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Main Achievements

An ihren Taten sollt ihr sie erkennen.

Mat 7:16

The main achievements reported in this thesis are the following:

Modeling:

- The L−ζ burner model is validated over the whole range of operating conditions.

- The extended n− τ flame model is verified for all flame types encountered.

- The transfer function from a loudspeaker input to a microphone pressure reading
is modeled based on a network. The constituent blocks are described by physical
principles — relevant parameters are identified experimentally.

- A new closed-loop identification method for the plant is proposed, when the
fuel injector is used as actuator. It is straightforward, safe, robust, and easy to
implement in an industrial setting.

Control:

- Passive control strategies based on Helmholtz resonators are investigated.

- A high-bandwidth fuel injector is implemented to provide significant control
authority.

- Model-based H∞ controllers are designed. Their flexibility and superiority over
standard controllers are clearly demonstrated.

- A novel approach of improving controllers online with the combustor running is
elaborated using evolutionary algorithms (CMA-ES). It is applied to an industry-
relevant Gain-Delay controller as well as to a robust H∞ controller.
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Outline of this Dissertation

Each equation in the book would halve the sales.

Stephen Hawking, in “A Brief History of Time”

The thesis at hand treats modeling, identification and control of thermoacoustic
pressure oscillations in gas turbine combustors. The company ALSTOM Ltd. has
sponsored a project to study the origin as well as the control of these oscillations. To
that end, a test rig has been built at ETH Zürich to carry out experimental research.
Two PhD theses have been written as a result, namely Daniel Fritsche’s [101] and mine.

This thesis is organized as follows:
Chapter 1 introduces the reader to thermoacoustic instabilities. It explains the

setting of the problem and mitigation attempts. The particularities of swirl-stabilized
burners are highlighted.

Chapter 2 presents an extensive literature review. It shows that many research
groups around the world investigate this topic, and their achievements are screened
for control contributions.

Chapter 3 describes the test rig built at ETH. Its operating conditions and cor-
responding flame types are characterized. Data acquisition and treatment for the
acoustic analysis is discussed. Reflection coefficients and impedances are defined.

Chapter 4 explains how a model of the combustor has been developed. The modeling
approach adopted here is based on a network consisting of different blocks. They are
described by physical principles and compared with measurements. The validity of this
procedure is demonstrated over a wide range of operating conditions. In particular, the
flame model and its parameters are found to correlate well with optical measurements
and derived flame types. Moreover, transfer functions from a loudspeaker input to a
microphone pressure reading are assembled and validated with measurements.

A new way of obtaining a model of the plant is suggested. It is based on closed-loop
identification with various simple controllers. This approach is particularly appealing
in an industrial setting, as the combustor is run in a controlled fashion, which does
not compromise security.
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xiv Outline of this Dissertation

Chapter 5 presents the results of passive and active control experiments. Passive
control strategies are investigated with various Helmholtz resonators. Their effects are
evaluated at positions both up- and downstream of the burner. Fundamental limits
for feedback control are discussed, and H∞ controllers are introduced.

A loudspeaker actuator is used to reduce the pressure oscillations in the combustor.
This is done first with a simple Gain-Delay controller, but also with an H∞ controller,
and the superiority of the latter evident.

However, actuator saturation is a serious constraint for a loudspeaker, and therefore
fuel actuation is a more viable option for industrial-scale gas turbines. Several kinds
of controller structures are investigated. For an instability with a distinct peak in the
pressure spectrum, Gain-Delay control is found to perform reasonably well. However,
for more complex cases, this approach is outperformed by a model-based H∞ controller.
Moreover, it is shown that more flexibility is conferred to the designer, and robustness
to changing operating conditions is assured.

A new method of improving controllers in an online fashion is presented. An evo-
lutionary algorithm called CMA-ES monitors the performance of various controllers
and changes them so as to minimize a given cost function. This not only improves
steady-state performance, but also helps to cope with changing operating conditions.
A Gain-Delay and an H∞ controller are subjected to the CMA-ES optimization algo-
rithm.

The appendices contain extra material for the interested audience. Additional fuel
injector controller experiments are discussed. For the historically inclined reader, a few
noteworthy and interesting facts are described in Appendix B. The thermodynamics
people will find some treats in the analysis of gas turbines, and combustion systems
are discussed last.

The author hopes that a few ideas from this thesis may spark improvements in gas
turbines.



Zusammenfassung

It is no use saying, ‘We are doing our best.’

You have got to succeed in doing what is necessary.

Sir Winston Churchill

Die vorliegende Doktorarbeit befasst sich mit der Modellierung und Regelung von
thermoakustischen Druckschwankungen in Gasturbinenbrennkammern. Die Firma
ALSTOM Ltd. unterstützte ein Projekt zur Untersuchung der Ursachen und Regelung
derselben. Zu diesem Zweck wurde ein Prüfstand an der ETH Zürich gebaut und
zwei Doktorarbeiten geschrieben, diejenige von Daniel Fritsche [101] und die vorlie-
gende. Prof. Dr. Lino Guzzella, Prof. Dr. Oliver Paschereit, Dr. Bruno Schuermans
und Dr. Peter Flohr haben dieses Projekt initiiert und betreut, ihre grosszüge Hilfe
sei hiermit verdankt. Dr. Marc Füri und Dr. Niko Hansen haben ebenfalls bei der
Ausführung der Arbeiten mitgeholfen.

Die folgenden Punkte kommen in dieser Arbeit zur Sprache:
Kaptiel 1 stellt das Problem der thermoakustischen Instabilitäten in Brennkammern

vor. Involvierte Mechanismen werden diskutiert, speziell für drallstabilisierte Brenner.
Kapitel 2 präsentiert eine Literaturrecherche. Besonders wird dabei auf Berichte

über Regelstrategien geachtet.
Kapitel 3 geht auf den ETH Prüfstand ein. Betriebspunkte und Flammtypen werden

klassifiziert. Die Datenerfassung für die akustische Analyse wird vorgestellt. Reflekti-
onskoeffizienten und Impedanzen werden definiert.

Kapitel 4 erklärt den Modellierungsansatz. Die Idee ist, dass man ein Netzwerkmo-
dell aus verschiedenen Blöcken (Rohrungen, Brenner, Flamme etc.) zusammenbaut.
Jeder Block beinhaltet ein physikalisches Modell, das mit Messungen verglichen wird.
Die Gültigkeit dieses Ansatzes wird über einen breiten Bereich von Betriebsbedingun-
gen gezeigt. Speziell die Flammenparameter stimmen sehr gut mit optischen Resul-
taten überein. Weiter werden Übertragungfunktionen von einem Lautsprechereingang
zu Druckmessungen zusammengebaut und mit Messungen verglichen.

Eine neue Idee zur Bestimmung eines Modells im geschlossenen Regelkreis wird
vorgestellt, das auf der Druckspektrumreduktion beruht. Dies ist interessant auch für

xv



xvi Zusammenfassung

Industrieanwendungen, da die Brennkammer geregelt betrieben ist.
Kapitel 5 befasst sich mit der passiven und aktiven Regelung von Verbrennungsin-

stabilitäten. Passive Regelstrategien basierend auf Helmholtzresonatoren werden für
verschiedene Betriebspunkte untersucht. Grundlegende Grenzen der klassischen Rege-
lung mit Rückführung und der H∞-Regler werden diskutiert.

Ein Lautsprecher ist als Aktor für einen proportionalen Regler mit variabler Totzeit
und einen H∞-Regler im Einsatz. Als Sensoren werden Mikrophone eingesetzt. Die
Überlegenheit des modellbasierten Ansatzes tritt klar zutage.

Doch es stellt sich das Problem der Aktorsättigung, weshalb ein Gasinjektor im
nächsten Schritt verwendet wird. Die chemische Energie des Erdgases erlaubt einen
grösseren Wirkbereich, doch ergeben sich Probleme mit veränderten Flammenstruktu-
ren. Verschiedene Reglerarchitekturen werden betrachtet, dabei schneidet der propor-
tionale Regler mit variabler Totzeit für Fälle mit ausgeprägter Druckspektrumspitze
zufriedenstellend ab, doch der H∞-Regler arbeitet noch besser. Die Flexibilität und
Leistungsfähigkeit dieses modernen Reglers zeigt sich vollends im Falle von drei Druck-
spektrumspitzen, wo es möglich ist in all diesen Frequenzbereichen eine Reduktion zu
erreichen. Robustheit gegenüber sich ändernden Bedingungen wird sichergestellt.

Ein neuer Ansatz zur Verbesserung von Reglern bei direkter Anwendung auf dem
Prüfstand wird vorgestellt. Es handelt sich um den CMA-ES Algorithmus, der die
Minimierung eines Gütekriteriums erlaubt. Dieser Algorithmus kommt auf zwei Reg-
lerstrukturen zum Einsatz.

Der Anhang enthält zusätzliches Material für die interessierte Leserschaft. Weitere
Reglerarchitekturen werden diskutiert. Für den historisch geneigten Leser finden sich
ein paar Lesestellen im Anhang; und auch thermodynamisch wissensdurstige Leute
dürfen sich auf ihr Kapitel freuen.

Der Autor hofft, dass ein paar Ideen aus dieser Arbeit einen kleinen Niederschlag in
der Form von verbesserten Gasturbinen finden mögen.



Notation

What’s in a name? That which we call a rose

by any other name would smell as sweet.

William Shakespeare, in “Romeo and Juliet”

Symbols

ζ loss factor in L− ζ burner model
λ air/fuel equivalence ratio
ρ density [kg/m3]
στ time delay spread in n− τ flame model [s]
τ time delay in n− τ flame model [s]
ω frequency [rad/s]
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xviii Notation

a duct radius [m]
A area [m2]
c speed of sound [m/s]
C Controller
f frequency [Hz]
f1 Riemann invariant
Fs sampling frequency [Hz]
g1 Riemann invariant
i imaginary unit, i2 = −1

k wave number, ω/c
Ldown length of downstream duct [m]
Leq averaged sound-pressure level, or equivalent continuous level [dB re 20 µPa]
Lps(f) sound-pressure spectrum level [dB re 20 µPa]
Lred reduced length in L− ζ model [m]
Lup length of upstream duct [m]
M Mach number
n interaction factor in n− τ model
N number of points in FFT
p′ acoustic pressure fluctuation [Pa]
P Plant
R reflection coefficient
s Laplace variable, s = iω

S sensitivity, S = (1 − CP )−1 (positive feedback)
Ts sampling time [s]
T b transfer function matrix of burner
T f transfer function matrix of flame
T bf transfer function matrix of burner and flame
T Inj transfer function from voltage at fuel injector to spool position
TF P,LS transfer function of the plant with loudspeaker as actuator (from voltage at

loudspeaker amplifier to pressure reading) [dB Pa/V]
TF P,Inj transfer function of the plant with injector as actuator (from voltage at fuel

injector amplifier to pressure reading) [dB Pa/V]
u′ acoustic velocity fluctuation [m/s]
ū mean flow [m/s]
V volume [m3]
xi axial position [m]
Z impedance
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Abbreviations

2MM Two-Microphone Method
CMA-ES Covariance Matrix Adaptation Evolutionary Strategy
CO Carbon Oxide
Dres. Doctores
Dr. sc. techn. Doctor scientiarum technicarum
EV EnVironmental burner, by ALSTOM Ltd.
FFT Fast Fourier Transform
H∞ Hardy space H∞ norm
IMRT Intensity Modulated Radiation Therapy; Institut für Mess- und

Regeltechnik
Inj Fuel injector
LHP Left-Hand Plane
LMS Least Mean Square (error)
ln Logarithmus naturalis, with base e
log Logarithm with base 10
LQG/LTR Linear Quadratic Gaussian/ Loop Transfer Recovery
LS Loudspeaker
L− ζ L− ζ burner model
MAVT Multiple Attribute Value Theory; Multiple Audio-Visual Terminal;

Departement Maschinenbau und Verfahrenstechnik
Mic Microphone
MIPS Million instructions per second
NARMAX Non-Linear AutoRegressive Moving Average with exogenous input
NMP Non-Minimum Phase
NOx Nitric Oxides
n− τ n− τ flame model
PhD Philosophical Doctor
PLIF Planar Laser-Induced Fluorescence
PM Photomultiplier; Particulate Matter
ppmvd parts per million by volume of dry exhaust gas corrected to standard

pressure and temperature
RHP Right-Hand Plane
STR Self-Tuning Regulator
TF Transfer Function
UHC Unburnt Hydrocarbons
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Thermoacoustic Oscillations

The Wolf: I’m Winston Wolf. I solve problems.

Jimmie: Good, we got one.

From “Pulp Fiction”, by Quentin Tarantino

1.1 Abatement of Emissions: Solutions and Problems

Modern premixed gas turbines have to comply with continually more stringent emis-
sion regulations (NOx, CO etc.), and traditional methods of reducing NOx (water
and steam injection) cannot reach those extremely low levels required. Therefore, the
equivalence ratio (or mixture ratio, defined as the ratio of fuel/air used to stoichiomet-
ric fuel/air ratio) is reduced, which brings the combustion into a regime called “dry
lean”. This means that the combustors operate with excess air to cool down the com-
bustion temperature. The Zeldovich mechanism states that the formation of NOx is
exponentially dependent on temperature, which shows the benefits of lean combustion.

However, this regime makes the combustor prone to thermoacoustic instabilities,
blowout, and flashbacks. The flame becomes much more sensitive to disturbances of
pressure, velocity, and equivalence ratio. Thus, the flame anchoring and fronts are
perturbed; shear layers and recirculation zones are altered. The acoustic damping of
the combustion chamber is reduced, because of lacking dilution air downstream.

If the heat release and pressure fluctuations are properly phased, the flame feeds
energy into the acoustic field. This in turn influences the flame and closes a (poten-
tially) unstable feedback cycle, called thermoacoustic instability or oscillations.

Combustion instabilities are the most common form of thermoacoustic instabilities,
where energy is transferred from a heat source to a fluid causing oscillatory fluctuations
in heat release and pressure.

This phenomenon occurs in lean premixed low emission gas turbines, jet engines,
afterburners, liquid-fueled rocket motors as well as domestic burners. Practitioners
call the resulting noise “rumble”, “growl”, “howl”, and “humming”.

1



2 1 Thermoacoustic Oscillations

Four modes of unstable combustion can be distinguished:

- bulk: also known as Helmholtz mode or called “buzz”. In this case, the pressure
varies only temporally but not spatially, the important parameter is the volume
of the combustor. Unstable frequencies of less than several hundred Hz.

- longitudinal: also called “rumble”. It is strongly dependent on the acoustic
length of the combustor. Unstable frequencies of several hundred Hz but less
than 1 kHz.

- circumferential: this mode depends on the circumference of the annular combus-
tor with several burners.

- transverse: also called “screech”, occurs mostly in afterburners.

The ensuing unsteady heat release and pressure oscillations lead to excessive vibra-
tions resulting in mechanical failure, high levels of acoustic noise, high burn rates,
and possible component melting [8, 198, 79]. In addition, higher heat transfer rates
to the walls and increased emissions of pollutants such as unburnt hydrocarbons or
oxides of nitrogen are observed. The pressure oscillations constitute between 1 and
10% of the mean operating pressure, and since today’s combustors work with pressures
up to 35 MPa, these fluctuations are of considerable amplitudes [239, 49]. However,
pressure oscillations are desired in certain devices such as ramjet engines and pulsed
combustors.

A number of passive and active strategies have been employed in the past to mitigate
these problems. The installation of dampers, baffles, and vortex generators is aimed at
increasing damping and disrupting the phasing between heat release and pressure. On
the other hand, active control algorithms monitor the pressure or another performance
signal and take action accordingly, through an actuator such as a loudspeaker or
auxiliary fuel injection.

The term “instabilities” is often used interchangeably with “oscillations”, as it is often
difficult to determine whether the system is (linearly) unstable and saturated, or just
lightly damped and noise driven. This slight abuse of notation should not cause any
confusion.



1.2 Instability Mechanisms 3

1.2 Instability Mechanisms

At the core of thermoacoustic instabilities lies the coupling between the unsteady
components of pressure and heat release rate. Atomization and vaporization play
important roles for liquid-fueled combustors.

The often stated Rayleigh’s criterion is as follows [256]: “If heat be periodically
communicated to, and abstracted from, a mass of air vibrating in a cylinder bounded
by a piston, the effect produced will depend upon the phase of the vibration at which
the transfer of heat takes place. If heat be given to the air at the moment of greatest
condensation or to be taken from it at the moment of greatest rarefaction, the vibra-
tion is encouraged. On the other hand, if heat be given at the moment of greatest
rarefaction, or abstracted at the moment of greatest condensation, the vibration is
discouraged”. Mathematically stated, it is given by Eq. 1.1, from [79], with the pres-
sure, density, heat-release rate per unit volume, particle velocity, speed of sound, and
ratio of specific heat capacities denoted by p, ρ, q,u, c and γ, respectively. Mean and
fluctuating values are denoted by an overbar and by a prime, respectively.

∂

∂t

∫

V

( 1

2
ρu2

︸ ︷︷ ︸

kinetic

+
1

2

p′2

ρc2
︸ ︷︷ ︸
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)

dV =

∫

V

γ − 1

ρc2
p′q

︸ ︷︷ ︸

Rayleigh

dV −

∫

S

(p′u)
︸ ︷︷ ︸

surface

dS (1.1)

The first two terms denote the kinetic and potential energies, and the first term on
the right-hand side is Rayleigh’s integral. It can be seen that if p′ and q are in phase,
the integral is positive. Finally, the last term describes the surface loss terms.

Thermoacoustic instabilities may be caused by fluctuations in the air supply to the
burner, by aerodynamic (intrinsic) instabilities or by perturbations in the fuel supply,
where the pressure waves interact with the fuel nozzle [120, 198, 49]. These equivalence
ratio perturbations happen when a positive pressure excursion produces a decrease of
the fuel supply at a later instant. Local extinction and re-ignition within the flame
may be due to maldistributions in the fuel distribution. Large-scale structures such
as vortices are also involved.

The periodic heat released by the flame gives rise to pressure fluctuations, which
are reflected back to the flame. If they are coupled such that Rayleigh’s criterion is
fulfilled, this process is sustained. The flame may wrinkle and increase its surface area,
and change its position.

Interestingly, this mechanism can also be reversed and used to build a thermoacoustic
refrigerator [266, 167, 183, 297, 296]. A thermoacoustic Stirling heat engine is proposed
in [16], and used in [252] to drive a pulse tube cooler (PTC), which reaches 80 K
(−193 ◦C). Such devices contain no moving mechanical parts, no environmentally
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hazardous substances, and reach high efficiencies. Potential applications are in space
exploration (Space Shuttle mission STS-42 in 1992) and liquifying natural gas1. A
“SoundsCool” freezer from ThermoAcoustics Corp. cools “Sweet & Sonic” ice cream at
Ben & Jerry’s in New York City, using a loudspeaker emitting 195 dB of sound [32].

1.2.1 Premixed Swirl-Stabilized Burners

The ETH combustor works in premix operation, so that fuel feed line dynamics and
equivalence ratio fluctuations are of minor importance.

The installed lab-scale ALSTOM EV (EnVironmental) burner is discussed [222]. It
has the unique property of flame stabilization in free space near the burner outlet
utilizing the sudden breakdown of a swirling flow, called vortex breakdown.

Vortex shedding for dump combustors is studied in [274]. The shear layer develops
instability waves in its initial region. When the amplified waves reach a certain energy
level, they roll up into vortices. In the early phase of the vortex development, with the
unburnt mixture on one side of an interface and the hot combustion products on the
other side, mixing and burning are limited. When the vortex roll-up process is followed
by interaction between vortices and/or side walls, a large interface between the air/fuel
mixture and hot products develops, leading to fine-scale turbulence enhancement and
sudden heat release. The associated acoustic velocity fluctuations then trigger the
next cycle of vortex shedding [49].

Unsteady flame dynamics in a lean premixed swirl-stabilized combustor are ad-
dressed in [129, 128]. A central toroidal recirculation zone is established in the wake of
the center body under the effects of the swirling flow (vortex breakdown). As a result
of the sudden increase in combustor area, a corner recirculation zone is also formed
downstream of the backward-facing step.

The flame can be anchored in the center or in both the center and outer recirculation
zone. This depends on the flame speed, which is influenced by the preheat temperature
and the equivalence ratio. Hysteresis is related to the heating of the combustor walls.

Large-scale vortex structures can influence the turbulent flame speed and the flame
area [159].

More on the role of coherent large-scale structures can be found in [276, 231, 129,
226, 273, 244, 198, 153, 193, 82].

1And, just like in the Middle Age: “to give a small quantity of Beer &c. a moderate degree of

coolness” [10].
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1.3 Approaches to the Problem

Combustion instabilities became a serious issue in liquid-fueled rocket engines before
and during World War II. However, the installation and cooling of pressure trans-
ducers was difficult. The first theoretical considerations were done in the 1950’s on
liquid-fueled rocket motors [65, 264], and the development of the F-1 engine for the
Apollo space vehicle increased the efforts, see [214, 67] for a review. Active con-
trol of thermoacoustic oscillations was first applied to for Rijke tubes in the 1980’s
[37, 35, 300, 194, 34, 93]. Due to new environmental standards requiring more stringent
emission levels both for aircraft and land-based gas turbines, the interest in modeling
and active control grew steadily [181].

1.3.1 Passive Control

A number of passive ways to suppress instabilities exists [28, 84, 8]. They can be
classified into two categories:

1. Reduction of the coupling between heat release and acoustics. Therefore, less
energy is fed into the unstable acoustic modes by

- changing flame anchoring point

- affecting vortex shedding [234]

- changing acoustic boundary condition

- changing fuel line dynamics

- changing fuel injection pattern [198]

2. Increase of (acoustic) energy losses in the combustor is achieved by

- installing baffles

- acoustic dampers

- geometric changes of the combustion chamber

Reducing the coherence of large-scale vortices and generating axial vorticity is an-
other passive approach [234, 228, 88, 240, 274]. This may be accomplished by extending
the fuel injecting lance so that the vortices break down [222], or to install distributed
vortex generators [234]. Changing the burner shape is also an option [225].
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1.3.2 Active Control

Active control methods are becoming more promising with the introduction of new
sensor, actuator, and computing technology.

Active control methods are advantageous because they can [8]:

- reduce pressure oscillations

- reduce pollutants (NOx)

- increase combustion intensity

- operate combustors beyond their natural flammability limits

- be applied in a wider frequency band than passive control

- cope with changing operating conditions

- allow design changes, for example shorter combustors

Available sensors are piezoelectric and moving coil microphones to detect pressure
fluctuations; photodiodes and OH/CH chemiluminescence to measure heat release
rates. Radiometers measure CO and CO2; NOx can be determined, and Laser ve-
locimetry and Schlieren photographs show the flame shape.

Actuators introduce perturbations in acoustic pressure, velocity, vorticity, fuel or air
mass flow, or heat release. Mostly used are fuel stream oscillation devices and speakers;
oscillating center bodies, moving flaps or airfoils, single or several stream-wise or cross-
stream jets, swirl generators or heating elements are reported, too [8]. (Secondary) fuel
injection uses small fractions of power generated in the system, whereas mechanical
methods which use loudspeakers or moving bodies are less feasible due to the high
energy density in the combustor [147, 105].

An active control algorithm has been applied to a Siemens-Westinghouse heavy-duty
V94.3A 267 MW gas turbine in January of 1999. Two circumferential modes in a 24
burner configuration are controlled with secondary fuel injectors using a phase-shift
strategy [181, 283].

Summary

This chapter has given an introduction to and classification of thermoacoustic instabi-

lities. It explained mechanisms that are particular to swirl-stabilized burners, and laid

out both passive and active control strategies.
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2.1 Reported Control Concepts

In general, it is difficult to compare the achievements of the different controllers directly
against each other, since the range of combustor setups used varies by a great degree
(liquid, gaseous, laminar, swirl-, dump-, bluff body-stabilized, different power ratings).
Moreover, various sensors and actuators are used (microphones and photomultipliers,
loudspeakers and fuel injectors being the most common).

One more important distinction has to be made. Most of the researchers class their
combustor behavior as “unstable” and as being in a limit cycle, except in [47, 20, 59, 48],
which are rated as lightly damped. The reduction of the noise in an unstable combustor
can usually be seen at all frequencies [263], and may be very large. Reducing the sound
pressure is thus a task of stabilizing a plant. Conversely, making a stable combustor
more silent is a problem of noise suppression.

The easiest and ubiquitous control strategy is phase-shift or Gain-Delay control
[38, 154, 283], where the sensor signal is multiplied with a gain and delayed by a certain
amount and sent to the actuator. This controller is easy to implement and often gives
satisfactory results. Manual tuning is usually employed.

Subharmonic fuel injection is tried in [135, 140, 52]. Although it is found to work for
some particular conditions, it can be conjectured that the flame is just locally enriched
(yielding a different global equivalence ratio) and thus stabilized.

In an early paper [154], a swept-sine signal is used to find the transfer function of a
combustor equipped with on/off fuel valves in a stable condition. The parameters of
a second-order system are then adjusted so that an unstable plant can be described.
In the Nyquist plot, the parameters of a phase-shift controller are found such that the

7
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closed-loop plant is stabilized. A similar approach is followed in [59, 20], but here a
stable system is fitted.

The Least-Mean-Square error method (LMS) and its derivations (x-LMS, u-LMS,
leaky) have been used with mixed success—feedback loop instabilities and algorithm
divergence occur [139, 33, 299, 4, 204, 11]. Furthermore, there are no theorems that
guarantee global stability. An improvement is shown in [92, 90].

A so-called Self-Tuning Regulator (STR) [93, 90, 263, 262, 91] only needs know-
ledge of the time delay, and shows some robustness against changing operating condi-
tions. In two semester theses [201, 265], it is concluded that for a combustor which is
already stable, the STR does not offer advantages over a model-based controller. In
particular, numerical problems may arise.

Loudspeakers controlling vortex shedding and cross-flow jets are implemented as
actuators in [216, 215]. Optimization using a downhill-simplex algorithm is performed
on the frequency of the loudspeaker control signal and the cross-flow strength. Note
that this yields a static control system, not one with pressure feedback. The tradeoff
between acquiring repeatable cost functions and short convergence times is highlighted.

In [19, 147], adaptive algorithms are presented. But only simulations are carried
out in [147], and only the control phase is updated in [19]. Noise is identified as a
problem, and questions about algorithm instability are raised.

A Rijke tube is controlled in [36] with loudspeakers and a neural network, which
requires an identification procedure beforehand.

The fuel flow through different injection locations along the burner is optimized with
an evolutionary algorithm in [237].

A range of lead/lag controllers are optimized with an evolutionary algorithm in
[238, 275]. The influence of the noise is realized, the problem with resulting long
evaluation times discussed, and a two-step evaluation proposed (short and long). The
maximum number of iterations is fixed to 200.

A loudspeaker is used to control an unstable 1 kW rig in [7]. With an analytical
model, an LQG/LTR and an H∞ controller are designed. A linear model valid for
the limit cycle of the unstable 114 kW swirl combustor is identified in [206]. About 8%
of the total fuel are modulated with on/off injectors, using an LQG/LTR approach.
The results are compared with a fixed gain/ variable delay phase-shift controller, which
performs worse for one condition but just as well in a one-mode dominated case.

Only simulation studies with an H∞ controller are reported in [126, 57]. A loud-
speaker is used as actuator together with an on/off fuel injector operated open-loop
at 400 Hz in a swirl-stabilized 125 kW spray combustor [48]. A stable network mo-
del valid between 100–300 Hz is identified and used to design an LQG/LTR and
H∞ controller. Small delays are added during the experiments to obtain maximum
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attenuation. Only the phase is varied for the phase-shift controller. It turns out that
LQG/LTR works best, followed by H∞ and phase-shift.

Fuel is modulated in a swirl-stabilized premix combustor [47]. It is identified as a
stable but lightly damped noise-driven network model. Two kinds of H∞ controllers
are tried, and found to work better than phase-shift. However, pollutant emissions
can rise for some conditions.

2.2 Work of Various Research Groups

The work of various research groups is presented here, along with more references to
publications.

ALSTOM (Switzerland), Ltd, Baden, Switzerland

The structure of instabilities is examined in [229, 230, 228, 233, 275], coherent struc-
tures are explained in more detail in [231]. The model of a burner and flame is laid
out in [248, 29, 239, 276]. The network model is presented in [279, 223, 277, 278, 236].
A phase-shift controller is implemented in [229, 230, 228, 232, 224]. An evolutionary
algorithm working on controller parameters is discussed in [238], while the injection
pattern is influenced with such an algorithm in [237, 235]. An H∞ controller is shown
in [47, 278, 112]. Passive approaches are evaluated in [88, 240, 222, 225, 226, 227],
and further in [234, 26, 28, 27]. The ALSTOM EV burner is discussed in [222]. Power
Plant CO2 emissions are treated in [190, 113].

Massachusetts Institute of Technology, Cambridge, USA

Good overviews are given in [8, 9]. This group presents a model based on the acoustic
equation with a one- or two-mode Galerkin expansion [8, 5, 6, 121, 99, 119, 118, 110].
A model for a laminar premixed flame similar to a n− τ model is presented in [98, 6,
220, 221]. Stability of the combustor depends on the position of the flame (Rayleigh’s
criterion), the first mode is stable and the second unstable. This model is stabilized
with a self-tuning phase-lead controller and compared to an LMS algorithm [4, 91].
LQG/LTR and H∞ are used in [7, 220, 206], and open-loop control is discussed in
[251].

Cambridge University, Cambridge, UK

An excellent review on feedback control of combustion oscillations is [79]. A general
overview of the problem is [77], and of the acoustics [80]. A flame model similar to the
n− τ model and further experiments are described in [153, 39]. Yet more modeling is
found in [74, 75, 76, 78, 308, 42, 290, 14, 289, 18], passive approaches are considered
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in [84, 130]. Simulations with a controller can be found in [56]. A movable centerbody
is commanded by a phase-shift controller in [38], this alters the upstream boundary
condition of the 250 kW test rig. The unstable frequency lies at 88 Hz. On the same
setup, automotive on/off fuel valves are used [154]. The LMS algorithm and a self-
tuning regulator are presented in [90, 93, 91, 92, 262, 94, 263]. Robust controllers are
discussed in [57].

Georgia Institute of Technology, Atlanta, USA

The Galerkin method in conjunction with combustion instability problems is first
mentioned in [309]. Equivalence ratio fluctuations are considered in [182, 180], and
limit cycles investigated in [170, 169]. Further statistical analysis is done in [177, 174,
176]. Fuel injection tests are described in [210, 209, 208, 24]. Control using a set of
second-order filters is reported in [211], with a prior sweep identification in [134], and
phase-shift in [272, 133, 64, 310]. Interactions between flames and acoustic waves are
studied in the review paper [173], as well as in [168, 161, 175, 171, 179, 178, 162, 253,
172, 54, 55, 25, 254, 255, 310], and the lean blowout limit in [205].

Centre National de la Recherche Scientifique, and CERFACS, France

Good overviews are [49, 198, 73, 82, 51], and a tutorial [50]. Further investigations
are [267, 58, 295, 281, 137, 156, 280, 155, 31, 282, 17]. The role of vortices is discussed
in [244, 11], Helmholtz behavior in [307]. Algorithms based on the LMS principle are
discussed in [33, 204, 11], more adaptive control is reported in [36, 37, 191]. Flame
transfer functions are measured in [81, 30, 81, 298], and the reflection coefficient of a
flame is investigated in [243].

United Technologies Research Center, East Hartford, USA

A stable second-order model with delay is fitted to an experimentally found transfer
function between valve command and microphone signal in [59, 21, 20]. An analytic
model is presented in [241, 147, 63]. A transfer function is evaluated in [12], the effect
of Helmholtz resonators in [115]. A phase-shift controller is described in [61, 13, 62],
an adaptive controller in [22, 19]. A spinning valve actuator is developed in [23].

NASA Glenn Research Center, Cleveland, USA

NASA’s efforts are described in [69, 144, 143, 142, 160, 60]. Models and algorithms
adjusting phase-shift controllers are laid out. The importance of the background noise
is discussed.
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ALSTOM Technology Center, Whetstone, UK

An industrial focus on the problem is reported in [138]. A neural-network predictor is
presented in [187], and a controller based on a sine decomposition in [185], emissions
are taken into account in [186].

Technische Universität München, Germany

The application of a controller in a heavy-duty gas turbine is reported in [283]. Mode-
ling is done in [218], the n−τ flame model is extended in [247, 217, 219, 108, 150, 109],
a network model described in [148, 158, 249], numerical considerations in [245]. Sta-
bility is addressed in [271, 270, 246, 102, 188]. A phase-shift controller and fuel feed
line dynamics are discussed in [15].

Deutsches Zentrum für Luft- und Raumfahrt DLR, Stuttgart, Germany

Very detailed investigations of flame structures are reported in [302, 111]. PLIF of OH
and CH radicals shows inner and outer recirculation zones in their combustor.

Imperial College of Science, Technology and Medicine, London, UK

Part of the fuel supply is modulated with a phase-shift controller in [284, 250, 68, 87],
models of combustion are presented in [136], flame models in [117, 189, 159].

The Pennsylvania State University, University Park, USA

A simulation of a modeled combustor with a PI controller is done in [105, 104, 145].
Subharmonic fuel injection is tried in [135, 140], mechanisms of instability explained
in [301, 164, 163]. Especially [129, 127, 128] show the stabilization of the flame in two
regions resulting in a stable and an unstable case, similar to the transition observed
in the ETH test rig. An H∞ controller is simulated in [126].

US Department of Energy, Morgantown, USA

Open-loop injection is reported in [260, 257], passive approaches in [259], general low-
emission issues in [258].

Virginia Polytechnic Institute and State University, Blacksburg, USA

Several theses treat modeling of combustors [184, 261, 95], and subharmonic injection
[52]. The LMS algorithm is tried in [299], passive control in [89], and adaptive in [300].

Naval Air Warfare Center, China Lake, USA

The importance of coherent flow structures is emphasized in [274, 273]. Lead-lag
controllers are applied in [120], phase-shift in [306, 305].
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Stanford University, Stanford, USA

A downhill simplex algorithm is used in [215, 216], and the LMS strategy in [139].

California Institute of Technology, Pasadena, USA

A good overview of the problem is given in [66], hysteresis is investigated in [141, 131],
experimental studies in [44, 194, 193], and modeling in [3].

Japan Aerospace Exploration Agency, Japan

Steady injection of fuel close to the flame increases the equivalence ratio and stabilizes
the flame (causing a diffusion flame), at the expense of higher emissions [293, 269, 122].

Other groups

A general paper is [287]. The gas turbine manufacturer General Electric presents a
phase-shift controller [114] and a voice-coil driven fuel injector [197]. An H∞ controller
is tried in [48, 46]. Helmholtz resonators are also examined in [71, 70, 123, 199,
311, 207]. A NARMAX model is identified in [45, 40] and simulated with a neural
controller in [96]. Another nonlinear model is identified in [83]. The Rijke tube is
treated in [35, 34, 268]. Characterizations of unstable combustors can be found in
[157, 146, 149, 85, 294]. A neural network controller is suggested in [106]. Flame
transfer functions are measured in [192], and the choice of actuator/sensor location is
studied in [1].

Summary

This chapter has given an overview of relevant contributions to the control of thermo-

acoustic instabilities, and the work of various research groups has been summarized.

The most promising approaches seem to be with secondary fuel injectors as actuators,

and model-based controllers.

Der Worte sind genug gewechselt.

Lasst mich auch endlich Taten sehn!

Indes ihr Komplimente drechselt,

Kann etwas Nützliches geschehn.

JWvG
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Experimental Setup and

Characterization of the Test Rig

Sunt facta verbis difficiliora.

Cicero, “ad Quintum fratrem” 1,4,5

3.1 Experimental Setup

A picture of the test rig built at ETH Zürich is shown in Fig. 3.1(a). It belongs to the
class of premixed swirl-stabilized combustors with a sudden expansion region. The
whole structure visible on the picture stands about 2 meters tall.

The air enters the combustor through the red pipe on the right-hand side and is
heated up by an electrical heater. It is premixed with natural gas (CH4), guided
through mixers and flow straighteners into the upstream1 plenum chamber duct.
Fig. 3.2(a) shows the lab-scale ALSTOM EV swirl burner which stabilizes the flame in
recirculation regions near the burner outlet plane; the burning flame can be monitored
through quartz glass windows. For control purposes, a secondary fuel valve injects
natural gas into the burner, see Fig. 3.2(b). The combustion gases are guided through
a cooled downstream duct. Various end plates can be installed at the end of this duct,
to change the reflection coefficient. A hood covers the end of the downstream duct
and guides the hot gases to the exhaust pipe.

A schematic illustration of the test rig is shown in Fig. 3.1(b). The pressure sig-
nal is detected by water-cooled microphones (Mic) distributed along both ducts up-
and downstream of the burner. For identification purposes, loudspeakers (LS) can be
mounted there, too. They are placed in housings and connected by flanges (length
68 mm upstream and 50 mm downstream, diameter 30 mm) to the combustor duct.

1the term “up- and downstream” are always to be understood relative to the burner location, and

in the direction of the flow.

13
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(a) An illustration of the ETH combustor.
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(b) The ETH combustor setup.

Figure 3.1: The ETH combustor. It works in lean premixed mode, burning natural gas in the

lab-scale ALSTOM EV burner. A fuel injector is installed for control purposes, loudspeakers

(LS) for system identification. Acoustic pressures are sensed with several microphones (Mic).

All dimensions in mm.

The housings and flanges are flushed with cooling air to protect the loudspeaker mem-
brane.

The loudspeakers are also used as actuators for control, but offer only limited ac-
tuation power of 30 W each. On the other hand, natural gas has a heating value
of 40 MJ/m3. A secondary fuel injector is therefore installed close to the burner to
achieve better results. About 10% of the total methane flow of 1 g/s are modulated,
leading to an actuation power (density of methane 0.68 kg/m3) of about 6000 W.

Fig. 3.2(b) displays the mounted fuel injector on the right-hand side, seen from
slightly below. It is water cooled, the natural gas is delivered by a copper pipe, the
red wire at the back of the injector carries the spool position signal. The two brass
inserts in the upstream combustor duct are water-cooled microphone holders. The
flanges at the bottom of the picture can be used to mount loudspeakers.

An HP-9000 system (built 1988, 25 MHz, 8 MB RAM, upgraded to 33 MHz and
24 MB RAM in 1990, 8 MIPS) is used to acquire transfer functions. This is done with
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(a) ALSTOM’s lab-scale EV burner. (b) MOOG’s fuel injector, installed on the test rig.

Figure 3.2: Photographs of ALSTOM’s lab-scale EV burner; and MOOG’s fuel injector

installed on the test rig.

swept-sine signals that are sent to an amplifier driving either the loudspeaker or the
fuel injector. The output of the plant is usually the pressure read by microphones.

In order to assess the quality of the transfer function measurements, variances and
distortions are evaluated. Depending on the noise levels (flame/ no flame), longer
integration times are needed to get satisfactory variance levels. Linearity is also con-
firmed, with the obvious drawback that lower excitation signals require longer acqui-
sition times. Overall, the repeatability is very good. The acquisition time for one
frequency sweep (50–1500 Hz, 200 points) for the ETH study is about 20–30 minutes,
compared with 15 h reported in [97].

For controller implementation, a dSPACE DS1103 real-time board in conjunction
with the MLIB/MTRACE package from Mathworks is used, making direct logging of
data to the Matlab workspace possible. Furthermore, controller parameters are directly
manipulated on the real-time board from an m-file running on the host computer.

The spectra acquired with a sampling frequency of 200 kHz have shown that higher
frequency components are weak compared to frequencies below 5 kHz. Therefore, the
sampling frequency is chosen as 10 kHz and no analog anti-aliasing filter is necessary.

A more thorough presentation of the ETH test rig is laid out in [101].
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3.2 Acoustics: Techniques and Definitions

3.2.1 Multi-Microphone Method

The acoustic field in the combustor is treated as purely longitudinal, because the cut-
off frequency is higher than the frequency range of interest (0–1500 Hz). This cut-off
frequency is given by ω = 1.841c/a, c being the speed of sound and a the duct radius
[242]. For a temperature of 300 K with a duct radius of 90/2 mm, this gives a cut-off
frequency of about 2000 Hz.

Moreover, the geometrical extents of the burner and the flame are small compared
to the wavelengths of the frequencies involved, which allows to take only plane waves
into account. In this case, the pressure and velocity fluctuations p′(t) and u′(t) are
described by the Riemann2 invariants (characteristic variables) f(t) and g(t) in the
following way, with ρ being the density:

p′(t) = ρc[f(t) + g(t)] (3.1)

u′(t) = f(t) − g(t) (3.2)

The two-microphone method [18, 243, 298, 132] is based on the property of the
Riemann invariants that at given positions xi and xj with mean flow ū the following
relationship applies (s = iω):

f(xj) = f(xi)e
−s

xj−xi
c+ū (3.3)

This makes it possible to determine the acoustic velocity and pressure at any posi-
tion in the duct using only two pressure measurements via the bias of the Riemann
invariants.

Problems are expected to occur if the distance between two microphones becomes
equal to half the wavelength of interest. In the ETH test rig, this happens for ambient
conditions at 1600 Hz, and for hot conditions at 4000 Hz. Another problem may occur
if a microphone is placed in a pressure node, but this did not cause any difficulties in
the present study. The multi-microphone method uses more than two pressure sensors,
such that an overdetermined system has to be solved for the Riemann invariants. In
this study, the improvements are not significant and the two-microphone method is
applied.

2named after Georg Friedrich Bernhard Riemann (1826–1866)
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3.2.2 Reflection Coefficients and Impedances

With the aid of Riemann invariants, reflection coefficients at various positions are
defined as a function of frequency.
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Figure 3.3: The definition of various reflection coefficients.

A variety of them are shown in Fig. 3.3. In particular, the upstream reflection
coefficient Rup is measured at a location just upstream of the burner. It is defined as
the ratio of the Riemann invariant f2 returning from the upstream end divided by the
Riemann invariant g2 leaving the upstream burner location:

Rup(iω) =
f2(iω)

g2(iω)
(3.4)

The reflection coefficients “looking” upstream Rup,burner and (Rup,burner,flame) including
the burner (and the flame) are defined for a location just downstream of the burner.
They provide information about the influence of the burner and the flame.

Similarly, reflection coefficients “looking” downstream are defined as Rdown,
Rdown,burner and (Rdown,burner,flame). The latter two again contain the effects of the
burner and the flame, because they are located upstream of the burner:

Rdown(iω) =
f1(iω)

g1(iω)
(3.5)
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Moreover, (scaled) impedances are defined as the ratio of acoustic pressure and velocity:

Z(iω) =
p′(iω)/ρc

u′(iω)
(3.6)

And lastly, reflection coefficients and impedances are related by the following proper-
ties:

Z =
1 +R

1 − R
R =

Z − 1

Z + 1
(3.7)

3.2.3 Averaged Sound-Pressure Level and Spectral Density of

Pressure

The averaged sound-pressure level or equivalent continuous level Leq of a pressure
(fluctuation) signal p(t) is defined relative to a reference pressure3 pref = 20 µPa.
Thus following [124] with T being the time window of interest

Leq = 10 log10

1

T

∫ T

0

p2(τ)

p2
ref

dτ (3.8)

or equivalently, (p2)av being the mean squared pressure [242]

Leq = 10 log10

(p2)av

p2
ref

(3.9)

On the other hand, the spectral density Lps(f) is a function of the frequency f . It
is defined as a sound-pressure spectrum level [242]

Lps(f) = 10 log10

p2
f(f)(∆f)ref

p2
ref

≈ 10 log10

(p2
b)av(∆f)ref/(∆f)b

p2
ref

(3.10)

where pf(f) is the spectral density of p(t), (∆f)ref is a reference bandwidth (taken
to be 1 Hz), and (p2

b)av is the contribution to the mean squared pressure from a band
of width (∆f)b centered at the frequency f . Since this process involves an averaging
process for each frequency bin, the height of sharp peaks depends crucially on the choice
of the Fourier Transform parameters. The frequency resolution is given by ∆f = 2π

N ·Ts
,

N being the number of points considered and Ts the sampling time. Increasing N

thus leads to better frequency resolution ∆f at the expense of less averaging per bin,
creating a fluffier and furrier look of the Fourier transform, see Fig. 3.4. When the Fast

3The decibels of sound quantities in this thesis are always relative to pref = 20 µPa, unless otherwise

stated.
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Fourier Transform is carried out using 215 points, the highest peak measures nearly
8 dB more than the one calculated with 210 points. Therefore, it should be kept in
mind that reductions of the peak spectrum value are afflicted with this uncertainty.
The averaged sound-pressure level Leq on the other hand does not suffer from this
shortcoming.
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Figure 3.4: The influence of the number of points N used in the Fast Fourier Transform on

the frequency and amplitude resolution of the spectrum. Taking more points yields a better

resolution ∆f and sharper peaks at the expense of more noise.

3.3 Operating Conditions, Coding Conventions

Investigations are carried out for various operating conditions, guided by the identifi-
cation of the flame types in [101]. They are characterized by the air mass flow in g/s,
the air preheat temperature in K and the fuel equivalence ratio λ, giving a triple for
each operating condition. In order to facilitate the notation, the units are omitted and
only the numerical values are written down.

For instance, 36/700/2.1 refers to the case with an air mass flow of 36 g/s, an air
preheat temperature of 700 K and a λ of 2.1. This case features a strong instability
with a distinct peak at 218 Hz, it is identified as flame type IIb, see Fig. 3.5(a). A
similar flame type is 34/600/1.9. In contrast, the leaner type Ib case 36/700/2.4 is
more stable. The slightly cooler case 36/650/2.1 is similar to 40/550/1.9, both are of
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the more stable type IIa. Finally, 40/700/1.9 is a flame type IIIa. The various flame
types are exemplified in Fig. 3.5(b). Flames of type Ia and Ib are burning only in the
inner recirculation zone. By contrast, flame types IIb and IIIa are characterized by
the flame moving into the outer recirculation and burning there as well.

The pressure spectra Lps read with a microphone downstream at 123 mm are shown
in Fig. 3.6(a), where the pressure data has been sampled at Fs=25 kHz. Fig. 3.6(b)
shows the same data downsampled with a factor of 12, yielding a sampling frequency
Fs of 2.08 kHz. Note that some aliasing effects are noticeable for the case 36/700/2.4,
but the other cases benefit from the higher frequency resolution (the peak at 218 Hz for
the case 36/700/2.1 is higher, see Fig. 3.4, where this effect is discussed). The spectra
of the pressure read upstream at −172 mm are shown in Figs. 3.6(c) and 3.6(d) for
a sampling frequency of 25 kHz and 2.08 kHz, respectively. In general, the levels are
about 10 dB lower than in the downstream part, where the flame is burning.
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(b) Various flame types.

Figure 3.5: The map of operating conditions and identified flame types. From [101].

A second harmonic at 436 Hz is clearly visible in the microphone spectrum for
36/700/2.1. At first, it was suspected that this is due to microphone distortion [43],
but further analysis showed that it also exists in the upstream duct, where the noise
level is lower, see Fig. 3.6(d). The current understanding therefore suggests that flame
saturation is involved.
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(c) upstream at −172 mm, Fs=25 kHz.
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Figure 3.6: The spectrum of the pressure read downstream at 123 mm and upstream at

−172 mm for various operating conditions. Sampling frequencies Fs=25 kHz and 2.08 kHz.

Summary

This chapter has presented the test rig built at ETH Zürich. The flame is swirl-

stabilized with a lab-scale ALSTOM EV burner. The operating conditions are catego-

rized as different flame types. The definition of acoustic quantities is given, and some

identification techniques are explained.





4

Network Modeling and Identification

Bene diagnoscitur, bene curatur.

4.1 Physics-Based Network Modeling

4.1.1 The Network Model Setup

The analytic model of the combustor is based on a network of different blocks. Each
block represents a part of the combustor which is analytically modeled, and experi-
mentally identified [47, 275, 279, 277, 278, 236]. This modular approach offers insight
into the intricacies of thermoacoustic oscillations, because the behavior of the blocks
can be easily studied.

More specifically, referring to Fig. 4.1(b), the network model consists of an upstream
end condition, where the air enters the upstream plenum chamber duct, followed by
the lab-scale ALSTOM EV burner and the flame. The hot gases leave the combustion
chamber duct through a downstream end condition. An actuator (loudspeaker or fuel
injector) introduces acoustic velocity fluctuations into the system, and microphones
sense pressure fluctuations.

The signals connecting the blocks are acoustic pressure and velocity fluctuations.
More precisely, according to Eq. 3.1, the pressure signal is a scaled pressure fluctuation
p′sc(t) = p′(t)

ρc
. For ease of notation, the subscript is dropped in Fig. 4.1(b). The

blocks contain transfer functions relating the outputs to the inputs. They are found
analytically based on physics, and relevant parameters are identified experimentally.
This is done with a dynamic signal analyzer which sends a swept-sine signal to the
loudspeaker and monitors the pressure output of the microphones located up- and
downstream. As laid out in Section 3.2.1, the two-microphone method is used to
calculate the acoustic velocity and pressure at any location in the duct. Once they are
known on both sides of a network element, it is easy to extract the transfer function.

23
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Figure 4.1: An illustration of the ETH combustor and the network model. It consists of

blocks that are modeled analytically and identified experimentally. The signals connecting the

blocks are acoustic pressure and velocity fluctuation.

In order to determine the transfer matrix of the burner T b(s), the combustor is run
without the flame, and excited with the loudspeakers upstream and then downstream.
This assures two independent forcing setups, necessary for the determination of the
four elements of this matrix. The transfer function of the flame by itself T f(s) cannot
be measured. Instead, the combined transfer function of the burner and the flame
T bf(s) is determined as before with the flame burning. Knowing the burner transfer
matrix T b(s), the flame block can easily be extracted: T f(s) = T bf(s)

(
T b(s)

)
−1

.
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4.1.2 The Up- and Downstream Ducts and End Conditions

A modal expansion method of the acoustic equation is presented in [278, 275], where
a velocity input u′(t) occurs at xj and the pressure p′(t) is read out at xk, yielding the
following state-space representation for one mode n:

ẋ(t) = Anx(t) +Bnju
′(t) (4.1)

p′(t)

ρc
= Cnkx(t) +Dnu

′(t) (4.2)

where

An =

(
−αn −ωn

ωn −αn

)

Bnj =

(
0

ψn(xj)

)

Cnk =
(

0 cAk

Λn
ψn(xk)

)

Dn =
(

0
)

The eigenvector of the duct for mode n is ψn(x), the eigenvalue is ωn, modal damping
is αn, speed of sound c, Λn =

∫
ψ2

ndV , Aj and Ak are the input and output areas,
respectively. It is straightforward to increase the number of modes. The pressure can
be read out at an arbitrary position inside the duct by manipulating the matrix Cnk,
and velocity inputs (for instance from the loudspeaker) can be added by changing the
matrix Bnj.

An important parameter is the length of the duct which determines the modes; and
the speed of sound, which is dependent on the temperature. Because of cooling by the
walls and mixing effects, it is difficult to find the correct value for the length of the
downstream duct with combustion. Therefore, this length is determined without flow
at room temperature, and the temperature in the preheated cases is found on the basis
of the length determined previously. The linear phase drops (∠R(ω) = −2L ω/c) of
the reflection coefficients Rup and Rdown (see Section 3.1) in Fig. 4.2 are used to find
the correct values for the lengths Lup and Ldown.

Upstream Reflection Coefficient Rup and Impedance Zup

Fig. 4.2 shows that the upstream reflection coefficient Rup depends on the flow, and that
more flow is correlated with more damping (less reflection). Moreover, the reflection
coefficient is not a constant value but depends on the frequency. The phase of Rup

decays linearly and identically for all flows, indicating that the length of the duct
model has been chosen correctly (and does not depend on the flow).

The measured peaks of the impedances Zup indicate an acoustically closed-closed
duct, because they are located at

f = n
c

2Lup
n ∈ N+, (4.3)
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Figure 4.2: Effect of the flow on Rup and Zup. More flow increases the dissipation of

acoustic energy and thus decreases Rup. The location of the impedance peaks is not affected,

but their height is. Ambient conditions.

and since the phase of Zup stays within ±π
2

rad, it is a passive end.
The effect of the preheat temperature on Rup and the impedance Zup is exemplified

in Fig. 4.3. Three cases are considered, namely 300 K, 450 K, and 700 K. For a set
preheat temperature of 700 K, the actual value relevant for the acoustics is 620 K, due
to cooling at the combustor walls.

It can be seen that higher temperatures shift the resonances of Zup to higher fre-
quencies. Conversely, the phase of Rup also decreases faster, since the speed of sound
increases for higher temperatures.

Table 4.1 summarizes the calculated frequencies of the first four upstream modes
for preheat temperatures of 300 K, 450 K, and 700 K, respectively.

Table 4.1: The calculated frequencies of the first four upstream modes for three preheat

temperatures. Compare with Fig. 4.3.

Tup [K] c [m/s] 1st [Hz] 2nd [Hz] 3rd [Hz] 4th [Hz]
300 347 261 522 783 1044
450 425 320 639 959 1278
700 499 375 750 1125 1500
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Figure 4.3: Effect of the preheat temperature on Rup and Zup. The phase of Rup decays

faster at higher temperatures, and the impedance peak locations are shifted to higher frequen-

cies. Compare with Table 4.1.

Downstream Reflection Coefficient Rdown and Impedance Zdown

The downstream reflection coefficient Rdown seen from the burner is investigated and
the results are shown in Fig. 4.4. The usual combustor configuration is with the exhaust
gas hood mounted after the downstream duct, see the schematic of the experimental
setup in Fig. 3.1(b). The values of Rdown are in this case characterized by a regular
pattern of low and high values, generally decreasing with frequency (plotted in blue).
This is in accord with the theory by Levine and Schwinger [86], plotted in black for
the absolute value of Rdown only.

The green graph shows Rdown when the exhaust gas hood is removed, which now
exhibits a more pronounced spiky behavior. A smoother curve is obtained when the
downstream duct is blocked (shown in red), and the absolute value and phase of Zdown

now show the expected behavior for a closed-closed pipe. The end condition is now
changed from an acoustically open to a closed one, as indicated by the impedance
Zdown; and Rdown also approaches 1.

It is conjectured that the origin of the spiky behavior lies in the exhaust pipe, which
is mounted after the downstream duct, see Fig. 3.1(b). When this pipe is blocked
(exhaust blocked) while the downstream duct remains open, the spikes disappear, see
the cyan plot in Fig. 4.4.
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Figure 4.4: The effect of the hood and the exhaust pipe on Rdown and Zdown. The black

graph in the upper left plot shows Rdown calculated with the theory by Levine and Schwinger.

Ambient conditions, no flow.

The reflection coefficient in the presence of an expansion chamber and multiple
echoes is treated in [97]. In particular, an expansion chamber of length l and area
A2 is inserted between two pieces of a duct with area A1. If the downstream end
of the second duct is assumed to be anechoic, the reflection coefficient of a duct in
the presence of an expansion chamber Rdown,ec can be derived (speed of sound c,
α = A2/A1, β = 1−α

1+α
, k = ω/c):

Rdown,ec =
β(1 − e−2ikl)

1 − β2e−2ikl
(4.4)

The frequency response of Rdown,ec is plotted in Fig. 4.5. It looks very much like the
experimentally observed coefficients Rdown shown in Figs. 4.4 and 4.6. This analysis
thus shows that the exhaust pipe is responsible for the spiky behavior seen in the
downstream reflection coefficient.

An improvement could be obtained if the exit reflection coefficient of the second duct
is modeled using a Levine-Schwinger end condition [86], and if dissipation is assumed
for the area changes in the duct.

Some authors have suggested to install different end plates at the downstream end
to decrease pressure oscillations. The influence of such plates as well the effect of the
exhaust hood is investigated here. End plates with varying degrees of constriction
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are installed at the end of the downstream duct. Perforated plates with holes of
diameter 3 mm and an overall constriction of 50% and 65% are tried, and annular
plates featuring one large opening in the middle, constriction is 50% and 80%. The
Rdown is plotted in Fig. 4.6, for the plates with annular constrictions, as well for the
case when the downstream end is closed. The effect is confined to frequencies above
400 Hz, but the most amplified frequencies for the operating conditions studied are in
the 200 Hz range. The perforated plates feature generally lower reflection coefficients
than the annular plates (not plotted). As a comparison, the downstream duct is also
closed, giving the highest reflection coefficient (cyan). The influence of the exhaust
duct is again seen in all non-closed cases.

In the literature, the standard modeling approach assumes a constant reflection
coefficient both up- and downstream. The analysis above shows that such a simplifying
assumption may not always be accurate.

In practice when the combustor is running, the endplates do not have a decisive
effect on the reduction of the pressure spectrum in the 200 Hz range, so other (active)
strategies are pursued. Moreover, the pressure and flow field inside the combustor
changes with the addition of such plates, thus altering the operating conditions.

4.1.3 The Burner and the L− ζ Model

ALSTOM’s EV burner features flame stabilization in free space near the burner outlet
due to sudden vortex breakdown of a swirling flow. The burner represents an obstacle
to the flow, and an area change from A1 to A2 occurs at the dump plane. Linearizing
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the unsteady Bernoulli and the continuity equations and introducing an acoustic loss
factor ζ and a reduced length Lred (accounting for capacitance effects) yields in matrix
form [248, 275]:

(
p′2
u′2

)

= T b(s)

(
p′1
u′1

)

(4.5)

where T b(s) is a 2×2 matrix

T b(s) =







1 ρc

(

M
(

1 − ζ −
(

A1

A2

)2 )

− iω
c
Lred

)

0 A1

A2







(4.6)

The subscripts 1 and 2 denote conditions up- and downstream of the element, respec-
tively, M is the Mach number, c the speed of sound, and i2 = −1.

It is hard to indicate a priori values for the loss factor ζ and the reduced length Lred,
so they are identified experimentally. The measured value of 0.2 m for Lred is very close
to the physical length of the burner, and ζ=60. Note that two independent excitation
experiments (up- and downstream) are necessary to determine all four elements of the
matrix [248, 275].

The four elements of the burner transfer function for the case 36/700/noFlame are
shown in Fig. 4.7. Measured values are plotted as red graph, and the frequency response
of Eq. 4.6 in blue. The absolute value and the phase of the frequency response for the
static element T b

11 are plotted in the upper left corner. The lower left corner depicts
the element T b

21, and the agreement is also good between theory and experiment. The
lower right corner displays the element T b

22, which should be equal to the area ratio
A1/A2, according to the theory. This is indeed accurately the case. The dynamic
element T b

12 is plotted in the upper right corner of Fig. 4.7. It relates the upstream
velocity to the downstream pressure fluctuations, and the model and measurement
agree very well, both in the phase and the absolute value.

The L − ζ burner model successfully predicts the change in phase between a no-
flow and a flow case for ambient temperatures, see Fig. 4.8. The left plot shows the
measured and modeled frequency response of the burner matrix element T b

12 for ambient
temperatures and no flow, while the right plot represents teh case with 20 g/s flow.
The absolute value is not influenced much by the flow, but the phase is susceptible to
it.

The model of the burner has been found to work well over a very large range of
operating conditions. Mass flows from 0–44 g/s, and temperatures from ambient to
700 K have been successfully validated.
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Figure 4.7: The four elements of the burner transfer function T b(s), given by Eq. 4.6 for

36/700/noFlame. Very good agreement between theory and experiment.
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Figure 4.8: The dynamic element T b
12 of the burner transfer function. Comparison between

no flow and a flow of 20 g/s. The model successfully predicts the behavior of the phase.
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4.1.4 The Flame and the n− τ Model

A vast body of literature about flame modeling exists [98, 198, 275, 152, 82, 247,
55, 81, 30, 217, 219, 108, 150, 54, 14, 290]. For this study, the flame is modeled
as an acoustically compact element causing a jump in the acoustic velocity due to
heat addition, while continuity of pressure is assumed. The key assumption is that
velocity fluctuations at the burner cause heat release fluctuations, after a time delay
τ [276, 248, 223, 239]. In our premixed case, equivalence ratio fluctuations are not
occurring, because the mixing happens so far upstream that pressure waves are unlikely
to influence it. The extended n− τ model is given in matrix form [275, 278, 277, 29]:

(
p′2
u′2

)

=

(

1 0

0 k + ne−iωτe−
1

2
ω2σ2

τ

)

︸ ︷︷ ︸

T f (s)

(
p′1
u′1

)

(4.7)

The time delay τ is associated with a convective transport lag. This value has a
Gaussian distribution with a standard deviation σ2

τ , which is represented by the term
e−

1

2
ω2σ2

τ . The value σ2
τ describes the geometrical shape of the flame, and it is indeed

observed that visibly longer flames are modeled by higher values of σ2
τ . Finally, n is

an interaction factor, k is a value close to 1, i2 = −1, and ω is the frequency.
The measured and modeled transfer functions of the flame expressed by Eq. 4.7 for

the case 36/700/2.4 are displayed in Fig. 4.9. The upper left corner shows the absolute
value and the phase of the element T f

11, which is close to 1. The measured and modeled
values agree well. The lower left corner depicts the element T f

21, which should be close
to 0. The element T f

12 is shown in the upper right corner, with a modeled value of 0.
Noise is getting an issue at frequencies around 1100 Hz.

Finally, the dynamic element is T f
22, which relates the upstream to the downstream

velocity fluctuations. It is plotted in the lower right corner of Fig. 4.9, and again
in Fig. 4.10(a), which is done for better comparison with other operating conditions.
Both the absolute value and the phase of the frequency response of T f

22 are captured
well by the model. The dynamic influence of the flame vanishes for frequencies higher
than about 300 Hz.

Further cases are compared in Fig. 4.10, namely 36/700/2.4, 36/550/2.1, 36/700/2.1
and 40/700/1.9. As the flame becomes more unstable, the first dip of the absolute value
of the frequency response moves to higher frequencies. In parallel, data acquisition
becomes more difficult as there is more noise in the system.

The identified parameters of the n − τ model for various operating conditions are
summarized in Table 4.2. The experimentally observed behavior that the flame be-
comes more compact from flame type Ib to IIb and IIIa is reflected by the decreasing
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Figure 4.9: The flame transfer function T f (s) for 36/700/2.4. The dynamic element T
f
22

is in the lower-right corner.

values for the distribution parameter στ shown in Table 4.2. The fact that it retracts
closer into the burner is seen in the decreasing value for the time delay τ . The product
d of the flow velocity and the time delay is shown in the last column. These results
correlate well with optical results indicating the flame size [101].

Table 4.2: The identified parameters of the n − τ flame model for various flame types.

case flame type n τ [ms] στ [ms] k d [m]
36/700/2.4 Ib 1.4 5 1.2 1 0.18
36/550/2.1 Ib 1.3 5 1.0 0.9 0.15
36/700/2.1 IIb 1.2 1.4 0.4 0.8 0.05
40/700/1.9 IIIa 1.5 1 0.2 0.8 0.03
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(a) 36/700/2.4, extracted from Fig. 4.9. Flame

type Ib.
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(b) 36/550/2.1. Flame type Ib.
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(c) 36/700/2.1. Flame type IIb.
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(d) 40/700/1.9. Flame type IIIa.

Figure 4.10: The dynamic element T
f
22 of the flame transfer function for various operating

conditions. The model is able to capture the flame behavior at various operating conditions.
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4.1.5 The Noise Source Term

When a volume of gas expands at constant pressure, direct combustion noise arises,
which is characterized as an acoustic monopole. Engine power is the most important
factor for this kind of noise, which has a blunt peak in the 300–500 Hz range for
large-scale engines [166]. But non-reactive flows also generate noise. The noise block
is the source term of the network model. It will be possible to predict sound-pressure
spectra when everything is assembled.

Effect of Flow and Temperature on Noise Source Term

Figs. 4.11(a) and 4.11(b) show the effect of the flow on the source term Ns. The
intensity roughly doubles when the flow increases from 30 g/s to 44 g/s. When the
temperature is raised to 700 K, the flow velocity increases for the same mass flow and
yet more noise is generated, see Fig. 4.11(c). For these cases, a first-order system well
approximates the measured behavior, plotted in blue.

Effect of the Flame on Noise Source Term

Figs. 4.11(c) and 4.11(d) show the influence of the flame on the noise source term,
the preheat temperature being the same. Since 36/700/2.4 is a stable flame type Ib,
this difference is not big. In contrast, 36/700/2.1 in Fig. 4.11(e) and 40/550/1.9 in
Fig. 4.11(f) exhibit more noise. This is not surprising, since they are both type IIb
flames. A second-order system is a good approximation for these cases.

Table 4.3 summarizes the identified parameters for various cases. The influence of
the flame is that the noise source term is best approximated by a second-order system,
compared with a first-order system for non-reactive cases.

Table 4.3: The identified noise source term parameters for various cases.

case fit gain ωn [Hz] ζ

30/300/noFlame 1st-order 0.0035 150
44/300/noFlame 1st-order 0.008 150
36/700/noFlame 1st-order 0.02 150

36/700/2.4 2nd-order 0.05 200 0.5
40/550/1.9 2nd-order 0.15 160 0.02
36/700/2.1 2nd-order 0.2 200 0.1
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Figure 4.11: The noise source term Ns for various operating conditions. More flow, higher

preheat temperatures, and the flame all contribute to a stronger noise source term.

4.1.6 The Loudspeaker

The loudspeaker is modeled taking into account both the mechanical and the elec-
tromagnetic dynamics [213]. Relevant physical parameters are found in the manufac-
turer’s data sheet and in Table 4.4. The model has two inputs and two outputs: electric
voltage and pressure at the membrane; and electric current and acoustic velocity of
the membrane.

The membrane and mechanical damping are expressed as in [125]

S =
A2ρac

2
a

Vas
(4.8)

d =
S

wsQts
−
Bl2

Rs
(4.9)

Define the following terms:

G(s) =
s

ms2 + ds+ S
(4.10)

H(s) =
1

Lss+Rs +Bl2G
(4.11)
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Table 4.4: The parameters relevant for loudspeaker (LS) modeling.

Description Symbol Value
air density ρa 1.16 kg/m3

sound speed ca 347 m/s
resonant LS frequency ws 94 Hz
DC resistance Rs 6.6 Ω

driving factor Bl 2.8 Tm
inductance Ls 0.6 × 10−3 H
membrane area A 32 × 10−4 m2

mech. Q-factor Qms 4.55

electr. Q-factor Qes 1.21

total Q-factor Qts 0.96

eq. air volume Vas 1.7 × 10−3 m3

membrane damping S

mech. damping d

el. voltage at LS Ue

el. current through LS Ie
acoustic pressure at membrane pm

acoustic velocity at membrane um

Laplace variable s

This allows to write the transfer function of the loudspeaker

(
Ie
um

)

= LS

(
Ue

pm

)

(4.12)

where

LS = H

(

1 Bl · A(Lss+Rs)

G · Bl −G · A(Lss+Rs)

)

(4.13)

In addition, the pressure input must be scaled with ρc to get the correct units.
The measured electrical impedance at the loudspeaker agrees well with the modeled

impedance. The loudspeaker is connected to the combustor duct by means of a short
flange, this is modeled as a short duct, and the area change as an L−ζ transfer matrix.
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4.1.7 The Fuel Injector
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Figure 4.12: The transfer function T Inj of the injector from voltage to spool position for

various offsets and amplitudes. The natural frequency is about 3.2 kHz.

A MOOG magnetostrictive valve is used in the ETH setup to inject secondary fuel
close to the flame, which offers more control authority than loudspeakers. The location
of this injector has to be carefully chosen. If it is closer to the flame, less time delay
is present, but the mixing of the fuel and air is less optimal and emissions rise.

The injector is operated around an offset, which causes a mean flow through the
valve. More offset allows for higher control amplitudes, but again emissions rise and
flame stabilization is altered. In the reported experiments, about 10% of the total fuel
flow are modulated.

The transfer function from voltage to injector spool position T Inj is shown in
Fig. 4.12. For an offset of 0.6 V and an amplitude of 0.15 V, the resonant peak
is 12 dB or a factor of 4 above DC. For higher amplitudes, this leads to saturation due
to limited space available for the spool to move in the injector. The natural frequency
of a second-order fit is 3.2 kHz, the damping ratio ζ = 0.25, and the time delay is
0.08 ms.
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The effective control bandwidth to exert pressure fluctuations in the combustor will
be lower. This is because of convection, mixing, and combustion (remember that the
flame acts as a low-pass filter, see Section 4.1.4). For the control experiments, the
offset is fixed at 0.25 V, as explained in Section 5.4.1.

Compare this to a MOOG direct drive valve evaluated in [30], which offers a mecha-
nical bandwidth of 400 Hz. The bandwidth from control signal to pressure is similar,
but with a delay of 12 ms. Section 4.3.2 shows that in the ETH test rig the bandwidth
from voltage to pressure is similar, but the time delay is around 2.5 ms.

The transfer function between command signal and position sensor for an actuator
is shown in [30, 51]. However, the explanation of a variable delay does not hold if
one models the actuator as a sixth-order system with break frequency 400 Hz and
a delay of 0.03 ms. The transfer function from command signal to pressure in the
combustor still has a comparable bandwidth of 400 Hz. The time delay is not taken
into account in the second-order fit, and therefore the model is only valid around the
unstable frequency [292].

4.2 Assembling the Model

Transfer Functions: Ambient Case 0/300/noFlame

The aforementioned and identified blocks are now assembled to yield the transfer func-
tion TF P,LS. The input is the voltage applied to an amplifier connected to a loud-
speaker; and the output is the pressure measured by a microphone. The loudspeakers
and microphones can both be mounted up- and downstream.

For the ambient case 0/300, a comparison between the measured and modeled trans-
fer function TF P,LS is shown in Fig. 4.13. The actuator is a downstream loudspeaker
at 303 mm, and microphones at 213 mm, 123 mm and −72 mm are used as output
signals. The qualitative behavior is matched very well, but the amplitudes are more
difficult to predict accurately. Although only spaced apart by 90 mm, the transfer
functions to the two microphones at 213 mm and 123 mm are quite different, and the
model is able to match that. The phase plots exhibit slowly decreasing values. This
is due to the time delay present between actuation and sensing, which increases with
increasing distance between the two positions.
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(a) Downstream at 213 mm.
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(b) Downstream at 123 mm.
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(c) Upstream at −72 mm.
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(d) Upstream at −172 mm.

Figure 4.13: The transfer function TFP,LS. The input is a loudspeaker downstream at

303 mm, and the pressure outputs are read at various locations down- and upstream of the

burner. Ambient case 0/300/noFlame.
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Reflection Coefficients: Ambient Case 0/300/noFlame

This section evaluates reflection coefficients. Their definitions are explained in Sec-
tion 3.2.2 and Fig. 3.3.

The upstream reflection coefficient looking upstream Rup as well as the impedance
at a location just upstream of the burner Zup are revealed in Fig. 4.14. The phase
drop of Rup indicates the acoustic length of the upstream duct. The absolute value of
Rup shows that the upstream end condition is not constant, but rather a function of
frequency. The impedances have peaks where they are expected for the closed-closed
case.

The reflection coefficient at a position downstream of the burner and looking upstream

Rup,burner is shown in Fig. 4.15. The model is able to accurately predict the saw-tooth
like behavior. It also shows that the burner becomes acoustically more reflective for
higher frequencies.

The reflection coefficient “looking” downstream Rdown and impedance Zdown mea-
sured at a location downstream of the burner are depicted in Fig. 4.16. The length
for the downstream duct is chosen correctly, the peaks of the impedances match. Like
| Rup |, | Rdown | does not follow a simple curve.

When placing oneself upstream of the burner and evaluating the values in the down-

stream direction, Rdown,burner and Zdown,burner are obtained, see Fig. 4.17. These values
also give an appreciation of the effect of the burner. Again, the model is able to
describe the measured behavior accurately. The absolute values of Rdown,burner are
around 0.5 up to 400 Hz and increase to 0.8 for higher frequencies. This indicates that
sound transmission from the upstream to the downstream part is weak.
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Figure 4.14: The reflection coefficient of the upstream part Rup and the impedance Zup,

measured upstream of the burner. Ambient case 0/300/noFlame.
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Figure 4.15: The reflection coefficient Rup,burner of the upstream part including the

burner; and the impedance Zup,burner, measured downstream of the burner. Ambient case

0/300/noFlame.
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Figure 4.16: The reflection coefficient Rdown and impedance Zdown. They are measured at

a location downstream of the burner. Ambient case 0/300/noFlame.
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Figure 4.17: The reflection coefficient Rdown,burner and impedance Zdown,burner. They are

measured upstream of the burner and include the influence of the burner and the downstream

part. Ambient case 0/300/noFlame.
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Transfer Functions: Preheated Case 36/700/noFlame

The transfer function TF P,LS for the 700 K preheated case is shown in Fig. 4.18 for
microphone positions at 213 mm, 123 mm, −72 mm and −172 mm. Loudspeaker
forcing happens downstream at 303 mm. The match between the values predicted by
the network model and the measured values is also very good.
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(a) Downstream at 213 mm.
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(b) Downstream at 123 mm.
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(c) Upstream at −72 mm.
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(d) Upstream at −172 mm.

Figure 4.18: The transfer function TFP,LS from a loudspeaker input downstream at 303 mm

to pressures read at various locations down- and upstream of the burner. Preheated case

36/700/noFlame.
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Transfer Functions: Flame Type Ib versus IIb: Cases 36/700/2.4 and 2.1

This section examines the effect of the flame on the transfer function. Figs. 4.19(a) and
4.19(b) reveal the transfer function from the voltage at the loudspeaker to a pressure
measurement at 213 mm and −72 mm for the flame type Ib case 36/700/2.4.
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(a) Downstream at 213 mm.
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(b) Upstream at −72 mm.

Figure 4.19: The transfer function TFP,LS from the loudspeaker downstream at 303 mm

to the pressure read down- and upstream of the burner. Flame type Ib case 36/700/2.4.

Figs. 4.20(a) and 4.20(b) show the transfer functions for flame type IIb case
36/700/2.1. The agreement between model and measurement is still good, even in
the presence of a complicating element, namely the flame. However, the frequency
of the highest peak is a little bit overestimated. When comparing the two cases, it
is revealed that the 36/700/2.1 case has a higher resonance around 200 Hz. This is
consistent with the observation that the power spectrum also exhibits a higher peak
for this more unstable case.

Prediction of the Sound-Pressure Spectrum

The sound-pressure spectrum is modeled in this section. The identified noise term
acts as a source to the network model. The pressure signal spectrum is simulated
and compared with measured values. The sound-pressure spectrum for the flame case
36/700/2.1 is shown in Figs. 4.21(a) and 4.21(b). In Fig. 4.21(a), the analytical fit
of the noise source term is used, whereas for Fig. 4.21(b) the identified noise model is
used. The latter gives a slightly better prediction in the 300 Hz, 700 Hz, and 1200 Hz
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(a) Downstream at 213 mm.
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(b) Upstream at −72 mm.

Figure 4.20: The transfer function TFP,LS from the loudspeaker downstream at 303 mm

to the pressure read down- and upstream of the burner. Flame type IIb case 36/700/2.1.

range. The agreement between the model and the measurement is nevertheless very
good.
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Figure 4.21: A comparison of the measured and modeled sound-pressure spectrum. The

left plot uses the fitted noise source term; the right the identified term. Flame type IIb case

36/700/2.1.
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Reflection Coefficients Upstream Including the Flame

This section examines the reflection coefficients Rup,burner,flame for various cases. Re-
member that it is defined as the ratio of the Riemann invariants, being just down-
stream of the flame and looking toward the upstream end. The four plots in Fig. 4.22
display the modeled and measured Rup,burner,flame for the same flame type cases that
have been the subject of the flame study in Section 4.1.4.
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(a) 36/700/2.4, flame type Ib

0 500 1000 1500
0

0.5

1

1.5

R
up,burner,flame

R
up

,b
ur

ne
r,

fla
m

e

Frequency [Hz]

(b) 40/550/1.9, flame type Ib
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(c) 36/700/2.1, flame type IIb

500 1000 1500
0

0.5

1

1.5

R
up,burner,flame

R
up

,b
ur

ne
r,

fla
m

e

Frequency [Hz]

(d) 40/700/1.9, flame type IIIa

Figure 4.22: The reflection coefficients of the upstream part including the flame for various

flame types. They show that the flame can act as an active element feeding energy into the

acoustic field, a prerequisite to thermoacoustic instabilities. This is the case whenever the

absolute value of the reflection coefficient exceeds 1.
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The stable type Ib flame case 36/700/2.4 features low values of Rup,burner,flame, like
40/550/1.9. For the type IIb case 36/700/2.1, values larger than 1 occur between 200
and 300 Hz. A similar amplifying behavior is recognized in the IIIa case 40/700/1.9
at frequencies between 260 and about 500 Hz. This shows that the flame acts as an
active element in certain frequency ranges, and can thus lead to an unstable behavior
of the combustor. Indeed, the amplification is due to the flame, because the upstream
reflection coefficients (excluding the burner and the flame) are similar. Data acquisition
becomes more difficult as the noise floor rises.

The pressure spectra of the four cases discussed are shown in Fig. 4.23, the right
plot zooms in onto the 0–500 Hz range. They show that more unstable flames exhibit
a higher noise floor and higher peaks in the pressure spectrum, and their locations in
the frequency range correlate well with the regions of amplification explained before
in Fig. 4.22.
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Figure 4.23: The pressure spectrum at 123 mm for various cases. Left: up to 2000 Hz,

right: up to 500 Hz. High values are observed in regions where the flame feeds energy into

the acoustic field, see Fig. 4.22.
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4.3 Identification for Control

4.3.1 Loudspeaker as Actuator

The system obtained by the physical modeling process offers a lot of insight into the
mechanisms of thermoacoustic interactions, but is not accurate enough to be used for
controller design purposes. For instance, the heights of the first peak around 200 Hz in
the measured and modeled transfer functions differ by about 10 dB, see Fig. 4.20(a).
Therefore, the measured transfer function from the voltage applied to the loudspeaker
to the pressure signal is utilized.

In order to find a state-space representation of an acoustic system, the subspace
identification technique [196, 195] is well suited. The algorithm is kindly provided by
Andrew Fleming from the University of Newcastle, Australia1.

In our case, the loudspeakers are connected through flanges to the ducts, causing an
actuation time delay τact. It is preferable to include as much prior knowledge about the
plant as possible into the identification step, and therefore the time delay is estimated
in the following way: Bode’s gain-phase relationship [285] expresses the idea that a
minimum-phase system is uniquely determined by its amplitude response:

∠G(jω0) =
1

π

∫
∞

−∞

dln|G(jω)|

dlnω
︸ ︷︷ ︸

N(ω)

ln
∣
∣
∣
ω + ω0

ω − ω0

∣
∣
∣
dω

ω
(4.14)

Therefore, one fits a stable minimum-phase system to the absolute value of the
transfer function only. The phase of the identified minimum-phase system and the
measured one will differ. The actuation time delay τact is then the amount of phase
difference divided by frequency, which should be constant. At higher frequencies,
the phase loss contributed by the time delay is much higher than a possible phase
mismatch from the fitting procedure, so the identification of the time delay is more
robust there, see Fig. 4.24. The identified value for the actuation time delay τact

between the loudspeaker at 303 mm and the microphone at 213 mm is about 0.45 ms,
which corresponds to a distance of 20 cm. This is close to the length of the flange that
connects the loudspeaker to the combustor duct.

The subspace identification technique can now be applied to the transfer function
which is corrected for the time delay. In Fig. 4.25, the blue dots represent the measured
data points, and the red line is the Bode plot of the transfer function identified with
the subspace technique. The agreement is very good for low frequencies, and still
acceptable up to 1000 Hz. Control action will be required mostly in the low-frequency
range up to 400 Hz.

1http://www.eng.newcastle.edu.au/eecs/
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Figure 4.25: The transfer function of

the plant identified with a swept-sine signal;

and the result of the subspace identification.

Flame case 36/700/2.1.

4.3.2 Fuel Injector as Actuator

When a frequency sweep like in the loudspeaker as actuator case is applied to the
fuel injector, the resulting pressure peaks are so high that saturation occurs and the
flame stabilization process is disturbed, see Fig. 4.26. In this experiment, a swept-sine
signal is applied to the fuel injector. The pressure spectrum Lps shows that a forcing
signal with a frequency of 50 Hz and an amplitude A of 0.12 V has negligible influence
on the main instability at 218 Hz. A higher amplitude of 0.24 V disrupts the flame
stabilization and removes the harmonic at 436 Hz, too. The picture is similar with
a forcing frequency of 60 Hz. Note that harmonics of the fundamental of 50 Hz and
60 Hz are present. It is conjectured that they are due to saturations of the heat release
process.

If the forcing amplitude is lowered, the flame anchoring is not altered, but the signal
to noise ratio greatly deteriorates. The identified transfer function from the voltage at
the injector to the pressure signal at 123 mm is shown in Fig. 4.27, which is obtained
with two different forcing amplitudes of 0.12 V and 0.24 V, respectively. It shows that
the higher forcing amplitude A of 0.24 V fails to correctly capture the resonant peak
at 218 Hz. Thus, the identified plant does not correctly represent the true dynamics.

As a remedy, an attempt could be made to work with lower and frequency-dependent
amplitudes, but a different approach proposed in the following. The combustor is run
in a closed-loop fashion with simple controller structures, and the ensuing change of
the sound spectrum (with respect to the uncontrolled case) is recorded. But one has
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Figure 4.27: The transfer function from
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sure at 123 mm for two different forcing am-

plitudes. The identification is difficult and

uncertain. Flame case 36/700/2.1.

to be careful: several controllers have to be used in order not to fall prey to identifying
the negative inverse of the controller. The difference between the uncontrolled and
controlled pressure spectrum is the sensitivity in control speak. It is defined as S =

1/(1 − CP ), where P is the plant and C is the controller in positive feedback; it
highlights the effect of added noise at the plant output on the sum of the two. The
different controllers are known, and so the plant can be identified point-by-point in
the frequency domain. Finally, a stable model is derived from this information.

This procedure is used to find the transfer function TF P,Inj from the voltage at the
fuel injector to the pressure at 123 mm. This is done for two flame cases (36/700/2.1
and 36/700/1.875), where 42 and 27 controllers (Phase-Delay, complex lead-lag, peak
filters) are employed, respectively.

The result of this identification for the case 36/700/2.1 is presented in Fig. 4.28
(as blue dots), together with the swept-sine identification (in green), which fails to
correctly identify the sharp and high peak around 218 Hz. The red graph shows the
frequency response of the derived model, approximating the blue dots. The errors of
the optimization defined as the difference between the pressure spectrum reduction
measured and the sensitivity modeled stay around 3 dB. For higher frequencies, the
identification is less certain, this is due to decreasing control authority in this range.
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The outcome of the identification for the case 36/700/1.875 is shown in Fig. 4.29.
The fit is very good up to a frequency of 400 Hz, and the errors stay around 2 dB.
It is of course important to dispose of controllers that excite the frequency range of
interest.
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Summary

This chapter has introduced the network modeling approach. The blocks are physically

modeled and experimentally verified. The L − ζ burner model and the n − τ flame

model are confirmed over a wide range of operating conditions. Finally, the model is

assembled and found to correspond well to measurements. A new technique to obtain

the transfer function of the combustor is introduced. It works in a closed-loop manner

and yields excellent results.
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Passive and Active Control

Fast cars, fast women, fast algorithms...

what more could a man want?

Joe Mattis

5.1 Passive Control and Helmholtz Resonators

In order to mitigate combustion oscillations, passive strategies are usually preferred,
because they are less complex and failure-prone. Section 1.3.1 has presented some
general ideas.

For the ETH test rig, various downstream end plates of varying constrictions are
tried, as well as Helmholtz resonators. The loudspeakers which are used for identi-
fication are placed in housings to protect them from the hot combustion gases, see
Section 3.1. It turns out that these boxes also act as Helmholtz resonators.

Helmholtz resonators are studied in [27, 28, 130, 84, 115, 307, 71, 70, 123, 199, 311,
207]. The resonant frequency of a simple volume V with a neck of length Ln and area

An, speed of sound c, is given by ωr = c
√

An

V Ln
. In the ETH case, loudspeaker housings

with a size of 80×80×50 mm are used. They are connected with flanges of length
68 mm and diameter 30 mm to the combustor ducts. The Helmholtz equation thus
yields a resonant frequency of about 300 Hz. If the loudspeakers are installed in the
housings, the effective volume is a little bit smaller, increasing the resonant frequency.
Moreover, honeycomb structures are inserted in the connecting flanges, decreasing the
neck opening area. In summary, the predictions of this simple calculation agree well
with the experimental results reported in the following section.

It makes no difference in the pressure spectrum whether the loudspeakers are elec-
trically shunted or not, see Fig. 5.8. Because of the constricted connecting flanges,
too little coupling occurs between the two acoustic fields in the combustor and the
housing. However, it could be worth checking this idea out on other rigs, see [213].

53
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5.1.1 Effect of Helmholtz Resonators

Effect on Spectrum of Two Loudspeakers at −282, 213, 303 mm.

Two loudspeakers in their housings are placed upstream, downstream, and at both
locations. Then the loudspeakers are removed, and only the housing is connected to
the combustion duct. This gives two different resonant volumes.

The Helmholtz effect of the loudspeakers (LS) and the loudspeaker housings (boxes)
at various positions is evidenced in Fig. 5.1. The pressure spectra measured by a
microphone placed downstream at 123 mm are shown in Fig. 5.1(a); and measured by
a microphone upstream at −172 mm in Fig. 5.1(b). The air is not preheated, but the
flow velocity of 44 g/s results in a temperature of 320 K.

The loudspeakers and boxes mounted downstream at 213 mm have an effect on the
downstream microphone at 123 mm in the frequency range 100–300 Hz, consistent
with the Helmholtz resonator equation. This fact is plotted as red and green graphs in
Fig. 5.1(a). The loudspeaker housing box (with the loudspeaker removed) has a higher
resonating volume and thus a lower resonant frequency (green). The loudspeakers
upstream have virtually no influence on the downstream microphones at 123 mm (cyan).

The influence on the upstream microphone at −172 mm is shown in Fig. 5.1(b).
The downstream loudspeakers and housings have virtually no effect on the upstream

pressure. Only the upstream loudspeakers reduce the pressure spectrum between 100
and 250 Hz, at the expense of more noise at higher frequencies (cyan and pink graphs).
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Figure 5.1: Passive control with Helmholtz resonators for 44/320. The effect on micro-

phones upstream and downstream is shown.
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Effect on Rdown of Two Boxes/LS at Various Downstream Positions.

To make things more lucid, the downstream reflection coefficient as seen by the flame
Rdown is displayed in Fig. 5.2 for ambient conditions and no flow. It shows the effect
of two loudspeakers at various downstream positions. When they are mounted at
123 mm, their effect is negligible. The loudspeaker positioned at 213 mm reduces
Rdown in the frequency range from 100 to 300 Hz. When it is mounted at 303 mm, the
highest reduction is obtained.

The Helmholtz behavior rests on the dissipation of acoustic velocity in the neck.
With the given configuration (closed-open duct), a pressure antinode exists at the
burner location, and one would expect that the Helmholtz resonators placed close to
the flame would work best. However, this is not the case. A possible explanation
is that the flow interacts with the Helmholtz neck tubing, creating turbulence and
favoring the dissipation of acoustic energy. This could explain why the loudspeaker at
303 mm offers the most reduction of Rdown.

Fig. 5.3 displays the effect of different kinds of Helmholtz resonators, namely one or
two boxes/loudspeakers. As shown in the analysis above, boxes have a higher volume
and thus are effective at lower frequencies. Two pieces of resonant volumes are also
more effective than just one (red vs. green; pink vs. cyan). Loudspeakers are better at
reducing Rdown in the 100–300 Hz frequency range than loudspeaker housings (green
vs. cyan; red vs. pink).
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Effect on Rdown of Two LS at 303 mm; Comparison of Different

Measurement Setups

The downstream reflection coefficients Rdown are usually measured by exciting with a
loudspeaker upstream at −282 mm and measuring with two microphones downstream.
This section compares the standard approach with one where forcing happens down-
stream at 123 mm, and the microphones at 213 mm and 303 mm are used for the
two-microphone method to determine Rdown.

The calculated Rdown with the standard method is shown in Fig. 5.4. Various
flames and operating conditions are investigated. Moreover, it compares two setups:
one with two additional damping loudspeakers downstream at 123 mm, and the other
with none downstream. The results show two things: Firstly, the Helmholtz behavior
of the downstream loudspeakers in the 150–300 Hz range (blue vs. the other colors).
Secondly, Rdown does not depend strongly on the operating condition, since all three
cases with downstream loudspeakers show similar values for Rdown.

To confirm the Helmholtz behavior of the downstream loudspeaker, two forcing
loudspeakers are mounted downstream at 123 mm. Microphones at 213 mm and
303 mm are used to determine Rdown. Now forcing also happens downstream. This
is compared with a case where two loudspeakers acting as Helmholtz resonators are
mounted downstream at 303 mm (forcing is applied upstream at −282 mm).
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The effect of these two loudspeakers downstream is clearly seen in Fig. 5.5. The case
where downstream loudspeakers are present (green graph) stands out from the other
measurements, which are all similar. The observed behavior confirms the findings in
Fig. 5.4: loudspeakers act as Helmholtz resonators; and the two-microphone method
is a reliable technique.

Effect on the Spectrum with Flame of One/Two Box/LS at 303 mm.

Having realized that loudspeakers and their housings (or boxes) act as Helmholtz reso-
nators and are thus able to suppress pressure oscillations, their effect on the pressure
spectrum is investigated here.

Fig. 5.6 shows how much one and two boxes and loudspeakers reduce the pressure
spectrum at two microphone locations. The effect on the downstream microphone at
123 mm is mostly noted between 150 Hz and 300 Hz, at the expense of more noise
around 320 Hz, see Fig. 5.6(a). Loudspeakers are more efficient at the frequency of
the main instability at 218 Hz; two loudspeakers are more efficient than one, but more
waterbed effect is a side effect.

A similar behavior is seen for the upstream microphone at −172 mm, see Fig. 5.6(b).
It shows that downstream Helmholtz resonators have a comparable effect on upstream
as on downstream microphones, in particular they can decrease the main peak consi-
derably.
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Figure 5.6: The pressure spectrum up- and downstream in the presence of various Helmholtz

resonators at 303 mm. Flame case 36/700/2.1.

This investigation has been extended to other operating conditions and shows the
potential of Helmholtz resonators. If they are properly tuned, they can significantly
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decrease pressure levels. For this study, the effects of the Helmholtz resonators are
confined to a narrow frequency band of roughly 150 Hz to 300 Hz. This shows the
need for active control strategies, to suppress the pressure oscillations more effectively.

5.1.2 Effect of Electrically Shorted Loudspeaker

In order to investigate passive control strategies that alter the electrical impedance at
the loudspeaker terminals, a damping loudspeaker is mounted downstream at 303 mm;
and the electrical terminals are shorted or left open.

Fig. 5.7 shows the transfer function from the upstream loudspeaker at −282 mm to
a microphone at 123 mm for the ambient case without flow. It shows that virtually
no difference occurs because when the damping loudspeaker mounted at 303 mm is
electrically shorted or not. However, the addition of the damping loudspeaker shows
a Helmholtz resonator effect.

Fig. 5.8 shows that no change in the pressure spectrum for a flame case 36/700/2.1
occurs whether the damping loudspeaker is electrically shorted or not. This precludes
the use of electrical impedance based control strategies, which would have the advan-
tage of not requiring a microphone as sensor [213].
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5.2 Active Feedback Control

Active feedback control measures a state of the system to be controlled and takes action
accordingly by means of an actuator. In particular, the ETH setup is equipped with
microphones that sense the acoustic pressure inside the combustor. A control algorithm
uses this input signal and generates a control signal, which is sent to the actuators.
For this study, two types of actuators are used: loudspeakers introduce acoustic waves;
and a secondary fuel injector is implemented to change the combustion behavior of
the flame. The task of the control engineer is the design of the controller, respecting
the constraints imposed by the plant.

5.2.1 Fundamental Limits of Active Control

Ignorantia iuris nocet—Ultra posse nemo obligatur.

Justinian, “Digesten” 22,6,9 pr.—anonymus

Limits to active feedback control arise from a range of sources:

- unstable plants

- non-minimum phase (NMP) zeros in the plant

- time delays in the control loop

- limited actuator and sensor bandwidth

- actuator saturation

As pointed out by many authors (see for instance [285]), a real NMP zero z limits
the achievable bandwidth for feedback control to ωc

<
∼ z/2. The plant can again be

robustly controlled for higher frequencies ωc2 satisfying ωc2
>
∼ 2z. On the other hand,

right-hand-plane (RHP) poles require a minimum bandwidth ωc
>
∼ 2p for real RHP

poles p. It is clear that a real RHP pole p and a real NMP zero z have to satisfy z >
∼ 4p

for acceptable controller performance.
Time delays also pose fundamental problems. The “ideal” complementary sensitivity

function for a time delay τ is T = e−τs [285], so the sensitivity function is S = 1−T =

1 − e−τs ≈ τs by a Taylor series expansion. The sensitivity S crosses the 0 dB line
for the first time at about ω = 1/τ , which determines the bandwidth. Another way
of looking at it is to consider the first-order Padé approximation of a time delay
e−τs ≈ 1−τ/2s

1+τ/2s
, which has a NMP zero at 2/τ , yielding again a bandwidth constraint

of ωc <
z
2

= 2/τ
2

= 1/τ .
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Another fundamental constraint to controller design is the so-called waterbed effect
for systems with pole excess of at least two. The famous Bode integral states that

∫
∞

0

ln |S(jω)| dω = π

Np∑

i=1

Re(pi) (5.1)

where Np represents the number of RHP poles pi and Re(pi) is their real part. This
equation says that a sensitivity decrease over a frequency band always has to be com-
pensated for with an equal (or even greater for unstable plants) increase in sensitivity
at other frequencies. If actuator bandwidth constraints or model uncertainties exist,
the sensitivity increase cannot be spread over an infinite frequency range—sensitivity
peaks necessarily occur [288].

If the system has a NMP zero z, another “waterbed” formula is derived, which takes
into account that the sensitivity increase and decrease have to happen over a limited
frequency range ω < z/2, yielding peaks for |S|. As pointed out in [100], a sensitivity
decrease as well as an increase have to be completed within the actuator bandwidth.
In other words, there must be a decrease in performance within a certain frequency
band, when feedback action is present. Effects limiting controller performance for
combustors in terms of the Bode sensitivity integral can also be found in [59, 20].

Another important constraint is actuator saturation. This may be involved whenever
a plant cannot be stabilized in reality—even though in simulations, a linear controller
can stabilize it. Actuator bandwidth is often overlooked in controller design.

For the present study, the plant is stable, minimum-phase but a time delay is present,
and periodic disturbances are assumed. This means that disturbance attenuation can
only be achieved over a limited frequency range, and that the waterbed effect will
be present. This is not a serious problem, as there are only a few distinct peaks in
the pressure spectrum that one would like to decrease. What turns out to be more
restraining is actuator saturation. In the case of loudspeaker control, the output
is limited to 2×30 W. With the fuel injector, the electrical amplifier is driven into
saturation.

5.2.2 Control Setup

The combustor is modeled as stable but lightly damped, and driven by persistent noise.
This leads to the control setup shown in Fig. 5.9.

The noise input block models the uncontrolled combustor generating the pressure
signal pn. The plant P is the block that relates the control signal input u to the pressure
pc generated by altered combustion (in case of fuel injection), or by the action of the
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Figure 5.9: A schematic diagram of the control setup.

loudspeaker. The sum of these two is the measured pressure signal pm, which is to be
minimized. This signal is used by the controller C to generate the control signal u.

It is clear that the noise and plant blocks share some characteristics. Reducing
pm now amounts to finding a controller C such that the sensitivity function (positive
feedback!) S(jω) = 1/(1−CP ) from pn to pm is lower than 1 in the frequency bands
where noise suppression is desired. In the evaluation of the controllers, the achieved
pressure spectrum reduction will be compared to the sensitivity obtained with the
model and the controller. With the chosen setup, they should coincide if the model is
correct.

5.2.3 Actuators

Loudspeaker

Two Visaton SC8 30 W loudspeakers are used primarily for identification purposes,
but also for control. They have to be protected from very hot exhaust gases. In the
ETH test rig, this has been accomplished by placing them in cooled housings which
are connected through flanges to the combustor ducts. The housings and flanges are
purged with air, to prevent hot exhaust gases from entering and burning the membrane.
This tendency is more marked when they are mounted closer to the flame.

Loudspeakers exert control by introducing acoustic waves directly into the combustor
ducts. The main problem is their limited control authority—saturations invariably
occur. In pressurized large-scale combustors, this shortcoming exacerbates, and they
are not a viable option for industrial applications.

For control purposes, the loudspeaker is placed downstream at 213 mm. It could
not be installed closer to the flame because the membrane would melt. It is mounted
downstream because the pressure levels are higher, and it can control the oscillations
more effectively. In order to minimize time delays in the control loop, the microphone
is placed as close as possible to the actuator. The microphone noise level is higher the
closer it is to the flame, so a position of 303 mm is chosen.
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Fuel Injector

Fuel injectors rely on the intrinsic energy of fuel to achieve control. Section 3.1 shows
that the installed fuel injector has a power of roughly 6000 W, compared with 2×30 W
from the loudspeakers. Five problems associated with controllers acting on the fuel
modulation in combustion chambers are listed in [304]:

- distributed actuation arising from the burning of injected fuel

- time lags

- intensive noise

- time variations of mean flow conditions

- model uncertainties and parametric errors

It is stressed in [59] that the actuator must be able to interfere with the coupling
process, i.e. that the fuel is properly injected, mixed, and burned. If the mixing is
bad, local rich spots may attenuate oscillations, but raise emissions, as it happened
in [292]. Moreover, high shear flows and feed line dynamics could reduce actuator
authority [69].

The fuel injector installed on the ETH test rig is a MOOG magnetostrictive high-
bandwidth valve. It modulates a maximum of 1 g/s of natural gas and injects it into
the lips of the EV burner to ensure good mixing and low convective delays. The
microphone for this control setup is placed at 123 mm to minimize time delays and
reduce noise.

5.2.4 Controllers

When it comes to control design,

there are only two choices: PID or Ph.D.

David Bayard

Section 2.1 highlighted some of the controller designs reported in the literature.
The simplest strategy is Gain-Delay (also known as phase-shift), but better results
can be achieved with model-based approaches such as H∞ controllers. In addition,
the Covariance Matrix Adaptation Evolution Strategy CMA-ES with Noise-Handling
is used to improve both control concepts online. Other evaluated strategies include a
manual loop shaping process, whereby simple elements are assembled to meet certain
criteria, this is done with the help of Nyquist diagrams. Complex lead-lag controllers
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are an extension of the classic lead-lag element, except that they offer steeper slopes
[202]. Finally, peak filters concentrate the energy in a narrow frequency band—it is
hoped that saturation issues are less severe. The last three structures are presented
in the appendix.

H∞ control

The H∞ method is a powerful design tool allowing the control engineer to define bounds
on the sensitivity and the complementary sensitivity by means of weighting functions
added to the plant Gs and controller K to form an augmented plant. Fig. 5.10 shows
a setup known as S/KS/T [107], where We weights the sensitivity, Wu the control
signal, and Wy the complementary sensitivity. The control variables are represented
by u, the measured variables by y, exogenous signals by w, and error signals by z.

w

ũ = u GS
y

We
ze

Wu
zu

Wy
zy

e = ỹ
–

K

Figure 5.10: A schematic diagram of the S/KS/T setup used to design an H∞ controller

The H∞ control synthesis procedure now consists of finding a controller K that
stabilizes the closed-loop system and yields ‖Tzw(s)‖∞ < γ = 1. For the suggested
S/KS/T weighting scheme, the matrix Tzw is given by

Tzw =





WeSe

WuKSe

WyTe



 (5.2)

which allows to weight the sensitivity Se with We, the complementary sensitivity Te

with Wy, and the control signal energy KSe with Wu.

The designer now shapes the bounds according to the performance criteria. For this
study, noise reduction is the primary objective, so the important bound is Se, while
keeping an eye on control signal saturation weighted by Wu.
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CMA-ES optimization

Gain-Delay control is convenient because there are only two parameters to adjust.
Its performance is often satisfactory if the spectrum of the instability only features
one dominant peak. Model-based H∞ controllers on the other hand offer more design
freedom and perform generally better. However, their often complex nature with many
parameters makes online optimization difficult. Moreover, thermal transients during
start-up change the location and height of the pressure peaks, and the (steady-state)
model of the process is not accurate. Therefore, the combination of a model-based
controller and online optimization is well suited. More specifically, the H∞ controller
is shifted in the frequency domain by multiplication of the A and B matrix, and thus
coping with the thermal transients. The gain is also adjusted, giving two parameters to
optimize by the evolutionary algorithm. Optionally, a third parameter to be optimized
is added, namely an additional time delay.

The evolutionary algorithm proposed here has been written by Niko Hansen, ICOS,
ETHZ. It is a population based stochastic evolutionary algorithm [116], and features a
noise-dependent cost function evaluation time. The cost function taken for this study
is the averaged sound-pressure level Leq.

5.2.5 Investigated Operating Conditions

The case 36/700/2.4 is of flame type Ib and does not exhibit large pressure oscillations,
so the need for control is not given.

The flame type IIb cases 36/650/2.1 and 40/550/1.9 are both controlled by a loud-
speaker commanded with a Gain-Delay and an H∞ controller. The results for the
two cases are similar, so only 36/650/2.1 is shown. The H∞ controller performs much
better than the Gain-Delay and offers more flexibility.

For fuel injection, 40/550/1.9, 36/700/2.1 and 36/700/1.875 are investigated. Prob-
lems with flame stabilization arise with the case 40/550/1.9. The flame type IIb case
36/700/2.1 has a very distinct peak at around 218 Hz, about 30 dB above background
noise levels. The second harmonic is also present at 436 Hz, which is caused by flame
saturation. Gain-Delay is very effective here, because the gain and phase can be tuned
optimally with respect to this frequency. However, H∞ control still performs better.

In contrast, the flame type IIIa case 36/700/1.875 exhibits three peaks of about
equal amplitude. Gain-Delay control is not promising, because the optimal gain and
delay for suppressing one peak will increase the other peaks. An H∞ controller is able
to decrease all peaks simultaneously, or to target a single peak, at the designer’s will.

The loudspeaker housing also acts as a Helmholtz resonator. This should be kept in
mind when comparing the spectra controlled with a loudspeaker and a fuel injector.
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5.3 Control Experiments: Loudspeaker as Actuator

5.3.1 Loudspeaker and Gain-Delay Control

Gain Delay: 36/650/2.1

This operating condition is a flame type IIb. It is subjected to Gain-Delay control, with
a loudspeaker as actuator. The value of the peak in the pressure spectrum max(Lps) as
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Figure 5.11: The peak of the pressure spectrum max(Lps) as a function of various Gain-

Delay parameters for the case 36/650/2.1 with a loudspeaker as actuator. An optimum value

of gain 6.5×10−4 and 1.9 ms delay is identified.

a function of the gain and delay of the controller can be seen in Fig. 5.11. A minimum
is discerned around a gain of 6.5×10−4 and 1.9 ms delay.

Fig. 5.12 shows what happens to the pressure spectrum when the delays are changed
for a fixed gain of 6.6×10−4. The waterbed effect is apparent: a decrease of one peak
implicates an exacerbation at other frequencies. Here, more delay implies increasing

values of Lps between 150 and 230 Hz, but decreasing noise at frequencies lower than
140 Hz and higher than 250 Hz. The colors correspond to the gradient taken in the
direction of increasing delays.

Fig. 5.13 shows the pressure spectrum for various Gain-Delay controllers. If the first
peak at 150 Hz is being pushed down, a secondary peak at 200–220 Hz rises. The
Gain-Delay controller does not offer enough design freedom to choose the increase of
noise in the spectrum, one has to resort to H∞ controllers for this feature.

Fig. 5.14 shows the measured and modeled decrease of the spectrum with the Gain-
Delay controllers. The measured pressure spectrum corresponds to the modeled sensi-
tivity S(jω) = 1/(1−CP ). The model has been obtained with the technique outlined
in Section 4.3.1—it accurately predicts the behavior of the controlled combustor.
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5.3.2 Loudspeaker and H∞ Control

Section 5.3.1 showed the shortcomings of the simple Gain-Delay controller, and that
the model is indeed accurate. This knowledge can now be used to build a model-
based robust H∞ controller. This process is shown in Fig. 5.15. The key weighting
function is W−1

e for the sensitivity (red), featuring a dip around 150 Hz. This is
where the peak is in the pressure spectrum, and where noise reduction is desired.
Moreover, control signal authority (blue) is restricted, otherwise saturation problems
would become worse. The complementary sensitivity function (not shown) is simply a
low pass filter. The resulting controller is depicted in red in Fig. 5.16; the controller in
green is the original controller multiplied by 0.5. The controller has been implemented
on the test rig with various gains to study the effects of actuator saturation.
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Figure 5.16: The H∞ controllers.

They are implemented with gains 1 and

0.5, respectively. Case 36/650/2.1.

The uncontrolled and H∞-controlled spectrum is shown in Fig. 5.17, where a peak
reduction of about 8 dB occurs. A closer look at the achieved and modeled pressure
spectrum reduction is taken in Fig. 5.18. The reduction with the controller imple-
mented with gain 1 is not better than with the controller multiplied by 0.5, although
it should according to the model. The culprit is of course saturation.

Fig. 5.19 compares the Gain-Delay to the H∞ controller for the case 36/650/2.1.
It makes the point that the model-based H∞ controller performs better because the
designer can choose the locations of the inevitable pressure increase. In particular, the
increase obtained at 200 Hz with the Gain-Delay controller is avoided.
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Figure 5.18: The modeled sensitivity

for two H∞ controllers, multiplied by 1

and 0.5. Nearly no improvement occurs

if the gain is set to 1, because of actua-

tor saturation. Flame case 36/650/2.1.

A direct comparison is also carried out for the operating condition 40/550/1.9, see
Fig. 5.20. It also shows the pressure spectrum of the duct without the loudspeakers.
Their Helmholtz effect is recognized as the difference between the blue and the green
plot. Again, the H∞ controller outperforms the Gain-Delay controller.
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5.4 Control Experiments: Fuel Injector as Actuator

The previous section has shown that a loudspeaker can control the combustor, but it
suffers from actuator saturation. A fuel injector has a much higher control authority,
but may negatively affect the flame anchoring and therefore introduce instability and
higher emissions.

5.4.1 Effect of Fuel Injector Offsets on Pressure Spectrum

Since the fuel injector is operated around some mean position, the effect of the neces-
sary control signal offset and the ensuing mean flow through the valve are investigated.
The additionally injected fuel is not as well mixed as the bulk of the air/fuel mixture,
and more emissions occur subsequently. The offset should therefore be kept as small
as possible, without trading off too much control authority. Fig. 5.21 shows the effect
of various offsets on the pressure spectrum for the operating condition 36/700/2.1.
Significant changes in flame anchoring and pressure spectrum occur beyond 0.35 V, so
the mean position for further experiments is fixed at 0.25 V. Emissions only increase
slightly for this value, see [101]. The picture is similar for 36/700/1.875, see Fig. 5.22,
and the offset is also fixed at 0.25 V. The spectra are only affected in the frequency
range shown.
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5.4.2 Effect of Fuel Injector Control on Flame Structure

The case 40/550/1.9 is well controlled with a loudspeaker as actuator (apart from the
saturation), but with a fuel injector the story looks different. The pressure signal as
a function of time is plotted in Fig. 5.23, where a Gain-Delay controller with gain
3×10−4 and delay 0.3 ms is used.

Although this is a fuel rich regime, 550 K is a relatively low preheat temperature.
The additionally injected fuel disrupts the flame anchoring mechanism and causes the
flame to change its flame type. Periodic pressure bursts occur, which are accompanied
by a visible change in flame structure. The flame is flapping back and forth between
the inner and outer recirculation zones. This shows that it is not possible to control
any type of flame with the fuel injector.

The spectrum during a thermal transient is nevertheless shown in Fig. 5.24. The
Gain-Delay controller is able to reduce the first two peaks, at the cost of a higher peak
at 240 Hz. This case is not investigated further, as the flame structure should not be
altered to make correct statements about the performance of the controller.

In contrast, the operating condition 36/700/1.875 has a higher preheat
temperature—additional fuel injection does not interfere strongly with the flame
position. This is why further control experiments are carried out with this operating
condition.
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Figure 5.23: The time trace of the

pressure with a Gain-Delay controller for

40/550/1.9. Periodic bursts occur, a con-

sequence of the changing flame structure

caused by the secondary injection of fuel.
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5.4.3 Fuel Injector and Gain-Delay Control

The fuel injector is first operated under Gain-Delay control. Two cases are examined:
flame type IIb 36/700/2.1 and flame type IIIa 36/700/1.875.

Case 36/700/2.1

The Gain-Delay controller is implemented with overall positive feedback, and various
gains for a set delay of 0.7 ms are investigated. Fig. 5.25 shows the achieved pressure
spectrum, and Fig. 5.26 the measured and modeled pressure spectrum reduction. The
model of this operating condition has been obtained with the technique presented in
Section 4.3.2.

The main peak at 218 Hz is strongly decreased, and its harmonic at 436 Hz disap-
pears. Amplification of a secondary peak around 120 Hz becomes more pronounced as
the gain is increased. This is an inevitable consequence of the waterbed effect, since
sensitivity cannot be destroyed but merely shifted to other frequencies. Control signal
saturation becomes more severe for gains higher than 2×10−4.
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Figure 5.26: The achieved and mo-

deled pressure spectrum reduction for

36/700/2.1. The agreement between

measurement and model is very good.
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The effect of changing the delay for a given gain of 1.4×10−4 is presented in Fig. 5.27
for the spectrum and in Fig. 5.28 for the measured and modeled spectrum reduction.
The peak at 218 Hz is shifted to higher frequencies as the delay is increased, because
the controller provides more phase loss.
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Figure 5.27: The pressure spectrum for a positive
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Figure 5.28: The achieved and mo-

deled pressure spectrum reduction for

36/700/2.1.

The next controller presented is a Gain-Delay controller with overall negative feed-
back. Various values for the gain and the delay are tried, the resulting spectra are
shown in Fig. 5.29, and the measured and modeled pressure spectrum reduction in
Fig. 5.30. The main instability at 218 Hz is strongly decreased, and the secondary
peak at 436 Hz due to saturation also vanishes. A low-frequency secondary peak at
around 40 Hz appears, which is associated with flame anchoring problems. In that
case, the flame has a tendency to flap back and forth between the two recirculation
zones, a phenomenon similar to the one described in Section 5.4.2.

In order to investigate the behavior of the Gain-Delay controller, the averaged sound-
pressure level Leq as a function of the gain and delay is depicted in Fig. 5.31. Two
minima can be discerned: −2 × 10−4 with a delay of −2.4 ms; and 2.5 × 10−4 with a
delay of 0 ms. The difference between the two optimal delays corresponds to about
180◦ for 218 Hz. If the absolute value of the gain is increased more, the main peaks
are suppressed more, but the growing secondary peaks cause the Leq to rise.

The waterbed effect is observed in Fig. 5.32, where the pressure spectrum is shown for
increasing gains and a set delay of 0.1 ms. The peak at 218 Hz decreases significantly,
but a secondary peak in the 100 Hz range starts to grow.
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Figure 5.30: The achieved and mo-

deled pressure spectrum reduction for

36/700/2.1.
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Figure 5.32: The pressure spectrum for changing gains for 36/700/2.1. With increasing

gains, the main instability at 218 Hz decreases, but a low-frequency mode around 100 Hz

starts to grow. This is a consequence of the waterbed effect.

Case 36/700/1.875

The previous section showed that the flame type IIb 36/700/2.1 can be satisfactorily
controlled with a Gain-Delay controller, because one strong single peak instability is
present. The flame type IIIa 36/700/1.875 on the other hand exhibits three peaks of
roughly equal amplitude. Gain-Delay controllers can only provide optimal gain and
phase at one single frequency, and are thus not expected to perform well in this case.
Fig. 5.33 shows the achieved pressure spectrum with positive feedback configuration.
Fig. 5.34 depicts the modeled and achieved pressure spectrum reduction. The reduction
is rather poor.

The picture looks similar for overall negative feedback, see Fig. 5.35 and 5.36 for
the spectrum and its reduction. The model predicts the behavior of the combustor
accurately. Neither positive nor negative feedback can substantially decrease all three
peaks at the same time.
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Figure 5.33: The pressure spectrum for various

positive gains for 36/700/1.875. A Gain-Delay

controller with the fuel injector is used.
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Figure 5.34: The achieved and mo-

deled pressure spectrum reduction for

36/700/1.875. The model works very

well, but the pressure reduction is

mediocre.
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Figure 5.35: The pressure spectrum for various

negative gains for 36/700/1.875.
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Figure 5.36: The achieved and mo-

deled pressure spectrum reduction for

36/700/1.875.
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5.4.4 Fuel Injector and H∞ Control

The H∞ design procedure outlined in Section 5.2.4 is now used on the models derived
as explained in Section 4.3.2. Two cases are considered, 36/700/2.1 and 36/700/1.875.

Case 36/700/2.1

The main objective is to have a low sensitivity around 218 Hz. After the first iteration,
it was found that the control signal has to be restricted in the low-frequency range. The
bound W−1

u is therefore set up as a high-pass filter. The bound on the complementary
sensitivity W−1

y is not used as shaping filter. Fig. 5.37 shows the weighting functions,
the realized sensitivity S and KS. One of the problems with H∞ control is the high
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Figure 5.37: The design process for H∞ for the case 36/700/2.1. Low values of the sen-

sitivity are desired around 218 Hz, and the control signal has to be restricted in the lower

frequencies.

order of the resulting controller, so that order reduction has to be performed. Hankel
singular values of the balanced system are convenient to that end. Fig. 5.38 shows the
Hankel values of the H∞ controller plotted in Fig. 5.39, the order can be reduced from
27 to 6 without noticeably deteriorating the controller shape. Enhanced numerical
stability is also achieved. The controller’s simple shape explains why the simple Gain-
Delay controller is also successful for the case 36/700/2.1. When the H∞ controllers are
implemented on the test rig, they are multiplied by a variable gain such that the human
operator can intervene in case of developing harm. Here, they are multiplied by two
gains, namely 0.5 and 1. The achieved pressure spectrum is shown in Fig. 5.40. The
main instability at 218 Hz and its harmonic at 436 Hz are reduced. If the controller is
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Figure 5.38: The Hankel values of the

H∞ controller. An order reduction from
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Figure 5.39: The designed and order-reduced

H∞ controllers. The order reduction does not

deteriorate the simple shape.

implemented with a gain of 1, the performance is better than with 0.5. The measured
and modeled spectrum reduction are plotted in Fig. 5.41. Their agreement is very
good, except for frequencies below 50 Hz. This range is difficult to model because of
alterations in the flame anchoring mechanism.
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Figure 5.40: The pressure spectrum with the

H∞ controllers implemented with gains 0.5 and 1.

The main instability at 218 Hz is eliminated.
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Figure 5.41: The modeled and

achieved pressure spectrum reduc-

tion with the H∞ controllers for

36/700/2.1.
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Case 36/700/1.875, Three-Peak Reduction

This operating condition features three peaks in the pressure spectrum, one at 250 Hz
and two others close to each other at 330 Hz and 350 Hz. Suppression is desired
for these frequency ranges, so the sensitivity weighting function We is introduced,
as seen in Fig. 5.42. The achieved sensitivity S is plotted as solid graph, and lies
below the given bound W−1

e . The control authority is also restricted in the low-
frequency regime, to prevent flame anchoring problems and control signal saturation,
see Fig. 5.42. Therefore, KS is bounded by a high-pass filter W−1

u .
The designed H∞ controller is state-reduced from order 27 down to 12, by using

Hankel values, see Figs. 5.43 and 5.44. This controller is now noticeably more complex
than a Gain-Delay controller.
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Figure 5.42: The design process for H∞ for the case 36/700/1.875. Pressure reduction is

desired in two frequency bands, the control signal is limited in the low-frequency range.

The controller is again implemented with various gains, namely 0.25, 0.75, and 1.
The measured pressure spectra with and without controller are displayed in Fig. 5.45.
To give a better appreciation of the pressure spectrum reduction, they are shown
in the top plot of Fig. 5.46. The bottom plot depicts the expected sensitivity with
the identified model. When the gain is set to 0.25, only a slight pressure spectrum
suppression is observed. A higher gain of 1 pushes down the pressure in the designed
regions around 250 Hz and 330 Hz. But this is at the expense of more noise in
the 150 Hz range, a consequence of the waterbed effect. Saturation hampers the
improvements expected by a higher gain of 1 compared to 0.75. A comparison of the
two plots proves the very good accuracy of the identified model. For frequencies below
50 Hz, the model is less satisfactory, because flame anchoring issues dominate.
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Figure 5.43: The Hankel values of the

H∞ controller. An order reduction from

27 to 12 is performed.
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Figure 5.44: The designed and order-reduced

H∞ controllers for 36/700/1.875. The con-

troller shape is not affected much by the order

reduction.
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Figure 5.45: The pressure spectrum obtained with

the H∞ controllers with gains 0.25, 0.75, and 1

for 36/700/1.875. Saturation hinders the improve-

ments expected from the higher gain of 1 compared
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Case 36/700/1.875, One-Peak Reduction

This experiment shows the flexibility of the H∞ approach. The main objective is now
to decrease the peak at 250 Hz, taking into account that the 330 Hz range cannot
be dealt with effectively, due to controller saturation. To that end, the bound on the
sensitivity is designed such that the resulting sensitivity has a large dip around 250 Hz.
The resulting controller is again implemented on the test rig with two gains, namely
0.5 and 1. The design figure is omitted, but the resulting controllers are shown in
Fig. 5.47, with gains 0.5 and 1. The measured pressure spectrum with and without
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Figure 5.47: The designed H∞ controllers for 36/700/1.875, targeting the first resonance.

controller is shown in Fig. 5.48. The suppression of the first peak is clearly visible, but
also a rise in pressure spectrum around 150 Hz. To make things clearer, the measured
pressure spectrum reduction is depicted in the top plot of Fig. 5.49, and the bottom
plot shows the designed sensitivity. The model works well for frequencies higher than
50 Hz. The performance increase between gains 0.5 and 1 is not as marked as can be
expected from the design process. This is because actuator saturation starts to limit
the effectiveness. But the first peak is reduced by 14 dB, and the pressure spectrum
around 340 Hz is still pushed down by 4 dB. This experiment shows the flexibility of
the H∞ controller design methodology. Only the sensitivity weighting function has to
be adapted to the new objective, and a new H∞ controller is readily available.
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Figure 5.48: The pressure spectrum achieved

with the H∞ controllers, implemented with gains

0.5 and 1.
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Figure 5.49: The modeled and

achieved spectrum reduction with the

H∞ controllers for 36/700/1.875, tar-

geting the first resonance.

5.4.5 Fuel Injector: Controller Comparison and Robustness

Study

In order to assess the performance of the various controllers under changing conditions,
the H∞, peak, and phase-shift controllers are competing against each other directly.
This is done for two operating conditions.

Case 36/700/2.1

This operating condition is quite sensitive to changes of the combustor cooling fluid.
As the combustor is fired up, the instability at around 230 Hz grows and its frequency
decreases, until it settles at about 218 Hz, see Fig. 5.50. This supports the point that
in order to compare the controllers reliably for this case, they have to be run one after
the other for short instants of time. The controllers are selected based on previous
good performances. Note that they all have the same phase at 218 Hz, where the
peak in the spectrum occurs, see Fig. 5.51. They are run in series during a start-up
transient for the case 36/700/2.1—each controller provides the control signal for 10 s,
and then the uncontrolled spectrum is recorded, too.

The control effort is measured as the averaged control signal level Leq,u of the control
signal u: Leq,u = 10 log10

(u2)av

u2
ref

, (u2)av being the mean squared control signal and

u2
ref=1 V. Its evolution over time is plotted in Fig. 5.52. The peak filter requires
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Figure 5.50: Evolution of the pressure spectrum Lps as the combustor heats up. It peaks at

about 15 minutes after the start. Case 36/700/2.1.

the highest control efforts, the H∞ #2 and the positive Gain-Delay controllers are
less demanding. They all generally increase slightly over time, consistent with the
observation made in Fig. 5.50.

The uncontrolled averaged sound-pressure level Leq measured at 123 mm peaks at
15 minutes and then decreases, see Fig. 5.54(a). The controllers have been laid out to
decrease the instability around 218 Hz, which is initially quite sharp and contains most
of the acoustic energy. As the combustor heats up, the acoustic energy is spread out
over a wider frequency range and low-frequency components become more pronounced.
The controllers thus become less effective at reducing Leq.

Similarly, Fig. 5.55(a) shows the value of the peak in the pressure spectrum. It
follows a similar pattern as the averaged sound-pressure level Leq. The controlled
peaks of the pressure spectrum stay around the same values. Fig. 5.54(b) shows the
reduction in Leq achieved by the various controllers. It indicates that H∞ #1 performs
best for all times, and the Gain-Delay controllers worst.

The superiority of the model-based controllers is also evidenced in the reduction of
the pressure peak reduction, see Fig. 5.55(b). Here, H∞ #2 performs best, followed
by H∞ #1. However, H∞ #2 has a higher gain than H∞ #1, and thus requires higher
control inputs, see Fig. 5.52.
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Figure 5.51: The controllers used for the

direct comparison for 36/700/2.1. They all

have the same phase at the resonant fre-

quency 218 Hz.
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Figure 5.53: The sound-pressure spectrum Lps(f) for 36/700/2.1. An H∞ controller is

compared with a Gain-Delay controller. The H∞ #1 controller outperforms the Gain-Delay

controller.

Since the combustor spectrum exhibits the highest peak Lps,max(f) after about
15 minutes, the reduction of Leq is also highest then, as is the peak reduction Lps,max(f).
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as a function of time. It peaks at about

15 minutes. The bottom plot shows

the reduction achieved by the controllers.

The H∞ #1 controller performs best, the
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Figure 5.55: The peak value of the spec-

trum Lps,max(f) for various controllers as

a function of time. The bottom plot shows

the reduction achieved by the controllers.

The H∞ #2 controller performs best, the

Gain-Delay controllers worst.

The Peak Filter offers acceptable Leq and good Lps,max(f) reduction, but also demands
the highest control input. The Gain-Delay controllers perform worst in both Leq and
Lps,max(f) reduction.

Finally, Fig. 5.53 compares the pressure spectrum achieved by the H∞ #1 and
the positive Gain-Delay controller. The superiority of the model-based approach is
evident.
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Case 36/700/1.875

The case 36/700/1.875 is thermally much more stable than the previous case, so the
pressure spectrum does not drift. Fig. 5.56 shows the employed controllers: again three
H∞, one peak, and two Gain-Delay controllers. The phase for the controllers is similar
at the first peak, for the second it is different. The individual spectrum reductions
for the various controllers are shown in Fig. 5.57, along with the predictions from the
model. The model accurately predicts the observed behavior. It also shows that the
H∞ controllers have a clear edge over their simpler counterparts—they can achieve
significant reductions in both frequency ranges.

A comparison between the achieved spectrum for H∞ #1, H∞ #3, and the positive
Gain-Delay controllers is shown in Fig. 5.58.

In summary, the controllers performed as shown in Fig. 5.59. The red bars shows
the reduction in averaged sound-pressure level ∆Leq, the yellow bars the reduction of
the first peak around 350 Hz and finally the green bar the reduction in the second
peak region around 330 Hz. It becomes clear that the model-based H∞ controllers
perform best in all three areas, demonstrating the superiority of this approach over
ad-hoc controllers.
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Figure 5.56: The controllers used for the direct comparison for 36/700/1.875. They have

a similar phase around 250 Hz, but differ at 330 Hz.



86 5 Passive and Active Control

0 100 200 300 400 500

−10

−5

0

5

Frequency [Hz]

S
 

[d
B

]

S

H∞ #1

modeled

(a) H∞ #1

0 100 200 300 400 500

−10

−5

0

5

Frequency [Hz]

S
 

[d
B

]

S

H∞ #2

modeled

(b) H∞ #2

0 100 200 300 400 500

−10

−5

0

5

Frequency [Hz]

S
 

[d
B

]

S

H∞ #3

modeled

(c) H∞ #3

0 100 200 300 400 500

−10

−5

0

5

Frequency [Hz]

S
 

[d
B

]
S

Peak Filter
modeled

(d) Peak Filter

0 100 200 300 400 500

−10

−5

0

5

Frequency [Hz]

S
 

[d
B

]

S

Gain−Delay +
modeled

(e) Gain-Delay +

0 100 200 300 400 500

−10

−5

0

5

Frequency [Hz]

S
 

[d
B

]

S

Gain−Delay −
modeled

(f) Gain-Delay -

Figure 5.57: The measured and modeled pressure spectrum reductions for six controller

types. Case 36/700/1.875.
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5.4.6 Fuel Injector and CMA-ES Optimization

The goal of this study is to improve controllers online while the combustor is running.
A suitable cost function is defined which an optimization algorithm aims to minimize.

The Covariance Matrix Adaptation Evolution Strategy CMA-ES has been developed
by Niko Hansen [116]. It is a population based evolutionary algorithm able to cope with
noisy objective functions. The algorithm is described in more detail in the first journal
publication in Section E. Two control structures are subjected to this optimization:
Gain-Delay and H∞ controllers.

Gain-Delay control is convenient because there are only two parameters to adjust,
which is often done in a trial-and-error way. Its performance is often satisfactory if the
spectrum of the instability only features one dominant peak. Model-based H∞ con-
trollers on the other hand offer more design freedom and generally better performance.
However, their often complex nature with 10-20 parameters makes online optimiza-
tion difficult. Thermal transients during start-up change the location and height of
the pressure peaks, and the (steady-state) model of the process is not always accurate.
Therefore, the combination of a model-based controller and an online optimization
using robust evolutionary algorithms is well suited. More specifically, a previously de-
signed H∞ controller [212] is shifted in the frequency domain by multiplication of the
controller’s A and B matrix by a frequency shift parameter. The gain and optionally
an additional delay are also adjusted, giving two (three) parameters to be optimized
by the evolutionary algorithm. This is compared with a Gain-Delay controller, where
only the gain and the delay are optimized by the algorithm. The cost function to be
minimized is selected as the equivalent continuous level of the sound pressure

Leq = 10 log10

(p2
s)av

p2
ref

(5.3)

where (p2
s)av is the mean squared pressure and pref=20 µPa the reference pressure.

The sound-pressure level Leq is acquired from a measurement of a few seconds with a
given parameter setting, where the outcome is subject to a considerable uncertainty. A
tradeoff between accuracy and speed can be identified. The accuracy of Leq is improved
with longer evaluation times. On the other hand, longer evaluation times decrease the
number of completed measurements in a given time span and therefore slow down
the adaptation of the controller parameters. This problem will be approached by an
adaptive evaluation time to acquire Leq.
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Implementation of the Algorithm on the Test Rig

The CMA-ES delivers a set of controller parameters to be evaluated together with
a requested function evaluation time. The controller parameters undergo an affine
transformation from the interval [0, 1] onto respective intervals as given below. The
controller is assembled and written to the real-time board. In order to avoid any risks
with potentially bad parameter settings delivered by the CMA-ES algorithm, the gain
of the new controller is ramped up over the course of two seconds, such that the human
operator can intervene in case of developing harm. After the data acquisition has been
completed, the controller gain is ramped down, and an intermediate controller keeps
the combustor in a stable regime. Meanwhile, pressure data is logged, a new controller
is developed and transferred to the real-time board.

The total cycle time thus consists of ramping the controller gain up and down
(about 2 s each), pressure data acquisition (determined by the algorithm, 1 − 10 s),
data logging (1 s) and CMA-ES computation time (negligible). The maximum time
that pressure can be logged is currently limited to 10 s, due to real-time board memory
constraints. The controller is sampled at 10 kHz, the frequency content of the pressure
signal warrants no aliasing effects during sampling. For the following experiments,
the preheat temperature and the mass flow are kept constant at 700 K and 36 g/s,
respectively. Two values for λ are investigated, namely λ = 2.1 and λ = 1.875.

Experiment: Gain-Delay Controller, Cold Start, λ = 2.1 and Switch to

λ = 1.875.

The combustor is fired up from ambient temperature, an operating condition is set with
a mass flow of 36 g/s, a preheat temperature of 700 K, and an air/fuel ratio of λ = 2.1,
and the Gain-Delay controller is turned on. As the system heats up, the sound-pressure
level Leq rises. Previous studies have shown that the admissible maximum absolute
value of the gain for a Gain-Delay controller decreases as the combustor heats up for
this operating condition. This is attributed to the fact that the low-frequency content
of the pressure signal rises, and the resulting low-frequency components of the fuel
injection tend to alter the flame stabilization. The flame then flaps back and forth
and increases the noise floor.

The heat-up phase is also evident in the pressure spectra of the controlled com-
bustor taken at 1000 s and 4700 s, shown in Fig. 5.60. The plant is uncontrolled
and Gain-Delay controlled (gain −1.8 × 10−4, delay 0.3 ms), the resulting Leq are
159.87 dB, 146.90 dB, and 147.48 dB, respectively.
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Figure 5.60: A comparison of the uncontrolled and controlled spectra of the pressure signal

at 1000 s and 4700 s for the same Gain-Delay controller and λ = 2.1.
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Figure 5.61: Parameter evolution for the CMA-ES optimization of a Gain-Delay-

controller. At 4800 s, the operating condition is changed from λ = 2.1 to λ = 1.875.
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The CMA-ES optimizes the gain and the delay of the Gain-Delay controller. The
evolution of the parameters is shown in Fig. 5.61, where the gain interval [−3×10−4, 0]

and the delays from {0.1, 0.2, . . . , 1.15} ms are mapped onto [0, 1]. Previous experi-
ments with manual tuning have shown that actuator saturation and flame stabilization
problems occur if the gain is chosen lower than −3× 10−4, or the delay is higher than
1.5 ms. The initial gain and delay passed to the CMA-ES algorithm are −1×10−7 and
1.5 ms, respectively. During the first 4800 seconds Leq rises as the combustor heats
up, and the optimal value of the gain increases from about −2.5 × 10−4 at 1000 s to
−1.8×10−4 at 4800 s. The rise of Leq is related to the persistent change of the system
conditions during heat-up and seems to have no adverse effect on the optimization.
During the first 1000 s the evaluation time increases and reaches 10 s, the maximum
allowed. That means noise is becoming an issue. The standard deviations decrease
during the first 4000 seconds and rise again as the operating condition is changed.

At 4800 s, the operating condition is changed from λ = 2.1 to λ = 1.875, and the
evaluation time is manually set to 1 s.

Four cost function landscapes for different time intervals are shown in Fig. 5.62.
They are obtained by Delauney triangulation of a second-order polynomial fit to the
Leq results for the individual delay slices. The noise levels are on the order of 2 dB
for evaluation times of 1 s, and gradient-based search algorithms would fail in this
problem. Pentagrams show the best parameter set for each generation; the larger
they are, the later they have been acquired for each plot. A black circle marks the
last of the pentagrams. The topmost plot shows the Leq for the first 150 function
evaluations (up to 1300 s). It shows that the gain can be chosen quite negative; and
the overall landscape features low Leq values. For the function evaluations from 150 to
250 (1300−2700 s), the evaluation time increases and yields results with less noise. A
trend to less negative values for the gain becomes apparent (the pentagrams indicating
the best of the generations are moving to the right), and the general background noise
level rises (indicated by areas getting darker).

The black polygon is the convex hull of all controller parameter values tried in the
given time range. The function evaluations 250 − 325 (2700 − 3800 s), shown in the
third plot, indicate that the optimal value for the gain lies around −1.8×10−4 and for
the delay around 0.4 − 0.5 ms. The parameters evaluated are now narrowed down to
the smaller black polygon. If this result is compared to the last plot showing function
evaluations 325 − 390 (3800 − 4800 s), the optimal values for the gain and the delay
are confirmed, but the cost function evaluated Leq rises. This is in accord with the
observation that the combustor exhibits slowly rising sound-pressure levels for λ = 2.1.

At run 395 (4800 s), the lambda value is changed to λ = 1.875. This operating
conditions exhibits less thermal drift than the previous one. The changing operating
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Figure 5.62: CMA-ES optimization of a Gain-Delay controller for λ = 2.1, heating up.

Function evaluations, from top plot down: 1−150; 150−250; 250−325; 325−390. Pentagrams

show the best parameter set for each generation, the larger they are, the later they have been

acquired for each plot. The black polygon is the convex hull of all controller parameter values

tried in the given time range.

conditions can clearly be discerned in the cost function Leq shown in Fig. 5.63. The
algorithm finds a new minimum, now the gain can be chosen more negative.

The evaluation time increases immediately again, indicating no big improvement of
the signal-to-noise ratio, even though the controller is less close to its optimal regime.
This suggests that σ should be increased together with teval. The course of σ supports
this conjecture. It increases by a factor of three and shows the adaptive capability
of the algorithm. In this experiment, it takes 8 generations until the increase of σ
appears. The CMA-ES successfully adjusts the controller parameters to new optimal
values, see Fig. 5.61, upper right.



5.4 Control Experiments: Fuel Injector as Actuator 93

−4 −3 −2 −1
x 10

−4

0.2

0.4

0.6

0.8

1

1.2

1.4

Gain

D
el

ay
 [m

s]

L
eq

; λ=2.1; f.evals 395−900 L
eq

 [dB]

146.8

147

147.2

147.4

147.6

147.8

Figure 5.63: CMA-ES optimization of a Gain-Delay controller for λ = 1.875. Function

evaluations 395 − 740 (4900 − 9800 s).

Experiment: H∞ Controller, Two Parameters Optimized, λ = 1.875.

An H∞ controller has been designed for the operating condition with λ = 1.875, where
the goal was to simultaneously decrease the three peaks at 250 Hz and around 330 Hz.
In order to keep the number of parameters small and to speed up convergence, only
the gain and the frequency shift are optimized.

The intervals for the frequency shift, [0.95, 1.05], and gains [0.4, 1.1], are mapped onto
[0, 1], see Fig. 5.64. The cost function landscape is shown in Fig. 5.65. It is obtained by
DACE, a Matlab toolbox for working with kriging approximations to computer models,
which has been kindly provided by Hans Bruun Nielsen from the Technical University
of Denmark1. A second-order polynomial has been used as regression model and a
Gaussian correlation. For this experiment with an H∞ controller, the cost function
is flatter than with the Gain-Delay controller, because the controller is model-based,
and thus already performs well. However, the optimization shows that in order to
decrease Leq, the gain has to be reduced to about 0.7. This is explained by the fact
that the H∞ design process has been laid out primarily to decrease the three peaks in
the spectrum, without special concern given to the reduction of Leq.

1http://www2.imm.dtu.dk/∼hbn/dace/
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λ = 1.875.
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Experiment: H∞ Controller, Three Parameters Optimized, λ = 1.875.

For the following experiment, three parameters are optimized by the CMA-ES: the
gain and frequency shift of the H∞ controller, and an additional time delay.

The evolution of the parameters is shown in Fig. 5.66 (frequency shift interval
[0.95, 1.05], gains [0.4, 1.1], delays [1, 10]). The initial values are all set to 1.
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Figure 5.66: Parameter evolution for the CMA-ES optimization of an H∞ controller for

λ = 1.875. Three parameters are being optimized.

The cost function now takes three arguments. In order to make the graphical
interpretation of the results more accessible, four cost function landscapes with fixed
delays of 0.1 ms to 0.4 ms are shown in Fig. 5.67. The topmost plot corresponds to
the bottom plot of Fig. 5.64, where only the frequency shift and gain are adjusted, but
the delay is kept at 0.1 ms for all experiments. Gain and frequency shift have similar
values but exhibit a larger variation. The minimum Leq is lower for a delay of 0.2 ms,
and even lower for a delay of 0.3 ms, while it increases again for 0.4 ms (bottom plot).

The Bode plots of the designed and optimized H∞ controllers are shown in Fig. 5.68.
The superior performance of the H∞ controller goes hand in hand with a more complex
shape. The optimized controller has nearly the same phase as the designed one, but
the gain is lower. Since the delay is adjusted additionally, it is possible to move the
controller in the frequency domain while keeping the phase similar.

As a result for the operating condition characterized by λ = 1.875, the spectra
achieved with the optimized Gain-Delay and H∞ controllers are compared to the
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Figure 5.67: CMA-ES optimization of an H∞ controller for λ = 1.875. Delays from top

plot down: 0.1 ms-0.4 ms. Pentagrams show the best parameter set for each generation.

uncontrolled plant in Fig. 5.69. The Leq of the uncontrolled plant is 148.72 dB, the
Gain-Delay controller reduces it to 146.67 dB, and finally the H∞ controller reaches
146.16 dB, which is about 15% lower again. Moreover, the H∞ controller is able to
simultaneously push down all three peaks and to attain the flattest spectrum. This is
achieved thanks to the model-based approach, conferring the most design freedom to
the engineer.
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Experiment: H∞ Controller, Two Parameters Optimized, λ = 2.1.

Finally, the CMA-ES is used to improve an H∞ controller designed for λ = 2.1. The
parameter evolution is shown in Fig. 5.70 (frequency shift interval [0.95, 1.05], gain
interval [0.4, 1.1]), and the cost function landscape in Fig. 5.71. It becomes clear
that a lower gain can decrease the Leq compared with the designed controller, but
the frequency shift does not have a decisive effect. The final standard deviations for
gain and frequency shift differ by a factor of about three (lower left of the top plot of
Fig. 5.70) reflecting the different sensitivities of the parameters.

The Bode plots of the designed and the optimized controllers are shown in Fig. 5.72.
The controller phase is quite flat and therefore tolerant against frequency shifts. The
combustor pressure spectrum exhibits only one very distinct peak, and it suffices to
provide the right amount of gain and phase at this frequency.

To compare the spectra attained by the CMA-ES optimized Gain-Delay and H∞ con-
trollers against the one from the uncontrolled plant, they are plotted together in
Fig. 5.73. The values of Leq are 159.87 dB, 147.48 dB, and 147.35 dB, respectively.
They are shown for the plant which has been running for several hours and is there-
fore heated up. In this case, the H∞ controller performs only slightly better than the
Gain-Delay controller, but the control signal contains about 10% less energy.
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Figure 5.70: Parameter evolution for the CMA-ES optimization of an H∞ controller for

λ = 2.1.
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Summary

This chapter presented the control experiments carried out. First, passive approaches

have been investigated. Helmholtz resonators work only in a limited frequency range,

and are preferably mounted downstream. Secondly, active control has been implemented

with two actuators: loudspeakers and a secondary fuel injector mounted close to the

flame. The former also acts as Helmholtz resonator, but actuator saturation is a

serious constraint. The latter offers more control authority, but must be installed close

to the flame. The offset of the control signal has to be chosen correctly.

Gain-Delay control works reasonably well for operating conditions with a single large

peak in the pressure spectrum. But model-based H∞ controllers perform better, espe-

cially when applied to more challenging cases. Such a case features three peaks in the

pressure spectrum, and H∞ control gives the control engineer the freedom to decrease

either all three peaks, or to focus on a single peak.

A novel way to improve controllers is presented. The CMA-ES algorithm evaluates

the performance of various controllers online while the combustor is running. It then

manipulates them so as to decrease a given cost function. This algorithm is noise-

resistant and able to cope with changing operating conditions. A drawback of evolu-

tionary algorithms is their rather slow convergence time, and the potential to propose

bad controller parameters to be evaluated.





6

Summary and Conclusions

Da steh’ ich nun...

JWvG

This thesis has presented the results of an investigation on thermoacoustic oscilla-
tions in premixed gas turbine combustors.

A discussion of the problem and an extensive literature survey explained the me-
chanisms involved.

A test rig has been built at ETH Zürich to study combustion instabilities. It is
built around ALSTOM’s EV burner; the premixed flame is swirl-stabilized in two
recirculation zones and burns natural gas. The acoustic pressure fluctuations in the
combustor are sensed with microphones; loudspeakers are mounted to identify and
control the test rig. To achieve more control authority, a secondary fuel injector is
installed close to the flame. This magnetostrictive injector is manufactured by MOOG
Japan and offers a high bandwidth.

The model of the combustor is derived based on the network idea. The constituent
blocks represent elements such as the ducts, burner, flame, and end conditions. For
each of them, a physical model is derived and validated with measurements. In partic-
ular, the L− ζ burner model and the n− τ flame model work remarkably well. They
have been investigated over a wide range of operating conditions, and linked to the
results from optical investigations. The different flame types identified in a companion
thesis [101] are reproduced as different parameters in the n− τ flame model.

The blocks are finally assembled to the network model. The transfer functions
obtained in this way correspond well to experimentally measured ones. Here, the
input is the loudspeaker voltage and the output the sensed pressure.

A new and easy-to-implement strategy to obtain the transfer function from the
voltage to the fuel injector to a pressure reading is introduced. This method is robust,
works in a closed-loop manner and can be implemented quickly. It yields excellent
results.
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102 6 Summary and Conclusions

In order to control combustion oscillations, passive strategies based on Helmholtz
resonators are studied. They work well over a limited frequency range, and are more
efficient downstream than upstream. To have more design freedom and control au-
thority, active feedback control is introduced.

The problem is treated from a control engineer’s point of view, hence fundamental
limits of feedback control are elaborated. Two actuators are implemented on the test
rig: loudspeakers and a secondary fuel injector. The loudspeaker housing by itself acts
as a passive Helmholtz resonator. When active control methods are added on top,
high pressure reductions are obtained. However, actuator saturation is identified as a
serious constraint. Therefore, only the fuel injector is an industry-relevant actuator.

The effect of additionally injected fuel on the flame and pressure spectrum is studied.
It is shown that it is not possible to control any type of flame, because problems with
the flame anchoring process occur. Moreover, the control signal offset which determines
the mean flow through the valve has to be carefully negotiated as a function of available
control authority and increasing emissions. A number of controller structures are
subsequently evaluated—their respective merits and disadvantages are highlighted.

For operating conditions where a distinct peak in the pressure spectrum is present,
simple Gain-Delay controllers perform satisfactorily. More advanced designs such as
the robust model-based H∞ controller still yield better results. The superiority of this
approach is clearly manifested in a more complex case, where three peaks are present
in the pressure spectrum. It allows the control engineer to design a controller such that
all three peaks are pushed down at the same time. The focus can also be concentrated
on one peak only, which is then reduced more. Actuator saturation, mainly of the
electrical amplifier driving the injector, becomes also a problem but to a lesser degree.

A novel idea to improve controllers online is presented, namely the CMA-ES opti-
mization routine. It is shown how this algorithm can make Gain-Delay and H∞ con-
trollers better by minimizing a cost function, in this case the averaged sound-pressure
level. This algorithm is noise-resistant and able to cope with changing operating
conditions.

The author hopes that some of the ideas and findings presented in this thesis may
find their way to industrial application and contribute to the improvement of gas
turbines.



A

Additional Fuel Injector Controllers

Success is the ability to go from one failure

to another with no loss of enthusiasm.

Sir Winston Churchill

The following section presents three other control structures which have been evalu-
ated: a manual controller design carried out directly in the Nyquist diagram; an online
tuned complex lead-lag controllers; and a peak filter controller. These controllers are
either wearisome to design, or did not perform as well as the ones presented in the main
section. However, they have been useful in identifying the plant, see Section 4.3.2.

A.1 Fuel Injector and Manual Loop Shaping Control

Manual loop shaping in the Nyquist diagram is tried as a design procedure. A controller
has been assembled in a trial-and-error fashion with basic elements such as peak filters,
complex lead-lag elements and the like.

The design process is guided by desired bounds on the sensitivity, see Fig. A.1. It
is also monitored in the Nyquist diagram, see Fig. A.2. For the case 36/700/1.875,
noise suppression in two frequency bands is desired. The resulting controllers are again
implemented with various gains. The measured pressure spectra are shown in Fig. A.3,
the measured and modeled sensitivity in Fig. A.4. For higher gains, saturation of the
control signal occurs, and the modeled sensitivity cannot be realized. The modeled
pressure spectrum reduction has been achieved, but it is difficult and cumbersome to
find good controllers this way.
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A.2 Fuel Injector and Complex Lead-Lag Control

The complex lead-lag controller is an extension to the classic lead-lag controller [203,
202]. It features additional parameters that determine the under- and overshoot and
the slope of the gain curve.

The implemented controllers for the case 36/700/1.875 are shown in Fig. A.5.
The measured pressure reduction is shown in Fig. A.6. The results are not satis-

factory, because online tuning is not straightforward. It is not possible to decrease all
three peaks. However, the model proves to be very accurate. This controller does not
perform significantly better than the Gain-Delay type. Nevertheless, it has its justifi-
cation in the sense that it helps to find a model of the combustor, see Section 4.3.2.
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Figure A.5: The complex lead-lag con-

trollers used to control 36/700/1.875.
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pressure spectrum reduction with the complex

lead-lag controllers for 36/700/1.875.
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A.3 Fuel Injector and Peak Filter Control

In order to concentrate the actuation power in a certain frequency band, a peak filter
is proposed for the case 36/700/1.875, see Fig. A.7. The measured pressure spectrum
reduction is presented in Fig. A.8. The peak at 250 Hz is reduced by around 13 dB,
but the band of reduction is not very wide. The peak filter controller cannot cope with
three peaks either, like the Gain-Delay controller. However, the peak at 250 Hz can
be reduced by about 12 dB. The results could be improved by augmenting the peak
filter with an adjustable delay, to get the right phase at the desired location.
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Figure A.7: The peak controllers used to

control 36/700/1.875.
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controllers for 36/700/1.875.



B

Historical Notes on Gas Turbines

I am not young enough to know everything.

Oscar Wilde

B.1 From Early Developments to the Steam Turbine

Since the Romans built the first water turbines around 70 B.C. to grind grain, a lot
of engineers have applied themselves to improving them. Hero of Alexandria reported
the first steam-powered engine around AD 62 [303] (or 120 B.C. [151], the exact dates
are unknown), the aeolipile “windball”, which was later analyzed by Leonhard Euler
(1707–1783), who found the equation named after him. In 1822, Claude Burdin coined
the term “turbine”, from the Latin “turbo”: “that which spins” or in German “Wirbel,
Zauberrad” [200]. James B. Francis had developed his high-efficiency radial-inflow
turbines by 1875, and the first useful steam turbine was built in 1831 by William
Avery. However, the steam turbine that really had an impact was Charles Parsons
(1854–1931) multistage axial-flow reaction turbine rated at 10 horsepower. Brown-
Boveri from Baden, founded in 1892, built turbines taking licenses from Parsons designs
starting from 1900. Between 1901 and 1906, they delivered 500 steam turbines and
installed a total of 12 GW worth of steam turbines by 1929, which was unmatched by
any other European Company. In 1928, the world’s most powerful steam turbine rated
at 160 MW was installed in New York, the “Hellgate”. Nowadays, steam turbines are
used in combined-cycle plants with gas turbines, having outputs exceeding 500 MW.

Aurel Stodola (1859–1942) as a very influential researcher and teacher added an
appendix on gas turbines to the second edition of his textbook “Steam and Gas Tur-
bines” in 1905. He became professor for Mechanical Engineering at ETH in 1892,
where he served until 1929. He wrote in 1903: “Die Wissenschaft beansprucht als
ihr Sonderrecht, auf den Höhen des reinen Gedankens zu weilen; den Kampf mit der
widerstrebenden Materie überlässt sie den Ingenieuren. Wohlan, wir nehmen diesen
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Kampf auf und wollen wie bisher, mit unverdrossener Ausdauer an dem grossen Prob-
lem, das eine Daseinsfrage der Menschheit ist, arbeiten: an der Vervollkommnung der
Energieumwandlung in den Wärmekraftmaschinen.” [151].

B.2 The Gas Turbine

Steam Turbines are relatively easy to build compared to gas turbines, but they require
large steam producers. In contrast to internal combustion engines, the maximum
working fluid temperatures must be lower, so that compression and expansion losses
have to be kept as small as possible. Hans Holzwarth proposed a 200 horsepower
gas turbine in 1906–1908, which was constructed by Brown Boveri. This design was
based on a constant volume cycle (or explosion type, similar to a Diesel engine).
Theoretically, the efficiency is higher, but mechanical complexities (valves etc.) make
the design difficult and the operation is not smooth. Moreover, a constant pressure
system can handle higher mass flows. Brown Boveri Company BBC also designed the
Velox steam generator. The first industrial gas turbine was presented to the public in
1939 at the national exposition “Landesausstellung” in Zürich by BBC. It served then
in Neuchâtel producing electricity, and was recognized as a Historic Landmark by the
ASME in 1988.

BBC merged with the Swedish company ASEA in 1988 to become ABB (Asea Brown
Boveri). ABB formed a joint venture with ALSTOM (Als-thom was created in 1928
as a merger between “Société Alsacienne de Constructions Mécaniques, Belfort” and
“Compagnie Française Thomson-Houston”, changing its name to ALSTOM in 1989)
and sold more of its power division in 2000.

Escher-Wyss (founded in 1805) designed the closed-cycle gas turbine in 1939, which
is mostly fitted with helium as the working fluid, to be used with coal and nuclear
heat input. Heinrich Zoelly (1862–1937) of Escher-Wyss also designed successful steam
turbines, which competed with BBC’s products on the European Continent.

Today, land-based gas turbines are used in naval vessels (GE’s two-shaft marine
aeroderivative LM2500 gas turbine is rated at 25 MW, used by 27 international navies,
and powering more than 360 ships. The more recent LM6000 delivers 40 MW at a ther-
mal efficiency of 42%, featuring dry low emission technology), tanks (the Abrams M1
tank with a weight of 60 tons has a top speed of 75 km/h, thanks to its 1500 horse-
power Lycoming gas turbine engine), on oil platforms, as emergency backup power
units and, last but not least, in power plants. Gas turbines can be started quickly,
and have a high power-to-weight ratio. A very good overview of the history of gas
turbines is given in [303], where also current developments are addressed.



C

Thermodynamic Analysis

of Gas Turbines

In this house, we obey the laws of thermodynamics!

Homer Simpson (after Lisa constructs a perpetual

motion machine whose energy increases with time)

C.1 Definitions and Characterization

The following definition is found in [303]: “A turbomachine produces a change in
enthalpy in a stream of fluid passing through it and transfers work through a rotating
shaft: the interaction between the fluid and the machine is primarily fluid-dynamic
lift.” Another is in [72]: “We classify as turbomachines all those devices in which
energy is transferred either to, or from, a continuously flowing fluid by the dynamic
action of one or more moving blade rows.”

A gas turbine is a heat engine that accepts and rejects heat—and produces work.
It consists of a compressor, a heater, and an expander. The environment then cools
down the exiting fluid for open-cycle gas turbines.

Compared to internal combustion engines, gas turbines perform the tasks of com-
pression, heating, expansion, and discharge at various locations and continuously,
whereas the former accomplish them as batch processes in the same cylinder at differ-
ent times. This means that the components can be designed, tested, and developed
individually, and then linked together. Moreover, combustion in gas turbines occurs
at nearly constant pressure, whereas in internal combustion engines this occurs in a
nearly constant volume. These facts allow for high volume flows and a high power
to weight ratio. However, a higher peak cycle temperature can be allowed in internal
combustion engines because this peak only occurs temporarily. Turbine blades have
to be cooled in sophisticated ways to deal with higher (constant) turbine inlet tem-
peratures, approaching 1800 K in modern turbines. Steam turbines work with a fluid
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that changes phase, which requires big steam generators and a large heat input. In
gas turbines, the compressor needs a lot of work input, and the combustion chamber
can be designed smaller.

C.2 Working Principles of Gas Turbines

Brayton Cycle

Gas turbines run a Joule (or Brayton) cycle, and the fundamental principle upon
which they rest is the following fact: in a temperature vs. entropy T–s diagram, lines
of constant pressure have an increasing slope with temperature and are displaced
parallel to each other, see Fig. C.1. The derivation is as follows:

Differentiating the definition of enthalpy and using the Gibbs equation

h = u+ pv (C.1)

Tds = du+ pdv (C.2)

yields

dh− vdp = Tds = du+ pdv (C.3)

The perfect gas law states that

dh = cpdT (C.4)

du = cvdT (C.5)

Inserting Eq. C.4 and C.5 into Eq. C.3 gives

cpdT − vdp = Tds = cvdT + pdv (C.6)

Two cases are distinguished: constant pressure and constant volume

∂T
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∣
∣
∣
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The differential equations are solved

T |p = T1 e
T
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s (C.9)

T |v = T2 e
T
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s (C.10)
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Figure C.1: Temperature versus entropy T–s diagram for a perfect gas. Lines of constant

pressure are plotted in blue. The connected red lines show the ideal Brayton cycle. The work

input required for compression is smaller than the turbine work output gained.

Lines of constant pressure, Eq. C.9, are plotted in Fig. C.1. Their shape makes the
ideal Brayton cycle possible, shown as red lines. The work required for compression is
lower than the turbine work output obtained [303]. In reality, the processes involved
are not isentropic but one has to account for various losses. For a given maximum
turbine inlet temperature, there exists an optimum pressure ratio to be delivered by
the compressor. If a heat exchanger is to be incorporated, yet another pressure ratio
is optimal.

Other Cycles

Closed-cycle gas turbines use helium as a working fluid, because the heat capacity
at constant pressure cp at 1.013 bar and 21 ◦C is 0.02 kJ/(mol.K) compared to
0.029 kJ/(mol.K) for air. This yields steeper slopes in Fig. C.1. But more impor-
tantly, higher fluid velocities can be used and optimum cycle pressure ratios are lower,
and corrosion is not a problem anymore. This cycle is often used in nuclear power
plants, as heat must be transferred to the working fluid, which could also be done
through external combustion.

The hot gas leaving the gas turbines can be used in a heat-recovery steam generator
HRSG to generate process steam (for paper plants, breweries or heating buildings), or
the steam is used in a subsequent steam turbine. In this configuration, efficiencies go
as high as 60%. The steam may also be injected back into the gas turbine, either into
the combustor or in the turbine stages. This increases the power and, if injected into
the combustor, also lowers emission levels. The downside is that the water used must
be very pure, or else corrosion and potential blockages become a problem.
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Combustion Systems

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where–” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll, in “Alice’s Adventures in Wonderland”

D.1 Combustor Technology

The earliest aircraft engines were fitted with can (or tubular) combustors, which were
followed by cannular (or tubo-annular), and finally annular combustors. They make
optimal use of space due to their reverse flow arrangement and have a clean aerody-
namic layout, leading to a low pressure loss. A larger combustor volume makes it easier
to achieve a low pressure drop, high efficiency, good outlet temperature distribution
and satisfactory stability characteristics.

Aircraft gas turbines usually run on kerosene, but for land-based gas turbines there is
a move from oil to gas. It is believed that the supply of natural gas will last longer than
oil, and most importantly, gas turbines fueled on natural gas achieve lower emission
(NOx, CO2) levels.

Turbulent flame speeds are on the order of 10 m/s, but axial-flow compressors
deliver air at 100–200 m/s. Thus, the need of a flame holder arises, which makes
the combustion system responsible for the largest pressure loss in the engine (this
also calls for a diffuser, since pressure loss is proportional to the square of the air
velocity). The standard or aircraft type combustion system splits the compressed air
stream into two, into the first is injected the fuel which then burns at approximately
stoichiometric conditions. This primary zone anchors the flame and provides sufficient
time, temperature, and turbulence to complete the combustion of the air-fuel mixture.
A toroidal flow reversal recirculates a portion of the hot combustion gases to provide
continuous ignition. This is accomplished by fitting a swirler in the dome around the
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injector, giving rise to coherent large-scale structures. Vortex breakdown then assures
better mixing than with bluff bodies, because of strong shear regions, high turbulence,
and rapid mixing rates. The second stream is used for wall cooling and dilution so as
the keep the turbine inlet temperature below critical levels and assure a desired radial
distribution (higher at the turbine tips where centripetal stresses are lower than closer
to the hub, or the inverse if they are cooled from the hub), know as pattern factor.

J.R. Joyce is cited in [165], who wrote in 1950: “The atomizer in an aircraft engine
cannot be regarded as heavily taxed; indeed, one may say that it leads a privileged
and sheltered existence. In the first place, its rations are of the highest quality. It is
fed with high grade fuel, which is thoroughly cleansed before reaching it. Next, it is
located in a position where it does no more than look at the blazing inferno it has
created from a front row stall. It is shrouded in a loose-fitting jacket through which
cool air is continuously passing, primarily for the purpose of serving its protection and
comfort. Its lot is a happy one.”

Catalytic combustors and pressurized circulating fluidized bed combustion for coal
burning gas turbines may become important in the future. Other considerations for
combustor design are re-ignition at high altitudes in aircraft engines, flame holding
during compressor surges and transients, thermal stresses, and temperature gradients.

D.2 Laminar and Turbulent Flames

The burning velocity of laminar flames is the velocity with which a plane flame front
moves in a direction normal to its surface through the adjacent unburnt gas [166]. It is
influenced by the equivalence ratio, initial temperature, and pressure. Flame speed can
be increased through introduction of turbulence, which increases the surface by wrin-
kling the flame front. Higher pressures favor auto-ignition and spontaneous ignition—
this must be avoided in lean-premix combustors. Flashbacks occur when the flame
speed exceeds the approach flow velocity, and the flame subsequently travels upstream
of the combustion zone into the premixing section, causing dangerous situations.

The equivalence ratio φ is the actual fuel/air ratio divided by the stoichiometric
fuel/air ratio [166], so that φ < 1 indicates a lean regime and φ > 1 a rich one. In this
thesis, also the air/fuel ratio λ = φ−1 is used. The adiabatic flame temperature is the
(calculated) temperature that the flame would attain if the net energy liberated by the
chemical reaction that converts the fresh mixture into combustion products were fully
utilized in heating those products [166]. By radiation and convection, a significant
part of the energy is lost and the flame therefore does not attain this theoretical
temperature.
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D.3 Emissions

In a gas turbine burning natural gas, the overall chemical reaction is the following:

CH4+2O2 → CO2+2H2O

The “true” reaction scheme is of course much more complex [103]. Small amounts of
carbon monoxide CO, unburned hydrocarbons UHC, particulate matter PM, oxides of
sulfur, and oxides of nitrogen NOx will also be present. Sunlight and NOx combined
give rise to smog, acid rain, and contribute to ozone depletion at higher altitudes.

The rate of formation of NOx depends exponentially on flame temperature (Zeldovich
mechanism [166, 41]), and roughly linearly on residence time in the combustor. But
there is a tradeoff, namely it is generally the case that if NOx is reduced, CO and UHC
are increased. A flame temperature decrease from 1900 K to 1800 K can halve NOx

emissions, but below 1700 K, carbon monoxide becomes an issue. The combustion
temperature should therefore be held as uniform as possible, as local hot spots will
generate high levels of NOx. For low emission combustors, the temperature should
be kept between 1680 K to 1900 K. By injecting water, emissions were found to be
reduced to 75 ppmvd (parts per million by volume of dry exhaust gas corrected to
standard pressure and temperature) and lower. Water or steam injection increases
power but decreases the thermal efficiency. Of course, since large amounts of pure
water (comparable to the fuel flow [291]) to prevent fouling are needed, this technique
can not be applied all over the world, and it also increases capital cost.

Another way of controlling emissions is selective catalytic reduction (SCR), but this
only works in a limited temperature range of 285–400 ◦C.

On the other hand, the dry low NOx technique is based on premixing the air and fuel
prior to combustion [2]. The ABB-ALSTOM EV burner is composed of two offset half
cones which are shifted to form two diametrically-opposed air inlet slots of constant
width. Gaseous fuel is injected along the lips or with a lance. Flame stabilization is
achieved in free space due to the sudden breakdown of a swirling flow at the burner
exit plane.

In lean-premixed combustors, the heat release is concentrated at the flame front,
whereas in conventional combustors it is smeared across a much wider region. Com-
bustion efficiencies are around 99%, defined as the heat released in combustion divided
by the heat available in the fuel.

An “advanced zero emissions power plant” project is described in [113], where 100%
capture of CO2 and 0% NOx is the target. This is accomplished by N2 removal from the
air and burning of natural gas in this nitrogen-free atmosphere with subsequent storage
of compressed CO2. A “rich-catalytic lean-burn” combustion concept is presented in
[53], where NOx levels lower than 2 ppm are achieved.
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A Note on Newton’s Exclamation

Ex nihilo nihil fit.

Lukrez, “De rerum natura” I,155f

“If I have seen further, it is by standing on the shoulders of giants.” Newton wrote
this quote in a letter dated February 5th 1675 or 1676 to Robert Hooke (1635–1702),
with whom he fought a lifelong bitter rivalry. Hooke claimed that Newton stole his
hypothesis on light from his “Micrographia”. But Newton on his part argued that
Hooke built upon Descartes who in turn was inspired by Marcantonia de Dominis
and Ariotto. Newton’s comment was very likely intended to be sarcastic as Hooke
was a very short man. However, Newton also stands on the shoulders of giants: In
1621, Robert Burton writes in his “Anatomy Of Melancholy”: “Pygmies placed on the
shoulders of giants see more than the giants themselves.” Burton himself takes a seat
on the shoulders of the 12th century scholastic Bernard de Chartres who is quoted
as saying “In comparison with the ancients we stand like dwarves on the shoulders
of giants”. The thought goes back to Priscian, a 6th century grammarian who wrote:
“The younger the scholars, the more sharp-sighted” and so on.

Variations on this quote are the following:1

- “If I have seen farther than others, it is because I was standing on a really big
heap of midgets.” K. Eric Drexler

- “If I have seen further than others, it is because I am surrounded by dwarves.”
attributed to Murray Gell-Mann, Prof. emerit. at CalTech

- “If I have not seen as far as others, it is because giants were standing on my
shoulders.” Harold Abelson, Professor at MIT

1Among others, the following web sites provide interesting information:

http://www.aerospaceweb.org/question/history/q0162b.shtml

http://c2.com/cgi/wiki?ShouldersOfGiants
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