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ZUSAMMENFASSUNG

Die vorliegende Dissertationsschrift befasst sich mit der Gewinnung, Be-
wertung und Analyse von Schnittebenen für gemischt-ganzzahlige lineare Op-
timierungsprobleme, kurz GLO’s. Bei Optimierungsproblemen dieses Typs
möchte man eine lineare Zielfunktion über einer endlichen Menge von line-
aren Gleichungs- und Ungleichungsbedingungen unter der Ganzzahligkeits-
forderung an alle oder nur einen Teil der endlich vielen Variablen maximieren
oder minimieren.

Viele praktische Probleme lassen sich mathematisch als GLO modellieren.
Das gleichzeitige Vorhandensein diskreter und kontinuierlicher Variablen
führt dazu, dass GLO’s algorithmisch schwer zu lösen sind. Oft lassen sich
Lösungen für praktisch relevante Probleme einer gewissen Grösse mit den
heute bekannten Lösungsverfahren nur heuristisch oder überhaupt nicht be-
rechnen. Deshalb ist man daran interessiert, neue Lösungstechniken zu ent-
wickeln.

Eine häufig verwendete Methode zum Lösen von GLO’s ist der Einsatz von
Schnittebenenverfahren. Die zentrale Idee solcher Verfahren ist es, aus dem
gegebenen GLO eine Folge von linearen Optimierungsproblemen zu konstru-
ieren, deren Formulierung sich durch das Hinzufügen linearer Nebenbedin-
gungen – sogenannter Schnittebenen – sukzessive verbessert, bis schliesslich
eine optimale Lösung für eines der linearen Optimierungsprobleme die Ganz-
zahligkeitsforderung für die betreffenden Variablen erfüllt.

Für eine Vielzahl kombinatorischer Probleme lassen sich direkt ganze Fa-
milien von Schnittebenen ableiten, die von der kombinatorischen Struktur der
Probleme herrühren. Im Gegensatz dazu lässt sich für ein allgemeines GLO
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keine strukturelle Eigenschaft ausnutzen. Deshalb kann sich die Erzeugung
von Schnittebenen nur auf die Zielfunktion und das gegebene, unstruktu-
rierte System linearer Gleichungen und Ungleichungen stützen. Einerseits
hat dies zur Folge, dass die Gewinnung von starken Schnittebenen für allge-
meine GLO’s gegenüber strukturierten Problemen schwieriger ist. Anderer-
seits macht gerade dieser Aspekt die Analyse der Schnittebenengenerierung
für allgemeine GLO’s mathematisch interessant.

In dieser Dissertationsschrift wird ein Ansatz vorgestellt, der es erlaubt,
mit Hilfe von gitterpunktfreien Polyedern, dass heisst Polyedern ohne inneren,
ganzzahligen Punkt, Schnittebenen für ein allgemeines GLO zu gewinnen.
Ausgangspunkt ist eine optimale Lösung der linearen Relaxierung des GLO
und ein mit ihr assoziiertes, optimales Simplextableau. Durch Betrachtung
von mehreren Zeilen dieses Simplextableaus wird eine weitere Relaxierung
gewonnen.

Der erste Teil der Dissertationsschrift widmet sich der Analyse dieser Re-
laxierung und bespricht, wie Schnittebenen für das allgemeine GLO aus der
untersuchten Relaxierung hergeleitet werden können. Es zeigt sich, dass
die generierten Schnittebenen im Raum der diskreten Variablen eine geo-
metrische Deutung besitzen und dass die stärksten aus der verwendeten Re-
laxierung ableitbaren Schnittebenen zu maximal gitterpunktfreien Polyedern
korrespondieren. Damit lassen sich Fragestellungen über Schnittebenen in
Fragestellungen über maximal gitterpunktfreie Polyeder übersetzen.

Der zweite Teil der Arbeit beschäftigt sich mit der Bewertung der gene-
rierten Schnittebenen. Im Ergebnis sind vor allem die Schnittebenen wichtig,
die besonders schwer zu gewinnen sind, weil es zu ihrer Generierung sehr
komplexer, maximal gitterpunktfreier Polyeder bedarf. Es wird ausser-
dem gezeigt, dass unter bestimmten Annahmen an das Gleichungs- und
Ungleichungssystem des zugrundeliegenden GLO wichtige Schnittebenen
durch Schnittebenen approximiert werden können, die aus weniger kom-
plexen, maximal gitterpunktfreien Polyedern herleitbar sind. Mithilfe eines
wahrscheinlichkeitstheoretischen Modells wird die Bewertung der Schnitt-
ebenen ergänzt und das Ergebnis geometrisch interpretiert.

Der dritte Teil der Dissertationsschrift konzentriert sich auf die Analyse
von gitterpunktfreien Polyedern und untersucht die für einen Schnittebenen-
algorithmus wichtige Klasse von gitterpunktfreien, ganzzahligen Polyedern.
Zwei verschiedene Maximalitätsbegriffe werden eingeführt und die zugehö-
rigen Klassen von Polyedern definiert. Konkret wird unterschieden in gitter-
punktfreie, ganzzahlige Polyeder, die in keinem anderen gitterpunktfreien,
ganzzahligen Polyeder echt enthalten sind; und in gitterpunktfreie, ganz-
zahlige Polyeder, die in keiner anderen gitterpunktfreien, konvexen Menge
echt enthalten sind. Im Anschluss findet eine Analyse der beiden Klassen
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statt, die im Wesentlichen auf die Eigenschaften der Vertreter der Klassen
und die Beziehung der Klassen zueinander fokussiert. Die Ergebnisse zeigen,
dass beide Klassen sehr viele und sehr grosse Elemente beinhalten.

Sowohl für den zweiten als auch den dritten Teil der Arbeit werden Aus-
sagen über zweidimensionale, gitterpunktfreie, konvexe Mengen benötigt.
Deshalb ist ein vierter Teil der Arbeit für die Herleitung dieser Aussagen
reserviert.
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ABSTRACT

This thesis deals with the generation, evaluation, and analysis of cutting
planes for mixed-integer linear programs (MILP’s). Such optimization prob-
lems involve finitely many variables, some of which are required to be integer.
The aim is to maximize or minimize a linear objective function over a set of
finitely many linear equations and inequalities.

Many industrial problems can be formulated as MILP’s. The presence of
both, discrete and continuous variables, makes it difficult to solve MILP’s
algorithmically. The currently available algorithms fail to solve many real-
life problems in acceptable time or can only provide heuristic solutions. As
a consequence, there is an ongoing interest in novel solution techniques.

A standard approach to solve MILP’s is to apply cutting plane methods.
Here, the underlying MILP is used to construct a sequence of linear programs
whose formulations are improved by successively adding linear constraints –
so-called cutting planes – until one of the linear programs has an optimal
solution which satisfies the integrality conditions on the integer constrained
variables.

For many combinatorial problems, it is possible to immediately deduce
several families of cutting planes by exploiting the inherent combinatorial
structure of the problem. However, for general MILP’s, no structural prop-
erties can be used. The generation of cutting planes must rather be based on
the objective function and the given, unstructured set of linear equations and
inequalities. On the one hand, this makes the derivation of strong cutting
planes for general MILP’s more difficult than the derivation of cutting planes
for structured problems. On the other hand, for this very reason, the anal-
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ysis of cutting plane generation for general MILP’s becomes mathematically
interesting.

This thesis presents an approach to generate cutting planes for a general
MILP. The cutting planes are obtained from lattice-free polyhedra, that is
polyhedra without interior integer point. The point of departure is an opti-
mal solution of the linear programming relaxation of the underlying MILP.
By considering multiple rows of an associated simplex tableau, a further
relaxation is derived.

The first part of this thesis is dedicated to the analysis of this relaxation
and it is shown how cutting planes for the general MILP can be deduced from
the considered relaxation. It turns out that the generated cutting planes
have a geometric interpretation in the space of the discrete variables. In
particular, it is shown that the strongest cutting planes which can be derived
from the considered relaxation correspond to maximal lattice-free polyhedra.
As a result, problems on cutting planes are transferable into problems on
maximal lattice-free polyhedra.

The second part of this thesis addresses the evaluation of the generated
cutting planes. It is shown that the cutting planes which are important,
are at the same time the cutting planes which are difficult to derive in the
sense that they correspond to highly complex maximal lattice-free polyhedra.
In addition, it is shown that under certain assumptions on the underlying
system of linear equations and inequalities, the important cutting planes
can be approximated with cutting planes which correspond to less complex
maximal lattice-free polyhedra. A probabilistic model is used to complement
the analysis. Moreover, a geometric interpretation of the results is given.

The third part of this thesis focuses on the analysis of lattice-free polyhe-
dra. In particular, the class of lattice-free integral polyhedra is investigated,
a class which is important within a cutting plane framework. Two different
notions of maximality are introduced. It is distinguished into the class of
lattice-free integral polyhedra which are not properly contained in another
lattice-free integral polyhedron, and the class of lattice-free integral polyhe-
dra which are not properly contained in another lattice-free convex set. Both
classes are analyzed, especially with respect to the properties of their repre-
sentatives and the relation between the two classes. It is shown that both
classes are of large cardinality and that they contain very large elements.

For the second as well as the third part of this thesis, statements about
two-dimensional lattice-free convex sets are needed. For that reason, the
fourth part of this thesis is devoted to the derivation of these results.
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CHAPTER 1

INTRODUCTION

The aim of this chapter is to provide an overview of the agenda of this thesis.
We introduce the underlying optimization problem and explain step by step
our motivation for choosing the research questions that are studied in this
thesis.

We assume that a general mixed-integer linear program (MILP) is given
in the form

max c�x s.t. Ax = b,

x ≥ 0,

xi ∈ Z for i ∈ I,
xi ∈ R for i ∈ C,

(1.1)

where A, b, and c are rational and I, resp. C, is a set of integer constrained,
resp. continuous, variables. The linear programming relaxation of (1.1) is
the optimization problem (1.1) where the condition xi ∈ Z is replaced by the
weaker condition xi ∈ R for all i ∈ I. To avoid trivial cases we assume that
the feasible region of (1.1) is non-empty and that its linear programming
relaxation is bounded. Solving the linear programming relaxation yields an
optimal vertex x∗ with corresponding sets B and N of basic and non-basic
variables which satisfy

xi = fi +
∑
j∈N

rjixj ∀i ∈ B,

where fi ∈ Q+ and rji ∈ Q for all i ∈ B and all j ∈ N . We assume that x∗ is
not feasible for (1.1), otherwise we have already found an optimal solution.
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2 Introduction

Our aim is to generate cutting planes (or cuts for short) which cut off x∗,
i.e. inequalities which are valid for every feasible point of (1.1), but violated
by x∗.

Virtually all traditional cutting planes that are used by general-purpose
MILP solvers, most notably lift-and-project cuts (see, for instance, [BCC93]),
Gomory mixed-integer cuts (see, for instance, [Gom60]), or mixed-integer
rounding cuts (see, for instance, [NW90]), are derived by considering only
one equation. Normally, the strategy is to generate a linear combination
of the original constraints Ax = b. Then one applies integrality arguments
to the resulting equation. Cuts obtained in this way are split cuts (see, for
instance, [CKS90]). Unfortunately, an approach that is based on such cuts
alone does not give rise to a finite cutting plane algorithm. In [CKS90], an
instance in only three variables is presented and it is shown that a cutting
plane algorithm based on split cuts does not converge finitely.

Example 1.1. Consider the following MILP.

max t s.t. −x1 + t ≤ 0,
−x2 + t ≤ 0,

x1 + x2 + t ≤ 2,
x1, x2 ∈ Z,

t ∈ R+.

The cut needed to solve this problem is t ≤ 0. However, in [CKS90] it is
shown that this cut cannot be obtained by applying split cuts only. �

In [ALWW07], Andersen et al. initiated a new approach for cutting plane
generation by considering two rows of a simplex tableau simultaneously. This
approach allows to deduce cutting planes that cannot be obtained by consid-
ering one single equation. In particular, the desired cut t ≤ 0 in Example 1.1
can be derived immediately.

Meanwhile, the two-row case has been analyzed quite exhaustively, most
notably due to Andersen et al. [ALWW07], Borozan and Cornuéjols [BC07],
Cornuéjols and Margot [CM08], and Basu et al. [BBCM11]. However, the
basic idea of the two-row approach can be generalized to the case of multiple
rows in a straightforward way. For that, the point of departure is an optimal
vertex x∗ of the linear programming relaxation of (1.1). We assume that
m := |B ∩ I| ≥ 2 and fi 	∈ Z for at least one i ∈ B ∩ I. We consider the set

PI :=

{
(x, s) ∈ Zm × Rn

+ : x = f +
∑
j∈N

rjsj

}
,

where N := {1, . . . , n} represents the non-basic variables and f , resp. rj , is
the vector consisting of all fi’s, resp. r

j
i ’s, such that i ∈ B ∩ I.



Introduction 3

The set PI is the underlying mixed-integer set in this thesis. Our motiva-
tion for analyzing PI is that it can be obtained as a relaxation of the feasible
region of a general MILP. Therefore, valid inequalities for PI give rise to
cutting planes for the original mixed-integer set. Consequently, our aim is to
derive valid inequalities for PI , or equivalently, for conv(PI).

In Chapter 3, we show that valid inequalities for conv(PI) correspond to
combinatorial objects in the space of the discrete variables. More precisely,
they correspond to lattice-free polyhedra, i.e. polyhedra that do not contain
an interior integer point. The basic properties of the set conv(PI) are sum-
marized in Section 3.1, and the relation between lattice-free polyhedra and
the facet-defining inequalities for conv(PI) is presented in Section 3.2.

By considering conv(PI), the feasible region of the original MILP (1.1) is
relaxed in two ways. First, we drop all integrality conditions on the non-basic
variables. Second, the non-negativity restrictions on all basic variables are
ignored. The latter relaxation has been introduced by Gomory [Gom69] and
is known as the classical group relaxation. The first relaxation, however, is
the great novelty in the new approach. It preserves much of the complexity
of the original model, but keeps it sufficiently simple to analyze it.

The following example illustrates the cutting plane approach that we have
in mind.

Example 1.2. Fig. 1.1 exemplifies our intended approach to generate cut-
ting planes. For simplicity, let m = 2. The gray regions in Fig.s 1.1(a) and
1.1(b) represent the projection of the linear programming relaxation onto
the space of the x-variables. After relaxing the integrality conditions on the
non-basic variables and the non-negativity restrictions on the basic variables,
we obtain a corner polyhedron (see, for instance, [Gom69]). The convex hull
of the two dashed half-lines in Fig.s 1.1(a)–1.1(c) is the projection of the
corner polyhedron onto the space of the x-variables. Fig. 1.1(b) shows how
the solid lattice-free triangle is used to cut off x∗. The intersection points
of the triangle and the two dashed half-lines determine the cutting plane.
After adding the cutting plane, the feasible region of the linear programming
relaxation becomes smaller. Its projection onto the space of the x-variables
is the gray region in Fig. 1.1(c). �

Since, by assumption, x∗ is not feasible for (1.1), we aim at generating
cutting planes that are violated by the basic solution x∗

i = fi for all i ∈ B
and x∗

j = 0 for all j ∈ N . For that, we look for valid inequalities for conv(PI)
which cut off the point (f, o). It turns out that the non-trivial facet-defining
inequalities for conv(PI), i.e. the strongest inequalities that we can derive
from our relaxation, do perform this task: all of them are violated by (f, o).
This implies that we can focus our attention on non-trivial facet-defining
inequalities for conv(PI). At this point the enormous power of the applied



4 Introduction

x∗

(a) The point x∗ must be cut
off from the integer points in
the feasible region.

x∗

(b) The solid triangle contains
x∗ in its interior, but none of
the feasible integer points.

x∗

(c) The solid line separates x∗

from the integer points in the
feasible region.

Figure 1.1: Derivation of a cutting plane.

relaxation comes into play, because all these non-trivial facet-defining in-
equalities correspond to lattice-free polyhedra which possess beautiful geo-
metrical properties. The exact relation is stated in Theorem 3.9 where we
show that every non-trivial facet-defining inequality for conv(PI) can be de-
rived from a lattice-free polyhedron which has a representation as the sum of
a polytope and a linear space. It follows that strongest cutting planes are as-
sociated with maximal lattice-free polyhedra, i.e. lattice-free polyhedra which
are not properly contained in another lattice-free polyhedron. Structural
properties of maximal lattice-free polyhedra entail information on the corre-
sponding cutting planes and therefore, instead of analyzing cutting planes,
we can equivalently analyze maximal lattice-free polyhedra. As a result of
this, several questions related to these polyhedra and their associated cutting
planes arise.



Introduction 5

Certainly, the aim in cutting plane generation should not be to produce
a bulk of cuts which just cut off the current optimal linear programming
solution, but rather to identify a (preferably small) set of well-chosen cuts
which are “important” in some sense. Here, “important” is difficult to define.
There are several approaches to evaluate cutting planes, for instance with
respect to the volume which is cut off, a comparison of the cut coefficients,
or the improvement of the objective function value after adding a cut or a
set of cuts. The choice of the measure is highly dependent on the particular
structure of the problem. Since we start from a general MILP it is simply
not possible to say which measure is most suitable. In this thesis, we use a
strength measure of Goemans [Goe95] to evaluate non-trivial facet-defining
inequalities for conv(PI). Every such inequality corresponds to a maximal
lattice-free polyhedron in the m-dimensional space of the x-variables. And
each such polyhedron P can be represented as P = P + L, where P is a
polytope and L is a linear space. The codimension of L is called the split-
dimension of P . In turn, the split-dimension of a non-trivial facet-defining
inequality I for conv(PI) is defined to be the smallest split-dimension of
a maximal lattice-free polyhedron P such that P can be used to derive an
inequality for conv(PI) which is equal to or which dominates the inequality I .

In Chapter 4, we investigate which of the non-trivial facet-defining inequal-
ities for conv(PI) are needed to approximate conv(PI) sufficiently well with
respect to the strength measure of Goemans. In Theorem 4.4, we show that,
in general, good approximations for conv(PI) can be expected only by having
available all the non-trivial facet-defining inequalities for conv(PI) of split-
dimension m. This result is clearly unsatisfactory since the complexity of the
corresponding maximal lattice-free polyhedra increases with increasing split-
dimension. Consequently, inequalities of split-dimension m are difficult to
generate. In contrast to this negative result on the strength, in Theorem 4.7,
we show that by restricting the size of the data, inequalities of split-dimension
m can be approximated using inequalities of split-dimension one (i.e. split
cuts). This is a positive message since split cuts are the easiest objects in
terms of complexity. In particular, we show that, given the dimension m of
the x-variable space, the fractionality of the current optimal solution (f, o),
and the max-facet-width of a lattice-free polyhedron P of split-dimension m,
then the inequality corresponding to P can be approximated to within a
constant factor which involves only these three quantities. For the special
case where P is a regular lattice-free simplex (RLS), in Theorem 4.8, we even
state a constant which involves only the dimension m. This raises hope that
cuts with low split-dimension perform well in practice.
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In Chapter 6, we address the case m = 2 in order to obtain deeper results
on the approximability of inequalities of split-dimension two by split cuts.
As pointed out, the non-trivial facet-defining inequalities for conv(PI) are
associated with maximal lattice-free polyhedra. In dimension two, these
polyhedra can be partitioned into five types which are shown in Fig. 1.2 (see
Proposition 5.3 on p. 37 for the precise definition of each type).

(a) Split. (b) Type 1 triangle. (c) Type 2 triangle.

(d) Type 3 triangle. (e) Quadrilateral.

Figure 1.2: All types of two-dimensional maximal lattice-free polyhedra.

Since every non-trivial facet-defining inequality for conv(PI) corresponds
to one of the above maximal lattice-free sets, they are called split, type 1,
type 2, type 3, or quadrilateral inequalities. In [BBCM11] it has been shown
that the closures of split and type 1 inequalities may produce an arbitrarily
bad approximation of conv(PI), whereas the closures of type 2 or type 3
or quadrilateral inequalities deliver good approximations in terms of the
strength measure of Goemans. More concretely, in [BBCM11] sequences
of examples are constructed in which cuts from triangles of types 2 and 3,
and quadrilaterals cannot be approximated to within a constant factor by
using split and type 1 inequalities only. The approximation becomes worse
as the triangles and quadrilaterals converge towards a split. We think that
this is geometrically counterintuitive. Therefore, in Chapter 6, we refine the
argument by taking into consideration the probability that such a situation
emerges when f is uniformly distributed in the interior of a given maximal
lattice-free triangle of type 2, type 3, or quadrilateral. The precise model
is explained in Section 6.2. Our main result of the probabilistic analysis in
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Chapter 6 is stated in Theorem 6.2, where we show that the addition of a
single type 2 inequality to the split closure becomes less likely to be beneficial
the closer the type 2 triangle looks like a split. Our analysis in Chapter 6
suggests that this is true for type 3 and quadrilateral inequalities as well.

The performance of cuts may be evaluated in two different ways. In dimen-
sion two, if one considers only one round of cuts, then – using the strength
measure of Goemans – split and type 1 inequalities can be arbitrarily bad in
approximating conv(PI). On the other hand, within a cutting plane frame-
work where several rounds of cuts are considered, it is enough to add split
and type 1 inequalities iteratively, in order to terminate with an optimal
mixed-integer point after a finite number of applied rounds (see [DL09] and
also [BCM11] and [DPW11] for a generalization of the results in [DL09]). Us-
ing the correspondence between the non-trivial facet-defining inequalities for
conv(PI) and maximal lattice-free polyhedra this insight leads to a natural
question: Which maximal lattice-free polyhedra are important in a cutting
plane framework? Admittedly, this question is too general to be answered
completely within this thesis. Nevertheless, the answer must have to do
with the integer points on the boundary of the maximal lattice-free polyhe-
dra. Since rationality of the input data is assumed we only need to consider
maximal lattice-free rational polyhedra.

In Chapter 7, we show in Theorem 7.2 that, given the dimension (i.e. the
number of simplex tableau rows from which a non-trivial facet-defining in-
equality for conv(PI) is derived) and the rationality of a corresponding max-
imal lattice-free polyhedron P , then only finitely many different shapes are
possible for P , provided we identify any two polyhedra which coincide up to
a transformation which preserves the integer lattice. Unfortunately, “finitely
many” does not mean “few”. Indeed, in Section 7.3 we provide an upper
bound on the volume of such a polytope. Our bound is by far not best
possible, but suggests that the number of potential shapes may explode dra-
matically with increasing dimension. This makes clear that there is no chance
to enumerate all shapes based on a computer code, even for small dimensions.

The fact that in dimension two only split and type 1 inequalities are needed
within a cutting plane framework is not just coincidence, but rather has to
do with the integer points on the boundary. The X-body1 of a lattice-free
polyhedron is the convex hull of the integer points on its boundary. In par-
ticular, a lattice-free polyhedron coincides with its X-body if and only if it
is an integral polyhedron in the sense that every minimal (non-empty) face
contains integer points. In Fig. 1.2, only the split and the type 1 triangle

1The notion “X-body” is quite unintuitive, but we use it for historical reasons.
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are integral polyhedra. Recently, it has been proved by Del Pia and Weis-
mantel [DPW11] that the X-body of a lattice-free polyhedron is connected
with the importance of the polyhedron in a cutting plane procedure. To be
precise, within a cutting plane framework, only lattice-free integral polyhedra
are needed. Thus, a characterization of maximal lattice-free integral polyhe-
dra is desired. In dimensions one and two, all shapes of maximal lattice-free
integral polyhedra are known. On the other hand, their number is expected
to be huge in dimensions beyond three.

In Chapter 8, we classify all three-dimensional maximal lattice-free integral
polyhedra. We first show that we can restrict our attention to polytopes.
Then, in Theorem 8.1, we enumerate all three-dimensional maximal lattice-
free polytopes with integer vertices.

Theorems 6.2 and 8.1 are proved by intensively using two-dimensional tools
which cannot be deduced offhand. Therefore, we dedicate an extra chapter
to the two-dimensional relation between the area and the lattice width of
lattice-free convex sets. In Chapter 5, we prove several inequalities which
involve the area and the lattice width in the plane. In Theorem 5.6, we
present our results for arbitrary lattice-free convex sets and in Theorem 5.9
we present our results for centrally symmetric ones. We further characterize
the extreme lattice-free convex sets and relate our results to the covering
minima introduced in [KL86]. Moreover, in Theorem 5.10 we rectify a result
of [KL88] with a new proof.



CHAPTER 2

NOTATION AND FOUNDATIONS

We assume that the reader is familiar with the basic notions and concepts in
linear algebra, discrete optimization, and convex geometry. Information on
linear algebra can be found in the book of Stroth [Str95]. For information
on lattices and convexity, in particular with respect to polyhedra, we refer
to the books of Barvinok [Bar02], Gruber [Gru07], Gruber and Lekkerkerker
[GL87], Rockafellar [Roc72], and Schneider [Sch93a]. The book of Schrijver
[Sch86, Chapter 23] contains useful information on cutting plane theory. At
the beginning of each chapter or section we will provide the reader with
the relevant material. In this chapter, we briefly outline tools which are
permanently used throughout this thesis.

In this thesis, all vectors are usually considered to be column vectors.
The transposition of a vector or a matrix is denoted by (·)�. Furthermore,
we denote by ej the j-th unit vector, by o the origin, and by � the vector
whose entries are 1. These vectors are assumed to have suitable dimension,
depending on the context. For x, y ∈ Rd, we denote by [x, y] the line segment
with endpoints x and y, and by [x, y〉 the half-line emanating from x and
passing through y. The largest integer less than or equal to x ∈ R is denoted
by �x�, and the smallest integer greater than or equal to x by x�. For x ∈ R
we denote by �x� the nearest integer to x, i.e. �x� := �x� if 0 ≤ x− �x� ≤ 1

2

and �x� := x� if 1
2
< x − �x� < 1. Moreover, sgn(x) denotes the signum

function and |x| the absolute value of x ∈ R. The maximum norm of a
vector x ∈ Rd is denoted by ‖x‖∞ := maxi=1,...,d |xi|, and the support of x
by supp(x) := {i ∈ {1, . . . , d} : xi 	= 0}. By gcd(x1, . . . , xd), we denote the
greatest common divisor of integers x1, . . . , xd. If M ∈ Rd×d is a matrix, then

9
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det(M) denotes the determinant of M . If x ∈ Qd \ Zd, then the precision
of x is the smallest integer q ∈ Z+ such that x has a representation x =
( p1

q
, . . . , pd

q
), where pj ∈ Z for all j = 1, . . . , d.

Given a set K ⊆ Rd, we use the functionals conv(K) (convex hull of K),
aff(K) (affine hull of K), lin(K) (linear hull of K), int(K) (interior of K),
relint(K) (relative interior of K), bd(K) (boundary of K), relbd(K) (relative
boundary of K), and vert(K) (set of vertices of K). For K ⊆ Rd, vol(K)
denotes the volume of K measured in aff(K). If K ⊆ R2, then we use
A(K) rather than vol(K) to denote the area of K. If K is a set of objects
(for instance, points in Rd or facets of a polyhedron), then |K| denotes the
cardinality of K.

If K,L ⊆ Rd are two sets, then we use K + L := {x + y : x ∈ K, y ∈ L}
to denote the Minkowski addition of K and L. Often, one of the two sets,
K or L, will be a single vector, say c ∈ Rd. In this case, we write c+K :=
{c+ x : x ∈ K}. The scalar multiple1 of K by the scalar s ∈ R is denoted by
sK := {sx : x ∈ K}. Usually, it will be assumed that 0 < s < +∞.

The intersection of finitely many closed half-spaces is said to be a polyhe-
dron. By Pd we denote the set of polyhedra in Rd (where the elements of Pd

do not have to be full-dimensional). If a polyhedron is bounded, then we call
it a polytope. A polyhedron P ∈ Pd is said to be integral if P = conv(P ∩Zd),
and P is said to be rational if sP is an integral polyhedron for some finite
integer s ≥ 1. The precision of a rational polyhedron P ∈ Pd is the small-
est integer s ≥ 1 such that sP is an integral polyhedron. For a polyhedron
P ∈ Pd, the set conv(P ∩ Zd) is called the X-body of P .

A polytope S ∈ Pd is said to be a simplex if S is the convex hull of
finitely many affinely independent points. If S is a simplex in Rd with
vertices p0, . . . , pk (0 ≤ k ≤ d) and p is a point in aff(S), then p can be
uniquely represented by p =

∑k
j=0 λjpj , where λj ∈ R for all j = 0, . . . , k

and λ0 + · · · + λk = 1. The multipliers λ0, . . . , λk are called the barycentric
coordinates of p with respect to the simplex S. The point p lies in the relative
interior of S if and only if λ0, . . . , λk > 0.

An additive subgroup Λ of Rd is said to be a lattice if the intersection of
Λ with every compact set of Rd is finite. In this thesis, only full-dimensional
lattices Λ ⊆ Zd are considered. Let Aff(Λ) denote the group of all affine trans-
formations T in Rd with T (Λ) = Λ. It holds Aff(Λ) ⊆ Aff(Zd). Henceforth,
the transformations in Aff(Λ) are called Λ-preserving , while the transforma-
tions in Aff(Zd) are called unimodular . If P and Q are two polyhedra in Rd

which coincide up to a Λ-preserving transformation, then we simply say that

1There is only one exception where we deviate from this definition of the scalar multiple:
if K is a polyhedron of covering type (this notion will be defined in Chapter 4).
However, it will always be clear from the context which definition is used.
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both polyhedra are equivalent , and if no such transformation exists, then we
call P and Q distinct . The dual lattice of Λ is denoted by Λ∗. We denote by
Kd the class of closed convex sets in Rd with a non-empty interior. Bounded
elements of Kd are referred to as convex bodies. For K ∈ Kd the lattice width
of K with respect to the lattice Λ is defined by

wΛ(K) := inf
u∈Λ∗\{o}

w(K,u),

where w(K,u) is the width of K along the vector u ∈ Rd and given by

w(K,u) := sup
x∈K

u�x− inf
x∈K

u�x.

If K ∈ Kd is a convex body, then “inf” and “sup” in the above definitions
become “min” and “max”. We say that wΛ(K) is attained by u ∈ Λ∗ \ {o}
if wΛ(K) = w(K,u). The lattice width of K with respect to Λ can be seen
as the smallest number of “lattice slices” of K along any non-zero vector in
Λ∗. If Λ = Zd, then we write w(K) instead of wZd(K) to denote the lattice
width of K with respect to the lattice Zd. We note that the lattice width
is invariant with respect to Λ-preserving transformations. For K ∈ Kd, the
support function of K is defined by h(K,u) := sup{u�x : x ∈ K} (with
“max” instead of “sup” for convex bodies) and satisfies w(K, u) = h(K,u)+
h(K,−u), where u ∈ Rd.

In the special case where P ∈ Pd is a full-dimensional rational polyhedron,
the maximum width of P along all its facet directions gives a measure of how
wide P is: let F index the facet-defining inequalities of P and assume that
for each facet-defining inequality (vi)�x ≤ vi0, i ∈ F , the coefficients of vi are
integer and satisfy gcd(vi1, . . . , v

i
d) = 1. Then we call max{w(P, vi) : i ∈ F}

the max-facet-width of P .
For K ∈ Kd, the set DK := {x − y : x, y ∈ K} is called the difference

set of K (resp. difference body if K is a convex body). If K ∈ Kd contains
the origin in its interior, then the Minkowski functional of K is defined by
‖u‖K := inf{λ ≥ 0 : u ∈ λK}, where u ∈ Rd (with “min” instead of “inf” if
K is a convex body). The set K∗ := {u ∈ Rd : h(K, u) ≤ 1} is referred to as
the polar set of K ∈ Kd (resp. polar body, if K is a convex body).

If Λ is a (full-dimensional) lattice in Rd, then a set K ∈ Kd is said to be
Λ-free if the interior of K is disjoint with Λ, i.e. if int(K)∩Λ = ∅. Moreover, a
Λ-free set K ∈ Kd is said to be maximal Λ-free if K is not properly contained
in another Λ-free set from Kd. For Λ = Zd, we say (maximal) lattice-free
rather than (maximal) Λ-free. We point out that our definition of (maximal)
lattice-freeness is suitable for the applications in mixed-integer cutting plane
theory which we have in mind. For different definitions of lattice-freeness see,
for instance, [Rez86], [Sca85], or [Seb99]. In this thesis, we fix our underlying
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lattice to be Zd, though, due to affine invariance, the obtained results are
independent of the concrete choice of the lattice Λ. Thus, if not explicitly
stated otherwise, we will restrict our attention to the standard lattice Λ = Zd.

It is known that every maximal lattice-free K ∈ Kd is a polyhedron with
an integer point in the relative interior of each facet of K (see, for instance,
[Lov89, Propositions 3.2 and 3.3]). These polyhedra can be both rational
or irrational. The set K = {(x1, x2) ∈ R2 : x1 ≤ 1, −x2 ≤ 0,−x1 +√
2x2 ≤

√
2} is an example of an irrational maximal lattice-free polyhedron in

R2. In this thesis, however, we usually consider maximal lattice-free rational
polyhedra since we aim at algorithmic applications. The only place where
irrationality is allowed will be in Chapter 5 where we derive theoretical results
for general lattice-free convex sets in the two-dimensional case. The following
proposition summarizes known properties of maximal lattice-free rational
polyhedra that we need in this thesis.

Proposition 2.1 (see Lovász [Lov89]). Let K ∈ Kd be a maximal lattice-free
rational polyhedron. Then the following statements hold.

I. K is full-dimensional and has at most 2d facets.

II. Each facet of K contains an integer point in its relative interior.

III. K has a representation K = P + L, where P is a polytope and L is a
linear space.

We refer to [BCCZ10, Section 2] for further details and a proof of the
above proposition. If K ∈ Kd is a maximal lattice-free rational polyhedron
such that K = P + L, then the codimension of the linear space L is said
to be the split-dimension of K. The split-dimension of K is a measure for
the complexity of K. A maximal lattice-free rational polyhedron with split-
dimension equal to one is called a split and is a set of the form {x ∈ Rd :
π0 ≤ π�x ≤ π0 + 1}, where (π, π0) ∈ Zd+1 and gcd(π1, . . . , πd) = 1 (see
Fig. 5.1(a) for an example of a split in dimension two). Cutting planes which
can be obtained from such a set are called split cuts (see Cook et al. [CKS90]).
The larger the split-dimension of a maximal lattice-free rational polyhedron
K ⊆ Rd is, the more complex is K. For instance, if K ⊆ R3 has split-
dimension equal to one, then K is just a split. If the split-dimension of
K ⊆ R3 is equal to two, then K is a triangle or a quadrilateral plus the span
of a single vector.



CHAPTER 3

FROM CUTTING PLANES TO

LATTICE-FREE POLYHEDRA

In this chapter, we explore links between cutting planes for general mixed-
integer linear programs (MILP’s) and lattice-free convex sets which have
a representation as the sum of a polytope and a linear space. The split-
dimension of a maximal lattice-free rational polyhedron which corresponds
to a cutting plane turns out to play a significant role.

Our point of departure is the mixed-integer set

PI =

{
(x, s) ∈ Zm × Rn

+ : x = f +
∑
j∈N

rjsj

}
,

where m ≥ 2, N := {1, . . . , n}, f ∈ Qm \Zm, and rj ∈ Qm \{o} for all j ∈ N .
We refer to f as the root vertex and to the vectors rj as rays. By scaling, we
can assume that rj ∈ Zm and gcd(rj1, . . . , r

j
m) = 1 for all j ∈ N . The linear

programming relaxation of PI is denoted by

PLP :=

{
(x, s) ∈ Rm × Rn

+ : x = f +
∑
j∈N

rjsj

}
.

It is straightforward to verify that PI is empty if and only if the set f +
lin({rj}j∈N ) does not contain any integer points. In the remainder of this
thesis we assume that cone({rj}j∈N ) = Rm (we will explain later why this
assumption is natural) which ensures that PI 	= ∅.

13
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Our aim is to relate the facet-defining inequalities for conv(PI) to geomet-
rical objects in the space of the x-variables. More precisely, we show that all
non-trivial facet-defining inequalities for conv(PI) are intersection cuts (see
Balas [Bal71]) in the sense that they are deducible from a convex set that
has no integer point in its interior. By a non-trivial inequality we mean an
inequality which is not the conic combination of non-negativity restrictions.

Section 3.1 reviews the structure of the set conv(PI) and its facet-defining
inequalities. In Section 3.2, we establish the link between facet-defining in-
equalities for conv(PI) and lattice-free polyhedra.

3.1 Properties of conv(PI)

In this section, we summarize properties of the set conv(PI). All statements
are generalizations of the results in Andersen et al. [ALWW07] and can be
proved in a similar way. We refer to [Wag08, Chapter 2] for the proofs.

Lemma 3.1. Let PI be defined as above. Then the following statements hold.

I. The dimension of conv(PI) is n.

II. The extreme rays of conv(PI) are (rj , ej) for j ∈ N .

III. Every vertex (x̄, s̄) of conv(PI) satisfies x̄ ∈ Zm and 1 ≤ | supp(s̄)| ≤ m.

Our aim is to generate valid inequalities for conv(PI) that are violated by
(f, o). The next corollary shows that non-trivial facet-defining inequalities
for conv(PI) always cut off the point (f, o). Therefore, the non-trivial facet-
defining inequalities for conv(PI) are the strongest cutting planes which can
be derived from the set PI . Throughout this thesis we will write them in the
form given by the following corollary.

Corollary 3.2. Every non-trivial valid inequality for conv(PI) that is satis-
fied with equality at a point in PI can be written in the form∑

j∈N

ψ(rj)sj ≥ 1, (3.1)

where ψ(rj) ≥ 0 for all j ∈ N .

A non-trivial valid inequality for conv(PI) which is written in the form (3.1)
is said to be in standard form. In the remainder of this thesis, we discuss
only non-trivial valid inequalities for conv(PI) in standard form. Therefore,
we will simply say valid inequality for conv(PI) and mean that this inequality
is non-trivial and given in standard form.
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A valid inequality
∑

j∈N ψ(rj)sj ≥ 1 for conv(PI) is entirely determined

by its coefficients ψ(rj), j ∈ N . For ψ := (ψ(r1), . . . , ψ(rn)) we denote by
N0

ψ := {j ∈ N : ψ(rj) = 0} the set of variables with coefficient zero and by

N �=0
ψ := N \N0

ψ the remainder of the variables. This allows us to introduce

an object which is associated with the inequality
∑

j∈N ψ(rj)sj ≥ 1.

Lemma 3.3. Let
∑

j∈N ψ(rj)sj ≥ 1 be a valid inequality for conv(PI). Fur-

thermore, define the points vj := f + 1
ψ(rj)

rj for all j ∈ N �=0
ψ and consider

the polyhedron

Bψ :=

{
x ∈ Rm : ∃s ∈ Rn

+ s.t. (x, s) ∈ PLP and
∑
j∈N

ψ(rj)sj ≤ 1

}
.

Then the following statements hold.

I. Bψ = conv

(
{f} ∪ {vj}

j∈N
�=0
ψ

)
+ cone

(
{rj}j∈N0

ψ

)
.

II. The interior of Bψ does not contain any integer points.

Example 3.4. Let the following MILP be given:

max x4 s.t. − 2x1 + 3x4 ≤ 0,
− 2x2 + 3x4 ≤ 0,

− 2x3 + 3x4 ≤ 0,
2x1 + 2x2 + 2x3 + 3x4 ≤ 4,

xi ≥ 0, i = 1, 2, 3, 4,
xi ∈ Z, i = 1, 2, 3.

(3.2)

After introducing slack variables t1, t2, t3, t4, we solve the linear programming
relaxation. The optimal simplex tableau provides the following constraints:

x1 = 1
2

− 1
8
t1 + 3

8
t2 − 1

8
t3 − 1

8
t4,

x2 = 1
2

− 1
8
t1 − 1

8
t2 + 3

8
t3 − 1

8
t4,

x3 = 1
2

− 1
8
t1 − 1

8
t2 − 1

8
t3 + 3

8
t4,

x4 = 1
3
− 1

12
t1 − 1

12
t2 − 1

12
t3 − 1

12
t4.

(3.3)

Problem (3.2) requires x1, x2, and x3 to be integer, but they are fractional
in the optimal solution x∗ = ( 1

2
, 1
2
, 1
2
, 1
3
). Thus, we take the first three rows

of the optimal simplex tableau and rescale the slack variables by si := ti
8

for i = 1, 2, 3, 4 to obtain f = ( 1
2
, 1
2
, 1
2
), r1 = (−1,−1,−1), r2 = (3,−1,−1),

r3 = (−1, 3,−1), and r4 = (−1,−1, 3). This yields the set
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PI =

⎧⎪⎨
⎪⎩(x, s) ∈ Z3 × R4

+ : x =

⎛
⎜⎝

1
2
1
2
1
2

⎞
⎟⎠+

⎛
⎜⎝
−1

−1

−1

⎞
⎟⎠ s1 +

⎛
⎜⎝

3

−1

−1

⎞
⎟⎠ s2 +

⎛
⎜⎝
−1

3

−1

⎞
⎟⎠ s3 +

⎛
⎜⎝
−1

−1

3

⎞
⎟⎠ s4

⎫⎪⎬
⎪⎭ .

The inequality
2s1 + 2s2 + 2s3 + 2s4 ≥ 1 (3.4)

is facet-defining for conv(PI). With ψ = (2, 2, 2, 2) we obtain v1 = o, v2 =
2e1, v

3 = 2e2, and v4 = 2e3. The corresponding polyhedron Bψ, the tetra-
hedron Bψ = conv({f, v1, v2, v3, v4}), is shown in Fig. 3.1. Note that f is
contained in the interior of Bψ.

3
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Figure 3.1: The polyhedron Bψ for the inequality (3.4).

By resubstituting si =
ti
8
for i = 1, 2, 3, 4 and scaling, we obtain from (3.4)

the inequality
1

12
t1 +

1

12
t2 +

1

12
t3 +

1

12
t4 ≥ 1

3
.

Using this, the last equation in (3.3) results in the cut x4 ≤ 0. In a cutting
plane algorithm, this cut would lead to immediate termination. �

The lattice-free polyhedron Bψ is an m-dimensional representation of the
valid inequality

∑
j∈N ψ(rj)sj ≥ 1 for conv(PI). Each such inequality maps

to a unique polyhedron Bψ which is given by the coefficients ψ(rj), j ∈ N ,
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and can be computed with the help of Lemma 3.3 I. Furthermore, the coef-
ficient ψ(rj), j ∈ N �=0

ψ , is equal to the ratio between the norm of rj and the

distance between f and vj .
In Lemma 3.3, we assume that a valid inequality

∑
j∈N ψ(rj)sj ≥ 1 for

conv(PI) is given and we construct a lattice-free polyhedron Bψ ⊆ Rm which
represents the inequality in the space of the discrete variables. However,
in algorithmic applications one may want to do the converse. One would
like to start with a lattice-free polyhedron B ⊆ Rm and then to construct
a valid inequality

∑
j∈N ψB(rj)sj ≥ 1 for conv(PI) with the help of B.

This is indeed possible: Lemma 3.3 implies that every valid inequality for
conv(PI) can be obtained from a lattice-free polyhedron B ⊆ Rm with f in
its interior by defining ψB : Rm �→ R+ to be the Minkowski functional of
B − f (see [BC09] for details). Then the inequality

∑
j∈N ψB(rj)sj ≥ 1 is

called the cut associated with B. Hence, every valid inequality for conv(PI)

is an intersection cut. Obviously, we have BψB ⊆ B and the inclusion can
be strict, for instance when B is a polytope which has a vertex w such that
w 	= f + 1

ψB(rj)
rj for every j ∈ N .

We are interested in the inequalities
∑

j∈N ψ(rj)sj ≥ 1 which are facet-

defining for conv(PI). Since the root vertex f and all the rays rj , j ∈ N ,
are assumed to be rational, it follows that conv(PI) is a rational polyhe-
dron (see Meyer [Mey74, Theorem 3.9]). Thus, every facet-defining inequal-
ity

∑
j∈N ψ(rj)sj ≥ 1 has rational coefficients ψ(rj) for all j ∈ N . From

Lemma 3.3 I, it follows that only rational polyhedra Bψ are needed. We
may therefore consider in the following only cuts

∑
j∈N ψB(rj)sj ≥ 1 which

are associated with rational polyhedra B. Indeed, if
∑

j∈N ψB(rj)sj ≥ 1 is
the cut associated with an irrational polyhedron B ⊆ Rm, then there exists a
rational polyhedron B̄ ⊆ Rm such that the cut associated with B̄ is exactly
(or dominates) the cut associated with B (see [CM09, Section 3.2.2] for a
detailed discussion of the case m = 2).

Assumption 3.5. Let
∑

j∈N ψB(rj)sj ≥ 1 be the cut associated with a
lattice-free polyhedron B ⊆ Rm with f in its interior. Then B is rational.

For any (x̄, s̄) ∈ PLP such that
∑

j∈N ψ(rj)s̄j < 1, we have x̄ ∈ int(Bψ).

Therefore, adding the inequality
∑

j∈N ψ(rj)sj ≥ 1 to PLP would cut off the

point (x̄, s̄). The interior of Bψ is therefore an m-dimensional representation
of all points in the x-variable space that are affected by the addition of
the inequality

∑
j∈N ψ(rj)sj ≥ 1 to PLP . In particular, we always have

f ∈ int(Bψ) since f can be expressed using s = o. Geometrically, this is
clear from the fact that cone({rj}j∈N ) = Rm, by assumption. We point out
that it has already been shown by Zambelli [Zam09, Theorem 1] in a more
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general context that all non-trivial facet-defining inequalities for conv(PI)
can be obtained from a maximal lattice-free polyhedron which contains f in
its interior. Therefore, our assumption cone({rj}j∈N ) = Rm just simplifies
the analysis, but does not restrict the general case.

Given a facet-defining inequality
∑

j∈N ψ(rj)sj ≥ 1 for conv(PI), there

exist n affinely independent points (xi, si) ∈ PI , i = 1, . . . , n, such that∑
j∈N ψ(rj)sij = 1. The integer points xi, i = 1, . . . , n, are on the boundary

of Bψ, i.e. they belong to the X-body of Bψ, which is

Xψ :=

{
x ∈ Zm : ∃s ∈ Rn

+ s.t. (x, s) ∈ PLP and
∑
j∈N

ψ(rj)sj = 1

}
.

Obviously, Xψ = Bψ ∩Zm, and Xψ 	= ∅ whenever
∑

j∈N ψ(rj)sj ≥ 1 defines
a facet of conv(PI). The next corollary illustrates the relation between non-
trivial facet-defining inequalities for conv(PI) and the polyhedra Bψ.

Corollary 3.6. A valid inequality
∑

j∈N ψ(rj)sj ≥ 1 for conv(PI) is not

facet-defining for conv(PI) if there exists a valid inequality
∑

j∈N ψ̄(rj)sj ≥ 1

for conv(PI) such that Bψ � Bψ̄.

Let B(PI) be the set of all polyhedra Bψ arising from a valid inequality∑
j∈N ψ(rj)sj ≥ 1 for conv(PI). An interesting implication of Corollary 3.6 is

that polyhedra Bψ which correspond to non-trivial facet-defining inequalities
for conv(PI) are inclusion-maximal within B(PI). However, the opposite does
not hold true. There exist polyhedra Bψ which are inclusion-maximal within
B(PI), but which do not correspond to non-trivial facet-defining inequalities
for conv(PI).

We emphasize that Corollary 3.6 does not necessarily imply that the poly-
hedron Bψ of a non-trivial facet-defining inequality

∑
j∈N ψ(rj)sj ≥ 1 for

conv(PI) is maximal lattice-free since this property depends on the rays rj ,
j ∈ N , which stem from the simplex tableau of an optimal vertex of the linear
programming relaxation of (1.1). This situation changes if the investigation
is not based on a finite number of rays rj , j ∈ N , but an infinite number.
Indeed, relaxing the n-dimensional space of the s-variables to an infinite-
dimensional space, where a variable sr is defined for any r ∈ Qm \{o}, yields
a bijection between certain maximal lattice-free rational polyhedra in Rm and
the non-trivial facet-defining inequalities for conv(PI). However, the infinite
model is not considered in this thesis. We refer to Basu et al. [BBCM11],
Borozan and Cornuéjols [BC07], and Cornuéjols and Margot [CM08] for a
thorough elaboration of the case m = 2.
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3.2 Facets of conv(PI) and lattice-free polyhedra

In this section, we analyze non-trivial facet-defining inequalities for conv(PI)
and we present their geometric characterization in the x-variable space. More
precisely, we show that the polyhedron Bψ arising from a facet-defining in-
equality

∑
j∈N ψ(rj)sj ≥ 1 for conv(PI) is contained in a polyhedron which

has a representation as the sum of a polytope and a linear space.
In preparation for the main theorem of this section, we review a basic tool

from linear algebra. By Im we denote the identity matrix in Rm, i.e. the
m×m matrix with entries one on the main diagonal and zeros elsewhere.

Observation 3.7. Let R ∈ Rd×m be a matrix of full row rank and let
L = {x ∈ Rm : Rx = 0}. Then, for any x ∈ Rm, the vector x̄ :=
(Im − R�(RR�)−1R)x is the orthogonal projection of x to L, i.e. x̄ sat-
isfies x̄ ∈ L and (x− x̄)�x̄ = 0.

We need to adapt Observation 3.7 to affine subspaces. For that, we call
a vector x̄ ∈ Rm the affine orthogonal projection of x ∈ Rm to the affine
subspace v + L ⊆ Rm if it satisfies x̄ ∈ v + L and (x− x̄)�(x̄− v) = 0.

Corollary 3.8. Let R ∈ Rd×m be a matrix of full row rank and let v+L be
an affine subspace, where v ∈ Rm and L = {x ∈ Rm : Rx = 0}. Then, for
any x ∈ Rm, the vector

x̄ := v + (Im −R�(RR�)−1R)(x− v)

is the affine orthogonal projection of x to the affine subspace v + L.

In the following theorem we give a complete characterization of the facet-
defining inequalities

∑
j∈N ψ(rj)sj ≥ 1 for conv(PI) with N0

ψ 	= ∅. We note
that Theorem 3.9 is implied by recent results in [BCCZ10].

Theorem 3.9. Let
∑

j∈N ψ(rj)sj ≥ 1 be a facet-defining inequality for

conv(PI) with N0
ψ 	= ∅. Moreover, let Sψ := lin({rj}j∈N0

ψ
) and let dim(Sψ) =

d. Then the following statements hold.

I. There exists a lattice-free rational polytope Pψ ⊆ Rm−d such that Bψ ⊆
Pψ + Sψ.

II. If d = m − 1, then there exists (π, π0) ∈ Zm+1 with Bψ ⊆ {x ∈ Rm :
π0 ≤ π�x ≤ π0 + 1}.

Proof. Part I. First, observe that 1 ≤ d ≤ m − 1. Since dim(Sψ) = d,
there exist j1, . . . , jd ∈ N0

ψ such that the set of vectors {rj1 , . . . , rjd} is a

linear basis of Sψ. For simplicity, we assume that Sψ = lin({r1, . . . , rd}).



20 From cutting planes to lattice-free polyhedra

Let f + S⊥
ψ = {x ∈ Rm : R�(x − f) = o}, where R := [r1, . . . , rd] is

the matrix with columns rj , j = 1, . . . , d, and where S⊥
ψ denotes the or-

thogonal complement of Sψ. From Lemma 3.3 I, it follows that Bψ =
conv({f} ∪ {vj}

j∈N
�=0
ψ

) + cone({rj}j∈N0
ψ
), where vj = f + 1

ψ(rj)
rj for all

j ∈ N �=0
ψ . Applying Corollary 3.8, the affine orthogonal projection of the

points vj , j ∈ N �=0
ψ , to the affine subspace f + S⊥

ψ yields the correspond-

ing points pj := vj − (R(R�R)−1R�) 1
ψ(rj)

rj = vj −
∑d

i=1 η
j
i r

i, where

ηj = (ηj
1, . . . , η

j
d)

� := (R�R)−1R�( 1
ψ(rj)

rj) ∈ Rd for all j ∈ N �=0
ψ . Let

Pψ := conv({f} ∪ {pj}
j∈N

�=0
ψ

). Then Pψ is rational since f is rational

and all the projection points pj , j ∈ N �=0
ψ , are also rational. By construc-

tion, Pψ ⊆ Rm−d. From Lemma 3.3 II, it follows that Bψ is lattice-free.
Thus, the set Mψ := conv({f} ∪ {vj}

j∈N
�=0
ψ

) + lin({rj}j∈N0
ψ
) is also lattice-

free. Since vj − pj =
∑d

i=1 η
j
i r

i ∈ lin({rj}j∈N0
ψ
) for all j ∈ N �=0

ψ we have

Bψ ⊆ Mψ = conv({f} ∪ {pj}
j∈N

�=0
ψ

) + lin({rj}j∈N0
ψ
) = Pψ + Sψ.

Part II. Let d = m−1. Then Sψ is a hyperplane and there exists an integral
vector π ∈ Zm such that gcd(π1, . . . , πm) = 1 and Sψ = {x ∈ Rm : π�x = 0}.
From Part I, it follows that Pψ = [p, q] with p, q ∈ Qm being two distinct
points. We obtain Bψ ⊆ {x ∈ Rm : π�p ≤ π�x ≤ π�q}. Since f ∈ int(Bψ)
we have π�p < π�f < π�q. Let Θ0 := �π�p� and Θ1 := π�q� and consider
the set Sπ := {x ∈ Rm : Θ0 ≤ π�x ≤ Θ1}. If Θ0 + 1 < Θ1, then it follows
from the assumption gcd(π1, . . . , πm) = 1 that there exists xI ∈ {x ∈ Zm :
π�x = Θ0 + 1} ⊆ int(Sπ). In addition, xI is in the interior of Bψ which
is a contradiction to the fact that Bψ is lattice-free. Hence, we must have
Θ1 = Θ0 + 1. This implies Bψ ⊆ Sπ = {x ∈ Rm : Θ0 ≤ π�x ≤ Θ0 + 1}.

Example 3.10. Consider the set

PI =

⎧⎪⎨
⎪⎩(x, s) ∈ Z3 × R5

+ : x =

⎛
⎜⎝

1
2
1
2
1
2

⎞
⎟⎠+

⎛
⎜⎝
1

0

0

⎞
⎟⎠ s1 +

⎛
⎜⎝
0

0

1

⎞
⎟⎠ s2 +

⎛
⎜⎝
−1

3

−1

⎞
⎟⎠ s3 +

⎛
⎜⎝

3

−1

−2

⎞
⎟⎠ s4 +

⎛
⎜⎝
−2

−2

−3

⎞
⎟⎠ s5

⎫⎪⎬
⎪⎭ .

The vector ψ1 = (1, 0, 2, 2, 4) represents the inequality

s1 + 2s3 + 2s4 + 4s5 ≥ 1 (3.5)
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which is facet-defining for conv(PI). Its corresponding set Bψ1 = conv({f, v11 ,
v31 , v

4
1 , v

5
1}) + cone({r2}), where v11 = ( 3

2
, 1
2
, 1
2
), v31 = (0, 2, 0), v41 = (2, 0,− 1

2
),

and v51 = (0, 0,− 1
4
), is shown in Fig. 3.2(a). From Theorem 3.9 I, it follows

that there exist a lattice-free polytope Pψ1 and a linear subspace Sψ1 such
that Bψ1 ⊆ Pψ1+Sψ1 . Applying the construction in the proof of Theorem 3.9
yields Pψ1 = conv({(0, 0, 1

2
), (2, 0, 1

2
), (0, 2, 1

2
)}) and Sψ1 = lin({(0, 0, 1)}).

Note that there is no pair (π, π0) ∈ Z4 such that Bψ1 ⊆ {x ∈ R3 : π0 ≤
π�x ≤ π0 + 1}.
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(a) The polyhedron Bψ1

for the inequality (3.5).
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(b) The polyhedron Bψ2

for the inequality (3.6).

Figure 3.2: Illustration of Example 3.10.

The inequality

6s3 + 2s4 + 4s5 ≥ 1 (3.6)

is facet-defining for conv(PI), too. Here, the associated vector is ψ2 = (0, 0, 6,
2, 4) and corresponds to Bψ2 = conv({f, v32 , v42 , v52}) + cone({r1, r2}), where
v32 = ( 1

3
, 1, 1

3
), v42 = (2, 0,− 1

2
), and v52 = (0, 0,− 1

4
). The set Bψ2 is shown in

Fig. 3.2(b). In this case, the corresponding sets are Pψ2 = conv({( 1
2
, 0, 1

2
),

( 1
2
, 1, 1

2
)}) and Sψ2 = lin({(1, 0, 0), (0, 0, 1)}). The pair π = (0, 1, 0) and π0 =

0 satisfies Bψ2 ⊆ {x ∈ R3 : π0 ≤ π�x ≤ π0 + 1} = {x ∈ R3 : 0 ≤ x2 ≤ 1}. �

Theorem 3.9 allows us to classify the non-trivial facet-defining inequalities
for conv(PI) with respect to their split-dimension. Let

∑
j∈N ψ(rj)sj ≥ 1

be a valid inequality for conv(PI). We define the split-dimension of the
inequality

∑
j∈N ψ(rj)sj ≥ 1 to be the smallest split-dimension of a maximal

lattice-free rational polyhedron B such that Bψ ⊆ B. By Proposition 2.1 III,
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B is the sum of a polytope PB and a linear space SB . Hence, the inequality∑
j∈N ψ(rj)sj ≥ 1 is (or is dominated by) the cut associated with B. The

polyhedron B is the more complex the lower the dimension of the linear
space SB is, since the complexity comes from the polytope PB , not from
the linear space SB. We note that using the split-dimension as a measure of
the complexity of an inequality is rather theoretical and it is not clear how
to compute the split-dimension when a particular inequality is given. An
inequality

∑
j∈N ψ(rj)sj ≥ 1 has split-dimension at most m−dim(Sψ), where

Sψ = lin({rj}j∈N0
ψ
). In particular, the inequality

∑
j∈N ψ(rj)sj ≥ 1 is a split

cut whenever dim(Sψ) = m− 1 and therefore easy to generate because only
the normal vector of the corresponding split needs to be determined. On the
other hand, an inequality

∑
j∈N ψ(rj)sj ≥ 1 for conv(PI) with dim(Sψ) ≤

m− 2 is not a split cut.
The split-dimension is the basic geometric difference between non-trivial

facet-defining inequalities for conv(PI). It is natural to ask whether this
fact is connected to the significance of an inequality for conv(PI). One might
think that a higher split-dimension means a higher “value” of the correspond-
ing inequality. In the next chapter, we will shed light on this relationship
by showing that inequalities with split-dimension equal to m are needed in
order to approximate conv(PI) closely.



CHAPTER 4

EVALUATION OF CUTTING PLANES

In this chapter, we focus on the evaluation of facet-defining inequalities for
conv(PI). The evaluation is based on a strength measure introduced by Goe-
mans [Goe95]. Using this strength measure, we show in Section 4.1 that only
inequalities with full split-dimension (i.e. split-dimension equal tom) give rise
to a good approximation of conv(PI), whereas inequalities with low split-
dimension (i.e. split-dimension less than m) might approximate conv(PI)
arbitrarily badly, in general. However, in Section 4.2, we also show that or-
dinary split cuts approximate conv(PI) to within a constant factor when the
size of the input data is given.

Let us first introduce the applied measure. In [Goe95], Goemans proposed
a measure for evaluating the strength of valid inequalities for polyhedra of
covering type. A non-empty polyhedron P = {x ∈ Rn

+ : Ax ≥ b} is said to
be of covering type if all entries in A and b are non-negative and o /∈ P . Let
α ∈ (0,+∞) and let P be a polyhedron of covering type. Then we denote
by αP := {x ∈ Rn

+ : αx ∈ P} the dilation of P by the factor α and we define
αP := Rn

+ if α = +∞. Note that P ⊆ αP for every α ≥ 1. Let Q ⊆ Rn
+ be

any convex set such that P ⊆ Q. The strength of P with respect to Q, denoted
by t(P,Q), is defined to be the minimum value of α ≥ 1 such that Q ⊆ αP .
Geometrically, t(P,Q) is the smallest positive number α needed to inflate P
such that the convex set Q is contained in αP . Therefore, t(P,Q) measures
the proximity of P to its relaxation Q. For our purposes, the underlying idea
is that “a high strength means high benefit”. In other words, let P and Q
be two relaxations of a set M such that M ⊆ P ⊆ Q. The larger t(P,Q) the
better is the gap to M closed by P compared to that of Q.

23
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The following lemma is essentially due to Goemans and has been general-
ized by Basu et al.

Lemma 4.1. ([Goe95, Theorem 3] and [BBCM11, Theorem 1.3].) Let P :=
{x ∈ Rn

+ : a�
i x ≥ bi for all i = 1, . . . , m} be a polyhedron of covering type

and let Q ⊆ Rn
+ be any convex set such that P ⊆ Q. Then

t(P,Q) = max
i=1,...,m

{
bi

inf{a�
i x : x ∈ Q} : bi > 0

}
.

If inf{a�
i x : x ∈ Q} = 0 for some i ∈ {1, . . . , m} with bi > 0, then t(P,Q) is

defined to be +∞.

Lemma 4.1 reduces the computation of t(P,Q) to the case where only
a single inequality of P is added to Q. We note that only facet-defining
inequalities for P need to be considered.

By Corollary 3.2, every non-trivial facet-defining inequality for conv(PI)
can be written in the form

∑
j∈N ψ(rj)sj ≥ 1. Thus, in order to investigate

these inequalities it is enough to consider the space of the s-variables only.
This makes the analysis much easier from a notational point of view. Instead
of conv(PI) we consider in the following the set

Rf (r
1, . . . , rn) := conv

({
s ∈ Rn

+ : f +
∑
j∈N

rjsj ∈ Zm

})

which is the projection of conv(PI) onto the space of the s-variables. Note
that Rf (r

1, . . . , rn) is a polyhedron (as it is the projection of a polyhedron)
of covering type. In the following we use Rn

f instead of Rf (r
1, . . . , rn) for

simplicity. For i = 1, . . . ,m we denote by Si(Rn
f ) ⊆ Rn

+ the i-dimensional
split closure, i.e. the intersection of the trivial inequalities sj ≥ 0 for all
j = 1, . . . , n and all valid inequalities

∑
j∈N ψ(rj)sj ≥ 1 for Rn

f of split-

dimension at most i. We note that S1(Rn
f ) is the usual split closure, whereas

Sm(Rn
f ) = Rn

f .

Let i ∈ {1, . . . ,m − 1} and let
∑

j∈N ψ(rj)sj ≥ 1 be a valid inequality
for Rn

f of split-dimension greater than i. Let F(Rn
f ) be the set obtained by

adding to Si(Rn
f ) the inequality

∑
j∈N ψ(rj)sj ≥ 1. The following observa-

tion follows directly from Lemma 4.1.

Observation 4.2.

t(F(Rn
f ),Si(Rn

f )) =
1

min{
∑

j∈N ψ(rj)sj : s ∈ Si(Rn
f )}

.
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Let B ⊆ Rm be a lattice-free rational polyhedron with the root vertex f
in its interior and let

∑
j∈N ψB(rj)sj ≥ 1 be the cut associated with B. If

its split-dimension is equal to m (implying that B is a polytope), then, since
B, f , and r1, . . . , rn are rational, we can assume that the rays r1, . . . , rn

are scaled such that the points f + rj , j ∈ N , are on the boundary of B
(see [BBCM11, Assumption 5.1] and the subsequent paragraph therein for
an explanation why this assumption is feasible). In this case, we define a
corner ray to be a ray rj where the point f + rj is a vertex of B. In the
course of this thesis we will have to compute a strength t(F(Rn

f ),Si(Rn
f )) as

in Observation 4.2 several times. Thus, we will often deal with optimization
problems of the following type:

min
∑
j∈N

ψB(rj)sj s.t. s ∈ Si(Rn
f ) (4.1)

for some (facet-defining) inequality
∑

j∈N ψB(rj)sj ≥ 1 of split-dimension
m. Scaling the rays as described above implies that the objective func-
tion becomes

∑n
j=1 sj . Under the assumption of scaled rays, it is shown in

[BBCM11, Theorem 4.2]1 that (4.1) reduces to the problem where only those
rays are present which cannot be written as a convex combination of other
rays. In particular, if the set of rays {r1, . . . , rn} contains all the corner rays
of the polyhedron B, say {r1, . . . , rk}, then the optimal objective value of
(4.1) is equal to the optimal objective value of the following minimization
problem:

min
∑k

j=1 sj

s.t.
∑k

j=1 ψ
l(rj)sj ≥ 1, for l = 1, . . . , p,

sj ≥ 0, for j = 1, . . . , k,

where the inequalities
∑

j∈N ψl(rj)sj ≥ 1, l = 1, . . . , p, are facet-defining for

Si(Rn
f ). In the remainder of this thesis, when we consider problems of the

above type, we assume that the set of rays consists only of rays which cannot
be written as a convex combination of other rays.

For the case m = 2 it has already been shown by Basu et al. [BBCM11,
Theorem 1.8] that t(Rn

f ,S1(Rn
f )) can be arbitrarily large and thus the split

closure may produce an arbitrarily bad approximation of Rn
f . In the next

section, we generalize this result to dimensions m ≥ 2, i.e. we show that
using only facet-defining inequalities for Rn

f of split-dimension less than m
will lead to an arbitrarily bad approximation of Rn

f , in general.

1The proof in [BBCM11, Theorem 4.2] deals with the case m = 2, but it is straightfor-
ward to show that the statement holds true for any m ≥ 2.
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4.1 A negative result on the strength

In this section, we show that – in terms of our strength measure – any lower-
dimensional split closure Si(Rn

f ), i = 1, . . . ,m− 1, does not provide a good
approximation of Rn

f , in general. For the case m = 2 this result follows
from Basu et al. [BBCM11, Theorem 1.8] who show that inequalities of split-
dimension equal to one do not suffice to give a constant approximation. We
first state a technical lemma which is needed for the proof of the main theorem
in this section.

Lemma 4.3. Let c ∈ Q\Z and let M := {(x, c) ∈ Rm : xj ∈ {0, 1} for all j =
1, . . . ,m − 1}. If a convex set S ⊆ Rm satisfies conv(M) ⊆ relint(S), then
for any v ∈ Zm such that vm 	= 0 the interior of S + lin({v}) contains an
integer point.

Proof. By the definition of M , we have conv(M) = {(x, c) ∈ Rm : x =∑m−1
j=1 λjej , with 0 ≤ λj ≤ 1 for all j = 1, . . . ,m− 1}.
Without loss of generality assume vm > 0 and consider the set MZ := {x+

�c	−c
vm

v : x ∈ M}. Observe that the last coordinate of all points in conv(MZ) is
integer. Furthermore, we have conv(MZ) ⊆ int(S+lin({v})), by construction.
We show that conv(MZ) contains an integer point. Note that conv(MZ) and
conv(M) are translates. Since in both sets, conv(MZ) and conv(M), the last
coordinate of all points is constant, their projections to the hyperplane H :=
{x ∈ Rm : xm = 0}, denoted by projH(conv(MZ)) and projH(conv(M)), are
also translates. The set projH(conv(M)) is generated by the vectors ej for
j = 1, . . . ,m − 1 and therefore contains an integer point. Note that any
translate θ + projH(conv(M)) with θ ∈ Rm and θm = 0 contains an integer
point: if θ is an integer vector, then θ+projH(conv(M)) has an integer vertex;
if θ is not an integer vector, then θ + projH(conv(M)) contains an integer
point in its relative interior (if all components θ1, . . . , θm−1 are fractional) or
on its relative boundary (if not all components θ1, . . . , θm−1 are fractional).
Thus, projH(conv(MZ)) contains an integer point. The statement follows
from the fact that conv(MZ) is a translate of projH(conv(MZ)) with an integer
vector.

We are now prepared to prove our main theorem in this section.

Theorem 4.4. For any α > 1 there exists a choice of a root vertex f ∈
Qm \ Zm and rays r1, . . . , rn ∈ Qm such that Sm−1(Rn

f ) � αSm(Rn
f ).

Proof. To prove our assertion we construct a maximal lattice-free polyhedron
P of split-dimension m. Then we show that the gap between the cut associ-
ated with P and the (m−1)-dimensional split closure Sm−1(Rn

f ) can become
arbitrarily large. In other words, we show that the optimization problem
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min
n∑

j=1

ψP (rj)sj s.t. s ∈ Sm−1(Rn
f ) (4.2)

can have an arbitrarily small positive objective value for a particular choice
of f and r1, . . . , rn. The theorem then follows from Lemma 4.1 and Obser-
vation 4.2.
Let δ ∈ Z+ be sufficiently large and let f := ( 1

2
, . . . , 1

2
, 1 + 1

δ
− 1

δm
), va :=

( 1
2
, . . . , 1

2
, 1 + 1

δ
), and

E :=

{(
1

2
, . . . ,

1

2
, 0

)
+ w : w ∈

{
±(δ + 1)

m− 1

2
ei : i = 1, . . . ,m− 1

}}
.

Let P := conv({va} ∪E). Then P is a maximal lattice-free rational polyhe-
dron of split-dimension m. Every line segment [va, e], e ∈ E, contains one of
the points of the set

K :=

{(
1

2
, . . . ,

1

2
, 1

)
+w : w ∈

{
±m− 1

2
ei : i = 1, . . . ,m− 1

}}
.

We define the (scaled corner) rays to be ra := 1
δm

em together with the
members of the set

R :=

{
±(δ + 1)

m− 1

2
ei −

δm + δm−1 − 1

δm
em : i = 1, . . . ,m− 1

}
.

The inequality associated with P is sa+
∑

r∈R sr ≥ 1. Let L be any maximal
lattice-free rational polyhedron of split-dimension less than or equal to m−1
and let ψL(ra)sa +

∑
r∈R ψL(r)sr ≥ 1 be the cut associated with L. We

first show that ψL(r) ≥ δ + 1 for at least one r ∈ R. Assume the opposite,
i.e. assume ψL(r) < δ + 1 for all r ∈ R. Then f and the points f + 1

δ+1
r,

r ∈ R, belong to the interior of L. Thus,

C := conv

(
f ∪

{(
1

2
, . . . ,

1

2
,
δm+1 + δm − δ

δm(δ + 1)

)
+ w :

w ∈
{
±m− 1

2
ei : i = 1, . . . ,m− 1

}})
⊆ int(L).

Since L is rational and of split-dimension at most m − 1, there exists
π ∈ Zm \ {o} such that C + lin({π}) ⊆ int(L). First, suppose πm > 0
(the case where πm < 0 is symmetric). Consider the set L ∩ {x ∈ Rm :

xm = δm+1+δm−δ
δm(δ+1)

}, which contains the set M := {x ∈ Rm : xm =
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δm+1+δm−δ
δm(δ+1)

and xj ∈ {0, 1} for all j = 1, . . . ,m − 1} in its relative interior.

By Lemma 4.3, it follows that int(L) contains an integer point, which is a
contradiction. Hence, we can assume that πm = 0. Define the point w ∈ Zm

such that wm = 1 and wi = 1
2
sgn(πi)(sgn(πi) + 1) for all i = 1, . . . , m − 1.

One can show that w ∈ int(L)∩Zm (for the moment assume that this is true;
we will show it at the end of the proof), which is a contradiction. It follows
that ψL(r) ≥ δ + 1 for at least one r ∈ R. Thus, the minimization problem

min sa +
∑

r∈R sr s.t. (δ + 1)sr ≥ 1 ∀r ∈ R,
sa ≥ 0

(4.3)

is a strengthening of (4.2) which means that the optimal objective value of
(4.2) is at most the optimal objective value of (4.3). An optimal solution
for (4.3) is s̄a = 0 and s̄r = 1

δ+1
for all r ∈ R with optimal objective value

2(m−1)
δ+1

. For δ ∈ Z+ large enough this implies that the optimal objective
value of (4.2) can be arbitrarily close to zero.

We will now show that w ∈ int(L)∩Zm. For that, we show that w = c+λπ
for some c ∈ C and λ ∈ R. To simplify notation we define Δ := δm+1+δm−δ.
Furthermore, for all i = 1, . . . ,m−1, let F (πi) := 1 if πi > 0, and F (πi) := −1
otherwise. Consider the points pi := ( 1

2
, . . . , 1

2
, Δ
δm(δ+1)

) + m−1
2

F (πi)ei for

all i = 1, . . . ,m− 1. Note that {f, p1, . . . , pm−1} ⊆ C. Solving the system of
equations

aff +

m−1∑
j=1

ajpj + λπ = w and af +

m−1∑
j=1

aj = 1

yields

af =
δ2

Δ
,

ai =
Δ
∑m−1

j=1 F (πj)πj − δ2(m− 1)F (πi)πi

Δ(m− 1)
∑m−1

j=1 F (πj)πj

∀i = 1, . . . ,m− 1,

λ =
δ2(m− 1)

2Δ
∑m−1

j=1 F (πj)πj

.

It is easy to check that 0 < af < 1 and 0 < ai < 1 for all i = 1, . . . ,m − 1.
Therefore, c := aff +

∑m−1
j=1 ajpj is a proper convex combination of points

in C and w = c+ λπ ∈ C + lin({π}) ⊆ int(L). Thus, w ∈ int(L) ∩ Zm.

Theorem 4.4 implies that the strength of Sm(Rn
f ) with respect to

Sm−1(Rn
f ) can become arbitrarily large and therefore the approximability
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of Rn
f by Sm−1(Rn

f ) may be arbitrarily bad. Thus, in general, good approx-
imations for Rn

f can be expected only by using inequalities for Rn
f of full

split-dimension.

The result of Theorem 4.4 is quite unsatisfactory. It seems to run afoul of
lots of experimentation in the literature which supports that in many cases
even the usual split closure gives a good approximation of the mixed-integer
hull (see, for instance, [AW10, BS08]). However, the key observation is that
Theorem 4.4 describes a worst case scenario. In the proof of Theorem 4.4, a
root vertex f and 2m − 1 rays are constructed whose precision grows with
δ ∈ Z+. Eventually, the growth of δ ensures that the approximation becomes
worse and worse. Thus, it is natural to ask whether there is a positive result
on the strength when the data size is bounded. In the next section, we shed
light on this question. We show that under certain conditions usual split cuts
give an approximation for Rn

f to within a constant factor. More precisely, we
show that under specific assumptions on the data, t(Rn

f ,S1(Rn
f )) cannot be

arbitrarily large.

4.2 A positive result on the strength

From Theorem 4.4, one could conclude that inequalities of low split-dimen-
sion are of little value in approximating Rn

f . This is correct in general.
However, by restricting the size of the data and under certain assumptions
on the rays rj , j ∈ N , inequalities of split-dimension equal to m can still be
approximated to within a constant factor by using ordinary splits. This is
the main result in this section. Our second result in this section deals with
a special type of polyhedra.

Definition 4.5. Let b1, . . . , bm ∈ Zm be vectors forming a basis of Zm and
let v ∈ Zm be any integer point. We call the set v+conv({o,mb1, . . . ,mbm})
a regular lattice-free simplex (RLS).

RLS’s are maximal lattice-free integral polyhedra of split-dimension equal
to m and whose max-facet-width is equal to m as well.

Let Bω be a maximal lattice-free rational polyhedron of split-dimension
equal to m and with max-facet-width at most ω. Let

∑
j∈N ψBω (rj)sj ≥ 1

be the cut associated with Bω. We define S1
ω(R

n
f ) to be the set obtained by

adding to S1(Rn
f ) all such inequalities

∑
j∈N ψBω (rj)sj ≥ 1. Furthermore,

let R be an RLS and let
∑

j∈N ψR(rj)sj ≥ 1 be the cut associated with R.

We define S1
RLS(R

n
f ) to be the set obtained by adding to S1(Rn

f ) all such

inequalities
∑

j∈N ψR(rj)sj ≥ 1 for which the corner rays of R are among

the rays r1, . . . , rn. Our results in this section may be summarized as follows:
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• t(S1
ω(R

n
f ),S1(Rn

f )) is bounded from above by a constant which involves
only the dimension m, the precision of the root vertex f , and the
max-facet-width ω (Theorem 4.7).

• t(S1
RLS(R

n
f ),S1(Rn

f )) is bounded from above by a constant which in-
volves only the dimension m (Theorem 4.8).

We start with a general property of lattices that we need in our proofs.

Lemma 4.6. Let L(B) := {y ∈ Zm : y = Bx for some x ∈ Zm} be a proper
sublattice of Zm, where B ∈ Zm×m is an invertible matrix. Then, for any
f ∈ Qm \ Zm such that B�f ∈ Zm, there exists some v ∈ {Bλ : − 1

2
≤ λi ≤

1
2
for all i = 1, . . . , m} ∩ Zm such that f�v 	∈ Z.

Proof. By assumption, there exists z ∈ Zm such that B�f = z. Since f
is the unique solution to the system {B�x = z, x ∈ Rm} and f /∈ Zm,
the system {B�x = z, x ∈ Zm} is infeasible. Applying the integral Farkas
lemma (see, for instance, [BW05, Theorem 6.5]) there exists y ∈ Qm such
that By ∈ Zm and z�y 	∈ Z. Thus, there exists some v ∈ Zm such that
y = B−1v. We obtain f�v = z�y 	∈ Z. Now define v̄ := B(y − �y�), where
�y� := (�y1� , . . . , �ym�). Then v̄ has all required properties.

Theorem 4.7. Let q be the precision of the root vertex f and let S1
ω(R

n
f )

be the set obtained by adding to S1(Rn
f ) all cuts associated with a maximal

lattice-free rational polyhedron of split-dimension m and with max-facet-width
at most ω. Then S1(Rn

f ) ⊆ mqω
2

S1
ω(R

n
f ).

Proof. Let L = {x ∈ Rm : Π�x ≤ π} be a maximal lattice-free rational
polyhedron of split-dimension equal to m and with max-facet-width at most
ω, where Π ∈ Zm×t, π ∈ Zt, and t denotes the number of facets of L. We
denote by πi the i-th column of Π and assume gcd(πi

1, . . . , π
i
m) = 1 for all

i = 1, . . . , t. Since L is full-dimensional, the representation of L under these
assumptions is unique. Let

∑
j∈N ψL(rj)sj ≥ 1 be the cut associated with

L. We prove the theorem by showing that

min

{∑
j∈N

ψL(rj)sj : s ∈ S1(Rn
f )

}
≥ 2

mqω
. (4.4)

The statement then follows from applying Lemma 4.1 and Observation 4.2.
By scaling, we can assume that ψL(rj) = 1 for all j ∈ N . We distinguish
two cases.

Case 1: First, suppose that (πi)�f /∈ Z for some index i ∈ {1, . . . , t}.
Consider the split Si := {x ∈ Rm : �(πi)�f� ≤ (πi)�x ≤ (πi)�f�}. Let
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∑
j∈N ψi(rj)sj ≥ 1 be the cut associated with Si. Then for all j ∈ N the

coefficient ψi(rj) is given by

ψi(rj) =

⎧⎪⎪⎨
⎪⎪⎩

(πi)�rj

�(πi)�f	−(πi)�f
if (πi)�rj > 0,

0 if (πi)�rj = 0,
(πi)�rj


(πi)�f�−(πi)�f
if (πi)�rj < 0.

(4.5)

We relax the minimization problem in (4.4) by taking only the split Si. Then
setting up the dual we obtain

max y s.t. ψi(rj)y ≤ 1 ∀j ∈ N,
y ≥ 0.

(4.6)

Observe, that |(πi)�rj | = |(πi)�(f + rj)− (πi)�f | < ω for all j ∈ N . Since
the precision of f is q, it follows that

max

{
1

(πi)�f� − (πi)�f
,

1

(πi)�f − �(πi)�f�

}
≤ q

and hence, ψi(rj) < qω for all j ∈ N . Thus, problem (4.6) can be strength-
ened to max{y : y ≤ 1

qω
, y ≥ 0} with optimal objective value 1

qω
. This gives

a lower bound for the minimization problem in (4.4). We have 1
qω

≥ 2
mqω

since m ≥ 2, by assumption.
Case 2: Now suppose that (πi)�f ∈ Z for all i = 1, . . . , t. Since L

has split-dimension equal to m there exist i1, . . . , im ∈ {1, . . . , t} such that
lin({πi1 , . . . , πim}) = Rm. For simplicity, we assume lin({π1, . . . , πm}) = Rm

and let B := [π1, . . . , πm] be the matrix with columns πi, i = 1, . . . ,m. Since
B�f ∈ Zm but f 	∈ Zm, the lattice with basis matrix B is a proper sublat-
tice of Zm. From Lemma 4.6, it follows that there exists some v ∈ Zm

such that v�f /∈ Z and v =
∑m

i=1 λiπ
i with − 1

2
≤ λi ≤ 1

2
for all

i = 1, . . . ,m. Consider the split Sv := {x ∈ Rm : �v�f� ≤ v�x ≤ v�f�}
and let

∑
j∈N ψv(rj)sj ≥ 1 be the cut associated with Sv. The coefficients

ψv(rj) are given by (4.5) (with πi replaced by v). In addition, we have
|v�rj | = |

∑m
i=1 λi(π

i)�rj | ≤
∑m

i=1 |λi||(πi)�rj | < mω
2
. Thus, ψv(rj) < mqω

2

for all j ∈ N , and similar reasoning as in the first case finishes the proof.

In Theorem 4.7, we derived an upper bound for t(S1
ω(R

n
f ),S1(Rn

f )) which
is dependent on the dimension, the precision of f , and the max-facet-width
of the polyhedra that define the inequalities for S1

ω(R
n
f ). In some cases bet-

ter bounds can be obtained, for instance when only a particular family of
inequalities is considered and certain assumptions on the rays are made. We
now show that RLS’s can be approximated with usual split cuts by a constant
factor which is independent of the precision of f .
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Theorem 4.8. Let S1
RLS(R

n
f ) be the set obtained by adding to S1(Rn

f ) all
cuts associated with RLS’s whose corner rays are among the rays rj, j ∈ N .
Then S1(Rn

f ) ⊆ m2S1
RLS(R

n
f ).

Proof. Let R be an RLS such that its corner rays are among the rays
r1, . . . , rn and let

∑
j∈N ψR(rj)sj ≥ 1 be the cut associated with R.

By a unimodular transformation, it suffices to consider the RLS R :=
conv({o,me1, . . . ,mem}). We show that

min

{∑
j∈N

ψR(rj)sj : s ∈ S1(Rn
f )

}
≥ 1

m2
. (4.7)

For the remainder of the proof we can assume that the set of rays consists of
the corner rays of R only (see the discussion after Observation 4.2 on p. 24).
By setting rj := mej − f for all j = 1, . . . ,m and rm+1 := −f we obtain
ψR(rj) = 1 for all j = 1, . . . ,m+1. In order to show (4.7), we have to prove
that 1

m2 is a lower bound for the problem

min
m+1∑
j=1

sj s.t. s ∈ S1(Rn
f ). (4.8)

Henceforth, we write
∑

fj instead of
∑m

j=1 fj for simplicity. We consider
two cases.

Case 1: Assume that
∑

fj /∈ Z and fi /∈ Z for all i = 1, . . . ,m. We relax
problem (4.8) by defining the m+ 1 splits

Si := {x ∈ Rm : �fi� ≤ xi ≤ fi�} ∀i = 1, . . . ,m,

Sm+1 :=

{
x ∈ Rm :

⌊
m∑

j=1

fj

⌋
≤

m∑
j=1

xj ≤
⌈

m∑
j=1

fj

⌉}
.

For i = 1, . . . ,m + 1, let
∑m+1

j=1 ψi(rj)sj ≥ 1 be the cut associated with Si.
The optimal objective value of (4.8) is greater than or equal to the minimal
value of

∑m+1
j=1 sj such that

∑m+1
j=1 ψi(rj)sj ≥ 1 for all i = 1, . . . , m+ 1 and

sj ≥ 0 for all j = 1, . . . ,m+1. Here, the coefficients ψi(rj) can be computed
with the help of (4.5). We obtain the optimization problem
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min
m+1∑
j=1

sj s.t.

m−fi
�fi	−fi

si +
fi

fi−
fi�
m+1∑

j=1,j �=i

sj ≥ 1 ∀i = 1, . . . ,m,

m−∑
fi

�∑ fi	−
∑

fi

m∑
j=1

sj +
∑

fi∑
fi−
∑ fi�sm+1 ≥ 1,

si ≥ 0 ∀i = 1, . . . ,m+ 1.

(4.9)

Now consider the corresponding dual linear program:

max
m+1∑
j=1

yj s.t.

m−fi
�fi	−fi

yi +
m∑

j=1,j �=i

fj
fj−
fj�yj +

m−∑
fk

�∑ fk	−
∑

fk
ym+1 ≤ 1 ∀i = 1, . . . ,m,

m∑
j=1

fj
fj−
fj�yj +

∑
fk∑

fk−
∑ fk�ym+1 ≤ 1,

yi ≥ 0 ∀i = 1, . . . ,m+ 1.

(4.10)

The objective value of any dual feasible solution is a lower bound for the
optimal objective value of (4.9), so we will construct such solutions in the
following. In the remainder of the proof, when we write i-th column of (4.10),
then we mean the i-th (m + 1)-dimensional column of (4.10) without the
non-negativity restrictions. Without loss of generality let f1 ≥ · · · ≥ fm. If
fm ≤ 1

2
, then ȳm = 1

2m−1
and ȳj = 0 for all j 	= m is dual feasible since the

m-th column of (4.10) is

(
1, . . . , 1,

m− fm
1− fm

, 1

)�
≤
(
1, . . . , 1,

m− 1
2

1− 1
2

, 1

)�
= (1, . . . , 1, 2m− 1, 1)�.

Note that 1
2m−1

≥ 1
m2 asm ≥ 2. Now let fm > 1

2
. We have fm < 1, otherwise∑

fi ≥ mfm ≥ m, which is a contradiction to
∑

fi < m. Therefore, fm =
1− ε for some ε ∈ (0, 1

2
). For ε ≤ 1

m+1
we obtain

∑
fi ≥ mfm = m(1− ε) ≥

m(1− 1
m+1

) = m2(m+1)−1 > m−1. Thus, �
∑

fi� = m−1 and 
∑

fi� = m.

The (m + 1)-th column of (4.10) is therefore (1, . . . , 1,
∑

fi∑
fi−(m−1)

)�. Since∑
fi ≥ m2

m+1
we obtain (1, . . . , 1,

∑
fi∑

fi−(m−1)
)� ≤ (1, . . . , 1, m2)� and a dual

feasible solution is given by ȳm+1 = 1
m2 and ȳj = 0 for all j 	= m+1. For the

opposite case where ε ≥ 1
m+1

we obtain for the m-th column of (4.10) that

(1, . . . , 1, m−(1−ε)
1−(1−ε)

, 1)� ≤ (1, . . . , 1, m2, 1)� and therefore the dual feasible



34 Evaluation of cutting planes

solution ȳm = 1
m2 and ȳj = 0 for all j 	= m can be chosen. This shows that

the optimal objective value of (4.9) is at least 1
m2 and therefore (4.7) holds

true.
Case 2: Now assume that one of the fi’s or

∑
fi is integer. If fi ∈ Z, then

Si is not a split, so we drop it. As in the proof of Case 1 we set up the dual
and obtain a maximization problem similar to (4.10) where the i-th column is
missing. Thus, the analysis remains the same, but now in dimension m− 1.
If
∑

fi ∈ Z, then Sm+1 is not a split. We drop the split and with it the
(m+1)-th column of the dual. A similar reasoning as in the proof of Case 1
shows that for fm (again the smallest non-integer of the fi’s) we must have
fm ≤ 1

2
or fm = 1 − ε, where ε ≥ 1

m+1
. If several of the fi’s or

∑
fi are

integer, then we erase all the corresponding columns of the dual (4.10) as
explained above. Note that at least one of the fi’s is non-integer since f is
in the interior of R. In every case, the bound 1

m2 is attained again.

We point out that the bound derived in Theorem 4.8 is not tight, in
general. For instance, for the case m = 2, Theorem 4.8 gives S1(Rn

f ) ⊆
4S1

RLS(R
n
f ). However, in [BBCM11, Theorem 1.6] it is shown that even

S1(Rn
f ) ⊆ 2S1

RLS(R
n
f ) holds true in this case.

Remark 4.9. Based on experiments with the help of a computer algebra
system, we conjecture that S1(Rn

f ) ⊆ mS1
RLS(R

n
f ) holds true. However, un-

fortunately we have no convincing arguments at hand to support our claim.

The main message of this chapter is that, in general, non-trivial facet-
defining inequalities for conv(PI) of full split-dimension are needed in order
to approximate conv(PI) closely. On the other hand, we were able to show
that split cuts approximate conv(PI) to within a constant factor when specific
assumptions on the data size are made. In Chapter 6, we will continue to
evaluate facet-defining inequalities for conv(PI) in the special case m = 2.
For that, we need more insight into the structural properties of maximal
lattice-free convex sets in R2. We will provide the necessary relations in the
next chapter. These results are then used in Chapter 6 to obtain a more
refined evaluation of facet-defining inequalities for conv(PI) in dimension
two.



CHAPTER 5

AREA – LATTICE WIDTH RELATIONS

IN THE PLANE

In this chapter, we study the relation between the area and the lattice width
(resp. the area and the covering minima) of a two-dimensional lattice-free
convex set. Parts of our results are used in Chapters 6 and 8. This was the
original motivation for this chapter. In addition, we obtain results which go
beyond an application to mixed-integer cutting plane theory.

We derive results for general and centrally symmetric planar lattice-free
convex set. A correspondence between the lattice width on the one hand
and the covering minima on the other, allows us to reformulate our results
in terms of the covering minima introduced by Kannan and Lovász [KL88].
We obtain a tight upper bound for the area for any given value of the lattice
width. With tight bound we mean that the bound is best possible in the sense
that there exist lattice-free convex sets satisfying the bound with equality.
The lattice-free convex sets satisfying the upper bound are characterized.
Lower bounds are studied as well. We further rectify a result of [KL88] with
a new proof.

In Section 5.1, we review basic notions and relevant results from the litera-
ture which we will need in the course of this chapter. Section 5.2 summarizes
our main results. In Section 5.3, we present formulas for the lattice width
and the area of triangles. Section 5.4 contains the proofs for general pla-
nar lattice-free convex sets. The proofs for the centrally symmetric planar
lattice-free convex sets are given in Section 5.5.

35
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5.1 Preliminaries

We recall that K2 is the class of closed convex sets in R2 with non-empty
interior. Throughout this chapter, we only consider the lattice Z2 for no-
tational convenience. For simplicity, we use w(K) instead of wZ2(K) to
denote the lattice width of K ∈ K2 with respect to the lattice Z2. Note
that w(K) > 0 for every K ∈ K2. The area of K is denoted by A(K). We
point out, that our results could also be formulated in terms of an arbitrary
lattice. Let us briefly explain why the inequalities that we obtain in this
chapter are unaffected by the choice of the lattice. Let K ∈ K2 and let Λ be
an arbitrary (full-dimensional) lattice in R2. Then wΛ(K) = wT (Λ)(T (K))
for every linear transformation T in R2. Choosing T such that it maps Λ
onto Z2 we obtain w(T (K)) = wZ2(T (K)) = wT (Λ)(T (K)) = wΛ(K). Since
A(T (K)) ·det(Λ) = A(K), every inequality involving the area and the lattice
width with respect to Z2 can be transformed to an inequality involving the
area, the lattice width with respect to Λ, and det(Λ), where det(Λ) denotes
the determinant of the lattice Λ. For figures it is sometimes more convenient
to use the lattice of regular triangles, i.e. the lattice generated by the vectors
(1, 0) and 1

2
(1,

√
3). The following fact is frequently used in our proofs.

Proposition 5.1. Every lattice-free K ∈ K2 is contained in a maximal
lattice-free H ∈ K2.

Proof. For a closed convex set U ⊆ R2 and a point x ∈ R2 we denote by
c(U, x) the topological closure of the convex hull of U ∪ {x}. Since the topo-
logical closure of a convex set is again convex (see, for instance, [Roc72,
Theorem 6.2]), the set c(U, x) is a closed convex set for every closed convex
set U ⊆ R2 and every x ∈ R2.

Let (zn)
∞
n=1 be a sequence of all elements of Q2. We define U0 := K and

for every n ∈ N we set Un := c(Un−1, zn) if c(Un−1, zn) is lattice-free, and
Un := Un−1 otherwise. Let H be the topological closure of

⋃∞
n=0 Un. Then H

is a closed convex set and since Un−1 ⊆ Un for every n ∈ N it holds K ⊆ H .
This implies that H has a non-empty interior. By construction, H is a closed
convex set with non-empty interior, i.e. H ∈ K2. In addition, H is lattice-
free: assume y is an integer point in the interior of H . Then there exists some
j ∈ N such that y is in the interior of Uj and thus, Uj is not lattice-free. This
contradicts the construction of Uj . Let us show that H is maximal lattice-
free. Assume the opposite and let L ∈ K2 be lattice-free such that H � L.
Then L \ H contains rational points which occur in the sequence (zn)

∞
n=1.

Let zk ∈ L \H be such a rational point. If c(Uk−1, zk) were lattice-free, then
zk ∈ c(Uk−1, zk) = Uk ⊆ H , a contradiction. On the other hand we have
zk ∈ L and Uk−1 ⊆ H � L. Therefore, c(Uk−1, zk) ⊆ L by the convexity of
L. This implies that L is not lattice-free, again a contradiction.
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We point out that the above proof is not constructive. For a constructive,
but lengthy proof we refer to [BCCZ10, Corollary 2.2].

Remark 5.2. Proposition 5.1 states that, given a lattice-free closed convex
set K ⊆ R2 with non-empty interior, then there exists a maximal lattice-
free closed convex set H ⊆ R2 with non-empty interior such that K ⊆ H.
It is interesting that the non-emptiness of the interior of K is crucial to
infer that H has a non-empty interior. If K were only assumed to be a
lattice-free closed convex set in R2, then the interior of H could be both,
empty or non-empty. For instance, consider the line K = {x ∈ R2 : x2 =√
2x1} having an irrational slope and containing the origin as its only integer

point. K is maximal lattice-free (and thus K = H), but its interior is empty.
Using the notation of the proof of Proposition 5.1, it holds Un = K for
every n ∈ N. The reason is that the set c(K, z), z ∈ Q2, is either K itself
(if z ∈ K), or it contains an integer point in its interior (if z /∈ K): let
z /∈ K and let ε be the distance from z to K. It is well-known that for
every line in R2 with an irrational slope there exist integer points arbitrarily
close to it (see, for instance, [Kem17, Theorem 2]). Therefore, there exists
a point y ∈ Z2 at (strictly positive) distance less than ε from K. Since
c(K, z) = conv(K ∪ (K + z)), one of the points y or −y is in the interior
of c(K, z). Thus, the set c(K, z) contains an integer point in its interior
whenever z ∈ Q2\K. Obviously, this argument can be generalized to arbitrary
lines in R2 having an irrational slope.

A classification of all maximal lattice-free sets in K2 was given by Lovász
[Lov89, Section 3, p. 192]. The refined classification which is stated below
can be found in [DW10, Proposition 1].

Proposition 5.3. ([DW10, Proposition 1] and [Lov89].) Let K ∈ K2 be
maximal lattice-free. Then K is either a split or a triangle or a quadrilateral.
In particular, K is one of the following sets (see Fig. 5.1).

I. A split {(x1, x2) ∈ R2 : π0 ≤ π1x1 + π2x2 ≤ π0 + 1} with π0, π1, π2 ∈ Z
and gcd(π1, π2) = 1.

II. A triangle which in turn is either a

(a) type 1 triangle, i.e. a triangle with integer vertices and exactly one
integer point in the relative interior of each edge, or

(b) type 2 triangle, i.e. a triangle with at least one fractional vertex v,
exactly one integer point in the relative interior of the two edges
incident to v and at least two integer points on the third edge, or

(c) type 3 triangle, i.e. a triangle with exactly three integer points on
the boundary, one in the relative interior of each edge. These three
integer points form a triangle of area 1

2
.
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III. A quadrilateral containing exactly one integer point in the relative inte-
rior of each of its edges. These four integer points form a parallelogram
of area 1.

(a) Split. (b) Type 1 triangle. (c) Type 2 triangle.

(d) Type 3 triangle. (e) Quadrilateral.

Figure 5.1: All types of maximal lattice-free sets in K2.

In the plane it is easy to construct examples of lattice-free convex sets
with a lattice width of two. For instance, this is the case for every triangle
of type 1. It may be surprising, that this value can be exceeded. This was
noticed by Hurkens [Hur90], who also computed the best upper bound for
the lattice width of a lattice-free convex set in the plane.

We point out that, throughout this chapter, sequences with n elements are
indexed modulo n.

Theorem 5.4. [Hur90, p. 122] Let K ∈ K2 be lattice-free. Then

w(K) ≤ 1 +
2√
3
, (5.1)

with equality if and only if K is a triangle with vertices q0, q1, q2 such that,
for every i, the point pi := (1− 1√

3
)qi+1+

1√
3
qi+2 belongs to Z2 (see Fig. 5.2).

The concept of covering minima is a useful tool in convex geometry. We
will therefore give an alternative formulation of our results in terms of this
concept. The notions lattice width and covering minima were introduced
by Kannan and Lovász [KL86, KL88] for an arbitrary dimension. However,
related results were obtained much earlier (see, for instance, Khinchin [Khi48]
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K
q0

q1

q2

p2

p0 p1

Figure 5.2: A lattice-free triangle with lattice width 1 + 2√
3
.

and Fejes Tóth and Makai Jr. [FTM74]). In this chapter, we restrict our at-
tention to dimension two.

Let K ∈ K2. For j = 1, 2 the j-th covering minimum is defined to be

μj(K) := inf
{
t ≥ 0 : tK + Z2 intersects each

(2− j)-dimensional affine subspace of R2
}
.

This definition implies 0 < μ1(K) ≤ μ2(K) for every K ∈ K2. If K ∈ K2 is
a convex body, then the “inf” in the above definition becomes a “min”. We
note that the definition of μ1(K) and μ2(K) is invariant under translation of
K since, for any x ∈ R2, tK+Z2 intersects each point (resp. line) in R2 if and
only if t(K−x)+x+Z2 does (see [KL86, Observation 2.2] and [KL88, p. 582]).
The second covering minimum μ2(K) ofK is the minimum value of t ≥ 0 such
that the sets tK + z with z ∈ Z2 cover R2 and is also known under the name
of inhomogeneous minimum (see [GL87, Section 13]). It turns out that some
translate of K is lattice-free if and only if μ2(K) ≥ 1 (see [KL88, p. 579]1).
Furthermore, for t > 0, an appropriate translate of tK is lattice-free if and
only if t ≤ μ2(K). The first covering minimum μ1(K) is the minimum value
of t ≥ 0 such that tK + Z2 intersects every line in R2. One can show that
μ1(K)w(K) = 1 for every K ∈ K2 (see, for instance, [KL88, Lemma 2.3]).
This leads to a correspondence between the lattice width on the one hand
and the covering minima on the other, provided that K is lattice-free. For
instance, Theorem 5.4 yields μ2(K) ≤ (1 + 2 · (

√
3)−1)μ1(K). Indeed, we

know that μ2(K) · K has a lattice-free translate. From the linearity of the
lattice width, we obtain that 1+2 · (

√
3)−1 ≥ w(μ2(K) ·K) = μ2(K)w(K) =

μ2(K)·(μ1(K))−1. The results which we present in this chapter can therefore

1The authors in [KL88] deal with a different notion of lattice-freeness (which does not
allow integer points on the boundary), but it is straightforward to transfer their
results into our notion of lattice-freeness.
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be expressed as a relation between the area and the covering minima of K,
as well (see Corollaries 5.11 and 5.12).

Let K ∈ K2 be a convex body. We recall (see Chapter 2) that the support
function of K is h(K, u) = max{u�x : x ∈ K}, where u ∈ R2. Furthermore,
the width of K along the vector u ∈ R2 is w(K,u) = h(K,u)+h(K,−u), and
the lattice width of K with respect to the lattice Z2 is w(K) = min{w(K, u) :
u ∈ Z2 \ {o}}. It is straightforward to show that h(DK, u) = w(K,u) for
every u ∈ R2, where DK is the difference body of K. Moreover, one has
h(K, u) = ‖u‖K∗ for every u ∈ R2, where K∗ is the polar body of K and
‖ · ‖K∗ is the Minkowski functional of K∗.

A subset X ⊆ K2 is said to tile R2 (or is a tiling of R2) if the union of
the elements of X is R2 and their interiors are pairwise disjoint. We refer to
[Sch93b, Section 4.1] for information on lattice tilings.

A set K ∈ K2 is called symmetric in the origin if x ∈ K implies that
−x ∈ K, and K is called centrally symmetric if there exists some c ∈ R2 such
that the set K−c = {x−c : x ∈ K} is symmetric in the origin. In this case, c
is called the center of symmetry of K. If K ∈ K2 is centrally symmetric, then
1
2
DK is a translate ofK, and ifK is symmetric in the origin, then 1

2
DK = K.

The two-dimensional version of Minkowski’s first fundamental theorem (see,
for instance, [Gru07, Theorem 22.1]) states that if K ∈ K2 is symmetric in
the origin and int(K)∩Z2 = {o}, then A(K) ≤ 4. Furthermore, if A(K) = 4,
then the sets 1

2
K + z with z ∈ Z2 tile R2 (see, for instance, [GL87, p. 42,

Theorem 2] and the preceding paragraph therein2). Mahler’s inequality (see
[Mah39a] and [Mah39b]3) states that A(K)A(K∗) ≥ 8 for every convex body
K ∈ K2 which is symmetric in the origin. Moreover, Mahler’s inequality is
satisfied with equality if and only if K is a parallelogram. The following
proposition is easy to show. It is a special case of a result of Hajós.

Proposition 5.5. [Haj41, Sections 1 and 2] Let P ⊆ R2 be a parallelogram
which is symmetric in the origin and such that its translates P+z with z ∈ Z2

tile R2. Then, up to a unimodular transformation, P = 1
2
conv({±(1−α, 1),

±(1 + α,−1)}) for some 0 ≤ α < 1.

2This statement is not explicitly mentioned in [GL87], but it is a straightforward con-
sequence of (i) A( 1

2K) = 1, (ii) int( 1
2K + u) ∩ int( 1

2K + v) = ∅ for all u, v ∈ Z
2 with

u �= v, and (iii) Blichfeldt’s theorem.
3In [Mah39b, p. 96], Mahler conjectured that for every d ≥ 2 and every convex body

K ∈ Kd which is symmetric in the origin the inequality vol(K) vol(K∗) ≥ 4d · (d!)−1

holds true. He verified his conjecture in [Mah39a, Section 3] for d = 2, where he also
showed that equality is attained if and only if K is a parallelogram (see [Mah39a,
p. 10]). However, for arbitrary d, no proof is known so far. In fact, the inequality has
been analyzed by many mathematicians and is known under the name of Mahler’s

conjecture.
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5.2 Main results

In this section, we present the main results of Chapter 5. Let us first give a
brief summary. For a lattice-free set K ∈ K2 with given lattice width w(K)
we present a list of inequalities which relate its area A(K) to its lattice width
(Theorems 5.6 and 5.9). By Theorem 5.4, we know that 0 < w(K) ≤ 1 +
2 · (

√
3)−1. Assuming that w(K) is given, we derive bounds for the maximum

and the minimum possible area of K. Broadly speaking, our bounds have
the form L(w(K)) ≤ A(K) ≤ U(w(K)), where L(w(K)) (resp. U(w(K))) is
the lower (resp. upper) bound for the area and depends only on the lattice
width of K. The sets K ∈ K2 for which the upper bound is attained are
characterized for every value of w(K) between 0 and 1 + 2 · (

√
3)−1. The

sets K ∈ K2 for which the lower bound is attained are characterized only for
w(K) ≤ 2. For the case of centrally symmetric sets K ∈ K2 we even give the
complete list of inequalities, i.e. the lower and upper bound for A(K) for a
given w(K) and a characterization of all sets K ∈ K2 for which equality is
attained. Theorem 5.6 states the relation between the area and the lattice
width of arbitrary lattice-free sets K ∈ K2.

Theorem 5.6. Let K ∈ K2 be lattice-free with w := w(K) and A := A(K).
Then

A ≤ ∞ for 0 < w ≤ 1, (5.2)

A ≤ w2

2(w − 1)
for 1 < w ≤ 2, (5.3)

A ≤ 3w2

3w + 1−
√
1 + 6w − 3w2

for 2 < w ≤ 1 +
2√
3
, (5.4)

A ≥ 3

8
w2 for 0 < w ≤ 1 +

2√
3

(5.5)

(see Fig. 5.4(a)). Furthermore, the following statements hold.

I. Equality in (5.2) is attained if and only if K is unbounded and contained
in a split.

II. Equality in (5.3) is attained if and only if, up to a unimodular transfor-
mation, K = conv(I1 ∪ I2), where I1 is a translate of conv({o, we1}),
I2 is a translate of conv({o, w

w−1
e2}), and I1 ∩ I2 	= ∅ (see Fig. 5.3(a)).

III. Equality in (5.4) is attained if and only if K is a triangle with vertices
q0, q1, q2 such that, for every i, the point pi := (1−λ)qi+1+λqi+2 belongs
to Z2 for

λ :=
3w + 1−

√
1 + 6w − 3w2

6w
(see Fig. 5.3(b)).
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IV. If 0 < w ≤ 2, then equality in (5.5) is attained if and only if, up to
a unimodular transformation, K is a translate of w

2
conv({(1, 0), (0, 1),

(−1,−1)}) (see Fig. 5.3(c)).

I1

I2
K

(a) Illustration of (5.3) and Part II.

K

q1

q2

q0

p0 p1

p2

(b) Illustration of (5.4) and Part III.

(−1, −1)

(1, 0)

(0, 1)

(0, 0)

K

(c) Illustration of (5.5) and Part IV.

Figure 5.3: Examples of sets yielding equality in (5.3)–(5.5).

Remark 5.7. It is straightforward to show that the upper bound in (5.4) is
monotonically non-increasing for 2 < w(K) ≤ 1 + 2 · (

√
3)−1. In particular,

it holds A(K) ≤ 2.

The bound (5.5) is not tight for 2 < w(K) ≤ 1 + 2 · (
√
3)−1. To see why,

we need a result of Fejes Tóth and Makai Jr. [FTM74].

Theorem 5.8. [FTM74, Theorem 2] Let K ∈ K2 with w := w(K) and A :=
A(K). Then it holds A ≥ 3

8
w2. Equality is attained if and only if, up to a uni-

modular transformation, K is a translate of w
2
conv({(1, 0), (0, 1), (−1,−1)}).

It is easy to see that 1
2
w(K) · conv({(1, 0), (0, 1), (−1,−1)}) does not have

a lattice-free translate for w(K) > 2. Thus, in view of Theorem 5.8, (5.5) is
not tight when 2 < w(K) ≤ 1 + 2 · (

√
3)−1. The problem to determine the

tight lower bound in this case is still open. We did not succeed to find it.
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A

w

(a) Pairs (w,A) satisfying the inequal-
ities in Theorem 5.6.

A

w

(b) Pairs (w,A) satisfying the inequal-
ities in Theorem 5.9.

Figure 5.4: Bounds for the area in the general and centrally symmetric case.

A statement analogous to Theorem 5.6 can also be proved for centrally
symmetric sets K ∈ K2. We show the following theorem.

Theorem 5.9. Let K ∈ K2 be lattice-free and centrally symmetric with
w := w(K) and A := A(K). Then

0 < w ≤ 2, (5.6)

A ≤ ∞ for 0 < w ≤ 1, (5.7)

A ≤ w2

2(w − 1)
for 1 < w ≤ 2, (5.8)

A ≥ 1

2
w2 for 0 < w ≤ 2 (5.9)

(see Fig. 5.4(b)). Furthermore, the following statements hold.

I. The upper bound in (5.6) is attained if and only if, up to a unimodular
transformation,

K = conv({±(1, 0),±(0, 1)}) +
(
1

2
,
1

2

)
.

(see Fig. 5.5(a)).

II. Equality in (5.7) is attained if and only if K is unbounded and contained
in a split.
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III. Equality in (5.8) is attained if and only if, up to a unimodular trans-
formation,

K = conv

({
±
(w
2
, 0
)
,±

(
0,

w

2(w − 1)

)})
+

(
1

2
,
1

2

)

(see Fig. 5.5(b)).

IV. Equality in (5.9) is attained if and only if, up to a unimodular trans-
formation, K is a translate of

w

2
conv({±(1, α),±(0, 1)})

for some 0 ≤ α < 1 that satisfies max{1+α, 2−α} ≥ w (see Fig. 5.5(c)).

K

(a) Illustration of (5.6) and Part I.

K

(b) Illustration of (5.8) and Part III.

K K

(c) Illustration of (5.9) and Part IV.

Figure 5.5: Examples of sets yielding equality in (5.6), (5.8), and (5.9).

For centrally symmetric sets K ∈ K2, the lower bound in (5.9) was shown
by Makai Jr. [Mak78, Theorem 3] who noticed that equality in (5.9) is at-
tained only if K is a parallelogram, but the precise shape of all the parallel-
ograms satisfying (5.9) was not stated. We also refer to Fejes Tóth [FT73]
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who characterized the extremal sets in a special case. However, to the best
of our knowledge, an exact characterization of all the sets K ∈ K2 for which
equality in (5.9) is attained is not known so far. This gap is now filled by
Part IV of Theorem 5.9.

The upper bound in (5.6) is a consequence of a more general result due
to Kannan and Lovász [KL88, Theorem 2.13]. Unfortunately, the proof of
Theorem 2.13 in [KL88] does not seem to be correct4, but implies the weaker
result 0 < w(K) ≤ 3. Therefore, we prove the subsequent theorem.

Theorem 5.10. Let K ∈ K2 be centrally symmetric. Then one has μ2(K) ≤
2μ1(K).

If K ∈ K2 is lattice-free, and thus μ2(K) ≥ 1, then together with the
relation μ1(K)w(K) = 1, Theorem 5.10 implies w(K) ≤ 2. The results stated
in Theorems 5.6 and 5.9 can also be expressed in terms of covering minima. In
Corollary 5.11, the lower bound for A(K) goes back to [FTM74, Theorem 2].
All the bounds for A(K) in Corollaries 5.11 and 5.12 can be deduced from
Theorems 5.6 and 5.9 in a straightforward way. We refer to [BHW93] and
[Sch95] for further inequalities involving μ1(K), μ2(K), and A(K).

Corollary 5.11. Let K ∈ K2 with A := A(K), μ1 := μ1(K) and μ2 :=
μ2(K). Then

μ1 ≤ μ2 ≤
(
1 +

2√
3

)
μ1,

A ≤ ∞ for μ1 = μ2,

A ≤ 1

2μ1(μ2 − μ1)
for μ1 < μ2 ≤ 2μ1,

A ≤ 3

μ1

(
3μ2 + μ1 −

√
μ2
1 + 6μ1μ2 − 3μ2

2

) for 2μ1 < μ2 ≤
(
1 +

2√
3

)
μ1,

A ≥ 3

8μ2
1

for μ1 ≤ μ2 ≤
(
1 +

2√
3

)
μ1.

The upper bounds for A are tight, whereas the lower bound for A is tight only
for μ1 ≤ μ2 ≤ 2μ1.

4In the proof of Theorem 2.13 in [KL88] one claims that the covering minima of centrally
symmetric convex bodies satisfy the inequalities μk+1 ≤ 2μk for all k = 1, . . . , d− 1,
where d is the dimension of the underlying space (see [KL88] for the explanation
of the notation). In the proof of Theorem 2.13, p. 588, l. 11, it is inferred that
2(α+β+λ1) ≤ 4(α+β). However, one line before it is just shown that λ1 ≤ 2(α+β)
and therefore the correct conclusion is 2(α + β + λ1) ≤ 6(α + β). Using the factor 6
instead of 4 in the rest of the proof leads to the weaker result μk+1 ≤ 3μk. To the
best of our knowledge there is no revision or corrected version of this proof which
would yield the assertion μk+1 ≤ 2μk. We have also tried to contact the authors by
e-mail, but received no reply.
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Corollary 5.12. Let K ∈ K2 be centrally symmetric with A := A(K),
μ1 := μ1(K) and μ2 := μ2(K). Then

μ1 ≤ μ2 ≤ 2μ1,

A ≤ ∞ for μ1 = μ2,

A ≤ 1

2μ1(μ2 − μ1)
for μ1 < μ2 ≤ 2μ1,

A ≥ 1

2μ2
1

for μ1 ≤ μ2 ≤ 2μ1.

The above bounds are tight.

Theorems 5.6 and 5.9 will be proved for maximal lattice-free convex sets
first. Once the proof is established we show that it implies the validity of
the inequalities for lattice-free convex sets which are not maximal. Before
we present the proofs, we need some auxiliary results on triangles which we
discuss in the next section.

5.3 Auxiliary results on triangles

An essential part of the proofs of Theorems 5.6 and 5.9 is concerned with
analytical representations of the lattice width and the area of polytopes. In
particular, we will need formulas for the lattice width of triangles in many
places. We recall that for a triangle T = conv({t0, t1, t2}) ⊆ R2 and a point
p ∈ R2, p can be uniquely represented by p = λ0t0 + λ1t1 + λ2t2 where
λ0, λ1, λ2 ∈ R and λ0+λ1+λ2 = 1. The multipliers λ0, λ1, and λ2 are called
the barycentric coordinates of p with respect to the triangle T . For more
information on barycentric coordinates we refer to [Cox69, Section 13.7]. The
following lemma summarizes well-known facts about barycentric coordinates
of triangles.

Lemma 5.13. Let Q := conv({q0, q1, q2}) ⊆ R2 be a triangle and let p ∈ R2

be represented in the form p = x0q0 + x1q1 + x2q2 with x0 + x1 + x2 = 1.
We define Hj := aff({q0, q1, q2} \ {qj}) for j = 0, 1, 2. Then the following
statements hold.

I. The points p and qj lie in the same open half-plane defined by Hj if and
only if xj > 0.

Hj separates the points p and qj if and only if xj < 0.

The point p lies on Hj if and only if xj = 0.

II. The value |xj | is the ratio of the distance from p to Hj and the distance
from qj to Hj.
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III. Let P := conv({p0, p1, p2}) ⊆ R2 be a triangle with pi =
∑2

j=0 xi,jqj and∑2
j=0 xi,j = 1 for all i = 0, 1, 2. Then the areas of P and Q are related

by A(P ) = |det(xi,j)i,j=0,...,2|A(Q).

The next lemma provides formulas for the area and the lattice width of
triangles whose vertices are expressed in terms of the vertices of another tri-
angle which coincides, up to a unimodular transformation, with the triangle
conv({o, e1, e2}).

Lemma 5.14. Let P := conv({p0, p1, p2}) be a triangle such that p0, p1, p2 ∈
Z2 are the only integer points in P . Let Q := conv({q0, q1, q2}) be a triangle
whose vertices are given by the barycentric coordinates with respect to P , that
is, by a matrix B ∈ R3×3 such that⎛

⎝q�0 1
q�1 1

q�2 1

⎞
⎠ = B

⎛
⎝p�0 1
p�1 1

p�2 1

⎞
⎠ .

Then

w(Q) = min{‖DBz‖∞ : z ∈ Z3 and the (5.10)

coordinates of z are not all equal},

where

D :=

⎛
⎝−1 1 0

0 −1 1
1 0 −1

⎞
⎠ .

Furthermore, if pi = (1−xi)qi+1+xiqi+2 with 0 < xi < 1 for all i = 0, 1, 2
(that is, P is contained in Q, see Fig. 5.6), then

w(Q) =

min

{
max

i=0,1,2
|xiyi + (1− xi+1)yi+1| : y ∈ Y

}
x0x1x2 + (1− x0)(1− x1)(1− x2)

(5.11)

and

A(Q) =
1

2
(
x0x1x2 + (1− x0)(1− x1)(1− x2)

) , (5.12)

where Y := {y ∈ Z3 \ {o}, y0 + y1 + y2 = 0}.

Proof. For u ∈ Z2 we have

w(Q,u) = max
{
|q�i u− q�j u| : 0 ≤ i < j ≤ 2

}
=

∥∥∥∥∥∥D
⎛
⎝q�0
q�1
q�2

⎞
⎠u

∥∥∥∥∥∥
∞
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=

∥∥∥∥∥∥D
⎛
⎝q�0 1

q�1 1
q�2 1

⎞
⎠(

u
k

)∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥DB

⎛
⎝p�0 1

p�1 1
p�2 1

⎞
⎠(

u
k

)∥∥∥∥∥∥
∞

= ‖DBz‖∞ ,

where k ∈ Z is arbitrary and

z :=

⎛
⎝p�0 1

p�1 1

p�2 1

⎞
⎠(

u
k

)
=

⎛
⎝p�0 u+ k

p�1 u+ k

p�2 u+ k

⎞
⎠ .

Clearly, z ∈ Z3. Since the vector z is the product of a unimodular matrix
and an integer vector, it follows that u = o if and only if the coordinates of
z are all equal. This shows (5.10).

Let us now show (5.11). By assumption, we have⎛
⎝p�0 1
p�1 1

p�2 1

⎞
⎠ = X

⎛
⎝q�0 1
q�1 1

q�2 1

⎞
⎠ ,

where

X := B−1 =

⎛
⎝ 0 1− x0 x0

x1 0 1− x1

1− x2 x2 0

⎞
⎠ .

Since X is the matrix of barycentric coordinates of the vertices of P with
respect to Q, B is the matrix of barycentric coordinates of the vertices of Q
with respect to P . Direct computations yield

det(X) = x0x1x2 + (1− x0)(1− x1)(1− x2) > 0,

B =
1

det(X)

⎛
⎝ −(1− x1)x2 x0x2 (1− x0)(1− x1)
(1− x1)(1− x2) −(1− x2)x0 x0x1

x1x2 (1− x0)(1− x2) −(1− x0)x1

⎞
⎠ ,

DB =
1

det(X)

⎛
⎝ 1− x1 −x0 x0 + x1 − 1
x1 + x2 − 1 1− x2 −x1

−x2 x0 + x2 − 1 1− x0

⎞
⎠ .

Using the latter matrix relation we obtain for every z = (z0, z1, z2)
� ∈ Z3

that

DBz =
1

det(X)

⎛
⎝z2 − z1 z2 − z0 0 z0 − z2

0 z0 − z2 z0 − z1 z1 − z0
z1 − z2 0 z1 − z0 z2 − z1

⎞
⎠
⎛
⎜⎜⎝
x0

x1

x2

1

⎞
⎟⎟⎠ .
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By the change of variables

y =

⎛
⎝y0
y1
y2

⎞
⎠ :=

⎛
⎝z2 − z1
z0 − z2
z1 − z0

⎞
⎠ (5.13)

the latter amounts to

DBz =
1

det(X)

⎛
⎝ y0 −y1 0 y1

0 y1 −y2 y2
−y0 0 y2 y0

⎞
⎠
⎛
⎜⎜⎝
x0

x1

x2

1

⎞
⎟⎟⎠

=
1

det(X)

⎛
⎝x0y0 + (1− x1)y1
x1y1 + (1− x2)y2
x2y2 + (1− x0)y0

⎞
⎠ .

Clearly, y0 + y1 + y2 = 0 and, if the coordinates of z are not all equal, we
have y 	= o. Conversely, for an arbitrary y ∈ Z3 \ {o} with y0 + y1 + y2 = 0,
we can easily find an appropriate z ∈ Z3 satisfying (5.13) and such that the
coordinates of z are not all equal: without loss of generality assume that
y2 	= 0. Then the vector z ∈ Z3 defined by z0 := y0, z1 := y0 + y2, and
z2 := 2y0 + y2 has all required properties. Thus, employing (5.10) and the
previous derivation we arrive at

w(Q) =
1

det(X)
min {max {|xiyi + (1− xi+1)yi+1| : i = 0, 1, 2} : y ∈ Y } .

Equation (5.12) follows from Lemma 5.13 III and the fact that 1
2
= A(P ) =

det(X)A(Q).

Lemma 5.14 allows us to compute the lattice width of an arbitrary triangle
Q with the help of formula (5.10). This formula is only dependent on the
barycentric coordinates of the vertices of Q with respect to a triangle P that
is some unimodular transformation of conv({o, e1, e2}). In the special case
where every vertex of P is a proper convex combination of two vertices of Q,
formula (5.10) can be simplified to formula (5.11). Admittedly, both formulas
are too technical to be of use for a given triangle Q. However, we will see
in the next section that (5.11) simplifies nicely when Q is assumed to be a
maximal lattice-free triangle of type 3 containing P .

5.4 Proofs for arbitrary sets

In this section, we prove Theorem 5.6. Our strategy is to show the statements
in Theorem 5.6 only for maximal lattice-free sets in K2, and then to argue



50 Area – lattice width relations in the plane

that they hold true for arbitrary lattice-free sets inK2 as well. This is possible
since every lattice-free set in K2 is contained in some maximal lattice-free set
in K2 by Proposition 5.1. Details of the proof will be given at the end of this
section. Let us now focus on maximal lattice-free sets in K2. In Lemma 5.15,
we characterize maximal lattice-free triangles of type 3 (see Fig. 5.1(d)) and
their lattice width.

Lemma 5.15. Let P := conv({p0, p1, p2}) be a triangle such that p0, p1, p2 ∈
Z2 are the only integer points in P . Let Q := conv({q0, q1, q2}) be a triangle
containing P such that pi = (1 − xi)qi+1 + xiqi+2 and 0 < xi < 1 for all
i = 0, 1, 2 (see Fig. 5.6). Then the following statements hold.

I. Q is a maximal lattice-free triangle of type 3 if and only if

(a) xi + xj > 1 for all 0 ≤ i < j ≤ 2 or

(b) xi + xj < 1 for all 0 ≤ i < j ≤ 2.

II. If (a) holds, then the lattice width of Q is given by

w(Q) =
min{x0, x1, x2}

x0x1x2 + (1− x0)(1− x1)(1− x2)
.

III. If (a) holds, then w(Q) ≤ 1+ 2√
3
with equality if and only if x0 = x1 =

x2 = 1√
3
.

p0 p1

p2

q0

q1

q2

r0
r1

r2

Figure 5.6: Points pi, qi, ri, i ∈ {0, 1, 2}, as in the proof of Lemma 5.15.

Proof. Part I. Assume that Q is a maximal lattice-free triangle of type 3.
For i = 0, 1, 2 we denote by Hi the closed half-plane with qi+1, qi+2 ∈ bd(Hi)
and qi ∈ Hi. We also introduce for i = 0, 1, 2 the points ri := −pi + pi+1+
pi+2 ∈ Z2. By construction, pi is the midpoint of [ri+1, ri+2] for all i = 0, 1, 2.
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Because of the latter property, and since pi ∈ bd(Hi), we have ri+1 ∈ Hi

or ri+2 ∈ Hi for all i = 0, 1, 2. For i = 0, 1, 2 we denote by τ (i) the set of
all k ∈ {0, 1, 2} such that k 	= i and rk ∈ Hi. By the above observations,
it follows that τ (i) 	= ∅ for every i. If for some 0 ≤ i < j ≤ 2 one has
τ (i) ∩ τ (j) 	= ∅ we choose k ∈ τ (i) ∩ τ (j). Then rk ∈ H0 ∩ H1 ∩ H2 = Q,
and by this we infer that conv({p0, p1, p2, rk}) is a subset of Q. Therefore, Q
contains four distinct integer points. This contradicts the assumption that
Q is a maximal lattice-free triangle of type 3. Thus, τ (i) ∩ τ (j) = ∅ for
0 ≤ i < j ≤ 2. Taking into account that i /∈ τ (i) for i = 0, 1, 2, we see that
τ (i) is a singleton for every i and is in fact one of the two possible cyclic
shifts on {0, 1, 2}. In other words, either τ (i) = i+ 1 (mod 3) for every i or
τ (i) = i + 2 (mod 3) for every i. If τ (i) = i + 1 (mod 3) for every i, then
ri+2 /∈ Hi for every i. This means, that the i-th barycentric coordinate of
ri+2 with respect to Q is strictly negative. This barycentric coordinate is
xi+1 + xi+2 − 1 since

ri+2 =− pi+2 + pi + pi+1

=− ((1− xi+2)qi + xi+2qi+1) +

((1− xi)qi+1 + xiqi+2) + ((1− xi+1)qi+2 + xi+1qi)

= (xi+1 + xi+2 − 1)qi + (1− xi − xi+2)qi+1 + (1− xi+1 + xi)qi+2.

Thus, we obtain (b). If τ (i) = i+2 (mod 3) for every i, arguing in the same
way we obtain (a).

For proving the converse, we assume that (a) or (b) is fulfilled and we show
that Q is a maximal lattice-free triangle of type 3. Consider an arbitrary
p ∈ Z2 \ {p0, p1, p2}. We can represent p by p = z0p0 + z1p1 + z2p2 where
z0, z1, z2 ∈ Z and z0 + z1 + z2 = 1. By symmetry, we may assume that
z0 ≤ z1 ≤ z2. Under these assumptions, we have z2 ≥ 1 and z0 ≤ 0. We
compute the barycentric coordinates of p with respect to Q as follows:

p = z0p0 + z1p1 + z2p2

= z0((1− x0)q1 + x0q2) + z1((1− x1)q2 + x1q0) + z2((1− x2)q0 + x2q1)

= (z1x1 + z2(1− x2))q0 + (z0(1− x0) + z2x2)q1 + (z0x0 + z1(1− x1))q2.

Case 1: If z1 ≤ 0, then the barycentric coordinate z0x0 + z1(1 − x1) is
less than or equal to zero. Now, if z0 = z1 = 0, then z2 = 1 and p = p2,
a contradiction. Hence, we must have z0 < 0 which implies that z0x0+
z1(1− x1) < 0 and by this, in view of Lemma 5.13 I, p /∈ Q.

Case 2: Assume that z1 ≥ 1. If (a) is fulfilled, then the barycentric
coordinate z0x0 + z1(1− x1) is estimated as follows:

z0x0 + z1(1− x1) < z0x0 + z1x0 = (z0 + z1)x0 = (1− z2)x0 ≤ 0.
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Consequently, p /∈ Q. If (b) is fulfilled, the barycentric coordinate z0(1−x0)+
z2x2 can be estimated analogously:

z0(1− x0) + z2x2 < z0(1− x0) + z2(1− x0)

= (z0 + z2)(1− x0) = (1− z1)(1− x0) ≤ 0.

Thus, also in this case p /∈ Q.

We have proved that Q is a lattice-free triangle containing only the points
p0, p1, and p2 on its boundary. Furthermore, each of the three edges of
Q contains exactly one of the points p0, p1, p2 in its relative interior. By
Proposition 5.3 II (c), Q is a maximal lattice-free triangle of type 3. This
shows the first part of the lemma.

Part II. In view of Lemma 5.14 it suffices to show that

g(x) := min

{
max

i=0,1,2
|xiyi + (1− xi+1)yi+1| : y ∈ Z3 \ {o}, y0 + y1 + y2 = 0

}
= min{x0, x1, x2}

under the assumption that xi + xj > 1 for all 0 ≤ i < j ≤ 2. Taking all six
choices of y ∈ {−1, 0, 1}3 \ {o} with y0 + y1 + y2 = 0 we easily verify that

g(x) ≤ min
i=0,1,2

max{xi+1, 1− xi} = min{x0, x1, x2},

where the last equality is due to assumption (a). It remains to show the
converse inequality. Consider y ∈ Z3 \ {o} with y0 + y1 + y2 = 0. Without
loss of generality we assume that yj ≥ 0 and yj+1 ≥ 0 for some j ∈ {0, 1, 2}
(one of the two vectors, y or −y, must have this property). If yj ≥ 1 and
yj+1 ≥ 1, then

max
i=0,1,2

|xiyi + (1− xi+1)yi+1| ≥ xj + 1− xj+1 ≥ xj ≥ min{x0, x1, x2}.

Otherwise, one of the yi’s is equal to zero and the other two coordinates of y
are equal to k and −k for some k ∈ N. Then we can replace y by 1

k
y with the

effect that max{|xiyi + (1− xi+1)yi+1| : i = 0, 1, 2} decreases. It is therefore
only necessary to check y ∈ {−1, 0, 1}3 \ {o} with y0 + y1 + y2 = 0 in order
to compute g(x). Thus, g(x) = min{x0, x1, x2}.

Part III. Without loss of generality5 let x0 ≤ x1 ≤ x2.

5More precisely, let the smallest of the xi’s be denoted by u0, the second smallest by
u1, and the largest by u2. Then, u0 ≤ u1 ≤ u2. The proof ought to continue by a
case distinction on u0. However, to avoid confusion, we omit the introduction of new
variables and use xi’s instead of ui’s in the remainder of the proof.



Area – lattice width relations in the plane 53

Case 1: x0 ≤ 1
2
. Then, since (a) holds, x1 > 1

2
and x2 > 1

2
and we have

1

w(Q)
=

x0x1x2 + (1− x0)(1− x1)(1− x2)

x0

≥ x0x1x2 + x0(1− x1)(1− x2)

x0

=
1

2
(2x1 − 1)(2x2 − 1) +

1

2
>

1

2
, (5.14)

which implies that w(Q) < 2.
Case 2: x0 > 1

2
. We use the functions σ1(x) := x0 + x1 + x2 and σ2(x) :=

x0x1 + x0x2 + x1x2. Clearly, 2σ2(x) − σ1(x) = (x0 + x1 − 1)x2 + (x0+
x2 − 1)x1 + (x1 + x2 − 1)x0 ≥ (2(x0 + x1 + x2)− 3)x0 = (2σ1(x)− 3)x0 and
by this

x0x1x2 + (1− x0)(1− x1)(1− x2) = 1− σ1(x) + σ2(x)

≥ 1− 1

2
σ1(x) +

(
σ1(x)−

3

2

)
x0

= 1− 3

2
x0 +

(
x0 −

1

2

)
σ1(x) (5.15)

≥ 1− 3

2
x0 +

(
x0 −

1

2

)
3x0

= 1− 3x0 + 3x2
0.

Thus, we obtain

1

w(Q)
=

x0x1x2 + (1− x0)(1− x1)(1− x2)

x0
≥ 3x0 − 3 +

1

x0
.

Consequently, we can apply elementary calculus to compute the minimum
of 3x0 − 3 + 1

x0
for x0 satisfying 1

2
< x0 < 1. The minimum is attained by

x0 = 1√
3
. Thus,

1

w(Q)
≥ 3x0 − 3 +

1

x0
≥ 2

√
3− 3,

which implies w(Q) ≤ 1+ 2√
3
and shows that the equality w(Q) = 1 + 2√

3
is

attained if and only if x0 = x1 = x2 = 1√
3
.

Remark 5.16. In Parts II and III of Lemma 5.15 we assumed that (a)
is satisfied. Of course, analogous statements could be derived if (b) were
assumed. In this case, we have

w(Q) =
min{1− x0, 1− x1, 1− x2}

x0x1x2 + (1− x0)(1− x1)(1− x2)
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and w(Q) ≤ 1 + 2√
3
with equality if and only if x0 = x1 = x2 = 1− 1√

3
.

Remark 5.17. From the proof of Part II of Lemma 5.15 it can be seen
that the lattice width of a maximal lattice-free triangle of type 3 in K2 which
contains the integer points p0, p1, and p2 on its boundary is attained by
(at least) one of the vectors (p1 − p0)

⊥, (p2 − p0)
⊥, or (p2 − p1)

⊥, where
x⊥ := (−x2, x1) denotes the orthogonal vector of x ∈ R2. Indeed, the vectors
±(p1 − p0)

⊥, ±(p2 − p0)
⊥, and ±(p2 − p1)

⊥ correspond to the six choices
of y ∈ {−1, 0, 1}3 \ {o} with y0 + y1 + y2 = 0. In particular, if p0 = (0, 0),
p1 = (1, 0), and p2 = (0, 1), then the lattice width is attained by (at least)
one of the vectors e1, e2, or e1 + e2.

Remark 5.18. Lemma 5.15 I characterizes maximal lattice-free triangles
of type 3 in terms of the barycentric coordinates of the three integer points
on their boundary with respect to their vertices. Such an “if and only if”
relation does not only exist for triangles of type 3, but for all maximal lattice-
free triangles in K2 (see Proposition 5.3 II). Let us use the notation of
Lemma 5.15 to explain this in more detail. Define Ki,j := sgn(xi+xj−1) for
0 ≤ i < j ≤ 2 and let Q be a triangle as in Lemma 5.15. From Lemma 5.15 I,
it follows that Q is of type 3 if and only if K0,1 = K1,2 = K0,2 = 1 or K0,1 =
K1,2 = K0,2 = −1. Moreover, it is straightforward to show that Q is of type 1
if and only if K0,1 = K1,2 = K0,2 = 0 (which implies x0 = x1 = x2 = 1

2
),

and that Q is not lattice-free if and only if there exist two of the Ki,j ’s such
that one of them is 1 and the other is −1 (and the third being arbitrary).
Then the implication is that Q is of type 2 if and only if (i) two of the Ki,j’s
are 1 (or −1), and the third is 0 (type 2a), or (ii) one of the Ki,j ’s is 1 (or
−1), and the other two are 0 (type 2b).

This implies a classification of all the maximal lattice-free triangles in K2 in
terms of the Ki,j ’s as described above. The advantage of the proposed classi-
fication is that it can be extended in a straightforward way to a classification
of simplices in higher dimensions. Furthermore, it provides an alternative
way to encode maximal lattice-free triangles in K2 based on barycentric coor-
dinates (usually the vertex description and/or the facet description is used).
This may help to find new structural properties of maximal lattice-free trian-
gles in K2 and the cuts associated with them.

The following two lemmas prepare the proof of Theorem 5.6. Parts of the
proof of Lemma 5.19 are borrowed from [Hur90]. Nevertheless we need these
parts for subsequent arguments.

Lemma 5.19. Let K ∈ K2 be maximal lattice-free with [0, 1]2 ⊆ K and
let w := w(K) and A := A(K). Then w ≤ 2 and either it holds w = 1 and

A = ∞ (i.e. K is a split), or w > 1 and A ≤ w2

2(w−1)
with equality A = w2

2(w−1)

characterized by Part II of Theorem 5.6.
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Proof. From [0, 1]2 ⊆ K, it follows that w ≥ 1. If w = 1, then, by the
maximality of K, K is a split and A = ∞. Thus, we assume w > 1 and
therefore K is a triangle of type 1, a triangle of type 2, or a quadrilateral.
We first consider the case that K is a quadrilateral. The case where K is a
triangle can be viewed as a degenerate version of a quadrilateral where one
vertex becomes a convex combination of its two neighbor vertices. Then the
arguments of the proof for the quadrilateral presented below just need to be
adapted slightly. We explain this in further detail after we have shown the
assertion for quadrilaterals.

Assume that K is a quadrilateral. By a1, a2, a3, a4 we denote the consecu-
tive vertices of [0, 1]2. Let q1, q2, q3, q4 be consecutive vertices of K such that
the point q′i of [0, 1]2 closest to qi lies in [ai, ai+1]. The distance from qi to
q′i will be denoted by hi and the distance from ai to q′i by ti (see Fig. 5.7).

h1

h2

h3

h4

t1

t2

t3

t4

q1

q2

q3

q4

a1

a2a3

a4

Figure 5.7: Maximal lattice-free quadrilateral in the proof of Lemma 5.19.

In particular, we have ti > 0 for all i = 1, 2, 3, 4. Taking into account the
relations hihi−1 = ti(1− ti−1) for i = 1, 2, 3, 4, we obtain

1− (h1 + h3)(h2 + h4)

= 1− h2h1 − h1h4 − h4h3 − h3h2

= 1− t2(1− t1)− t1(1− t4)− t4(1− t3)− t3(1− t2)

= (1− t1 − t3)(1− t2 − t4) (5.16)

=

(
t2(1− t1)t4(1− t3)− t1t2t3t4

)(
t1(1− t4)t3(1− t2)− t1t2t3t4

)
t1t2t3t4

=
(h2h1h4h3 − t1t2t3t4)(h1h4h3h2 − t1t2t3t4)

t1t2t3t4
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=
(h1h2h3h4 − t1t2t3t4)

2

t1t2t3t4
≥ 0.

Without loss of generality we assume that h1 + h3 ≤ h2 + h4. From the
relations (5.16), it follows that 1 − (h1 + h3)(h2 + h4) ≥ 0 and therefore
h1+h3 ≤ 1. Thus, the width of K along the vector e1 is h1+h3+1 ≤ 2. For
all vectors u ∈ Z2 \ {o,±e1,±e2} we easily get w(K,u) ≥ w([0, 1]2, u) ≥ 2.
Hence w = h1 + h3 + 1 ≤ 2. Furthermore,

A = 1 +
1

2
(h1 + h2 + h3 + h4) = 1 +

1

2
(w − 1 + h2 + h4)

≤ 1 +
1

2

(
w − 1 +

1

h1 + h3

)
= 1 +

1

2

(
w − 1 +

1

w − 1

)
=

w2

2(w − 1)
.

If the equality A = w2

2(w−1)
is attained, then (h1 + h3)(h2 + h4) = 1 ⇔

h2 + h4 + 1 = w
w−1

. By (5.16), it follows (1− t1 − t3)(1− t2 − t4) = 0, which
implies that 1− t1 − t3 = 0 or 1− t2 − t4 = 0. Using (5.16), we see that the
equalities 1 − t1 − t3 = 0 and 1 − t2 − t4 = 0 imply one another. Indeed,
1 − t1 − t3 = 1

t2t4
(h1h2h3h4 − t1t2t3t4) and 1 − t2 − t4 = 1

t1t3
(h1h2h3h4 −

t1t2t3t4). Hence, 1− t1− t3 = 0 ⇔ h1h2h3h4− t1t2t3t4 = 0 ⇔ 1− t2− t4 = 0.
So we have 1 − t1 − t3 = 1 − t2 − t4 = 0. This implies that I1 := [q1, q3] is
a translate of [o, we1], and I2 := [q2, q4] is a translate of [o, w

w−1
e2] such that

K = conv(I1 ∪ I2) with I1 ∩ I2 	= ∅, proving Part II of Theorem 5.6.
Now assume that K is a triangle of type 1 or type 2. Without loss of

generality we assume that q4 becomes a convex combination of q1 and q3,
i.e. q4 coincides with q′4. This implies that h4 = 0, t3 = 1, and t1 = 0 (see
Fig. 5.8).

h1

h2

h3

t2

q1

q2

q3

Figure 5.8: Maximal lattice-free triangle in the proof of Lemma 5.19.

Furthermore, h2 > 0 and h1+h3 > 0. In particular, we have h3h2 = 1− t2
and h2h1 = t2. Adding these equations, we obtain h2(h1+h3) = 1. Without
loss of generality we assume that h1 + h3 ≤ h2. From h2(h1 + h3) = 1,
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it follows that h1 + h3 ≤ 1. Thus, the width of K along the vector e1 is
h1 + h3 + 1 ≤ 2. As above, for all vectors u ∈ Z2 \ {o,±e1,±e2} it holds
w(K,u) ≥ w([0, 1]2, u) ≥ 2. Hence w = h1 + h3 + 1 ≤ 2. Moreover,

A = 1 +
1

2
(h1 + h2 + h3) = 1 +

1

2

(
h1 + h3 +

1

h1 + h3

)

= 1 +
1

2

(
w − 1 +

1

w − 1

)
=

w2

2(w − 1)
.

Equality A = w2

2(w−1)
is attained by all triangles of types 1 and 2. From h1 +

h3+1 = w and h2+1 = w
w−1

, Part II of Theorem 5.6 follows immediately.

Remark 5.20. Lemma 5.19 implies, in particular, that the lattice width of
quadrilaterals and triangles of type 2 is at most two. On the other hand it
is obvious that the lattice width of a split is equal to one and that the lattice
width of a type 1 triangle is equal to two. Thus, triangles of type 3 are the
only maximal lattice-free sets in K2 which admit a lattice width larger than
two.

Remark 5.21. From the proof of Lemma 5.19 it can be seen that the lattice
width of a maximal lattice-free quadrilateral (resp. triangle of type 2) in K2

which contains [0, 1]2 is attained by (at least) one of the vectors e1 or e2.
More generally, let v ∈ Z2 and let b1, b2 ∈ Z2 form a basis of Z2. Then the
lattice width of any maximal lattice-free quadrilateral (resp. triangle of type 2)
in K2 which contains v+conv({o, b1, b2, b1+ b2}) is attained by (at least) one
of the vectors b⊥1 or b⊥2 , where x⊥ := (−x2, x1) denotes the orthogonal vector
of x ∈ R2.

Lemma 5.22. Let K ∈ K2 be a maximal lattice-free triangle with w :=
w(K) and A := A(K). Then w > 1 and (5.3) resp. (5.4) holds true. The
equality case in both inequalities is characterized by Part II resp. Part III of
Theorem 5.6.

Proof. If K is a triangle of type 1 or type 2, then clearly w > 1. Consider a
triangle K of type 3 and let P = conv({p0, p1, p2}) as in Lemma 5.15, such
that the relative interior of each edge of K contains a point from {p0, p1, p2}.
Then, for every u ∈ Z2 \ {o}, the width of K along u is strictly larger than
the width of P along u, and furthermore, the lattice width of P is equal to 1.
It follows that w > 1.

If K contains more than three integer points, then K is of type 1 or type 2.
Thus, there is a unimodular transformation that maps K to a maximal
lattice-free triangle K′ ∈ K2 such that K′ contains the square [0, 1]2. K′

satisfies the assumptions of Lemma 5.19 and therefore our assertion follows
directly from Lemma 5.19.
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Now assume that every edge of K contains precisely one integer point,
i.e. K is a triangle of type 3. We further define K := Q = conv({q0, q1, q2})
with q0, q1, q2 and Q given as in Lemma 5.15, and we also borrow the other
notations of Lemma 5.15. Without loss of generality we assume that x0 ≤
x1 ≤ x2 and xi + xj > 1 for all 0 ≤ i < j ≤ 2. Let f(x) := x0x1x2+
(1−x0)(1−x1)(1−x2). We recall that w = w(Q) ≤ 1+ 2√

3
by Lemma 5.15 III.

Case 1: x0 ≥ 1
2
. If 1 < w < 2, then in view of Lemmas 5.14 and 5.15 II

we obtain

A =
1

2f(x)
=

x0

f(x)
· 1

2x0
=

w

2x0
≤ w <

w2

2(w − 1)
.

Now assume w ≥ 2. Taking into account Lemmas 5.14 and 5.15 II we infer

A ≤ max

{
1

2f(x)
:
1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = wf(x)

}

=
1

2

(
min

{
f(x) :

1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = wf(x)

})−1

.

Furthermore, using (5.15), we obtain

min

{
f(x) :

1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = wf(x)

}

=
1

w
min

{
x0 :

1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = wf(x)

}

≥ 1

w
min

{
x0 :

1

2
≤ x0 < 1, x0 ≥ w(1− 3x0 + 3x2

0)

}
. (5.17)

We remark that (5.15) were derived for the case that x0 > 1
2
, but it is easy to

see that it holds true for x0 ≥ 1
2
as well. The minimum in (5.17) is attained

by x0 equal to the smaller root of the equation t = w(1− 3t+3t2) since this
root, which is equal to

3w + 1−
√
1 + 6w − 3w2

6w
,

lies in the interval [ 1
2
, 1). Thus, we obtain

A ≤ 1

2

(
min

{
f(x) :

1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = wf(x)

})−1

≤ w

2
· 6w

3w + 1−
√
1 + 6w − 3w2

=
3w2

3w + 1−
√
1 + 6w − 3w2
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which is the bound stated in (5.4). The characterization of the equality
case follows directly by analyzing the equality case in the above estimates:
equality holds if and only if f(x) = 1− 3x0 + 3x2

0 and from (5.15) we easily
see that this is true if and only if x0 = x1 = x2. Hence, equality in (5.4) is
attained if and only if

x0 = x1 = x2 =
3w + 1−

√
1 + 6w − 3w2

6w
,

showing Part III of Theorem 5.6.
Case 2: x0 < 1

2
. This implies x1 > 1

2
and x2 > 1

2
. Moreover, using the

same arguments as in the proof of Case 1 of Part III of Lemma 5.15 (see
p. 53), it follows that w < 2. In addition,

I := inf

{
f(x) : 0 < x0 <

1

2
,
1

2
< x1 ≤ x2 < 1,

x0 + x1 > 1, x0 + x2 > 1, x0 = wf(x)

}

=
1

w
inf

{
x0 : 0 < x0 <

1

2
,
1

2
< x1 ≤ x2 < 1,

x0 + x1 > 1, x0 + x2 > 1, x0 = wf(x)

}

≥ 1

w
inf

{
x0 : 0 < x0 <

1

2
,
1

2
< x1 ≤ x2 < 1,

x0 + x1 > 1, x0 + x2 > 1, x0 ≥ wf(x)

}
.

Furthermore,

f(x) = (x0 + x1 − 1)x2 + (1− x0)(1− x1)

≥ (x0 + x1 − 1)x1 + (1− x0)(1− x1)

= (1− x0)x0 + (x0 + x1 − 1)2

> (1− x0)x0. (5.18)

Hence,

I ≥ 1

w
inf

{
x0 : 0 < x0 <

1

2
, x0 > wx0(1− x0)

}

=
1

w
inf

{
x0 : 1− 1

w
< x0 <

1

2

}
(5.19)

=
1

w

(
1− 1

w

)
.
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As in the previous case, it follows that

A =
1

2f(x)
≤ 1

2I
≤ w2

2(w − 1)
. (5.20)

We note that (5.20) can never hold with equality, for if equality would hold,
then f(x) = I and I = w−1

w2 = 1
w
(1 − 1

w
). By (5.19), the latter implies that

x0 = 1 − 1
w

which, in turn, implies that f(x) = I = (1 − x0)x0. However,
this is a contradiction to (5.18).

We notice that Theorem 5.4 is a consequence of Propositions 5.1 and 5.3,
and Lemmas 5.19 and 5.22. In fact, the main steps of the proof in [Hur90]
were incorporated in Lemmas 5.15, 5.19 and 5.22. Let us now prove Theo-
rem 5.6 and Corollary 5.11.

Proof of Theorem 5.6. Let us first show (5.2)–(5.4). In view of Lemmas 5.19
and 5.22 the upper bounds for the area in (5.2)–(5.4) hold for maximal lattice-
free sets in K2. Let K ∈ K2 be an arbitrary lattice-free set. By Proposi-
tion 5.1, there exists a maximal lattice-free setH ∈ K2 such thatK ⊆ H . Ob-
viously, we have w(K) ≤ w(H) and A(K) ≤ A(H). For 0 < w ≤ 1+2·(

√
3)−1

we define F (w) to be the upper bound in (5.2)–(5.4), i.e.

F (w) :=

⎧⎪⎪⎨
⎪⎪⎩
∞ if 0 < w ≤ 1,

w2

2(w−1)
if 1 < w ≤ 2,

3w2

3w+1−
√

1+6w−3w2
if 2 < w ≤ 1 + 2√

3
.

By definition, F is monotonically non-increasing. Thus, it follows A(K) ≤
A(H) ≤ F (w(H)) ≤ F (w(K)). Therefore, the upper bounds for the area in
(5.2)–(5.4) hold for arbitrary lattice-free sets in K2. The equality A(K) =
F (w(K)) implies K = H . Hence, the characterizations of the equality cases
for (5.2)–(5.4) follow from the characterizations of the equality cases in Lem-
mas 5.19 and 5.22. This shows Parts I–III.

The lower bound for the area in (5.5) and Part IV follow directly from
Theorem 5.8.

Proof of Corollary 5.11. We use the relation μ1(K)w(K) = 1 and the fact
that an appropriate translate of μ2(K) · K is lattice-free. Then we apply
the bounds in Theorem 5.6 to μ2(K) · K and express the lattice width of
μ2(K) ·K as μ2(K) · (μ1(K))−1.

Let us illustrate this for the bound in (5.3). Since μ2(K) ·K has a lattice-
free translate, we obtain
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(μ2(K))2A(K) = A(μ2(K) ·K)

≤ (w(μ2(K) ·K))2

2(w(μ2(K) ·K)− 1)
=

(μ2(K))2(w(K))2

2(μ2(K)w(K) − 1)
.

Since μ2(K) > 0 we can divide both sides by (μ2(K))2 and substitute w(K)
by 1

μ1(K)
. Finally, we end up with

A(K) ≤ 1

2μ1(K)(μ2(K)− μ1(K))
.

The bound in (5.3) is valid for 1 < w(μ2(K) ·K) ≤ 2 ⇔ 1 < μ2(K)w(K) ≤
2 ⇔ 1 < μ2(K) 1

μ1(K)
≤ 2 ⇔ μ1(K) < μ2(K) ≤ 2μ1(K).

Analogously, the above procedure can be applied to the bounds in (5.2),
(5.4) and (5.5). The tightness of the bounds in Corollary 5.11 follows from
the characterizations of the equality cases in Theorem 5.6.

5.5 Proofs for centrally symmetric sets

In this section, we prove Theorems 5.9 and 5.10 and Corollary 5.12. The
upper bound in (5.6) states that w(K) ≤ 2 whenever K ∈ K2 is lattice-free
and centrally symmetric. For maximal lattice-free sets from K2 this is a
consequence of Remark 5.20 since only triangles of type 3 admit a lattice
width larger than 2 (obviously, a triangle is not centrally symmetric). So it
remains to verify it for centrally symmetric sets from K2 which are lattice-
free, but not maximal. The fact that w(K) ≤ 2 has already been stated in
[KL88, Theorem 2.13], but the proof of Kannan and Lovász does not seem
to show this result (see p. 45). Therefore, we first show (5.6) by proving
Theorem 5.10. Afterwards, we use (5.6) to show (5.7)–(5.9).

Proof of Theorem 5.10. Let K ∈ K2 be centrally symmetric. Our aim is to
show that μ2(K) ≤ 2μ1(K). Since both, μ1(K) and μ2(K), are homogeneous
of degree −1 (i.e. μi(tK) = t−1μi(K) for i = 1, 2 and every t > 0), it suffices
to consider the case μ2(K) = 1. Using μ1(K)w(K) = 1 it remains to prove
that w(K) ≤ 2. For convenience we define w := w(K).

Since μ2(K) = 1, K has a lattice-free translate. Without loss of generality
we assume that K itself is lattice-free. By Proposition 5.1, there exists a
maximal lattice-free H ∈ K2 with K ⊆ H . In particular, we have w ≤ w(H)
and A(K) ≤ A(H). From Proposition 5.3, it follows that H is either a split
or a triangle or a quadrilateral. If H is a split or a quadrilateral, then in
view of Remark 5.20 one has w ≤ w(H) ≤ 2. Thus, let H be a triangle.
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Assume, by contradiction, that w > 2. Then w(H) > 2 and by Remark 5.7
it follows A(H) ≤ 2. Let c be the center of symmetry of K. We consider the
centrally symmetric set L := H ∩ (2c−H), where 2c−H is the reflection of
H with respect to c. From K ⊆ H and K = 2c−K ⊆ 2c−H , it follows that
K ⊆ H ∩ (2c −H) = L. Since H is a simplex and L is centrally symmetric
with L ⊆ H , we have A(L) ≤ 2

3
A(H) (see, for instance, [FR50, Satz 5]).

Hence, A(K) ≤ A(L) ≤ 2
3
A(H) ≤ 2

3
· 2 = 4

3
. On the other hand, by (5.5), we

have A(K) ≥ 3
8
w2 > 3

8
22 = 3

2
, which contradicts A(K) ≤ 4

3
.

The following lemma prepares the proof of Theorem 5.9. We recommend to
look up the notation and statements presented in Section 5.1, in particular
the part after Theorem 5.4, since they are frequently used in the proof of
Lemma 5.23.

Lemma 5.23. Let 0 ≤ α < 1 and let Kα := conv({±(1, α),±(0, 1)}). Then

μ2(Kα) =
1

2
max{1 + α, 2− α}.

Proof. The unimodular transformation given by the matrix

(
1 0
1 −1

)
maps

Kα to K1−α. Thus, since the second covering minimum is invariant with
respect to unimodular transformations, it suffices to consider the case 0 ≤
α ≤ 1

2
. For the sake of brevity we write K := Kα. Direct computations

show that K∗ = conv({±(1 − α, 1),±(1 + α,−1)}) = conv({±(−α, 1)}) +
conv({±(1, 0)}). Hence, for every u = (u1, u2) ∈ R2, we have h(K∗, u) =
|u2 − αu1|+ |u1|. Furthermore,

μ2(K) = min
{
t ≥ 0 : tK + Z2 = R2

}
= min

{
t ≥ 0 : ∀x ∈ R2 ∃z ∈ Z2 such that x− z ∈ tK

}
= min

{
t ≥ 0 : ∀x ∈ R2 ∃z ∈ Z2 such that ‖x− z‖K ≤ t

}
= max

x∈R2
min
z∈Z2

‖x− z‖K

= max
x∈R2

min
z∈Z2

h(K∗, x− z). (5.21)

For s, t ∈ R, we define by d(s, 0) := |s−�s� | the distance from s to its nearest
integer, and by d(s, t) := d(s− t, 0) the distance between s and t modulo 1.

Let us now analyze the minimization problem in (5.21) for a given x =
(x1, x2) ∈ R2. We consider

h(K∗, x− z) = |x2 − z2 − α(x1 − z1)|+ |x1 − z1| (5.22)

with z = (z1, z2) varying in Z2. Our aim is to find an integer vector z
which minimizes (5.22). If we choose z1 = �x1� and z2 = �x2 − α(x1 − z1)�,
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we see that h(K∗, x − z) ≤ 1
2
+ 1

2
= 1. Hence, we found a z ∈ Z2 such

that h(K∗, x − z) is at most 1. Furthermore, for any z ∈ Z2 such that
z1 /∈ {�x1� , x1�}, we obtain h(K∗, x − z) ≥ |x1 − z1| ≥ 1. Thus, since we
want to minimize (5.22), we can assume that z1 ∈ {�x1� , x1�}.

If x1 ∈ Z we choose z1 = x1 and z2 = �x2� and obtain h(K∗, x− z) ≤ 1
2
.

Obviously, this is the best choice for z ∈ Z2 when x1 ∈ Z is assumed.

Let us now assume that x1 ∈ R\Z. We introduce β := x1−�x1� satisfying
0 < β < 1. Since z1 ∈ {�x1� , x1�}, by assumption, we have

min
z∈Z2

h(K∗, x− z)

= min
{

min
z2∈Z

{|x2 − z2 − α(x1 − �x1�)|+ |x1 − �x1� |},

min
z2∈Z

{|x2 − z2 − α(x1 − x1�)|+ |x1 − x1� |}
} (5.23)

= min
{

min
z2∈Z

{|x2 − z2 − αβ|+ β},

min
z2∈Z

{|x2 − z2 + α(1− β)|+ 1− β}
}

= min { |x2 − αβ − �x2 − αβ� |+ β,
|x2 + α(1− β)− �x2 + α(1− β)� |+ 1− β }

= min {d(x2 − αβ, 0) + β, d(x2 + α(1− β), 0) + 1− β} .

Thus, in both cases, x1 ∈ Z and x1 ∈ R \ Z, we computed the minimum of
h(K∗, x− z) for z varying in Z2 and given x ∈ R2. In order to compute the
value in (5.21) we now have to maximize the minima for x varying in R2.
Hence, the value in (5.21) is the maximum of 1

2
and the value

max
x∈R

2

x1 /∈Z

min
z∈Z2

h(K∗, x− z)

= max
0<β<1
x2∈R

min {d(x2 − αβ, 0) + β, d(x2 + α(1− β), 0) + 1− β}

= max
0<β<1
x2∈R

min {d(x2 + α(1− β), α) + β, d(x2 + α(1− β), 0) + 1− β}

= max
0<β<1
y∈R

min {d(y, α) + β, d(y, 0) + 1− β}

≤ max
β,y∈R

min {d(y, α) + β, d(y, 0) + 1− β} .

If d(y,α) + β and d(y, 0) + 1− β differ, then slightly perturbing β makes the
minimum of these two values become larger. Hence, the latter maximum is
attained by the β for which d(y,α) + β and d(y, 0) + 1− β coincide. In this
case we have β = 1

2
(d(y, 0)− d(y,α) + 1). Thus
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max
β,y∈R

min {d(y,α) + β, d(y, 0) + 1− β}

= max
y∈R

1

2

(
d(y, 0) + d(y,α) + 1

)
=

1

2

(
1 + max

y∈R

{d(y, 0) + d(y, α)}
)

=
1

2
(2− α),

where the last equality follows from the fact that d(y, 0) + d(y,α) is maxi-
mized, for instance, at y = 1

2
. To see this, one can visualize d(y, 0) + d(y,α)

with the help of a circle (see Fig. 5.9).

0/1

α

1
2

1
2

+ α

(a) Circle with the
regions for ȳ.

d(y, 0)
+

d(y,α)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α if 0 ≤ ȳ < α,

2ȳ − α if α ≤ ȳ < 1
2
,

1− α if 1
2
≤ ȳ < 1

2
+ α,

2(1− ȳ) + α if 1
2
+ α ≤ ȳ < 1.

(b) Formula for d(y, 0) + d(y,α) with ȳ := y (mod 1).

Figure 5.9: Computation of d(y, 0) + d(y, α).

Since 1
2
(2 − α) is at least 1

2
we have shown that μ2(K) ≤ 1

2
(2 − α). It

remains to show that this value can be attained with equality. For that,
consider the point x̄ = ( 1

2
, 1
2
). By (5.21), we have

μ2(K) ≥ min
z∈Z2

h(K∗, x̄− z)

= min

{
min
z2∈Z

{∣∣∣∣1− α

2
− z2

∣∣∣∣+ 1

2

}
, min

z2∈Z

{∣∣∣∣1 + α

2
− z2

∣∣∣∣+ 1

2

}}

= min

{∣∣∣∣1− α

2
− 0

∣∣∣∣+ 1

2
,

∣∣∣∣1 + α

2
− 1

∣∣∣∣ + 1

2

}

= min

{
2− α

2
,
2− α

2

}
=

1

2
(2− α),

where the second equality follows from (5.23). Thus, μ2(K) = 1
2
(2− α).
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Example 5.24. Let α = 1
4
and consider K 1

4
= conv({±(1, 1

4
),±(0, 1)}). By

Lemma 5.23, we have μ2(K 1
4
) = 7

8
. Thus, the sets tK 1

4
+ z with z ∈ Z2

cover R2 for every t ≥ 7
8
. On the other hand, for every positive t < 7

8

there are points in the plane which are not covered by the sets tK 1
4
+ z with

z ∈ Z2. In particular, when we start with a small t close to zero and then

incrementally increase t up to 7
8
, then it follows from the last part of the

proof of Lemma 5.23 that the points ( 1
2
, 1
2
) + z with z ∈ Z2 are covered last

(see Fig. 5.10). �

(a) The sets 4
5 ·K 1

4
+Z

2. (b) The sets 7
8 ·K 1

4
+Z

2. (c) The sets K 1
4
+ Z

2.

Figure 5.10: Illustration of Example 5.24.

We now apply Lemma 5.23 to prove Theorem 5.9.

Proof of Theorem 5.9. Since (5.6) has already been shown, the bounds (5.7)
and (5.8) together with Parts II and III follow directly from Theorem 5.6.
Part I is a consequence of (5.8), (5.9), and Part III. Indeed, if w(K) = 2,
then the inequalities in (5.8) and (5.9) are satisfied with equality. Thus, we
can apply Part III to infer Part I.

Let us now show (5.9) and Part IV. For the sake of brevity we write
w := w(K). For every u ∈ Z2 \ {o} it holds w ≤ w(K,u) = h(DK, u) =
‖u‖(DK)∗ = min{λ ≥ 0 : u ∈ λ(DK)∗} which implies 1 ≤ min{ 1

w
λ ≥ 0 :

u ∈ 1
w
λ · w(DK)∗} = min{t ≥ 0 : u ∈ t · w(DK)∗} = ‖u‖w(DK)∗ . Therefore,

we have ‖u‖w(DK)∗ ≥ 1 for every u ∈ Z2 \ {o}. It follows that o is the only
interior integer point of w(DK)∗. Thus, by Minkowski’s first fundamental
theorem, A(w(DK)∗) ≤ 4. Using this fact and Mahler’s inequality we obtain

A(K) =
A(DK)

4
=

A(DK)A((DK)∗)
4A((DK)∗)

≥ 2

A((DK)∗)
≥ w2

2
.
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This shows (5.9). It remains to characterize for which cases equality holds.
So assume that A(K) = 1

2
w2. Then, in view of Mahler’s inequality, we must

have A(DK)A((DK)∗) = 8, and in view of Minkowski’s first fundamental
theorem we must have A(w(DK)∗) = 4. Thus, (DK)∗ is a parallelogram
and the sets w

2
(DK)∗ + z with z ∈ Z2 tile R2 (see p. 40). By Proposition 5.5

we deduce that there exists a unimodular transformation T and a parameter
0 ≤ α < 1 such that

T
(w
2
(DK)∗

)
=

1

2
conv({±(1− α, 1),±(1 + α,−1)}). (5.24)

Now we compute the duals of the left and the right hand side of (5.24).
Direct computations yield(

1

2
conv({±(1− α, 1),±(1 + α,−1)})

)∗
= 2 conv({±(1, α),±(0, 1)}).

Furthermore,(
T
(w
2
(DK)∗

))∗

=

{
u ∈ R2 : u�x ≤ 1 for all x ∈ T

(w
2
(DK)∗

)}

=

{
u ∈ R2 : u�T

w

2
· 2

w
T−1x ≤ 1 for all

2

w
T−1x ∈ (DK)∗

}

=

{
u ∈ R2 : u�T

w

2
y ≤ 1 for all y ∈ (DK)∗

}

=

{(
T�

)−1 2

w
· w
2
T�u ∈ R2 :

(w
2
T�u

)�
y ≤ 1 for all y ∈ (DK)∗

}

=

{(
T�

)−1 2

w
v ∈ R2 : v�y ≤ 1 for all y ∈ (DK)∗

}

=
2

w

(
T�

)−1

·
{
v ∈ R2 : v�y ≤ 1 for all y ∈ (DK)∗

}
=

2

w

(
T�

)−1

(DK).

We infer
2

w

(
T�

)−1

(DK) = 2 conv({±(1, α),±(0, 1)}).

Clearly, the transformation (T�)−1 is unimodular. Thus, up to a unimodular
transformation, we have

1

2
DK =

w

2
conv({±(1, α),±(0, 1)})
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with 0 ≤ α < 1. We note that 1
2
DK is a translate of K. Furthermore, it

holds μ2(
1
2
DK) ≥ 1 if and only if 1

2
DK has a lattice-free translate. Since

K is lattice-free, by assumption, it follows that μ2(
1
2
DK) ≥ 1. In view

of Lemma 5.23 and the fact that μ2 is homogeneous of degree −1 we get
1 ≤ μ2(

1
2
DK) = 2

w
· 1
2
max{1+α, 2−α} which implies w ≤ max{1+α, 2−α}.

This proves Part IV.

Corollary 5.12 is a straightforward consequence of Theorem 5.9.

Proof of Corollary 5.12. The proof is in an analogous manner to the proof
of Corollary 5.11.

The two-dimensional results in this chapter are quite diverse. However, it
is not immediately clear how to use them for the evaluation of facet-defining
inequalities for conv(PI). We will establish the connection to cutting plane
theory in the next chapter where we resume the analysis on the evaluation
of inequalities for conv(PI) which we started in Chapter 4. Furthermore, in
Chapter 8, we will discuss a particular class of three-dimensional polyhedra.
Many proofs in Chapter 8 are based on a certain intersection of these poly-
hedra with a hyperplane. Hence, the two-dimensional results in this chapter
are needed.





CHAPTER 6

A PROBABILISTIC MODEL FOR THE

EVALUATION OF CUTTING PLANES

In the previous chapter, we investigated the relation between the area and the
lattice width of lattice-free convex sets in the plane. Thereby, we gained valu-
able insights into the interplay of convexity, integrality, and lattice-freeness
in dimension two. Nevertheless, we wandered off our actual subject – the
evaluation of facet-defining inequalities for conv(PI). In this chapter, we re-
turn to cutting plane evaluation. Our aim is to apply a probabilistic model
to study the two-dimensional case in more detail. For that, we will need
parts of the results from Chapter 5.

The roadmap of this chapter is as follows. Our point of departure is the
set PI . We show that the non-trivial valid inequalities for conv(PI) can
be classified into split, type 1, type 2, type 3, and quadrilateral inequalities.
Using the strength measure of Goemans that we introduced in Chapter 4 (see
p. 23), we analyze the benefit from adding a single non-split inequality on
top of the split closure. Then, applying a probabilistic model, we show that
the gain from adding a type 2 inequality decreases with decreasing lattice
width of the triangle, on average. Our results suggest that this is also true
for type 3 and quadrilateral inequalities.

In Section 6.1, we motivate the choice of our model. In particular, we rea-
son why we restrict our attention to dimension two and why we focus on the
addition of a single non-split inequality to the entire split closure. Further-
more, we explain why the model we consider is interesting. Section 6.2 intro-
duces our probabilistic model and presents our main results. In Section 6.3,

69
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we study triangles of type 1. Our strategy for the analysis of triangles of
types 2 and 3, and quadrilaterals is explained in Section 6.4. The analysis
of triangles of type 2, quadrilaterals, and triangles of type 3 can be found in
Sections 6.5, 6.6, and 6.7, respectively.

6.1 Motivation

In this chapter, we restrict our attention to the two-dimensional case by deal-
ing with the mixed-integer set PI = {(x, s) ∈ Z2 × Rn

+ : x = f +
∑n

j=1 r
jsj}

with f ∈ Q2 \ Z2 and rj ∈ Q2 \ {o} for all j = 1, . . . , n. We recall that f
is called the root vertex and that the vectors rj are called rays. The rea-
son for considering dimension two instead of an arbitrary dimension is that
stronger statements can be made. This is, most of all, due to the fact that
the complete characterization of all maximal lattice-free polyhedra in K2 is
known from Proposition 5.3 (see p. 37). If such a classification were known
for higher dimensions, then the tools which we will develop in this chapter
could easily be extended. However, such a classification is not known yet.

As in Chapter 4, instead of conv(PI), we consider the set Rf (r
1, . . . , rn) =

conv({s ∈ Rn
+ : f +

∑n
j=1 r

jsj ∈ Z2}) which is the projection of conv(PI)
onto the space of the s-variables (see p. 24), and we write Rn

f instead of
Rf (r

1, . . . , rn) for simplicity. We recall that any lattice-free polyhedron
B ⊆ R2 with f in its interior gives rise to a function ψB : R2 �→ R+ which
is the Minkowski functional of B − f . The inequality

∑n
j=1 ψ

B(rj)sj ≥ 1 is
the cut associated with B and is valid for Rn

f (see p. 17).
Every lattice-free (rational) polyhedron B ⊆ R2 with f ∈ int(B) is con-

tained1 in a maximal lattice-free (rational) polyhedron B̄ ⊆ R2. It follows

that ψB̄(rj) ≤ ψB(rj) for all j = 1, . . . , n and that the cut associated with
B is dominated by the cut associated with B̄. This implies that the benefit
from adding the latter cut on top of the split closure is at least as high as
the benefit from adding the former. Thus, in the remainder of this chapter,
we focus exclusively on cuts associated with maximal lattice-free rational
polyhedra. Since the root vertex f is required to be in the interior of such
polyhedra, all of them must have a non-empty interior. In other words, we
are interested in cuts associated with two-dimensional maximal lattice-free
rational polyhedra with non-empty interior. The complete classification of
those polyhedra is known from Proposition 5.3. It follows that Rn

f has three

1Let B be represented by the system of inequalities a�
i x ≤ bi for i = 1, . . . , p. Then

we consider each of the inequalities one by one: if an inequality can be removed such
that the remaining system defines a lattice-free polyhedron, we remove it; if not, then
we increase bi until the facet defined by a�

i x ≤ bi contains a relative interior integer

point. By construction, applying this procedure to all the inequalities a�
i x ≤ bi for

i = 1, . . . , p yields a maximal lattice-free polyhedron.
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types of non-trivial valid inequalities: split, triangle, and quadrilateral in-
equalities named after the corresponding two-dimensional object from which
the inequality can be derived. Triangle inequalities are further subdivided
into type 1, type 2, and type 3 inequalities (see Fig. 5.1 on p. 38). We note
that a non-trivial valid inequality for Rn

f can correspond to more than one
maximal lattice-free polyhedron.

We are interested in the quality of cuts associated with the maximal lattice-
free polyhedra in Proposition 5.3. As in Chapter 4, we use the strength
measure introduced by Goemans to evaluate the quality of a cut. Basu et
al. [BBCM11] assess the strength of split, triangle, and quadrilateral inequal-
ities in a non-probabilistic setting. They show that the closures of split and
type 1 inequalities may produce an arbitrarily bad approximation of Rn

f . On
the other hand, the closures of type 2 or type 3 or quadrilateral inequalities
deliver good approximations of Rn

f in terms of the strength. This, however
comes with a price. Up to unimodular transformations, there is only one split
and only one triangle of type 1, but an infinite number of triangles of types 2
and 3, and quadrilaterals. Therefore, triangles of types 2 and 3, and quadri-
laterals allow more degrees of freedom. Intuitively, this suggests that for
real instances an approximation by adding all these cuts is hard to compute.
Nevertheless, we have no formal argument at hand to support this claim.
From a more practical point of view, one is interested in approximations of
the mixed-integer hull that one can generate easily. Current state-of-the-art
in computational integer programming is to experiment with split cuts and
the split closure (see, for instance, [AW10] and [BS08]). This is the point of
departure of our theoretical study.

The aim of this chapter is to shed light on the question of which average
improvement a non-split inequality gives when added on top of the split
closure. For that, we take any maximal lattice-free triangle or quadrilateral
B, and we investigate all potential sets Rn

f such that we can generate a valid
cut from B. For this, it is required that f is in the interior of B. We vary
f uniformly at random in the interior of B. This defines our probability
distribution. For each particular B and f ∈ int(B) we let n and r1, . . . , rn

attain arbitrary values. We compute a lower bound on the probability that
the strength of adding the cut associated with B on top of the split closure is
less than or equal to an arbitrary value. As a conclusion from our probabilistic
analysis we obtain that the addition of a single type 2, type 3, or quadrilateral
inequality to the split closure becomes less likely to be beneficial the closer
the lattice-free set looks like a split.

We think that this complements nicely the analysis in [BBCM11]: there,
the authors construct sequences of examples in which cuts from triangles
of types 2 and 3, and quadrilaterals cannot be approximated to within a
constant factor by the split closure. The approximation becomes worse as
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the triangles and quadrilaterals converge towards a split. From the results
in this chapter, it follows that this geometrically counterintuitive situation
occurs extremely rarely.

6.2 Probabilistic model and main results

Often, the quality of cuts is measured according to their worst case perfor-
mance. An analysis based on this principle was carried out in Chapter 4.
In this chapter, we apply a stochastic approach by introducing a probability
distribution on all possible instances. We refer to [BCM10] and [HAN10] for
other approaches on how to apply a probabilistic analysis to mixed-integer
linear sets.

Basu et al. [BCM10] investigate the closures of split and triangle inequal-
ities. These closures are compared in a worst case and an average case sce-
nario. The root vertex f and the direction of the rays are assumed to be
uniformly distributed. The measure of strength used by Basu et al. incor-
porates the objective function. In the worst case scenario a worst possible
objective function vector is taken, whereas in the average case scenario the
objective function vector is assumed to be uniformly distributed. The results
show that, with quite high probability, the split closure produces a bad ap-
proximation of Rn

f when compared to the triangle closure in the worst case
scenario. In the average case scenario, both closures provide rather good
approximations of Rn

f with high probability.

He et al. [HAN10] compare split and type 1 inequalities with respect to
dominance in terms of their coefficients and with respect to the volume which
is cut off when adding a split or type 1 inequality to the linear programming
relaxation. In their model, He et al. assume that both, f and the direction
of the rays, are uniformly distributed. They provide guidelines on when a
split inequality is likely to be more effective than a type 1 inequality and vice
versa. The results suggest that split inequalities are more likely to perform
well than type 1 inequalities. Unfortunately, they do not consider triangles
of types 2 and 3, and quadrilaterals.

Our aim is to evaluate the benefit from adding a single cut associated
with a maximal lattice-free rational triangle or quadrilateral on top of the
split closure. For that, we introduce the following notation. Let Ω be the
set of all maximal lattice-free rational polyhedra in R2 which contain f in
the interior and let S (resp. T1, T2, T3, Q) be the subset of Ω containing
all splits (resp. triangles of type 1, type 2, type 3, quadrilaterals). Observe
that Rn

f = {s ∈ Rn
+ :

∑n
j=1 ψ

B(rj)sj ≥ 1 for all B ∈ S ∪ T1 ∪ T2 ∪ T3 ∪ Q}.
For a non-empty set L ⊆ Ω we define L(Rn

f ) to be the intersection of all
cuts associated with the polyhedra in L and the trivial inequalities sj ≥ 0
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for all j = 1, . . . , n. In the remainder of this chapter, L will always be S
or S ∪ {B} for some B ∈ Ω \ S . In this case, L(Rn

f ) is a polyhedron (as
the split closure of a rational polyhedron is again a polyhedron, see [CKS90,
Theorem 3]). Moreover, L(Rn

f ) is of covering type, since all cuts associated
with the polyhedra in L are assumed to be in standard form.

In order to evaluate the gain from adding a triangle or quadrilateral in-
equality to the split closure we apply the following procedure. We fix a
maximal lattice-free rational triangle or quadrilateral B ∈ Ω \ S , but we al-
low f to vary in its interior. We will show that by considering a specific set of
rays that depends only on f , we obtain an upper bound on t(F(Rn

f ),S(Rn
f ))

where F = S ∪{B}. Depending on where f is located this bound may differ.
By varying f over the entire area of B we compute the area for which the
bound is below a certain value, say z, and compare it to the area of B. This
gives a ratio that is a lower bound on the probability that the strength is less
than or equal to z. In turn, 1 minus this probability is an upper bound on
the chance that B improves upon the split closure by a value of more than z
with respect to the strength.

Let B ∈ Ω \ S and let F = S ∪ {B}. The following observation is similar
to Observation 4.2 (see p. 24) and follows easily from Lemma 4.1.

Observation 6.1.

t(F(Rn
f ),S(Rn

f )) =
1

min{
∑n

j=1 ψ
B(rj)sj : s ∈ S(Rn

f )}
.

We recall that we can assume that the points f + rj , j = 1, . . . , n, are on
the boundary of B. Furthermore, a ray rj is called a corner ray if the point
f + rj is a vertex of B (see p. 25). In the course of this chapter we will deal
with optimization problems of the following type:

min
n∑

j=1

ψB(rj)sj s.t. s ∈ S(Rn
f ) (6.1)

for some B ∈ Ω\S . By the scaling of the rays, the objective function becomes∑n
j=1 sj .
For now, assume that all the corner rays of B (and only those) are present.

We will explain later why we can make this assumption. This implies that
the corner rays are fixed once f and B are chosen. We assume a continuous
uniform distribution on f in the interior of B. Given z ∈ R, z > 1, we define
PB(z) to be the probability that t(F(Rn

f ),S(Rn
f )) is less than or equal to z

for f varying in the triangle or quadrilateral B, i.e.

PB(z) :=
1

A(B)

∫
f∈int(B)

1{t(F(Rn
f ),S(Rn

f )) ≤ z}df,
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where A(B) is the area of B and 1 is the indicator function defined as
1{x ≤ z} := 1 if x ≤ z, and 1{x ≤ z} := 0 if x > z.

Let us now argue why we can assume that all corner rays of B are present in
order to obtain the desired bound. Assume k ≥ 1 corner rays rn+1, . . . , rn+k

are missing and consider the set Rn+k
f := conv({s ∈ Rn+k

+ : f +
∑n+k

j=1 rjsj ∈
Z2}). We now apply Observation 6.1 to infer

t
(
F(Rn+k

f ),S(Rn+k
f )

)
≥ t

(
F(Rn

f ),S(Rn
f )
)

(6.2)

⇐⇒

min

{
n+k∑
j=1

sj : s ∈ S(Rn+k
f )

}
≤ min

{
n∑

j=1

sj : s ∈ S(Rn
f )

}
.

The latter inequality follows from the fact that an optimal solution s̄ for
the latter minimization problem implies a feasible solution for the former
minimization problem by setting s̄j = 0 for all j = n+ 1, . . . , n+ k. Indeed,
if there would be a split which cuts off (s̄, 0) from S(Rn+k

f ), then the same
split would cut off s̄ from S(Rn

f ), a contradiction. From inequality (6.2),

it follows that 1{t(F(Rn+k
f ),S(Rn+k

f )) ≤ z} ≤ 1{t(F(Rn
f ),S(Rn

f )) ≤ z}.
Thus, by adding the corner rays we obtain a lower bound on PB(z).

We now explain why we can assume that only the corner rays of B are
present in order to compute t(F(Rn+k

f ),S(Rn+k
f )). We need two ingredients:

first, the rays are scaled such that the points f + rj , j = 1, . . . , n, are on the
boundary of B; second, the set of rays {r1, . . . , rn+k} contains all the corner
rays of the polyhedron B and thus, every ray is a convex combination of the
corner rays. Hence, by the explanation given on p. 25, (6.1) reduces to the
problem where the objective function is

∑k
j=1 sj with {r1, . . . , rk}, k ∈ {3, 4},

being exactly the set of corner rays for the given triangle or quadrilateral B.
By Observation 6.1, this implies t(F(Rn+k

f ),S(Rn+k
f )) = t(F(Rk

f ),S(Rk
f)).

Thus, in the remainder of this chapter, in order to obtain the desired bounds,
we assume that the set of rays consists of exactly the corner rays of B.

We recall that applying a unimodular transformation to a maximal lattice-
free rational polyhedron B ⊆ R2 changes neither the lattice width nor does
it affect the computation of the strength. In the remainder of this chapter,
we informally call B flat whenever its lattice width is sufficiently close to 1.
Our main results are summarized below.
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Theorem 6.2. Let Ti be a triangle of type i ∈ {1, 2} and let w := w(T2).
Then, for any z > 1, we have

I.

P T1(z) ≥

⎧⎪⎪⎨
⎪⎪⎩
0 if 1 < z ≤ 3

2
,

3
4

(
2z−3
z−1

)2

if 3
2
< z < 2,

1 if 2 ≤ z < +∞,

II.

P T2(z) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if 1 < z ≤ w,

g1 if w < z ≤ w
w−1

,

g1 + g2 if w
w−1

< z < +∞,

with g1 = (z−w)(2wz−w−z)

w2(z−1)2
and g2 = (w−1)2(z−1)2−1

w2(z−1)2
.

Theorem 6.2 II shows that for any given z > 1, P T2(z) tends to 1 if w(T2)
converges to 1, i.e. the probability that a flat type 2 triangle improves upon
the split closure by a value of more than z goes to 0. This will be explained
in further detail in Section 6.5.

The analysis of a type 3 triangle T3 and a quadrilateral Q turns out to
be more complex. We did not succeed in putting P T3(z) (resp. PQ(z)) into
direct relation to w(T3) (resp. w(Q)) and z only. Instead we parametrize
T3 and Q in terms of the coordinates of their vertices. Using this more
complicated parametrization we derive formulas for P T3(z) and PQ(z). Then
we discretize the coordinates of the vertices and evaluate the formulas with
respect to our discretization. This qualitatively leads to the same conclusion
as before: if T3 and Q converge towards a split (meaning the lattice width
converges to 1), then the probability that t(F(Rn

f ),S(Rn
f )), with F = S∪{T3}

or F = S∪{Q}, is less than or equal to z tends to 1. We refer to Sections 6.6
and 6.7 for the corresponding formulas.

6.3 Type 1 triangles

By a unimodular transformation, we assume that the type 1 triangle T1 is
given by T1 = conv({(0, 0), (2, 0), (0, 2)}). Let

R1 := int(conv({(1, 0), (0, 1), (1, 1)})),
R2 := int(conv({(0, 0), (1, 0), (0, 1)})),
R3 := int(conv({(0, 1), (1, 1), (0, 2)})),
R4 := int(conv({(1, 0), (1, 1), (2, 0)})).
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Note that int(T1) \ ∪4
j=1Rj is a set of area zero, so it can be neglected in the

following probabilistic analysis. For given f ∈ R1 ∪ R2 ∪ R3 ∪ R4 the three
corner rays are r1 = (−f1,−f2), r

2 = (2− f1,−f2), and r3 = (−f1, 2 − f2).
Let F = S ∪ {T1}. In [BBCM11, Theorem 6.1] it is shown that

t(F(R3
f ),S(R3

f )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2 if f ∈ R1,
3−f1−f2
2−f1−f2

if f ∈ R2,
f2+1
f2

if f ∈ R3,
f1+1
f1

if f ∈ R4.

(6.3)

For the sake of brevity we write 1{t ≤ z} instead of 1{t(F(R3
f ),S(R3

f )) ≤ z}.
Then

P T1(z) =
1

A(T1)

4∑
j=1

∫
f∈Rj

1{t ≤ z}df.

We compute the four integrals separately. For that, we need to check when
the corresponding functions in (6.3) attain a value which is less than or
equal to z. Assume f ∈ R1. Then

∫
f∈R1

1{t ≤ z}df is 0 if z < 2 and is 1
2

if z ≥ 2. Assume f ∈ R2. We have 3−f1−f2
2−f1−f2

≤ z ⇔ f1 + f2 ≤ 2z−3
z−1

and

thus
∫
f∈R2

1{t ≤ z}df is 0 if z ≤ 3
2
, is 1

2
if z ≥ 2, and is 1

2
( 2z−3

z−1
)2 otherwise

(here we used the fact that 0 < f1 + f2 < 1 in R2). Assume f ∈ R3. Then
f2+1
f2

≤ z ⇔ f2 ≥ 1
z−1

. Hence,
∫
f∈R3

1{t ≤ z}df is 0 if z ≤ 3
2
, is 1

2
if z ≥ 2,

and is 1
2
( 2z−3

z−1
)2 otherwise (here we used 1 < f2 < 2). Finally, the case

f ∈ R4 is analogous to the previous case. Since A(T1) = 2 it follows

P T1(z) =

⎧⎪⎪⎨
⎪⎪⎩
0 if 1 < z ≤ 3

2
,

3
4

(
2z−3
z−1

)2

if 3
2
< z < 2,

1 if 2 ≤ z < +∞.

(6.4)

We note that the “=” in (6.4) becomes a “≥” in Theorem 6.2 I since (6.4)
were derived by assuming the presence of all the three corner rays of T1. If at
least one corner ray is missing, then our computations lead to a lower bound
on P T1(z) by (6.2) and the explanation in the paragraph after (6.2).

6.4 Strategy for triangles of types 2 and 3, and quadrilaterals

The analysis of type 1 triangles in Section 6.3 was quite easy. The reason is
that – due to the assumption of having all the three corner rays present – the
split closure is known: it is always defined by the trivial inequalities sj ≥ 0,
j = 1, 2, 3, and a subset of the three split inequalities associated with the
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splits whose normal vectors are the normal vectors of the facets of the type 1
triangle (see [BBCM11, Lemmas 6.3 and 6.5] for a proof). We also note that
w(T1) = 2 and that this value is attained by precisely these vectors.

Using the split closure for triangles of types 2 and 3, and quadrilaterals
would result in too complicated formulas. Thus, we choose another strategy.
Instead of using the entire split closure we will take only one well-chosen
split inequality (in addition to the trivial inequalities) and therefore obtain
lower bounds on the desired probabilities. We emphasize that our proof
technique which we describe below can only be used to show the weakness
of an inequality, but not to show that an inequality is strong. Let B ∈ Ω \ S
be a triangle of type 2 or 3, or a quadrilateral. The split inequality which
we choose will depend on the location of f in the interior of B. For that, we
partition B into regions R1, . . . , Rp and select a single split for each region.
The basic idea is to choose a split that contains f in its interior and such
that the normal vector u ∈ Z2 \ {o} of the split is a potential candidate for
a vector for which w(B) is attained, i.e. which satisfies w(B) = w(B, u). We
feel that choosing such a split is reasonable, even though we have no formal
argument at hand to support our choice. The normal vectors of our candidate
splits will always be among the vectors e1, e2, and e1 + e2 since we apply a
unimodular transformation to B before we start our analysis. We do that to
bring B into an appropriate form which is easy to handle (see Sections 6.5,
6.6, and 6.7 for details).

We now show that our simplification of using only one split inequality
instead of the split closure leads to a lower bound on PB(z). Let F = S∪{B}
for some B ∈ Ω \ S and let L ∈ S be arbitrary. Then, by Observation 6.1,

t
(
F(Rk

f ),S(Rk
f )
)

=

(
min

{
k∑

j=1

sj : s ∈ S(Rk
f)

})−1

≤
(
min

{
k∑

j=1

sj : sj ≥ 0 for j = 1, . . . , k and
k∑

j=1

ψL(rj)sj ≥ 1

})−1

= t

({
s ∈ Rk

+ :

k∑
j=1

ψL(rj)sj ≥ 1 and

k∑
j=1

ψB(rj)sj ≥ 1

}
,

{
s ∈ Rk

+ :

k∑
j=1

ψL(rj)sj ≥ 1

})
,

since, by the scaling of the rays, we have ψB(rj) = 1 for all j = 1, . . . , k.
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For ease of notation we denote the latter by t̄(B,L), which is the strength
of the polyhedron obtained by adding to Rk

+ the cuts associated with B and
L with respect to the polyhedron obtained by just adding to Rk

+ the cut
associated with L. It follows 1{t(F(Rk

f ),S(Rk
f )) ≤ z} ≥ 1{t̄(B,L) ≤ z} and

therefore

PB(z) ≥ 1

A(B)

p∑
j=1

∫
f∈Rj

1{t̄(B,LRj
) ≤ z}df, (6.5)

where LRj
is the single split which is used in region Rj to approximate

the split closure, for j = 1, . . . , p. In the following, for simplicity, we write
1{t̄ ≤ z} instead of 1{t̄(B,L) ≤ z} whenever B and L are clear from the con-
text. In order to compute t̄(B,L) we need to solve an optimization problem
of the type

min s1 + · · ·+ sk

s.t. ψL(r1)s1 + · · ·+ ψL(rk)sk ≥ 1,

sj ≥ 0 for j = 1, . . . , k.

The values ψL(r1), . . . , ψL(rk) are called the coefficients of the cut associated
with L. We recall (see (4.5) on p. 31) that, in general, for a split L = {x ∈ R2 :
�π�f� ≤ π�x ≤ π�f�}, π ∈ Z2 \ {o}, which contains f in its interior, it
is easy to verify that the coefficients of the cut associated with L, i.e. the
coefficients of

∑k
j=1 ψ

L(rj)sj ≥ 1, are

ψL(rj) =

⎧⎪⎪⎨
⎪⎪⎩

π�rj

π�f�−π�f
if π�rj > 0,

0 if π�rj = 0,
π�rj

�π�f�−π�f
if π�rj < 0,

(6.6)

for all j = 1, . . . , k. Thus, only the normal vector π of the split L is needed
to compute the coefficients ψL(r1), . . . , ψL(rk).

In Section 6.5, we will carefully explain how we compute the lower bound
on P T2(z) for triangles of type 2. Since the computations for quadrilaterals
and triangles of type 3 in Sections 6.6 and 6.7 give no new insights we will
only state intermediate results there.

6.5 Type 2 triangles

By a unimodular transformation, we assume that the type 2 triangle T2 has
one facet containing the points (0, 0) and (1, 0), one facet containing (0, 1),
and one facet containing (1, 1). Furthermore, one vertex a = (a1, a2) satisfies
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0 < a1 < 1 and 1 < a2. Thus, the other vertices are b := (− a1
a2−1

, 0) and

c := ( a2−a1
a2−1

, 0). We assume that a is arbitrary but fixed and treat it as
a parameter in the subsequent computations. We decompose T2 into six
regions (see Fig. 6.1):

R1 := int(conv{(0, 0), (a1, 0), (a1, 1), (0, 1)}),
R2 := int(conv{(a1, 0), (1, 0), (1, 1), (a1, 1)}),
R3 := int(conv{(0, 0), (0, 1), (b1, b2)}),
R4 := int(conv{(1, 0), (1, 1), (c1, c2)}),
R5 := int(conv{(0, 1), (a1, 1), (a1, a2)}),
R6 := int(conv{(a1, 1), (1, 1), (a1, a2)}).

a

b c

R1 R2

R3 R4

R5 R6

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 6.1: Decomposition of a type 2 triangle.

For given f ∈ ∪6
j=1Rj the three corner rays are r1 = (b1 − f1,−f2), r

2 =
(c1 − f1,−f2), and r3 = (a1 − f1, a2 − f2). For simplicity, let w := w(T2).
From Remark 5.21 (see p. 57), it follows that w is attained by one of the
vectors e1 or e2. Thus, w = min{a2,

a2
a2−1

} which implies w = a2 if a2 ≤ 2
and w = a2

a2−1
if a2 > 2. In either case, direct computations show that

A(T2) =
(a2)

2

2(a2 − 1)
=

w2

2(w − 1)
. (6.7)

In regions R3 and R4 we use the split S1 := {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ 1}
and in regions R5 and R6 we use the split S2 := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1}.
In regions R1 and R2 we choose either S1 or S2. We will use the one whose
normal vector attains w, i.e. we choose S1 if a2 ≤ 2 and S2 if a2 > 2. Such
a split has another nice property: among all splits that contain f in their
interior we select one which covers most of the area of the triangle.
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6.5.1 Regions R3 and R4

Let f ∈ R3 ∪ R4. In order to compute t̄(T2, S1) we have to solve the opti-
mization problem

min s1 + s2 + s3

s.t. ψS1(r1)s1 + ψS1(r2)s2 + ψS1(r3)s3 ≥ 1,

sj ≥ 0 for j = 1, 2, 3.

(6.8)

Since we use S1 we have π = e2, and since f ∈ R3∪R4, it holds 0 < π�f < 1.
Thus, using (6.6), we obtain ψS1(r1) = ψS1(r2) = 1 and ψS1(r3) = a2−f2

1−f2
.

Therefore, an optimal solution to (6.8) is s∗ = (0, 0, 1−f2
a2−f2

) with optimal

objective value 1−f2
a2−f2

. It follows t̄(T2, S1) =
a2−f2
1−f2

for f ∈ R3 ∪ R4.

6.5.2 Regions R5 and R6

Let f ∈ R5. To compute t̄(T2, S2) we solve the following optimization prob-
lem: min

∑3
j=1 sj s.t.

∑3
j=1 ψ

S2(rj)sj ≥ 1, sj ≥ 0 for j = 1, 2, 3. By apply-

ing (6.6) we obtain ψS2(r1) = f1−b1
f1

, ψS2(r2) = c1−f1
1−f1

, and ψS2(r3) = a1−f1
1−f1

.
Hence, we have to determine the minimum among the values in the set
{(ψS2(r1))−1, (ψS2(r2))−1, (ψS2(r3))−1}. Using our assumptions on the vari-
ables and parameters, it follows that (ψS2(r3))−1 ≥ 1 and (ψS2(ri))−1 ≤ 1
for i ∈ {1, 2}. One easily verifies that (ψS2(r1))−1 ≤ (ψS2(r2))−1 ⇔ a1 ≥ f1
which is satisfied in R5 by assumption. Thus, t̄(T2, S2) =

f1−b1
f1

for f ∈ R5.

Let f ∈ R6. By symmetry, i.e. a1 → 1 − a1 and f1 → 1 − f1, we obtain
t̄(T2, S2) =

c1−f1
1−f1

.

6.5.3 Regions R1 and R2

First assume a2 ≤ 2 and use the split S1. Let f ∈ R1 ∪ R2. The associated
optimization problem is min

∑3
j=1 sj s.t.

∑3
j=1 ψ

S1(rj)sj ≥ 1, sj ≥ 0

for j = 1, 2, 3 with ψS1(r1) = ψS1(r2) = 1 and ψS1(r3) = a2−f2
1−f2

. Hence,

t̄(T2, S1) =
a2−f2
1−f2

for f ∈ R1 ∪ R2 and a2 ≤ 2.

Now assume that a2 > 2. We use the split S2. Let f ∈ R1. The solution
of the optimization problem min

∑3
j=1 sj s.t.

∑3
j=1 ψ

S2(rj)sj ≥ 1, sj ≥ 0

for j = 1, 2, 3 with ψS2(r1) = f1−b1
f1

, ψS2(r2) = c1−f1
1−f1

, and ψS2(r3) = a1−f1
1−f1

is the minimum of (ψS2(r1))−1 and (ψS2(r2))−1 as (ψS2(r3))−1 ≥ 1. It is
easy to verify that (ψS2(r1))−1 ≤ (ψS2(r2))−1 ⇔ a1 ≥ f1. Therefore, we
have t̄(T2, S2) =

f1−b1
f1

for f ∈ R1 and a2 > 2. Finally, assume f ∈ R2. By

symmetry, we obtain t̄(T2, S2) =
c1−f1
1−f1

for f ∈ R2 and a2 > 2.
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The following table summarizes the function t̄(T2, Si), for the correspond-
ing i ∈ {1, 2}.

t̄(T2, Si) t̄(T2, Si) Location
for a2 ≤ 2 for a2 > 2 of f

a2−f2
1−f2

f1−b1
f1

f ∈ R1

a2−f2
1−f2

c1−f1
1−f1

f ∈ R2

a2−f2
1−f2

a2−f2
1−f2

f ∈ R3

a2−f2
1−f2

a2−f2
1−f2

f ∈ R4

f1−b1
f1

f1−b1
f1

f ∈ R5

c1−f1
1−f1

c1−f1
1−f1

f ∈ R6

6.5.4 Approximation for P T2(z)

We now compute the integrals
∫
f∈Rj

1{t̄(T2, Si) ≤ z}df for j = 1, . . . , 6 and

the corresponding split S1 or S2 which we used above. For simplicity, let∫
f∈Rj

:=
∫
f∈Rj

1{t̄ ≤ z}df for j = 1, . . . , 6.

Let f ∈ R3. Then 1{t̄ ≤ z} = 1 ⇔ a2−f2
1−f2

≤ z ⇔ f2 ≤ z−a2
z−1

. Observe that∫
f∈R3

= 0 if z ≤ a2. If z > a2, then the area of the set {f ∈ R3 : f2 ≤ z−a2
z−1

}
is the difference of the area of two triangles (see Fig. 6.2(d) for a schematic
representation of this area). Direct computations yield∫

f∈R3

=

{
0 if z ≤ a2,
a1(z−a2)(z+a2−2)

2(a2−1)(z−1)2
if z > a2.

Let f ∈ R5. Then 1{t̄ ≤ z} = 1 ⇔ f1−b1
f1

≤ z ⇔ f1 ≥ −b1
z−1

= a1
(a2−1)(z−1)

.

We have
∫
f∈R5

= 0 ⇔ a1
(a2−1)(z−1)

≥ a1 ⇔ z ≤ a2
a2−1

. If z > a2
a2−1

, then

again we compute the difference of the area of two triangles (see Fig. 6.2(f))
and infer ∫

f∈R5

=

{
0 if z ≤ a2

a2−1
,

a1(a2−1)
2

g3 if z > a2
a2−1

,

where g3 = 1− 1
(a2−1)2(z−1)2

.

By symmetry, the integrals for f ∈ R4 and f ∈ R6 are obtained by replac-
ing a1 with 1− a1 in the formulas for

∫
f∈R3

and
∫
f∈R5

(see Fig.s 6.2(e) and

6.2(g)). Thus, ∫
f∈R4

=

{
0 if z ≤ a2,
(1−a1)(z−a2)(z+a2−2)

2(a2−1)(z−1)2
if z > a2,
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∫
f∈R6

=

{
0 if z ≤ a2

a2−1
,

(1−a1)(a2−1)
2

g3 if z > a2
a2−1

.

In order to compute
∫
f∈R1

and
∫
f∈R2

we distinguish the cases a2 ≤ 2 and
a2 > 2. First, let us assume that a2 ≤ 2. Computations in a similar manner
as above (area of the shaded quadrilateral in Fig. 6.2(a)) lead to

∫
f∈R1

=

{
0 if z ≤ a2,
a1(z−a2)

z−1
if z > a2,

∫
f∈R2

=

{
0 if z ≤ a2,
(1−a1)(z−a2)

z−1
if z > a2.

Now assume that a2 > 2. Computing the corresponding area (see Fig.s 6.2(b)
and 6.2(c)) yields

∫
f∈R1

=

{
0 if z ≤ a2

a2−1
,

a1g4 if z > a2
a2−1

,

∫
f∈R2

=

{
0 if z ≤ a2

a2−1
,

(1− a1)g4 if z > a2
a2−1

,

where g4 = 1− 1
(a2−1)(z−1)

.

(a) R1 and R2

for a2 ≤ 2
(b) R1 for
a2 > 2

(c) R2 for
a2 > 2

(d) R3 (e) R4 (f) R5 (g) R6

Figure 6.2: The shaded regions satisfy 1{t̄ ≤ z} = 1.
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We can aggregate the formulas for regions R1 and R2, R3 and R4, and R5

and R6 in order to eliminate the parameter a1. It follows∫
f∈R1

+

∫
f∈R2

=

{
0 if z ≤ a2 and a2 ≤ 2,
z−a2
z−1

if z > a2 and a2 ≤ 2,

∫
f∈R1

+

∫
f∈R2

=

{
0 if z ≤ a2

a2−1
and a2 > 2,

1− 1
(a2−1)(z−1)

if z > a2
a2−1

and a2 > 2,

∫
f∈R3

+

∫
f∈R4

=

{
0 if z ≤ a2,
(z−a2)(z+a2−2)

2(a2−1)(z−1)2
if z > a2,

∫
f∈R5

+

∫
f∈R6

=

{
0 if z ≤ a2

a2−1
,

a2−1
2

(
1− 1

(a2−1)2(z−1)2

)
if z > a2

a2−1
.

We are now ready to state our results in terms of the lattice width. Reinter-
preting the formulas above we obtain for a2 ≤ 2 (i.e. w = a2) the integrals∫

f∈R1

+

∫
f∈R2

=

{
0 if z ≤ w,
z−w
z−1

if z > w,

∫
f∈R3

+

∫
f∈R4

=

{
0 if z ≤ w,
(z−w)(z+w−2)

2(w−1)(z−1)2
if z > w,

∫
f∈R5

+

∫
f∈R6

=

{
0 if z ≤ w

w−1
,

(w−1)2(z−1)2−1

2(w−1)(z−1)2
if z > w

w−1
.

For a2 > 2 (i.e. w = a2
a2−1

) we have

∫
f∈R1

+

∫
f∈R2

=

{
0 if z ≤ w,
z−w
z−1

if z > w,

∫
f∈R3

+

∫
f∈R4

=

{
0 if z ≤ w

w−1
,

(w−1)2(z−1)2−1

2(w−1)(z−1)2
if z > w

w−1
,

∫
f∈R5

+

∫
f∈R6

=

{
0 if z ≤ w,
(z−w)(z+w−2)

2(w−1)(z−1)2
if z > w.

We note that any triangle of type 2 satisfies 1 < w ≤ 2 (see Remark 5.20
on p. 57). Furthermore, it is easy to check that w ≤ w

w−1
⇔ w ≤ 2 for
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any w > 1. Hence, together with (6.5) and (6.7), we arrive at the following
formula.

P T2(z) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if 1 < z ≤ w,

g1 if w < z ≤ w
w−1

,

g1 + g2 if w
w−1

< z < +∞,

(6.9)

with g1 = (z−w)(2wz−w−z)

w2(z−1)2
and g2 = (w−1)2(z−1)2−1

w2(z−1)2
.

Let z > 1 be given. We want to show that the probability to improve upon
the split closure by a value of more than z when adding a type 2 triangle
becomes the smaller the closer the type 2 triangle is to a split, i.e. the closer
w is to 1. For w being sufficiently close to 1 we have w < z ≤ w

w−1
. Just

substitute 1 for w in (6.9) to infer that P T2(z) converges to 1 for any z > 1.
Therefore, 1 − P T2(z) tends to 0. In other words, the chance that adding a
flat type 2 triangle improves the split closure by a value of more than z with
respect to our strength measure tends to 0. In terms of the vertex (a1, a2)
this happens if a2 converges either to 1 (i.e. T2 converges to S1) or infinity
(i.e. T2 converges to S2 \ {(x1, x2) ∈ R2 : x2 < 0}).

Two special cases are of interest: z = 2 and z = 3
2
. Plugging in z = 2 in

(6.9) yields

1− P T2(2) ≤ 4(w − 1)2

w2

for any 1 < w ≤ 2 (see Fig. 6.3(a)) and plugging in z = 3
2
in (6.9) leads to

P T2

(
3

2

)
≥
{
0 if 3

2
≤ w ≤ 2,

(3−2w)(4w−3)

w2 if 1 < w < 3
2

(see Fig. 6.3(b)).
1− P T2(2) is interpretable as the probability that the cut associated with

T2 closes more of the gap to R3
f than the cut associated with any type 1

triangle. On the other hand, P T2( 3
2
) can be seen as the probability that

adding T2 to the split closure is inferior to adding any type 1 triangle T1

with rays going through the corners of T1. The interpretation is based on the
fact that any type 1 triangle (assuming corner rays) has a strength between
3
2
and 2 (see (6.3) on p. 76).
In summary, we conclude that type 1 triangles are inferior to flat type 2

triangles by comparing the worst case strength (see [BBCM11, Theorems 6.1
and 8.6]). On the other hand, a type 1 triangle (assuming corner rays) guar-
antees a strength of 3

2
and is therefore superior to a flat type 2 triangle on

average. For instance, let T2 be a type 2 triangle with w(T2) = 1.1. Then
1−P T2 (2) < 3.4% and P T2( 3

2
) > 92.5%. Thus, with a probability of less than
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1− P T2(2)

w

(a) An upper bound on 1 − PT2(2).

P T2( 3
2
)

w

(b) A lower bound on PT2( 3
2 ).

Figure 6.3: Bounds on 1− P T2(2) and P T2( 3
2
).

3.4%, T2 is better than any type 1 triangle T1, and worse with a probability of
more than 92.5% if corner rays are assumed for T1. We point out that these
probabilities are quite close to 0 and 1, respectively, even though we used
just one split instead of the entire split closure. Furthermore, we emphasize
that the above discussion is based on the fact that our proof technique is
only appropriate to prove weakness of an inequality. Therefore, we only look
at the contribution of flat type 2 triangles. For instance, the upper bound
in Fig.6.3(a) is rather weak for values of w which are not sufficiently close to
1, but since our argumentation is against flat type 2 triangles, we obtain a
quite strong bound.

6.6 Quadrilaterals

The vertices of the quadrilateral Q are denoted by a = (a1, a2), b = (b1, b2),
c = (c1, c2), and d = (d1, d2). By a unimodular transformation, we assume
that the point (0, 0) (resp. (1, 0), (0, 1), (1, 1)) is in the relative interior of
the facet with vertices b and c (resp. b and d, a and c, a and d). This implies
1 < a2 and b2 < 0. We further assume 0 < a1 ≤ b1 < 1 and −b2 ≤ a2 − 1
as otherwise Q can be flipped vertically or horizontally with respect to the
line {(x1, x2) ∈ R2 : x1 = 1

2
} or {(x1, x2) ∈ R2 : x2 = 1

2
} (which is a

unimodular transformation). The parameters a1, a2, b1, and b2 are assumed
to be arbitrary but fixed. This implies
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c1 = − a1b1
(a2 − 1)b1 − a1b2

, c2 =
c1b2
b1

,

d1 =
(a2 − a1)(1− b1)− (1− a1)b2
(a2 − 1)(1− b1)− (1− a1)b2

, d2 =
(d1 − 1)b2
b1 − 1

.

One easily verifies c1 < 0, 0 < c2 < 1, 1 < d1, and 0 < d2 < 1. Furthermore,
direct computations show that c2 ≤ d2 and A(Q) = 1

2
(a2 − b2 + d1 − c1). It

follows from Remark 5.21 (see p. 57) that w := w(Q) = min{a2−b2, d1−c1}.
Thus, without loss of generality we assume w = a2 − b2. We decompose Q
into four regions (see Fig. 6.4):

R1 := int(Q ∩ {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ η}),
R2 := int(Q ∩ {(x1, x2) ∈ R2 : η ≤ x2 ≤ 1}),
R3 := int((Q \ {R1 ∪R2}) ∩ {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ θ}),
R4 := int((Q \ {R1 ∪R2}) ∩ {(x1, x2) ∈ R2 : θ ≤ x1 ≤ 1}),

where η := −b2
w−1

and θ := a1b1(a2−1)(1−b1)−b1a1(1−a1)b2
b1(a2−1)(1−b1)−a1(1−a1)b2

. It is tedious but easy
to verify that c2 ≤ η ≤ d2 and a1 ≤ θ ≤ b1.

a

b

c

d

R1

R2

R3

R4

Figure 6.4: Decomposition of a quadrilateral.

As in the case of a type 2 triangle, instead of taking the entire split closure,
we use a single well-chosen split inequality. In regions R1 and R2 we use the
split S1 := {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ 1} and in regions R3 and R4 we
use the split S2 := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1}. Since the computations of
t̄(Q,S1) for f ∈ R1∪R2 and t̄(Q,S2) for f ∈ R3∪R4 are straightforward (see
Subsections 6.5.1 – 6.5.3 for an illustration on how to do that for a triangle
of type 2) we only state the results:
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t̄(Q,Si) Location of f
f2−b2

f2
f ∈ R1

a2−f2
1−f2

f ∈ R2

f1−c1
f1

f ∈ R3

d1−f1
1−f1

f ∈ R4

As in Subsection 6.5.4, we now compute the integrals in order to obtain
a lower bound on PQ(z). For simplicity, let

∫
f∈Rj

:=
∫
f∈Rj

1{t̄ ≤ z}df for

j = 1, . . . , 4.

6.6.1 Regions R1 and R2

Let f ∈ R1. Then 1{t̄ ≤ z} = 1 ⇔ f2−b2
f2

≤ z ⇔ f2 ≥ −b2
z−1

. Hence, it follows

that
∫
f∈R1

= 0 if −b2
w−1

= η ≤ −b2
z−1

⇔ z ≤ w. If z > w, then we distinguish

into −b2
z−1

≥ c2 and −b2
z−1

< c2. If −b2
z−1

≥ c2, then the area to compute is a

trapezoid with area A1. If −b2
z−1

< c2, then the area to compute is composed
of two trapezoids with aggregate area A2. Since the computation of A1 and
A2 is on an exercise level, we only state the results:

A1 =
1

2

(
−b2
w − 1

− −b2
z − 1

)(
w − (b1 − a1)

w − 1
+

z − b1
z − 1

+
a1(z − 1 + b2)

(a2 − 1)(z − 1)

)
,

A2 =
1

2

(
−b2
w − 1

− c2

)(
w − (b1 − a1)

w − 1
+

a1(b2 − 1)− (a2 − 1)b1
a1b2 − (a2 − 1)b1

)

+
1

2

(
c2 −

−b2
z − 1

)(
z

z − 1
+

a1(b2 − 1)− (a2 − 1)b1
a1b2 − (a2 − 1)b1

)
.

We obtain ∫
f∈R1

=

⎧⎪⎨
⎪⎩
0 if 1 < z ≤ w,

A1 if w < z ≤ c2−b2
c2

,

A2 if c2−b2
c2

< z < +∞.

Let f ∈ R2. Then 1{t̄ ≤ z} = 1 ⇔ a2−f2
1−f2

≤ z ⇔ f2 ≤ z−a2
z−1

. Thus,∫
f∈R2

= 0 if z−a2
z−1

≤ η = −b2
w−1

⇔ z ≤ w. Otherwise, we distinguish into
z−a2
z−1

≤ d2 and z−a2
z−1

> d2. In the first case the area to compute is a trapezoid
with area A3. In the second case the area to compute is composed of two
trapezoids with aggregate area A4, where

A3 =
1

2

(
z − a2

z − 1
− −b2

w − 1

)
·(

w − (b1 − a1)

w − 1
+

z − 1 + a1

z − 1
+

(z − a2)(b1 − 1)

b2(z − 1)

)
,
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A4 =
1

2

(
z − a2

z − 1
− d2

)(
z

z − 1
+

a2(1− b1)− (1− a1)b2
(a2 − 1)(1− b1)− (1− a1)b2

)

+
1

2

(
d2 −

−b2
w − 1

)
·(

w − (b1 − a1)

w − 1
+

a2(1− b1)− (1− a1)b2
(a2 − 1)(1− b1)− (1− a1)b2

)
.

We infer

∫
f∈R2

=

⎧⎪⎨
⎪⎩
0 if 1 < z ≤ w,

A3 if w < z ≤ a2−d2
1−d2

,

A4 if a2−d2
1−d2

< z < +∞.

6.6.2 Regions R3 and R4

Applying the same procedure as in the previous subsection leads to

A5 =
1

2

(
−c1

d1 − c1 − 1
− −c1

z − 1

)(
(a2 − 1)(d1 − 1)

(1− a1)(d1 − c1 − 1)
+

(a2 − 1)(z − 1 + c1)

(1− a1)(z − 1)
+

c2
d1 − c1 − 1

+
c2

z − 1

)
,

A6 =
1

2

(
−c1

d1 − c1 − 1
− a1

)
·(

(a2 − 1)(2− a1)

1− a1
− a1b2

b1
+

c1(a2 − 1) + c2(1− a1)

(1− a1)(d1 − c1 − 1)

)

+
1

2

(
a1 −

−c1
z − 1

)(
a2 − 1− a1b2

b1
+

a1c2 − c1(a2 − 1)

a1(z − 1)

)
,

A7 =
1

2
· (d1 − 1)(z − d1 + c1)

(z − 1)(d1 − c1 − 1)
·(

c2(1− a1) + (a2 − 1)(d1 − 1)

(1− a1)(d1 − c1 − 1)
+

(a2 − 1)(d1 − 1)

(1− a1)(z − 1)
− b2(z − d1)

b1(z − 1)

)
,

A8 =
1

2

(
b1 −

−c1
d1 − c1 − 1

)(
c2(1− a1) + c1(a2 − 1)

(1− a1)(d1 − c1 − 1)
+

(a2 − 1)(2− b1)− b2(1− a1)

1− a1

)
+

1

2

(
z − d1
z − 1

− b1

)
·(

(a2 − 1)(z − d1)

(a1 − 1)(z − 1)
− b2(d1 − 1)

(1− b1)(z − 1)
+

(a2 − 1)(2− b1)− b2(1− a1)

1− a1

)
,
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and finally ∫
f∈R3

=

⎧⎪⎨
⎪⎩
0 if 1 < z ≤ d1 − c1,

A5 if d1 − c1 < z ≤ a1−c1
a1

,

A6 if a1−c1
a1

< z < +∞,

∫
f∈R4

=

⎧⎪⎨
⎪⎩
0 if 1 < z ≤ d1 − c1,

A7 if d1 − c1 < z ≤ d1−b1
1−b1

,

A8 if d1−b1
1−b1

< z < +∞.

6.6.3 Approximation for PQ(z)

Adding the integrals and dividing by the area of the quadrilateral gives the
lower bound on PQ(z) which we wanted. Thus,

PQ(z) ≥ 1

A(Q)

4∑
j=1

∫
f∈Rj

1{t̄ ≤ z}df. (6.10)

We did not succeed in showing algebraically that this lower bound tends to 1
when w converges to 1. However, we performed simulations supporting our
conjecture. In these simulations we let w converge to 1 for several values for
a1, a2, b1, and b2. Concretely, we discretized the parameters within their
ranges: a1 ∈ {0.001, 0.002, . . . , 0.999}, b1 ∈ {a1, a1 + 0.001, . . . , 0.999}, a2 ∈
{1.999, 1.998, . . . , 1.001}, and b2 ∈ {−(a2−1),−(a2−1)+0.001, . . . ,−0.001}.
In all cases we observed that the lower bound became close to one. This is,
of course, not a proof, but it gives strong indication that the convergence
property should hold in general.

We point out that under the additional assumption a1 = b1 (implying
a1 = θ = b1 and c2 = η = d2) the lower bound in (6.10) coincides with the
lower bound of a type 2 triangle which is stated in (6.9). This can be seen
by simply substituting a1 for b1 in the formulas for A1, . . . , A8.

Corollary 6.3. Let Q= be a quadrilateral meeting the assumptions stated at
the beginning of this section (see p. 85) which, in addition, satisfies a1 = b1.
Moreover, let w := w(Q=). Then

PQ=

(z) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if 1 < z ≤ w,

(z−w)(2wz−w−z)

w2(z−1)2
if w < z ≤ w

w−1
,

(z−w)(2wz−w−z)+(w−1)2(z−1)2−1

w2(z−1)2
if w

w−1
< z < +∞.

Moreover, for any z > 1, PQ=

(z) tends to 1 if w converges to 1.
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6.7 Type 3 triangles

By a unimodular transformation, we assume that the type 3 triangle T3

satisfies T3∩Z2 = {(0, 0), (1, 0), (0, 1)} and that each facet of T3 contains one
of these points in its relative interior. The three vertices of T3 are denoted
by a = (a1, a2), b = (b1, b2), and c = (c1, c2). We further assume 1 < a1,
0 < a2 < 1, 0 < b1 < 1, and b1 + b2 < 0. Let a1, a2, and b1 be arbitrary but
fixed. This implies

b2 = −a2(1− b1)

a1 − 1
,

c1 =
a1(a1 − 1)b1

(a1 − 1)(1− a2)b1 − a1a2(1− b1)
,

c2 = − a1a2(1− b1)

(a1 − 1)(1− a2)b1 − a1a2(1− b1)
.

One easily verifies b2 < 0, c1 < 0, 1 < c2, and 0 < c1 + c2 < 1. Furthermore,
we have A(T3) =

1
2
(a1+a2−b2−c1). It follows from Remark 5.17 (see p. 54)

that w := w(T3) = min{c2 − b2, a1 − c1, a1 + a2 − (b1 + b2)}. Without loss of
generality we assume w = c2− b2 ≤ a1− c1 ≤ a1+a2− (b1+ b2). During this
section we consider the three splits S1 := {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ 1}, S2 :=
{(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1}, and S3 := {(x1, x2) ∈ R2 : 0 ≤ x1 + x2 ≤ 1}.
We decompose T3 into six regions (see Fig. 6.5):

R1 := int(T3 ∩ {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ α}),
R2 := int(T3 ∩ {(x1, x2) ∈ R2 : α ≤ x2 ≤ 1}),
R3 := int((T3 \ {R1 ∪R2}) ∩ {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ β}),
R4 := int((T3 \ {R1 ∪R2}) ∩ {(x1, x2) ∈ R2 : β ≤ x1 ≤ 1}),
R5 := int((T3 \ ∪4

j=1Rj) ∩ {(x1, x2) ∈ R2 : 0 ≤ x1 + x2 ≤ γ}),
R6 := int((T3 \ ∪4

j=1Rj) ∩ {(x1, x2) ∈ R2 : γ ≤ x1 + x2 ≤ 1}),

where α := −b2
c2−1−b2

, β := −c1
a1−1−c1

, and γ := −(b1+b2)
a1+a2−1−(b1+b2)

. We point out
that R5 could be empty. It is tedious but easy to verify that a2 < α < 1,
b1 < β < 1, and 0 < γ < c1 + c2.

For each region, we use a single split inequality to approximate the split
closure. In regions R1 and R2 we use the split S1, in regions R3 and R4 we
use the split S2, and in regions R5 and R6 we use the split S3. Thus, in each
region Rj we choose a split which covers Rj and the convex hull of (0, 0),
(1, 0), and (0, 1). The following table states the values for t̄(T3, Si) for the
regions R1 to R6 and the corresponding i ∈ {1, 2, 3}.
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a

b

c

R1

R2

R3

R4

R5

R6

(0, 0) (1, 0)

(0, 1)

Figure 6.5: Decomposition of a type 3 triangle.

t̄(T3, Si) Location of f
f2−b2

f2
f ∈ R1

c2−f2
1−f2

f ∈ R2

f1−c1
f1

f ∈ R3

a1−f1
1−f1

f ∈ R4

f1+f2−(b1+b2)
f1+f2

f ∈ R5

a1+a2−(f1+f2)
1−(f1+f2)

f ∈ R6

The computation of the integrals
∫
f∈Rj

1{t̄ ≤ z}df for j = 1, . . . , 6 gives

no new insights. Hence, we only state the results. For simplicity, let
∫
f∈Rj

:=∫
f∈Rj

1{t̄ ≤ z}df for j = 1, . . . , 6. Let

A1 =
1

2

(
−b2
w − 1

− −b2
z − 1

)
·(

b1
w − 1

+
b1

z − 1
+

a1

1− a2

(
c2 − 1

w − 1
+

z − 1 + b2
z − 1

))
,

A2 =
1

2

(
−b2
w − 1

− a2

)(
(1− a2)b1 + a1(c2 − 1)

(1− a2)(w − 1)
− a2b1 − a1b2)

b2

)

+
1

2

(
a2 −

−b2
z − 1

)(
a2b1 − (a1 − 1)b2

a2(z − 1)
− a2b1 − (a1 + 1)b2)

b2

)
,

A3 =
1

2

(
z − c2
z − 1

− −b2
w − 1

)
·(

b1
w − 1

− b1(z − c2)

b2(z − 1)
+

a1

1− a2

(
c2 − 1

w − 1
+

c2 − 1

z − 1

))
,
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A4 =
1

2

(
−c1

a1 − c1 − 1
− −c1

z − 1

)(
a2

a1 − c1 − 1
+

a2(z − 1 + c1)

(a1 − 1)(z − 1)

)
,

A5 =
1

2
· a2

b1(a1 − 1)
·
(
b1(z − 1) + c1

z − 1

)2

,

A6 =
1

2

(
z − a1

z − 1
− −c1

a1 − c1 − 1

)(
a2

a1 − c1 − 1
+

a2

z − 1

)
,

A7 =
1

2
·
(

−b2
a1 + a2 − (b1 + b2)− 1

− 1

)2

,

A8 =
1

2

(
b1

a1 + a2 − (b1 + b2)− 1
+

b1
b2

)(
−b2

a1 + a2 − (b1 + b2)− 1
− 1

)
,

A9 =
1

2

(
− b1 + b2

b2
− b1 + b2

z − 1

)(
−b2
z − 1

− 1

)
,

A10 =
1

2
·
(
b2(z − (a1 + a2))

(b1 + b2)(z − 1)
− 1

)2

,

A11 =
1

2

(
−b1(z − (a1 + a2))

(b1 + b2)(z − 1)
+

b1
b2

)(
b2(z − (a1 + a2))

(b1 + b2)(z − 1)
− 1

)
,

A12 =
1

2

(
− b1
b2

− a1 + a2 − 1

a1 + a2 − (b1 + b2)− 1

)(
−b2

a1 + a2 − (b1 + b2)− 1
− 1

)
,

A13 =
1

2
· (c2 − 1)2 ,

A14 =
1

2
·
(
b1
b2

− c1

)
(c2 − 1) ,

A15 =
1

2

(
− a1 + a2 − 1

a1 + a2 − (b1 + b2)− 1
− b1

b2

)(
−b2

a1 + a2 − (b1 + b2)− 1
− 1

)
,

A16 =
1

2

(
1− (c1 + c2)−

a1 + a2 − 1

z − 1

)(
c2 −

z − a2

z − 1

)
,

A17 =
1− a2

z − 1

(
1− (c1 + c2)−

a1 + a2 − 1

z − 1

)
.

We obtain

∫
f∈R1

+

∫
f∈R2

=

⎧⎪⎨
⎪⎩
0 if 1 < z ≤ w,

A1 + A3 if w < z ≤ a2−b2
a2

,

A2 + A3 if a2−b2
a2

< z < +∞,
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∫
f∈R3

+

∫
f∈R4

=

⎧⎪⎨
⎪⎩
0 if 1 < z ≤ a1 − c1,

A4 + A6 if a1 − c1 < z ≤ b1−c1
b1

,

A4 − A5 + A6 if b1−c1
b1

< z < +∞,

∫
f∈R5

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 1 < z < a1 + a2 − (b1 + b2)

or a1 + a2 − b1 − 1 > 0,

A7 − A8 − A9 if a1 + a2 − (b1 + b2) ≤ z ≤ 1− b2

and a1 + a2 − b1 − 1 ≤ 0,

A7 − A8 if 1− b2 < z < +∞
and a1 + a2 − b1 − 1 ≤ 0,

∫
f∈R6

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 1 < z < a1 + a2 − (b1 + b2),

A10 − A11 −A12 if a1 + a2 − (b1 + b2) ≤
z ≤ a1+a2−(c1+c2)

1−(c1+c2)
and

a1 + a2 − b1 − 1 ≤ 0,

A10 − A11 if a1 + a2 − (b1 + b2) ≤
z ≤ a1+a2−(c1+c2)

1−(c1+c2)
and

a1 + a2 − b1 − 1 > 0,

A13 − A14 −A15 + A16 + A17 if a1+a2−(c1+c2)
1−(c1+c2)

< z < +∞
and a1 + a2 − b1 − 1 ≤ 0,

A13 − A14 +A16 + A17 if a1+a2−(c1+c2)
1−(c1+c2)

< z < +∞
and a1 + a2 − b1 − 1 > 0.

This leads to the lower bound on P T3(z) which we wanted, namely

P T3(z) ≥ 1

A(T3)

6∑
j=1

∫
f∈Rj

1{t̄ ≤ z}df.

As for quadrilaterals, we did not succeed in showing algebraically the
convergence of this lower bound to 1 when w converges to 1. How-
ever, simulations with discretized parameters a1 ∈ {3, 4, . . . , 1 000 000},
a2 ∈ {0.001, 0.002, . . . , 0.999}, and b1 ∈ {0.001, 0.002, . . . , 0.999} (where
b1 < a2

a1+a2−1
) such that w converges to 1 suggest that this is the case.





CHAPTER 7

ON FINITENESS OF LATTICE-FREE

POLYHEDRA

In the previous three chapters, we focused on the evaluation of cutting planes
with a particular emphasis on dimension two. Now, we return to the relation
between cutting planes and lattice-free polyhedra.

Our point of departure is Lemma 3.3 (see p. 15) in which we assign to
every valid inequality for conv(PI) a lattice-free polyhedron. In particular,
we show that every non-trivial facet-defining inequality for conv(PI) can be
derived from a lattice-free rational polyhedron having the root vertex f in
its interior (see Assumption 3.5 on p. 17 and the preceding paragraph). In
this chapter, we want to analyze those polyhedra which correspond to valid
inequalities for conv(PI) that are “important” in a cutting plane framework.
We consider a class Z of polyhedra to be “important” if the cuts associated
with the polyhedra in Z ensure that a cutting plane algorithm which is
based on these cuts stops after a finite number of steps with an optimal
mixed-integer point1. We recall that the precision of a rational polyhedron
P is the smallest natural number s such that the set sP = {sx : x ∈ P}
is an integral polyhedron. If we fix a dimension d and a precision s, then
our main result in this chapter is that, up to unimodular transformations,
the number of lattice-free rational polyhedra of precision s which are not
properly contained in another lattice-free rational polyhedron of precision s

1By assumption, the feasible region of our underlying MILP (1.1) (see p. 1) is non-empty
and its linear programming relaxation is bounded. Thus, there is indeed a (bounded)
mixed-integer solution.
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is finite. The special case s = 1 (meaning lattice-free integral polyhedra)
is important for cutting plane generation. To explain why, let us briefly
review the main results from the literature concerning the relation between
mixed-integer cutting plane theory and lattice-free polyhedra.

The study of lattice-free polyhedra was motivated by research in mixed-
integer linear optimization in the 1970s. Balas [Bal71] ignited the applica-
tion of lattice-free convex sets for cutting plane generation. Originally, he
used a hypersphere S passing through the vertices of a translate of the unit
hypercube which contains an optimal vertex x∗ of the linear programming
relaxation. In order to determine the coefficients of a cut, he computed the
intersection of S with certain half-lines emanating from x∗. He obtained
these half-lines from the simplex tableau associated with x∗ (in our notation
x∗ corresponds to f and the half-lines are the rays rj). Balas mentioned that,
in principle, any lattice-free closed convex set with x∗ in its interior could be
employed. Thus, given the way the cuts are constructed, it suffices to con-
sider lattice-free closed convex sets with non-empty interior which are not
properly contained in another lattice-free closed convex set. In other words,
one can restrict to maximal lattice-free sets in Kd for some dimension d. It
was Lovász [Lov89] who characterized these sets first, in particular he showed
that every such set is a polyhedron (see [Lov89, Proposition 3.2]). In view
of the algorithmic applications that we have in mind, we further restrict our
attention to rational polyhedra, i.e. we consider maximal lattice-free rational
polyhedra in Kd for some dimension d. We refer to Proposition 2.1 on p. 12
for a summary of the most important properties of these polyhedra.

The fact that any lattice-free polyhedron with non-empty interior can be
used to derive a cutting plane poses the question: which of these polyhedra
should be used within a cutting plane framework to ensure finite convergence?
Del Pia and Weismantel gave an answer to this question. They proved that
it is enough to use only cuts associated with lattice-free integral polyhedra
(see [DPW11, Theorem 4]) to find an optimal mixed-integer point in a finite
number of applied rounds. Let d ∈ N and let Id denote the set of all lattice-
free integral polyhedra in Rd which are not properly contained in another
lattice-free integral polyhedron2. From the results of Del Pia andWeismantel,
it follows that only the elements in Id are needed for finite convergence.
Therefore, it is natural to ask for a characterization of the set Id.

In this chapter we shed light on a class of polyhedra which is a generaliza-
tion of the class Id. As a corollary of the results of this chapter, we infer that
Id/Aff(Zd), i.e. the set of distinct (meaning that no two elements coincide by

2We point out that this notion of inclusion-maximality is different from the notion of
maximal lattice-freeness. The precise relation will be explained in more detail in the
next section.
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applying a unimodular transformation) elements in Id, is a finite set whose
number of elements is bounded by a constant which is only dependent on d.

Theorem 7.1. Let d ∈ N. Then there exists a constant C(d) ∈ N, depending
only on d, and polyhedra P1, . . . , PC(d) ∈ Id such that every P ∈ Id satisfies
P = UPj + v for some unimodular matrix U ∈ Zd×d, integral vector v ∈ Zd,
and j ∈ {1, . . . , C(d)}.

In Section 7.1, we introduce the notation which we use in the course of this
chapter. In particular, we define the two basic sets Pd

fmi(s) and Pd
ifm(s). The

finiteness of the set Pd
ifm(s)/Aff(Λ) is shown in Section 7.2. Our finiteness

proof relies on the existence of a volume bound for polytopes in Pd
ifm(s). In

Section 7.3 we investigate such a bound in more detail. Section 7.4 is devoted
to a discussion of the relation between Pd

fmi(s) and Pd
ifm(s).

7.1 Preliminaries and main results

We recall that Pd denotes the set of (not necessarily full-dimensional) poly-
hedra in Rd. Furthermore, if Λ is a (full-dimensional) lattice in Rd, then a
polyhedron P ∈ Pd is called Λ-free if int(P ) ∩ Λ = ∅. In this chapter, we
restrict Λ to be sZd = {sx : x ∈ Zd} for some s ∈ N. Let π denote the projec-
tion onto the first d− 1 coordinates, i.e. the mapping π(x) := (x1, . . . , xd−1),
where x = (x1, . . . , xd) ∈ Rd. This implies π(Λ) = sZd−1. We are concerned
with the interplay of the following three properties of polyhedra:

• integrality (abbreviated with “i”),

• Λ-freeness (abbreviated with “f” and an additional “s” in
brackets to indicate the dependency on Λ = sZd),

• inclusion-maximality in a given class (abbreviated with “m”).

By Pd
i we denote the set of integral polyhedra belonging to Pd, by Pd

if(s)
the set of Λ-free polyhedra belonging to Pd

i , and by Pd
ifm(s) the set of elements

of Pd
if(s) which are maximal within Pd

if(s) with respect to inclusion. We are
interested in polyhedra in Pd

ifm(s) which do not coincide modulo Aff(Λ),
since this identification preserves affine properties relative to the lattice Λ.
In particular, two polyhedra P,Q ∈ Pd

ifm(s) which coincide up to an affine
transformation in Aff(Λ) contain the same number of lattice points in Zd and
Λ on corresponding faces. We are now ready to present our main result.

Theorem 7.2. Let d, s ∈ N. Then Pd
ifm(s)/Aff(Λ) is a finite set.
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Let us assume that P ∈ Pd is a maximal lattice-free rational polyhedron
with non-empty interior and let the precision of P be s. Then sP is an
integral polyhedron. Moreover, the maximality and lattice-freeness of P with
respect to the standard lattice Zd transfers one-to-one into a maximality
and Λ-freeness of sP with respect to the lattice Λ = sZd. Thus, instead
of analyzing “maximal lattice-free rational polyhedra” (which correspond
to valid inequalities for conv(PI) when rational data is assumed) we can
equivalently consider the more convenient set of “maximal Λ-free integral
polyhedra”. Indeed, from an analytical point of view, the latter set is easier to
handle since results from the literature stated in terms of integral polyhedra
can be used.

We now relate maximal Λ-free integral polyhedra to the set Pd
ifm(s). Let

Cd
fm(s) be the class of Λ-free convex sets in Rd which are not properly con-

tained in another Λ-free convex set. The elements of Cd
fm(s) are polyhedra

(see [Lov89, Proposition 3.2]). Thus, Cd
fm(s) is the class of maximal Λ-free

polyhedra in Rd. Since Cd
fm(s) is a set of polyhedra, we use a more intuitive

notation and change the “C” to “P”, i.e. we define Pd
fm(s) := Cd

fm(s). Let
Pd

fmi(s) := Pd
i ∩ Pd

fm(s) be the class of maximal Λ-free integral polyhedra in
Rd. By definition we have Pd

fmi(s) ⊆ Pd
ifm(s). We point out that the order of

the subscripted indices “i”, “f”, and “m” indicates how the classes Pd
fmi(s)

and Pd
ifm(s) are defined. Since the difference between the two classes Pd

fmi(s)
and Pd

ifm(s) is crucial for the remainder of this chapter, we emphasize that
Pd

fmi(s) contains the Λ-free integral polyhedra in Rd which are not properly
contained in another Λ-free convex set, whereas Pd

ifm(s) contains the Λ-free
integral polyhedra in Rd which are not properly contained in another Λ-free
integral polyhedron. In Section 7.4, we will investigate the relation between
Pd

fmi(s) and Pd
ifm(s) in more detail. Let us now summarize the known inclu-

sions:

Pd
fmi(s) ⊆ Pd

ifm(s), (7.1)

Pd
ifm(s) ⊆ Pd

if(s) ⊆ Pd
i ⊆ Pd,

Pd
fmi(s) = Pd

i ∩ Pd
fm(s) ⊆ Pd

fm(s) = Cd
fm(s) ⊆ Pd.

The finiteness of the set Pd
fmi(s)/Aff(Λ) follows directly from (7.1) and Theo-

rem 7.2. In particular, if we choose s = 1, we obtain that for every dimension
d, up to unimodular transformations, there is only a finite number of maxi-
mal lattice-free integral polyhedra. One more consequence of Theorem 7.2 is
the following. If we fix the dimension d and choose some integer s ≥ 1, then
Theorem 7.2 implies that, up to unimodular transformations, there is only
a finite number of lattice-free polytopes with vertices in 1

s
Zd which are not

properly contained in another lattice-free polytope with vertices in 1
s
Zd. In

particular, Theorem 7.1 follows from Theorem 7.2 and Id = Pd
ifm(1).
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7.2 Proof of Theorem 7.2

In this section, we prove Theorem 7.2. If d = 1, then it is easy to see that
P1

fmi(s) = P1
ifm(s) = {[k, k + s] : k ∈ sZ}. Consequently, up to a Λ-preserv-

ing transformation, we have only one single polyhedron. Therefore, in the
remainder of this section we assume that d ≥ 2. We note that for every
d, s ∈ N the set conv({o, sde1, . . . , sded}) belongs to Pd

fmi(s) (and thus to
Pd

ifm(s)), i.e. the sets which we consider are indeed non-empty. Let us first
highlight the main steps of the proof of Theorem 7.2.

1. Reduction to polytopes. Every unbounded P ∈ Pd
ifm(s) is the direct

product of an affine space and a polytope in Pk
ifm(s) for some 1 ≤ k ≤ d

(see Proposition 7.3). Thus, it suffices to verify finiteness only for
polytopes within Pd

ifm(s).

2. Bounding |P ∩ Λ|. Consider a polytope P ∈ Pd
ifm(s). We construct

an upper bound on the number of points of Λ on the boundary of P .
For that, we use the lattice diameter. The lattice diameter of P with
respect to Λ is defined as the maximum of |l∩P ∩Λ|−1 over all lines l
in Rd. We show that the lattice diameter of P is bounded from above
by a constant which is only dependent on d and s. This is done as
follows.

We assume by contradiction that, for some line l, |l ∩ P ∩ Λ| − 1 is
a large number M . By a Λ-preserving transformation, we can choose
l = lin({ed}). Let P ′ be the projection of P onto the first d− 1 coordi-
nates. Then π(l) = o and from P ∈ Pd

ifm(s) it follows int(P ′)∩π(Λ) 	= ∅
(see Lemma 7.9). Let p ∈ int(P ′) ∩ π(Λ) be arbitrary. We construct a
k-dimensional simplex S with vertices o = p0, p1, . . . , pk in Zd−1 such
that p is the only point of π(Λ) in the relative interior of S. This
construction is the key ingredient in our proof (see Lemma 7.8). Let
λ0, . . . , λk be the barycentric coordinates of p with respect to S. By
results of Hensley [Hen83] and Lagarias and Ziegler [LZ91] (see Theo-
rem 7.6), the λi’s are bounded from below by a constant which is only
dependent on d and s. The length of (p+ l)∩P is bounded from below
in terms of λ0 and M . More precisely, when choosing a larger M , then
the lower bound on the length of (p + l) ∩ P also becomes larger. On
the other hand, since P is Λ-free, the length of (p+ l)∩P is at most s.
So, if M is too large, this leads to a contradiction.

The upper bound on the lattice diameter implies an upper bound on
|P ∩ Λ| (see Lemma 7.10).

3. Conclusion of finiteness. The upper bound on |P ∩Λ| together with
results of Hensley [Hen83] and Lagarias and Ziegler [LZ91] (see Theo-
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rem 7.7) implies an upper bound on the volume of P (see Theorem 7.5).
All bounds only depend on d and s. This, in turn, yields finiteness of
Pd

ifm(s)/Aff(Λ) (see Theorem 7.4).

The fact that we can restrict to the study of polytopes in Pd
ifm(s) is a

consequence of the following proposition. We point out that a similar result
is true for the set Pd

fm(s) as well (see [Lov89, Proposition 3.1]).

Proposition 7.3. Let d, s ∈ N and let P ∈ Pd
ifm(s). Then there exists

some k ∈ {1, . . . , d} and a polytope P ′ ∈ Pk
ifm(s) such that P ≡ P ′ × Rd−k

(mod Aff(Λ)).

Proof. If P is bounded, the assertion is trivial as we let k = d and P ′ = P .
Let P be unbounded. By an inductive argument, it suffices to show the
existence of a polyhedron P ′ ∈ Pd−1

ifm (s) such that P ≡ P ′×R (mod Aff(Λ)).
Since P is unbounded, the recession cone of P contains non-zero vectors.

Since P is integral, the recession cone of P is an integral polyhedron (see,
for instance, [Sch86, Section 16.2]). Thus, the recession cone of P contains a
non-zero integer vector u. By scaling, we can assume that u ∈ Λ.

Applying a Λ-preserving transformation, we assume that u = t · s · ed for
some t ∈ N. It follows that the polyhedron P ′ := π(P ) ⊆ Rd−1 is π(Λ)-free.
In fact, assume there exists a point p′ ∈ int(P ′)∩π(Λ). Then int(P )∩π−1(p′)
is non-empty and contains infinitely many points of Λ, a contradiction to the
choice of P .

Since P ′ is π(Λ)-free, π−1(P ′) is Λ-free. By construction, P ⊆ π−1(P ′),
and since P is maximal in Pd

if(s) we even have P = π−1(P ′). Furthermore,
P ′ ∈ Pd−1

ifm (s). In fact, if P ′ were not maximal in Pd−1
if (s) we could find

P ′′ ∈ Pd−1
if (s) such that P ′ � P ′′. Then P is properly contained in the

Λ-free integral polyhedron π−1(P ′′), a contradiction to the assumptions on
P . By construction, P ≡ P ′ × R (mod Aff(Λ)).

The following theorem is well-known (see, for instance, [LZ91, Theorem 2]).

Theorem 7.4. Let d, s ∈ N and let X ⊆ Pd
i be a set of integral polytopes.

Then the following statements are equivalent.

(i) The set X/Aff(sZd) is finite.

(ii) There exists a constant K(d, s), which depends only on d and s, such
that for every X ∈ X it holds vol(X) ≤ K(d, s).

Due to Theorem 7.4, it remains to show the existence of a constant V (d, s),
which is only dependent on d and s, and which satisfies vol(P ) ≤ V (d, s) for
every polytope P ∈ Pd

ifm(s). Thus, in the remainder of this section we prepare
the proof of the following theorem.
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Theorem 7.5. Let d, s ∈ N. Then there exists a constant V (d, s), which is
only dependent on d and s, such that for every polytope P ∈ Pd

ifm(s) it holds
vol(P ) ≤ V (d, s).

Once Theorem 7.5 is proven, Theorem 7.2 is a direct consequence of Propo-
sition 7.3 and Theorems 7.4 and 7.5. Thus, let us now prove Theorem 7.5.

The proof of Theorem 7.5 relies on results of Hensley [Hen83] and Lagarias
and Ziegler [LZ91]. Hensley showed that the volume and the number of
integer points of a d-dimensional integral polyhedron with precisely k > 0
interior integer points is bounded from above by a constant which depends
only on d and k. Lagarias and Ziegler improved these bounds and generalized
parts of Hensley’s results. For the proof of Theorem 7.5, we make use of
two results from [Hen83] and [LZ91]. We recommend to look up the notions
simplex and barycentric coordinates on p. 10 since they are frequently used in
the following. The next theorem states that, for every d-dimensional integral
simplex S in Rd with precisely one interior point p in sZd, all barycentric
coordinates of p with respect to S are bounded from below by a (strictly)
positive constant which depends only on d and s.

Theorem 7.6. ([Hen83, Theorem 3.1] and [LZ91, Lemma 2.2].) Let d, s ∈
N. Then there exists a constant λ∗(d, s) > 0, which is only dependent on
d and s, such that for every d-dimensional integral simplex S ∈ Pd with
int(S)∩ sZd = {p}, all barycentric coordinates λ0, . . . , λd of p with respect to
S satisfy λi ≥ λ∗(d, s).

We point out that, in the formulation of Theorem 7.6, λ∗(d, s) is not
necessarily best possible. Once some λ∗(d, s) is known, then any smaller
positive constant works as well. Thus, it is always possible (and will be
convenient later) to choose the values λ∗(d, s) to be non-increasing in d ∈ N.
In fact, the currently best known concrete values for λ∗(d, s), given in [LZ91,
Lemma 2.2], are non-increasing in d. The following theorem will be used to
finalize the proof of Theorem 7.5.

Theorem 7.7. ([Hen83, Theorem 3.6] and [LZ91, Theorem 1].) Let d, s, k ∈
N. Then there exists a constant W (d, s, k), depending only on d, s, and k,
such that for every polytope Q ∈ Pd

i with 1 ≤ | int(Q) ∩ sZd| ≤ k it holds
vol(Q) ≤ W (d, s, k).

We have mentioned all results from the literature that are needed to prove
Theorem 7.5. Let us now show our assertion. We point out that in the
remainder of this section, for all statements and proofs, we always assume
that d ≥ 2 is the underlying dimension and that Λ = sZd for an integer
s ≥ 1.

Let us now introduce two classes of polyhedra which are needed for our
proofs. Let a ∈ Λ and let X d(a) be the class of all polyhedra P ∈ Pd

i
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such that a ∈ relbd(P ) and relint(P ) ∩ Λ 	= ∅. On X d(a) we introduce the
partial order � as follows: for P,Q ∈ X d(a) we define P � Q if and only if
relint(P ) ⊆ relint(Q). Let us verify that the binary relation � is indeed a
partial order. The property P � P is obvious. If P � Q and Q � P , then
relint(P ) = relint(Q). Since P and Q are closed (as they are polyhedra), it
follows P = Q. If P � Q and Q � R, then relint(P ) ⊆ relint(Q) ⊆ relint(R).
Thus P � R.

By Rd(a) we denote the set of the minimal elements of the poset
(X d(a),�), i.e. the set of the elements Q ∈ X d(a) such that there exists
no P ∈ X d(a) with P � Q and P 	= Q. We emphasize that elements of
X d(a) and Rd(a) do not have to be full-dimensional. Furthermore, for every
P ∈ X d(a) there exists some Q ∈ Rd(a) such that Q � P . Indeed, if P is
bounded, this follows from the fact that the set of all Q ∈ X d(a) satisfying
Q � P is finite as

∣∣P ∩ Zd
∣∣ < +∞. If P is unbounded we replace P by

P̄ = conv(P ∩B ∩ Zd), where B is a sufficiently large box centered at a and
such that relint(P̄ ) ∩ Λ 	= ∅. Then we apply the argument for the bounded
case to P̄ . In particular, it follows that all elements of Rd(a) are bounded.

We remark that for P,Q ∈ X d(a) the condition relint(P ) ⊆ relint(Q) holds
if and only if one has P ⊆ Q and relint(P ) ∩ relint(Q) 	= ∅. Indeed, first
assume that relint(P ) ⊆ relint(Q). Since P and Q are closed, this implies
P ⊆ Q. From P ∈ X d(a), it follows that relint(P ) 	= ∅ and thus we obtain
relint(P ) ∩ relint(Q) = relint(P ) 	= ∅. For the converse assume that P ⊆ Q
and relint(P ) ∩ relint(Q) 	= ∅. Then

∅ 	= relint(P ) = relint(P ∩Q) = relint(P ) ∩ relint(Q) ⊆ relint(Q),

where the non-emptiness of relint(P ) follows from P ∈ X d(a), the first equal-
ity from P ⊆ Q, and the second equality from [Roc72, Theorem 6.5]).

It turns out that the elements of Rd(a) have a very specific shape which
is described below.

Lemma 7.8. Let a ∈ Λ and P ∈ Rd(a). Then P has the following properties.

I. P is a simplex of dimension k ∈ {1, . . . , d}.

II. The point a is a vertex of P .

III. The set relint(P ) ∩ Λ consists of precisely one point.

IV. The facet F of P opposite to the vertex a satisfies F ∩ Zd = vert(F ).

Proof. Let P ∈ Rd(a) and let q ∈ relint(P ) ∩ Λ be arbitrary. Consider the
point 2q− a which is the reflection of a with respect to q. First assume that
2q−a ∈ P . Then q ∈ relint(P )∩ relint([a, 2q−a]) and [a, 2q−a] ⊆ P . Thus,
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since P ∈ Rd(a), we have P = [a, 2q − a]. Again, since P ∈ Rd(a), q is the
only point of Λ in relint(P ). For such a P , Parts I–IV follow immediately.
In the remainder of the proof let 2q − a 	∈ P .

Parts I and II. Let b be the intersection point of [a, q〉 and relbd(P )
(such an intersection point exists since P is bounded as it is an element
of Rd(a)). Since q ∈ relint([a, b]) we have q = (1 − λ)a + λb for some
0 < λ < 1. Consider a facet F of P which contains b. Since P is integral, F
is also integral, i.e. F = conv(F ∩ Zd). By Carathéodory’s theorem (see, for
instance, [Sch93a, Theorem 1.1.4]), there exist affinely independent points
q1, . . . , qk ∈ F ∩ Zd such that b = λ1q1 + · · ·+ λkqk for some λ1, . . . , λk > 0
with λ1 + · · · + λk = 1. Thus, q = (1 − λ)q0 + λλ1q1 · · · + λλkqk, where
q0 := a. The point a = q0 does not belong to aff(F ). In fact, otherwise
a ∈ P ∩ aff(F ) = F and since b ∈ F we get q ∈ F , a contradiction to
q ∈ relint(P ). Hence q0, . . . , qk are affinely independent. Since P ∈ Rd(a),
we have P = conv({q0, . . . , qk}). Therefore P is a simplex of dimension k
and a is a vertex of P .

In the remainder of the proof let P = conv({q0, . . . , qk}) with q0 := a and
q1, . . . , qk defined as above.

Part III. For j = 0, . . . , k let Pj be the simplex with vertices {q, q0, . . . , qk}\
{qj}. It can be verified with straightforward arguments that P = P0∪· · ·∪Pk

and that the relative interiors of the simplices Pj are pairwise disjoint. For
proving Part III, we argue by contradiction. We assume that relint(P ) ∩ Λ
contains a point q′ with q′ 	= q. Let us show that q′ ∈ P0. Assume the
contrary. Then q′ ∈ Pj for some j ∈ {1, . . . , k}. Let F be the face of
Pj with q′ ∈ relint(F ). Since q′ 	∈ P0, a is a vertex of F . The exis-
tence of F � P with q′ ∈ relint(F ) and a ∈ vert(F ) contradicts the fact
that P ∈ Rd(a). Hence q′ ∈ P0. We define Q := conv((P0 ∩ Zd) \ {q}).
Since q′ ∈ relint(P ), and q′, q1, . . . , qk ∈ Q, the polytope Q has the same
dimension as P . We have [a, q〉 ∩ Q = [b′, b], where b′ ∈ relint(P ) and
b ∈ relbd(P ). Since q ∈ relint([a, b′]) one has q = (1 − λ)a + λb′ for some
0 < λ < 1. Let now G be the facet of Q containing b′. The point a = q0
does not belong to aff(G). In fact, otherwise aff(G) would contain [b′, b],
which implies aff(G) ∩ relint(Q) 	= ∅, a contradiction. Using Carathéodory’s
theorem, let p1, . . . , pm be affinely independent vertices of G such that
b′ = λ1p1 + · · · + λmpm for some λ1, . . . , λm > 0 with λ1 + · · · + λm = 1.
Then q = (1− λ)p0 + λλ1p1 + · · ·+ λλmpm with p0 := a. Since p0 	∈ aff(G)
and since p1, . . . , pm ∈ G are affinely independent, we see that p0, . . . , pm
are affinely independent. The simplex S = conv({p0, . . . , pm}) is properly
contained in P (as b /∈ S), contains the point a on its relative boundary and
satisfies q ∈ relint(S)∩ relint(P ), a contradiction to the fact that P ∈ Rd(a).
This shows Part III.
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Part IV. We argue by contradiction. Let F be the facet of P opposite
to a and assume that vert(F ) � F ∩ Zd. Let S1, . . . , Sm be a triangulation
constructed on the points F∩Zd. Then S1, . . . , Sm are simplices with pairwise
disjoint interiors having the same dimension as F and such that F ∩ Zd =⋃m

i=1 vert(Si), F =
⋃m

i=1 Si, and for every Si, vert(Si) are the only integer
points in Si. By assumption, we have Si 	= F for every i. Moreover, there
exists a simplex Sj such that [a, q〉 ∩ Sj is non-empty. Let b be the point
[a, q〉 ∩ Sj . Further on, let G be the face of Sj with b ∈ relint(G). By
construction, q ∈ relint(P̄ ) where P̄ := conv({a} ∪ G) and P̄ � P . This
contradicts the fact that P ∈ Rd(a).

Lemma 7.8 and the following Lemma 7.9 are used to prove Lemma 7.10.

Lemma 7.9. Let P ∈ Pd
ifm(s) be a polytope. Then int(π(P )) ∩ π(Λ) 	= ∅.

Proof. If P ′ := π(P ) satisfies int(P ′)∩ π(Λ) = ∅, then π−1(P ′) is Λ-free and
integral, and then in view of the maximality of P , one has π−1(P ′) ⊆ P
which contradicts the boundedness of P .

In the following lemma we prove that the number of points of Λ on the
boundary of a polytope P ∈ Pd

ifm(s) is bounded by a constant which is only
dependent on d and s.

Lemma 7.10. Let d, s ∈ N. Then there exists a constant N(d, s), which is
only dependent on d and s, such that for every polytope P ∈ Pd

ifm(s) it holds
|P ∩ Λ| ≤ N(d, s).

Proof. Let P ∈ Pd
ifm(s) be a polytope. We explicitly construct an upper

bound N(d, s) on the number of points in P ∩ Λ. Assume, by contradiction,
that |P ∩ Λ| ≥ Md + 1, where

M :=

⌈
1

λ∗(d− 1, s)
+ 1

⌉

with λ∗(d − 1, s) defined as in Theorem 7.6. Thus, there exist two distinct
points v, w ∈ P ∩ Λ such that 1

s
v ≡ 1

s
w (mod M). Then we can choose

M + 1 pairwise distinct points z0, . . . , zM in P ∩ Λ ∩ aff({v, w}) such that
conv({z0, . . . , zM}) ∩ Λ = {z0, . . . , zM}. Performing a Λ-preserving transfor-
mation we assume that zj = j · sed for j = 0, . . . ,M . One has π(zj) = o
for every j = 0, . . . ,M . Since M ≥ 2 (which follows from λ∗(d − 1, s) > 0),
o is a boundary point of P ′ := π(P ), otherwise P would not be Λ-free. By
Lemma 7.9, int(P ′) ∩ π(Λ) 	= ∅.

By construction, P ′ is integral and belongs to X d−1(o). Thus, there exists
a polytope Q ∈ Rd−1(o) with relint(Q) ⊆ int(P ′). By Lemma 7.8, Q is a
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simplex with precisely one point of π(Λ), say p, in the relative interior. Let
k be the dimension of Q and let p0, . . . , pk be the vertices of Q with p0 := o.
By Theorem 7.6, if p =

∑k
j=0 λjpj with λ0, . . . , λk > 0 and λ0+ · · ·+λk = 1,

then3 one has λj ≥ λ∗(k, s) ≥ λ∗(d − 1, s) for every j = 0, . . . , k (remember
that λ∗(d, s) in Theorem 7.6 is assumed to be non-increasing in d).

For a point x ∈ P ′, let τ (x) denote the length of the line segment π−1(x)∩P
(and thus, τ represents an “X-ray picture” of P ). Employing the convexity
of P we see that τ is concave on P ′. Consequently,

τ (p) = τ

(
k∑

j=0

λjpj

)
≥

k∑
j=0

λjτ (pj) ≥ λ0τ (p0) ≥ λ∗(d− 1, s)sM > s,

where the first inequality follows from the concavity of τ , the second inequal-
ity from λj > 0 and τ (pj) ≥ 0 for all j = 1, . . . k, and the third inequality
from λ0 ≥ λ∗(d− 1, s) and the fact that {j · sed : j = 0, . . . ,M} ⊆ π−1(p0).

On the other hand, since p ∈ int(P ′)∩π(Λ), we have τ (p) ≤ s as otherwise
P would not be Λ-free. Thus, this gives a contradiction to our assumption
on |P ∩ Λ|. It follows that P contains at most Md points in Λ and we can
choose N(d, s) := Md.

Proof of Theorem 7.5. Let P ∈ Pd
ifm(s) be a polytope. In the following, we

enlarge P to a polytope Q ∈ Pd
i such that P ⊆ Q and ∅ 	= int(Q) ∩ Λ ⊆

P ∩ Λ. By Lemma 7.10, this implies 1 ≤ | int(Q) ∩ Λ| ≤ |P ∩ Λ| ≤ N(d, s).
Then, by Theorem 7.7, vol(P ) ≤ vol(Q) ≤ W (d, s,N(d, s)). Consequently,
vol(P ) ≤ V (d, s) := W (d, s,N(d, s)).

Let us now construct the polytope Q. For that, we consider a sequence of
polytopes P i which we define iteratively. Choose an arbitrary p1 ∈ Λ such
that p1 	∈ P and let P 1 := conv(P ∪ {p1}). For i ≥ 1, we proceed as follows.
If int(P i) ∩ Λ ⊆ P ∩ Λ, then we stop and define Q := P i. Otherwise, we
select pi+1 ∈ (int(P i)∩Λ) \ (P ∩Λ) and set P i+1 := conv(P ∪{pi+1}). Note
that P i+1 � P i for all i ≥ 1 and that the sequence is finite since P is a
polytope. Eventually, we construct a polytope Q ∈ Pd

i such that P ⊆ Q
and int(Q) ∩ Λ ⊆ P ∩ Λ. Furthermore, int(Q) ∩ Λ 	= ∅ since P is properly
contained in Q and P is maximal within Pd

if(s) with respect to inclusion.

3Theorem 7.6 deals with full-dimensional simplices, but one can show that the statement
is also true for a lower-dimensional simplex Q as in the proof of Lemma 7.10. To see
this, observe that there exists an integer vector l such that aff(Q)− l is a linear space

L of dimension k ∈ {1, . . . , d − 1}. In particular, L ∩ Z
d is a lattice of rank k. We

have L∩(sZd) = s(L∩Z
d). Indeed, let y ∈ L∩(sZd). Then clearly y ∈ s(L∩Z

d). On

the other hand, if y ∈ s(L∩ Z
d), then y ∈ sL = L and y ∈ sZd. Thus, y ∈ L∩ (sZd).

This means that, by considering aff(Q), we are concerned with the lattices L ∩ Z
d

and s(L ∩ Z
d) instead of the lattices Z

d and sZd, respectively (which is the same, up
to a lattice transformation).
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Proof of Theorem 7.2. Follows immediately from Proposition 7.3 and Theo-
rems 7.4 and 7.5.

Remark 7.11. Let us analyze the inherent reason for the finiteness of the
set Pd

ifm(s)/Aff(Λ). Theorem 7.2 results from the combination of three state-
ments: Proposition 7.3 and Theorems 7.4 and 7.5. Proposition 7.3 is used
to reduce the proof of Theorem 7.2 to the consideration of polytopes, but it
does not guarantee finiteness. Theorem 7.4 holds true for every set of integral
polytopes, but it does not imply finiteness for the specific set Pd

ifm(s)/Aff(Λ).
However, Theorem 7.5 exploits the intrinsic properties of polytopes in Pd

ifm(s).
Therefore, finiteness of the set Pd

ifm(s)/Aff(Λ) comes from the fact that we
are able to bound the volume of polytopes in Pd

ifm(s) from above in terms of
d and s alone. As can be seen from the proof of Theorem 7.5, the crucial
ingredients are the Theorems 7.6 and 7.7. All the other statements which
we presented in this section are, in principle, concatenations of arguments to
combine the Theorems 7.6 and 7.7 in an appropriate way.

By digging a bit further in the papers of Hensley [Hen83] and Lagarias
and Ziegler [LZ91], one sees that the proof of Theorem 7.7 basically relies on
Theorem 7.6. The reason is that Theorem 7.7 is proved first for simplices
and then the arguments are used for polytopes which are no simplices. In
turn, the key ingredient in the proof of Theorem 7.6 is a certain Diophan-
tine approximation lemma (see [Hen83, Lemmas 2.1 and 3.1] and [LZ91,
Lemma 2.1]).

Thus, after a couple of arguments, finiteness of the set Pd
ifm(s)/Aff(Λ)

follows from the fact that, for every d-dimensional integral simplex S in Rd

with precisely one interior point p in sZd, each barycentric coordinate of p
with respect to S is bounded from below by a (strictly) positive constant which
is only dependent on d and s. In other words, finiteness is implied by the
property that p has a minimum distance from the boundary of S.

Remark 7.12. To the best of our knowledge, the finiteness of the set
Pd

ifm(s)/Aff(Λ) for every d, s ∈ N was not known so far. However, im-
portant partial results4 were derived by Lawrence [Law91] and Treutlein
[Tre08, Tre10]. Lawrence’s results imply finiteness of the set Pd

ifm(1)/Aff(Zd)
(see [Law91, Theorem 4]). His proof technique differs widely from ours
and it is not immediately clear how his proof can be generalized to s ≥ 1.
Treutlein shows a more general result which implies the finiteness of the

4The author is aware of the possibility that further literature on finiteness of the consid-
ered sets exists. It may well be that the question of finiteness is answered somewhere
in terms of a different mathematical formulation which is not immediately associated
with optimization, polyhedra, or integrality. We tried hard to identify the relevant
sources, but cannot guarantee that some documents are not mentioned here.
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set P3
ifm(1)/Aff(Zd) (see [Tre08, Proposition 4.5] and [Tre10, Proposi-

tion 6.6.4]). His proof technique is similar to ours in the sense that he also
obtains an upper bound on the maximum volume of a polytope in P3

ifm(1),
but a generalization to s ≥ 1 does not leap out directly from his proof. More-
over, Treutlein mentioned that his result should hold for every d ∈ N (this
was later verified by Nill and Ziegler [NZ11], see p. 109). Unfortunately,
Treutlein’s proofs contain some gaps5 which makes it difficult to improve his
volume bound.

7.3 Remarks on the volume bound

In this section, we analyze the constants in our statements and their growth
in d. Let d, s ∈ N and let P ∈ Pd

ifm(s) be a polytope.

As a result of the investigations of Lagarias and Ziegler [LZ91] and
Pikhurko [Pik01], it turns out that the constant W (d, s, k) in Theorem 7.7
must be at least double exponential in d. It can be chosen to be B1 :=

ksd · (7(1+ sk))d·2
d+1

(see [LZ91, Theorem 1]) or to be B2 := k(8ds)d · (8s+
7)d·2

2d+1

(see [Pik01, p. 17, formula (9)])6. From the proof of Theorem 7.5,
it follows that vol(P ) ≤ W (d, s,N(d, s)), where N(d, s) can be chosen to be
(λ∗(d − 1, s))−1 + 1�d, by Lemma 7.10. The best known lower bounds on

the constant λ∗(d, s) are (7(s + 1))−2d+1

(see [LZ91, Lemmas 2.1 and 2.2])

and (8(8s+7)2
d+1

)−1 (see [Pik01, Theorem 2]). It is easy to show that for all

d, s ∈ N it holds (7(s+ 1))−2d+1 ≥ (8(8s+ 7)2
d+1

)−1. Thus, we use the first

bound as lower bound for λ∗(d, s) and thus obtain λ∗(d−1, s) ≥ (7(s+1))−2d .
Substituting this into (λ∗(d− 1, s))−1 + 1�d yields

N(d, s) ≤
(
1 +

(
7(s + 1)

)2d)d

.

5We do not dispute Treutlein’s conclusions, but rather point out that his proofs are
incomplete. For instance, in the proof of Proposition 4.5 in [Tre08, p. 11] the author
writes “we receive after some computation d ≤ 2” (similarly, in the proof of Propo-
sition 6.6.4 in [Tre10, p. 147] the author writes “folgt nach einigen Abschätzungen

l ≤ 2”). In our opinion, the correct bound on d (resp. l) should be 1 + 2 · (√3)−1

which would mean that the case distinction in the proof of Proposition 4.5 in [Tre08]
(resp. Proposition 6.6.4 in[Tre10]) is incomplete. We contacted the author by e-mail
to ask how he computed his bounds and whether the missing case can be excluded
with other arguments. Unfortunately, Treutlein works now as a consultant and is not
involved in these topics anymore, but he was kind enough to send us a copy of his
computations. From that copies, it seems to follow that the case d > 2 (resp. l > 2)
can indeed be neglected.

6We point out that better bounds are known for simplices and refer to [LZ91] and
[Pik01] for details.
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Hence, using B1 gives

vol(P ) ≤ N(d, s) · sd ·
(
7
(
1 + s ·N(d, s)

))d·2d+1

≤ sd ·
(
1 +

(
7(s+ 1)

)2d)d

·
(
7

(
1 + s

(
1 +

(
7(s+ 1)

)2d)d
))d·2d+1

(7.2)

and using B2 leads to

vol(P ) ≤ N(d, s) · (8ds)d · (8s + 7)d·2
2d+1

≤
(
1 +

(
7(s+ 1)

)2d)d

· (8ds)d · (8s+ 7)d·2
2d+1

. (7.3)

It is straightforward to show that the bound in (7.2) is larger than the bound
in (7.3) for all d ∈ N, d ≥ 2 and s ∈ N. Thus, the bound in (7.3) is “best
possible”7, provided that our proof technique is applied and the (so far)
best known bounds on W (d, s, k) and λ∗(d, s) are used. In the asymptotic

notation this bound can be expressed as vol(P ) = (s+ 1)O(d·4d).
Let us now present a family of polytopes which shows that the maximum

volume over all polytopes in Pd
fmi(s) (and thus in Pd

ifm(s)) is at least of order

(s+1)Ω(2d). We use the following sequence considered in [LZ91, Lemma 2.1].
Let y1 := s+1 and yj := 1+s

∏j−1
i=1 yi for j ≥ 2 (equivalently one can use the

recurrence yj := y2
j−1 − yj−1 +1). For every d ≥ 2, we introduce the simplex

S(d,s) := conv({o, y1e1, . . . , yd−1ed−1, (yd − 1)ed}). It is straightforward to
show that S(d,s) belongs to Pd

fmi(s). The volume of S(d,s) can be written as

vol(S(d,s)) =
1

d!

(
d−1∏
i=1

yi

)
(yd − 1) =

1

d!

1

s
(yd − 1)2.

It is noticed in [LZ91, p. 1026] that one has yd ≥ (s + 1)2
d−2

for all d ≥ 2.

This implies that vol(S(d,s)) = (s+ 1)Ω(2d).

Unfortunately, the bound in (7.3) does not help to determine all polytopes
in Pd

ifm(s) for fixed values of d and s since it is tremendously large. For
instance, if d = 3 and s = 1, then (7.3) gives vol(P ) ≤ (24·15128 ·(1+148))3 ≈
7The author is convinced that there is a huge potential for an improvement of this

bound. Such an improvement could be due to another proof technique as well as a
sharpening of the bounds on W (d, s, k) and λ∗(d, s). We refer to Section 7.4 for an

improved bound on the maximum volume of a polytope in Pd
ifm(s).
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1.85 · 10483. Thus, even for small dimensions, an enumeration which is based
on our volume bound and a computer search is intractable8.

7.4 The relation between Pd

fmi
(s) and Pd

ifm
(s)

In this section, we investigate the relation between the two sets Pd
fmi(s) and

Pd
ifm(s). In particular, we focus on the case s = 1 which is of interest in

cutting plane theory. We recall that two polyhedra are called equivalent if
they coincide up to a Λ-preserving transformation, and distinct if they do
not.

By (7.1), we have Pd
fmi(s) ⊆ Pd

ifm(s) for all d, s ∈ N. The complete char-
acterization of all pairs of d, s ∈ N for which the equality Pd

fmi(s) = Pd
ifm(s)

holds true is unknown. Let us summarize the current state of research. For
d = 1, s ≥ 1 and d = 2, s = 1 equality can be verified in a straightforward way.
Indeed, if d = 1, s ≥ 1, then every element in P1

fmi(s) = P1
ifm(s) is equivalent

to the interval [0, s]. If d = 2, s = 1, then every element in P2
fmi(1) = P2

ifm(1)
is either a triangle of type 1 and thus equivalent to conv({o, 2e1, 2e2}), or it
is a split and thus equivalent to conv({o, e1})+lin({e2}). On the other hand,
for d ≥ 2, s ≥ 3 the inclusion is strict. For instance, consider the polyhedron
Qd

s := conv({o, (2s+1)e1, (2s+1)e1+e2, (2s−1)(e1+e2)})+lin({e3, . . . , ed}).
It is easy to verify that Qd

s ∈ Pd
ifm(s) \ Pd

fmi(s).

Recently, Nill and Ziegler showed in a more general context that for every
d ≥ 4 and s ≥ 1 it holds Pd

fmi(s) � Pd
ifm(s) (see [NZ11, Theorem 1.4]). In

particular, for every d ≥ 4, they give an explicit example of a d-dimensional
polytope which belongs to Pd

ifm(1) \ Pd
fmi(1) (see [NZ11, Section 3]). These

examples might be extendable to any s ≥ 1.

In [NZ11, Theorem 2.1] it is shown that every d-dimensional Λ-free integral
polytope in Rd either admits a lattice projection onto a (d− 1)-dimensional
Λ-free integral polytope, or it belongs to a set of finitely many (i.e. up to a
Λ-preserving transformation) “exceptional polytopes”. This result is clearly
a generalization of our Theorem 7.2. Its proof relies on the combination of
results from Kannan and Lovász [KL88] and Pikhurko [Pik01] and is thus
based on a quite heavy machinery. The method of proof which is used by
Nill and Ziegler is similar to our proof of Theorem 7.2 in the sense that it
provides a volume bound for the exceptional polytopes. More precisely, from
[NZ11, Theorem 2.1], it follows that for every polytope P ∈ Pd

ifm(s) it holds

vol(P ) ≤ sd ·
(
1 + 8(d− 1)(8s + 7)2

2d−1
)d

. (7.4)

8This is the reason why our proof of Theorem 8.1 (presented in the next chapter) does
not rely on (7.3).
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It is easy to check that the bound in (7.4) is better (i.e. smaller) than the
bound in (7.3). Nevertheless, both bounds show the same asymptotic behav-
ior with respect to d.

The remaining cases, i.e. d = 2, s = 2 and d = 3, s ∈ {1, 2} are still open.
In the following table, we summarize the current state of research on the
relation between Pd

fmi(s) and Pd
ifm(s) for all pairs of d, s ∈ N. The entry “=”

means that the sets Pd
fmi(s) and Pd

ifm(s) coincide, the entry “�” indicates the
strict inclusion, and “?” means that the relation is unknown.

s \ d 1 2 3 ≥ 4

1 = = ? �
2 = ? ? �

≥ 3 = � � �

Particular attention has been paid to the case d = 3, s = 1. For that case,
Nill and Ziegler [NZ11, Proposition 1.6] could sharpen their volume bound
by proving that the volume of a polytope in P3

ifm(1) is at most 4106 (observe
that (7.4) leads to roughly 3.29 · 10116 and our bound (7.3) gives roughly
1.85 · 10483, see p. 109). This is a vast improvement, but the volume bound
is still too large for a brute force computer search.

There is some indication that P3
fmi(1) = P3

ifm(1) holds true (see, for in-
stance, the discussions in [Ave11]). In Chapter 8, we classify all elements of
P3

fmi(1)/Aff(Z3). This can be seen as a partial result on the way to prove
the equality.

Until now, we attached great weight to volume bounds of polytopes in
Pd

ifm(s). There are (at least) two more questions which are of interest:

(1) How can one test whether a certain polytope belongs to the
set Pd

fmi(s) (resp. Pd
ifm(s))?

(2) How many elements are contained in the set Pd
fmi(s)/Aff(Λ)

(resp. Pd
ifm(s)/Aff(Λ))?

Let us discuss the first question. Membership in the set Pd
fmi(s) can be

checked easily with the help of a result of Lovász: let P ∈ Pd be a full-
dimensional polytope. Then P belongs to Pd

fmi(s) if and only if P is integral,
Λ-free, and every facet of P contains a point of Λ in its relative interior (see
[Lov89, Proposition 3.3]). Thus, P must satisfy three properties in order to
belong to Pd

fmi(s). Integrality of P can be verified by checking the vertices
of P . The other two required properties can be verified by solving a couple
of feasibility problems. Hence, checking membership in the set Pd

fmi(s) is
algorithmically easy (for fixed d). In contrast, it is not clear at all how
membership in the set Pd

ifm(s) can be verified or disproved. If P ∈ Pd is
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given, then the most natural way is probably to identify a (preferably small)
finite set T of integer points in the neighborhood of P (where neighborhood
is not yet specified) and then to check for each x ∈ T separately whether the
convex hull of P ∪ {x} is Λ-free or not. Such a “test set” T must have the
property that P ∈ Pd

ifm(s) if and only if conv(P ∪ {x}) ∩ Λ 	= ∅ for every
x ∈ T . So far, it is not known how such a set T of candidate points can be
constructed. In particular, the lack of knowledge of a test for membership in
Pd

ifm(s) makes it difficult to come up with an efficient computer code for the
enumeration of the polytopes in Pd

ifm(s) based on volume bounds as discussed
above.

Let us now discuss our second question. From volume bounds alone one
cannot infer anything about the cardinalities of the sets Pd

fmi(s)/Aff(Λ) and
Pd

ifm(s)/Aff(Λ). Therefore, we need further tools to attack the second ques-
tion. In the following we show that the set Pd

fmi(s)/Aff(Λ) has exponentially
many elements (for growing d) and we present an easy way to construct ele-
ments of this set. For that, let us introduce the following notation. Assume
that d, s ∈ N. If a ∈ Rd is a vector with aj > 0 for all j = 1, . . . , d, then a
can be used to define a simplex Sd

s (a) := conv({o, sa1e1, . . . , saded}) in the
positive orthant. Moreover, let

δd(a) :=
1

a1
+ · · ·+ 1

ad

and let Δd := {a ∈ Nd : δd(a) = 1 and a1 ≤ . . . ≤ ad} be the set of all vectors
whose entries are monotonically non-decreasingly ordered natural numbers
and whose sum of the corresponding unit fractions is equal to 1. Furthermore,
for a ∈ Nd and x ∈ Rd with xj > 0 for all j = 1, . . . , d we define

a

x
:=

(
a1

x1
, . . . ,

ad

xd

)
.

The following lemma9 shows that for any a ∈ Δd the simplex Sd
s (a) belongs

to Pd
fmi(s).

Lemma 7.13. Let d, s ∈ N and a ∈ Nd. Then the following statements hold.

I. Sd
s (a) is Λ-free if and only if δd(a) ≥ 1.

II. Sd
s (a) is maximal Λ-free if and only if δd(a) = 1.

9Lemma 7.13 was found independently by both, the author and Gennadiy Averkov,
with two different proof techniques. The stated proof is a modification of the proof
of Averkov.
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Proof. The facets of Sd
s (a) are the d trivial inequalities xj ≥ 0 for j = 1, . . . , d

and the inequality δd( a
x
) ≤ s. Thus, x ∈ int(Sd

s (a)) if and only if xj > 0 for

all j = 1, . . . , d and δd( a
x
) < s.

Part I. If δd(a) < 1, then s� ∈ int(Sd
s (a)) since each component of s� is

strictly positive and δd( a
s�

) = sδd(a) < s. Thus, Sd
s (a) is not Λ-free. Now let

δd(a) ≥ 1. Assume there exists some x ∈ int(Sd
s (a))∩Λ. Then we must have

xj ≥ s for all j = 1, . . . , d. However, this implies δd( a
x
) ≥ δd( a

s�
) = sδd(a) ≥

s, which is a contradiction. Hence, Sd
s (a) is Λ-free.

Part II. If δd(a) > 1, then Part I ensures that Sd
s (a) is Λ-free. Fur-

thermore, Sd
s (a) is strictly contained in the Λ-free simplex Sd

s (δ
d(a) · a),

where the Λ-freeness of Sd
s (δ

d(a) · a) follows from Part I and the fact that
δd(δd(a) · a) = 1. Thus, Sd

s (a) is Λ-free, but not maximal Λ-free. Now let
δd(a) = 1. By Part I, Sd

s (a) is Λ-free. In order to show that Sd
s (a) is maxi-

mal Λ-free, we show that every facet of Sd
s (a) has a point of Λ in its relative

interior, which then finishes the proof by a result of Lovász (see [Lov89,
Proposition 3.3]). Consider the facet F0 := conv({sa1e1, . . . , saded}) and
the point p0 := s�. It holds p0 ∈ relint(F0) since p0 is the convex com-
bination of the points sa1e1, . . . , saded with the strictly positive coefficients
(a1)

−1, . . . , (ad)
−1. Now consider the facet Fi := conv({o, sa1e1, . . . , saded}\

{saiei}) for an i ∈ {1, . . . , d}. Then the point pi := s(� − ei) lies in
the relative interior of Fi since it is the convex combination of the points
o and sajej , j ∈ {1, . . . , d} \ {i}, with the coefficients (ai)

−1 and (aj)
−1,

j ∈ {1, . . . , d} \ {i}.

Given any natural numbers d and s, then it follows from Lemma 7.13 that
every a ∈ Nd with δd(a) = 1 defines a maximal Λ-free integral simplex Sd

s (a).
The set Δd describes the distinct simplices of this type, i.e. those simplices
which differ by a Λ-preserving transformation. A result of Sándor states that
there exists a constant C > 1 such that for every d ≥ 3 it holds

|Δd| ≥ C
d3

log(d) ,

where log(x) denotes the logarithm of x > 0 to a base which is greater than
1 (see [Sán03, Theorem 1]). This gives an (asymptotically) exponential lower
bound on the number of elements in Pd

fmi(s)/Aff(Λ). We refer to [Guy04,
p. 257] for a discussion of the set Δd.

In a recent manuscript, Averkov [Ave11] investigates the set Pd
ifm(1) \

Pd
fmi(1). His main message is that this set is highly complex. Averkov shows

that, asymptotically, the number of elements of (Pd
ifm(1) \ Pd

fmi(1))/Aff(Λ)
is exponential in d (see [Ave11, Theorem 2.1]), and that it contains “small”
as well as “large” polytopes (see [Ave11, Theorem 2.2]), where smallness
(resp. largeness) is measured with respect to both, the lattice diameter and
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the lattice size (we refer to [Ave11, p. 3] for the definition of the notion lattice
size). A remarkable feature of Averkov’s method of proof is that he provides
a technique to explicitly construct polytopes in Pd

ifm(1) \ Pd
fmi(1) for every

d ≥ 4. It seems that Averkov’s results can be extended to s ≥ 1.





CHAPTER 8

THREE-DIMENSIONAL MAXIMAL

LATTICE-FREE INTEGRAL

POLYHEDRA

In this chapter, we classify the elements of the set P3
fmi(1)/Aff(Z3). By

Proposition 7.3, we can restrict our attention to (full-dimensional) polytopes.
Let Md denote the set of maximal lattice-free integral polytopes in Rd. Then
Md is the subclass of Pd

fmi(1) which contains all polytopes of Pd
fmi(1). In

Section 7.4, we showed that the cardinality of the set Pd
fmi(s)/Aff(Λ) grows

rapidly in d. From the proof technique used there, it follows that this is
also true for the cardinality of the set Md/Aff(Zd). Moreover, the proof of
Theorem 7.2 does not imply a constructive procedure for an enumeration of
the elements of Md/Aff(Zd).

Having applications in mixed-integer cutting plane theory in mind, it is
desirable to provide a precise classification of Md/Aff(Zd) for small dimen-
sions. The explicit description of M1 and M2 is easy. Indeed, M1 is the set
of all intervals [k, k+1] for an integer k. Thus, up to a unimodular transfor-
mation, the interval [0, 1] is the only maximal lattice-free integral polytope.
In dimension two, it is easy to see that every element of M2 is equivalent to
conv({o, 2e1, 2e2}). However, already the set M3 is rather complex. Thus,
the complete enumeration of the elements of Md for an arbitrary d ≥ 3
is challenging. The main result in this chapter is that we will present the
complete list of all distinct elements of M3.

115
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ples of polytopes in M3/Aff(Z3). We complete his classification by proving
the following theorem.

Theorem 8.1. Let P ∈ M3. Then P is equivalent to one of the following
polytopes (see Fig. 8.1):

• one of the seven simplices

M1 = conv({o, 2e1, 3e2, 6e3}),
M2 = conv({o, 2e1, 4e2, 4e3}),
M3 = conv({o, 3e1, 3e2, 3e3}),
M4 = conv({o, e1, 2e1 + 4e2, 3e1 + 4e3}),
M5 = conv({o, e1, 2e1 + 5e2, 3e1 + 5e3}),
M6 = conv({o, 3e1, e1 + 3e2, 2e1 + 3e3}),
M7 = conv({o, 4e1, e1 + 2e2, 2e1 + 4e3}),

• the pyramid M8 = conv(B∪{a}) with the base B = conv({±2e1,±2e2})
and the apex a = (1, 1, 2),

• the pyramid M9 = conv(B∪{a}) with the base B = conv({2e1,−e1, 2e2,
−e2}) and the apex a = (1, 1, 3),

• the prism M10 = conv(B ∪ (B + u)) with the two bases B and B + u,
where B = conv({e1, e2,−(e1 + e2)}) and u = (1, 2, 3),

• the prism M11 = conv(B ∪ (B + u)) with the two bases B and B + u,
where B = conv({±e1, 2e2}) and u = (1, 0, 2),

• the parallelepiped M12 = conv({σ1u1+σ2u2+σ3u3 : σ1, σ2, σ3 ∈ {0, 1}})
where u1 = (−1, 1, 0), u2 = (1, 1, 0), and u3 = (1, 1, 2).

We remark that the polytopes M1 to M12 in Theorem 8.1 are indeed dis-
tinct in the sense that no two of them coincide by applying a unimodular
transformation.

In Section 8.1, we introduce the tools that we need for proving Theorem 8.1
and we explain the idea of the proof. The proof of Theorem 8.1 is given in
Sections 8.2–8.5. It is based on a case distinction on the number of facets of
a polytope in M3. We first show that at most six facets are possible. The
analysis of polytopes with six facets is given in Section 8.2. Section 8.3 deals
with polytopes that have five facets. The investigation of polytopes with four
facets (i.e. of simplices) can be found in Section 8.4. Section 8.5 concludes
the proof of Theorem 8.1 with remarks on the computer enumeration which
we use.

In [Tre08, p. 3] and [Tre10, pp. 134–135], Treutlein exhibits several exam-
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(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

(g) M7 (h) M8 (i) M9

(j) M10 (k) M11 (l) M12

Figure 8.1: All maximal lattice-free integral polytopes in dimension three.

8.1 Preliminaries and proof outline

Throughout this chapter, we fix d = 3 as the underlying dimension. A two-
dimensional polytope is said to be a polygon. If P is an integral polygon, then
we use i(P ) and b(P ) to denote the number of integer points in the relative
interior and on the relative boundary of P , respectively. Pick’s formula (see,
for instance, [Gru07, Theorem 19.2]) relates the area of P to the quantities
i(P ) and b(P ) and states that

A(P ) = i(P ) +
b(P )

2
− 1.
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For h ∈ Z the set Z2×{h} in the affine space R2×{h} can be identified with
the lattice Z2 in R2. Such an identification will be used several times when
we analyze the facets of polytopes in M3. Therefore, we will need results
about integral polygons with a small number of interior integer points. In
particular, we need the following result of Rabinowitz.

Theorem 8.2. ([Rab89, Theorem 5].) Let P ⊆ R2 be an integral polygon
with exactly one interior integer point. Then P is equivalent to one of the
polygons in Fig. 8.2.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8.2: All integral polygons with one interior integer point.

Remark 8.3. With the help of Theorem 8.2 and Lemma 7.8, the set R2(a)
(see p. 102 for the definition) can be computed for a given a ∈ Z2. Let us
assume that a = o, since, by a unimodular transformation, the choice of a is
not important. Then, up to a unimodular transformation, every element of
R2(o) coincides with one of the following sets:
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R1 := conv({o, 2e1}),
R2 := conv({o, 3e1, 2e2}),
R3 := conv({o, 2e1, e1 + 2e2}),
R4 := conv({o, 2e1 + e2, 2e2 + e1}).

This can be seen as follows. By Lemma 7.8 I and III, all elements of R2(o)
are simplices with precisely one relative interior integer point. Thus, up to
a unimodular transformation, all two-dimensional elements of R2(o) appear
in Fig.s 8.2(a)–8.2(e). Using Lemma 7.8 II and IV, we end up with R2, R3,
and R4. Obviously, R1 is the only one-dimensional element of R2(o).

Let u, v ∈ R3 and let U, V ⊆ R3 be linear subspaces. Then the two affine
subspaces u + U and v + V are said to be parallel if U ⊆ V or V ⊆ U .
We define two polyhedra P,Q ∈ P3 to be parallel if aff(Q) and aff(P ) are
parallel. Furthermore, let F(P ) and F(Q) be the sets of all faces of P and
Q, respectively. Then P and Q are said to be combinatorially equivalent (or
of the same combinatorial type) if there exists a bijection T : F(P ) → F(Q)
satisfying T (F1) ⊆ T (F2) for all F1, F2 ∈ F(P ) with F1 ⊆ F2. The following
polytopes will be relevant:

• A polytope P ∈ P3 is called a pyramid if P = conv(F ∪ {a}), where F
is a polygon and a ∈ R3 \ aff(F ). In this case F is called the base of P ,
and a is the apex of P .

• A polytope P ∈ P3 is called a prism if P = F +I , where F is a polygon
and I is a line segment which is not parallel to F . In this case the two
polygons F + v with v ∈ vert(I) are called the bases of P .

• A polytope P ∈ P3 is called a parallelepiped if P = I1 + I2 + I3, where
I1, I2, I3 are line segments whose directions form a basis of R3.

We will start our analysis of M3 by showing that every element of M3

has at most six facets (see Lemma 8.4). This yields a quite short list of
possible combinatorial types for elements of M3. Our analysis proceeds by
the distinction of the different combinatorial types. More precisely, we first
distinguish the elements of M3 by the number of their facets – which can
be four, five or six. Then we further subdivide our analysis with respect to
the different combinatorial types that can occur for a given number of facets.
Let us now explain the structure of the proof of Theorem 8.1 in more detail.
The proof is based on the following two ideas.

The first idea is to apply the “parity argument”, a rather common tool
in the geometry of numbers. Two integer points x, y ∈ Zd are said to have



120 Three-dimensional maximal lattice-free integral polyhedra

the same parity if each component of x − y is even, i.e. if x ≡ y (mod 2).
Obviously, 1

2
(x+y) is integer if and only if x and y have the same parity. For

P ∈ M3, we will apply this argument to the integer points on the boundary
of P by exploiting the fact that each facet of P contains an integer point
in its relative interior (see Proposition 2.1 II). Clearly, P contains at most
23 = 8 integer points of different parity on its boundary. Proofs based on the
parity argument are presented in Section 8.2.

The second idea is to apply the “slicing argument”. Let P ∈ M3. We
take an arbitrary facet F of P and assume without loss of generality that
F ⊆ R2 × {0} and P ⊆ R2 × R≥0. Then we consider the section F ′ =
P ∩ (R2 × {1}). By assumption, F is an integral polygon with at least one
integer point in its relative interior. Moreover, F ′ is lattice-free in R2 × {1}
with respect to the lattice Z2×{1}. It follows that either P is “not too high”
with respect to F or that F contains a bounded number of integer points.
Proofs based on the slicing argument are presented in Sections 8.3 and 8.4.

8.2 Elements in M3 with six facets

In this section, we show that there exists, up to a unimodular transformation,
only one polytope in M3 with six facets.

Lemma 8.4. Let P ∈ M3. Then P has at most six facets. Furthermore, if
P has six facets, then each facet is either a parallelogram as in Fig. 8.2(g) or
a triangle as in Fig. 8.2(c).

Proof. We first show that P has at most six facets. Let F be the set of
all facets of P . We choose two integer points p1, p2 on an edge of P with
[p1, p2] ∩ Z3 = {p1, p2}. For each F ∈ F we fix an integer point pF in the
relative interior of F in the following way. If F ∈ F is a facet with p1, p2 ∈ F ,
then let pF be a point in relint(F ) ∩ Z3 such that the triangle with vertices
p1, p2, pF has minimal area. This ensures that [pF , pi] ∩ Z3 = {pF , pi} for
i = 1, 2. If F ∈ F and F ∩ {p1, p2} = {pi} for some i ∈ {1, 2}, then let
pF be a point in relint(F ) ∩ Z3 with [pF , pi] ∩ Z3 = {pF , pi}. If F ∈ F
and F ∩ {p1, p2} = ∅, then let pF be any point in relint(F ) ∩ Z3. Let X :=
{p1, p2} ∪ {pF : F ∈ F}. By construction, all points in X have different
parity. Hence, |F| = |X| − 2 ≤ 23 − 2 = 6.

Let us now show the second part of the assertion. For that, we first show
that each facet of P contains exactly one integer point in its relative interior.
Assume, by contradiction, that there exists a facet F1 containing at least
two integer points in its relative interior. Choose a vertex v1 of F1 and two
integer points p1, p2 ∈ relint(F1) ∩ Z3 such that the triangle with vertices
v1, p1, p2 has minimal area. Let e = [v1, v2] be an edge of P which is not
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contained in F1 and let v̄2 be the integer point on the edge e which is closest
to v1. Let F2 and F3 be the two facets containing both v1 and v̄2. Let p3
(resp. p4) be an integer point in the relative interior of F2 (resp. F3) such that
[v1, pi] ∩ Z3 = {v1, pi} and [v̄2, pi] ∩ Z3 = {v̄2, pi} for i = 3, 4 (this can again
be achieved by choosing triangles with minimal area). In the remaining
three facets choose arbitrary relative interior integer points p5, p6, p7 such
that [v̄2, pi] ∩ Z3 = {v̄2, pi} for i = 5, 6, 7. By construction, the nine points
v1, v̄2, p1, . . . , p7 must have different parity which is a contradiction.

Let now F be an arbitrary facet of P . It follows that F is one of the
polygons shown in Fig. 8.2. If F is different from the quadrilateral 8.2(g)
and the triangle 8.2(c), then it contains four integer points with different
parity. These four integer points together with the five interior integer points
of the other five facets of P are nine points of different parity which is a
contradiction.

The next lemma shows that all facets of a polytope P in M3 with six
facets are quadrilaterals as pictured in Fig. 8.2(g) and thus, the shape of P
is uniquely determined.

Lemma 8.5. Let P ∈ M3 be a polytope with six facets. Then P is a parallel-
epiped and each of the six facets of P is a parallelogram as in Fig. 8.2(g). In
particular, P is equivalent to M12.

Proof. By Lemma 8.4, P has only two types of facets. Since quadrangular
facets do not contain edges with relative interior integer points, it follows that
P has an even number of triangular facets and that these facets are pairwise
attached. In [Grü03, Sections 6.2 and 6.3] all possible combinatorial types1 of
three-dimensional polytopes with six facets are enumerated (there are exactly
seven such types). Since each of the six facets of P is either a quadrilateral
as in Fig. 8.2(g) or a triangle as in Fig. 8.2(c), and since triangular facets
occur pairwise, we deduce that P is one of the three combinatorial types in
Fig. 8.3.

First assume that P is of combinatorial type B, having only triangular
facets. Since all facets contain exactly one edge with exactly one relative
interior integer point, only two different arrangements of the three additional
integer points on the edges of P are possible. The gray nodes in Fig. 8.4(a)
represent these integer points. Let us now argue that P has nine points of
different parity. In both cases in Fig. 8.4(a), the three gray nodes lie on three

1Section 6.2 in [Grü03] deals with d-dimensional polytopes with d + 3 vertices, and
Section 6.3 in [Grü03] discusses their corresponding Gale diagrams (see [Grü03, Sec-
tion 5.4] for a definition) and exhibits all combinatorial types of them (see [Grü03,
Fig. 6.3.1]). By choosing d = 3 and considering the dual polytopes, we obtain the
desired combinatorial types of three-dimensional polytopes with six facets.
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(a) Type A. (b) Type B. (c) Type C.

Figure 8.3: Possible combinatorial types of P .

different edges such that no two of the edges belong to the same facet. Thus,
the interior of a line segment joining any two of the gray nodes is contained
in the interior of P . This implies that the integer points represented by the
three gray nodes have different parity. Furthermore, since every facet of P
contains exactly one integer point in its relative interior, every line segment
with one endpoint being a relative interior integer point of a facet of P and
the other endpoint being another integer point in P does not contain an
integer point in its relative interior. It follows that the three gray integer
points together with the six relative interior integer points of the six facets
of P are nine points of different parity which is a contradiction. Thus, P
cannot be of combinatorial type B.

(a) Polytopes of type B. (b) Polytope of type C.

Figure 8.4: Polytopes P of combinatorial types B and C.

Now assume that P is of combinatorial type C, having two quadrangular
and four triangular facets. Then the location of the two additional integer
points on its edges is already determined by the structure of the facets of
P as illustrated in Fig. 8.4(b). These two points together with a particular
vertex of P (the gray nodes in Fig. 8.4(b)) and the six relative interior integer
points of the six facets of P sum up to nine points of different parity. Thus,
P cannot be of combinatorial type C.
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It follows that P must be of combinatorial type A. This implies that all
facets of P are quadrangular and have the shape of the parallelogram which
is shown in Fig. 8.2(g). Thus, P is equivalent to the parallelepiped M12.

8.3 Elements in M3 with five facets

By [Grü03, Section 6.1], there are exactly two combinatorial types2 of
three-dimensional polytopes with five facets, namely quadrangular pyramids
(i.e. polytopes which are combinatorially equivalent to a pyramid with a
quadrangular base) and triangular prisms (i.e. polytopes which are combi-
natorially equivalent to a prism with triangular bases). We will analyze both
combinatorial types separately.

8.3.1 Quadrangular pyramids

Let P ∈ M3 be a quadrangular pyramid with base F and apex a =
(a1, a2, a3). By a unimodular transformation, we assume that F ⊆ R2 × {0}
and a3 > 0. We can further assume that a3 ≥ 2 since for a3 = 1, P is
contained in R2 × [0, 1] which is a contradiction to its maximality.

We first show that there is, up to a unimodular transformation, only one
quadrangular pyramid P ∈ M3 with a3 = 2 and a3 = 3, respectively.

Lemma 8.6. Let P ∈ M3 be a quadrangular pyramid with base F ⊆ R2×{0}
and apex a = (a1, a2, a3), where a3 = 2. Then P is equivalent to the pyramid
M8.

Proof. Let F ′ := P ∩(R2×{1}). Since each triangular facet of P contains an
integer point in its relative interior, it follows that F ′ is a maximal lattice-
free quadrilateral. Thus, F ′ contains precisely four integer points, one in the
relative interior of each of its edges. Without loss of generality we assume
that F ′ ∩ Z3 = {0, 1}2 × {1}. By convexity, vert(F ′) lies in the union of
(0, 1) × R × {1} and R × (0, 1) × {1}. On the other hand vert(F ′) = 1

2
a +

1
2
vert(F ) ⊆ 1

2
Z3. Hence vert(F ′) lies in the union of { 1

2
} × 1

2
Z × {1} and

1
2
Z × { 1

2
} × {1}. Clearly, vert(F ′) is disjoint with [0, 1]2 × {1}. It follows

that F ′ contains the set B := 1
2
e1 + 1

2
e2 + e3 + conv({±e1,±e2}). If B

were a proper subset of F ′, then one of the points from the set {0, 1}2 × {1}
would be in the relative interior of F ′, a contradiction. Hence F ′ = B. We
have determined that, up to a unimodular transformation, F is a translate
of conv({±2e1,±2e2}) and F ′ is a translate of B by an integer vector. This
implies the assertion.

2Section 6.1 in [Grü03] deals with d-dimensional polytopes with d+2 vertices. By choos-
ing d = 3 and considering the dual polytopes, we obtain the desired combinatorial
types of three-dimensional polytopes with five facets.
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Lemma 8.7. Let P ∈ M3 be a quadrangular pyramid with base F ⊆ R2×{0}
and apex a = (a1, a2, a3), where a3 = 3. Then P is equivalent to the pyramid
M9.

Proof. If p ∈ P ∩ (R2 × {2}) is an integer point in the relative interior of
a facet of P , then 2p − a ∈ P ∩ (R2 × {1}) is also an integer point in the
relative interior of the same facet of P . Consequently, F ′ := P ∩ (R2 × {1})
contains precisely four integer points, one in the relative interior of each of
its edges. Without loss of generality we assume that F ′ ∩Z3 = {0, 1}2 ×{1}.
By convexity, vert(F ′) lies in the union of (0, 1)×R×{1} and R×(0, 1)×{1}.
On the other hand vert(F ′) = 1

3
a+ 2

3
vert(F ) ⊆ 1

3
Z3. Hence vert(F ′) lies in

the union of { 1
3
, 2
3
} × 1

3
Z × {1} and 1

3
Z × { 1

3
, 2
3
} × {1}. Clearly, vert(F ′) is

disjoint with [0, 1]2×{1}. A simple analysis of all possible cases reveals that,
by a unimodular transformation, only one F ′ is possible and we can assume
that F ′ = 1

3
e1 + 1

3
e2 + e3 + conv({ 4

3
e1,− 2

3
e1,

4
3
e2,− 2

3
e2}). Thus, up to a

unimodular transformation, F is a translate of conv({2e1,−e1, 2e2,−e2}).
This implies the assertion.

In the following we assume that a3 ≥ 4. Our aim is to show that no further
quadrangular pyramid inM3 exists. The proof consists of the following steps.
First, we construct all bases which are possible for such a pyramid. Second,
we argue that for a3 ≥ 11 only two of them can appear as bases. In a third
step, we analyze these two separately. Finally, the other bases are ruled out
by a computer enumeration.

We start with a lemma which will be used later for simplices in Section 8.4
again.

Lemma 8.8. Let P ∈ M3 be a simplex or a quadrangular pyramid with base
F ⊆ R2 × {0} and apex a = (a1, a2, a3), where h := a3 ≥ 4. Then w(F ) = 2
and the following inequalities hold:

2i(F ) + b(F ) ≤
⌊
6h− 4

h− 2

⌋
≤ 10. (8.1)

If P is a simplex (resp. a quadrangular pyramid), then (i(F ), b(F )) ∈ ZS

(resp. ZQ), where

ZS :={(1, j) : j = 3, . . . , 8} ∪ {(2, j) : j = 3, . . . , 6},
ZQ :={(1, j) : j = 4, . . . , 8} ∪ {(2, j) : j = 4, . . . , 6}.

Proof. Let F ′ := P ∩ (R2 × {1}). Since F contains an integer point in its
relative interior we have w(F ) ≥ 2. Assume that w(F ) ≥ 3. Then h ≥ 4
implies w := w(F ′) = w(F )h−1

h
≥ 9

4
> 1+2·(

√
3)−1. Hence, by Theorem 5.4,
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F ′ is not lattice-free which is a contradiction. Thus, we have w(F ) = 2 and
it follows 2 > w = w(F )h−1

h
≥ 3

2
. Applying (5.3) to F ′, we obtain

A(F ) =

(
h

h− 1

)2

A(F ′) ≤
(

h

h− 1

)2
w2

2(w − 1)
=

2h

h− 2
, (8.2)

where the last equality follows from w = 2h−1
h

. Consequently, combining
(8.2) and Pick’s formula we arrive at

2i(F ) + b(F ) = 2A(F ) + 2 ≤ 6h− 4

h− 2
.

Using that
⌊

6h−4
h−2

⌋
is monotonically non-increasing for h ≥ 4 yields the stated

inequalities.
We now show i(F ) ≤ 2. Assume, by contradiction, that i(F ) ≥ 3. Let

π denote the projection onto the first two coordinates, i.e. the mapping
π(x) := (x1, x2), where x = (x1, x2, x3) ∈ R3. Since w(F ) = 2, by per-
forming an appropriate unimodular transformation to P , we can assume
that π(F ) = [o, 2e1] (the unimodular transformation is chosen such that
F ⊆ [o, 2e1] × {0} × R). For x ∈ π(P ) let τ (x) be the length of the line
segment π−1(x) ∩ P . By the convexity of P , it follows that τ is concave
on π(P ). Furthermore, we have τ (π(a)) = 0. Our assumptions w(F ) = 2
and i(F ) ≥ 3 imply τ (e1) ≥ 3. By Lemma 7.9, π(P ) contains an integer
point in its interior. The relative interior of [e1, π(a)] does not contain in-
teger points. Indeed, let y be the integer point in [e1, π(a)] \ {e1} closest
to e1. Then, by the concavity of τ , we have τ (y) ≥ τ ( 1

2
e1 + 1

2
π(a)) ≥

1
2
τ (e1) +

1
2
τ (π(a)) ≥ 3

2
+ 0 > 1 yielding a contradiction to the lattice-

freeness of P . Thus, the interior of conv({o, e1, π(a)}) or the interior of
conv({e1, 2e1, π(a)}) contains an integer point. By symmetry reasons, we
may assume that for T := conv({o, e1, π(a)}) one has int(T ) ∩ Z2 	= ∅.

Let R be an element of R2(e1) which is contained in T and such that
the relative interior of R contains an interior integer point of T . Then R is
equivalent to one of the polygons R1 to R4 in Remark 8.3.

Case 1: R ≡ R1 (mod Aff(Z2)). Then R = [e1, p] for some p ∈ T ∩ Z2

and such that the point 1
2
(e1 + p) is integer and in the interior of T . By the

concavity of τ , one has τ ( 1
2
(e1 + p)) ≥ 1

2
τ (e1) +

1
2
τ (p) ≥ 3

2
+ 0 > 1. Thus, a

contradiction to the lattice-freeness of P .
Case 2: R ≡ R4 (mod Aff(Z2)). Then R = conv({e1, p, q}) for some

p, q ∈ T ∩ Z2 and such that the point 1
3
(e1 + p + q) is integer and in the

interior of T . By the concavity of τ , we have τ ( 1
3
(e1 + p + q)) ≥ 1

3
(τ (e1) +

τ (p) + τ (q)) ≥ 1
3
τ (e1) ≥ 1. It follows that τ (p) = τ (q) = 0, since otherwise

one has τ ( 1
3
(e1 + p + q)) > 1 yielding a contradiction to the lattice-freeness



126 Three-dimensional maximal lattice-free integral polyhedra

of P . Then, in view of the choice of T , we have p, q ∈ [o, π(a)]. The equality
{p, q} = {o, π(a)} would imply that a3 = 3 contradicting the assumption
a3 ≥ 4. Thus, one of the points p, q (say p) lies in the relative interior
of [o, π(a)]. We consider the point 2p − q, which is the integer point on
[o, π(a)] \ [p, q] closest to p.

We will use the following property of R4. Let r1, r2, r3 be the vertices of
R4. Then the segment joining r1 and 2r2−r3 (the reflection of r3 with respect
to r2) contains precisely two integer points in its relative interior. Consider
the subcase that the point 2p−q lies in the relative interior of [o, π(a)]. Then
the relative interior of [e1, 2p − q] is contained in the interior of T . Taking
into account the indicated property of R4 we see that the relative interior of
[e1, 2p− q] contains two integer points. Thus, applying the same arguments
as in Case 1, we arrive at a contradiction. For the subcase that the point
2p−q coincides with o or π(a), the fact that the relative interior of [e1, 2p−q]
contains two integer points contradicts the fact that the segments [o, e1] and
[e1, π(a)] do not contain integer points in their relative interiors.

Case 3: R ≡ Ri (mod Aff(Z2)) for i ∈ {2, 3}. Then there exists an edge
e of R incident to e1 which contains at least three integer points. Since the
edge [o, 2e1] of π(P ) contains three integer points and the integer point e1 is
between the two remaining integer points, it follows that the edge e is not
contained in the boundary of π(P ). Thus, on e we can find an integer point p
such that 1

2
(e1+p) is integer and in the interior of π(P ). But then, applying

the same arguments as in Case 1, we arrive at a contradiction.

So far, we have shown that i(F ) ∈ {1, 2} and that 2i(F ) + b(F ) ≤ 10. If
P is a simplex, then b(F ) ≥ 3. Thus, it follows (i(F ), b(F )) ∈ ZS. If P is a
quadrangular pyramid, then b(F ) ≥ 4. Thus, we have (i(F ), b(F )) ∈ ZQ.

In order to continue our analysis of quadrangular pyramids P ∈ M3, we
need a list of all integral quadrilaterals Q in the plane with w(Q) = 2 and
(i(Q), b(Q)) ∈ ZQ since these quadrilaterals are candidates for the base of P .
By (8.1), it follows that for a3 ≥ 11 it holds 2i(F )+ b(F ) ≤ 6. Therefore, the
base F of such a pyramid has exactly one integer point in its relative interior
and exactly the four vertices as the only integer points on its boundary. From
Fig. 8.2, it follows that in this case only the two quadrilaterals in Fig.s 8.2(f)
and 8.2(g) qualify as a base for P . In Lemmas 8.10 and 8.11, we will analyze
these two possible bases separately from the others. However, let us first
prove the following lemma.

Lemma 8.9. Let Q ⊆ R2 be an integral quadrilateral with w(Q) = 2,
i(Q) = 2, and b(Q) ∈ {4, 5, 6}. Then Q is equivalent to one of the quadrilat-
erals in Fig. 8.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 8.5: Quadrilaterals Q with w(Q) = i(Q) = 2 and b(Q) ∈ {4, 5, 6}.

Proof. Let Q be an integral quadrilateral in the plane satisfying w(Q) = 2
and i(Q) = 2. We divide the proof according to the number of integer points
on the boundary of Q.

Case 1: b(Q) = 4. Pick’s formula gives A(Q) = 3. By a unimodular trans-
formation, we assume that the two interior integer points are placed at (1, 0)
and (2, 0). This implies that for every u ∈ Z2 \ {o,±e2} we have w(Q,u) ≥ 3
and therefore it must hold v2 ∈ {0,±1} for every vertex v = (v1, v2) of Q.
We distinguish three subcases based on the number of vertices of Q that lie
on the line lin({e1}).

Subcase 1a: Two vertices of Q = conv({a, b, c, d}) lie on the line lin({e1}).
Then one vertex is a = (0, 0) and the other is c = (3, 0). Let the remaining
two vertices b and d satisfy d2 = 1 = −b2. We can assume that d = (0, 1).
Indeed, if d = (d1, 1), then we apply the unimodular transformation (x, y) �→
(x − d1y, y) which maps d to (0, 1), but leaves the points a, (1, 0), (2, 0),
and c untouched. For convexity reasons, it follows that b ∈ {(1,−1), (2,−1),
(3,−1), (4,−1), (5,−1)}. Choices b = (1,−1) and b = (5,−1) are equivalent
and lead to the quadrilateral in Fig. 8.5(a), b = (2,−1) and b = (4,−1) lead
to Fig. 8.5(b), and b = (3,−1) leads to Fig. 8.5(c).

Subcase 1b: One vertex of Q = conv({a, b, c, d}) lies on the line lin({e1}).
By a unimodular transformation, we assume that a = (0, 0) and that b, c,
and d satisfy b2 = 1 = −c2 = −d2. From b(Q) = 4, it follows that c1 = d1+1.
Without loss of generality we can place b at (0, 1). By the convexity of Q
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and since (1, 0) and (2, 0) are the only interior integer points of Q we obtain
c = (5,−1) and d = (4,−1). This gives the quadrilateral which is shown in
Fig. 8.5(d).

Subcase 1c: No vertex of Q = conv({a, b, c, d}) lies on the line lin({e1}).
Without loss of generality let a2 = b2 = 1 = −c2 = −d2. It follows that
b1 = a1 + 1 and c1 = d1 + 1. Hence, A(Q) = 2 which contradicts Pick’s
formula.

Case 2: b(Q) = 5. Pick’s formula gives A(Q) = 3.5. Placing the two
interior integer points of Q at (1, 0) and (2, 0) as above implies again that
v2 ∈ {0,±1} for each vertex v = (v1, v2) of Q. If two vertices of Q lie on
the line lin({e1}), then Q has no edge with a relative interior integer point,
a contradiction to b(Q) = 5. If no vertex of Q lies on the line lin({e1}),
then A(Q) = 3, a contradiction to Pick’s formula. Thus, precisely one vertex
of Q = conv({a, b, c, d}) lies on the line lin({e1}). Place it at a = (0, 0).
Without loss of generality let b2 = c2 = −1 = −d2. Using an appropriate
unimodular transformation we can assume that d = (0, 1). Thus, either the
edge connecting b and c or the edge connecting c and d has a relative interior
integer point which is 1

2
(b+ c) or 1

2
(c+ d), respectively. In the first case we

end up with b = (3,−1) and c = (5,−1) (Fig. 8.5(e)), whereas the latter
leads to b = (5,−1) and c = (6,−1) (Fig. 8.5(f)).

Case 3: b(Q) = 6. Pick’s formula gives A(Q) = 4. Placing the two interior
integer points ofQ at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1}
for each vertex v = (v1, v2) of Q. If two vertices of Q lie on the line lin({e1}),
then Q has no edge with a relative interior integer point, a contradiction to
b(Q) = 6. We consider two subcases.

Subcase 3a: No vertex of Q = conv({a, b, c, d}) lies on the line lin({e1}).
Without loss of generality let a2 = b2 = 1 = −c2 = −d2. We either have
b1 = a1+2 and c1 = d1+2 or b1 = a1+1 and c1 = d1+3. Using an appropriate
unimodular transformation we can assume that a = (0, 1). Then, the first
case leads to b = (2, 1), c = (3,−1), and d = (1,−1) (Fig. 8.5(j)), whereas
the latter leads to b = (1, 1), c = (4,−1), and d = (1,−1) (Fig. 8.5(g)).

Subcase 3b: One vertex of Q = conv({a, b, c, d}) lies on the line lin({e1}).
Without loss of generality let a = (0, 0) and let b, c, and d satisfy b2 = 1 =
−c2 = −d2. Using an appropriate unimodular transformation we can assume
that b = (0, 1). Then the edge connecting c and d has either two or one
relative interior integer points. In the first case we obtain c = (5,−1) and
d = (2,−1) (Fig. 8.5(h)). In the second case both edges, the one connecting
c and d and the one connecting b and c have each one relative interior integer
point and it follows c = (6,−1) and d = (4,−1) (Fig. 8.5(i)).

Lemma 8.9 completes the list of the possible bases of a quadrangular pyra-
mid P ∈ M3: precisely the quadrilaterals shown in Fig.s 8.2(f)–8.2(l) and 8.5
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qualify for a base of P . We will now show that there is no quadrangular pyra-
mid P ∈ M3 with a3 ≥ 11.

Lemma 8.10. Let P ⊆ R3 be a pyramid with base conv({±e1,±e2}) and
apex a = (a1, a2, a3) ∈ Z3, where a3 ≥ 4. Then P is not maximal lattice-free.

Proof. By applying an appropriate unimodular transformation, we assume
that 0 ≤ ai < a3 for i = 1, 2. We represent the base by F := conv({±e1,
±e2}) = {y ∈ R3 : |y1| + |y2| ≤ 1, y3 = 0}. It follows that P = {x ∈ R3 :
x = (1− λ)y + λa for some 0 ≤ λ ≤ 1 and some y ∈ F} and therefore

int(P ) = {x ∈ R3 : x = (1− λ)y + λa

for some 0 < λ < 1 and some y ∈ relint(F )}

= {x ∈ R3 :
1

1− λ
x− λ

1− λ
a ∈ relint(F ) for some 0 < λ < 1}

= {x ∈ R3 : |x1 − λa1|+ |x2 − λa2| < 1− λ

and x3 = λa3 for some 0 < λ < 1}.
This implies

int(P ) ∩ Z3 = {x ∈ Z3 :

|a3x1 − a1x3|+ |a3x2 − a2x3| < a3 − x3, x3 ∈ {1, . . . , a3 − 1}}. (8.3)

From (8.3) we derive the following equivalences:

• (0, 0, 1) ∈ int(P ) if and only if a1 + a2 < a3 − 1,

• (1, 1, 1) ∈ int(P ) if and only if a1 + a2 > a3 + 1,

• (1, 0, 1) ∈ int(P ) if and only if a1 − a2 > 1,

• (0, 1, 1) ∈ int(P ) if and only if a2 − a1 > 1.

If one of the above mentioned conditions is fulfilled, then P is not lattice-free.
We can therefore assume that the following two inequalities are satisfied:

|a1 + a2 − a3| ≤ 1, (8.4)

|a1 − a2| ≤ 1. (8.5)

It is straightforward to show that for any a1, a2, a3 which satisfy (8.4) and
(8.5) one has |a3 − 2a1|+ |a3 − 2a2| ≤ 2. In view of (8.3), (1, 1, 2) ∈ int(P ) if
and only if |a3 − 2a1|+ |a3 − 2a2| < a3 − 2. Hence, when (8.4) and (8.5) are
fulfilled, then the point (1, 1, 2) is in the interior of P for every apex a with
a3 > 4. It remains to exclude the case a3 = 4. The only integer vectors a =
(a1, a2, a3) which satisfy (8.4), (8.5), a3 = 4, and 0 ≤ ai < a3 for i = 1, 2 are
precisely the vectors in the set {(2, 2, 4), (2, 1, 4), (3, 2, 4), (1, 2, 4), (2, 3, 4)}.
All these vectors do not correspond to maximal lattice-free pyramids.
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Lemma 8.11. Let P ⊆ R3 be a pyramid with base conv({e1, e2,±(e1+ e2)})
and apex a = (a1, a2, a3) ∈ Z3, where a3 ≥ 4. Then P is not maximal lattice-
free.

Proof. By applying an appropriate unimodular transformation, we assume
that 0 ≤ ai < a3 for i = 1, 2. The set conv({e1, e2,±(e1 + e2)}) is the set of
all y = (y1, y2, y3) ∈ R3 which satisfy

y1 ≤ 1, y1 − 2y2 ≤ 1, y3 = 0,

y2 ≤ 1, y2 − 2y1 ≤ 1.

By this, using the same arguments as in the proof of Lemma 8.10, we infer
that int(P ) is the set of all x = (x1, x2, x3) ∈ R3 which satisfy

x1 − λa1 < 1− λ, x1 − λa1 − 2(x2 − λa2) < 1− λ, x3 = λa3,

x2 − λa2 < 1− λ, x2 − λa2 − 2(x1 − λa1) < 1− λ,

for some 0 < λ < 1. Consequently, int(P ) ∩ Z3 is the set of all vectors x =
(x1, x2, x3) ∈ Z3 which satisfy

a3x1 + (1− a1)x3 < a3, a3x1 − 2a3x2 + (1− a1 + 2a2)x3 < a3,

a3x2 + (1− a2)x3 < a3, a3x2 − 2a3x1 + (1− a2 + 2a1)x3 < a3,

x3 ∈ {1, . . . , a3 − 1}.

From these inequalities we obtain that (1, 1, 1) ∈ int(P ) if and only if a1 > 1
and a2 > 1. Hence, lattice-freeness requires that a1 ∈ {0, 1} or a2 ∈ {0, 1}.
By symmetry, it suffices to consider the cases a1 = 0 and a1 = 1.

Case 1 : a1 = 0. If a2 > 1, then (0, 1, 1) ∈ int(P ). Otherwise (0, 0, 1) ∈
int(P ).

Case 2 : a1 = 1. If a2 > 3, then (0, 1, 1) ∈ int(P ). Hence, let us assume
that a2 ≤ 3. Now, if 2a2 < a3, then (0, 0, 1) ∈ int(P ). So we must have
2a2 ≥ a3 and it follows a3 ∈ {4, 5, 6}. Thus, we have a ∈ {(1, 2, 4), (1, 3, 4),
(1, 3, 5), (1, 3, 6)}. All these vectors do not correspond to maximal lattice-free
pyramids.

Lemmas 8.10 and 8.11 restrict potential quadrangular pyramids P ∈ M3

to satisfy 4 ≤ a3 ≤ 10. Since, in addition, the set of possible bases is known
from Fig.s 8.2(h)–8.2(l) and 8.5 we are left with a finite list of quadrangular
candidate pyramids. Computer enumeration shows that none of them is
maximal lattice-free (see Section 8.5).
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8.3.2 Triangular prisms

Let P ∈ M3 be a triangular prism. We note that our definition of a triangular
prism (see p. 123) does not necessarily imply that P is a prism (as defined
on p. 119) in the sense that it has two bases which are parallel or even
translates. Therefore, our first lemma shows that P has indeed two bases
which are translates.

Lemma 8.12. Let P ∈ M3 be a triangular prism. Then its two triangular
facets are translates.

Proof. Let H1, H2, and H3 be the hyperplanes containing the quadrilateral
facets of P . We show that H1, H2, and H3 do not share a point. Assume
the contrary and choose p ∈ H1 ∩ H2 ∩ H3. Let T2 be the triangular facet
of P such that the pyramid S with base T2 and apex p contains P . Let
T1 be the triangular facet of P distinct from T2. Let q be a vertex of T2

closest to aff(T1) and let H be the hyperplane parallel to aff(T1) and passing
through q. If T1 and T2 are not parallel, then the relative interior of P ∩H
is contained in the interior of P . On the other hand T1 + q − r, where r is
the integer point r = T1 ∩ [p, q], is contained in P ∩ H . Hence the relative
interior of P ∩H contains an integer point, a contradiction. Thus, T1 and T2

are parallel. Then, since T2 is a base of P and T1 is a section of S parallel to
T2, we infer that T1 and T2 are homothetic. By construction, T1 is strictly
smaller than T2. Since T1 is an integral triangle which contains at least one
integer point in its relative interior we have w(T1) ≥ 2. Therefore, since T2 is
integer and strictly larger, w(T2) ≥ 3. Without loss of generality we assume
that T2 ⊆ R2 × {0} and T1 ⊆ R2 × {h} with h ≥ 2 (h = 1 do not need to
be considered since the quadrangular facets of P must have integer points in
their relative interior). Let now T ′ := P ∩ (R2 × {1}). It follows that

w(T ′) =
h− 1

h
w(T2) +

1

h
w(T1) ≥

3(h− 1) + 2

h
= 3− 1

h
≥ 5

2
> 1 +

2√
3
,

a contradiction to (5.1) in Theorem 5.4, since T ′ is a lattice-free polygon in
R2 ×{1} with respect to the lattice Z2 ×{1}. Hence H1, H2, and H3 do not
share a point and P is a prism.

By Lemma 8.12, it suffices to investigate triangular prisms P ∈ M3 whose
triangular facets are translates. Without loss of generality we assume that the
two triangular facets of P , denoted T1 and T2, satisfy T2 ⊆ R2×{0} and T1 ⊆
R2×{h} with h ≥ 2. From Theorem 5.4 and the fact that P is lattice-free, it
follows that the hyperplane H := R2×{1} satisfies w(P ∩H) ≤ 1+2·(

√
3)−1.

Hence, 1 + 2 · (
√
3)−1 ≥ w(P ∩ H) = w(T2) ≥ 2 and since w(T2) ∈ Z we

obtain 2 = w(T2) = w(P ∩ H). Using (5.3) yields 2 ≥ A(P ∩ H) = A(T2)
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and applying Pick’s formula gives 2i(T2)+ b(T2) = 2A(T2)+2 ≤ 2 ·2+2 = 6.
This implies that i(T2) = 1 and b(T2) ∈ {3, 4}. Thus, by Fig. 8.2, P has two
triangular facets which are translates and which are either the triangle in
Fig. 8.2(e) or the triangle in Fig. 8.2(c). We prove that for each of these two
cases there exists, up to a unimodular transformation, exactly one maximal
lattice-free triangular prism.

Lemma 8.13. Let P ∈ M3 be a triangular prism whose triangular facets
are triangles as in Fig. 8.2(e). Then P is equivalent to M10.

Proof. Without loss of generality we assume that the two triangular facets
of P , denoted F and F ′, are given by F := conv({e1, e2,−(e1 + e2)}) and
F ′ := a+F , where a = (a1, a2, a3) is the integer point in the relative interior
of F ′. By applying an appropriate unimodular transformation, we further
assume that 0 ≤ ai < a3 for i = 1, 2. Since the quadrangular facets of P
need to contain integer points in their relative interior it holds a3 ≥ 2. By
symmetry, we assume a1 ≤ a2. In particular, we have a2 ≥ 1, otherwise
(0, 0, 1) ∈ int(P ). We now set up the facet description of P which is only
dependent on the parameters a1, a2, and a3. Using the same arguments
as in the proof of Lemma 8.10, it follows that int(P ) ∩ Z3 is the set of all
x = (x1, x2, x3) ∈ Z3 which satisfy

a3x1 − 2a3x2 + (2a2 − a1)x3 < a3, a3x1 + a3x2 − (a1 + a2)x3 < a3,

a3x2 − 2a3x1 + (2a1 − a2)x3 < a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities we obtain the following equivalences:

• (0, 0, 1) ∈ int(P ) if and only if −a1 + 2a2 < a3,

• (0, 1, 1) ∈ int(P ) if and only if 2a1 < a2,

• (1, 1, 1) ∈ int(P ) if and only if a3 < a1 + a2.

Thus, lattice-freeness of P implies that the following inequalities must hold:

a1 + a3 ≤ 2a2, (8.6)

a2 ≤ 2a1, (8.7)

a1 + a2 ≤ a3. (8.8)

Adding (8.6) and (8.8) yields 2a1 ≤ a2 and together with (8.7) we obtain
a2 = 2a1. Substituting this into (8.6) and (8.8) leads to a3 ≤ 3a1 and
3a1 ≤ a3 which means that a3 = 3a1. It follows that a = (a1, 2a1, 3a1) for
some a1 ≥ 1. If a1 ≥ 2, then (1, 2, 3) ∈ int(P ). Thus, we choose a1 = 1 and
end up with the prism M10.
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Lemma 8.14. Let P ∈ M3 be a triangular prism whose triangular facets
are triangles as in Fig. 8.2(c). Then P is equivalent to M11.

Proof. Without loss of generality we assume that the two triangular facets
of P , denoted F and F ′, are given by F := conv({±e1, 2e2}) and F ′ :=
(a−e2)+F , where a = (a1, a2, a3) is the integer point in the relative interior
of F ′. By applying an appropriate unimodular transformation, we further
assume that 0 ≤ ai < a3 for i = 1, 2. Since the quadrangular facets of P need
to contain integer points in their relative interior it holds a3 ≥ 2. We now
set up the facet description of P which is only dependent on the parameters
a1, a2, and a3. Using the same arguments as in the proof of Lemma 8.10, it
follows that int(P ) ∩ Z3 is the set of all x = (x1, x2, x3) ∈ Z3 which satisfy

2a3x1 + a3x2 − (2a1 + a2 − 1)x3 < 2a3, −a3x2 + (a2 − 1)x3 < 0,

−2a3x1 + a3x2 + (2a1 − a2 + 1)x3 < 2a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities we obtain the following equivalences:

• (0, 1, 1) ∈ int(P ) if and only if 2a1 + 1 < a2 + a3,

• (1, 1, 1) ∈ int(P ) if and only if a3 + 1 < 2a1 + a2.

Thus, lattice-freeness of P implies that the following inequalities must hold:

a2 + a3 ≤ 2a1 + 1, (8.9)

2a1 + a2 ≤ a3 + 1. (8.10)

Adding (8.9) and (8.10) yields a2 ≤ 1 and therefore a2 ∈ {0, 1}. We distin-
guish into two cases.

Case 1 : a2 = 0. If 2a1 > 1, then (1, 0, 1) ∈ int(P ). Thus, we have 2a1 ≤ 1
implying a1 = 0. Substituting this into (8.9) leads to a3 ≤ 1 which is a
contradiction.

Case 2 : a2 = 1. From (8.9) and (8.10), we obtain a3 = 2a1 and therefore
a = (a1, 1, 2a1) for some a1 ≥ 1. If a1 ≥ 2, then (1, 1, 2) ∈ int(P ). Thus, it
holds a = (1, 1, 2) which leads to the prism M11.

8.4 Elements in M3 with four facets

Let P ∈ M3 be a simplex and let F be an arbitrary facet of P . By a uni-
modular transformation, we assume that F ⊆ R2×{0}. Throughout this sec-
tion we refer to F as the base of P and denote the vertex a = (a1, a2, a3)
of P which is not contained in aff(F ) as the apex of P , where we assume
a3 > 0. We can further assume that a3 ≥ 2 since for a3 = 1, P is contained
in R2 × [0, 1] which is a contradiction to its maximality.
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We first consider simplices P ∈ M3 with a3 = 2 and a3 = 3, respectively.
For that, let F ′ := P ∩ (R2 × {1}). Since each facet of P contains an integer
point in its relative interior, it follows that F ′ is a maximal lattice-free trian-
gle. Indeed, if a3 = 2, then any integer point w = (w1, w2, w3) in the relative
interior of one of the three facets different from F satisfies w3 = 1. On the
other hand, if a3 = 3, then any integer point w = (w1, w2, w3) in the relative
interior of one of the three facets different from F with w3 = 2 guarantees
that the point 2w − a ∈ F ′ is also an integer point in the relative interior
of the same facet as w. It follows that F ′ is a triangle of type 1, type 2, or
type 3 (see Proposition 5.3 II on p. 37).

Lemma 8.15. Let P ∈ M3 be a simplex with base F ⊆ R2 × {0} and
apex a = (a1, a2, a3), where a3 ∈ {2, 3}. Then P is equivalent to one of the
simplices M1, M2, M3, M6, or M7.

Proof. We distinguish into three cases according to the type of triangle of
F ′ := P ∩ (R2 × {1}).

Case 1 : F ′ is a triangle of type 1. Without loss of generality, we can as-
sume that F ′ is given by F ′ = conv({e3, 2e1 + e3, 2e2 + e3}). Thus, if a3 = 2,
F is a translate of conv({o, 4e1, 4e2}) which leads to M2. If a3 = 3, F is a
translate of conv({o, 3e1, 3e2}) which leads to M3.

Case 2 : F ′ is a triangle of type 2. Then there exists an edge of F ′ which
contains at least two integer points in its relative interior. Without loss of
generality we assume that this edge contains the points (0, 0, 1) and (0, 1, 1)
in its relative interior. Let the vertex w = (w1, w2, 1) of F ′ opposite to
this edge satisfy w1 > 1. By an appropriate unimodular transformation, we
assume that the remaining two edges pass through the points (1, 0, 1) and
(1, 1, 1).

First assume a3 = 2. Then vert(F ′) = 1
2
a + 1

2
vert(F ) ⊆ 1

2
Z3. Hence,

the vertex w lies in 1
2
Z × { 1

2
} × {1} and the other two vertices of F ′ lie in

{0} × 1
2
Z× {1}. It follows that F ′ = conv({(0, 3

2
, 1), (0,− 1

2
, 1), (2, 1

2
, 1)}) or

F ′ = conv({(0, 2, 1), (0,−1, 1), ( 3
2
, 1
2
, 1)}). Thus, in the former case, F is a

translate of conv({(0, 3, 0), (0,−1, 0), (4, 1, 0)}) leading to M7, whereas in the
latter case F is a translate of conv({(0, 4, 0), (0,−2, 0), (3, 1, 0)}) leading to
M1.

Now assume a3 = 3. Then vert(F ′) = 1
3
a + 2

3
vert(F ) ⊆ 1

3
Z3. Hence,

two vertices of F ′ lie in {0} × 1
3
Z × {1} and the vertex w lies either in

1
3
Z×{ 1

3
}×{1} or in 1

3
Z×{ 2

3
}×{1}. By symmetry, we can assume that w lies

in 1
3
Z×{ 2

3
}×{1}. It follows that F ′ = conv({(0, 2, 1), (0,−2, 1), ( 4

3
, 2
3
, 1)}) or

F ′ = conv({(0, 4
3
, 1), (0,− 2

3
, 1), (2, 2

3
, 1)}). Therefore, in the former case, F

is a translate of conv({(0, 3, 0), (0,−3, 0), (2, 1, 0)}) leading to M1, whereas in
the latter case F is a translate of conv({(0, 2, 0), (0,−1, 0), (3, 1, 0)}) leading
to M6.



Three-dimensional maximal lattice-free integral polyhedra 135

Case 3 : F ′ is a triangle of type 3. Without loss of generality let (0, 0, 1),
(1, 0, 1), and (0, 1, 1) be the only integer points on the relative boundary of
F ′ and let F ′ = conv({u, v, w}) with u1 < 0, 1 < u2, 1 < v1, 0 < v2 < 1,
0 < w1 < 1, w2 < 0, and u3 = v3 = w3 = 1 (see Fig. 8.6).

u

v

w

Figure 8.6: Triangle of type 3.

First assume a3 = 2. Then vert(F ′) = 1
2
a + 1

2
vert(F ) ⊆ 1

2
Z3. Thus, it

follows v2 = w1 = 1
2
and hence we obtain v = ( 3

2
, 1
2
, 1) and w = ( 1

2
,− 1

2
, 1).

This implies u = (− 3
2
, 3
2
, 1). However, the edge connecting u and w contains

the two integer points (0, 0, 1) and (−1, 1, 1) in its relative interior which is
a contradiction to the fact that F ′ is of type 3.

Now assume a3 = 3. Then vert(F ′) = 1
3
a + 2

3
vert(F ) ⊆ 1

3
Z3. Thus, it

follows v2 ∈ { 1
3
, 2
3
} and w1 ∈ { 1

3
, 2
3
}. Since the edge connecting v and w

goes through the point (1, 0, 1), the following cases are possible:

v = ( 5
3
, 1
3
, 1), w = ( 1

3
,− 1

3
, 1) ⇒ u = (− 5

3
, 5
3
, 1) ⇒ F ′ is of type 2,

v = ( 7
3
, 2
3
, 1), w = ( 1

3
,− 1

3
, 1) ⇒ u = (− 7

6
, 7
6
, 1) ⇒ u 	∈ 1

3
Z3,

v = ( 4
3
, 1
3
, 1), w = ( 1

3
,− 2

3
, 1) ⇒ u = (− 2

3
, 4
3
, 1),

v = ( 5
3
, 2
3
, 1), w = ( 1

3
,− 2

3
, 1) ⇒ u = (− 5

9
, 10

9
, 1) ⇒ u 	∈ 1

3
Z3,

v = ( 4
3
, 2
3
, 1), w = ( 1

3
,− 4

3
, 1) ⇒ u = (− 4

15
, 16
15
, 1) ⇒ u 	∈ 1

3
Z3,

v = ( 4
3
, 1
3
, 1), w = ( 2

3
,− 1

3
, 1) ⇒ F ′ is no

triangle,

v = ( 5
3
, 2
3
, 1), w = ( 2

3
,− 1

3
, 1) ⇒ u = (− 10

3
, 5
3
, 1) ⇒ (−1, 1, 1) ∈

relint(F ′),

v = ( 4
3
, 2
3
, 1), w = ( 2

3
,− 2

3
, 1) ⇒ u = (− 4

3
, 4
3
, 1) ⇒ F ′ is of type 2.
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In seven of the above eight cases, we see that F ′ is not a valid triangle. In
the case where v = ( 4

3
, 1
3
, 1), w = ( 1

3
,− 2

3
, 1), and u = (− 2

3
, 4
3
, 1) we infer that

F is a translate of B := conv({(2, 1
2
, 0), ( 1

2
,−1, 0), (−1, 2, 0)}). However, it

is straightforward to verify that B does not have a translate where all the
three vertices are integer.

In the following we assume that a3 ≥ 4. Our strategy to find simplices
P ∈ M3 with a3 ≥ 4 consists of the following steps. First, we construct
all bases which are possible for such a simplex. Second, we argue that all
simplices satisfy a3 ≤ 12. This gives a finite set of simplices that need to be
checked for maximal lattice-freeness. Finally, the ultimate list of maximal
lattice-free simplices is obtained by computer enumeration.

By Lemma 8.8, all integral triangles T in the plane with w(T ) = 2 and
(i(T ), b(T )) ∈ ZS are potential candidates for the base of a simplex P ∈ M3

with a3 ≥ 4. From (8.1), it follows that for a3 ≥ 11, one has 2i(F )+b(F ) ≤ 6
and therefore (i(F ), b(F )) = (1, 3) or (i(F ), b(F )) = (1, 4). If (i(F ), b(F )) =
(1, 3), then F is, up to a unimodular transformation, the triangle shown in
Fig. 8.2(e). In Lemma 8.17 we show that a3 ≤ 12 in this case since otherwise
P is not lattice-free. If (i(F ), b(F )) = (1, 4), then F is, up to a unimodular
transformation, the triangle shown in Fig. 8.2(c). In Lemma 8.18 we show
that a3 ≤ 8 in this case since otherwise P is not lattice-free. Thus, we can
use computer enumeration to find all simplices P ∈ M3 with a3 ≥ 4.

Let us now complete the list of potential bases.

Lemma 8.16. Let T ⊆ R2 be an integral triangle with w(T ) = 2, i(T ) =
2, and b(T ) ∈ {3, 4, 5, 6}. Then T is equivalent to one of the triangles in
Fig. 8.7.

(a) (b) (c)

Figure 8.7: Triangles T with w(T ) = i(T ) = 2 and b(T ) ∈ {3, 4, 5, 6}.

Proof. Let T be an integral triangle in the plane satisfying w(T ) = 2 and
i(T ) = 2. We divide the proof according to the number of integer points on
the boundary of T .

Case 1: b(T ) = 3. By a unimodular transformation, we assume that the
two interior integer points of T are placed at (1, 0) and (2, 0). This implies
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that for every u ∈ Z2 \ {o,±e2} we have w(T, u) ≥ 3 and therefore it must
hold v2 ∈ {0,±1} for every vertex v = (v1, v2) of T . Observe that exactly one
vertex of T = conv({a, b, c}) lies on the line lin({e1}), say a = (0, 0). Let the
remaining two vertices b and c satisfy b2 = 1 = −c2. Using an appropriate
unimodular transformation we can assume that b = (0, 1). For convexity
reasons it follows that c = (5,−1) which leads to the triangle in Fig. 8.7(a).

Case 2: b(T ) = 4. Pick’s formula gives A(T ) = 3. Placing the two interior
integer points of T at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1}
for every vertex v = (v1, v2) of T . Let T = conv({a, b, c}). Clearly, T cannot
have two vertices on the line lin({e1}). If none of the vertices is on the line
lin({e1}), then assume without loss of generality that a2 = b2 = 1 = −c2.
It follows that either b1 = a1 + 2 with A(T ) = 2, or b1 = a1 + 1 with
A(T ) = 1. In both cases this is a contradiction to Pick’s formula. Thus,
exactly one vertex lies on the line lin({e1}), say a = (0, 0). Let the remaining
two vertices b and c satisfy b2 = 1 = −c2. As above, we can assume that
b = (0, 1) which implies c = (6,−1). This gives the triangle in Fig. 8.7(b).

Case 3: b(T ) = 5. Pick’s formula gives A(T ) = 3.5. Placing the two
interior integer points of T at (1, 0) and (2, 0) as above implies again that v2 ∈
{0,±1} for every vertex v = (v1, v2) of T . Clearly, T cannot have two vertices
on the line lin({e1}). If none of the vertices of T lies on the line lin({e1}),
then with similar arguments as above we infer that A(T ) ≤ 3, a contradiction
to Pick’s formula. Thus, precisely one vertex of T = conv({a, b, c}) lies on
the line lin({e1}), say a = (0, 0). Without loss of generality let b2 = 1 = −c2.
Note that the two edges connecting a and b, resp. connecting a and c, do not
have integer points in their relative interior. The edge connecting b and c has
at most one relative interior integer point. Therefore, we have at most four
integer points on the boundary of T which is a contradiction to b(T ) = 5.

Case 4: b(T ) = 6. Pick’s formula gives A(T ) = 4. Placing the two
interior integer points of T at (1, 0) and (2, 0) as above implies again that
v2 ∈ {0,±1} for every vertex v = (v1, v2) of T . Clearly, T cannot have
two vertices on the line lin({e1}). If exactly one vertex of T lies on the line
lin({e1}), then using the same arguments as above we infer that T has at
most four integer points on its boundary, a contradiction to b(T ) = 6. Thus,
none of the vertices of T is on the line lin({e1}). Without loss of generality
let T = conv({a, b, c}) with a2 = b2 = 1 = −c2. Then b1 = a1 + 4, otherwise
Pick’s formula is violated. Using an appropriate unimodular transformation,
we obtain a = (0, 1), b = (4, 1), and c = (1,−1) (see Fig. 8.7(c)).

From Lemmas 8.8 and 8.16, it follows that the base of a simplex P ∈ M3

with a3 ≥ 4 has the structure shown in Fig.s 8.2(a)–8.2(e) and 8.7. Further-
more, inequalities (8.1) imply that for a3 ≥ 11 only 8.2(c) and 8.2(e) are
possible. In the following two lemmas we will show that simplices having
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those two bases are not lattice-free for a3 ≥ 13. Thus, by computer enumer-
ation (see Section 8.5) over all potential bases and values for a3 ranging from
4 to 12, we obtain a finite list of simplices. Screening those which are not
maximal lattice-free we end up with only two additional3 simplices, namely
M4 and M5.

Lemma 8.17. Let P ⊆ R3 be a simplex with one facet being conv({e1, e2,
−(e1 + e2)}) and with apex a = (a1, a2, a3) ∈ Z3, where a3 ≥ 13. Then P is
not lattice-free.

Proof. By applying an appropriate unimodular transformation, we can as-
sume that 0 ≤ ai < a3 for i = 1, 2. By symmetry, we further assume that
a1 ≤ a2. We now set up the facet description of P which is only dependent on
the parameters a1, a2, and a3. Using the same arguments as in the proof of
Lemma 8.10, it follows that int(P )∩Z3 is the set of all x = (x1, x2, x3) ∈ Z3

which satisfy

a3x1 − 2a3x2 + (1 + 2a2 − a1)x3 < a3, a3x1 + a3x2 + (1−a1 − a2)x3 < a3,

a3x2 − 2a3x1 + (1 + 2a1 − a2)x3 < a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities, it follows that

a3 + 1 ≥ a1 + a2, (8.11)

otherwise (1, 1, 1) ∈ int(P ). Assume that a1 = 0. If a2 ≤ 1, then (0, 0, 1) ∈
int(P ), otherwise (0, 1, 1) ∈ int(P ). Therefore, we must have a1 ≥ 1. It fol-
lows that

2a1 + 1 ≥ a2, (8.12)

otherwise (0, 1, 1) ∈ int(P ). Observe that (0, 0, 1) ∈ int(P ) if and only if
a1 + a3 − 2a2 > 1 and a2 + a3 − 2a1 > 1. If a1 ≤ 3, then (0, 0, 1) ∈ int(P )
since it holds a1+a3−2a2 ≥ a3−3a1 −2 ≥ 2 > 1 (where the first inequality
follows from (8.12) and the second from a3 ≥ 13) and a2 + a3 − 2a1 =
(a2 − a1) + a3 − a1 ≥ a3 − a1 ≥ 10 > 1. Thus, we must have a1 ≥ 4. Using
(8.11) this implies a3 ≥ a2+3 and therefore a2+a3−2a1 ≥ 2(a2−a1)+3 > 1.
Hence, we have

2a2 + 1 ≥ a1 + a3, (8.13)

otherwise (0, 0, 1) ∈ int(P ). Consider the point (1, 2, 3). We now show that
(1, 2, 3) ∈ int(P ). It holds

(1, 2, 3) ∈ int(P ) ⇐⇒ 3a1 + 3a2 − 2a3 > 3,

3a1 − 6a2 + 4a3 > 3,

− 6a1 + 3a2 + a3 > 3.

3The computer enumeration delivers not only the simplices M4 and M5, but also some
of the simplices which are already known from Lemma 8.15.
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Using inequalities (8.11)–(8.13), a1 ≥ 4, and a3 ≥ 13 it follows:

3a1 + 3a2 − 2a3

(8.13)

≥ 5a1 − a2 − 2
(8.12)

≥ 3a1 − 3 = 3(a1 − 1) > 3,

3a1 − 6a2 + 4a3

(8.11)

≥ 7a1 − 2a2 − 4
(8.12)

≥ 3(a1 − 2) > 3,

−6a1 + 3a2 + a3

(8.11)

≥ −5a1 + 4a2 − 1
(8.13)

≥ 2a3 − 3a1 − 3

(8.11)

≥ 2a2 − a1 − 5
(8.13)

≥ a3 − 6 > 3.

Lemma 8.18. Let P ⊆ R3 be a simplex with one facet being conv({±e1, 2e2})
and with apex a = (a1, a2, a3) ∈ Z3, where a3 ≥ 9. Then P is not lattice-free.

Proof. By applying an appropriate unimodular transformation, we can as-
sume that 0 ≤ ai < a3 for i = 1, 2. We now set up the facet description of P
which is only dependent on the parameters a1, a2, and a3. Using the same
arguments as in the proof of Lemma 8.10, it follows that int(P ) ∩ Z3 is the
set of all x = (x1, x2, x3) ∈ Z3 which satisfy

2a3x1 + a3x2 + (2− 2a1 − a2)x3 < 2a3, −a3x2 + a2x3 < 0,

−2a3x1 + a3x2 + (2 + 2a1 − a2)x3 < 2a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities we obtain the following equivalences:

• (0, 1, 1) ∈ int(P ) if and only if 2a1 + 2 < a2 + a3,

• (1, 1, 1) ∈ int(P ) if and only if a3 + 2 < 2a1 + a2.

Thus, lattice-freeness of P implies that the following inequalities must hold:

2a1 + 2 ≥ a2 + a3, (8.14)

a3 + 2 ≥ 2a1 + a2. (8.15)

Adding (8.14) and (8.15) yields a2 ≤ 2. Now consider the point (1, 1, 2), and
let us show that (1, 1, 2) ∈ int(P ). It holds

(1, 1, 2) ∈ int(P ) ⇐⇒ 4a1 + 2a2 − a3 > 4,

− 4a1 + 2a2 + 3a3 > 4,

− 2a2 + a3 > 0.
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Using (8.14), (8.15), a2 ≤ 2, and a3 ≥ 9 it follows:

4a1 + 2a2 − a3

(8.14)

≥ 4a2 + a3 − 4 > 4,

−4a1 + 2a2 + 3a3

(8.15)

≥ 4a2 + a3 − 4 > 4,

−2a2 + a3 > 4.

8.5 Remarks on the computer enumeration

In this section, we want to discuss the computer enumeration which we used
to finish the proof of Theorem 8.1. Computer enumeration were applied for
quadrangular pyramids and simplices. The following assumptions are made.

Let Q be a quadrangular pyramid with base Q′ and apex q = (q1, q2, q3) ∈
Z3. By a unimodular transformation, we assume that Q′ ⊆ R2 × {0} and
q3 ≥ 2. We further assume that 0 ≤ qi < q3 for i = 1, 2. Moreover, let
S be a simplex and let S′ be an arbitrary facet of S. By a unimodular
transformation, we assume that S′ ⊆ R2 × {0}. We call the facet S′ the
base of S, and the vertex s = (s1, s2, s3) ∈ Z3 of S which is not contained
in aff(S′) is called the apex of S. We further assume that s3 ≥ 2 and that
0 ≤ si < s3 for i = 1, 2.

In view of our results in Sections 8.1–8.4 it remains to verify the following.

(1) Let Q be a quadrangular pyramid with base Q′ and apex q as defined
above. Moreover, let Q′ be one of the quadrilaterals in Fig.s 8.2(h)–8.2(l)
and 8.5, and let q satisfy 4 ≤ q3 ≤ 10. Then Q does not belong to M3.

(2) Let S be a simplex with base S′ and apex s as defined above. Moreover,
let S′ be one of the triangles in Fig.s 8.2(a)–8.2(e) and 8.7, and let s
satisfy 4 ≤ s3 ≤ 12. Then, if S belongs to M3, S is equivalent to one of
the simplices M1 to M7.

Both statements can be verified by a computer enumeration which involves
less than 11 000 polytopes. Let us first consider quadrangular pyramids and
statement (1). There are only 15 different possible bases. For each of these
bases, we check for all values of q3 ranging from 4 to 10 and for all values of
q1 and q2 ranging from 0 to q3 − 1 the corresponding pyramid for maximal
lattice-freeness. This is done by testing (i) whether the pyramid itself has
an integer point in its interior, and (ii) whether each facet has an integer
point in its relative interior. Thus, we can test for maximal lattice-freeness
by solving a couple of feasibility problems. For each base, there are 42+52+
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62 + 72 + 82 + 92 + 102 = 371 pyramids to check. Since we have 15 different
bases this makes 15 · 371 = 5 565 pyramids in total.

Now consider simplices and statement (2). There are only 8 different pos-
sible bases. For each of these bases, we check for all values of s3 ranging
from 4 to 12 and for all values of s1 and s2 ranging from 0 to s3 − 1 the
corresponding simplex for maximal lattice-freeness. For each base, there are
42 +52 +62 + 72 +82 +92 +102 +112 +122 = 636 simplices to check. Since
we have 8 different bases this makes 8 · 636 = 5 088 simplices in total.

Remark 8.19. The number of candidate pyramids and candidate simplices
could be reduced further by considering each base separately in order to obtain
better bounds on q3 and s3, respectively. By doing this, we were able to reduce
the number of candidate polytopes to about 3 000. Unfortunately, this did not
speed up the computer enumeration considerably.

We did not succeed in getting rid of the computer enumeration completely,
but we believe that it should be possible to find for each single base an algebraic
argument which makes the computer enumeration superfluous.





OUTLOOK

In this chapter, we propose four topics for future research directions.
The results of this thesis can be viewed as a theoretical starting point

for the development of a cutting plane algorithm for mixed-integer linear
programs (MILP’s). However, it is still a long way to go until practically
relevant real-life MILP’s can be solved with the help of a cutting plane al-
gorithm which is based on the lattice-free polyhedra presented in this thesis.
We think that the following research questions might be of interest in order
do the next step. Answers to them would at least nicely complement the
results in this thesis.

(1) The evaluation of facet-defining inequalities for conv(PI) in Chapters 4
and 6 is based on the strength measure of Goemans [Goe95]. Further-
more, in Chapter 6, a particular probabilistic model for the two-dimen-
sional case is considered and the addition of a single non-split inequality
on top of the split closure is analyzed. From the literature, it seems that
the evaluation of cutting planes is highly dependent on

(a) the used strength measure,

(b) the probabilistic (or non-probabilistic) model,

(c) whether a single cut or a family of cuts is considered,

(d) whether one round or several rounds of cuts are applied

(see, for instance, [AW10], [AWW09b], [BBCM11], [BCM11], [BCM10],
[BS08], [DL09], [DPW11], [DPWW11a], [DPWW11b], [HAN10]). In-
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one constellation of the parameters (a)–(d), but neglectable for another
constellation. We think that a comparison of the different choices of the
parameters (a)–(d) could help to get more insight.

(2) In Theorem 5.6, the relation between the area and the lattice width of
arbitrary lattice-free sets K ∈ K2 is presented. All the stated inequalities
are best possible (in the sense that there exist lattice-free sets in K2

satisfying the inequalities with equality), except for the inequality in (5.5)
– which is not tight when 2 < w(K) ≤ 1+ 2 · (

√
3)−1. Unfortunately, we

were not able to fill this little gap. Therefore, further research is needed.
Of course, to know the exact inequality is not relevant for a cutting plane
algorithm, but it is mathematically interesting and would complete the
list of inequalities.

(3) In Theorem 7.2, finiteness of the set Pd
ifm(s)/Aff(Λ) (and thus of the

set Pd
fmi(s)/Aff(Λ)) is shown. We think that both sets deserve a more

thorough analysis. Let us explain why and let Q ∈ Pd
ifm(s) be arbitrary.

Then one can construct an MILP such that the feasible region of its
linear programming relaxation is a polytope P , and such that adding
to P the cut associated with Q gives the X-body of P , but adding to
P all the cuts associated with the elements in Pd

ifm(s) \ {Q} does not
give the X-body of P (see, for instance, [Ave11, Theorem 3.3]). Hence,
it is desirable to have a classification of the elements of Pd

ifm(s)/Aff(Λ)
at hand. The results in Sections 7.3 and 7.4 imply that this is a very
challenging problem since even for the set Pd

fmi(s)/Aff(Λ), the number
and the volume of the elements grow dramatically in d. Moreover, in
Chapter 8, we saw that already for the case d = 3, s = 1 it is quite
involved to find all elements of P3

fmi(1)/Aff(Z3).

An interesting task for future research could be to classify the elements
of the two sets Pd

fmi(s)/Aff(Λ) and Pd
ifm(s)/Aff(Λ). For that purpose, it

seems necessary to identify further structural properties of both sets, for
instance in terms of the integer points on the boundary of their represen-
tatives or better volume bounds than the ones we have found. It would
also be interesting to know for which of the open cases d = 2, s = 2, and
d = 3, s ∈ {1, 2} the equality Pd

fmi(s) = Pd
ifm(s) holds true.

(4) Apart from the open questions above, the ultimate goal of the presented
cutting plane approach is to develop a cutting plane algorithm which

deed, depending on how the parameters (a)–(d) are chosen, it is inferred
in the mentioned literature that certain cuts are strong or weak, impor-
tant or less important, indispensable or dispensable. In fact, for partic-
ular families of cuts it is known that they are needed with respect to
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from a practical point of view, it is not clear at all which lattice-free poly-
hedra one should use to derive strong cutting planes. Within a cutting
plane framework they must be computed based on the available data,
i.e. the given matrix A, the right hand side vector b, the objective func-
tion vector c, the set of integer constrained variables I, and the updated
sets PI which are computed during the algorithm. It seems natural to
determine the lattice-free polyhedra with the help of auxiliary MILP’s
within the algorithm. For instance, let us assume that m = 2. Then
it is known (see [DL09], [BCM11], and [DPW11]) that split and type 1
inequalities are sufficient to compute an optimal mixed-integer point in a
finite number of rounds. Usually, one would start by adding split cuts to
the linear programming relaxation of (1.1). After some rounds it might
be the case that the improvement in terms of the objective function
value diminishes. If it falls below a certain value, then type 1 inequali-
ties should be applied. The problem is now to determine a ”good” type 1
triangle, where ”good” could, for instance, be defined as having a small
sum of coefficients of the corresponding cut. So far, no convincing way is
known to generate such a type 1 triangle algorithmically, not to mention
more complicated objects than type 1 triangles. Thus, from the prac-
tical point of view, future research might focus on the development of
techniques to utilize lattice-free polyhedra for cutting plane generation.

is based on facet-defining inequalities for conv(PI). If an MILP as in
(1.1) is given, then a corresponding set conv(PI) can be defined. Now,
any lattice-free polyhedron in the x-variable space that contains the root
vertex f in its interior can be used to generate a cutting plane. However,
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[CM08] G. Cornuéjols and F. Margot. On the facets of mixed inte-
ger programs with two integer variables and two constraints.
In LATIN conference 2008: Theoretical Informatics, volume
4957 of Lecture Notes in Computer Science, pages 317–328.
Springer, Berlin, 2008.
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ETH Zürich, Schweiz
Studiengang: Mathematik
Wissenschaftlicher Assistent am Institut für
Operations Research

09/2008 – Doktorat

04/2010 Otto-von-Guericke-Universität Magdeburg, Deutschland
Studiengang: Mathematik
Wissenschaftlicher Assistent am Institut für
Mathematische Optimierung

10/2007 – Studium

07/2008 Otto-von-Guericke-Universität Magdeburg, Deutschland
Studiengang: Wirtschaftsmathematik (Diplom)

10/2006 – Studium

09/2007 Universität Uppsala, Schweden
ERASMUS-Programm



10/2003 – Studium

09/2006 Otto-von-Guericke-Universität Magdeburg, Deutschland
Studiengang: Wirtschaftsmathematik (Diplom)

10/2002 – Fernstudium

09/2003 Technische Universität Kaiserslautern, Deutschland
Studiengang: Mathematik (FIMS)

09/1993 – Abitur

03/2002 Hermann-Hellriegel-Gymnasium, Bernburg (Saale),
Deutschland



ACADEMIC CURRICULUM VITAE

Christian Wagner

born on September 2, 1982, in Bernburg (Saale), Germany

since 05/2010 Doctoral studies

ETH Zurich, Switzerland
Course of studies: mathematics
Research assistant at the Institute for
Operations Research

09/2008 – Doctoral studies

04/2010 Otto-von-Guericke University Magdeburg, Germany
Course of studies: mathematics
Research assistant at the Institute for
Mathematical Optimization

10/2007 – Studies

07/2008 Otto-von-Guericke University Magdeburg, Germany
Course of studies: business mathematics (diploma)

10/2006 – Studies

09/2007 Uppsala University, Sweden
ERASMUS Programme



10/2003 – Studies

09/2006 Otto-von-Guericke University Magdeburg, Germany
Course of studies: business mathematics (diploma)

10/2002 – Distance learning

09/2003 University of Kaiserslautern, Germany
Course of studies: mathematics (FIMS)

09/1993 – High school

03/2002 Hermann-Hellriegel-Gymnasium, Bernburg (Saale),
Germany
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