simulations of a homogenous sheared suspension be-
tween two walls experiencing gravity and hydrodynamic diffusion varying
the Reynolds number, the total particle concentration and the fluid viscosity
were conducted.

5.2 Results

The simulated particle concentration profile of a sheared suspension at steady
state with parameters corresponding to 〈ϕ〉 = 0.4, h∗ = 30, a = 100μm and
ρF−ρP = 0.27g/cm3 (fig. 5.1) shows that the particle concentration oscillates
with a decreasing amplitude. The maxima are spaced at one particle diam-
eter. This result is similar to the geometrical structuring in sphere packings
(fig. 4.7) and also to the concentration profile of a suspension determined by
NMR (fig. 4.8). Near the wall a particle-free region and the resulting pseudo
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Figure 5.1: Example of a simulated system (volume V = 11.3025 ∗ 10−9m3)
consisting of 50 sedimenting spheres sheared with a shear rate γ̇ = 0.03375
Pas−1 (a) and the particle concentration profile of a sheared suspension
with an average particle concentration 〈ϕ〉 = 0.4 and gap width h∗ = 30
sheared with shear rate γ̇ = 10s−1 (b) and γ̇ = 1s−1 (c) with particle radius
a = 1.125μm, particle density ρP = 1176kg/m3, fluid viscosity ηF = 0.45Pas
and fluid density ρF = 1446kgm−3 at the time t = 729s

wall slip corresponding to the theoretically determined boundary layer is
present. The shear flow with the higher shear rate (fig. 5.1b) and therefore
with the higher shear strain at the given time shows a concentration pro-
file that is more distinct. Also the simulated distribution functions of the
particle-particle distances, of the particle-wall distances and of the particle
velocities in flow direction show these phenomena [2]. Particle velocity func-
tions in all spatial directions were determined. The distribution of velocities
perpendicular to the walls exhibits a greater width than the velocities parallel
to the walls and perpendicular to the flow direction. This is a consequence of
the hydrodynamic diffusion across the flow direction. The particle migration
due to hydrodynamic interactions parallel to the wall and perpendicular to
the flow direction is approximately zero as the gradients of concentration,
shear rate and resistance force in these directions. The particle distribution
is a function of the shear strain as predicted by the theoretical model.
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Comparison and Outlook

As from the model certain properties of a Couette flow with and without grav-
ity and of a non-flowing suspension were determined the NMR experiments
deal with the tube flow of a suspension. Thus a comparison of experimental
and theoretical results is limited to qualitative tendencies. Both model and
experiments exhibit a demixing of an initially homogenous suspension dur-
ing shearing whereas the particle drift always is directed away from the walls
leading at steady state to a maximum particle concentration at the position
farthest from the walls and a low particle concentration near the wall.
The calculated characteristic time scale of demixing due to wall influence
agrees with the decrease of the time-dependant viscosity function of a sus-
pension measured with a parallel plate rheometer.
The calculated characteristic time regarding demixing due to gravity corre-
sponds quasi exactly to the ascending time of the particles in the tube within
the NMR experiments.
So far the functional relation between NMR signal and particle concentra-
tion in the was known only qualitatively. Performing additional NMR mea-
surements with pure sugar sirup and a solid PMMA brick to calibrate are
recommended. Thereby the sugar concentration of the solution has to be
identical to the one of the solution in the suspension.
In order to evaluate the geometrical ordering experimentally NMR experi-
ments with other particle size might be carried out or the NMR signal noise
and the Gibbs artifacts have to be filtered out.
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Abstract

The object of this work was the analysis of wall effects in shear flow of sus-
pensions. The development of a new phenomenological model describing the
wall influence was combined with an experimental investigation.

In shear-flowing suspensions demixing processes and particle transport take
place due to hydrodynamic diffusion. Particle-particle interactions lead to
statistical fluctuations of the particle velocities. Shear rate gradients and
particle concentration gradients as well as viscosity gradients orthogonal to
the flow direction might generate an overall particle drift orthogonal to the
flow direction. A gradient of interaction frequency consisting of shear rate
and particle concentration gradients makes the particles tend to drift away
from the areas of higher interaction frequency. The viscosity affects the av-
erage distance a particle translates orthogonal to the flow direction induced
by an interaction – the particles tend to drift towards the areas of lower vis-
cosity being connected with a lower resistance force acting on the particle.
The macroscopic effect of a systematic shear-induced particle drift results in
inhomogenities of the suspension. Phillips et al. [33] have set up a diffusion
equation concerning these transport processes. The phenomenon of pseudo
wall slip might originate in the mechanism of hydrodynamic diffusion. An
area with low particle concentration near the wall leads to high shear rates
and a steep velocity increase. Macroscopically observed the flow seems to
slip along the wall.

A solid boundary wall also affects the particle drift. The new approach
is basing on the fact that the resistance force acting on particles very near
the wall moving orthogonal to the wall is increased as the liquid in the gap
between particle and wall has to be pushed out of or pulled into the gap.
The new approximation of the resistance coefficient being a function of the
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distance to the wall matches very well the findings of Happel and Brenner
[12] concerning the resistance force under the described circumstances. The
new model allows to set up a new diffusion equation including wall influence.
A further addition is made taking into account sedimentation or buoyancy
directed parallel to the particle drift. The constitutive equation describes
the particle concentration as a function of time and position in the gap of
a suspension (Couette flow) accounting for wall effect and gravity. The de-
termination of further flow properties either analytically or numerically is
possible. The particle concentration profiles, shear rate profiles and velocity
profiles of half-infinite and two-wall Couette flows at steady state with and
without gravity were calculated as well as the start-up particle concentration
development of a non-flowing suspension with one and with two walls expe-
riencing gravity.
In general the following points can be stated regarding the results:

• In a shear flow the wall generates a particle drift directed away from
the wall.

• As a consequence at steady state the particle concentration near the
wall is a monotone function that approximates zero at the wall and
rises with increasing distance to the wall (except the area contains no
particles at all due to gravity).

• A boundary layer of low particle concentration can be found at the wall
leading to a pseudo wall slip.

• Even if gravity steers the particles towards the wall this is still the case.

• At initial homogenous particle distribution the establishment of the
boundary layer needs only a very low strain and happens thus very
fast.

• The boundary layer becomes more narrow with increased average par-
ticle concentration.

• The non-injectivity of the mathematical solution defines a discontinuity
of the physically occuring particle concentration.

• During an experiment without gravity at a fixed initial particle concen-
tration in a pure shear flow the particle concentration is dependant on
the total strain and not on the occuring shear rates or shear stresses.
This is valid in half-infinite flow as well as if two walls are present.
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• The process of sedimenting or rising of particles in a suspension (no
flow) is slowed down by the wall.

In order to analyze the particle distributions in shear-flowing suspensions
experimentally the method of nuclear magnetic resonance was employed bas-
ing on the detection of protons serving as sensors (H-NMR). Differing NMR
signal intensities of matrix fluid and particles deliver makes it possible to
distinguish between matrix fluid and particles.
With regard to that a special shearing device realizing an oscillating tube flow
of unlimited shearing time was designed and constructed. After shearing the
removable tube can be taken out and inserted into the nuclear magnetic res-
onance tomograph. In this way the spin density distributions of suspensions
and pure solutions were determined. The viscosity of the substance was high
enough to prevent further rearranging of the particles during measuring time.
This was verified checking cross correlations. To find out NMR-specific arti-
facts appearing at the discontinuities of the spin density function the NMR
signals of a pure solution in a tube and of a suspension were simulated.
The spin density distribution of the suspension was set by the Monte Carlo
method.
In addition the gravity-driven tube flow of a suspensioncontaining an in-build
mechanical blending device was analyzed insitu whereas a hose was leading
directly through the NMR spectrometer. Spin density profiles (representing
the particle concentration) and velocity profiles were measured. From the ve-
locity profiles shear rate profiles and viscosity profiles could be determined.
The viscosity again leads to a particle concentration profile refering to the
equation of Krieger and Dougherty (2.3). Additionally the viscosity function
of the suspension was measured with a parallel-plate rheometer.
The experimental findings follow.

NMR measurements offline:

• The magnetic resonance images of the suspension before and after
shearing show that an accumulation of particles in the initially ho-
mogenous suspension formed in the centre of the tube. At the tube
wall the particle concentration is low in agreement with the theoretical
results (pseudo wall slip).

• The oscillatory structure with fading amplitude of the NMR signal
intensity near the wall corresponds with the porosity function calcu-
lated by Rottschäfer [39] representing a geometrical ordering induced
by the restrictions being imposed by the wall. The distance between
two neighbored maxima is slightly less than one particle diameter.
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• This structure also appears in the lattice Boltzmann simulation of the
shear flow of a suspension by Herrmann et al. [2].

• The NMR signal of a tube containing pure solution obtained by simula-
tion shows artifacts (Gibbs phenomenon) that resemble the oscillatory
structure.

• The NMR signal of a pure sugar solution being homogenous at begin-
ning shows after shearing also a reduced spin density at the center of
the tube. This corresponds to the state of minimum energy dissipation
according to which the areas with higher viscosity that might consist
of crystallized sugar are found in the middle of the tube.

• Directly after the blending device the particle concentration is homoge-
nous whereas some centimeters farther the decreased spin density at the
center of the tube shows that a demixing has taken place.

• At this position the stationary velocity profile (slightly flatter than
parabola-like) has established.

• From the measured velocity profile the viscosity profile and the particle
concentration follow.

• The particle concentration profile determined from the spin density
distribution agrees well with the particle concentration derived from
the velocity profile.

Measurements with a parallel-plate rheometer:

• The start-up short-term increase of the viscosity corresponds to an
initial homogenization.

• The short descent of the viscosity might represent a demixing connected
to the wall influence. The time scale approximately shows the same
order of magnitude as the calculated characteristic time regarding wall
influence.

• The superposed longer enduring decrease of the viscosity might be at-
tributed to the gravity drift of the particles the time scale matching
the theoretical considerations.
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List of Symbols

Latin Symbols

symbol dimension meaning

a m particle radius
aφ 1 increase factor
A m2 area
A m2 auxiliary function
A 1 factor
A′ 1 factor
b 1 exponent
B 1 factor
�B T magnetic field
�B0 T static magnetic field
�B1 T radiofrequency magnetic field
cS 1 sugar mass concentration of fluid
cS,0 1 sugar mass concentration of original sugar solution
C s−1 integration constant
d 1 NMR signal difference related to average signal
E J energy
E 1 NMR signal

EmI
J energy of a nucleus occupying state mI

f Pa−1s−1 force
F N force
FA N lift force
FG N mass force
FSt N Stokes resistance force
F⊥ N resistance force related to movement orthogonal to flow direction
F|| N resistance force related to movement parallel to flow direction
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symbol dimension meaning

gi Pa storage modulus belonging to relaxation time λi

G Pa shear modulus
�G T/m magnetic field gradient
G′ Pa shear storage modulus
G′′ Pa shear loss modulus
h m gap width
h∗ 1 gap width related to particle radius

Δhg m difference of height
H m gap width (Couette flow)
I 1 spin quantum number
I 1 intensity of signal
�I 1 intensity of signal
�I kg m/s angular momentum
k Pa sn factor
k 1 ratio of diffusion constants k := kf/kη

kf 1 diffusion coefficient related to interaction frequency
kη 1 diffusion coefficient related to resistance force

�k 1/m reciprocal space referring to magnetic field gradient �k =
γ

∫ t
0

�G(t)dt

2π

K 1 abbreviation K := ϕ∞(1 − ϕ∞)2(1−1/k)

L m length of tube or capillary
m 1 exponent
mI 1 magnetic quantum number
mF kg mass of fluid

mH2O kg mass of H2O
mP kg mass of particles
M Nm torque
�M J/T m3 macroscopic magnetization
n 1 exponent
N Pa normal stress difference
N m3/m2 volume particle flux through area element
Nα 1 number of spins occupying state α
Nβ 1 number of spins occupying state β
�N m3/m2 volume particle flux through area element
�Nf m3/m2 volume particle flux through area element

related to interaction frequency
�Nη m3/m2 volume particle flux through area element

related to interaction frequency
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symbol dimension meaning

p Pa pressure
p 1 exponent
p Pa isotropic pressure
�I N m s angular momentum
P̄ k s mean propagator
�q 1/m reciprocal space referring to displacement of spins

�q = γδ �G
2π

Q3 1 cumulative frequency
r m radial coordinate
�r m position vector
R m radius of tube or capillary
�R m translational displacement
S 1 NMR signal
t s time
t0 s time t0 = 0s
tc s characteristic time related to wall effects
tg s characteristic time related to gravity
tP s duration of magnetic pulse
tSt s the time a particle with Stokes velocity uSt

needs to cross the distance of one particle diameter
tSt = 2a/uSt (Stokes time)

T K temperature
T 1 dimensionless time
T1 s longitudinal relaxation time
T2 s transversal relaxation time including effect of

inhomogenity of magnetic field �B0

T ∗
2 s transversal relaxation time excluding effect of

inhomogenity of magnetic field �B0

u m/s velocity
uP m/s velocity of particle (orthogonal to flow direction)
uP,|| m/s velocity of particle parallel to flow direction
uSt m/s Stokes velocity of particle
uW m/s slip velocity
u∗ 1 non-dimensional velocity
U m/s velocity
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symbol dimension meaning

V m3 volume

V̇ m3/s flow rate

V̇S m3/s flow rate due to inner shear

V̇W m3/s flow rate due to slip transport
x m volume equivalent diameter
X m distance (Couette flow)
y m position in shear gap
y∗ 1 position in shear gap related to particle radius

steady Couette flow with gravitation effect
Δy∗

F 1 layer width of pure liquid (ϕ = 0) if ϕ = 1 elsewhere
(related to particle radius)

Δy∗
P 1 layer width of particles (ϕ = 1) if ϕ = 0 elsewhere

(related to particle radius)
y∗

0 1 position of a particle at time t0 = 0 related to particle radius
y∗

t 1 fixed position used to calculate characteristic times
Δz m fixed position used to calculate characteristic times
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Greek Symbols

symbol dimension meaning

α ◦ cone angle
α 1 rotation angle of magnetization
α 1 spin orientation of a spin1

2
nucleus

β 1 spin orientation of a spin1
2

nucleus
γ Hz/T gyromagnetic constant
γ 1 shear strain
γH Hz/T gyromagnetic constant of hydrogen
γT 1 shear strain related to transformed time scale
γ̇ s−1 shear rate (of fluid)
γ̇i s−1 inner shear rate
γ̇m s−1 macroscopical shear rate
γ̇P s−1 shear rate of particle system
γ̇T 1 shear rate related to transformed time scale
γ̇∗ 1 non-dimensional shear rate
γ̂ 1 shear amplitude
δ 1 shear angle
δ 1 phase difference

δ90 m width of boundary layer
δ∗90 1 width of boundary layer related to particle radius
ε 1 porosity
η Pa s dynamic viscosity
〈η〉 Pa s average viscosity
η0 Pa s dynamic viscosity of the fluid
η0,0 Pa s dynamic viscosity of sugar solution
ηr 1 relative viscosity
θ ◦C temperature
λi s relaxation time
�μ J/T nuclear magnetic moment
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symbol dimension meaning

φ m3/m3 particle volume concentration
φm m3/m3 maximum particle volume concentration

in steady Couette flow
Δφ 1 shift angle
ϕ 1 relative particle volume concentration

(related to particle volume maximum concentration φm

ϕ0 1 relative particle volume concentration
at center of gap in Couette flow (y∗ = h∗/2)

ϕS 1 relative volume concentration of sugar crystals
ϕ∞ 1 relative particle volume concentration

at infinite distance from the wall (y∗ → ∞)
ϕmax 1 maximum relative particle volume concentration

in steady Couette flow
Ψ Pas2 normal stress coefficient
ρ 1/m3 spin density
ρF kg/m3 density of fluid
ρF,0 kg/m3 density of original sugar solution
ρH2O kg/m3 density of H2O
ρP kg/m3 density of particle
ρS kg/m3 density of invert sugar in solution

ρS(solid) kg/m3 density of invert sugar
σ Pa normal stress
τ0 Pa constant shear stress
τ Pa shear stress
τF Pa shear yield stress
τ̂ Pa s shear stress amplitude

τW Pa shear stress at wall
ω s−1 angular velocity
ω s−1 frequency

ω s−1 frequency referring to �B0

ωL s−1 Larmor frequency
ωRF s−1 radiofrequency
Ω s−1 angular velocity
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Mathematical Symbols, Physical Constants and

Dimensionless Numbers

Mathematical Symbols

symbol dimension meaning

Δa [a] difference Δa = a1 − a2

〈a〉 [a] average value of a
�ei 1 unit vector
ai [�a] ith component of vector �a

x, y, z m cartesian coordinates

∇ 1 divergence operator (nabla): ∇ =
(

∂
∂x

, ∂
∂y

, ∂
∂z

)
E 1 unit tensor
S Pa stress tensor
T Pa extra-stress tensor
ı 1 imaginary number ı =

√−1
�(c) [c] real part of a complex number

(c) [c] imaginary part of a complex number

c̄ [c] complex conjugate
F 1 Fourier Transformation

f(a) � g(a) [a][f ][g] cross correlation

Physical Constants

g = 9.81m/s gravity constant
h = 6.626068 ∗ 10−34m2 kg/s Planck’s constant
� = h/2π Planck’s constant divided by 2π
kB = 1.38066 ∗ 10−23J/K Boltzmann constant

Dimensionless Numbers

Péclet number Pe = η0γ̇(2a)3

kBT
ratio of shear stresses and brownian forces (cp. section 3.1.1)

Reynolds number Re = ρF γ̇(2a)2

η0
ratio of inertia and friction (cp. section 3.1.1)



Appendix A

Phenomenological Approach

A.1 Approximation and Data from Happel

and Brenner

Within the approach

F⊥(y) = 6πauP η0

(
1 + A

(
a

y

)m)

it is A = 1 assumed. With m = 1 and A′ derived from the data of Happel
and Brenner according to

(F⊥/FSt)HB(y) = 1 + A′a
y

it follows
A = A′(y∗ → 0) .

Since the factor A refers to wall influence wall vicinity is relevant. The
values of A′ (tab. A1) show that A′(y∗ → 0) = 1 and thus A = 1 is justified.
The approximation F⊥/FSt = y∗−1 + 1 and the data of Happel and Brenner
(F⊥/FSt)HB agree (tab. A2).

A.2 Wall Effects on Particle Movements Par-

allel to the Flow Direction

Goldman [18] has determined the slip factor uP (y)/u(y) (u is the velocity of
the fluid) at different wall distances related to particle movements parallel to
the wall (ratio of the velocity of a sphere moving parallel to the wall to the

88
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y∗ A′(y∗)
0.001 1.00233312
0.01 1.01896147
0.02 1.03521446
0.05 1.0792908
0.1 1.1459156

Table A.1: Values of A′(y∗)

y∗ (F⊥/FSt)HB from [12] F⊥/FSt = y∗−1 + 1 deviation F⊥/FSt−(F⊥/FSt)HB

(F⊥/FSt)HB

0.1 11.459156 11 4.00 %
0.1276260 9.2517663 8.835394 4.5 %
0.2 6.340886 6 5.38 %
0.5 3.205390 3 6.41 %
0.5430806 3.0360641 2.841347306 6.41 %
1 2.125536 2 5.91 %
1.3524096 1.8374749 1.73942 5.34 %
2 1.569205 1.5 4.41 %
2.7621957 1.4128629 1.362031 3.60 %

Table A.2: Comparison of approximation (3.2) and data of Happel and
Brenner [12]
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velocity of the fluid). As for the shear rate of the particle system we set up
the approximation function

γ̇P (t, y∗) =
τ(t)

η0

1

By∗b + 1

or in concentrated suspensions γ̇P (t, y∗, ϕ) =
τ(t)

η0

1

By∗b + (1 − ϕ)−2
.

The velocity of a particle in a diluted suspension is

uP,||(t, y∗) = a

∫ y∗

0

γ̇P (t, ỹ∗)dỹ∗

=
τ(t)

η0

a

∫ y∗

0

1

Bỹ∗b
+ 1

dỹ∗

whereas the velocity function of the suspension is

u(t, y∗) = a

∫ y∗

0

γ̇(t, ỹ∗)dỹ∗

=
τ(t)

η0

ay∗ .

The data given by Goldman [18] valid for diluted suspensions lead to the

values of b and B. Goldman has reported discrete slip velocities
uP,||(y∗)

u(y∗)
.

With (A.1) and (A.1) our approximation leads to

uP,||
u

(y∗) =
1

y∗

∫ y∗

ỹ∗=0

ỹ∗b

B + ỹ∗b dỹ∗ .

A comparison of numerically obtained values of that with the values of Gold-
man shows agreement if B = 0.012 and b = 1. Therewith the shear rate of
the particle system is

γ̇P (t, y∗, ϕ) =
τ(t)

η0

1

0.012y∗−1 + (1 − ϕ)−2
(A.1)

and the velocity is

uP,||(t, y∗) = a

∫ y∗

0

γ̇P (t, ỹ∗)dỹ∗

= a
τ(t)

η0

∫ y∗

0

1

0.012ỹ∗−1
+ 1

dỹ∗

= a
τ(t)

η0

(y∗ − 0.012 ln(y∗ + 0.012))
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Taking into account additionally the wall influence on the particle move-
ments in flow direction (3.14), (3.3) and (A.1) lead to the following diffusion
equation (analogous to (3.15)):

ϕ
(
y∗−1 + (1 − ϕ)−2

) kη
kf = ϕ∞(1 − ϕ∞)

2(1− kη
kf

) (
0.012y∗−1 + (1 − ϕ)−2

)
⇐⇒ ϕ (y∗−1 + (1 − ϕ)−2)

1/k

0.012 ∗ y∗−1 + (1 − ϕ)−2
= ϕ∞(1 − ϕ∞)2(1−1/k) =: K (A.2)

As analytical solving with k = 0.66 (the value of Phillips et al. [33]) is not
possible we solve the equation for k = 0.5 and for k = 1 (encircling k = 0.66)
being of the same order.
For k = 1 with (A.2) follows:

ϕ (y∗−1 + (1 − ϕ)−2)

0.012 ∗ y∗−1 + (1 − ϕ)−2
= K

⇐⇒ y∗ =
(ϕ − 0.012K)(1 − ϕ)2

K − ϕ

and K = ϕ∞(1 − ϕ∞)2(1−1/k)

For k = 0.5 with (A.2) follows:

ϕ (y∗−1 + (1 − ϕ)−2)
2

0.012 ∗ y∗−1 + (1 − ϕ)−2
= K

⇐⇒ y∗−2 + y∗−1

(
−0.012K

ϕ
+ 2(1 − ϕ−2)

)
+ (1−ϕ)−4 − K

ϕ
(1−ϕ)−2 = 0

The physically reasonable solution of this equation with K = ϕ∞(1−ϕ∞)−2

is:

y∗−1 =
0.012K

2ϕ
− (1 − ϕ)−2 +

√
0.0122K2

4ϕ2
+ (1 − ϕ)−2

K

ϕ
(1 − 0.012)

⇔ y∗ =

(
0.012K

2ϕ
− (1 − ϕ)−2 +

√
0.0122K2

4ϕ2
+ (1 − ϕ)−2

K

ϕ
(1 − 0.012)

)−1

A Comparison with the results not taking into account wall influence on
particle movements in flow direction setting k = 1 and k = 0.5 shows that
the profiles differ only slightly (fig. A1). So disregard of this influence is
justified most probably also if k = 0.66. Consistently figure A2 shows that
the effect of the wall on the force acting on a particle moving orthogonal to
the wall (F⊥) is much stronger than on the force acting on a particle moving
parallel to the wall (F||).
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Figure A.1: Particle concentration profiles in a steady half-infinite shear
flow with and without taking into account the wall influence on particle
movements parallel to flow direction (in legend denoted as ′effect ||′)
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Thus the particle concentration profiles and the velocity profiles taking
into account velocity slip should correspond approximately to the results
excluding velocity slip and we conclude that leaving it out will not produce
significant errors.
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Properties of Shear Flowing
Suspensions

B.1 Dependency of the Particle Concentra-

tion Profile on the Diffusion Factors

The ratio of the diffusion constants k = kη/kf that was determined by
Phillips et al as k ≈ 0.66 influences the resulting particle concentration pro-
files according to the diagram in fig. B.1 (no gravity effect, one wall). At
the intersection point y∗ ≈ 1.2 and ϕ ≈ 0.27 the particle concentration does
not change if one of the two diffusion factors kη and kf changes. Since the
corresponding particle fluxes Nη and Nf increase linearly with the diffusion
factors (Nf ∝ kf and Nη ∝ kη according to (2.8) and (2.12)) the particle
fluxes both must be zero at this position.

B.2 Numerical Determination of Velocity Pro-

files from Discrete Data

According to (3.17) the velocity profile is calculated from discrete data triples
(y∗

i , γ̇i, ϕi):

ui(y
∗
i ) =

y∗
2 − y∗

1

2
γ̇1(ϕ1(y

∗
1))+

i−1∑
j=2

γ̇j(ϕj(y
∗
j ))

y∗
j+1 − y∗

j−1

2
+

y∗
i − y∗

i−1

2
γ̇i(ϕi(y

∗
i ))

(Mostly y∗
1 = 0.)

94
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Appendix C

Experimental Investigation

C.1 Calculating Suspension Properties

We assume that the densities respectively the specific volumes in the sugar
solution are linearly superpositionable.

Density of Dissolved Invert Sugar

The density of invert sugar in solution ρS is calculated from the density of the
original solution ρF,0 = 1.39g/cm3 and its mass concentration cS,0 = 72.7%:

cS,0ρ
−1
S + (1 − cS,0)ρ

−1
H2O = ρ−1

F,0

⇔ ρS =
(
ρ−1

F,0 − (1 − cS,0)
)−1

cS,0

With ρH2O = 1g/cm3 it results ρS = 1.59g/cm3. (The density of invert sugar
(solid state) found in literature gives ρS(solid) = 1.65g/cm3).

Average Particle Concentration, Density and Sugar Concentration
of Sugar Solution after Evaporating

Water (mass mH2O) is evaporated from a 72.7% sugar solution (mass mF )
containing or not containing particles. The new sugar concentration cS is
calculated as

mF cS,0 = (mF − mH2O)cS

cS = mF

(
1 − cS,0

cS

)

96
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relative signal difference d = Iwall area−Iaxis area

Iaverage
[1]

Solution after shearing 0.4
Suspension after shearing (> 1 min)s 0.75
Suspension after shearing (30 min) 1.1

Table C.1: The relative signal differences d of a suspension and of a pure
solution after shearing

and the new density ρF as

ρ−1
F = ρ−1

S cS + ρ−1
H2O(1 − cS)

ρF =
(
ρ−1

S cS + ρ−1
H2O(1 − cS)

)−1
.

(As the particles had to be added before evaporating a determination of
density using a density hydrometer was not possible.)
The following average particle (volume) concentration results:

〈φ〉 =
mP ρ−1

P

mP ρ−1
P + mF ρ−1

F,0 − mH2Oρ−1
H2O

C.2 Comparison of the NMR Data in a Sus-

pension and in a Pure Sugar Solution

In order to determine if the signal difference in the magnetic resonance image
of a suspension after shearing (fig. 4.4) is representing a demixing of the
suspension indeed a relative signal difference is defined (I is the intensity of
the NMR signal):

d =
Iwall area − Iaxis area

Iaverage

The relative signal difference of a suspension after shearing is compared to
that of a pure solution after shearing (fig. C.1, tab. C.1). The relative
signal difference of a pure solution is considerably lower than the one of a
suspension. This suggests that the signal difference in the suspension is the
result of a demixing at least partially.
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Figure C.1: Intensity of the NMR signal of a suspension and of a pure sugar
solution before and after shearing

C.3 The RheoScope

C.3.1 The Device

To perform rheological and optical investigation of a suspension we used a
special optical torsion rheometer of the company Thermohaake (fig. C2).
The ′RheoScope′ is a modified version of the ′RheoScope 1′. Operating the
RheoScope for instance as a cone plate or a parallel plate rheometer the
usual types of rheological shear tests including shear stress and shear rate
controlling are possible. The special feature of the RheoScope is the ability
of realizing simultaneous rheological and optical measurements. The optical
set up allows the production of snapshots as well as the recording of videos
of the filled-in substance. The lower plate is transparent and covers an op-
tical system. The display window is 920 × 685μm wide. Its position can be
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varied within a radial length of 18mm starting at the centre. The depth of
focus is variable whereas the focus reference point is fixed. The RheoScope
is controlled through the software ′Rheowin′ provided by Thermohaake. It
allows data processing (′Data Manager′) as well as designing of chronolog-
ically structured measuring procedures (′Job Manager′) combining several
elements specifying rheological measurements, optical recording and general
functions like lift control or data output. For further data on the RheoScope
look at the instruction manual of the RheoScope [20].

Figure C.2: The RheoScope

C.3.2 Theoretical Description of the Shear Flow in the
RheoScope

We choose a parallel plate setup. A plane Couette flow is assumed neglecting
horizontal flow due to shear rate gradients in radial direction. After one
rotational turn the particles are redispersed in the circumferential direction
[27] and the particle concentration is not a function of the x−coordinate that
is flow direction. The differing local shear rates are with (2.2) and (2.3):

γ̇(y∗, r) =
τ(r)

η(ϕ(y∗, r))
=

τ(r)

η0

(1 − ϕ(y∗, r))2

(If performing shear rate controlled tests the set shear rate γ̇(r) = rω
h

is
′distributed′ across the shear gap so that the resulting local shear stress values
τ(r) fulfill torque balance.) The viscosity value registered by the Rheoscope
is a function of the particle distribution and therefore might give indications
concerning demixing processes. Due to the curved streamlines at high shear
rates centrifugal forces act on the particles. As the centrifugal forces are
maximum at the rotating upper plate and zero at the fixed lower plate the
particles near the upper plate are pushed outward and a current away from



APPENDIX C. EXPERIMENTAL INVESTIGATION 100

the center is generated under the upper plate. At the center the resulting
low pressure makes fluid flow upwards. That in turn causes flow inwards
above the lower plate. In this way a circular secondary flow is generated.
As we deal with low shear rates the centrifugal forces are weak and will not
disturb the Couette flow. Curved streamlines also cause a particle drift across
flow direction. According to Shauly et al. [3] the drift is directed towards
decreasing curvature. At polydisperse particle distribution bigger particles
are to be found at the outer areas of the flow, smaller particles tend to be
situated within the interior zone (Altobelli et al. [19]). A particle drift out of
the gap due to a shear rate step at the circumference analogous as described
in [27] might occur. The last effects are not relevant here as this is not the
drift direction to be investigated.

C.3.3 The Rheoscope Does not Meet our Demands
Perfectly

The RheoScope is not entirely appropriate for determining particle distribu-
tions in suspensions due to deficits of the optical system. Figs. C.3 and C.4
show images recorded by the RheoScope at different depth of focus.
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Figure C.3: Image of the suspension during shearing at high depth of focus

Figure C.4: Image of the suspension during shearing at low depth of focus
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First of all even in combination with our optimized particle-fluid system
and a polished plate the entry of light is not sufficient by far. This makes
automatic image processing difficult as most image processing tools operate
with the distinction of different gray scales these being barely distinguish-
able within images recorded the RheoScope. As explained more detailed in
[8] a different illumination principle would make the optical recordings signif-
icantly clearer and therefore much easier to analyze. Another disadvantage
of the optical set up is the fixed point of focus whereas the depth of focus can
be varied. Especially with regard to the fact that our intentions include the
analysis of particle concentration distributions requiring optical recordings
at different axial positions this means a drastic limitation. The construction
of the RheoScope easily would have allowed the integration of a translational
mobile objective. Further the low size of the observation window restricts
the possibilities of statistical image processing extremely. The images display
most particles incompletely and a great number of those images would be
needed to provide a statistical reliability.

C.4 Shear Tests

C.4.1 Optical Test Measurements

Hartmann [22] tested the RheoScope first. Bender [8] conducted further
experiments and found that a particle depletion in a shear plane near the wall
is not excluded. Due to the fixed observation plane he could not investigate
other planes. For a more detailed description of these measurements see [22]
and [8]. The installing of an improved optical system as proposed in [8] was
not possible here. Due to the given time frame only the rheological side was
pursued.

C.4.2 Conceptual Design of the Experiments

Due to device-specific reasons all measurements were conducted shear rate
controlled to guarantee creeping flow. The determination of the exact shear
rates during the start-up of shear stress controlled experiments was prob-
lematic. The particle size of PMMA provides high Péclet numbers what
justifies excluding the Brownian motion (cp. section 3.1.1). The particle
concentration is to be high enough in order to provide a sufficient amount
of interactions related to a reasonable time scale. Shear tests with different
shear rates, total particle concentrations, gap widths and matrix viscosities
(fluid densities) were performed. Mostly PMMA was used possessing its
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original distribution. A small amount of PMMA of a narrowed distribution
containing only particles with radii from 150 to 300μm was available as well
(obtained before sieve was irreversibly clogged).
In general shear tests featuring different shear rates may allow to find out if
the diffusion-controlled particle distribution correlates with the shear strain
solely but not with the shear rate as predicted by the theoretical model
(section 3.1.2). The particle drift due to gravity is not related to the shear
strain, though. Variation of the shear rate additionally involves variation
of the centrifugal forces helping to decide if they are irrelevant as assumed
before. Variation of the fluid density and thus the matrix viscosity influence
the time scale regarding gravity effect. The viscosity registered by the Rheo-
Scope being a function of the particle distribution may show a short term
viscosity increase due to homogenizational processes [27] and further effects
caused by demixing due to wall and gravity.

C.4.3 Experimental Setup

Operating the RheoScope as a parallel plate rheometer a polished plate of
platinum with a diameter of 60mm was chosen as a sensor. An aluminium
ring screwed on the glass plate was used to prevent the suspension from flow-
ing away. Also it was necessary to put a plexiglass plate on the aluminium
ring to avoid further evaporating causing undesirable concentration and vis-
cosity changes.
The typical steps of a measurement with the RheoScope are (chronological
order):

• preparation of suspension

• setting the gap width control (′zero point determination′)

• filling in suspension

• positioning of upper plate

• starting previously defined job controlling shear test with optical record-
ing and saving data

• analysis of the suspension in shear volume (for example to determine
〈ϕ〉) (upper plate does not cover the whole suspension volume)

• analysis of image date

• analysis of rheological data
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C.4.4 Results

Exemplarily we show the measured viscosity functions at shear rate γ̇m =
0.1s−1 and gap width h∗ = 30 of a suspension with sugar concentration
cS = 88% (ρF = 1.45g/cm3) and average particle concentration 〈ϕ〉 = 0.4
(figs. C.5 and C.6) as well as the viscosity of a 88% sugar solution without
particles (fig. C.7). (At certain times the data was taken more frequently in
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Figure C.5: Viscosity of 88% sugar solution with average particle concentra-
tion 〈ϕ〉 = 0.4 at γ̇ = 0.1s−1 measured by the RheoScope

order to investigate the viscosity development at a short time scale (visible
in figs. C.6 and C.7)). The measured viscosities 〈η0,88〉 ≈ 42Pas (pure fluid),
〈η〉 ≈ 90Pas (suspension) approximately relate with equation (2.3). Due to
the high sensitivity of the viscosity of the matrix fluid regarding sugar con-
centration although the concentration is known approximately the viscosity
is not. As the particles are added during the process of concentration ad-
justment the exact matrix viscosity of the suspension cannot be determined
experimentally. Using the measured data of the stationary suspension vis-
cosity it is calculated from (2.3) as η0 ≈ 32.4Pas. The characteristic times
calculated according to section 3.2.4 are tc = 218s and tg = 311s. According
to section 4.2.2 the viscosity of a non-homogenous suspension decreases with
increasing inhomogenity of the particle distribution. Thus the initial increase
of the viscosity function till the maximum at t ≈ 2500s (fig. C.6) overlayed
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Figure C.6: Viscosity of 88% sugar solution with average particle concentra-
tion 〈ϕ〉 = 0.4 at γ̇ = 0.1 s−1 measured by the RheoScope

by a slight decrease at the very beginning of the shear test at t ≈ 100s
(start-up time range enlarged in fig. C.5) might correspond to the short-
term viscosity increase due to homogenizational processes described in [27]
and the demixing at the wall lowering the viscosity. The following decrease
suggests a further demixing possibly due to gravity drift. A rough estimation
of the time taking a particle to cross the distance from the wall to the phase
boundary at steady state (with (3.9)) gives

t = 〈ϕ〉h∗uSt ≈ 8000s

The order of magnitude is in line with the data in fig. C.6. The final slightly
upward tendency most probably is due to evaporation or to the crystallization
of sugar. In contrast the shear test of the pure sugar solution (fig. C.7) shows
no decline of the viscosity and no decrease at the beginning supporting our
assumptions.
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Figure C.7: Viscosity of pure 88% sugar solution at γ̇ = 0.1s−1 measured by
the RheoScope
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C.5 Evalution of the NMR Signal Data (Mat-

lab Code)

C.5.1 Simulation of the Spin Density Distribution of a
Suspension in a Tube

C:\Programme\MATLAB701\work\calc_dens.m Page 1

16. Februar 2006 16:19:44

% calc_dens distributes hard discs (squares) in a plane(random
% distribution)
%
% Usage:      dens = calc_dens(spaceSize,radius);
%
% spaceSize       =    räumliche Diskretisierung
% radius        =    "Kugel"-Radius in m

%==========================================================================
%
%  Name:        calc_dens.m
%
%  Author:      Silke Muckenfuss and Edme H. Hardy
%  Date:        2005/02/23
%  
%  Modifications on 2005/00/00 by EH: 
%
%  Bugs, suggestions, remarks: Kugelform besser nähern, Dichte
%  kontrollieren, Radienverteilung, räumliche Verteilung, Porosität vorgeben ...
%
%==========================================================================

function [dens] = calc_dens(spaceSize,radius)

FOV=.025; %Sichtfenster in m
ID=.020; %Rohrinnendurchmesser in m
radius=round(radius*spaceSize/FOV)
porosity=0.98
maxIt=1e5; %maximale Zahl von Iterationen, ggf erhöhen, falls Porosität nicht 
erreicht
if radius<=0
    disp 'Der Radius ist zu klein für die räumliche Diskretisierung'
    dens=0;
    return
end

dens=zeros(spaceSize);
count=0;

leftLimit=(FOV-ID)/2; %Linker Rand in m
leftLimit=max(round(leftLimit/.025*spaceSize),1) %Linker Rand in Space-Einheiten >0
rightLimit=spaceSize-leftLimit %< spaceSize

dens(:,leftLimit:rightLimit)=1;
totVol=sum(sum(dens)); %Gesamtfläche im Rohr
solidVol=(1-porosity)*totVol; %Gesamtkugelfläche
maxNumber=round(solidVol/(2*radius+1)^2);

for n=1:maxIt %maximale Anzahl von Versuchen
    x=round(rand(1)*spaceSize); %random x coordinate
    y=round(rand(1)*spaceSize); %random y coordinate
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C:\Programme\MATLAB701\work\calc_dens.m Page 2

16. Februar 2006 16:20:06

    if (x-radius>0)&(x+radius<=spaceSize)&(y-radius>0)&(y+radius<=spaceSize)
        if sum(sum(dens(x-radius:x+radius,y-radius:y+radius)))==(2*radius+1)^2
            dens(x-radius:x+radius,y-radius:y+radius)=0;
            count=count+1;
            if count==maxNumber
                disp 'kodierte Porosität ist erreicht'
                break
            end
        end
    end
end
count
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C.5.2 Simulation of the NMR Signal

C:\Programme\MATLA...\SilkePhaseReadGradEcho2D_sag_spheres.m Page 1

16. Februar 2006 16:54:18

%  Simuliert die Datenaufnahme nach unterschiedlichen
%  Phasengradienten unter einem Lesegradienten-Echo
%
%  Usage:      [orig,rawData]=SilkePhaseReadGradEcho2D_sag_spheres;
%  orig ist die berechnete (zufällige) Verteilung
%  rawData ist das Ergebnis einer idealen Messung (Rohdaten, für
%  Darstellung abs(fftshift(fft2(rawData)))).
%

%==========================================================================
%
%  Name:        SilkePhaseReadGradEcho2D_sag_spheres.m
%
%  Author:      Edme H. Hardy
%  Date:        2004/04/14
%  
%  Modifications on 2005/02/25 by EH: Graphikausgabe und fft
%  herausgenommen, Ausgabe in Dateien
%                on 2004/00/00 by 
%
%  Ruft calc_dens auf
%
%  Bugs, suggestions, remarks: 
%  Ausgangssituation: Schnitt durch ein Rohr. Innerhalb einer
%  Schicht sind nach einem idealen pi/2-Puls alle Magnetisierungsvektoren
%  entlang der x-Achse des rotierenden Koordinatensystems.
%
%  Bemerkung: 
%  Rechenzeit mit spaceSize=100 und MTX=64
%  Auf mvme129 (PentiumIII 733 MHz 512 Mb Win2000 SP4) 64 Sekunden
%  Auf mvme126 (AMD Athlon x GHz 5xy Mb Win2000) 40 Sekunden
%  Auf mvme5 (Pentium m4 2 GHz 512 Mb Win2000 SP4) 31 Sekunden
%
%==========================================================================

function [dens,rawData]=SilkePhaseReadGradEcho2D_sag_spheres;

tic

%Wichtiger experimenteller Parameter:
MTX = 256 %Größe der Bildmatrix
spaceSize = 700 %räumliche Diskretisierung, i.A. ungleich Bildmatrixgröße MTX 
(größer!)
dens = calc_dens(spaceSize,0.00007); %Spindichte für Marvin
if dens==0 %Falls Marvin-Spindichte versagt
    dens=0;
    rawData=0;
    return
end
%Erzeugung einer Matrix mit ideal gleichmäßigen Magnetisierungsbeträgen
%innerhalb eines Kreises (Spindichte):
%spaceSizeHalf = spaceSize/2; %used in spin density loop
%sqRadius = (0.88*spaceSize/2)^2; %Quadrat des Reagenzglasradius  %Rohr ist 
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dünner!!!!!!!SILKE
%Radius = 0.88*spaceSize/2; %Radius wird benötigt wegen Sag.-Schnitt SILKE
%dens = zeros(spaceSize,spaceSize); %Initialisierung der Spindichte mit Null
%for x = 1:spaceSize; %Hier ist x noch nicht in einer Längeneinheit
%   for y = 1:spaceSize; %Hier ist y noch nicht in einer Längeneinheit
 %      if (y < (spaceSizeHalf+Radius)) & (y > (spaceSizeHalf-Radius)) %neue 
Aufteilung Sag.-Schnitt! SILKE
  %         dens(y,x)=1;
   %    end
  % end
%end

%Berechnung von Phasen- und Lesegradienten aus den experimentellen Parametern
FOV = 0.025  %Sichtfeld in m
SWH = 101010 %Bandbreite in Hz = Samplingrate
DW = 1/SWH; %"dwell time" = Samplingintervall
gammaGx=2*pi*SWH/FOV; %Lesegradient mal dem gyromagnetischem Verhältnis
Gx=gammaGx/2.675e8  %Lesegradient in T/m für die Bildschirmausgabe
gammaDeltaGy_delta = 2*pi/FOV;  %gamma x Phasengradienteninkrement mal Dauer,
                                %aus FOV = 2pi / k-Inkrement

%matrix oriented definitions
yMat = zeros(spaceSize,spaceSize);
for n=1:spaceSize
    yMat(n,:)=-FOV/2 + n*FOV/spaceSize;  %Matrix mit den y Koordinaten der Raumpunkte
end                                      %Beachte: y entspricht 1. Index
xMat = zeros(spaceSize,spaceSize);
for m=1:spaceSize
    xMat(:,m)=-FOV/2 + m*FOV/spaceSize;  %Matrix mit den x Koordinaten der Raumpunkte
end                                      %Beachte: x entspricht 2. Index

%Zunahme der Magnetisierungsphase durch den Lesegradienten während einer
%"dwell time":
readPhaseInc=gammaGx*xMat*DW; %spaceSize-Matrix, wie xMat

tE = MTX*DW  %Dauer der Datenaufnahme, bei Echoexperiment u.U. gleich Echozeit

%Definition des Ausgangszustandes für die Phasen:
phase = zeros(spaceSize,spaceSize); %Erst sind alle Magnetisierungsvektoren entlang x

echoR = zeros(MTX,MTX); %Initialisiere Realteil des "Echos"
Mr = zeros(spaceSize,spaceSize); %Initialisiere Magn.-Realteil an allen Raumpunkten
echoI = zeros(MTX,MTX); %Initialisiere Imaginärteil des "Echos"
Mi = zeros(spaceSize,spaceSize); %Initialisiere Magn.-Imagteil an allen Raumpunkten

%Simulation der Spindynamik während des Experimentes
echoR(:,:)=nan; %für eine schönere Darstellung während der Messung
echoI(:,:)=nan; %für eine schönere Darstellung während der Messung
for n=1:MTX  %Phasen-Schleife, experimentell jeweils nach der "repetition time"
    phase = (n-MTX/2)*gammaDeltaGy_delta*yMat; %Setzen der y-abhängigen Phase,
    %beginnend mit dem kleinsten Wert (negativ, d.h. größter Betrag)
    phase=phase-readPhaseInc*MTX/2;  %Lese-Kompensationsgradient, Dauer=Lesezeit/2
    for t=1:MTX %Daten-Leseschleife, Einheit der Zeit in readPhaseInc enthalten
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        Mi=dens.*sin(phase); %Magnetisierungsimaginärteil an jedem Raumpunkt
        echoR(n,t)=sum(sum(Mr)); %Signalrealteil ist Summe alle Magnetisierungs-
                                 %Realteile
        echoI(n,t)=sum(sum(Mi)); %Signalimagteil ist Summe alle Magnetisierungs-
                                 %Imagteile
        phase=phase+readPhaseInc; %Phasen werden für das Samplingintervall 
                                  %inkrementiert
    end
end

rawData=echoR+i*echoI; %Spektrum/Bild

firstPart1='rawData_';
firstPart2='orig_';
namePart=datestr(now,'yymmdd_HHMMSS');
name1=[firstPart1, namePart]
name2=[firstPart2, namePart '.mat']
save 'rawData' rawData
save 'dens' dens

toc
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% shearCalc evaluates shear rates from 1D sevi data. Rohdaten liegen in
% /opt/data/Z/nmr/sm_050718.Bei den Daten in diesem Verzeichnis wurde die
% Temperatur am UWK auf 23 Grad Celsius gestellt, Raumtemperatur ca 26 Grad
% Celsius. Weitere Rohdaten liegen in /opt/data/Z/nmr/sm_050629. Für diese
% war der UWK auf 17 Grad Celsius gestellt.
%
% Usage:  [] = shearCalc(fname);
%

%==========================================================================
%
%  Name:        shearCalc.m
%
%  Author:      EH / SM
%  Date:        2005/07/20
%  
%  Modifications on 2005/07/20 by EH: Festlegung auf Auswertung mit
%  Rohdaten, beide Varianten unter shearCalcAlt
%
%  Bugs, suggestions, remarks: check threshold influence, Rohr ist nicht
%  ganz zentriert, ausserdem ist der Scheitel des Strömungsprofils nicht in
%  der Rohrmitte. Bereich für die v-Auswertung beachten. Axis für Visko
%  noch von Hand.
%
%==========================================================================

function [] = shearCalc(fname);

g=9.81;         %Erdbeschleunigung in m/s**2
h=.24;          %Höhendifferenz für eine Stufe 
L=12;            %Gesamtlänge der Flussstrecke für Delta_p / L
rho=1300;       %Dichte der Zuckerlösung in kg/m**3
dp_2LpS=rho*g*h/2/L;   %Druckverlust pro Stufe
dpV=dp_2LpS; %ca Berücksichtigung von Verlusten
FOV=25; %Field of View in mm, hier für alle gleich!
printOpt=0;

spaceMTX=512;
flowMTX=64;
FOF=16;

%--------------------------------------------------------------------------
fname='fid0629_198'; %Fünf Stufen Höhenunterschied
dp_2L=5*dp_2LpS-4.4*dpV;   %Druckverlust
[dens198,velo198,rAx198]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
[shearRate198]=shearRateCalc(velo198,rAx198);
[eta198,phi198,shearStress198]=...
    etaPhiCalc(shearRate198,dp_2L,rAx198);
%--------------------------------------------------------------------------
fname='fid0629_201'; %Sechs Stufen Höhenunterschied
dp_2L=6*dp_2LpS-5.4*dpV;   %Druckverlust
[dens201,velo201,rAx201]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
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[shearRate201]=shearRateCalc(velo201,rAx201);
[eta201,phi201,shearStress201]=...
    etaPhiCalc(shearRate201,dp_2L,rAx201);
%--------------------------------------------------------------------------
fname='fid0629_203'; % Acht Stufen Höhenunterschied, andere Gradiententemp.
dp_2L=8*dp_2LpS-6.7*dpV;   %Druckverlust
[dens203,velo203,rAx203]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
[shearRate203]=shearRateCalc(velo203,rAx203);
[eta203,phi203,shearStress203]=...
    etaPhiCalc(shearRate203,dp_2L,rAx203);
%--------------------------------------------------------------------------
fname='fid0629_205'; % Zwei Stufen Höhenunterschied, andere Gradiententemp.
dp_2L=2*dp_2LpS-dpV;   %Druckverlust
[dens205,velo205,rAx205]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
[shearRate205]=shearRateCalc(velo205,rAx205);
[eta205,phi205,shearStress205]=...
    etaPhiCalc(shearRate205,dp_2L,rAx205);
%--------------------------------------------------------------------------
fname='fid0718_2'; %Acht Stufen Höhenunterschied
dp_2L=8*dp_2LpS-dpV;   %Druckverlust
[dens2,velo2,rAx2]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
[shearRate2]=shearRateCalc(velo2,rAx2);
[eta2,phi2,shearStress2]=...
    etaPhiCalc(shearRate2,dp_2L,rAx2);
%--------------------------------------------------------------------------
fname='fid0718_4'; %Vier Stufen Höhenunterschied
dp_2L=4*dp_2LpS-3.6*dpV;   %Druckverlust
[dens4,velo4,rAx4]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
[shearRate4]=shearRateCalc(velo4,rAx4);
[eta4,phi4,shearStress4]=...
    etaPhiCalc(shearRate4,dp_2L,rAx4);
%--------------------------------------------------------------------------
fname='fid0718_5'; % Drei Stufen Höhenunterschied
dp_2L=3*dp_2LpS-2.85*dpV;   %Druckverlust
[dens5,velo5,rAx5]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);
[shearRate5]=shearRateCalc(velo5,rAx5);
[eta5,phi5,shearStress5]=...
    etaPhiCalc(shearRate5,dp_2L,rAx5);
%--------------------------------------------------------------------------

figure(1) %Spindichten -> Partikelvolumenkonzentration für verschiedene 
Geschwindigkeiten
plot(rAx205,dens205/max(dens205),'y.-')
hold on;
% plot(rAx2,dens2/max(dens2),'k.-')
plot(rAx5,dens5/max(dens5),'c.-')
plot(rAx4,dens4/max(dens4),'g.-')
plot(rAx198,dens198/max(dens198),'m.-')
plot(rAx201,dens201/max(dens201),'r.-')
plot(rAx203,dens203/max(dens203),'b.-')
hold off;grid, axis tight
title('Spindichte bei Stufen: 2 (stehend?) (y), 3 (c), 4 (g), 5 (m), 6 (r), 8 
(blue)')
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ylabel('spin density / arb. units')
if printOpt==1
    set(1,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 spinDensity
end

figure(2) %v-Profile für verschiedene Geschwindigkeiten
vmin=min([velo198 velo201 velo203 velo205 velo2 velo4 velo5]);
plot(rAx5,velo5,'c.-') %3
hold on;
plot(rAx4,velo4,'g.-') %4
plot(rAx198,velo198,'m.-') %5
plot(rAx201,velo201,'r.-') %6
plot(rAx203,velo203,'b.-') %8
% plot(rAx205,velo205,'y.-') %2
% plot(rAx2,velo2,'k.-') %8
hold off;grid, axis([-11 11 vmin 0])
title('Geschwindigkeit bei Stufen:  3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
xlabel('r / mm')
ylabel('v / mm/s')
if printOpt==1
    set(2,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 veloProfiles
end

figure(3) %Scherraten für verschiedene Geschwindigkeiten
srmin=min([shearRate198 shearRate201 shearRate203 shearRate205 shearRate2 shearRate4 
shearRate5]);
srmax=max([shearRate198 shearRate201 shearRate203 shearRate205 shearRate2 shearRate4 
shearRate5]);
plot(rAx5,shearRate5,'c.-')
hold on;
plot(rAx4,shearRate4,'g.-')
plot(rAx198,shearRate198,'m.-')
plot(rAx201,shearRate201,'r.-')
% plot(rAx205,shearRate205,'y.-')
% plot(rAx2,shearRate2,'k.-')
plot(rAx203,shearRate203,'b.-')
hold off;grid, axis([-11 11 srmin srmax])
title('Scherrate bei Stufen: 3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
xlabel('r / mm')
ylabel('kappa / 1/s')
if printOpt==1
    set(3,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 kappaProfiles
end

figure(4) %Viskositäten für verschiedene Geschwindigkeiten
plot(rAx5,1./eta5,'c.')
hold on;
plot(rAx4,1./eta4,'g.')
plot(rAx198,1./eta198,'m.')
plot(rAx201,1./eta201,'r.')
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% plot(rAx205,1./eta205,'y.')
% plot(rAx2,1./eta2,'k.')
hold off;grid, axis tight %, axis([-11 11 -10 20])
title('1/Viskosität bei Stufen: 3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
xlabel('r / mm')
ylabel('1/eta / 1/(Pas)')
if printOpt==1
    set(4,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 viscoProfiles
end
% figure(4) %Viskositäten für verschiedene Geschwindigkeiten
% plot(rAx5,eta5,'c.')
% hold on;
% plot(rAx4,eta4,'g.')
% plot(rAx198,eta198,'m.')
% plot(rAx201,eta201,'r.')
% plot(rAx203,eta203,'b.')
% % plot(rAx205,eta205,'y.')
% % plot(rAx2,eta2,'k.')
% hold off;grid, axis([-11 11 -10 20])
% title('Viskosität bei Stufen: 3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
% xlabel('r / mm')
% ylabel('eta / Pa s')
% if printOpt==1
%     set(4,'PaperPosition',[0.63 6.3 15 10])
%     print -dtiff -r300 viscoProfiles
% end

figure(5) %Partikelvolumenkonzentrationen für verschiedene Geschwindigkeiten
phiMin=0.01;         %Partikelvolumenkonzentration für max. NMR-Signal, geraten
plot(rAx5,phi5,'c.') %aus Viskosität
hold on;
plot(rAx5,(1-dens5/max(dens5))*(1-phiMin)+phiMin,'c-')
% plot(rAx205,phi205,'y.') %aus Viskosität
% plot(rAx205,(1-dens205/max(dens205))*(1-phiMin)+phiMin,'y-')
% plot(rAx2,phi2,'k.') %aus Viskosität
% plot(rAx2,(1-dens2/max(dens2))*(1-phiMin)+phiMin,'k-')
plot(rAx4,phi4,'g.') %aus Viskosität
plot(rAx4,(1-dens4/max(dens4))*(1-phiMin)+phiMin,'g-')
plot(rAx198,phi198,'m.') %aus Viskosität
plot(rAx198,(1-dens198/max(dens198))*(1-phiMin)+phiMin,'m-') %aus Spindichte
plot(rAx201,phi201,'r.') %aus Viskosität
plot(rAx201,(1-dens201/max(dens201))*(1-phiMin)+phiMin,'r-')
plot(rAx203,phi203,'b.') %aus Viskosität
plot(rAx203,(1-dens203/max(dens203))*(1-phiMin)+phiMin,'b-')
hold off;grid, axis([-10 10 0 .7])
title('Partikelkonzentration bei Stufen: 3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
xlabel('r / mm')
ylabel('phi / -')
if printOpt==1
    set(5,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 concProfiles
end
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figure(6) %Viskositäten für verschiedene Scherraten
plot(shearRate5,eta5,'c.')
hold on;
plot(shearRate4,eta4,'g.')
plot(shearRate198,eta198,'m.')
plot(shearRate201,eta201,'r.')
plot(shearRate203,eta203,'b.')
% plot(shearRate205,eta205,'y.')
% plot(shearRate2,eta2,'k.')
hold off;grid, axis([srmin srmax -10 20])
title('Viskosität bei Stufen: 3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
xlabel('Scherrate / 1/s')
ylabel('eta / Pa s')
if printOpt==1
    set(6,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 viscoFunction
end

figure(7) %Fließfunktion
plot(shearRate5,shearStress5,'c.')
hold on;
plot(shearRate4,shearStress4,'g.')
plot(shearRate198,shearStress198,'m.')
plot(shearRate201,shearStress201,'r.')
plot(shearRate203,shearStress203,'b.')
% plot(shearRate205,shearStress205,'y.')
% plot(shearRate2,shearStress2,'k.')
hold off;grid, axis tight
title('Fließfunktionen bei Stufen: 3 (c), 4 (g), 5 (m), 6 (r), 8 (blue)')
xlabel('Scherrate / 1/s')
ylabel('shearStress / Pa')
if printOpt==1
    set(7,'PaperPosition',[0.63 6.3 15 10])
    print -dtiff -r300 flowFunction
end

%==========================================================================
%  Subroutine:  rawVeloCalc
%               Ein: Dateiname, Dateigröße, FOF, FOV
%               Aus: Spindichte, Geschwindigkeit und Ortsachse
%  Author:      Silke S. Muckenfuß / Edme H. Hardy
%  Date:        2005/07/19 
%  Modifications on 2005/00/00 by EH: 
%  Bugs, suggestions, remarks: bisher keine FID BC (DQD!), check threshold,
%  Bereich für die v-Auswertung beachten
%==========================================================================
function [dens,velo,rAx]=rawVeloCalc(fname,spaceMTX,flowMTX,FOF,FOV);

fid=read_raw(fname,spaceMTX,flowMTX,1);

fid=fftshift(fft(fid,[],1),1); %FFT in Ortsraumrichtung
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densAvgThres=0.5*mean(dens(spaceMTX/4:3*spaceMTX/4));   %Für die Bestimmung
for i1=1:spaceMTX/2                                     %der Ränder
    if dens(i1)>densAvgThres
        i1Left=i1;
        break
    end
end
for i1=spaceMTX:-1:spaceMTX/2
    if dens(i1)>densAvgThres
        i1Right=i1;
        break
    end
end
i1Middle=i1Left+(i1Right-i1Left)/2;  %Index für die Mitte
rAx=((1:spaceMTX)-i1Middle)*FOV/spaceMTX; %r axis, 0 at i1Middle

thres=0.1*max(dens); %Schwellwert für zu betrachtende Orte

velo=zeros(1,spaceMTX);
q=1:flowMTX-20; 
q=q*2*pi/FOF; %q-Schlange Vektor, verschoben (Null nicht i.d. Mitte), egal
% figure(99)
for i1=1:spaceMTX
    if dens(i1)>thres
        y = squeeze(phase(fid(i1,11:54)))';
%         if mod(i1,10)==0
%             plot(y-y(1)),hold on,pause(.1)
%         end
        X = [ones(size(q'))  q'];
        a = X\y;
        velo(i1)=a(2);
    end
end
% hold off

% i1Middle=find(velo==min(velo));  %Index für die Mitte
% rAx=((1:spaceMTX)-i1Middle)*FOV/spaceMTX; %r axis, 0 at i1Middle

%==========================================================================
%  Subroutine:  shearRateCalc
%               Ein: Geschwindigkeitsvektor, Ortsvektor
%               Aus: Scherratenvektor
%  Author:      Silke S. Muckenfuß / Edme H. Hardy
%  Date:        2005/07/19 
%  Modifications on 2005/00/00 by EH: 
%  Bugs, suggestions, remarks: 
%==========================================================================
function [shearRate]=shearRateCalc(velo,rAx);

dr=rAx(2)-rAx(1);

i1End=length(rAx);
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% for i1=1:i1End-1
%     shearRate(i1)=(velo(i1+1)-velo(i1))/dr;
% end
for i1=2:i1End-1
    shearRate(i1)=(velo(i1+1)-velo(i1-1))/2/dr;
end
shearRate(i1End)=0;

%==========================================================================
%  Subroutine:  etaPhiCalc
%               Ein: Scherrate, Druckverlust, Ortsvektor
%               Aus: Viskositätsvektor, Partikelvolumenkonzentrationsvektor
%  Author:      Silke S. Muckenfuß / Edme H. Hardy
%  Date:        2005/07/20 
%  Modifications on 2005/00/00 by EH: 
%  Bugs, suggestions, remarks: 
%==========================================================================
function [eta,phi,shearStress]=...
    etaPhiCalc(shearRate,dp_2L,rAx);

phiM = 0.68; %Max. Partikelvolumenkonzentration
eta0 = .45;   %Viskosität ohne Partikel
rAx=rAx/1000; %mm -> m, negativ, damit eta positiv

i1End=length(rAx);
eta=zeros(1,i1End);
phi=zeros(1,i1End);
shearStress=zeros(1,i1End);

for i1=1:i1End
    if shearRate(i1)~=0
        shearStress(i1)=dp_2L*rAx(i1);
        eta(i1)=shearStress(i1)/shearRate(i1); %Viskosität
        if eta(i1)>0
%             phi(i1)=phiM*(1-(eta0/eta(i1))^.5); %
Partikelvolumenkonzentrationsvektor
            phi(i1)=phiM*(1-(eta0/eta(i1))^(1/1.82)); %
Partikelvolumenkonzentrationsvektor
        end
    end
end



Bibliography

[1] A. Nir A. Averbakh, A. Shauly and R. Semiat. Slow viscous flows of
highly concentrated suspensions. Int. J. Multiphase Flow.

[2] J. Harting A. Komnik and H.J. Herrmann. Transport phenomena and
structuring in shear flow of suspensions near solid walls. J. Stat. Mech.

[3] A. Nir A. Shauly, A. Wachs. Shear-induced particle migration in a
polydisperse concentrated suspension. J. Rheol., 42(6):1329–1348, 1998.

[4] A. Wachs A. Shauly and A. Nir. Shear-induced particle migration in a
polydisperse suspension. J. Rheol.

[5] J.H. Iwamiya A.W. Chow, S.W. Sinton and T.S. Stephens. Shear-
induces particle migration in couette and parallel-plate viscometers:
Nmr-imaging and stress measurements. Phys. Fluids.

[6] H.A. Barnes. A review of the slip (wall depletion) of polymer solutions,
emulsions and particle suspensions in viscometers: Its cause, character,
and cure. Journal of Non-Newtonian Fluids.

[7] Georg Barthelmes. Theoretische Untersuchungen zum Einfluss der Ag-
glomeration auf die Rheologie konzentrierter Suspensionen. Dissertation,
Universität Karlsruhe, Karlsruhe, 2000.

[8] C. Bender. Experimentelle Untersuchungen der Partikeldrift in Suspen-
sionen unter Scherung. Diplomarbeit, Universität Karlsruhe, Karlsruhe,
2003.

[9] K. Biederbick. Kunststoffe. Vogel-Verlag, 1977.

[10] G. Bossis and J.F. Brady. Self-diffusion of brownian particles in concen-
trated suspensions under shear. J. Chem. Phys.

[11] Victor Breedveld. Shear-Induced Self-Diffusion in Concentrated Suspen-
sions. Thesis, University of Twente, Enschede, 2000.

119



BIBLIOGRAPHY 120

[12] H. Brenner and J. Happel. Low Reynolds Number Hydrodynamics. No-
ordhoff International Publishing, Leyden, 1973.

[13] P. Hookham C.J. Koh and L.G. Leal. An experimental investigation of
concentrated suspension flows in a rectangular channel. J. Fluid Mech.

[14] D.G. Bailey E.C. Eckstein and A.H. Shapiro. Self-diffusion of particles
in shear flow of suspension. J. Fluid Mech.

[15] B. Khusid G. Drazer, J. Koplik and A. Acrivos. Deterministic and
stochastic behaviour of non-brownian spheres in sheared suspensions. J.
Fluid Mech.

[16] F. Gadala-Maria and A. Acrivos. Shear induced structure in concen-
trated suspensions of solid spheres. J. Rheol.

[17] J.W. Gibbs. Fourier series. Nature.

[18] A.J. Goldman. Investigation in Low Reynolds Numbers Fluid Particle.
Ph.d.thesis, New York University, New York, 1966.

[19] A.L. Graham and S.A. Altobelli. Nmr imaging of shear-induced diffusion
and structure in concentrated suspensions. J. Rheol., 35:191–201, 1991.

[20] Fa. Thermo Haake. Manual of the RheoScope. Handbook, Ettlingen,
Germany.

[21] S. Haber and H. Brenner. Inhomogenous viscosity fluid flow in a wide-
gap couette apparatus: Shear-induced migration in suspensions. Phys.
Fluids.

[22] M. Hartmann. Beobachtung der Partikelbewegungen in Suspensionen
unter Scherung. Studienarbeit, Universität Karlsruhe, Karlsruhe, 2002.

[23] B.P. Ho and L.G. Leal. Inertial migration of rigid spheres in two-
dimensional unidirectional flows. J. Fluid Mech., 65:365, 1974.

[24] A.L. Graham S.A. Altobelli E. Fukushima L.A. Mondy J.R. Abbott,
N. Tetlow and T.S. Stephens. Experimental observations of particle
migration in concentrated suspensions. J. Rheol.

[25] D.F. McTigue J.T. Jenkins. Transport processes in concentrated suspen-
sions: The role of particle fluctuations. Two Phase Flows and Waves,
42(6):70–79, Springer Verlag, New York 1998.



BIBLIOGRAPHY 121

[26] I. M. Krieger and T.J. Dougherty. A mechanism for non-newtonian flow
in suspensions of rigid spheres. Transactions of the Society of Rheology,
3:137–152, 1959.

[27] D. Leighton and A. Acrivos. The shear-induced migration of particles
in concentrated suspensions. J. Fluid Mech., 181:415–439, 1987.

[28] M.K. Lyon and L.G. Leal. An experimental study of the motion of con-
centrated suspensions in two-dimensional channel flow. part 1. monodis-
perse systems. J. Fluid Mech.

[29] H.-M. Laun M. Pahl, W. Gleissle. Praktische Rheologie der Kunststoffe
und Elastomere. VDI Verlag, Dsseldorf, 1991.

[30] M Navier. Slow viscous flow past a sphere in a cylindrical tube. Mem.
de l’Acad. des Sciences, 6:388, 1822.

[31] P.R. Nott and J.F. Brady. Pressure-driven flow of suspensions: Simula-
tion and theory. J. Fluid Mech.

[32] N. Ohl. Die Beschreibung des Fliessverhaltens von Suspensionen viskoe-
lastischer Flüssigkeiten bis zu hohen Volumenkonzentrationen. Disser-
tation, Universität Karlsruhe, Karlsruhe, 1991.

[33] R.J. Phillips, R.C. Armstrong, R.A. Brown, and J.R. Abbott. A con-
stitutivddde equation for concentrated suspensions that accounts for
shear-induced particle migration. Phys. Fluids, A4:30–40, 1992.

[34] C.J. Lawrence P.J.A.Hartman Kok, S.G. Kazarin and B.J. Briscoe.
Near-wall particle depletion in a flowing colloidal suspension. J. Rheol.,
46(2):481–493, 2001.

[35] P.Mills and P. Snabre. Rheology and structure of concentrated suspen-
sions of hard spheres. shear induced particle migration. J Phys. France.

[36] J.L.M. Poiseuille. Recherche sur les causes du movement du sang dans
les vaiseaux capillaires. Ann. des Sciences Nature, 2(5):111, 1836.

[37] J. Raasch. Data values of resistance forces onto particles near solid walls
according to formula of happel and brenner. personal communication,
2002.

[38] A.L. Graham N. Tetlow R.E. Hampton, A.A. Mammoli and S.A. Alto-
belli. Migration of particles undergoing pressure driven flow in a circular
conduit.



[39] K. Rottschäfer. Geschwindigkeitsverteilungen in durchströmten
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