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,,Mache die Dinge so einfach wie

möglich – aber nicht einfacher.“

∗
,,Was wirklich zählt, ist Intuition.“

Albert Einstein (1879 – 1955)
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Zusammenfassung

Numerische Strömungs- und Verbrennungssimulationen von ottomotorischen Brenn-
verfahren mit geeigneten Turbulenz- und Verbrennungsmodellen bieten die Möglich-
keit, Design- und Parameterstudien zu unterstützen. Gegenstand dieser Arbeit ist die
Weiterentwicklung von dazu geeigneten Verbrennungsmodellen.

Der in ottomotorischen Brennverfahren umgesetzte Kraftstoff wird sowohl in Ho-
mogen- als auch in Schichtladebetrieb überwiegend durch vorgemischte Verbrennung
umgesetzt. Zur Modellierung der turbulenten vorgemischten Verbrennung wird ein
Modell auf Basis des sog. Level Set Konzeptes diskutiert. Durch das Level Set Konzept
wird die mittlere turbulente Flammenfront mit Hilfe einer Oberfläche dargestellt, und
die Brennrate wird durch eine turbulente Brenngeschwindigkeit modelliert.

Die Arbeit ist wie folgt gegliedert: Zunächst werden nach der Einleitung im zwei-
ten Kapitel notwendige Grundlagen der Strömungsmechanik und der verwendeten Tur-
bulenzmodellierung dargestellt. Danach wird im dritten Kapitel das Verbrennungsmo-
dell auf Basis des Level Set Konzeptes hergeleitet. Hierbei wird im Besonderen auf
die Modellierung von instationärer Flammenausbreitung eingegangen und ein Modell
zur Beschreibung der Entwicklung von laminaren Flammenkernen entwickelt, wie sie
auch bei der elektrischen Zündung entstehen. Im vierten Kapitel wird das vorgestellte
Verbrennungsmodell durch ausgewählte Testfälle evaluiert. Dazu wird zur Vorhersa-
ge der turbulenten Strömung ein Reynoldsgemitteltes Turbulenzmodell auf Basis der
turbulenten kinetischen Energie k und der turbulenten Dissipation ε verwendet. Die
Testfälle bestehen aus Verbrennungssimulationen in einem Zylindergeometrie mit kon-
stantem Volumen einerseits und Simulationen in einer realistischen Motorengeometrie
andererseits. Dabei wurden für die Testfälle Vergleiche mit Experimenten in der Mo-
torengeometrie für sowohl Homogenbetrieb als auch im strahlgeführten direkteinsprit-
zenden Schichtladebetrieb durchgeführt. Die Arbeit schließt mit einer Diskussion der
Ergebnisse und einem Ausblick ab.
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Chapter 1

Introduction

Combustion has been one of mankind’s oldest technologies to convert chemical energy
into heat or mechanical energy. Although there have been many attempts to super-
sede that technology, for example by fuel cells, photovoltaics, not to mention nuclear
technology, it seems likely that in the near and intermediate future combustion will
still play an important role for the exploitation of energy sources, provided either by
means of fossil fuels or by other, renewable energy sources. Today, growing global de-
mand for individual means of transportation, increasing implications on environmental
issues, and future possible penury of fossil fuels make it even more important to inten-
sify the efforts in improving existing energy conversion technologies. With respect to
passenger cars, for example, internal combustion engines will still play a viable role
in those efforts. Here, two major important research directions can be identified; these
are High-Pressure Direct Injection Diesel engines (f. ex. Common-Rail based systems)
and Direct Injection Spark Ignition (DISI) gasoline engines.

Unfortunately, the development of new strategies for internal combustion engines
today is increasingly costly for additional gain in fuel efficiency and further reduction
of pollutant emissions. In order to reduce development costs and enhance the num-
ber of parameters studied to optimize, the concept of Computational Fluid Dynamics
(CFD) is becoming more and more important. Internal Combustion engines are sub-
jected to the combined physics of chemistry, fluid mechanics and turbulence theory.
Even though the microscopic interaction between these three topics is probably suffi-
ciently understood, prediction of problems pertinent to industrial scale applications us-
ing Direct Numerical Simulation (DNS) of these mechanisms is not possible at present
and will remain impracticable in the forseeable future.

This dilemma necessitates the development of physical sub-models for turbulent
flows and combustion on a macroscopic scale. These models do not only enable the
numerical simulation of engineering applications with combustion. Also the macro-
scopic physical mechanisms of flow, turbulence, and combustion can be understood by
researchers and engineers and thus may lead to additional approaches for technology
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2 Chapter 1. Introduction

improvement.
This work focuses on the further development of turbulent premixed combustion

modeling which is the main mechanism of combustion in DISI gasoline engines. The
goal of this model is to understand the influence parameters on turbulent flame propa-
gation in the engine and finally the kinematics of the turbulent flame front. Employing
this information, global data as the heat release and the pressure trace can be predicted.
It is possible to visualize where and when combustion in the chamber occurs. Cou-
pled with a corresponding prediction model, eventually pollutant production could be
calculated.

For most of (DI)SI engine operation modes it can be assumed that turbulent pre-
mixed combustion takes place in the so-called flamelet regime. This regime is furnished
with a complex fractal-like distribution of laminar premixed flame structures that are
surrounded by turbulent eddies of an otherwise non-reacting flow. The microscopic
complexity of the combined physics addressed above can in this case be simplified by
model assumptions since the time and length scales of the turbulent flow on the one
hand and the chemistry of the laminar flame on the other hand are decoupled up to a
certain order of magnitude.

With regards to premixed turbulent combustion modeling two major approaches
exist which describe the structure of the turbulent premixed flame front. The first ap-
proach is called progress variable approach in which modeling is based on the local
mean premixed reaction rate formulation for a burnt gas mass fraction transport equa-
tion. While models based on this equation type can easily be implemented into existing
CFD computer programs since the methodology essentially follows the one for reac-
tive species, difficulties arise in regions where the premixed flame front is very thin
compared to the numerical grid used for the computation. This is also an attribute for
the transition from laminar to turbulent flames.

The other approach is based on Level Sets which was first derived for laminar flame
configuration initially by Williams [110]. Those Level Sets describe the flame front as a
surface for which a kinematic equation can be postulated. This approach was extended
by Peters [69, 68] into the turbulent regime by introducing a second model equation for
the turbulent flame brush thickness. Due to the kinematic approach, the modeling is
based on the formulation of a turbulent burning velocity instead of a local reaction rate.
This model is able to give a consistent representation of a premixed flame in the laminar
as well as in the turbulent regime. It was chosen to be the basis in this work although
the implementation into a CFD code requires additional efforts. Due to the nature of
the equation to be solved a different numerical solver other than one for conserved and
reactive scalars needs to be employed. In most CFD codes, also initially in the code
AC-FluX used in this work, an appropriate solver is not per se implemented.

In this work, a further development of the original combustion model by Peters
[70, 71] is presented. The original model was developed and validated on averaged
stationary turbulent flames, that is fully premixed [42] and partially premixed flames
[13]. This model then was extended by the author in order to also consistently predict
premixed flame propagation during the stage of turbulent flame development in which
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the original model still is a sub-set of the new model. In order to predict the dynamics
of spark ignition the new model was then formulated for a spherical flame kernel. In
contrast to other approaches [99] the model developed in this work employs the same
model for the phase of the spark ignition as well as for the later stages of turbulent
flame development and flame propagation. Additionally, flame-wall interactions and
effects of mean flame front curvature are studied.

This work is structured as follows: In chapter 2 the basic physical principles of fluid
dynamics and turbulent flows are discussed. With respect to the turbulence modeling,
a statistical approach towards Reynolds Averaged Navier-Stokes equations (RANS) is
presented. Starting from this review, in the following chapter 3 the theory of turbulent
premixed flow is derived. This chapter is subdivided into a discussion of the physics of
turbulent flows, and modeling of turbulent flame propagation based on progress vari-
able and Level Set approaches. Chapter 4 presents the numerical implementation of the
G-equation model into the research code that was used for the validations in chapter
5. The validation is performed at first on a simple combustion setup in a cylindrical
vessel carried out by Hamamoto et al. [36]. Following from there, numerical results
employing the G-equation model are compared against experimental results obtained
from a DISI spray guided gasoline engine. This engine was operated for this compar-
ison in homogeneous charge as well as in stratified charge mode. This work closes
with conclusions and an outlook to future research in chapter 6. In the appendix, also
the numerical method in order to solve numerically for the Level Set transport equa-
tion is explained and an approximative expression for the determination of the laminar
burning velocity of rich and lean iso-octane/air mixtures including Exhaust Gas Recir-
culation (EGR) is presented.
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Chapter 2

Physics of Fluid Dynamics

In this chapter we will discuss the fundamental principles of Fluid Dynamics and tur-
bulent flows as they are needed in this work. The first section deals with the funda-
mental equations as they can directly be derived from kinetic gas theory. This appears
as overly extensive to be presented in this framework because the equations will not
be used in that form. However, the simplifications that already on this level of mod-
eling are applied need to be pointed out. This presentation includes basic principles
of elementary reaction kinetics and the introduction of mixture states descriptors such
as the mixture fraction Z. Continuing from there, basic principles of turbulent flows
are briefly discussed. This includes an introduction of statistical principles as well as
the description of conventional and Favre averaging. At last, the Reynolds Averaged
Navier Stokes turbulence modeling approach is presented.

2.1 Fundamental Equations of Fluid Dynamics

The fundamental transport equations of Fluid Dynamics are based on the so-called
Navier-Stokes equations. The Navier-Stokes equations can be derived by a heuristic
approach, that is, the governing differential equations are in this case derived by assum-
ing space continuity and applying macroscopically observable quantities like pressure,
density, tension, mass flux, etc. to infinitesimally small control volumes.

Based on kinetic gas theory, a mathematically more rigorous ansatz (i.e. an ad-
hoc assumption) can be followed as well. This mathematical approach is based on
statistical mechanics and the kinetic theory of gas dynamics. A comprehensive treat-
ment of this topic can be found in pertinent monographs, f. ex. Ferziger et al. [27],
Chapman and Cowling [12], and Giovangigli [31]. While the first two references fo-
cus on the physics of kinetic transport by gas diffusion, the last reference emphasizes
the numerical issues of solving the equations for determining the diffusion velocities
and coefficients. In the following, the fundamentals of this theory will only briefly be
discussed and finally the resulting Navier-Stokes equations will be given.

5



6 Chapter 2. Physics of Fluid Dynamics

The kinetic theory parametrizes the gas molecules as particles propagating in a
multi-dimensional parameter space. For monoatomic molecules, only six dimensions
are necessary, these are the molecule position �r and the molecule velocity �c. For poly-
atomic molecules, additional dimensions are required which describe the rotational
state of the molecules.

The further derivations are based on mainly two assumptions:

• The gas density is low. As a consequence only pairs of particles do interact with
each other. This requirement is fulfilled for the problems treated in this work.

• The validity of the so-called “Stoßzahlansatz” as postulated by Boltzmann [6].
This approach assumes non-deterministic particle propagation and molecular
chaos thus leading to an irreversibility of particle interaction events.

As a result the so-called Boltzmann-equations can be derived. Core of these equations
is the velocity distribution function f . The macroscopic quantities density ρ, velocity
�u, and pressure p can be expressed as different integral moments of f .

In order to yield the macroscopic conservation equations, the so called Chapman-
Enskog method asymptotically expands the differential equation f into a series of pow-
ers of a small expansion parameter. Based on the assumption of a state near to ther-
modynamical equilibrium, the Boltzmann equations are thus linearized. Using such an
expansion approach for f , the transport equations can be derived employing the lin-
earized Boltzmann equations. An approximation of zero order yields the Euler equa-
tions of gas dynamics. Using a first order approximation of f , the Navier-Stokes equa-
tions are obtained. Those comprise the Euler equations extended by transport terms
due to molecular viscosity and diffusivity. Then, the resulting transport equations for
the velocity, the enthalpy h, and the species mass fractions Yα for species α read:

∂ρ�u

∂t
+ ∇ ·

(
ρ�u ◦ �u + p ¯̄I

)
= −∇ · ¯̄Π +

∑
α

ρ �bα (2.1)

∂ρh

∂t
+ ∇ · (ρh�u) = −∇ · �Q − ¯̄Π : ∇ ◦ �u +

∑
α

�Fα · �bα +
∂p

∂t
+ �u · ∇p (2.2)

∂ρYα

∂t
+ ∇ · (ρYα�u) = −∇ · �Fα + Wαω̇α . (2.3)

Before we focus on the definition of the the viscous tensor ¯̄Π we will introduce the
rate-of-strain tensor S

∗

S
∗

= S∗
ij =

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.4)

and the rate-of-rotation tensor

Ω = Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (2.5)
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decomposing the velocity gradient tensor ∂ui/∂xj into a symmetric and an anti-
symmetric component. Here, however, we will employ a modified definition for the
rate-of-strain tensor eqn. (2.4),

S = Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

3

∂ul

∂xl
δij , (2.6)

in which for compressible flows the strain tensor is made traceless. Then, the viscous
tensor ¯̄Π is defined using the volume viscosity κ and the shear viscosity η as

¯̄Π = −κ(∇ · �u)I − η 2S . (2.7)

The equation for the enthalpy (2.2) does not contain a source term due to chemical
reactions since h is the total enthalpy which includes the chemical heat of formation.
The acceleration vector �bα indicates external forces (e.g. gravity).

For the conservation equations of enthalpy and species α, an expression for the
species mass fluxes

�Fα = −ρYα
�Vα (2.8)

is needed, which is based on the species diffusion velocities

�Vα = −
∑

β

Dαβ

(
�dβ + χβ∇ log T

)
(2.9)

with the multicomponent diffusion coefficients Dαβ of species α into species β and
the thermal diffusion ratio χβ . The diffusion driving forces �dα do not only comprise
the effects of species concentration gradients and external forces but also the pressure
gradient:

�dα = ∇
(

pα

p

)
+

(
pα

p
− ρα

ρ

)
∇ log p +

ρα

p

(∑
β

ρβ
�bβ

ρ
− �bα

)
. (2.10)

The species concentrations are expressed in this equation as the ratios of the density
ρα and partial pressure pα to the total density ρ and pressure p, respectively. The heat
flux vector �Q is based on the expressions given above and the thermal conductivity λ,

�Q =
∑

α

hα
�Fα − λ∇T + p

∑
α

χα
�Vα . (2.11)

In many problems, these fundamental equations are simplified for analysis. This
applies mainly to the determination of the diffusion fluxes. Here, we will neglect effects
of thermal diffusion χβDαβ and diffusion due to pressure gradients. Additionally,
instead of multicomponent diffusion coefficients, mean diffusivities Dαβ ≈ Dα for
each species are assumed.
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Summing up eqns. (2.3) over all species k,

ρ =
∑

α

ρα =
∑

α

ρYα (2.12)

the continuity equation is obtained.

∂ρ

∂t
+ ∇ · (ρ�u) = 0 (2.13)

The only terms of the eqns. (2.3) that still need to be closed are the chemical re-
action rates ωα. Each of the reaction rates contains the rates of progress τt of any
elementary reactions r multiplied by the stoichiometric coefficients ν of species α in
reaction r

ω̇α =
∑

r

ναrτr =
∑

r

(
νb

αr − νf
αr

)
τr . (2.14)

The rate of progress is given by the forward (index f) and backward (index b) rate
constants Kr and the product of the molar concentrations [X]β of the educt species:

τr = Kf
r

∏
β

[X]
νf

αβ

β − Kb
r

∏
β

[X]
νb

αβ

β . (2.15)

For the forward rate constants usually an approach similar to the generalized Arrhenius
empirical relation

Kf
r = ArT

nr exp
(
− Er

Rm T

)
(2.16)

is employed. Here Ar is the frequency factor of the reaction, Rm the gas constant, Er

the activation energy of the reaction, and nr a non-dimensional exponent. The relation
(2.16) can then also be employed for the backward rate constant, but in most cases Kb

r

is linked with Kf
r by an equilibrium constant Kc,r (for further information one may

refer to standard literature, e.g. [29]):

Kc,r =
Kf

r

Kb
r

. (2.17)

2.1.1 Equation of state

For the link between temperature, species distribution, density, and pressure, the ideal
gas law is employed. With the ideal gas constant R the relationship reads:

p

ρ
=
∑

α

Yα

Wα
RT . (2.18)
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Using the definition for the mean molecular weight W ,

W =

(∑
α

Yα

Wα

)−1

, (2.19)

this equation solved for the pressure reduces to p = ρ
W

RT .

2.1.2 Fuel/Oxidizer Mixtures

The composition of fuel and the oxidizer – commonly air – may consist of a large
number of different species. In order to describe the state of mixture between fuel and
oxidizer by means of a small number of parameters, the mixture fraction Z will be
introduced. One possibility is to define it as the mass fraction of the chemical elements
in the gas that belong to or originate1 from the educt fuel:

Z =
ṁfuel

ṁfuel + ṁair + ṁinert
. (2.20)

Here Z is defined in terms of fractions of mass streams ṁi. Inert mass streams, as
for example Exhaust Gas Recirculation (EGR), can be considered in the determination
of Z. The stoichiometric mass fraction Zst is constant for a given fuel and oxidizer
definition. For example, the global reaction step for a propane and air mixture reads

C3H8 + 5O2 + 5 × 79

21
N2 −→ 3 CO2 + 4 H2O + 5 × 79

21
N2 . (2.21)

For this setup, the stoichiometric mixture fraction is Zst ≈ 0.0601.
In engine combustion, instead of Z the air fuel ratio afr and the equivalence ratio

φ are used. They are defined as

afr ≡ ṁAir

ṁFuel
(2.22)

φ ≡ 1

λ
≡ afr,st

afr
(2.23)

Here, also the definition of the normalized air/fuel ratio λ is shown. Neglecting inert
gas as separate streams, the relationship between φ, afr, and Z can be derived to

afr =
1 − Z

Z
, and (2.24)

φ =
Z

1 − Z

1 − Zst

Zst
. (2.25)

1In case that chemical reactions already occurred
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2.2 Statistics of turbulent flows

In a turbulent flow, the velocity field �u and the other describing field quantities are sub-
jected to random fluctuations. Therefore, the statistical distribution of all flow quan-
tities needs to be described. Be U and V two instantaneous realizations of a flow
quantity. The probability p that U is smaller than V defines the cumulative distribution
function

FU (V ) ≡ p{U < V }. (2.26)

The probability density function (pdf) of U being V can then be obtained by deriving
F with respect to V

PU (V ) ≡ dFU (V )

dV
(2.27)

satisfying the normalization condition

+∞∫
−∞

PU (V ) dV = 1. (2.28)

The mean (or expectation) of the random variable U is defined by

U ≡ 〈U〉 ≡
+∞∫

−∞

V f(V ) dV (2.29)

which also can be referred to as the first moment of U . The overline and the brackets
operator are two different conventions to specify the averaging procedure. The second
moment of U ,

〈
u2
〉
≡
〈
(U − 〈U〉)2

〉
=

+∞∫
−∞

(U − 〈U〉)2 f(V ) dV , (2.30)

is called the variance of U . The square root of the variance,
√

〈u2〉 is defined as the
standard deviation.

2.2.1 Conventional and Favre averaging

A classical approach in Fluid Dynamics is to decompose the equations (2.1–2.2)) into
a mean component and a fluctuation for all quantities. In terms of the velocity, the
decomposition reads

�u(�x, t) = 〈�u(�x, t)〉 + �u′(�x, t) with
〈
�u′(�x, t)

〉
= �0. (2.31)

This approach is called “Reynolds decomposition”.
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For flows with large variations in density as in problems involving combustion
processes, the averaging is carried out by density weighting. This approach is called
“Favre averaging” and is defined by

˜�u(�x, t) =
〈ρ(�x, t) �u(�x, t)〉

〈ρ(�x, t)〉 . (2.32)

The decomposition – the Favre decomposition indicated by double primes – reads then:

ρ(�x, t)�u(�x, t) = 〈ρ(�x, t)�u(�x, t)〉 + ρ(�x, t)�u′′(�x, t) with
〈
ρ(�x, t)�u′′(�x, t)

〉
= �0.

(2.33)
While simultaneous measurements of density and velocity are often difficult to obtain,
Favre averaging has considerable advantages for the mathematical development. As
an example, the averaging of the second (convective) term in eq. (2.1) either with the
conventional or with the Favre method will be considered. The average of the product
of the density ρ with the velocity components ui and uj would lead with conventional
averaging of 〈ρuiuj〉 to an expanded expression having five terms with the density
fluctuations ρ′ included. On the other hand Favre averaging leads to

〈ρuiuj〉 = 〈ρ〉 ũiuj = 〈ρ〉 ũiũj + 〈ρ〉 ˜u′′
i u′′

j (2.34)

with only two terms after expanding and the density fluctuations dropped.

2.2.2 The scales of turbulent motion

The first two statistical moments presented in section 2.2 only give one-point (i.e. non-
spatial) information about the turbulent flow. This information does not suffice in order
to completely describe the structure of three dimensional turbulence. Turbulent flows
are featured with a multitude of eddy motions that can be characterized by different
length scales and turnover times. If the energy contained by those eddies is plotted in
terms of their wave number, we obtain turbulent energy spectra.

In this section we will discuss several length scale definitions that give additional
information about the state of the turbulent flow. Here, for brevity, we will confine
ourselves to homogeneous turbulence. Using spatial Fourier analysis on the velocity
fluctuations u′

j , we can obtain the turbulent kinetic energy E(κ) in wave number space
κ (see f.ex. [81]). With the turbulent kinetic energy k of eddy motion, which is defined
by the trace of the Reynolds stress tensor

k ≡ 1

2

〈
u′

ku′
k

〉
, (2.35)

the following relationship exists, integrating over the entire wave number range:

k =

∞∫
0

E(κ) dκ . (2.36)
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Figure 2.1: Two realizations of the
Kármán-Pao spectrum for the turbu-
lent energy cascade normalized by the
turbulent length L and the dissipation
ε. Both curves vary in terms of the
dissipative length scale η. The spec-
trum is plotted using functional expres-
sions which will not be given here for
brevity. Those can be found in [81].

The turbulent dissipation ε, which can be described as the conversion of turbulent
energy due to molecular viscous forces into thermal energy, is defined as

ε ≡ 2ν
〈
S∗

ijS
∗
ij

〉
, (2.37)

where ν = µ/ρ is the kinematic molecular viscosity. Using that definition we can also
write in relation to E(κ):

ε =

∞∫
0

2νκ2E(κ) dκ . (2.38)

For a special but frequently used case, namely free shear flow, model spectra exist.
One of those is the so-called Kármán-Pao spectrum [64, 81], which is depicted in fig.
2.1. The spectrum can be approximately divided into four ranges. The first range
contains the large scales, which are of the size of the mean flow scales. They are larger
than the the energy containing eddies, therefore the turbulent energy increases towards
smaller scales: E ∝ κ4. In the second range around the turbulent scale

L ≡ k
3
2

ε
(2.39)

most of the turbulent energy containing eddies are found. In this range it is assumed
that turbulence is produced by mean velocity gradients.

In the third range, the so-called inertial range, it is assumed that larger turbulent
eddies break up into subsequently smaller ones, thus transferring turbulent kinetic en-
ergy to the small scales. Since in this region the turbulent production is zero and the
turbulent dissipation – as in the larger ranges – is negligibly small, the transfer rate in
the state of equilibrium must be constant. This rate must be ε. From there, we conclude
E = f(κ, ε) and assume energy conservation. Then, dimensional analysis yields

E(κ) ∝ ε2/3κ−5/3 , (2.40)



2.2. Statistics of turbulent flows 13

which is also referred to as the “minus-five-thirds-law”. Deducing from this expression
we can also formulate a turnover velocity vn for eddies of different sizes ln in relation
to an energy containing eddy of size l0 as

vn ≈ (εln)
1
3 = v0

(
l

l0

) 1
3

. (2.41)

The fourth range eventually is called the dissipative scale. As the name already
indicates, due to the small scales in this range, the molecular forces are effective for
the actual turbulent dissipation to take place, thus the conversion rate must be ε. Di-
mensional analysis here leads us to an appropriate length scale definition

η =

(
ν3

ε

) 1
4

, (2.42)

which yields the Kolmogorov scale.
In this context we also need to define further expressions for the integral length

scale. All definitions are proportional to L, that is, to k3/2/ε, but differ from each
other by fixed constants. Using

v′ ≡
√

2

3
k , (2.43)

Bray [9] defines an integral length scale as

� = a1
v′3

ε
, where a1 = 0.37 . (2.44)

This expression is frequently employed in chapter 3 where different regimes of turbu-
lent premixed combustion are discussed.

Another turbulent length scale originates from the law of the wall. Here, the mixing
length �m is defined in order to determine the turbulent viscosity µt in k, ε turbulence
models (which will be discussed below, in section 2.4). A consequence of this approach
is that in the logarithmic law region, �m is linearly dependent on the wall distance y,

�m = κy , (2.45)

with κ ≈ 0.419 being the von-Kármán constant. On the other hand, k ≈ const. Then
it can be shown – which will not be exercised here – that in the context of the k, ε
model as discussed below, the mixing length can also be expressed as

�m = cD
k3/2

ε
, (2.46)

with the constant cD = c
3/4
µ in which c

3/4
µ is the turbulent viscosity constant given in

section 2.4. Both length scales, �m and �, differ in magnitude by about 20%.
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2.3 Mean principal conservation equations

A statistical formulation of the conservation equations to be solved for requires sim-
plification and Favre averaging of the eqns. presented in section 2.1. In this section the
principal conservation equations are presented in accordance with their implementation
in the CFD code AC-FluX.

The principal, coupled PDEs solved in AC-FluX express conservation of mass,
linear momentum, energy, and chemical species [24]. Favre averaging has been applied
in order to account for density variations in the flow. The averaged momentum equation
reads

∂ 〈ρ〉 �̃u

∂t
+ ∇ ·

(
〈ρ〉 �̃u ◦ �̃u

)
= ∇ · τ t

+ ∇ · τ + ∇〈p〉 + 〈ρ〉�g . (2.47)

�g denotes the acceleration due to gravity. τ
t and τ denote the laminar viscous and

turbulent shear stresses, respectively. They are defined as

τ = ∇ · 2µS̃ (2.48)

and
τ

t
= τ t

ij = −
〈
ρu′′

i u′′
j

〉
. (2.49)

In order to ensure mass conservation, a pressure-based formulation is used. It is
based on a Poisson equation for pressure by taking the divergence of the momentum
equation (2.47) and inserting the result into the Favre averaged continuity equation
∂ 〈ρ〉 /∂t + ∂(〈ρ〉 ũi)/∂xi = 0 . The resulting equation is

∇2 〈p〉 =
∂2〈ρ〉
∂t2

−∇2 · [〈ρ〉 ũ ◦ ũ] + ∇2(τ + τ
t
) + �g · ∇ 〈ρ〉 . (2.50)

This formulation of the conservation equations enables the principal quantities to be
calculated implicitly by means of linearized discretized equations. Appropriate numer-
ical methods are for example the SIMPLE [28, 45] or the PISO [65] methods.

The PDEs for the averaged enthalpy h̃ and the species mass fractions Ỹα read:

∂ 〈ρ〉 h̃

∂t
+ ∇ · 〈ρ〉 �̃uh̃ = ∇ ·

[(
λ

cp
+

µt

Prt

)
∇h̃

]
+

∂ 〈p〉
∂t

+ �̃u · ∇ 〈p〉 (2.51)

∂ 〈ρ〉 Ỹα

∂t
+∇·〈ρ〉 �̃uỸα = ∇·

[(
µ

Scα
+

µt

Sct,α

)
∇Ỹα

]
+〈ρ〉 S̃α (α = 1, . . . , NS) .

(2.52)
Here S̃α denotes the species source and dissipation terms. Again, the averaged en-
thalpy equation (2.51) is source term free with respect to chemical reactions. The lam-
inar species diffusivities are approximated by assuming a constant laminar Schmidt
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number Scα in relation to the laminar viscosity µ. Turbulent diffusivities are related to
a turbulent eddy viscosity µt (see the following section) by means of turbulent Prandtl
Prt and Schmidt Sct,α numbers. For ideal gas flows, the average density 〈ρ〉 is ob-
tained by the equation of state (see section 2.1.1).

2.4 RANS turbulence model equations

Reynolds Averaged Navier Stokes (RANS) turbulence model equations belong to the
class of statistical turbulence models. The core of these models is to describe turbu-
lent effects in analogy to laminar physical parameters. The main assumption of these
models is the turbulent viscosity hypothesis, by means of which the effect of turbulent
eddy motion is expressed as a turbulent viscosity µt, a quantity used – in analogy to
molecular diffusivity – for description of turbulent transport. In the following we will
introduce additional quantities that are required to estimate µt.

The first turbulent transport equation describes the transport of the turbulent kinetic
energy k, eqn. (2.35). The conservation equation for k can be derived by subtracting
the averaged momentum equations (2.47) from the instantaneous ones, followed by
multiplication with uj and Favre averaging. Thus, we obtain a set of equations for the
Reynolds stresses, the trace of which yields the equation for k. Written in a form as it
is used in standard CFD codes it reads:

∂ 〈ρ〉 k

∂t
+ ∇ · 〈ρ〉 �̃uk = ∇ ·

[(
µ +

µt

Prt,k

)
∇k

]
+ P − 〈ρ〉 ε . (2.53)

The three terms on the r.h.s. describe turbulent transport, turbulent production, and
turbulent dissipation of kinetic energy (2.38), respectively. All of these terms require
modeling assumptions. To the first term assumptions have already been applied: Tur-
bulent transport is described as turbulent diffusion, its coefficient determined by the
turbulent Prandtl number Prt,k. The turbulent production

P = −
〈
ρu′′

i u′′
j

〉 ∂ũj

∂xi
(2.54)

still requires modeling of the turbulent Reynolds stresses as well as the turbulent dissi-
pation ε. For the latter quantity, a transport equation can be derived, see f. ex. Wilcox
[107], but that equation defies modeling closure.

With the equation for k, the turbulence model is not complete yet, that is, another
quantity is necessary. One possibility would be the mixing length �m. In that case, the
turbulent viscosity could be expressed as

µt = 〈ρ〉 �mu∗ , (2.55)

where u∗ is a characteristic velocity scale. In simple shear flow we can assume that u∗

is locally determined by the mean velocity gradient, therefore obtaining

u∗ = �m

∣∣∣∣∂ 〈u〉
∂y

∣∣∣∣ . (2.56)



16 Chapter 2. Physics of Fluid Dynamics

Cµ Prt,k Prt,ε Cε1 Cε2 Cε3

0.09 1.0 1.22 1.44 1.92 -0.33

Table 2.1: Model constants of the linear k,ε model.

A more general approach, proposed by Prandtl [82] and Kolmogorov [49], relates u∗

to k1/2, thus giving
µt = const. 〈ρ〉 k1/2�m . (2.57)

This approach is known as the mixing length hypothesis.
It is possible to incorporate k and �m as base for a second model equation. An

equation for k�m can be found in [83]. Today, however, commonly the turbulent dissi-
pation ε is chosen. Due to the difficulties with closing the exact transport equation for
ε, another one was postulated by Launder and Spalding [50] in analogy to the equation
for k, eqn. (2.53). This equation reads

∂ 〈ρ〉 ε

∂t
+∇·〈ρ〉 �̃uε = ∇·

[(
µ +

µt

Prt,ε

)
∇ε

]
+Cε1P ε

k
−Cε2 〈ρ〉 ε2

k
+Cε3 〈ρ〉 ε∇·�̃u ,

(2.58)
thus forming along with (2.53) the so-called “k,ε-model”. The first three terms on the
r.h.s. in (2.58) correspond to the analogous terms of the k equation, but with respect to
ε instead of k. The third term, the dissipation rate of turbulent dissipation, is closed by
assuming the eddy turnover time k/ε to be the crucial parameter, avoiding the necessity
to derive a third model equation for this term. The last term on the r.h.s. in (2.58) has no
counterpart in (2.53). It describes influence of global fluid compression and expansion
on the dissipation rate and hence on the turbulent length scale, as these effects are
present in reciprocating engines, e.g. by piston motion, see El Tahry [23]. However,
one should note that global compression and expansion is only one phenomenon of
compressible fluids. For example, gas expansion caused by (premixed) combustion
acts locally, thereby resulting in steep velocity gradients.

The model constants of the k, ε model, except for Cε3, are tuned for simple incom-
pressible flow configurations, namely for decaing homogeneous turbulence, homoge-
neous shear flow, and the logarithmic law region of wall-bounded flows.

In addition, a suitable expression for the Reynolds stress tensor needs to be found.
From the arguments mentioned above it can be estimated that

〈
u′

iu
′
j

〉
is a function of

k, ε, the velocity gradients, and its products. Using (2.6) and (2.5), a general approach
reads, here for the incompressible case,〈

u′
iu

′
j

〉
k

− 2

3
δij = aij(k, ε, S̃, Ω̃) , (2.59)

in which the normalized anisotropic tensor aij is symmetric and traceless. Further-
more, aij can be an arbitrary function that satisfies the rules of dimensional analysis.
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It is possible to expand aij into powers of the strain and rotation tensors S̃
α

Ω̃
β

, lead-
ing to linear, quadratic, cubic, etc. [80] terms. While there exist quadratic and cubic
variants of the k,ε-model, f. ex. the quadratic models of Rubinstein and Barton [84],
Shih, Zhu, and Lumley [91], and the cubic models of Craft, Launder, and Suga [15],
and Wallin and Johansson [104], only to mention a few, we will confine ourselves to
the linear k, ε model.

In the linear approach, the anisotropic components of the Reynolds stress tensor are
linearly determined by means of the strain tensor in analogy to the molecular viscous
stresses. It is also called the Boussinesq approach [8]

−
〈
ρu′′

i u′′
j

〉
= µt

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 2

3
µt

∂ũl

∂xl
δij − 2

3
〈ρ〉 kδij . (2.60)

Assuming high Reynolds numbers, the expression for the turbulent viscosity reads:

µt = Cµ 〈ρ〉 k2

ε
. (2.61)

For this linear ansatz, appropriate model constants can be found in table 2.1.
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Chapter 3

Premixed Combustion

In this chapter we will discuss physics and modeling of premixed combustion. Ide-
ally, in premixed combustion, fuel and oxidizer are completely mixed to an unburnt
mixture first before combustion takes place. In this case, the mixing process of fuel
and oxidizer is not the reaction rate dominating influence factor. The conversion of
mixture to its products can then be initiated by two different mechanisms. Depending
on the ambient conditions of pressure and temperature radicals may be formed and the
fuel thermally cracked into smaller intermediates which eventually leads to a thermal
runaway. This process is called auto-ignition. This may be unwanted in Spark Ignition
engines since it can lead to engine knock. On the other hand, for other combustion
modes, for example in diesel and Homogeneous Charge Compression Ignition (HCCI)
engines, auto-ignition is the desired initiation of the combustion process.

The second possibility for initiation is either a spark discharge or a propagating
flame front. While the auto-ignition delay time of the unburnt fuel/air mixture is very
large, diffusion of radicals and heat from the spark plasma or burnt hot gas into the
unburnt mixture cause the initiation of chemical reactions in the unburnt zone ahead of
the plasma or flame front.

In this work we will mainly focus on the second process. It contributes mainly to
the combustion mode in Spark Ignition engines and involves more complex influences
than the auto-ignition process. While auto-ignition phenomena in some cases can be
reduced to a zero-dimensional Perfectly Stirred Reactor (PSR) assumption, this is not
feasible for premixed flame propagation. In premixed flame propagation, diffusion
processes introduce a spatial influence that cannot be neglected.

Since this chapter is very substantial, its basic outline is sketched in figure 3.1.
It roots in Fluid Mechanics, Reaction Kinetics, and Turbulence Theory drafted in the
previous chapter. In the first section, laminar flamelet equations will be presented and
the physics of laminar flame propagation will be discussed. Based on that, concepts
as the laminar burning velocity, flame thickness and diffusivity are introduced and
effects of strain and curvature are discussed. A model for laminar flame propagation

19
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stratified mixtures

Spark Ignition

Figure 3.1: Structure of this chapter

modeling based on the Level Set approach is then presented in section 3.2. Next, the
concept of the turbulent burning velocity is introduced in section 3.3.1 and a premixed
turbulent combustion regime diagram according to Peters [70] is shown in section 3.3.2
which helps us to identify different turbulent combustion regimes for which different
expressions of the turbulent burning velocity are assumed. This leads to the discussion
of different aspects of the turbulent burning velocity modeling, which are: unsteady
flame behavior, model behavior close to the wall, spark ignition modeling and the
consideration of fuel/oxidizer mixture stratification.

Very briefly, also the progress variable approach for premixed combustion is pre-
sented and different models based on that approach are given. However, the main
intention of this work is not to give an introduction to this approach, only common
properties and differences to the Level Set approach are discussed.

3.1 Physics of laminar flame propagation

The models for turbulent flame propagation presented in this work are attributed to
the flamelet regime. We will define a flamelet as a thin, low-dimensional, reactive-
diffusive layer where the influence of the surrounding non-reacting flow on that layer
can be expressed by simple scalar parameters. These parameters can for example be
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the scalar dissipation rate χ and turbulent length scales.
In many types of combustion devices the turbulent time and length scales of the

chemistry are much smaller than the smallest scales of the surrounding turbulent flow.
By a first-order approximation, the combustion process – viewed microscopically –
can then be regarded as not influenced by the turbulence. This allows for decoupling
of the chemistry calculation from the prediction of the turbulent flame propagation.

When the smallest scales of the turbulence begin to interfere with the largest scales
of the premixed flame, turbulent straining effects begin to interact with the chem-
istry. However, it can be shown that up to a certain magnitude of influence, the on-
going processes can still be attributed to the flamelet regime by introducing asymptotic
second-order expansions that take into account curvature effects on the laminar flame
structure.

3.1.1 The laminar Flamelet Equations

The simplest premixed flame which is not influenced by a surrounding turbulent flow
field is a laminar unstretched planar stationary flame. For this flame, only one-di-
mensional equations normal to the front are employed. In the following, the normal
coordinate is referred to as the flamelet coordinate xn.

The equation of continuity reduces for the case of a planar flame to a constant
expression for the mass flow rate. In most cases, the unstretched laminar burning
velocity is related to the state of the unburnt. In the following, if not stated otherwise,
s0

L always refers to the unburnt.

ρu = const. = (ρs0
L) = ρus0

L,u (3.1)

Here, the expression (ρs0
L) is also referred to as the mass burning rate. For the species

diffusivity, mean diffusion coefficients Dα for each species α are assumed. Further-
more, influences of pressure gradients on the diffusion velocities are neglected as well
as thermal diffusion. Then, the equations (2.3) read:

(ρs0
L)

∂Yα

∂xn
=

∂

∂xn

(
ρDα

∂Yα

∂xn

)
+ Wαω̇α . (3.2)

The enthalpy equation (2.2) is modified according to the same assumptions. Addition-
ally, by assuming zero Mach number flow, the pressure derivative is neglected.

(ρs0
L)

∂h

∂xn
=

∂

∂xn

(
λ

∂T

∂xn

)
−
∑

α

hα
∂

∂xn

(
ρDα

∂Yα

∂xn

)
(3.3)

Since h contains the chemical heat of formation, no source terms due to chemical
reactions occur. However, the heat release ḣhr due to reactions reads:

ρḣhr = −
∑

α

hαWαω̇α . (3.4)
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Figure 3.2: Structure of a stoichiometric premixed C3H8/air flame for Tu = 335 K and p =

2.43 × 105 Pa, divided into three domains: the preheat zone, the inner layer, and the oxidation
layer. The flame temperature and the flame diffusivity D(x) evaluated at every position of the
laminar flame are plotted with respect to the perpendicular distance coordinate x.

The one-dimensional equations have two boundaries with respect to large and small
xn. For xn → −∞, inlet boundary conditions reflecting the unburnt gas species
composition and the unburnt gas temperature Tu are applied. xn → +∞ refers to the
burnt gas composition. This burnt gas composition can be assumed to be in chemical
equilibrium subjected to constant pressure, because the residence times in the burnt are
very large and spatial gradients of enthalpy and species concentrations can be neglected
there. In practice, however, instead of domain boundaries at ±∞, finite boundaries are
applied provided that give the 1D-flamelet sufficient spatial extension. The location of
the xn = x0 ≡ 0 position is for the time being arbitrary. However, as it becomes clear
in the following sections, we will define x0 as the position of maximum heat release
ḣhr.

For a laminar premixed flame the flamelet coordinate xn is equivalent to the physi-
cal normal coordinate x, which is used for the following plots of a premixed propane/air
flame. This is not the case in general. For small scale turbulence, interactions between
the flow and the flamelet may lead to non-identical coordinate transformation between
x and xn.

In fig. 3.2, the temperature T (x) and the thermal conductivity D(x) of a stoichio-
metric propane-air flame is plotted over x. D(x) has the unit of a species diffusivity
and is defined by

D(x) =
λ

ρucp

∣∣∣∣
x

. (3.5)
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Figure 3.3: Plot of flame temperature against product species concentrations for the same flame
as in fig. 3.2.
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In figs. 3.3 and 3.4, plots of heat release, fuel and major product species concentrations
are plotted as well as concentrations for major intermediate species. These plots have
been obtained using the 1D flame code FlameMaster [76]. The premixed flame in
all of these three plots is divided into three regions which are the preheat zone, the
inner layer, and the oxidation layer. The physical understanding of these sub-ranges is
explained in the following section.

3.1.2 The Structure of Premixed Flames

In 1938, Zeldovich and Frank-Kamenetzki [112] investigated the structure of a pre-
mixed flame subjected to global one-step kinetics. Even although the assumption of
one-step kinetics is overly simplifying for realistic premixed flames, main conclusions
from that simplified analysis can be drawn and used in turbulent combustion modeling.

In one-step kinetics, direct conversion of fuel and oxidizer into the product is as-
sumed. Therefore, intermediate species are not considered. The flame propagation is
induced by the transport of thermal energy from the region where the heat release oc-
curs into the unburnt gas mixture. Thus, at the head of the premixed flame front the
so-called preheat zone is formed. The mixture temperature in the unburnt gas rises
exponentially towards the reaction zone until the thermal energy reaches the activation
energy threshold of the global reaction step. This point separates the preheat zone from
the reaction zone.

In [68], Peters discusses an asymptotic analysis of the problem posed. Herein,
the laminar burning velocity is obtained as an eigenvalue. An expression for the mass
burning rate primarily depends on the ratio of the thermal conductivity λb, the heat
capacity cp, and the combustion time scale tc:

(ρusL)2 =
λb

cp

ρu

tc
. (3.6)

The square on the l.h.s. of the equation originates from the second derivative of the
heat conduction term of eqn. (3.3). The combustion time scale tc can be understood as
the time required for a premixed mixture to be consumed by a propagating flame front.
In the equation above, it is defined as

tc =
ρucp(Tb − Tu)2E2

2BρbR2T 4
b A

exp
(

E

RTb

)
. (3.7)

The meaning of each quantity will not be elaborated on in this work. They are defined
and explained in [68]. The implication of (3.7) is that tc is primarily dependent on the
ratio of burnt (Tb) and unburnt (Tu) temperatures, and the rate coefficient B as well as
the activation energy E of the underlying reaction mechanism. Effects of diffusion do
not influence the chemical time scale.

As we see from these expressions, two physical processes are mainly responsible
for the flame propagation: The first process is the chemical reaction that imposes a
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chemical time scale. The second process is the transport of thermal energy – and radi-
cals as they occur in multi-step mechanisms – into the preheat zone. Hence an increase
of burning velocity can be achieved by either decreasing tc or increasing λb/cp.

This main observation also applies to multi-step reaction mechanisms. For lean
and stoichiometric Methane/Air flames, a reduced four step mechanism was derived by
Peters [67]. This mechanism was subsequently used in order to derive an asymptotic
analysis of a stoichiometric flame [73]. As a result of this analysis, the structure of the
flame was subdivided into three regions:

• the chemically inert preheat zone as it was also found for one-step asymptotics

• the so called inner layer in which the hydrocarbon fuel is completely consumed
and intermediate species such as H2 and CO are formed, and

• the oxidation layer, where the intermediates are oxidized.

The resulting equation of the mass burning rate is of the same form as eqn. (3.6),
although the expression for the chemical time scale tc is more complex than eqn. (3.7).
The ratio λb/cp has to be evaluated at the temperature T0, which is a characteristic
temperature for the inner-layer. At the same location, the flame diffusivity D0 will be
defined, and along with the laminar burning velocity sL,u we also obtain an expression
for the laminar flame thickness �f :

D0 = sL,u�f =
1

ρu

λ

cp

∣∣∣∣
x0

. (3.8)

The exact position of the inner layer temperature T0 is assumed to be where the maxi-
mum heat release occurs, and this is at the position x = x0 as defined in the previous
subsection. The thickness of the inner layer �δ is approximately one order of magnitude
smaller than the flame thickness �f .

One statement that we can deduce from the eqns. 3.6 and 3.8 is that the depen-
dency of s2

L from D0 or λ/cp|x0 , respectively, is linear. It was justified by asymptotic
theory for lean and stoichiometric methane/air mixtures [68, 73], moderately rich and

sL,u 0.439m/s

Txo 1139K

T0 1630K

Tei 1834K

D 3.31 × 10−5 m2/s

�f 0.286 × 10−3 m, eqn. (3.8)

Table 3.1: Properties computed for the stoichiometric premixed C3H8/air flame depicted in fig.
3.2 as calculated with the methods presented in this section.
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rich methane/air mixtures [86, 85], and lean heptane flames [87]. Henceforth we will
assume that it is also valid for higher hydrocarbon flames.

For complex reaction mechanisms involving dozens of species and hundreds of
elementary reactions, an asymptotic analysis is not feasible. However, a structural
subdivision into domains is still desirable. In figs. 3.2–3.4 such a subdivision for a sto-
ichiometric propane/air flame is carried out by evaluating the slope of the heat release.
The ambient condition for that flame is chosen to be the same as for the gas mixture
used in the cylindrical vessel validation case presented in chapter 5.1.

The location of x0 was defined in section 3.1.1 as the position of maximum heat
release in the inner layer. However, a constraint for finding the beginning and the
end of the inner layer was not found. In this work, the second derivative of the heat
release ρḣhr was evaluated for this purpose. Its maximum ahead of x0 was taken as the
beginning of the inner layer (index “xo”) and the other maximum after x0 was taken
for the end of the inner layer (index “ei”). These subdivisions are employed in figures
3.2–3.4. As can be seen, it is of the same order of magnitude as �f . This is due to the
fact that in this definition of the inner layer also regions are included in which the heat
release is much lower than the maximum heat release at x0.

In table 3.1 the properties for that flame obtained by this approach are listed. The
temperature Txo therefore corresponds to the beginning of the inner layer, and Tei to
its end. It is clearly seen that the temperature range of the heat release defined by these
borders is relatively large and varies about 700 K, the flame diffusivity, cf. fig. 3.2,
about 50 %.

It needs to be noted that other different definitions of the flame thickness [32] are
also common. The definition according to eqn. (3.8) is difficult to handle because be-
sides the temperature profile, also the species concentrations need to be given at the
inner layer temperature in order to compute the flame diffusivity D0. A more conve-
nient way would be to define the flame thickness based on the temperature profile only.
This definition of flame thickness �f,grmax is only dependent on the maximum and
minimum temperatures Tad and Tu, and the largest temperature gradient that usually
coincides with the location of the maximum heat release:

�f,grmax =
Tad − Tu

(dT
dx

)
∣∣
x0

. (3.9)

This definition gives larger results than eqn. (3.8) for the thickness. However, both
definitions are approximately related to each other as

�f ≈ �f,grmax
T0 − Tu

Tad − Tu
. (3.10)

In figure 3.5, the three temperatures Txo, T0, and Tei that indicate the range of
the inner layer are plotted together with corresponding values of the flame diffusivity
over the equivalence ratio φ. Within the plotted equivalence ratio range the inner layer
temperature varies about 450 K which results in a variation for the diffusivity D0 of
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15 %. This variation is often neglected and the flame diffusivity is assumed to be
approximately constant over equivalence ratio range:

D0(φ) = sL(φ) �f (φ) ≈ const. (3.11)

In order to approximate the flame diffusivity by means of (3.8) a commonly used
relationship for hydrocarbon fuels is according to Smooke et al. [93]

λ

cp
= 2.58 × 10−5 kg

m s

(
T0

298 K

)0.7

. (3.12)

3.1.3 Influences of strain and curvature

In the previous section, the premixed flame was considered as a one-dimensional struc-
ture. However, in 3D-space, the flame front can be curved and subjected to strain
caused by the fluid flow, thus influencing the structure of the flame and modifying the
laminar burning velocity sL. In order to define and identify curvature and strain, a
reference surface for the flame front must be introduced. We will employ the position
of the inner layer x0 for the definition of this surface. In fig. 3.6, a curved surface of
the inner layer of a flame front is depicted. The xn coordinate points perpendicular to
the flame surface into the burnt gas in direction �n⊥. The coordinates ξ1 and ξ2 point
parallel to the flame surface in directions �n‖,1 and �n‖,2, respectively. The flame normal
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Figure 3.6: Schematic of a curved flame front surface.

�n is defined such that it points perpendicular to the flame front into the unburnt gas,
�n = −�n⊥ .

By virtue of these definitions, the strain of the flame is determined by

S = − (�n · ∇�u · �n)|xn=x0
. (3.13)

The curvature is then defined by evaluating

κ = ∇ · �n = −∇ · �n⊥ . (3.14)

Since the flame curvature can be different in ξ1 and ξ2 direction, κ is the gaussian mean
curvature κ = κ1 + κ2.

It can be shown (cf. [14, 59]) that for a one-step large activation energy reaction
and with the assumption of constant properties the burning velocity sL subjected to
strain and curvature can be approximated by first order to

sL = s0
L − DLκ − LS , (3.15)

where s0
L is the velocity of a planar unstrained flame, L the Markstein length, and

DL = s0
L L (3.16)

the Markstein diffusivity. By relating L to the flame thickness �f , the Markstein number

is introduced:
M =

L
�f

. (3.17)
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Effects of strain and curvature can be combined to the flame stretch K. Different
definitions of flame stretch are possible. The first definition of flame stretch was sug-
gested by Williams [109]. It represents the fractional area change of a small surface
element A which is transported with the flame:

KA =
1

A

dA

dt
. (3.18)

A recent definition traces back to De Goey and ten Tije Boonkkamp [17]. Here K is
defined by the fractional change of the mass burning rate ρsL:

KM =
1

(ρsL)

d(ρsL)

dt
. (3.19)

A comprehensive discussion of the two definitions can be found in [32]. What is left
to be noted here is that by introducing K, eqn. (3.15) gives

sL

s0
L

= 1 −MKal (3.20)

with the Karlovitz number

Kal =
ρ�f

(ρsL)

∣∣∣∣
xn=x0

K . (3.21)

Groot and De Goey [33] have investigated the burning velocity and mass burning
rates of spherical and cylindrical premixed flames. They discuss the influence of the
various flame configurations on the Markstein number for large ratios of the flame
radius to its thickness. For example, they found that if the mass burning rate of a
stationary premixed cylindrical or spherical flame was evaluated at the inner layer, it
would be almost independent of the flame radius. According to their explanation, in
this configuration at the inner layer the reaction influence would be of greater order than
that of diffusion and convection, and secondly, effects of strain and curvature would be
in balance, thus leading to zero stretch. However, they point out that it is impossible
to define unique Markstein numbers for both strain and curvature independent of the
flame configuration [34]. This finding especially holds for the influence of strain. As a
suggestion to resolve this difficulty, they propose to give a combined Markstein number
for flame stretch.

For flames subjected to strong curvature – that is, when the curvature radius is of
the order of the laminar flame thickness – Peters et al. [72] have performed 2D DNS
calculations of methane/air mixtures. The curvature effects on the net burning velocity
were investigated. Strong curvature can occur in turbulent premixed combustion when
the small eddies are able to enter the premixed zone and increase the diffusive transport
of heat and radicals in the preheat zone. The laminar burning velocity then can be
decomposed into contributions due to reaction, normal diffusion, and curvature. As an
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example, the influence of curvature on the diffusion term of the temperature equation is
shown. The same investigation can be done for the species equations. The temperature
gradient in 3D space can be expressed by the normal derivative as

∇T = �n⊥(�n⊥ · ∇T ) +
∑

j=1,2

�n‖,j

=0︷ ︸︸ ︷
(�n‖,j · ∇T ) = �n⊥

∂T

∂xn
. (3.22)

Here we also have assumed that iso-temperature surfaces locally align with iso-G sur-
faces, that is, locally there are homogeneous mixture conditions. Inserting this result
into the diffusion term gives:

∇ · (ρD∇T ) = ∇ ·
(
ρD �n⊥

∂T

∂xn

)
= �n⊥ · ∇

(
ρD

∂T

∂xn

)
+ ρD

∂T

∂xn
∇ · �n⊥

=
∂

∂xn

(
ρD

∂T

∂xn

)
− ρDκ

∂T

∂xn
(3.23)

If this derivation is appropriately carried out for the enthalpy and the species equations,
the term proportional to the curvature can be combined with the convective term on the
l.h.s. of eqns. (3.2) and (3.3), respectively. By comparing the results obtained with the
flamelet equations for a planar flame, the following expression for the flame speed can
be deduced:

sL(κ) = s0
L − Dκ , (3.24)

with the assumption that the influence of the flame stretch is of a smaller order in
comparison to curvature, viz. sL(S) ≈ s0

L.
If we compare eqns. (3.15), (3.16), and (3.17), a similar expression for the flame

speed can be derived:

sL(κ) = s0
L −MD

(
κ +

S

s0
L

)
(3.25)

With the strain term neglected and the Markstein number M = 1, this gives equation
(3.24).

The result of this simple thermal flame propagation theory is that the burning ve-
locity increases for a concave the flame front (viz. κ < 0) and decreases for a convex
(viz. κ > 0) front towards the unburnt gas. Therefore perturbations of the front are
smoothed out by diffusive effects towards a flattened flame. Effects of Markstein num-
bers different from unity are not considered because they are not identified as a leading
order influence in this limit of flame curvature and stretch.

3.2 A Model for laminar flame propagation

In this section we will discuss model equations for the description of laminar flame
propagation. These kinematic model equations are based on the Level Set approach as
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introduced at first by Williams [110]. The starting point is the kinematic equation of a
flame front “particle”. This “particle” is advected by the local fluid flow velocity �u and
the local laminar burning velocity normal to the front. The differential equation for the
particle position �xf (t) therefore reads:

d�xf

dt
= �u + sL �n . (3.26)

However, we do not want to model the flame front as a set of particles. Instead, we
employ a scalar field that defines the flame front surface as the position of one of its
iso-surface values. We will call the scalar G and the position of the flame front the G0

iso-surface of G. As reference position of the flame surface, the inner layer position
is employed, where xn = x0. The kinematic relationship between G and �x(t) then
reads:

∂G

∂t
+ ∇G · d�xf

dt

∣∣∣∣
x0

= 0 . (3.27)

In order to close eqn. (3.27), an expression for the flame normal �n in terms of G must
be found. With the assumption that G is strictly monotonic and continuous

�n = − ∇G

|∇G| (3.28)

is the flame front normal for G = G0. The following transport equation

∂G

∂t
+ �u · ∇G = sL |∇G| (3.29)

is valid only where G = G0 and effects of non-uniform flow density due to combustion
are not yet accounted for.

With the new definition of �n, the curvature still can be evaluated by means of eqn.
(3.14) using κ = ∇ ·�n and the expression for the modified burning velocity (3.24) can
be inserted into (3.27). Multiplying the result with the local density we obtain

ρ
∂G

∂t
+ ρ�u · ∇G = (ρsL,s)u |∇G| − ρDκ|∇G| , (3.30)

where sL,s ≈ s0
L. The local mass burning rate has also been replaced here by the mass

burning rate of an unstretched flame with respect to the unburnt.
For G �= G0, a suitable definition and equation for G still needs to be found. The

condition that G be strictly monotonic, will be extended into the region G �= G0. This
can be fulfilled by demanding

|∇G| = 1 . (3.31)



32 Chapter 3. Premixed Combustion

(ρsT )u (ρsT )b

sL

AT
Ã

Figure 3.7: The turbulent burning velocity sT and the turbulent flame surface AT .

3.3 Physics of turbulent flame propagation

In the following, modeling of turbulent premixed flame propagation in the flamelet
regime will be discussed. As already noted at the beginning of this chapter, in the
flamelet regime a laminar-like flame front is embedded into an otherwise turbulent
flow.

3.3.1 The turbulent burning velocity

At first the concept of the turbulent burning velocity and turbulent flame surface area
needs to be introduced. In figure 3.7, a turbulent flame front in a stationary duct con-
figuration is depicted. Due to the stationarity, the turbulent mass burning rate (ρsT ) is
equal not only to the mass flow in the unburnt but also to the burnt region. The cross-
sectional area A of the duct describes the area that can be observed from a viewpoint
perpendicular to the turbulent flame front. In fact, this front is constantly perturbed
and convoluted by the turbulence, thus enhanced to a total surface area AT . The ra-
tio between the instantaneous area of the turbulent flame front AT and the area of the
so-called mean flame front Ã is called the flame surface area ratio σ:

σ =
AT

Ã
= σt + 1 (3.32)

For a laminar flame σ = 1 or the turbulent flame surface area ratio σt = 0 . After
averaging σ (or σt, respectively) we obtain the turbulent burning velocity as:

sT = σ̃sL = (1 + σ̃t)sL . (3.33)
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Figure 3.8: The combustion regime diagram according to Peters [70].

This approach of describing the propagation is required for models based on kine-
matic equations, for example when the Level Set approach based upon the scalar G
is employed. However, there exist models where a turbulent volumetric reaction rate
is sought. For these models the flame surface density Σ is an important quantity. Σ
can be viewed as the ratio between the instantaneous flame front surface AT and the
volume containing it. Expressed in differential form it may be written as:

Σ =
dAT

dV
(3.34)

The volumetric reaction rate ω̇ is then obtained with the mass flow rate as

ω̇ = ρsLΣ . (3.35)

Its unit is mass per unit volume and time.

3.3.2 Regimes in premixed combustion

Figure 3.8 depicts different premixed combustion regimes for fully developed turbulent
flames in terms of the normalized turbulence intensity v′/sL and the normalized turbu-
lent length scale �/�f . The laminar flames regime is separated from the other regimes
by the turbulent Reynolds number

Re ≡ v′

sL

�

�f
= 1 . (3.36)
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The boundary v′/sL = 1 identifies the regime where the largest turbulent eddies
with turnover velocity v′ are able to interact with the advancing flame front propagating
with the velocity sL. This regime is called the corrugated flamelets regime. Eddies
down to a size �n with a turnover velocity vn that is larger equal to sL are active in
that regime. Those eddies push the flame front around; the kinematic advance of the
flame is unable to completely smooth out the corrugations that have been produced.
The corresponding scale of these turbulent eddies is called the Gibson scale �G. It may
be obtained by integral quantities as (see also eqn. (2.41))

�G

�
=
(

sL

v′

)3

. (3.37)

In the wrinkled flamelets regime where v′/sL < 1, the same mechanisms are ac-
tive. However here, the strongest turbulent eddies are not able to produce substantial
corrugation but only minor wrinkling. In these two regimes the thickness of the flame
can be regarded as small in comparison to the size of the turbulent eddies that can inter-
act with the flame. Therefore we will assume that – viewed microscopically – the flame
structure is not internally influenced by the turbulence. In this case, equation (3.30) can
be used for the modeling of laminar flame propagation while it is possible to omit the
curvature term on the right hand side. In comparison with the flamelet structure we
will call the turbulence in these two regimes as large scale turbulence.

In case that the smallest turbulent eddies of the Kolmogorov size η become so small
that they start to interact with the laminar flame structure, the thin reaction zones regime

is reached. The boundary that separates this regime from the corrugated flamelets
regime is determined by the turbulent Karlovitz number

Ka ≡ �2f
η2

= 1 . (3.38)

By assuming equal diffusivities ν = D and replacing η in the equation above by eqn.
(2.42) we can express Ka in terms of �f , sL, and the turbulent dissipation ε. With
ε ∝ v′3/� for constant values of Ka the following relationship is obtained:(

sL

v′

)3

∝ �f

�
. (3.39)

In this regime we will assume that the equation (3.30) is valid including the curvature
term on the right hand side. The turbulence in this regime will henceforth be charac-
terized as small scale turbulence. The correct position of the line for Ka = 1 in the
combustion diagram can be obtained by the general equation for Ka:

Ka =

(
v′

sL

) 3
2
(

�

�f

)− 1
2

. (3.40)

The range of the thin reaction zones regime extends up to the region where the
smallest turbulent eddies are of comparable size to the thickness of the inner layer �δ .
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This boundary then corresponds to a Karlovitz number Kaδ ≡ Ka (�δ/�)2 = 1. With
the approximation �δ/�f ≈ 0.1 taken from the combustion diagram of Poinsot et al.
[79] this gives Ka ≈ 100.

Above that boundary the turbulent eddies can perturb the reaction zone to such
an extent that it is torn apart and partially quenched. At such turbulence intensities
there is no premixed flamelet structure. This regime is called broken reaction zones.
Depending on the boundary conditions, the premixed mixture is either stochastically
quenched or behaves like a perfectly stirred reactor.

Another important quantity is the Damköhler number Da which is defined as the
ratio of the integral turbulent eddy turnover time to the chemical flame time. Based on
quantities of the combustion diagram, it reads:

Da =
sL

v′
�

�f
=

Re
1
2

Ka
. (3.41)

This quantity is no regime separator in the combustion diagram. However, it is a very
important quantity in turbulent burning velocity modeling. It will be discussed in the
following sections.

3.3.3 Approaches to modeling the turbulent burning velocity

In this section, we will discuss asymptotic limits of possible turbulent burning veloc-
ity approximations. In the limit Re → ∞, Damköhler [16] distinguished two limits
between which premixed turbulent flame propagation takes place: The limit of large
and small scale turbulence. With regards to the combustion regimes discussed in the
previous section, large scale turbulence would correspond to a limit in the wrinkled
and corrugated flamelets regime on the one hand, and small scale turbulence to a limit
in the thin reaction zones regime.

In the limit of large scale turbulence, Damköhler postulated the turbulent burning
velocity to be proportional to the turbulence intensity,

sT ∝ v′ . (3.42)

In this case, the turbulence intensity would be the turbulent flame surface area produc-
ing effect. The surface reducing effect which has to balance production is assumed to
be kinematically driven by the spatial propagation of the laminar flamelet and therefore
called kinematic restoration.

On the other hand, in the limit of small scale turbulence, the ratio between the
turbulent burning velocity and the laminar flame speed is assumed to be proportional to
the square root of the ratio between turbulent diffusivity and laminar heat conductivity
(or flame diffusivity):

sT

sL
∝
√

Dt

D0
. (3.43)
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The latter relationship takes into account that there is an interaction of turbulent eddies
with the preheat zone of the flamelet structure which in turn enhances mixing for heat
and radicals and transport into the unburnt. The relationship is postulated in analogy to
the expression (3.6) for laminar flames. As becomes clear below, also the turbulence
intensity is the flame front producing effect in this limit, but here the flame front is
reduced by scalar dissipation. It needs to be noted that with Dt ∝ v′� eqn. (3.43)
gives sT ∝ v′1/2. Therefore, in small scale turbulence, the increase in burning velocity
with respect to turbulence intensity is attenuated as in comparison to the large scale
turbulence expression (3.42). This behavior is called bending effect.

Examination of the compilation of experimental results by Abdel-Gayed et al. [1]
for large scale turbulence (Re → ∞ and v′/sL → ∞) indicates the following rela-
tionship:

sT − sL = b1v
′ with b1 = 2.0 . (3.44)

For small scale turbulence, we postulate

sT − sL

sL
= b3

(
Dt

D0

)1/2

. (3.45)

Both expressions are defined in such a way to yield consistent expressions for sT in
the limit of vanishing turbulence v′ → 0.

The constant b3, however, still needs to be determined. DNS simulations by Wenzel
[105, 106] indicate a variation of b3 from 0.95 to approx. 1.2 depending on Reynolds
and Damköhler number with a mean of b3 = 1.07. The predictions tend to 1.0 for large
Reynolds numbers what is also Damköhler’s assumption. From this point, b3 = 1.0
appears to be a good choice. Using

Dt = a4 v′ � , (3.46)

eqn. (3.8), and introducing the turbulent flame surface area ratio by means of (3.33) we
can rearrange (3.44) and (3.45):

σ̃t = b1
v′

sL
and σ̃2

t = a4 b2
3

�

�f

v′

sL
. (3.47)

In both equations the effect of kinematic restoration is expressed as sLσ̃t and scalar
dissipation as Dσ̃2

t , respectively.
Since these two expressions only give expressions for the (normalized) turbulent

burning velocity in two limits, a combined expression is sought that yields a contin-
uous transition from the one limit to the other. Following the arguments above, the
turbulence intensity is identified as the driving force of flame surface production for
both limits. On the other hand, the destruction term of flame surface area can be de-
composed into a contribution due to kinematic restoration and another one to scalar
dissipation. Combining both equations leads to the quadratic equation

σ̃2
t

a4b2
3

�f

�
+

σ̃t

b1
=

v′

sL
. (3.48)
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The physically only possible solution of this equation – expressed in terms of the tur-
bulent burning velocity normalized against the turbulence intensity and the Damköhler
number Da (3.41) – is:

∆s

v′ ≡ sT − sL

v′ = σ̃t
sL

v′ = −a4b
2
3

2b1
Da +

√(
a4b2

3

2b1
Da

)2

+ a4b2
3Da . (3.49)

This relationship was found by Peters [71]. All constants are summarized in table 3.2
on page 53.

The expression (3.49) for the normalized turbulent burning velocity is a function of
Da and not of the Karlovitz number Ka. If one took the remarks in section 3.3.2 into
account, a function in terms of Ka instead of Da would be more appropriate. In view
of eqn. (3.41) this would require introducing the Reynolds number Re. However, we
want to employ a turbulent combustion model here that is compatible to a turbulence
model which is based on integral scales, and which is independent of the Reynolds
number. Additionally, a set of model coefficients for such a Reynolds-dependent ap-
proach would require a database of DNS results over a wide range of Reynolds numbers
that are not available at present. The Damköhler number is based on integral scales,
hence independent from the Reynolds number.

At last, it needs to be noted that the expression (3.49) is only valid for fully de-
veloped flames. For developing or instationary flames, a modified expression needs to
be found. For example, in spark ignition problems, the flame is initiated as a small
laminar-like kernel that at first propagates with a velocity close to the laminar flame
speed. In equation (3.49), however, no measure for the development of the flame is
included and thus with this expression a too high flame speed is predicted for the early
spark kernel. As a consequence, in the following sections this expression will be mod-
ified in order to account for the magnitude of flame development.

3.4 Progress variable approaches

It is very appealing to formulate a model for the description of turbulent flame propa-
gation that is based on a progress variable approach, because the fractions of burnt and
unburnt gases in the flow problems can be calculated very easily, and the source term
in the transport equation for the progress variable can also very easily be linked to the
heat release.

In terms of the laminar flamelet structures, the flamelet progress parameter c can
be defined as a nondimensional temperature

c ≡ T − Tu

Tb − Tu
, (3.50)

or as the mass fraction of the product species Yp over the possible maximum mass
fraction in the burnt Yp,b:

c ≡ Yp

Yp,b
. (3.51)
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Other definitions of c slightly differ from these two approaches presented, f. ex. by
additionally taking into account equilibrium chemistry.

c represents a nondimensional coordinate for a premixed flamelet. It may therefore
replace the normal coordinate xn in the flamelet equations (3.2-3.3) as introduced in
section 3.1.2. c must be monotonic, that is, in the reference frame of the flamelet

∂c

∂xn
≥ 0 . (3.52)

In analogy to (2.3) the conservation equation for the flamelet progress variable
reads

∂ρc

∂t
+ ∇ · (ρ�uc) = ∇ · (ρD∇c) + ω̇c , (3.53)

where ω̇c is the reaction rate of the premixed flamelet for a given c. We will derive in
the following a conservation equation for the Favre average c̃. This equation will also
need an average for the reaction rate.

Favre averaging leads to a transport equation for the mean progress variable

c̃ =
Ỹp

Ỹp,b

(3.54)

that reads
〈ρ〉 ∂c̃

∂t
+ 〈ρ〉 �̃u · ∇c̃ = ∇ ·

(
µt

Prt
∇c̃

)
+ ˙〈ωc〉 . (3.55)

For the mean reaction rate ˙〈ωC〉, a model closure is required.

3.4.1 The Eddy-Breakup-Model

A possible closure for ˙〈ωC〉 is the Eddy-Breakup-Model (EBU model) [94, 95]. It
relates the average reaction rate to the inverse of the integral turbulent time scale τt ≡
k/ε,

˙〈ωC〉 = CEBU 〈ρ〉 ε

k
c̃(1 − c̃) . (3.56)

The maximum of the reaction rate occurs therefore at c̃ = 1/2. CEBU is a modeling
constant.

The EBU model estimates the mean reaction rates without the inclusion of chem-
ical kinetics and the laminar burning velocity. Since the influence of turbulence is
only considered by using integral time scales and not by ratios of turbulent to chemical
time and length scales, this model is unable to capture the interaction of the flow with
chemistry.

Close to a wall, the turbulent time scale τt will tend to zero because k → 0 for the
wall distance y → 0 [81]. In that limit ˙〈ωC〉 predicted by the EBU tends to infinity
which means that the turbulent flame is accelerated close to walls. Therefore without
appropriate wall modeling, the EBU gives inconsistent predictions in near wall regions.
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Despite these defects, this model is widely used, especially in industrial design
processes because of its attractive simplicity. In these cases the model factor CEBU is
varied in order to obtain acceptable numerical predictions.

3.4.2 The Bray-Moss-Libby Model

While the EBU model is independent of chemistry, the Bray-Moss-Libby (BML) [10]
model belongs to the class of flamelet models. It assumes an inner structure of the
underlying laminar flamelet. Next to the reaction rate ˙〈ωC〉 the probability function
p(c, �x) of finding an instantaneous flamelet progress is employed. This pdf consists
essentially of two delta peaks for finding the unburnt and burnt state, and of a functional
expression f for finding the reacting flamelet:

p(c, �x) =

{
α(�x) for c = 0
β(�x) for c = 1

(1 − α(�x) − β(�x))f(c, �x) for 0 < c < 1 .
(3.57)

Starting from there, two different formulations for the mean reaction have been estab-
lished in literature. The first one is based on postulating an expression for the scalar
dissipation, the other one employs flame crossing frequencies.

Scalar dissipation formulation

By means of the pdf approach (3.57), a reaction rate balanced progress variable

cm ≡
∫ 1

0
c ω̇c(c) f(c) dc∫ 1

0
ω̇c(c) f(c) dc

(3.58)

represents one input of the flamelet chemistry into the turbulent reaction rate model.
For the simple BML model, we get:

〈ω̇c〉 =
〈ρ〉 χ̃c

2cm − 1
. (3.59)

Here χ̃c is the scalar dissipation of c, which is commonly modeled as

χ̃c =
ε

k
c̃′′2 . (3.60)

If no equation for the variance of c, that is c̃′′2, is solved for, this quantity is also
modeled:

c̃′′2 = c̃(1 − c̃) . (3.61)

In this form the BML model is – apart from the constant CEBU – equal to the EBU
model.
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Flame crossing frequency formulation

This formulation is based on the assumption that for developed turbulent flames the
mean reaction rate is more dependent on the frequency of passing the instantaneous
flame front at a given point within the turbulent fluctuating flame than the chemistry of
the laminar flamelet. Then the mean reaction rate is determined to

〈ω̇c〉 = ω̇c fc , (3.62)

where fc is an expression for the flame crossing frequency times the probability to be
within the the reacting flame and ω̇c the reaction rate per flame crossing

ω̇c =
ρ0s

0
L

�f/tt
(3.63)

with tt being the time to cross the flame.
With a suitable assumption for fc [78] the mean reaction rate finally is given by:

〈ω̇c〉 = 2
ρ0s

0
L

�f/tt

ε

k
c̃(1 − c̃) . (3.64)

In practice it is difficult to determine fc or tt appropriately [78]. If one assumes
for the transit time tt the relationship tt = �f/s0

L again an EBU type of reaction rate
is recovered.

3.4.3 Flame Surface Models

The request to determine the mean reaction rate without tuning the model constant(s)
and expressions in the EBU or BML models led to the class of the so-called flame
surface models. Here the mean reaction rate is determined by the laminar mass burning
rate (ρs0

L), a stretch factor I0 [9], and the flame surface density Σ as defined in (3.34):

˙〈ωC〉 = (ρs0
L)I0Σ . (3.65)

For the flame surface area, a conservation equation is being solved for:

〈ρ〉 ∂Σ

∂t
+ 〈ρ〉 �̃u · ∇Σ = ∇ ·

([
µt

Sct
+

µ

Sc

]
∇Σ

)
+ α0

ε

k
〈ρ〉Σ − 〈ρ〉D (3.66)

The convective and diffusive terms can be identified in analogy to regular transported
scalars. The second term on the r.h.s. models production, with α0 being a model pa-
rameter, and is given in a form here in common with most flame surface models [78].
The last term on the right hand side describes dissipation of flame surface density in
which the destruction D varies for different model variants. In many of these models,

D ∝ Σ2 . (3.67)
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As can be seen in this model example, only local flamelet parameters are used in
order to close the reaction term. That means that no spatial gradients of the mean
progress variable are employed. In this model, the thickness of the turbulent flame is
not used. It could be evaluated, however, for example by |∇c|−1.

For an infinitely thin flame, the gradient |∇c| tends to infinity. On a numerical grid
with a finite resolution, such a gradient cannot correctly be evaluated. Additionally
the source term 〈ω̇c〉 becomes a delta peak, which can cause numerical inaccuracies
in predicting the correct flame propagation. This also holds for thin flames if those
thicknesses are smaller than the computational grid size, with the implication that the
model in this limit is not grid independent. Either artificial thickening of the flame or
grid refinement is required.

We conclude therefore that a combustion model, based on a turbulent burning ve-
locity approach as discussed in section 3.3.3 is not recommended to be used in con-
junction with a progress approach based flamelet model, because a consistent flame
propagation prediction in the regime of laminar flames is not feasible. Additionally,
we will see in the following sections that another important parameter for the turbulent
burning velocity is the thickness of the turbulent flame brush. This quantity cannot
correctly be evaluated in all possible cases by means of a progress variable approach.

As a consequence, a turbulent flamelet approach is required that can return reliable
information on flame thicknesses not only for fully turbulent flames, but also in the
limit of laminar structures. Such requirements can be met by employing Level Sets.

3.5 The Level Set approach

In the following, we will derive kinematic equations for both the position of the mean
flame front and the thickness of the flame brush. First an appropriate averaging pro-
cedure has to be defined for this. A suitable averaging procedure has already been
introduced by Oberlack et al. [63] for incompressible fluids. In this averaging proce-
dure the probability of finding the flame surface of the underlying flamelet structure
is required. Any reference position xn of the premixed flamelet could be used, but it
is particulary useful to employ the xn = x0 surface. The reaction zone in premixed
flamelets with a finite thickness represents then the reference.

For the coupling of the premixed combustion modeling equations with the equa-
tions of the mean flow, the mean species distribution is needed. Since these equations
are formulated for a compressible flow and therefore Favre averaged (see also sections
2.2.1 and 2.3) the averaging procedure mentioned above needs to be suitably extended
for compressibility.

As a clarifying example, an infinitely thin flame sheet may be discussed. In this
case, only the thermodynamical states of the burnt and the unburnt gas composition are
relevant. Here, fb be the volumetric probability of finding burnt gas. In order to obtain
the mean species distribution Ỹi, fb must be mass weighted by

〈ρ〉 Ỹi = ρuYi,u(1 − fb) + ρbYi,bfb . (3.68)
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For the mean density we obtain

〈ρ〉 = ρu(1 − fb) + ρbfb . (3.69)

From a numerical point of view the mass averaged probability P̃b is an important
quantity. It can be determined to

P̃b =
ρbfb

ρbfb + ρu(1 − fb)
(3.70)

as the mass fraction of burnt gases to the total sum of combustible gases. It is therefore
equal to the progress variable c̃ defined in section 3.4.

As for CFD, it has been found desirable to define the mean flame front position
where P̃b = 1/2 and not where fb = 1/2 which is also possible.

The volumetric averaging as conducted in [63] reads:

〈〈�xf 〉〉 ≡
+∞∫∫∫
−∞

�xf P (�xf ) d�xf . (3.71)

Here 〈〈�xf 〉〉1 denotes the position of the volumetricly averaged flame front, �xf an in-
stantaneous realization of the flame front position, and P (�xf ) the probability of finding
the instantaneous position in 3D-space of the xn = x0 position in flamelet space. As
we can see from that definition the mean flame front position would be with this kind
of averaging at the volumetric probability fb = 1/2. This is also a formally correct
approach of postulating model equations, but in numerical simulations with a CFD
code using compressible equations of fluid dynamics, it has proven to be less accurate.
This can be attributed to the fact that with volumetric averaging, a broadening of the
turbulent flame brush causes the mass of the gases to move towards the burnt gas com-
position since the unburnt gas has a higher density than the burnt. This again causes
finally a movement of the mean flame front position.

With mass weighted averaging, on the other hand, this movement is avoided be-
cause at the mean flame front the averaged masses of burnt and unburnt gas are equal.
Therefore, the masses of burnt and unburnt gases are balanced on both sides of the
mean flame front by means of this approach and a mean flame front movement due to
flame brush broadening is avoided.

3.5.1 Unclosed mean flame front position equation

The goal in this section is to derive a kinematic equation for the mean flame front
position. As in laminar combustion, we will employ an equation of level set type that

1For better typesetting and understanding of wide expressions, here the symbol “ 〈〈 〉〉 ” is used instead of
the symbol “̂” as introduced in [63] for the averaging operation of level set related expressions.
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unburnt burnt

�̃n

G̃ = G0

�g

G = G0

�̃xf

�xf

Figure 3.9: Fluctuating and mean flame front position.

will have a similar form as equation (3.30). In contrast to the laminar field G we will
introduce the field G̃ and define the mean flame front position where

G̃ = G0 . (3.72)

Then we will introduce mass weighted averaging by an averaging procedure in the
spirit of eqn. (3.71):

〈ρ〉 �̃xf ≡ 〈〈ρ �xf 〉〉 ≡
+∞∫∫∫
−∞

ρ(�̃xf |�xf
) �xf P (�xf ) d�xf . (3.73)

That means that eqn. (3.72) is valid exactly where �x = �̃xf . Here for both the mass
weighted flame front position �̃xf and the level set field (3.72) the symbol “˜” as for
Favre averaging is employed in order to indicate an averaging procedure. This should
not be mistaken as Favre averaging as it was presented in section 2.2.1. As Oberlack
[63] has pointed out, an averaging procedure in the form G = G̃ + G′ is not possible
because G̃ is not per se defined outside of G0. In (3.73), the density ρ(�̃xf |�xf

) denotes

the instantaneous density at the mean flame front position �̃xf conditioned on the posi-
tion of the fluctuating flame front �xf . Therefore, except for �xf , only quantities on the
G̃ = G0 iso-surface are employed.

This averaging procedure appears to contradictory since in order to determine the
density ρ( �̃xf | �xf

), already the averaged position of �̃xf is needed. However, this ap-
proach allows for a density weighted averaging procedure while at the same time the
averaging constraints [63] are met. Secondly, with eqn. (3.73), P̃b = 1/2 for thin
flames exactly where G̃ = G0.

It is apparent that there exist global curvature effects in turbulent flames that need to
be modeled. Shepherd and Cheng [90], in order to consider these effects, distinguished
between the turbulent consumption speed SC – as a correspondence to the turbulent
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burning velocity – and a displacement speed SD that accounts for a net flux of burnt
gases into the unburnt or vice versa for spherical flame shapes. Lee and Lee [52] em-
ployed a correction method in their experimental data processing in order to render the
results for turbulent flame speed independent from the globally curved flame produced
in the experimental burner. Even though the qualitative phenomenon is reported in the
literature, quantitative estimations are not found.

In terms of the implications for the equation of the mean flame front positions,
these curvature effects were first introduced into the equation for G̃ in [69], but they
were not considered in [63]. In order to derive a kinematic equation of G̃ on the mean
flame front position that also accounts for these mean turbulent curvature effects, the
correlation of velocity and flame front fluctuations needs again to be accounted for.

In fig. 3.9, the vector �g is introduced as the distance between �xf and �̃xf . With

�g ≡ �xf − �̃xf (3.74)

and the euclidean norm of �g
g ≡ −sign(G) |�g| (3.75)

we can define a Level Set G∗ on the mean flame front G̃ = G0 accounting for the front
fluctuations:

G∗ ≡ G̃ + g . (3.76)

This Level Set G∗ is independent of the definition for G̃ and G outside of the mean
flame front. However, we impose that G∗ satisfies the distance constraint |∇G∗| = 1

outside of G̃ = G0. The starting point then is the substantial derivative of G∗:

DG∗

Dt
= 0 ⇒ ∂G∗

∂t
+ ∇G∗ · d�xf

dt
= 0 . (3.77)

Inserting (3.26) into the latter and using a suitable velocity decomposition

d�xf

dt
= �̃u + �u′′ + sL(κ)�n (3.78)

yields after a multiplication with the density and after averaging:

〈ρ〉 ∂G̃

∂t
+ 〈ρ〉∇G̃ · �̃u + 〈ρ〉 ˜∇g · �u′′ + ∇G̃ · 〈〈ρ(sL(κ)�n)〉〉 = 0 . (3.79)

The last two terms on the left hand side of this equation still remain unclosed. The
third term on the left hand side appears as a common turbulent transport term that is
modeled with a turbulent diffusion type of approach for conventional scalars. Such a
modeling is not feasible here since this would imply an information transport from the
G̃ field outside of G0 that violates the generalized scaling symmetry of the G-equation
as discussed in [63]. Only information tranport tangential to the mean flame front
surface is allowed for. On the other hand, this term can only be oriented normal to the
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flame surface. Modeling approaches that take this constraint into account are discussed
in section 3.5.3.

The last term on the l.h.s. is the turbulent flame propagation term expressing the
flame propagation by the turbulent burning velocity:

〈〈ρsL(κ)�n〉〉 = (ρsT )�̃n . (3.80)

In this context �̃n is the normal of the mean flame front as shown in fig. 3.9. It is defined
in analogy to (3.28) as

�̃n = − ∇G̃

|∇G̃|
. (3.81)

This definition is feasible since it does not violate the symmetries of the G-equation.
Provided that G̃ is continuous and monotonic in that region �̃n does not change its
direction on the mean flame front surface independent from the definition of G̃ outside
of the flame front.

The numerical procedure, as will be outlined in the following chapter and in ap-
pendix B, ensures that |∇G̃| = 1, which will therefore vanish, if that procedure is
applied. However, for consistency, this gradient is still taken account of where re-
quired in case that a different numerical procedure is employed that does not strictly
guarantee |∇G̃| = 1.

In view of
∂G̃

∂t
+ ∇G̃ · d�̃xf

dt
= 0 , (3.82)

the kinematic equation for �̃xf is finally determined by comparison with (3.79) as

d�̃xf

dt
= �̃u + ( ˜∇g · �u′′) · �̃n +

(ρsT )

〈ρ〉 �̃n . (3.83)

3.5.2 Unclosed equation for the flame brush thickness

The turbulent flame brush thickness �f,t is defined as the square root of the variance
G̃′′2 of the G-equation:

�f,t ≡
√

G̃′′2

|∇G̃|
. (3.84)

The averaging operator that yields the variance is valid on the mean flame front position
only. It can be defined in analogy to (3.73) as:

〈ρ〉 G̃′′2 ≡ 〈〈ρ g2〉〉 =

+∞∫∫∫
−∞

ρ(�̃xf |�xf
)�g2 P (�xf ) d�xf . (3.85)



46 Chapter 3. Premixed Combustion

In order to derive an average of the substantial derivative of �g2 at first the following
decomposition is applied:

�g2 = G̃′′2 + g′′ . (3.86)

On the one hand, the substantial derivative is given as

D�g2

Dt
=

∂(G̃′′2 + g′′)
∂t

+ ∇(G̃′′2 + g′′) · d(�̃xf + �g)

dt
(3.87)

After multiplying with the density and after the averaging operator we obtain

〈ρ〉 D�̃g2

Dt
= 〈ρ〉 ∂G̃′′2

∂t
+〈ρ〉∇G̃′′2 · d�̃xf

dt
+〈ρ〉 ˜∇g′′ · u′′+〈〈ρ∇g′′ ·(sL�n)〉〉 . (3.88)

On the other hand, after exercising the chain rule of differentiation, the substantial
derivative gives

D�g2

Dt
= 2�g · d�g

dt
(3.89)

and with (3.74), (3.78), and (3.83) the following relationship

D�g

Dt
= �u′′ + sL�n −

[
(ρsT )

〈ρ〉 + ˜∇g · �u′′
]

�̃n (3.90)

can be inserted into (3.89). Multiplying the latter equation with the density and apply-
ing the averaging operator yields

〈ρ〉 d�̃g2

dt
= 〈〈2ρ�g · �u′′〉〉 + 〈〈2ρ�g · (sL�n)〉〉 . (3.91)

Combining equations (3.88) and (3.91) then yields:

〈ρ〉 ∂G̃′′2

∂t
+〈ρ〉∇G̃′′2·d�̃xf

dt
+〈ρ〉 ˜∇g′′ · u′′+ ̂ρ∇g′′ · (sL�n) = ̂2ρ�g · �u′′+ ̂2ρ�g · (sL�n)

(3.92)
The second term on the l.h.s. on eqn. (3.92) shows that the scalar G̃′′2 is advected

not by the mean flow velocity �̃u but by the propagation of the mean flame front position.
The last two terms on the left hand side describe turbulent transport effects that with
the arguments given in the previous section can be modeled using a diffusion type
approach acting tangential to the mean flame front. The first term on the right hand
side describes turbulent production of G̃′′2. Since the laminar burning velocity sL of
the second term on the right hand side is dependent on laminar flamelet curvature, this
term describes the destruction of variance either due to kinematic restoration or due to
scalar dissipation, depending on the magnitude of the local flamelet curvature.

It needs to be kept in mind that (3.92) is only defined at G̃ = G0 and an extension
into the whole computational domain is required. Such an extension is discussed in the
next section.
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3.5.3 Modeling closure

In the preceding section, the kinematic equations for G̃ and G̃′′2 have been left un-
closed concering the diffusion terms, the production, and the dissipation term. In this
section possible closures of these terms will be presented. At first, the kinematic equa-
tion for G̃′′2 will be closed. Then, the kinematic equation for G̃ will be closed with
respect to the turbulent transport term and several possible closure approaches will be
presented. Those are partially based on G̃′′2. Finally, G̃′′2 will also be introduced into
the equation for σ̃t, thereby adopting the unsteady behavior of the G̃′′2 for modeling
the turbulent burning rate.

G̃′′2 - closure

The turbulent production term in the G̃′′2-equation will be closed assuming a classical
gradient transport hypothesis by

〈〈2ρ�g · �u′′〉〉 = 2 〈ρ〉Dt(∇G̃)2 , (3.93)

where the turbulent diffusivity Dt is related to the turbulent viscosity as

Dt ≡ µt

〈ρ〉Sct
. (3.94)

The flame brush thickness reducing term 〈〈2ρ�g · (sL�n)〉〉 is either dominated by
kinematic restoration in the corrugated flamelets regime, or by scalar dissipation in the
thin reaction zones regime. In the latter case the curvature term in eqn. (3.24) becomes
dominant so that

〈〈2ρ�g · (sL�n)〉〉 ≈ 〈〈2ρ�g · (−D�n∇ · �n)〉〉 = χG (3.95)

showing the scalar dissipative nature of the term in this limit. Here, we will follow the
unified approach by Peters [70] for both regimes. There, a classical approach is used,
assuming a constant ratio between the turbulent mechanical and scalar time scales and
thereby relating the scalar dissipation χG to the turbulent dissipation ε [102, 46]. Then,
this reads

〈〈2ρ�g · (sL�n)〉〉 = −cs 〈ρ〉 G̃′′2 ε

k
(3.96)

in which by calculating the turbulent and scalar spectra the constant cs = 2.0 [70] for
both combustion regimes is used.

The turbulent transport terms on the l.h.s. of eqn. (3.92) are modeled by a mean
gradient transport hypothesis type of approach:

− 〈ρ〉 ˜∇g′′ · u′′ − 〈〈ρ∇g′′ · (sL�n)〉〉 = ∇|| ·
(
〈ρ〉Dt∇||G̃′′2

)
(3.97)
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The || subscripts on the ∇ operators indicate that spatial gradients only tangential to
the mean flame front positions are considered.

Compiling all modeling closures into (3.92), we obtain:

〈ρ〉 ∂G̃′′2

∂t
+〈ρ〉 d�̃xf

dt
·∇G̃′′2 = ∇||·

(
〈ρ〉Dt∇||G̃′′2

)
+2 〈ρ〉Dt(∇G̃)2−cs 〈ρ〉 G̃′′2 ε

k
(3.98)

Neglecting the temporal and spatial derivatives we can derive a steady state, algebraic

solution for G̃′′2,
2Dt(∇G̃)2 = csG̃′′2

alg

ε

k
. (3.99)

If we solve this equation for G̃′′2
alg, keeping in mind that Dt ∝ k2/ε and �t ∝ k3/2/ε,

it becomes evident that G̃′′2
alg ∝ �2t if |∇G̃| = 1. In analogy to eqn. (3.84) we define

the algebraic flame brush thickness

�f,t,alg ≡

√
G̃′′2

alg

|∇G̃|
(3.100)

which is as well as �t a turbulent length scale, however with a different constant factor.
We can conclude that for a fully developed turbulent flame in steady state, the flame
brush thickness �f,t must be proportional to the turbulent length scale �t.

For unsteady turbulent flames subjected to constant turbulent intensity and length
scales a flame response equation can be derived. From (3.98), only assuming spatial
homogeneity, we can obtain an ordinary differential equation in time. The solution of
that is:

G̃′′2(t) = G̃′′2(t = 0) exp
(
−cs

ε

k
t
)

+ G̃′′2
alg

[
1 − exp

(
−cs

ε

k
t
)]

. (3.101)

The response of G̃′′2 to changes in the turbulent length scale is therefore of the order
of the turbulent eddy turnover time τt = k/ε.

Outside of G̃ = G0, it is very appealing also to employ the equation (3.98). How-
ever, it needs to be ensured that information of the flame front propagates into the
domain and not vice versa, see also [63]. Herrmann [42], for example, has applied a
so-called “redistribution” step, by which G̃′′2 is imposed to be constant normal to the
flame outside of the mean flame front,

∇G̃ · ∇G̃′′2 = 0 . (3.102)

If the latter constraint is strictly imposed, two different types of PDEs have to be si-
multaneously solved in the domain.

Here, we will focus on an appropriate definition of the advective term d�̃xf/dt. If
the gradients of G̃′′2 normal to the flame front are negligibly small, the only significant
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component will be the mean velocity tangential to the mean flame front. In order to
ensure the propagation of information normal from the mean flame front surface into
the burnt and unburnt domain we will use the maximum turbulent burning velocity
approximation as the transport speed of that information. In view of eqn. (3.44) we
will adopt (3.78) especially for the G̃′′2 equation (3.98) such that

d �xf

dt
= �̃u − b1v

′ sign(G̃)�n (3.103)

with sign(G̃) = 1 if G̃ > G0 and sign(G̃) = −1 otherwise. With this approxima-
tion of the turbulent burning velocity and curvature terms, this setting is on the mean
flame front position in line with (3.78) and ensures consistent advective propagation of
information. Additionally, the closed equation for G̃′′2 is independent of the laminar
flamelet properties and only one type of PDE is employed inside and outside of the
mean flame front.

G̃ - closure

With regards to the G̃-equation, a closure for the turbulent transport term ˜∇g · u′′ must
be found. Since G̃ is a level set field variable information from outside of the mean
flame front position must not be taken. Usually, the turbulent transport term will be
closed using a diffusion type approach. Here, in analogy to eqn. (3.23) for laminar
flames, this term will be closed as

˜∇g · u′′ = D′
tκ̃|∇G̃| , (3.104)

where
κ̃ = ∇ · �̃n (3.105)

is the curvature of the turbulent mean flame front. The closed transport equation there-
fore reads:

〈ρ〉 ∂G̃

∂t
+ 〈ρ〉∇G̃ · �̃u = −〈ρ〉D′

tκ̃|∇G̃| + ˜(ρsT )|∇G̃| . (3.106)

Here D′
t is the effective turbulent diffusivity of the curvature term for which an appro-

priate closure needs to be found. In [69] and [70], the equality

D′
t = Dt (3.107)

was used. From the unclosed term (3.97), a mixing length approach reads

D′
t =

√
cµcs

2Sct
�f,tk

1/2 . (3.108)

Here �f,t acts as a mixing length for the turbulent flame. The constants on the r.h.s. of
eqn. (3.108) have been chosen such that the equality (3.107) is again obtained if G̃′′2
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is in steady state, that is, if (3.99) is valid. Eqn. (3.106) could be defined in the whole
domain. However, in order to maintain smooth gradients and a continuous G̃ field
everywhere, (3.106) is restricted to the mean flame front surface G̃ = G0. Everywhere
else, a signed distance constraint is applied, expressed as

|∇G̃| = 1 . (3.109)

Turbulent Flame Surface Area Ratio

Now, for the σ̃t-equation, an unsteady but algebraic expression will be introduced. The
expression for σ̃t (3.49) does not account for unsteady flame development effects. The
development of the turbulent flame can be measured by the relationship between the
turbulent flame brush thickness and the turbulent length scale, for example by the ratio

�∗ ≡ �f,t

�f,t,alg
. (3.110)

The condition �∗ = 0 then refers to a laminar flame configuration, �∗ = 1 to a
fully developed one. The ratio now can be appropriately accounted for by introducing
�f,t into the expressions for the turbulent burning velocity used in the equations for
large and small scale turbulence, (3.44) and (3.45), respectively. For a fully developed
turbulent flame, the expressions discussed in section 3.3.3 need to be recovered.

In large scale – we recall the relationship σ̃t = b1 v′/sL for full development –
two possibilities are investigated:

1. Employing dimensional analysis, Peters [70] suggests the scaling sLσ ∝ �f,tε/k
in large scale turbulence. In there, �f,t can be viewed as a mixing length. In or-
der to follow that approach and determine the correct proportionality constants,
we replace v′ in (3.44) with aid of (3.94) and (3.108) such that

sL σ̃t = b1

(
Sct cs

3cµ

) 1
2

�f,t
ε

k
. (3.111)

2. The other approach is again based on (3.44). In contrast to the previous ap-
proach, we employ for the turbulence intensity v′ only turbulent eddies that can
enter the developing turbulent flame brush. Those turbulent eddies must be equal
to the thickness of the turbulent flame brush or smaller. Fundamental turbulence
theory therefore suggests the scaling �∗1/3. We obtain:

sL σ̃t = b1v
′�∗1/3 . (3.112)

The fundamental difference between both approaches is the exponent on �f,t. For a
fully developed flame, i.e. �∗ = 1 both approaches give the same result.
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Figure 3.10: Plot of normalized σ̃t over �∗ for the two different values of the model parameter q
as given by eqn. (3.115).

For small scale turbulence, Dt in eqn. (3.45) is replaced by using (3.99), that is, by
assuming that production equals dissipation for G̃′′2/(∇G̃)2. Thus we obtain

D0 σ̃2
t = b2

3
cs

2
�2f,t

ε

k
. (3.113)

This equation underlines the assumption that in the small scale turbulence regime the
total average flame surface area balance is controlled by scalar dissipation.

If we carry out the same algebra as in section 3.3.3 using any of the two approaches
in the large scale turbulence limit, a modified expression for σ̃t is obtained:

σ̃t = − b2
3

4b1

√
3cµcs

Sct

�f,t

�f
�∗q

+

√
b4
3

16b2
1

3cµcs

Sct

�2f,t

�2f
�∗2q +

csb2
3

2sL�f
�2f,t

ε

k
. (3.114)

With the Damköhler number reintroduced, this equation can also be expressed in an
analogous form to eqn. 3.49 as

∆s

v′ = −a4b
2
3

2b1
Da �∗q+1

+

√(
a4b2

3

2b1
Da �∗q+1

)2

+ a4b2
3Da �∗2 . (3.115)

Unsteady effects are accounted for by introducing �f,t. For �f,t = 0, sT = sL

is obtained. If eqn. (3.111) is used, this results in q = 0 with the implication that
the turbulent flame surface area as determined by (3.114) is linearly proportional to
the flame brush thickness, regardless of Damköhler number. On the other hand, with
(3.112), q = 2/3, and the bending over �f,t is hyperbolic and dependent on Da. The
relationship of σ̃t on �∗ is plotted normalized in figure 3.10 for both model parameters
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q = 0 and q = 2/3. It can be seen that for q = 2/3, it is predicted that a higher
increase in turbulent flame surface area is achieved already for small thicknesses of the
turbulent flame than for an almost fully developed flame where �∗ ≈ 1, especially for
large Damköhler numbers. However, the linear proportionality between the turbulent
flame surface area ratio and the turbulent flame brush thickness is also obtained for
q = 2/3 if Da → 0.

3.5.4 A dynamical equation for the flame surface area ratio

In the previous sections, algebraic expressions for the flame surface area ratio were
derived. In previous works (see eg. [71]) the algebraic expression (3.49) was obtained
as the steady-state result of a transport equation with partial derivatives in space and
time.

That exact dynamical transport equation for the – however, unclosed – flame sur-
face area ratio can be derived [48],

∂ 〈σ〉
∂t

+〈�v · ∇σ〉 = −〈�n · ∇�v · �n σ〉︸ ︷︷ ︸
〈Π〉

+ sL

〈
(κσ + ∇2G)

〉︸ ︷︷ ︸
−〈Ω〉

−D
〈
(∇ · (κ∇G) + κ2σ)

〉︸ ︷︷ ︸
〈X 〉

,

(3.116)
where 〈Π〉 is the mean turbulent production term, 〈Ω〉 the mean influence of kinematic
restoration, and 〈X 〉 the mean scalar dissipation of flame surface area. This equation
defies direct closure of the production and dissipation terms. In order to overcome this
difficulty Peters [70] derived a transport equation for σ̃t by means of partial differential
equation expressions. These have been obtained in the corrugated flamelets regime
from the steady state expression (3.111) to

dσ̃t

σ̃t
=

dε

ε
− dk

k
+

1

2

dG̃′′2

G̃′′2
(3.117)

and in the thin reaction zones regime by means of (3.113) to

2
dσ̃t

σ̃t
=

dε

ε
− dk

k
+

dG̃′′2

G̃′′2
. (3.118)

With the transport equations for k, ε, G̃′′2, and eqn. (3.84) a dynamical equation for σ̃t

for both combustion regimes reads

〈ρ〉 ∂σ̃t

∂t
+ 〈ρ〉 �̃u · ∇σ̃t = ∇|| · (〈ρ〉Dt∇||σ̃t) + c0P σ̃t

k

+ c1 〈ρ〉 Dt

�2f,t

σ̃t − c2 〈ρ〉 s0
Lσ̃2

t

�f,t
− c3 〈ρ〉 Dσ̃3

t

�2f,t

(3.119)
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Symbol Value definition/origin
a1 0.37 ε = a1v

′3/�, Bray [9]
a4 0.78 = 9cµ/(4Scta1) since Dt = a4v

′�
b1 2.0 experimental data [1]
b3 1.0 experimental data [16]
c0 0.44 = Cε1 − 1, [70]
c1 4.63 DNS, [106]

c2 1.01 =

√
3cµcs

4Sct

c1b
2
3

b1

c3 4.63 = c1/b2
3

cs 2.0 [69, 70]
Sct 0.70 analog to Prt for the enthalpy equation

Table 3.2: Constants for the level set based turbulent premixed combustion model used in this
work.

with P being the turbulent production (2.54) due to mean velocity gradients. The
model constants c0, c1, c2, and c3 are listed in table 3.2. These model constants have
to be chosen carefully. Results obtained by means of differential equation expressions
such as (3.117) and (3.118) give the leading terms of the transport terms sought for but
require readjustment of the model constants. One touchstone – in order to accomplish
that – is DNS data [106], from which the constant c1 has been determined. The other
constants can be obtained by assuming steady state for the σ̃t-equation and neglecting
spatial influences. The steady state algebraic equation thus obtained is the solution
of a quadratic form exactly as (3.49). Comparison of these two equations for a fully
developed flame gives the values for the missing coefficients.

Equation (3.119) bears some difficulties for practical application. The solution
σ̃t = 0 is trivial since all terms in (3.119) are proportional to σ̃t itself. Therefore, an
initial value of σ̃t > 0 is required in order to model the transition from a laminar to
a turbulent flame. On the one hand, this initial value can be arbitrarily small, but on
the other hand, the temporal evolution of flame surface area is in general different for
different initial values. Furthermore, a value of G̃′′2 = 0 also causes a singularity due
to the denominators in the production and destruction terms.

In order to overcome these two problems, it is now proposed to modify the transport
equation (3.119). The G̃′′2 expression in the denominator of the turbulent production
term may be substituted by the expression for G̃′′2

alg (3.99). Secondly, for removing
the singular solution σ̃t = 0, one factor of σ̃t in the turbulent production and destruc-
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tion terms is replaced by σ̃t + 1, thus giving the following dynamical equation:

〈ρ〉 ∂σ̃t

∂t
+ 〈ρ〉 �̃u · ∇σ̃t = ∇|| · (〈ρ〉Dt∇||σ̃t) + c0P σ̃t

k

+ c1 〈ρ〉 cs

2

ε

k
(σ̃t + 1)

− c2 〈ρ〉 s0
Lσ̃t

�f,t
(σ̃t + 1) − c3 〈ρ〉 Dσ̃2

t

�2f,t

(σ̃t + 1) .

(3.120)

These modifications have been chosen in such a way that the homogeneous steady state
solution of (3.120) is (3.114), with identical modeling constants as in (3.119).

An approach according (3.119) or (3.120) is not further pursued in this work and
the algebraic form is employed instead. Due to the third order dissipation term in σ̃t for
both transport equation, it is expected that in most cases, the response of σ̃t to changes
in the turbulence condition will be faster than for the G̃′′2-equation and therefore it is
concluded that the unsteady flame effects can sufficiently be covered by the transport
equation for G̃′′2 only.

3.5.5 Behavior close to the wall

In many practical applications, interactions between flame and walls walls occur. This
is especially true in internal combustion engines where the turbulent flame finally
reaches the cylinder wall, head or piston surfaces and burns out there.

Flame/wall interactions can basically be attributed to two categories: The influence
of the wall to the chemistry of the flame, either by heat loss or by chemical inhibition,
or the influence of a wall boundary layer on the turbulent flow and subsequently the
turbulent flame brush. In both respects, the rate of flame propagation is reduced for a
turbulent flame originating from the inner cylinder region when the flame approaches
the wall region.

Influence of chemistry

Hasse et al. [40] have investigated the influence of cold walls to laminar premixed iso-
octane/air flames. It was shown that the temperature of the preheat and the reaction
zone is reduced by thermal diffusion, and when the temperature in the burnt zone falls
below the inner layer temperature due to that process – usually at about 1400 K – the
flame is quenched. The quenching distance to the wall determined for this configura-
tion is of the order of the laminar flame thickness.

Concerning the modeling one can conclude from these observations that a correct
measure for the temperature of the burnt gas close to the wall is required. This involves
that the correct enthalpy and the species composition for the burnt state are correctly
determined. With respect to the enthalpy, this is guaranteed if the enthalpy formulation
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with inclusion of the chemical heat of formation is employed as it was used throughout
this work.

The burnt gas temperature Tb can be used to determine the laminar burning velocity
(see also the laminar burning velocity approximation presented in appendix C). In this
work Tb is determined by the unburnt gas temperature Tu. An unburnt temperature
close to the wall is calculated based on the averaged mean enthalpy of the flow and the
unburnt species composition.

Influence of wall bounded turbulence

Independently from chemistry aspects of flame/wall interactions we will discuss effects
of wall bounded turbulence on the turbulent flame in this subsection. Wall bounded
turbulence reduces to zero at the wall in the viscous sub-layer with the result that flame
propagation is dominated by laminar processes only. In the logarithmic law region,
where k ≈ const. and the mixing length �m = κy, eqn. (2.45), the algebraic flame
brush thickness �f,t,alg is also proportional to the wall distance y. The result for σ̃t

in the log-law region is dependent on the behavior of the G̃′′2-equation (3.98) in this
region. Effects of instationarity are not considered in the log-law region. Therefore
only stationary solutions of the equation for G̃′′2 will be discussed.

We assume the flame to be perpendicular to the wall and the density at the mean
flame front to be constant. Then G̃′′2 = G̃′′2(y) and (3.98) reduces to an ordinary
differential equation (ODE) of second order:

0 =
d

dy

(
Dt,d

dG̃′′2

dy

)
+ 2Dt,P

=1︷ ︸︸ ︷
(∇G̃)2 −csG̃′′2 ε

k
. (3.121)

For generality, we introduce two different turbulent diffusion coefficients for turbulent
transport and production. They are both defined according to eqn. (3.94). Thereby,
we allow for two different turbulent Schmidt numbers Sct,d, and Sct,P . We apply
the scaling relationships for the mixing length �m, eqns. (2.45) and (2.46) in order to
eliminate the turbulent dissipation ε and the turbulent diffusivity Dt, eqn. (3.94). For
example, the inverse turbulent time scale reads in the log-law region

ε

k
=

c
3/4
µ k1/2

κy
. (3.122)

After some transformations we obtain

0 = C1k
1/2y2 d2G̃′′2

dy2
+ C1k

1/2y
dG̃′′2

dy
+ 2C2k

1/2y − C3k
1/2G̃′′2 , where (3.123)

C1 ≡ c
1/4
µ κ

Sct,d
, C2 ≡ c

1/4
µ κ

Sct,P
, and C3 ≡ cscµ

κ
.
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As can be seen, the ODE is independent from k, since its root can be canceled out.
Depending on the values for the constants C1 and C3, we obtain two sets of solutions.

G̃′′2(y) =

⎧⎪⎨⎪⎩
2C2

3C1
y + C4y

2 + C5y
−2 if C3 = 4C1 ,

2C2

C3 − 4C1
y2 + C4y

√
C3/C1 + C5y

−
√

C3/C1 otherwise.

(3.124)
C4 and C5 are two constants that solely depend on the boundary conditions. On the left
hand boundary it is reasonable to assume that G̃′′2(y = 0) = 0 which gives C5 = 0.
Therefore, the constant C4 must be determined by the conditions on the right hand
boundary, that is, the outer layer.

Due to the large gradients close to the wall that can be expected for G̃′′2 the influ-
ence of the diffusion term and hence the influence of Sct,d needs to be studied. For
Sct,d → ∞ we obtain G̃′′2 ∝ y2 because �m ∝ y2. Otherwise, for other values of
Sct,d, the leading order exponent in the polynomial solution (3.124) is variable and
depends on Sct,d.

Now, the response of the algebraic σ̃t-equation (3.114) to solutions for G̃′′2 in the
log-law region according to eqn. (3.124) will be investigated with regards to variations
of Sct,d. After substituting �∗ and ε/k for expressions valid in the log-law region the
algebraic σ̃t-equation can be written as

σ̃t(y) = −C6(q)

�f

G̃′′2
q+1
2

yq
+

√
C6(q)2

�2f

G̃′′2q+1

y2q
+

C7

�f

G̃′′2

y

k1/2

sL
. (3.125)

All model constants are combined in C6(q) and C7.
It is required that σ̃t(y) → 0 for y → 0 using the expressions for the log-law

region. This is achieved if all three terms in (3.125) vanish for y → 0. Then, the
lowest polynomial order of (3.124) must be larger than one. This condition is satisfied
if C3 > C1, in other words if

Sct,d >
κ2

csc
1/2
µ

≈ 0.29 . (3.126)

Then, the first and the second term (i.e. the first under the square root) additionally
require that (q + 1)/2 > q, which is fulfilled if q < 1. With that condition, σ̃t(y =
0) = 0. Furthermore, σ̃t remains bounded in this case for y → 0. Recall the model
constants used in this work, Sct,d = Sct,P = Sct = 0.7; therefore the choice of
constants appears to be suited for the log-law region.

One exception should be noted: The condition C3 = 4C1 leads to

Sct,d =
4κ2

csc
1/2
µ

≈ 1.17 . (3.127)
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For this value of Sct,d the leading order term in eqn. (3.124) is only linear and therefore
inappropriate.

It is noted the two Schmidt numbers are independent of each other from the point
of view discussed here. However, an independent consideration of both numbers is
only carried out in this section.

3.5.6 Combining the presumed pdf shape approach with the flame-
let equations

In this section we discuss the approach to couple the flamelet parameters G̃ and G̃′′2

with the species distribution of the 1D flamelet in order to approximate the species
distribution in CFD space. For this, the distribution of the instantaneous flame front
realizations needs to be taken into account. This is accomplished by applying a pre-
sumed probability density function (pdf). The Favre average of the mass fraction of a
species k can be calculated by

Ỹk(�x) =

+∞∫
−∞

Yk(xn) Pxn(G̃(�x), G̃′′2(�x)) dxn . (3.128)

Here Pxn is the probability of finding the instantaneous position xn of the one dimen-
sional flamelet in the 3D flow, for which usually a Gaussian presumed pdf is assumed:

Pxn(G̃, G̃′′2) =
1√

2πG̃′′2
exp

(
− (xn − G̃)2

2G̃′′2

)
. (3.129)

For the corrugated flamelets the species distribution is obtained using eqn. (3.2).
In the thin reaction zones regime turbulent eddies enter and therefore thicken the

preheat zone. They also interact dynamically with the reaction zone. In order to employ
the approach (3.128) averaged flamelet profiles in the thin reaction zones are needed.
This is accomplished by introducing the turbulent diffusivity into the flamelet equation
(3.2) which is active in the preheat and in the post-reactive zone only, but not in the
inner layer. That is possible because in the preheat and in the post-reactive zone, time
scales of reaction and diffusion can be decoupled. In view of eqn. (3.45), we obtain
Dt = σ2D and (3.2) modifies [71] to

ρ̂σsL
∂Ŷk

∂xn
=

∂

∂xn

(
ρ
[
(σ − 1)2D + Dk

] ∂Ŷk

∂xn

)
+ Wk

˙̂ωk (3.130)

where the filtering operator “̂ ” indicates that averaged profiles are obtained in this case
[42]. A transformation of the normal coordinate xn into a ‘stretched’ coordinate

x′
n =

xn

σ
(3.131)
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leads to

ρ̂sL
∂Ŷk

∂x′
n

=
∂

∂x′
n

(
ρD

L̂ek

∂Ŷk

∂x′
n

)
+ Wk

˙̂ωk . (3.132)

Here the Lewis number L̂ek is a function of the normal coordinate x′
n. In the thin

reaction zone laminar diffusion is dominant, and therefore L̂ek = D/Dk. Outside of
this zone, turbulent mixing is predominant and L̂ek → Let = 1.

As we see, the flamelet equations for the corrugated and thin reaction zones com-
bustion regimes differ merely in the assumption of Lewis numbers outside of the reac-
tion zone. By assuming unity laminar Lewis numbers, especially with regards to the
reaction zone, the laminar species profiles for the two regimes would be self similar,
that is

Ŷk(x′
n) ≈ Yk(xn) . (3.133)

If one is only interested in the kinematics of the turbulent flame propagation and the
influence of the combustion process on the flow due to heat release, averaged species
distributions of the flamelets within the reaction zone are not strictly required in an
approach like (3.128). In that case, the species composition in the unburnt and the
burnt gas are sufficient for satisfying results. Eqn. (3.128) can then be reduced to

Ỹk(�x) = Yk,u[1 − P̃b(G̃(�x), G̃′′2(�x))] + Yk,b P̃b(G̃(�x), G̃′′2(�x)) , (3.134)

with P̃b from (3.70) determined to

P̃b(G̃, G̃′′2) =
1

2
+

1

2
erf

(
G̃ − G0√

2G̃′′2

)
. (3.135)

This relationship can be used in purely premixed configuration as well as in par-
tially premixed, i.e. stratified mixtures which will be discussed in the following section.
However, it needs to be pointed out that unburnt and burnt in the context of this section
here refer to the positions ahead and behind the premixed flame front, which means for
example that fuel residing in a rich mixture and crossing the premixed flame front is
considered here as premixed burnt. However, with respect to a diffusion flame behind
the premixed front, this fuel can still be subjected to non-premixed combustion.

3.5.7 Stratified mixtures

In practical applications, in addition to premixed combustion also non-premixed com-
bustion or a combination of the two, namely partially premixed combustion can occur.
Examples of such configurations are lifted diffusion flames. Prior to combustion, fuel
and oxidizer require time for diffusion. After that, a so called ‘triple flame structure’
is observed, exhibiting three wings in which reactions occur [18, 19]. Two wings cor-
respond to the lean and rich limit of premixed propagation while the third is due to
diffusive combustion.
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In this work, we will primarily focus on the premixed wings, for which a cor-
responding expression of the turbulent burning velocity is sought. For the diffusion
controlled burning behind the premixed front, a simplified infinitely fast chemistry as-
sumption is made. It is possible to use a more elaborated model for non-premixed
combustion in combination with the Level Set concept, however, this is beyond the
scope of this work.

Apart from the premixed flamelet parameters G̃ and G̃′′2, a coordinate for the non-
premixed mode, the mixture fraction Z, eqn. (2.20) needs to be introduced. The in-
stantaneous transport equation for the mixture fraction is similar to the laminar species
equations (2.3) except for the absence of a chemical source term. Pitsch et al. [77]
propose to base the definition of Z on such a transport equation, employing a diffusion
coefficient related to the thermal conductivity by a unity Lewis number. By means of
the decomposition

Z = Z̃ + Z′′ (3.136)

it is straightforward to derive a Favre averaged transport equation for the mean mixture
fraction Z̃ similar to the mean species mass fraction equation:

∂ 〈ρ〉 Z̃

∂t
+ 〈ρ〉∇Z̃ · �̃u = ∇ ·

(
〈ρ〉Dt∇Z̃

)
. (3.137)

In order to describe the statistics of the instantaneous mixture fraction fluctuations, the
mixture fraction variance Z̃′′2 is an important measure. It is straight forward to derive
an equation for this second moment [68],

∂ 〈ρ〉 Z̃′′2

∂t
+〈ρ〉∇Z̃′′2·�̃u = ∇·

(
〈ρ〉Dt∇Z̃′′2

)
+2 〈ρ〉Dt(∇Z̃)2−〈ρ〉χZ . (3.138)

For the scalar dissipation χZ a spectral closure similar to (3.95) is commonly used:

χZ = cχZ̃′′2 ε

k
with cχ = 2.0 . (3.139)

The mean turbulent mass burning rate is obtained by integrating the instantaneous
turbulent mass burning rate which depends on the instantaneous mixture fraction Z
and the pdf of finding Z [13]. The instantaneous turbulent burning velocity again is
dependent on the laminar burning velocity and on the mixture fraction conditioned
flame surface area σ̃t(Z):

〈ρsT 〉 =

∫ 1

0

ρ(Z) sL(Z)(1 + σ̃t(Z)) P̃ (Z) dZ . (3.140)

For the pdf P̃ (Z) of finding the instantaneous mixture fraction Z commonly the beta
probability function [68] is employed.

P̃ (Z) = Pβ(Z, Z̃, Z̃′′2) (3.141)
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Figure 3.11: Plot of laminar burning velocity sL(Z) for a premixed iso-octane/air flame at Tu =

350 K, p = 1 bar, v′ = 2 m/s, � = 10−2 m, corresponding Damköhler number Da(Z) and
turbulent burning velocity sT (Z̃) according to eqn. (3.49) over mixture fraction space. sT (Z̃)

is determined according to eqn. (3.140) and the variation of mixture fraction variance Z̃′′2 is
studied.

The expression (3.140) is a consistent extension of (3.33) for fluctuating mixture
fractions. Since sL is strongly dependent on the mixture fraction, the Damköhler num-
ber can significantly vary over the mixture fraction as well. This also causes large
variations for σ̃t over Z.

The effect of considering the mixture fraction pdf is shown in figure 3.11 for an
arbitrary mixture fraction example. The comparison of the result for the turbulent
burning velocity sT (Z) in homogeneous mixtures on the one hand and stratified mix-
tures according to the expression (3.140) for different mixture fraction variances Z̃′′2

on the other yields different results for sT (Z̃) with increasing Z̃′′2. For small values
of Z̃′′2, only minor differences between turbulent burning velocity over mean mixture
fraction Z̃ and the corresponding homogeneous results are observed. With increasing
Z̃′′2, the maximum of turbulent burning velocity according to this model assumption
is shifted towards rich mixtures and at the same time this maximum is decreased. On
the other hand, the turbulent burning velocity increases for lean mixtures. This can be
attributed to the fact that for average lean and very rich mixtures, intermittency effects
increasingly become important, that is, for those mixtures the probability of finding
mixtures with a high combustion propensity increases while for mean mixtures close
to stoichiometry, the possibility increases to find very lean and very rich mixtures.

It is required to consider σ̃t as a function of Z for each mixture fraction realiza-
tion. It is an additional argument for using the algebraic expression (3.114) instead of
the one discussed in section 3.5.4. A consistent application of the transport equation
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would require the use of a set of transport equations (3.120) for a set of representative
mixture fractions Z, each with different values for the laminar burning velocity and
flame diffusivity.

3.6 Spark Ignition Modeling

The initiation of combustionis realized in most gasoline engines by an electrical spark
that is formed between the two electrodes of a spark plug. This process can be subdi-
vided into different phases [44]. The first phase, at which an ionized plasma between
the electrodes is established, is called the breakdown phase. This phase is followed by
the arc phase which is characterized by an expansion of the plasma due to diffusive
effects and by chemical reactions leading to a propagating flame. It is required that
the mixture at the spark plug gap is ignitable. In the final glow discharge phase, more
energy of the electrical circuit may be released into the spark plasma. The overall du-
ration time of the spark including all phases is assessed to be of the order of several
milliseconds, whereas the breakdown and the arc phase last for nano- and microsec-
onds, respectively.

The subdivision of the spark ignition process was at first developed by Maly and
Vogel [58] who also reported the voltage and current dependency the spark phases.
Ballal et al. [4] pointed out that the ignition energy can be minimized in a slightly rich
mixture at φ ≈ 1.1 for a successful ignition event to occur. At this equivalence ratio,
for hydrocarbon mixtures, the laminar burning velocity reaches its maximum. The
influence of turbulence was recognized as a twofold process: Under some conditions,
turbulence promotes flame propagation, whereas it can cause quenching of the flame
kernel due to heat losses under other conditions.

3.6.1 A Brief Literature Review

As Pischinger and Heywood [74] have pointed out, the effect of the electrical energy
source is limited to the breakdown phase and difficult to be measured quantitatively.
Immediately after the breakdown, the laminar flame chemistry is the dominating physi-
cal process. However, the balance of heat loss to the spark plug electrodes and the elec-
trical energy source during the glow discharge influences the expansion of the flame
kernel. Further studies by the same authors [75] presented thermodynamic models of
the spark physics among other results. Deformation of the arc due to convective gas
effects was found to cause increased electrical energy deposited into the spark and
therefore improved inflammability.

Herweg and Maly [43] presented a further refined model which assumes the spark
kernel to be approximately spherical while it is convected by the mean flow. During
breakdown and glow discharge the expansion speed was assumed to be determined by
the plasma velocity caused by a sum of laminar and turbulent flame propagation and
by plasma expansion due to the spark energy deposition. The influence of the first



62 Chapter 3. Premixed Combustion

a)

rK
⇐
huṁK
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Figure 3.12: a) Energy balance between the spark plug electrodes and the spark kernel. b) Rela-

tion between spark kernel radius rK and filtered Ĝ-field.

two effects was assumed to increase with time while the last effect was estimated to
decrease down to zero for increasing time.

As for the influence of turbulence on the spark the spark size is taken into account
in [7], where an expression for the turbulent spark expansion velocity was derived. In
that work, it is assumed that the spark kernel only is affected by turbulent eddies of
smaller or equal size.

Other contributions discuss spark ignition models that are implemented into 3D
CFD codes. One of these model is the Discrete Particle Ignition Kernel (DPIK) model
[25, 26, 101, 99]. In order to achieve a certain level of grid independency, a set of
marker particles was employed and advected in order to specify the size and the spatial
extension of the spark kernel. Applying a criterion to be specified (e.g. size of the
spark) the DPIK model was switched to a different 3D combustion model, for exam-
ple, a characteristic time scale combustion model or the G-equation model. For the
turbulent flame propagation in some of those publications, it was reported that for the
DPIK phase and the 3D equation combustion phase two different combustion models
were used.

Another recent development is the Arc Kernel Tracking Ignition Model (AKTIM)
[21]. This model does not only take the physics of the spark plasma and laminar to tur-
bulent flame propagation into account, but it also includes an electrical circuit model
in order to estimate the amount of electrical energy deposition into the spark kernel.
A certain mesh independency is achieved by representing spherical flame kernels by
marker particles. In [21] the AKTIM model was coupled together with an Extended
Coherent Flamelet Model (ECFM). The authors reported weak dependency of simula-
tion results on the switching criteria between the AKTIM and the ECFM model.

3.6.2 A Spark Ignition Model Derived from the G̃-equation

In the following a new spark ignition model based on the G-equation methodology is
presented. In contrast to the other models discussed in above, the same physical mod-
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eling assumptions will be used here as for turbulent premixed flame propagation which
especially hold for the expression of the turbulent burning velocity and the variance
(3.85). Additionally, kernel expansion effects due to electrical spark energy and kernel
curvature will be accounted for. The thermodynamical analysis is carried out similar to
Tan [100]. As a first approximation we assume that the initial spark kernel is spherical
with a given initial position and radius. During the growth of the kernel towards a fully
turbulent flame the kernel will be assumed to be spherical on average as well. It is also
subjected to the convection of the background flow.

In figure 3.12a, the energy balance between the spark and the spark plug electrodes
is depicted. According to the first law of thermodynamics, the energy budget of the
spark reads

Q̇spk + Q̇chem − Q̇ht =
dH

dt
− huṁK − V

dp

dt
, (3.142)

where H represents the thermal spark and plasma enthalpy. Q̇spk denotes the gross
electrical energy transfer from the electrodes and Q̇ht the heat loss to the electrodes.
Since H does not include the heat of formation here, Q̇chem accounts for the heat
release caused by combustion. hu denotes the specific enthalpy of the unburnt gas
mixture which is transported into the spark by (laminar or turbulent) flame propagation
through the mass stream ṁK . In this equation the effect of global pressure rise is still
accounted for in the last term on the r.h.s.; however, this term will be neglected in the
application of the model due to the relatively low pressure rise.

The effect of spark energy and heat losses commonly are [43] related to each other
by forming an effectivity coefficient ηeff , in the following assumed to be approximately
0.3:

Q̇ht ≈ (1 − ηeff)Q̇spk . (3.143)

The continuity equation gives the following ordinary differential equation for the
increase of spark kernel mass:

dmK

dt
= ṁK = 4πr2

K ρusT,κ . (3.144)

Here, rK is the radius of the kernel and sT,κ an expression for the flame propagation
which takes into account the turbulent burning velocity and the effect of laminar and
turbulent kernel curvature, cf. (3.106). The radius is readily obtained by

rK = 3

√
3mK

4πρb
. (3.145)

The density of the gas in the spark ρb needs to be known which is – depending on
ignition conditions – lower than the density of adiabatically burned gas due to plasma
effects caused by the electrical energy which results in an increased kernel temperature
TK . In order to approximate TK eqn. (3.142) needs to be further modified.



64 Chapter 3. Premixed Combustion

The derivative of the kernel enthalpy gives

dH

dt
= ṁKhK + ḣKmK (3.146)

and the heat release due to premixed combustion can be expressed as

Q̇chem = ṁK(had − hu) . (3.147)

Substituting these equations into each other and assuming constant heat capacities,
cp ≈ const., we eventually obtain

dTK

dt
= −ṁK

mK
(TK − Tad) +

Q̇spkηeff

mKcp
+

1

ρbcp

dp

dt
(3.148)

as the second ordinary differential equation for the kernel temperature TK . Therefore
eqns. (3.144) and (3.148) form a set of coupled ordinary differential equations. For
TK , appropriate initial conditions need to be specified. The initial value could be in
the range of the kernel plasma temperature which is in the range of approx. 60, 000 K
[44] or alternatively the adiabatic flame temperature Tad. According to the numerical
investigation by Andreassi et al. [3], this temperature drops rapidly within the range
of tenths microseconds to about 10, 000 K. Additionally, this temperature only pre-
vails within a kernel radius of 100 µm. Therefore, in this work here, as an ad-hoc
assumption, the initial value of TK was assumed to be 1000 K higher than Tad.

The burning velocity sT,κ, including curvature effects can be deduced from (3.106),
where the curvature of the spherical kernel amounts to κ = 2/rK .

sT,κ = sT − 2

rK

(
D0 + D′

t

)
(3.149)

Here D′
t can be expressed by one of the two possibilities as presented in section 3.5.3.

An equation describing the thickness of the flame brush can be deduced from (3.98)
by assuming uniform turbulent profiles and thereby neglecting the diffusion term while
the convection term is incorporated in the substantial derivative:

d˜G′′2
spk

dt
= 2D̂t, spk − cs

ε

k̂spk

˜G′′2
spk (3.150)

The development of the initially laminar spark kernel into a fully turbulent flame
will therefore be modeled by 0D-reduced equations based on the G-equation for tur-
bulent premixed combustion. However, as it was already pointed out in [7] the spark is
affected only by turbulent structures that are smaller or equal in size as the spark. In this
work this is accomplished by re-scaling the turbulent kinetic energy k to a value k̂spk

corresponding to the size of the spark according to an relationship found by Willems
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[108]. This is also done for the turbulent diffusivity D̂t, spk which is proportional to
k̂2
spk. Following that approach, k̂spk can be determined to

k̂spk = k
(

2rK

lt

) 2
3

, (3.151)

if 2rK < lt, where the turbulent length scale lt is determined to be

lt = �f,t,alg . (3.152)

Note that here the choice of �f,t,alg as turbulent length scale is ad-hoc for the purpose
of downscaling the effective turbulent kinetic energy. Other choices for the turbulent
length scale also would be appropriate.

When the flame kernel reaches a specified size rK,end, the model is switched to the
3D equations. This is feasible because a scalar field for G̃ can easily be determined by
the center of the spark location and the spark radius.
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Chapter 4

Numerical Implementation

In this chapter the integration of the model equations into the CFD code, the solving
procedure, and the coupling of the model with the underlying flow structure are pre-
sented. The model was implemented into AC-FluX (formerly known as GMTEC) [24],
a flow solver based on Finite Volume methods [28] that employs unstructured, mostly
hexahedral meshes. AC-FluX is mainly used for internal combustion engine simula-
tions, for gasoline as well as for diesel engines. This code is able to treat moving
meshes and non-conforming internal mesh motion boundaries that facilitate generat-
ing a realistic geometric model of the intakes and the in-cylinder in combination with
valve motion. In order to provide high spatial accuracy, adaptive run-time controlled
mesh refinement can be used optionally. The basic version of this solver already is able
to predict chemically reacting flows and fuel spray interaction employing a Lagrangian
particle tracking algorithm.

The basic structure of this CFD code will not be elaborated on here, but it de-
scribed in detail in [24]. Only modifications of the code that are required for the Level
Set based turbulent premixed combustion model are discussed. The general integration
is given in the following section. Then, in section 4.2, the numerical implementation of
the equations for G̃, G̃′′2, and σ̃t is explained. The numerical strategy behind the ap-
plication of the Level Set Method for G̃ needs to be explained in detail and is therefore
not given in this chapter. It can be found in appendix B. A significant section is devoted
to the coupling of the G̃-equation to the fluid flow, since the effect of combustion on
the flow becomes apparent as heat release. However, heat release is not directly given
by the G̃-equation model and needs to be deduced instead.

4.1 General integration of the model into the CFD code

In figure 4.1 the interaction between the Level Set module, the required flamelet li-
braries, and the CFD code is depicted. However, one should note that this diagram

67
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Figure 4.1: Level Set module and flamelet library interaction with the CFD-Code

confines itself only to the main principles. In reality, the Level Set Solver needs to be
highly adopted to the internal data structure of the host CFD code. This issue will be
dealt with below in detail.

In AC-FluX the enthalpy already includes the heat of formation per default. There-
fore, no source terms due to chemical reactions appear in the h̃-equation. The state
of the flow, that is, the mean temperature T̃ , the averaged heat capacity c̃p, and the
molecular weight W̃ need to be determined using the flamelet parameters G̃, G̃′′2, op-
tionally (in stratified configurations) Z̃, and Z̃′′2. The state variables are listed in a
flamelet table and transferred back to the CFD code.

In this work, the aforementioned flamelet parameters return active stream concen-

trations Ỹi such as fuel, air and burnt gas streams stored in the flamelet table. These
streams are converted by the CFD code internally into thermodynamical states. By
means of the source term free enthalpy equation, the completely burnt and unburnt
states of the flow at every location can be determined independently of the actual ther-
modynamical state of the mean flow. The unburnt state serves as an input into the
flamelet library for the laminar burning velocity sL and the laminar flame thickness �f ,
which are needed for the determination of the turbulent flame surface area ratio σ̃t.

The transport equations Z̃ and Z̃′′2 are solved in the CFD code by an implicit
finite volume method. The equation for G̃′′2 is per se defined only on the mean flame
front and requires an appropriate definition outside of that front. Depending on the
corresponding outside definition, G̃′′2 can be solved either within the Level Set solver
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along with G̃ or by an implicit finite volume method using the same principle as for
the non-premixed flamelet parameters.

The G̃-equation, however, is not solved by an implicit finite volume equation since
the definition of G̃ requires a distance constraint outside of the mean flame front posi-
tion. This distance constraint would require additional numerical treatment if a conven-
tional implicit method was employed in order to solve for G̃ on G0. Such numerical
treatments are called “reinitialization”. In order to avoid the numerical overhead in-
volved by this procedure, an entirely new solver based on the so-called Fast Marching

Methods has been used. Numerical details on Fast Marching Methods are given in
appendix B.

4.2 Solving of model equations

In order to solve the coupled time-dependent conservation equations within AC-FluX, a
combination of the PISO (Pressure-Implicit Split Operator, [65]) and SIMPLE (Semi-
Implicit Method for Pressure Linked Equations, [45]) algorithm is employed. The
general structure of the solving procedure within one time step is depicted in figure
4.2. In that flow chart those steps that are due to the G-equation model are marked.
The basic solving algorithm is obtained by excluding these steps.

The time integration consists of two steps. The first steps performs preparatory
steps for the G-equation model and solves for G̃ which will be discussed below. The
second step solves iteratively for the other conservation equations by the pressure cor-
rection method.

This basic pressure correction can be subdivided into three major iteration loops
which are denoted as outer iteration loop, inner iteration loop (index ccp), and tur-

bulence iteration loop here. The latter two loops are encompassed by the first, which
is initiated by the velocity predictor. The inner iteration loop iteratively calculates the
pressure and momentum correction combined with the update of the (re-)active species
and the flamelet parameters that need to be in balance with the enthalpy equation. The
other loop, the turbulence iteration loop is carried out separately from the inner itera-
tion for inproved numerical stability.

In the first preparatory step, the G̃-equation is solved. This solving procedure could
be integrated into the pressure correction step, however, due to its different numerical
treatment, this step is separated from the other steps. Prior to the equation for G̃, G̃′′2

is updated to the new time level by a predictor step. After solving for G̃, optionally the
reaction rate ω̇G due to the turbulent premixed reaction can be estimated.

4.2.1 G̃ equation

Due to the Level Set nature of the G̃-equation, equation (3.106) at G0 needs to be
fitted into the general Level Set form as given by (B.1). This is trivial for the term
containing the turbulent burning velocity, but also needs to be done for the convection
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and turbulent transport terms. The term �̃u · ∇G̃, for instance, can be transformed with
eqn. (3.81) into a suitable form. Then (3.106) transforms to

∂G̃

∂t
+

=F︷ ︸︸ ︷
(Fcd + Fprop) |∇G̃| = 0 , (4.1)

where the convective and diffusive term read

Fcd = −�̃u · �̃n + κD′
t , (4.2)

and the propagation term

Fprop = − ρ̃sT

〈ρ〉 . (4.3)

The convective-diffusive term involves spatial gradients. In order to evaluate them, one
can make use of the fact that the curvature term transforms to a diffusion term if the
distance constraint outside of the mean flame front is fulfilled, in other words, for a
given time tnstep, there is a G̃-field where |∇G̃nstep| = 1. Therefore, the numerical
procedure is required to ensure this constraint in the vicinity of the G0-surface.

In this case, Fcd is evaluated by solving for G̃ in an operator-splitting manner by
implicitly solving the field equation

∂ 〈ρ〉 G̃

∂t

∣∣∣∣
cd

+ ∇ · 〈ρ〉 �̃uG̃ = ∇ ·
(
〈ρ〉 (D + D′

t)∇G̃
)

. (4.4)

The effects of laminar flame curvature by the flame diffusivity D may also be ac-
counted for in this context.

Obtaining a predicted field G̃nstep+1
cd due to convection and diffusion at the new

time level, the normal velocities can be approximated to

Fcd ≈ − G̃nstep+1
cd − G̃nstep

∆t
. (4.5)

Prior to advecting the G̃ field to the new time level tnstep+1, Fcd will be evaluated
as depicted in fig. 4.2. The propagation Fprop, on the other hand, is evaluated during
the iterative update of the G̃ field. Since the G0 front is mostly located between two
computational cell centers, either two evaluations of the turbulent mass burning rate
ρ̃sT or the geometrical weight of the two could be taken. In this implementation, the
turbulent mass burning rate is evaluated in the cell immediately ahead of the mean
flame front.

For the explicit Fast Marching Method by which G̃ is updated to the new time
level, a restriction on the time step ∆τ according to the CFL condition is required for
numerical stability reasons. A temporal sub-cycling may be required, here indicated by
the iteration count nlevel. However, it is favorable to ensure that the overall time step
∆t does not exceed the Level Set imposed time step ∆τ , otherwise the flame front may
move too far within one computational time step. The consequence would be too much
heat release induced into the flow field, thereby causing instability in the turbulent flow
equations which in turn cause increased flame propagation.
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4.2.2 G̃′′2 equation

In this implementation the equation for G̃′′2, eqn. (3.98), is solved in the whole com-
putational domain employing an implicit Finite Volume method. Assuming that the
gradients of G̃′′2 normal to the mean flame front surface are negligibly small, the par-
allel diffusion term (3.98) can be approximated as a regular diffusion term.

As a further simplification, one can approximate (3.103) with the flow velocity
only, that is

d �xf

dt
≈ �̃u . (4.6)

In that case, (3.98) would be calculated as a regular transport equation with source and
dissipation terms only.

4.2.3 σ̃t equation

As mentioned in the previous sections, the algebraic form of the equation for the tur-
bulent flame surface area ratio is primarily used in this work. Besides the one form
derived in here, two other versions of the quadratic σ̃t-equation published in literature
were evaluated. These three forms can be cast into the general form

σ̃t = − b2
3

4b1

√
3cµcs

Sct

l1
�f

+

√
b4
3

16b2
1

3cµcs

Sct

l21
�2f

+ b2
3

Dt

D

l21
l22

(4.7)

with l1 and l2 being different between different versions. The setting

l1 = �f,t and l2 = �f,t (4.8)

corresponds to the solution of the expression (2.186) in [71], while with

l1 = �f,t,alg and l2 = �f,t,alg (4.9)

and (3.84) as well as (3.99) the expression (2.187) in [71] is recovered.
The configuration

l1 = �f,t�
∗q and l2 = �f,t,alg (4.10)

again yields the algebraic expression (3.114) derived in this work. All three settings of
l1 and l2 will be investigated in chapter 5.

4.3 Coupling of G-equation and heat release

Since the flamelet parameters G̃, G̃′′2, and optionally Z̃ and Z̃′′2 prescribe the chem-
ical composition of the mean flow, information about the heat release due to premixed
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Figure 4.3: A regular Finite Volume cell with the cell nodes n1...n8 and the cell center n0. The
cell is subdivided into 6 pyramids.

and non-premixed reaction is not available per se. The source term free equation for
total enthalpy is employed for this reason and heat release information is not required.

In this section the focus lies on the coupling between the premixed flamelet para-
meters and the fluid flow. This involves the determination of the specific probability
of finding burnt gas P̃b, which will described below. On the other hand, there exists a
numerical technique to deduce the premixed reaction rate ˙̃ωG. This issue is presented
in section 4.3.2. At last, the mixed-equal burnt approach is given section 4.3.3.

4.3.1 Determination of P̃b

The link between the premixed flamelet parameters and the specific probability of find-
ing burnt gas has already been given by eqn. (3.134), where a discontinuous step profile
between the burnt and unburnt state of the laminar flamelet was assumed. This equa-
tion could very easily be evaluated at the center of each computational cell, assuming
that this cell centered result represents the whole cell. However, since G̃ is a Level Set
field variable, it varies within one computational cell. The simple approach therefore
may lead to oscillating results for P̃b, especially for cell center positions close to the
mean flame front position for a very small flame brush thickness. Then, the state of the
whole cell depends on whether the cell center is immediately ahead or behind the mean
flame front. As a consequence, a refined numerical approach was followed in which
P̃b is integrated and averaged over all locations within the cell. As stated in equation
(3.134), P̃b is a function of G̃ and G̃′′2. By replacing the fractional expression in that
equation by

ξ̃ =
G̃√
2G̃′′2

, (4.11)
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P̃b can be expressed as function of ξ̃ only.
The cell averaged result is then the averaged probability P̃b,ic of the cell ic:

P̃b,ic =
1

mic

∫
Vic

ρ̄(ξ̃�x) P̃b(ξ̃�x) dV , (4.12)

where

mic =

∫
Vic

ρ̄(ξ̃�x) dV (4.13)

is the mass contained in the cell. The mean density ρ̄(ξ̃�x) is determined from the burnt
and unburnt states to

ρ̄(ξ̃�x) =
ρuρb

ρuP̃b(ξ̃�x) + ρb

(
1 − P̃b(ξ̃�x)

) . (4.14)

Here the differences between this expression for the density and the expression (3.69)
should be noted, in which the volumetric probability fb of finding burnt gas is em-
ployed.

In order to perform the integration, the computational hexahedral cell is decom-
posed into 6 pyramids as depicted in figure 4.3 which will then be decomposed into
a total of 12 tetrahedra. The integration finally is carried out by a Finite-Element like
method [5]. The values of ξ̃ required at the nodes of the cell are determined by a
weighted average of the cell centered values ξ̃icn of all neighboring cells icn of the
considered node. Special boundary treatment is applied to all nodes which belong to a
boundary cell face.

4.3.2 Determination of a premixed volumetric reaction rate

The determination of the premixed volumetric reaction rate ˙̃ωG can be helpful both
for model analysis and for numerical reasons. In model analysis, a comparison with
progress variable based combustion models could be performed. But it is also possible
to carry out global analysis in terms of the burning rate which is an important measure,
for example in internal combustion diagnostics. In terms of the numerics, it is evident
that the equation for G̃ is solved by a different numerical procedure than the equations
for the other quantities, which also has different numerical discretization errors. This
can be especially important for thin turbulent flames, in which effects of unphysical
reverse combustion may be predicted due to these numerical discretization differences.
By determining a premixed reaction rate such numerical phenomena may be detected
and eliminated.
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The approach for determining ˙̃ωG is conceived around a conservation equation for
the specific probability of finding unburnt gas Ĩu. The relationship to P̃b is simply

Ĩu = 1 − P̃b .1 (4.15)

In appendix A a transport equation is derived. Using ∂Ĩu/∂G̃ < 0, eqn. (A.8)
reads:

〈ρ〉 ∂Ĩu

∂t
+ 〈ρ〉 �̃u · ∇Ĩu = 〈ρ〉D′

tκ̃|∇Ĩu| − 〈ρ〉 ˙̃ωG . (4.16)

In order to calculate ˙̃ωG, eqn. (4.16) can simply be rearranged, obtaining the nu-
merical reaction rate ˙̃ω

num

G . The temporal derivative is simply discretized as

〈ρ〉 ∂Ĩu

∂t
≈ 〈ρ〉nstep+1 Ĩnstep+1

u − 〈ρ〉nstep Ĩnstep
u

∆t
, (4.17)

in which the nstep + 1 is the index for the new time level tnstep+1 and nstep for the
corresponding old one. For tnstep a field distribution of Ĩu is available. In order to
obtain ˙̃ω

num

G at the time level tnstep+1 the field of Ĩu is determined by P̃b and therefore

by the flamelet parameters G̃nstep+1, G̃′′2nstep+1
, and the presumed pdf.

Alternatively, the premixed reaction rate could be determined using eqn. (A.9).
Here, however, only the leading order influences of premixed reaction are included.
Another problem arises if the turbulent flame brush becomes very small compared to
the numerical grid resolution and thus spatial gradients of Ĩu become difficult to eval-
uate numerically. Furthermore, the calculation employing the transport eqn. (4.16) is
the only possibility to detect unphysical reverse reaction due to different discretization
errors of the numerical schemes employed.

After obtaining ˙̃ω
num

G , equation (4.16) is solved again, applying a reaction rate
according to

˙̃ωG = max
(
0, ˙̃ω

num

G

)
, (4.18)

clipping unphysical reverse reaction rates to zero.
The application of the transport equation for Ĩu in the framework of the G-equation

concept is optional.

4.3.3 Model for thermodynamical states

In AC-FluX, as it was mentioned already in chapter 2.3, an enthalpy equation without
source term due to combustion is solved. Therefore, a consistent determination of the

1The reason for introducing another probability Ĩu instead of P̃b is merely of numerical nature. In AC-FluX,
sink (i. e. negative source) terms in conservation equations for a general scalar φ are linearized with respect to
the scalar itself and treated implicitly. By deriving a conservation equation for Ĩu, the premixed reaction rate
becomes a sink term in this equation. The resulting numerical linearization avoids negative numerical results
for Ĩu, which would correspond to P̃b > 1.
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Figure 4.4: Presumed active streams distribution in the unburnt (a) and burnt (b) gas including
residual (i. e. external and/or internal EGR) gas.

gas mixture properties, namely the chemical heat of formation, its heat capacity, and its
molecular weight in each computational cell in the burnt and unburnt gas is required in
order to obtain a correct heat release and flow coupling. Since the number of molecu-
lar species can be quite large and therefore can pose numerical efficiency and memory
limitations, and additionally the combustion model only requires a few flamelet para-
meters, in the computations a small number of pseudo species are used instead of a
large number of physical ones. Those pseudo species in the context of AC-FluX are
denoted as “active streams”. The current implementation distinguishes between four
active streams. These streams represent a pre-defined species composition, one each
for air, fuel, burnt gas and inert residual gas, respectively. The inert residual gas –
indexed by “EGR” (Exhaust Gas Recirculation) here – must be understood as a non-
reacting component. However, it has an influence on the burning velocity sL (see also
appendix C) as bath gas. Here, the residual gas is defined as the mixed-equal burnt
product of a stoichiometric fuel/air mixture. By means of this definition, the EGR
stream can be used in order to represent parts of the residual burnt gas in an internal
combustion engine from the previous cycle as well as external EGR. Compositions of
lean or rich residual gas need to be accounted for by adjusting the (unburnt) air and
fuel streams, respectively.

In fig. 4.4 the presumed active streams distribution over mixture fraction Z in case
of stratified operation is depicted. Pure mixing is assumed for the unburnt condition,
whereas infinitely fast chemistry is assumed for the burnt condition. Correctly, in order
to account for fluctuations of residual gas, similar to the mixture fraction variance Z̃′′2,

a flamelet parameter equation for ˜Y ′′2
EGR would strictly speaking be required. EGR is

mixed with fresh air at early times. Therefore the magnitude of ˜Y ′′2
EGR can be expected

to be much smaller than that of Z̃′′2, which is mainly due to fuel injection, and the
variance of EGR can be neglected in order to reduce flamelet parameter space. If we
assume that residual gas and air are locally perfectly mixed prior to fuel injection, a
linear dependency between the instantaneous species distribution over mixture fraction
space is obtained (see fig. 4.4a) for the unburnt. In the burnt gas (fig. 4.4b), the same
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relationship is retained only between the stream mass fraction EGR and instantaneous
mass fraction Z. The fuel stream mass fraction Yfuel is assumed to be completely
depleted in lean mixture (Z < Zst), and air is assumed to be consumed in rich mixture
(Z > Zst). The consumed masses of air and fuel are then collected in the product
stream mass fraction Yprod.

Due to its inert nature a conservation equation is solved for the Favre averaged
mass fraction of residual gas ỸEGR. The other averaged mass fraction streams are
determined by the relationships as depicted in figure 4.4 using the flamelet parameters
and ỸEGR.

In order to obtain Favre averaged mass fractions of these streams, integration over
the instantaneous realizations in mixture fraction space using a presumed pdf (see sec-
tion 3.5.7) is only required for the burnt state. Due to the linear dependencies in the
unburnt, presumed pdf integration can here be omitted.
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Chapter 5

Validations

In this chapter, the physical models developed for turbulent premixed combustion pre-
sented in the previous chapters are applied and validated against combustion cases that
were experimentally investigated. At first, a combustion case in a non-moving cylindri-
cal vessel is presented. Here, different approaches for the global flame front curvature
and the expression of σ̃t are compared to experimental results. Then, in the following
two sections, the model will be tested in a realistic engine environment, first in homo-
geneous charge operation (section 5.2 and then in stratified charge mode 5.3 of a direct
fuel injection engine.

5.1 Cylindrical Vessel experiment

In this section, the ignition and 3D combustion model based on the turbulent G-
equation is initially validated against combustion experiments in a cylindrical vessel
which were carried out by Hamamoto et al. [36, 35]. A homogeneous stoichiometric
propane/air mixture is subjected to an axi-symmetric swirling flow, in which by vary-
ing the ignition timing during the swirl decay the effect of different swirl intensities
are studied. Several model alternatives discussed in the chapters 3 and 4 are calculated
and compared against the experimental results.

5.1.1 Experimental setup

The experimental setup (see also fig. 5.1) is documented in various publications [35,
36, 37, 38, 39, 47]. The cylindrical vessel has a diameter of d = 125 mm and an axial
length of l = 35 mm. It is charged through a swirl valve by means of a pressurized
mixture tank, creating the swirling flow. At the end of charging, the valve is moved
out of the vessel, thus closing it. Different swirl intensities are realized by igniting the
mixture at different times after intake valve closure. Therefore this test case investi-

79
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Figure 5.1: Sketch of the experimental setup for the cylindrical vessel as published by [47]

gates the behavior of the combustion model at the time of ignition, the development of
the turbulent flame, and the flame quenching at the wall.

From the experimental investigations, pressure traces and, deduced from these, nor-
malized heat release rates are reported. In addition, for each variation of ignition tim-
ing, averaged flame front contours obtained from schlieren measurements are recorded
for different times of flame propagation.

The computational domain is initialized at t = 0 (which corresponds to the time
of valve closure) with a flow and turbulence field as given in table 5.1. This field
is not uniform over the domain, the magnitude of the axial rotational frequency ω is
dependent on the radial distance r as well as to the distance from the upper and lower
wall yw1 at z = ±17.5 mm. The turbulent mixing length �m is attenuated towards the
walls to zero. The swirling flow is initialized such that the mean tangential velocities in
the radial radial coordinate at z = 0 match the experimental observations for different
times after charging valve closure. The comparison in fig. 5.3 reveals good agreement
between experiment and simulation.

The initial flame kernel volume is set to Vign = 6.545 × 10−11 m3, which corre-
sponds to a kernel radius of rK,0 = 0.25 mm. For simplicity, the spark energy release
Q̇spk is assumed to be negligibly small. The ignition duration is assumed to be 2 ms.
For the laminar burning velocity, a correlation for propane/air mixtures by Müller et

al. [62] is employed as well as for the inner layer temperature T0, which is used to
determine the flame diffusivity D0 according to eqn. (3.12). In this case, best agree-
ment to the experimental results is achieved by modifying the expression for the flame
diffusivity by a constant factor of fD = 1.76 such that the effective diffusivity used in
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Figure 5.2: Horizontal (left) and vertical (right) cut through the computational mesh during com-
bustion calculation using local grid refinement within the flame brush. On the right and left image
the mean flame front surface is depicted. On the upper half of each image, the temperature is
depicted in false colors. Additionally, the mean flame front surface is shown as white translucent
surface.

p 243 kPa

T 335 K

ω 5.05 m/s
r

tanh r
0.013 m

, r =
√

x2 + y2

�̃u ω (�ez × �x), �ez = (0, 0, 1)T

k 5.0 m2

s2

�m min(8 · 10−3 m, κ ywall), κ = 0.419

ε according to eqn. (2.46)
φ 1.0

G̃ � 0 m

G̃′′2 0 m2

Table 5.1: Initialization of the cylindrical disk test case.



82 Chapter 5. Validations

-6

-4

-2

0

2

4

6

-60 -40 -20 0 20 40 60

ṽ
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the CFD calculation is

Deff,CFD = fD D0|approx. [62] . (5.1)

The inner layer temperature estimated according to [62] is T0 = 1253 K for this case
of a stoichiometric propane/air premixed flame subjected to the initial conditions as
given in table 5.1. Using eqn. (3.12) and (3.8) the corresponding flame diffusivity is
D0 = 2.74 × 10−5 m2/s. On the other hand, the results presented in chapter 3.1.1
predict D0 to be approximately 20% larger, which is still smaller than the effective
value that was finally taken.

The computational grid as depicted in figure 5.2 consists of 58311 base cells. Dur-
ing the combustion calculation, the mesh is refined by one refinement level in the re-
gion of the turbulent flame brush, where high spatial gradients of Ĩu exist, replacing
the master cell by eight child cells in three dimensions. Due to the grid refinement, the
boundary layer at the wall is assumed to be resolved and therefore the wall boundary
condition for G̃′′2 is set to be zero.

5.1.2 Cold Swirl Flow

In figure 5.3 computed and experimentally measured radial mean velocities are com-
pared for different computational times during swirl decay. The agreement of both flow
patterns shows the validity of the chosen initial conditions.
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5.1.3 Validity of Flamelet/Heat release coupling

At first we need to discuss the accuracy of the Level Set implementation with regards
to the flow and heat release coupling. Prior to discussing the validity of the physical
model for the turbulent mass burning rate it needs to be assessed whether the mass

burning rate ˜(ρusT ) over the mean flame front surface is correctly expressed by the
temporal mass balance change of burnt and unburnt gases.

With mu and mb being the global burnt and unburnt masses, respectively, one can
formulate the temporal derivative of the normalized burnt gas mass fraction

ẋb|1 =
1

〈mu〉 + 〈mb〉
d 〈mb〉

dt
(5.2)

which is identical here to the normalized heat release rate. xb is determined in 3D-
space by the unburnt gas probability Ĩu (see section 4.3.2). It does not directly repre-
sent the predicted global heat release by the model, but rather the effective heat release
that is practically applied to the flow by means of the numerical procedures described
in section 4.3. On the other hand, the heat release is directly determined by the model
by integrating the mass burning rate over the mean flame front surface:

ẋb|2 =
1

〈mu〉 + 〈mb〉
∫

G̃=G0

˜(ρusT ) dA . (5.3)

This is numerically determined in the CFD code by determining the G0 surface seg-
ment δA of each cell containing a part of the mean flame front, followed by a multi-
plication with the mass burning rate predicted by the thermodynamical and turbulent
states of each cell.
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Figure 5.5: Comparison of different approaches for σ̃t (4.7) and D′
t in the term for the mean

curvature in equation (3.106).

The third approach is to spatially integrate the premixed reaction rate ˙̃ωG obtained
from eqn. (4.18):

ẋb|3 =
1

〈mu〉 + 〈mb〉
∫
V

〈ρ〉 ˙̃ωG dV . (5.4)

These three computed heat release rates can be compared without the need to discuss
the correctness of the physical model for the turbulent mass burning rate. However, the
physical model chosen in this work is already anticipated from the following section.

Figure 5.4 compares results for these three approaches with each other. The re-
sults for ẋb|2 and ẋb|3 are in very good agreement. This assesses the accuracy of the
Finite Volume implementation only. However, oscillations can be observed for times
t > 6 ms, which can be traced back to two reasons: Firstly, the computational grid
around the mean flame front surface for these times is coarser than before because
local adaptive refinement is turned off. Secondly, flame/wall interactions take place.
However, the results for ẋb are still in good agreement with the rate determined by
means of eqn. (5.3).

5.1.4 Evaluation of different approaches for turbulent flame sur-
face and turbulent curvature terms

In section 3.5.3 a new expression for σ̃t, eqn. (3.114), and different expressions for
the effective turbulent diffusivity D′

t appearing in the curvature term of the closed
equation for G̃, eqn. (3.106) were presented. Along with other modeling options using
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an algebraic σ̃t-equation as presented by Peters [71], two possible expressions for D′
t

are combined with three possible algebraic expressions for the turbulent flame surface
area ratio. From the CFD calculations for the 10 ms ignition test case, pressure curves
are compared against the experimental measurement in figure 5.5 .

It can be clearly seen that the predicted increase of pressure for each of the three
investigated versions of the algebraic σ̃t-expression is lower with the “conventional”
turbulent curvature approach (3.107) than with the mixing length type of approach
(3.108). This can be explained by the fact that the turbulent diffusivity according to the
conventional approach is non-zero already immediately after ignition. Curvature ef-
fects play an important role due to the small size of the ignition kernel. These curvature
effects lead to a decreased kernel expansion velocity and possibly even to a quenched
flame kernel [54]. With the mixing length approach based on the flame brush thickness
on the other hand, turbulent curvature effects immediately after combustion are not
predicted due to the zero initial condition of G̃′′2.

Best agreement in terms of the pressure history is achieved with the σ̃t equation
according to (3.114) (with q = 0) which is equal to (4.7) with (4.10). The other two
approaches for σ̃t predict flame propagation to be turbulent already immediately after
ignition since they are not proportional to the laminar flame brush thickness �f,t. The
prediction of increased flame propagation for small kernels cannot be compensated by
the conventional diffusivity approach in the turbulent curvature term such that agree-
ment between experimental and modeled pressure history can be achieved. Finally,
it is important to remark that the difference in results for all of these three models is
only due to the different behavior immediately after ignition where the turbulent flame
brush is not fully developed, that is, �f,t < �f,t,alg .

In figure 5.6 the radius of the flame kernel is plotted over time when the spark ig-
nition model is in use. The final calculations employed the rK ≥ 2 mm criterion to
switch from the ignition model to the 3D-equations. It can be clearly seen that already
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Figure 5.7: a) Turbulent mixing length �m. b) Development of the flame brush thickness of
the spark kernel over time. Again, the line styles correspond to those in figure 5.5. For this
plot and the following one, the spark ignition model was continued beyond the switch criterion
rK ≥ 2 mm.

at very early stages of flame expansion, the chosen model for σ̃t and the curvature
contribution have a significant influence on the expansion rate, while the scale of the
turbulent flow essentially remains constant, as long as the expansion speed is moder-
ate. This is depicted in figure 5.7a, where the turbulent length is plotted for all model
configurations. Therefore, at the initial stage of kernel expansion, the flow around the
kernel remains almost undisturbed by the kernel expansion, because the size of the ker-
nel is much smaller than the largest turbulent eddies. However, this is not the case for
the flame brush thickness; figure 5.7b shows that the larger the flame kernel, the larger
�f,t, which can be explained by the fact that only turbulent eddies equal or smaller than
the size of the flame kernel can interact with the kernel (see also section 3.6.2).

However, the variation of the turbulent flame brush thickness evolution at very
early times (< 0.2 ms), can be neglected in comparison to the differences in modeling
of σ̃t and the turbulent curvature term −κD′

t. This is shown in figure 5.8. Although the
influence of laminar flame curvature (fig. 5.8c) is large, especially for small kernels,
this effect is more and more attenuated when the flame kernel expands. On the other
hand, the influence of turbulent mean curvature still increases for the time period shown
because the decrease in mean flame kernel curvature is compensated by the increase in
kernel size and therefore by the ability to interact with larger turbulent structures.

In terms of spark ignition, it was assumed that the initial flame propagation is driven
by laminar effects. The laminar burning velocity with respect to the unburnt gas sL,u

was obtained from burning velocity approximations as 42.9 cm/s. This seems to be
most accurately recovered for the expansion velocity sT,κ as shown in fig. 5.8b by the
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Figure 5.8: a) Turbulent flame surface area ratio of the spark kernel for different modeling
options b) Modified turbulent burning velocity of the spark sT,κ according to eqn. (3.149). c)
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sT,κ. For all plots the time after ignition for the 10 ms case is shown on the abscissa. Again, the
line styles correspond to those in figure 5.5.



88 Chapter 5. Validations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35

p
[M

P
a
]

time after ignition t [ms]

10 ms
100 ms
300 ms

1000 ms

Figure 5.9: Comparison between experimentally observed (thick lines) and numerically predicted
pressure histories (thin lines) for different ignition timings. Eqn. (3.114) was employed in order
to determine σ̃t. The turbulent diffusivity in the curvature term of the G̃-equation was determined
according to eqn. (3.108).

model choice ‘s2c1’. However, the resulting expansion velocity from this model is a
superposition of turbulent flame speed and the influence of mean curvature.

As a conclusion from this investigation, the algebraic σ̃t-expression according to
(3.114) with the turbulent diffusivity (3.108) for the curvature term in the G̃ equation
was chosen for all combustion calculations.

5.1.5 Discussion of results with swirl variation

In figure 5.9, the measured and calculated pressure histories are depicted for differ-
ent ignition timings, employing model chosen in the previous section. Experimentally
measured pressure traces are only available for the time during pressure rise. Unfor-
tunately, experimental data are not available thereafter [103], for example in order to
study heat losses to the walls after combustion. The over-all agreement between ex-
periment and simulation is good, however, for the 10 ms case the predicted pressure is
initially higher than in the corresponding experiment, but eventually both traces are in
good agreement again.

In figure 5.10, the total mass burning rate ẋb normalized by the total cylinder mass
is displayed. The experimental and numerical results were obtained by means of differ-
ent approaches. The experimental results were determined by evaluating the pressure
trace using an assumption for the heat capacity ratios in the burnt and unburnt gas ac-
cording to Lavoie [51]. The numerical results, on the other hand, were determined
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Figure 5.10: Comparison between the normalized mass burning rate obtained from the experi-
mentally measured pressure history (thick lines) and the normalized first temporal derivative of
the numerically predicted burned mixture mass (thin lines).

from the integrated turbulent mass burning rate over the mean flame front area, taking
the temporal derivative, eqn. (5.2). Both approaches do not necessarily lead to the same
results because the heat losses to the walls need to be sufficiently accurately quantified
for an accurate determination of the burnt gas fraction from the pressure curves. Here,
the agreement between experiment and simulation is acceptable, and the shapes of the
normalized mass burning rates are similar. This applies to the increase phase before
reaching the maximum burning rate as well as to the phase hereafter. Furthermore, the
better the agreement in terms of pressure, also the better in terms of mass burning rate.

In figure 5.11, flame shapes obtained from experiment and simulation are com-
pared. The flame contours obtained from the experiment do not represent the mean
flame front position but a front of the turbulent flame brush ahead of the mean flame
front. The visualization of the numerical results accounts for this by plotting both the
mean flame front position G̃ = G0 and the position Ĩu = 0.75 ahead of it. Therefore
the distance between these two lines represents half of the flame brush thickness.

Good agreement of turbulent flame contours is achieved for with ignition timings
300 ms and 1000 ms and for 100 ms the agreement is still acceptable. For the 10 ms
case, the experimentally observed contours are more ellipsoidal than those numerically
predicted. This is argued to be due to the assumed initial condition of the turbulent flow
at charge valve closing and the initial values of the turbulent quantities k and ε. For all
cases, the cold flow simulation started at intake valve closure, t = 0. Therefore, the
flow, the turbulent fields of k and ε, and the boundary layers at start of combustion had
more time to develop for the cases with later ignition timings.
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Figure 5.11: Comparison of measured flame fronts (thick dot-dashed lines) with calculated

G̃ = G0 positions (thin solid lines) and Ĩu = 0.75 (thin dashed lines) for different ignition
timings and different times after ignition, respectively. For tign = 10 ms, fronts 4.2, 6.4, 8, 9,
10, 11, and 12 ms after ignition are depicted, for tign = 100 ms, fronts 4.3, 8.15, 10, 11, 12,
13, 14, 15, 16, and 17 ms after ignition, with tign = 300 ms, 13 different fronts for 4.8, 9.3,
and 10 to 20 ms with an interval of 1 ms are plotted, while for tign = 1000 ms 10 fronts at 4.9,
9.7, and 12 to 26 ms with an interval of 2 ms are depicted.
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Bore 86 mm

Stroke 86 mm

Displacement 0.5 L

Compression
ratio

10.3

Manifold Ab-
solute Pressure
(MAP)

95 kPa

Intake air tem-
perature

95◦C

Coolant and oil
temperature

90◦C

Intake valve
closing

−119◦CA aTDC

Table 5.2: Engine specifications for both the
homogeneous as well as the stratified charge
operation mode as published in [20].

case φ N2 [%]

I 0.6 0
II 0.6 15
III 0.6 30
IV 0.8 30

Table 5.3: Specifications of homogeneous
charge operation points studied

Engine speed 2000 r/min
Ignition advance 40◦bTDC
Spark duration 2 ms
Spark energy 60 J/s
Initial Spark radius
rK,0

1.00 mm

Table 5.4: Engine specifications for the ho-
mogeneous charge operation mode, used in the
computation.

5.2 Homogeneous charge SI engine

In the two following sections, experimental investigations and numerical results ob-
tained from a Spray Guided Spark-Ignition Direct-Injection (SG-SIDI) engine setup
are compared with each other. The engine was operated [55] both in a direct-injected
as well as in a homogeneous charge mode, whereas the latter modes is presented in
this section. The stratified mode follows in section 5.3. The four-valve single cylinder
engine has a pentroof-head. In table 5.2 engine operating conditions for both homoge-
neous and stratified charge operation are given. For all cases studied, identical valve
timings were employed.

5.2.1 Setup for homogeneous charge

The fuel used in homogeneous charge operation mode is propane. The fuel/air mixture
is provided at two different equivalence ratios φ, and the corresponding mixtures are
also diluted with different amounts of nitrogen addition, serving as a substitute for
EGR. The engine speed is constant.

The spark timings for the different dilution cases are the same. This allows for the
study of effects of varying laminar burning velocities and laminar flame thicknesses
on combustion. The width of the spark plug electrodes was 2.8 mm and the spark
electrode gap 2.2 mm. However, the amount of heat released is significantly different
for all of these cases.



92 Chapter 5. Validations

Figure 5.12:
Unstructured com-
putational grid of the
closed engine geom-
etry highlighting the
modeled spark plug.
This mesh comprises
302,000 grid cells.

5.2.2 Setup of numerical calculation

Two meshes are employed for the numerical computation, one with the intake manifold
starting shortly after 366◦CA aTDC until 630◦CA aTDC at which an interpolation
of the numerical results (“remap”) to the closed geometry is carried out.

The initial spark kernel radius is assumed to be rK,0 = 1 mm. Therefore, the
initial spark plasma size is of the order of the spark gap size in the model. The spark
ignition model is switched to the 3D equations at approximately 2.5 mm spark kernel
radius.

The laminar burning velocities are calculated by the approximative relationships
already discussed in the previous section [62]. However, the nitrogen dilution requires
further assumptions. This is realized by adjusting the burnt gas temperature Tb in the
approximations in accordance with the same approach as for the iso-octane laminar
burning velocity approximation in appendix C. The results of the laminar burning ve-
locities thus obtained at the spark location for the time of ignition are compared to 1D
DNS code results from FlameMaster and henceforth accordingly adjusted.

The value of the flame diffusivity D0, however, was scaled using the adjustable pa-
rameter fD , see eqn. (5.1). The adjustment factor fD was varied for the computations
between 0.1 and 0.16.

5.2.3 Results

At first, we will discuss results for case I in order to find an appropriate choice for the
model parameter q in eqn. (3.114). In figures 5.13 and 5.14 the shapes of the mean
flame front and the turbulent flame brush are depicted for different two crank angles
and the two chosen values of the model parameter q, respectively. In both cases it can
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a)

b)

Figure 5.13: Plot of color coded averaged temperature and mean flame front position including
the turbulent flame brush on a vertical cross-section through the cylinder (left images) and mean
flame front surface in 3D space (right images) for two crank angle positions. Both plots are
depicted for case I and parameter q = 0 in eqn. (3.114).



94 Chapter 5. Validations

a)

b)

Figure 5.14: Same plots as in figure 5.13, but with q = 2/3.
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Comparison of experi-
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be seen that at about 720◦CA the flame enters the squish region. For q = 0 the flame
has a concave curvature towards the unburnt gas directly at the wall which indicates
that there is an increase of predicted burning velocity. For q = 2/3, this behavior is
not observed and the flame at the wall is convex towards the unburnt which seems to
be more plausible.

In figure 5.15, a comparison of cycle-to-cycle resolved experimentally indicated
mass burning rates and the RANS calculations with different values for q is depicted
in order to assess an appropriate choice for q. It can be seen that the calculated mass
burning rates are in the range of the different cyclic resolved realizations for both para-
meter values, except for the phase after Top Dead Center (TDC), in which lower mass
burning rates are predicted. However, it can be seen that the predicted mass burning
rate curves for both values of q exhibit the same slope as several individual cycles of
the experiment shown in the figure. For q = 0, a sharp peak at about 5◦CA after TDC
is observed. For a short time period, when the turbulent flame approaches the wall, the
ratio �f,t/�f,t,alg is greater than unity which results for q = 0 in a significant increase
in turbulent burning velocity. This behavior is not observed for q = 2/3.

The observations made here and the variations in computed mean heat release rate
lead to the conclusion that the parameter q = 2/3 is more plausible than q = 0 for the
engine case. Therefore q = 2/3 was chosen for all engine calculations.

The experiments revealed that for three operating points the engine ran stable and
with a low Coefficient Of Variability (COV) of Inner Mean Effective Pressure (IMEP),
that is, COV < 3% for the cases I, II, and IV. In these cases no misfires were encoun-
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case ◦CA Tu [K] s0
L [m/s] �f [mm] �f,t [mm] rK [mm]

I 680.25 631 0.28 0.01 0.12 1.03

II 680.25 629 0.12 0.02 0.12 1.02

III 680.25 615 0.01 0.18 0.12 1.00

IV 680.25 635 0.20 0.01 0.12 1.02

case σ̃t �f,t,alg [mm] κD [m/s] κD′
t [m/s] sT,κ [m/s]

I 1.99 4.09 6.04×10−3 0.15 0.68

II 2.52 5.03 3.84×10−3 0.17 0.26

III 2.78 4.82 3.83×10−3 0.17 −0.13

IV 2.22 4.78 4.26×10−3 0.16 0.49

case k̂spk [m2/s2] τt = k/ε [ms] Σ̃t [1/mm] rk,t,crit [mm]

I 4.52 1.41 13.65 1.20

II 3.91 1.73 18.50 0.90

III 3.94 1.67 24.43 15.58

IV 3.89 1.68 15.34 0.65

Table 5.5: Thermodynamical and turbulent flow conditions at the spark location at the time of
ignition.

tered. For case III, however, 86% of the cycles were identified as misfires. Therefore
we will discuss ignition simulation results for all four cases first and then only focus
on cases I, II, and IV for discussion of the combustion in 3D space.

In order to predict successful and unsuccessful ignition strategies, we will at first
discuss the results from the ignition model. In view of eqn. (3.149)

sT,κ = sT − κ(D0 + D′
t) ,

the criterion for successful ignition would be sT,κ > 0. We can now insert eqns. (3.8),
(3.33), and (3.108) into (3.149). By linearizing the equation (3.114) σ̃t using the tur-
bulent flame brush thickness such that

σ̃t = �f,tΣ̃t (5.5)

and decoupling laminar from turbulent effects, we obtain two constraints. Concerning
laminar effects it is required that

1 − 2
�f

rk
> 0 ⇒ rK > 2�f , (5.6)

while the turbulent condition for successful ignition reads

sLΣ̃t − 2cκ

rK
k̂spk > 0 ⇒ rK >

2cκk̂
1/2
spk

sLΣ̃t

≡ rk,t,crit , where cκ ≡
√

cµcs

Sct
.

(5.7)
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Figure 5.16: Cylinder pressure comparisons between experiments (thick lines) and simulations
(thin lines) for those operating points for which no misfires were encountered.

In table 5.5 conditions immediately after ignition were determined for all four
cases. It is evident that sT,κ is negative for case III, one indicator for unsuccessful
ignition. Because sT,κ is based on the σ̃t expression with q = 2/3, it tends to predict
higher turbulent burning velocities during the evolution of the turbulent flame brush
thickness �f,t than with q = 0. This is depicted in figure 3.10. The quantity Σ̃t, eqn.
(5.5) is based on (3.114) with q = 0 and therefore independent of �f,t. In fig. 3.10
it can be seen that σ̃t determined with q = 0 is smaller for developing flames than
with q = 2/3. Therefore, Σ̃t is a safe estimation with respect to a successful ignition
criterion based on a curvature and flame propagation balance.

In figure 5.16-5.18 the results from simulations are compared to cycle averaged
results from the experimental measurements. As can be seen, all pressure traces are
in reasonable to good agreement. However, the calculated maximum pressure for all
cases is reached few degrees crank angle prior to the averaged measured maximum
pressure. The cylinder pressure is slightly overpredicted for the cases with nitrogen
dilution during the pressure rise phase, while during the pressure decrease it is slightly
underpredicted. In terms of the averaged burnt fuel mass fractions, it can be seen that
until approximately 50% fuel is burnt, the agreement between RANS-CFD and the
experimental average is good, for the 0% N2 and 15% N2 nitrogen dilution cases even
is very good. This indicates that early combustion after spark ignition is well predicted.
Above 50% burnt, heat release rate is underpredicted. Analysis of the spatial CFD
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Figure 5.17: Comparison between numerically and experimentally obtained burnt fuel mass frac-
tions. The line styles correspond to those in figure 5.16.
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Figure 5.20: Comparison of turbulent flame
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are averaged over the values on the mean flame
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results indicates that the flame enters the squish region when approximately 50% of
the fuel is consumed.

The following discussion is confined to case I only. In figure 5.19 an averaged
phase diagram of the combustion regimes occurring during the combustion phase is
depicted. The first point after switching from the spark ignition model to the fully spa-
tial equations is located in the thin reaction zones regime. For increasing crank angles
until about TDC, a significant increase in non-dimensional turbulent length scale can
be observed. Not only the flame expands from the spark plug into the inner cylinder
region in which larger turbulent structures exist (see fig. 5.20). Furthermore, the lami-
nar flame thickness �f is decreased due to the pressure increase. The non-dimensional
turbulence intensity, however, only exhibits a minor increase. Therefore, shortly after
TDC, a transition into the corrugated flamelets regime is observed. This is also the time
at which the turbulent flame enters the squish region (see figure 5.14b). The turbulent
length scales as well the turbulence intensity interacting with the flame decrease from
this time on again.

The comparison of the turbulent flame brush thickness �f,t to its corresponding
turbulent length scale �f,t,alg in figure 5.20 underlines the previously made statement
that the flame sees increasingly larger turbulent structures later during the combustion
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Ã

k1/2Ã
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phase. As soon as the flame enters the squish region, the turbulent length scales in-
teracting with the flame are significantly smaller. The turbulent flame brush thickness
follows this development with a delay of approximately 10◦CA. Hence, according to
this model the turbulent flame is in continuous development until shortly before TDC.

Now, the results for flame propagation in the squish will be discussed. As was
stated above, global mass burning for the late stages of the cycle after TDC is un-
derpredicted. Two possible reasons for this behavior need to be investigated: Either
the approximation for the turbulent burning velocity underpredicts combustion in the
squish region while the turbulent flow is correctly predicted or the turbulence model
underpredicts the turbulence intensity which leads to the underpredicted turbulent mass
burning rate. In figure 5.21 the mass burning rate is qualitatively compared with the
maximum possible rate effective at large Damköhler numbers. In view of eqn. (3.42)
the maximal rate is approximated by Ãk1/2 as ẋb. This quantity is independent from
the flamelet based premixed combustion model that is subject of this work. It can be
seen that Ãk1/2 follows the same qualitative decrease after TDC. Therefore the de-
crease in turbulent mass burning rate is due to the decrease in turbulence intensity.

In appendix D the behavior of the turbulent kinetic energy and turbulent dissipation
fields in the squish for this specific engine are discussed. For the k-equation, the influ-
ence of the different terms contributing to turbulent production are investigated. There,
it is concluded that the reason for this underprediction is likely due to the turbulence
model employed.

5.3 Stratified charge SIDI engine

Spark-Ignition Direct-Injection (SIDI) engines are presently subject to extensive re-
search. It is expected that SIDI engines provide a future concept of engine design
on the market. This is due to the fact that SIDI concepts promise to yield better fuel
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economy and performance due to charge cooling by direct injection [113], especially
at full load. Additionally at part load conditions, mixture stratification enables further
thermodynamic improvements because – in contrast to homogeneous charge concepts
– throttling of a SIDI engine can be reduced. For mixture stratification, an ignitable
and combustible fuel/air mixture needs to be convected to the plug at the time of spark
ignition. First generation SIDI engines realize the mixture formation and transport
by means of Wall-Guided (WG) or Air-Guided (AG) concepts. However, the gain in
fuel economy was not as significant as expected, and only low market acceptance was
achieved [96]. Several reasons for this behavior can be identified. The stratified mode
is only limited to a small operation window because mixture formation is difficult to
realize and requires a very defined flow pattern. This flow pattern must be controlled
by swirl control valves which reduce the volumetric efficiency and hence the maxi-
mal achievable power output. The injection timing is therefore constrained by the flow
pattern, and since the ignition timing is constrained by the injection timing, a thermo-
dynamic optimization of the combustion process is difficult to realize. This results in
the possibility of incomplete combustion and an increase in pollutant emissions. Es-
pecially in Wall-Guided concepts, deposits of unburnt hydrocarbons on the wall and
piston surfaces lead to an increase of such unburnt hydrocarbons and soot emissions.

The SIDI engine that is investigated in this section is pertinent to so-called 2nd gen-
eration DI engines. Its design follows the Spray-Guided (SG) engine concept [20, 55].
According to this concept, spray injection and ignition are tightly constrained but allow
for thermodynamic optimization of the combustion process. Usually, a centrally placed
fuel injector sprays towards the spark plug such that the spray cloud rim is established
at the plug. Problems may arise by spray impingement on the electrodes that leads
to spark plug fouling. The characteristics of spray formation and fuel evaporation is
crucial for the ignition and combustion process. Suitable injector types are multi-hole
injectors or outwardly-opening piezo-injectors [30].

In this section, CFD results using the G-equation concept for stratified mixtures
and the ignition model are compared to experimental investigations of a SG-SIDI en-
gine. One question is whether the model is able to successfully predict time frames of
ignitable conditions at the spark plug. It is evident that the fuel/air mixture must be
in an equivalence ratio in the ignitable range. In order to identify an ignitable mixture
at spark location in stratified configurations, not only the turbulent conditions and the
mean mixture conditions as discussed in the previous section but also the inhomogene-
ity of the mixture in the vicinity of the spark plug need to be taken into account. Within
a suitable control volume, a fraction of the total mixture fraction fluctuations are re-
solved by the Z̃-distribution, the other fraction is modeled the equation for Z̃′′2. The
differences of model results with and without the information from the Z̃′′2-equation
are compared with each other.

The ignition criterion applied in this work is entirely based on the G-equation con-
cept and therefore follows a different approach than existing concepts. In this context,
the criteria by Maaß et al. [57] are worth mentioning. They have developed criteria for
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successful ignition based on flow and mixture distribution analysis in the vicinity of the
spark plug. There, the average normalized air-fuel ratio λ ≡ φ−1 in a control volume
around the spark plug should be in the range 0.85 ≤ λ ≤ 1.15 and the standard devia-
tion of λ should be lower equal 0.15 which applies to spatial inhomogeneity as well as
to cyclic variability. Additionally, criteria for the mean spray vapor concentrations are
taken into account.

5.3.1 Fuel injection

In all cases presented here, indolene III was used as fuel. The fuel was injected by
a Bosch 60 degree eight-hole circular injector with an injection pressure of 11 MPa.
The injector axis is oriented towards the spark plug such that the plug is encompassed
by two single sprays on each side (see figure 5.22).

The spray is modeled employing a Lagrangian approach based on spray parcels

in which each parcel is representative for a class of droplets with a given position,
velocity, temperature, and diameter. In order to describe injection, 6000 spray parcels
for each injector nozzle are introduced in a state after primary and secondary breakup
into the computational domain. Therefore, no physical models for neither of the two
breakup phases were applied to the spray computation. A Generalized Rosin-Rammler
droplet size distribution [53] of the spray cloud with a Sauter Mean Radius (SMR) of
smr = 7.5 µm is assumed at the time of injection.

The fuel evaporation is modeled using a multicomponent fuel assumption by ap-
plying a continuous thermodynamics approach according to Lippert et al. [56]. A
dense-spray correction [92] is applied for both droplet drag and vaporization.

In figure 5.22 results from an injection-only CFD calculation for the spray and the
mixture distribution are shown. The corresponding case can be found in section 5.3.3.
Instead of Z̃ and Z̃′′2 in the figure the equivalence ratio φ̃ and its standard deviation is
depicted. The latter quantity is directly derived from Z̃′′2. It is the square root of the
equivalence ratio variance

φ̃′′2 =
Z̃′′2

(Z̃ − 1)4

(1 − Zst)
2

Z2
st

. (5.8)

In the aforementioned figure it can be seen that the mixture stratification in the
vicinity of the spark plug is very large since high spatial gradients of the equivalence
ratio are observed which cause high variances of equivalence ratio. The rich mixture
cloud passes the spark electrodes before ignition occurs in a still rich mixture.

5.3.2 Optically accessible engine

The base engine was also manufactured in a version for optical access of the combus-
tion chamber through a quartz piston window, cf. fig. 5.23. Due to additional plumbing
and minor changes in piston geometry for the optical access, the compression ratio of
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y < 0 y = 0 y > 0
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Figure 5.22: Spray and fuel distribution images obtained by an injection-only CFD run for the
‘3k1’ case discussed in section 5.3.3. Including the image on the previous page, five crank angles
are depicted, for which the distribution of the mean equivalence ratio φ̃ on three vertical cut planes
is shown. Additional images are showing the spray from different perspectives. The picture in the

middle depicts the root mean square of the equivalence ratio φ̃′′21/2
.
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View Direction

high

low

Premixed
Reaction Rate

Figure 5.23: Schematic of optical engine access for the spatial measurement of the reaction rate.
The hatched rectangle indicates the location of the quartz window in the piston. Results for an
arbitrary crank position are also shown. In analogy to figure 5.13, mean flame front position and
flame brush thickness are indicated by white lines. The premixed reaction rate is also depicted
with color-coded intensity. A few streaks can be observed also, which are artifacts caused by
post-processing.

rpm Injected IMAP add. Injection timing (CFD) Spark timing (CFD)
mass N2 begin end begin end

[min−1] [mg] [kPa] [%] [◦aTDC] [◦aTDC] [◦aTDC] [◦aTDC]

2000 10.0 95 0 -45.5 -24.9 -25.0 -16.6

Table 5.6: Spread sheet of engine operating condition for the optically accessible engine. IMAP
denotes the Intake Manifold Pressure. The injection timings given here take magnetic and me-
chanical injector delays into account.
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-24◦CA

-20◦CA

-12◦CA

-10◦CA

-8◦CA

-6◦CA

-4◦CA

TDC

Figure 5.24: Qualitative comparisons between OH∗ chemiluminescence images (left columns)
from individual cycles and premixed reaction rates from CFD (right columns). The images from
CFD are encircled to indicate the experimental view. The time series range is between 24◦bTDC
and TDC.
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Figure 5.25: Experimental and CFD results for the test case per-
formed in the optically accessible engine. On the left ordinate,
injected, vaporized and burnt fuel mass are plotted. On the right
ordinate, the normalized global heat release is plotted. Burnt fuel
mass and global heat release rates obtained from CFD and exper-
iments are compared to each other. Both experimental and CFD
global heat release data are obtained by means of the first deriva-
tive of the burnt global fuel mass with respect to the crank angle
normalized against the total heat of the injected fuel.

injected fuel (CFD)
vaporized fuel (CFD)
burnt fuel (CFD)
burnt fuel (Exp.)
mass burning rate (Exp.)
mass burning rate (CFD)

the optical version is slightly lower than the one for the metal engine for which the CFD
model was created. The diameter of the cylindrical quartz window is d = 48 mm. This
means that the spatial location of combustion can only be detected in the inner cylinder
and the piston bowl, but not in the squish region.

In tab. 5.6, the operating conditions for this case are given. The engine was run
without dilution. This corresponds to a non-EGR case.

The experimental visualization of the combustion process was carried out for a
similar engine by means of broadband flame luminosity as described by Drake et al.

in [20]. Next to two measured wavelengths for detecting soot radiation as an indicator
of diffusion burning, at 306 nm wavelength OH∗ chemiluminescence emission was
imaged. The OH∗ emission serves as an indicator for premixed combustion. However,
the authors of [20] point out the difficulty to establish a quantitative correlation between
the OH∗ intensity and the heat release rate due to premixed combustion. In figure 5.25,
results for OH∗ chemiluminescence from single-cycle experiments and premixed heat
release rate from CFD are depicted for times from ignition until TDC. The CFD results
are computed using the premixed volumetric reaction rate according to eqn. (4.18).
The location of combustion as shown in the single-cycle experiment is sufficiently
recovered by the RANS CFD.

In fig. 5.25, global results from the spray and combustion calculation are depicted
for the optical engine test case. Results for the global mass burning rate due to com-
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Case rpm afr Injected IMAP EGR Injection timing (CFD) Spark timing (CFD)
mass (exp.) begin end begin end

[min−1] [−] [mg] [kPa] [%] [◦aTDC] [◦aTDC] [◦aTDC] [◦aTDC]

2k1 2000 25.7 8.53 95 43.8 -49.25 -37.90 -35.0 4.0
3k1 3000 45.3 5.58 90 33.7 -60.85 -46.85 -43.0 15.5
3k2 3000 22.3 11.78 95 32.4 -60.71 -39.85 -35.0 23.5

Table 5.7: Spread sheet of investigated engine operating points. IMAP denotes the Intake Man-
ifold Pressure, afr the global air/fuel ratio (2.22). The external EGR dilution level given here
refers to the definition of experimentally measured EGR for non-stoichiometric air/fuel ratios. It
is different to the EGR definition in the CFD calculation. The injection timings given here already
take into account magnetic and mechanical injector delays.

bustion are from the experimental investigations and from CFD are compared to each
other. It can be seen that combustion predicted by CFD is slightly faster than for the
experiment in the beginning. The global fuel mass burning rate is the sum of fuel con-
sumption due to premixed and non-premixed combustion. Non-premixed combustion
is approximated by an infinitely fast chemistry assumption. However, non-premixed
combustion, which is also referred to as diffusion burning, is assumed to have only a
small contribution to total burning [20].

5.3.3 Variation of engine speed and injected fuel mass

The following series of operating points was carried out in a metal engine. Here, both
engine speed and injected fuel mass were varied. In table 5.7 the operating points are
specified. Due to the ignition system, the spark duration was identical for all cases
(3.25 ms), which results in the time windows given in the table. The initial spark
kernel radius is rign = 1 mm. Note that the injection and ignition data given here
refer to specifications for the CFD calculation and not to the experimental parameters,
because mechanical and magnetic opening and closing delay times of the injector are
taken into consideration in the table data. The EGR composition used in the CFD
calculation is assumed to be the product of stoichiometric mixture, regardless of the
actual air/fuel ratio that exists at the operating point. In the experiment, in contrast,
EGR is equal to the exhaust gas composition that is produced by the conditions of the
operating point.

Criterion for successful ignition

The criterion for successful ignition conditions developed in section 5.2.3 is applied
to the stratified cases. The condition (5.7) was developed for homogeneous mixtures,
where variations of the laminar burning velocity and the flame thickness were not as-
sumed. In the following we will discuss extensions of (5.7) for the stratified cases
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that take mixture fraction fluctuations into account. This is accomplished by substitut-
ing the expression sLΣ̃t in (5.7) by a term similar to (3.140), thereby considering the
probability P̃ (Z) of finding a specific mixture fraction value:

rk,t,crit = 2cκk̂
1/2
spk

⎡⎣ 1∫
0

sL(Z)Σ̃t(Z)P̃ (Z) dZ

⎤⎦−1

. (5.9)

The pdf P̃ (Z) will be evaluated by the same approach as outlined in chapter 3.5.7,
in which the beta-pdf using Z̃ and Z̃′′2 is assumed. This is accomplished by consider-
ing a spherical control volume with the size of the initial spark kernel and by averaging
local quantities over this control volume. A “spark-global” (i.e. one value over the
entire control volume) mixture fraction Z̃gl and a resolved variance Z̃′′2

res can be ob-
tained from the local Z̃ field. From the local Z̃′′2 field, an average Z̃′′2

lok,av can be
computed.

The turbulent ignition criterion rK,t,crit is evaluated in the following employing
three different approaches for the assumption of the mixture fraction pdf within the
spark volume for the injection-only cases without ignition. The results using each
of the three assumptions are compared with each other. The injection and ignition
timings were experimentally determined such that the engine ran most stably for the
chosen engine speed and injection parameters. Therefore we assume that the ignition
timings determined from the experiments lead to successful ignition and can therefore
be compared to the numerical findings.

All three approaches assume the mean mixture fraction distribution in the whole
control volume to be Z̃gl. The first approach assumes this distribution to be homo-
geneous, that is Z̃′′2 = 0. The second approach assumes the variance to be equal to
the resolved variance Z̃′′2

res. The third approach takes globally and locally averaged
variances into account such that the total variance is assumed to be Z̃′′2

res+Z̃′′2
lok,av.

In figure 5.26, the three different approaches are plotted for several operating
points. Also, the initial flame kernel radius is depicted. In order to evaluate rK,t,crit, a
different Schmidt number for the mean curvature term was employed. In (5.7) the con-
stant cκ was calculated using Sct = 7.0. With this model parameter, best agreement
to the experimental ignition timings was obtained.

It can be seen that the global equivalence ratio φ̃ increases rapidly after injection,
and for a very short time period favorable ignition conditions exist according to the
turbulent ignition criterion until the global mixture becomes too rich. Then, the global
equivalence ratio decreases again. This can be attributed to an advanced mixing of
the spray cloud with the ambient air. The second time period of favorable ignition
conditions lasts until the mixture in the control volume becomes too lean to ignite.
This corresponds to an increase in the value of rK,t,crit. This phenomenon is also
observed in fig. 5.22 in which the passing of the spray cloud by the plug is depicted.
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Case: 3k2
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Figure 5.26: Plot (on previous page) of
the turbulent ignition criterion rk,t,crit

over the crank angle evaluated for the con-
trol volume at the spark location for the
injection-only case without ignition for
different operation points. On the right
ordinate, the average equivalence ratio of
the control volume is plotted. On the
abscissa, start and end of ignition tim-
ings are indicated by outlined and solid
squares, respectively.

Plot Legend

rign

rK,t,crit, homogeneous
rK,t,crit, resolved and local
P̃ (Z)

rK,t,crit, resolved P̃ (Z)

φ̃ global

It is also significant that the different assumptions for the mixture fraction variance
yield different results for very rich and very lean mean mixtures. For approximately
stoichiometric mixtures, predictions of rK,t,crit using the different assumptions for the
mixture fraction distribution are similar. One could expect that favorable ignition con-
ditions are more frequently predicted, if the evaluation of rK,t,crit is only based on a
global homogeneous mixture, rather than by assuming both global and local mixture
fraction variation. In fact, the opposite is the case. For in average very rich and very
lean mixtures the inclusion of Z̃′′2

gl and Z̃′′2
lok,av lead to a mixture fraction pdf P̃ (Z)

that includes stoichiometric mixtures which enhance combustion. On the other hand,
for mean stoichiometric mixtures a minor decrease in rK,t,crit is observed if the mix-
ture fraction pdf using the full variance Z̃′′2

gl+Z̃′′2
lok,av is considered. A comparison

of the criterion rK,t,crit ≤ rign for the CFD calculation with the timings used in the
experiments shows that favorable ignition timings are correctly predicted for all oper-
ating points. They exhibit only a minor deviation if the full variance Z̃′′2

gl + Z̃′′2
lok,av

is used. This does not only apply to the beginning of spark ignition, but also to its end.
We can conclude therefore that the application of the Z̃′′2 transport equation (3.138)
is important for the correct prediction of stratified premixed combustion, leading to an
improvement of the numerical results shortly after spray injection. For the operating
points investigated here, a decrease in predicted ignition propensity due to the inclusion
of the full mixture fraction variance Z̃′′2

gl+Z̃′′2
lok,av was not observed. Additionally,

the liquid volume fraction of the fuel spray was not considered.

It appears to be likely that an increase in mixture fraction variance leads to an
increase in COV. The latter coefficient, however, depends on the whole combustion
process and not on ignition only. For this reason, a correlation between mixture fraction
variance in the control volume during ignition and the experimentally measured COV
of the investigated operating points was not established.
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y < 0 y = 0 y > 0

y < 0 y = 0 y > 0

y < 0 y = 0 y > 0
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y < 0 y = 0 y > 0

y < 0 y = 0 y > 0

Figure 5.27: Caption for plots on this and previous page. CFD results are depicted for case ‘3k1’
for five different crank angles including combustion. The images are in accordance with the plots
in fig. 5.22. It is important to note that the equivalence ratio plotted is directly derived from the
mixture fraction Z̃ which is insensitive to fuel consumption due to combustion. On the upper row
the mean flame front and the flame brush thickness are additionally indicated by white lines for
each crank angle. On the lower row, the left and right images depict the mean flame front surface
in grey color.
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Combustion validation

In this sub-section, the cases are discussed including combustion. Here, the interaction
between the turbulent flow and the spray injection including fuel vaporization and mix-
ture stratification leads to the predicted propagation of the flame and the predicted mass
burning rate. In contrast to homogeneous combustion, another physical sub-model, the
model for spray transport and vaporization, has therefore significant influence on the
combustion results.

In analogy to the ignition criterion investigation above the turbulent Schmidt num-
ber appearing in the mean curvature term of the G̃ equation (3.106) was increased, see
also eqn. (3.108). The ignition kernel radius is equal to the radius employed in the
homogeneous cases. fD is a model coefficient of the order of unity.

In figure 5.27, a visualization of the flame propagation for the 3k1 case is de-
picted. Only images until TDC are shown for brevity. Immediately after combustion,
mixture stratification is significant and leads to a non-negligible Z̃′′2 field, in the plot
indicated as standard deviation of equivalence ratio. With increasing crank angles,

φ̃′′21/2
quickly decreases. As can be seen from the figure, at TDC the standard de-

viation of equivalence ratio has dropped to insignificant values, especially in those
regions, where flame propagation prevails. A comparison with fig. 5.22 for -32◦CA
and -22◦CA shows that the mixture fraction field is not significantly disturbed by the
advancing flame front.

For the combustion calculation in fig. 5.27 it can be seen at -22◦CA that flame
propagation is strongly dependent on the fuel distribution. For example, flame prop-
agation is noticeably reduced in regions with very lean mixtures. The highest flame
propagation rate, however, is not found for stoichiometric mixtures, but for rich mix-
tures with a mean equivalence ratio range of 1.25 ≤ φ̃ ≤ 2.00. At the same time, in
these regions also high mixture fraction variances are found. This observation is in line
with the remarks made in chapter 3.5.7: For increasing values of Z̃′′2 the maximum of
the turbulent burning velocity shifts to richer fuel/oxidizer mixtures. Due to the mix-
ture stratification in this case and the almost vertical spray angle, most portions of the
injected fuel evaporate and remain in the piston bowl. Combustion in the squish region
therefore is widely suppressed.

Now, results for all three investigated cases are discussed. In figure 5.28, averaged
experimental and simulated cylinder pressure histories are plotted. The over-all agree-
ment is good except for the case ‘2k1’ in which the simulated maximum pressure does
not reach the experimentally observed, although initially the pressure is overpredicted.
In figure 5.29, global mass balances and mass burning rates are depicted. From sim-
ulation, the amounts of injected fuel mass, vaporized fuel mass, and burnt fuel mass
are plotted. As for the experiments, the amount of burnt fuel is determined from the
pressure history employing a two-zone model with a heat transfer model according to
Woschni’s correlation [44, 111]. In both simulation and experiment, the global mass
burning rates are obtained as the normalized derivative of the burnt fuel mass with re-
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Figure 5.28: Cylinder pressure comparisons between experiments (thick lines) and simulations
(thin lines) for the cases in section 5.3.3

spect to crank angle. The derivative is normalized with respect to the totally injected
mass.

The comparison of injected to vaporized fuel mass from CFD shows that the totally
injected fuel is almost completely vaporized at the time of ignition, that is, a direct
interaction between the spray droplet modeling and the combustion modeling is not
required for this problem. The comparison between the results of burnt fuel mass from
CFD and experiment confirms the results from the pressure curves. Best agreement
is obtained for case ‘3k2’. For this case, the simulated combustion efficiency is 94%,
which is close to the experiments (95%). On the other hand, for case ‘3k1’ less fuel
is burnt in the simulation than in the experiment (94.5% vs. 98%). For case ‘2k1’, the
results are 86% vs. 97%.

5.4 Discussion

Focus of the validations is on the prediction of the turbulent burning velocity and – es-
pecially in SI engines – on the global heat release rate over crank angle. In section 5.1,
different approaches for the algebraic σ̃t-equation (4.7) and the global curvature term
in the kinematic G̃-equation, (3.106) are discussed and applied to a cylindrical vessel
case. Appropriate models are chosen as a result from this test case. With regards to
the σ̃t-equation chosen, two different choices for the model parameter q are discussed.
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Figure 5.29: Comparison of experimental and CFD results for the cases discussed in section
5.3.3. The plot legend can be found in fig. 5.25.
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For homogeneous and stratified charge, the choice q = 2/3 appears to be appropriate
and is used for all engine calculations.

Besides the effects of development and curvature of the mean turbulent flame, two
constants are important to be verified. The model constant b1 = 2.0 in the expres-
sion sT = b1v

′ has been found by many experimental researchers and has also been
validated in DNS calculations for moderate intense turbulence [106]. Therefore no
modifications of this constant are proposed for fully developed flames in the limit of
large Damköhler numbers.

In order to correctly predict the bending effect according to expression (3.45), in-
formation from the laminar flamelet and from turbulent interaction is required. Apart
from the quantification of the laminar burning velocity sL, also a correct measure of
the flame diffusivity D0 for the laminar flamelet is essential. In chapter 3.1.2, the
calculation of D0 is discussed. The conclusion drawn in that section is that D0 varies
depending on the reference position taken inside the reaction zone. Therefore, a certain
inaccuracy lies in the data from the laminar flamelet. With regards to turbulent inter-
action and using a fixed Schmidt number in the expression for Dt, (3.94), b3 needs
to be quantified. In this work b3 is set to 1.0. In view of eqn. (4.7), the correction
factor fD does not only account for the corrections to the laminar flame diffusivity in
the approximative expression, but also for modifications to b3. A decrease of fD by a
factor of 4 yields an increase of b3 by a factor of 2.

As for the cylindrical vessel experiment presented in section 5.1, the correction
factor is found to be close to unity. Thus we can conclude that the constant b3 = 1.0
from literature is in line with the reported experimental conditions. However, in the ho-
mogeneous engine calculations presented in section 5.2, the factor fD was decreased
by almost an order of magnitude. This cannot be sufficiently explained by possible dif-
ferences between the laminar flame diffusivity of the real flamelet and its approxima-
tion. This fact implies instead that the coefficient b3 requires additional readjustment.
One may therefore conclude that there exist conditions in which the bending effect has
lower importance, indicated by a coefficient b3 greater than unity. Such conditions may
occur for engine configurations where higher order hydrocarbon fuels at high unburnt
temperatures (above approx. 600 K) and elevated pressures are combusted.

For the homogeneous charge cases, the interaction between the combustion process
and the linear turbulence model, describing the flow in the engine geometry was dis-
cussed. Here, also the unburnt flow region and the advancing flame front have a mutual
influence which is caused by turbulence. It is shown that for the turbulence prediction
at late stages of the cycle, not all questions regarding the accuracy of the results could
be answered. The underprediction of the mass burning rate as soon as the flame front
enters into the squish region may be due to the turbulence model that is unable to cap-
ture the effects of the complex flow structure there. In order to reduce the effects of
turbulence modeling on the combustion results, we must primarily consider the results
of initial flame propagation.

With regards to the stratified cases, the interaction of the spray with the combustion
model was shown. Analysis of injection-only cases with respect to ignition propensity
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yielded good agreement with the experimental ignition timings if both the resolved and
modeled mixture fraction fluctuations were considered. On the other hand, turbulent
curvature effects on the mean flame front were found to have a weaker influence for
the stratified combustion cases than for the homogeneous cases.



Chapter 6

Conclusions

In this work, the theory of premixed and partially premixed turbulent combustion mod-
eling was presented, reviewed and applied to Spark Ignition engine simulation. The
combustion model used was the G-equation concept based on the Level Set approach
by Peters [70, 71] with extension to spark ignition modeling and unsteady flame be-
havior.

The model predicts the turbulent burning velocity taking four effects into account.
The first effect is the Damköhler-number dependent bending effect that distinguishes
between premixed combustion in large and small scale turbulence. Secondly, effects
of turbulent mass fluxes due to global curvature of the mean turbulent flame front are
taken into account. The third mechanism is due to unsteady flame development. This
mechanism was formulated such that it consistently models the transition from a lami-
nar to a fully developed turbulent flame by additionally taking the ratio of the turbulent
flame brush thickness to the corresponding length scale of the turbulent flow into ac-
count. Additionally, a numerical procedure suited for describing spark ignition was
developed. It allows for using the same physical model in both spark ignition and
flame propagation phase. At last, the fourth mechanism that influences the turbulent
burning velocity is caused by the instationary fluctuation of the air/fuel mixture ratio.

While the first and the last mechanism already were reported previously in the lit-
erature [13, 71], the second and third have been formulated in this work. Additionally,
all these four mechanisms were integrated into one generalized model.

The model presented in this work was finally tested and validated using combus-
tion cases in a closed cylindrical vessel with constant volume and in a Spark Ignition
engine with homogeneous charge and charge stratification due to direct injection. For
the homogeneous charge case, a variation of different levels of nitrogen dilution was
successfully predicted. Also, a case of unsuccessful ignition was correctly predicted.
The consideration of the direct injection cases with mixture stratification also gave
good agreement between experiment and simulation with respect to the ignition timing
window. The combustion simulations for the injected cases were in weaker agreement

119
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with the experiments than the homogeneous cases. This can be explained with the
more complex interaction (f. ex. spray) of physical sub-models involved than in ho-
mogeneous combustion. However, we can conclude that the G-equation concept for
turbulent premixed combustion based on the Level Set Method is a suitable approach in
order to predict premixed combustion phenomena in SI engines, both in homogeneous
charge and stratified charge.

In order to improve the model performance, further work on the formulation is
proposed. The physical sub-models for global flame curvature and unsteady flame de-
velopment were derived by a heuristic approach and then applied to simulate complex
experimental setups in which the above mentioned effects cannot be separated from
each other. Although the approaches for these sub-models employed predict combus-
tion with satisfying accuracy investigations to find a unique set of modeling constants
are proposed. This applies primarily to the coefficient b3 in the algebraic σ̃t-equation
and the Sct number for the curvature term of the G̃-equation. It is therefore proposed
carry out investigations by which the influence of the effects can be assessed sepa-
rately from each other. For example, this can be accomplished by DNS of turbulent
flame kernel development and the transition of planar laminar flames into turbulent
flames.

The focus of future premixed turbulent combustion model development will likely
be on the coupling of the G-equation concept with the Large Eddy Simulation (LES)
approach [41] for turbulent flows, where turbulent motion of numerically resolvable
structures is directly simulated and sub-grid structures are modeled. The LES approach
promises to overcome modeling deficiencies that the RANS model has, for example –
as discussed in this work – in predicting late cycle turbulence. Furthermore, the com-
bination of these two approaches promises to provide solutions to questions about the
cyclic variability of engine combustion, for instance, an aspect that is of great inter-
est. Both LES and G-equation concepts have been previously combined [22], however
with less modeling effort for premixed combustion. Since the RANS approach of the
G-equation which has been further developed in this work requires more modeling
effort than present LES models, these insights may also be used for LES/G-equation
approaches in future.



Appendix A

The premixed turbulent reaction rate

In this appendix an attempt is made to derive a transport equation for the progress
variable c̃ from the Level Set flamelet parameters G̃ and G̃′′2. As a result, an expression
for the volumetric reaction rate ˙̃ωG is obtained.

At first, we write eqn. (3.106) valid for the mean flame front position as

DG̃

Dt
= −D′

tκ̃|∇G̃| +
˜(ρsT )

〈ρ〉 |∇G̃| . (A.1)

Additionally, we will use the variance equation (3.98). In order simplify terms, the
substantial derivative D/Dt is used for both equations to collect the temporal change
and the convective terms.

In chapter 3.5.6, we have already assumed a functional relationship between the
probability of finding burnt gas P̃b, G̃, and G̃′′2. This relationship will not directly
be used, except that we stipulate that the mean and the variance of the flame front
position can be reduced to a non-dimensional coordinate ξ. Also, we equate P̃b with
the progress variable:

c̃ = P̃b = 1 − Ĩu = f

(
G̃√
G̃′′2

)
= f(ξ) . (A.2)

Using the following expressions for the derivatives of c̃

∂c̃

∂G̃
=

∂c̃

∂ξ

∂ξ

∂G̃
=

∂c̃

∂ξ

1√
G̃′′2

(A.3)

∂c̃

∂G̃′′2
=

∂c̃

∂ξ

∂ξ

∂G̃′′2
= −∂c̃

∂ξ

1

2

G̃

G̃′′23/2
= −1

2

G̃

G̃′′2
∂c̃

∂G̃
(A.4)
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and the chain rule of differentiation the transport equation reads:

Dc̃

Dt
=

∂c̃

∂G̃

DG̃

Dt
+

∂c̃

∂G̃′′2
DG̃′′2

Dt

=

{
−D′

tκ̃|∇G̃| +
˜(ρsT )

〈ρ〉 |∇G̃| − 1

2

G̃

G̃′′2
DG̃′′2

Dt

}
∂c̃

∂G̃
. (A.5)

Here, no terms other than contribution due to premixed reaction and global curvature
are identified. In analogy to Peters [71] we assume a convective-reactive balance for
the progress variable apart from the global curvature effects and write after using the
chain rule of differentiation

Dc̃

Dt
= −sign

(
∂c̃

∂G̃

)
D′

tκ̃|∇c̃| + ˙̃ωG with (A.6)

˙̃ωG =

{
˜(ρsT )

〈ρ〉 |∇G̃| − 1

2

G̃

G̃′′2
DG̃′′2

Dt

}
∂c̃

∂G̃
. (A.7)

Consequently, for Ĩu (see chapter 4.3.2), the transport equation reads:

DĨu

Dt
= −sign

(
∂Ĩu

∂G̃

)
D′

tκ̃|∇Ĩu| − ˙̃ωG . (A.8)

For a fully developed turbulent flame the substantial derivative of G̃′′2 is negligibly
small. Then, we can simplify the expression for the premixed reaction rate to

˙̃ωG ≈
˜(ρsT )

〈ρ〉 |∇G̃| ∂c̃

∂G̃
= sign

(
∂c̃

∂G̃

)
˜(ρsT )

〈ρ〉 |∇c̃| = −sign

(
∂Ĩu

∂G̃

)
˜(ρsT )

〈ρ〉 |∇Ĩu| .

(A.9)



Appendix B

Level Sets methods on unstructured
grids

B.1 Level Set Numerics

B.1.1 Introduction

Level Set methods can be used to describe the position of interfaces in 3D space and
their evolution in time. The basis is a scalar field, here denoted by the quantity G.
As regards to the premixed combustion modeling, this scalar G may refer to the in-
stantaneous flame front position as well as to the averaged mean flame front position
G̃. Therefore, in this section the tilde is omitted completely but the methods presented
here are valid both for the instantaneous and the averaged G.

Interfaces are located where G = G0 (and G0 ≡ 0). Outside of this interface
G represents the signed distance between the point in space where G is defined and
the closest point of the interface. Two issues are important when employing Level Set
Methods:

• Development of a method in order to advect the interface according to the un-
derlying physical model.

• Maintaining the distance information outside of the interface.

At the interface position G = G0 we define the following PDE for the advection
of the front.

dG

dt
+ F |∇G| = 0 (B.1)

The scalar F denotes the normal velocity of the interface. Non-orthogonal velocity
components do not need to be considered.

Per se the scalar field of G is not defined for G �= G0. However, in the context
of premixed turbulent combustion it is helpful to give G a useful meaning everywhere
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else. In order to accomplish that, outside of the front we impose a distance constraint
by

|∇G| = 1. (B.2)

The sign of G gives the information on which side of the interface the point is located.

B.1.2 Characteristics of the G-equation

Figure B.1: Characteristics of the G-equation with a given interface position. Arrows indicate
the information transport.

The characteristics of the G-equation are related to the propagation of information
due to the distance constraint (B.2). The interface G = G0 imposes an inner boundary
condition on the field. The information propagation is normal to the iso-G surface,
where the normal is defined as

�n ≡ − ∇G

|∇G| . (B.3)

In general, the definition of the sign is arbitrary. Due to the information transport away
from the front, this implies that the value of G at a certain point is only determined
by points closer to the interface. Some conclusion for the correct and most efficient
numerics can be drawn from this fact. Upwind differencing should be used from the
direction of the interface. It is most efficient to start the calculation from the interface
and let it propagate from there into the whole domain.

In [97] and [98], a PDE dependent on an artificial time scale τ

dG

dτ
= sign(Gτ=0)(1 − |∇G|) (B.4)

with an adapted sign function sign(G) is solved until a steady state solution is reached.
When the solution in respect to the iteration in τ has converged, the distance constraint
(B.2) is obtained. This procedure is called reinitialization. |∇G| is calculated employ-
ing upwind differencing. This method can be realized in parallelized environments in
a straight forward way, but it does not take the location of the interface position into
account. This method therefore lacks efficiency since many subcycles for the artificial
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time loop might be required for obtaining a steady state solution. Another disadvantage
is that it requires an initial G field that represents sufficiently accurate a distance field.

Another method by Sethian [88] is called “Fast Marching Method”. This method
enables a fast reinitialization procedure and updates |G| according to the distance from
the interface thus calculating farest points last.

B.2 Defining an Extension Velocity

If the kinematics of the interface at a point �x0 are known, F can be determined to:

F = −d �x0

dt
· �n . (B.5)

Adalsteinsson [2] has proposed to extend F and thereby eqn. (B.1) from the inter-
face position to the whole computational domain:

dG

dt
+ Fext |∇G| = 0 . (B.6)

Fext is the so-called extension velocity valid in the whole computational domain. At
the interface, F ≡ Fext as inner boundary condition. It is clear that in order to correctly
use eqn. (B.6), Fext has to be suitably defined. For the special case |∇G| = 1 it is
apparent that the following equation is suitable:

∇Fext · ∇G = 0 (B.7)

That means that in principle Fext = const. along the direction of �n. A signed function
G remains a distance function if eqn. (B.7). This is illustrated as follows:

d|∇G|2
dt

=
d

dt
(∇G · ∇G) = 2∇G · d

dt
∇G

= −2

eqn. (B.7)︷ ︸︸ ︷
∇G · ∇Fext |∇G| − 2∇G · ∇

!
= 1︷︸︸︷
|∇G|Fext = 0.

(B.8)

Since eqn. (B.7) features the same characteristics as eqn. (B.6), it can be solved
either by an artificial time dependent PDE [66]

dFext

dτ
+ sign(G)

∇G

|∇G| · ∇Fext = 0 (B.9)

or by an appropriate Fast Marching Method. The latter will be discussed below for
unstructured meshes.
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Figure B.2: Begin of the Fast Marching Algorithm: points on the interface are tagged as accepted
immediately.
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Figure B.3: Image a) depicts the first determination of close points neighboring the interface. The
intersections between the interface and the grid can also be considered as accepted help points. In
b) one step has been performed where the values for the points to be updated are colored in black.
The closest point is moved into the accepted set. Unchanged points are colored in grey.
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Figure B.4: Two more steps of the update procedure.

B.3 The Fast Marching Method

The intention of this section is to give an overview of the Fast Marching Method by
Sethian [88, 89]. Additional information can be found in those references.

As a prerequisite, information about the location of the interface is needed. From
a numerical point of view, this would be a discretized scalar field G that partitions the
domain into the two groups G > G0 and G < G0 and allows for the determination of
the G = G0 surface by means of interpolation between two sign opposing neighbors
with respect to G. It is not required that G satisfies the constraint (B.2). By means of
the Fast Marching Method one can generate a Level Set field of G obeying the distance
constraint eqn. (B.2) from such a field G.

In the following section the update procedure of the Fast Marching Method thus
leading to a reinitialized Gtmp-field is described.

1. At the beginning of the Fast Marching Procedure all points that are exactly on
the interface (i.e. G = G0) will be identified. Since no update is required for
these points Gtmp will be assigned to be accepted. Points with this status are
finally determined in terms of their distance value. It is clear that Gtmp = G0

for points on the interface. The other cells will be tagged as far and the Gtmp-
field of these cells will be initialized with a very large signed distance value thus
indicating on which side in the domain they are located.

2. The next step is to identify those points where a preliminary value of Gtmp can
be computed. Such points will be collected in the set of close points. They must
have neighbors that are either accepted or have the opposite sign, which means
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that the interface is crossed in between. Using either the Gtmp distance infor-
mation of the neighbors on the same side of the interface or the direct interface
information, what ever is available,a preliminary value of Gtmp is computed for
these cells. They are tagged as close and put into the set of close points.

3. All points in the close set will be sorted according to their value |Gtmp|, starting
with the lowest value of |Gtmp|. The point with the lowest value of |Gtmp| will
not be updated anymore because no new information from points closer to the
interface is available. It will be taken out of this set and tagged as accepted.

4. The neighbors of this point that taken out of the set must be double checked in
terms of Gtmp, and tagged as close unless this is already the case. For each of
these points their neighbors closer to the interface are chosen in order recompute
Gtmp accounting for eqn. (B.2). The points checked can be divided into two
groups: The first group is already in the close set and their value of Gtmp either
remains unchanged or the value of |Gtmp| is smaller now. In the latter case the
set of close points must be resorted. The second group contains points of the far

set. The value of Gtmp must be updated for the first time here. The points are
tagged as close and put into the set of close points. Again, the set of close points
needs to be resorted.

5. The procedure is repeated starting with step # 3 until the domain is completely
resolved and all points are in the accepted set.

This update procedure ensures that the closest points in the domain are computed
first, farest points last.

B.4 Discretisation on an unstructured grid

While the other field quantities and scalars are solved using an implicit Finite Volume
method, the G-equation is solved by an explicit method based on finite differences.
The points where the G-equation is stored in the implementation used here are located
on the cell centers of the finite volume mesh. This is due to the fact that the G-equation
(B.1) is a transport equation of a length scale field while the other field variables are
related to the mass density or to the mass contained in a control volume of the flow
field. Hence the connectivity of the finite volume mesh based on hexahedra needs to be
transformed into a tetrahedral finite difference mesh with G defined at the mesh nodes.

Consider p to be a certain point in space at which the G equation has to be dis-
cretized. The value of Gp at p has to be determined considering (B.2). In order
to discretize the gradient operator by an upwind formultion, only neighbors ik of p
closer to the G0 interface than p must be taken. Since the ∇G vector is not curved in
the domain, a spatial discretisation of first order is sufficient. Hence only up to three
neighbors of p can be used for discretizing the gradient in 3D space. One constraint
of choosing possible neighbor candidates is that calculating Gp, |Gp| is minimized. If
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Figure B.5: Constructed Finite Difference grid around p and its neighbors in 2D (left side) with
triangles and in 3D (right side) consisting of tetrahedras.

only one neighbor is available, Gp can geometrically determined in a straight forward
way. If there are two or more neighbors, it is advantageous to square the equation (B.2)
and calculate the geometrically reasonable solution of the quadratic equation

(∇G)2 = 1 . (B.10)

Once Gp is obtained, Fext,p must be solved for by ∇G · ∇Fext = 0, where the
same neighbors as for calculating Gp have to be employed for discretizing ∇G and
∇Fext.

As pointed out above, up to three neighbors of p can be used for discretizing the
gradient ∇G. Even in a 3D problem, there exist situations, where two or even only one
neighbor can be employed for discretization. The occurence of these situations will be
explained below.

During the update procedure of Gp it is likely that p has less than three neighbors
that are closer to the interface than p itself. Each set of suitable nodes for discretization
must belong to the same tetrahedron of the finite difference grid (see fig. B.5).

Each choice of possible neigbors results in a value Gp and gradient ∇G. Then,
the gradient of G at p needs to be checked for validity. If two neighbor candidates are
chosen, ∇G must be directed as coming from the triangle that is formed by the two
neighbors and it must be coplanar to the triangle in order to be valid. This is depicted in
figure B.6. If three neighbor candidates are chosen, ∇G must be oriented from within
the tetrahedron formed for validity, see figure B.7.

B.5 Temporal integration

The discretization of eqn. (B.1), or eqn. (B.6) respectively, leads to an explicit first-
order method for the advection in time:

Gn+1 = Gn − ∆t F n
ext (B.11)
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Figure B.6: Valid and invalid gradient in 2D.
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Figure B.7: Valid and invalid gradient in 3D.
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An extension of this approach to second order accuracy in time reads:

G(n+1)′ = Gn − ∆t F n
ext

Gn+1 = Gn − ∆t

2

(
F n

ext + F
(n+1)′
ext

) (B.12)

For each time level, where Fext is determined, also a reinitialized field of G, Gtmp

is calculated simultaneously. In order to maintain stability, the field of Gn at the old
time level can be replaced by the reinitialized field Gn,tmp after a predefined number
of time steps. In this case, eqn. B.12 transforms into:

G(n+1)′ = Gn,tmp − ∆t F n
ext

Gn+1 = Gn,tmp − ∆t

2

(
F n

ext + F
(n+1)′
ext

) (B.13)
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Appendix C

Laminar Burning Velocity
approximation

The approximation for the laminar burning velocity of iso-octane is valid for a wide
range of unburnt conditions:

Sign Description validity

p pressure 1...50 bar
Tu unburnt temperature 300...800 K
φ equivalence ratio 0.5...2.0

YEGR EGR mass fraction 0.0...0.3

The limits given are to be understood as limits for high accuracy while the approx-
imation for the burning velocities are also reasonable a much wider parameter range,
however with lower accuracy.

The EGR species composition is assumed to consist of the products of the global
reaction step with air as oxidizer stream

i − C8H18 +
25

2
O2 +

25

2

79

21
N2 −→ 8 CO2 + 9 H2O +

25

2

79

21
N2 (C.1)

under stoichiometric conditions. While eqn. (2.20) is assumed for the definition for the
mixture fraction Z, the definition of the inert EGR mass fraction YEGR reads:

YEGR =
ṁEGR

˙mfuel + ˙mair + ṁEGR
. (C.2)

For determining sL, the following information is needed: the pressure p, the un-
burnt temperature Tu, the reduced mixture fraction Z� and the mass fraction of exhaust
gas YEGR. The reduced mixture fraction Z� denotes the reduced mass fraction of fuel
atoms in a gas mixture excluding EGR:

Z� =
Z

1 − YEGR
(C.3)
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where Z is the mixture fraction of the fuel. Z� can be linked directly with the equiva-
lence ratio by

Z� =
1

1 − Z�
st

φZ�
st

+ 1

. (C.4)

The starting point for developing an approximation expression for lean and rich
mixtures is the approach presented in [62]. The expression (12) for sL in this reference
was derived by asymptotic analysis in [73] for lean and stoichiometric flames. The
expression here for sL is based on [62]. By exchanging the unburnt fuel mass fraction
YF,u by a “reactive mass fraction” Yreact, the following approximative relationship is
obtained:

sL = A(T 0) Y m
react

(
Tu

T 0

)r
(

Tb − T 0

Tb − Tu

)n

. (C.5)

with
A(T 0) = F exp

(
− G

T 0

)
(C.6)

and

Yreact(Z
�, YEGR) =

(
Z�

1.1Z�
st

)na
(

1 − Z�

1 − 1.1Zst�

)[(1.1Z�
st)

−1−1]na

(1 − YEGR)nEGR .

(C.7)
The frequency factor A(T 0) is dependent on the inner layer temperature T 0 adjusted
for fitting sL. Since the laminar burning velocity reaches its maximum at φ ≈ 1.1,
Yreact has been scaled such that it reaches its maximum also in the vicinity of this
equivalence ratio. This behavior is also verified in experimental and numerical investi-
gations.

T 0 = Tu S1(Z
�) +

Ei S2(Z
�)

ln
Bi

p

(C.8)

Tb = Tu (S4(Z
�)(1 − YEGR) + YEGR) + (1 − YEGR)S3(Z

�) (C.9)

S1 to S4 are splines valid in the mixture fraction space Z� ∈ [0...1] defined by
knot points as given in table C.1. The remaining constants for fitting sL are given in
table C.1.
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Z� S1 S2 S3 [K] S4

0.0 1.0 0.0 0.0 1.0
S′′

1 = 0 S′′
2 = 0 S′

3 = 0 S′′
4 = 0

0.025 0.28 0.814 1103.8 0.824
0.05 0.0 0.993 1879.5 0.708
0.06211 0.0 1.0 2206.6 0.610
0.07 0.0 0.989 2097.8 0.710
0.08 0.0 0.996 1950.2 0.716
0.1 0.0 1.023 1340.4 0.677
0.12 0.0 1.030 1651.0 0.460
0.15 0.0 0.985 1340.5 0.627
0.18 0.05 0.513 1297.2 0.422
0.2 0.1 0.939 1267.9 0.356
1.0 1.0 0.0 0.0 1.0

S′
1 = 0 S′′

2 = 0 S′
3 = 0 S′′

4 = 0

Table C.1: Spline knot points for splines S1 to S4 for fitting sL.

Z�
st 0.062113

Ei 72017.8671 K
Bi 0.296729694 × 1023 bar
m 1.5
r 0.985
n 2.439
F 0.2679 cm/s
G −11376.6362 K

nEGR 0.8507
na 0.5

Table C.2: Additional constants for the sL fit.
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Fit for the diffusivity D:

D = CD0

[
S5(Z

�)(1 − YEGR)CDE + 1.0
] ( p

1 bar

)−CDp
(

Tu

1 K

)CDT

(C.10)

Constants:

CDp 1.047
CDT 1.462
CDE 1.876
CD0 0.12414 × 10−5 (cmm)/s

Knot points for the Spline S5:

Z� S5

0.0 0.0
S′

5 = 0
0.05 1.105
0.06211 1.418
0.07 1.335
0.08 1.079
0.1 0.688
0.12 0.680
0.15 0.360
0.18 0.139
0.4 0.0

S′′
5 = 0
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Figure C.1: Comparision of burning velocities obtained using the 1D DNS code FlameMaster
[76] and the approximation for iso-octane over mixture fraction space for a fixed unburnt temper-
ature and two different pressures with different EGR levels.
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Figure C.2: Analog to previous figure, but with different pressure and unburnt temperatures
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Figure C.3: Analog to figures C.2, but with another unburnt temperature and pressure.
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Figure C.4: Comparison of burning velocities bewteen 1D-DNS calculations and approximation
at stoichiometric mixture over pressure for different unburnt temperatures.
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Appendix D

Turbulence prediction in the engine
squish

In this appendix, the behavior of the turbulent kinetic energy and the turbulent dissi-
pation in a specified location within the squish region for engine case I presented in
chapter 5.2 are discussed.

Here we will compare the production term P , eqn. (2.54), without the density for
different crank angle positions in radial direction. The modified production term reads
then:

P = −
〈
u′′

i u′′
j

〉 ∂ũj

∂xi
= P1 + P2 + P3 . (D.1)

In order to assess different effects better, the production term is split into three compo-
nents. The linear Boussinesq approach (2.60) leads to the terms

P1 =
µt

〈ρ〉

(
∂ũi

∂xj
+

∂ũj

∂xi

)
∂ũj

∂xi
(D.2)

and

P2 = −2

3

µt

〈ρ〉
(
∇ · �̃u

)2

. (D.3)

P1 is the contribution due to shear to the deviatoric components of the Reynolds stress
tensor. In P2, the corrections due to global compressibility and variable density flows
are collected. The third component,

P3 = −2

3
k ∇ · �̃u , (D.4)

is due to the isotropic contributions of the Reynolds stress tensor. This term also ap-
pears in the unclosed equation for k, see eg. [83, 107].
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Now, the mean velocity components, the distribution of k and ε, and the three
components of the turbulent production term for the k equation are investigated for the
homogeneous engine case I discussed in chapter 5.2.

In figs. D.1-D.3 results are displayed from CFD on a line in the squish in the y, z
plane for several crank angle positions before and after TDC, as indicated in the first
figure. In the range between -20◦CA and 10◦CA, the turbulent kinetic energy de-
creases. This can be explained by the fact that on the extracted line, the net rate of
turbulent production P − ε becomes negative at about -10◦CA. Therefore, the con-
tributing components need to be further investigated.

It is evident that the correction of the mean shear tensor due to compressibility to
turbulent production P2 is negligibly small and will not be discussed any further. The
leading order terms are therefore P1, P3, and ε. In the linear turbulence model, the
isotropic contribution to the turbulent production P3 is positive and dominant against
the deviatoric contribution P1 for increasing pressure in non-reacting flow regions. For
decreasing pressure and flow regions subjected to heat release, P3 is negative. Provided
that the calculation of the mean flow and k is sufficiently accurate, this term is exact
and does not require any further modeling. P1 decreases with a progressing crank
angle position. Turbulent dissipation ε is approximately constant except for large radii
close to the cylinder walls where it strongly increases.

With regards to the mean flow pattern, three main phenomena can be identified.
The first is due to the swirl from the intake procedure which is present in the squish
for low piston positions. For higher piston positions, this swirl is superimposed by the
other patterns. The second phenomenon is the pressure increase and decrease which
force the flow in and out of the squish region, respectively. The last phenomenon is
due to the moving piston which causes the gas to be displaced as well. The result is a
complex flow pattern in which the velocity vectors frequently change their direction. In
fig. D.1 it can be seen that additionally a tumble in radial direction exists in the squish.
At TDC, this tumble does not exist anymore.

Miles et al. [61] have compared the turbulent flow in a DI Diesel engine at late
crank angles with linear RANS turbulence model calculations. It was found that the
CFD results sufficiently calculated the main flow patterns, but poorly predicted the
Reynolds stresses around TDC, especially in those regions, in which flow from the
squish into the piston bowl can be observed. The reason for this discrepancy was
argued to be due to the modeling of turbulent production for which the linear k, ε
model takes only shear of the mean flow into account, but no rotation. In a later work
[60], the same authors investigated the influence of swirl on the accuracy of Reynolds
stress prediction. They found that with the linear k, ε model, the accuracy decreases
with increasing swirl ratio. The inability of the linear model to predict turbulence in
rotational flows is well known [11].

Further, there are uncertainties in ε, which is difficult to be measured directly and
for which to the knowledge of the author no comparisons to experiments are available
for engine applications in the literature. In the postulated model equation (2.58) for
the turbulent dissipation the leading order terms in turbulent production containing the
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divergence of the mean flow can be summarized as(
−2

3
Cε1 + Cε3

)
ε
(
∇ · �̃u

)
. (D.5)

Analogous to the equation for k, these terms have great influence on the production
of turbulent dissipation. The factor Cε3, as discussed in chapter 2.4, is empirical. A
parameter study in which Cε3 = 0, however, did not lead to a significant change of the
results.

The decrease of turbulent kinetic energy in the squish region which is predicted
by the CFD calculations cannot be validated by experimental investigations since no
data are available for this specific engine geometry. As discussed above, however, it
is likely that the CFD calculations underpredict the Reynolds stresses in the squish,
a phenomenon that has already been reported. If this is the case, the underprediction
may be due to the contribution of mean shear to production in the k equation. Error
contributions due to the ε model cannot be excluded either.
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Verbrennungsysteme, pages 19–38. Menne, R., Brinkmann, B., 2005.

[31] V. Giovangigli. Multicomponent Flow Modeling. Birkhäuser, 1999.
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Nomenclature

In these lists, the meanings of symbols is explained as they are used throughout the
thesis. Occasionally, symbols have divergent meanings from this nomenclature. Then,
the corresponding meaning directly is given in the context. Additionally, rarely used
symbols are not included.

Acronyms
aTDC after Top Dead Center
bTDC before Top Dead Center
CA Crank Angle
CFD Computational Fluid Dynamics
COV Coefficient Of Variability
DI Direct Injection
DNS Direct Numerical Simulation
EGR Exhaust Gas Recirculation
IMAP Intake Manifold Pressure
ODE ordinary differential equation
pdf probability density function
RANS Reynolds Averaged Navier-Stokes
AG-SIDI Air-Guided Spark-Ignition Direct-Injection
SG-SIDI Spray-Guided Spark-Ignition Direct-Injection
SIDI Spark-Ignition Direct-Injection
SI Spark Ignition
SMR Sauter Mean Radius
TDC Top Dead Center
WG-SIDI Wall-Guided Spark-Ignition Direct-Injection

Greek Letters
α species index
χ scalar dissipation rate
ε dissipation of turbulent kinetic energy
η Kolmogorov length scale, see equation (2.42)
κ flame curvature, see equation (3.14)
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κ von-Kármán constant
λ normalized air/fuel ratio, see equation (2.23)
λ thermal conductivity
µt turbulent viscosity
ω̇ reaction rate
Ω rate of rotation tensor, see equation (2.5)
φ equivalence ratio, see equation (2.25)
φ̃′′2 variance of equivalence ratio, see equation (5.8)
ρ density
Σ flame surface density
σ instantaneous flame surface area ratio
σ̃t turbulent flame surface area ratio

Roman Letters
afr air/fuel ratio, see equation (2.24)
aij normalized anisotropic turbulent stress tensor
Ã area of mean flame front, see equation (3.33)
c progress variable parameter,, see equation (3.50)
D0 flame diffusivity, see equation (3.8)
Da turbulent Damköhler number, see equation (3.41)
DL Markstein diffusivity, see equation (3.16)
Dt turbulent diffusivity
D′

t turbulent diffusivity based on the mixing length approach, see equa-
tion (3.108)

fb volumetric probability/fraction of finding burnt gas
fD flame diffusivity factor, see equation (5.1)
G Level Set field variable
G0 Level Set interface position
G̃ Level Set field describing mean flame front position
G̃′′2 variance of the Level Set field, see equation (3.85)
G̃′′2

alg algebraic variance of the Level Set field, see equation (3.99)
h enthalpy
K flame stretch rate
k turbulent kinetic energy
Ka turbulent Karlovitz number, see equation (3.38)
Kal laminar Karlovitz number, see equation (3.21)
� integral length scale, see equation (2.44)
L Markstein length, see equation (3.16)
L turbulent scale, see equation (2.39)
�δ reaction zone thickness
�f laminar flame thickness, see equation (3.8)
�f,t turbulent flame brush thickness, see equation (3.84)
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�f,t,alg algebraic turbulent flame brush thickness, see equation (3.100)
�G Gibson scale, see equation (3.37)
M Markstein number
�n flame front normal vector, see equation (3.28)
�m mixing length
P turbulent production due to mean velocity gradients
p pressure
P̃b mass averaged probability / mass fraction of burnt gas, see equa-

tion (3.70)
Prt turbulent Prandtl number
q model parameter in equation (3.114)
R ideal gas constant
Re Reynolds number, see equation (3.36)
S modified rate-of-strain tensor, see equation (2.6)
S strain rate
Sct turbulent Schmidt number
sL laminar burning velocity
s0

L unstretched laminar burning velocity, see equation (3.1)
sT turbulent burning velocity
T temperature
t time
T0 inner layer temperature
Tad adiabatic flame temperature
Tu unburnt temperature
�u fluid velocity vector
�u′ velocity fluctuation
〈U〉 averaged random variable U

Ũ Favre averaged random variable U
v′ turbulence intensity
W molecular weight of the gas mixture
x0 normal coordinate position in the inner layer
ẋb normalized heat release, page 83
�xf flame front position vector, see equation (3.26)
xn premixed normal flamelet coordinate
Y species mass fraction
y wall distance
Z mixture fraction, see equation (2.20)
Z̃ Favre averaged mixture fraction, see equation (3.137)
Zst stoichiometric mixture fraction
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