

Packet Routing and Scheduling

vorgelegt von
Diplom-Mathematiker

Andreas Wiese
aus Berlin

Von der Fakultät II - Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Vorsitzender: Prof. Dr. Volker Mehrmann
Berichter: Prof. Dr. Martin Skutella

Prof. Dr. David P. Williamson

Tag der wissenschaftlichen Aussprache: 13. April 2011

Berlin, 2011
D 83

�

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.
1. Aufl. - Göttingen: Cuvillier, 2011

Zugl.: (TU) Berlin, Univ., Diss., 2011

Bibliografische nformation der eutschen NationalbibliothekI D

CUVILLIER VERLAG, Göttingen 2011
Nonnenstieg 8, 37075 Göttingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfältigen.
1. Auflage 20
Gedruckt auf säurefreiem Papier.

978-3-86955-827-1

978-3-86955-827-1

11

Acknowledgments

First of all, I would like to thank my advisor Martin Skutella for his invaluable
support and guidance for my research and other academical questions. It has
been wonderful working with him and I highly appreciate having benefited from
his experience in scheduling and approximation algorithms. In particular, I am
grateful for the freedom of pursuing research topics that I am interested in. Also,
I am thankful for having had the opportunity to join the academic research
community in several conferences and workshops. I am also very grateful to
Britta Peis for introducing me to the packet routing problem when I joined the
COGA group in spring 2008 and for collaborating with me during the entire time
of my PhD. I would like to thank her for lots of advice and for her commitment
in our joint projects, in particular when she was on parental leave. I also want
to thank David P. Williamson who agreed to take the second assessment for this
thesis.

During my research, I spent a lot of time with José Verschae discussing
ideas for proofs and research questions. I am very grateful for that. My thank
goes to Sebastian Stiller who introduced me to the flow scheduling problem
which I find very interesting and which turned out to be a very fruitful research
questions. Also, I want to thank Christina Büsing, Wiebke Höhn, Torsten
Gellert, Martin Groß, Jan-Philipp Kappmeier, Jannik Matuschke, Britta Peis,
Madeleine Theile, and Wolfgang Welz who agreed to proof-read parts of this
thesis. Finally, I would like to thank all COGA members for providing a very
lively research environment here at the TU Berlin.

Since no mathematician can live on proofs alone, I would like to thank the
TU Berlin, the Cusanuswerk, and the DFG for providing me funding for my
thesis and the Berlin Mathematical School (BMS) for travel support. Also, I
thank my BMS mentor Christian Haase for helpful discussions and advice.

Apart from all academical help I would like to thank my parents and my
family who supported me all the time. Also, my gratefulness goes to Anna for
her support and her trust in me. I want to thank all my friends for listening,
spending time with me, and simply for being there.

Last but not least, I would like to thank the developers of LYX for creating
a really great software!

Berlin, February 2011 Andreas Wiese

i

Contents

Introduction 1
Outline of the Thesis . 3

I Packet Routing 9

1 Trees and Direct Schedules 11
1.1 Introduction . 11

1.1.1 Problem Definition . 12
1.1.2 Related Work . 12
1.1.3 Outline of the Chapter . 14

1.2 Schedules for Undirected Trees 15
1.3 Schedules for Directed Trees . 19

1.3.1 Path Coloring . 19
1.3.2 Time-Dependent Edge Coloring 21
1.3.3 Routing Schedule . 21

1.4 Direct Schedules . 22
1.5 Conclusion . 24

2 Schedules for General Graphs 27
2.1 Introduction . 27

2.1.1 The Model . 28
2.1.2 Outline of the Chapter . 29

2.2 Tight Bound for Small Dilation 30
2.3 High Level Ideas for General Bounds 34
2.4 Technical Analysis . 37

2.4.1 Framework . 43
2.4.2 High Values for τ . 49
2.4.3 Unit Transit Times and Unit Bandwidths 50
2.4.4 Algorithmic Bounds . 50

2.5 Conclusion . 51

iii

iv CONTENTS

3 Complexity of Packet Routing 53
3.1 Introduction . 53

3.1.1 Outline of the Chapter . 54
3.2 General Graphs . 54
3.3 Trees . 58
3.4 Absolute Approximation . 63
3.5 Conclusion . 67

4 Periodic Packet Routing 69
4.1 Introduction . 69

4.1.1 Definitions . 70
4.1.2 Related Work . 72
4.1.3 Outline of the Chapter . 73
4.1.4 Comparison of Template- and Priority-Schedules 74

4.2 Necessary Bound on Congestion 75
4.3 Template Schedules . 76

4.3.1 Directed Trees . 77
4.3.2 Bidirected Trees . 82
4.3.3 Undirected Trees . 92

4.4 Global- and Edge-priority Schedules 96
4.4.1 Lower Bounds . 100
4.4.2 Strict Periodic Setting . 105

4.5 Imitation Theorems . 108
4.5.1 Template Schedules vs. Global-Priority Schedules 108
4.5.2 Template Schedules vs. Edge-Priority Schedules 110

4.6 Conclusion . 113

II Scheduling 115

5 Increasing Speed Scheduling 117
5.1 Introduction . 117

5.1.1 Definitions . 118
5.1.2 Related Work . 119
5.1.3 Outline of the Chapter . 120

5.2 From Flows to Scheduling . 121
5.3 Polynomial Time Approximation Scheme 123
5.4 Tractable Cases of ISS . 130
5.5 A Tight Analysis of Smith’s Rule 134
5.6 Blind Algorithms . 143
5.7 Online Algorithms . 144

5.7.1 Lower Bound for Online Algorithms 147
5.7.2 Unit Weight Case . 148

5.8 Conclusion . 148

CONTENTS v

6 Periodic Maintenance Problem 151
6.1 Introduction . 151

6.1.1 Problem Definition . 153
6.1.2 Related Work . 154
6.1.3 Outline of the Chapter . 154

6.2 General Periodic Maintenance Problem 155
6.2.1 First-Fit Algorithm . 156
6.2.2 Enumeration and First-Fit 156
6.2.3 Complexity . 160

6.3 Harmonic Periodic Maintenance Problem 161
6.3.1 Bin-Trees . 162
6.3.2 First-Fit Algorithm . 163
6.3.3 Complexity . 167
6.3.4 APTAS for Constant Number of Periods 168

6.4 Conclusion . 169

7 Scheduling on Unrelated Machines 171
7.1 Introduction . 171

7.1.1 The Minimum Makespan Problem 172
7.1.2 The MaxMin-Allocation Problem 174
7.1.3 Outline of the Chapter . 175

7.2 LP-Based Approaches . 176
7.3 Integrality Gap of the Configuration-LP 181

7.3.1 Integrality Gap of the Configuration-LP 181
7.3.2 Integrality Gap for Unrelated Graph Balancing 183

7.4 Cases with Better Approximation Factors 186
7.4.1 Bounded GCD of Processing Times 186
7.4.2 Bounded Range of Processing Times 188
7.4.3 Big Machines/Small Machines 189

7.5 MaxMin-Allocation Problem . 190
7.5.1 2-Approximation for MaxMin-Balancing 191
7.5.2 Half-Integral Solutions . 193
7.5.3 Tractable Cases . 195

7.6 Conclusion . 196

Bibliography 198

Introduction

In combinatorial optimization one wants to find the best solution among many
possible choices. The set of candidates is usually given implicitly by the input
data and often has exponential size in comparison to the input. The aim is to
construct an efficient algorithm which computes the best solution or a solution
of provably good quality. A very important topic in combinatorial optimization
is scheduling. It treats the assignment of limited resources to activities. In the
actual applications, the resources can be very diverse, e. g., machines, money,
gasoline, teachers, cars, watchmen, etc. Examples for the many imaginable ac-
tivities are producing industrial goods, guarding a building, delivering parcels,
executing a computer program, working on a project, or the classes of a univer-
sity. The goal is to assign the resources to the activities in order to optimize
some performance measure. Such a measure could be the time when the last
activity finishes or the total delay of all activities.

The problems studied in this thesis can be understood as machine scheduling
problems. In machine scheduling, one is usually given a set of jobs with certain
processing times which need to be assigned to some given machines. One has to
compute a schedule such that each job is assigned and each machine processes at
most one job at a time. Often, additional constraints are present. For instance,
jobs could have a deadline by which they have to be finished, some jobs might
not be able to start before some others have finished (precedence constraints),
or some jobs might not be available before a certain given time (release dates).

A broad range of applications can be understood as machine scheduling
problems. A simple example is the manufacturing process of industrial goods
in a factory. The jobs model the manufacturing steps which need to be done
on the different processing units. The latter are modeled by the machines.
However, also the organization of a garden party fits into the machine scheduling
framework. The preparation steps (putting on the barbecue, prepare salads,
invite friends, etc.) are modeled by jobs whereas the organizers are modeled
by the machines. Finally, finding a timetable for the classes of a university
and their assignment to lecture theaters can also be formalized as a machine
scheduling problem.

For evaluating a computed schedule we need a suitable quality measure.
This measure can vary significantly depending on the actual application. For
example, two common objective functions in machine scheduling are the sum
of weighted completion times and the makespan. For applications like the pro-

1

INTRODUCTION

duction of cars in a factory it is desirable to finish as many units as early as
possible. To this end, a good objective function is the sum of the completion
times of all jobs. If some jobs are more important than others one can ad-
ditionally give each job a weight which reflects its significance. The resulting
objective function is then the sum of the weighted completion times. When
scheduling the work of a project or for the mentioned garden party one might
rather want that the overall schedule finishes as early as possible. The time
when the last job finishes is defined as the makespan of a schedule which is a
good objective function in this case. In other settings such as time-tabling there
might be no objective function necessary and one only wants to compute some
feasible schedule. However, in such settings it is likely that there are also some
not strictly necessary but still desirable “soft” constraints which can be modeled
by a suitable objective function.

One very fundamental scheduling problem is the packet routing problem
(even though in the literature it is usually referred to as a routing problem,
see [5, 65, 92], it can also be understood as a scheduling problem). In computer
networks like the internet huge amounts of data need to be transported. In par-
ticular, due to applications like video-streaming and Voice over IP (VoIP) the
internet traffic has grown significantly in the last few years. In computer net-
works, the transported data is split into packets. Those form the atoms of the
network communication. Each packet needs to be transported from its origin to
its destination. Since the bandwidth of the communication links is limited, the
network might need to delay packets. This results in a scheduling problem. The
packets form jobs which need to be “processed” by the links on its path. The
limited bandwidth is captured by the fact that each link/machine can process
only one packet (or maybe some constant number of packets) at a time.

In some scheduling applications jobs are created repeatedly. For instance,
consider an on-board computer of a modern airplane. In a repeated fashion, the
computer executes jobs like checking the altitude, operating the auto-pilot, etc.
For flight safety it is crucial that each operation finishes before its deadline.
Already a small delay in a critical operation might endanger the aircraft and its
passengers. Therefore, one needs a (mathematical) proof that a system operates
according to its specifications at all times. The area of real-time scheduling pro-
vides the mathematical foundation for such proofs. The operations are modeled
by tasks which continuously generate new jobs. Since the schedule is assumed to
run infinitely long one cannot compute it explicitly. Instead, one is interested in
scheduling policies which decide at every point in time which jobs are executed
on the machines. Given such a scheduling policy one needs to prove that every
job which is ever created meets its deadline.

Almost all problems which we consider in this thesis are NP -hard. Since it is
widely believed that P �= NP , there is not much hope for efficient (polynomial
time) algorithms which solve our problems exactly. Therefore, we relax the aim
of always finding an optimal solution and search for approximation algorithms
instead. For this thesis, an α-approximation algorithm is a polynomial time
algorithm which computes solutions whose objective values differ by at most a
factor of α from the respective optimum. We refer to α as the approximation

2

factor or performance ratio of an algorithm.

INTRODUCTION

At first glance, approximation algorithms might not seem to be relevant for
practical applications. For instance, a solution whose value differs by a factor of
two from the optimum is by far not satisfying if it has an impact on a budget of
thousands of euros. However, the performance ratio of an algorithm is always
based on a worst-case analysis. Hence, there could be (and usually there are)
many instance of the respective problem where the algorithm performs much
better than in the worst-case scenario. Also, for exact methods like IP-solvers it
is often useful to have primal solutions of good quality which help pruning the
branch-and-bound tree. Apart from being heuristics that one could use directly,
approximation algorithms usually yield important structural properties of the
problem. These properties can be exploited in approaches to solve the problem
exactly (with more computational effort). A good example is our work on the
periodic maintenance problem which we present in Chapter 6. We designed
approximation algorithms for the several settings of the problem, especially
for the practical relevant harmonic case with pairwise dividing period lengths.
The gained structural insights then allowed us to develop an IP-formulation
for the problem which was able to solve all instances of our industrial partner
optimally [28]. Straightforward approaches without the additional insights failed
to solve instances of real-world size.

Outline of the Thesis

In Part I of this thesis we study the packet routing problem. As described
above, it is a very fundamental question in computer networks. However, it
is by far not fully understood theoretically. The best known approximation
algorithm produces a schedule whose length is bounded by O(C + D) [66].
The congestion C and the dilation D form the two natural lower bounds on
the length of each schedule. One can argue that with the constructive proof
for the Lovász Local Lemma (LLL) [79] the proof by Scheideler [92] yields an
algorithm computing schedules which finish after at most 39(C+D) steps. The
above results almost completely rely on the LLL which – due to its generality –
cannot make use of the entire structure of the problem. In this work, we make a
step towards a better theoretical understanding of the important properties of
the problem. We present approximation algorithms, bounds on the makespan of
optimal schedules, and complexity results. In particular, we show how structural
insights help improving the above LLL-based results.

Chapter 1: The general packet routing problem is very complex. However,
when the underlying graph topology is well-structured – like a tree – one can
design better and simpler algorithms. In this chapter, we study the packet
routing problem on instances where the given graph is a tree. The gained
insights will be very useful later in Chapter 2 where we study general graphs.
We show that the straightforward farthest-destination-first (FDF) algorithm has
an arbitrarily large approximation factor, even on directed trees. Hence, more
sophisticated algorithmic methods are needed. For undirected trees we present

3

INTRODUCTION

a 2-approximation algorithm. For directed trees we derive structural properties
which allow us to design an algorithm computing direct schedules (which delay
packets only in their respective origins) which finish within C + D − 1 steps.
Hence, this algorithm is also a 2-approximation algorithm, but it yields a much
better performance guarantee if C � D or D � C. Finally, we derive a general
condition for the existence of a direct schedule with a certain makespan, even
for general directed graphs. We published the results of this chapter in [84].

Chapter 2: We broaden our scope to general graphs. It is known that there
is always a schedule which finishes within 39(C+D) steps [92]. No improvement
on this bound has been made in more than 10 years, even though it is a very nat-
ural and important question. We improve and generalize the previous results
for the problem. First, we improve the above bound to 23.4(C + D). More-
over, we generalize the problem by allowing arbitrary bandwidths and arbitrary
transit times for the edges. If every link in the network has at least a certain
bandwidth and/or transit time we prove even better bounds. For example, if
every link has a transit time of at least 63 we obtain a bound of 4.32(C + D)
for the makespan of the optimal schedule. We derive these results with a novel
framework. Once one has established a good bound for the makespan of optimal
schedules for instances with small dilation (i. e., each packet travels only along
a small number of edges) our framework implies a bound for all instances. For
deriving a bound for instances with small dilation we use the insights gained
in Chapter 1. Moreover, our framework has the potential to give even better
bounds using further insights for such instances. See [88] for our conference pa-
per which contains these results. Due to the mentioned recent result of Moser
and Tardos [79] we even obtain an algorithm which computes a schedules with
the above bounds.

Chapter 3: After having studied algorithms for the packet routing prob-
lem, in this chapter we analyze its complexity. It is known that the problem is
NP -hard (implicitly in [25]). We show that it is even NP -hard to approximate
the problem with a factor better than 6/5. In particular, this rules out the exis-
tence of a PTAS, assuming that P �= NP . Even more, we prove the latter also
for the special case that the underlying graph is a directed tree. For this very
restricted graph class we show that the existence of an approximation algorithm
with a factor better than 8/7 implies P = NP . This surprising result underlines
the difficulty of the packet routing problem since most NP -hard optimization
problems (e. g., Coloring, Independent Set, etc.) become polynomial time
solvable if one restricts the input graphs to trees. The results of this chapter
were published in [84].

Chapter 4: So far we studied the packet routing problem only in the static
setting where a finite set of packets needs to be transported to their respective
destinations. However, in applications like live video-streams or Voice Over IP
(VoIP) usually arbitrarily many packets are created repeatedly. This requires a
different model. Therefore, in this chapter we study the periodic packet routing
problem. The input consists of tasks (rather than single packets) which con-
tinuously generate new packets. We assume an infinite time horizon. Hence,
we cannot compute the actual schedule explicitly. Instead, we need to design

4

INTRODUCTION

scheduling policies which define the prioritization of the packets at runtime. We
study two paradigms for these policies, template schedules and priority sched-
ules. Priority schedules are an adaption of rate-monotonic schedules as they
are known in classical real-time scheduling. Template schedules are a class of
schedules which are especially designed for periodic packet routing. We give
a comprehensive characterization of these paradigms. We present algorithms
which compute schedules of the respective types and prove (almost) matching
lower bounds for the potential of the two paradigms. We refer to [86] for our
paper with the results of this chapter.

In Part II of this thesis, we study three other scheduling problems, the flow
scheduling problem, the periodic maintenance problem, and finally the problem
of scheduling jobs on unrelated machines.

Chapter 5: Dynamic flows and scheduling are two important areas of
combinatorial optimization which in practice often arise in a combined manner.
However, in theory both problems are mostly treated separately. Better prac-
tical solutions need thorough theoretical knowledge. Therefore, in this chapter
we make a step towards a better understanding of the interaction of the two
areas by studying the flow scheduling problem. In that problem, we want to
transport items (jobs) through a network by a dynamic flow from a source to
a sink. The objective is to minimize the sum of weighted arrival (completion)
times at the sink. We first establish the connection between the routing and the
scheduling aspect of this problem. Then we show that the scheduling part of the
problem reduces to the problem of scheduling jobs on a single machine whose
speed might increase over time (the objective is still to minimize the sum of
weighted completion times). We treat this interesting problem in its own right.
In contrast to the case where the speed of the machine stays constant, the nat-
ural Smith’s Rule algorithm is not always optimal in this setting. However,
we show that it is exactly a

(
(
√
3 + 1)/2

)
-approximation algorithm. Usually

in approximation algorithms, one establishes a lower bound against which one
compares the value of the computed solution. Here we pursue a different ap-
proach. We constructively characterize properties of worst-case instances. We
do this so precisely, that finally computing the worst-case approximation ratio
of Smith’s Rule on these instances reduces to basic calculus. This procedure
gives us the exact approximation ratio of the algorithm and a family of tight
examples. In addition, we generalize the PTAS for the unit speed case with
release dates [3] to our problem with release dates. Studying the online setting,
we show that here Smith’s Rule is still a 2-approximation algorithm. We round
up the picture by showing certain other helpful properties of the problem which
yield some polynomial time solvable special cases. The results of this chapter
have been published in [102].

Chapter 6: As part of our collaboration with our industrial partner, a
major avionics company, we study the periodic maintenance problem (PMP).
As described above, in a modern aircraft the flight control is to a great ex-
tent automatically done by the on-board computer. Therefore, it is crucial that
the computer works according to its specifications at all times. The computer
programs are modeled by tasks which periodically need processing time on the

5

INTRODUCTION

processors that they are assigned to. The scheduling rule is very conservative:
Once a task has released a new job, this job has to be processed immediately
without any delay or preemption. The only degrees of freedom are the assign-
ment of the tasks to processors and the initial time-offsets for the tasks. Even
though real-time scheduling is a very active field of research, this particular
problem has not been studied much. It arises at our industrial partner and is
likely to appear in similar settings where very conservative scheduling rules are
necessary. So far, it lacked the theoretical understanding of the properties which
are needed for real-world solutions. In this chapter, we study the problem from a
theoretical perspective and give a comprehensive characterization of its approx-
imation landscape in the various settings. In particular, we study the practical
relevant case of harmonic periods where the period lengths of the tasks divide
each other pairwise. This setting can be understood as a generalization of the
well-known Bin-Packing problem. Therefore, studying the problem is not only
interesting from a practical point of view but also yields interesting theoretical
insights. It turns out that important algorithmic properties of Bin-Packing do
not generalize to the PMP. Among other results, using involved analytic tools
we present a 2-approximation algorithm for the harmonic case and a tightly
matching non-approximability result. As mentioned above, the gained insights
for the harmonic case helped us to design a sophisticated IP-formulation for the
problem which was very successful in practice [28]. See [27] for our publication
on the theoretical aspects of the problem presented in this chapter.

Chapter 7: One of the most prominent open problems in scheduling is to
determine the best possible approximation factor for scheduling jobs on unre-
lated machines to minimize the makespan. In contrast, for parallel and related
machines approximation schemes and matching NP -hardness results have been
known for a long time [52, 53]. The best possible approximation factor for
unrelated machines is still not clear. Since they capture a very general set-
ting, settling this question is a very important problem. In a seminal work,
Lenstra et al. [69] developed an LP-based 2-approximation algorithm for the
problem. On the other hand, they proved that the problem is NP -hard to ap-
proximate with a factor of 3/2 − ε for any ε > 0. This gap between 2 and 3/2
has not been diminished in more than 20 years1 even though the problem is
considered to be very important, see e. g. [95]. One natural way to approach
the problem is to strengthen the linear program by adding suitable inequali-
ties. A linear program which already implicitly contains a huge class of such
inequalities is the configuration-LP. Recently, Svennson [104] showed that the
configuration-LP has an integrality gap of 33/17 < 2 for the restricted assign-
ment case of the problem. However, we show that for the general case this is
not true. We prove that in general the configuration-LP has an integrality gap
of 2. Even more, we show that this is still true if we require that each job can
be assigned to at most two machines (unrelated graph balancing). This is an
indicator that the core difficulty of the problem lies in the unrelated graph bal-

1The only improvement is a slightly better rounding procedure for the LP by Lenstra et al.
that yields a 2− 1/m approximation algorithm [96].

6

INTRODUCTION

ancing case rather than in the restricted assignment case. Then we study the
closely related MaxMin-allocation problem where one wants to maximize the
minimum machine load (rather than minimizing the maximum machine load
as before). This objective can be understood as establishing a fairness condi-
tion for some given agents/machines. For that problem, it is known that in
the unrelated graph balancing case the configuration-LP has an integrality gap
of 2. However, solving the configuration-LP is very difficult and results only
in a computationally very costly (2 + ε)-approximation algorithm. In contrast,
we give a purely combinatorial 2-approximation algorithm with a running time
of O(n2). Our approximation factor is best possible, unless P = NP .

Most results of this thesis have already been published in conference pro-
ceedings [27, 84, 86, 88, 102, 106]. Moreover, as part of our research on the
packet routing problem we published three further conference papers [60, 85, 87].
However, those results are beyond the scope of this thesis. Likewise, the com-
putational aspects of the periodic maintenance problem were published in [28]
but are not covered here.

Throughout this thesis, we assume knowledge of basic concepts of combina-
torial optimization such as graphs, algorithms, NP -completeness, etc. For an in-
troduction see e. g. [61]. Most algorithms presented in this thesis are approxima-
tion algorithm. For introductions to approximation algorithms see [51, 105, 109].

7

Part I

Packet Routing

Chapter 1

Trees and Direct Schedules

1.1 Introduction

Today’s computer networks transport huge quantities of data. In particular, in
the internet huge files can be copied from one end of the world to the other within
seconds. Even though the communication links in a network, e. g., optical fiber
or Ethernet cable, have the capability to transfer lots of information within very
small time spans, their bandwidth is limited. In particular, if the data which
needs a specific link at some point in time exceeds the bandwidth of the link,
some data has to be buffered and is hence delayed.

In computer networks, the data that is transmitted is subdivided into pack-
ets. Each packet has a source (the sending entity) and a destination (the re-
ceiver) and travels from its source to its destination. Every communication link
has a limited bandwidth and hence sometimes packets have to be delayed. De-
ciding what packets have to wait if the bandwidth of a link is not sufficient is a
non-trivial task. Some packets might have to wait for their subsequent connec-
tion anyway and can thus safely be delayed. Other packets might need to be
transported straight away to avoid a collision with other packets at some later
link. In particular, little changes of the schedule in some part of the network
might have consequences for some other distant parts of the network.

Our goal is to determine a schedule which defines how the packets move
through the network along their paths (obeying the bandwidths of the links at
all times). The schedule should ensure that the packets reach all their respective
destinations as early as possible. Hence, in our model, the objective is to mini-
mize the makespan, i. e., the time when the last packet reaches its destination.
This results in the packet routing problem. We assume that the paths of the
packets are given in advance and are unchangeable. We do so because we want
to design algorithms for computing schedules which do not rely on any specific
properties of the paths (e. g., being shortest paths).

The results presented in this chapter are joint work with Britta Peis and
Martin Skutella [84].

11

CHAPTER 1. TREES AND DIRECT SCHEDULES

1.1.1 Problem Definition

Now we define the packet routing problem formally. Let G = (V,E) be a
directed or undirected graph. A packet Mi = (si, ti, Pi) is a tupel consisting of
a start vertex si ∈ V , a destination vertex ti ∈ V , and a path Pi ⊆ E from si
to ti. Let M = {M1,M2,M3, ...,MN} be a set of packets. We call I = (G,M)
an instance of the packet routing problem.

The goal is to find a packet routing schedule for I, i. e., a schedule which
defines when the packets move along the edges of their respective paths. We
assume that time is discrete and that all packets take their steps simultaneously.
A schedule is feasible if it obeys the following properties:

• each packet Mi follows its path Pi from si to ti,

• each edge e is used by at most one packet at a time, and

• each packet needs one timestep to traverse each edge e.

Packets are allowed to wait on intermediate nodes. If the underlying graph is
directed, we require that every path using an edge e traverses it obeying the
orientation of e. The objective is to minimize the makespan, i. e., the time when
the last packet has reached its destination vertex. See Figure 1.1 for an example.
For each packet Mi we define Di to be the length of Pi, i. e., Di := |Pi|. The
dilation D is defined by D := maxi Di. Clearly, D is a lower bound for the
length of an optimal schedule. For each edge e we define Ce to be the number
of paths that use e. We define the congestion C by C := maxe Ce. Then also
C is a lower bound on the length of an optimal schedule. We say a schedule is
direct if every packet waits only in its start vertex (and its destination vertex)
but on no intermediate vertex.

We will use the notation |S| for the length of a schedule S. For a packet
routing instance I let OPT (I) denote a schedule with minimum makespan. For
an algorithm A for the packet routing problem denote by A(I) the schedule
computed by A for the instance I. The algorithm A is an α-approximation
algorithm if it runs in polynomial time and for all instances I it holds that
|A(I)| ≤ α · |OPT (I)|. We call α the approximation ratio or performance ratio
of A.

1.1.2 Related Work

The packet routing problem and related problems are widely studied in the
literature. In a celebrated paper Leighton et al. show that there is always a
routing schedule that finishes in O(C + D) steps [65]. Leighton, Maggs, and
Richa present an algorithm that finds such a schedule in polynomial time [66].
However, this algorithm is not suitable for practical applications since the hidden
constants in the schedule length are very large (the same applies to the O(C+D)
existence-result in [65]). Scheideler [92] improves the non-constructive result by
proving that there is always a schedule with a makespan of at most 39(C +D).

12

1.1. INTRODUCTION

t = 0 t = 1

t = 2 t = 3

Figure 1.1: An example for a packet routing instance and a schedule for it. Note
that at time t = 1 on the middle bottom vertex the light gray and the dark gray
packet need to use same edge. Hence, one of the packets has to be delayed (the
dark gray packet in this example). The depicted schedule has a makespan of 3.

There are various “constant factor approximation”-results in the area of
packet routing which are based on the fact that a constant factor approximation
for packet routing with given paths exists. Our improved bounds in Chapter 2
thus have implications for all of these results. We mention some examples, where
store-and-forward packet routing is a subproblem that needs to be solved:

Srinivasan and Teo [101] present a constant factor approximation algorithm
for packet routing with variable paths, i. e., in the setting where the routing paths
are not part of the input, but need to be found by the algorithm. Koch et al. [60]
improve and generalize this algorithm to the more general message routing prob-
lem (where each message consists of several packets). In both results, suitable
paths are found that yield a constant factor approximation on the minimum of
C + D over all possible choices of paths. The remaining problem is then the
ordinary packet routing problem. For the case that each vertex of a grid graph
is the start vertex of at most one packet, Mansour and Patt-Shamir [76] prove
the existence of a constant factor approximation on an optimal schedule, again
by reducing the problem to an ordinary packet routing problem.

There are other result that go in the direction of the work of Leighton et al. [65].
For example, Meyer auf der Heide et al. [11] present a randomized online-
routing protocol which finishes after at most O(C + D + logN) steps if all
paths are shortest paths. Rabani et al. [89] give a distributed algorithm which
guarantees a bound of O(C) + (log∗ n)O(log∗ n)D + poly(log n). This is im-
proved by Ostrovsky et al. [81] who give a local protocol that needs at most
O(C +D + log1+ε N) steps.

Packet routing is also studied in the case of special graph topologies. Le-
ung et al. [70, chapter 37] study packet routing on certain tree topologies.

13

CHAPTER 1. TREES AND DIRECT SCHEDULES

Leighton, Makedon and Tollis [67] show that the permutation routing prob-
lem on an n× n grid can be solved in 2n− 2 steps using constant size queues.
Rajasekaran [91] presents several randomized algorithms for packet routing on
grids.

Studying the complexity for the ordinary packet routing problem, Di Ianni
shows that the delay routing problem [25] is NP -hard. The proof implies that
the packet routing problem on general graphs is NP -hard as well. Busch et al. [17]
study the direct routing problem, that is the problem of finding a routing sched-
ule such that a packet is never delayed once it has left its start vertex. They
give complexity results and algorithms for finding direct schedules. Finally,
Adler et al. [1, 2] study the problem of scheduling as many packets as possi-
ble through a given network in a certain time frame. They give approximation
algorithms and NP -hardness results.

The packet routing problem is closely related to the multi-commodity flow
over time problem [37, 50, 56]. In particular, Hall et al. [50] show that this
problem is NP -hard, even in the very restricted case of series-parallel networks.
We obtain the packet routing problem with variable paths if we additionally re-
quire unit edge capacities, unit transit times, and integral flow values. If there
is only one start and one destination vertex then the packet routing problem
with variable paths is equivalent to the quickest flow problem. It can be solved
optimally in polynomial time, e. g., using the Ford-Fulkerson algorithm for the
maximum flow over time problem [39, 40] together with a binary search frame-
work. Using Megiddo’s method of parametric search [77], Burkard, Dlaska, and
Klinz [16] present a faster algorithm which solves the quickest flow problem in
strongly polynomial time.

For our algorithm on directed trees we need to find a path coloring for
the paths of the packets. The path coloring problem is widely studied in the
literature. For instance, Raghavan et al. [90] present a (3/2)-approximation
algorithm for the path coloring problem on undirected trees. Erlebach et al. [33]
give NP -hardness results and algorithms for the problem. In particular, they
improve the mentioned algorithm by Raghavan et al. and present a (4/3)-
approximation. For coloring directed paths on bidirected trees (i. e., trees in
which each edge represents two links, one in each direction) there are algorithms
known which need at most 5

3L colors where L denotes the maximum load on
a directed link [32]. This is tight since there are instances which actually need
5
3L colors [58]. Finally, Gargano et al. [44] investigate the problem of coloring
all directed paths in a bidirected tree.

1.1.3 Outline of the Chapter

The general packet routing problem is very complex. However, in some appli-
cations the network topology is quite simple. For instance, in computer buses
like Universal Serial Bus (USB) the topology is a tree. Such topologies make
it easier to find good schedules (in comparison to the optimum). Therefore, in
this chapter we study the packet routing problem on trees and additionally in
the setting that a direct schedule is desired. Apart from obtaining algorithms,

14

1.2. SCHEDULES FOR UNDIRECTED TREES

we reveal important structural properties of the problem. In particular, the
gained insights will be helpful in Chapter 2 where we will study the problem
on general graphs. We present three individual new algorithms for the packet
routing problem in different settings.

First, in Section 1.2 we show that even on directed trees the natural farthest-
destination-first-algorithm (FDF) can yield arbitrarily large approximation fac-
tors. This implies that more sophisticated algorithms are necessary to obtain
constant factor approximations. We show how to use the FDF-algorithm as a
subroutine to obtain a 2-approximation algorithm for undirected trees. This
guarantees a better performance ratio than the algorithm by Busch et al. [17]
since their bound of 2C+D−2 can asymptotically be as bad as a 3-approximation.

In Section 1.3 we study the problem on directed trees. First, we show how
to solve the path coloring problem optimally. This is based on ideas presented
in [33, 44]. Having computed such a coloring, we present a new technique
which constructs a direct schedule whose length is bounded by C +D − 1. In
comparison, the best known algorithm for computing direct schedules for packet
routing on general trees guarantees a schedule of length 2C +D− 2 [17]. (Note
that in [17] it is assumed that each edge can be used in opposite directions
independently at the same time.) The new method we employ is likely to
be useful as a subroutine for packet routing on other topologies as well. In
particular, we will use it in Chapter 2. Note that a makespan of C +D− 1 is a
2-approximation since C and D are both lower bounds on the optimum, but it
guarantees a much better ratio if C � D or C � D. Moreover, we show that
C+D−1 is the best ratio we can possibly guarantee in terms of C and D since
there are instances which actually need this many steps.

Then, in Section 1.4 we present a very general condition which guarantees a
direct schedule of a certain time horizon T in general graphs. Also, we present an
algorithm which computes this schedule. This result is particularly substantial
in the case where T = D since then we can guarantee an optimal schedule. As
an application, we show that if the paths of all packets are shortest paths and
their lengths are pairwise different, we can compute an optimal direct schedule
of length D. This improves a result in [75] where it was shown that under this
condition there exists a (not necessarily direct) schedule of this length.

For all our algorithms we show that the analysis of the respective approx-
imation ratios is tight. Finally, in Section 1.5 we conclude and discuss open
questions.

1.2 Schedules for Undirected Trees

A very natural algorithm for the packet routing problem is the Farthest-Desti-
nation-First-Algorithm (FDF). It prioritizes the packets according to the length
of their remaining path. That is, packets whose remaining path is longer have
a higher priority than packets whose remaining path is shorter. Ties are bro-
ken arbitrarily. It was shown by Leung [70] that on in-trees (trees in which all
vertices have an out-degree of at most one) and on out-trees (trees in which all

15

CHAPTER 1. TREES AND DIRECT SCHEDULES

...

v1 v1,1

v2,1v2

T1

v1,2

v2,2 ...

v3

v1,m

v2,m

v4

T2

v2,3

v1,3

Figure 1.2: The trees T1 and T2 as defined in the proof of Theorem 1.1.

vertices have an in-degree of at most one) the FDF-algorithm works optimally.
However, here we prove that on general directed trees the FDF-algorithm can
perform arbitrarily bad in terms of the achieved performance ratio. Neverthe-
less, we present a 2-approximation algorithm for the packet routing problem on
undirected trees that uses the FDF-algorithm as a subroutine.

First, we show that the FDF-algorithm alone can perform arbitrarily bad.
For an instance I of the packet routing problem, denote by FDF (I) a longest
schedule that the FDF-algorithm could possibly compute (with the worst pos-
sible tie-breaking decisions).

Theorem 1.1. For every k ≥ 1 there is a directed tree Tk and a packet routing
instance Ik = (Tk,Mk) such that

|FDF (Ik)| ≥ k · |OPT (Ik)| .

Proof. In order to prove the claim, we inductively construct packet routing
instances (T1,M1) , ..., (Tk,Mk). Let m ≥ 1 be an integer and let i = 1. The
directed tree T1 (see Figure 1.2) consists of two vertices {v1, v2}. The set of
packets M1 has m packets which all start in v1 and whose destination vertex
is v2. We define all packets to be upper packets (in the inductive step we
will see the reason for this definition). It is easy to see that for each upper
packet M ∈ M1 there is a schedule with total makespan m =: β1 such that M
reaches its destination vertex after 1 =: α1 timesteps. Moreover, the lengths
of the paths of all packets are identical. Since in the FDF-algorithm ties are
broken arbitrarily, the algorithm might compute a schedule in which M reaches
its destination v2 after m =: γ1 timesteps.

Now let i = 2. For I2 = (T2,M2) we take m copies of I1 = (T1,M1).
From each copy I1,� we choose one packet M� and extend its path by two more

16

1.2. SCHEDULES FOR UNDIRECTED TREES

vertices {v3, v4}. We call these packets M� the upper packets and all other
packets the lower packets. For all lower packets we extend their path by two
more vertices (so for each of these packet we introduce two new vertices). The
whole construction is a directed tree and the congestion on the edge (v3, v4) is
exactly m. See Figure 1.2 for a sketch of T2.

We can easily see that an optimal schedule has length 2 + m =: β2 (give
priority to the upper packets and schedule the lower packets in arbitrary order).
We also see that for each upper packet M� there is an optimal schedule such
that M� arrives at its destination after 3 =: α2 timesteps. Since the paths of all
packets have the same length, the FDF-algorithm schedules them in arbitrary
order. In the worst possible schedule, the upper packets are scheduled with
lowest priority. For each upper packet M� the FDF-algorithm might compute a
schedule in which M� reaches its destination after m+ 1 +m =: γ2 steps.

We continue inductively: For the construction of Ii we take m copies of Ii−1.
From each copy Ii−1,� we choose one upper packet M� and extend its path by
the vertices v2i−1 and v2i (so all these packets now share one edge). These
packets form the upper packets of Ii. All other packets are lower packets. The
paths of all lower packets are extended by two new vertices (so we add two
new vertices for each packet). Thus, the lengths of the paths of all packets are
identical (since by the induction hypothesis they were identical in the previous
iteration).

From the induction hypothesis we know that for each upper packet M� there
is a schedule for Ii−1,� with length βi−1 such that M� arrives at its destination
after αi−1 timesteps. Also, there is another schedule for Ii−1,� in which M�

reaches its destination after γi−1 steps. Thus, for each upper packet M� in Ii
there is a schedule for Ii of length max {αi−1 + 1 +m,βi−1 + 2} =: βi in which
Mi,� reaches its destination after αi−1 + 2 =: αi steps. Also, there is an FDF-
schedule for Ii in which M� reaches its destination after γi−1 + 1 + m =: γi
steps.

Some basic calculus shows that αi = 2i−1, βi = 2i−2+m and γi = i·m+i−1.
Recall that FDF (Ii) is the longest possible schedule produced by the FDF-
algorithm for Ii. Then it holds that

FDF (Ii) ≥
γi
βi

·OPT (Ii) =
i ·m+ i− 1

m+ 2i− 1
·OPT (Ii) .

The claim follows by choosing m and i sufficiently large.

The above theorem is bad news if one is interested in a good approximation
algorithm. However, we can design a 2-approximation algorithm for the packet
routing on undirected trees. It uses the FDF-algorithm as a subroutine.

The algorithm works as follows: Let T = (V,E) be a tree and let I = (T,M)
be a packet routing instance. We define an arbitrary vertex vr to be the root of
the tree and orientate all edges towards vr. We observe that the orientation of
the edges splits the path of each packet Mi into two parts: in the first part Mi

moves according to the direction of the edges. In the second part of the path
Mi moves in the opposite direction of the edges. For each packet Mi let vi be

17

CHAPTER 1. TREES AND DIRECT SCHEDULES

... ...
v′1 vM v1v′2v′D v2 vD

Figure 1.3: Graph for showing that the analysis in Theorem 1.2 is tight.

the vertex which divides the two parts of Pi. We split the whole problem into
two subproblems: First we move each packet Mi from si to vi. In the second
part we move each packet Mi from vi to ti. We observe that the first part is
a packet routing problem on an in-tree and can therefore be solved optimally
using the FDF-algorithm (see [70] for a proof). Similarly, the second part is a
packet routing instance on an out-tree which can also be solved optimally using
the FDF-algorithm (see [70]). In the overall schedule for I, we run the optimal
(FDF-)schedule for the first part. Then we run the optimal (FDF-)schedule for
the second part. Denote by TREE (I) the resulting schedule for the instance I.

Theorem 1.2. For the schedule TREE (I) it holds that |TREE (I)| ≤ 2 ·
|OPT (I)|. Moreover, it can be computed in O

(
|M|2 + |V |2

)
.

Proof. The length of an optimal schedule for each of the two subproblem forms
a lower bound on the length of an optimal schedule for the whole problem.
We solve both subproblems optimally. Therefore, we achieve an approximation
ratio of two.

In O(|V |) steps we can determine for every vertex its distance to vr. Then,
every step of the FDF-algorithm can be computed in O(|M|+ |V |). The length
of an optimal schedule in an in- or out-tree is bounded by O(|M|+ |V |), see [75].
Since the FDF-algorithm computes an optimal schedule the overall running time
is bounded by O(|M|2 + |V |2).

When implementing the algorithm one would not let packets wait until all
other packets have finished the first part of the schedule. We would rather
always move a packet when the next edge on its path is free and prioritize the
packets according to the algorithm. But even then there are instances which
show that our analysis is tight.

Let D be an arbitrary positive integer (in the packet routing instance this
will be the dilation). Consider the graph shown in Figure 1.3. We introduce
2 · D packets as follows: We define M1 := (vM , vD) and M ′

1 := (vM , v′D). For
each k ∈ {2, ..., D} we define Mk := (v1, vM) and M ′

k := (v′1, vM). The optimal
makespan for this packet routing instance is D, obtained by giving priority to
the packets M1 and M ′

1 and scheduling the other packets in arbitrary order. In
order to analyze the schedule obtained by our algorithm we need to consider
all possible choices for vr. If vr = vM or vr = vk with 1 ≤ k ≤ D then the
packets M ′

2 to M ′
k have a higher priority than M ′

1 and therefore M ′
1 will need

2 ·D − 1 steps to reach v′D. Analogously, if vr = v′k with 1 ≤ k ≤ D then the
packets M2 to Mk have a higher priority than M1 and therefore M1 will need
2 ·D − 1 steps to reach v′D. Thus, the competitive ratio of A is at best 2·D−1

D .

18

1.3. SCHEDULES FOR DIRECTED TREES

Since we can choose D arbitrarily large this shows that the proven competitive
ratio of 2 is tight.

Theorem 1.2 proves that there is a 2-approximation algorithm for the packet
routing problem on trees. We will see in Chapter 3 that on trees the problem
cannot be approximated with a factor of 8/7− ε for any ε > 0, unless P = NP .
As we will see, this holds even for directed trees.

1.3 Schedules for Directed Trees

After having studied the packet routing problem on undirected trees we turn
to directed trees. Note that the trees that we mean here are not necessarily
in- or out-trees but arbitrary directed trees. In comparison to undirected trees
we have more structure that we can use. This allows us to construct a direct
schedule of length at most C +D − 1 in polynomial time. In comparison, the
best known algorithm for direct schedules in general trees requires 2C +D − 2
steps [17]. Note that the bound of C + D − 1 is best possible since there are
instances where this many steps are needed. Moreover, in Chapter 2 we will
use the gained insights when we derive upper bounds for the lengths of optimal
schedules in general graphs.

In the remainder of this section we describe our algorithm for computing
direct schedules on instances on directed trees. The algorithm works as follows:
First we find a coloring for the paths of the packets such that two paths that
share an edge have different colors. We will show that the number of needed
colors is exactly C. We assign each packet the color of its path. Then we assign
each edge a time-dependent color. The idea behind this is that we transfer a
packet M with color cM along an edge e = (u, v) only when e has the color cM .
We define the coloring of the edges such that for two consecutive edges e = (u, v)
and e′ = (v, w) it holds that at each time t the edge e′ has always the color that e
had at time t− 1. This ensures that once a packet starts moving, it will never
stop until it reaches its destination. Since at the very beginning each packet is
delayed for at most C − 1 steps this gives a makespan of at most C +D − 1.

In the sequel we describe the algorithm in detail. Assume we are given an
instance of the packet routing problem on a directed tree.

1.3.1 Path Coloring

First we want to find a coloring for the paths such that two paths with the
same color do not share an edge. Our algorithm works in two phases: in the
first phase we consider each vertex v together with its adjacent vertices (this
subgraph forms a star). For each of these subgraphs – together with the paths
of the packets in this subgraph – we solve the path coloring problem optimally
(here we use the fact that our tree is directed). Then we combine all these
partial solutions and obtain a solution for the global path-coloring problem.

Phase one: Let v be a vertex and denote by Tv = (V,E) the subgraph
induced by v and its adjacent vertices. We want to find a coloring for the paths

19

CHAPTER 1. TREES AND DIRECT SCHEDULES

a

b

c

d

a

v
d

c

b

Figure 1.4: Left: a vertex v with its neighbors and the paths touching v. Right:
The corresponding bipartite graph Bv.

which use edges in Tv. We reduce this problem to the edge-coloring problem on
bipartite multigraphs (for this it is crucial that the edges in Tv are directed).
This construction was already mentioned in [44].

Let U be the set of vertices which have outgoing edges to v, i. e., U =
{u ∈ V | (u, v) ∈ E}. Similarly, let W be the set of vertices having ingoing edges
from v, i. e., W = {w ∈ V | (v, w) ∈ E}. We construct an undirected bipartite
graph Bv as follows: the set U ∪ W forms the set of vertices in Bv. For each
path P that goes from a vertex u ∈ U through v to a vertex w ∈ W we introduce
an edge eP := {u,w} in Bv. For all paths P that start in a vertex u ∈ U and
end in v we introduce a new vertex wP ∈ W and an edge eP := {u,wP } in Bv.
Similarly, for paths P that start in v and end in a vertex w ∈ W we add a
vertex vP and introduce an edge eP := {vP , w} in Bv. Thus, for the maximum
degree Δ(Bv) of a node in Bv it holds that Δ(Bv) ≤ C. Also, it holds that
two edges eP and eP ′ share an end-vertex if and only if their corresponding
paths P and P ′ share an edge in Tv. Thus, a valid edge-coloring for Bv implies
a valid path coloring for Tv and vice versa. Moreover, from the construction it
follows that Bv is bipartite. We compute a minimum edge coloring for Bv (e. g.,
see [22]). The number of colors needed equals the maximum node degree Δ(Bv),
see [22].

Phase two: Now we combine the found solutions for the graphs Tv one by one
to obtain a global solution (a similar construction is described in [33, Lemma 2]).
We start with an arbitrary vertex v and the path coloring of Tv. Now let v′

be a vertex adjacent to v and consider the graph Tv′ . We permute the colors
of the paths in Tv′ such that the paths which use the edge (v, v′) (or (v′, v),
respectively) have the same colors in Tv and Tv′ . We iterate over the vertices
by always adding a vertex that is adjacent to one of the vertices that have been
considered already. Eventually, for each edge e = (u, v) all paths that use e have
the same color in Tu and Tv. Since T is a tree, in each iteration we can find a
valid permutation of the colors of the paths by using a simple greedy strategy.
Since for each graph Tv we found path colorings with at most C colors, the
resulting path coloring for T has C colors as well.

We summarize the path coloring procedure in the following lemma.

Lemma 1.3. Let T be a directed tree and let I = (T,M) be a packet routing

20

instance. There is a coloring with C colors for the paths of the packets M such

1.3. SCHEDULES FOR DIRECTED TREES

that any two paths that share an edge have different colors. Moreover, such a
coloring can be computed in O (n ·N · logC), where n denotes the number of
vertices in T and N = |M|.

Proof. The edge coloring problem on bipartite multigraphs can be solved opti-
mally in O (m logΔ) where m denotes the number of edges in the graph and Δ
denotes the maximum node degree, see [22]. Thus, computing the optimal path
coloring for one graph Tv can be done in O (N · logC) and for all graphs Tv in
O (n ·N · logC) steps.

Then we need to combine the colorings for the graphs Tv to a global path
coloring. We say a path P touches a vertex v if P goes through v, starts in v
or ends in v. We pick an arbitrary vertex v and color all paths which touch v
in the colors that they have in Tv. After this initialization we iterate by taking
vertices v′ which are adjacent to already considered vertices. When we iterate
we need to find a color permutation for Tv′ which is consistent with the coloring
for Tv. This permutation is partly already defined by the color assignment for
Tv (from the paths that appear in Tv and Tv′). The remainder can be found
greedily in O(C) ⊆ O(N) steps. Since the order of the vertices can be obtained
by a depth-first-search the second phase can be done in O (n ·N). This gives a
total running time of O (n ·N · logC).

1.3.2 Time-Dependent Edge Coloring

Now we construct a time-dependent coloring g : E × N → {0, 1, ..., C − 1} for
the edges of T . We will use this later to define the routing schedule. We require
it to have the consecutive property:

• For two consecutive edges e = (u, v) and e′ = (v, w) we require that
g (e, i) = g (e′, (i+ 1) mod c) for 0 ≤ i < C.

• For two adjacent edges e = (u, v) and e′ = (u, v′) (or e = (u, v) and
e′ = (u′, v)) we require that g (e, i) = g (e′, i) for 0 ≤ i < C.

We compute such a coloring with the following greedy algorithm: Start with an
arbitrary edge e and define its coloring by g (e, i) := i mod C for all i ∈ N. Then
we inductively assign the colors to the remaining edges such that the consecutive
property holds. Note that in the computed coloring each color appears exactly
every C timesteps on every edge.

1.3.3 Routing Schedule

Finally, we describe the routing schedule. First, we assign each packet the color
of its path. Now let M be a packet which is located on a vertex u at time t
and which needs to use the edge e = (u, v) next. Let cM be the color of M .
We route M along e in the first timestep t′ with t′ ≥ t and g (e, t′) = cM .
We define our schedule like this for every packet and every timestep. Due to

21

CHAPTER 1. TREES AND DIRECT SCHEDULES

the consecutive property of the time-dependent edge coloring a packet is never
delayed once it has left its start vertex. Denote by DTREE (I) the resulting
schedule for an instance I. The following theorem summarizes the schedule and
its properties.

Theorem 1.4. Let T be a directed tree and let I = (T,M) be a packet routing
instance. Then it holds that |DTREE (I)| ≤ C+D− 1. Also, a packet is never
delayed once it has left its start vertex (direct routing). Moreover, DTREE (I)
can be computed in O (n · |M| · logC), where n denotes the number of vertices
in T .

Proof. Since no two paths with the same color share an edge there can be at
most one packet that uses each edge e at each time t. According to the schedule,
each packet waits in its start vertex for at most C − 1 timesteps. Due to the
consecutive property once it left its start vertex it moves to its destination
without being delayed any further. Thus, the length of the overall makespan is
bounded by C +D− 1. The running time of the algorithm is dominated by the
computation of the path coloring. The latter can be done in O (n · |M| · logC),
see Lemma 1.3.

Note that the bound C +D − 1 is the best bound we can give in terms of
C and D since there are packet routing instances which need this many steps.
For example, consider a path of length D with vertices v0, ..., vD and C packets
all with start vertex v0 and destination vertex vD.

1.4 Direct Schedules

In the previous section we showed that for instances of the packet routing
problem on directed trees there is always a direct schedule with length at
most C + D − 1. In this section we give a condition which guarantees the
existence of a direct schedule within some time horizon T in general graphs.
First we proved this condition for directed trees. However, it turns out that it
also holds in general directed graph if every packet uses a shortest path. As an
application of the condition we prove that if the lengths of the paths are pair-
wise different there is an optimal direct schedule of length D (which is optimal).
The latter improves a result in [75] where the existence of some schedule, but
not necessarily a direct schedule, with this makespan was shown.

Our main result in this section is the following theorem.

Theorem 1.5. Let G be a directed graph, let T ≥ 0 be a time horizon, and
let I = (G,M) be a packet routing instance. Assume that for the paths of the
packets the following conditions hold:

• All paths are shortest paths.

• For each packet Mi denote by Mi the set of packets Mj such that Pj shares
an edge with Pi and Dj ≥ Di. We assume that |Mi| ≤ T −Di + 1.

22

1.4. DIRECT SCHEDULES

Then, there is a direct schedule which needs at most T timesteps. Moreover,
such a schedule can be computed in O (|M| · (m+ log |M|)) where m denotes
the number of edges in G.

As we will see later, the bound |Mi| ≤ T −Di + 1 guarantees the existence
of a direct schedule for the given instance. In fact, we will show that if only a
weaker bound holds, e.g., |Mi| ≤ T −Di + 2 for each packet Mi, then a direct
schedule with length T might not exist.

Assume that we are given an instance I and a value T with the above proper-
ties. We describe an algorithm which computes a direct schedule DIRECT (I)
which needs at most T steps. For two packets Mi and Mj such that Pi and
Pj share an edge we define a value d (Mi,Mj). Let vij be the first vertex on
Pi and Pj which is used by both paths. Denote by d (si, vij) and d (sj , vij)
the number of edges on Pi and Pj between si and vij and between sj and vij ,
respectively. Then we define d (Mi,Mj) := d (si, vij) − d (sj , vij). Note that
d (Mi,Mj) = −d (Mj ,Mi).

Assuming that Mi is delayed for k timesteps in the beginning, Mi col-
lides with Mj if and only if Pi and Pj share an edge and Mj is delayed for
d (Mi,Mj) + k steps (here we use the fact that G is a directed graph and all
paths are shortest paths). We sort the packets in non-increasing order by the
lengths of their paths. W. l. o. g. we assume that M0, ...,Mk is such an order.
Now we iterate over the packets. In the i-th iteration, we consider the packet Mi.
Denote by dj the computed waiting time for each packet Mj with 0 ≤ j < i.
(Note that a direct schedule is completely defined by the initial waiting times
for the packets.) We say a packet Mj blocks a certain waiting time m for Mi if
Pi and Pj share an edge and m = d (Mi,Mj)+dj . Note that each packet whose
path shares an edge with Pi blocks at most one waiting time for Pi. Let m be
the smallest unblocked waiting time for Mi. We define di := m. Denote by
DIRECT (I) the resulting schedule.

Proof of Theorem 1.5. We prove that DIRECT (I) has the properties claimed
in the theorem. By construction it is a direct schedule. Hence, it remains
to prove that Di + di ≤ T for each packet Mi. We considered the packets
in non-increasing order of their path lengths. Hence, only packets in Mi can
possibly block a certain waiting time for Mi. We know that |Mi| ≤ T −Di + 1
and Mi ∈ Mi. Thus, we conclude that at most T −Di waiting times for Mi are
blocked by packets Mj with j < i. This proves that di ≤ T −Di which implies
that Di + di ≤ Di + (T −Di) = T .

Now we want to bound the running time. First, we need to sort the packets
by the lengths of their paths. Determining the length of the path of each packet
can be done in O(|M| ·m). The sorting takes O(|M| log |M|) steps. For each
packet we need to determine the smallest unblocked waiting time. For each edge
we maintain a list of timesteps when it is already used by some packet. Hence,
for each packet Mi we can determine in O(Di) steps the smallest unblocked
waiting time. This gives an overall running time of O (|M| log |M|+ |M| ·m) ⊆
O (|M| · (m+ log |M|)).

23

CHAPTER 1. TREES AND DIRECT SCHEDULES

Note that the bound for the length of DIRECT (I) is tight. E. g., let C
and D be arbitrary positive integers and consider a packet routing instance
as follows: Let the graph be a directed path with vertices v0, v1, ..., vD and
consider C packets all with start vertex v0 and destination vertex vD. We
define T := C + D − 1. Then the above conditions are satisfied (since for all
packets Mi we have that |Mi| = |M| = C = T −Di + 1) and the length of the
optimal schedule is exactly T . Moreover, if we weaken our condition and require
only that |Mi| ≤ T −Di +2 we cannot guarantee the existence of a schedule of
length T anymore. E. g., take the above example with C +1 packets from v0 to
vD and T := C +D − 1. Then each schedule needs at least C +D > T steps.

Theorem 1.5 directly implies the following two corollaries.

Corollary 1.6. Let G be a directed graph, let I = (G,M) be a packet routing
instance, and let T ≥ 0 be a time horizon with the following conditions:

• All paths are shortest paths.

• Let Mi denote the set of packets whose path has at least D− i edges. For
each i ≥ 0 we have that |Mi| ≤ i+ 1.

Then the schedule DIRECT (I) is optimal with |DIRECT (I)| = D.

Corollary 1.7. Let G be a directed graph and let I = (G,M) be a packet
routing instance such that all paths are shortest paths and the lengths of all
paths are pairwise different. Then the schedule DIRECT (I) is optimal with
|DIRECT (I)| = D.

Compare that in [75] it was shown under the conditions of Corollary 1.7 that
there is a (not necessarily direct) schedule whose length is bounded by D. We
proved that in this case there is even a direct schedule with this makespan.

1.5 Conclusion

In this chapter we studied the packet routing problem on undirected and di-
rected trees. We gave a 2-approximation algorithm for undirected trees and an
algorithm with a bound of C+D−1 ≤ 2 ·OPT for directed trees. Note that the
latter algorithm performs much better than 2 ·OPT if C � D or C � D. How-
ever, it remains open to design an approximation algorithm which guarantees
a better performance ratio than 2 in worst-case. For achieving this goal, better
lower bounds are necessary. In our algorithm for undirected trees the lower
bounds are given by the two subproblems where the packets travel towards the
root or away from the root. It is easy to construct instances where each of the
two lower bounds is by a factor of 2 away from the optimum. For instance,
consider a path used by only one packet and define the root of the tree to be the
vertex in the middle of the path. In our algorithm for directed trees the lower
bounds are C and D. As mentioned earlier, the bound of C + D − 1 is best
possible since there are instances which need this many steps. An important

24

1.5. CONCLUSION

step to improve the approximation factors is hence to construct better lower
bounds. Also for direct schedules better lower bounds are needed to improve
the existing results.

25

Chapter 2

Schedules for General Graphs

2.1 Introduction

When designing approximation algorithms, a key ingredient are lower bounds
on the value of an optimal solution. For instance, many known approximation
algorithms are based on solving a linear program and subsequently rounding
the fractional solution to an integral one. An example is one of the many 2-
approximation algorithms for Vertex Cover. Recall that Vertex Cover is
the problem of finding a minimum subset of vertices in a graph such that each
edge is adjacent to at least one chosen vertex. In the algorithm, one solves the
(canonical) LP-relaxation of the problem. One can show that rounding up all
variables whose value is at least 1

2 yields an integral 2-approximative solution
for the problem [93, Vol. B]. Other approximation algorithms are based on a
combinatorial relaxation that can be solved efficiently. They compute a solution
to the original problem based on the relaxation and compare their cost with the
cost of the relaxation. For Vertex Cover a combinatorial lower bound is the
size of a maximal matching. Such a matching can easily be obtained by a greedy
algorithm. Then, we pick all vertices which are adjacent to a matching edge
and obtain a 2-approximation for the problem.

Key for proving in both cases that we have a 2-approximation is that the
obtained integral solution is by at most a factor of 2 larger than the value of the
lower bound (LP-optimum and the cardinality of the matching, respectively).
An important question is whether this analysis is best possible. In other words:
Are there really instances where the LP-optimum is by a factor of 2 smaller
than the best integral solution? Are there instances where a maximal matching
can be by a factor of 2 smaller than an optimal Vertex Cover? For both
questions the answer is “Yes”, simply consider complete graphs. In fact, the two
algorithms described above are (asymptotically) the best known approximation
algorithms for the problem.

In this chapter, we study lower bounds for the packet routing problem. The
two (trivial) lower bounds for the length of an optimal schedule are the con-

27

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

gestion C and the dilation D. But how good are these bounds? Can an op-
timal schedule be significantly longer than max{C,D}? In a celebrated paper
Leighton, Maggs, and Rao proved that the length of an optimal packet routing
schedule is bounded by O(C + D) [65]. This means that there is an (in their
proof very large) constant k such that each optimal packet routing schedule
needs at most k · (C +D) steps. Later, the constant was improved by Schei-
deler who proved a bound of 39(C + D) [92]. It is easy to see that there are
packet routing instances that need C + D − 1 steps to finish, e. g., consider a
path of length D and C packets which travel along this path with equal start
and destination vertices. However, to the best of our knowledge, no instance is
known that needs significantly more time in comparison to C and D.

In this chapter, we make a step to close the gap between the upper bound
of 39(C + D) and the lower bound of C + D − 1. We improve the bound of
39(C + D) to 23.4(C + D). Even more, we study packet routing in a wider
setting than before. We allow the edges to have non-unit bandwidths and non-
unit transit times. This means that more than one packet might enter some
edge at the same time and it might take more than one timestep for a packet to
traverse an edge (both depending on the respective edge). The above bound on
the length of an optimal schedule carries over quite easily to this more general
setting. However, we can show even better bounds when in the network every
edge has at least a certain minimum bandwidth or at least a certain minimum
transit time. For instance, if every edge has a transit time of at least 63 then
our bound improves to 4.32(C+D). Note here that we generalize the notions of
congestion and dilation to arbitrary bandwidths and transit times in a canonical
way.

Our methods use the Lovász Local Lemma (LLL) which in itself is non-
constructive. However, Moser and Tardos [79] recently provided an algorithmic
version of the general LLL. Hence, we also obtain efficient algorithms which
compute schedules with the stated lengths.

The results presented in this chapter are joint work with Britta Peis [88].

2.1.1 The Model
We modify the definition of the packet routing given in Chapter 1 as follows.
We assume that all edges are directed and the packets use the edges only in their
given direction. Each edge e ∈ E is equipped with a certain bandwidth be ∈ N

denoting the maximal number of packets that are allowed to enter e simultane-
ously, and a certain transit time τe ∈ N denoting the time needed for a single
packet to traverse e1. We define

b := min
e∈E

be and τ := min
e∈E

τe.

A feasible packet routing schedule for the instance I = (G,M) is now a schedule
which defines for each packet when it enters each edge of its path, respecting

1Note that even if be = 1 in principle an arbitrary number of packets is allowed to traverse e
simultaneously. The value be denotes a bound on the packets that can enter e at the same
time.

28

the transit times and the bandwidths of the edges.

2.1. INTRODUCTION

Congestion and Dilation

The two trivial lower bounds dilation and congestion easily carry over to non-
unit transit times and bandwidths. For each packet Mi we define Di to be the
length of Pi and D to be the maximal length of a path, i. e.,

Di :=
∑
e∈Pi

τe and D := max
Mi∈M

Di.

Also, for each edge e ∈ E we define Ce to be the number of paths using e. We
define the congestion C by

C := max
e∈E

�Ce/be
 .

Clearly, the dilation D as well as the congestion C provide lower bounds on the
length of an optimal schedule.

Remark regarding large C +D

In our analysis we will always assume that C + D is large enough such that
�k · (C +D)
 ≈ k · (C + D) for certain constants k. This simplifies the cal-
culations and was also implicitly used by Scheideler [92]. In order to give a
fair comparison with his bounds, we use this assumption as well. Moreover, we
believe that also for instances where C+D is small, our techniques can be used
to prove good bounds for the optimal makespan. However, this would require
further case distinctions and is beyond the scope of this work.

2.1.2 Outline of the Chapter

As mentioned above, we prove bounds on the length of optimal packet routing
schedules in the case of arbitrary transit times and bandwidths for the edges.
For the classical setting with b = 1 and τ = 1, we improve the best known bound
of 39(C +D) due to Scheideler [92] to 23.4(C +D). Even more, for larger b or
τ our bounds improve further to 7.63(C + D) for b → ∞ and to 4.32(C + D)
for τ ≥ 63. See Table 2.1 for an overview for some values depending on b and τ .

The key insight for our analysis is to prove and exploit a good bound for
schedules with very small dilation: For D ≤ τ + 1 we show that there is always
a schedule of length C + D − 1. Note that this bound is tight, since there
exist instances which require a schedule of this length (e. g., consider C packets
that need to take the same path of length D). Our proof framework uses this
insight in order to develop good bounds for general instances. Moreover, our
approach points into a direction of promising further research: If one could
prove similarly tight bounds for instances with, e. g., D ≤ kτ + 1 for small
values of k, our proof framework would immediately give even better bounds

29

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

Bound on length of optimal schedule
τ = 1 τ = 2 τ = 5 τ = 10 ... τ = 63

b = 1 23.40 23.21 18.54 16.37 ... 4.32
b = 2 21.59 18.85 15.58 14.27 ... 4.32
b = 5 16.19 14.50 12.98 12.38 ... 4.32
b = 10 14.03 13.05 11.86 11.54 ... 4.32

...
b → ∞ 7.63 7.63 7.63 7.63 ... 4.32

Table 2.1: Bounds for schedules obtained in this chapter depending on the
minimum bandwidth b and the minimum transit time τ of the edges. The given
values denote the constants in front of (C +D). Note that for technical reasons
(which will become clear in Section 2.4) the bounds do not improve any further
when τ is larger than 63.

for all instances. This work gives the first improvement for the bounds since
the result by Scheideler [92] from 1998.

The rest of this chapter consists of four parts: In Section 2.2 we prove a
bound of C +D− 1 for instances with D ≤ τ +1. Then, in Section 2.3, we give
a high-level overview of our techniques for proving bounds for general instances.
There, we need the insights obtained in Section 2.2. In Section 2.4 we prove
our bounds for general graphs in detail. Finally, in Section 2.5 we conclude and
discuss open problems.

2.2 Tight Bound for Small Dilation
Ideally, we would like to determine for each combination of C,D, b, and τ a tight
upper bound on the maximal length of an optimal schedule for instances with
these parameters. In this section, we make a first step towards this goal: We
give a tight bound for instances with D ≤ τ + 1. As we will see in Section 2.3,
this insight will allow us to prove good upper bounds for all instances.

For the sake of analysis, for the remainder of this chapter we replace every
edge e ∈ E with transit time τe by a path consisting of τe edges with unit transit
time, all with the same bandwidth as e. In the resulting graph, we call every
vertex that was created due to this transformation a small vertex. All other
vertices are called big vertices. We say a small path is a path connecting two
big vertices. Hence, τ is the minimum length of a small path. Even more, we
allow each small vertex to be the start or the destination vertex of a packet.
Note that this assumption makes the problem slightly more general since now
packets are allowed to have their start vertex “in the middle” of an edge. We
introduce this generalization because it will be needed in our proof framework
later. To simplify notation later we introduce the notion Ab,τ (C,D).

Definition 2.1. Let Ib,τ (C,D) be the set of all packet routing instances with
minimum bandwidth b, minimum transit time τ , congestion C, and dilation D.

30

2.2. TIGHT BOUND FOR SMALL DILATION

We define
Ab,τ (C,D) := max

I∈Ib,τ (C,D)
OPT (I),

where OPT (I) denotes the length of an optimal schedule for an instance I.

The main result of this section is given in the following theorem.

Theorem 2.2. Let I be an instance of the packet routing problem with D ≤ τ + 1.
Then there is a schedule for I whose makespan is bounded by C+D−1 which can
be computed in polynomial time. Moreover, Ab,τ (C,D) = C+D−1 if D ≤ τ+1.

Proof of Theorem 2.2
The strategy of the proof is the following: We assume that we are given an
instance I of the packet routing problem with D ≤ τ + 1. Due to the latter
assumption the path of each packet uses at most two small paths. Thus, we can
divide the packets which use any small path P into two sets M1

P and M2
P , such

that M1
P contains the packets for which P is the first of two used small paths,

and M2
P contains the packets for which P is the second small path (of two used

small paths) or the only small path which they use.
In a first step, we transform I into an instance I ′ such that OPT (I ′) ≥

OPT (I) and for every small path P ′ either M1
P ′ = ∅ or M2

P ′ = ∅. This
procedure reduces the complexity of the instance significantly. While performing
the necessary changes we do not change C, D, b, or τ at all. It turns out that
the underlying graph topology of the resulting instance I ′ is equivalent to a
directed forest, i. e., each connected component is a directed tree. We show
then that for each connected component there is a schedule which finishes after
at most C + D − 1 steps (Lemma 2.4). Since OPT (I ′) ≤ C + D − 1 and
OPT (I) ≤ OPT (I ′), it follows that Ab,τ (C,D) ≤ C +D − 1.

It is straight forward to construct instances I with D ≤ τ+1 and OPT (I) =
C +D− 1. For example, consider an instance with only one edge which is used
by C ·b packets. This shows that the bound is tight, i. e., Ab,τ (C,D) = C+D−1.

Transformation from I to I ′. We describe the necessary transformation to
obtain the instance I ′ from I. First note that for an optimal schedule for I we
can assume w. l. o. g. that on any small path P no packet in M2

P ever delays a
packet in M1

P . Consider a small path P = {e1, e2, ..., ek} connecting two big ver-
tices u and v. We substitute the path by two parallel paths P 1 =

{
e11, e

1
2, ..., e

1
k

}
and P 2 =

{
e21, e

2
2, ..., e

2
k

}
connecting u and v where each edge eij has the same

bandwidth as ej . In the new instance I ′, we define that the packets of M1
P use

the respective edges in P 1, whereas the packets in M2
P use P 2.

Now, let M ∈ M1
P be a packet that uses the edges e1� , ..., e

1
�′ for 1 ≤ � ≤ �′ ≤ k.

(As mentioned above, we allow the start- and destination vertices to be small
vertices.) For each such packet M , we introduce an artificial packet M ′ whose
path consists of the edges e2� , ..., e

2
�′ . If �′ = k we call M ′ a far artificial packet.

We do this procedure with every packet in M1
P . Denote by I ′ this trans-

formed instance. For every small path P = {e1, e2, ..., ek} in G we denote

31

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

A
A

A

I
e1

e21

e11

e2 e3

e22

e12 e13

e23

I′ v

u

u

v

Figure 2.1: A sketch of the transformation from I to I ′ in Section 2.2 with
τ(u,v) = 3 and u and v being big vertices. In the upper instance I each of the
the six packets uses some of the edges e1, e2, e3. In the transformed instance I ′

below the upper three packets use e11, e12, and e13 since {e1, e2, e3} is their first
small path in I. Similarly, the middle three packets use e21, e22, and e23. The
three packets on the bottom are new artificial packets.

by M′1
P and M′2

P the packets in I ′ which use edges of P 1 =
{
e11, e

1
2, ..., e

1
k

}
and

P 2 =
{
e21, e

2
2, ..., e

2
k

}
, respectively. See Figure 2.1 for a sketch.

Note that in I ′ we still have that D ≤ τ + 1. Moreover, in I ′ we have that
either M′1

P ′ = ∅ or M′2
P ′ = ∅ for each small path P ′ (where the sets M′1

P ′

and M′2
P ′ correspond to the respective sets M1

P and M2
P for small paths P

in I). Also, the transformation did not change C, D, b, or τ . We observe that
the topology of I ′ is equivalent to a directed forest, i. e., a graph where each
connected component is a directed tree. Even more, in each of the connected
components there is at most one vertex with a larger degree than 2. We call
directed trees with this property directed spiders.

Upper Bound for OPT (I ′). We establish that the transformation to I ′ did
not reduce the length of an optimal schedule.

Lemma 2.3. We have that OPT (I ′) ≥ OPT (I). Also, a schedule S for I ′

can be transformed in polynomial time to a schedule for I which is not longer
than S.

Proof. For the scheduling decisions within each small path there is always an
optimal schedule which obeys the farthest-destination-first rule (since FDF is
optimal for packet routing on a path). Hence, for the instance I ′ there is always
an optimal schedule in which no far artificial packet is ever delayed by a non-
artificial packet. Thus, our transformation ensures that OPT (I ′) ≥ OPT (I).

32

2.2. TIGHT BOUND FOR SMALL DILATION

Moreover, we can modify a schedule S for I ′ to a schedule for I: On each small
path P we schedule the packets in M1

P according to the schedule I ′. The packets
in M2

P are scheduled according to the farthest-destination-first rule. Since we
introduced the artificial packets in I ′, the resulting schedule for I is not longer
than S.

To prove Theorem 2.2 it now remains to show that OPT (I ′) ≤ C +D − 1.

Claim. There is a schedule for I ′ whose length is at most C +D − 1.

We prove the claim by constructing such a schedule. Take a small path P ′

with bandwidth b ≥ 2 (recall that all edges on a small path have the same
bandwidth). We replace P ′ by b paths P ′′

1 , ..., P
′′
b of unit bandwidth. The

packets using P ′ in I ′ are now distributed among the new paths such that no
path is used by more than C packets. We do this transformation with each
small path. By construction, any feasible schedule of the resulting instance can
be transformed to a feasible schedule for I ′ with the same length.

Consider one connected component. Recall that it is a directed spider where
each edge has unit bandwidth. We showed in Chapter 1 that for instances
of the packet routing problem on directed trees there is always a schedule of
length C + D − 1 which can be computed in polynomial time. This already
implies the existence of a schedule with this bound for each component and a
polynomial time algorithm for computing it. Nevertheless, for this special case
we give a simpler direct proof.

We showed in Lemma 1.3 that any set of paths on a directed tree can be
colored with C colors such that no two paths with the same color share an edge
(where C denotes the maximal number of paths which share an edge). Such a
coloring can be obtained by first reducing the problem on directed star graphs
(i. e., directed trees with diameter two) to edge-coloring in bipartite multigraphs.
Do this computation for each star. Then, the solutions for the star graphs are
glued together to obtain a global solution. We assume in the sequel that each
packet Mi is colored with a color ci ∈ {0, ..., C − 1} such that no two packets
with the same color share an edge.

Routing Schedule. Using the coloring defined above, we define a schedule
which finishes after at most C+D−1 steps. We define v to be the single vertex
in the component which has a larger degree than two (or an arbitrary vertex if
there is no such vertex). For each vertex v′ we define a value h(v′). If there is
a directed path from v to v′ of length � then we define h(v′) := �. If there is
a directed path from v′ to v of length � then we define h(v′) := −�. Note that
since our component is a directed spider one of the two cases must apply.

Now we define our routing schedule. It is a direct schedule, i. e., every packet
waits in its start vertex for some time and then proceeds to its destination
without any further delay. We assign each packet Mi an initial waiting time
of di := (ci + h(si)) mod C. Note that this already characterizes the schedule
completely.

33

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

Lemma 2.4. The defined schedule is feasible and finishes after at most C+D−1
steps. Hence, OPT (I ′) ≤ C +D − 1.

Proof. Assume on the contrary that at time t two packets Mi,Mi′ collide when
leaving some vertex v′. Hence, t = di − h(si) + h(v′) = di′ − h(si′) + h(v′).
This implies that (ci + h(si)) mod C−h(si) = (ci′ + h(si′)) mod C−h(si′) and
hence ci ≡ ci′ mod C. However, this contradicts that the ci values form a valid
coloring.

By definition, each packet waits in its start vertex for at most C − 1 steps
and then moves to its destination. Hence, the length of the schedule is bounded
by C+D−1. Doing the described adjustments with every connected component
shows that OPT (I ′) ≤ C +D − 1.

Proof of Theorem 2.2. According to Lemma 1.3 the path coloring can be com-
puted in polynomial time. The remaining operation can also be computed
efficiently. Then the claim follows from Lemmas 2.3 and 2.4.

Remark. At first glance our technique might seem to work also if D can be as
large as 2τ . Unfortunately, this is not the case. Recall that we allow the packets
to start in the middle of a short path (we will need this property later in our
framework for general instances). If there is a packet whose path uses more than
τ + 1 edges then its path could cross three small paths. Then, our technique
to reduce the problem to spiders does not work any longer. However, if we do
not allow the packets to start in the middle of short paths then our bound also
holds if we require only that D ≤ 2τ .

2.3 High Level Ideas for General Bounds

In the previous section, we provided a tight bound for the length of optimal
schedules of instances of the packet routing problem where D ≤ τ +1. Unfortu-
nately, the vast majority of instances does not fall under this category. However,
we provide an upper bound for all instances. In order to do this, we provide a
framework which uses bounds for instances with small dilation (like D ≤ τ +1)
for proving good bounds for all instances. Using our bounds for instances with
D ≤ τ + 1 from the previous section, we prove the following theorems.

Theorem 2.5. There is a function f(τ, b) which tends to 1 if τ or b increases
such that for each packet routing instance I with minimum bandwidth b and
minimum transit time τ there is a feasible schedule whose length is bounded by(

6.44 · f(τ + 1, b) + 2.11
τ

τ + 1
+ δ

)
(C +D)

for δ = 1
60 (τ + 3.05 · f(τ + 1, b)(τ + 1)).

Note that the value δ in the theorem above increases for increasing τ . How-
ever, if τ ≥ 63 the following theorem gives an alternative bound.

34

2.3. HIGH LEVEL IDEAS FOR GENERAL BOUNDS

Theorem 2.6. Let I be an instance of the packet routing problem with minimum
transit time τ ≥ 63. Then there is a feasible schedule for I whose length is
bounded by 4.32(C +D).

Even more, assuming that one has good upper bounds for instances with
small dilation we present a framework which gives good upper bounds for all
instances.

Theorem 2.7. There is a function f(�, b) which tends to 1 if � or b increases
such that for every instance I of the packet routing problem with minimum
bandwidth b and minimum transit time τ there is a feasible schedule for I whose
length is bounded by

Ab,τ (3.05� · f(�, b), �) ·
(
2.11

�
+ δ

)
(C +D)

for δ = 1
60 .

For using the above theorem, it suffices to have a good bound for the quan-
tity Ab,τ (3.05� · f(�, b), �) for some (small) value �. As an application of this
framework, the proof of Theorem 2.5 uses that Ab,τ (C, τ +1) = C+ τ as proven
in Theorem 2.2 (here we choose � := τ +1). Also, for the important special case
of unit bandwidths and unit transit time (i. e., b = 1 and τ = 1) our framework
gives the following bound.

Theorem 2.8. Let I be an instance of the packet routing problem with unit
transit times and unit bandwidths. Then there is a feasible schedule for I whose
length is bounded by 23.4(C +D).

Table 2.1 shows the bounds obtained by the above theorems for certain values
of b and τ . Figure 2.2 shows a plot of the function f used in Theorems 2.5 and 2.7
for some values b.

In this section we describe the high-level concepts of our proofs. The com-
plete proofs requires many technical details which we give in Section 2.4. Our
reasoning uses the concepts introduced by Scheideler [92] who proved that there
is always a schedule of length 39(C + D) for instances with unit transit times
and unit capacities. At several times in our analysis, we make use of the Lovász
Local Lemma (LLL) which (in its symmetric version) states the following:

Lemma 2.9 (Lovász Local Lemma (LLL) [82]). Let E1, . . . , Ek be a set of “bad
events” in an arbitrary probability space. Assume that each event occurs with
probability at most p. Also, assume that each bad event is mutually independent
of all other but at most d events. If ep(d+ 1) < 1 then, with probability greater
than zero, no bad event occurs.

The LLL as stated above is non-constructive. However, Moser and Tar-
dos [79] recently gave an algorithmic version, even for the general LLL. It re-
quires only that a violated bad event and the variables that it depends on can
be detected efficiently. This is immediate in our application of the LLL as we

35

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

0 2 4 6 8 10 12
1

2

3

4

5

6

�

f
(b
,�
)

b = 1
b = 2
b = 5
b = 10

Figure 2.2: The function f for the values of b and � which are relevant for the
bounds shown in Table 2.1 and for Theorems 2.5 and 2.7.

will see in the sequel. Also, our bound for instances with D ≤ τ + 1 given in
Theorem 2.2 is constructive (given by a polynomial time algorithm). We need
the latter insight to obtain the bounds in the above theorems. Hence, we also
obtain efficient algorithms which compute schedules with the stated lengths. We
say that a randomized algorithm runs in polynomial time with high probability
if for each k ∈ N there is a polynomial p(n) such that the algorithm needs at
most p(n) steps with probability 1− 1

k . We obtain the following corollary.

Corollary 2.10. There are randomized algorithms which compute schedules
with the bounds stated in Theorems 2.5, 2.6, and 2.8 and which run in polyno-
mial time with high probability. If there is a polynomial time algorithm which
computes a schedule of length at most Ab,τ (3.05� · f(�, b), �) for all instances
with C ≤ 3.05� · f(�, b) and D ≤ � then there is a randomized algorithm that
computes a schedule whose length is given in Theorem 2.7 and which runs in
polynomial time with high probability.

In the first part of our proof, we give a careful adaption of the concepts
introduced by Scheideler [92] to the setting of arbitrary bandwidths and transit
times. In the second part of the proof we introduce our framework. Any good
bound for instances with small dilation, e. g., D ≤ τ+1, D ≤ 2τ+1, etc., allows
the framework to prove better bounds for general instances (with arbitrary
dilation). We incorporate the bounds for instances with D ≤ τ +1 (obtained in
Section 2.2) into our framework. In the setting of unit bandwidths and transit
times we improve the bound of 39(C + D) by Scheideler [92] to 23.4(C + D).
For larger b and/or larger τ we can reduce the constant in front of (C+D) even
further.

36

2.4. TECHNICAL ANALYSIS

In the sequel, we will use the concept of infeasible schedules. We call a
schedule infeasible if some edge e is used by more than be packets at a time,
but the packets still follow their predefined paths and respect the transit times
of the edges. For ease of notation we say a schedule is infeasible if it is not
necessarily feasible. We use the following strategy: We start with an infeasible
schedule in which no packet is ever delayed. Denote this schedule by S0. We
perform the following steps:

• One can enlarge S0 by adding a random delay of at most C/b for each
packet at the beginning of S0, yielding a schedule S1. We will show using
the LLL that there are delays for the packets such that S1 fulfills certain
properties.

• Inductively, assume that we have an infeasible schedule Si (with i ≥ 1).
Using the LLL we show that there are further refinement steps yielding a
schedule Si+1 which is – intuitively speaking – “more feasible” than Si.

• Eventually, we prove that there is a schedule Sk with the property that in
every interval of length 64 at most 195.1b packets use each edge. Further-
more, we prove that the length of Sk is bounded by 1.0626(C +D).

Starting with the infeasible schedule Sk, we establish our framework. Let � ∈ N.
Using the LLL we show that there is an infeasible schedule Sk+1 that can be
partitioned such that in any time-interval of length � at most C�

b packets traverse
each edge with bandwidth b (for a constant C�

b to be defined later). Hence,
we can turn Sk+1 into a feasible schedule by refining each interval of length �
separately. In order to do this, we treat each of these intervals as a subinstance
of the packet routing problem with dilation � and congestion maxe

{
C�

be
/be

}
.

Hence, it suffices to have good bounds for instances with dilation D = � in
order to obtain a bound for the original instance. We use our framework with
� := τ + 1 since Theorem 2.2 gives a bound for instances with D ≤ τ + 1.
Using the framework one could obtain even better bounds for general instances
if one had good upper bounds for instances with slightly higher dilation, e. g.,
D ≤ kτ+1 for some small value k. In particular, the larger we can choose �, the
better our bounds become. This can be seen in Table 2.1 since for increasing τ
the bounds improve. Also, if b increases the bounds improve as well. The
reason is that C�

b/b decreases when b increases. Hence, the congestion in the
subinstances (given as maxe

{
C�

be
/be

}
above) will be smaller for larger values

of b.
In the following section we give a detailed technical analysis of the reasoning

described above.

2.4 Technical Analysis

In this section we give the full proofs of the theorems and techniques described
in Section 2.3. First, we adapt the concepts of Scheideler [92] to the setting

37

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

of arbitrary bandwidths and transit times. Then, we introduce our framework
which then allows us to prove our bounds for the lengths of optimal schedules.

Let I be an instance of the packet routing problem with congestion C and
dilation D. Assume that each edge has a bandwidth of at least b and a transit
time of at least τ . Our bounds depend on these four parameters. In particular,
they improve for larger b or τ . As already mentioned in Section 2.2, we replace
every edge e with transit time τe by a path consisting of τe edges with unit
transit time. Also, paths of packets are allowed to start or end on the new
(small) vertices.

First, we prove the existence of the schedule Sk with the property that in
every interval of length 64 at most 195.1b packets use each edge. We bound the
length of Sk later. We define I0 := max{C,D}. Let k := (log∗ I0)− 1 where for
our purposes we define log∗ I0 to be the smallest integer � such that we need to
apply the log-function � times to I0 in order to obtain a value of at most 4. We
set Ik := 4 and Ij := 2Ij+1 for all j with 1 ≤ j ≤ k − 1. Note that 2I1 ≥ I0.
If I0 ≤ 64 then we define Sk := S0. Hence, for the remaining reasoning for the
construction of Sk we assume that I0 > 64. Let S0 be the infeasible schedule
in which no packet is ever delayed. We define D0 := D. We will prove the
existence of schedules Si with certain properties (with i ≥ 1). We denote by Di

the length of Si. Let Ci be the maximum number of packets that use an edge
in each interval of length I3i in the schedule Si.

We start with the schedule S0. We assign each packet an initial random
delay. Using the Lovász Local Lemma we prove that there are random delays
such that the resulting schedule is “relatively feasible”. The schedule S1 is the
schedule resulting from those “good” initial delays.

Lemma 2.11. There is an infeasible schedule S1 with the property that in every
interval of length I31 at most C1be packets use each edge e with C1 := (1+ 3

I1
)I31 .

Also, D1 ≤ C +D.

Proof. We prove the existence of S1 using the Lovász Local Lemma. We change
S0 by giving each packet an initial delay chosen uniformly at random from
the set {0, ..., C − 1}. This results in an infeasible schedule S1 whose length
is bounded by (C + D). In order to make S1 “relatively feasible” we want to
ensure that in S1 at most C1be packets traverse every edge e during any interval
of length I31 . We ensure this property by using the Lovász Local Lemma. We
define a bad event Ee for each edge e. The bad event Ee is that there is an
interval of length I31 in which more than C1be traverse e. Using the Lovász
Local Lemma we show that there are initial delays for the packets such that no
bad event occurs.

Note here that in polynomial time we can check whether a bad event occurs.
If this is the case we can determine in polynomial time what random variables
affect the occured bad event. This is necessary for the algorithmic version of
the LLL [79]. The same will apply for all subsequent applications of the lemma.

Consider an edge e and an interval J of length I31 . Assume that the packets
M1, ...,M� use e (note that � ≤ Cbe). Let Xi be a binary random variable such
that Xi = 1 if and only if Mi traverses e during J . We define X :=

∑�
i=1 Xi.

38

2.4. TECHNICAL ANALYSIS

The initial delays were chosen uniformly at random and hence Pr [Xi = 1] ≤
I31/C for each i. This implies E[X] =

∑�
i=1 E [Xi] ≤ I31 be. Using the Chernoff

bounds [4, 49] we derive with ε = 3
I1

that

Pr
[
X ≥ (1 + ε) I31 be

]
= Pr

[
X ≥

(
1 +

3

I1

)
I31 be

]
≤ exp (−3beI1)

where, as usual, exp(x) = ex. Since there are at most (C + D) intervals of
length I31 , the probability for Ee is bounded by

Pr[Ee] ≤ (C +D) · exp (−3beI1) .

We can bound the dependence of each bad event Ee by CDbe−1: The event Ee

for the edge e is clearly independent of a bad event Ee′ for an edge e′ if there
is no packet in the instance which uses both e and e′. The edge e is used by at
most Cbe packets. Each of these packets uses at most D edges in total. Hence,
Ee is independent of all but at most CDbe − 1 other bad events. In order to
apply the Lovász Local Lemma we have to ensure that

Pr[Ee] · e · CDbe < 1.

Due to our bound for Pr[Ee] above it suffices to ensure that

(C +D) · exp (−3beI1) · e · CDbe < 1.

We show the inequality for be = 1 (since then by monotonicity it holds for
all be). Also, since I1 depends only on max{C,D} it suffices to consider the
case that C = D. This yields the inequality

2D · exp (−3I1) · e ·D2 < 1.

Since we assumed that I0 ≤ 2I1 and hence D ≤ 2I1 it suffices to ensure that

2 · 2I1 · exp (−3I1) · 22I1 < 1. (2.1)

Since I0 > 64 we have in particular that I1 ≥ 4. Inequality 2.1 holds for
I1 = 4 and due to monotonicity also for all I1 ≥ 4. Concluding this lemma we
obtained the infeasible schedule S1 with the property that in each time interval
of length I31 each edge is used by at most C1be packets.

Denote by S1 the schedule whose existence was proved in Lemma 2.11. Given
an infeasible schedule Si we want to prove the existence of a schedule Si+1 which
is – intuitively speaking – “more feasible” than Si. This is again done by giving
each packet random delays. We use the Lovász Local Lemma to ensure that
there are delays for the packets such that in any interval of length I3i+1 only a
bounded number of packets use each edge.

39

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

Si

Si+1

Ji

J̄ i

J ′

J ′′

Figure 2.3: Each interval J i of length I4i in Si is refined to an interval J̄ i of
length at most I4i + I3i − I3i+1 in Si+1 (proof of Lemma 2.12).

Lemma 2.12. Let Si be an infeasible schedule of length Di with the property
that in every interval of length I3i at most Cibe packets use each edge e for some
value Ci ≥ I3i . Then there is an infeasible schedule Si+1 with the property that
in every interval of length I3i+1 at most Ci+1be packets use each edge e, with

Ci+1 := Ci ·
(
1 +

5.1

Ii+1

)
· I3i+1

I3i − I3i+1

.

Moreover, Di+1 ≤
(
1 + 1

Ii

)
Di and Ci+1 ≥ I3i+1.

Proof. We split the timeline into intervals of length I4i . We refine the infeasi-
ble schedule Si by enlarging each of these intervals. The schedule Si+1 is the
concatenation of all enlarged intervals.

Let J i be a time interval of length I4i . W. l. o. g. assume that J i =
[
0, I4i − 1

]
.

At the beginning of J i we define for each packet a delay chosen uniformly
at random from the set of delays

{
0, 1, ..., I3i − I3i+1 − 1

}
. Denote by J̄ i the

resulting (enlarged) interval. Note that the length of J̄ i is bounded by I4i +
I3i − I3i+1. See Figure 2.3 for a sketch. We want to ensure that in the resulting
schedule within each interval of length I3i+1 at most Ci+1be packets use each
edge e. Using the Lovász Local Lemma we show that there are random delays
for the packets such that this property is fulfilled.

Let e be an edge. We define that the bad event Ei+1
e occurs if there is a

subinterval J ′ ⊆ J̄ i with length I3i+1 in which more than Ci+1be packets use e.
Let J ′ = [x, x+ I3i+1 − 1] ∩ J̄ i for some x ∈ J̄ i. If after the random experiment
a packet M uses e during J ′ then in Si it must have used e during the interval
J ′′ = [x− I3i + I3i+1, x+ I3i+1 − 1]. Since J ′′ has length I3i there can be at most
Cibe such packets. Denote them by M1, ...,M�. Let Xi be a random variable
such that Xi = 1 if and only if Mi uses e during J ′. We define X :=

∑�
i=1 Xi.

40

2.4. TECHNICAL ANALYSIS

For each Xi we get Pr [Xi] ≤ I3i+1/
(
I3i − I3i+1

)
. We obtain

E[X] =
�∑

i=1

E [Xi] ≤ Cibe ·
I3i+1

I3i − I3i+1

.

The Chernoff bounds give that

Pr [X ≥ Ci+1be] = Pr

[
X ≥ Ci

(
1 +

5.1

Ii+1

)
I3i+1

I3i − I3i+1

be

]

≤ exp

(
−1

3

(
5.1

Ii+1

)2

· Ci ·
I3i+1

I3i − I3i+1

be

)
.

Since there are at most I4i + I3i intervals of length I3i+1 (like the interval J ′)
which we need to consider, we obtain

Pr [Ee] ≤
(
I4i + I3i

)
exp

(
−1

3

(
5.1

Ii+1

)2

· Ci ·
I3i+1

I3i − I3i+1

be

)
.

The interval J i is the union of Ii intervals of length I3i . Therefore, by assumption
during J i (and by construction also during J̄ i) at most Ii ·Cibe packets pass e.
Hence, the dependence of Ee is bounded by I5i ·Cibe − 1. Therefore, in order to
apply the Lovász Local Lemma, we need to guarantee that

Pr [Ee] · e · I5i · Cibe < 1.

In order to analyze whether the inequality holds we study the function

g (Ii, Ci) :=
(
I4i + I3i

)
exp

(
−1

3

(
5.1

log Ii

)2

· Ci ·
log3 Ii

I3i − log3 Ii
be

)
eI5i · Cibe.

We need to show that g (Ii, Ci) < 1. First, we calculate that dg
dCi

< 0 and hence
it suffices to ensure that g

(
Ii, I

3
i

)
< 1 (recall that Ci ≥ I3i). Similarly, it suffices

to show the bound for be = 1. We define h(Ii) := g
(
Ii, I

3
i

)
and set be := 1

which yields

h(Ii) =
(
I4i + I3i

)
exp

(
−1

3

(
5.1

log Ii

)2

· I3i · log3 Ii

I3i − log3 Ii

)
eI5i · I3i

≤
(
I4i + I3i

)
· I8i · e · exp (−8.6 · log Ii)

=: ĥ (Ii) .

For Ii = 16 calculations show that ĥ (Ii) < 1 and dĥ
dIi

< 0. Hence, if Ii ≥ 16

then there are random delays for the packets such that in each interval J ′ ⊆ J̄ i

of length at most I3i+1 there can be at most Ci+1be packets using any edge e.

41

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

It remains to show that Ci+1 ≥ I3i+1. By assumption Ci ≥ I3i . We calculate
that

Ci+1 = Ci ·
(
1 +

5.1

Ii+1

)
· I3i+1

I3i − I3i+1

≥ I31 ·
(
1 +

5.1

Ii+1

)
· I3i+1

I3i − I3i+1

=
1

1− I3
i+1

I3
i

·
(
1 +

5.1

Ii+1

)
· I3i+1

≥ I3i+1.

We apply Lemma 2.12 iteratively until we have proven the existence of
the schedule Sk with the respective properties. In particular, since Ik = 4
Lemma 2.12 shows that in Sk in every interval of length 43 = 64 every edge is
used by at most Ck packets. In the following two lemmas we bound Ck and Dk.

Lemma 2.13. It holds that Dk < 1.0626(C +D).

Proof. Due to our refinement steps from Lemmas 2.11 and 2.12 we have that
Dk ≤ (D + C)

∏k−1
i=1

(
1 + 1

Ii

)
. For bounding the latter term we define a se-

quence a. Let a0 := 4, a1 := 16, a2 := 65536 = 216, and a3 := 265536. For i ≥ 4

we define ai+1 := 2ai. Our definition of the ai implies that
∏∞

i=1

(
1 + 1

Ii

)
≤∏∞

i=1

(
1 + 1

ai

)
. Therefore, it suffices to show that

∏∞
i=1

(
1 + 1

ai

)
< 1.0625.

With the definition of the sequence a we are able to use the geometric series
for bounding

∑∞
i=3

1
ai

. Since the latter term is very small, defining ai+1 := 2ai

does not introduce too much inaccuracy. Let α :=
∏∞

i=3

(
1 + 1

ai

)
. We calculate

that

log(α) =

∞∑
i=3

log

(
1 +

1

ai

)

≤
∞∑
i=3

1

ai

≤ 2−32768.

This implies that α ≤ 22
−32768

. Calculations show that

∞∏
i=1

(
1 +

1

ai

)
≤ α ·

(
1 +

1

a1

)
·
(
1 +

1

a2

)
< 1.0626.

42

2.4. TECHNICAL ANALYSIS

Lemma 2.14. It holds that Ck < 195.1.

Proof. We calculate that

Ck =

(
1 +

3

I1

)
I31 ·

k−1∏
i=1

(
1 +

5.1

Ii+1

)
· I3i+1

I3i − I3i+1

=

(
1 +

3

I1

)
I3k ·

k−1∏
i=1

1

1− (Ii+1/Ii)3

(
1 +

5.1

Ii+1

)
.

Now we distinguish two cases: If I1 = 16 then k = 2 and the last product has
only one factor. Calculations show that then(

1 +
3

I1

)
· 1

1− (I2/I1)3

(
1 +

5.1

I2

)
< 2.75.

If I1 > 16 then in particular I1 ≥ 216. It can be shown that

k−1∏
i=1

1

1− (Ii+1/Ii)3

(
1 +

5.1

Ii+1

)
< 3.04

with a similar proof as for the bound of Dk in Lemma 2.13. Since I1 ≥ 216 we
still have that

(
1 + 3

I1

)∏k−1
i=1

1
1−(Ii+1/Ii)3

(
1 + 5.1

Ii+1

)
< 3.04. Since I3k = 64 in

both cases we obtain the stated bound.

Note that if I0 ≤ 64 then by definition S0 = Sk and also Dk = D0 = D <
1.0626(C +D) and Ck = C0 = C < 195.1.

2.4.1 Framework
Having established the existence of the schedule Sk with the above properties
we introduce our framework. The idea is the following: We split the schedule Sk

into intervals of length I3k = 64. We treat each of these intervals individually as
a subinstance. Let F be such an interval. At the beginning of F we assign each
packet a random delay from the range {0, 1, ..., 63}. The length of the resulting
schedule is at most 127. Let � ∈ N. Using the Lovász Local Lemma we show
that there are random delays for the packets such that in each subinterval of
length � at most C�

b packets use each edge with bandwidth b (for a constant C�
b

to be defined later). Denote by Sk+1 such a schedule. Each subinterval of
length � can now be treated as a subinstance of the packet routing problem
with dilation � and congestion C̄ := maxe

{
C�

be
/be

}
. Assume that we have a

good bound Ab,τ
(
C̄, �

)
for the maximum length of an optimal schedule for such

an instance. This implies that by losing only a factor of (roughly) Ab,τ
(
C̄, �

)
/�

we can turn Sk+1 into a feasible schedule. The length of Sk+1 then gives us
our bound on the length of an optimal schedule for the original instance. As an
application of this framework we derive bounds by setting � := τ + 1.

First, we define the values C�
b .

43

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

Definition 2.15. Let b, � ∈ N. Consider �195.1b� binary random variables Xi

such that Pr [Xi] = �
64 and let X :=

∑�195.1b�
i=1 Xi. We define C�

b to be the
minimum integer such that Pr

[
X > C�

b

]
· e ·

⌈
1
� 127

⌉
· �195.1b� · 64 ≤ 1. We write

Pr
(
C�

b

)
:= Pr

[
X > C�

b

]
.

Later we will split the whole time axis into intervals of length 127. We will
split those again into even smaller intervals of length � or less if �. To simplify
notation we introduce the notion of an �-partition.

Definition 2.16. An �-partition of an interval J with |J | = 127·M (for an inte-
ger M) is a partition into

⌊
127
�

⌋
·M subintervals of length � and M subintervals

of length (k mod �). In the sequel we call those subintervals �-subintervals.

Using the Lovász Local Lemma, in the next lemma we show that there are
random delays which turn Sk into the schedule Sk+1 which is “almost feasible”.

Lemma 2.17. Let �, b ∈ N. Assume we are given an infeasible schedule Sk

of length Dk such that in every interval of length 64 each edge e is used by at
most �195.1b� packets. Then there is an infeasible schedule Sk+1 whose length
is bounded by Dk+1 := Dk · 127

64 that can be �-partitioned such that in every
�-subinterval at most C�

be
packets use each edge e.

Proof. We split the timeline into intervals of length I3k = 64. We consider each
of these intervals separately and refine them. Let F be one of the intervals. At
the beginning of F we perform a random experiment and assign each packet a
delay chosen uniformly and independently at random from the set {0, 1, ..., 63}.

We define a bad event for each edge e. The bad event is that during an
interval [i · �, (i+ 1) · �− 1] ∩ F for some i more than C�

be
packets traverse the

edge e. The interval F was enlarged to a length of at most 127. Hence, there
are at most

⌈
1
� 127

⌉
intervals of the form [i · �, (i+ 1) · �− 1] ∩ F . Also, the

probability for each bad event is bounded by Pr
(
C�

be

)
·
⌈
1
� 127

⌉
. Each bad event

is independent from all other but at most Ckbe ·64−1 other bad events (follows
from the bound on the congestion and the dilation). The definition of C�

be

implies that Pr
(
C�

be

)
· e ·

⌈
1
� 127

⌉
· (Ckbe · 64− 1 + 1) < 1. The Lovász Local

Lemma implies that with non-zero probability no bad event occurs. Doing this
reasoning for each interval F proves the existence of the schedule Sk+1 with the
desired properties.

We can turn Sk+1 into a feasible schedule by solving each subinstance in-
duced by a �-subinterval optimally. This increases the length of Sk+1 at most
by a factor of (roughly) A

(
C̄, �

)
/� with C̄ = maxe

{⌈
C�

be
/be

⌉}
. If we have a

good bound for A
(
C̄, �

)
this yields a good bound for the length of an optimal

schedule for the original instance.
In order to bound Ab,τ

(
C̄, �

)
we need to estimate C̄. As a first step, in the

next lemma we upper-bound C�
b by a value C̃�

b that we will work with later.

44

2.4. TECHNICAL ANALYSIS

Values for C̃�
b

� = 2 � = 3 � = 6 � = 11

b = 1 23.8 29.5 44.7 67.1
b = 2 36.2 46.2 73.3 114.1
b = 5 67.0 88.8 148.9 242.3
b = 10 111.8 151.7 264.0 441.5

Table 2.2: Quantities C̃�
b for several values of b and τ . Note that C̃�

b is an upper
bound for C�

b.

Lemma 2.18. Let b, � ∈ N. Then C�
b ≤ C̃�

b := (1 + ε�b)μ
�
b, where μ�

b := � · 1
64 ·

195.1b and ε�b is the smallest real such that

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

μ�
b ⌈

1

�
· 127

⌉
· e · 195.1b · 64 ≤ 1.

Proof. Consider the �195.1b� binary random variables Xi from the definition of
C�

b and set X :=
∑�195.1b�

i=1 Xi. Then E[X] = �195.1b� �
64 . The Chernoff bounds

give that

p := Pr
[
X >

(
1 + ε�b

)
μ�
b

]
≤ Pr

[
X ≥

(
1 + ε�b

)
μ�
b

]
≤

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

μ�
b

.

By the choice of ε�b this implies that

Pr
[
X ≥ C�

b

]
· e ·

⌈
1

�
127

⌉
· 195.1b · 64 ≤ 1.

Table 2.2 shows some values C̃�
b for some b and �. We note that for these

values for fixed � and increasing b the values C̃�
b/b do not increase. We show

in the following lemma that this holds in general. It will become useful later:
it allows us to argue that C̄ = maxe

{⌈
C�

be
/be

⌉}
≤ maxe

{⌈
C̃�

be
/be

⌉}
= C̃�

b/b,
where b denotes the minimum bandwidth of any edge in the instance.

Lemma 2.19. Let b, b′, � ∈ N with b ≤ b′. Then C̃�
b/b ≥ C̃�

b′/b
′.

Proof. It suffices to show the claim for b′ := b+1. By definition, C̃�
b = (1+ ε�b) ·

�
64 · 195.1b and C̃�

b+1 = (1+ ε�b+1)
�
64 · 195.1(b+1) with ε�b and ε�b+1 as defined in

Lemma 2.18. Hence, it suffices to show that ε�b+1 ≤ ε�b. By definition, we have
that

45

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

195.1b · 64 ·
⌈
1

�
· 127

⌉
· e ·

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

�
64 ·195.1b

≤ 1. (2.2)

To show that ε�b+1 ≤ ε�b we calculate that

195.1(b+ 1) · 64 ·
⌈
1

�
· 127

⌉
· e

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

�
64 ·195.1(b+1)

= 195.1b · 64
⌈
1

�
· 127

⌉
· e ·

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

�
64 ·195.1b

·K.

with K := (b+1)
b

(
eε

�
b

(1+ε�b)
1+ε�

b

) �
64 195.1

. Hence, it remains to show that

K =
b+ 1

b

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

�
64 195.1

≤ 1 (2.3)

or equivalently

(
b+ 1

b

)b
⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

�
64 ·195.1b

≤ 1b = 1. (2.4)

From Inequality 2.2 we conclude that

⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

�
64 ·195.1b

≤ 1

195.1b · 64 ·
⌈
1
� · 127

⌉
· e .

For proving Inequality 2.3 it hence suffices to show that

(
1 +

1

b

)b

≤ 195.1b · 64 ·
⌈
1

�
· 127

⌉
· e.

We have that limb→∞
(
1 + 1

b

)b
= e. Moreover, since 195.1b · 64 ·

⌈
1
� · 127

⌉
· e ≥ e

for all b ≥ 1 Inequality 2.3 holds. This implies that ε�b+1 ≤ ε�b.

In the following lemma, we formalize how we can derive bounds for general
instances using good bounds for Ab,τ (C, �) (for some value �).

46

2.4. TECHNICAL ANALYSIS

Lemma 2.20. Let I be an instance of the packet routing problem with minimum
bandwidths and transit times b and τ , respectively, and let �,M ∈ N. Assume
we are given an infeasible schedule Sk+1 for I of length 127 · M which is �-
partitioned such that every �-subinterval is used by at most C�

b packets. Then
there is a feasible schedule for I whose length is bounded by⌈

127

�

⌉
·M ·Ab,τ

(
max

e

{⌈
C�

be/be
⌉}

, �
)
.

Proof. We change the given schedule Sk+1 to a feasible schedule by refining
each �-subinterval of the �-partition. Each �-subinterval can be modeled as an
instance of the packet routing problem. This subinstance has a dilation of at
most � and each edge e is used by at most C�

be
packets. Hence, the congestion

of this subinstance is C̄ := maxe
{⌈

C�
be
/be

⌉}
. According to our assumption

concerning b and τ the schedule in each �-subinterval can be refined to a feasible
schedule of length Ab,τ

(
maxe

{⌈
C�

be
/be

⌉}
, �
)
. This yields the bound stated in

this lemma.

Later, we will work with the values C̃�
b instead of the values C�

b . For giv-
ing a general theorem for the bounds derived by our framework, we study the
value C̃�

b/b.

Lemma 2.21. It holds that⌈
C̃�

b/b
⌉
≤ 3.05� · g(�, b)

for a function g(�, b) which approaches 1 for increasing � or b.

Proof. From Lemma 2.18 we derive that C̃�
b := (1+ε�b)μ

�
b where μ�

b := �· 1
64 ·195.1b

and ε�b is the smallest real such that
⎛
⎝ eε

�
b(

1 + ε�b
)1+ε�b

⎞
⎠

μ�
b ⌈

1

�
· 127

⌉
· e · 195.1b · 64 ≤ 1.

We see that for fixed � and increasing b, the value ε�b decreases. Similarly, for
fixed b and increasing �, we also have that ε�b decreases. We conclude that C̃�

b

approaches μ�
b = � · 1

64 · 195.1b ≤ 3.05� · b for increasing � or increasing b. This

implies that
⌈
C̃�

b/b
⌉

approaches 3.05� for increasing � or increasing b.

Now we can prove our main theorem for the bounds derived by our framework
(theorem restated).

Theorem 2.7. There is a function f(�, b) which tends to 1 if � or b increases
such that for every instance I of the packet routing problem with minimum
bandwidth b and minimum transit time τ there is a feasible schedule for I whose
length is bounded by

Ab,τ (3.05� · f(�, b), �) ·
(
2.11

�
+ δ

)
(C +D)

47

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

for δ = 1
60 .

Proof. We have that C�
b ≤ C̃�

b for all � and b. From Lemma 2.19 it follows that
maxe

{⌈
C̃�

be
/be

⌉}
≤

⌈
C̃�

b/b
⌉
. With Lemmas 2.20 and 2.21 we obtain a bound

of

Ab,τ
(⌈

C̃�
b/b

⌉
, �
)
·
⌈
127

�

⌉
· Dk

64

< Ab,τ (3.05� · f(�, b), �) ·
⌈
127

�

⌉
.
1.0626(C +D)

64
.

Note that here we used that (C +D) is large as mentioned in the introduction
since then

⌈
Dk

64

⌉
≈ Dk

64 . Since Dk is strictly smaller than 1.0626(D + C) there
is a value N0 such that for all C,D with (C + D) ≥ N0 our bounds hold. To
simplify the expression further we calculate that

1

64
·
⌈
127

�

⌉
· 1.0626 ≤ 1.0626

64
· 127 + �

�
≤ 2.11

�
+

1

60
.

Theorem 2.2 allows us to bound the expression Ab,τ (C, �) if � = τ +1. Note
here that the theorem also yields a polynomial time algorithm which computes
a schedule of length Ab,τ (C, �) for the respective instances (this is important
for the algorithmic version of our bounds given in Corollary 2.10). Using this
insight we can use the theorem above to derive general bounds for all packet
routing instances (theorem restated).

Theorem 2.5. There is a function f(τ, b) which tends to 1 if τ or b increases
such that for each packet routing instance I with minimum bandwidth b and
minimum transit time τ there is a feasible schedule whose length is bounded by

(
6.44 · f(τ + 1, b) + 2.11

τ

τ + 1
+ δ

)
(C +D)

for δ = 1
60 (τ + 3.05 · f(τ + 1, b)(τ + 1)).

Proof. We choose � := τ + 1 in Theorem 2.7. In Theorem 2.2 we proved that
Ab,τ (C, τ + 1) ≤ C + τ . This gives a bound of

(3.05(τ + 1) · f(τ + 1, b) + τ) ·
(

2.11

τ + 1
+ δ′

)
(C +D)

for δ′ = 1
60 . Calculations show that this expression is upper-bounded by the

expression stated in the theorem.

48

2.4. TECHNICAL ANALYSIS

Note here that – for values of f(τ + 1, b) close to 1 – the formula stated in
Theorem 2.5 gives better bounds if τ = 1 than for higher values of τ . However,
for small τ and b the bound of the formula improves as τ increases.

Observe that δ increases for increasing τ . This worsens the bound for very
large values τ . However, in the following section we prove a much better bound
for the case that τ ≥ 63.

2.4.2 High Values for τ

Given the schedule Sk, in our framework we used the Lovász Local Lemma to
prove the existence of the schedule Sk+1. However, we can alternatively turn
the schedule Sk to a feasible schedule directly. This is in particular useful for
cases where τ is relatively large, as we will see in Theorem 2.6.

Theorem 2.22. Let I be an instance of the packet routing problem with mini-
mum bandwidth b and minimum transit time τ . Then there is feasible schedule
for I whose length is bounded by

1

60
(C +D) ·Ab,τ (196, 64) .

Proof. Recall that we proved the existence of the schedule Sk which has the
property that in every interval of length 64 each edge is used by at most Ckb =
195.1b packets. Hence, there is a feasible schedule for I whose length is bounded
by

Dk

64
·Ab,τ (�Ck
 , 64) <

1.0626(D + C)

64
·Ab,τ (196, 64)

which is bounded by the expression in the theorem statement. Note that here
again we used that (C+D) is large as mentioned in the introduction since then
we have that

⌈
Dk

64

⌉
≈ Dk

64 . Since Dk is strictly smaller than 1.0626(D+C) there
is a value N0 such that for all C,D with (C +D) ≥ N0 our bounds hold.

Using our insight gained in Theorem 2.2 for Ab,τ (Ck, τ + 1) allows us to
prove the following corollary (given as Theorem 2.6 above).

Corollary 2.23. Let I be an instance of the packet routing problem with min-
imum transit time τ ≥ 63. Then there is a feasible schedule for I whose length
is bounded by 4.32(C +D).

Proof. For τ ≥ 63 we have that 64 ≤ τ + 1. Hence, Theorem 2.2 implies that
Ab,τ (196, 64) ≤ 196 + 64 − 1 = 259 if τ ≥ 63. Plugging this into the bound of
Theorem 2.22 yields the bound of 4.32(C +D).

Table 2.1 shows some bounds for the lengths of schedules depending on τ
and b.

49

CHAPTER 2. SCHEDULES FOR GENERAL GRAPHS

2.4.3 Unit Transit Times and Unit Bandwidths
Finally, we use the above framework to derive a bound of 23.4(C+D) for the case
of unit transit times and unit bandwidths. This improves the bound of 39(C+D)
proven by Scheideler [92]. First, we precisely calculate that C2

1 = 21 instead of
using the estimation C̃2

1 . We did the calculation using the software MATLAB.
We can do this exact calculation since C2

1 does not depend on any parameter.
Now we can use our framework together with the above lemma to derive our
desired bound (theorem restated).

Theorem 2.8. Let I be an instance of the packet routing problem with unit
transit times and unit bandwidths. Then there is a feasible schedule for I whose
length is bounded by 23.4(C +D).

Proof. Let � := 2. If all edges have unit transit times and bandwidths then
maxe

{⌈
C�

be
/be

⌉}
= C2

1 . Hence, in the reasonings of Theorem 2.7 and The-
orem 2.5 we can use C2

1 instead of C̃2
1 . From this we derive a bound of(

C2
1 + 1

)
· 1.0626(C + D). Using that C2

1 = 21 implies the bound claimed
in this theorem.

2.4.4 Algorithmic Bounds
As mentioned above, Moser and Tardos [79] recently gave an algorithmic version
of the general LLL. It requires that in a given variable assignment we can check
in polynomial time for bad events: we need to be able to determine whether
there is a bad event and if there is one we need to determine all variables that it
depends on. In our applications of the LLL, there is only a polynomial number
of bad events and hence we can check efficiently whether one of them occurs.
Moreover, it is straight forward to determine efficiently the variables that a
bad event depends on. Also, our bound for instances with D ≤ τ + 1 given in
Theorem 2.2 is constructive. This gives the following corollary (restated).

Corollary 2.10. There are randomized algorithms which compute schedules
with the bounds stated in Theorems 2.5, 2.6, and 2.8 and which run in polyno-
mial time with high probability. If there is a polynomial time algorithm which
computes a schedule of length at most Ab,τ (3.05� · f(�, b), �) for all instances
with C ≤ 3.05� · f(�, b) and D ≤ � then there is a randomized algorithm that
computes a schedule whose length is given in Theorem 2.7 and which runs in
polynomial time with high probability.

Proof. In all our applications of the LLL the number of bad events is bounded
by a polynomial in the input. Hence, the result by Moser and Tardos [79] is
applicable. Each application of the LLL enlarges the length of the (intermediate)
schedule. Since the final length of the schedule is bounded by O(C + D), the
number of times that we apply the LLL is bounded by a polynomial in the
input.

For one application of the LLL, Moser and Tardos bound the expected num-
ber of resampling steps in their algorithm by

∑
A∈A

x(A)
1−x(A) where A denotes the

50

2.5. CONCLUSION

set of all bad events. (In a resampling step a subset of the variables is redefined
randomly.) Since we are using the symmetric version of the LLL, we have that
x(A) = 1/(d + 1) with d ≥ 1 [4]. Hence, in our case the expected number of
resampling steps is bounded by O(|A|). One resampling step can be executed in
polynomial time and the overall running time of the algorithm is dominated by
the resampling procedure. Using the Chernoff bounds we can hence reason that
each application of the LLL has polynomial running time with high probability.
This implies that the overall algorithm also has polynomial running time with
high probability.

2.5 Conclusion
In this chapter we presented our framework for proving upper bounds for the
length of an optimal packet routing schedule. We invoked the framework with
the insight that Ab,τ (C,D) = C + D − 1 if D ≤ τ + 1. If one had similar
insights for instances with D ≤ kτ + 1 for some small values of k this would
immediately give even better bounds. In particular, for the case of unit transit
times the first step would be a tight bound for instances with D = 3. While
this might look easy at first glance, in our attempts it turned out to be highly
non-trivial to prove a bound that goes beyond 2C +D− 2 (which follows easily
from Theorem 2.2). On the other hand, we know no instance with D = 3 in
which an optimal schedule needs more than C + D steps. This connects to
another important question in the area: find an instance of the packet routing
problem with OPT ≥ k(C+D) for k > 1. To the best of our knowledge, no such
instance is known. This leaves a large gap to the upper bound of 23.4(C +D).
It is a challenging question to improve the lower bound.

Our proofs for the upper bounds highly use the Lovász Local Lemma. Due to
its generality, it cannot exploit the entire structure of the respective underlying
problem. We believe that what is really needed is a better understanding of the
key properties of the packet routing problem. This might yield better upper
bounds as well as better approximation algorithms.

51

Chapter 3

Complexity of Packet Routing

3.1 Introduction

In the previous chapters we studied approximation algorithms for the packet
routing problem and the maximal length of an optimal schedule in terms of the
lower bounds C and D. In this chapter we study complexity results for the
problem.

In order to distinguish problems according to their computational difficulty,
several complexity classes were introduced in the literature, see [83] for an intro-
duction. The most important classes for discrete optimization are the classes P
and NP . Roughly speaking, the class P contains all problems for which there is
an exact algorithm with polynomial running time. Examples are the Shortest-
Path and Maximum-Flow problems. Intuitively, the class NP contains all
problems for which there is a certificate that asserts the existence of a solu-
tion or a solution with a certain quality which can be verified in polynomial
time. The packet routing problem is in NP . There, the certificate is a schedule.
Given a (possibly infeasible) schedule, it can be verified easily in polynomial
time whether the given schedule is feasible and whether its length exceeds a
given makespan.

In fact, the complexity classes are formally defined via Turing machines and
formal languages. In particular, formally the classes P and NP do not contain
problems but formal languages which can be decided by deterministic and non-
deterministic Turing machines, respectively, in polynomial time. For instance,
one language in NP is the language of all pairs (I, k) where I is an instance of
the packet routing problem whose optimal makespan is at most k ∈ N. Since a
formal introduction of complexity theory is beyond the scope of this thesis, we
refer the interested reader to [83].

It is easy to see that problems like the packet routing problem are in NP .
However, it is not known whether every problem in NP is also contained in P .
Indeed, one of the most important open problems in theoretical computer sci-
ence is the question whether P = NP or P �= NP . Nevertheless, it is widely

53

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

assumed that P �= NP . A helpful concept to estimate the complexity of a
problem is NP -hardness. A problem is NP -hard if every problem in NP can
be reduced to it, see [83] for a formal definition. This implies that a polynomial
time algorithm for any NP -hard problem would yield a polynomial time algo-
rithm for every problem in NP . However, no such algorithm is known for any
NP -hard problem and it seems unlikely that one exists. Hence, once a problem
is proven to be NP -hard this justifies to search for approximation algorithms
rather than exact polynomial time algorithms. In fact, sometimes it can be
shown that even certain approximation factors are NP -hard to achieve. For
instance, the problem of scheduling jobs on unrelated machines to minimize the
makespan (see Chapter 7) is known to be NP -hard to approximate within a
factor of 3/2− ε for any ε > 0 [69]. This means that the existence of a polyno-
mial time approximation algorithm for the problem with such an approximation
factor would imply that P = NP .

The results presented in this chapter are joint work with Britta Peis and
Martin Skutella [84].

3.1.1 Outline of the Chapter

In this chapter we give NP -hardness results for the packet routing problem.
As discussed above, these are important insights since they show us the limits
of polynomial time algorithms and their possible approximation factors (always
assuming that P �= NP). In Section 3.2 we prove that it is NP -hard to approx-
imate the problem within a factor of 6/5− ε, for any ε > 0. This rules out the
existence of a polynomial time approximation scheme (PTAS) for the problem.
Interestingly, the latter even holds for the very restricted graph class of directed
trees. There, it is NP -hard to approximate the problem with a factor of 8/7−ε,
for any ε > 0, as we will prove in Section 3.3.

As the above factors suggest, the reductions create a gap of one time unit
between yes- and no-instances of the problem that we reduce from (which is
3-Bounded-3-Sat in this case). For instance, for general graphs we give a
reduction such that for satisfiable 3-Bounded-3-Sat formulea the constructed
packet routing instance has an optimal makespan of 5 whereas for unsatisfiable
formulae each schedule has a makespan of at least 6. This raises the question
whether one can construct an approximation algorithm with an absolute ap-
proximation guarantee. In Section 3.4 we answer this question by showing that
for any k ∈ N it is NP -hard to approximate the packet routing problem with
an absolute error of k.

We conclude this chapter with Section 3.5 where we discuss open problems.

3.2 General Graphs

First, we study the complexity of the packet routing problem on general graphs.
In the following theorem we rule out the existence of a PTAS for the problem
and even any better approximation factor than 6/5 (assuming that P �= NP).

54

3.2. GENERAL GRAPHS

Theorem 3.1. It is NP -hard to approximate the packet routing problem with
an approximation factor of 6/5− ε for all ε > 0.

We describe a reduction which proves Theorem 3.1. In this proof we employ
a technique which was used in [108] for showing that the general acyclic job
shop problem is NP -hard to approximate with an approximation factor better
than 5/4. We reduce from 3-Bounded-3-Sat. In this problem we are given a
3-Sat formula in which each variable occurs at most three times. The question
is whether there is an assignment for the variables such that the formula is
satisfied. It was shown in [43] that 3-Bounded-3-Sat is NP -hard. We assume
that we are given a 3-Bounded-3-Sat formula φ. We construct an instance
of the packet routing problem corresponding to φ. We will show that φ is
satisfiable if and only if the length of an optimal schedule for the constructed
packet routing instance is at most 5. In particular, this means that if φ is not
satisfiable, an optimal schedule for its corresponding instance has a makespan
of at least 6. This implies that an approximation algorithm for packet routing
with an approximation factor of 6/5− ε for some ε > 0 could deceide whether φ
is satisfiable.

Denote by {Q1, Q2, ..., Qm} the clauses of φ. W. l. o. g. we assume that each
variable occurs at most two times as a positive literal and at most two times as
a negative literal in the formula. If a variable occurs three times positive then
we simply set it true and thus satisfy all the clauses containing this variable. If
the variable occurs three times negative then we set the variable false. We also
assume that each clause contains two or three variables.

In the sequel we will explain how we construct our graph and the packets
with their start and destination vertices from φ. Figure 3.1 shows a part of
our construction for the formula (x ∨ y ∨ z). For each variable x we introduce
the vertices vx,1, vx,2, ..., vx,11. For each clause Q there is a vertex vQ and a
vertex v′Q. If Q contains only two variables there is an additional vertex v′′Q. We
add all the edges to the graph which are necessary for the packets according to
their predefined paths (we define the paths below).

Now we introduce the packets. For each variable x we have four packets
labeled x1, x̄1, x2, x̄2. We will call them the variable packets later on. These
packets encode whether x is set to true or false in the variable assignment which
corresponds to the schedule. The intuition is that a variable x is set to true if x1

and x2 are scheduled at time t = 0 and x̄1 and x̄2 are scheduled at time t = 1.
If x̄1 and x̄2 are scheduled at time t = 0 and x1 and x2 are scheduled at time
t = 1 then x is set to false. The predefined paths for the variable packets will
ensure that other schedules for the variable packets would cause the overall
schedule to be longer than 5. For each occurrence of the variable x in a clause
we have a packet. We denote by qx,i the packet for the i-th positive occurrence
of the variable x and by qx̄,i the packet for the i-th negative occurrence of
the variable x. We will call those packets the clause packets. In a satisfying
variable assignment there must be at least one variable x (or x̄ respectively) in
each clause Q which satisfies Q. The intuition is that the packet qx,j (or qx̄,j
respectively) corresponding to this variable x (or x̄ respectively) is scheduled

55

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

Packet Path
Packets for variables x

x1 vx,1, vx,3, vx,5, vx,7, vx,10 for each variable x
x2 vx,2, vx,4, vx,5, vx,6, vx,8 for each variable x
x̄1 vx,1, vx,3, vx,5, vx,6, vx,9 for each variable x
x̄2 vx,2, vx,4, vx,5, vx,7, vx,11 for each variable x

Clause packets for clauses Q with three variables
qx,1 vQ, v

′
Q, vx,7, vx,10 where Q contains the first pos. literal x

qx,2 vQ, v
′
Q, vx,6, vx,8 where Q contains the second pos. literal x

qx̄,1 vQ, v
′
Q, vx,6, vx,9 where Q contains the first neg. literal x̄

qx̄,2 vQ, v
′
Q, vx,7, vx,11 where Q contains the second neg. literal x̄

Table 3.1: The predefined paths of the packets for the proof of Theorem 3.1.
Clause tasks of clauses Q with only two literals visit one additional vertex v′′Q
between vQ and v′Q.

last among the packets corresponding to Q (namely at time t = 2). In Table 3.1
we define the predefined paths of the packets.

Now we want to prove that the length of an optimal schedule is at most 5 if
and only if φ is satisfiable.

Lemma 3.2. If φ is satisfiable then there is a schedule whose length is at most 5.

Proof. Assume that φ is satisfiable and consider a variable assignment such
that φ is satisfied. We construct a schedule as follows. For each variable x which
is set true in the satisfying variable assignment we schedule the packets x1 and
x2 at time 0 and the packets x̄1 and x̄2 are scheduled at time 1. For each false
variable y we schedule the packets y1 and y2 at time 1 and the packets ȳ1 and ȳ2
at time 0. Since our assignment of the variables satisfies the formula, for each
clause Q there has to be one literal x which satisfies the clause. We schedule the
clause packets corresponding to the literals in Q in such a way that the clause
packet qx,i (or qx̄,i) for i ∈ {1, 2} corresponding to the literal x in Q leaves vQ
at time t = 2. We schedule the two other packets of Q in an arbitrary order at
times t = 0 and t = 1.

Occurring collisions (i. e., situations where two or more packets need to use
the same edge at a time) are resolved arbitrarily. We want to show that the
length of this schedule is 5. Let xi be a variable packet which leaves its start
vertex at time t = 0. It can be delayed at most once in our schedule, namely
by a clause packet which leaves its start vertex at time t = 1. Thus xi reaches
its destination vertex after at most 5 timesteps. Now let xi be a variable packet
which left its start vertex at time t = 1. This implies that x was set to false
in the variable assignment. Thus, there can be no clause packet qx,i which left
its start vertex at time t = 2. Therefore, xi will not be delayed on its way
and will reach its destination vertex after 5 timesteps. For “negative” variable
packets x̄i we can apply the same reasoning. Now let qx,i be a clause packet

56

3.2. GENERAL GRAPHS

qx,1

x̄2

x2

x̄1

x1

x̄1

x1

x̄2

x2

qy,1

qz,1

qx,1

qy,1

qz,1

vx,9

vx,8

vx,6

vx,7

vx,10

vx,11

vx,1 vx,3

vx,2

vx,4

vQ

vx,5

v′Q
to vertices vy,i

to vertices vz,i

Figure 3.1: A part of the graph for the formula φ with only the clause Q =
(x ∨ y ∨ z). The different lines represent the paths of the packets through the
network. The parts corresponding to the variables y and z and their packets
are omitted for brevity.

of a clause with three literals. If qx,i was scheduled at time t = 0 it will not
be delayed at all and will reach its destination after 3 timesteps. If qx,i was
scheduled at time t = 1 it can be delayed by at most one variable packet (by
at most one timestep) and will therefore reach its destination after at most 5
timesteps. Finally, if qx,i was scheduled at time t = 2 we know that x was set
true in the variable assignment. This implies that the packets x1 and x2 were
scheduled at time t = 0 and will not be able to delay qx,i. Thus, qx,i will reach
its destination vertex at time t = 5. We can apply the same reasoning to clause
packets qx̄,i for negated literals. For clause packets corresponding to clauses
with only two literals we can apply a similar reasoning: The two packets behave
like the last two packets which are scheduled in a vertex vQ where Q is a clause
with three literals.

Now we want to prove the implication in the opposite direction.

Lemma 3.3. If there is a schedule whose makespan is at most 5 then φ is
satisfiable.

Proof. Assume we are given a schedule whose makespan is at most 5. We want
to show that φ is satisfiable. In order to do this, we show how we can construct
a satisfying variable assignment from the schedule. W. l. o. g. we assume that
the schedule never delays a packet if it is the only packet that needs to use an
edge at a time. Consider a variable x and its packets x1, x2, x̄1, and x̄2. Since

57

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

x1 and x̄1 have the same start vertex, either x1 is scheduled at time 0 and x̄1

is scheduled at time 1 or vice versa. The same holds for x2 and x̄2. Since the
length of the schedule is at most 5, we see that those of the packets which are
scheduled at time 1 are not delayed later in the schedule. From this it follows
that x1 and x2 are scheduled at the same time. If they are scheduled at time 0
we set the variable x to true, otherwise we set x to false. We do this with all
variables. Now we want to show that this leads to a satisfying assignment for
the formula.

Let Q be a clause. We discuss the case where Q contains only positive literals.
The other cases can be proven similarly. Let Q = (x∨y∨z). Consider the three
packets qx,i, qy,j , qz,k for Q. They all originate at the same vertex vQ. We
consider the packet of the three which was scheduled last (i. e., at time t = 2).
W.l.o.g. let qx,i be this packet. Since the length of our schedule is at most 5 we
conclude that qx,i was never delayed after time t = 2. Thus, the packet xi must
have been scheduled at time t = 0. Otherwise both xi and qx,i would reach the
vertex vx,6 (or vx,7 respectively) at time t = 4 and the total makespan of the
schedule would be 6. This would be a contradiction.

Hence, we set the variable x to true in our variable assignment. Therefore,
the clause Q is satisfied. Doing this reasoning for all clauses shows that φ is
satisfied.

The two previous lemmas for our construction prove Theorem 3.1.

Proof of Theorem 3.1. Follows from Lemmas 3.2 and 3.3 and the construction
defined above.

As a corollary we obtain the same result of the packet routing problem on
directed graphs.

Corollary 3.4. It is NP -hard to approximate the packet routing problem on
directed graphs with an approximation factor of 6/5− ε for all ε > 0.

Proof. It is straightforward to see that we can orientate the edges of the un-
derlying graph in the construction of Theorem 3.1 such that the packets always
move in the direction of the edges (see Figure 3.2).

3.3 Trees
Now we study the complexity of the packet routing problem on trees. Recall
that in Chapter 1 we presented a 2-approximation algorithm for the packet
routing problem on undirected trees. In the following theorem we prove that
the best approximation guarantee we can hope for is 8/7 (unless P = NP), even
on directed trees. In particular, this rules out the existence of a PTAS even on
directed trees (unless P = NP).

Theorem 3.5. It is NP -hard to approximate the packet routing problem on
directed trees with an approximation ratio of 8/7− ε for any ε > 0.

58

3.3. TREES

qx,1

x̄2

x2

x̄1

x1

x̄1

x1

x̄2

x2

qy,1

qz,1

qx,1

qy,1

qz,1

vx,9

vx,8

vx,6

vx,10

vx,11

vx,1 vx,3

vx,2

vx,4

vQ

vx,7

vx,5

v′Q
to vertices vy,i

to vertices vz,i

Figure 3.2: A part of the directed graph for the formula φ which consists only
of the clause (x ∨ y ∨ z).

Again, we reduce from 3-Bounded-3-Sat. Our construction is an adapted
version of the construction for proving Theorem 3.1. Since the graph is a tree
the approximation ratio that we can rule out (assuming P �= NP) is slightly
smaller.

Assume we are given a 3-Bounded-3-Sat formula φ. We construct an
instance of the packet routing problem with fixed paths such that the underlying
graph is a directed tree. In particular, the packets always move in the direction
of the edges. We show that the formula is satisfiable if and only if the optimal
schedule has length 7. As in the proof of Theorem 3.1, we assume that each
clause contains at least two variables and that each variable occurs at most
two times positive and at most two times negated in φ. The construction is
sketched in Figure 3.3. The main difference in comparison with Theorem 3.1 is
that now there is a central vertex vr that all packets pass. For each variable x in
the formula, there are the four variable packets x1, x2, x̄1 and x̄2. They can be
scheduled at time t = 0 or t = 4. The intuition is that if x1 and x2 are scheduled
at time t = 0 then we set the variable x true, if x1 and x2 are scheduled at time
t = 4 then we set the variable x false. Note that now it could happen that this
assignment is not well-defined, i. e., the packets x1 and x̄2 go first or the packets
x2 and x̄1 go first. As in the proof of Theorem 3.1 our construction ensures that
this leads to a schedule which is strictly longer than 7 timesteps. Moreover, for
each literal in a clause Q there is one packet. Packets corresponding to literals
in the same clause share the first edge on their path. Given a satisfying variable
assignment for φ there is at least one literal in Q which satisfies the clause. The

59

packet which corresponds to this literal is scheduled last.

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

x2

x̄2

qx,1

x̄1

x1

qx,1

x1

x̄1

x̄2

x2

vr

vx,4

vx,8

vx,7

vx,5

[5, 6)

[5, 6)

[5, 6)

[5, 6)

vQ

[2, 3)vx,2

vx,1

[1, 4)

[1, 4)

vx,6

vx,3

Figure 3.3: A part of the graph for the clause Q = (x ∨ y ∨ z) (construction
for Theorem 3.5). The parts corresponding to the variables y and z and their
packets are omitted for brevity. The time intervals at the edges denote the time
when the respective edge is blocked. Note that the first timestep is t = 0.

Packet Path
Variable packets for variable x

x1 vx,1, vr, vx,3, vx,4 for each variable x
x2 vx,2, vr, vx,6, vx,8 for each variable x
x̄1 vx,1, vr, vx,6, vx,7 for each variable x
x̄2 vx,2, vr, vx,3, vx,5 for each variable x

Clause packets for clauses Q with three literals
qx,1 vQ, vr, vx,3, vx,4 where Q contains the first pos. literal x
qx,2 vQ, vr, vx,6, vx,8 where Q contains the second pos. literal x
qx̄,1 vQ, vr, vx,6, vx,7 where Q contains the first neg. literal x̄
qx̄,2 vQ, vr, vx,3, vx,5 where Q contains the second neg. literal x̄

Table 3.2: The predefined paths of the packets for the proof of Theorem 3.5.
Clause tasks of clauses Q with only two literals visit one additional vertex v′Q
between vQ and vr.

60

3.3. TREES

Now we describe the construction in detail. For each variable x we introduce
vertices vx,1, vx,2, ..., vx,8. We also introduce the four variable packets x1, x2, x̄1,
and x̄2. In the formula, we fix an order of the clauses. For each clause Q there
is a vertex vQ. For each literal in Q there is one clause packet. We write qx,i
for the packet corresponding to the i-th positive occurrence of x and qx̄,i for
the packet corresponding to the i-th negative occurrence of x. The predefined
paths for the packets are shown in Table 3.2 and sketched in Figure 3.3. Note
that the underlying graph is a directed tree.

In order to make the construction work as desired we want to block some
edges at certain times. We do this by introducing blocking packets. If we want
to block an edge e at time t̄ we introduce a blocking packet be,t̄ which needs to
use e at time t̄ or otherwise would not reach its destination before time t = 7.
Note that this does not destroy the tree structure of the underlying graph. In
order to clarify matters we do not explicitly define the paths of the blocking
packets. Instead, we state which edges are blocked at what times.

In our construction, the packets that “check” whether a schedule encodes a
satisfying variable assignment for φ are the respective last packets that leave
the vertices vx,1, vx,2 for each variable x and the vertex vQ for each clause Q.
If a schedule does not encode a satisfying assignment we want that two of these
packets collide. The blocking packets help us to ensure this. In particular, they
help separating the mentioned packets from the other packets.

Let x be a variable. The edges (vx,1, vr) and (vx,2, vr) are blocked during the
time interval [1, 4) (note that t = 0 is the first timestep). The edges (vx,3, vx,4),
(vx,3, vx,5), (vx,6, vx,7), and (vx,6, vx,8) are blocked during the time interval [5, 6).
For each clause Q with three literals the edge (vQ, vr) is blocked during the time
interval [2, 3). For each clause Q′ with two literals the edge (vQ′ , vr) is blocked
during the time interval [1, 3).

Now we want to prove that φ is satisfiable if and only if the optimal schedule
has length 7. First assume that φ is satisfiable.

Lemma 3.6. If φ is satisfiable then there is a schedule whose length is at most 7.

Proof. Consider a variable assignment that satisfies the formula. We schedule
the packets as follows: Whenever there is a packet M that is the only packet
that needs to use the next edge on its path we move M . Let x be a variable.
If x is set true in our variable assignment then we schedule the packets x1 and
x2 at time t = 0 and the packets x̄1 and x̄2 at time t = 4. If x is set false then
we schedule x1 and x2 at time t = 4 and x̄1 and x̄2 at time t = 0.

Since our variable assignment satisfies the formula in each clause Q there
must be at least one literal y (or ȳ respectively) which satisfies the clause.
We schedule the packet corresponding to y (or ȳ respectively) to leave vQ at
time t = 3. We schedule the other two packets to leave vQ in arbitrary order
at times t = 0 and t = 1 (if Q contains only two literals the other packet is
scheduled at time t = 0). Blocking packets are never delayed by other packets. If
there is a variable packet and a clause packet competing for using an edge at the

61

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

same time we give priority to the variable packet (this is only for simplification
of the proof). Other ties are broken arbitrarily.

Now we show that all packets arrive at their destination vertices after at
most 7 timesteps. First assume that x1 started at time t = 0. Since the edge
(vx,2, vr) is blocked during the time interval [1, 4) the packet x̄2 cannot reach vr
before t = 5. Thus, x1 reaches vx,6 at time t = 2 and vx,8 at time t = 3. For
the case that the packets x2, x̄1, or x̄2 started at time t = 0 the proof works
similarly.

Now assume that x̄2 started at time t = 4. The reasoning above implies
that x̄2 cannot collide with x1. Since variable packets have a higher priority
than clause packets we conclude that x̄2 reaches vx,6 at time t = 6 and vx,8 at
time t = 7. For the case that the packets x1, x2, or x̄1 started at time t = 4 the
proof works similarly.

Next we discuss the clause packets. First consider a clause packet qx,1 which
is scheduled at time t = 0 or t = 1. In both cases it reaches vx,6 at time t = 4 at
the latest and vx,8 at time t = 5 at the latest. (Note that either the packet x1

or the packet x̄2 uses the edge (vr, vx,6) at time t = 1 and thus it does not
make a difference for our reasoning whether qx,1 was scheduled at time t = 0
or t = 1). We can do a similar reasoning for clause packets corresponding to
negative literals.

Now assume that a clause packet qx̄,2 was scheduled at time t = 3. This
implies that in the satisfying variable assignment x was set false. Then qx̄,2
reaches vr at time t = 4. From the above reasoning it follows that it cannot
collide with any other packet at vr. Moreover, it reaches vx,6 at time t = 5. The
edge (vx,6, vx,8) is blocked during the time interval [5, 6). The packet x̄2 is the
only packet that qx̄,2 competes with for using the edge (vx,6, vx,8). But since x
was set false in our variable assignment x̄2 started at time t = 0 and the above
reasoning shows that x̄2 reached vx,8 at time t = 3. Thus, qx̄,2 reached vx,8 at
time t = 7. We can do a similar reasoning for clause packets which correspond
to positive literals.

This shows that all packets reach their respective destination vertices after
at most 7 timesteps.

Now we want to prove the opposite implication.

Lemma 3.7. If there is a schedule whose length is at most 7 then φ is satisfiable.

Proof. Assume that there is a schedule S of length at most 7. We want to show
that there is a variable assignment which satisfies φ. Let x be a variable. If the
packets x1 and x2 are both scheduled at time t = 0 then we set x to true, if the
packet x̄1 and x̄2 are both scheduled at time t = 0 we set x to false. We will
show in the sequel that this assignment is well-defined and that it satisfies φ.
First we show that in S either x1 and x2 are both scheduled at time t = 0 or
x̄1 and x̄2 are both scheduled at time t = 0. Assume on the contrary that x1

and x̄2 are scheduled at time t = 0. Since the edges (vx,1, vr) and (vx,2, vr) are
blocked during the time interval [1, 4) and S has length 7 this implies that x̄1

and x2 are scheduled at time t = 4. However, this implies that both packets

62

3.4. ABSOLUTE APPROXIMATION

arrive at vr at time t = 5. Since both need to use the edge (vr, vx,3) next this
contradicts that S has length 7. The case that x̄1 and x2 are scheduled at
time t = 0 can be proven similarly. Now we prove that our variable assignment
satisfies φ. Consider a clause Q with three literals (the case that Q contains only
two literals can be proven similarly). Since the edge (vQ, vr) is blocked during
the time interval [2, 3) there must be at least one packet corresponding to Q
which is scheduled at time t = 3 or later. Let qx,1 be this packet (the cases for
the other packets can be proven similarly). We want to show that the packet x1

is scheduled at time t = 0 and thus x is set true in our variable assignment.
Assume on the contrary that x1 is scheduled at time t = 4 or later. Then it can
arrive at vx,6 at time t = 6 the earliest. Since qx,1 is scheduled at time t = 3
it can arrive at the vertex vx,6 at time t = 5 the earliest. The edge (vx,6, vx,8)
is blocked during the time interval [5, 6) and thus qx,1 cannot have reached vx,8
by time t = 6. Thus, in order to reach vx,8 at time t = 7 the packets qx,1 and
x1 must use the edge (vx,6, vx,8) at time t = 6. This is a contradiction. Thus,
x1 is scheduled at time t = 0 and we set x true. Doing this reasoning for all
clauses Q shows that our variable assignment satisfies φ.

The two previous lemmas for our construction prove Theorem 3.5.

Proof of Theorem 3.5. Follows from Lemmas 3.6 and 3.7 and the construction
above.

Note that the above result implies that it is also NP -hard to approximate the
packet routing problem on undirected trees with a performance ratio of 8/7− ε
for all ε > 0.

3.4 Absolute Approximation

The two NP -hardness proofs above use reductions with a gap of one time unit
between yes- and no-instances of 3-Bounded-3-Sat. This raises the question
whether it is NP -hard to approximate the packet routing problem with a fixed
absolute error, i. e., with a bound of OPT + k (rather than k · OPT) for some
fixed value k. We answer this question in the following theorem.

Theorem 3.8. For any k ∈ N it is NP -hard to approximate the packet routing
problem with an absolute error of k.

Proof. We give a reduction from 3-Bounded-3-Sat. Let φ be a 3-Bounded-
3-Sat formula. We show by induction that for each k there is an integer αk

and an instance Ik of the packet routing problem with the properties that

• OPT (Ik) = αk if φ is satisfiable and

• OPT (Ik) = αk + k + 1 if φ is not satisfiable.

63

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

In order to clarify matters, we construct Ik such that each packet has its own
start and its own destination vertex. For I0 we take the construction which was
used in the proof of Theorem 3.1 and introduce two additional vertices for each
packet such that the start and destination vertices of the packets are unique.
This increases the makespan by two. We define α0 = 8. Observe that I0 satisfies
the two properties above. Let n0 be the number of packets that are used in this
construction.

For the inductive step we assume that the claim is true for all i ≤ k. We
want to construct a packet routing instance Ik+1 with the above properties.
A sketch of the construction is given in Figure 3.4. Let nk be the number of
packets used in Ik. We denote by αk+1 the length of the optimal makespan for
Ik+1 assuming that φ is satisfiable. In order to meet the properties stated above
we want that an optimal schedule needs at least αk+1 + (k + 1)+ 1 steps if φ is
not satisfiable.

We use nk copies of Ik and denote them as formula gadgets. We denote them
by F1, ..., Fnk

. The intuition is the following: If φ is satisfiable then all packets
in all formula gadgets arrive at their destination vertices at time t = αk. If φ is
not satisfiable then in each gadget there is at least one packet that reaches its
destination vertex at time t = αk + k + 1. Thus, there is an absolute difference
of k + 1 between yes- and no-instances. We want to increase this difference
to k + 2.

In case that φ is not satisfiable we want to control which packet from a
formula gadget is late, i. e., reaches its destination vertex at time t = αk+k+1.
In order to achieve this we introduce another type of gadget which we call the
sorting gadget. We place one sorting gadget behind each formula gadget. A
sorting gadget works as follows: Its input consists of all packets from a formula
gadget and an additional sorting packet. If all packets of a formula gadget leave
the formula gadget at time t = αk then inside the sorting gadget no packets
is delayed. If there is a non-empty set of packets P which leave the formula
gadget at time t = αk + k + 1 then inside the sorting gadget either one packet
in P is delayed once or the sorting packet is delayed once. If a packet in P is
delayed inside the sorting gadget then we can already guarantee that the overall
makespan has to be at least αk+1 + k+2. So for the remainder of the proof we
assume that if φ is not satisfiable it will be the sorting packet that is delayed
inside each sorting gadget.

Finally we place an additional copy F̄ of Ik. We will call this the final gadget.
The input of the final gadget consists of all sorting packets. The intuition is that
if φ is satisfiable no sorting packet will be delayed inside the sorting gadgets.
Moreover, all sorting packets will need only αk additional steps inside the final
gadget.

If φ is not satisfiable each sorting packet will be delayed once in the sorting
gadget and one of them will need αk + k+ 1 steps inside the final gadget. This
causes an absolute difference of k + 2 between yes- and no-instances.

Now we describe the construction in detail. Let F1, ..., Fnk
be the nk copies

of Ik (the formula gadgets). We know that φ is satisfiable if and only if in
an optimal schedule all packets leave the formula gadgets after at most αk

64

timesteps. We call the packets used in formula gadgets the formula packets.

3.4. ABSOLUTE APPROXIMATION

For a formula packet mj denote by sj its start vertex and by uj its first
vertex behind in the formula gadget (i. e., the first vertex outside the gadget),
see Figure 3.4. Behind each formula gadget Fj we place a sorting gadget Sj . The
input of the sorting gadget Sj consists of all packets leaving Fj and an additional
sorting packet qj . Figure 3.5 depicts a sketch of a sorting gadget. For a packet pj
denote by wj the first vertex outside of the sorting gadget. Inside the sorting
gadget the formula packets move on horizontal lines consisting of 2nk vertices
without interfering with each other. The sorting packet first moves αk + k + 1
edges (this can be understood as an artificial delay). Then it intersects the
paths of each formula packet in one edge. After having left the sorting gadget
the formula packets move on a path of additional αk + k + 2 edges (there is
one path for each packet, so the packets do not interfere with each other). The
paths of the sorting packets are then connected to the final gadget F̄ which
is another copy of Ik. The entire construction is shown in Figure 3.4. We
set αk+1 := 2nk + 2 · αk + k + 3.

Now we want to prove that if φ is satisfiable then there is a schedule whose
length is at most αk+1. We construct a schedule with that length. In this
schedule we never delay a packet if not necessary, i. e., if it is the only packet
that needs to use its next edge. Since φ is satisfiable there is a schedule such that
after αk timesteps all formula packets pj have reached their respective vertex uj .
Inside the sorting gadgets no packet encounters any delay. Therefore, the sorting
packet reaches its vertex wj after (αk + k + 1) + (2nk + 1) = 2nk + αk + k + 2
timesteps. After another timestep it reaches its last vertex before entering F̄ .
Since φ is satisfiable there is a schedule such that after another αk timesteps, the
sorting packet reaches its destination vertex. Thus, after 2nk+2αk+k+3 = αk+1

timesteps all sorting packets have reached their destination vertices. A formula
packet pj reaches wj after αk + 2nk + 1 steps. Since after this it has to move
another αk + k + 2 edges pj has reached its destination vertex tj after at most
2nk +2 ·αk + k+3 = αk+1 timesteps. Thus, the length of the overall makespan
is at most αk+1.

Next we want to show that if φ is not satisfiable then the optimal makespan
is at least αk+1 +(k+1)+1 = αk+1 + k+2. If φ is not satisfiable, then in each
copy Fj there is at least one formula packet pj which reaches the vertex uj after
at least αk + k + 1 steps. Now consider the sorting gadget Sj . By construction
inside Sj either the sorting packet qj or pj is delayed. If pj is delayed then it
needs at least another (2nk + 1)+1+αk+k+2 steps to reach its destination after
having reached uj . This gives 2αk +2nk +2k+5 = αk+1 + k+2 steps in total.
So now assume that in each formula gadget Fj the sorting packet qj is delayed.
This implies that qj reaches wj after at least (αk + k + 2)+(2nk + 1)+1 steps.
Then qj needs an additional step in order to reach the vertex vj . This reasoning
applies to all sorting packets qj . Since φ is not satisfiable there must be at least
one sorting packet which needs another αk + k + 1 steps inside F̄ . This gives
2αk + 2nk + 2k + 5 = αk+1 + k + 2 steps in total. Thus, if φ is not satisfiable,
the length of an optimal schedule is at least αk+1 + k + 2. The total number
of packets used is (nk)

2
+ nk =: nk+1. The size of this construction is clearly

65

CHAPTER 3. COMPLEXITY OF PACKET ROUTING

...

...
...

...
...

...

...

...

...

...

...

...

......
...
...

...

...

...

...p1

p2

pnk

p3

pnk+1

p2nk

pnk+2

pnk+3

pn2
k

pn2
k−nk+1

pn2
k−nk+2

pn2
k−nk+3

αk + k + 2

uj wj tj vj

F̄

αk + k + 1

sj

S1

S2

Snk

F1

F2

Fnk

Figure 3.4: Construction for Theorem 3.8.

66

3.5. CONCLUSION

...

...

...

...
...

uj wj uj wj

Sk

Figure 3.5: The sorting gadget used in the proof of Theorem 3.8.

bounded by a polynomial in the size of Ik. By induction, it is also bounded by
a polynomial in the size of φ.

This proves that it is NP -hard to approximate the packet routing problem
with an absolute error of k for any k ∈ N.

3.5 Conclusion
In this chapter we proved that the packet routing problem is APX-hard and
hence there can be no PTAS for it, unless P = NP . This holds even for
directed trees which have a relatively simple structure. On the other hand,
the best known approximation algorithms for packet routing on directed and
undirected trees achieve approximation factors of 2, see Chapter 1. This leaves
a quite large gap to the approximation factor of (8/7 − ε) which we can rule
out (for any ε > 0). On general graphs, we showed non-approximability for
factor (6/5 − ε) for any ε > 0. There, the best known approximation factors
are O(1) [66] and – for sufficiently large C + D – our algorithm presented in
Chapter 2 which computes a schedule of length 23.4(C +D). It remains open
to fill this gap.

All our reductions create a gap of one timestep between yes- and no-instances
of the reduced 3-Bounded-3-Sat problem. The approximation factors in our
theorems are given by the ratios between the two makespans of these types
of instances (and substracting ε). Since packet routing instances with D = 1
are trivial, our strategy cannot rule out approximation factors which are larger
than 3/2. Even showing NP -hardness for a factor of 3/2 − ε seems difficult
to achieve this way. Hence, we believe that in order to prove better hardness
results, more sophisticated techniques like the PCP-Theorem [6, 7] or the Unique
Games Conjecture [59] are necessary.

67

Chapter 4

Periodic Packet Routing

4.1 Introduction

In the previous chapters, we studied the packet routing problem in the static
setting: A finite set of packets is given and the packets have to be scheduled to
reach their respective destination as fast as possible. When data are transmitted
through a network, sometimes indeed only a very limited amount of information
has to be transported, e. g., consider the download of a website. However, in
applications like Voice over IP (VoIP) or live video-streaming new information is
created continuously that has to be transported. In particular, in these settings
a lot of packets have the same origin and destination. Also, the information that
has to be transported is not known entirely at the very beginning but becomes
available over time. In order to capture this behavior, it is not so suitable to
think of single packets that need to be transported. It is much more appropriate
to think of tasks that continuously create new packets that all follow the same
source-destination-path. This leads to the periodic packet routing problem.

We assume that each task continuously creates new packets over an infinite
time horizon, modeling for example a video-stream or a VoIP-connection. In a
video-transmission packets are created in a steady continuous stream. Hence,
a good model is that each tasks creates new packets at regular intervals of,
e. g., p timesteps. We call this the strict periodic setting. However, in a VoIP-
connection packets are created only when a user actually speaks. Therefore, it
is not clear when exactly new packets are emitted. It is only known that the
rate is bounded in which the packets are created. We model this in the sporadic
setting where we demand only that each task emits at most one packet in each
time interval of length p.

In periodic packet routing, we deal with an infinite time horizon. Also, in
the sporadic setting it is not clear a priori when exactly each task emits its
packets. Hence, one cannot describe the routing schedule explicitly. Instead, we
define a scheduling policy which defines when the packets are transported. Such
a policy should ensure a certain quality of service (QoS). This means that each

69

CHAPTER 4. PERIODIC PACKET ROUTING

packet is delayed along its path by at most a certain, tolerable small time span.
Our objective is to design a scheduling policy which ensures a good QoS. We
will make this precise in the sequel. Moreover, since huge quantities of packets
have to be transported through the network, policies with a small computational
overhead for the routing decisions are desired.

In this chapter, we compare two paradigms for scheduling policies, priority
schedules and template schedules. In priority schedules we transfer the concept
of fixed-priority schedules in real-time scheduling to periodic packet routing.
Each edge maintains an ordered priority list of the tasks using it. Whenever
two packets are in conflict, a packet has priority which was created by a task
with higher priority. In a template schedule at each point in time each edge is
open to transfer packets of exactly one task. This exclusive openness permutes
cyclically in time over all tasks that send their packets along the edge. In both
paradigms it is very simple to compute what packet has priority in case of a
conflict. Nevertheless, from an implementation point of view, priority schedules
are much easier to handle since template schedules require a global clock (to
synchronize the mentioned cyclic permutation on the edges).

In the sequel we evaluate the two paradigms. We design priority and tem-
plate schedules and bound the maximum delay of the packets in the respective
schedules. Also, we prove lower bounds for the potential of priority and tem-
plate schedules for different graph classes. As a general statement, we can say
that template schedules are more powerful than priority schedules. We make
this precise in the rest of this chapter.

The results presented in this chapter are joint work with Britta Peis and
Sebastian Stiller [86]. Before we give a detailed overview of our results, we
summarize some definitions.

4.1.1 Definitions

Let G = (V,A) be a directed tree, i. e., a directed graph such that the underlying
undirected graph is a tree. Let T denote a set of tasks τi = (si, ti) with si, ti ∈ V
such that in G there is a directed path from si to ti. Let p ∈ N denote the global
period length. We call I = (G, T, p) an instance of the periodic packet routing
problem (PPRP). We assume a discrete time model. Each task τi repeatedly
creates new packets which have to be transported from si to ti by a routing
schedule. We assume unit transit times (i. e., each packet needs one timestep
to traverse an arc), unlimited storage in each vertex, and unit bandwidths (i. e.,
each arc can be used by at most one packet at a time).

We also consider undirected trees, where the paths of different tasks may
include the same edge in opposite directions. Still, for undirected trees, the
edge can only be used by one packet at time. In case an edge can be used by
one packet in each direction at a time, we speak of a bidirected tree. Then, we
interpret an edge as two (directed) antiparallel arcs.

We distinguish between the strict and the sporadic PPRP. For instances of
the strict PPRP each task generates a new packet every p timesteps, starting at
time t = 0. In instances of the sporadic PPRP it is not known a priori when the

70

4.1. INTRODUCTION

tasks emit their packets. We require only that in each time interval of length p
each task emits at most one packet. We call a specification of the release times
for the packets a realization.

For each task τi we denote by Pi ⊆ E the arcs on the unique path from si
to ti and define Di := |Pi|. For an arc e let Te denote the set of tasks which
use e. Whenever we consider general graphs, we assume that we are given the
paths Pi of the tasks explicitly.

Given an instance and a realization for it, a schedule S must (for an infinite
time horizon) assign to each edge for each point in time which packet traverses
it. We define a limit for a task τi in a schedule S to be a value k such that each
packet which is ever created by τi needs at most k timesteps to reach ti after it
has been created. Denote by c the congestion, that is the maximum number of
tasks which use a directed edge – or the maximum number of tasks which use
an undirected edge in one direction. (We use a lower-case c here to distinguish
it from the congestion in the static setting.) We say an instance I is feasible if
there is a schedule for I such that for each task there is a finite limit. A schedule
is a direct schedule if no packet waits in a vertex different from its start vertex
(and its destination vertex). A schedule is called indirect if it is not necessarily
direct.

Now we define the two main classes of scheduling paradigms under consid-
eration, template schedules and priority schedules.

Template Schedules

One of the types of schedules studied in this chapter are template schedules [5].
Template schedules can be understood as a set of pin-wheels. For each edge
there is one pin-wheel with p̄ slices (for some integer p̄). Each slice of the pin-
wheel belongs to one task which uses this edge. Each pin-wheel has a pointer.
At each timestep t the pointer points at a slice of the wheel. Only the packets
of the task of this slice can use the edge at time t. After every timestep, each
pin-wheel is turned such that the pointer points at the next slice.

Now we give a formal definition.

Definition 4.1 (Template schedules). Let I = (G, T, p) be an instance of the
sporadic PPRP or the strict PPRP. A schedule for I is a template schedule if
there exists an integer p̄ ≤ p and a map task : E × {0, ..., p̄− 1} → T ∪ {none}
such that in each realization each arc e = (u, v) is used at time t by a packet M
created by a task τ if and only if

• task(e, t mod p̄) = τ ,

• M is located on u at time t, and

• no packet is located on u which was created by τ earlier than M .

We call the value p̄ the periodicity of the map task. Note that each map
task : E×{0, ..., p̄− 1} → T∪{none} yields a template schedule, if its restriction
to every arc e is surjective on Te. Also note that a template schedule might delay

71

CHAPTER 4. PERIODIC PACKET ROUTING

a packet even though there is no conflicting packet waiting. Apart from template
schedules, this peculiarity is inevitable in a direct periodic schedule.

Global-priority and Edge-priority Schedules

The other types of schedules studied in this chapter are global-priority and edge-
priority schedules. These schedules work with priority hierarchies for the tasks.
If there are two packets which both need to use some edge we give priority to
the packet which was created by a task with higher priority. Global-priority
schedules have a global prioritization of the tasks (which is valid for each edge),
edge-priority schedules might have different prioritizations for each edge.

Definition 4.2 (Edge-priority schedule). Let I = (G, T, p) be an instance of the
sporadic or strict PPRP. A schedule for I is an edge-priority schedule if there
exists a total order ≺e⊆ T × T for each edge e in G such that the following
holds for every realization: Whenever there are several packets waiting to use e,
a packet moves first such that for its corresponding task τ we have that τ ≺e τ

′

for each other task τ ′ that created a packet waiting to use e.

Note that the definition does not explicitly define what happens if the task τ
with highest priority has created several packets waiting to use some edge. How-
ever, it makes sense for a schedule to give priority to the packet which was
created first. A global-priority schedule is simply an edge-priority schedule in
which all edges e have the same ordering ≺e.

Definition 4.3 (Global-priority schedule). Let I = (G, T, p) be an instance of
the sporadic or strict PPRP. A schedule for I is a global-priority schedule if it is
an edge-priority schedule such that all relations ≺e for the edges are identical.

Both types of priority schedules are simpler to implement than template
schedules: While priority schedules can be executed fully locally, template sched-
ules require a “global clock”. Edge-priority schedules are a strengthened version
of global-priority schedules.

In this chapter we show that the more complicated template schedules are
indeed significantly more powerful. Moreover, we give algorithms to efficiently
construct such superior schedules.

4.1.2 Related Work
For related results for the non-periodic packet routing problem we refer to Chap-
ter 1. Recall that for the non-periodic setting Leighton et al. [65] show that there
is always a schedule of length O(C +D) (where C denotes the maximum num-
ber of packets using an edge and D is the length of the longest path of a packet).
This result is extended to the periodic setting by Andrews et al. [5] guarantee-
ing a bound of O(Di +1/ri) for each session i with a packet injection rate of ri
(corresponding to a task τi with a period length pi = 1/ri in our notation). In
particular, they introduce the template schedules which are also studied in this
chapter.

72

4.1. INTRODUCTION

Template Schedules
Indirect Schedules Direct Schedules

Limit Bound on c Limit Bound on c

Dir. trees c+Di − 1 p c+Di − 1 p
Bidir. trees 2c− cη +Di − 1 p 2c+Di − 2 p/2
Undir. trees 4c− 2cη +Di − 1 p/2 4c+Di − 3 p/4

Table 4.1: Overview of our results for template schedules with
η := (1/2)	diam(G)/2
−1.

Priority Schedules
Type Limit Bound on c Lower Bound

Dir. trees Edge 1.5c+Di − 1 2p/5 1.25c+Di − 1
Dir. trees Global – 2c+Di − 1

Bidir. trees Global 2c+Di − 1 p/3 –

Table 4.2: Overview of our results for priority schedules. All bounds hold for
both the strict periodic and the sporadic setting. The entries marked with a “–”
follow directly from the result for directed trees or bidirected trees, respectively.

Our task models are borrowed from classical real-time scheduling. Here, one
studies real-time executable algorithms for distributing and scheduling (compu-
tational) jobs on a processor platform. However, as there is no graph involved
the techniques are quite different. For an overview see [18]. Note that with
arbitrary period lengths for the tasks (rather than all being identical to p) the
PPRP with only one edge is identical to real-time scheduling on one machine.

4.1.3 Outline of the Chapter
We give a comprehensive characterization of the periodic packet routing problem
in the various settings (direct/indirect schedules, bidirected/directed/undirected
trees, template/priority schedules), Tables 4.1 and 4.2 give a complete overview.
We present algorithms and prove limitations and relations of the different types
of schedules. In particular, this compares the power of the two scheduling
paradigms. It turns out that template schedules are strictly more powerful than
priority schedules.

Most importantly, we show the following results:

• In the following Section 4.2 we prove a necessary and sufficient condition
for the existence of a schedule. The affirmative part of the theorem rests
on a structural insight for template schedules that allows to bound the
backlog of the packets.

• In Section 4.3 we prove that template schedules can guarantee a limit of
c+Di− 1 on directed tree and a limit of 2c− c(1/2)	diam(G)/2
−1+Di− 1
on bidirected trees (for each task τi, respectively), where diam(G) denotes

73

CHAPTER 4. PERIODIC PACKET ROUTING

the diameter of G. The latter is achieved by carefully distributing the
necessary delays among the tasks.

• Then we study priority schedules in Section 4.4. For directed trees we
give an edge-priority schedule that guarantees a maximal delay of 1.5c−1
for each packet. We give a non-trivial construction that yields a lower
bound which almost matches the quality achieved by the algorithm. For
bidirected trees we give a global-priority schedule which assigns a maximal
delay of 2c − 1 to each packet. A lower bound shows that this is best
possible.

The above results already prove that template schedules are strictly more pow-
erful than priority schedules.

• Then, in Section 4.5 we follow a more direct approach to compare the
power of template schedules and priority schedules. We show that when-
ever a priority schedule achieves a certain quality of service, one can con-
struct a template schedule imitating the priority schedule well enough to
achieve the same or almost the same quality. Key to these results is to
prove that after some time priority schedules show a periodic behavior.

We supplement our results for template schedules by giving algorithms for de-
signing direct template schedules. Note that priority schedules cannot yield
direct schedules due to their specific nature.

All our algorithms are designed for trees in the setting of identical period
lengths p. This is so because we show that already on chain graphs (which
have a quite simple structure) no edge-priority schedule can always guarantee
non-trivial limits. Also, we prove that with arbitrary period lengths already on
a path no edge-priority schedule can guarantee a delay for each packet which
is bounded by a constant times the period length of its respective task. See
Section 4.4 for the corresponding proofs.

Finally, in Section 4.6 we conclude and address open problems.

4.1.4 Comparison of Template- and Priority-Schedules
Our work in this chapter is dedicated to comparing the power of template and
priority schedules. Our results show that on bidirected trees, template schedules
are strictly better than global-priority schedules. We have a global-priority
schedule which guarantees a bound of 2c+Di − 1 and a matching lower bound.
However, we present template schedules which guarantee the bound 2c − cη +
Di − 1 (with η = (1/2)	diam(G)/2
−1) which is strictly better than 2c+Di − 1.
For directed trees, we show that template schedules are more powerful than even
edge-priority schedules. There are template schedules guaranteeing a bound of
c +Di − 1 which is best possible. However, no edge-priority schedule can give
a better bound than 1.25c + Di − 1 for every task (and we have an algorithm
which guarantees a bound of 1.5c+Di − 1).

Note that on general graphs Andrews et al. [5] prove the existence of tem-
plate schedules which guarantee a bound of O(c+Di) (in our notation) for each

74

4.2. NECESSARY BOUND ON CONGESTION

task τi. (However, in contrast to our template model, they allow a larger peri-
odicity than p.) In fact, they show this result even for arbitrary period lengths.
However, for general graphs we prove in Section 4.4 that no edge-priority sched-
ule can guarantee a better limit than Ω (c ·D) for every task. In the same section
we show that with arbitrary period lengths pi even on a path no edge-priority
schedule can guarantee a better limit than α · pi + Di for any α ≥ 0. This
proves that on general graphs template schedules are clearly superior to priority
schedules.

A question which we leave open is whether on bidirected trees edge-priority
schedules can be as good as template schedules. In particular, for the latter is
it not clear to us whether the bound of 2c− c(1/2)η−1 +Di − 1 is already best
possible or whether further improvements are possible.

4.2 Necessary Bound on Congestion
In this section we prove that an instance of the periodic packet routing problem
has a schedule with a finite limit for each task if and only if c ≤ p. Hence, for
the instances studied in the remainder of this chapter we will always require
that c ≤ p. Note that this result does not only hold for instances on trees but
also for instances on general graphs. (Here we need to assume that the paths of
the tasks are given as part of the input since otherwise c would not be defined.)

Theorem 4.4. An instance I of the strict or sporadic periodic packet routing
problem is feasible if and only if c ≤ p.

Before we can prove the theorem we need some preparation. First, we prove
a useful insight for template schedules. It shows that in a (reasonable) template
schedule no vertex can hold more than one packet created by each task τ (apart
from the destination vertex of τ).

Lemma 4.5. Let I be an instance of the sporadic PPRP and let S be a tem-
plate schedule for I with periodicity p̄. Assume that for each arc e we have
{task(e, k)|0 ≤ k < p̄} = Te. If a packet M created by a task τi arrives on a
vertex v at time t then no packet created by τi arrives on v during the time
interval [t+ 1, t+ p̄).

Proof. Let τi be a task. We prove the claim by induction over Pi. Since p̄ ≤ p
the claim holds for si (due to our definition of the sporadic setting). Now let
{si = v0, v1, ...vk−1, vk = ti} be the vertices on Pi. We assume by induction that
the claim holds for the vertices v1, ..., v�. In particular, this implies that at any
point in time t there is at most one packet created by τi on v�. Assume that at
time t a packet M created by τi arrives on v�. Since S is a template schedule
with periodicity p̄ there must be a timestep t′ ≥ t with t′ < t + p̄ at which M
traverses the arc e� = (v�, v�+1). In particular, this implies that during the time
interval [t+ p̄, t′ + p̄) no packet created by τi traverses e� (due to the periodicity
of S). We conclude that M arrives on v�+1 at time t′ +1 and no packet created
by τi arrives at v�+1 during the time interval [t′ + 2, t′ + p̄+ 1).

75

CHAPTER 4. PERIODIC PACKET ROUTING

Using the above insight, in the following lemma we prove a universal limit
for template schedules.

Lemma 4.6. Let S be a template schedule, given by a map task with periodic-
ity p̄, for a strict or sporadic periodic packet routing instance I. Assume that
for each arc e we have {task(e, k)|0 ≤ k < p̄} = Te. Then, for each task τi it
holds that Di · p̄ is a valid limit.

Proof. From Lemma 4.5 it follows that there can be no two packets created by
the same task τi waiting for an arc e ∈ Pi. From the definition of template
schedules it follows that a packet M has to wait at most p̄− 1 timesteps before
it can be transferred over the next arc on its path. Thus, each packet created
by τi needs at most Di · p̄ steps to reach ti.

Now we prove that c ≤ p is a necessary and sufficient condition for the
existence of a periodic routing schedule.

Proof of Theorem 4.4. First assume on the contrary that I is feasible but there
is an arc e = (u, v) which is used by more than p tasks. Since I is feasible there
is a limit ki for each task τi. We define k := 1 + maxi ki.

Assume that for each k′ ∈ N0 each task τi creates a new packet at the
timestep t = k′ · p. Hence, during the time interval L = [0, p) each task τi ∈ Te

has created one packet. This implies that in L all tasks in Te together have
created c > p packets. Since c and p are integral, this implies that c ≥ p + 1.
Since at most p packets can be transferred over e in p timesteps, there is at least
one packet which has been created within L which has not been transferred
over e. Within the time interval Lk = [0, k · p) each task τi ∈ Te has created k
packets. This implies that within Lk all tasks in Te together have created
k · c ≥ k · (p+ 1) packets. However, at most k · p packets could possibly have
used the arc e. That means that there are at least k packets in the network
which still need to use e. Thus, there is one of those packets Mi,j created by a
task τi which does not reach v before time t = k ·p+k. Let ci,j be the time when
Mi,j was created. Since ci,j ≤ k ·p we conclude that k ·p+k ≥ ci,j+k > ci,j+ki
and thus Mi,j reaches ti after strictly more than ki timesteps. Thus, ki is not a
valid limit for τi which is a contradiction.

Now assume that c ≤ p. We create a template schedule as follows: First, we
define p̄ := p. Now let e be an arc. W. l. o. g. assume that Te =

{
τ0, τ1, ..., τ|Te|−1

}
.

Note that |Te| ≤ c ≤ p. We define task(e, k) := τk for 0 ≤ k < |Te| and
task (e, k′) := none for |Te| ≤ k′ < p̄ = p. We do this procedure for each arc e.
Then, for each arc e we have {task(e, k)|0 ≤ k < p̄} = Te since |Te| ≤ p̄ = p. De-
note by S the (cheap) template schedule resulting from task. From Lemma 4.6
it follows that in S each task has a finite limit. Thus, I is feasible.

4.3 Template Schedules
The main aim of this chapter is to compare the power of template- and priority
schedules. In order to do so, in this section we study template schedules on

76

4.3. TEMPLATE SCHEDULES

directed, bidirected, and undirected trees. Our schedules guarantee a limit for
each task and hence a bound on the maximal delay for each task. Moreover, we
distinguish between direct and not necessarily direct (indirect) schedules. For
each algorithm computing a schedule we prove the limit that it guarantees for
each task. Note that for some algorithms we require an upper bound on the
congestion c which is stricter than the necessary condition c ≤ p. This raises the
question whether one can still obtain schedules with similar limits if c is larger
(though still bounded by p). We answer this question by giving examples for
the respective settings with higher congestion where no template schedule can
achieve the limits guaranteed by our algorithms. For the case of direct schedules
we even give counterexamples where there can be no direct template schedule
at all.

The limits guaranteed by our algorithms are summarized in Table 4.1.

4.3.1 Directed Trees

In the sequel, we will study template schedules on directed, bidirected, and
undirected trees. We start with directed trees and present a general technique
which we will adapt later for the other two tree classes. Note that the case of
directed trees is a special case of bidirected trees.

Let I = (G, T, p) be an instance of the sporadic periodic packet routing
instance on a directed tree G. We present an algorithm which constructs a
template schedule which guarantees a limit of c+Di − 1 for each task τi. This
bound is best possible: There are instances where there can be no better limit
for every task (e. g., consider an instance on a directed path in which all tasks
have identical paths). Also, we will show below that it is NP -hard to determine
whether there is a template schedule which guarantees a limit of c+Di − 2 for
an instance on a directed tree. Our algorithm transfers ideas from Chapter 1 to
the periodic setting.

Algorithm DTREE(I)

1. Find feasible path-coloring f : T → {0, ..., c− 1} for paths of tasks.

2. Define time-dependent edge-coloring g : E × {0, ..., c− 1} → {0, ..., c− 1}
with consecutive property (the latter ensures limit and direct routing).

3. Define map task from path-coloring and time-dependent edge-coloring.

Now we present the algorithm. We compute a feasible path-coloring for the
paths of the tasks, i. e., we compute a map f : T → {0, ..., c− 1} such that if the
paths of two tasks τi, τj share an arc then f(τi) �= f (τj). Such a coloring exists
since we assumed that at most c paths use each edge (see Lemma 1.3). The
coloring can be obtained by first solving the problem for the subgraphs induced
by each vertex together with its neighbors. This can be reduced to edge-coloring
on bipartite multigraphs (bipartite graphs with possibly parallel edges). Then,

77

CHAPTER 4. PERIODIC PACKET ROUTING

the solutions for the subproblems can be combined to a global coloring. The
whole procedure can be accomplished in polynomial time, for details we refer
to Section 1.3.1.

Similarly as in Section 1.3.2 we compute a time-dependent edge-coloring
g : E × {0, ..., c− 1} → {0, ..., c− 1} as follows: We start with an arbitrary
arc e∗ and define its coloring by g (e∗, i) := i for 0 ≤ i < c. Then, we define the
coloring of the remaining arcs such that the consecutive property holds:

• For two consecutive arcs e = (u, v) and e′ = (v, w) we require that g (e, i) =
g (e′, (i+ 1) mod c) for 0 ≤ i < c.

• For two adjacent arcs e = (u, v) and e′ = (u, v′) (or e = (u, v) and e′ =
(u′, v)) we require that g (e, i) = g (e′, i) for 0 ≤ i < c.

Note that after having defined the coloring of e∗ the consecutive property implies
the coloring of the other arcs. From the colorings f and g we compute the map
task as follows. We define p̄ := c. Let e be an arc and let k ∈ {0, ..., c− 1}. If
there is a task τi ∈ Te such that f (τi) = g (e, k) we define task (e, k) := τi. Since
f is a valid path coloring there can be at most one such task. If g(e, k) /∈ f (Te)
we define task (e, k) := none. We do this for all arcs e and all timesteps t.
Denote by DTREE (I) the resulting schedule.

Theorem 4.7. Let I be an instance of the sporadic periodic packet routing
problem on a directed tree with c ≤ p. The schedule DTREE(I) is a direct
template schedule which guarantees a limit of c+Di − 1 for each tasks τi.

Proof. The (first) consecutive property of g is passed on to the map task. For
two consecutive arcs e = (u, v) and e′ = (v, w) we have that task (e, k) =
task (e′, k + 1 mod c) for all k. Therefore, once a packet has left its start vertex
it is never delayed until it reaches its destination vertex. Each packet has to
wait for at most c − 1 timesteps in its start vertex. We conclude that for each
task τi it holds that c+Di − 1 is a valid limit.

It is easy to see that there are instances of the strict PPRP where no schedule
can guarantee a better limit than c + Di − 1 for each task τi. For example,
consider a path P of length D and c tasks τi such that Pi = P for each task τi.
However, there are many instances of the strict PPRP which allow a schedule
with a better limit than c + Di − 1 for each task τi. Nevertheless, it is not
immediately clear how to determine for an instance I of the strict PPRP whether
there is a schedule that guarantees a better limit than c+Di−1 for each task τi.
Now we show that this is in fact NP -hard.

Theorem 4.8. For instances of the strict PPRP on directed trees it is NP -
hard to compute whether there is a template schedule which guarantees a limit
of c+Di − 2 for each task τi.

We use a similar construction as used in Chapter 3 for showing that the
non-periodic packet routing problem is NP -hard to approximate on directed
trees. For the sake of completeness, we describe the reduction in detail.

78

4.3. TEMPLATE SCHEDULES

Task Path
Variable tasks for variable x

τx,1 vx,1, vr, vx,3, vx,4 For each variable x
τx,2 vx,2, vr, vx,6, vx,8 For each variable x
τx̄,1 vx,1, vr, vx,6, vx,7 For each variable x
τx̄,2 vx,2, vr, vx,3, vx,5 For each variable x

Clause tasks for clause Q with three literals
τq,x,1 vQ, vr, vx,3, vx,4 where Q contains the first pos. occurrence of x
τq,x,2 vQ, vr, vx,6, vx,8 where Q contains the second pos. occurrence of x
τq,x̄,1 vQ, vr, vx,6, vx,7 where Q contains the first neg. occurrence of x
τq,x̄,2 vQ, vr, vx,3, vx,5 where Q contains the second neg. occurrence of x

Table 4.3: The predefined paths of the tasks. Clause tasks of clauses Q with
only two literals visit one additional vertex v′Q between vQ and vr.

We reduce from 3-Bounded-3-Sat. Assume we are given a 3-Bounded-
3-Sat formula φ. We construct an instance I of the periodic packet routing
problem such that the underlying graph is a directed tree. For I we define p := 6.
The following definitions will impliy that also c = 6. We show that φ is satisfiable
if and only if there is a schedule for I which guarantees a limit of c+Di − 2 for
each task τi. We call such a schedule a short schedule. We call a schedule long
if it is not short.

We assume that in φ each clause contains at least two variables and that
each variable occurs at most two times positive and at most two times negated.
For each variable x in the formula, there are four tasks τx,1, τx,2, τx̄,1, and τx̄,2.
The instance is defined such that in a short schedule S they can be scheduled
at times t ≡ 0 mod p or t ≡ 4 mod p. The intuition is that if x1 and x2 are
scheduled at time t ≡ 0 mod p then we set the variable x true, if x1 and x2 are
scheduled at time t ≡ 4 mod p then we set the variable x false.

Note that possibly none of the above cases apply, i. e., the tasks τx,1 and
τx̄,2 are scheduled at time t ≡ 0 mod p or the tasks τx,2 and τx̄,1 are scheduled
at time t ≡ 0 mod p. However, our construction ensures that then the resulting
schedule is long.

For each literal in a clause Q we introduce a task. Tasks corresponding to
literals in the same clause share the first arc on their path. Given a satisfy-
ing variable assignment for φ there is at least one literal in Q which satisfies
the clause. The intuition is that tasks which corresponds to these literals are
scheduled last (at times t ≡ 3 mod p).

Now we describe the construction in detail. For each variable x we introduce
vertices vx,1, vx,2, ..., vx,8. We also introduce the four variable tasks τx,1, τx,2,
τx̄,1, and τx̄,2. In the formula, we fix an order of the clauses. For each clause Q
we introduce a vertex vQ. For each literal in Q we introduce a clause task.
We write τq,x,i for the task corresponding to the i-th positive occurrence of x
and τq,x̄,i for the task corresponding to the i-th negative occurrence of x. The

79

CHAPTER 4. PERIODIC PACKET ROUTING

τx̄,1

τx,1

τx,2

τx̄,2

τq,x,1

τx,1

τx̄,1

τx,2

τx̄,2

τq,x,1
vx,1

vx,2

vr

vx,6

vx,3

vx,4

vx,8

vx,7

vx,5

vQ

[2, 3)

[5, 6)

[5, 6)

[5, 6)

[5, 6)

[1, 4)

[1, 4)

Figure 4.1: A part of the graph for the clause Q = (x ∨ y ∨ z) (construction
for Theorem 4.8). The parts corresponding to the variables y and z and their
packets are omitted for brevity. The time intervals at the arcs denote the time
when the respective arc is blocked. Note that the first timestep is t = 0.

80

4.3. TEMPLATE SCHEDULES

. . .

. . .

. . .

tbvbTb,p−2

Tb,1

Tb,0

Tb

sb

s′b

e

Figure 4.2: The paths of the tasks τb, τb,0, τb,1, ..., τb,p−2 are defined such that
if τb is never delayed before having reached vb then it will not collide with any
delay task τb,i. However, if τb is delayed once, then it will arrive at vb at the same
time as the fastest delay task. The latter implies that in the overall instance
there must be task which is delayed p− 1 times in total.

predefined paths for the task are shown in Table 4.3 and sketched in Figure 4.1.
Note that the underlying graph is a directed tree.

In order to make the construction work as desired we want to block some
edges at certain times. We do this by introducing blocking tasks (see a sketch in
Figure 4.2). The blocking tasks take the role of the blocking packets in the proof
of Theorem 3.5. However, this part of the construction is more complicated than
in the non-periodic setting.

A blocking task τb is constructed such that it has to use an edge e at times t
with t ≡ t̄ mod p, otherwise there would be a task in I with a total delay of at
least 5 (as we will ensure below). The path of τb is defined such that if τb is not
delayed it uses the edge e at times t with t ≡ t̄ mod p. After having passed e
the path of τb moves on to an edge where it crosses the path of p − 1 other
tasks Tb := {τb,0, ..., τb,p−2}. We call the latter the delay tasks of τb. We define
that all delay tasks of τb use the same path. There are p− 2 delay tasks for τb.
Hence, in order to ensure that the resulting schedule is short it is necessary that
for each k ∈ {0, 1, ..., p− 2} there must be a task τk ∈ Tb which has an initial
delay of k. The paths of τb and its delay tasks are designed such that τb does not
interfere with its delay tasks if τb is not delayed at all. However, if τb is delayed
once then it arrives at vb at the same time as the task of Tb with zero initial
delay. This implies that one of the tasks {τb} ∪ Tb has a total delay of p − 1.
In order to clarify matters we do not explicitly define the paths of the blocking
packets. Instead, we state which edges are blocked at what time. To simplify

81

CHAPTER 4. PERIODIC PACKET ROUTING

notation we write [i, i+ j) if we want to state that an arc is blocked during the
time intervals [i+ k · p, i+ j + k · p) for all k ∈ N.

Let x be a variable. The arcs (vx,1, vr) and (vx,2, vr) are blocked during the
time interval [1, 4) (note that t = 0 is the first timestep). The arcs (vx,3, vx,4),
(vx,3, vx,5), (vx,6, vx,7), and (vx,6, vx,8) are blocked during the time interval [5, 6).
For each clause Q with three literals the arc (vQ, vr) is blocked during the time
interval [2, 3). For each clause Q′ with two literals the arc (vQ′ , vr) is blocked
during the time interval [1, 3). Let M be a packet which was created by a
variable or a clause task. Due to the above reasoning we assume that if M
wants to use an arc e at a time when e is blocked then M is delayed.

Proof of Theorem 4.8. Now we show that φ is satisfiable if and only if there is
a short periodic schedule. First we assume that φ is satisfiable. In the proof
of Theorem 3.5 we showed – for the same construction in the non-periodic
case – that φ is satisfiable if and only if the optimal makespan is 7. Denote
by Mi all packets which were created at time t = i · p. We can turn a non-
periodic schedule S′ of length 7 into a periodic schedule in which all packets
in Mi arrive at their respective destination vertices at time t = i · p + 7 the
latest. We do this by infinitely repeating the packet movements defined in S′.
It remains to argue why packets in Mi do not interfere with packets in Mi−1.
At time t = i · p the packets of Mi−1 which have not reached their destination
vertices yet are located on vertices vx,3 and vx,6 for respective variables x. Thus,
they do not interfere with the newly created packets in Mi. Since the paths of
all tasks have length 3 we conclude that there is a (short) schedule with a limit
of 7 = 3 + 6 − 2 = Di + c − 2 for each task τi. (We ignore the blocking tasks
here since we discussed their delay already above.)

For the case that φ is not satisfiable it was shown in the proof of Theorem 3.5
that the length of each non-periodic schedule is at least 8. Since the paths of
all packets have length 3 we conclude that in each non-periodic schedule there
has to be at least one packet which is delayed at least 5 times. This implies the
same statement for any periodic schedule. Hence, there can be no short periodic
schedule.

Note that we cannot tighten this construction any further (assuming that
P �= NP) since our template schedule DTREE(I) guarantees a limit of c − 1
for each task and it can be computed in polynomial time.

The above result is stated only for the strict PPRP. Note that in the sporadic
case no schedule can guarantee less than c− 1 delays for each task: The release
times of the packets can be chosen such that there is an arc on which c packets
arrive at the same time (if they are not delayed already before).

4.3.2 Bidirected Trees

In this section, we show how we can adapt the technique introduced for tem-
plate schedules on directed trees to (direct and indirect) template schedules on
bidirected trees. First, we describe the schedule BTREE(I) which is indirect

82

4.3. TEMPLATE SCHEDULES

and guarantees a limit of 2c− c
(
1
2

)	diam(G)/2
−1
+Di − 1 (diam(G) denotes the

diameter of G). We make use of the technique which we developed above for
directed trees. A straight forward adaption would lead to a limit of 2c+Di − 2
for each task τi. However, by carefully distributing the delays among the tasks
we obtain a better bound. Then, we show that at least for the case c = 2 our
limit cannot be improved: We describe a suitable lower-bound instance. How-
ever, we give a randomized algorithm which guarantees a limit of 1.5c+Di − 1
in expectation for each task τi.

Then we study direct schedules on bidirected trees. We show that one needs
to require a certain bound on c

p because there are instances with c = 3
4p for

which there exists no direct schedule. However, we prove that given an instance
with c ≤ p

2 we can find a direct schedule BTREEdir(I) which guarantees a limit
of 2c+Di − 2 for each task τi.

First, we introduce some structure on the tree which we will use for all
algorithms in the sequel.

Definition 4.9 (Tree-structure). Let G be a directed or bidirected tree. We
define an arbitrary vertex vr to be the root vertex. We call an arc e an up-arc
if it is oriented towards vr and a down-arc if it is oriented away from vr. For a
vertex v let d(v) be the distance between vr and v. For each task τi we define
the vertex vi which is closest to vr to be the peak vertex of τi. For a task τi we
define its depth d(τi) by d(τi) := d(vi). We say a packet moves up if it is using
an up-arc. A packet moves down if it uses a down-arc.

Deterministic Algorithm

Now we describe our indirect schedule BTREE(I) which guarantees a limit of
2c − c

(
1
2

)	diam(G)/2
−1
+Di − 1. Intuitively, the schedule works as follows: on

the way towards the root, the packets of each task are delayed only in their
start vertex. This results in a delay of at most c − 1 in the start vertex. The
delay of a task τi on a down-arc e = (u, v) depends on the depth of e (defined
by d(e) := d(u)) and on whether e is the first down-arc of τi. If e is the first
down-arc on Pi then τi is delayed up to c

(
1−

(
1
2

)d(e)) times before it can use e.

If e is not the first down-arc on Pi then τi is delayed at most c
(
1
2

)d(e) times
before it can use e. In total, on its way down a task τi can be delayed only up
to

c

⎛
⎝1−

(
1

2

)d(e)

+
�∑

k=d(e)+1

(
1

2

)k
⎞
⎠ = c ·

�∑
k=1

(
1

2

)k

≤ c ·
(
1−

(
1

2

)d(G)
)

times, assuming that e is the first down-arc on Pi and Pi has �+1 down-arcs in
total (we denote by d(G) the maximum depth of a vertex in G). By choosing the
root vr such that d(G) ≤ �diam(G)/2
 we achieve the bound on the maximum
delay stated above.

Now we describe the algorithm in detail. We choose the root vr such that
d(G) ≤ �diam(G)/2
. For our template schedule we define p̄ := c. We define

83

CHAPTER 4. PERIODIC PACKET ROUTING

Algorithm BTREE(I)

1. Define values for task from top to bottom. Start with root vertex vr such
that in vr no task is delayed, like in DTREE(I)

2. On an intermediate vertex v

(a) Tasks moving up from v are not delayed on v

(b) Tasks moving down from v with peak vertex above v are delayed at
most c

(
1
2

)d(v) times

(c) Tasks with peak vertex v are delayed at most c
(
1−

(
1
2

)d(v)) times
on v

the values of the map task(e, k) for all arcs e adjacent to vr such that no task
is delayed in vr. The problem of finding such values can be reduced to finding
a direct schedule in a directed tree, see Section 4.3.1.

We assume by induction that for all arcs e adjacent to each vertex v with
d(v) ≤ n the respective values of the map task(e, k) have been defined. Now
consider a vertex v with d(v) = n + 1. Denote by Gv the subtree rooted at v.
Let e↑v and e↓v be the two arcs on the two directed paths between vr and v which
are adjacent to v. Denote by T

(up)
v the tasks whose path uses v and e↑v and

by T
(down)
v the tasks whose path uses v and e↓v. Let T

(peak)
v be the tasks for

which v is the peak vertex. Recall that for a down-arc e = (u, v) we defined its
depth d(e) by d(e) = d(u).

Due to the induction we have already defined the offsets when the tasks
in T

(down)
v and T

(up)
v use the edges e↓v and e↑v. Assume that these offsets are

fixed, we need to determine offsets for the tasks Tv := T
(up)
v ∪ T

(down)
v ∪ T

(peak)
v

to use the other arcs adjacent to v. We do this as follows: For the tasks Tv

we define a schedule such that none of them is delayed on v. Note that
this problem can be reduced to finding a direct schedule on a directed tree,
see Section 4.3.2. In particular, there is a map task′ (defining such a sched-
ule) such that for all k ∈ {0, ..., c− 1} with task

(
e↑v, k

)
∈ T

(up)
v we have that

task′
(
e↑v, k

)
= task

(
e↑v, k

)
.

For all up-arcs e which are adjacent to v we define task(e, k) := task′(e, k)
for all k ∈ {0, ..., c− 1}. (Note that this includes e↑v as well as all up-arcs which
are oriented towards v.) Now we need to define the values task(e, k) for down-
arcs e which are adjacent to v. In general, for the tasks which use these arcs
we cannot avoid giving them some delay on v. Let e = (v, w) be a down-arc.
Let T

(down)
e denote all tasks which use e and which also use e↓v. Let T

(peak)
e

denote all tasks which use e and for which v is their peak vertex. There are
two cases: If

∣∣∣T (down)
e

∣∣∣ ≥ c
(
1−

(
1
2

)d(v)) then we define the map task such that

84

4.3. TEMPLATE SCHEDULES

the tasks T
(peak)
e are not delayed in v. Since

∣∣∣T (peak)
e

∣∣∣ < c
(
1
2

)d(v) this can be

achieved by delaying each task τ ∈ T
(down)
e at most c

(
1
2

)d(v) times. Similarly,

if
∣∣∣T (down)

e

∣∣∣ < c
(
1−

(
1
2

)d(v)) we define task such that tasks T
(down)
e are not

delayed in v and each task τ ∈ T
(peak)
e is delayed at most c

(
1−

(
1
2

)d(v)) times.
Denote by BTREE(I) the schedule resulting from the map task.

Theorem 4.10. Let I be an instance of the sporadic PPRP on a bidirected tree
with c ≤ p. The schedule BTREE(I) is a template schedule which guarantees a
limit of 2c− c

(
1
2

)	diam(G)/2
−1
+Di − 1 for each task τi.

Proof. Let τi be a task with peak vertex vi. Let Mi be a packet created by τi.
From the definition of task it follows that on its way up Mi is delayed only in its
start vertex (at most p̄−1 = c−1 times). On vi the packet Mi is delayed at most
c
(
1−

(
1
2

)d(vi)) times. Now let e = (v, w) be a down-arc on Pi which is not

adjacent to vi (i. e., v �= vi). By construction, Mi is delayed at most c
(
1
2

)d(v)
times on v. Denote by P ↓

i all vertices on the way down of τi, excluding vi and ti.
Note that d(v) ≤ d(G) − 1 for each vertex v ∈ P ↓

i . We calculate that in total
Mi is delayed at most

c

(
1−

(
1

2

)d(vi)
)

+
∑
v∈P↓

i

c

(
1

2

)d(v)

= c

⎛
⎝d(ti)−1∑

k=1

(
1

2

)k
⎞
⎠

≤ c

⎛
⎝d(G)−1∑

k=1

(
1

2

)k
⎞
⎠

≤ c

(
1−

(
1

2

)	diam(G)/2
−1
)

times. This proves a limit of 2c − c
(
1
2

)	diam(G)/2
−1
+ Di − 1 for each packet

created by τi.

For the case c = 2 our analysis of BTREE(I) guarantees a bound of 2c +
Di − 2. Now we show that this is indeed best possible.

Proposition 4.11. There is an instance I of the strict PPRP on a bidirected
tree with c = p = 2 such that in any template schedule there is a task τi such
that the packets created by τi reach ti after at least 2c+Di − 2 steps.

Proof. We say a task τ is delayed by a schedule if the packets created by τ are
delayed. In our instance I we first ensure that there is one task which is delayed
at least once: Define two tasks τ1 and τ2 such that s1 = s2 and P1 and P2 share
the first arc ē on their path. Starting with this setup, we let P1 continue in a
gadget G1 and P2 in a gadget G2. See Figure 4.3 for a sketch. The gadgets are

85

CHAPTER 4. PERIODIC PACKET ROUTING

. . .

. . .

τ2
τ1

G1

G2

v∗

v∗
ē

Figure 4.3: The graph used for the proof of Proposition 4.11. The boxes G1

and G2 denote the two copies of the gadget G shown in Figure 4.4.

10

01

τg,4τg,3τg,2τg,1

01

v1

v6

v5

v2

v4

0

0

1

1

0 0

1
1

0

1

0

01v∗ v7

τin

Figure 4.4: The gadget Gi used in the proof of Proposition 4.11. The numbers 0
and 1 represent whether the tasks use the corresponding arcs in even or odd
timesteps, respectively.

defined below. We say the tasks τ1 and τ2 are the ingoing tasks of the respective
gadgets. The gadgets G1 and G2 are identical and ensure the following: If the
ingoing task τ was delayed before entering the gadget, then either τ is delayed
again, or another tasks which is defined inside the gadget is delayed twice. This
ensures that in the overall instance there is a task which is delayed at least twice
and thus its packets reach their destination after at least 2c+Di − 2 steps.

We assume that the packets created by τ1 and τ2 would use ē on even
timesteps if they were not delayed. In our construction an ingoing task τ arrives
on the first vertex v∗ inside the gadget on even timesteps if it was delayed before
entering the gadget. Now we describe the gadgets Gi. Their graph is depicted
in Figure 4.4. Let τin denote the ingoing task of Gi. We introduce the tasks
τg,1, τg,2, τg,3 and τg,4. The paths of these tasks are shown in Figure 4.4 and Ta-
ble 4.4. Assume that τin was delayed once before entering the gadget. We show
that then there is at least one task which is delayed twice. Since τin was delayed

86

4.3. TEMPLATE SCHEDULES

Task Path
τin v∗, v1, ..., v2, ..., v7
τg,1 v4, v2, ..., v7
τg,2 v4, v2, ..., v1, ..., v6
τg,3 v5, ..., v1, ..., v2
τg,4 v5, ..., v6

Table 4.4: The paths of the tasks defined inside the gadgets Gi.

Algorithm RTREE(I)

1. Split instance I into instance Iup (parts of the paths towards vr) and
instance Idown (parts of the paths away from vr).

2. Compute maps taskup for DTREE (Iup) and taskdown for DTREE (Idown).

3. Choose offsets for taskup and taskdown uniformly at random.

4. Combine resulting maps to schedule.

once τg,1 is never delayed (if it was delayed before reaching v2 then it would be
delayed again at v2 by τin). Thus, τg,2 is delayed once (by τg,1). Since τin is
not delayed inside Gi we conclude that τg,3 is not delayed either. However, this
implies that τg,4 is delayed by τg,3 and τg,2 which yields a contradiction.

Randomized Algorithm

Recall that the deterministic algorithm BTREE(I) guarantees a limit of 2c −
c
(
1
2

)	diam(G)/2
−1
+ Di − 1 for each task τi. Now we present a randomized

algorithm for periodic packet routing on a bidirected tree. In expectation, this
algorithm gives a much better limit for each task.

For the strict PPRP it guarantees a limit of c +Di − 1 in expectation and
for the sporadic PPRP a limit of 1.5c+Di − 1 in expectation for each task τi.
Depending on the outcome of the random experiment the delay of each task
differs. However, independent of the random experiment, no task has to suffer
a higher delay than 2c − 2. The main technique is the following. We split the
bidirected tree into two directed trees, the edges which are oriented towards the
root and the other edges. For both of them we compute the schedule DTREE.
Then we define the offset of each of the two schedules randomly.

Now we describe the algorithm formally. Let I be an instance of the strict
or sporadic PPRP on a bidirected tree with c ≤ p. We denote by Gup and
Gdown the directed trees obtained by taking G and considering only the up-
or the down-arcs, respectively. For each task τi = (si, ti) we define two tasks
τup,i = (si, vi) and τdown,i = (vi, ti). We define Tup = {τup,i|τi ∈ T} and Tdown =
{Tdown,i|τi ∈ T}. Let Iup = (Gup, Tup, p) and Idown = (Gdown, Tdown, p). With-

87

CHAPTER 4. PERIODIC PACKET ROUTING

out loss of generality we assume that Iup and Idown have the same congestion c.
We compute the schedules DTREE (Iup) and DTREE (Idown) and the respec-
tive maps taskup and taskdown (see Section 4.3.1).

We observe that for each k the map task(k)up defined by task(k)up (e, t) :=

taskup(e, t+k mod c) yields a valid task assignment. We define the maps task(k)down

(for the different values of k) similarly. Our randomized algorithm works as fol-
lows: we choose integers k and k′ independently and uniformly at random from
the set {0, ..., c− 1}.

Then we compute the map task from the maps task(k)up and task
(k)
down: for

each up-arc e we define task (e, t) = task(k)up (e, t) for all t ∈ {0, ..., c− 1}. For

each down-arc e′ we define task (e′, t) = task
(k′)
down (e

′, t) for all t ∈ {0, ..., c− 1}.
Using the map task we define the template schedule RTREE(I).

Theorem 4.12. Let I be an instance of the PPRP on a bidirected tree with
c ≤ p. The schedule RTREE(I) guarantees a limit of

• c +Di − 1 in expectation for each task τi if I is an instance of the strict
PPRP.

• 1.5c + Di − 1 in expectation for each task τi if I is an instance of the
sporadic PPRP.

• 2c+Di − 2 for each task τi independently of the outcome of the random
experiment.

Proof. In the strict periodic setting, once k and k′ are fixed all packets created
by a task τi have the same delays at si and vi. The values k and k′ were chosen
uniformly at random from the set {0, ..., c− 1}. Thus, the packets of each task τi
have an expected delay of c−1

2 in si and an expected delay of c−1
2 in vi. This

yields an expected limit of c+Di − 1 in the strict periodic setting.
In the sporadic setting the packets created by τi have an expected delay

of c−1
2 in vi. However, they might be delayed up to c− 1 times in si (depending

in their release time). This yields an expected limit of 1.5c + Di − 1 in the
sporadic setting.

Even in the worst possible outcome of the random experiment, each packet
can be delayed at most c − 1 times in its start vertex and at most c − 1 times
in its peak vertex. This gives a total limit of 2c+Di − 2 for each task τi (strict
and sporadic setting).

Direct Schedules

The schedules for bidirected trees presented so far are not direct, i. e., packets
might wait in vertices different from their start vertex. Direct schedules have
certain advantages: They are completely defined by the start offset of each task
which makes them more compact. Also, they are easier to execute since on
intermediate nodes no scheduling decision has to be taken. Additionally, the

88

4.3. TEMPLATE SCHEDULES

Algorithm BTREEdir(I)

1. Sort task non-ascendingly by their depth.

2. Consider the tasks in this order. Assign each task the smallest initial
waiting time such that its packets do not collide with packets of previously
considered tasks.

links in the network do not need any waiting queues. Only the devices which
insert the packets into the network must be able to withhold packets for some
time.

We present an algorithm for computing a direct schedule BTREEdir(I) for
a packet routing instance on a bidirected tree. It requires that c ≤ p/2. This
might look restrictive at first glance. However, we will show afterwards that
there are instances with c = 3

4p for which there does not exist a direct periodic
schedule at all. Thus, we need a certain upper bound on the congestion c in
order to guarantee that there actually is a direct periodic schedule which we can
compute.

Let I = (G, T) be an instance of the sporadic PPRP on a bidirected tree G
such that c ≤ p/2. We present our algorithm which finds a direct template
schedule BTREEdir(I) with limit Di + 2c − 1 for each task τi. It is based on
the concepts presented in [17, Theorem 3.4].

We sort the tasks descendingly by their depth d(τi). W. l. o. g. let τ1, τ2, ..., τ|T |
be this order. Our schedule is a direct schedule, i. e., each packet is delayed
for a certain number of steps and then moves to its destination without being
delayed any further. We define the schedule via a template schedule with peri-
odicity p̄ := 2c. We iterate over the tasks with i = 1 to |T |. Consider the i-th
iteration. Let Pi =

{
v0, v1, ..., v|Pi|−1

}
be the path of τi and let ej = (vj , vj+1)

for all j ∈ {0, ..., |Pi| − 2}. Let ki be the smallest positive integer such that
task (ej , ki + j mod p̄) = none for all relevant values for j. We assign τi the
initial waiting time ki and define task (ej , ki + j mod p̄) = τi for all respective
values for j. We will show in Theorem 4.13 that there is always a value for ki
with 0 ≤ ki ≤ 2c− 2 < p̄. We denote by BTREEdir(I) the resulting schedule.

Theorem 4.13. Let I be an instance of the sporadic PPRP on a bidirected
tree with c ≤ p/2. The schedule BTREEdir(I) is a well-defined direct template
schedule which guarantees a limit of 2c+Di − 2 for each task τi.

Proof. Let τi be a task. First of all we show that we can always find a value ki
with ki ≤ p̄ − 1 which does not interfere with any previous assignment for
tasks τi′ with 0 ≤ i′ < i. Let e and e′ be the two arcs in Pi which are incident
to vi. (The case that there is only one such arc can be proven with a similar
reasoning as below.) Recall that we considered the tasks in an order given by
the values d (τi). Thus, when assigning the initial delay ki to τi only tasks which
use e or e′ could possibly interfere. We say a task τi′ with 0 ≤ i′ < i blocks a
timeslot k if there is an arc ej such that task (ej , k + j mod p̄) = τi′ . Since G

89

CHAPTER 4. PERIODIC PACKET ROUTING

is a bidirected tree from the definition of task it follows that each task which
uses e or e′ can block at most one timeslot k with 0 ≤ k < c.

Excluding τi there are at most 2 (c− 1) tasks whose path uses e or e′. This
implies that there is a value for ki with 0 ≤ ki ≤ 2c−2 such that ki is not blocked
and thus ki ≤ 2c−2. Hence, BTREEdir(I) is well-defined. By definition of task
each packet created by τi waits in si for ki timesteps and then moves to ti
without being delayed any further. Thus, BTREEdir(I) is a direct periodic
schedule and 2c+Di − 2 is a valid limit for each task τi.

Limits of Direct Schedules

The algorithm BTREEdir(I) presented in the previous section needs the con-
dition that c ≤ p/2. This raises the question whether such a bound on the
congestion is really necessary. Now we prove that this is indeed the case: we
present an instance with c = 3

4p for which there can be no direct periodic sched-
ule. Even worse, without a bound on c (apart from the necessary c ≤ p) it is
even NP -hard to determine whether there is a direct template schedule or not.
This justifies our required bound on the congestion in BTREEdir(I).

First, we describe our instance with c = 3
4p for which there is no direct

schedules. It is known that there exists an instance I = (G,P) of the Path
Coloring problem (i. e., the problem of coloring given paths such that two
paths which share an arc are colored with different colors) with the following
properties (see [58]):

• the underlying graph G is a bidirected tree,

• for each arc e there are at most three paths in P which use e, and

• any feasible path coloring for I needs at least five colors.

Starting from I we construct an instance Ī =
(
Ḡ, T, p

)
of the periodic packet

routing problem. The graph Ḡ is constructed as follows: starting with G, we
replace each pair of anti-parallel arcs by a path with twelve anti-parallel arcs.
We choose twelve arcs since 12 is the least common multiple of 1,2,3, and 4.
We call all vertices which exist in both G and Ḡ the old vertices. For each path
Pi ∈ P starting in a vertex u and ending in a vertex v we add a task τi = (u, v).
Finally, we define p := 4.

Proposition 4.14. For the instance Ī of the strict PPRP it holds that c ≤ 3
4p

but it has no direct periodic template schedule.

Proof. Since in I each arc is used by at most three paths and p = 4 we have
that c ≤ 3

4p for our instance Ī. We show that there can be no direct template
schedule for Ī by using the fact that any path coloring for I needs at least
five colors. Assume on the contrary that there is a direct template schedule
for Ī with periodicity p̄. We know that 1 ≤ p̄ ≤ 4. Denote by task(τi, u) the
offset when packets created by τj leave each vertex u ∈ Pi. Each arc in G
corresponds to a directed path of length twelve in Ḡ. We conclude that there

90

4.3. TEMPLATE SCHEDULES

is a value ki ∈ {0, 1, 2, 3} for each task τi such that task(τi, u) ≡ ki mod p̄ for
each old vertex u ∈ Pi \ {ti}. Thus, for two tasks τi and τj whose paths share
an arc it holds that ki �= kj . This implies that the map c (Pi) := ki defines a
path coloring for I with four colors. But this is a contradiction since each path
coloring for I needs at least five colors.

Now we show that if we do not impose any bound on c (apart from c ≤ p)
then it is even NP -hard to determine whether there is a direct template schedule
(for an instance of the PPRP on a bidirected tree).

Theorem 4.15. For instances of the strict or sporadic PPRP on bidirected
trees it is NP -hard to decide whether there is a direct template schedule.

Proof. We give a reduction from Directed-Path-Coloring on bidirected bi-
nary trees: Given a binary tree G, a set of directed paths P on G. The question
is whether it is possible to color the paths in P with three colors such that each
two paths which use an arc in the same direction have different colors. This
problem is NP -hard [33].

The following construction is similar to the construction used for Proposi-
tion 4.14. Given an instance (G,P) of the Directed-Path-Coloring such
that G = (V,E) is a bidirected tree we construct an instance (G′, T ′) of the
periodic packet routing problem as follows: We obtain G′ = (V ′, E′) by tak-
ing G and replacing each pair of arcs between two vertices u and v by a path
with anti-parallel arcs of length six between u and v. We call the vertices in V ′

which already existed in V the old vertices, all other vertices are called the new
vertices. We note that G′ is also a bidirected tree. For each vertex v ∈ V there
is a corresponding (old) vertex v′ ∈ V ′. For each path Pi ∈ P from si ∈ V
to ti ∈ V we introduce a task τi = (s′i, t

′
i) ∈ T ′. Since G′ is a tree, the path

for τi is implicitly given. We define p := 3.
Now we prove that the paths P can be colored with three colors if and only

if there is a direct template schedule for (G′, T ′, p). First assume that there is a
valid coloring f : P → {0, 1, 2} for the paths P. We define a template schedule
by setting task (ei, f (Pi)) := τi for each task τi with ei being the first arc on Pi.
We define the remaining values for task such that the resulting schedule is direct.
Also, we define p̄ := p = 3. For an old vertex u ∈ Pi let leave (τi, u, j) be the time
when the packet Mi,j leaves u. We observe that leave (τi, u, j) ≡ f (Pi) mod 3
for all old vertices u ∈ Pi and all positive integers j. Two packets Mi,j and
Mi′,j′ can collide only if there is an old vertex u and an arc e = (u, v) which Pi

and Pi′ have in common and if leave (τi, u, j) = leave (τi′ , u, j
′). But the latter

implies that f (Pi) = leave (τi, u, j) mod 3 = leave (τi′ , u, j
′) mod 3 = f (Pi′).

But this cannot happen since f is a valid path coloring.
Now assume that we are given a valid direct template schedule S for (G′, T ′, p).

Note that p̄ ≤ p = 3. For each task τi we define ei to be the first arc on Pi.
We define our path coloring f : P → {0, 1, 2} such that task (ei, f (Pi)) = τi.
We observe that task (ē, f (Pi)) = τi for each arc ē ∈ Pi which points out of an
old vertex in Pi. This holds since each (bidirected) edge in G was replaced by a
path of anti-parallel arcs with length six in G′ and p̄ ∈ {1, 2, 3}. Thus, if f was

91

CHAPTER 4. PERIODIC PACKET ROUTING

not a valid path coloring then there would be an arc ē pointing out of an old
vertex and two paths Pi �= Pj with f (Pi) = f (Pj) which both use ē. However,
this would imply that τi = task (ē, f (Pi)) = task (ē, f (Pj)) = τj which is a
contradiction since Pi �= Pj ⇒ τi �= τj .

4.3.3 Undirected Trees

Now we adjust the techniques introduced above for bidirected trees to undi-
rected trees. Here, we need to take care that two packets which move towards
each other do not interfere. Intuitively, the result is that the actual available
bandwidth of the edges drops by a factor of 2. Hence, the constraint on the
congestion for each algorithm needs to be by a factor of 2 stricter than in the
setting of bidirected trees. We will also give example instances that show that
this restriction is really necessary.

Let I be an instance of the sporadic PPRP on an undirected tree G such
that c ≤ p/2. We present an algorithm which finds an (indirect) schedule
UTREE(I) with limit 4c−2c

(
1
2

)	diam(G)/2
−1
+Di−1 for each task τi. We will

prove below that the bound for the congestion is necessary. In particular, we
will show that for any α, β, ε > 0 there is an instance I of the strict PPRP with
p/2 < c ≤ (1 + ε) p/2 for which no template schedule can guarantee a limit of
αp+Di + β for every task τi.

After that we study the problem of finding directed schedules for the spo-
radic PPRP on undirected trees. We present an algorithm UTREEdir(I) which
finds a direct template schedule with limit 4c+Di − 3 for each task τi if c ≤ p

4 .
We justify the bound on the congestion by giving an instance on an undirected
path with p/2 < c ≤ (1 + ε) p/2 for which there exists no direct template sched-
ule at all.

Indirect Schedules

Now we present our algorithm for computing the indirect schedule UTREE(I).
It adapts the concepts of BTREE(I) to undirected trees. In contrast to bidi-
rected trees we need to avoid collisions by packets that use the same edge in
opposite directions. For packets which have left their start vertex and which
are located on a vertex v at a time t we ensure that d(v) + t is always even.
This implies that the packets which actually move are either all located on a
vertex with even depth or all located on a vertex with odd depth. Then, no
collision can occur. We call this the parity property. The parity property can
be understood as halving the bandwidth. However, since c ≤ p/2 there is still
enough bandwidth available.

Now we give a formal definition. We define p̄ := 2c. Like in BTREE(I)
we start with the root vr (chosen such that d(G) ≤ �diam(G)/2
). We define
the map task such that no packet needs to wait in vr and such that for an
edge e = {v, vr} we have that task (e, k) = τ only if the packets of τ move from
v to vr and k is odd or the packets of τ move from vr to v and k is even. Such
values for task can be found since c ≤ p/2. We continue with the same iterative

92

4.3. TEMPLATE SCHEDULES

Algorithm UTREE(I)

1. Adapt algorithm BTREE(I) to undirected trees.

2. Always ensure that moving packets are either all on vertices with even
level or all on vertices with odd level (parity property).

procedure as in BTREE(I). However, in order to ensure the parity property
now if a packet is delayed it needs to wait twice as many times as in BTREE(I).
Again, the fact that c ≤ p/2 ensures that there is enough available bandwidth.

Since p̄ = 2c each packet is delayed at most 2c− 1 times in its start vertex.
After that, each packet is delayed at most 2c

(
1−

(
1
2

)	diam(G)/2
−1
)

times. This

gives a limit of 4c − 2c
(
1
2

)	diam(G)/2
−1
+ Di − 1 for each task τi. Denote by

UTREE (I) the schedule resulting.

Theorem 4.16. Let I be an instance of the sporadic PPRP on an undirected
tree with c ≤ p/2. For each task τi the schedule UTREE(I) guarantees a limit
of 4c− 2c

(
1
2

)	diam(G)/2
−1
+Di − 1.

Proof. Similar proof as for Theorem 4.10.

For UTREE(I) we required that c ≤ p/2. This might look restrictive.
However, we show with following proposition that this bound is really necessary
for a schedule with a good limit for each task.

Proposition 4.17. For any α, β, ε > 0 there is an instances I of the strict
PPRP with p/2 < c ≤ (1 + ε) p/2 on an undirected path for which there is no
template schedule which guarantees a limit of αp+Di + β for every task τi.

Note that the same statement is implied for the sporadic PPRP (since the
strict periodic setting is a special case of the sporadic setting). We will prove
the proposition in the sequel.

Direct Schedules

We study the problem of computing a direct schedule for an undirected tree.
We show how to adapt the algorithm BTREEdir(I) to undirected trees. Given
an instance I of the sporadic PPRP on an undirected tree with c ≤ p

4 . We
show how to compute the schedule UTREEdir(I) which guarantees a limit of
4c + Di − 3 for each task τi. Afterwards, we will justify the required bound
of c ≤ p

4 : we give an example of an instance with p
2 < c ≤ (1 + ε)p2 on an

undirected path for which there can be no direct schedule at all.
Now we describe the algorithm for computing UTREEdir(I). We sort the

tasks descendingly according to d(τi). W. l. o. g. let τ1, ..., τ|T | be this order. We
define a template schedule with periodicity p̄ := 4c and iterate over the tasks
from i = 1 to |T |. Let τi be the task considered in the i-th iteration. Like in

93

CHAPTER 4. PERIODIC PACKET ROUTING

Algorithm UTREEdir(I)

1. Sort task descendingly by the depth of the peak vertex of their path.

2. Consider the tasks in this order. Assign each task τi the smallest initial
waiting time ki such that

(a) its packets do not collide with packets of previously considered tasks
and

(b) d(si) + ki is even.

BTREEdir(I) we call a value ki < c̄ valid if task (ej , ki + j mod 4c) = none for
all edges ej on Pi. We assign τi the smallest valid value ki such that d(si) + ki
is even. We set task (ej , ki + j mod 4c) = τi for the respective edges ej . We will
show in Theorem 4.18 that there is always a valid value ki such that d(si) + ki
is even with ki ≤ 4c− 3. Denote by UTREEdir(I) the resulting schedule.

Theorem 4.18. Let I be an instance of the sporadic PPRP on an undirected
tree G with c ≤ p/4. The schedule UTREEdir(I) is a well-defined direct template
schedule which guarantees a limit of 4c+Di − 3 for each task τi.

Proof. Let τi be task. First we show that there is always a valid value ki
with ki ≤ 4c− 3. Let e and e′ be the two edges in Pi which are incident to vi.
(The case that there is only one such edge can be proven with a similar reasoning
as below.) When assigning the initial delay wi to τi only tasks which use e or e′
could possibly interfere with τi. We say a task τi′ with 0 ≤ i′ < i blocks a
timeslot k if there is an edge ej such that task (ej , k + j mod 4c) = τi′ .

Since G is a tree it follows that if two paths Pi and Pi′ share an edge then
either on all edges which they have in common they point in the same direction
or on all these edges they point in opposite directions. For ease of notation
we say that τi and τi′ move in the same direction or they move in opposite
direction.

First we discuss tasks τi′ which move in the opposite direction of τi. For
the analysis we define a time-dependent edge-coloring c : E×N → {red, green}.
Denote by d (u, v) the length of a shortest path between two vertices u and v.
Let e = {u, v} be an edge such that d (u, vr) = i and d (v, vr) = i + 1. For t
such that t+ i is even we define c (e, t) = green, for t such that t+ i is odd we
define c (e, t) = red. From the algorithm it follows that d(si′)+ki′ is even. Since
the periodicity p̄ is even this implies that on their way up (in direction of vr)
packets created by τi′ use only red edges, and on their way down they use only
green edges. If d(si)+ki is even the same holds for packets created by τi. Since
τi and τi′ move in opposite directions, if two packets created by these tasks meet
then one of them moves up and the other one moves down. Thus, they do not
interfere since then they use differently colored edges. This implies that tasks
which move in opposite direction of τi do not block any timeslots k such that

94

d(si) + k is even.

4.3. TEMPLATE SCHEDULES

Now let τi′′ be a task which moves in the same direction as τi. Since G is a
tree τi′′ can block at most one timeslot k with 0 ≤ k < c̄. Excluding τi there
are at most 2 (c− 1) tasks which use e or e′ in the same direction as τi. Since
c ≤ p/4 this implies that there are at most 2 (c− 1) blocked timeslots k such
that k+ d(si) is even. This implies that ki ≤ 4c− 3 < p̄ and thus UTREEdir(I)
is well-defined and guarantees a limit of 4c+Di − 3 for each task τi. From its
definition it follows that UTREEdir(I) is direct.

Limits of Direct Schedules

Now we show that for any ε > 0 there are instances on an undirected path with
c ≤ (1 + ε)p/2 for which no direct schedule exists. Thus, we have to give some
upper bound on the congestion of an instance in order to guarantee that an
algorithm can compute a direct schedule for it (as we did for UTREEdir(I)).

Proposition 4.19. For any ε > 0 there are instances of the strict PPRP on an
undirected path with p/2 < c ≤ (1 + ε) p/2 for which there is no direct template
schedule.

Proof. Let ε > 0. We describe how to construct an instance with the described
property. Let � be an integer such that 2

� ≤ ε. The graph G is an undirected
path with 2� + 1 vertices. Denote by vA and vE the vertices at the ends of G.
We define p := 2�. We introduce �+1 tasks τ1, ..., τ�+1 with τi = (vA, vE) for all
i ∈ {1, 2, ..., �+ 1} and one task τ�+2 = (vE , vA). We call the former tasks the
good tasks. Since each edge is used by all tasks we have c = �+ 2 = p

2 + p
2 · 2

� ≤
(1+ ε)p2 . Assume on the contrary that there is a direct template schedule for I.
Denote by ki the initial delay for the first packet of each task τi. We assume
that k�+2 is even (the case that k�+2 is odd can be proven similarly). Then each
good task τi must have an odd initial delay ki with 0 ≤ ki < 2�. Since there are
�+ 1 good tasks but only � odd integers in the interval [0, ..., 2�− 1] this yields
a contradiction.

Note that Proposition 4.19 implies the same statement for instances of the
sporadic PPRP. Now we can prove Proposition 4.17.

Proof of Proposition 4.17: Let α, β, ε > 0. We construct a new instance I =
(G, T, p) of the periodic packet routing problem on an undirected path such
that p

2 < c ≤ (1+ ε) · p
2 but there can be no periodic schedule which guarantees

a limit of Di + α · p+ β for each task τi.
Let � be an integer such that 2

� ≤ ε. The graph G is an undirected path with
(2�− 1)(�+ 2)(α · p+ β) + 2 vertices. Denote by vA and vE the vertices at the
two ends of G. We introduce �+ 1 tasks τ1, ..., τ�+1 with τi = (vA, vE) for each
i ∈ {1, 2, ..., �+ 1} and one task τ�+2 = (vE , vA). We set p := 2�. Like in the
proof of Proposition 4.19 we have that c ≤ (1 + ε)p2 . Assume on the contrary
that there is a template schedule S for I in which each task is delayed at most
α · p + β times. Thus, there can be at most (�+ 2) (α · p+ β) edges on which

95

CHAPTER 4. PERIODIC PACKET ROUTING

packets are delayed. Since the graph G has (2�−1)(�+2)(α ·p+β)+1 edges, by
the pigeonhole principle there must be 2� consecutive edges on which no packet
is delayed. Thus, the schedule S is a direct schedule on this subpath. However,
with a similar reasoning as in the proof of Proposition 4.19 we conclude that
this is impossible.

In Theorem 4.15 we showed that for instances of the periodic PPRP on
bidirected trees it is NP -hard to decide whether there is a direct template
schedule. Now we prove that this holds also for instances of the PPRP on
undirected trees.

Theorem 4.20. For instances of the strict or sporadic PPRP on undirected
trees it is NP -hard to decide whether there is a direct template schedule.

Proof. This can be shown with a similar reduction as Theorem 4.15. Here, if
a path is used in only one direction, we introduce an artificial task which uses
the path in the opposite direction. This ensures that each path has the same
bandwidth in each direction.

4.4 Global- and Edge-priority Schedules
Now we turn to global-priority and edge-priority schedules in the sporadic set-
ting. We present a global-priority schedule GPRIO(I) and an edge-priority
schedule EPRIO(I). For both schedules we bound the maximal delay for each
task. The bounds guaranteed by these schedules are worse than the limits we
proved for the template schedules in the respective settings. However, with
suitable lower bound instances we show that our two priority schedules are
(almost) best possible. In particular, this shows that in the settings that we
consider template schedules are more powerful than priority schedules.

Later, in Section 4.4.2 we give slightly stronger results for the strict periodic
setting. Our priority schedules require a certain bound on the congestion in
order to guarantee the desired limits. In the strict periodic setting we can relax
these bounds a little. Table 4.2 summarizes the results presented in this section.

First we present a schedule GPRIO(I) for bidirected trees. The schedule
assigns the priorities to the tasks according to their depth. Then we study an
edge-priority schedule EPRIO(I) for directed trees. It is based on GPRIO(I)
but uses a more sophisticated tie-breaking procedure for tasks with the same
depth.

Algorithm GPRIO(I)

1. Sort tasks by depth d (τi)

2. Define τi ≺ τj if and only if d (τi) < d (τj).

3. Ties in the prioritization are broken arbitrarily.

96

4.4. GLOBAL- AND EDGE-PRIORITY SCHEDULES

Now we present the algorithm for computing the schedule GPRIO(I). Let I
be an instance of the sporadic packet routing problem on a bidirected tree. Note
that here we do not yet impose any conditions on the congestion or whether I is
a strict or sporadic instance. (However, when we prove our limits for GPRIO(I)
in Theorems 4.21 and 4.30 we will need a certain bound on c.) We define that
a task τi has a higher priority than a task τj if its peak vertex is closer to the
root than the peak vertex of τj . Formally, τi ≺ τj if and only if d (τi) < d (τj).
This yields a partial order ≺. We complete ≺ to a total order arbitrarily. In
particular, this implies that the prioritization of tasks with the same peak vertex
are chosen arbitrarily.

Theorem 4.21. Let I be a instance of the sporadic PPRP on a bidirected tree
with c ≤ p/3. The schedule GPRIO(I) guarantees a limit of 2c+Di−2 for each
task τi.

We will prove the theorem in the sequel. It is easy to see that there are
instances – even in the strict periodic case – where GPRIO(I) delays a packet
2c − 2 times. We will show later that GPRIO(I) is best possible in the sense
that no global-priority schedule can guarantee a better limit for every task in
every instance.

Algorithm EPRIO(I)

1. Sort tasks by depth d (τi)

2. Define τi ≺ τj if and only if d (τi) < d (τj).

3. Ties in prioritization are broken such that each task is delayed at most
1.5c times in total.

Now we study our edge-priority schedule EPRIO(I) for directed trees. Let I
be an instance of the strict or sporadic packet routing problem on a directed
tree. Again, we do not require a bound on c here in the definition of the
schedule but later in the theorem. We need to define a prioritization for each
arc separately. First, like in GPRIO(I), we define that τ ≺ τ ′ if d(τ) < d(τ ′)
for each arc prioritization. So now we focus on the tie-breaking for tasks τ, τ ′

with d(τ) = d(τ ′). Consider a vertex v. Let e1, ..., er be the ingoing arcs of v
which are up-arcs and let e′1, ..., e

′
s be the outgoing arcs of v which are down-

arcs. Denote by Ev the set of all these arcs. In case that v is not the root vertex
let ē be the remaining arc which is adjacent to v. See Figure 4.5 for a sketch.
We define the prioritization for all tasks with peak vertex v.

We define Tv to be the set of tasks which use v. Let T ′
v be the tasks in Tv

which do not use ē. We compute a minimum path coloring for the paths of
the tasks Tv. Exactly c colors are needed, for details see Section 1.3.1. Assume
that the paths are colored with colors {1, 2, ..., c}. If there is an arc ẽ ∈ Ev

such that more than c/2 paths use both ẽ and ē then we assume w. l. o. g. that
the paths which use ē and ẽ use the colors 1, ...,m if ē is an up-arc and the

97

CHAPTER 4. PERIODIC PACKET ROUTING

.

v

ē

ere1 e′se′1

Figure 4.5: Sketch for the definition of EPRIO(I).

colors c−m+1, ..., c if ē is an down-arc (assuming that there are m such paths).
Note that there can be at most one arc ẽ with this property. Denote by f(τ) the
color of the path of a task τ . Let τ, τ ′ ∈ T ′

v be a pair of tasks. Then, on each
up-arc in the entire tree which is used by τ and τ ′ (not only the up-arcs in Ev)
we define τ ≺ τ ′ if f(τ) < f(τ ′). For each down-arc in the tree we define τ ≺ τ ′

if f(τ) > f(τ ′). Denote by EPRIO(I) the resulting schedule.

Theorem 4.22. Let I be an instance of the sporadic PPRP on a directed tree
with c ≤ 2p/5. The schedule EPRIO(I) guarantees a limit of 3

2c+Di − 1.

We will prove the theorem later. We will also show later that EPRIO(I) is
almost best possible. First, we prove properties of GPRIO(I) and EPRIO(I)
which we need in order to prove Theorems 4.21 and 4.22. First, we analyze the
maximum number of delays which a packet can encounter on its way up (in the
direction of the root). Recall that this is the part of Pi between si and vi.

Lemma 4.23. Let I and Ī be instances of the sporadic PPRP on a bidirected
and directed tree, respectively. In the schedules GPRIO(I) and EPRIO(Ī) a
packet created by a task τi can be delayed at most c− 1 times between si and vi.

Proof. We prove the claim only for GPRIO(I) since for EPRIO(Ī) we can follow
exactly the same argumentation. Consider a packet M created by a task τi and
let e ∈ Pi be the arc on Pi between si and vi which is closest to vr. Since we
are only interested in the behavior of M between si and vi it is sufficient to
consider only the tasks T̃ which use e and whose priority on e is at least as high
as the priority of τi. W. l. o. g. let τ1 ≺ τ2 ≺ ... ≺ τi be these tasks.

We consider the following instance I ′ instead of I. (While doing this we
assume that the timesteps when the respective tasks create new packets remain
the same.) For each task τk let Lk denote the number of arcs on Pk below e.
We replace each path Pk by a path P ′

k which consists (in this order) of

• a new path of length Lk which is used only by τk,

• the arc e, and

• all arcs of Pk above e.

98

4.4. GLOBAL- AND EDGE-PRIORITY SCHEDULES

ee

Figure 4.6: The transformation from I to I ′ in the proof of Lemma 4.23.

See Figure 4.6 for a sketch. In GPRIO(I) and GPRIO(I ′) we use a global
prioritization and all tasks in T̃ use e. Thus, all packets created by tasks in T̃
traverse e in GPRIO(I) at the same timesteps as in GPRIO(I ′). (This can be
shown by an induction which transforms I to I ′ stepwise.)

So now consider e in I ′. All tasks have a period length of p. Before reaching e
no packet is delayed. This implies that the packet M is delayed at most i − 1
times. Since i ≤ c this proves the claim.

Now we focus on the delay of the packets on the way away from the root.

Lemma 4.24. Let I be an instance of the sporadic PPRP on a bidirected tree
with c ≤ p/3. In the schedule GPRIO(I) on the way away from vr each packet
is delayed at most c− 1 times.

Proof. First observe that on the way down a packet is delayed only on the first
down-arc. We prove the claim by induction over the depth of the respective
tasks. First, consider a task τi with d (τi) = 0. Let e = (u, v) be the first down-
arc on Pi. On the way up each packet is delayed at most c−1 times. Thus, two
packets created by τi reach u with a time difference of at least �2p/3
. Since
c ≤ �p/3� in each time interval of length �2p/3
 there are less than c packets
which use e and which have a higher priority than τi. Thus, each packet created
by τi is delayed at most c− 1 times on its way down.

Now assume the claim is true for all tasks τj such d (τi) ≤ m. Consider
a task τi with d (τi) = m + 1. Let again e = (u, v) be the first down-arc
on Pi. From the induction hypothesis we conclude that for each task τj which
has a higher priority than τi on e the following holds: Two packets created
by τj reach u with a time difference of at least �p/3
. Thus, in each interval of
length �p/3
 there are less than c packets which use e and have a higher priority
than τi. Like above, two packets created by τi reach u with a time difference of
at least �2p/3
. Thus, each packet created by τi is delayed at most c− 1 times
on its way down.

99

CHAPTER 4. PERIODIC PACKET ROUTING

Finally, we can proof the limits guaranteed by the schedule GPRIO(I).

Proof of Theorem 4.21: From Lemma 4.23 it follows that packets are delayed
at most c−1 times on their way up. Lemma 4.24 shows that on their way down
they are delayed at most c − 1 times as well. Hence, the schedule GPRIO(I)
guarantees a limit of 2c+Di − 2 for each task τi.

Combining Lemma 4.23 with a similar reasoning as in Lemma 4.24 we can
now prove that EPRIO(I) guarantees a limit of 3

2c+Di − 1 for each task.

Proof of Theorem 4.22: Let τi be a task with peak vertex v. Assume that the
path of τi was colored with color f (τi) when v was considered by the algorithm.
First, we discuss the case that for no arc ẽ ∈ Ev there are more than c/2 paths
which use both ẽ and ē. Then, there are at most c/2+(f (τi)− 1)+(c− f (τi)) =
3c/2−1 tasks which share an arc with Pi and which have a higher priority than τi
on these arcs. We say that such tasks interfere with τi.

Now we discuss the case that there is an arc ẽ ∈ Ev as described above.
If Pi does not use ẽ we can show as above that at most 3c/2− 1 tasks interfere
with τi. Now consider the case that Pi uses ẽ. Due to our assumption on the
coloring, for such tasks there are at most (f (τi)− 1)+ (c− f (τi)) = c− 1 tasks
which interfere with τi.

Since also c ≤ 2p/5 one can show as in Lemma 4.23 that on its way up the
packets of τi are delayed at most c/2+(f (τi)− 1) times. As in Lemma 4.24 one
can show inductively that on the way down each packet created by τi is delayed
at most c−f (τi) times. In the inductive step one uses that two packets created
by the same task have a minimum time difference of 2p/5 and c ≤ 2p/5. We
conclude that each packet is delayed at most 3

2c− 1 times in total.

Here we would like to comment that without a bound on the congestion c
in the schedules GPRIO(I) and EPRIO(I) it might happen that a packet is
delayed more than c − 1 times on its way down. Even more, we will show
in Proposition 4.27 that for any α ≥ 0 there are instances on a directed tree
with c = p where no edge-priority schedule (and hence also no global-priority
schedule) can guarantee a limit of αc+Di for every task τi.

4.4.1 Lower Bounds

Now we prove that the schedules GPRIO(I) and EPRIO(I) are (almost) best
possible for their respective setting. We show that there are instances on di-
rected trees for which no global-priority schedule can guarantee a better limit
than GPRIO(I). Also, we present instances on directed trees for which no edge-
priority schedule can guarantee a better limit than 5

4c+Di − 1 for each task τi
(in comparison, EPRIO(I) guarantees a limit of 3

2c +Di − 1 for each task τi).
Recall that for all our schedules we assumed that the underlying graph is a tree.
We show for a slightly more general graph class that no edge-priority schedule
can guarantee a better limit than Ω (c ·D) for every task. Finally, we show that

100

4.4. GLOBAL- AND EDGE-PRIORITY SCHEDULES

if the tasks have arbitrary period lengths we cannot guarantee any good limits
either, not even when the graph is only a path.

First, we present our lower-bound instances for global-priority schedules on
directed trees (which show that GPRIO(I) is best possible).

Theorem 4.25. For each period length p ∈ N and each congestion c ∈ N there
exists a respective instance of the sporadic PPRP on directed trees for which no
global-priority schedule can guarantee a better limit than 2c+Di − 2.

Proof. Consider a star graph with one vertex vr in the center with c ingoing arcs
E = {e1, ..., ec} and c outgoing arcs E′ = {e′1, ..., e′c}. We introduce c2 tasks.
The path of each task uses one of the arcs in E and one of the arcs in E′ such
that no two tasks use the same two arcs. Denote by I the resulting instance. We
claim that for I no global-priority schedule can guarantee a better limit than
2c = 2c+Di − 2.

Assume we have a global-priority schedule for I. Then, there must be a
task τ which has the lowest priority. Assume w. l. o. g. that τ uses the arcs e1
and e′1. Denote by E1 and E′

1 the other tasks which use e1 and e′1. We consider
a realization in which only τ and the tasks in E1 ∪ E′

1 create packets. Let Mτ

be a packet created by τ . Since we are in the sporadic setting it can happen
that Mτ is delayed once by a packet of every task in E1 and once by a packet
of every task in E′

1. Thus, in this case Mτ needs 2c steps. Hence, the schedule
cannot guarantee a better limit than 2c+Di − 2.

Note that Theorem 4.25 implies the stated lower bound also for global-
priority schedules on bidirected trees (since directed trees are a subclass of
bidirected trees). Also note that in the instance described in Theorem 4.25
there can be a task which is delayed 2c − 2 times by the schedule GPRIO(I),
even in the strict periodic setting (due to bad tie-breaking decisions).

Next, we present our lower-bound instances for edge-priority schedules on
directed trees. They show that EPRIO(I) is almost best possible.

Theorem 4.26. For each period length p and each even congestion c there
exist instances of the sporadic PPRP on directed trees for which no edge-priority
schedule can guarantee a better limit than 5

4c+Di − 1.

Proof. Consider a very long path along which c/2 tasks send their packets.
Denote by Î these tasks. Assume on the contrary that we have a schedule S
which guarantees a better limit than 5

4c+Di − 1 for each task τi.
At every other vertex with degree 2 we introduce a gadget. Figure 4.7

shows the gadget: We have a star with the vertices v1, v2, v3, v4, vr and the
arcs (v1, vr) , (v2, vr) , (vr, v3) , (vr, v4). We introduce c/2 tasks with the path
(v2, vr, v3), c/2 tasks with the path (v1, vr, v3), and c/2 tasks with the path
(v1, vr, v4). We denote these tasks by I1, I2, and I3, respectively. We introduce
5
8c

2 + 1 of these gadgets. For every task τ̂ ∈ Î there can be at most 5
4c gadgets

in which a task τ /∈ Î has a higher priority than τ̂ . Since |Î| = c/2 by the
pigeonhole principle there must be a gadget in which every task in Î has a

101

CHAPTER 4. PERIODIC PACKET ROUTING

.
v2 v4

I3 I2

I1

v3

v1

Î

e2
vr

e4

e1

e3

Figure 4.7: The gadget used in the proof of Theorem 4.26.

higher priority than each task not in Î which uses this gadget. We prove in the
sequel that depending on the release time of the packets in this gadget a packet
created by one of the tasks in I1 ∪ I2 ∪ I3 needs at least 5

4c+ 1 steps.
First, consider the arc e1 = (v1, vr). Denote by τ (1) ∈ I1 the task in I1 which

has the lowest priority among all tasks in I1. Denote by x the number of tasks
in I2 which have a higher priority than τ (1) and by y the number of tasks in
I2 which have a lower priority than τ (1). Now consider the arc e3 = (vr, v3).
Let τ (3) ∈ I3 be the task in I3 with lowest priority. We define x′ to be the number
of tasks in I2 with higher priority than τ (3) and by y′ the number of tasks in I2
with lower priority than τ (3) on e3. Observe that x+ y = c/2 = |I2| = x′ + y′.

Now we distinguish several cases: First assume that x ≥ y. In particular,
this implies that x ≥ c/4. Then there is a realization in which a packet M (1) of
τ (1) is delayed once by a packet from each task in Î∪I1\

{
τ (1)

}
and once by each

of the x tasks in I2 which have a higher priority on e1 than τ (1). Thus, M (1) is
delayed c

2 + c
2 + x− 1 ≥ 5

4c− 1 times. With a similar reasoning we can handle
the case that x′ ≥ y′. So now assume that x < y and x′ < y′.

If x′ < y then there are tasks I ′2 ⊆ I2 which have a lower priority than τ (1)

on e1 and a lower priority than τ (3) on e3. Note that |I ′2| ≥ y − x′. Let task
τ ′(2) ∈ I ′2 be the task which has the lowest priority on e1 among all tasks in I ′2.
There is a realization in which a packet of τ ′(2) is delayed on e1 once by each
of the x tasks in I2 with higher priority than τ (1), once by each task in I1, and
once by each task in I ′2 \ {τ ′(2)}, and on e3 once by each task in I3. In total,
this gives

x+ c/2 + |I ′2| − 1 + c/2 ≥ c+ x+ y − x′ − 1

=
3

2
c− x′ − 1

≥ 5

4
c− 1

delays where the last inequality follows since x′ + y′ = c/2 and x′ < y′ and
hence x′ < c/4. We can handle the case that x < y′ similarly. So now assume

102

4.4. GLOBAL- AND EDGE-PRIORITY SCHEDULES

that x ≥ y′ and x′ ≥ y. However, this is a contradiction since x′ ≥ y > x ≥
y′ > x′.

For our schedules GPRIO(I) and EPRIO(I) we required a bound on the
congestion of c ≤ p/3 and c ≤ 2p/5, respectively. This is stricter than the
general condition c ≤ p. Now we show that any global-priority or edge-priority
schedule on a directed tree needs to require such a bound since otherwise it
cannot guarantee any finite limit for each task.

Proposition 4.27. Let α > 0. There is an instance Iα = (G, T, p) of the
sporadic PPRP on a directed tree G with c = p such that for any edge-priority
schedule ES there is a task τ ∈ T for which ES cannot guarantee a limit k with
k ≤ α · c+Di.

Proof. We describe how to construct the instance Iα. We introduce sets of
tasks Ti. Each set Ti contains p/2 tasks which all have the same path. Let T1

be the first of these sets. All tasks in T1 are scheduled on a very long path P1.
For each arc e on P1, there is a set of p/2 tasks Te which use the arc e but no
other arc on P1. We assume that P1 is so long that there must be an arc e
such that all tasks in T1 have higher priority than the tasks in Te (otherwise
we could define creation times for the packets such that a packet from a task
in T1 is delayed α · c times). We define T2 := Te. We extend the path P2 of
the tasks in T2 (actually, we do the following procedure for each arc ē ∈ P1 but
for our analysis later only the arc e will be important). For each arc e′ on P2

we introduce c/2 tasks Te′ which use e′ but no other arc no P2. Like above, we
define P2 to be so long that there must be an arc e′ ∈ P2 such that the tasks T2

all have a higher priority than the tasks Te′ . By continuing inductively, for each
edge-priority schedule ES for Iα we obtain sets T1, ..., T� with c/2 tasks each
such that for each i we have that the tasks Ti ∪Ti+1 share an arc on which each
tasks in Ti has a higher priority than any task in Ti+1. In the sequel, we show
that there are creation times for the packets such in a set Tj there is a task
whose packets are delayed at least αc times.

We denote by a pack of packets a set of p/2 packets which were all created
at the same time by the tasks in a set Ti. We let T1 create a pack M(1)

1 and
we let T2 create two packs M(2)

1 and M(2)
2 . We define their creation times such

that the pack M(1)
1 delays the pack M(2)

1 and thus the packets of packs M(2)
1

and M(2)
2 move in a row (after the delay). For induction, assume that Ti

has created i packs M(i)
1 , ...,M(i)

i whose packets move in a row. We let Ti+1

create i+1 packs M(i+1)
1 , ...,M(i+1)

i+1 which collide with the packs M(i)
1 , ...,M(i)

i .
Since the tasks in Ti all have a higher priority than the tasks in Ti+1 this
results in M(i+1)

1 , ...,M(i+1)
i+1 all moving in a row after the delay. By continuing

inductively, we obtain that the tasks in T2α+1 create 2α + 1 packs (all moving
in a row) with (2α + 1) · c

2 packets in total. Thus, by choosing the creation
times appropriately, we can enforce that a packet M created by a task in T2α+2

is delayed by all these packets. Hence, M is delayed (2α + 1) · c
2 > α · c times.

This implies that ES cannot guarantee a limit of α · c+D2α+2 for T2α+2.

103

CHAPTER 4. PERIODIC PACKET ROUTING

Note that Proposition 4.27 implies the same statement for global-priority
schedules (since they are special cases of edge-priority schedules).

In all our algorithms for priority schedules we considered only trees as the
underlying network topology. This might look very restrictive at first glance.
However, in the following theorem we show that one cannot prove any similar
results for more general graph classes, not even for the very simple class of chain
graphs. We define a chain graph to be a path with possibly parallel edges. We
assume that in this setting the paths of the tasks are given as part of the input
(since they are not uniquely defined like in trees).

Theorem 4.28. For any D > 0 and any c, p ∈ N there is an instance I =
(G, T, p) of the sporadic PPRP with congestion c and with given paths on a
chain graph G such that

• Di = D for each task τi ∈ T ,

• all tasks have the same start and the same destination vertex, and

• for every edge-priority schedule there is at least one task τ ∈ T which has
a limit in Ω (c ·D).

Proof. The instance I is constructed as follows. We introduce cD tasks. Intu-
itively, they can be visualized in a D-dimensional hypercube with edge-length c.
We identify each task τ(k0, k1, ..., kD−1) by integers ki ∈ {0, 1, ..., c − 1} for
i ∈ {0, ..., D − 1}. Our graph is a chain graph with vertices v0, ..., vD and cD−1

parallel edges connecting each pair of adjacent vertices vj , vj+1. The paths
are chosen such that on the connection between the vertices vj , vj+1 two tasks
τ(k0, k1, ..., kD−1), τ(k

′
0, k

′
1, ..., k

′
D−1) share an edge if and only if ki = k′i for all

i ∈ {0, 1, ..., j − 1, j + 1, ..., D− 1}. We note that each edge is used by exactly c
tasks.

Assume that there is an edge-priority schedule for I. For each task τ ∈ T
let dτ,� denote the number of tasks which use the same edge as τ between v�
and v�+1 and which have a higher priority on that edge. We calculate that

D−1∑
�=0

∑
τ∈T

dτ,� = DcD−1
c−1∑
k=0

k = DcD
c− 1

2
.

Hence, there must be one task τ∗ ∈ T such that
∑D−1

�=0 dτ,� ≥ D c−1
2 . We

consider the following realization: The task τ∗ creates packets and any other
task τ ′ creates packets if and only if it shares an edge with τ∗ and on this edge
τ ′ has a higher priority than τ∗. We call the latter tasks the blocking tasks. By
definition of I we note that if two blocking tasks share an edge then this edge
is used by τ∗ as well. In the realization we can find suitable timesteps for the
creation of the packets such that a packet created by τ∗ is delayed D c−1

2 times.
Hence, the limit guaranteed for τ∗ has to be at least D c−1

2 ∈ Ω(c ·D).

Finally, we prove that if the tasks have arbitrary period lengths pi, in
general we cannot obtain schedules guaranteeing good limits for all tasks like

104

4.4. GLOBAL- AND EDGE-PRIORITY SCHEDULES

in EPRIO(I). In an instance with arbitrary period lengths, each task τi has
a period length pi and we assume that in each time interval of length pi the
task τi creates at most one packet. The rest of the problem definition remains
unchanged.

Theorem 4.29. For every α, ε > 0 there is an instance I = (G, T) of the
sporadic PPRP with arbitrary period lengths on a directed path such that for any
edge-periodic schedule there is a task τi ∈ T whose limit is at least α · pi +Di.
Furthermore, for each edge e it holds that

∑
τi∈Te

1
pi

≤ 1
α + ε.

Proof. We define k := α5

ε +1 and assume w. l. o. g. that ε is chosen such that k is
an integer. We define G to be a path with k vertices v0, v1, ..., vk. There are k big
tasks τi (i = 0, ..., k − 1) with start vertex si = vi, destination vertex ti = vi+1,
and period length pi = α. Also, we define a set of α2 identical small tasks, all
with start vertex sj = v0, destination vertex tj = vk, and period length pj =

α2

ε
(with j = k, ..., k+α2−1). We claim that for each edge-periodic schedule there is
a task τi ∈ T whose limit is greater than α·pi+Di. Assume on the contrary that
there is an edge-periodic schedule where this is not true. In this schedule, for
each small task τj ∈ T there can be at most α · α2

ε edges on which the respective
big task has a higher priority than τj . Since k = α5

ε +1 = α · α2

ε ·α2+1 and there
are α2 small tasks, there must be one big task τi which has a lower priority than
all the small tasks on its edge. Hence, the limit of τi is at least α2+1 = α·pi+Di.
Finally, for each edge e we have that

∑
τi∈Te

1
pi

= 1
α + α2 · ε

α2 = 1
α + ε.

Note that the value
∑

τi∈Te

1
pi

in the theorem can be understood as a gen-
eralized notion of congestion. Hence, no bound on this generalized congestion
could help to guarantee good limits for all tasks.

4.4.2 Strict Periodic Setting
In this section we study priority schedules for the strict periodic packet routing
problem. Since here each task creates a new packet exactly at timesteps t = i ·p
for every i ∈ N0, we have more control than in the sporadic setting. We use this
control to weaken the bounds on the congestion which we require for GPRIO(I)
and EPRIO(I) to guarantee the respective limits. In particular, we show that
in the strict periodic setting the two schedules guarantee the bounds stated in
Theorems 4.21 and 4.22 already if c ≤ p/2 (and not only if c ≤ p/3 or c ≤ 2p/5,
respectively).

First, we give our theorems for GPRIO(I) and EPRIO(I) in the strict peri-
odic setting.

Theorem 4.30. Let I be an instance of the strict PPRP on a bidirected tree
with c ≤ p/2. Then GPRIO(I) guarantees a limit of 2c+Di−2 for each task τi.

Theorem 4.31. Let I be an instance of the strict PPRP on a directed tree
with c ≤ p/2. Then EPRIO(I) guarantees a limit of 3

2c + Di − 1 for each
task τi.

105

CHAPTER 4. PERIODIC PACKET ROUTING

Before we can prove the two theorems, we need to study the behavior of pack-
ets on their way up in GPRIO(I) and EPRIO(I). First, we show in Lemma 4.32
that if an up-arc e is used by a packet M at a time t, then at time t+p the arc e
is used by a packet M ′ whose priority is not lower than the priority of M . This
will allow us to prove a monotonicity property in the subsequent Lemma 4.33:
We will show that any packet created by a task τ will suffer at least as much de-
lay on its way up as any packet which was created by τ before. This additional
structure in the delay of packets allows us to prove Theorems 4.30 and 4.31
afterwards.

Lemma 4.32. Let I and Ī be instances of the strict PPRP on a bidirected tree
and a directed tree, respectively. If in GPRIO(I) or EPRIO(Ī) an up-arc e is
used by a packet created by a task τi at time t then at time t+ p it is used by a
packet created by a task τj with τj � τi.

Proof. In order to prove the claim of the lemma, we show the following even
stronger statement. Fix an arc e and a point in time t. Let M1 � M2 � ... � Mk

be the packets which wait to use e at time t (we use the short notation M � M ′

for two packets M,M ′ if for their corresponding tasks τ, τ ′ it holds that τ � τ ′).
Denote by M ′

1 � M ′
2 � ... � M ′

k′ the packets which wait to use e at time t+ p.
We show that k′ ≥ k and M ′

i � Mi for all i with 1 ≤ i ≤ k. Observe that this
statement implies the statement of the lemma since M1 and M ′

1 traverse e at
times t and t+ p, respectively.

W. l. o. g. we assume that the first p arcs of the path of each task τ are only
used by τ . Note that on these arcs the claim holds trivially. In the sequel, we
show the claim for the other arcs.

For an up-arc e = (u, v) we define d(e) := d(u). We prove the claim by
induction over d(e). If u is a leaf then the claim is clear. So now assume
that the claim holds for all up-arcs e′ with d(e′) ≥ k. Consider an up-arc e
with d(e) = k − 1.

We show the claim by induction over t. The arc e is not used before
time t = p (since the first p arcs of each path are only used by one task and we
now show the claim for the remaining arcs). Thus, the claim trivially holds for
all timesteps t < p. So now assume that there is a value t∗ such that the claim
holds for e for all timesteps t ≤ t∗. We need to show that the claim then also
holds for timestep t = t∗+1. We compare the waiting packets at timestep t∗+1
with the corresponding packets at the timestep t∗ + p+1. As above, denote by
M1 � M2 � ... � Mk and M ′

1 � M ′
2 � ... � M ′

k′ the packets waiting for using e
at times t∗ and t∗+p, respectively. Then, the packets M1 and M ′

1, respectively,
traverse e.

Let e1, ..., e� denote the ingoing arcs of u. Denote by M̄1 � M̄2 � ... � M̄m

and M̄ ′
1 � M̄ ′

2 � ... � M̄ ′
m′ the packets which traverse e1, ..., e� at times t∗ and

t∗ + p, respectively, and which need to use e. Note that � does not necessarily
equal m or m′ since it could be that some arcs ei are not used by any packet
at time t∗. Since we assumed the claim to be true for all arcs e′ with d(e′) ≥ k
we have that m′ ≥ m and M̄ ′

i � M̄i for all i with 1 ≤ i ≤ m. Recall that we
prioritized the tasks by their depth and that here we consider only up-arcs. In

106

4.4. GLOBAL- AND EDGE-PRIORITY SCHEDULES

particular, this implies that if M̄i needs to use e then so does M̄ ′
i . Thus, at

times t∗ + 1 and t∗ + p+ 1 the packets M2, ...,Mk, M̄1, ..., M̄m and the packets
M ′

2, ...,M
′
k′ , M̄1, ..., M̄m′ wait to use e, respectively. From the above it follows

that M ′
i � Mi and M̄ ′

i � M̄ i for the respective values i. Hence, there is a
one-one map f which maps each packet M waiting at time t∗ + 1 to a packet
f(M) waiting at time t∗+p+1 such that f(M) � M . Therefore, if we consider
the packets waiting at time t∗ + 1 and one by one exchange each packet M by
the packet f(M), we observe that the claim holds after each exchange. This
finishes the inductive step.

Next, we show the monotonicity property for the delay of the packets which
are created by the same task.

Lemma 4.33. Let I and Ī be instances of the strict PPRP on a bidirected tree
and a directed tree, respectively. If in GPRIO(I) or EPRIO(Ī) a packet M cre-
ated by a task τi is delayed k times before traversing an up-arc e ∈ Pi then each
packet M ′ created by τi after M is delayed at least k times before traversing e.

Proof. We show the claim by induction over the arcs of Pi = (e1, e2, ..., em).
In order to simplify the proof we assume w. l. o. g. that e1 is used only by τi.
Thus, for e1 the claim is obvious. So now assume that the claim holds for all
arcs e1, ..., e�. We need to show that it also holds for e�+1. Consider the two
packets M and M ′ as defined in the lemma statement. Assume that M was
delayed k� times before traversing e� and k�+1 times before traversing e�+1.
This implies that during the time interval [j · p+ k� + �, j · p+ k�+1 + �) the
arc e�+1 is used by packets created by tasks with higher priority than τi. Due
to Lemma 4.32 this implies that the same statement holds for any interval
[j′ · p+ k� + �, j′ · p+ k�+1 + �) with j′ ≥ j. From the induction hypothesis we
conclude that M ′ is delayed at least k� times before traversing e�. We conclude
that also M ′ is delayed at least k�+1 times before traversing e�+1.

Now we can prove our bounds for GPRIO(I) and EPRIO(I) in the strict
periodic setting, given that c ≤ p/2. We begin with the bound for GPRIO(I).

Proof of Theorem 4.30: Consider a task τi with peak vertex v. From Lemma 4.33
we conclude that two packets created by τi have a minimum time distance of c
when reaching v (without requiring a bound for c). With similar arguments as
in Theorem 4.21 we can prove that then on the way away from vr each packet is
delayed no more than c− 1 times. The induction hypothesis is that on the way
away from vr two packets created by the same task have a minimum distance
of p− c ≥ p/2. Thus, in the strict periodic setting GPRIO(I) guarantees a limit
of 2c+Di − 2 for each task τi if c ≤ p/2.

Similarly, we can prove the bound for EPRIO(I).

Proof of Theorem 4.31: Consider a task τi with peak vertex v. From Lemma 4.33
we conclude that two packets created by τi have a minimum time distance of c
when reaching v (again without requiring a bound for c). We can argue that

107

CHAPTER 4. PERIODIC PACKET ROUTING

then on the way down each packet is delayed no more than c − 1 times and
hence in the strict periodic setting EPRIO(I) guarantees a limit of 3

2c+Di − 1
for each task τi if c ≤ p/2.

4.5 Imitation Theorems

In the previous sections we compared the power of template schedules and
global-priority and edge-priority schedules. We did this by giving algorithms
for computing schedules of the respective types and proving lower bounds.

In this section we follow a more direct approach to compare the capabilities
of the two scheduling paradigms. We prove that any global-priority schedule on
any graph can be imitated by a template schedule. Also, we show that any edge-
priority schedule on a bidirected tree can be imitated by a template schedule.
With “imitate” we mean that we can find a template schedule which guarantees
the same limits for each task as the respective priority schedule in the strict
periodic case and almost the same limits in the sporadic case. This shows that
template schedules are at least as powerful as the respective priority schedules
in the studies settings.

We prove these results by showing that in the strict-periodic setting global-
priority schedules on general graphs and edge-priority schedules on bidirected
trees behave periodically after a certain time (and thus operate like template
schedules). This allows us to construct template schedules with the same peri-
odic behavior. Finally, we show that there are edge-priority schedules on cycle
graphs in the strict-periodic setting which never behave periodically. Thus, they
cannot directly be imitated by template schedules.

4.5.1 Template Schedules vs. Global-Priority Schedules

First, we show that on general graphs template schedules can imitate global-
priority schedule. Given an instance I of the strict periodic packet routing
problem on an arbitrary graph. Let S be a global-priority schedule for I. We
show how to construct a template schedule St which imitates the schedule S.
First, we prove that S behaves periodically after a certain time.

Lemma 4.34. Let I be an instance of the strict PPRP on an arbitrary graph.
Let S be a global-priority schedule for I. For each task τi and each arc e ∈ Pi

there is a timestep ki and an offset ae,i such that for all timesteps k ≥ ki we
have that

• S transports a packet of τi over e if k ≡ ae,i mod p and

• S does not transport a packet of τi over e if k �≡ ae,i mod p.

Proof. We prove the claim by induction over the tasks. Assume the tasks are
ordered such that τ1 ≺S τ2 ≺S ... ≺S τ|T |. W. l. o. g. we assume that the first
arc of the path of each task is only used by this one task. For the task τ1 we

108

4.5. IMITATION THEOREMS

can easily find a value k1 (e. g., k1 := |P1|) and suitable offsets such that the
claim of the lemma holds.

We assume for the induction hypothesis that for all tasks τ1, ..., τm we have
values ki and suitable time offsets with the claimed properties. Consider the
task τm+1. We show the claim for τm+1 by another induction over the arcs
of Pm+1 = (e1, ..., es). For e1 the claim is trivial (since by assumption only
τm+1 uses this arc). Assume inductively that we have found a value krm+1 such
that for all ej with j ≤ r we have found offsets as stated in the lemma which
hold for all timesteps k with k ≥ krm+1.

Consider the arc er+1. We define k̃ := max
{
k1, ..., km, krm+1

}
. First assume

that there are p−1 other tasks which use er+1 and which have a higher priority
than τm+1 in S. Then we define kr+1

m+1 := k̃ and aer+1,m+1 is defined such that
aer+1,m+1 �= aer+1,i′ for all tasks τi′ which also use er+1. Note that in this case
it could be that at time k̃ a certain number of packets created by τm+1 wait for
using er+1. Then, this number will not decrease in the long run since in each
time interval of length p one packet of τm+1 will traverse er+1 and a new one
will arrive.

Now assume that on er+1 there are at most p− 2 tasks which have a higher
priority than τm+1. Then, from time k̃ on we know from the induction hypoth-
esis that exactly every p timesteps a new packet from τm+1 arrives and needs to
use er+1. However, there might be some other packets created by τm+1 waiting
to use er+1 which could not use er+1 yet. During the time interval

[
0, k̃

]
ex-

actly
⌊
k̃
p

⌋
packets were created by τm+1. At least two packets created by τm+1

can use er+1 in each time interval [k̃+ v · p, k̃+ (v + 1) · p− 1], for v ∈ N. Thus,
if we define kr+1

m+1 := 2k̃ we can find a suitable offset aer+1,m+1 which satisfies
the statement in the lemma. Finally, we define km+1 := ksm+1.

Now we can design a template schedule St which emulates S and thus guar-
antees the same limits as S.

Theorem 4.35. Let I be an instance of the strict PPRP on an arbitrary graph.
For each global-priority schedule S for I there is a template schedule St which
guarantees the same limit as S for each task.

Proof. We construct the template schedule St from the offsets which are given
by Lemma 4.34. Consider a task τi. The lemma implies that all packets created
by τi after timestep ki cannot reach their respective destination faster in S than
in St.

Corollary 4.36. Let I = (G, T, p) be an instance of the sporadic PPRP on an
arbitrary graph G. Let S be a global-priority schedule for I which guarantees
a limit of ki for each task τi. There is a template schedule which guarantees a
limit of ki + p for each task τi.

Note that for the sporadic setting we have the additive value p in the above
corollary. This comes from the fact that in the sporadic setting a newly created

109

CHAPTER 4. PERIODIC PACKET ROUTING

packet might just “miss” its timeslot to use its first edge in the template schedule.
However, in a priority schedule the packet might not need to wait at all.

4.5.2 Template Schedules vs. Edge-Priority Schedules

We prove that on bidirected trees template schedules can imitate edge-priority
schedules. After that, we show that on more general graph classes than trees
edge-priority schedules do not necessarily behave periodically. Hence, they can-
not directly be emulated by template schedules.

Given an instance I of the strict periodic periodic packet routing problem on
a bidirected tree G. Let S be an edge-priority schedule for I. We show how to
construct a template schedule St which guarantees the same limits for the tasks
as S. As in Lemma 4.34 we show that S behaves periodically after a certain
time.

Since our tree is bidirected here we will interpret each connection as two
directed arcs. We assign each arc a level. For an arc e = (u, v) which is oriented
away from vr we define level(e) to be the distance between vr and v. For an
arc e = (u, v) which is oriented towards vr we define level(e) to be the distance
between u and vr multiplied by -1. Figure 4.8 shows a sketch which yields some
intuition for the definition. Note that if an arc e is the antiparallel arc to an
arc e′ then level(e) = −level(e′). Moreover, there is no arc e with level(e) = 0.

Lemma 4.37. Let I be an instance of the strict PPRP on a bidirected tree.
Let S be an edge-priority schedule for I. For each arc e ∈ Pi and each task τi
there is a timestep ke and an offset ae,i such that for all timesteps k ≥ ke we
have that

• S transports a packet of τi over e if k ≡ ae,i mod p and

• S does not transports a packet of τi over e if k �≡ ae,i mod p.

Proof. We assume w. l. o. g. that the first arc on the path of each task is used
only by this one task. We prove the lemma by induction over the levels of the
arcs, starting with the arcs in the level with lowest index. Let e be such an arc.
Due to our assumption above there is exactly one task τi which uses e and thus
we can choose ke = 0 and ae,i = 0.

Now assume that by induction the claim is true for all arcs e with level(e) ≤ m.
Now let e = (u, v) be an arc with level(e) = m + 1. If u is a leaf then there
can be at most one task using e. The claim is then shown as in the base
case. So now assume that u is not a leaf. Let e1, ..., es denote all ingoing
arcs of u. Due to the induction hypothesis the claim is true for each of these
arcs. Let k̃ := max {ke1 , ..., kes}. Assume w. l. o. g. that e is used by the tasks
Te := {τ1, ..., τr} with the priority order τ1 ≺ τ2 ≺ ... ≺ τr. We show the claim
by induction over these tasks. Since τ1 has highest priority among the tasks in Te

there is an offset ae,1 with the properties stated above for all k with k ≥ k̃ =: ke1.
Assume for induction that we have such offsets for all tasks τi ∈ Te with i ≤ m
such that the claim holds for all timesteps k ≥ kem. Now consider the task τm+1.

110

4.5. IMITATION THEOREMS

v4

v2

v5

v6 v3
v1 vr

v4 v4

vr v1 v6

v5

1

2

2

3

−1

−3

−3

−3 v2v2

v3 v3

v5

v6 v1

3
−2

3−2

Figure 4.8: The lower figure depicts the levels of the arcs of the tree above.
Note that in the lower figure all vertices (but vr) appear twice.

111

CHAPTER 4. PERIODIC PACKET ROUTING

If m+1 = p then all other tasks in Te have a higher priority and there is only one
offset ae,m+1 ∈ {0, ..., p− 1} left for τm+1. Thus, the lemma statement holds
with ae,m+1 for all timesteps k ≥ kem+1 := kem. Now assume that m + 1 < p.
Then, in each interval [kem + i · p, kem + (i+ 1) · p− 1] (for all i ∈ N) at least two
packets created by τm+1 can use e. In the first kem timesteps

⌊
ke
m

p

⌋
packets were

created by τm+1. With the induction hypothesis we conclude that there is an
offset ae,m+1 such that the lemma holds for all timesteps k ≥ kem+1 := 2kem.
Finally, we define ke := maxi k

e
i .

Theorem 4.38. Let I be an instance of the strict PPRP on a bidirected tree.
For each edge-priority schedule S for I there is a template schedule St which
guarantees the same limit for each task as S.

Proof. Follows from Lemma 4.37 (similar proof as for Theorem 4.35).

Corollary 4.39. Let I = (G, T, p) be an instance of the sporadic PPRP on a
bidirected tree G. Let S be an edge-priority schedule for I which guarantees a
limit of ki for each task τi. There is a template schedule which guarantees a
limit of ki + p for each task τi.

Now we investigate whether edge-priority schedules on more general graph
classes can be imitated by template schedules. In the following theorem we show
that there are edge-priority schedules for the strict PPRP on a cycle graph which
do not behave periodically after any point in time. Hence, we cannot prove a
lemma similar to Lemma 4.34 or Lemma 4.37 for this setting. In particular, this
implies that the schedule cannot be directly emulated by a template schedule.

Theorem 4.40. There is an instance I of the strict periodic PPRP on a cycle
graph and an edge-priority schedule S for I with the following property: there
is no timestep t such that there is a template schedule for I which is identical
to S after time t.

Proof. The instance I is depicted in Figure 4.9: we have a cycle graph with
four vertices v1, v2, v3, v4 and two tasks τ1, τ2 with P1 = (v1, v2, v3, v4) and
P2 = (v3, v4, v1, v2). We define p := 2. In the schedule S the task τ1 has a
higher priority than τ2 on the arc (v3, v4). The opposite prioritization holds on
the arc (v1, v2).

Assume on the contrary that there is a time t such that there is a template
schedule St which behaves identically to S after time t. Since p = 2 it suffices to
describe St by specifying whether a task uses an arc at even or odd timesteps.
We distinguish two cases: First assume that the arc (v2, v3) is used by τ1 at odd
timesteps. Since the construction is symmetric, this implies that the arc (v4, v1)
is used by the task τ2 at odd timesteps. Due to the definition of S this implies
that τ1 uses the arc (v3, v4) at even timesteps and thus, every packet of τ2 is
delayed once in v3. However, this implies that τ2 uses the arc (v4, v1) at even
timesteps which is a contradiction. Now we assume that the arc (v2, v3) is used
by τ1 at even timesteps. By symmetry, this implies that (v4, v1) is used by τ2 at

112

4.6. CONCLUSION

v1

τ2

τ1

v4

v2 v3

Figure 4.9: The instance I described in the proof of Theorem 4.40.

even timesteps. Hence, τ2 uses (v1, v2) at odd timesteps. We conclude that τ1
uses (v2, v3) at odd timesteps which is a contradiction. Thus, there can be no
template schedule for I which is identical to S after any time t.

4.6 Conclusion
In this chapter we studied the periodic packet routing problem. In particular, we
compared priority schedules and template schedules. Template schedules have
proven to be more powerful than priority schedules. Hence, for further research
for proving better limits of periodic schedules, template schedules seem to be
the right paradigm.

For directed trees, there are template schedules which guarantee a limit
of c+Di − 1. This is best possible. However, for bidirected trees it is not clear
to us whether our bound of 2c−c

(
1
2

)	diam(G)/2
−1
+Di−1 is already best possible

or whether it can be improved further. Another interesting line of research would
be template schedules with arbitrary period lengths on directed or bidirected
trees. In contrast, recall that we showed that edge-priority schedules cannot
guarantee a limit of the form α · pi + Di for every task τi and any α > 0,
even on a directed path (where pi equals the period length of τi). However,
template schedules have this ability, due to the result by Andrews et al. [5].
Even for general graphs, they generalized the result by Leighton et al. [65] to
the periodic packet routing problem, guaranteeing a limit of O(pi+Di) for each
task τi (expressed in our notation).

Our results presented in Chapter 2 give a bound 23.4(C +D) for the static
setting. The bound of O(pi + Di) in the periodic setting hides a very large
constant. Therefore, it would be interesting to see what constants in front
of (pi+Di) can be obtained in the periodic case. Additionally, we believe that a
lot of structural properties even for the static case are not yet fully understood.
In particular, all known algorithms and bounds for general graphs highly rely
on the Lovász Local Lemma. Since it is very general, it cannot exploit the entire
structure of the underlying problem. Hence, we believe that there is space for
further insights in the static setting which can also be very beneficial for the
periodic setting.

113

Part II

Scheduling

Chapter 5

Increasing Speed Scheduling
and Flow Scheduling

5.1 Introduction

Two corner stones of discrete optimization are network flows and scheduling.
Flows model the movement of particles through a network. The well-studied
flows over time even model varying flow rates over some time horizon. In
scheduling, one is interested in computing a plan when certain actions (jobs) are
carried out by certain entities (machines). Many problems have a flow as well
as a scheduling aspect. For instance, a natural problem arising in computer net-
works is the packet routing problem studied in Part I without the given paths
for the packets. There, one has to compute paths for the packets which can
be understood as a static flow. Also, one needs to compute the actual routing
schedule for the packets. There are also other examples in logistics where flows
and scheduling interact. For instance, consider the container terminal of a mod-
ern harbor where containers are carried from the storage area to the loading
cranes by automatically guided vehicles (see [45]).

Individually, network flows and scheduling are widely studied. However, the
interaction of the two in a combined model is not well-understood yet. In par-
ticular, on general graphs the only known constant factor approximation for
packet routing without given paths due to Srinivasan and Teo [101] decouples
the scheduling from the routing aspect. It first computes the paths for the pack-
ets such that C+D is small. Then, it invokes the algorithm by Leighton, Maggs,
and Richa [66] to compute a schedule of length O(C +D). In particular, in the
scheduling part the algorithm does not take advantage of the freedom to choose
the paths. Also, real-world applications like the mentioned harbor usually sur-
pass the algorithmic means developed separately for scheduling and flows. In
this chapter we take a first step towards joint combinatorial optimization of
flows and schedules.

117

CHAPTER 5. INCREASING SPEED SCHEDULING

with static transit times and static capacities on the edges, a source s and a
sink t. Also, consider a demand which is subdivided into k jobs, each charac-
terized by its own flow demand and weight. We want to compute a flow over
time which transports the demand from s to t. The objective is to minimize
the sum of weighted completion times. The completion time of a job is the time
when the entire demand of the job has reached the sink t. We call this the flow
scheduling problem. We show a strong connection of the problem to the concept
of earliest-arrival-flows (EAFs). Also, we show that the scheduling aspect of
the problem reduces to the increasing speed scheduling problem (ISS) which to
our knowledge has not been studied in its own right so far. In this problem, we
are given a set of jobs with lengths and weights and a machine whose speed is
not constant but might increase over time. The goal is to find a schedule which
minimizes the sum of weighted completion time.

The results presented in this chapter are joint work with Sebastian Stiller [102].

5.1.1 Definitions
Before we can define the two problem studied in this chapter – the flow schedul-
ing problem and the increasing speed scheduling problem – we need to define
flows over time. First, we define single-commodity flows over time. Based on
this, we then define the multicommodity flows over time which are important
for this chapter.

Definition 5.1 (s-t-flow over time [99]). Let G = (V,E) be a directed graph
with a capacity ue and a transit time τe for each arc e ∈ E. Let T be a time
horizon. Let fe : [0, T) → R≥0 be a Lebesgue-integrable function for each arc
e ∈ E. We call the family of functions f a flow over time if

• fe(θ) = 0 for all θ ≥ T − τe,

• fe(θ) ≤ ue for each arc e ∈ E and all θ ∈ [0, T), and

• for the excess exf (v, θ) for node v at time θ defined by

exf (v, θ) :=
∑

e∈δ−(v)

ˆ θ−τe

0

fe(ξ)dξ −
∑

e∈δ+(v)

ˆ θ

0

fe(ξ)dξ

it holds that exf (v, θ) ≥ 0 for each v ∈ V \{s} and all θ ∈ [0, T). Moreover,
exf (v, T) = 0 for each v ∈ V \ {s, t}.

Definition 5.2 (Multicommodity flow over time). Let G = (V,E) be a directed
graph with a capacity ue and a transit time τe for each arc e ∈ E. Let T be a time
horizon. Assume we are given a set of commodities. Let f i

e : [0, T) → R≥0 be an
s-t-flow over time for each commodity i. If additionally

∑
i f

i
e(θ) ≤ ue for each

arc e ∈ E and all θ ∈ [0, T) we call the family of functions f a multicommodity
flow over time.

Now we are ready to define the flow scheduling problem.

118

We study the following setting. Given a dynamic network, i. e., a network

5.1. INTRODUCTION

Definition 5.3 (Flow scheduling problem). Consider a directed graph G with
two distinct nodes s and t. For each arc e ∈ E we are given a static capacity ue

and a static transit time τe. Also, we are given a set of jobs J where each
job j ∈ J has a weight wj and a demand �j . The goal is to find a multi-
commodity s-t-flow over time with |J | commodities such that

∑
j∈J wjCj is

minimized where Cj denotes the time when the flow value corresponding to
commodity j has reached �j .

We call a solution for the flow scheduling problem a flow schedule. It turns
out that a subproblem of the flow scheduling problem is the problem to schedule
jobs on a single machine with possibly increasing speed to minimize

∑
j wjCj .

This is the increasing speed scheduling problem as defined below.

Definition 5.4 (Increasing speed scheduling problem with release dates (ISS)).
Given a machine M whose speed is given as a Lebesgue-integrable, weakly
monotonically increasing function s : R

+
0 → R

+
0 and a set of jobs J . Each

job j ∈ J is characterized by demand �j , a weight wj , and a release time rj .
The goal is to compute a schedule which minimizes the weighted sum of com-
pletion times. This means that we look for |J | integrable indicator functions
χj : R

+
0 → {0, 1} with χj(x) · χj′(x) = 0 for all x ∈ R

+ and j �= j′ such that
Cj := infT∈R+{

´ T
rj
χj(x)s(x)dx ≥ �j} exists for each j ∈ J and

∑
j∈J wjCj is

minimized.

For the ISS problem without release dates, we assume that all rj = 0. For
a job (wj , �j) we call wj/�j its Smith’s ratio. A schedule processing the jobs
successively with non-increasing Smith’s ratio is called a Smith’s rule algorithm.
An efficient PTAS (EPTAS) is a family of (1 + ε)-algorithms for all ε > 0 with
running time in O (f(ε) · poly(n)) for a function f depending only on ε.

5.1.2 Related Work
To the best of our knowledge flow scheduling has not been considered in the
literature so far. It has some far resemblance to flow shop problems. There is
a close relation to dynamic multi-commodity and earliest arrival flows (EAFs).
An earliest arrival flow is a flow over time that has a maximal flow value (i.e.,
total excess at the sinks) at every point in time

For the single source, single sink case earliest arrival flows always exist [42],
and can be found by pseudopolynomial successive shortest path algorithms [78,
107]. There are instances [111] where these algorithms take exponentially many
steps in a binary encoded input. For multiple sinks and sources EAFs need
not exist [15, 36]. In [55] a fully polynomial-time approximation scheme for the
earliest arrival s-t-problem is given. These results have been extended in [15] to
solve EAFs with multiple sources.

The solution of a flow scheduling instance is a multicommodity flow over
time—where all commodities have a common source and a common sink—which
optimizes an objective function which is unusual for flows, namely, the weighted
sum of completion times. Whether a multicommodity flow over time with a

119

CHAPTER 5. INCREASING SPEED SCHEDULING

given time horizon exists is NP -hard even in the fractional case, and even for
strongly restricted graph classes [50]. See also reference therein and [99] for a
survey on flows over time in general.

The increasing speed scheduling problem with release dates clearly contains
1|ri, pmtn|∑wjCj as an NP -hard special case. For this problem, Goemans,
Wein, and Williamson present a 1.47-approximation algorithm [46]. This is
improved to 4/3 by Schulz and Sktuella [94]. Finally, Afrati et al. present an
EPTAS [3]. For scheduling with arbitrary varying speed, in particular, when the
machine stops, we can argue that the 1|pmtn|∑wjCj problem is weakly NP -
hard by a reduction from Partition similar to that in [62]. If the speed of the
machine might increase and decrease but all release dates are equal, Epstein et
al. [31] give a deterministic 4-approximation and a randomized e-approximation
that does not even consider the actual machine when computing the ordering of
the jobs. As mentioned above, if the machine runs constantly with unit speed
then it is well-known that the Smith’s rule algorithm is optimal [100].

Another closely related problem is scheduling with rejection (see [54] and ref-
erences therein), i. e., jobs can be excluded from the schedule at a fixed penalty
cost. For minimizing the weighted sum of completion times Engels et al. proved
this problem to be weakly NP -hard for a single machine and arbitrary rejection
costs and job weights [30] (reduction from Partition). Moreover, they showed
that the case of unit weights and the case of unit lengths are polynomial time
solvable. To the best of our knowledge, the case where rejection costs are pro-
portional to job weights is open. This is equivalent to a special case of increasing
speed scheduling, notably, when the machine has constant speed until time t,
and infinite (or sufficiently large) speed after t.

5.1.3 Outline of the Chapter

First, in Section 5.2 we establish the connection between flow scheduling and in-
creasing speed scheduling. We show that dynamic flows that are maximal for a
given set of deadlines can be found in polynomial time (Theorem 5.7). Later, we
will use such flows instead of earliest arrival flows (EAFs) which are maximal for
any deadline. This technique is important for obtaining polynomial time algo-
rithms since there is no polynomial encoding known for EAFs (and the function
which gives the inflow-rate of the EAF into the sink can have exponentially
many break-points [111]). In particular, we will use this to approximate EAFs.

Next, we extend the EPTAS of [3] for preemptive single machine scheduling
with release dates to the case of machines with increasing speed and release
dates. Together with Theorem 5.7 this yields an EPTAS for the flow scheduling
problem. In Section 5.4 we study structural properties of the ISS problem.
These properties allow us to give exact, polynomial time algorithms for the
ISS problem in similar special cases as considered in [54] for scheduling with
rejection. Moreover, we device a dynamic program in case the speed function is
a step function with constantly many steps.

In Section 5.5 we show that Smith’s rule is a (
√
3 + 1)/2-approximation

algorithm for ISS. We prove this using a tight analysis: we constructively char-

120

5.2. FROM FLOWS TO SCHEDULING

acterize worst instances for the Smith’s rule algorithm. In the final sections we
study online algorithms and algorithms that have no knowledge of the speed
function (blind algorithms). Note that Smith’s rule is such a blind algorithm.
For both cases we show a lower bound for the best achievable approximation
factor. For the online case we present an algorithm with a competitive ratio
of 2.

Finally, we conclude with Section 5.8 and address some open problems.

5.2 From Flows to Scheduling

We consider flows over time with single source and sink. For these it is known
that an earliest arrival flow (EAF) exists [42], i. e., a flow over time that has
a maximal flow value at every point in time. In particular, one can compute
in pseudo-polynomial time its inflow rate into the sink sEAF which is a non-
decreasing, stepwise constant function of time. For some instances this func-
tion has (in the input size of the network) pseudo-polynomially many break-
points [111].

Therefore, any (single source, single sink) flow scheduling problem has an
optimal solution with the following structure. Let I be the smallest interval
in time such that all flow arrives at the sink during I. In I the inflow rate is
always strictly positive and the interval can be partitioned into k consecutive
intervals Ii = [Ti, Ti+1) such that during each of these intervals all inflow to the
sink belongs to the same job. Interpret the inflow rate to the sink as the speed
of a machine. Then we can rephrase: In an instance without release dates, to
minimize the weighted sum of completion times it is best to process the jobs
without preemption in a certain order on the machine. See Figure 5.1 for a
sketch.

An EAF is by definition maximal at all points in time. Thus, to solve the
flow scheduling problem one may calculate an EAF and solve the ISS problem
with the speed function given by the EAF. As for EAFs no strongly polynomial
encoding is known (and seems unlikely to exist) this leads to over-complicated
flow schedules. This pseudo-polynomial blow up is unnecessary for an optimal
solution of the flow scheduling problem: The flow value in any optimal solu-
tion for a flow scheduling instance needs to equal that of an EAF only at the
completion time of each job. So, assuming that the optimal order of the jobs is
known one can find in strongly polynomial time an optimal flow schedule using
a multiple deadline flow. An MDF is a flow over time which is maximal at a
certain set of deadlines T = {T1, . . . , Tk}. Later, these deadlines will equal the
completion times of the jobs. We give a formal definition of MDFs below.

Definition 5.5 (Multiple Deadline Flows (MDF)). Given an s-t-digraph G =
(V,E) with non-negative, constant transit times τ and capacities u on the arcs,
and a finite set of deadlines T = {T1, . . . , Tk}. A s-t-flow over time for (G, τ, u)
is called a multiple deadline flow (MDF), if for 1 ≤ i ≤ k its value at time Ti is
maximal among all feasible s-t-flows over time on (G, τ, u).

121

CHAPTER 5. INCREASING SPEED SCHEDULING

0 0T T

Figure 5.1: Left: the function sEAF obtained from the inflow-rate into the sink of
an EAF for some flow scheduling instance and a solution of the flow scheduling
problem with four jobs. Right: the respective function for a flow which is not
maximal at every point in time. Note that this function yields a worse objective
function value even though the order of the jobs is the same: The first and the
third job finish slightly later in the right solution than in the left solution.

Recall here that the value of an s-t-flow over time at a time Ti is the ex-
cess exf (t, Ti) (inflow minus the outflow) at the sink t at time Ti.

We have seen that for our purposes EAFs – which are maximal at any point
in time – can be unnecessarily complicated. MDFs are only maximal at a fixed
set of points in time. This allows us to compute an MDF in time which is
polynomial in the size of the input.

Theorem 5.6. Given an s-t-digraph G with transit times τ and capacities u
for the edges. Let T denote a set of deadlines. An MDF for G, τ, u, and T can
be found in time polynomial in the input length.

Proof. First we calculate in polynomial time the value of a maximal flow over
time for each deadline Ti (e. g., with Ford-Fulkerson algorithm, see [99]). Then
computing the MDF is equivalent to computing a quickest dynamic transship-
ment in the following graph: Replace the sink t by k sink nodes ti each connected
to t by its own arc of transit time Tk − Ti and infinite capacity. The demand
at each sink equals the maximal flow value for the corresponding deadline Ti

minus the maximal flow value for Ti−1. A dynamic transshipment can be found
in polynomial time [56].

The theorem above allows us to compute an optimal flow schedule if an
optimal (or some fixed) order of the jobs is given. Assume that the order of the
jobs is given by their indices. For each i ∈ {1, ..., k} we calculate the minimal
time horizon Ti to transport

∑
1≤j≤i �j units of flow from the source to the sink.

This can be done in polynomial time with a quickest flow computation [38].
Then we solve the MDF problem for the set of deadlines {Ti}. In the resulting
flow we assign the first �1 flow units that reach the sink to the first job, the

122

5.3. POLYNOMIAL TIME APPROXIMATION SCHEME

following �2 flow units to the second job, and so on. This yields an optimal flow
schedule for the fixed order. From this we immediately get:

Theorem 5.7. There is a polynomial time algorithm for flow scheduling given
that the optimal order of the jobs is known.

To summarize: We are in a chicken and egg situation. Given an optimal order
of the jobs, one can find an optimal flow schedule in strongly polynomial time.
To compute the optimal order of the jobs, one needs to know the optimal (single-
commodity) flow over time which corresponds to the optimal flow schedule. Still,
one can use the pseudo-polynomially sized inflow rate of an EAF as the speed
function of an instance of the ISS problem. Its optimal solutions give optimal
orders of the jobs for the original flow scheduling problem. However, computing
the actual EAF is computationally very costly.

There are two main approaches to overcome this dilemma: Either approxi-
mate the earliest arrival flow by a flow with a bounded number of speed changes
and work with the machine given by this flow — or calculate an order which ful-
fills some approximation factor independent of the actual machine speed (blind
algorithms). We will pursue both of these approaches, the first leading to an
EPTAS and the second to an approximation factor of

√
3+1
2 . Both approaches

require to study the ISS problem only for step functions as speed functions.
Nevertheless, we will treat the ISS problem as a problem in its own right and
therefore allow any integrable function as speed function.

5.3 Polynomial Time Approximation Scheme
In this section we present an EPTAS for the increasing speed scheduling problem
with arbitrary release dates, i. e., an approximation algorithm with approxima-
tion ratio 1 + ε and running time O (f(ε) · poly(n)) for a function f depending
(exponentially) only on ε. We show later that this yields also an EPTAS for the
flow scheduling problem.

Our strategy is the following. First, we derive a couple of properties which
we can assume for the instance and the schedules without losing more than a
factor of 1+O(ε) in the objective function in comparison to the optimum. Some
of the techniques used here are borrowed from [3] and adapted to our problem.
Then, we show how to compute the optimal schedule with these properties by
a dynamic program.

Let ε > 0. We describe an algorithm which guarantees an approximation
ratio of 1 + O(ε). By abuse of notation whenever we use the term O(ε) we
refer to a function bounded by � · ε for some positive �. For technical reasons,
we assume that ε < 1. W. l. o. g. we assume that at any time the speed of the
machine is at least 1. We will use the notions “with 1+ε loss” and “with 1+O(ε)
loss”, meaning that by requiring a certain property for the schedule we might
lose at most a factor of 1 + ε or 1 +O(ε), respectively, in the optimal objective
function value. In each of the following lemmas we assume that all adjustments
established by all previous lemmas have already been done.

123

CHAPTER 5. INCREASING SPEED SCHEDULING

We define R(w) to be the timestep when the total work that the machine
has done so far equals w. As short notation we use Rx := R ((1 + ε)

x
). Note

that since we assume that the machine always runs with at least unit speed
we have that Rx+1 ≤ (1 + ε)Rx. We split the time scale into intervals of the
form Ix := [Rx, Rx+1). In order to simplify notation we will use the notion Ix
for the interval as well as for the work that the machine does within Ix. Note
that Ix = ε (1 + ε)

x.
In our first adjustment, we ensure that the demand of each job is a power

of 1 + ε. This is a common simplification that reduces the complexity of the
instance. Also, we shift the release times of the jobs such that rj ≥ R (ε�j) for
each job j. Intuitively, this means that large jobs are not released very early.
This does not change the objective value too much since large jobs finish late
anyway.

Lemma 5.8. With 1+O(ε) loss, we can assume for each job j that rj ≥ R (ε�j)
and that �j is a power of (1 + ε).

Proof. Assume we are given an optimal schedule OPT . We construct a new
schedule OPT ′ as follows: whenever a job j is processed within a time inter-
val [x, y] in OPT then it is processed in the interval [(1 + ε)x, (1 + ε) y] in OPT ′.
We say we scale time by a factor of 1 + ε. We have that OPT ′ ≤ (1 + ε)OPT .
The resulting schedule is feasible for an instance in which j has a process-
ing demand of (1 + ε) �j . Thus, we can safely shift the release time of j to
max {rj , R (ε�j)} and still obtain a valid schedule for processing demand �j .

Scaling time again by a factor of 1+ε yields that a demand of (1 + ε) �j is pro-
cessed for each job j. We increase the demand of j to the largest value (1 + ε)

x

(for an integer x) such that (1 + ε)
x ≤ (1 + ε) �j .

To make the instance even simpler, we show that we can assume that each
job is released at a time Rx. For proving this we use a technique called interval-
hopping which we will use in the subsequent lemmas as well.

Lemma 5.9. Assume the adjustments of Lemma 5.8. With 1 + ε loss, we can
additionally assume that each job is released at time Rx for some integer x.

Proof. We employ interval-hopping: Consider any schedule S. For each inter-
val Ix, we take the work that is done in Ix in S and process it in the interval Ix+1

rather than in Ix. This results in a loss of at most 1 + ε. Now each job j which
was originally released within an interval Ix := [Rx, Rx+1) is not processed
before Rx+1. Thus, we can safely move its release time to Rx+1.

In order to simplify the complexity of the problem we want that to calcu-
late the objective function as if each job finished at the end of an interval Ix.
Therefore, for the remainder of this section we do not consider the objective
function

∑
j∈J wjCj but the objective function

∑
j∈J wj min {Rx : Cj ≤ Rx}.

As an effect, we can assume that the machine has constant speed within each
interval.

124

5.3. POLYNOMIAL TIME APPROXIMATION SCHEME

Lemma 5.10. Assume the adjustments of the previous lemmas. For the com-
pletion times Cj which result from any schedule we have that

∑
j∈J wjCj ≤∑

j∈J wj min {Rx : Cj ≤ Rx} ≤ (1 + ε)
∑

j∈J wjCj.

Proof. The first inequality is obvious. For the second inequality, for all values Cj

we have that min {Rx : Cj ≤ Rx} ≤ (1 + ε)Cj .

In the algorithm we will distinguish between large and small jobs. Whether a
job is small or large depends on the amount of work that the machine does in the
interval in which the job is released. A job j is small if it is released at a time Rx

such that �j ≤ εIx. Otherwise it is large. We denote by Hx and Tx the large
and small jobs, respectively, which were released at time Rx. We introduce the
following lemma in order to show that there is a (1 + ε)-approximate schedule
which has a certain simple structure.

Lemma 5.11. Assume the adjustments of the previous lemmas. With 1+O(ε)
loss, we can additionally assume that

• no small job is ever preempted,

• no small job is processed in more than one interval,

• the order in which the small jobs are executed obeys Smith’s rule,

• each large job j ∈ Hx is preempted only if there is an integer k ≤ 1
ε3 such

that a fraction of exactly k · εIx
�j

of the job has already been processed, and

• at any point in time in each set Hx there is at most one job which has
already been processed but which has not been finished yet.

Proof. We can assume the last claim without any loss. For the other claims we
again use the technique of interval-hopping. For the sake of analysis, we first
consider a relaxation of our instance I. i. e., an instance I ′ for which we have
that OPT (I ′) ≤ OPT (I). Starting with OPT (I ′), we construct a schedule S

for I with the property that S ≤ (1 + ε)
2
OPT (I ′).

The instance I ′ is defined as follows: Let δ > 0 be a constant which divides
the demands of all small jobs. Then we replace each small job j by �j

δ jobs
with demand δ and weight δwj/�j , all with the same release date as j. We call
those new jobs the tiny jobs. With an exchange argument one can show that
in this instance it is optimal to schedule the small jobs according to Smith’s
rule, i. e., whenever a small job is scheduled the available job with the highest
Smith’s ratio is scheduled. W. l. o. g. we can assume that if in OPT (I ′) a tiny
job is processed which corresponds to a small job j then for all other small jobs
j′ we have that either all of their tiny jobs are already scheduled or none of
them (i. e., the tiny jobs corresponding to the different small jobs do not mix).
Also, w. l. o .g. we assume that in OPT (I ′) jobs are only preempted at the end
of intervals (since jobs are released only at the beginning of intervals).

We now perform an interval-hop of two intervals: For a loss of (1 + ε)
2

we take the work that is done in each interval Ix in the schedule OPT (I ′)

125

CHAPTER 5. INCREASING SPEED SCHEDULING

and process it in the interval Ix+2 rather than in Ix. We call the resulting
schedule OPT (I ′)hop. However, now in each interval Ix+2 (which processes jobs
which were processed in Ix by OPT (I ′)) there is a spare space of at least 2εIx.
We have that OPT (I ′)hop ≤ (1 + ε)

2
OPT (I ′). We define the instances Ihop

and I ′hop by taking I and I ′, respectively, and for each small/tiny job which was
released at time Rx we move its release time to Rx+2. Note that OPT (I ′)hop is
a valid schedule for I ′hop in which the tiny jobs are ordered according to Smith’s
rule.

Now we construct a schedule S for Ihop based on OPT (I ′)hop which has the
properties stated in the lemma. First, we process each small job j whenever
its corresponding tiny jobs were processed within OPT (I ′)hop. Now there can
be at most one small job j which starts within one interval Ix+2 and does not
finish within it. If there is such a job j then we use at most εIx of the spare
space to finish j. If at the end of Ix+2 a large job j ∈ Hy is preempted then –
using again at most εIx of the spare space – we can continue processing it until
a fraction of exactly k · εIy

�j
of the job has been processed for some integer k.

Due to our slightly changed objective function we have that S ≤ OPT (I ′)hop ≤
(1 + ε)

2
OPT (I ′) ≤ (1 + ε)

2
OPT (I).

We simplify the instance even further by simplifying each set Tx and Hx.
During Ix the machine can process only small jobs with a total demand of Ix
and at most 1

� Ix large jobs for each (large) demand �. For the small jobs we
already know that they are scheduled according to Smith’s rule. For large jobs
with equal demand it is clear that it is optimal to order them by non-increasing
weight. Hence, some jobs in Tx ∪Hx will definitely not be processed in Ix by
an optimal solution. Thus, we can safely shift their release date to Rx+1.

For a set of jobs J ′ ⊆ J we denote by p (J ′) their total demand.

Lemma 5.12. Assume the adjustments of the previous lemmas. Without any
loss we can assume that

• the number of distinct job sizes in Hx is bounded by |Hx| ≤ 3 log1+ε
1
ε +1,

• the number of jobs in each distinct size is bounded by 1/ε, and

• p (Tx) ≤ Ix.

Proof. Let j ∈ Hx. Since j is large we know that �j > εIx = ε2(1+ ε)x. Due to
Lemma 5.8 we have that rj = Rx ≥ R (ε · �j) which implies that (1 + ε)

x ≥ ε·�j .
Since all demands are powers of 1 + ε the number of distinct job sizes equals
the number of integers y such that

ε2 (1 + ε)
x

< (1 + ε)
y ≤ 1

ε (1 + ε)
x

⇔ 2 log1+ε ε+ x < y ≤ log1+ε
1
ε + x

⇔ 2 log1+ε ε < y − x ≤ log1+ε
1
ε .

This implies that |Hx| ≤ 3 log1+ε
1
ε + 1. At most Ix

εIx
= 1/ε jobs of each

particular size can be scheduled in Ix. Within each size the jobs are ordered
by their weight. Thus, we can safely move the release times of all other jobs of

126

5.3. POLYNOMIAL TIME APPROXIMATION SCHEME

each size to Rx+1. Note that here we need that ε < 1 since otherwise it would
not hold that ε2 (1 + ε)

x
< 1

ε (1 + ε)
x.

For the small jobs recall that due to Lemma 5.11 we can assume that they
are ordered by Smith’s rule. Also, we assume that no small job is processed in
more than one interval. Thus, we can assume that p (Tx) ≤ Ix: We sort the
jobs in Tx non-decreasingly by their Smith’s ratio and then pick jobs according
to this order until the next job would not fit in Ix anymore. The release time of
all other jobs can safely be moved to Rx+1 since we will not process them in Rx

anyway.

For getting better control on the instance we want to bound the flow time
of each job, i. e., the time between its release date and its completion time. The
following lemma establishes such a bound by introducing at most a loss of 1+ε.

Lemma 5.13. Assume the adjustments of the previous lemmas. With 1+ε loss,
we can additionally assume that each job which is released at time Rx finishes
in the interval Ix+s(ε) the latest, where s(ε) is a constant which depends only on
ε.

Proof. We use interval-hopping again and shift the work being done in each
interval Ix to the interval Ix+1. From Lemma 5.12 we conclude that p (Tx) +
p (Hx) ≤ Ix + 1

ε ·
(
3 log1+ε

1
ε + 1

)
· 1
ε (1 + ε)

x. We define

s(ε) :=

⌈
log1+ε

(
1

ε
+

1

ε4

(
3 log1+ε

1

ε
+ 1

))⌉
+ 1.

Our interval-hop creates a spare space of size εIx in each interval Ix+1. Thus,
in the interval Ix+s(ε) there is now a spare space of at least εIx+s(ε)−1. We
calculate that

Ix +
1

ε
·
(
3 log1+ε

1

ε
+ 1

)
· 1
ε
(1 + ε)

x
= (1 + ε)

x ·
(
ε+ ε2

(
3 log1+ε

1

ε
+ 1

))
≤ (1 + ε)

x · ε · Is(ε)−1

= ε · Ix+s(ε)−1

and thus we can process all jobs Tx ∪ Hx in the spare space in the inter-
val Ix+s(ε). This implies that there is a (1 + ε)-approximative solution in which
all jobs Tx ∪Hx finish in the interval Ix+s(ε) the latest.

Now we want to glue small jobs to packs together. The reason is that later
in the dynamic program we can treat these packs like big jobs. The next lemma
shows that this loses at most 1 + ε in the objective value.

Formally, we partition the ordered list of the jobs in each set Tx into at
most 2/ε2 packs, each with size at most ε2 · Ix. Denote by Px,i the i-th pack of
small jobs which are released at time Rx.

Lemma 5.14. Assume the adjustments of the previous lemmas. With 1 + ε
loss, we can additionally assume that

127

CHAPTER 5. INCREASING SPEED SCHEDULING

• in each interval Ix either all or none of the jobs in a pack Px′,i are sched-
uled and

• each job which is released at time Rx finishes in the interval Ix+s(ε)+2 the
latest.

However, the ordering of the small jobs does not necessarily obey Smith’s rule
anymore.

Proof. We use interval-hopping and shift the work which is done in each in-
terval Ix to the interval Ix+2. This gives us a free space of εIx+1 in each
interval Ix+2. Now consider all packs Px′,i such that some but not all of the
jobs in Px′,i are scheduled within Ix. Due to the original ordering by Smith’s
rule, this holds for at most one pack from each release time. The total demand
of these packs is upper bounded by

x∑
i=x−s+1

ε2 · Ii ≤ ε3 ·
x∑

i=0

(1 + ε)
i

= ε2 ·
(
(1 + ε)

x+1 − 1
)

≤ ε · Ix+1.

Thus, in the gained free space we can schedule all jobs from packs Px′,i which
have partly but not fully been processed.

Before we describe the dynamic program we summarize our adjustments on
the instance:

• for each job j we have that rj and �j are powers of (1 + ε),

• for each job j it holds that rj ≥ R (ε�j),

• the number of jobs in Hx is bounded by a constant for each release time
Rx, and

• p (Tx) ≤ Ix.

We showed that all these adjustments lose at most a factor of (1 +O(ε)) in the
optimal objective value. Further, we showed that for an adjusted instance as
above there is a (1 +O(ε))-approximative solution with the following properties:

• no small job is ever preempted,

• the small jobs are grouped into packs and no pack is processed in more
than one interval,

• each large job j ∈ Hx is preempted only if there is an integer k ≤ 1
ε3 such

that a fraction of exactly k · εIx
�j

of the job has already been processed,

128

5.3. POLYNOMIAL TIME APPROXIMATION SCHEME

• at any point in time in each set Hx there is at most one job which has
already been processed but which has not finished yet,

• the value of the solution is measured according to the objective function∑
j∈J wj min {Rx : Cj ≤ Rx} (which results in a higher value than the

original objective function), and

• each job with release time Rx finishes before time Rx+s(ε)+1.

Now we describe the dynamic program which finds the best solution with the
above properties. Each table entry is identified by a combination of

• an interval Ix,

• for each interval Iy with x− s(ε) ≤ y < x,

– the subset of jobs in Hy which have already been fully processed,
– a job j ∈ Hy and an integer k ≤ 1

ε3 such that a fraction of exactly
k · εIx

�j
of j has been processed, and

– the subset of the packs Py,i which have already been fully processed.

Since we need to consider at most s(ε) · |J | intervals in total, the number of
table entries is bounded by

(s(ε) + 2) · |J | ·
(
2

1
ε ·3 log1+ε

1
ε+

1
ε ·

(
1

ε
· 3 log1+ε

1

ε
+

1

ε

)
· 1

ε3
· 2 2

ε2

)s(ε)+2

∈ O
(
|J | 2poly(1/ε)

)
.

In order to compute the value for each table entry which corresponds to an
interval Ix we need to enumerate all possibilities to schedule the available large
jobs and packs of small jobs in Ix. Note that due to our changed objective
function it does not matter at what exact time within the interval a job finishes:
each job which finishes within Ix is charged Rx+1. For one table entry this
computation can be done in time O

(
2s(ε)·(

1
ε 3 log1+ε

1
ε+

1
ε+

2
ε2
)
)
.

The preprocessing of the jobs can be done in O (n · log n+ s(ε) · n). The
following operations are needed.

• Round the release times and demands of all jobs: O(n).

• Partition the jobs into small and large jobs: O(n).

• Define the packs of small jobs and adjust their release times. This requires
O(n log n + s(ε) · n) since we need to sort the small jobs and define the
sets Tx for each interval Ix.

• Define the adjusted release times of the large jobs. This requires O(n log n+
s(ε) · n) again since we need to sort the jobs and define the sets Hx for
each interval Ix.

129

CHAPTER 5. INCREASING SPEED SCHEDULING

This yields the following theorem:

Theorem 5.15. There is an efficient polynomial time approximation scheme
for the increasing speed scheduling problem with release dates with a running
time of O

(
2poly(1/ε)n+ n log n

)
.

In order to do the computation in the dynamic program it is not necessary
to know the exact speed function. It is sufficient to know the points in time
when a total demand of (1 + ε)

x has already been processed for the relevant
values of x. Recall that at most s(ε) · |J | intervals are relevant for us. Thus, we
obtain the following corollary:

Corollary 5.16. There is an EPTAS for the flow scheduling problem.

Proof. We need to determine the start and end points of the at most s(ε) · |J | in-
tervals Ix. This (approximation of the EAF) can be computed in O(s(ε) · poly(n))
time: each value Rx can be determined in polynomial time by a quickest-flow
computation (see [38]). The remainder follows from Theorem 5.15.

5.4 Tractable Cases of ISS
In this section we analyze the structure of the increasing speed scheduling prob-
lem. We identify some properties which allow efficient algorithms for certain
special cases. Moreover, we provide insights which are necessary for our anal-
ysis of the Smith’s rule algorithm in Section 5.5. Throughout this section we
assume that all jobs are released at time t = 0. Accordingly, we can restrict
ourselves to non-preemptive schedules.

If all jobs have unit weight a simple exchange argument shows that it is
optimal to order the jobs ascendingly by demand. However, we can prove a
slightly more general result:

Theorem 5.17. If in an instance of ISS there is an ordering for the jobs such
that wj

�j
≥ wj+1

�j+1
and �j ≤ �j+1 for each index j then it is optimal to order the jobs

non-descendingly by demand (or non-ascendingly by ratios wj

�j
, respectively).

The theorem can be shown using the following lemma repeatedly.

Lemma 5.18. Assume that in a schedule there are two jobs j, j′ with wj

�j
≤ wj′

�j′

and �j ≥ �j′ and j′ is executed directly after j. Then the objective value does not
increase if we swap j and j′. If additionally wj

�j
<

wj′
�j′

then swapping j and j′

strictly decreases the objective value.

Proof. We denote the original schedule by 〈j, j′〉 and the schedule obtained by
swapping j and j′ by 〈j′, j〉. Denote by t0 the time when j starts in 〈j, j′〉, by t1
the time when j′ terminates in 〈j′, j〉, by t2 the time when j terminates in 〈j, j′〉
and by t3 the time when j′ terminates in 〈j, j′〉. W. l. o. g. we assume that the
machine has constant speed within the interval [ti, ti+1) for each i ∈ {0, 1, 2} (see

130

5.4. TRACTABLE CASES OF ISS

.

t0 t1 t2 t3 t1 t2 t3t0

j′ j′ j′j′

k1 k2 k3 k3k2k1

Figure 5.2: Proof of Lemma 5.18: We can assume w. l. o. g. that our machine
has three different speeds within the interval [t0, t3).

Figure 5.2). Denote the respective speeds by s1, s2, s3. W. l. o. g. we assume
that s3 = 1. For ease of notations we define ki := ti − ti−1 for i ∈ {1, 2, 3}.

We calculate that

cost (〈j, j′〉)− cost (〈j′, j〉) ≥ 0
⇔ t2 · wj + t3 · wj′ − t1 · wj′ − t3 · wj ≥ 0
⇔ t2 · wj + t3 · wj′ ≥ t1 · wj′ + t3 · wj

⇔ (k1 + k2)wj + (k1 + k2 + k3)wj′ ≥ k1 · wj′ + (k1 + k2 + k3)wj

⇔ (k2 + k3)wj′ ≥ k3 · wj

⇔ wj′
�j′

≥ wj

k2+�j′

The latter holds since wj′
�j′

≥ wj

�j
=

wj

�j′+s2·k2
≥ wj

�j′+k2
. If additionally wj

�j
<

wj′
�j′

then the above calculation gives strict inequality.

For machines which run constantly with unit speed there is a well known
exchange argument showing that Smith’s rule yields an optimal schedule [100].
In our setting, this argument can easily be applied to jobs starting and finishing
within an interval A in which the machine has constant speed. We show that
the statement also holds for the set of all jobs which end in such an interval A
(and do not necessarily start in A).

We split the time axis into intervals in which the speed function does not
change its value. We denote by s1, s2, ..., sk the different speeds of the machine
and by A1, A2, ..., Ak the corresponding intervals, i. e., Ai := s (si)

−1. Assume
a schedule S is given. We say a job j is in an interval Ai if the finishing time
of j in S lies within Ai. Denote by Ji the jobs which lie in the interval Ai.

Lemma 5.19. In an optimal schedule the jobs in Ji are ordered according to
Smith’s rule.

131

CHAPTER 5. INCREASING SPEED SCHEDULING

.

t0 t1 t2 t3 t1 t2 t3t0

j′ j′j

j

Ai Ai

t∗0

Figure 5.3: The adjustment of the machine speed in the proof of Lemma 5.19.

Proof. This can be shown by an exchange argument. Assume on the contrary
that there is an optimal schedule and for two jobs j, j′ ∈ Ji we have that
j is scheduled before j′ but wj

�j
<

wj′
�j′

. W. l. o. g. we can assume that j′ is
scheduled directly after j. We call this schedule 〈j, j′〉 and compare it with
the schedule ‘〈j′, j〉 which is obtained by exchanging j and j′. If �j′ ≤ �j then
Lemma 5.18 proves the claim. So now assume that �j′ > �j .

We denote by t0 the starting time of j in 〈j, j′〉, by t1 the starting time of
interval Ai, by t2 the finishing time of j in 〈j, j′〉, and finally by t3 the finishing
time of j′ in 〈j, j′〉. See Figure 5.3 for a sketch. We observe that the finishing
times of j and j′ in both schedules (〈j, j′〉 and 〈j′, j〉) do not change if we adjust
the machine as follows: Denote by t∗0 the timestep with

´ t1
t0

s(x)dx = (t∗0 − t0) si.
We redefine our machines by setting s(x) := 0 for x ∈ [t0, t

∗
0) and s(x) := si

for x ∈ [t∗0, t1). Now in both schedules j and j′ start and finish within interval Ai.
Thus, the claim can be shown with the same argument which shows that Smith’s
rule is optimal for 1||∑wjCj :

〈j′, j〉 > 〈j, j′〉
⇔ wj′

�j′
si

+ wj
�j+�j′

si
> wj

�j
si

+ wj′
�j+�j′

si
⇔ wj · �j′ > wj′ · �j
⇔ wj

�j
>

wj′
�j′

This is contradicts our assumption that wj

�j
<

wj′
�j′

.

Knowing the property above we are ready to introduce our dynamic program
for the special case that the number of speed changes of s is bounded by a
constant. The dynamic program starts with a list of the jobs ordered by Smith’s
rule. It successively removes a job j from the list and chooses the interval
Ai = [ai, ai+1) in which j finishes. Inside Ai, the job j is scheduled right after
the last job which finishes within Ai. If j is the first job assigned to Ai we try
all start offsets less or equal ai for which j finishes within Ai. Thus, in the

132

5.4. TRACTABLE CASES OF ISS

dynamic programming table we need to encode how many jobs have already
been removed from the list and how much space (at the beginning and at the
end) of each interval is already occupied by jobs.

Now we describe the dynamic program in detail. First, we order the jobs in a
list according to Smith’s rule. Ties are broken arbitrarily. We define L :=

∑
j �j .

Note that there are at most L possible start times for a job. Each entry in the
dynamic programming table is identified by

• the number of jobs which are still in the job list, i. e., an entry equal to q
means that the last q jobs in the job list are still unscheduled and

• for each interval Ai = [ai, ai+1) there are values ti ≤ L and t′i ≤ L such
that the intervals

[
ai, ai +

ti
si

)
and

[
ai+1 − t′i

si
, ai+1

)
are already used by

some jobs.

We store in each table entry the best possible objective value for the remaining
jobs which is possible with the given constraints. Note that the number of entries
in the table is bounded by n · L2k. The value for an entry (k, t1, t

′
1, ..., tk, t

′
k) is

computed as follows: Let j denote the (n−k+1)-th job. We try each interval Ai

for scheduling j: if ti > 0 we try to schedule j with start time ai +
ti
si

. If ti = 0
we try to schedule it with each start time ai − m

si
with m < �n−k+1. By “try”

we mean that we check carefully if scheduling the job at the respective position
contradicts the fact that other intervals are already occupied by some jobs. We
pick the position for j which yields the minimum total objective value.

Theorem 5.20. If the number of different values for the speed function is
bounded by a constant there is a pseudopolynomial dynamic program which solves
the ISS problem optimally.

Proof. Computing an entry in the dynamic programming table can be done in
pseudopolynomial time. The number of entries in the dynamic programming
table is bounded by n · L2k. Lemma 5.19 implies that our procedure finds the
optimal solution.

Note that this pseudopolynomial algorithm cannot be combined with the
pseudopolynomial algorithm for earliest arrival flows [78, 107] to achieve an
exact, pseudopolynomial algorithm for the entire problem. An EAF corresponds
to a machine with pseudopolynomially many speeds. Our result requires a
constant number of speeds.

Now we study the special cases where all jobs have the same demand or
the same Smith’s factors. We will benefit from these insights in the analysis
in Sections 5.5 and 5.7, respectively. The following lemma holds not only for
increasing speed functions but also for speed functions which might increase or
decrease.

Lemma 5.21. If all jobs have the same demand then it is optimal to order
the jobs non-ascendingly by their weight. This is still true if the speed of the
machine can increase and decrease.

133

CHAPTER 5. INCREASING SPEED SCHEDULING

Proof. This can be shown by an exchange argument. Assume on the contrary
that there is an optimal schedule in which a job j is scheduled before a job j′

but wj < wj′ . W. l. o. g. we can assume that j′ is scheduled directly after j.
Then the objective value strictly decreases if we swap j and j′. This contradicts
that the original schedule was optimal.

Particularly important for the next section will be the following proposition.

Proposition 5.22. If in an instance I all jobs have the same Smith’s ratio then

• there is an optimal schedule which orders the jobs non-descendingly by
demand and

• there is a worst possible schedule which orders the jobs non-ascendingly by
demand.

Proof. Follows from Lemma 5.18 and its proof.

5.5 A Tight Analysis of Smith’s Rule
In this section we present a tight analysis which shows that the Smith’s rule
algorithm is exactly a

√
3+1
2 -approximation. We achieve this by explicitly char-

acterizing worst-case instances. Let I = (J,M) be an instance of the increasing
speed scheduling problem. We denote by SR(I) the worst possible schedule
which obeys Smith’s rule (i. e., tie-breaking decisions are taken such that the
total weight of the schedule is maximized). We show how to transform I into an
instance with a special structure without decreasing SR(I)/OPT (I). Then we
show that on instances with this structure the Smith’s rule algorithm is exactly
a

√
3+1
2 -approximation.
Assume on the contrary that there is an instance I such that SR(I)

OPT (I) >
√
3+1
2 ,

again with SR(I) being the objective value of the worst possible schedule which
obeys Smith’s rule. (We will show later by perturbing the weights of the jobs
that one cannot prove a better approximation factor for the Smith’s rule algo-
rithm even if all tie breaking decisions are done optimally.)

As already mentioned above, in the following lemmas we show how one
can transform I into an instance with a special structure without decreas-
ing SR(I)/OPT (I). First, we define a partition of the jobs in I into classes Ci

such that two jobs belong to the same class if and only if they have the same
Smith’s ratio. The classes are sorted descendingly by the Smith’s ratios of their
elements, i. e., for two jobs j ∈ Ci and j′ ∈ Ci′ it holds that wj

�j
≥ wj′

�j′
if and

only if i ≤ i′. Now we show that there are instances with the worst possible
fraction SR(I)/OPT (I) in which all jobs have a Smith’s ratio of 1.

Lemma 5.23. For any instance I there is an instance I ′ = (J ′,M) such that
wj/�j = 1 for all jobs j ∈ J ′ and SR(I′)

OPT (I′) ≥ SR(I)
OPT (I) . Moreover, if in I the

demands of all jobs are integral then in I ′ the demands of all jobs are integral
as well.

134

5.5. A TIGHT ANALYSIS OF SMITH’S RULE

Proof. Let Ĩ be an instance with as few classes Ci as possible such that SR(Ĩ)

OPT (Ĩ)
≥

SR(I)
OPT (I) =: α. If in Ĩ there is only one class then we can scale the weights of
the jobs such that wi/�i = 1 for all jobs and we are done. So now assume
that there are at least two classes in Ĩ. Denote by SR (Ci) and OPT (Ci) the
amount that a class Ci contributes towards SR

(
Ĩ
)

and OPT
(
Ĩ
)
, respectively.

Since SR(Ĩ)

OPT (Ĩ)
≥ α there must be a class Ck such that SR(Ck)

OPT (Ck)
≥ α. Now there

are two cases:

• The class Ck is the class with the highest Smith’s ratio (i. e., k = 1).
We create I ′ by removing the jobs of all other classes from Ĩ. We have
that SR(I ′) = SR (Ck) and OPT (I ′) ≤ OPT (Ck) since in SR(Ĩ) the
jobs in Ck are the first jobs which are scheduled. This implies that
SR(I′)
OPT (I′) ≥

SR(Ck)
OPT (Ck)

≥ α.

• The class Ck is not the class with the highest Smith’s ratio (i. e., k �= 1).
Then we increase the weights of the jobs in Ck until they all have the
Smith’s ratio of Ck−1. Denote by I ′ the resulting instance. Clearly, I ′

has one class less than I. Let β > 1 denote the factor by which we
increased the weights of the jobs in Ck. Then we calculate that OPT (I ′) ≤
OPT

(
Ĩ
)
+(β − 1)OPT (Ck) and SR(I ′) = SR(Ĩ)+(β − 1)SR (Ck). We

calculate that

SR(I ′)
OPT (I ′)

≥ SR(Ĩ) + (β − 1)SR (Ck)

OPT
(
Ĩ
)
+ (β − 1)OPT (Ck)

≥
α
(
OPT

(
Ĩ
)
+ (β − 1)OPT (Ck)

)
OPT

(
Ĩ
)
+ (β − 1)OPT (Ck)

=
SR(I)

OPT (I)

Recall from Proposition 5.22 that if all Smith’s ratios are identical then
OPT (I) orders the jobs non-descendingly by demand and the worst Smith’s
rule schedule SR(I) orders the jobs non-ascendingly by demand. Now we want
to study the demands of the jobs. W. l. o. g. we assume that all jobs have
integral demands. Assume that the jobs are ordered such that for each pair of
jobs j, j′ with j < j′ we have that �j ≤ �j′ . Let k denote the largest integer
such that

∑k
i=1 �i ≤ 1

2

∑|J|
i=1 �i. We define Jsmall := {j|j ≤ k} ⊂ J . For an

instance I ′ we denote the respective set by J ′
small. In the following lemma we

show that w. l. o. g. all small jobs in Jsmall have demand 1.

Lemma 5.24. For any instance I = (J,M) such that all jobs in J have a
Smith’s ratio of 1 there is an instance I ′ = (J ′,M) such that

135

CHAPTER 5. INCREASING SPEED SCHEDULING

...

... ...

...

...

......

...

t̄1

OPT (I ′)

OPT (I)

�j′′�j′

�2

�1 �2

�|J |

�|J |

�j�1

�|J |

�|J |

t1 t2 t3

x y

SR(I)

SR(I ′)

t̄3

x̄ ȳ

t̄2

t

�1�2�j′�j′′

�1�2�j

Figure 5.4: The sketch shows the jobs in I and I ′ in the orders in which they
are sorted in SR and OPT . To simplify the readability of the sketch we assume
that the machine runs constantly with unit speed.

• J ′
small consists only of jobs with demand 1 and

• SR(I′)
OPT (I′) ≥

SR(I)
OPT (I) .

Moreover, if in I the demands of all jobs are integral then in I ′ the demands of
all jobs are integral as well.

Proof. If in Jsmall there are only jobs of demand 1 then there is nothing to
show. So now assume that Jsmall contains a job whose demand is at least two.
Let j denote the job with smallest index such that �j ≥ 2.

For I ′ = (J ′,M) we use the machine M without any changes and we define
J ′ := J \ {j} ∪ {j′, j′′} where j′ is a job with demand �j′ := 1 and j′′ is a job of
demand �j′′ := �j − 1. Since we want the Smith’s ratios of all jobs to be 1 we
define wj′ := 1 and wj′′ := �j − 1. Note that �1 ≤ �2 ≤ ... ≤ �j−1 ≤ �j′ ≤ �j′′ ≤
�j+1 ≤ ... ≤ �|J|. Figure 5.4 shows a sketch of the modification. Now we show
that SR(I′)

OPT (I′) ≥
SR(I)
OPT (I) .

Denote by t1 the start time of j in OPT (I). Denote by t2 and t3 the finish
time of j′ and j′′ in OPT (I ′), respectively. Similarly, let t̄1 be the start time of j
in SR(I). Denote by t̄2 the finish time of j′′ in SR(I ′) and by t̄3 the finish time
of j′′ in SR(I ′). Figure 5.4 shows a sketch. We define SRΔ := SR(I)−SR(I ′) =
t̄3 ·�j− t̄3 ·�j′− t̄2 ·�j′′ and OPTΔ := OPT (I)−OPT (I ′) = t3 ·�j−t2 ·�j′−t3 ·�j′′ .
In order to show that SR(I′)

OPT (I′) ≥ SR(I)
OPT (I) we first prove that SRΔ ≤ OPTΔ (in

other words: the optimal solution saves more than the Smith’s rule solution
when we replace j by j′ and j′′). W. l. o. g. we assume that the machine M
runs constantly with speed s in the time interval [t2, t3). Similarly, we assume

136

5.5. A TIGHT ANALYSIS OF SMITH’S RULE

that M runs with speed s̄ in the time interval [t̄2, t̄3). Note that s ≤ s̄ since
j ∈ Jsmall and thus t3 ≤ t̄2. We define x := t2 − t1 and y := t3 − t2. Similarly,
we define x̄ := t̄2 − t̄1 and ȳ := t̄3 − t̄2.

We calculate that

OPTΔ = (t1 + x+ y) �j − (t1 + x) �j′ − (t1 + x+ y) �j′′

= y�j − y�j′′

and

SRΔ = (t̄1 + x̄+ ȳ) �j − [(t̄1 + x̄) �j′′ + (t̄1 + x̄+ ȳ) �j′]

= ȳ�j − ȳ�j′

and thus

OPTΔ − SRΔ = y�j − y�j′′ − ȳ�j + ȳ�j′

≥ (�j − �j′′)

(
�j − 1

s̄

)
+

1

s̄
(1− �j)

=
1

s̄
[(�j − �j′′) (�j − 1) + 1− �j]

= 0.

We define β := OPT (I)−OPTΔ

OPT (I) and γ := SR(I)−OPTΔ

SR(I) . A simple calculation
shows that γ ≥ β. We further obtain that

SR(I ′)
OPT (I ′)

≥ SR(I)−OPTΔ

OPT (I)−OPTΔ

=
γ · SR(I)

β ·OPT (I)

≥ SR(I)

OPT (I)
.

We repeat the operation described above until we obtain an instance in which
there are only jobs of demand 1 in the respective set Jsmall.

Now we are interested in the first job which does not have demand 1. Let j′
denote the index of this job. Let s′ and t′ denote its start and finish times in
OPT (I) and let s̄′ and t̄′ denote its start and finish times in SR(I). The next
lemma shows that w. l. o. g. we can assume that s̄′ ≤ s′.

Lemma 5.25. Let I be an instance such that all jobs in J have a Smith’s ratio
of 1, Jsmall contains only jobs of demand 1, and the demands of all jobs are
integral. Then there is an instance I ′ = (J ′,M) such that

• J ′
small consists only of jobs of demand 1,

• s̄′ ≤ s′,

137

CHAPTER 5. INCREASING SPEED SCHEDULING

• SR(I′)
OPT (I′) ≥

SR(I)
OPT (I) , and

• all jobs in J ′ have integral demand and a Smith’s ratio of 1.

Proof. If s̄′ > s′ then we apply to j′ the procedure described in the proof of
Lemma 5.24. This is possible since the start times of j′ guarantee that s̄′ ≥ s′

(with the notation in the proof).

Now we show how we can change our instance I to an instance I ′ in which
there is at most one (long) job which is not contained in Jsmall. This affects
the ratio SR(I)

OPT (I) only by a factor of (1− ε) for an arbitrarily small ε. The ε will
turn out to be negligible later.

Lemma 5.26. Let ε > 0. Let I be an instance such that all jobs in J have a
Smith’s ratio of 1, Jsmall contains only jobs of demand 1, and s̄′ ≤ s′. Then
there is an instance I ′ = (J ′,M ′) such that

• J ′
small consists only of jobs of demand 1,

• |J ′ \ J ′
small| = 1 (i. e., there is exactly one job which is larger than 1),

• M ′ has at most one speed change which occurs when the large job is finished
in SR(I ′), and

• SR(I′)
OPT (I′) ≥ (1− ε) SR(I)

OPT (I) .

Proof. First, we do the following two changes on I in order to obtain an in-
stance I ′′: we combine all jobs which are not contained in Jsmall to one long
job jm′′ . Then we dramatically increase the speed of M after a timestep t∗ to
be defined later.

Denote by sj and tj the start and finish time of each job j in OPT (I) and
by s̄j and t̄j the start and finish time of each job j in SR(I). Assume that
�1 ≤ �2 ≤ ... ≤ �|J|. We define I ′′ = (J ′′,M ′′) as follows: J ′′ := Jsmall ∪ {j′′}
where j′′ is a new job with weight wj′′ := �j′′ :=

∑|J|
i=j′ �i. We obtain M ′′

with the following operations: We start with M . Let t∗ denote the timestep
with

´ t∗
0

s(x)dx = �m′′ . Let δ > 0 be a constant to be defined later. In the time
interval [t∗, t∗ + δ] we define M ′′ to have speed |J ′′

small| /δ. We allow only values
for δ such that M ′′ never slows down (i. e., there are not timesteps x and x′

with x < x′ but s′′(x) > s′′(x′) with s′′ being the speed function of M ′′). Note
that M ′′ completes all jobs within the interval [0, t∗ + δ].

We claim that for any given ε > 0 there is a δ > 0 such that SR(I′′)
OPT (I′′) ≥

(1− ε) SR(I)
OPT (I) . In order to analyze SR(I′′)

OPT (I′′) we split the jobs into bricks of
demand 1. Let j be a job. For j we introduce �j bricks Bj,1, ..., Bj,�j . Let
paySR(I) (j) be the amount that j contributed towards the objective function
in SR(I). We define paySR(I) (Bj,k) := paySR(I) (j) /�j for all k with 1 ≤ k ≤ �i.
We define payOPT (I) (j) and payOPT (I) (Bj,k) similarly. Let B denote the set
of all bricks. Note that some of the bricks correspond to j′′ in I ′′ and to some

138

5.5. A TIGHT ANALYSIS OF SMITH’S RULE

0 t∗ + δt∗
t

...

...

......

...

...

OPT (I)

OPT (I ′′)

SR(I)

SR(I ′′)

j′

j′′

j′

j′′

Figure 5.5: The time intervals in which the jobs are processed according to the
respective schedules. In order to simplify the sketch we assume that M runs
constantly with unit speed. The machine M ′′ runs with constant speed until
time t∗ and becomes extremely fast directly after t∗.

other jobs from J \ Jsmall in I. We say a brick Bj,k is processed in OPT (I)
during a time interval [s, t] if until time s a fraction of k−1

�j
of j is processed in

OPT (I) and until time t a fraction of k
�j

of j is processed in OPT (I).
For a schedule S we define Bearly(S) to be all bricks which are processed up to

time t∗ in S. We define Blate(S) := B \Bearly(S). We observe that for all bricks
Bj,k ∈ Bearly(OPT (I)) we have that payOPT (I) (Bj,k) ≥ payOPT (I′′) (Bj,k).
Moreover, for all bricks Bj,k ∈ Blate(OPT (I)) we have that payOPT (I) (Bj,k) ≤
t∗ + δ. We observe that for all bricks Bj,k ∈ Bearly(SR(I)) we have that
paySR(I′′) (Bj,k) ≥ paySR(I) (Bj,k). Moreover, for all bricks Bj,k ∈ Blate(SR(I))
we have that paySR(I′′) (Bj,k) ≥ t∗. Figure 5.5 shows a sketch of the above
reasoning.

To simplify notation, for a set of bricks B and a schedule S we define
payS (B) := ∑

B∈B payS (B). We calculate that

SR(I ′′)
OPT (I ′′)

=
paySR(I′′) (Bearly(SR(I ′′))) + paySR(I′′) (Blate(SR(I ′′)))

payOPT (I′′) (Bearly(OPT (I ′′))) + payOPT (I′′) (Blate(OPT (I ′′)))

≥ paySR(I) (Bearly(SR(I))) + |Blate(SR(I))| · t∗
payOPT (I) (Bearly(OPT (I))) + |Blate(OPT (I))| · (t∗ + δ)

.

Observe that

payOPT (I) (Blate(OPT (I))) ≥ paySR(I) (Blate(SR(I)))

≥ |Blate(SR(I))| · t∗.

139

CHAPTER 5. INCREASING SPEED SCHEDULING

This implies

paySR(I) (Bearly(SR(I))) + |Blate(SR(I))| · t∗
payOPT (I) (Bearly(OPT (I))) + |Blate(OPT (I))| · t∗ ≥ SR(I)

OPT (I)
.

In other words: if we increased the speed of M to infinity after time t∗ then the
optimal schedule saves not less than the Smith’s rule schedule. Thus, for every
given ε > 0 there is a δ > 0 such that

paySR(I) (Bearly(SR(I))) + |Blate(SR(I))| · t∗
payOPT (I) (Bearly(OPT (I))) + |Blate(OPT (I))| · (t∗ + δ)

≥ (1− ε)
SR(I)

OPT (I)
.

It remains to modify I ′ such that the machine has at most two different speeds
(without reducing the factor between the two schedules). Recall that in J ′′ there
are some jobs of demand 1 and one large job. Moreover, in OPT (I ′′) the jobs of
demand 1 are all finished before t∗. We define I ′ := (J ′′,M ′) and specify M ′ as
follows: we start with M ′′. Let z :=

´ t∗
0

s′(x)dx/t∗ (i. e., z is the average speed
of the machine during the time interval [0, t∗]). Then we define

• s′′(x) := z for all x ∈ [0, t∗) and

• s′′(x) := s′(x) for all x ∈ [t∗, t∗ + δ].

We have that SR(I ′) = SR(I ′′) and OPT (I ′) ≤ OPT (I ′′). The former holds
since the Smith’s rule schedule cannot benefit from our adjustments. The latter
holds since at each point in time M ′ has processed at least as much as M ′′ (i. e.,
the finishing times of the jobs cannot increase). This completes the adjustments
of this lemma.

Now we are ready to prove the approximation ratio of
√
3+1
2 for the Smith’s

rule algorithm.

Lemma 5.27. Every algorithm that always respects Smith’s rule is a
(√

3+1
2

)
-

approximation algorithm.

Proof. We prove that for any instance I it holds that SR(I)
OPT (I) ≤

√
3+1
2 . Let ε > 0.

Using the lemmas above we derive an instance I ′ = (J ′,M ′) with the following
properties:

• for all jobs j ∈ J ′ it holds that wj/�j = 1,

• the demands (and thus the weights) of all jobs are integral,

• in SR(I ′) the jobs are sorted non-ascendingly by their demand,

• in OPT (I ′) the jobs are sorted non-descendingly by their demand,

• J ′
small consists only of jobs with demand 1,

• there is exactly one job j′ ∈ J ′ which does not have demand 1 (denote by
�j′ its demand),

140

5.5. A TIGHT ANALYSIS OF SMITH’S RULE

• M ′ has at most one speed change which occurs when the large job is
finished in SR(I ′) (denote by t∗ the time of the speed change), and

• SR(I′)
OPT (I′) ≥ (1− ε) SR(I)

OPT (I) .

In the remainder of this proof, we show that SR(I′)
OPT (I′) ≤

√
3+1
2 which implies the

desired claim since we can choose ε arbitrarily small.
We define L :=

∑
j∈J′ �j . Let s1 and s2 denote the two speed values of M ′

with s1 ≤ s2. Denote by tmax the time when the last job finishes. We set
k := L− �j′ (i. e., we have k small jobs of demand 1) and calculate that

SR(I ′) = t∗ · �j′ +
k∑

i=1

(
t∗ +

i

s2

)
= L · t∗ + k (k + 1)

2 · s2

and

OPT (I ′) = �j′ · tmax +
k∑

i=1

i

s1
= �j′ · tmax +

k (k + 1)

2 · s1
.

We substitute tmax =
�j′
s1

+ k
s2

and obtain

SR(I ′)
OPT (I ′)

=

�j′
s1

· k +
(�j′)

2

s1
+ k(k+1)

2s2

(�j′)
2

s1
+

k·�j′
s2

+ k(k+1)
2s1

≤ �j′ · k + (�j′)
2

(�j′)
2
+ k2+k

2

≤ �j′ · k + (�j′)
2

(�j′)
2
+ k2

2

using that k ≤ �j′ . For fixed �j′ we define f(k) :=
�j′ ·k+(�j′)

2

(�j′)
2
+ k2

2

. We calculate

that

f ′(k) = 0 ⇔ (�j′)
2
+

k2

2
− k2 − k · �j′ = 0

⇔ k =
(
−1±

√
3
)
· �j′ .

Basic calculus shows that the function f(k) attains its maximum in [0, �j′] at
k =

(
−1 +

√
3
)
· �j′ . We further calculate that

141

CHAPTER 5. INCREASING SPEED SCHEDULING

SR(I ′)
OPT (I ′)

≤ f
((√

3− 1
)
· �j′

)

=
�j′ ·

(√
3− 1

)
· �j′ + (�j′)

2

(�j′)
2
+

(4−2
√
3)·(�j′)

2

2

=

√
3 + 1

2
.

So for any ε > 0 we can show that SR(I)
OPT (I) ≤ 1

1−ε · SR(I′)
OPT (I′) ≤ 1

1−ε ·
√
3+1
2 . This

implies that SR(I)
OPT (I) ≤

√
3+1
2 .

The proof of Lemma 5.27 bounds the approximation ratio of Smith’s rule for
instances with the derived properties by

√
3+1
2 . Due to the previous lemmas we

know that this implies the same bound for all instances. The following Proposi-
tion shows that on instances with the mentioned properties the approximation
factor of Smith’s rule can indeed be arbitrarily close to

√
3+1
2 .

Proposition 5.28. For any ε > 0 there is an instance Iε with the property
that SR(Iε)

OPT (Iε)
≥

√
3+1
2 (1− ε).

Proof. Let ε > 0. Let �j′ be an integer to be defined later. We introduce
k :=

⌊(√
3− 1

)
�j′

⌋
jobs which have demand and weight 1 and one job j′ which

has demand and weight �j′ . We define our machine Mε to have speed 1 in
the time interval [0, �j′] and speed s in the time interval

[
�j′ , �j′ +

k
s

]
(we will

define s later). We calculate that

OPT (Iε) ≤
k(k + 1)

2
+ �j′ ·

(
�j′ +

k

s

)

and

SR (Iε) = (�j′)
2
+ k · �j′ +

k(k + 1)

2s

We further calculate that

SR (Iε)

OPT (Iε)
≥ (�j′)

2
+ k · �j′ + k(k+1)

2s
k(k+1)

2 + �j′ ·
(
�j′ +

k
s

)
=

(�j′)
2
+
⌊(√

3− 1
)
�j′

⌋
· �j′ + �(√3−1)�j′�(�(

√
3−1)�j′�+1)

2s

�(√3−1)�j′�(�(
√
3−1)�j′�+1)

2 + �j′ ·
(
�j′ +

�(√3−1)�j′�
s

)

Now we choose s and �j′ large enough such that

142

5.6. BLIND ALGORITHMS

SR (Iε)

OPT (Iε)
≥ (1− ε)

(�j′)
2
+
((√

3− 1
)
�j′

)
· �j′

((
√
3−1)�j′)

2

2 + (�j′)
2

= (1− ε)

√
3 + 1

2

So far we compared SR(I) and OPT (I) where SR(I) denotes the Smith’s
rule schedule with the worst possible tie-breaking. In the following theorem we
state the main result of this section and in particular we show that even with the
best possible tie-breaking the approximation ratio of the Smith’s rule algorithm
does not improve.

Theorem 5.29. Any algorithm respecting Smith’s rule is a
√
3+1
2 -approximation,

and none of these algorithms can achieve a better approximation factor for all
instances.

Proof. The upper bound for the approximation factor follows from Lemma 5.27.
So far we always considered the worst possible tie-breaking for Smith’s rule. Now
consider a Smith’s rule algorithm with the best possible tie-breaking for each
instance. Let I be an instance. For any ε > 0 we can find a perturbation of the
weights of the jobs in I yielding an instance Iε such that

• there is only one possible ordering for the jobs in Iε which obeys Smith’s
rule and still

• SR(Iε)
OPT (Iε)

≥ (1− ε) SR(I)
OPT (I) .

Applying this reasoning to the worst-case instances presented in Proposition 5.28
shows that no Smith’s rule algorithm can achieve a better approximation factor
than

√
3+1
2 .

5.6 Blind Algorithms
The Smith’s rule algorithm orders the jobs without knowledge of the machine.
We call algorithms with this property blind algorithms. Assume that some
blind algorithm has computed an ordering for a set of jobs. Given a dynamic
network we can use Theorem 5.7 to obtain an optimal flow schedule for this
given ordering. This yields the following theorem.

Theorem 5.30. Assume there is a blind α-approximation algorithm for the
ISS problem. Then there is also an α-approximation algorithm for the flow
scheduling problem.

In particular, since Smith’s rule is a blind
√
3+1
2 -approximation algorithm,

we obtain the following corollary.

143

CHAPTER 5. INCREASING SPEED SCHEDULING

Corollary 5.31. There is an approximation algorithm for the flow scheduling
problem with approximation factor

√
3+1
2 .

Now we establish a lower bound for the possible performance ratio of any
blind algorithm. Our original bound of 1.1215 [103] was improved to 1.1328 by
an anonymous referee. Since the latter construction is gives a better bound and
it is also simpler we present only that one.

Theorem 5.32. No blind algorithm can have a better performance ratio than
(19 + 3

√
65)(22 + 2

√
65) ≈ 1.1328.

Proof. Let ε > 0. We consider the following instance I: there are two jobs
with �1 = 1, w1 = 1, �2 = 2, and w2 = α (for a value α to be defined later).
A blind algorithm has to order them without knowing the speed function of
the machine. We consider two possible machines: machine M1 runs constantly
with unit speed. Machine M2 runs with unit speed until time t = 2 and then
accelerates to speed 1/ε. Hence, the last job finishes at time t = 2 + ε.

We denote by S(i, j) the schedules where job i is executed before job j,
with i, j ∈ {1, 2}. On machine M1 the schedule S(1, 2) has an objective value
of w1 + 3w2 and S(2, 1) has an objective value of 2w2 + 3w1. However, on
machine M2 the schedule S(1, 2) yields an objective value of w1+(2+ ε)w2 and
S(2, 1) has an objective value of 2w2 + (2 + ε)w1.

If the blind algorithm chooses the schedule S(1, 2) then on machine M1

it achieves an approximation ratio of 1+3α
3+2α . If it chooses the schedule S(2, 1)

then on machine M2 it has an approximation ratio of 2+2α+2ε
1+2α+2αε . The worst

case performance ratio of any blind algorithm is hence bounded from below
by f(α) := min

{
1+3α
3+2α ,

2+2α+2ε
1+2α+2αε

}
. Choosing α := (5 +

√
65)/4 yields f(α) =

(19 + 3
√
65 + 2ε)(22 + 2

√
65 + 2αε). Since we can choose ε arbitrarily small,

our claim follows.

5.7 Online Algorithms
In this section, we consider the increasing speed scheduling problem in an online
setting. We show that the Smith’s rule algorithm has still a competitive ratio
of 2. Also, the lower bound of the blind algorithms carries over to a bound
for online algorithms. Hence, there can be no online algorithm with a better
competitive ratio than ≈ 1.1328. Finally, we show that if all jobs have unit
weight then the intuitive shortest remaining processing time algorithm (SRPT)
is optimal.

We assume the following online model:

• each job j has a release time rj before which it cannot be processed,

• the existence and all data of a job become known at its release time, and

• at time t the speed of the machine up to time t is known, the speed of the
machine after time t is not known.

144

5.7. ONLINE ALGORITHMS

The Smith’s rule algorithm in the online-setting works as follows: We always
process a job which has the largest Smith’s factor among all available jobs.
Denote by SRonline(I) the resulting schedule (and its objective function value)
for an instance I.

Theorem 5.33. In the online setting, the Smith’s rule algorithm has a com-
petitive ratio of 2.

Before we can prove the theorem we need some preparation. Let I be an
instance of our problem. With the same reasoning as in Lemma 5.23 we can
show that w. l. o. g. we can assume that all wj

�j
= 1 for all jobs in I. However,

note that here we need a different analysis since a job j might be preempted by
a job j′ with rj < rj′ .

We choose ε such that it divides the demand of each job and each release
time. We create a lower bound instance I ′ by replacing each job j by �j/ε jobs,
each with demand ε and weight wj

�j
ε, and release time rj .

Lemma 5.34. It holds that OPT (I ′) ≤ OPT (I).

Proof. We start with OPT (I). We show that splitting the jobs into pieces of
demand ε does not increase the value of the objective function. Denote by S
the schedule obtained by taking OPT (I) and splitting each job j into �j/ε
equal jobs with demand ε. Let j ∈ J denote a job which is executed in one
time interval [sj , tj) in OPT (I). Then j contributes wj · tj towards the sum of
weighted completion times. Denote by Jj the jobs resulting from splitting j.
For a job j′ ∈ Jj denote by t(j′) its completion time in S. In S the jobs resulting
from splitting j contribute

∑
j′∈Ji

t(j′) · wj

�j
ε ≤

∑
j′∈Ji

tj ·
wj

�j
ε

=
�j
ε
· tj ·

wj

�j
ε

= tj · wj

towards the objective function. A similar reasoning can be applied to jobs j
which are executed in more than one time interval. Applying the above rea-
soning to all jobs shows that S ≤ OPT (I). This implies that OPT (I ′) ≤
OPT (I).

The important property of the lower bound instance I ′ is that on I ′ the
online Smith’s rule algorithm is optimal, as the following lemma shows.

Lemma 5.35. If in SRonline(I
′) no job is preempted by another job with the

same Smith’s factor, then the schedule SRonline(I
′) is optimal.

Proof. Due to the choice of ε the condition of the lemma ensures that no job is
ever preempted. Then the claim follows from Lemma 5.21.

145

CHAPTER 5. INCREASING SPEED SCHEDULING

Now we are ready to prove Theorem 5.33. First we give some intuition for
the proof. We define a function f as follows: Assume that a job starts its
execution at time t = 0 and is never interrupted. We define f (�) to be its
completion time depending on its demand �. If the machine runs constantly
with unit speed then f is the identity function. If the machine might accelerate
but does not slow down then we can still guarantee that f is concave. If the
machine has no idle time then in the lower bound instance I ′ the Smith’s rule
algorithm pays (roughly) the area underneath the curve f , see Figure 5.6 for a
sketch. In I the Smith’s rule algorithm pays at most f(T) · T where T denotes
the finishing time of the last job. Since f is concave we can prove that the two
values differ by at most a factor of two.

Now we give a detailed proof.

Proof of Theorem 5.33. We observe that the time until the last job finishes can
be partitioned into time intervals in which the machine has no idle time. Denote
by L the set of these intervals. We now show the competitive factor of 2 for
the online Smith’s rule algorithm. We consider each interval L = [x, y] ∈ L
separately. Let JL ⊆ J denote the jobs which finish within L in SRonline(I)
and let J ′

L ⊆ J ′ be the jobs which finish within L in SRonline(I
′). We denote by

cost (JL) and cost (J ′
L) the value that the jobs in JL and J ′

L contribute towards
the objective function in SRonline(I) and SRonline(I

′), respectively. We want
to show that cost (JL) ≤ 2 · cost (J ′

L).
We define a function f as described above. Note that since the machine

never slows down f is concave. We define k := 1
ε

∑
j∈JL

�j , i. e., the schedule I ′

executes k jobs the interval L. We want to show that cost (JL) ≤ 2 · cost (J ′
L).

We calculate that

cost (J ′
L) =

k∑
i=1

εf (i · ε)

≥
ˆ kε

0

f(z) dz

≥ f (kε)

2
· kε

(see Figure 5.6 for a sketch) and thus

cost (JL) ≤
∑
j∈JL

f (kε) · wj

= f (kε) ·
∑
j∈JL

�j

= f (kε) · kε
≤ 2 · cost (JL′)

Doing this reasoning for each interval L ∈ L proves the claim.

146

5.7. ONLINE ALGORITHMS

f

x y �

cost

Figure 5.6: The function f together with the schedule of the jobs in J ′
L. The

y-axis denotes the cost that jobs contribute towards the objective function. The
narrow bars represent the value of our lower bound. The dotted line represents
our upper bound on the value for the true objective function (for the jobs in JL).

Note that our analysis is tight since there are examples (even for the case
that the speed of the machine does not change) where the online Smith’s rule
algorithm does not perform better than factor 2, see [94].

5.7.1 Lower Bound for Online Algorithms

The lower bound construction for blind algorithms presented in Section 5.6
carries over to a bound for online algorithms. It actually also holds if all jobs
are released at time t = 0 and only the information about the machine becomes
available online.

Theorem 5.36. No online algorithm for the increasing speed scheduling problem
can achieve a better competitive ratio than (19 + 3

√
65)(22 + 2

√
65) ≈ 1.1328,

even if all jobs have the same release time.

Proof. Let ε > 0. We use the same two jobs that were employed in the proof
of Theorem 5.32 with �1 = 1, w1 = 1, �2 = 2, and w2 = α := (5 +

√
65)/4.

Both jobs are released at time t = 0. The adversary runs the machine with unit
speed until job 2 has finished. Then it accelerates the machine to speed 1/ε.
For the remainder of the calculations we pretend that ε = 0, knowing that we
can choose ε arbitrarily small.

Assume that when job 2 finishes the algorithm has already processed a frac-
tion of x < 1 of job 1. This yields an objective value of (2+x)(α+1). However,

147

the optimum would have been 1 + α(2 + x). The expression

CHAPTER 5. INCREASING SPEED SCHEDULING

(α+ 1)(2 + x)

α(2 + x) + 1

is minimized for x = 0 (since (α+1)/α ≥ (2α+2)/(2α+1)). Hence, the online
algorithm cannot gain anything by processing job 1 partly before finishing job 2.
Also, the algorithm cannot gain anything by processing job 2 partly before
finishing job 1 (it might as well finish job 1 before start processing job 2). The
remainder of the reasoning is identical to the proof of Theorem 5.32.

5.7.2 Unit Weight Case
In this section we prove that for the unit weight case the shortest remaining
processing time algorithm (SRPT) is optimal. The SRPT-algorithm works as
follows: at each point in time, we process the available job which has the short-
est remaining demand. Ties are broken arbitrarily. For an instance I denote
by SRPT (I) the resulting schedule.

This extends the fact that SRPT is optimal for the problem 1|ri, pmtn|∑Cj .

Theorem 5.37. If all jobs in an instance I have the same weight then SRPT (I)
is optimal.

Proof. Assume on the contrary that SRPT (I) is not optimal. Let OPT (I) be
the optimal schedule which differs from SRPT (I) for the first time as late as
possible. Let time t be the first timestep where OPT (I) and SRPT (I) differ.
Let jlong denote the job which is processed by OPT (I) at time t and let jshort be
the job which is processed by SRPT (I) at time t. Then at time t the remaining
demand of jshort is strictly shorter than the remaining demand of jlong. (If both
remaining demands equal then by an exchange argument we can show that there
must be an optimal schedule which also schedules jshort at time t.) Let tshort
and tlong denote the finishing times of jshort and jlong in OPT (I). Let I denote
the union of the time intervals after t in which OPT (I) processes either jshort
or jlong. We define a new schedule OPT ′(I) as follows: outside I the schedules
OPT ′(I) and OPT (I) are identical. Within I the schedule OPT ′(I) processes
jshort and jlong according to the SRPT-rule. Denote by t′short and t′long the
finishing times of jshort and jlong in OPT ′(I), respectively. If tshort < tlong
then t′short < tshort and t′long = tlong. If tshort > tlong then t′short < tlong and
t′long = tshort. In both cases we derive that tshort + tlong > t′short + t′long. The
finishing times of all other jobs are the same in both schedules. This contradicts
that OPT (I) is an optimal schedule.

5.8 Conclusion
In this chapter, we studied the flow scheduling problem which to the best of our
knowledge has not been considered before. It motivates the increasing speed
scheduling problem (ISS) which was also not studied for itself before. From an

148

5.8. CONCLUSION

algorithmic point of view, ISS with release dates is fully understood since it is
NP -hard and we provided a PTAS. However, the NP -hardness proof due to
the contained 1|ri, pmtn|∑wjCj-problem requires release dates for the jobs.
An intriguing question that we have to leave open is, whether the ISS problem
without release dates is also NP -hard. Also, it remains open whether there is
an FPTAS for ISS without release dates.

For blind algorithms, the best possible approximation factor is still unclear.
We know that the Smith’s rule algorithm yields a

√
3+1
2 ≈ 1.366 approximation.

On the other hand, the best known lower bound is 1.1328. It remains open to
fill this gap. A randomized algorithm might be an option. Recall that if the
speed of the machine might increase and decrease, the best possible determin-
istic blind algorithm gives a 4-approximation, but a randomized algorithm with
approximation ratio e ≈ 2.718 is known [31]. Also, for the online setting it
remains open to improve the 2-approximation or to strengthen the lower bound
of 1.1328.

For the flow scheduling problem we considered only the setting with a single
source s and a single sink t. Various generalizations are possible, like multiple
sources and/or multiple sinks. In the setting of multiple sources and a single
sink an earliest arrival flow still exists. However, note that in flow scheduling
we can no longer guarantee that every optimal solution completes a job before
particles of the next job arrive in the sink. For example, consider an instance
with two sources that share an edge on their way to the sink t. It might be that
in any optimal solution particles from two jobs from the two sources arrive at t
simultaneously. For the setting of multiple sources and multiple sinks not even
an EAF is guaranteed to exist [15, 36] which makes the flow scheduling problem
even harder. Nevertheless, this yields a lot of space for further research.

149

Chapter 6

Periodic Maintenance
Problem

6.1 Introduction

In former times, airplanes used to operate completely without any electronic
equipment. Devices like an on-board computer or a fly-by-wire system were
unimaginable. Those times have passed a long time ago. Nowadays, every
modern aircraft uses a lot of computer-based systems to steer and control the
plane, communicate with the air-traffic controller etc. In particular, systems like
an autopilot would not be possible without the help of sophisticated on-board
computers. In fact, in a modern airplane the input of the pilot is translated
by the system to appropriate actions of the actuators, e. g., the ailerons or the
rudders. Certain actions are even disallowed by the system, like bringing the
plane into an angle which is too steep. Also, the computer controls the actuators
without an explicit command of the pilot, e. g., in order to stabilize the plane
or to run the autopilot.

Such on-board computers have great advantages. They take over work of
the pilot who can then concentrate on other tasks. In particular, this reduces
the risk of accidents due to human errors during long flights. However, in
order to guarantee flight safety the computer must operate according to the
specifications at all times. Everybody with a computer at home knows that
they sometimes behave unexpectedly. For a home computer a little discrepancy
between expected and actual behavior is totally acceptable. However, for a
computer that controls an aircraft even a slight delay in the execution of a
program might result in serious problems. For instance, consider a program
which controls providing the engines with fuel. Abnormal termination of a
program or even the crash of the entire computer could seriously endanger the
flight and the lives of the crew and the passengers. Hence, the computer and
its programs must be designed such that they are always guaranteed to operate
as expected. Such a guarantee requires sophisticated mathematical methods.

151

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

The mathematical area that provides such guarantees is real-time scheduling.
The on-board computer is modeled by a machine which runs some tasks. Each
task represents a program that is executed by the processor of the computer.
Usually, such a program does not need the processor continuously but only
during some time windows. In those time windows, the program computes
some information which is needed until a certain deadline (e. g., how much
fuel needs to be transported to the engines). Depending on the program, the
length of these time windows might vary. This is modeled as follows. Each
task τi (computer program) is characterized by a processing time ci (length of
the mentioned time window), a period length pi and a deadline di. The task τi
continuously creates jobs with processing time ci. A job which is created at a
time t by the task τi must be fully processed by the machine until time t+ di.
As an additional information, we know that if τi emits a job at some time t,
the next job of τi will be emitted at time t + pi at the earliest. The goal is
to define a scheduling policy that at each point in time decides what job is
executed by the processor. Usually, one allows preemption, i. e., it is allowed to
interrupt a job and continue its execution later (without any additional delay
for the interruption). Given a set of tasks, the question is whether there is a
scheduling policy that guarantees that all deadlines are met. We call such a
policy a feasible policy.

One very natural (and indeed also very strong) scheduling policy is earliest
deadline first (EDF). This policy always runs the jobs which has the earliest
deadline among all released but unfinished jobs. It is known that whenever there
is a feasible policy for a set of tasks then EDF is feasible [24]. However, testing
whether EDF is feasible is strongly coNP -hard, even for special cases [13, 29].
Sometimes one is interested in a simpler scheduling policy. One well-studied
class of policies are static-priority policies. Such policies order the tasks in a
fixed priority list. The priority of a job is then given by the priority of the
task that created it. A natural static-priority schedule is the rate monotonic
schedule (RM). This policy orders the tasks non-increasingly by the fractions 1

pi
.

This implies that a task with small period length has higher priority than a task
with large period length. It is known for the special case of implicit deadlines
(i. e., di = pi for all tasks τi) that if there is a feasible static-priority schedule
then RM is feasible [74].

Our industrial partner, a major avionics company, approached us with the
following real-time scheduling problem. They want to assign the tasks of their
on-board computer to its different processors. The scheduling rules on each
processor are much more conservative than in the general setting. In their
model, they assume that each tasks τi creates a job exactly every pi timesteps
(strict periodic setting). Each job has to be processed immediately after it has
been emitted (i. e., di = ci). In particular, given feasible offsets for the tasks
on a machine, no further scheduling decisions are necessary. The only degree
of freedom on each machine is to specify the offset for each task, i. e., the first
timestep when the task creates a job. This already defines the creation times
of all jobs of this task. Note that in most other real-time scheduling settings
one cannot define the times when the tasks emit jobs while here they are a core

152

6.1. INTRODUCTION

p1 2p1 3p1 4p1p2 2p2p30 lcm

p1 2p1 3p1 4p1p2 2p2p30 lcm

Figure 6.1: The picture above shows the three tasks τ1 = (1, 6) (solid),
τ2 = (1, 10) (checkered), and τ3 = (2, 15) (striped) on one machine. The upper
part shows an infeasible assignment of offsets (a1 = 0, a2 = 1, a3 = 2) whereas
the lower part shows a feasible assignment of offsets (a1 = 1, a2 = 0, a3 = 2).
Notice that the schedule repeats after the least common multiple (lcm) of the
periods.

part of the computed solution. The aim is to minimize the number of machines
such that each task is assigned to one processor and for each processor there is
a feasible schedule (assignment of offsets).

In this chapter we present theoretical results for the problem of our industrial
partner. All results are joint work with Friedrich Eisenbrand, Nicolai Hähnle,
Martin Niemeier, Martin Skutella, and José Verschae [27].

6.1.1 Problem Definition

The model that is used for our problem is as follows. One is given tasks τ1, . . . , τn
where each task τi = (ci, pi) is characterized by its execution time ci ∈ N and
period length pi ∈ N (or short: its period). The goal is to assign the tasks to
identical machines and to compute offsets ai ∈ N0 such that no collision occurs:
A task τi generates one job with execution time ci at every timestep ai+pi ·� for
all � ∈ N0. Each job needs to be processed immediately and non-preemptively
after its generation on the task’s machine. A collision occurs if two jobs are
simultaneously active on one machine. The overall aim is to minimize the total
number of used machines. We refer to this problem as the periodic maintenance
problem (PMP). See Figure 6.1 for an example.

An important special case for practitioners is the harmonic PMP: Here, we
assume that the period lengths of the tasks all divide each other, i. e., pj |pj′ or
pj′ |pj for each pair of tasks τj , τj′ .

In the sequel, we will use the following notation: we define the utilization
of a task τ = (c, p) by util(τ) := c/p. Intuitively, the utilization of a task τ
determines the fraction of the total processing power of a machine that is used
by τ . For a set of tasks I we define util(I) :=

∑
τ∈I util(τ). Note that the

utilization util(I) is a lower bound for OPT (I), the number of machines needed
in an optimal solution. For a machine M that has some tasks assigned to it
we define util(M) :=

∑
τ on M util(τ). We denote by q1, q2, . . . , qk the period

lengths arising in a given instance, always assuming that q1 ≤ q2 ≤ . . . ≤ qk.

153

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

6.1.2 Related Work

There is a wide amount of literature on real-time scheduling, for an overview
see [13, 18, 70]. In many cases one is interested in verifying whether a set of tasks
can be scheduled on one machine with a certain scheduling policy. Very common
policies are rate monotonic (RM) and earliest deadline first (EDF). In particular,
Liu and Layland [74] show that the rate monotonic schedule (i. e., priorities are
assigned to the tasks according to their period lengths) is best possible among
all scheduling policies with fixed priorities in the setting of implicit deadlines.
Also, it is proven that the EDF algorithm produces a feasible schedule assuming
that a feasible schedule exists [24].

The periodic maintenance problem is a generalization of the Bin-Packing
problem (e. g., see [51, 105]). In fact, if the period lengths of all tasks are identi-
cal, the problem is equivalent to Bin-Packing. However, the problem is more
general and the approximation ratios known for Bin-Packing do not carry
over. In particular, it is possible to approximate Bin-Packing with an approx-
imation ratio of 1.5 [98] but we show that it is impossible to approximate our
problem with a ratio better than n1−ε for any ε > 0 if P �= NP . For the special
case of harmonic periods we can prove better approximation guarantees. But
even then, the best possible polynomial time algorithm achieves a factor of 2
compared to 1.5 for Bin-Packing [98] (assuming that P �= NP). Even asymp-
totically, one cannot prove a better bound than 2 for our problem (comparing
to the APTAS [35] and the asymptotically optimal algorithm for Bin-Packing,
see [51]).

In non-periodic scheduling there are results for minimizing the needed num-
ber of machines for a set of jobs where each job has a release time and a dead-
line. This problem is known as the SRDM-problem [21]. If the jobs have equal
release times there is a 2-approximation algorithm [110]. For the general non-
preemptive case there is a constant factor approximation [20]. If additionally all
jobs have identical execution times there is a 6-approximation algorithm [110].

6.1.3 Outline of the Chapter

In this chapter, we present approximation algorithms and inapproximability
results for the periodic maintenance problem. The approximation guarantees
of our algorithms depend on the number of different period lengths k that arise
in the given set of tasks. First, we study the general PMP. For arbitrary k,
we present an algorithm which finds a solution using at most 2 · OPT + k − 1
machines. If k is bounded by a constant, we give an algorithm which uses
only (32 + ε)OPT + k machines, for any positive constant ε. Both algorithms
are presented in Section 6.2. There is not much room for improvement in this
setting since we show that it is NP -hard to find solutions which use at most
(32 − ε)OPT + k − 1 machines.

There is little hope for a nontrivial approximation algorithm that has an
approximation guarantee independent of the parameter k: Even for the PMP
restricted to unit execution times, if n is the number of tasks, we show that

154

there is no n1−ε approximation for any positive constant ε, unless P = NP .

6.2. GENERAL PERIODIC MAINTENANCE PROBLEM

General periodic maintenance problem
Period lengths k Algorithms Hardness results

k arbitrary 2OPT + k − 1 n1−ε

k constant
(
3
2 + ε

)
OPT + k

(
3
2 − ε

)
OPT + k − 1

Harmonic periodic maintenance problem
Period lengths k Algorithms Hardness results

k arbitrary 2OPT (2− ε)OPT + o(OPT)

k constant (1 + ε)OPT + k
(
3
2 − ε

)
OPT + k − 1

qk/q1 constant (1 + ε)OPT + 1 (2− ε)OPT

Table 6.1: The approximability landscape of the periodic maintenance problem.
The value k denotes the number of period lengths arising in an instance; qk
and q1 denote the largest and smallest period lengths, respectively.

The inapproximability of the general problem justifies considering the case
of harmonic periods. Our results to this end are presented in Section 6.3. It
turns out that it is much more tractable in terms of achievable approximation
factors. Our main result here is a 2-approximation algorithm. We also show
that this is the best we can hope for, since it is NP -hard to approximate within
a factor of 2− ε (for any ε > 0). This holds even asymptotically. If we restrict
the problem even further we can improve the approximation guarantee: If k is
bounded by a constant there is an asymptotic PTAS computing solutions with
at most (1 + ε)OPT + k machines. If even qk/q1 is bounded by a constant we
can find a solution which needs at most (1+ε)OPT +1 machines in polynomial
time.

Finally, in Section 6.4 we conclude and address open problems. Table 6.1
shows an overview of our approximation algorithms and complexity results.

6.2 General Periodic Maintenance Problem

In this section we study the periodic maintenance problem in the setting of
arbitrary, i. e., not necessarily harmonic, period lengths. We present algorithms
using at most 2 · OPT + k − 1 and

(
3
2 + ε

)
OPT + k machines for arbitrary

and fixed k, respectively. (Recall that k denotes the number of different period
lengths in an instance.) The former is a pure First-Fit algorithm, the latter uses
enumeration and additionally First-Fit. Then we show that it is NP -hard to
approximate the problem with factor of n1−ε for any ε > 0. In particular, this
shows that the additive k in the performance guarantees of our algorithms is
necessary.

155

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

6.2.1 First-Fit Algorithm
In this section we present our First-Fit algorithm for the general PMP that uses
at most 2 · OPT + k − 1 machines in the setting that the number of period
lengths k is part of the input.

Let I be an instance of the PMP. Our algorithm works as follows. We
partition the tasks according to their period lengths. For each period length
separately we do First-Fit: We iterate over the tasks and add each task to the
machine with smallest index where it fits. If there is no such machine, we open
a new machine. Note that we do not mix tasks with different period lengths on
the same machine. Hence, it is easy to check whether we can add a task to a
machine or not: Let I ′ be a set of tasks such that all tasks in I ′ have the same
period length p. There is a schedule for all tasks in I ′ on one machine if and
only if

∑
τj∈I′ cj ≤ p. Denote by FF (I) the number of machines in the resulting

schedule.

Theorem 6.1. For any instance I it holds that FF (I) ≤ 2 ·OPT + k − 1.

Proof. For each arising period length qr denote by Ir all tasks with this period
length. Let Mr denote the machines used by FF (I) for the tasks in Ir. Since
we added the tasks by First-Fit, we have that 1

2 (|Mr| − 1) < util (Ir). For the
overall bound, we calculate that

FF (I) =
k∑

r=1

|Mr|

<

k∑
r=1

(2 · util (Ir) + 1)

≤ 2 ·OPT + k

Since on both sides of the inequality have integer values, we conclude that
FF (I) ≤ 2 ·OPT + k − 1.

6.2.2 Enumeration and First-Fit
For this section we assume that k is bounded by a constant. We present an
algorithm that needs at most (3/2 + ε)OPT + k machines, for any ε > 0. It
performs some enumeration and subsequently uses First-Fit. We borrow ideas
from the APTAS for Bin-Packing, see [105].

Let I be an instance of the PMP and let ε > 0. By slight abuse of no-
tation whenever we write O(ε) we mean � · ε for some positive constant �.
We call a task τ small if util(τ) ≤ ε, otherwise we call τ big. We define the
sets Ismall and Ibig respectively. Our strategy is the following: We use a round-
ing method for computing an (1 + ε)-approximate solution for the tasks in Ibig.
Call this solution ENUM(Ibig). For the tasks in Ismall we use the First-Fit
algorithm described above (on new machines). We obtain a solution using at

156

6.2. GENERAL PERIODIC MAINTENANCE PROBLEM

most ENUM(Ibig) + FF (Ismall) machines. We will show in Theorem 6.5 that
either this solution or FF (I) uses at most (3/2 +O(ε))OPT + k machines.

Now we describe how to compute ENUM(Ibig). For this we need some
preparation in which we derive some interesting properties of the periodic main-
tenance problem.

Lemma 6.2. Let K be a constant. Let I = {τ1, ..., τK} be a set of tasks. There
is a polynomial time algorithm which determines whether the tasks in I can be
scheduled on one machine.

Proof. We explain how one can formulate the problem as an integer program (IP).
Since here the number of tasks is bounded by a constant the number of variables
of the IP will be bounded by a constant as well. Thus, we can use Lenstra’s
algorithm [68] to solve the problem in polynomial time.

For each task τj we introduce a variable aj ∈ Z representing its start offset.
For each variable aj we introduce the constraints

0 ≤ aj ≤ pj − 1.

Then, for each pair of tasks τj , τj′ we need to ensure that none of their jobs
collide. Since the jobs of τj and τj′ are created at times in aj+pjZ and aj′+pj′Z,
respectively, elementary number theory [80] allow us to state the condition that
no jobs collide as

aj + fj �≡ aj′ + fj′ mod gcd (pj , pj′)

for all fj , fj′ ∈ Z with 0 ≤ fj ≤ cj − 1 and 0 ≤ fj′ ≤ cj′ − 1. The above
statement is equivalent to

aj − aj′ + fj − fj′ �≡ 0 mod gcd (pj , pj′) .

We observe that the expression (fj − fj′) can attain all integral values in the
interval [−cj′ + 1, cj − 1]. Thus, the above condition is equivalent to the two
conditions

aj − aj′ mod gcd (pj , pj′) ≥ cj′ (6.1)
aj − aj′ mod gcd (pj , pj′) ≤ gcd (pj , pj′)− cj . (6.2)

Since we are interested in an integer program (IP) we reformulate the mod-
operator by introducing a variable zj,j′ ∈ Z and the conditions

0 ≤ aj − aj′ + zj,j′ · gcd (pj , pj′) ≤ gcd (pj , pj′)− 1. (6.3)

Then, Inequalities (6.1) and (6.2) can be written as

aj − aj′ + zj,j′ · gcd (pj , pj′) ≥ cj′ (6.4)
aj − aj′ + zj,j′ · gcd (pj , pj′) ≤ gcd (pj , pj′)− cj (6.5)

Introducing the respective Inequalities (6.4) and (6.5) for each pair of tasks
ensures that no two tasks collide. (Note that they imply Inequality 6.3). If the
number of tasks is bounded by a constant we introduce only a constant number
of variables, allowing Lenstra’s algorithm [68] to run in polynomial time.

157

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

Let a pair (c, p) consisting of an execution time c and a period length p to
be a type of a task. In the following lemma we show that if the number of types
of tasks is bounded by a constant and all tasks are big then the PMP is still
polynomial time solvable.

Lemma 6.3. Let K and ε > 0 be fixed constants. If there are at most K
different types of tasks and for each task τj we have that util(τj) ≥ ε then we
can solve the periodic maintenance problem optimally in polynomial time.

Proof. Since util(τj) ≥ ε for all tasks τj we conclude that in any solution on
each machine there can be at most �1/ε� tasks. Thus, there can be at most
R := �1/ε�K possible assignments of tasks to a machine. We refer to the latter
as configurations. For each configuration we need to check whether it is feasible,
i. e., whether there exist start offsets for the respective tasks which allow them
to be processed on the same machine. Since we have only a constant number of
tasks this can be done in polynomial time (see Lemma 6.2). Since we need at
most n = |I| machines in total there are at most nR configurations. (For each
configuration there are at most n machines with this configuration.) We can
enumerate them in polynomial time.

Using the above Lemma we can derive a PTAS for the tasks in Ibig.

Lemma 6.4. Let ε > 0. Let I be a set of tasks such that util(τj) ≥ ε for each
tasks τj ∈ I. Assume that the number of different period lengths in I is bounded
by a constant. Then there is a polynomial time algorithm which finds a solution
which needs at most (1 + ε)OPT (I) machines.

Proof. For each period length qr we define Ir to be the set of all tasks τj
with pj = qr. For each period length qr we order the tasks non-decreasingly
according to their utilization. Then we partition the tasks from left to right
into at most K =

⌈
2
ε2

⌉
groups. We do this such that all groups but the first one

contain exactly Qr :=
⌊
ε2 · |Ir|

⌋
tasks and the first group contains at most Qr

tasks (if Qr = 0 we assign at most one task to each group). Then, we increase the
execution time of each task such that its execution time (and thus its utilization)
equals the execution time of the task with the largest execution time in its group.
Denote by �I
 the resulting instance. In �I
 we have at most k ·K types of tasks.
Since we assumed k to be constant we have only a constant number of types,
all with a utilization of at least ε. Using the algorithm described in Lemma 6.3
we can find an optimal solution for �I
. This solution yields a valid solution
for I. In order to prove the claimed approximation guarantee we construct an
instance �I� in which we decrease the execution time of each task to the smallest
execution time of a task in its group.

We know that OPT (�I�) ≤ OPT (I) ≤ OPT (�I
). Also, the execution
times of any task of a group is upper-bounded by the execution time of any task
of the next higher group. Hence, if we remove all tasks from the largest group
of �I
 for each period length, the remaining tasks of �I
 can be assigned to
OPT (�I�) machines using the solution OPT (�I�) as a template. Hence, there

158

6.2. GENERAL PERIODIC MAINTENANCE PROBLEM

is a solution for �I
 using at most OPT (�I�) +∑
r Qr machines. We conclude

that

OPT (�I
) ≤ OPT (�I�) +
∑
r

Qr ≤ OPT (I) + nε2 ≤ (1 + ε)OPT (I).

Note that since util(τj) ≥ ε we can use that nε ≤ OPT (I).

Now we are ready to describe the main algorithm. First, for the tasks in
Ibig we find a solution which needs at most (1 + ε)OPT (Ibig) machines, de-
noted by ENUM(Ibig), using the algorithm described in Lemma 6.4. Observe
that OPT (Ibig) ≤ OPT (I). We put the machines aside which were used so
far and we assign the tasks in Ismall to new machines using the First-Fit al-
gorithm described in Section 6.2.1. Then, we run the First-Fit algorithm di-
rectly with the set I of all tasks. We output the best among the two solutions
ENUM (Ibig)+FF (Ismall) and FF (I). Denote by EFF (I) (enumeration first-
fit) the number of needed machines.

Theorem 6.5. Let I be a set of tasks and let ε > 0 as defined in the al-
gorithm. Assume that the number of period lengths k is bounded by a con-
stant. Then, EFF (I) can be computed in polynomial time and it holds that
EFF (I) ≤ (3/2 +O(ε))OPT (I) + k.

Proof. The computation of FF (I) and FF (Ismall) can clearly be done in poly-
nomial time. Due to Lemma 6.4 the computation of ENUM (Ibig) can also be
done in polynomial time since k is bounded by a constant.

Now we want to prove the approximation ratio. First, we derive some
bounds for the number of machines used by the two algorithms. For each pe-
riod length qr denote by Irsmall and Irbig the small and big tasks with this period
length. Using utilization bound arguments we have that

FF (I) <
k∑

�=1

(
2 · util(Irbig) +

util(Irsmall)

1− ε
+ 1

)
= 2 · util(Ibig) +

util(Ismall)

1− ε
+ k.

Thus, if util (Ismall) ≥ util(Ibig) then FF (I) ≤ (3/2 +O(ε))OPT (I) + k using
util (I) as a lower bound for OPT (I). So now assume that

util(Ismall) < util(Ibig). (6.6)

The total number of used machines is bounded by

ENUM(Ibig) + FF (Ismall) ≤ ENUM(Ibig) + util (Ismall) (1 +O(ε)) + k.

Now we distinguish two cases: If util(Ismall) ≤ 1
2ENUM(Ibig) this gives a bound

of (3/2 +O(ε))OPT (I) + k (since ENUM(Ibig) ≤ OPT). On the other hand,
if util(Ismall) >

1
2ENUM(Ibig) then

ENUM (Ibig) + util (Ismall) (1 +O(ε)) <
3 · util (Ismall) (1 +O(ε))

util(Ismall) + util(Ibig)
·OPT (I)

≤
(
3

2
+O(ε)

)
OPT (I)

159

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

where the last inequality follows by Inequality 6.6. This concludes the proof.

6.2.3 Complexity

In the previous sections we presented two approximation algorithms for the
periodic maintenance problem. Both algorithms have an additive value k in
the bound of the number of used machines. This raises the question whether
one can design an approximation algorithm without this additive term, e. g., an
algorithm which needs at most � ·OPT machines for some constant �. However,
in this section we show that this is not possible. We prove that the PMP is
NP -hard to approximate with a factor of |I|1−ε for any ε > 0 (if the number of
period lengths k is part of the input). In particular, this rules out any constant
factor approximation algorithm.

Our reduction heavily uses that the number of different period lengths in
an instance is not bounded by any constant. In fact, in the reduction no two
tasks have the same period length. Hence, for instances where the number
of arising period lengths k is bounded by some constant there could still be
better approximation algorithms. Recall that in Section 6.2.2 we presented
an algorithm for this setting which needs at most (32 + ε)OPT + k machines.
However, we show that there is no algorithm with an approximation guarantee
of (32 − ε)OPT + k − 1 for any ε > 0, unless P = NP , even if k is constant.
Hence, our algorithm with the bound of (32 +ε)OPT +k is almost best possible.

First, we give our hardness result for the general PMP where the number of
period lengths k is part of the input.

Theorem 6.6. The periodic maintenance problem cannot be approximated within
a factor of n1−ε, for any constant ε > 0, unless P = NP .

Proof. We show a reduction from Coloring. For unit execution times, a set
of offsets is feasible if and only if aj + kj · pj �= aj′ + kj′ · pj′ for each pair of
tasks τj , τj′ and all kj , kj′ ∈ N0. With elementary number theory [80] one can
show that this is equivalent to aj �≡ aj′ mod gcd(pj , pj′). The reduction works
as follows. Let the graph G = (V,E) be an instance of Coloring. Let Ē be the
complement of E, i. e., Ē := { {u, v} : u, v ∈ V, {u, v} /∈ E}. We choose pairwise
different primes qe for all e ∈ Ē. This can be done in polynomial time with the
sieve of Eratosthenes since the Prime Number Theorem guarantees Θ(x/ ln(x))
primes among the first x natural numbers (see, e. g., [80]). For each node v ∈ V ,
we define a task τv = (cv, pv) with cv := 1 and pv :=

∏
e∈Ē: v∈e qe. We denote

by red(G) := {τv : v ∈ V } the PMP instance obtained from the graph G using
this construction.

The reduction has the following properties:

• For each edge {u, v} ∈ E the tasks τu and τv cannot be assigned to the
same machine.

• For an independent set U ⊆ V the tasks {τv : v ∈ U} can be scheduled on
one machine.

160

6.3. HARMONIC PERIODIC MAINTENANCE PROBLEM

This implies that the tasks in red(G) can be scheduled on � machines if and
only if G can be colored with � colors (for each � ∈ N). Since for any ε > 0 the
Coloring-problem cannot be approximated within a factor of n1−ε [112], the
claim follows.

Now we show that even for constant k there is no (32 − ε)OPT + k − 1
approximation algorithm, unless P = NP . Note that this holds even if we
restrict to harmonic instances.

Theorem 6.7. Let k be a constant. Consider only instances of the harmonic
periodic maintenance problem with at most k period lengths. In this setting,
there is no (32 − ε)OPT + k − 1 approximation algorithm for the problem for
any ε > 0, unless P = NP .

Proof. Assume that we have an (32 − ε)OPT + k − 1 approximation algorithm.
We show that then we can solve the Partition-problem (which is NP -hard,
see [43]). Recall that Partition is the following problem: Given a set of inte-
gers s1, . . . , sn ∈ N, decide whether there is a subset S ⊆ {1, ..., n} such that∑

i∈S si =
∑

i∈[n]\S si.
Consider an instance s1, . . . , sn of Partition. Let B := 1

2

∑n
i=1 si. For

each i ∈ {1, ..., n}, we define a task τi = (si, B). Observe that the instance
I = {τ1, . . . , τn} can be scheduled on 2 processors if the partition instance was
a YES-instance. Otherwise we need at least 3 processors. Moreover, observe
that k = 1 for instance I. Thus, the approximation algorithm can be used to
decide Partition.

6.3 Harmonic Periodic Maintenance Problem
The instances of the periodic maintenance problem arising at our industrial part-
ner are harmonic, i. e., the period lengths divide each other pairwise. Therefore,
this special case deserves particular investigation. Designing the tasks of a sys-
tem in such a way allows much better usage of the computational power of
the machines. For example, consider a non-harmonic instance with two tasks
τ1 = (1, p1), τ2 = (1, p2) such that p1 and p2 are very large but gcd(p1, p2) = 1.
Then the two tasks cannot be processed on the same machine even though they
both need only a very small share of the computational power of a machine.
However, if p1 and p2 divide each other (and both are at least 2), we can safely
assign both tasks on one machine.

It turns out that there are much better approximation algorithms possible
for the harmonic PMP than for the general PMP. In particular, we present
a 2-approximation algorithm (without the additive k-term as in the algorithm
presented in Section 6.2.1). This is best possible: we show that not even asymp-
totically one can obtain an approximation algorithm with a better factor than 2,
unless P = NP . Then we sketch how to design an asymptotic PTAS for the
case that k is bounded by a constant. If even qk/q1 is bounded by a constant,
we improve this even further.

161

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

0 q1 2 · q1 3 · q1 4 · q1 5 · q1 6 · q1

Figure 6.2: A schedule for a single machine. The solid jobs belong to tasks with
period length q1, the striped jobs to tasks with period length q2 = 3 · q1, and
the checkered jobs to tasks with period length q3 = 6 · q1.

6.3.1 Bin-Trees
First, we introduce the structural concept of bin-trees which will be helpful
when designing approximation algorithms. Also, the bin-trees are very useful
for visualizing a schedule with its periodic tasks.

Assume that offsets aj of tasks τj = (cj , pj), j = 1, . . . , n, are given which
form a feasible single-machine schedule. Then the resulting schedule repeats
itself after the largest period qk. W. l. o. g. we assume that the task τ1 has the
smallest arising period length, i. e., p1 = q1. By a simple shifting argument,
we can assume w. l. o. g. that τ1 has offset a1 = 0. We observe that the jobs of
the task τ1 partitions the time-horizon [0, qk) into bins [i · q1, (i + 1) · q1) (see
Figure 6.2). Consider two bins Bi = [i ·q1, (i+1) ·q1) and Bj = [j ·q1, (j+1) ·q1)
such that i ≡ j mod qr/q1. As far as tasks with period length up to qr are
concerned, these bins look the same. As a shorthand, we write Bi ≡r Bj when
i ≡ j mod qr/q1.

We use this fact to describe schedules in a hierarchical structure we call bin-
tree which we now define. The root of a full bin-tree is a node representing a
bin containing all tasks of period length q1. It has q2/q1 children, each of which
represents a bin that contains all its parent’s tasks and may contain additional
tasks of period length q2. We say that the root is of period q1, and its children
are of period q2.

In general, a node B of period qr contains only tasks of period length up
to qr. If qr < qk, it has qr+1/qr children, each of which is a node of period qr+1.
Each child of B represents a bin that contains all tasks of B and may contain
additional tasks of period length qr+1. Each scheduled task of period length qr
appears in a unique node of period qr and in all children of that node.

As a consequence of this definition, there is a one-to-one correspondence
between nodes of period qr in the full bin-tree and equivalence classes of bins
modulo the equivalence relation ≡r. Furthermore, the hierarchy of equivalence
relations ≡r (r = 1, . . . , k) corresponds to the hierarchy of the tree in the fol-
lowing way: If two nodes of period ≥ qr have the same ancestor of period qr,
then their corresponding bins are equivalent modulo ≡r. In particular, the leafs
of the bin-tree correspond to the bins of the schedule. Thus, we can freely con-
vert between a feasible schedule in terms of task offsets and the corresponding
bin-tree representation; see Figures 6.2 and 6.3.

The number of nodes in a full bin-tree is dominated by its leaves, of which
there are qk/q1 many, so we cannot operate efficiently on full bin-trees. However,
if a node of period qr does not contain a task of period qr, it is completely

162

6.3. HARMONIC PERIODIC MAINTENANCE PROBLEM

Figure 6.3: The full bin-tree corresponding to the schedule in Figure 6.2.

Figure 6.4: The compact form of the bin-tree in Figure 6.3.

determined by its parent. Therefore, we only need to store those nodes of the
tree that introduce a new task to the schedule, see Figure 6.4 for an example.
In this way we have a compressed bin-tree whose number of nodes is bounded
by the number of tasks and that can be constructed in polynomial time.

6.3.2 First-Fit Algorithm

After having seen the concept of bin-trees it is clear that there is a very strong
relation between the Bin-Packing problem and the harmonic PMP. For Bin-
Packing one can show with a simple volume argument that the First-Fit al-
gorithm is a 2-approximation. In particular, in Bin-Packing the total size
of all items and OPT differ by at most a factor of two. For the harmonic
PMP the respective counterpart of the sizes of the items would be the uti-
lization of the tasks. However, here there are instances I where util(I) ≤ ε
but OPT (I) = n. For example, consider an instance defined by τ1 = (ε/n, 1)
and τi = (pi−1, pi−1 · n/ε). In this instance, the total utilization is only ε and
still no two tasks can be assigned to the same machine. Hence, here we need
a more sophisticated analysis in order to show a bound on the approximation
factor of First-Fit. To this end, we introduce the concept of witnesses that we
will describe below. Intuitively, a witness task guarantees us in the analysis that
a certain set of machines has a high average utilization. Using this concept, we
show that for the harmonic PMP First-Fit is a 2-approximation algorithm

Now we describe and analyze the First-Fit algorithm for the harmonic PMP.
We assume that the tasks are ordered non-descendingly by period length: for
two tasks τj , τj′ with j ≤ j′ we have that pj ≤ pj′ . In the sequel we use
the following terminology: If a set of tasks is assigned to a machine, then the
type of this machine is the smallest period length of these tasks. The First-Fit
algorithm maintains a list M1, . . . ,M� of open machines where Mi was opened
before Mj if i < j. The algorithm is initialized with the empty list. Then, the
algorithm proceeds as follows. For j = 1, . . . , n:

163

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

1. Find the first machine on which τj fits and insert it into an arbitrary leaf
of that machine’s bin-tree which has enough space left to fit τj . Define
the start offset of τj such that all idle time of the leaf is at its end.

2. If τj does not fit on any open machine, we open a new machine of type pj
and add τj to the root node of its bin-tree. Furthermore, to simplify the
analysis later, we open a second new machine of type pj . On this machine
we schedule a dummy task with execution time 0 and period pj .

Note that, because tasks are added in non-decreasing order of period lengths,
one can easily determine whether τj can be inserted into the compact bin-tree:
check all the leaves and all nodes to which a new leaf with period length pj can
be added.

The main result of this section is the following theorem.

Theorem 6.8. The First-Fit algorithm is a 2-approximation algorithm for the
harmonic PMP.

Before we present the proof of Theorem 6.8 we will discuss some differences
to the analysis of the First-Fit algorithm for Bin-Packing and motivate the
concept of a witness that turns out to be very useful. With the following ob-
servation it can be shown that First-Fit for Bin-Packing is a 2-approximation:
If First-Fit opens a new bin, then let α be the minimum load of all previously
opened bins. This implies that the current item has a size of at least 1 − α.
Also, if there are more than one open bins, all but one open bins must have a
load of at least max{α, 1−α}. The average load of the bins is thus at least 1/2
(after inserting the new item).

Now suppose that the First-Fit algorithm for the harmonic PMP opens a
new machine for task τj = (cj , pj). If the type q of some machine M with low
utilization is smaller than the running time cj of τj , then τj cannot be run on
this machine, even though util(M)+util(τj) might still be smaller than 1. Thus,
it may happen that there are many open machines with a low utilization. In
particular, it is not true that the average utilization of the open machines is
at least 1/2. However, in the following lemma we derive a lower bound on the
average load of the machines whose type is compatible with τj , where the set of
types compatible to τj is denoted by Q(j) := {q ∈ Q : cj ≤ q ≤ pj}.

Lemma 6.9. Suppose that the First-Fit algorithm cannot schedule τj on any
open machine (and opens two new machines instead). Let q ∈ Q(j) be a type
compatible to τj, and let M1, . . . ,M�, � > 0, be the machines of type q that were
open before the algorithm tried to assign τj. Then 1

�

∑�
i=1 util(Mi) >

1
2 .

Proof. First observe that � ≥ 2 because the First-Fit algorithm always opens
two machines of the same type at a time. Consider the bin-trees corresponding
to machines M1, . . . ,M� when τj should be added. Note that the leaves of the
trees are of period at most pj . Let α > 0 be the minimum fill ratio over all
leaf-bins of the trees. If α > 1

2 , then every bin is more than half filled and the
claim follows.

164

6.3. HARMONIC PERIODIC MAINTENANCE PROBLEM

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

M1 M2 M3 M4

τ τ τ

Figure 6.5: The situation in Lemma 6.10: Every group of machines but the last
has a witness. The last two machines of the last group provide a witness for the
remainder of the last group.

Thus, we can assume that α ≤ 1
2 . Let B̄ be a leaf bin of fill ratio α, and

let M̄ be the machine B̄ belongs to. Thus, the utilization of M̄ is at least α. We
will show that all leaf bins of the machines {M1, . . . ,M�} \ {M̄} have a fill ratio
greater than 1− α. This implies, in particular, that all machines other than M̄
have a utilization greater than 1− α. Since � ≥ 2, the claim then follows by an
averaging argument.

Let B be a leaf bin on a machine Mi �= M̄ . Our goal is to show that the fill
ratio of B is greater than 1−α. There are two cases to consider: The First-Fit
algorithm considers Mi before or after M̄ . If Mi is considered before M̄ , let τ be
any task assigned to M̄ . Now consider the time when τ was assigned by First-
Fit. At that time, either B or an ancestor of B was a leaf-bin. First-Fit tried
to assign τ to B (or its ancestor) but failed. Now τ fills at most an α-fraction
of a bin, which implies that the fill ratio of B (or its ancestor) must have been
more than 1 − α, otherwise τ would have been packed there instead. Thus, B
had fill ratio greater than 1− α at the time τ was assigned. For the case where
Mi is considered after M̄ , we can analogously argue that a task in B could have
been assigned to B̄ (or an ancestor).

Let τj be a task and let Mj be the set of machines that are open when
First-Fit tries to assign τj . Let Q′ ⊆ Q(j) be a subset of the machine types
compatible to τj and let M′ ⊆ Mj be the subset of machines whose type is
in Q′. The above lemma implies that, if First-Fit opens two new machines when
it tries to assign τj , then the average load of the machines in M′ is at least 1/2.
We say that τj is a witness of M′. In particular, if a period length q < pj is
compatible with τj and if Mq denotes the machines of type q that are created by
First-Fit, then τj is a witness of Mq. We make use of the concept of witnesses
in the following lemma.

Lemma 6.10. Let FF (I) denote the number of machines opened by the First-
Fit algorithm. If for all q ∈ Q, q < qk, the set Mq has a witness, then it holds
that FF (I) ≤ 2 ·OPT (I).

Proof. An illustration of the essential proof idea is given in Figure 6.5. Let q ∈ Q
with q < qk, and let τ be a witness for Mq. Then we can apply Lemma 6.9 to
show that

∑
M∈Mq

util(M) ≥ 1
2 |Mq|. Now let M′ be the set Mqk without the

two last machines that we call M̃1 and M̃2. Let τ be a task assigned to M̃1.

165

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

M1 M2 M3

Figure 6.6: Possible situation in the proof of Theorem 6.8: The group M2 does
not have a witness. The dark tasks form the set Ī. Together with the white
tasks, they form the set I ′. The striped tasks form the set I ′′. One task on
machine M3 is a witness for M1.

Observe that τ is a witness for M′. Thus,
∑

M∈M′ util(M) ≥ 1
2 |M′|. Hence

we have FF (I) − 2 ≤ 2 · util(I \ {τ}) which implies FF (I) − 2 < 2 · util(I) ≤
2 · OPT (I). Since both FF (I) and 2 · OPT (I) are even, we conclude that
FF (I) ≤ 2 ·OPT (I).

If the special case of Lemma 6.10 does not apply, we can identify sub-
instances that are pairwise independent of each other, yet cover all machines
opened by First-Fit. We use this observation to prove Theorem 6.8 by induction;
see also Figure 6.6.

Proof of Theorem 6.8. We prove the theorem by induction over k, the number
of different period lengths. If k = 1, then the claim is obvious. Now assume that
First-Fit is a 2-approximation for all instances with less than k period lengths.
If for all q ∈ Q, q < qk, the set Mq has a witness, again the claim follows
directly with Lemma 6.10.

Thus, let q ∈ Q, q < qk be a period length such that Mq does not have
a witness. We now partition the tasks into the set I ′ which contains all tasks
which were assigned by First-Fit to a machine of type q′ ≤ q and I ′′ := I\I ′.
Moreover, let Ī := {τi ∈ I ′ : pi ≤ q}. Let τj be an arbitrary task in I ′′. Then q
is not compatible with τj since otherwise τj would be a witness for Mq. Thus,
each task in I ′′ has a running time strictly larger than q. As the period lengths
of all tasks in Ī are at most q, no task in Ī can be scheduled together with
a task in I ′′. This shows that Ī and I ′′ are independent in the sense that
OPT (Ī) +OPT (I ′′) = OPT (Ī ∪ I ′′) ≤ OPT (I).

On the other hand, since First-Fit assigns each task of I ′ to a machine of
type at most q and these must have been opened and assigned a type by a
job in Ī, we have FF (Ī) = FF (I ′) and FF (I) = FF (Ī) + FF (I ′′). Using the
induction hypothesis, we get

166

6.3. HARMONIC PERIODIC MAINTENANCE PROBLEM

FF (I) = FF (Ī) + FF (I ′′)
≤ 2 ·OPT (Ī) + 2 ·OPT (I ′′)
≤ 2 ·OPT (I).

This concludes the proof.

6.3.3 Complexity
We have seen in the previous secion that for the harmonic PMP the First-Fit
algorithm is a 2-approximation. It is known that First-Fit for the strongly re-
lated Bin-Packing problem is a 1.5-approximation algorithm if one first orders
the items non-ascendingly by size [98]. However, for the harmonic PMP we
prove that such an improvement is impossible unless P = NP . We prove that
it is NP -hard to approximate the harmonic PMP with a factor of 2 − ε, for
any ε > 0. This holds even asymptotically. In particular, this shows that our
2-approximation algorithm for the harmonic PMP is best possible.

Theorem 6.11. Unless P = NP , for the harmonic PMP there is no approx-
imation algorithm which uses at most (2 − ε)OPT + o(OPT) machines, for
any ε > 0.

Proof. The hardness result is established via a reduction from Bin-Packing
and boosting. Assume we are given a Bin-Packing instance specified by a bin
size B ∈ N, items i with sizes ai ∈ N and ai ≤ B, and an integer k. The question
is whether there is a solution which uses at most k bins of size B. W. l. o. g. we
assume that more than k items are given since otherwise the instance is obviously
a YES-instance.

We reduce this problem to the following PMP instance I. The instance has
has n + 1 tasks where τi := (ai, kB + k), i = 1, . . . , n and τn+1 := (1, B + 1).
Observe that I is harmonic. The task τn+1 creates k bins of “capacity” B each.
Thus, we can schedule this set of tasks on one machine if and only if the Bin-
Packing instance has a solution using at most k bins. This shows that, unless
P = NP , there is no (2− ε)-approximation algorithm for the harmonic PMP.

Now we want to boost this reduction to rule out any asymptotic approxi-
mation algorithm with a better approximation factor than 2. Assume we are
given an algorithm which guarantees to use at most αOPT+f(OPT) machines,
where f(OPT) ∈ o(OPT). Let ε > 0. Then there is a constant M such that
f(OPT) ≤ ε

2OPT for all OPT ≥ M . Thus, for instances where the optimal
solution is at least M , the algorithm provides an (α+ ε

2)-approximation.
We show now how to boost the reduction provided above. This is done by

duplicating the instance. For the instance I and any � ∈ N, let � · I be a copy
of I where each execution time and each period length is multiplied by the
factor �. Note that there is a correspondence between solutions to I and to � · I.
Moreover, since qk := 2B+2 is the largest period length of I and each task has
an execution time of at least 1, no task of I can be scheduled together with a

167

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

task of qk · I. We conclude that I and qk · I are independent in the sense that
OPT (I ∪ qk · I) = OPT (I) +OPT (qk · I) = 2 ·OPT (I). Iterating this idea, we
create M duplicates of I

I, qk · I, q2k · I, . . . , qMk · I

to obtain an instance I ′ with OPT (I ′) = M · OPT (I). In particular, we have
that OPT (I ′) = M if the Bin-Packing-instance is a YES-instance and it holds
that OPT (I ′) = 2M if the Bin-Packing-instance is a NO-instance. Applying
the approximation algorithm to I ′ based on a YES-instance of Bin-Packing
yields a solution with at most (α + ε

2)M machines. Hence, α ≥ 2 − ε
2 > 2 − ε

or P = NP .

Finally, we would like to recall that Theorem 6.7 also holds for instance
of the harmonic PMP. Hence, even if k is bounded by a constant, there is
no (32 − ε)OPT + k − 1 approximation algorithm for the harmonic PMP for
any ε > 0, unless P = NP .

6.3.4 APTAS for Constant Number of Periods

As we have seen, for the harmonic PMP the 2-approximation algorithm cannot
be improved, unless P = NP . This holds even asymptotically. In particular,
there is no hope for an (asymptotic) PTAS. Our experience with real-world in-
stances from our industrial partner, however, is that these instances often have
only very few different period lengths. Indeed, for the case that the number
of period lengths k is bounded by a constant there is an asymptotic PTAS. If
even qk/q1 is bounded by a constant this can be improved even further. Since
these results are not the main focus of this work we give only the respective the-
orems and sketch the key ideas of the algorithms. For more detailed descriptions
we refer to [27].

Theorem 6.12. Let ε > 0 and let k be bounded by a constant. There is a polyno-
mial time algorithm that computes a solution using at most (1 + ε)OPT (I) + k
machines for the harmonic PMP.

Proof. Although the high level idea is the same as for the APTAS for Bin-
Packing [35], the more complex nature of the periodic maintenance problem
imposes novel and interesting difficulties. In particular, we cannot simply clas-
sify tasks as big or small, since different bin sizes occur on different machines.
Therefore, we employ a rounding procedure that does this classification relative
to the size of the bin that executes the task, which makes the procedure signif-
icantly more involved. After the rounding, we determine the optimal solution
for the big tasks by enumeration: we enumerate how many bins of what config-
uration arise in the solution. A configuration of a bin encodes the big tasks in
this bin as well as some reserved space for small tasks. In order to determine
whether these enumerated bins can be combined to an actual assignment of
tasks to machines, we make non-trivial use of the concept of bin-trees. Finally,

168

6.4. CONCLUSION

we add the small tasks using First-Fit into the reserved spaces in the bins as well
as on additional machines. All these steps have to be performed with extreme
care not to introduce extra additive factors to the guarantee on the objective
function.

If not only k but also qk/q1 (which equals the maximum number of leaves of
a bin-tree) is bounded by a constant, we can improve the APTAS above even
further.

Theorem 6.13. Let ε > 0 and assume that qk/q1 is bounded by a constant.
There is a polynomial time algorithm that computes a solution using at most
(1 + ε)OPT (I) + 1 machines for the harmonic PMP.

Proof. The main difference to the algorithm above is that here we declare a
task τj to be small if cj ≤ εq1 and big otherwise. Since qk/q1 is bounded by a
constant we can still enumerate over the big tasks. Also, the rounding procedure
is significantly simpler than in the APTAS above. Moreover, if we now assign
the small jobs by First-Fit we can ensure a utilization of at least 1− ε in all but
one machine (rather than in all but k machines). Combining these ingredients
yields a polynomial time algorithm with the bounds stated in the theorem.

6.4 Conclusion

In this chapter we studied the theoretical aspects of the periodic maintenance
problem. Apart from that, we also investigated computational aspects of the
problem [28]. There, it turns out that straightforward textbook approaches are
not sufficient to solve the real-world instances of our industrial partner. How-
ever, using the theoretical insights presented in this chapter for the (practical
relevant) harmonic case lead to a competitive IP-model. In particular, the bin-
structure and the bin-trees are the key ingredients to design an IP-model that
abstracts the actual schedules for the machines. Instead, we model the assign-
ment of the tasks to bins without explicitly defining the exact start offsets of
the tasks. The whole project is an example of a fruitful transfer of theoretical
insights used in approximation algorithms to better computational methods for
real-world problems.

From a theoretical perspective, for most of our algorithmic results we have
a tightly matching NP -hardness lower bound. Hence, further improvements
would require that P = NP . However, it might be possible to further gen-
eralize the harmonic case. Right now, we require that each pair of period
lengths divides each other. This yields a chain of period lengths q1, q2, ..., qk
such that qi|qi+1 for each i. A possible generalization would be to require only
that the period lengths form a tree such that each period length q divides the pe-
riod lengths of all its children. Also, it would be interesting what approximation
factors can be achieved by pseudopolynomial algorithms. Even in the harmonic
case the problem is still strongly NP -hard (due to the contained Bin-Packing
problem) and hence optimal pseudopolynomial algorithms are unlikely to exist.

169

CHAPTER 6. PERIODIC MAINTENANCE PROBLEM

In Theorem 6.11 we showed that in the harmonic case not even a pseudopoly-
nomial algorithm can have a better approximation factor than two (and the
First-Fit algorithm achieves this factor). However, our reduction for the gen-
eral case heavily uses numbers which are exponential in the size of the reduced
Coloring instance. Hence, in that setting there could be pseudopolynomial ap-
proximation algorithms which perform much better than the factor n1−ε which
we ruled out for polynomial time algorithms (assuming that P �= NP).

170

Chapter 7

Scheduling on Unrelated
Machines

7.1 Introduction

One of the most prominent open problems in machine scheduling is scheduling
jobs on unrelated machines to minimize the makespan, denoted by R||Cmax

in the three-field notation. We are given n jobs, m machines, and processing
times pi,j for each job j on each machine i. The goal is to assign the jobs to
the machines to minimize the overall makespan, i. e., the time when the last
machine finishes.

The complexity of the problem is due to the fact that in general, the pi,j can
be arbitrarily, without any specific structure that one can exploit. For example,
a job j may have a processing time of ε on some machine i, processing time 1 on
some other machine i′ and on yet another machine i′′ job j cannot be processed
at all. For another job j′ the situation might be totally different, e. g., pi,j′ = 1
and pi′,j′ = pi′′,j′ = ε.

In a seminal work, a 2-approximation algorithm for the problem is presented
by Lenstra, Shmoys, and Tardos [69]. The algorithm is based on a canonical
linear program formulation. In the same paper, they proved that it is NP -hard
to approximate the problem with a factor better than 3/2. The gap between
3/2 and 2 has persisted for more than 20 years, even though the problem is
considered to be very important in the scheduling community. For instance,
Schuurman and Woeginger [95] list it as one of ten most “vexing” open questions
in the area of approximation algorithms for NP -hard scheduling problems. Also,
it is listed as an open problem in the book by Williamson and Shmoys [109].

The best known approximation algorithms for this problem and its special
cases are derived by linear programming techniques [26, 69, 104]. A special role
plays the configuration-LP. It is the strongest linear program for the problem
considered in the literature and it implicitly contains a vast class of inequalities.
In fact, for the most relevant cases of R||Cmax the best known approxima-

171

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

tion factors match the best known upper bounds on the integrality gap of the
configuration-LP. For the restricted assignment case, the LP is even the only
known linear program which yields the respective bound [104].

There are two interesting special cases of the problem: the restricted assign-
ment case and the unrelated graph balancing case. In the restricted assignment
case, for each job j there is a value pj such that for all machines i we have
that pi,j ∈ {pj ,∞}. In the unrelated graph balancing case each job can be as-
signed to at most two machines (but with possibly different processing times).
These two cases are sort of perpendicular to each other. One main result of this
chapter is the analysis of the configuration-LP for the general case of R||Cmax

and for the unrelated graph balancing case. For both cases, we show that the
configuration-LP has an integrality gap of two and hence it cannot help to obtain
a better approximation factor than 2.

A related problem which we also study in this chapter is the problem of
scheduling jobs on unrelated machines with a different objective function. For
each machine, we denote by its load the sum of the processing times of its jobs.
The objective is to maximize the load of the machine with the minimum load.
This can be understood as assigning items (jobs) to agents (machines). Each
item j has a certain utility pi,j for each agent i. The goal is to assign the items
as fair as possible by maximizing the minimum total utility of an agent. The
problem can be subdivided into the same special cases as R||Cmax. For the
most relevant cases, the best known approximation algorithms are derived via
the configuration-LP [8, 9, 10, 19].

The results presented in this chapter are joint work with José Verschae [106].

7.1.1 The Minimum Makespan Problem
The problem to minimize the makespan on unrelated machines is considered to
be an important problem in machine scheduling. In the sequel we revise the
literature for the general problem and the already mentioned special cases.

General Setting. As mentioned above, in a seminal paper Lenstra et al. [69]
present a 2-approximation algorithm and prove that the problem is NP -hard to
approximate within a factor of 3/2 − ε for all ε > 0. Besides this paper, there
has not been much progress on the approximation ratio for R||Cmax. Shchepin
and Vakhania [96] give a more sophisticated rounding for the linear program
by Lenstra et al. and improve the approximation guarantee to 2− 1/m, which
is best possible among all rounding algorithms for this LP. On the other hand,
Gairing, Monien, and Woclaw [41] propose a more efficient combinatorial 2-
approximation algorithm based on unsplittable flow techniques. If the num-
ber of machines is bounded by a constant, Horowitz et al. [57] give a (1 + ε)-
approximation algorithm. This is best possible since still in this setting the
problem is NP -hard (follows from a straightforward reduction from Parti-
tion).

In the preemptive version of this problem, we are allowed to stop processing a
job at an arbitrary time and resume it later, possibly on a different machine. In

172

7.1. INTRODUCTION

contrast to the non-preemptive problem, Lawler and Labetoulle [63] introduce a
polynomial time algorithm to compute an optimal preemptive schedule. Thus,
it is possible to design an approximation algorithm for R||Cmax by using the
value of an optimal preemptive schedule as a lower bound. Shmoys and Tardos
(cited as a personal communication in [72]), show that it is possible to obtain
a 4-approximation algorithm using this method. Moreover, Correa, Skutella
and Verschae [23] prove that this is best possible by proving that the power
of preemption, i. e., the worst case ratio between the makespan of an optimal
preemptive and non-preemptive schedule, equals 4.

Restricted Assignment. The best approximation algorithm for the restricted
assignment problem known so far is the (2−1/m)-approximation algorithm that
follows from the general setting of R||Cmax. As mentioned above, Svensson [104]
shows how to estimate the optimal makespan within a factor 33/17+ ε in poly-
nomial time. In particular, he proves that in this setting the configuration-LP
has an integrality gap of at most 33/17. However, no polynomial time rounding
procedure is known.

There are further results for various special cases in the restricted assignment
setting, depending on the structure of the jobs and the machines, see [71] for a
survey. If all processing times are equal, Lin and Li [73] prove that the restricted
assignment problem is solvable in polynomial time.

Restricted Graph Balancing. The restricted graph balancing case can be
interpreted as a problem on an undirected graph. The nodes of the graph
correspond to machines and the edges correspond to jobs. The endpoints of an
edge associated to a job j are the machines on which j has finite processing
time pj ∈ N

+. The objective is to find an orientation of the edges so as to
minimize the maximum load of all nodes, where the load of a node is defined as
the sum of processing time of its incoming edges (jobs). Notice that the graph
may have loops and in that case the corresponding job must be assigned to one
particular machine.

Ebenlendr et al. [26] give a 1.75-approximation algorithm based on a tighter
version of the LP-relaxation by Lenstra et al. [69]. They strengthen this LP by
adding inequalities that prohibit two large jobs to be simultaneously assigned to
the same machine. Additionally to the 1.75-approximation algorithm for graph
balancing, Ebenlendr et al. [26] also show that it is NP -hard to approximate
this problem with a better factor than 3/2. This matches the lower bound
for the more general problem R||Cmax. Furthermore, some special cases are
studied. For example, it is known that if the underlying graph is a tree, the
problem admits a PTAS. If the processing times are either 1 or 2, there is a
(3/2)-approximation algorithm, which is best possible, unless P = NP . For
these and more related results see [64] and the references therein.

There is not much known for the unrelated graph balancing problem, where
the processing time of a job can be different on its two available machines.
To the best of our knowledge, everything that is known about this problem

173

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

follows from results for the general case of R||Cmax. In this chapter we show
that even for this special case the configuration-LP has an integrality gap of
two. Hence, already for this case methods are needed which go beyond the pure
configuration-LP.

7.1.2 The MaxMin-Allocation Problem

So far we considered the objective to minimize the maximum machine load.
In the MaxMin-allocation problem the objective is somehow the opposite: We
want to maximize the minimum machine load. The intuition for this objective
function is that the machines correspond to agents and the jobs correspond
to items that have to be assigned to the agents. Each item j has a certain
utility pi,j for each agent i. The aim is to maximize the total utility of the agent
with the least total utility.

Unrelated Machines. The MaxMin-allocation problem has drawn a lot of
attention recently. For the general setting of unrelated machines Bansal and
Sviridenko [12] show that the configuration-LP has an integrality gap of Ω (

√
m).

On the other hand, Asadpour and Saberi [10] show constructively that this
is tight up to logarithmic factors yielding an algorithm with approximation
ratio O

(√
m log3 m

)
. Relaxing the bound on the running time, Chakrabarty,

Chuzhoy, and Khanna [19] present a poly-logarithmic approximation algorithm
that runs in quasi-polynomial time. In terms of complexity, the best known
result is that it is NP -hard to approximate the problem within a factor of 2− ε
for any ε > 0 [14, 19]. For the special case that there are only two processing
times arising in an instance (apart from zero), Golovin [47] gives an O(

√
n)-

approximation algorithm. He also provides an algorithm that assigns to at least
a (1 − 1/k) fraction of the machines a load of at least OPT/k. If the number
of machines is bounded by a constant, the PTAS by Lenstra et al. [69] for a
constant number of machines for R||Cmax can easily be adapted to a PTAS for
MaxMin-allocation. This is best possible since even for two machines MaxMin-
allocation is NP -hard (straightforward reduction from Partition).

Restricted Assignment. Bansal et al. [12] study the case where every job has
the same processing time on every machine that it can be assigned to. They show
that the configuration-LP has an integrality gap of O(log logm/ log log logm) in
this setting. Based on this they present an algorithm with the same approxima-
tion ratio. The bound on the integrality gap was improved to O(1) by Feige [34]
and to 5 and subsequently to 4 by Asadpour, Feige, and Saberi [8, 9]. The
former proof is non-constructive using the Lovász Local Lemma, the latter two
are given by an (possibly exponential time) local search algorithm. However,
Haeupler et al. [48] give a constructive version of the Lovász Local Lemma which
– together with the the proof by Feige [34] – yields a polynomial time constant
factor approximation algorithm.

174

7.1. INTRODUCTION

General Unrelated graph balancing

General assignment 2 2

Restricted assignment
[
1.5, 33

17

]
[26, 104] [1.5, 1.75] [26]

Table 7.1: The integrality gap of the configuration-LP for R||Cmax in the various
settings.

Unrelated Graph Balancing. For the special case that every job can be as-
signed to at most two machines (but still with possibly different execution times
on them) Bateni et al. [14] give a 4-approximation algorithm. This is improved
by Chakrabarty et al. [19] who show that the configuration-LP has an integrality
gap of 2 which yields a (2 + ε)-approximation algorithm. Moreover, it is NP -
hard to approximate even this special case with a better ratio than 2 [14, 19].
In fact, the proofs for this result use only jobs which have the same processing
time on their two respective machines. Interestingly, the case that every job can
be assigned to at most three machines is essentially equivalent to the general
case [14].

7.1.3 Outline of the Chapter
In the following section, we first revise the algorithm by Lenstra et al. [69].
Also, we state our result that the configuration-LP has an integrality gap
of 2 – even for unrelated graph balancing – and we discuss the implications
of it. In particular, it implies that any set of cuts that involves only one
machine per inequality cannot help to improve the integrality gap of the LP-
relaxation of Lenstra et al. [69]. Recall that for the restricted assignment case
the configuration-LP has an integrality gap of at most 33/17 < 2 [104]. Hence,
our result indicates that the core complexity of R||Cmax lies in the unrelated
graph balancing case rather than in the restricted assignment case. Even more,
our instances use only processing times from the set {ε, 1,∞} for a small value ε.

We give our proof that the integrality gap of the configuration-LP is at least 2
in Section 7.3. Together with the algorithm by Lenstra et al. [69] this implies
that the gap is exactly two. First, we give a family of instances of R||Cmax

where the integrality gap gets arbitrarily close to two. Then, we give a more
involved construction that shows this result even for unrelated graph balancing.
Table 7.1 shows an overview of the known values/ranges for the integrality gap
of the configuration-LP for the various cases.

In Section 7.4 we study special cases for which we obtain better approx-
imation factors than 2. In particular, we obtain a (1 + 5/6)-approximation
algorithm for the special case of R||Cmax where the processing times belong to
the set [γ, 10γ/3] ∪ {∞} for some γ > 0. In other words: the processing times
of the jobs differ by at most a factor of 10/3. Note that the strongest known
NP -hardness reductions create instances with this property. Moreover, we show
that there exists a (2− g/pmax)-approximation algorithm, where g denotes the

175

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

greatest common divisor of the processing times, and pmax the largest finite pro-
cessing time. This generalizes the result by Lin et al. [73], that states that the
case where the processing times are either 1 or infinity is polynomially solvable.

We also give a 5/3-approximation algorithm for the case that an optimal
solution assigns only a constant number of jobs to machines where they need
more processing time than a 2/3 fraction of the makespan. We achieve the same
approximation guarantee for the case that for all but O(log n) machines it is
known a priori whether they execute such big jobs. These results yield necessary
properties for an NP -hardness reduction which shows a non-approximability of 2
for R||Cmax.

In Section 7.5 we study certain cases of the MaxMin-allocation problem. Our
main result is in the unrelated graph balancing setting, for which we present
a simple purely combinatorial algorithm with quadratic running time which
has a performance guarantee of 2. This improves on the LP-based (2 + ε)-
approximation algorithm by Chakrabarty et al. [19]. Their algorithm resorts
to the ellipsoid method to approximately solve the configuration-LP. Note that
this linear program has exponentially many variables and the separation prob-
lem of the dual is the Knapsack problem which can only be solved approxi-
mately. Our algorithm is significantly simpler to implement and moreover best
possible, unless P = NP . Finally, we study what is achievable by allowing
half-integral solutions, that is, solutions where we allow each job to be split into
two halves. We give a polynomial time algorithm that computes a half integral
solution whose objective value is within a factor of 2 of the optimal integral
solution. Moreover, by loosing an extra factor of at most 2 in the objective we
can transform this solution to one with at most m/2 fractional jobs. This result
contrasts the integral version of the problem for which only an O(

√
m log3 m)-

approximation algorithm is known.
Finally, in Section 7.6 we conclude and discuss further research directions.

7.2 LP-Based Approaches

In this section we revise the classical rounding procedure by Lenstra et al. [69]
and elaborate on the implications of our results. The way we describe the
techniques goes along the lines of [97] where Shmoys and Tardos generalize the
problem to a setting with costs. In the sequel, we denote by J the set of jobs
and M the set of machines of a given instance.

The LP-Relaxation. The IP-formulation used by Lenstra et al. [69] employs
assignment variables xi,j ∈ {0, 1} that denote whether job j is assigned to
machine i. This formulation, which we denote by LST-IP, takes a target value
for the makespan T (which will be determined later by a binary search) and

176

does not use any objective function:

7.2. LP-BASED APPROACHES

(LST-IP)
∑
i∈M

xi,j = 1 ∀j ∈ J (7.1)

∑
j∈J

pi,j · xi,j ≤ T ∀i ∈ M

xi,j = 0 ∀i, j : pi,j > T

xi,j ∈ {0, 1} ∀i ∈ M, j ∈ J.

The corresponding LP-relaxation of this IP, which we denote by LST-LP, can
be obtained by replacing the integrality condition by xi,j ≥ 0. Let CLP be the
smallest integer value for T so that LST-LP is feasible, and let C∗ be the optimal
makespan of our instance (or equivalently, C∗ is the smallest target makespan
for which LST-IP is feasible). Thus, since the LP is feasible for T = C∗ we
have that CLP is a lower bound on C∗. Moreover, we can easily find CLP in
polynomial time with a binary search procedure.

Lenstra et al. [69] give a rounding procedure that takes a feasible solution of
LST-LP with target makespan T and returns an integral solution with makespan
at most 2T . By taking T = CLP ≤ C∗ this yields a 2-approximation algorithm.
The rounding, which we call LST-rounding, consists in interpreting the xi,j

variables as a fractional matching in a bipartite graph, and then rounding this
fractional matching to find an integral solution.

Now we describe the LST-rounding procedure in detail. Let the values xi,j

denote a fractional solution of LST-LP. We interpret the solution as a fractional
matching in the following bipartite graph (A ∪ B,E). The nodes in A contain
one node for each job. We call these nodes the job nodes. For each machine i,
we construct ki =

⌈∑
j∈J xi,j

⌉
nodes in the set B, and call them {vi1, . . . , viki

}.
We refer to the nodes in B as the machine nodes.

For the edges E we construct a new fractional assignment of job nodes to
machine nodes based on the assignment given by the xi,j variables. After that,
whenever a job j has a fraction of yji,� assigned to a machine node vi� we introduce
an edge (j, vi�) with weight yji,�. For the construction of the new fractional
assignment, consider a machine i and relabel the jobs so that {1, . . . , ni} is the
set of jobs that has some fraction assigned to i, i. e., 1 ≤ j ≤ ni if and only
if xi,j > 0. Moreover, we assume w. l. o. g. that the jobs are in non-increasing
order of processing times, pi,1 ≥ . . . ≥ pi,ni . The fractional assignment of jobs
to the nodes of i is performed in a greedy fashion: We iterate over the jobs
in the above order. While doing this we maintain the invariant that all but
one machine node of i have one (fractional) unit of jobs assigned to it and
at most one machine node vi� of i has α units of jobs assigned to it for some
value α ∈ (0, 1). Consider a job j. If pi,j ≤ α then we assign j completely to vi�.
If pi,j > α then we assign α units of j to vi� and the remaining pi,j − α units to
a new machine node vi�+1 for i. Note that this maintains the above invariant.
We do this procedure for each machine i and construct the edges E based on
this assignment as described above.

177

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

The rounding procedure simply constructs a maximum matching in the bi-
partite graph (A ∪ B,E), that matches each job node to some machine node.
Such a matching exists since the existence of a fractional matching that matches
all job nodes implies the existence of a matching satisfying the same prop-
erty (see, e. g., [93, Vol A]). Each job j will be matched to some node vi�, and
in this case we define an assignment variable ȳji,� to be one and otherwise zero.
Moreover, we define an assignment of jobs to machines as x̄ij =

∑ki

�=1 ȳ
j
i,� for

all j and i. The following theorem shows a bound on the makespan of each
machine due to this rounding procedure.

Theorem 7.1 ([97]). Let (xi,j)j∈J,i∈M be a feasible solution of LST-LP with
a target makespan T . Then, there exists a polynomial time rounding procedure
that computes a binary solution {x̄i,j}j∈J,i∈M satisfying Equation (7.1) and

∑
j∈J

x̄i,jpi,j ≤ T +max{pi,j : j ∈ J and xi,j > 0} ∀i ∈ M.

Proof. We give here a proof of the theorem which goes along the lines of the
proof given in [97]. We show that the previously described rounding satisfies
the properties of the theorem. Consider a machine i and a particular node vi�
for � ∈ {2, . . . , ki}. In the rest of the proof we omit the super-index i to shorten
notation. Note that the processing time of the job assigned to node v� by the
matching ȳ is not larger than the processing time of any job which is assigned
to v�−1 in y. Hence,

∑
j∈J

ȳji,� · pi,j ≤
∑
j∈J

yji,�−1 · pi,j .

for all � ≥ 2. Upper bounding
∑

j∈J ȳ(v1,j) · pi,j by max{pi,j : j ∈ J, xi,j > 0}
we that

∑
j∈J

x̄i,j · pi,j =
ki∑
�=1

∑
j∈J

ȳji,� · pi,j

≤
ki−1∑
�=1

∑
j∈J

yji,� · pi,j +max{pi,j : j ∈ J, xi,j > 0}

≤
∑
j∈J

xi,jpi,j +max{pi,j : j ∈ J, xi,j > 0}

≤ T +max{pi,j : j ∈ J, xi,j > 0}.

Since max{pi,j : j ∈ J and xi,j > 0} ≤ T the previous theorem yields
that the rounding procedure embedded in a binary search framework is a 2-
approximation algorithm for R||Cmax.

178

7.2. LP-BASED APPROACHES

Integrality Gaps and the Configuration-LP. Lenstra et al. [69] implicitly
show that the rounding just given is best possible by means of the integrality gap
of LST-LP. For an instance I of R||Cmax, let CLP (I) be the smallest integer value
of T so that LST-LP is feasible, and let C∗(I) the minimum makespan of this
instance. Then the integrality gap of this LP is defined as supI C

∗(I)/CLP (I).
It is easy to see that if CLP is used as a lower bound for deriving an approx-
imation algorithm then the integrality gap is the best possible approximation
guarantee that we can show. Lenstra et al. [69] give an example showing that
the integrality gap of LST-LP is arbitrarily close to 2, and thus the rounding
procedure is best possible. This together with Theorem 7.1 implies that the
integrality gap of LST-LP equals 2.

It is natural to ask whether adding a family of cuts can help to obtain a
formulation with smaller integrality gap. Indeed, for special cases of our problem
it has been shown that adding certain inequalities reduces the integrality gap.
In particular, Ebenlendr et al. [26] show that adding the following inequalities to
LST-LP yields an integrality gap of at most 1.75 in the graph balancing setting
if each job has the same processing time on each of its at most two machines:∑

j∈J:pi,j>T/2

xi,j ≤ 1 ∀i ∈ M. (7.2)

In this chapter we study whether it is possible to add similar cuts to strengthen
the LP for the unrelated graph balancing problem or even for the general case
of R||Cmax. For this we consider the configuration-LP, defined as follows. Let T
be a target makespan, and define Ci(T) as the collection of all subsets of jobs
with total processing time at most T , i. e.,

Ci(T) :=

⎧⎨
⎩C ⊆ J :

∑
j∈C

pi,j ≤ T

⎫⎬
⎭ .

We introduce a variable yi,C for all i ∈ M and C ∈ Ci(T), representing whether
the jobs assigned to machine i equal exactly the jobs in C. The configuration-LP
is defined as follows: ∑

C∈Ci(T)

yi,C = 1 ∀i ∈ M

∑
i∈M

∑
C∈Ci(T):j∈C

yi,C = 1 ∀j ∈ J

yi,C ≥ 0 ∀i ∈ M,C ∈ Ci(T).

It is not hard to see that an integral version of this LP is a formulation
for R||Cmax. Also notice that the configuration-LP suffers from an exponential
number of variables, and thus it is not possible to solve it directly in polyno-
mial time. However, it is easy to show that the separation problem of the dual
corresponds to an instance of Knapsack and thus we can solve the LP approx-
imately in polynomial time. More precisely, given a target makespan T there is

179

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

a polynomial time algorithm that either asserts that the configuration-LP is in-
feasible or computes a solution which uses only configurations whose makespan
is at most (1 + ε)T , for any constant ε > 0 [104]. The following result, which
will be proven in the next section, shows that the integrality gap of this formu-
lation is as large as the integrality gap of LST-LP, even for the unrelated graph
balancing case.

Theorem 7.2. The configuration-LP for the unrelated graph balancing problem
has an integrality gap of 2.

A solution (yi,C) of the configuration-LP yields a feasible solution to LST-LP
with the same target makespan by using the following formula

xi,j =
∑

C∈Ci(T):C�j

yi,C ∀i ∈ M, j ∈ J. (7.3)

This implies that the integrality gap of the configuration-LP is not larger than
the integrality gap of LST-LP, and thus it is at most 2. On the other hand,
there are solutions to LST-LP that do not have corresponding feasible solutions
to the configuration-LP. For example, consider an instance with three jobs and
two machines, where pi,j = 1 for all jobs j and machines i. If we have a target
makespan T = 3/2, it is easy to see that LST-LP is feasible, but the solution
space of the configuration-LP is empty for any T < 2.

In the sequel we elaborate on the relation of the two LPs by giving a formu-
lation in the space with xi,j variables that is equivalent to the configuration-LP.
For any set S ∈ R

n we define conv{S} to be its convex closure.

Proposition 7.3. Let xC ∈ {0, 1}J be the characteristic vector of a configura-
tion C ∈ Ci(T), i. e., xC

j is one if j ∈ C and zero otherwise. The feasibility of
the configuration-LP is equivalent to the feasibility of the linear program defined
by Equations (7.1) and

(xi,j)j∈J ∈ conv{xC : C ∈ Ci(T)} ∀i ∈ M. (7.4)

Proof. Let (xi,j)i∈M,j∈J be a solution satisfying (7.1) and (7.4) for a given T .
We show that the configuration-LP is feasible for the same value of T . Indeed,
(xi,j)j∈J is a convex combination of vectors in {xC : C ∈ Ci(T)}, and thus

(xi,j)j∈J =
∑

C∈Ci(T)

yi,C · xC ,

for some values yi,C ≥ 0 such that
∑

C∈Ci(T) yi,C = 1. Moreover, for each j ∈ J ,

1 =
∑
i∈M

xi,j =
∑
i∈M

∑
C∈Ci(T)

yi,C · xC
j =

∑
i∈M

∑
C∈Ci(T):C�j

yi,C .

This shows that the values yi,C give a solution to the configuration-LP. The
converse implication follows from reversing the just given argument.

180

7.3. INTEGRALITY GAP OF THE CONFIGURATION-LP

The last proposition implies that adding any family of cuts to LST-LP
that does not remove any vector of the form (xC1 , . . . , xCm) ∈ R

n·m, where
Ci ∈ Ci(T), cannot help to reduce the integrality gap of the linear relaxation.
As an example of the implications of this proposition, we note that that adding
the cuts given by Inequality 7.2 does not help to diminish the integrality gap of
LST-LP for unrelated graph balancing. To give another example, a generaliza-
tion of these cuts given by

∑
j:pi,j>T/k xi,j ≤ k− 1 for each machine i and each

k ∈ N does not help to diminish the gap either.

7.3 Integrality Gap of the Configuration-LP
We have seen in the previous section that the configuration-LP implicitly con-
tains a vast class of linear cuts. Hence, it is at least as strong (in terms of
its integrality gap) as any linear program that contains any subset of these
cuts. However, in this section we prove that the configuration-LP has an in-
tegrality gap of 2. This implies that even all the cuts that are contained in
the configuration-LP are not enough to construct an algorithm with a better
approximation factor than 2.

Then we show that even for the special case of unrelated graph balancing
the configuration-LP has an integrality gap of 2. This is somehow surprising: if
one additionally requires that each job has the same processing time on its two
machines then Ebenlendr et al. [26] implicitly proved that the configuration-LP
has an integrality gap between 1.5 and 1.75. Hence, we demonstrate that the
property that a job can have different processing times on different machines
makes the problem significantly harder.

7.3.1 Integrality Gap of the Configuration-LP

We describe a family of instances Ik for the general R||Cmax-problem such
that the configuration-LP has an integrality gap of 2 − 1

k for each instance Ik.
Since we can choose k arbitrarily large this proves an integrality gap of 2 for
the configuration-LP. The construction we present here is significantly simpler
than the construction for unrelated graph balancing which we will present in
Section 7.3.2.

Let k ∈ N. The instance Ik has 2k machines m1,m
′
1,m2,m

′
2, ...,mk,m

′
k. For

every pair of machines mi,m
′
i there are k jobs j1i , j2i , ..., jki which have processing

time 1
k on mi, processing time 1 on m′

i, and processing time ∞ on any other
machine. Finally, there is one job jbig which has processing time 1 on any
machine mi and ∞ on any machine m′

i.
To evaluate the integrality gap of the configuration-LP on Ik we first lower-

bound the optimal makespan.

Lemma 7.4. Every integral solution for Ik has a makespan of at least 2− 1
k .

Proof. Consider an integral solution for Ik and assume its makespan is less
than 2. Let mi be the machine that jbig is assigned to. At most one of the

181

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

jobs j1i , j
2
i , ..., j

k
i is assigned to m′

i and the other k − 1 jobs are assigned to mi.
Hence, machine mi has a makespan of 1 + (k − 1) · 1

k = 2− 1
k .

Now let us study the configurations for the different machines. Since we want
to show an integrality gap of 2− 1

k we consider only configurations with makespan
at most 1 (we will see that these configurations suffice to find a feasible solution
for the LP). Also, we consider only maximal configurations, i. e., configurations
whose jobs are not contained in another configuration on the respective machine.
For each machine mi there are two maximal configurations: take all jobs j�i or
only jbig. We call the former configuration the small configuration and the latter
the big configuration. For each machine m′

i there are k maximal configurations:
take only job j�i for 1 ≤ � ≤ k.

Lemma 7.5. There is a solution of the configuration-LP for Ik that uses only
configurations with makespan 1.

Proof. We assign every machine mi a ratio of 1
k of the big configuration and

a ratio of 1 − 1
k of the small configuration. Note that this assigns the job jbig

completely and every job j�i is assigned to an extent of 1− 1
k . We assign every

machine m′
i a ratio of 1

k of each of its k configurations. Hence, also every job j�i
is now fully assigned. This assigns every job completely.

Knowing that the optimal makespan for Ik is at least 2 − 1
k and there is a

solution for the configuration-LP using only configurations with makespan 1,
we obtain the following theorem.

Theorem 7.6. The configuration-LP for R||Cmax has an integrality gap of at
least 2 − 1

k for instances such that pi,j ∈ { 1
k , 1,∞} for all machines i and all

jobs j.

The bound of 2 − 1
k is actually tight for instance where all pi,j ∈ { 1

k , 1,∞}
as the following proposition shows.

Proposition 7.7. The integrality gap of the configuration-LP for the R||Cmax

for instances with pi,j ∈ { 1
k , 1,∞} is bounded by 2− 1

k .

Proof. Let I be an instances of R||Cmax such that pi,j ∈ { 1
k , 1,∞} for all

machines i and all jobs j. Assume that there is a feasible solution for the
configuration-LP for I using only configurations with a makespan of at most T .
If T < 1 then the LST-rounding procedure will yield a solution with makespan
at most T + 1

k . So now assume that T = 1+ �
k for some integer � (other values

for the makespan cannot arise). We perform the LST-rounding and analyze the
resulting makespan. Consider a fixed machine i. We call a job j big if pi,j = 1
and small if pi,j = 1

k . We call a configuration big if it contains a big job and
small otherwise. We can assume that the configuration-LP assigned ybig units
of big configurations to i and ysmall units of small configurations. W. l. o. g. we
assume that each assigned big configuration contains one big job and � small

182

7.3. INTEGRALITY GAP OF THE CONFIGURATION-LP

jobs. In the rounding procedure ybig · (�+ 1) + ysmall · (�+ k) vertices are intro-
duced for i. After the rounding at most one of them can have a big job assigned
to it. Hence, the total makespan of i is bounded by

1 +
1

k
(ybig (�+ 1) + ysmall(�+ k)− 1) = 1 + ybig ·

�+ 1

k
+ ysmall ·

�+ k

k
− 1

k

≤ 2 +
�− 1

k
.

This yields an integrality gap of
(
2 + �−1

k

)
/
(
1 + �

k

)
. The integrality gap be-

comes maximal for � = 0.

We will generalize the above proposition later in Theorem 7.12.

7.3.2 Integrality Gap for Unrelated Graph Balancing
Now we improve the result from the previous section and show that even for
unrestricted graph balancing the integrality gap of the configuration-LP is 2. We
construct a family of instances Ik such that pi,j ∈ { 1

k , 1,∞} for each machine i
and each job j for some integer k. We will show that for Ik there is a solution
of the configuration-LP which uses only configurations with makespan 1 + 1

k .
However, every integral solution for Ik requires a makespan of at least 2− 1

k .
Let k ∈ N and let N be the minimum integer such that kN/(k− 1)N+1 ≥ 1

2 .
Consider two k-ary trees of height N−1, i. e., two trees of height N−1 in which
apart from the leaves every vertex has k children. For every leaf v, we introduce
another vertex v′ and k edges between v and v′. (Hence, v is no longer a leaf.)
Hence, the resulting “tree” has height N .

Based on this, we describe our instance of unrelated graph balancing. For
each vertex v we introduce a machine mv. For each edge e = {u, v} we introduce
a job je. Assume that u is closer to the root than v. We define that je has
processing time 1

k on machine mu, processing time 1 on machine mv, and that
it cannot be scheduled on any other machine. Finally, let m(1)

r and m
(2)
r denote

the two machines corresponding to the two root vertices. We introduce a job jbig

which has processing time 1 on m
(1)
r and m

(2)
r . Denote by Ik the resulting

instance. See Figure 7.1 for a sketch.
Similarly to Section 7.3.1 we evaluate the optimal makespan for Ik and then

the smallest makespan for which the configuration-LP is feasible. As mentioned
before, we claim that any integral solution for Ik has a makespan of at least 2− 1

k .
We prove this in the following lemma.

Lemma 7.8. Any integral solution for Ik has a makespan of at least 2− 1
k .

Proof. Assume that we are given an integral solution for Ik which has a strictly
smaller makespan than 2. W. l. o. g. assume that jbig is assigned to machine m(1)

r .
Since the makespan of our solution is strictly less than 2 at most k−1 jobs with
processing time 1

k can be assigned to m
(1)
r . Hence, there is an edge e adjacent

183

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

.
.

.

...

. . .
...

1 1

1
k

111

1

1

.........
1
k

1 1 1 1

1

1
k

1
k

1

1 1

1
k

11 1

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

Figure 7.1: A sketch of the construction for the instance of unrelated graph
balancing with an integrality gap of 2−O(1k). The jobs on the machines corre-
spond to the fractional solution of the configuration-LP for this instance with
makespan T = 1 + 1

k .

to the root r of the first tree such that je is not assigned to r. Thus, je must
be assigned to the machine corresponding to the other vertex that e is adjacent
to. We iterate the argument. Eventually, we have that there must be a vertex v
of height 1 and a corresponding machine mv which has a job j with processing
time 1 assigned to it. Recall that our solution has a makespan strictly less
than 2. Hence, at most one job can be assigned to machine mv′ where v′ is the
child vertex of v. Thus, k − 1 jobs with processing time 1

k are assigned to mv.
Together with j this gives a makespan of 1+(k−1) 1k = 2− 1

k on machine mv.

Now we want to show that there is a feasible solution for the configuration-LP
for Ik which uses only configurations with makespan 1 + 1

k . To this end, we
introduce the concept of j-α-solution for the configuration-LP. We call j-α-
solution a solution for the configuration-LP whose right hand side is modified
as follows: the job j does not need to be fully assigned but only to an extent
of α ≤ 1. I. e., instead of the equality

∑
i∈M

∑
C∈Ci(T):C�j

yi,C = 1

we have the inequality ∑
i∈M

∑
C∈Ci(T):j∈C

yi,C ≥ α.

184

7.3. INTEGRALITY GAP OF THE CONFIGURATION-LP

For our purposes, we define the height of a vertex to be its distance to a leaf
vertex. For any h ∈ N denote by I

(h)
k a subinstance of Ik defined as follows:

Take a vertex v of height h and consider the subtree T (v) rooted at v. For
the subinstance I

(h)
k we take all machines and jobs which correspond to vertices

and edges in T (v). (Note that since our construction is symmetric it does not
matter which vertex of height h we take.) Additionally, we take the job which
has processing time 1 on mv. We denote the latter by j(h).

We prove inductively that there are j-α(h)-solutions for the subinstances I(h)k

for values α(h) which depend only on h. These values α(h) increase for increas-
ing h. The important point is that α(N) ≥ 1

2 . Hence there are solutions for
the configuration-LP which distribute jbig on the two machines m

(1)
r and m

(2)
r

(which correspond to the two root vertices).
The following lemma gives the base case of the induction.

Lemma 7.9. There is a j(1)- 1
k−1 -solution of the configuration-LP for I(1)k which

uses only configurations with makespan at most 1 + 1
k .

Proof. Let mv be the machine in I
(1)
k which corresponds to the root of I

(1)
k .

Similarly, let mv′ denote the machine which corresponds to the leaf v′. For
� ∈ {1, ..., k} let j

(0)
� be the jobs which have processing time 1 on mv′ and

processing time 1
k on mv.

For mv′ the configurations with makespan at most 1+ 1
k are C� :=

{
j
(0)
�

}
for

each � ∈ {1, ..., k}. We define ymv′ ,C�
:= 1

k for each �. Hence, for each job j
(0)
�

a fraction of k−1
k remains unassigned. For machine mv there are the following

(maximal) configurations: Csmall :=
{
j
(0)
1 , ..., j

(0)
k

}
and C�

big :=
{
j(1), j

(0)
�

}
for

each � ∈ {1, ..., k}. We define ymv,C�
big

:= 1
k(k−1) for each � and ymv,Csmall

:=

1 − 1
k−1 . This assigns each job j

(0)
� completely and the job j(1) to an extent

of k · 1
k(k−1) =

1
k−1 .

After having proven the base case, the following lemma yields the inductive
step.

Lemma 7.10. Assume that there exists a j(n)-
(
kn/(k − 1)n+1

)
-solution of the

configuration-LP for I
(n)
k which uses only configurations with makespan at most

1+ 1
k . Then, there is a j(n+1)-

(
kn+1/(k − 1)n+2

)
-solution of the configuration-LP

for I
(n+1)
k which uses only configurations with makespan at most 1 + 1

k .

Proof. Note that I(n+1)
k consists of k copies of I(n)k , one additional machine and

one additional job. Denote by mv the additional machine (which forms the
“root” of I(n+1)

k). Recall that j(n+1) is the (additional) job that can be assigned
to mv but to no other machine in I

(n+1)
k . For � ∈ {1, ..., k} let j

(n)
� be the jobs

which have processing time 1
k on mv.

185

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

Inside of the copies of I(n)k we use the solution defined in the induction hy-
pothesis. Hence, each job j

(n)
� is already assigned to an extent of

(
kn/(k − 1)n+1

)
.

Like in Lemma 7.9 the (maximal) configurations for mv are given by Csmall :={
j
(n)
1 , ..., j

(n)
k

}
and C�

big :=
{
j(n+1), j

(n)
�

}
for each � ∈ {1, ..., k}. We define

ymv,C�
big

:= kn/(k − 1)n+2 for each � and ymv,Csmall
:= 1 − kn+1/(k − 1)n+2.

This assigns each job j
(n)
� completely and the job j(n+1) is assigned to an extent

of k · kn/(k − 1)n+2 = kn+1/(k − 1)n+2.

After this preparation we are ready to prove that there is a feasible solution
for the configuration-LP for Ik.

Lemma 7.11. There is a solution of the configuration-LP for Ik which uses
only configurations with a makespan of at most 1 + 1

k .

Proof. Recall that the two k-ary trees from the construction of Ik – together
with the additional vertices – have height N such that kN/(k − 1)N+1 ≥ 1

2 .
Hence, there are jbig- 12 -solutions for each of the two subinstances I

(N)
k which

use only configurations with a makespan of at most 1 + 1
k . This proves the

claim.

Now our main theorem follows from the previous lemmas (theorem restated).

Theorem 7.2. The configuration-LP for the unrelated graph balancing problem
has an integrality gap of 2.

Proof. Lemmas 7.8 and 7.11 imply that for the instance Ik the integrality gap
of the configuration-LP is at least (2− 1

k)/(1 +
1
k). The claim follows since we

can choose k arbitrarily large. The upper bound of 2 follows from [69].

7.4 Cases with Better Approximation Factors
It has been open for a long time whether the approximation ratio of 2 for R||Cmax

by Lenstra et al. [69] can be improved. Our results from Section 7.3 can be
seen as an indicator that this is not possible, unless P = NP . In particular,
recall that the best known approximation factors for the most relevant cases
of R||Cmax and MaxMin-allocation are implied by the configuration-LP (or can
alternatively be derived from the integrality gap of the configuration-LP).

In this section we identify classes of instances of R||Cmax for which a better
approximation factor than 2 is possible. This can be understood as a guideline
of properties that a NP -hardness reduction must fulfill to rule out a better
approximation factor than 2.

7.4.1 Bounded GCD of Processing Times
The inapproximability results for R||Cmax given in [26, 69] use only jobs j such
that pi,j ∈ {1, 2, 3,∞} for all machines i. We show now that for classes of

186

7.4. CASES WITH BETTER APPROXIMATION FACTORS

instances which use only a finite set of processing times, there exists an ap-
proximation algorithm with a performance guarantee which is strictly better
than 2. This implies that NP -hardness reductions which rule out approxima-
tion algorithms with a ratio of 2− ε need an infinite set of processing times for
the jobs.

Theorem 7.12. There exists a (2−α)-approximation algorithm for the problem
of minimizing makespan on unrelated machines, where α = gcd{pi,j |i ∈ M, j ∈
J, pi,j < ∞}/max{pi,j |i ∈ M, j ∈ J, pi,j < ∞} for a given instance.

Proof. We give a slighty strengthened analysis of the 2-approximation algorithm
by Lenstra et al. [69]. Let g := gcd{pi,j |i ∈ M, j ∈ J, pi,j < ∞} and P :=
max{pi,j |i ∈ M, j ∈ J, pi,j < ∞}. Note that the optimal makespan of our
instance is a multiple of g, and therefore we can restrict our target makespan T
to be of the form k · g with k ∈ N. Let T ∗ be the target makespan defined
as the smallest multiple of g that yields a feasible solution to LST-LP (can be
computed by a binary search). Assume we have computed a fractional solution
for LST-LP with target makespan T ∗. We apply LST-rounding to this fractional
solution. Being a little more careful in the proof of Theorem 7.1 we reason that

∑
j∈J

x̄i,j · pi,j =
ki∑
�=1

∑
j∈J

ȳji,� · pi,j

≤
ki−1∑
�=1

∑
j∈J

yji,� · pi,j +max{pi,j : j ∈ J, xi,j > 0}

<
∑
j∈J

xi,jpi,j +max{pi,j : j ∈ J, xi,j > 0}

≤ T +max{pi,j : j ∈ J, xi,j > 0}

and hence
∑

j∈J x̄i,j ·pi,j < T ∗+P . Since
∑

j∈J x̄i,j ·pi,j , P and T ∗ are multiples
of g, we conclude that

∑
j∈J x̄i,j · pi,j ≤ T ∗ + P − g. The following calculation

then shows the claimed approximation guarantee:

T ∗ + P − g ≤ T ∗
(
2− (β + 1)g

T ∗

)

≤ T ∗
(
2− (β + 1)g

P + β · g

)
≤ T ∗ (2− α) .

In particular, the above theorem applies to families of instances which use
only a finite set of processing times. Such families often arise in NP -hardness
reductions. Hence, if one wants to prove that R||Cmax cannot be approximated
with a better factor than 2 then one has to construct reductions which use
an infinite number of processing times. We formalize this observation in the
following corollary.

187

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

Corollary 7.13. Let I be a family of instances of R||Cmax. Let P be a finite set
of integers. Assume that for each instance I ∈ I and each in I arising processing
time pi,j it holds that pi,j ∈ P ∪ {∞}. Then for the family of instances I
there is an approximation algorithm with performance guarantee 2 − α with
α = gcd{p|p ∈ P}/max{p|p ∈ P}.

7.4.2 Bounded Range of Processing Times
Now we show that if the finite execution times of the jobs differ by at most a
factor of 10/3 then the configuration-LP has an integrality gap of at most 1 + 5

6 .
Hence, using reductions of this type (which applies to the strongest known NP -
hardness reductions for R||Cmax) one cannot rule out a 2 − ε approximation
algorithm.

Theorem 7.14. Consider instances of R||Cmax with a value γ such that pi,j ∈
[γ, 10γ/3] ∪ {∞} for all machines i and all jobs j. For these instances there is
a 1 + 5

6 ≈ 1.83-approximation algorithm.

Proof. We use the LST-LP and – depending on the makespan T given by the
binary search – we strengthen it with additional linear inequalities. Assume we
are given a target makespan T . If T ≥ 4γ then we solve the (original) LST-LP.
If it is feasible, due to Theorem 7.1 we know that we can round it to an integral
solution whose makespan is bounded by 4γ + 10

3 γ = 22
3 γ ≤

(
1 + 5

6

)
T .

So now assume that T < 4γ. Here, we strengthen the LST-LP with the
linear inequalities ∑

j∈J:pi,j>
T
2

xi,j ≤ 1 ∀i ∈ M

∑
j∈J:pi,j>

T
3

xi,j ≤ 2 ∀i ∈ M

∑
j∈J

xi,j ≤ 3 ∀i ∈ M.

Note that any integral solution with a makespan T ′ ≤ T satisfies the additional
cuts. Hence, the resulting LP is feasible if the optimal makespan is at most T .
We perform LST-rounding. With the notation of the proof of Theorem 7.1 for
each machine i there can be at most three machines nodes vi�. The node vi2 has
only jobs j with pi,j ≤ T/2 assigned to it, the node vi3 only jobs j with pi,j ≤ T/3.
This yields a bound of T + T

2 + T
3 =

(
1 + 5

6

)
T for the makespan of i. Doing

this reasoning for all machines yields the desired bound on the makespan.
Note that in contrast to the previous algorithms here we have two linear

programs: the usual LST-LP if T ≥ 4γ for the guessed makespan T and the
strengthened LP if T < 4γ. Still, there is a value T ∗ such that for all T < T ∗

the respective LP is infeasible and for all T ≥ T ∗ the respective LP is feasible.
We solve the respective LP for T ∗ and perform the above rounding procedure.
This yields a solution with makespan

(
1 + 5

6

)
T ∗ ≤

(
1 + 5

6

)
OPT .

188

7.4. CASES WITH BETTER APPROXIMATION FACTORS

Unfortunately, we do not gain anything by generalizing this method further
to, e. g., the case that pi,j ∈ [γ, 4γ] ∪ {∞}. The reason is that T + T

2 + T
3 =

T (1 + 5
6) < 2T but T + T

2 + T
3 + T

4 ≈ 2.08T > 2T and a 2-approximation
algorithm is already known.

7.4.3 Big Machines/Small Machines
Finally, we show that for an improved NP -hardness reduction it is crucial that it
is not clear what machines execute big jobs. Here, we call a job big on machine i
if pi,j ≥ 2

3OPT . Formally, assume we are given an instance of R||Cmax and
assume we know exactly what machines execute a big job. We call such machines
big machines and all other machines small machines. For this setting we give
a 5/3-approximation algorithm. Then we generalize this to the setting that
for m − O(log n) machines we know whether they execute a big job. Another
application is the setting where there are at most a constant number of jobs
which are big on some machine. There, we also obtain a 5/3-approximation
algorithm.

We call a job j big on machine i if pi,j ≥ 2
3OPT . First, we present an

algorithm that assumes that for each machine it is known in advance whether
it executes a big job. Let I be an instance of R||Cmax. Assume that the set of
machines is partitioned into two sets Mbig and Msmall such that we know that
in some optimal solution each machine i ∈ Mbig executes a big job and each
machine i′ ∈ Msmall does not execute a big job. Like above, we use a binary
search framework to “guess” the optimal makespan T .

For each machine i ∈ M denote by J i
big ⊆ J all jobs j with 2T/3 ≤ pi,j ≤ T ,

by J i
med ⊆ J all jobs j with T/3 ≤ pi,j < 2T/3 and by J i

small ⊆ J all jobs j
with pi,j < T/3. We solve the following linear program, denoted by BS-LP:

(BS-LP)
∑

j∈Ji
big∪Ji

med

xi,j ≤ 1 ∀i ∈ Mbig

∑
j∈Ji

small

xi,j · pi,j ≤ T/3 ∀i ∈ Mbig

∑
j∈Ji

med∪Ji
small

xi,j · pi,j ≤ T ∀i ∈ Msmall

∑
j∈Ji

big

xi,j = 0 ∀i ∈ Msmall

∑
i∈M

xi,j = 1 ∀j ∈ J

xi,j ≥ 0 ∀i ∈ M, j ∈ J.

Note that despite the separation of the jobs into the three classes we have
that for all T ≥ OPT the integral optimum satisfies BS-LP and hence BS-LP
is feasible. Now assume that BS-LP is feasible for the guessed makespan T and
let x be a solution. We perform LST-rounding.

189

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

Lemma 7.15. Let I be an instance of R||Cmax, let T be an integer and assume
we are given a partition of the machines into big and small machines. If BS-LP
is feasible then the makespan after LST-rounding is bounded by 5T/3.

Proof. Let i ∈ Msmall. Only jobs j with pi,j ≤ 2T/3 were (fractionally) assigned
to i by BS-LP. Hence, during the LST-rounding the makespan of i can increase
to at most T + 2T/3 = 5T/3. Now let i′ ∈ Mbig. The total processing time
of small jobs on i′ (bounded by T/3 in the LP-solution) can increase by at
most T/3 (since pi′,j ≤ T/3 for all j ∈ J i′

small). There is at most one big job
assigned to i′. Hence, the makespan of i′ is bounded by T/3+T/3+T = 5T/3.
Hence, the overall makespan of the solution is bounded by 5T/3.

Now assume that we know for m−O(log n) machines whether in an optimal
solution they execute a big job. For the remaining O(log n) machines we can
enumerate this information in polynomial time. For the remaining problem we
apply the above algorithm. This yields the following theorem.

Theorem 7.16. Let I be an instance of R||Cmax. Assume we know for at least
m − O(log n) machines whether they execute a big job in an optimal solution.
Then there is a polynomial time algorithm that computes a solution for I whose
makespan is bounded by 5

3OPT .

For instances with at most c jobs which are big on some machine (for a
fixed constant c) we can enumerate in polynomial time the at most O(mc) sets
of machines which execute big jobs. For each of the sets we run the above
algorithm together with a binary search. This yields the following theorem.

Theorem 7.17. Let c be a fixed integer. There is a 5/3-approximation al-
gorithm for instances of R||Cmax with at most c jobs which are big on some
machine in an optimal solution.

We would like to point out that Theorem 7.16 is particularly important if one
wants prove that there can be no approximation algorithm for R||Cmax with a
better performance ratio than α for some α ∈ (53 , 2]. It implies that a reduction
showing this must use instances for which no polynomial time algorithm can
determine for almost all machines whether they execute a big job in an optimal
solution.

7.5 MaxMin-Allocation Problem

In this section we study the MaxMin-allocation problem on unrelated machines.
Recall that in contrast to R||Cmax now the objective is to maximize the mini-
mum load of a machine. First, we investigate the MaxMin-balancing problem,
where every job can be assigned to at most two machines (with possibly dif-
ferent processing times on each machine). For this case it is known that the
configuration-LP has an integrality gap of 2 [19]. However, when allowing only
polynomial running time it can only be solved approximately which yields a

190

7.5. MAXMIN-ALLOCATION PROBLEM

(2 + ε)-approximation algorithm for MaxMin-balancing. Also, it requires to
solve a linear program with a PTAS for Knapsack as a separation oracle. In
particular, for small ε this algorithm needs much running time and it is highly
non-trivial to implement. Instead, we present here a purely combinatorial 2-
approximation algorithm with quadratic running time which is quite easy to
implement.

After that we present approximation algorithms which compute 2- and 4-
approximate half-integral solutions for the general MaxMin-allocation problem.
Recall that for this setting the best known approximation algorithm (which
computes integral solutions) has a performance guarantee of O

(√
m log3 m

)
.

Finally, we discuss the setting where it is known a priori what machines execute
big jobs (similar to Section 7.4.3). For this setting we give a 2-approximation
algorithm.

7.5.1 2-Approximation for MaxMin-Balancing

We present our purely combinatorial 2-approximation algorithm for MaxMin-
balancing. Let I be an instance of the problem and let T be a positive integer.
Our algorithm either finds a solution with value T/2 or asserts that there is no
solution with value T or larger. With an additional binary search this yields
a 2-approximation algorithm. For each machine i denote by Ji = {ji,1, ji,2, ...}
the list of all jobs which can be assigned to i. We partition this set into the
sets Ai∪̇Bi where Ai = {ai,1, ai,2, ...} denotes the jobs in Ji which can be as-
signed to two machines (machine i and some other machine) and Bi denotes
the jobs in Ji which can only be assigned to i. We define A′

i to be the set Ai

without the job with largest processing time (or one of those jobs in case there
is a tie). For any set of jobs J ′

i and a machine i we define p(J ′
i) :=

∑
j∈J ′ pi,j .

Denote by pi,� the processing time of job ai,� on machine i. We assume
that the elements of Ai are ordered non-increasingly by processing time, i. e.,
pi,� ≥ pi,�+1 for all respective values of �. If there is a machine i such that
p(Ai) + p(Bi) < T we output that there is no solution with value T or larger.
So now assume that p(Ai)+p(Bi) ≥ T for all machines i. If there is a machine i
such that p(A′

i) + p(Bi) < T (but p(Ai) + p(Bi) ≥ T) then any solution with
value at least T has to assign ai,1 to i. Hence, we assign ai,1 to i. This can
be understood as moving ai,1 from Ai to Bi. We rename the remaining jobs
in Ai accordingly and update the values p(Ai), p(A′

i), and p(Bi). We do this
procedure until either

• there is one machine i such that p(Ai)+p(Bi) < T , in this case we output
that there is no solution with value T or larger, or

• for all machines i we have that p(A′
i) + p(Bi) ≥ T .

We call this phase the preassignment phase.

Lemma 7.18. If during the preassignment phase the algorithm outputs that that
no solution with value T or larger exists, then there can be no such solution.

191

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

Proof. If the algorithm moves a job ai,� from Ai to Bi then any solution with
value T or larger has to assign ai,� to Bi. Hence, if at some point there is a
machine i such that p(Ai)+p(Bi) < T then there can be no solution with value
at least T .

Now we construct a graph G as follows: For each machine i and each
job ai,� ∈ Ai we introduce a vertex 〈ai,�〉. We connect two vertices 〈ai,�〉 , 〈ai′,�′〉
if ai,� and ai′,�′ represent the same job (but on different machines). Also, for
each machine i we introduce an edge between the vertices 〈ai,2k+1〉 and 〈ai,2k+2〉
for each respective value k ≥ 0. The reason for the latter edges is that later
exactly one of the two jobs ji,2k+1, ji,2k+2 will be assigned to i.

Lemma 7.19. The graph G is bipartite.

Proof. Since every vertex in G has degree two or less the graph splits into cycles
and paths. It remains to show that all cycles have even length. There are two
types of edges: edges which connect two vertices 〈ai,�〉 , 〈ai′,�′〉 such that i = i′

and edges connecting two vertices which correspond to the same job on two
different machines. On a cycle, the edges of these two types alternate and hence
the graph is bipartite.

Due to Lemma 7.19 we can color G with two colors, black and white. Let i
be a machine. We assign each job ai,� to i if and only if 〈ai,�〉 is black. Also, we
assign each job in Bi to i.

Lemma 7.20. The algorithm outputs a solution whose value is at least T/2.

Proof. Let i be a machine. We show that the total weight of the jobs as-
signed to i is at least p(A′

i)/2 + p(Bi). For each connected pair of vertices
〈ai,2k+1〉 , 〈ai,2k+2〉 we have that either ai,2k+1 or ai,2k+2 is assigned to i. We
calculate that

∑
k∈N

pi,2k+2 ≥ p(A′
i)/2. Since pi,2k+1 ≥ pi,2k+2 (for all respec-

tive values k) we conclude that the total weight of the jobs assigned to i is at
least p(A′

i)/2 + p(Bi). Since p(A′
i) + p(Bi) ≥ T the claim follows.

In order to turn the above algorithm into an algorithm for the entire problem
an additional binary search is necessary to find the correct value of T . Now we
discuss how to implement the overall algorithm efficiently.

First, we test whether n < m. If this is the case then any (optimal) solution
has value 0. So now assume that n ≥ m. In order to initialize the ordered
sets Ai and Bi we need to sort the jobs by execution time (in the list that we
sort we have two entries for every job, each corresponding to one of its possible
execution times). We sort this list in O(n log n) steps. Note that the sorting
needs to be done only once, no matter how many values T we try. Starting with
an ordered list of the jobs, we can build the ordered lists Ai and the sets Bi

in linear time. The preassignment phase can be implemented in linear time:
For each machine i we need to check whether p(A′

i) + p(Bi) < T . We call this
a first-check. If we move a job ai,� from Ai to Bi then the other machine on
which one could possibly assign ai,� needs to be checked again. We call this a

192

7.5. MAXMIN-ALLOCATION PROBLEM

second-check. There are m first-checks and at most n second-checks necessary.
Hence, this procedure can be implemented in linear time. Coloring the graph G
with two colors also requires only linear time.

For the binary search we need to try at most logD values, where D is defined
by D :=

∑
i,j pi,j . We have that logD ≤ |I| where |I| denotes the length of the

overall input in binary encoding. The sorting needs to be done only once and
this takes in O(|I| log |I|) time. For every value T that we try O(|I|) steps are
necessary. This yields an overall running time of O

(
|I|2

)
.

Theorem 7.21. There is a 2-approximation algorithm for the Max-Min-balancing
problem with running time O

(
|I|2

)
.

7.5.2 Half-Integral Solutions

For the general MaxMin-allocation problem the best known polynomial time ap-
proximation algorithm achieves an approximation factor of O(

√
m log3 m) [10].

A constant factor approximation algorithm seems difficult to achieve, in partic-
ular since the configuration-LP has an integrality gap of Ω(

√
m) [12]. However,

we present a polynomial time algorithm that computes a half-integral solution
whose value is at most by a factor 2 smaller than the best integral solution.
Moreover, we show that at the cost of at most a factor of 2 this solution can be
transformed to a half-integral solution in which at most m/2 jobs are fractionally
assigned.

Let I be an instance of the MaxMin-allocation problem. Let T be a guessed
optimal value. As a first step we redefine I to an instance I ′ by changing the
execution times of the jobs to p′i,j := min {pi,j , T}. Clearly, if there is an integral
solution with value T for I then there is also an integral solution with value T
for I ′. With the instance I ′ we solve the following linear program MMA-LP:

(MMA-LP)
∑
j∈J

xi,j · p′i,j ≥ T ∀i ∈ M

∑
i∈M

xi,j = 1 ∀j ∈ J

xi,j ≥ 0 ∀j ∈ J, i ∈ M.

If MMA-LP is infeasible there can be no integral solution with value T or
larger. Now assume that MMA-LP is feasible. We perform a slightly modified
LST-rounding: instead of assigning one unit of jobs to each vertex for a ma-
chine i, we assign 1/2 units of jobs to every vertex (and hence we need more
vertices). After the rounding we obtain a half-integral solution HALF (I).

Theorem 7.22. Let I be an instance of the MaxMin-allocation problem. There
is a polynomial time algorithm that computes a half-integral solution HALF (I)
such that HALF (I) ≥ 1

2OPT (I).

193

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

Proof. Let i be a machine. Similarly to the analysis of LST-rounding for R||Cmax,
during the rounding we lose at most the load of the jobs (fractionally) assigned
to the first vertex of i. Since at most 1/2 units of jobs can be assigned to
this vertex and all p′i,j ≤ T , the machine i keeps a makespan of at least T/2.
Since MMA-LP was feasible for T we conclude that T is an upper bound for
OPT (I).

Now we show how to modify HALF (I) to get another half-integral solution
in which at most m/2 jobs are fractionally assigned. This modification comes
at a cost of at most a factor 2 and hence yields a 4-approximation.

Let I be an instance of the MaxMin-allocation problem and let HALF (I) be
any half-integral solution for I. We do not change the assignment of jobs which
were assigned integrally in HALF (I). For each machine i let Ji = {ji,1, ji,2, ...}
denote the jobs which are fractionally assigned to i. Let pi,� denote the pro-
cessing time of ji,�. We assume that the jobs are ordered non-increasingly by
processing time, i. e., pi,� ≥ pi,�+1 for all respective values of �. We define a
graph G as follows: For each job ji,� we introduce a vertex 〈ji,�〉. We connect
two vertices 〈ji,�〉, 〈ji′,�′〉 by an edge if ji,� and ji′,�′ represent the same job
(but on different machines). We call such edges the outer edges. Also, for each
machine i we introduce an edge between the vertices 〈ji,2k〉 and 〈ji,2k+1〉 for
each respective value k ≥ 1 (inner edges).

Lemma 7.23. The graph G is bipartite.

Proof. Can be proven similarly as Lemma 7.19.

Now we color G with two colors, black and white. From the coloring we
compute a new solution as follows: we take each the black vertex 〈ji,�〉 and
assign the job ji,� completely to machine i. Note that this is well-defined since
if 〈ji,�〉 is black then the other vertex that represents the job is white.

Now there are two cases that we treat separately. For each machine i we call
the vertex 〈ji,1〉 the head vertex. Let P be a path in G. If one of the end vertices
of P is a head vertex and the other one is not a head vertex, then we (re-)color P
such that the head vertex is black and do the job assignment as above. If both
end vertices of P are head vertices then we take the head vertex 〈ji,1〉 that
was colored in white and assign one half of the job ji,1 to machine i and the
other half to the respective other machine. Denote by HALF ′(I) the resulting
solution.

Lemma 7.24. The solution HALF ′(I) is half-integral and at most m/2 jobs
are fractionally assigned. Moreover, HALF ′(I) ≥ 1

2 ·HALF (I).

Proof. From the definition of the algorithm we conclude that for each machine i
the job ji,1 corresponding to the head vertex 〈ji,1〉 of i is at least half assigned
to i. For each pair of jobs ji,2k, ji,2k+1 (for k ≥ 1) one of them is at least
half assigned to i. Denote by B(i) the jobs which were integrally assigned to i
in HALF (I). In the solution HALF ′(I) the makespan of the machine i is at

194

7.5. MAXMIN-ALLOCATION PROBLEM

least
∑

j∈B(i) pi,j +
1
2

∑
k≥0 pi,2k+1. Since pi,2k ≥ pi,2k+1 for all machines i an

all values k we conclude that∑
j∈B(i)

pi,j +
1

2

∑
k≥0

pi,2k+1 ≥
∑

j∈B(i)

pi,j +
1

4

∑
k≥1

pi,k

≥ 1

2

⎛
⎝ ∑

j∈B(i)

pi,j +
1

2

∑
k≥1

pi,k

⎞
⎠

=
1

2
HALFi(I)

where HALFi(I) denotes the makespan of i in HALF (I).
The only case in which a job is fractionally assigned is when both end vertices

of a path P are head vertices. Since every machine has only one head vertex,
there can be at most m/2 such paths. Hence, the number of fractionally assigned
jobs is bounded by m/2.

We would like to note that during the transformation from HALF (I) to the
solution HALF ′(I) a machine could indeed lose half of its load. For instance,
consider a machine with two jobs with identical processing times which are half
assigned to it. During the transformation, the machine could lose one of the
two halves and keep only the other one. We summarize the algorithm in the
following theorem.

Theorem 7.25. Let I be an instance of the MaxMin-allocation problem. There
is a polynomial time algorithm that computes a half-integral solution HALF ′(I)
such that HALF (I) ≥ 1

4OPT (I). Moreover, HALF ′(I) assigns at most m/2
jobs fractionally.

7.5.3 Tractable Cases
Similarly as for R||Cmax if we knew what machines execute a big job in an
optimal solution or if the number of big jobs is bounded by a constant we can
guarantee better approximation factors. Here, we define a job j to be big on
machine i if pi,j ≥ 1

2OPT . We call a machine big if we know that it executes a
big job in an optimal solution, and small otherwise. The sets Mbig and Msmall

denote the respective sets of machines. For a guessed objective value T we set
up the following linear program:

∑
j∈Ji

big

xi,j = 1 ∀i ∈ Mbig

∑
j∈Ji

small

xi,j · pi,j ≥ T ∀i ∈ Msmall

∑
i∈M

xi,j = 1 ∀j ∈ J

xi,j ≥ 0 ∀i ∈ M, j ∈ J.

195

CHAPTER 7. SCHEDULING ON UNRELATED MACHINES

Here, for each machine i we denote by J i
small all jobs j such that pi,j < T/2

and by J i
big all jobs j with pi,j ≥ T/2. We perform LST-rounding with the

obtained fractional solution. After the rounding procedure, each big machine
will still have exactly one big job assigned to it. The load of each small machine
will decrease by at most T/2. This yields the following theorems.

Theorem 7.26. Let I be an instance of the MaxMin-allocation problem. As-
sume we know for at least m−O(log n) machines whether they execute a big job
in an optimal solution. Then there is a polynomial time algorithm that computes
a solution for I whose value is at least 1

2OPT (I).

Proof. For m−O(log n) machines we know whether they are small or big. For
the remaining O(log n) machines we can enumerate this information in polyno-
mial time. For each enumeration we apply the above framework.

Theorem 7.27. Let c be a fixed integer. There is a 2-approximation algorithm
for instances of the MaxMin-allocation problem where it is known that at most c
jobs are big in an optimal solution.

Proof. We enumerate the c machines which are big. For remainder we apply
the above framework.

7.6 Conclusion

As mentioned above, the problem of minimizing the makespan for scheduling of
unrelated machines is one of the most prominent open problems in scheduling.
Closing the gap between the 2-approximation algorithm by Lenstra et al. [69]
and their 3/2-hardness result seems a very challenging task. Since the machines
are unrelated, usual rounding and enumeration approaches like for identical
machines cannot be used (if the number of machines is part of the input).
However, our results show that most LP-based approaches are deemed to fail,
even for the unrelated graph balancing case. Hence, when trying to find a better
approximation algorithm it seems reasonable to study the latter setting. To the
best of our knowledge, it has not been considered in its own right so far.

In the paper by Ebenlendr et al. [26] the setting of graph balancing and
restricted assignment is studied. Our results and the recent result by Svens-
son [104] indicate that the restricted assignment feature is actually the reason
why this improvement was possible, rather than the restriction to graph bal-
ancing. In the latter paper, Svensson proves an upper bound for the integral-
ity gap of the configuration-LP of 33/17 in the general setting and 5/3 + ε if
pi,j ∈ {ε, 1,∞} for all machines i and all jobs j. To the best of our knowl-
edge, for the restricted assignment case no instance is known for which the
configuration-LP has an integrality gap larger than 3/2. It would be interesting
to construct such an instance. In fact, in our constructions we used only the
processing times {ε, 1,∞}. It is not clear to us how more distinct processing
times in an instance could help to show a larger integrality gap.

196

7.6. CONCLUSION

Another way of looking at the restricted assignment case is that for each
job j there are two values pj ∈ N

+ and p′j = ∞ such that for each machine i

it holds that pi,j ∈
{
pj , p

′
j

}
. It would be interesting to see what one can prove

if p′j ∈ N
+ ∪ {∞} and hence each job has two different processing times on

the machines. Knowing our results it seems likely to encounter a jump in the
complexity if each job j is allowed three different processing times pj , p

′
j , p

′′
j .

Note that for this setting we proved that the configuration-LP has an integrality
gap of 2.

For the MaxMin-allocation problem, our algorithm presented in Section 7.5
achieves the best known approximation factor in its setting (and it is in fact
best possible, unless P = NP). To the best of our knowledge, it is the only
such algorithm for a complex case of the MaxMin-allocation problem which does
not rely on solving a linear program, in particular not the computationally ex-
pensive configuration-LP. It would be interesting whether purely combinatorial
algorithms are also possible for other settings of the problem. Also, it is worth-
while to note that for MaxMin-allocation, the unrelated graph balancing setting
seems completely solved (with a combinatorial 2-approximation algorithm and
a matching NP -hardness lower bound) whereas for R||Cmax this setting is not
better understood than the general case.

197

Bibliography

[1] M. Adler, S. Khanna, R. Rajaraman, and A. Rosén. Time-constrained
scheduling of weighted packets on trees and meshes. Algorithmica, 36:123–
152, 2003.

[2] M. Adler, R. Sitaraman, A. Rosenberg, and W. Unger. Scheduling time-
constrained communication in linear networks. Theory of Computing Sys-
tems, 35:599–623, 2008.

[3] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna,
I. Milis, M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Ap-
proximation schemes for minimizing average weighted completion time
with release dates. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1999), pages 32–44. IEEE,
1999.

[4] N. Alon and J. Spencer. The Probabilistic Method. John Wiley & Sons,
1992.

[5] M. Andrews, A. Fernández, M. Harchol-Balter, F. Leighton, and L. Zhang.
General dynamic routing with per-packet delay guarantees of O(distance
+ 1/session rate). SIAM Journal on Computing, 30:1594–1623, 2000.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-
cation and the hardness of approximation problems. Journal of the ACM,
45:501–555, 1998.

[7] S. Arora and S. Safra. Probabilistic checking of proofs: a new characteri-
zation of NP. Journal of the ACM, 45:70–122, 1998.

[8] A. Asadpour, U. Feige, and A. Saberi. Santa Claus meets hypergraph
matchings. In Proceedings of the 11th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX
2008), volume 5171 of Lecture Notes in Computer Science, pages 10–20.
Springer, 2008.

[9] A. Asadpour, U. Feige, and A. Saberi. Santa Claus meets hypergraph
matchings. Technical report, Standford University, 2009. Available for
download at http://www.stanford.edu/~asadpour/publication.htm.

199

BIBLIOGRAPHY

[10] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair
allocation of indivisible goods. SIAM Journal on Computing, 39:2970–
2989, 2010.

[11] F. Meyer auf der Heide and B. Vöcking. Shortest paths routing in arbitrary
networks. Journal of Algorithms, 31:105–131, 1999.

[12] N. Bansal and M. Sviridenko. The Santa Claus problem. In Proceedings of
the 38th ACM Symposium on Theory of computing (STOC 2006), pages
31–40. ACM, 2006.

[13] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems for
recurring tasks on one processor. Theoretical Computer Science, 118:3–20,
1993.

[14] M. Bateni, M. Charikar, and V. Guruswami. Maxmin allocation via degree
lower-bounded arborescences. In Proceedings of the 41st ACM Symposium
on Theory of Computing (STOC 2009), pages 543–552. ACM, 2009.

[15] N. Baumann and M. Skutella. Earliest arrival flows with multiple sources.
Mathematics of Operations Research, 34:499–512, 2009.

[16] R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. ZOR
— Methods and Models of Operations Research, 37:31–58, 1993.

[17] C. Busch, M. Magdon-Ismail, M. Mavronicolas, and P. Spirakis. Direct
routing: Algorithms and complexity. Algorithmica, 45:45–68, 2006.

[18] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms And Applications (Real-Time Systems Series). Springer-
Verlag TELOS, 2004.

[19] D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating goods to
maximize fairness. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2009), pages 107–116. IEEE,
2009.

[20] J. Chuzhoy and P. Codenotti. Resource minimization job scheduling. In
Proceedings of the 12th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX 2009), vol-
ume 5687 of Lecture Notes in Computer Science, pages 70–83. Springer,
2009.

[21] M. Cieliebak, T. Erlebach, F. Hennecke, B. Weber, and P. Widmayer.
Scheduling with release times and deadlines on a minimum number of
machines. In Exploring New Frontiers of Theoretical Informatics, volume
155 of International Federation for Information Processing (IFIP), pages
209–222. Springer, 2004.

200

BIBLIOGRAPHY

[22] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in
O(E logD) time. Combinatorica, 21:5–12, 2001.

[23] J. R. Correa, M. Skutella, and J. Verschae. The power of preemption
on unrelated machines and applications to scheduling orders. In Proceed-
ings of the 12th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX 2009), volume 5687 of
Lecture Notes in Computer Science, pages 84–97. Springer, 2009.

[24] M. Dertouzos. Control robotics: The procedural control of physical pro-
cesses. In Proceedings of the IFIP Congress (IFIP’74), pages 807–813,
1974.

[25] M. di Ianni. Efficient delay routing. Theoretical Computer Science,
196:131–151, 1998.

[26] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: a special case of
scheduling unrelated parallel machines. In Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete algorithms (SODA 2008), pages 483–
490. SIAM, 2008.

[27] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and
A. Wiese. Scheduling periodic tasks in a hard real-time environment.
In Proceedings of the 37th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2010), volume 6198 of Lecture Notes in
Computer Science, pages 299–311. Springer, 2010.

[28] F. Eisenbrand, K. Kesavan, R. Mattikalli, M. Niemeier, A. Nordsieck,
M. Skutella, J. Verschae, and A. Wiese. Solving an avionics real-time
scheduling problem by advanced IP-methods. In Proceedings of the 18th
Annual European Symposium on Algorithms (ESA 2010), volume 6346 of
Lecture Notes in Computer Science, pages 11–22. Springer, 2010.

[29] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous peri-
odic task systems is coNP-hard. In Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2010), pages 1029–
1034. SIAM, 2010.

[30] D. Engels, D. Karger, S. Kolliopoulos, S. Sengupta, R. Uma, and J. Wein.
Techniques for scheduling with rejection. Journal of Algorithms, 49:175–
191, 2003.

[31] L. Epstein, A. Levin, A. Marchetti-Spaccamela, N. Megow, J. Mestre,
M. Skutella, and L. Stougie. Universal sequencing on a single machine.
In Proceedings of the 14th Conference on Integer Programming and Com-
binatorial Optimization (IPCO 2010), volume 6080 of Lecture Notes in
Computer Science, pages 230–243. Springer, 2010.

201

BIBLIOGRAPHY

[32] T. Erlebach and K. Jansen. An optimal greedy algorithm for wavelength
allocation in directed tree networks. In Proceedings of the DIMACS Work-
shop on Network Design: Connectivity and Facilities Location, volume 40,
pages 117–129. AMS, 1997.

[33] T. Erlebach and K. Jansen. The complexity of path coloring and call
scheduling. Theoretical Computer Science, 255:33–50, 2001.

[34] U. Feige. On allocations that maximize fairness. In Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete algorithms (SODA 2008),
pages 287–293. SIAM, 2008.

[35] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved
within 1 + ε in linear time. Combinatorica, 1:349–355, 1981.

[36] L. Fleischer. Faster algorithms for the quickest transshipment problem.
SIAM Journal on Optimization, 12:18–35, 2001.

[37] L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on
Computing, 36:1600–1630, 2007.

[38] L. K. Fleischer and É. Tardos. Efficient continuous-time dynamic network
flow algorithms. Operations Research Letters, 23:71–80, 1998.

[39] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows
from static flows. Operations Research, 6:419–433, 1958.

[40] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[41] M. Gairing, B. Monien, and A. Woclaw. A faster combinatorial approxi-
mation algorithm for scheduling unrelated parallel machines. Theoretical
Computer Science, 380:87–99, 2007.

[42] D. Gale. Transient flows in networks. Michigan Mathematical Journal,
6:59–63, 1959.

[43] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
theory of NP-completeness. Freeman, 1979.

[44] L. Gargano, P. Hell, and S. Perennes. Coloring all directed paths in a
symmetric tree, with an application to optical networks. Journal of Graph
Theory, 38:183–196, 2001.

[45] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel. Dynamic rout-
ing of automated guided vehicles in real-time. In Mathematics — Key
Technology for the Future, pages 165–178. Springer, 2008.

[46] M. X. Goemans, J. M. Wein, and D. P. Williamson. A 1.47-approximation
algorithm for a preemptive single-machine scheduling problem. Operations
Research Letters, 26:149 – 154, 2000.

202

BIBLIOGRAPHY

[47] D. Golovin. Max-min fair allocation of indivisible goods. Technical Report
CMU-CS-05-144, School of Computer Science, Carnegie Mellon Univer-
sity, June 2005.

[48] B. Haeupler, B. Saha, and A. Srinivasan. New Constructive Aspects of the
Lovász Local Lemma. In Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2010), pages 397–406. IEEE,
2010.

[49] T. Hagerup and C. Rüb. A guided tour of chernoff bounds. Information
Processing Letters, 33:305–308, 1990.

[50] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Ef-
ficient algorithms and complexity. Theoretical Computer Science, 379:387–
404, 2007.

[51] D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems.
Thomson, 1996.

[52] D. Hochbaum and D. B. Shmoys. Using dual approximation algorithms
for scheduling problems theoretical and practical results. Journal of the
ACM, 34:144–162, January 1987.

[53] D. Hochbaum and D. B. Shmoys. A polynomial approximation scheme
for scheduling on uniform processors: Using the dual approximation ap-
proach. SIAM Journal on Computing, 17:539–551, 1988.

[54] H. Hoogeveen, M. Skutella, and G. J. Woeginger. Preemptive scheduling
with rejection. Mathematical Programming, 94:361–374, 2003.

[55] B. Hoppe and É. Tardos. Polynomial time algorithms for some evacuation
problems. In Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1994), pages 433–441. SIAM, 1994.

[56] B. Hoppe and É. Tardos. The quickest transshipment problem. Mathe-
matics of Operations Research, 25:36–62, 2000.

[57] E. Horowitz and S. Sahni. Exact and approximate algorithms for schedul-
ing nonidentical processors. Journal of the ACM, 23:317–327, April 1976.

[58] K. Jansen. Approximation results for wavelength routing in directed trees.
In Proceedings of the 2nd Workshop on Optics and Computer Science
(WOCS 1997), 1997.

[59] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings
of the 34th ACM Symposium on Theory of computing (STOC 2002), pages
767–775. ACM, 2002.

203

BIBLIOGRAPHY

[60] R. Koch, B. Peis, M. Skutella, and A. Wiese. Real-time message rout-
ing and scheduling. In Proceedings of the 12th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2009), volume 5687 of Lecture Notes in Computer Science,
pages 217–230. Springer, 2009.

[61] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer, 2007.

[62] J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Preemptive scheduling of uniform machines subject to release dates. In
Progress in Combinatorial Optimization, pages 245–261. Academic Press,
1984.

[63] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated
parallel processors by linear programming. Journal of the ACM, 25:612–
619, 1978.

[64] K. Lee, J. Y.-T. Leung, and M. L. Pinedo. A note on graph balancing
problems with restrictions. Information Processing Letters, 110:24–29,
2009.

[65] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-
scheduling in O(congestion+dilation) steps. Combinatorica, 14:167–186,
1994.

[66] F. T. Leighton, B. M. Maggs, and A. W. Richa. Fast algorithms for
finding O(congestion+dilation) packet routing schedules. Combinatorica,
19:375–401, 1999.

[67] F. T. Leighton, F. Makedon, and I. G. Tollis. A 2n − 2 step algorithm
for routing in an n × n array with constant-size queues. Algorithmica,
14:291–304, 1995.

[68] H. W. jun. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983.

[69] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming,
46:259–271, 1990.

[70] J. Y.-T. Leung. Handbook of Scheduling: Algorithms, Models and Perfor-
mance Analysis. Chapman & Hall/CRC, 2004.

[71] J. Y.-T. Leung and C. Li. Scheduling with processing set restrictions:
A survey. International Journal of Production Economics, 116:251–262,
2008.

[72] J.-H. Lin and J. S. Vitter. Epsilon-Approximations with minimum pack-
ing constraint violation. In Proceedings of the 24th ACM Symposium on
Theory of Computing (STOC 1992), pages 771–782. ACM, 1992.

204

BIBLIOGRAPHY

[73] Y. Lin and W. Li. Parallel machine scheduling of machine-dependent jobs
with unit-length. European Journal of Operational Research, 156:261–266,
2004.

[74] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 20:46–61, 1973.

[75] Y. Mansour and B. Patt-Shamir. Greedy packet scheduling on shortest
paths. Journal of Algorithms, 14, 1993.

[76] Y. Mansour and B. Patt-Shamir. Many-to-one packet routing on grids. In
Proceedings of the 27th ACM Symposium on Theory of Computing (STOC
1995), pages 258–267. ACM, 1995.

[77] N. Megiddo. Combinatorial optimization with rational objective functions.
Mathematics of Operations Research, 4:414–424, 1979.

[78] E. Minieka. Maximal, lexicographic, and dynamic network flows. Opera-
tions Research, 21:517–527, 1973.

[79] R. Moser and G. Tardos. A constructive proof of the general Lovász Local
Lemma. Journal of the ACM, 57:1–15, 2010.

[80] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An Introduction to
the Theory of Numbers, 5th edition. John Wiley & Sons, 1991.

[81] R. Ostrovsky and Y. Rabani. Universal O(congestion + dilation +
log1+ε N) local control packet switching algorithms. In Proceedings of
the 29th ACM Symposium on Theory of Computing (STOC 1997), pages
644–653. ACM, 1997.

[82] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs
and some related questions. In Infinite and Finite Sets, volume 11 of
Colloq. Math. Soc. Janos Bolyai, pages 609–627. North-Holland, 1975.

[83] C. Papadimitriou. Computational complexity. John Wiley & Sons, 2003.

[84] B. Peis, M. Skutella, and A. Wiese. Packet routing: Complexity and algo-
rithms. In Proceedings of the 7th Workshop on Approximation and Online
Algorithms (WAOA 2009), volume 5893 of Lecture Notes in Computer
Science, pages 217–228. Springer, 2010.

[85] B. Peis, M. Skutella, and A. Wiese. Packet routing on the grid. In Pro-
ceedings of the 9th Latin American Theoretical Informatics Symposium
(LATIN 2010), volume 6034 of Lecture Notes in Computer Science, pages
120–130. Springer, 2010.

[86] B. Peis, S. Stiller, and A. Wiese. Policies for periodic packet routing.
In Proceedings of the 21st International Symposium on Algorithms and
Computation (ISAAC 2010), volume 6507 of Lecture Notes in Computer
Science, pages 266–278. Springer, 2010.

205

BIBLIOGRAPHY

[87] B. Peis and A. Wiese. Throughput maximization for periodic packet rout-
ing on trees and grids. In Proceedings of the 8th Workshop on Approxima-
tion and Online Algorithms (WAOA 2010), volume 6534 of Lecture Notes
in Computer Science, pages 213–224. Springer, 2011.

[88] B. Peis and A. Wiese. Universal packet routing with arbitrary bandwidths
and transit times. In Proceedings of the 15th Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO 2011). Springer, 2011.
to appear.

[89] Y. Rabani and É. Tardos. Distributed packet switching in arbitrary net-
works. In Proceedings of the 28th ACM Symposium on Theory of Com-
puting (STOC 1996), pages 366–375. ACM, 1996.

[90] P. Raghavan and E. Upfal. Efficient routing in all-optical networks. In
Proceedings of the 26th ACM Symposium on Theory of Computing (STOC
1994), pages 134–143. ACM, 1994.

[91] S. Rajasekaran. Randomized algorithms for packet routing on the mesh.
Technical Report MS-CIS-91-92, Deptartment of Computer and Informa-
tion Sciences, University of Pennsylvania, 1991.

[92] C. Scheideler. Offline routing protocols. In Universal Routing Strategies
for Interconnection Networks, volume 1390 of Lecture Notes in Computer
Science, pages 57–71. Springer, 1998.

[93] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003.

[94] A. S. Schulz and M. Skutella. The power of α-points in preemptive single
machine scheduling. Journal of Scheduling, 5:121–133, 2002.

[95] P. Schuurman and G. J. Woeginger. Polynomial time approximation algo-
rithms for machine scheduling: Ten open problems. Journal of Scheduling,
2:203–213, 1999.

[96] E. V. Shchepin and N. Vakhania. An optimal rounding gives a better
approximation for scheduling unrelated machines. Operations Research
Letters, 33:127–133, 2005.

[97] D. B. Shmoys and É. Tardos. An approximation algorithm for the general-
ized assignment problem. Mathematical Programming, 62:461–474, 1993.

[98] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval
Research Logistics, 41:579–585, 1994.

[99] M. Skutella. An introduction to network flows over time. In Research
Trends in Combinatorial Optimization, pages 451–482. Springer, Berlin,
2009.

206

BIBLIOGRAPHY

[100] W. E. Smith. Various optimizers for single-stage production. Naval Re-
search and Logistics Quarterly, 3:59–66, 1956.

[101] A. Srinivasan and C.-P. Teo. A constant-factor approximation algorithm
for packet routing and balancing local vs. global criteria. SIAM Journal
on Computing, 30:2051–2068, 2001.

[102] S. Stiller and A. Wiese. Increasing speed scheduling and flow scheduling.
In Proceedings of the 21st International Symposium on Algorithms and
Computation (ISAAC 2010), Lecture Notes in Computer Science, pages
279–290. Springer, 2010.

[103] S. Stiller and A. Wiese. Increasing speed scheduling and flow scheduling.
Technical Report 007-2010, Technische Universität Berlin, February 2010.

[104] O. Svensson. Santa Claus Schedules Jobs on Unrelated Machines. In
Proceedings of the 43nd ACM Symposium on Theory of Computing (STOC
2011). ACM, 2011. to appear.

[105] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.

[106] J. Verschae and A. Wiese. On the configuration-LP for scheduling on
unrelated machines. In Prceedings of the 19th European Symposium on
Algorithms (ESA 2011), Lecture Notes in Computer Science. Springer,
2011. to appear.

[107] W. L. Wilkinson. An algorithm for universal maximal dynamic flows in a
network. Operations Research, 19:1602–1612, 1971.

[108] D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens, J. K.
Lenstra, S. V. Sevast’janov, and D. B. Shmoys. Short shop schedules.
Operations Research, 45:288–294, 1997.

[109] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011. to appear.

[110] G. Yu and G. Zhang. Scheduling with a minimum number of machines.
Operations Research Letters, 37:97–101, 2009.

[111] N. Zadeh. A bad network problem for the simplex method and other
minimum cost flow algorithms. Mathematical Programming, 20:255–266,
1973.

[112] D. Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing, 3:103–128, 2007.

207

	Acknowledgments
	Contents
	Introduction
	Trees and Direct Schedules
	Schedules for General Graphs
	Complexity of Packet Routing
	Periodic Packet Routing
	Increasing Speed Schedulingand Flow Scheduling
	Periodic MaintenanceProblem
	Scheduling on UnrelatedMachines
	Bibliography

