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Zusammenfasung

Diese Arbeit untersucht Verfahren zur Zieldetektion und Positionsbestimmung in
einem Radarnetzwerk. Ausgehend von bekannten Verfahren der Signalverarbei-
tung werden neue Methoden zur Erhöhung der Leistungsfähigkeit erarbeitet. Ein
experimentelles Radarnetzwerk für den Einsatz an einem Automobil wird vorge-
stellt.

Ein Radarnetzwerk besteht aus einem Verbund von mehreren am Fahrzeug
angebrachten Einzelsensoren. Die Sensoren vermessen getrennt voneinander die
Umgebung und melden die gemessenen Entfernungen an einen Zentralrechner.
Der Rechner vergleicht die gemessenen Entfernungen der Einzelsensoren mitein-
ander und bestimmt im Trilaterationsverfahren den Zielwinkel. Der Einzelsensor
kommt ohne Winkelmessung aus und ist deshalb einfacher aufgebaut als ein win-
kelmessender Sensor.

Die Umfeldwahrnehmung durch Radarsysteme ermöglicht viele Komfort- und
Sicherheitsanwendungen für ein Automobil. Muss ein weiter Beobachtungsbereich
um das Automobil abgedeckt werden, ist ein Radarnetzwerk mit einfachen Ein-
zelsensoren besonders günstig.

Im Rahmen dieser Arbeit wurde die Signalverarbeitung für linear frequenz-
modulierte (LFM) Dauerstrichradare im 77GHz Bereich und für ein Radarnet-
werk entwickelt. Erstmals wurde ein Radarnetzwerk aufgebaut, welches mit 77GHz
LFM Sensoren arbeitet.

Die vorliegende Arbeit beschreibt zunächst die klassischen LFM- und Radar-
netzwerktechniken. Sie zeigt anschlieÿend, worin die besonderen Anforderungen
an die LFM Sensoren im Radarnetzwerk liegen. Für das Trilaterationsverfahren
werden hohe Messgenauigkeit und Detektions-Wahrscheinlichkeit benötigt. Ins-
besondere müssen die Sensoren in Mehrzielsituationen mit einer relativ hohen
Anzahl von Zielen funktionieren.

Beim Aufbau des 77GHz LFM-Radarnetzwerkes hat sich herausgestellt, dass
die etablierten LFM-Signalverarbeitungs-Verfahren für ein Radarnetzwerk ver-
bessert werden müssen. Bisherige LFM-Verfahren trennen zwischen Signal-Vor-
verarbeitung und Zielverfolgung. Diese Arbeit stellt für den Einzelsensor einen
Tracker vor, der in die LFM-Vorverarbeitung integriert ist. Es ergibt sich ein
groÿer Gewinn an Messgenauigkeit und Trackstabilität.

Auf der Seite der Netzwerkverarbeitung wurden bisher erste Erfahrungen ge-
macht, Trilateration und Tracking in einem nichtlinearen Tracker zusammenzu-
führen. Dies wurde auch in dem vorgestellten Netzwerk untersucht. Zusätzlich
wird ein neues Verfahren vorgestellt, in dem auch die LFM-Signalverarbeitung
der Einzelsensoren in die Netzwerkverarbeitung integriert ist.

Abschlieÿend wird das Experimental-System vorgestellt, und Messergebnisse
präsentiert. Insgesamt zeigt sich, dass die Integration von Verarbeitungsschrit-
ten in LFM-Sensoren, im Radarnetzwerk sowie im Gesamtsystem eine wesentlich
e�zientere Verwertung der Messdaten zulässt.
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Chapter 1

Introduction

1.1 Short History of Radar
The word RADAR is an acronym that stands for RAdio Detection And
Ranging. The history of radar started at the beginning of the 20th cen-
tury with an invention of the engineer Christian Hülsmeyer. Driven by the
tragedy of a ship collision on the river Weser, the German engineer invented
and built the �rst Radar in 1904 [Huelsmeyer 1904]. He called his inven-
tion the Telemobiloskop and the intended use was to detect approaching
ships under foggy weather conditions, in other words an all weather colli-
sion avoidance system for ships. Although his presentations of the Telemo-
biloskop were internationally recognized, the engineer did not �nd �nancial
support for his invention and �nally dropped his work on radar.

Nevertheless, this was the beginning of what today is an independent
�eld of electrical engineering. The �rst practical applications of radar were
military. Radar techniques were developed to detect approaching ships and
aircraft as early as possible. Today many of those techniques can be found
within civil navigation for air and sea tra�c control.

Also, the natural environment has increasingly become a favored object
to be observed with radar systems. Weather radars are used in meteorology
to detect areas with rain fall. Geology and geography examine the earth
surface by using airborne synthetic aperture radars (SAR) or satellite SAR
systems.

All these applications of radar have one thing in common: The radar
device is the prominent center of a system which delivers data and services
to a huge number of users. This way, despite the great cost of the radar
itself, the construction and operation of these systems can be a pro�table

11



12 CHAPTER 1. INTRODUCTION

business. The arrival of modern microwave technology has expanded the
range of possible applications by making small and low cost radar sensors
viable.

Today small radar sensors can be developed for basic detection and
ranging tasks such as the measurement of the liquid level in a tank. More
advanced systems that can resolve multiple targets and estimate the targets
angular position are under development, some such systems are already
available. Radar systems which enable the robust interpretation of a target
scenario like a road tra�c scene are currently under research. A radar
with this performance allows many comfort and safety applications for road
vehicles.

After a century of radar research, �elds like automotive radar follow the
inspiration of Christian Hülsmeyer and keep alive the idea to use radar for
a safer journey and to protect human lives.

A detailed overview of the history of Radar can be found in [Willis 1991].

1.2 Automotive Applications
Automotive applications provide an interesting �eld of research in advanced
radar systems today. Small automotive radar sensors are already available
for adaptive cruise control (ACC) systems. However, new safety applica-
tions have higher demands on the sensor speci�cations. These new applica-
tions and appropriate sensors are still under research. Examples for safety
applications are blind spot surveillance, pre-crash recognition, and collision
avoidance.

1.2.1 Adaptive Cruise Control (ACC)
A standard cruise control system keeps the vehicle at a constant, preselected
speed. An ACC system has an increased functionality. It keeps the vehicle
speed constant until another car with a lower speed appears in the path of
the controlled car. The ACC will then adapt the driving speed to the speed
of the car ahead. When the car that is followed changes lane or accelerates,
the ACC increases the speed until the preselected speed is reached.

The ACC system is a comfort system, although some systems also alert
the driver when there is a potential danger of colliding with a preceding car.
At present ACC radars solely detect moving objects as this is a situation
readily managed by todays technology. The systems work well when the
vehicle is on a highway and both the vehicle and the surrounding tra�c is
moving. An additional �stop and go� functionality increases the range of
use to situations where the tra�c ahead comes to a full stop.
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It is crucial for an ACC system to correctly determine whether a preced-
ing car is in the driving lane of the host vehicle or not. Practical systems
equipped with a far distance sensor show that this is basically possible for
moving objects. Moving objects can be separated well from other objects,
especially from the many stationary objects in a typical tra�c scene. Their
target angle can be measured very precisely when integrating over multiple
measurements. The actual di�culty lies within the prediction of the host
vehicle's drive path.

The development of a �stop and go� functionality is aiming at the use
of the ACC in dense tra�c scenarios on motorways, in tra�c jams, and
in city tra�c situations. In these situations, distances to other road users
are smaller. To have su�cient time to react to a changing of lanes and in
cut-in situations, a wide angular coverage of the near distance area around
the front of the car is desired. The �stop and go� functionality also raises
the question how to handle stationary objects that enter the observation
area. Since it is not clear yet how the angular position estimation and
the determination of the drive path can be made su�ciently accurate, the
fallback solution is to react to stationary objects only if they were previously
recognized as moving objects that have since decelerated to a full stop.

1.2.2 Blind Spot Surveillance

When turning or changing lane, other road users approaching on the neigh-
boring lane can be overlooked. A blind spot surveillance system alarms the
driver during a turn or lane change if another road user is getting danger-
ously close.

1.2.3 Pre-Crash Recognition

Safety systems for road vehicles like airbags and seat-belt tensioners have
proven to be e�ective life-savers. These systems require some time to reach
their maximum e�ectiveness. Especially for side-impact airbags that protect
passengers from impacts in the area of the vehicle doors, the deployment
time is still a very crucial point. Pre-crash recognition systems are under
research to detect impacts earlier than conventional mechanical systems do,
in order to gain a few milliseconds of time for the deployment of airbags and
belt tensioners. Also, the type and severeness of the crash can be reported
to adaptively adjust the restraint systems.
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1.2.4 Collision Avoidance
The next level of complexity for radar aided safety applications is repre-
sented by collision avoidance systems. For these systems, a likely collision
has to be detected early enough to have time for automatically initiated
countermeasures. These can be applying the brakes or performing evasive
maneuvers. The goal is either to completely avoid the crash or to at least
reduce the energy of the impact.

While blind spot surveillance and pre-crash recognition applications are
aiming at very speci�c situations, a collision avoidance system needs a de-
tailed interpretation of the tra�c scene including a prediction of the vehicles
drive path. A collision avoidance application can be regarded as the exten-
tion of an ACC stop and go system that also reacts to stationary targets.
To perform evasive maneuvers, the observation area has to be greater and
oncoming tra�c has to be detected. Additionally, this application requires
a high target detection rate and a very low false alarm rate under all cir-
cumstances. This requirement is a real challenge in the system design.



Chapter 2

A Radar Network with Four
77 GHz Sensors

The basis of this work was given by the European research project �multi-
functional automotive radar network� (RadarNet). One of the goals of this
research project was to provide a common sensor network for a wide range
of applications. Since all applications use the same data generated by all
the available sensors, a great reduction in system complexity and cost can
be achieved.

As shown in Figure 2.1, four distributed sensors are mounted along the
front side behind the bumper of the vehicle. The individual sensor does not
provide any measurement of the target angle. Instead, a network proces-
sor combines the range measurements of each individual sensor and does a
target position estimation by means of lateration techniques. This strategy
reduces complexity in the production of the individual sensors. The concept
of trilateration is shown in Figure 2.2. Additionally, a long distance sensor
is provided for ACC functionality.

Each sensor transmits a continuous wave (CW) signal in the 77 GHz
domain. The CW signal is modulated by a linear frequency modulation
(LFM) technique. This waveform allows the simultaneous measurement of
target range and radial velocity. Also the relatively low complexity of the
high frequency front-end for a CW sensor reduces the overall system cost.

Within this work, the signal processing software for the LFMCW pro-
cessing in the individual sensor (single sensor processing) and the radar net-
work processing are both investigated. For the �rst time 77 GHz LFMCW
sensors were designed as near distance sensors to be used in a radar net-
work. At �rst, classical LFMCW processing techniques were implemented

15



16CHAPTER 2. A RADAR NETWORKWITH FOUR 77 GHZ SENSORS

R a d a r -
n e t w o r k

A p p l i c a t i o n
A p p l i c a t i o n

N e a r  D i s t a n c e  S e n s o r s
n o  a n g u l a r  r e s o l u t i o n

F a r  D i s t a n c e  S e n s o r  
w i t h  a n g u l a r  r e s o l u t i o n

Figure 2.1: Radar network overview

R

R
1

2

Sensor 1 Sensor 2
x

y

Target t=(x,y)

Figure 2.2: Concept of trilateration



2.1. SYSTEM REQUIREMENTS 17

2 0 m

1 0 m

1 0 m
1 0 m 1 0 m2 0 m 2 0 m

B l i n d  S p o t
S u r v e i l l a n c e
P r e  C r a s h  
D e t e c t i o n

A d a p t i v e  C r u i s e  
C o n t r o l  +
S t o p  a n d  G o

0
0

0 0

Figure 2.3: Observation areas for some applications

and it was recognized that these techniques had to be enhanced to achieve
good results.

Also the classical radar network processing can be adapted to the char-
acteristics of LFMCW sensors to improve performance.

2.1 System Requirements
The above-mentioned applications have di�erent requirements on the radar
system. Most obvious is the di�erence in the required observation area. As
shown in Figure 2.3, the adaptive cruise control (ACC) application needs
targets to be detected at a far distance but only within the drive path in
front of the car. It therefore requires only a small azimuth coverage area.
For the collision avoidance system, a wide area around the car needs to be
observed to also detect tra�c from the side. The blind spot surveillance has
to observe the sides of the car. The pre-crash sensing application should be
able to detect impacts in all areas of the car where deployment of passenger
restraint systems is useful.
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Collision avoidance and pre-crash sensing are safety applications that
should quickly react on potentially colliding objects with high relative ve-
locities. Therefore, these applications have a particularly high demand for
fast object detection and a high update rate of the target reports to the
application.

The ability of the radar system to resolve targets with di�erent ranges
and velocities is a requirement of nearly all applications that have to inter-
pret road tra�c scenes.

The following table shows possible speci�cations of the radar network
requirements for di�erent applications. These values are commonly agreed
to be a useful basis on which to do research for the described automotive
applications.

Parameter ACC Pre-crash Collision
avoidance

Target acquisition time / s 0.3 0.03 0.03
Update rate / Hz 50 100 100
Max. range / m 170 25 30
Range accuracy / m 0.1 0.1 0.1
Range resolution / m >2 1 0.1
Angular accuracy / deg <1◦ 1◦ 0.5◦
Angular resolution / deg - 5◦ 2◦
Max. rel. velocity / m

s 50 -5 100
Min. rel. velocity / m

s -110 -250 -160
Velocity accuracy 0.5m

s 5% 2%
Velocity resolution / m

s 2 3 3

Table 2.1: Radar system speci�cations for researched applications

The target acquisition time is the maximum time the radar system has
available to report a new target that has entered the observation area. For
most applications, the actually critical parameter is the time available to
react to a detected target. This time depends on the maximum expected
object speed, the range of the observation area and the target acquisition
time.

For safety applications the range- and angular resolution needs to be
good enough to resolve all objects of interest. To react to moving targets,
the ability to resolve targets by their velocity can replace the need for a
high range or azimuth resolution.
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2.2 Requirements for Networked Single Sen-
sors

The radar network approach is to process the ranges measured by the indi-
vidual sensors within a central radar network to obtain the target azimuth
angle. Instead of measuring the angle by monopulse or sequential lobing
techniques, the range measurements from spatially distributed sensors are
trilaterated. In the previous section, Figure 2.2 shows the principal of the
trilateration technique.

From this measurement principle it follows that the single sensor range
accuracy needs to be very high to achieve good angular measurement results
[Klotz 2002]. In numbers, the single sensor range accuracy needs to be in the
range of 3 cm. It has been shown that this is technically accomplishable.
Section 6.7 goes into the connection between sensor range accuracy and
network position estimation accuracy in more detail.

LFMCW processing has proven to be practically useful for many appli-
cations. A major bene�t of the used waveform is that it meets an important
requirement of many applications. It is possible to measure target range and
radial velocity simultaneously even in multitarget situations. Knowing this,
it is of interest under which circumstances and for which applications the
described radar network based on the 77 GHz LFMCW sensors is useful.



20CHAPTER 2. A RADAR NETWORKWITH FOUR 77 GHZ SENSORS



Chapter 3

Radar Waveforms

Every radar system utilizes the same physical e�ect of electromagnetic wave
propagation. The radar transmits a high frequency signal and listens to
backscattered echoes. The modulation used on the transmitted signal is
called �waveform�. The two basic types of waveforms used for radar systems
are the pulse waveform and the continuous waveform (CW). The radar
waveform used for the single sensors is an important question in the design
of a radar network.

A pulse radar transmits a short pulse and afterwards listens for a certain
time for backscattered signals arriving at the receiver. If multiple targets
with di�erent distances are within the observation area, the radar will re-
ceive multiple echoes at di�erent times.

The CW radar on the other hand transmits and receives continuously, so
it needs a more sophisticated way of resolving the superposed echo signals
from multiple targets. As far as the design of the high frequency part of the
sensor is concerned, the CW radar is less complex than the pulse radar.

The waveform of a pulse radar is usually visualized with a signal power
versus time graph while the instantaneous frequency is shown for a CW
waveform, this can be seen in Figure 3.1.

The CW-Radar, due to its nature, needs additional frequency modula-
tion to resolve or at least measure target range at all. Two common types
of frequency modulation suitable for a CW radar are:

• Linear frequency modulation,

• frequency shift keying.

Pulse and CW modulation techniques are not mutually exclusive, as a com-
bination of both techniques shows [Mende 1999].

21
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Figure 3.1: Pulse- and linear frequency modulated waveform

3.1 Observable Target Parameters
The radar is used to detect objects in the observation area and to retrieve
information about these objects. The waveform plays an important role in
the ability of the radar to detect objects and measure their parameters. For
detection and measurement the radar transmits the waveform and interprets
the objects backscattered echo signals. Most commonly, the following object
parameters are estimated by the radar:

target parameter physical equivalent
range R signal propagation delay τ
radial velocity vr Doppler frequency shift fD

azimuth/elevation direction of wave / antenna directivity
(not waveform relevant, discussed in Sec.6.1 )

Table 3.1: Object parameters measured by the radar

The waveform predominantly determines how the target parameters
range R and radial velocity vr are measured within the radar. For au-
tomotive safety applications range and radial velocity need to be measured
simultaneously.
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3.1.1 Target Range
The target range parameter R refers to the distance between the radar
antenna and the target. The target range is proportional to the time τ it
takes the signal to travel from the radar transmitter to the re�ecting target
and back to the radar receiver:

R =
c · τ
2

Where c is the speed of light.

3.1.2 Target Radial Velocity
The relative radial velocity vr between target and radar is determined by
the Doppler e�ect. Christian Doppler discovered around the year 1840 that
the frequency of a received sound wave is changed depending on the relative
velocity between transmitter and receiver. The same e�ect occurs when a
radar receives a re�ection from a target that has a radial velocity relative
to the radar. The Doppler e�ect is caused by the continuous change of
distance between the radar and the target that squeezes or expands the
receive signal in time. Assuming a target at initial range R0 with constant
radial velocity vr, the receive signal r(t) is delayed by the time dependent
signal propagation delay τ(t) ≈ 2(R0+vrt)

c . In the case of a transmit signal
s(t) being a harmonic oscillation with frequency fC , the Doppler shift of
the received oscillation can be determined as follows:

s(t) = sin (2πfCt)

r(t) ≈ s

(
t− 2(R0 + vrt)

c

)

r(t) ≈ sin

(
2πfC

(
t− 2(R0 + vrt)

c

))

r(t) ≈ sin

(
2πfCt− 2πfC

2vr

c
t− ϕR

)

The middle term of the sine function argument contains the Doppler fre-
quency shift:

fD ≈ −2fCvr

c
= −2vr

λ

Where λ is the signal's wavelength λ = c
fC

. Only the radial component of
the relative target velocity has an impact on the Doppler frequency. The
tangential component has no impact on the deviation of the target range
and so does not add to the Doppler frequency shift.
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Figure 3.2: Simple pulse radar

3.2 Pulse Radar
Figure 3.2 shows a simple pulse radar with a transmitter and receiver cir-
cuit. The transmitter, generating the transmit signal, and the receiver,
down converting the echo signal, use the same oscillator. Therefore the
radar receives the echo signal coherently. The example shows a quadrature
demodulator that produces a complex low pass signal.

The transmitter issues short pulses of duration TP . It repeatedly trans-
mits these pulses with the Pulse Repetition Frequency PRF = 1/TPI . In
the time between the transmissions, the receiver listens to backscattered
echoes and down-converts the incoming receive signal into base band. In
this very simple example, the phase of the received echo signal is discarded
and the magnitude is compared with a threshold.

3.2.1 Range Measurement
Let us assume a target at a distance of R1. The radar transmits the �rst
pulse at t = t0. The pulse will propagate as an electromagnetic wave at
the speed of light c ≈ 3 · 108 m

s . At the target, a fraction of the wave is
re�ected back to the radar. The complete delay of the wave is τ1 = 2R1

c .
Since the transmit pulse was issued at t0, the re�ected wave is received at
time t = t0 + τ1. Via the relation R = τc

2 , the target distance is obtained.

3.2.2 Range Resolution
Figure 3.3 shows the signal power of the transmit and receive signal over
time for a scenario with 2 targets at ranges R1 and R2. In this example,
the two targets are well separated from each other. If the distance between
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Figure 3.3: Pulse waveform, transmit and receive signal versus time

the two targets gets smaller, at some point, the targets magnitude peaks
will be superposed. The superposition will result in one peak and the two
targets will appear as a single one.

The target resolution 4R denotes the minimum di�erence in distance
between two targets required to detect them as two separate targets. For
the pulse radar, the target resolution is calculated from the pulse width Tp

by 4R = cTP

2 .
In a real system the transmit and receive peaks are not perfectly rect-

angular, but due to a limited bandwidth in the transmitter and receiver
are smoothened and may contain side-lobes. Usually a pulse shaping �lter
is used to constrain the spectral output of the transmitter. For this case,
the 3 dB width of the shaped pulse is taken as the pulse duration. This
de�nition of resolution also assumes, that the two targets have the same
amplitude within the receiver. Otherwise, if one peak is much smaller, it
will be masked by the greater peak even for 4R > cTP

2 .

3.2.3 Range Ambiguity
Another constraint is introduced by the repetition of the pulses with the
Pulse Repetition Frequency PRF = 1/TPI . If the target echo delay τ is
greater than the time between pulses TPI , the echo will be received after the
next pulse is transmitted. This will happen for target distances greater than
Runamb = cTP l

2 . If range measurements greater than Runamb are possible,
the target range measurement is ambiguous:

R =
cτ

2
+ n · c

2PRF
n >= 0
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3.2.4 Estimation Accuracy
The range estimation accuracy on a point target depends on how accurately
the position of the peak within the receive signal can be estimated. The
estimation accuracy depends on the signal to noise ratio (SNR). Even for
a low SNR of 10dB, the average range estimation accuracy is much better
than the range resolution (3 dB width of the peak).

3.2.5 Pulse Doppler Radar
The target radial velocity introduces a Doppler shift of the echo signal
frequency. After down conversion, the frequency of the base band receive
signal is identical to the Doppler shift of the HF signal. The coherent mixing
process makes it possible to measure the Doppler frequency by observing
the complex value of the target's echo signal over time.

The radar receiver as described previously has to be upgraded with a
memory to store these complex echo values over many measurements. This
is done for every range gate separately. Doing this for multiple cycles, for
every range gate there is a sampled time signal available. The sample rate
is the PRF. The Doppler frequency can be resolved by doing a spectral
analysis over each range gate time signal. With this range-Doppler pulse
radar targets can additionally be resolved by their velocities.

3.3 Continuous Wave Radar without Range
Resolution

A radar that continuously transmits an electromagnetic wave is called
a Continuous Wave (CW) radar. Along with the transmission of the CW
signal, the radar continuously listens to backscattered echo signals. The
CW radar di�ers in this from the pulse radar that sends out short pulses
and listens to echo replies in-between.

The CW radar measures continuously, so multiple target echoes are ad-
ditively superimposed within the receive signal. To measure a target's range
or to even resolve targets by range, a CW radar needs additional modula-
tion.

The near distance sensors that are used for the radar network described
in Chapter 6.2, work according to the CW principle. The sensors use linear
frequency modulation (LFM) to measure target range and target Doppler
frequency simultaneously.

In the following, a short introduction to the CW modulation is given
and the monofrequency CW radar and the FSK CW radar are introduced.
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Radars that work according to either of these techniques can not resolve
range. In the next section, the LFMCW modulation is introduced and the
principles of resolving target range and Doppler with an LFMCW waveform
are explained. Finally, the waveform is described that was developed for the
sensors of the radar network.
3.3.1 Mono-frequency CW Radar
A CW radar without any modulation is called a mono-frequency CW radar.
The waveform is shown in Figure 3.4 together with an example receive
signal. The base band receive signal and its FFT transformed squared
magnitudes are shown on the right. A target echo is represented in the
baseband receive signal as a harmonic oscillation. The frequency of this
oscillation depends solely on the Doppler shift due to target motion.

If the signal is processed digitally, the base band time signal is sampled
by an A/D converter. The sampling rate should be chosen to unambiguously
measure all Doppler frequencies that can occur. Usually, a signal block con-
sisting of many consecutive samples is Fourier transformed and the target
detection and frequency measurement is done in the spectral domain.

The mono-frequency CW radar is only able to resolve targets by their
velocity, not by their range. This type of radar is used in situations where
only the speed of an object is required, for instance it is used by a police
radar to check your driving speed or at sports events to measure the speed
of a football. This type of radar is neither able to resolve nor estimate target
range.

3.3.2 FSK CW Radar
The CW signal has to be modulated to measure target range. The simplest
modulation scheme is the frequency shift keying (FSK) modulation. The
FSK radar alternately switches the frequency of the transmit signal between
two distinct frequencies f0 and f1. Switching from f0 to f1, the signals
wavelength is changed and so the phase of the receive signal is shifted from
ϕ0 to ϕ1. The phase shift dϕ = ϕ1 −ϕ0 in the receiver depends on the two
frequencies f0, f1 and the target range parameter R.

dϕ = ∠ e4π R (f1−f0)/c

The phase shift is measured and used to estimate the target range.
The preferred way to process the FSK receive signal is to use digital

signal processing. In the same way as described for the monofrequency CW
radar, a consecutive signal block is processed at once. The FSK modula-
tion is usually done by quickly alternating between the two frequencies for
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Figure 3.4: Mono-frequency CW waveform and an example baseband signal

each sample taken by the A/D converter. The digitized signal can be in-
terpreted as being two monofrequency measurements that are intertwined.
The samples r2k belong to one monofrequency measurement using transmit
frequency f0, the samples r2k+1belong to the measurement using f1.

The two signals are separated and Fourier transformed. Apart from
a phase shift, the two spectra are identical. Target detection is done in
the spectral domain. Since the echo signal frequency only depends on the
target velocity, the FSK radar can only resolve targets by velocity but not
by range. When a target can be resolved, its range can be estimated by the
phase shift between the two (complex valued) spectra.

3.4 Linear Frequency Modulation
The linear frequency modulated continuous wave (LFMCW) radar measures
the range and Doppler frequency of a target simultaneously. Using a wave-
form as described in the following, it is possible to resolve multiple targets
by range and velocity.

The LFMCW radar transmits a linear frequency sweep from a start
frequency f0 to a stop frequency f1. This frequency sweep is also called a
chirp. The bandwidth of the chirp is the frequency range that is covered by
the transmitter: ∆f = f1 − f0.
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Figure 3.5: Instantaneous frequency of an LFMCW sweep

During the transmission of one sweep, the instantaneous transmit fre-
quency changes linearly with time, as shown in Figure 3.5. The parameters
of the transmitted sweep are:

• Start frequency: f0

• Stop frequency: f1 = f0 + ∆f

• Sweep/Chirp duration: TC

The graph also shows the instantaneous frequency of a receive signal re-
sulting from the echo return of one target. The receive signal is shifted in
the frequency direction by the Doppler frequency due to the targets radial
velocity. The receive signal is additionally delayed by its propagation delay.

It is important for understanding the CW radar that the receiver down-
converts the echo signal to the base band by mixing the receive signal with
the currently transmitted signal. In this way, the base band signal will be a
harmonic oscillation and its frequency value will be equal to the di�erence
between the current HF transmit and receive frequency from an echo reply.

The frequency di�erence df depends on the Doppler shift and the signal
propagation delay. The Doppler frequency depends on the target velocity
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vr:
fD = −2fCvr

c

The propagation delay τ also results in a frequency shift. The delay τ in
turn is directly proportional to the target range:

dfR = −∆f

TC
τ = −∆f

TC
· 2R

c

The frequency shifts due to the Doppler e�ect and due to range simply add
up to one complete frequency shift as can be seen in Figure 3.6. The receive
signal, down converted to base band, has a frequency value identical to this
frequency di�erence:

df = fD + dfR = −2fC

c
vr − 2∆f

cTC
R (3.1)

To process the LFMCW base band signal, it is sampled and digitized by an
A/D-converter. If there are multiple echo signals from multiple targets, they
will be superimposed in the receive signal. To resolve, detect and estimate
the involved frequencies a spectral analysis is performed on the base band
time signal. For this task a discrete Fourier transform is commonly used.
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3.4.1 Measurement of Range and Velocity for a Single
Target

It is desired to estimate the targets range R and velocity vr. However, a
single chirp measurement gives only a frequency value df for each target.

This frequency value df is linked to R and vr through equation 3.1.
Since many R,vr combinations ful�ll this equation, R and vr are said to
be measured ambiguously. This dependency between R and vr for a single
chirp measurement can be represented graphically as a straight line in a
range-velocity graph, as shown in Figure 3.7. The gradient of the range-
velocity line depends on the chirp gradient ∆f

TC
.

R
v

− λ df

2

RtT
C

∆f df

transmit signal

receive signal

Single chirp waveform

f(t)

Range−velocity diagram

Figure 3.7: Single chirp waveform with positive sweep rate ∆f (left) and
corresponding R-vr diagram for a single target measurement (right)

A common technique [Ludlo� 2002] uses two chirps with opposite fre-
quency gradients. Represented graphically, two measurements of a target,
done with di�erent gradients, produce two lines that are intersecting in one
point (Figure 3.8).

Graphically, the target range and velocity is derived by searching for the
cross section of the two lines in the graph. Numerically, the two equations
from the two chirps measurements have to be solved for R and vr.

3.4.2 Multiple Target Situations
The technique described above works satisfactory as long as there is only one
target. For two targets, there are four cross sections in the range-velocity
graph (Figure 3.9). Two of them represent the correct assignments for the
two range-velocity pairs. Two of them are a by-product of the real targets.
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Figure 3.8: Two chirp waveform with sweep rates of opposite sign and cor-
responding R-vr diagram for a single target

These wrong combinations are commonly referred to as ghost targets. Some
of these wrong combinations could be sorted out in the following processing
stages, however, this becomes unreliable and impractical with a growing
number of targets as with n targets there are about n2 − n ghost targets.

3.4.3 Ghost Target Reduction by Using Multiple Chirps
Most of the ghost targets can be �ltered out by using more than 2 chirps. In
the range-velocity graph, using 4 chirps with di�erent sweep rates, a valid
target will produce a cross section with 4 lines intersecting in one point
(Figure 3.10). A situation where 4 lines are accidentally intersecting in one
point is rare and might easily be handled in further signal processing stages.
This technique of reducing the ghost target detections has been published
in [Meinecke 1998, Rohling 1998].

A useful waveform consists of 4 chirps. This is a trade-o� between the
probability of the accidental detection of a ghost target and the measure-
ment time. Chapter 4 explains the algorithms and looks at the performance
in detail. A quantitative investigation can also be found in [Meinecke 2001].

Figure 3.11 shows the proposed waveform that is used for the discussed
LFMCW near range sensors. The chosen values for the parameters are:

f0 = 76.5GHz

∆fchirp1 = ∆f ∆fchirp2 = −∆f

∆fchirp3 = ∆f
2 ∆fchirp4 = −∆f

2
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Figure 3.11: Proposed waveform consisting of 4 chirps

Tchirp1 = Tchirp2 = Tchirp3 = Tchirp4 = TC

The parameters 4f and TC are chosen to meet the technical capabilities,
where especially the sweep gradient 4f

TC
is technically limited and the band-

width 4f is also a frequency allocation issue. Because transient responses
occur when changing the frequency gradient, there are intervals at the be-
ginning of chirps that are not used for processing. Because of the currently
available hardware the following parameters are chosen:

4f = 450MHz

TC = 2ms

The practically realized waveform is shown in Figure 3.12. The useful
bandwidth for the �rst two chirps is 450 MHz, the last two chirps have
half the bandwidth. The transmit signal is shown dashed for the settling
time and a �at time, indicating that these intervals are not used for the
measurement.

3.4.4 Additional Considerations
Practically all modern LFMCW sensors work according to the stepped
LFMCW principle, which is a slight variation of the LFMCW concept.
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A stepped LFMCW radar increases the instantaneous transmit frequency
in little quantities instead of using a smooth gradually rising frequency
sweep as transmitted by an analog LFMCW radar. The di�erence is shown
in Figure 3.13. The receive signal is sampled in constant intervals deter-
mined by the A/D converters clock rate, and the transmit signal is syn-
chronously changed with that sampling rate.

A stepped LFMCW Radar has some technically convenient features as
described in [Mende 1999]. As far as the resulting receive signal and the
processing is concerned, there is just a minor di�erence: The starting phase
of a targets echo signal in the baseband domain is di�erent to the un-stepped
version.

In Appendix A, the down-converted receive signal is analytically deter-
mined for both the analog and the stepped LFMCW radar. The results of
these calculations are of course consistent with the graphical approach from
above in section 3.4. The results are also consistent with the intuitive idea
that the stepped waveform will lead to harmonic oscillations of the same fre-
quencies as the analog LFMCW waveform. The signal processing schemes
are exactly the same for both the LFMCW and the stepped LFMCW radar.
Apart from these results, the equations derived in Appendix A can be used
for simulating a (stepped) LFMCW radar front-end.

The stepped LFMCW radar makes it easy to compensate non-linearity
in the voltage controlled oscillator (VCO) of the radar front-end. This is
done by maintaining a lookup table for driving the VCO control voltage.

When simulating a radar front end, these non-linearities of the VCO can
also be incorporated into the simulation. The equations derived in Appendix
A can easily be adapted to include nonlinear behavior of the VCO.

However, the LFMCW sensors described in this thesis generate the
transmit signal by a digital synthesizer. Therefore, the generated wave-
form follows the targeted frequency value very precisely, so no additional
compensation of non-linearities is necessary in this case.



Chapter 4

Single Sensor Processing

4.1 LFMCW Processing Overview
The preceding chapter introduced the basic concept of a linear frequency
modulated continuous wave (LFMCW) radar. It also introduced a useful
waveform sequence consisting of four chirps, all with di�erent sweep gradi-
ents (Figure 3.12). The signal processing described in this chapter is based
on this waveform sequence.

The analog part of the processing consists of the mixer and the analog to
digital conversion unit. All further processing is done digitally. An overview
of the system design can be seen in Figure 4.1. The proposed digital signal
processing consists of two major parts:

1. A spectral analysis to resolve and estimate the frequency values of the
echo signals.

2. A frequency to range-velocity algorithm to resolve the desired target
parameters from the detected frequencies.

After down mixing and A/D converting the receive signal, the spectral
analysis is the �rst step of digital signal processing. The spectral analysis
detects and estimates the frequency components in the receive signal. The
analysis is done for the received time signal of each chirp separately. The
digitized receive signal is bu�ered, so that the signal from a complete chirp
can be processed at once. The implementation of the spectral analysis is
summarized in Figure 4.2.

In multiple target situations the digitized and bu�ered signal consists of
multiple additively superimposed target echoes with di�erent frequencies.
In order to resolve these frequencies, an FFT algorithm is used.

37
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Figure 4.1: Overview of LFMCW sensor

Prior to the FFT processing the time domain signal is windowed. Mul-
tiplying the time domain samples by a window function is commonly done
to reduce the side lobes of the spectral peaks.

The squared magnitudes from the FFT bins are an estimate of the spec-
tral power. In this power spectrum, targets are represented by peaks, see
Figure 4.3. This representation is very similar to a pulse radar measure-
ment which is divided into range gates. Because of this similarity, the
further processing strategies for detecting peaks in the measured signal are
classical pulse radar processing techniques.

To detect the peaks contained in the spectrum, a constant false alarm
rate (CFAR) algorithm is used. The algorithm separately compares the
signal power in each bin to an adaptive threshold. For each bin whose
power value is above the threshold, the algorithm decides that the bin signal
corresponds to a target and writes the index of the bin to a detection list.
This entry gives information about the frequency of that echo signal in
integral multiples of the FFT bin width.

A center of gravity algorithm is used to estimate the exact frequency
value of the detected peaks on a sub-bin level.

The �nal stage is the target range-velocity processing. While the pre-
vious stages process each chirp separately, the range-velocity processing
combines all four chirp measurements to estimate target range and velocity
from the frequency measurements.

The following sections describe the parts of the spectral analysis and the
range-velocity processing in detail.

4.2 Windowing and FFT
The sampled time domain signal is expected to consist of one or multiple
target echos, each adding a speci�c frequency component to the signal. The
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goal of the spectral analysis is to detect these frequency components. To
achieve this, the discrete Fourier transform (DFT) translates the sampled
time signal into the spectral domain. The commonly used algorithms are a
radix-2 or radix-4 fast Fourier transform (FFT).

The resolution capability of the DFT is given by the observation time
window of size TC and is usually de�ned as 1/TC . For the LFMCW pro-
cessing, TC is the duration of the chirp signal. The value 1/TC is commonly
referred to as the size or width of a frequency bin.

A �nite time segment of a harmonic oscillation is transformed into a sinc-
function by the DFT. A spectral peak of a single point target appears as a
squared sinc-function in the power spectrum. If two targets with di�erent
amplitudes are close to each other, the higher amplitude target can mask the
lower amplitude target with its side lobes. To reduce the side lobes of the
target peaks, a window function is used. The window function is multiplied
with the receive signal block prior to performing the DFT. A side e�ect of
using a window function is a decrease of spectral resolution to values higher
than the bin size. Choosing a window function involves making a tradeo�
between the width of the main lobe and the attenuation of the side lobes.
The Hamming window is commonly chosen. The Hamming window has a
side lobe reduction of a little more than 40 dB.

In the table below, some window functions are listed. The rectangular
window is implicitly used, when the FFT is processed without any addi-
tional window function.

Window Peak to side
lobe level/dB

3dB
bandwidth/bin

6dB
bandwidth/bin

Rectangular -13 0.89 1.21
Hanning -31 1.44 2.00
Hamming -41 1.31 1.82
Blackman -57 1.65 2.30

Table 4.1: Common window functions

4.3 Detection
In the preceeding section, the �rst steps of the spectral analysis were de-
scribed. The result of the processing is a power spectrum calculated from
each chirp receive signal. Within the spectrum the targets appear as peaks.
The detection algorithm searches for these peaks in the spectrum.
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Detection is performed on each spectral bin separately. The detection
algorithm decides whether the power estimate x of a particular bin is indi-
cating a target echo or is due to measurement noise or clutter. This is done
by comparing the power estimate x to a threshold S. Figure 4.3 shows a
sample signal together with a threshold. If the signal power lies above the
threshold, a decision for a target in this bin is made.

The detection task can be understood as a binary hypothesis testing
problem. It is assumed that the system of interest can have two di�erent
states. The task is to choose between two hypotheses about the current
system state (H0,H1) from examining an observed measurement x.

In the radar detection case, one hypothesis H0 refers to the case where
only noise is received and there is no target measured. The second hypoth-
esis H1 refers to the case where the measured signal power x is due to a
target echo, additively superposed by noise:

• H0: no target

• H1: target present

Detection theory provides detectors that are optimal in terms of some given
criterion. Some of the basic detectors are the maximum likelihood detec-
tor, the maximum a posteriori detector, and the Neyman Pearson detector.
For all these detectors, it is assumed that some probabilistic information
on the system state and the corresponding measurements x is available.
Commonly, the probabilities of interest are:

• conditional probability densities p(x|H0) and p(x|H1)

• a priori probabilities of the hypotheses p(H0) and p(H1)

For the radar detection task, the distribution functions can be stated while
the a priori probabilities are not known. Also, the conditional probability
density p(x|H1) can only be modeled for a speci�c target. In this situation,
the Neyman-Pearson detector is useful. For the Neyman-Pearson criterion,
the following two probabilities are considered:

• Detection probability Pd: Probability of correctly choosing H1.

• False alarm probability Pfa: Probability of choosing H1 when actually
H0 was true.

The Neyman-Pearson criterion can be stated with the above probabilities:

• maximize Pd while not exceeding Pfa for a given value Pfa ≤ α.
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Figure 4.4: Probability distributions for both hypotheses; detection and
false alarm rates for a threshold S can be graphically derived

For the radar detection task, Figure 4.4 shows the distribution functions
for the two hypotheses. The derivation of these distributions is examined
further in the next subsection. For H0, the measurement is modeled by a
Rayleigh distribution, for H1 it is modeled by a Rice distribution. In this
case, the likelihood ratio l(x) is a monotonic function of x, which can easily
be shown analytically. A detection decision can be made by comparing
the measurement value directly with a threshold S. The Neyman-Pearson
detector is then given by:

• choose H0 if x < S

• choose H1 if x > S

In this case, the detection- and false alarm- probabilities can be stated in
the following way:

• Pd =
∫∞

S
p(x|H1)dx

• Pfa =
∫∞

S
p(x|H0)dx

The integration of the two distributions can be visualized graphically, as
can be seen in Figure 4.4. Appendix B shows that indeed the threshold
detector is optimal in the sense of the Neyman Pearson criterion.
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4.3.1 Determination of the False Alarm Rate
The above section introduced the basic threshold detector and the Neyman-
Pearson detector. It was also shown that the Neyman-Pearson criterion
is very suitable for the radar detection problem. This leaves the task of
obtaining a useful estimation of the conditional distribution function for
the target-with-noise hypothesis p(x|H1) and for the noise-only hypothesis
p(x|H0).

The noise originates from received clutter and from within the receivers
circuitry. Without additional information about the noise, the noise hy-
pothesis is modeled as a white Gaussian noise process. Assuming a com-
plex demodulator and a independent Gaussian noise in each channel with
power N , the output of the complex demodulator will be random values
with a Rayleigh distribution p(x|H0) = x

2πN e−
x2
2N . The false alarm rate is

simply derived by integrating the Rayleigh distribution from the threshold
into in�nity:

Pfa =
∫ ∞

S

x

N
e−

x2
2N dx = e−

S2
2N

As an example, for a false alarm rate of Pfa = 10−4 the threshold should
be set to S ≈ 4.3

√
N . However, to achieve a speci�c false alarm rate by

adjusting the threshold, the noise power N has to be known. This is initially
not the case and the noise level has to be estimated during the measurement.

4.3.2 Determination of the Detection Rate
The target hypothesis can be modeled to determine the detection probabil-
ity, but this is not needed to dimension the Neyman-Pearson detector. The
presence of a target can be modeled by the constant target signal amplitude
A and additively superposed noise with power N . In case of a two channel
mixer, the distribution is a Rice distribution.

Pd =
∫ ∞

S

p (x|H1) dx

4.3.3 Detection Rate for Fluctuating Targets
In reality, the target usually consists of multiple elementary re�ectors, whose
echoes are additively superimposed in the receive signal. Under these as-
sumptions, Swerling has created target models originally used for air surveil-
lance radar systems ([Swerling 1954]). Furthermore, it is assumed that
many elementary re�ectors of the target are received in the same resolu-
tion cell. These elementary re�ections have di�erent amplitudes and phases
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and interfere with each other. If there is one dominant re�ector and mul-
tiple less intense re�ectors, a rice distribution of the target amplitude is
expected. In the case that the targets elementary re�ectors are re�ecting
the radar signal with about the same intensity, the Rayleigh distribution is
expected as the special case of the Rice distribution.

For noise additively superposed on a �uctuating target whose signal
magnitude A is Rayleigh distributed with an average power of A2

0 the de-
termination of the detection probability is not trivial and very lengthy. It
can be found in [Levanon 1988]. The result is surprisingly simple:

Pd = (Pfa)
1

1+SNR

Where SNR = A2
0

2N is the target average signal to noise ratio.
The detection rate can only be stated when the target SNR is known.

This is generally not the case because the target radar cross section is not
known a priori. However, the above determination can be used for speci�-
cation and comparison of radar systems. In this case, the minimum SNR is
speci�ed for which a target can be detected with a given probability.

However, the determination of the false alarm rate from the last section
can be practically used. The Constant False Alarm Rate (CFAR) tech-
niques described in the following section estimate the noise level. The noise
estimate is used to set the threshold of the detector to keep the false alarm
rate constant.

4.4 CFAR Techniques
Constant false alarm rate (CFAR) detectors have been used in radar systems
for a long time. As described above, the Neyman-Pearson detector keeps
the false alarm rate at a speci�ed value. But to adjust the threshold of the
detector, the noise power has to be estimated. A detector that estimates
the noise power and adaptively adjusts the threshold to maintain a given
false alarm rate is called CFAR detector.

The observation area can contain clutter objects that produce clutter
noise in the receiver. The noise power then has to be measured for each
observation and the detectors threshold level has to be set adaptively. Also
the clutter conditions can change locally within the observation area. It is
therefore very useful to estimate the current noise level only in a speci�c
neighborhood around the cell under test.

The resulting techniques are called constant false alarm rate (CFAR)
techniques. The CFAR techniques are based on the estimation of the noise
power within the range cell under test by looking at the power values of its
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Figure 4.5: Cell Averaging (CA) CFAR

neighboring bins. The estimated noise level is used to adjust the threshold
level of the Neyman-Pearson detector. The threshold level is usually set
about 10dB above the noise estimate, the exact value of this pre-adjustment
factor is dependent on the targeted false alarm rate.

As the quality of the noise estimation is very crucial to the overall per-
formance of the detector, many di�erent CFAR algorithms have been devel-
oped over the years. Fundamentally most important are the cell averaging
CFAR and the ordered statistics CFAR. However, there exist many more
algorithms that tweak the performance of the noise estimation for speci�c
applications.

4.4.1 CA-CFAR

The most basic CFAR algorithm is the Cell Averaging (CA) CFAR, which
is illustrated in Figure 4.5. It moves a sliding window over the range gates.
The cell in the middle of the window is the cell under test. For detection,
its power level will be tested against the estimated noise level. The N
neighboring range cells that are left and right of the cell under test are used
for this noise estimate by averaging their power values. The closest left and
right neighbors are usually excluded from the noise measurement. This is
done because a target peak will generally not fall in exactly one range gate,
and without a guard interval the noise estimate would be in�uenced by the
target echo signal.
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Figure 4.6: Ordered Statistics (OS) CFAR

4.4.2 OS-CFAR
The CA-CFAR detector estimates the noise optimally under the assumption
that there are no target signals in the cells used to estimate the noise level.
In multiple target situations however, there might fall multiple targets into
a CFAR window. In this case, the resulting noise estimate is increased, and
the sensitivity of the detector is reduced.

The Ordered Statistics (OS) CFAR was developed [Rohling 1983] to
avoid this disadvantage. By using a rank order �lter to get an estimate of
the noise level, the estimate is only lightly in�uenced by multiple targets
in the CFAR window as long as the rank taken as an estimate still holds
a noise value. The rank order �lter is not an optimal noise estimator in
the ideal case of white uncorrelated noise. However, the OS-CFAR greatly
outperforms the CA-CFAR in multiple target situations and also in situa-
tions with slightly extended targets. Figure 4.6 shows a block diagram of
the OS-CFAR.

A detailed description of all the major CFAR algorithms is given in
[Ludlo� 2002].

4.5 Frequency Estimation
The detection algorithm, described in the previous sections, produces a
frequency list. The list contains the indices of the frequency bins in which
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Figure 4.7: The center of the sampled peak is calculated by the Center of
Gravity algorithm

targets were detected. These bin indices give the target echo frequency in
integral multiples of the DFT frequency bin width. A more precise estimate
of the peak frequency values is desired for most applications in order to
get precise information on the target range and radial velocity parameters.
Speci�cally, the radar network trilateration algorithms need a very precise
range and radial velocity estimation.

The commonly used technique to estimate a peak center position is called
�center of gravity� (COG). To estimate the center frequency, the algorithm
is given the index of a bin a target was detected in. If more than one
neighboring bin has a power above the threshold, the detection only reports
the bin with the local maximum. The COG algorithm uses this bin with
the maximum power value and its m left and m right neighbors. In the
following, the frequency estimate f̂ is normalized to the DFT bin size.

f̂ =

m∑

k=−m

(i + k)Pi+k

m∑

k=−m

Pi+k

Where Pi+k is the estimated signal power in the (i + k)th bin. As can be
seen in the above equation, the bin indices are simply weighted by the bins
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power values.
This algorithm shows a good performance, compared to other algo-

rithms, while having a low calculation complexity [Ludlo� 2002]. It works
well under the assumption that the peak does not interfere with other peaks,
so that the power values used to weight the positions of the bins are only
containing signal power from the examined peak. The higher the number
n = 2m+1 of bins evaluated is, the more the peaks have to be separated in
the spectrum in order to get a correct frequency estimate. Therefore, the
number m is usually set very small for radar applications where the target
density is expected to be high. The implemented COG algorithm uses one
left and right neighboring bin (m = 1) to minimize errors due to multiple
interfering peaks.

4.6 Range of Observable Frequency Values
The received echo frequencies depend on the target range and radial velocity
according to equation 3.1. The range of frequencies that are observed in the
receive signal depends on the maximum target range and the minimum and
maximum radial velocity that can occur. The analog part of the radar has
to let pass all frequencies that need to be detected.

Through the sampling rate fs = 1/Ta of the time domain signal, the size
of the representable spectrum within the digital processing is determined.
The Fourier transform represents the signal in the spectral domain with
frequencies from 0 to fs/2 if the time domain signal is real valued. If
the time domain signal is complex valued, the representable spectrum is of
double size and it contains frequencies from −fs/2 to fs/2. This frequency
range is called the unambiguous frequency measurement range.

In the case of a complex valued input signal, a signed frequency value
is obtained. It can be distinguished whether the frequency shift during the
radar measurement is positive or negative. A single channel receiver only
produces a real valued signal. In this case, the sign of the frequency value is
lost and the unambiguous frequency interval is half the size of its complex
counterpart. Since positive and negative frequency shifts can occur within
the measurement, the single channel spectrum is ambiguous concerning the
sign of the frequency:

fd = ±fm

If a single channel time signal is processed, both alternatives have to be
considered during the range-velocity processing.

The analog signal can be under-sampled. In this case, if a signal with
a frequency fm is measured within the spectrum, all frequencies fd,k =
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fm +kfs have to be considered, for any k ∈ Z that gives a frequency within
the possible range of frequencies in the analog signal.

As can be seen from the Nyquist theorem, for an optimal signal to noise
ratio, the sampling rate should be adapted to the band of possible frequen-
cies in the analog signal. This is because not only the frequencies outside
the unambiguous measurement interval are folded into this interval, but
also the noise components with higher frequencies add up to the noise in
the unambiguous measurement interval.

4.7 Frequency to Range-Velocity Processing
The range-velocity processing stage creates a list of targets and their range-
velocity estimates. This is done by processing the list of target frequency
detections of each chirp in the waveform. Together with the spectral anal-
ysis, this stage makes the basic LFMCW processing complete.

The estimation of range-velocity parameters is based on the relation
between a targets measured frequencies f i and the target range R and radial
velocity vr through the parameters of chirp i. These chirp parameters are
average frequency fC,i, bandwidth ∆fi, and duration TC,i:

f i = −2fC,i

c
vr − 2∆fi

cTC,i
R (4.1)

Where, in the above equation, c is the speed of light. In most cases it is
also convenient to work with frequencies normalized to the spectral bin size:
fn,i = TC,i · fi.

4.7.1 Precalculation of the Frequency Equations
The two factors preceding the target range and velocity in the above equa-
tion can be combined into two constants:

fi = aivr + biR0 (4.2)

Prior to the range-velocity processing the constants can be precalculated.
The factors can be combined into a precomputed measurement matrix M .
For a waveform with 4 chirps, it is a 4 by 2 matrix.

M =




a0 b0

a1 b1

a2 b2

a3 b3


 (4.3)
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Figure 4.8: Range-Doppler diagram. Due to frequency estimation errors,
the lines do not intersect exactly in one point.

With the de�nition above, the (ideal) relation between measurements
for the 4 chirps and the target states can be written in vector form with
frequency measurement vector ~f and target state ~t:

~f = M~t (4.4)

4.7.2 Range-Velocity Processing for a Single Target
The connection between the target echo frequencies ~f for the four chirp
measurements and the target range and velocity is described by Equation
4.4. However, the frequency measurements ~fk are generally not ideal and
di�er from the ideal measurements by the measurement error. Equation 4.4
is extended to account for the measurement error:

~fk = M~t +−→e

If these measured frequencies are plotted into a range-Doppler diagram, the
lines will not perfectly intersect in one point as shown in Figure 4.8.

To estimate the target parameters ~t =
(

vr

R

)
from the measured fre-

quencies ~fk, the minimum mean square error (MMSE) criterion can be used:

−̂→
t =

(
MT M

)−1
MT −→fk
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The MMSE criterion minimizes the error between measured frequencies
and frequencies expected for the MMSE position estimate. The error vector
can be estimated by:

−→e = −→
fk − −̂→f = −→

fk −M
−̂→
t = −→

fk −M
(
MT M

)−1
MT −→fk

The mean square error is estimated by:

~eT−→e =
(

~fk

T − ~fk

T
M

(
MT M

)−1
MT

)T (−→
fk −M

(
MT M

)−1
MT −→fk

)

~eT−→e = ~fk

T−→
fk − ~fk

T
M

(
MT M

)−1
MT−→fk

The MMSE criterion does not depend on the knowledge about the prop-
erties of the frequency error. If the frequency estimation error was assumed
to be distributed Gaussian and the variances are known, also the minimum
variance criterion could be applied. Due to the lack of precise information
on the frequency errors due to clutter and interference with other targets,
this would only increase the performance in simple synthetic situations.

4.7.3 Range-Velocity Processing in a Multiple Target
Environment

In a multiple target scenario, there are generally multiple frequency detec-
tions in each chirp. A detected frequency in one chirp has to be assigned to
the corresponding frequency detection in another chirp. For each detected
target, a group of four frequencies has to be found, one frequency from each
chirp.

Therefore, the task of the range-velocity processing can be described as a
data assignment process. The task is to �nd the combinations of frequencies
that make up each target.

Within each chirp i, a number of ni frequencies are detected. These
frequency values are denoted as fi,k for 0 ≤ k < ni.

If there is a target with state (vr, R) that is detected in all chirps of the
waveform, there will be a frequency in each chirps frequency list that ful�lls
the equation derived above:

fi,k = aivr + biR

With the proposed waveform, four frequencies, one from each of the
four chirps, give four equations that can be combined to a linear system of
equations:
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−→
f−→

k
=




f0,k0

f1,k1

f2,k2

f3,k3


 =

(
~a,~b

) (
vr

R

)
= M

−→
t (4.5)

If the frequency estimates are perfect, we only need to look for the right
combinations ~k = (k0 k1 k2 k3)

′
so that the equation system is solvable.

However, there is no ideal measurement, and the measured frequency values
contain estimation errors. In the general case, the above equation system is
not solvable exactly.

Taking this into consideration, a useful assignment strategy has to �nd
the combinations of frequencies that are likely to constitute a target. A
possible way is to estimate the target parameters R, vr from every com-
bination of frequencies, using the minimum mean square error (MMSE)
criterion, and only accepting combinations that are within a certain mean
square error limit.

−̂→
t =

(
MT M

)−1
MT −→f~k (4.6)

The error between measured frequencies and frequencies expected for the
MMSE position estimate can be calculated as shown for the single target
case in the preceding section.

The assignment strategy described above takes into account all possi-
ble combinations and veri�es each frequency combination individually. The
number of all possible combinations is

∏
i ni. If ni ≈ NC , the calculation

complexity is about N4
C . In practice, this number is very high. As there

is limited processing capability available, a modi�ed approach is taken that
calculates possible target ranges and velocities from two chirps and itera-
tively tests the combination with the frequencies of the remaining chirps
once at a time. This leads to a complexity of ≈ N3

C .
The latter approach solves the assignment task in two steps. First, tar-

get hypotheses are set up and secondly, these hypotheses are validated by
the remaining chirps. This approach was graphically shown for the mea-
surement of two targets in Figures 3.9 and 3.10 on page 33. In this example
four possible combinations can be set up using two chirps. These combi-
nations have to be checked with the measurements from the remaining two
chirps.

The check of a single frequency is done by de�ning a gate around the
expected value and testing if the measured frequency is within that gate.
The complete practical algorithm is described in Algorithm 1.

Additionally, all four frequencies of a validated target hypothesis can be
used to make a �nal MMSE estimate of the target range and velocity using
equation 4.6.
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Algorithm 1 Cross-section algorithm
1. Take one frequency measurement from each of the �rst two chirps of

the waveform and set up a target hypothesis with target parameters
(vr, R):

∣∣∣∣
fi = aivr + biR
fk = akvr + bkR

∣∣∣∣ ⇔
∣∣∣∣∣

vr = bkfi−bifk

bkai−biak

R = akfi−aifk

akbi−aibk

∣∣∣∣∣ (i = 0; k = 1)

2. To decide if a frequency from the third chirp matches the hypothesis
for a target at (vr;R), the expected frequency for the third chirp is
calculated by:

fi = aivr + biR (i = 2)

3. The expected frequency fi is compared to all measured frequencies
f2,k of the third chirp. If the nearest measured frequency is within
a certain gate around the expected frequency, the hypothesis is in
agreement with the measurements of the third chirp.

4. The same will be done with the fourth chirp by deriving the expected
frequency for this chirp:

fi = aivr + biR (i = 3)

5. A target hypothesis is validated, if measurements in both the remain-
ing chirps are in agreement with it.

6. Start from beginning until all frequency combinations from chirps 0
and 1 are calculated and tested
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4.7.4 Considerations on Quality of Target Detection
As mentioned before, the complete algorithm can be understood as a two
step task: �rst create the target hypotheses, next �nd the hypotheses that
are correct. The validation is done with a gate, so that the di�erence be-
tween expected and measured frequency has to be smaller than a certain
limit. With this algorithm in mind, it is found that there is a possibility for
a missed detection if

a) a frequency detection is missed in one or more chirps,

b) the frequency estimates of the last two chirps used for veri�-
cation do not fall in the gates because of frequency estimation
errors.

There is a possibility for a false alarm if

a) accidentally four false alarms make up a hypothesis that is val-
idated (very rare: pfa,total = p4

fa)

b) a combination of four correctly detected frequencies - actually
belonging to di�erent targets - makes up a hypothesis that is
validated.

c) a combination of correctly detected frequencies from other tar-
gets together with false alarms makes up a hypothesis that is
validated.

A false detection according to point b) is referred to as a ghost target. Point
b) is the most important source of false detections since these false detections
can occur over a long period of time. In contrast, a false detection because of
a) or c) incorporates at least one false frequency detection. A false frequency
detection is due to random noise and appears only sporadically and so is
easily �ltered out by the following network processing stages.



Chapter 5

Improved LFMCW
Processing

The near distance sensors described in this thesis are required to measure
the target range with a high accuracy in the order of 3 cm. Therefore, all
assumptions made for the described signal processing techniques should be
revised in order to optimize the range measurement performance in real
environments.

In the following two sections, two aspects are considered to improve the
measurement accuracy of the near distance sensor:

• In order to estimate the target range and radial velocity with high ac-
curacy, the frequencies of the target echoes within each chirp measure-
ment have to be measured precisely. To optimize frequency estimation
accuracy, an adaptation of the center of gravity (COG) algorithm for
cluttered target scenarios is proposed in Section 5.1.

• Another inaccuracy is due to the target movement between the four
chirp measurements of a waveform. Section 5.2 proposes a scheme for
the compensation of target motion during the measurement.

Also the range-velocity processing bene�ts from a highly precise frequency
measurement. Because the frequency validation is done by the nearest
neighbor and gating techniques, smaller frequency errors allow the gate size
to be smaller. It is important to say that both techniques can improve the
performance of the sensors virtually without any additional computational
costs.

Another important requirement of the radar network is a steady target
detection in all sensors. A simulation in Section 5.3 shows that the detection

55
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rate depends strongly on the number of targets in the scene. The results
indicate that a target tracker in each single sensor is mandatory. Section
5.4 introduces two tracking techniques:

• Standard tracker with Range / velocity measurement to track assign-
ment. This tracker is fed by the target lists generated by the LFMCW
range-velocity processing algorithm.

• Improved tracker with direct frequency measurement to track assign-
ment. This tracker is integrated into the LFMCW range-velocity pro-
cessing algorithm.

The improvements described in this chapter make the near distance sensors
useful for the radar network application.

5.1 Center of Gravity Algorithm with Com-
pensation

The center of gravity (COG) algorithm was originally formulated for con-
tinuous signals. In this case, the algorithm precisely estimates the center
of an arbitrary but symmetric peak. Using the COG algorithm on a sam-
pled signal, there is a systematic error, especially when the signal addition-
ally contains noise. In a radar network the requirements for single sensor
measurement accuracy are very high, and all systematic errors should be
corrected.

The systematic error is introduced by the sampling of the signal; it is
higher the more sparsely the peaks are sampled in relation to the width of
the peak. Therefore, the correction depends on both the spectral sampling
rate and the expected shape of the peaks. In the case of the continuous
wave processing, the shape of the Fourier transformed window function can
be assumed. This implies that a point target with no extension is measured.

The reason for the COG estimate di�ering from the actual position of
the frequency peak is visualized in Figure 5.1. The two plots in the upper
row (plots 1A and 1B) show that the more sparsely a peak is sampled, the
less its correct symmetry is conserved. The row at the bottom shows the
same situation but with a superimposed constant signal. In this case, the
symmetry axis and so the frequency estimate is moved into the direction
of the middle of the evaluation window. For a time signal with additively
superimposed white noise, the frequency estimate is biased towards the
middle of the center bin.

To compensate the COG algorithm, a simulation is done to determine
the frequency estimation error. This is done for the two cases, without noise
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Figure 5.1: Center of gravity algorithm on di�erent sampling rates and noise
levels
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and with additional noise in the spectrum. It will be shown that the COG
algorithm can be su�ciently compensated by a simple correction factor.
This factor depends on the noise level in the spectrum.

5.1.1 Model of the Estimation Error
Figures 5.2 and 5.3 show the un-compensated COG frequency estimate ver-
sus the actual frequency in the range of ± 1

2 frequency bin. The frequency
estimate is plotted for some window functions. It can be seen that in the
case where additional noise is absent, the center of a windowed peak is well
estimated, and the curves approximate the ideal straight line of gradient
one. Only the curve for the rectangular window shows a great deviation.
The COG algorithm behaves worst on the rectangular window because this
window produces the thinnest spectral peak.

The estimated versus actual frequency plots can be obtained by creating
a complex oscillation for frequency values of fn,a = [−0.5 , 0.5] normalized
to the bin width. This oscillation is multiplied with the window function
w and from this signal the Fourier transformed spectral samples Sk are
determined:

Sk =
NW−1∑

i=0

w(i) e
2πj(fn,a−k) i

NW

Where NW is the signal and window size and fn,a is the actual frequency
o�set normalized to the bin size. The center of gravity algorithm is now
used on the squared magnitudes of these samples:

f̂n(fn,a) =

m∑

k=−m

k |Sk|2

m∑

k=−m

|Sk|2

Where m is the number of left and right neighbors to be included in the
estimate. This is the function plotted for some window functions in Figures
5.2 and 5.3. The algorithm can be compensated simply by multiplying
its output with a correction factor. The quotient of actual and estimated
frequency is used as the correction factor:

C(fn,a) =
fn,a

f̂n
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As shown above, C(fn,a) can approximately be assumed to be a constant
value in the case, a window function is used (C(fn,a) = CCOG). To calcu-
late the corrected COG estimate f̂c,n, the uncorrected estimate is simply
multiplied by the correction factor:

f̂c,n = CCOG f̂n

5.1.2 Determination of the Correction Factor
To obtain the value of the constant correction factor CCOG, either the value
C(1/2) = C(−1/2) or the value that minimizes the mean square error can
be used. Using the mean square error criterion, the error is minimized which
is introduced by using the constant factor CCOG instead of C(fn,a). It can
be assumed that the actual frequency fn,a is equally distributed within the
range of a frequency bin fn,a = [−1/2 , +1/2]. The correction factor is de-
termined which minimizes the mean square error E

((
fn,a − CCOGf̂n

)2
)
.

The indices on the frequency variables are omitted in the following equations
for the reason of clarity.

MSE =
∫ +1/2

−1/2

(
f − CCOG f̂(f)

)2

df

The derivation with respect to CCOG is determined and is set to zero:

0 =
∫ +1/2

−1/2

(
−2 f f̂ + 2CCOG f̂2

)
df

CCOG = MMSE =

∫ +1/2

−1/2

(
f · f̂(f)

)
df

∫ +1/2

−1/2

(
f̂2(f)

)
df

With the above equation, the correction factor can be numerically calcu-
lated. In the described case, the signal is free of noise and the correction
factors are quite small. Table 5.1 lists the factors for some window functions
when using the center bin and its next left and right neighbors (m = 1).
Using no window function (which implies using a rectangular window), the
assumption of the COG estimation having a linear error produces quite sig-
ni�cant deviations. In this case it is advantageous to oversample the signal
or to use a polynomial for correction.
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Window function Correction factor
CCOG = C(1/2)

Correction factor
CCOG = MMSE

Rectangular 1.19 1.56
Hamming 1.03 1.02
Hanning 1.06 1.04
Blackman 1.19 1.16

Table 5.1: Correction factors for the center of gravity algorithm weighting
3 bins (m = 1).

5.1.3 COG Correction for a Noisy Signal
If the examined signal contains noise, the expectation value of the estimated
frequency can also be determined by simulations. The results are shown in
Figure 5.4 for a signal to noise ratio (SNR) of 12 dB and in Figure 5.5
for an SNR of 20 dB. The algorithm weights 3 bins (m = 1) to obtain
the frequency estimate. The use of a Hamming window is assumed. The
plots show the expectation value and the standard deviation of the estimate
depending on the actual frequency. From these plots it can be seen that the
estimate of the center of gravity algorithm is biased. It is desired to adjust
the correction factor to the SNR in order to obtain an unbiased estimate.

Conveniently, the expectation of the frequency estimate still depends
approximately linearly on the actual frequency for all noise levels of interest.
Figure 5.6 shows the correction factor CCOG used to obtain an unbiased
frequency estimation. This factor depends on the SNR and is also calculated
under the assumption of using a Hamming window. The correction function
can be approximated by:

CCOG = 1.03 + 3.8
1

SNR
(5.1)

5.1.4 COG Simulation Results
Measurements show that for an LFMCW radar with a sweep bandwidth
of 450 MHz the range estimation accuracy can be in the range of 3 cm for
a strong re�ecting point target even without tracking. A range di�erence
of 3 cm roughly corresponds to a frequency di�erence of a tenth of the
frequency bin size before the intersection analysis. Although this estimation
accuracy is high, the di�erence between uncorrected COG estimation and
the ideal value are still negligible in the case of a high SNR and when using
a Hamming window, even when only taking into account the center bin and
one left and right neighbor (m = 1).
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Figure 5.2: Center of gravity algorithm weighting 3 bins (m = 1). The
frequency estimate is plotted against the actual frequency. The results for
four di�erent window functions are shown.
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Figure 5.3: Center of gravity algorithm weighting 5 bins (m = 2). (Rectan-
gular window behaves worst)

However, when the target signal has an SNR of less than 20 dB, the
frequency estimation correction becomes relevant. If a correction factor for a
high SNR is chosen and the actual target signal has a low SNR, the frequency
estimate is biased towards the center of the nearest bin. A tracking �lter
will not improve the frequency estimation result beyond the bias.

One way to improve the performance is to chose a COG correction fac-
tor that is optimal for the expected average SNR. In this case the COG
algorithm is over-compensated when processing a signal with high SNR and
the algorithm is under-compensated when processing a signal with an SNR
lower than the average.

Another, better way is to use the CFAR noise estimate to adaptively
adjust the compensation using the approximation given above in Equation
5.1. If the CFAR estimates are available, there is practically no additional
computational e�ort.

5.2 Compensation of Target Movement
The movement of a target can be neglected during the measurement time
of a single chirp. However, during the measurement cycle of a complete
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Figure 5.4: Expectation value and standard deviation of the frequency es-
timate when the COG algorithm is weighting 3 bins. A Hamming window
and an SNR of 12 dB is used.
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Figure 5.5: Expectation value and standard deviation of the frequency es-
timate when the COG algorithm is weighting 3 bins. A Hamming window
and an SNR of 20 dB is used.
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Figure 5.6: COG correction factor to achieve an unbiased frequency esti-
mation versus SNR. 3 bins are weighted, a Hamming window is used.

waveform consisting of multiple chirps, a moving target has a di�erent range
for each chirp measurement. Depending on the system parameters, this
di�erence can reach the value of the radars range resolution parameter (For
example: 10ms ·50m/s = 0.5m) and therefore should be taken into account.

The starting point for the compensation of movement is the standard
LFM frequency equation (Equation 4.1) which is repeated here:

f i = −2fC,i

c
vr − 2∆fi

c TC,i
R

To account for the target motion, the measurement time ti of the i th
chirp is de�ned as the time in the middle of the chirp measurement:

ti =
ti,chirpstart + ti,chirpstop

2

Assuming four chirps at times t0...t3, the reference time of a waveform is
de�ned as the time point in the middle of the waveform:

twaveform =
t0 + t1 + t2 + t3

4
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Figure 5.7: Reference times for the compensation of target movement

The relative chirp time dti is now de�ned as the time relative to the wave-
form reference time:

dti = ti − twaveform

The times de�ned above are shown in Figure 5.7.
Implying linear movement, the momentarily range of a target for the

measurement time of chirp i is:

Rchirp i = R0 + vrdti

The LFM frequency equation can now be extended to account for the target
movement during the measurement:

fi = −2fC,i

c
vr − 2∆fi

c TC,i
(R0 + vrdti)

fi = −
(

2fC,i

c
+

2∆fi

c TC,i
dti

)
vr − 2∆fi

c TC,i
R0

The range parameter R0 is now referring to the reference time twaveform.
As shown in the preceding chapter, the coe�cients within the chirp

frequency equations can be precalculated prior to execution of the range-
velocity processing:

fi = aivr + biR0
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The compensation of target movement does not change the structure of
the linear equation system but only its coe�cients. Thus, the compensation
comes with no computational cost.

Using this compensation, a notable improvement can be seen in practical
experiments with high relative velocities but small assignment gate sizes.

5.3 Simulation of a Multiple Target Scenario
The �rst section of this chapter introduced a method to improve the fre-
quency measurement accuracy. The second section showed that the target
movement during the four chirp measurements can easily be compensated.
For both improvements shown above, the interrelation between target state
and measurement is modeled more accurately. This way, both methods do
increase the range velocity measurement accuracy. It is also very important
that an increased frequency measurement accuracy makes the assignment
of frequencies to target range-velocity measurements more accurate. Using
a more accurate measurement model and still performing the frequency as-
signment with same gate size, the probability of a correct validation of a
target hypothesis increases.

The measurements (Chapter 10) show a good performance of the LFMCW
radar sensor in single target situations. However, in multiple target situa-
tions, interferences between targets will cause missed detections and mea-
surement errors on a target frequency in one or multiple chirps. Especially
for the discussed short range sensor with a wide antenna beam, more tar-
gets are observed compared to systems with small antenna beams. In this
section, the detection probability is examined for multiple target situations.
For this simulation, point targets are assumed.

As described in Section 4.7, the range-velocity processing is practically
done by creating hypotheses from the measurements of the �rst two chirps.
For each of these hypotheses the frequency measurements for the remaining
two chirps are predicted and compared to the actual measurement data.
If actual frequency measurements are within a gate around the predicted
frequencies, the hypothesis is validated. The size of the validation gate in-
�uences the tradeo� between detection and false alarm rate of the detector.
Speci�cally, decreasing the gate size reduces false alarms but also reduces
detection rate.

To get an idea of how the quantitative performance of the target hy-
pothesis validation algorithm depends on the number of targets and how it
depends on the gate size, a simulation of ideal multiple point target scenar-
ios was done. Five variations of the validation strategy were tested. These
are compared against each other below:
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Figure 5.8: Frequency validation gates for chirps 3 and 4

1. 2 chirp validation with a rectangular gate
First, verify if the best �tting frequency f3,k detected in the 3rd chirp
lies within the gate around the expected frequency f∗3 . Second, test
the 4th chirp accordingly:

|f3,k − f∗3 | < S ∧ |f4,k − f∗4 | < S

The frequencies of the third chirp can be plotted against the frequen-
cies of the fourth chirp. If the combined gate for both frequencies is
drawn into this plot, it has a rectangular shape (Figure 5.8).

2. 2 chirp validation with a circular gate
Find the best �tting (nearest) frequency measurement for each of the
two remaining chirps. Verify if the quadratic sum of the deviations
from the expected frequencies is under a threshold:

(f3,k − f∗3 )2 + (f4,l − f∗4 )2 < S2

In this case the gate can be drawn as a circle in a graph where fre-
quencies of chirp 3 are plotted against frequencies of chirp 4.

3. 1 Chirp validation
Verify if at least in one of the remaining chirps a frequency is detected
that lies within the gate around the expected frequency:

|f3,k − f∗3 | <
S

2
∨ |f4,k − f∗4 | <

S

2

For the comparison, the gate size is divided by 2 to balance the re-
sulting detection rate for the comparison in the following plots.
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4. Combined algorithm 1
This is a combination of the third validation strategy with variable
gate size S and the second validation strategy with a �xed gate size
of ± one bin:

[
|f3,k − f∗3 | <

S

2
∨ |f4,k − f∗4 | <

S

2

]

∧
(f3,k − f∗3 )2 + (f4,l − f∗4 )2 < (1bin)2

5. Combined algorithm 2
This is a combination of the third validation strategy with variable
gate size S and the second validation strategy with gate size

√
8S:

[
|f3,k − f∗3 | <

S

2
∨ |f4,k − f∗4 | <

S

2

]

∧
(f3,k − f∗3 )2 + (f4,l − f∗4 )2 < 8S2

The simulation parameters and settings of the �rst processing stages are as
follows:

• A four chirp waveform at 77 GHz is used, each with a duration of 2
ms and with the following bandwidths: 450MHz, -450MHz, 225MHz,
and -225MHz.

• The base band receive signal is sampled at a rate of 500 kHz.

• The spectral analysis is done as described in the previous chapters
using a Hamming window.

• The gate size for the validation of the target hypotheses is chosen to
be between 0.1 and 1.5 FFT bins. For a target to be validated, either
all four chirps and/or only three chirps need a frequency detection
within a gate around the expected frequency. Compensation of target
movement is used.

• About half of the simulated point targets are stationary with a radial
velocity of zero and represent stationary objects within the environ-
ment. Their range is randomly chosen between 0 and 20m. The
remaining point targets are moving with a velocity randomly chosen
between -15 m/s and 15 m/s. Their range is also randomly chosen
between 0 and 20m.
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• Target re�ections have the same signal amplitude but have random
phase. This way, only interferences between targets lead to missed
detections and falsi�ed frequency estimates.

Figures 5.9 to 5.16 show the results from the simulations. The �rst four
�gures refer to a simulated scene with a number of 3 stationary and 2
moving targets.

The detection rate (Figure 5.9) and the false alarm rate (Figure 5.10)
are plotted against the gate size S. For a comparison of performance, the
detection rate is plotted against the false alarm rate in Figure 5.11. It is
clearly seen that for any targeted false alarm rate, the �rst two strategies
and the last strategy have a much better detection probability than the
remaining two validation strategies.

Figure 5.12 shows the range measurement accuracy versus the false alarm
rate. As expected, the accuracy is better for low false alarm rates. The 1
chirp validation and both combined strategies have a better range accuracy
than the 2 chirp validation strategy. This is because the frequencies to be
used for the range-velocity estimate are chosen more �exibly with the latter
three strategies. However only the second combined strategy allows a small
improvement in range accuracy while maintaining a good detection rate. Of
course, the validation and the selection of frequencies to estimate the target
range and velocity can be done separately. Most probably, there are even
better adjusted algorithms to optimize the range accuracy.

The 1 chirp validation is shown to present the dramatic improvement of
the detection rate when the �2 chirp� criterion is loosened to the �at least
1� criterion. It shows that the target interference quite often prevents an
exact frequency measurement from occurring in all four chirps while three
chirps do often match the validation criterion. For any given false alarm rate
however, the detection rate is always worse for the the 1 chirp validation
than for the other strategies.

In practice, the �rst validation scheme is easiest to implement, because
the validation of the two chirps can be done sequentially. Since none of the
other strategies performs notably better, the �rst strategy is used for the
described sensor signal processing.

The remaining Figures 5.13 to 5.16 show the results of the same sim-
ulation with 5 stationary and 5 moving targets. It can be seen that the
doubling of the number of targets leads to a degradation of performance.
The severeness of the loss in performance depends on the targeted false
alarm rate. The following table shows the (approximate) detection rate for
a �xed false alarm rate for the �rst validation strategy:
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Nfa Pd for 5 targets Pd for 10 targets
10−2 0.55 0.1
10−1 0.84 0.26

1 0.96 0.61

Nfa refers to the average number of false detections per processed wave-
form. For a �xed gate size of 0.2 bin, the following results are made for the
�rst validation strategy:

gate size = 0.2 bin Nfa Pd

5 targets 8 · 10−3 0.53
10 targets 10−1 0.26

The results show that the use of a tracker is necessary to achieve stable
target information for the network lateration technique. In the next section,
a standard tracker is described and then a direct frequency measurement to
track update technique is proposed. The newly proposed technique performs
well, even when single chirp frequency detections are missed.

The simulations show no substantial di�erence in performance among
the 2 chirp validation strategies and the second combined algorithm. The
separate validation of a target hypothesis and the subsequent selection of
the frequencies can improve the precision of position estimation and hence
could be investigated further. The implemented radar processing however
uses a single sensor target tracking algorithm (Section 5.4). The selection
of frequencies to update the state with are done within the tracking, so the
estimation accuracy mainly depends on the tracking algorithms.

Measurements (Chapter 10) show that the gate size for accurate esti-
mation of a road vehicle should be around a quarter of the bin size to get
about 50 percent of the frequency measurements into the track validation
gate. In the simulation, a gate of this size would produce a false alarm
rate of 1%-10% per complete measurement cycle. A real situation how-
ever contains multiple extended targets with di�erent and varying signal
amplitudes. Also, many interfering objects in the surroundings can have
signal amplitudes just below the detection threshold. These are not seen
in the measurements but in�uence the detection of the targets of interest.
Measurements of real scenarios are shown in Chapter 10.
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Figure 5.9: Detection rate vs. gate size, 5 simulated targets

0 0.5 1 1.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Gate size / FFT bin

F
al

se
 a

la
rm

 r
at

e 

2 Chirp validation, rectangular gate
2 Chirp validation, circular gate
1 Chirp validation
Combined 1
Combined 2

Figure 5.10: False alarm rate vs. gate size, 5 simulated targets
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Figure 5.11: Detection rate vs. false alarm rate, 5 simulated targets

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

False alarm rate 

R
an

ge
 m

ea
su

re
m

en
t s

td
.d

ev
ia

tio
n 

/ m

2 Chirp validation, rectangular gate
2 Chirp validation, circular gate
1 Chirp validation
Combined 1
Combined 2

Figure 5.12: Range accuracy vs. false alarm rate, 5 simulated targets
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Figure 5.13: Detection rate vs. gate size, 10 simulated targets
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Figure 5.14: False alarm rate vs. gate size, 10 simulated targets
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Figure 5.15: Detection rate vs. false alarm rate, 10 simulated targets
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Figure 5.16: Range accuracy vs. false alarm rate, 10 simulated targets
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5.4 Single Sensor Target Tracking
The LFMCW processing is greatly a�ected by the number of targets in the
observation area. This can be seen from the simulations in the preceeding
section.

To do the network lateration on basis of the single sensor range and
velocity estimates an improvement in detection rate is necessary. An option
that is presented in this chapter is the employment of a target tracker.

The classical approach is to feed a tracker with the raw range-velocity
information of the detected targets. This information is generated from the
standard range-velocity processing by cross-sectioning the 4 chirp frequency
detections.

The newly proposed system uses a tracker directly updated by the chirp
frequency detections. The standard range-velocity processing is still used
to �nd new targets for which new tracks can be initialized.

The classical standalone tracker receives target range and velocity mea-
surements. When in one or more chirps a frequency measurement is falsi�ed
due to interferences, the target is not reported to the tracker. If the fre-
quencies are directly used to update the tracker, the remaining, correctly
measured target frequencies can still be used for updating the target track.
In multiple target situations, the increase of the number of track updates
improves the track validation and stability of the active tracks.

In the following, the basic concept of target tracking is described. Thereon,
the new direct frequency update technique is presented.

5.4.1 Standard Tracker
A radar tracker maintains a list of target tracks. Each of these target tracks
corresponds to a target that is observed by the radar. Literally, the task
of the tracker is to keep track of these targets. To accomplish this, the
tracker stores information about the target states. The state consists of
the target parameter range and optionally can include the target velocity
and acceleration. When new radar measurements are available, the tracker
assigns each measurement to the corresponding target track and updates
the track states with the assigned measurements. Each track gets a unique
ID so it can be identi�ed over successive cycles. After the update with
measurement data, the track states for the next measurement cycle are
predicted by using the equations of motion.

The use of a tracker has multiple advantages:

1. Because the target states are associated over time, the states can be
�ltered over time to increase estimation accuracy.
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2. When there are missed target detections in the preceding signal pro-
cessing, the tracker can bridge the gaps by reporting a prediction of
the target state based on the old measurement information.

3. False alarms can be inhibited by only forwarding target tracks that
have already been updated multiple times and so prove to be stable
target detections.

The complete tracking algorithm can be separated into two parts:

1. Target state update with measurements

2. Target state prediction for the next measurement cycle

In estimation theory, the predicted state estimate is called the a priori es-
timate and the updated state is called the a posteriori state estimate. The
a posteriori estimate is predicted forward in time and becomes the a priori
estimate for the next cycle.

The tracking algorithm is executed once for each measurement cycle.
Figure 5.17 shows the overview of a complete tracking cycle. One tracking
cycle consists of 6 steps:

1. When new measurements are available, the measurements and the
existing tracks are associated.

2. Measurements that can not be associated with existing tracks are used
to create new tracks.

3. The states of the existing tracks are updated with the associated mea-
surements.

4. Tracks with nearly identical states are merged in order to reduce pro-
cessing load.

5. Tracks that were not updated for a speci�ed number of cycles, are
deleted.

6. The states of the existing tracks are used to predict the states for the
next cycle.

5.4.2 Range-Velocity Measurement to Track Update
The data assignment between measurements and track states has been a
broad �eld for many research activities [Blackman 1999]. Applications for
advanced tracking assignment techniques are mostly found in the area of
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Figure 5.17: Overview of the tracking cycle
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Figure 5.18: LFMCW processing with standard tracker

long range air and sea surveillance systems where the update rate from the
radar is relatively low. The lower the measurement update rate the more
complicated it is to �nd the correct associations between successive radar
cycles.

The single sensor update rate is relatively high so that for the tracker
discussed in this chapter a simple nearest neighbor technique is chosen to-
gether with a simple gating mechanism. In the described single sensor
tracking algorithm, for each track the frequency measurement is predicted
and the nearest actual frequency measurement is selected. Additionally, the
error between prediction and measurement is checked. If it is smaller than
the prede�ned gate size, the track is updated by this nearest measurement.

5.4.3 Direct Frequency Measurement to Track Update
The common approach described above is to attach a tracker to the LFMCW
processing. This approach can be seen in Figure 5.18. The frequency de-
tections are resolved by the range-velocity processing to obtain targets with
range and velocity estimates. These estimates are used as measurements to
feed the tracker. Measurement space and track state space are identical.

From the outset, target state estimation with a tracker distinguishes
between a target state to be estimated and the measurements that are
reported by the radar pre-processing. It also allows the measurement space
to be di�erent from the target state space. This is possible as long as the
connection between the target state and the corresponding measurements
can be su�ciently modeled by a measurement equation.

The proposed tracking strategy directly updates the track with the fre-
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Figure 5.19: LFMCW processing with direct frequency track update

quency measurements from all four chirps. Because the tracker can not
detect new targets, the standard range-velocity processing is performed ad-
ditionally. The range-velocity processing results are compared to the tracked
target states to �nd new targets.

5.4.4 Implementation of the Single Sensor Tracking
The tracker estimates the target states, range R and radial velocity vr. For
each existing track, the state is predicted from the previous state for the
current measurement cycle. This is done by the equation of motion:

R̂∗n = R̂n−1 + v̂r,n−1Tcycle

v̂∗r,n = v̂r,n−1

Since the target acceleration is not included in the track state, the velocity
remains unchanged. From the prediction of the state, a prediction of the
measurement data is calculated:




f̂∗0
f̂∗1
f̂∗2
f̂∗3,


 = M

(
v̂∗r,n

R̂∗n

)



5.4. SINGLE SENSOR TARGET TRACKING 81

Where M is the LFMCW measurement matrix (Equation 4.3). This mea-
surement prediction is used to �nd the best �tting (nearest) measurements
- one frequency value from each chirp. If the nearest neighboring frequency
lies within a speci�c gate around the expected frequency, this measurement
is included to be used for the state update.

For the state update and prediction, a Kalman �lter (Section 6.5) can
be used. In this case, a simple recursive alpha �lter was chosen. Each
frequency measurement that is available for the update is used. If no fre-
quency measurement is available from a chirp, the prediction is used for the
update. The resulting four frequencies - some of them predictions, some of
them actual measurements - are transformed back to the target state space:

(
v̂
◦
r,n

R̂
◦
n

)
= M−1




f̂0

f̂1

f̂2

f̂3,




The new target state is a linear combination from the state prediction and
the new state estimate, generated as described above.

(
v̂r,n

R̂n

)
= (1− α)

(
v̂∗r,n

R̂∗n

)
+ α

(
v̂
◦
r,n

R̂
◦
n

)

The value for the coe�cient α is chosen to be very high, for instance
α = 3

4 . If the new state estimate is a result from four new frequency
measurements, the new state estimate is nearly completely determined by
the measurement. The tracks are �ltered only lightly for the succeeding
network processing stages. The �nal �ltering takes place in the network
tracker.

If there are one or more chirps with no suitable measurements, the pre-
dicted measurements are used to �ll up the missing values. In this case, the
prediction has an increasing in�uence on the new state estimate.

Algorithm 2 summarizes the steps of the proposed pre-tracking tech-
nique.
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Algorithm 2 LFMCW pre-tracking with direct frequency to track update
1. Perform cross sectioning algorithm

2. Find target estimates in the results of the cross sectioning algorithm
that are not corresponding to any existing target track. Initiate new
tracks with these target estimates.

3. Update tracks directly by the available frequency measurements of the
single chirps.

4. Output target list.

5. Move forward track states by the equation of target movement:
Rn+1 = Rn + vr,nTwaveform.

6. When new measurements are available, start the next cycle.



Chapter 6

Measurement of the Target
Position

In this chapter, techniques of measuring the target position are introduced.
The classical techniques measure the target angular position, which together
with the target range measurement gives complete information about the
target position. The target range is measured according to the pulse or
CW principles that were introduced in the previous chapters. This chapter
�rst introduces the classical techniques of measuring the target azimuth.
Thereon, the concept of radar networks and the trilateration principle is
explained.

6.1 Classical Measurement of Target Azimuth
Classical techniques measure the target angle and the target range sepa-
rately. Commonly, the relative target position in the three dimensional
space is speci�ed with one range coordinate and two angular coordinates
(azimuth and elevation). Before presenting the classical techniques, the
terms azimuth and elevation are de�ned in the following.

6.1.1 De�nition of Azimuth and Elevation
Within the �eld of navigation, the target position is often presented as a
set of range and angle values. This is also the natural representation for
many radar systems since target range and angle are measured separately
utilizing di�erent e�ects of the wave propagation. Within navigation, a
target position, relative to an observer, is fully described by the value triplet

83
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α

ε

Figure 6.1: Classical de�nition of azimuth α and elevation ε

range, azimuth angle, and elevation angle. The following de�nition for
azimuth and elevation angle can be found in many dictionaries:

The azimuth angle is de�ned as the compass bearing, relative to
true (geographic) north, of a point on the horizon that is directly
beneath the observed object. As seen from above the observer,
compass bearings are measured clockwise in degrees from north.
The elevation angle of an observed object is determined by �rst
�nding the point on the horizon directly beneath the observed
object, and then measuring the angle between the line going
through the observer and this point and the line going through
the observer and the observed object.

The de�nition is visualized in Figure 6.1. In contrast to the above de�ni-
tion, in the following chapters azimuth and elevation are de�ned as angles
relative to the orientation of the radar's coordinate system and the angles
are measured anti-clockwise.

6.1.2 Azimuthal Scanning Technique
The most intuitive and familiar technique used to measure the angular po-
sition of a target is to scan the observation area in azimuthal direction.
Figure 6.2 shows the rotating radar antenna that can be seen at Heathrow
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Figure 6.2: Radar antenna at Heathrow airport
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Figure 6.3: Azimuthal scanning principle
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airport. The radar shown uses a mechanically rotating antenna with a
highly focused antenna beam. The radar system scans the observation area
in the azimuth angle by doing multiple measurements, each measurement
at a di�erent orientation of the antenna. This technique also allows the
radar to resolve targets by their azimuth angle if the angular separation
is greater than the 3 dB width of the scanning antenna. Figure 6.3 shows
measurements of the target echo power while rotating the antenna during
the complete measurement sequence. The plot shows the signal power over
the azimuth angle of the antenna orientation. The shape of a target peak
only depends on the shape of the antenna beam. To precisely estimate the
target azimuth position, the center of gravity algorithm can be used. The
center of gravity algorithm is described in Sections 4.5 and 5.1 for the LFM
frequency estimation.

The described technique of measuring the target azimuth is the most
basic technique and can be found in every introductory book on radar.

6.1.3 Monopulse Technique
Another technique to measure the target azimuth is the monopulse tech-
nique. Within the �eld of automotive radar, this technique is preferred
over the scanning technique because it does not involve moving parts. The
monopulse technique also utilizes the principle of antenna directivity. Fig-
ure 6.4 shows the monopulse principle. The radar signal is transmitted over
one transmit antenna and is received over a receive antenna system with two
antenna beams whose directions are slightly rotated relative to each other.
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Both antenna receive signals are processed, and for each target the signal
power values from both antenna beam directions are compared. The ratio
of the two signal powers depends on the target azimuth. A simple calcula-
tion retrieves an estimate of the azimuth value. The monopulse technique
got its name from its advantageous characteristic of being able to estimate
the target azimuth within one single measurement (pulse). Technically, one
receive antenna is used that has multiple feeding points.

The estimate of the target angle α is calculated from the two measure-
ments of target signal power. Assuming that the antenna beams are shaped
like a Gaussian bell-shaped curve, a simple equation can be derived to ob-
tain the estimate. For the calculation, it is assumed that the two antenna
beams both have the same 3dB width of Θ3dB and that they are rotated 2ϑ
against each other.

P1 = e−a(α+ϑ)2 P2 = e−a(α−ϑ)2

P1

P2
= e−a(α+ϑ)2+a(α−ϑ)2

P1

P2
= e−4aαϑ

α = − 1
4aϑ

ln

(
P1

P2

)

Where a = 4ln2
Θ2

3dB
.

With the digital signal processing capabilities available today, the target
angle as a function of the quotient of the signal attenuation can be looked
up in a precalculated table. This look-up table is precalculated based on
measurements of the actual antenna characteristics.

The observation area for a monopulse receive antenna depends on the
beam width and orientation of the receive antenna beams. To be able to
estimate a correct target azimuth angle, both antenna beams need to receive
the target signal within their main lobes. Therefore, the single antenna
main lobes should overlap signi�cantly. To extend the observation area,
three options are available:

1. Widen antenna beams and increase angle between beams.

2. Rotate the antenna system and perform additional scanning.
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3. Use more than two antenna beams.

The monopulse technique was originally used in military air surveillance
systems to continuously track the target with the radar antenna beam.
Detailed information on monopulse techniques can be found in many radar
textbooks [Levanon 1988, Ludlo� 2002]. Also, research within the �eld of
automotive radar has been done [Wagner 1997, Klotz 2002].

6.1.4 Sequential Lobing Technique
A technique closely connected to the monopulse technique is the sequential
lobing technique. The sequential lobing technique switches between two
or multiple antenna beams rather than receiving and processing all receive
antennas in parallel. The advantage is to have a reduced complexity, since
only one receiver circuitry is used. The drawback lies in the fact that target
�uctuations over time lead to errors in the estimation of the target angle.

6.2 Advantages of Position Estimation with a
Radar Network

All three techniques described above use the antenna directivity to esti-
mate the target angular position. The target range and radial velocity can
be measured by the standard techniques of a pulse or LFMCW radar. To-
gether, target range and target azimuth give information about the target
position. In the �eld of automotive radar, the target elevation is usually
not considered.

Each of the techniques described has its advantages and disadvantages.
However, it is also important to consider the targeted observation area.
When dealing with advanced automotive applications, where the observa-
tion of the complete surroundings of a car is desired, a high number of
sensors around the car is needed. All sensors need to have a high number
of beams to measure the targets angular position by means of sequential
lobing or monopulse techniques. The azimuthal scanning technique has an-
other drawback. A mechanically rotated antenna is not considered to be
advantageous for rough automotive environments. Additionally, for some
applications, the need for a high measurement update rate sets high de-
mands on the system speci�cations, leading to high complexity and cost.

A radar network takes a completely di�erent approach to the measure-
ment of the target position. Radar networks are based on lateration tech-
niques that use trigonometry to estimate a targets position. The lateration
uses the range measurements of multiple distributed sensors to estimate the
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Figure 6.5: Trilateration of one target

target position, while the single sensors themselves do not need to perform
an angular position estimation. The advantage is that the sensor hardware
requirements and the costs are much lower.

In the next section, the concept of trilateration and the underlying pro-
cessing algorithms are introduced. The following chapter shows a basic
strategy for implementing a network signal processing system. Building
on this straightforward processing, advanced signal processing concepts are
proposed that optimize the network processing for LFMCW sensors.

6.3 Trilateration
The trilateration technique uses range and optionally also velocity measure-
ments from distributed sensors to estimate the targets position.

The technique of trilateration can be demonstrated graphically by draw-
ing a sensor's range measurement R as a circle with radius R around the
sensor. This circle represents all possible positions where the target could
be located. If a target is correctly measured by two sensors, two circles can
be drawn that intersect at the target position. This is shown in Figure 6.5.

Given a single target with position ~t, the ideal range measurements R1,
R2 of two sensors with positions ~s1, ~s2 can be speci�ed by the theorem of
Pythagoras: ∣∣∣∣

R1 =
∣∣~s1 − ~t

∣∣
R2 =

∣∣~s2 − ~t
∣∣

∣∣∣∣

To simplify the calculations, let the �rst sensor be placed in the coordinate
center ~s1 =

(
0
0

)
and the second sensor on the x-Axis ~s2 =

(
d
0

)
.

With a simple shift and rotation, an arbitrary sensor setup can satisfy these
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constrains. Using these constraints, the two equations can easily be solved
for ~t:

∣∣∣∣∣∣
R1 =

√
t2x + t2y

R2 =
√

(d− tx)2 + t2y

∣∣∣∣∣∣

⇔
∣∣∣∣∣

tx = R2
1−R2

2+d2

2d

ty = ±
√

R2
1 − t2x

∣∣∣∣∣ (6.1)

Usually, only one solution is wanted. If the sensor's antenna beams are
looking in the direction of the y-axis, only a target position with positive
y-coordinate is valid. The visualization of the trilateration technique is
very similar to the LFMCW technique of range-velocity processing. The
obvious di�erence is that the trilateration is represented by intersecting
circles while the LFMCW range-velocity processing is represented using
straight lines. The advantage of circles can be seen in Figure 6.6: Multiple
targets do not necessarily produce ambiguities when assigning the ranges
to the targets. Ambiguities only appear if the range di�erences between
targets, seen from di�erent sensors, are smaller than the distance between
the sensors (|R1 −R2| < d).

Using LFMCW sensors for trilateration the sensors also provide informa-
tion on the target's radial velocity. Having the target position precomputed
as shown above, the target velocity ~vt is related to the radial target velocities
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vri (measured from sensor i) by:

vri =

(
~t− ~si

)
~vt∣∣~t− ~si

∣∣ = ~rin ~vt = rinxvx + rinyvy

Where ~rin is introduced as the normalized vector between sensor i and the
target. With known target position and radial velocity measurements, the
target velocity can be calculated:

(
vx

vy

)
=

1
r1nxr2ny − r1nyr2nx

(
r2ny −r1ny

−r2nx r1nx

)(
vr1

vr2

)
(6.2)

When two target ranges are close to each other, invalid intersections can
appear. Such a situation is shown in Figure 6.7. Similar to the LFMCW
processing, these invalid cross-sections are called ghost targets. Analogous
to the increase of chirps in the LFMCWwaveform, the number of sensors can
be increased. A target measured with four sensors yields an intersection of
four intersecting circles. This is shown in Figure 6.8. The valid intersections
are distinguished from the ghost targets by the number of range-circles
contributing to an intersection.

With one target measurement from each of the N = 4 sensors, a system
with N equations can be set up for the target position and for the target
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velocity:

~R(~t) =




∣∣~t− ~s1

∣∣∣∣~t− ~s2

∣∣
...∣∣~t− ~sN

∣∣


 (6.3)

~Vr(~t) =




r1nx r1ny

r2nx r2ny

...
...

rNnx rNny


~v (6.4)

Again, rinx and riny are the components of the normalized distance vector
between sensor i and the target.

The equation system ~R
(
~t
)
is non-linear and also overdetermined in the

case of more than two sensors contributing a range measurement. To es-
timate the target position ~t, an iterative algorithm like the Gauss-Newton
algorithm can be used. This operation produces a target position estimate
according to the minimum mean square error (MMSE) criterion.

Although both equation systems can be solved together, it is computa-
tionally less expensive to get an estimate of the position ~̂t and then solve the
second equation system ~Vr (̂~t,~v), that is linear when ~̂t is used as a constant
estimate for ~t. This approach is suboptimal compared to solving the two
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systems
∣∣∣∣

~Ri

(
~t
)

~Vi

(
~t,~vr

)
∣∣∣∣together. Simulations with practical system parame-

ters show that the loss in accuracy is negligible.

6.4 Gauss-Newton Algorithm
The trilateration equation system is nonlinear and it is overdetermined in
the case that more than two sensors contribute a measurement to the target
estimation. For this case, a basic approach is to �nd the best estimate
according to the MMSE criterion. The error in the measurement space is
de�ned as:

~e = ~Rm − ~R
(
~̂t
)

= f
(
~̂t
)

Where ~Rm is the measurement data vector and ~R
(
~̂t
)
is the expected mea-

surement for a target estimate ~̂t. The sum of the squared vector elements
is to be minimized:

min~t

(
~eT~e

)
= min~t

(
~f
(
~t
)T ~f

(
~t
))

The Gauss-Newton algorithm performs multiple iterations of linearizing the
equation system at some approximated solution ~ti and iteratively approach-
ing the MMSE solution ~̂t ∗. Important for stability and a fast convergence
to the solution is the starting point of the search ~t0. For the trilateration,
a good starting point can be obtained by intersecting two sensor measure-
ments by basic trigonometry as shown above. Using this starting point, the
Gauss-Newton algorithm is fast and stable enough for the radar trilateration
processing. The Gauss Newton algorithm is described in Algorithm 3.

For the trilateration application, the Gauss-Newton algorithm has to
linearize the trilateration equation system (6.3) at point ~t0. The matrix
of the linearized system (at point ~t0) is called the Jacobian matrix J =
∂ ~R(~t)

∂~t

∣∣~t0 . Starting from the nonlinear system ~R(~t), the Jacobian can be
calculated as follows:

~R(~t) =




∣∣~t− ~s1

∣∣∣∣~t− ~s2

∣∣
...∣∣~t− ~sN

∣∣


 =




√
(tx − s1x)2 + (ty − s1y)2√
(tx − s2x)2 + (ty − s2y)2

...√
(tx − sNx)2 + (ty − sNy)2



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Algorithm 3 Gauss Newton
Task: Find the MMSE solution for: ~fm = ~f

(
~ti

)

1) Start with �rst iteration i = 0, get some initial estimate ~t0.
2) Linearize the equation system at the current approximation ~ti by calcu-
lating ~fi = ~f

(
~ti

)
and the Jacobian matrix for ~f at ~ti:

Ji =
d~f

d~t
=




∂f0
∂tx

∂f0
∂ty

∂f1
∂tx

∂f1
∂ty

∂f2
∂tx

∂f2
∂ty

∂f3
∂tx

∂f3
∂ty




3) Solve the linear problem ~fm = ~fi + Ji
~dt for the MMSE criterion:

~dt =
(
JT

i Ji

)−1
JT

i

(
~fm − ~fi

)

4) Generate a new approximation:

~ti+1 = ~ti + ~dt

5) Test for the break condition, if
∣∣∣~dt

∣∣∣
2

< λ the algorithm has �nished.
6) Increment i, start next iteration at step 2.

∂ ~R(~t)
∂~t

∣∣~t0 =




t0x−s1x

|~t0− ~s1|
t0x−s2x

|~t0− ~s2|
...

t0x−snx

|~t0− ~sN |

t0y−s1y

|~t0− ~s1|
t0y−s2y

|~t0− ~s2|
...

t0y−sny

|~t0− ~sM |




(6.5)

With the known target position, the velocity is calculated by the linear
system (6.4). It is very convenient that this linear system and the above
Jacobian of the nonlinear system (6.3) have the same matrix.

As far as calculation speed and numerical stability is concerned, there are
better algorithms than the Gauss-Newton algorithm to solve this nonlinear
equation, but these factors are not considered in this thesis. Concerning the
estimation quality, no noticeable di�erence between algorithms is observed
within a practical radar application.
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6.5 The Kalman Filter
To increase the accuracy of the target parameter estimates, the measure-
ments can be �ltered over time. A signi�cant improvement of accuracy can
be obtained because the observed targets obey the physical laws of motion.
The Kalman �lter is model-based and very suitable for this application,
provided that some preconditions are met.

The Kalman �lter distinguishes between the state of a process and the
observable values. The process state is not accessed directly but measured
indirectly over a measurement process. Both, the state process and the mea-
surement process are modeled by linear equations. The extended Kalman
�lter allows the use of nonlinear equations and so greatly extends the scope
of possible applications. The extended Kalman �lter is used for the im-
proved network processing algorithms in Chapter 8.

6.5.1 The Linear Kalman Filter
The original linear Kalman �lter is a model based state estimator. The
�lter is optimal in the sense that it minimizes the variance of the error of
the estimated state. The Kalman �lter is the optimal estimator for a large
class of problems including those in the �eld of radar.

The original Kalman �lter uses discrete data as input, and it is imple-
mented as a recursive algorithm that only needs the current state to be
stored. These two properties made the Kalman �lter very popular for digi-
tal signal processing. The �lter was �rst described in 1960 by R.E.Kalman
[Kalman 1960].

As mentioned above, the linear Kalman �lter is based on some assump-
tions about the problem. The �rst is, that the system process state at time
step k can be stated as a vector xk and the system process can be modeled
by a simple di�erence equation:

xk = Axk−1 + wk−1

Where A is the process matrix and wk is the process noise that combines
all nondeterministic (or not modeled) in�uences on the state.

The internal system state xk is not observed directly. Instead, the system
output zk is measured. Obtaining the measurement zk is modeled by:

zk = Hxk + vk

Where H is the measurement matrix and vk is the measurement noise.
Both random variables, wk and vk are assumed to be independent of

each other and to have normal probability distributions with the following
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Figure 6.9: System model for the Kalman �lter

(known) covariance matrices:

E(wkwT
k ) = Q

E(vkvT
k ) = R

This system model is illustrated in Figure 6.9.
The Kalman �lter uses this system model to estimate the process state.

At time step k the process is at state xk and the measurement vector zk

is observed. At this step, two state estimates can be distinguished: the a
priori state estimate x̂∗k that is determined without knowledge of the new
measurement, and the a posteriori estimate x̂k that includes knowledge
of the measurement zk. The covariances of the a priori and a posteriori
estimation error are de�ned as:

P ∗k = E
(
(xk − x̂∗k) (xk − x̂∗k)T

)

Pk = E
(
(xk − x̂k) (xk − x̂k)T

)

The goal of the Kalman �lter is to minimize the error variance of the a
posteriori estimate:

min
(
(xk − x̂k)T (xk − x̂k)

)

It can be proven [Kalman 1960] that the following linear equation minimizes
the error:

x̂k = x̂∗k + Kk (zk −Hx̂∗k) (6.6)
In the above equation, the di�erence (zk −Hx̂∗k) between actual and pre-
dicted measurement is called the measurement innovation. The matrix K
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is called the Kalman gain. Its value is calculated to minimize the error
variance of the a posteriori state estimate:

Kk = P ∗k HT
(
HP ∗k HT + R

)−1 (6.7)

The covariance matrix of the new a posteriori state estimate is:

Pk = (I −KkH) P ∗k (6.8)

Where I is the unitary matrix. The following algorithm shows all steps of
the Kalman �lter loop. The steps can be grouped into an initialization part
and two main parts: the corrector and the predictor.

Algorithm 4 The recursive Kalman algorithm.
Initialization

1. Start with an initial state estimate x̂∗0 and its covariance matrix
P ∗0 . Set k to zero.

First Part: Corrector

2. Obtain the measurement data vector zk, its covariance R and
the process covariance Q.

3. Build the Kalman gain Kk (Equation (6.7)) and estimate the
a posteriori probability x̂k and its covariance matrix Pk with
equations (6.6) and (6.8).

Second Part: Predictor

4. Increment k.

5. Calculate the state prediction which is the a priori estimate for
the next step: x̂∗k = Ax̂k−1

6. Calculate its covariance: P ∗k = APk−1A
T + Q

7. When the next measurement zk is available, go back to step 2.

The original Kalman state prediction includes a term for a known (ad-
ditively superimposed) in�uence on the state: x̂∗k = Ax̂k−1 + Buk. The
second term does not in�uence any other Kalman �lter equations. More
details can be found in [Sorenson 1970].
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6.5.2 The Extended Kalman Filter
The extended Kalman �lter (EKF) is the extension of the linear Kalman
�lter to nonlinear systems and nonlinear measurement equations. The EKF
uses nonlinear system equations and linearizes these equations for each �lter
step. Linearization is done at the current estimate of the state.

The extended Kalman �lter uses the following nonlinear state di�erence
equation:

xk = a (xk−1, wk−1)

Also the measurement equation is given as a nonlinear function:

zk = h (xk, vk)

For the linear Kalman �lter, the process matrix A is used for the state pre-
diction and the update of the state error covariance matrix. The extended
Kalman �lter uses a(xk, 0) for the state prediction and the Jacobian Ak of
a(xk, wk) for the update of the state error. The Jacobian Ak is the partial
derivation of a(x, w) with respect to x at the currently estimated position
x̂k−1:

Ak =
∂a

∂x
(x̂k−1)

Accordingly, instead of the measurement matrix H, the Jacobian of the mea-
surement function h(x, v) is used. The Jacobian Hk is the partial derivation
of h(x, v) with respect to x at the currently best estimate (x̂∗k, 0):

Hk =
∂h

∂x
(x̂∗k)

In the presented nonlinear model equations, also the noise vectors wk and vk

contribute nonlinearly to the state prediction and the measurement vector.
Therefore, the linearizations for the noise vectors are considered for the
extended Kalman �lter:

Wk =
∂a

∂w
(x̂k−1)

Vk =
∂h

∂v
(x̂∗k)

The original Kalman �lter prediction and update equations, described in the
previous section, are modi�ed to take into account the nonlinear in�uence
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of the noise vectors. Within the calculation of the Kalman gain, the noise
covariance is transformed by Jacobian Vk:

Kk = P ∗k HT
k

(
HkP ∗k HT

k + VkRkV T
k

)−1

The a posteriori state update equation is changed, because the measure-
ment innovation can be calculated directly from the nonlinear measurement
equation:

x̂k = x̂∗k + Kk (zk − h (x̂∗k, 0))

The calculation of the a posteriori covariance remains unchanged:

Pk = (I −KkHk)P ∗k

The state prediction can be calculated by the nonlinear update function, the
estimate is calculated with the (unknown) noise vector set to its expected
value:

x̂∗k = a (x̂k−1, 0)

The covariance of the predicted state includes the transformation of the
measurement noise variance by Jacobian Wk:

P ∗k = AkPk−1A
T
k + WkQkWT

k

6.6 Multilateration with Synchronized Networks
6.6.1 Multistatic Radar Network
The multilateration technique is an extension of trilateration procedure.
The technique is based on a network of multiple sensors that are able to
do multistatic measurements. In a multistatic measurement one station is
transmitting while other stations located at di�erent positions are receiv-
ing. This technique is known from aeronautical and military applications
[Willis 1991].

An automotive radar network with four multistatic sensors can alter-
nately switch one of the four sensors to transmit mode while all four sensors
are in receive mode. In such a network, a multistatic sensor has to be able to
receive and process the signal not only originating from its own transmitter,
but also from the other sensors transmitters. In order to accomplish this in
practice the sensors have to be synchronized precisely.

The advantage of a synchronized network lies in the increased number of
signal paths that are measured. While a 4 sensor network with monostatic
sensors can measure 4 signal paths, a network with four multistatic sensors
can measure 16 signal paths from which 10 are di�erent.
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Figure 6.10: Radar network with (a) monostatic and (b) bistatic measure-
ment

6.6.2 Multilateration Algorithm
The multilateration algorithm is merely an extension to include the ad-
ditional signal paths. In order to include these paths, a slight change in
nomenclature is made. With trilateration, the signal propagation delay τi

from sensor i to the target and back to the sensor directly corresponds to
the target range:

Ri = τi
c

2
In contrast to this, the multistatic measurement measures the propagation
delay between the transmitting sensor i to the target and back to a receiving
sensor j:

Di,j = Ri + Rj =
∣∣~t− ~si

∣∣ +
∣∣~t− ~sj

∣∣

The same applies to the single sensor velocity measurements:

vi,j = vri + vrj =

(
~t− ~si

)
~vt∣∣~t− ~si

∣∣ +

(
~t− ~sj

)
~vt∣∣~t− ~sj

∣∣
Using this de�nition, the trilateration is a special case of the multilateration,
measuring only those signal paths, for which the receiving sensor is also the
transmitting sensor:
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Ri =
1
2
Di,i

Equivalently to the trilateration case, the multistatic measurements are re-
lated to the target position via a nonlinear equation system. The multilat-
eration equation system can also be solved by the Gauss Newton algorithm.
Because of the relation Di,j = Ri + Rj there is a simple linear connection
between the trilateration equations and the multilateration equations:

~D = M ~R




D0,0

D0,1

D0,2

D0,3

D1,0

D1,1

D1,2

D1,3

D2,0

D2,1

D2,2

D2,3

D3,0

D3,1

D3,2

D3,3




=




2
1 1
1 1
1 1
1 1

2
1 1
1 1

1 1
1 1

2
1 1

1 1
1 1

1 1
2







R0

R1

R2

R3


 (6.9)

This can be utilized to reduce the calculation complexity solving the
multilateration equation system.

To theoretically determine the position estimation performance of a
radar network, the accuracy measuring a point target is usually referenced.
The measured ranges are assumed to have an additively superposed un-
correlated Gaussian error. Comparing the trilateration and multilateration
technique by the theoretical analysis shows that both techniques result in
approximately the same performance. This is not surprising, since only the
signal paths are combined in a slightly di�erent way. The result can be
found analytically by examining the connection between trilateration and
multilateration through equation 6.9 and determining the relation between
covariance matrix E

(
~R~RT

)
and E

(
~D ~DT

)
.
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Figure 6.11: Example network con�guration with 4 sensors

The incorporation of multistatic measurement principles was proposed
to take advantage of the increased number of aspect angles on an extended
target without increasing the number of sensors. Furthermore, the charac-
teristics of the target re�ections are di�erent for a multistatic measurement
compared to a monostatic measurement.

To investigate the advantages of multistatic measurements, the Euro-
pean project RadarNet has set itself the target of incorporating a mul-
tistatic measurement mode into a radar network [Lübbert 2002]. Within
this project, there has been much progress made in the implementation
of the multistatic measurement technique, which demands a highly precise
synchronization of the sensor local oscillators. Synchronization has to be
precise, so that for the time of a complete chirp signal, a sensor can coher-
ently mix down the signal of another sensor. Successful measurements were
done in the laboratory, measurements of actual tra�c scenes are expected
in the future.

6.7 Requirements on the Single Sensors
From the lateration principle it follows that the single sensor range accu-
racy needs to be very high to achieve good angular measurement results
[Klotz 2002]. To obtain a rough approximation of the position error, an
example network con�guration with four sensors is used as shown in Figure
6.11.

When the target to be measured is located far from the sensor network
compared to the distance between the single sensors, the target position can
approximately be decomposed into a range and a tangential component.
The range between target and network center is approximately the mean
target range measured from the single sensors. The tangential component is
derived from the di�erence between each sensors target range measurement.
The estimation accuracy of the range component is of the order of the single
sensor range accuracy, which is high in the investigated system. In contrast,
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Figure 6.12: Accuracy of position estimation in relation to the single sensor
range accuracy.
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the accuracy of the tangential component can be very much lower.
The deviation σtang. of the tangential component of the position estimate

depends approximately linearly on the deviation σR of the single sensor
range estimate. This holds true for small deviations where the relationship
between target position ~t and range measurements Ri can be approximated
by a linear equation system. Furthermore, the tangential deviation σtang.

is approximately equal to the deviation σ|~t−~t0| of the magnitude of the
position error vector. The factor

σ|~t− ~t0|
σR

is plotted in Figure 6.12. The
factor is depending on the actual target position ~to. For a target 25m in
front of the sensor network, this factor is 20. This means that for a single
sensor range accuracy of 2.5 cm, the tangential component of the position
estimate has an accuracy of half a meter. The plot was created using the
trilateration equation linearized at position ~to and inverted as done in the
solution of the trilateration equations described in Section 6.4.

The next important ability of interest is the resolution of targets with
nearly same distances but di�erent azimuth positions. For this, the single
sensors are required to have a very high range resolution capability. In a
dynamic tra�c scenario with relative movement between targets and radar,
a high resolution in velocity can assist the process of resolving targets with
di�erent angular positions. In a dynamic scenario, target �uctuations also
appear, so that closely neighboring targets are likely to be measured with
di�erent signal amplitudes in each cycle. This e�ect can be used to resolve
closely neighboring targets over time.

Real physical range resolution is directly determined by the used band-
width. The amount of bandwidth available is not only a technical issue or a
question of cost. This is also a regulatory issue of frequency allocation. The
77 GHz frequency band is very likely to provide a full 1 GHz of bandwidth
which can be used for automotive applications. The LFMCW single sensors
in the underlying project have a sweep bandwidth of 450 MHz which gives
a practical range resolution of about half a meter when using an FFT and
a window function (Section 4.2). This is a much poorer resolution than was
available in previous 24 GHz systems [Klotz 2002].



Chapter 7

Classical Radar Network
Signal Processing

In Chapter 6 the relation between the range measurements of one target and
its position estimation in Cartesian coordinates is described. It is shown
how to solve the trilateration equations which form a nonlinear and overde-
termined system. An important capability of automotive radar systems is
the resolution of multiple targets within the observation area. When the
measurement data space is di�erent from the estimation space, resolving
multiple targets is often not trivial as can also be seen in the previously
described LFMCW signal processing methods. The resolution of multiple
targets is done by the data assignment stage of the network processor.

In this section, a straightforward implementation of the network signal
processing is described, as introduced in [Klotz 2002]. This implementation
can be separated in three major processing modules as shown in Figure 7.1.
These modules are:

1. Data assignment,

2. Trilateration,

3. Target tracker.

The data assignment module receives target lists from the attached single
sensors. These lists contain target detections together with the correspond-
ing target range and radial velocity information. These ranges and radial
velocities are assigned to one or multiple target hypotheses.

The trilateration module receives the target hypotheses as a set of multi-
ple ranges together with a coarsely pre-estimated position. The trilateration

105
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Trilateration TrackingData Assignment

Sensor

Sensor

Sensor

Sensor R,vr
R,vr

Target lists
transmitted to
Application

(x,y,vx,vy) (x,y,vx,vy)

Figure 7.1: Straightforward network processing

module combines these ranges and estimates the target position and velocity
in 2 dimensional Cartesian coordinates.

The tracker receives the trilaterated position and velocity estimates. It
tries to assign all these target position-velocity measurements to the cur-
rently active tracks. If some measurements could not be assigned, they are
used to initiate new tracks. The output of the tracking module is a tracked
target list with target position and velocity information.

In the described straightforward network processing method there are
two assignment algorithms, one to assign a range from each sensor to a
target for lateration, one to assign the laterated target positions to target
tracks.

7.1 Data Assignment
The data assignment module searches for combinations of range-velocity
measurements that are likely to represent a target. For this, there are
mi range-velocity measurements available from each sensor i = 0..3. Let
(Ri,k; vr i,k) be the kth range-velocity measurement from sensor i. For an

ideal measurement of a point target with the state
(

~t
~vt

)
, a valid combi-

nation k0, k1, k2, k3 of ranges has to ful�ll the trilateration equations:



R0,k0

R1,k1

R2,k2

R3,k3


 = ~R(~t),




vr 0,k0

vr 1,k1

vr 2,k2

vr 3,k3


 = ~V (~t,~vt)

For real measurement data, the range-velocity values contain a frequency es-
timation error. As shown in section 6.4 above, the Gauss-Newton algorithm
can be used to obtain a good estimation ~̂t of the target position. Within
the Gauss-Newton algorithm, the error ~e between the real measurement and
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the expected measurement for the estimation of ~̂t is available. This error
can be used to approximate the mean square error (MSE) of the estimate:

MSE ≈ ~eT~e

The MSE is a good criterion to validate an assignment hypothesis.
Equivalently to the LFMCW frequency assignment, the MSE can be calcu-
lated for all possible combinations and a hypothesis is validated if the MSE
is below a limit.

However, in comparison with the LFMCW processing method, checking
all hypotheses is computationally very expensive. Again, the approach can
be taken to �rst set up some target hypotheses and then test them. The hy-
potheses are set up with the range-velocity measurements from two sensors.
In this case, the target positions can be calculated directly from equations
6.1 and 6.2.

If only one pair of sensors is used to set up the hypotheses, a missed
detection in one of these sensors completely prevents the recognition of this
target. To avoid this, other combinations of sensor pairs are additionally
used to set up target hypotheses. This is rather more important for the
trilateration than for the LFMCW cross-sectioning, because target �uctu-
ations are much less correlated between the four sensors than in di�erent
chirps from one sensor.

After setting up the hypotheses, it is checked which of the hypotheses
are in agreement with the remaining sensor measurements. This is done by
calculating the range and radial velocity measurements expected for the re-
maining sensors. These expected measurements are compared to the actual
measurements. If the remaining sensors have a measured range-velocity pair
that lies within a certain gate around the expected values, the hypothesis is
validated. In Figure 7.2 a target hypothesis, generated from sensors 1 and
4 is shown. The gate for acceptable range estimates from sensor 2 is drawn
as a thick circle going through the target hypothesis and having its center
at the location of sensor 2. A range measurement is shown within this gate.

Also the radial velocities can be used to verify a hypothesis. The radial
velocity gate cannot be visualized in the way the range gate is.

In the LFMCW cross-sectioning algorithm it is advantageous to �rst
remove all target hypotheses that have illegal or out of bound range and
velocity estimates. Similarly, there are constraints for the trilateration case
as was already mentioned in section 6.3. The constraints are:

• abs
(
Ri,ki −Rj,kj

)
< dsi,sj meaning that the range measurements

from two sensors only intersect if their di�erence in range is smaller
than the distance dsi,sj between the two sensors si and sj .
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Figure 7.2: Gate for range to target association

• The lateral component of the velocity estimate is checked for very
high velocities. If two measured range-velocity pairs are not coming
from the same target, they can have very di�erent radial velocities.
Because the distance between the sensors is usually small compared to
the distance of the sensors to the target, the resulting target velocity
estimate has a very high magnitude of some hundreds of meters per
second.

• Target positions outside the observation area can be discarded.

As in the LFMCW case, the complete algorithm can be understood as a
two step task: �rst create the target hypotheses, next, detect the hypothe-
ses that are correct. A target hypothesis is validated if the di�erence be-
tween expected and measured range (and velocity) is below a certain limit.
Equivalently, the reasons for a missed detection are:

a) One or more single sensor detections are missing.

b) The error on the sensors' range-velocity estimates are too high.

There is a false alarm, if:

a) Accidentally four false alarms form a hypothesis that is vali-
dated. (very rare, negligible)
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b) A combination of some correctly detected ranges with false alarms
constitutes a validated hypothesis.

c) A combination of correctly detected ranges, belonging to other
targets, constitutes a validated hypothesis. (Referred to as a
ghost target)

Point c) is again the most important source of network false alarms since the
single sensor false alarms from the processed range-velocity lists are due to
random noise. Sporadic false alarms are easily �ltered out by the tracking
stage. Ghost targets do not have the characteristics of random noise and
can exist over a period of time. Therefore, the probability of ghost targets
should be kept very small in the network processing.

As in the LFMCW cross-sectioning case, we can adjust two kinds of
parameters to optimize the algorithm performance to our needs:

• The number of detected single sensor range-velocity pairs in accor-
dance with the target hypothesis, as needed to validate the hypothe-
sis.

• The size of the gate used to check the hypothesis against a sensor
measurement.

The target scattering behavior could be simulated for many di�erent target
types. However, the use of real measurements is preferred for evaluation of
the network processing, since the wave propagation e�ects are very com-
plex and not completely foreseeable. Measurement results are presented in
chapter 9.

7.2 Lateration Processing
The principle of the lateration technique was described in section 6.2. The
trilateration module receives sets of range and velocity pairs and solves the
nonlinear trilateration equations 6.3 and 6.4.

The target position and velocity data is delivered to the tracking mod-
ule. For the Kalman �ltering, an estimate on the covariance matrix of the
measurement error is needed. This matrix can be approximated from the
estimated single sensor measurement errors and the linearization of the tri-
lateration equation (equation 6.5). The error in range measurement from
sensor i is given by:

eRi = (R̂i −Ri)
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The range errors from sensors i = 0..3 are combined to an error vector:

~e = ( ~̂R− ~R)

It is assumed that the measurement errors are uncorrelated between sensors,
so the covariance matrix of ~e is a diagonal matrix:

E
(
~e~eT

)
=




σ2
R0

· · · 0

σ2
R1

...
... σ2

R2

0 · · · σ2
R3




To obtain the covariances of the position estimate, this range error covari-
ance matrix is transformed by the inverse of the linearized trilateration
equations:

E
(
~et~e

T
t

)
=

(
J−1

)T
E(~e~eT )J−1

For the implementation of the signal processing, the single sensor range
error is assumed to have a constant variance that is of the same size for
all sensors: σ2

Ri
= σ2

R for i = 0..3. If the single sensor signal processing
is producing estimates of the error variances, these can be used for the
calculation of E

(
~et~e

T
t

)
without additional processing e�ort.

The Jacobian J and its inverse is calculated during the trilateration, so
the computation of the estimation error covariance matrix comes at the cost
of a matrix by diagonal matrix multiplication.

7.3 Target Tracking
In radar signal processing, the main reason for tracking the target detections
is to create an association between measurements made at di�erent times.
In other words, the tracker is used to keep track of the once detected targets.
Each initiated track receives a unique identi�er and so the measurements
are associated over time by their corresponding track IDs. This association
over time makes some additional techniques possible that are commonly
used in radar tracking.

A tracking �lter is used to �lter the measurements assigned to a track
over time to increase the measurement accuracy. An increased accuracy
is not only helpful for the recipient of the target list but also helpful for
the tracking process itself, especially the assignment of measurements and
tracks.

Another advantage of keeping track of the targets is that losses of de-
tections for short times can be bridged by the tracker. In case of a missed
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detection, the current target state is estimated by the previous state. The
prediction is usually done within the tracking �lter.

As already described for the single sensor tracking in Section 5.4, the
tracking cycle consists of 6 steps. The major parts of the tracker are:

• New measurements are associated with the existing target tracks.

• The track states are updated with the associated measurements.

• The track states of the next cycle are predicted.

To pick up new targets, the tracker additionally needs to initialize new
tracks by measurements that could not be assigned to existing tracks. Fur-
thermore, tracks have to be deleted if they are not updated by new measure-
ments for a given time. Tracks with nearly identical states are merged in
order to reduce processing load. Figure 7.3 gives an overview of the tracking
algorithm.

The implemented tracking algorithm uses a Kalman �lter for state up-
date and state prediction. The association of new measurements and tracks
is discussed in the following section.

7.3.1 Association of Measurements and Tracks
When new measurements arrive, the tracker �rst performs an association
between the new measurements and the existing tracks. The basis of �nding
the best association is usually the likelihood criterion. In the case investi-
gated, the measurements are the 2-D Cartesian coordinate position esti-
mates from the trilateration. If the measurement errors are assumed to be
normally distributed and also the errors of the two coordinates have the
same variance and are uncorrelated, the likelihood ratio between di�erent
assignments is identical to the nearest neighbor criterion.

There are three major strategies to associate the new measurements with
the existing tracks:

• Using a �Measurement to Track� assignment strategy, each measure-
ment is assigned to the most likely (nearest) target track. This track
will be updated by the measurement. A track might receive multiple
measurements.

• Using a �Track to Measurement� assignment strategy, each target
track is compared to the measurements. The track is assigned to and
updated with the most likely measurement. A measurement might be
used to update multiple tracks.
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Figure 7.3: Complete cycle of the tracker, repetition of Figure 5.17.
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• A joint probabilistic assignment technique determines all possible com-
binations for assigning the measurements of one cycle to the tracks
and determines the maximum likely combinations. The Joint Prob-
abilistic Data Association (JPDA) does not make hard decisions but
weights all possible assignments. The track states are updated with
all measurements in a weighted manner. The Multiple Hypothesis
Tracking (MHT) carries along all possible assignment combinations
over a sequence of measurement cycles and so creates a tree of possi-
ble assignments. Very unlikely hypotheses are culled to thin out the
growing tree of assignment combinations.

As can bee seen from Figure 7.4, the three strategies can produce three
di�erent association results. However, the shown example is a very special
situation. The targets are very close to each other in comparison to the
magnitude of the error between measurements and track predictions.

The JPDA and MHT have great advantages when dealing with low mea-
surement update rates in air and sea surveillance radar systems. In the case
of low update rates, the track prediction becomes a major source of error.
However, the discussed radar network has a high update rate compared to
the speed and the maneuverability of the targets. The measurement er-
ror and the prediction error generally will be smaller than the resolution
capability of the sensors.

The discussed LFMCW sensors are able to resolve by velocity, targets
with di�erent velocities can be resolved even when they are close to each
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other. The velocity estimate can be used in the validation process. In
any other case, the targets interfere and the sensors cannot resolve the
targets correctly. In this situation, a correct target position estimation is
not possible by the trilateration technique.

For these reasons, a simple track to measurement assignment is chosen
for the discussed radar network. The assignment uses the nearest neighbor
technique with a weighted distance metric. An additional validation gate is
used to prevent obviously wrong assignments.

7.3.2 Weighted Distance Metric and Adaptive Gate Size
The trilateration estimates position and velocity with very di�erent accu-
racy in the two directions radial and tangential from the radar network.
When measurements and track states are in Cartesian coordinates, an adap-
tive distance metric and gate can together improve the performance of the
data association greatly.

The following proposal uses the approximated variances of the measure-
ment error and the tracks measurement prediction error to determine a
weighted distance between actual and the predicted measurement.

The assumption made for this is that the measurement and state errors
are normally distributed random variables, an assumption that is done all
throughout Kalman track �ltering.
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De�ne zp, Rp as the tracks measurement prediction and its error covari-
ance and zm, Rm as a measurement and its error covariance matrix. In
terms of Kalman �ltering, the error between actual and predicted measure-
ment is called the innovation:

v = zp − zm

The covariance of the innovation is:

S = Rp + Rm

The weighted norm d of the innovation can be used as the likelihood of
a correct association or the distance between the measurement and the
prediction:

d2 = vT S−1v

7.3.3 Track Validation and Deletion
The tracking algorithm is not an end in itself but delivers information about
the target tracks to the application. This was omitted in the previous de-
scription of the tracker. A snapshot of the currently existing tracks and
their state estimates is regularly transmitted to the application of the radar
system. Since a false alarm instantly initiates a new track and the trans-
mission of false alarms is usually not wanted, a track validation scheme is
needed. The implemented validation scheme is a classical M out of N de-
tector. A track is validated when it has received Mv updates in the last Nv

cycles.
Tracks that are not updated regularly are deleted. The deletion crite-

rion is again stated by an M out of N detector. For the track deletion, it
is advantageous to consider the tracks validation state, in order to quickly
dispose of the tracks originating from false alarms. Therefore, the imple-
mented tracker distinguishes between validated targets and not validated
targets. A track is deleted when it has received:

• Md updates in the last Nd cycles for a not validated track, or

• Mdv updates in the last Ndv cycles for a validated track.

The actual values that are optimal depend on the time domain properties of
the target �uctuations, the expected false alarm rate and the expected rate
and properties of ghost targets. For a cycle period of 25ms the parameters
should be around:

• Mv = 10 Nv = 12
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• Md = 1 Nd = 5 (After the second cycle)

• Mdv = 2 Ndv = 20

With these values, the time scope of the track validation and deletion is not
more than half a second. It makes sense to choose higher values for Ndv for
tracks with low velocity.

7.3.4 Additional Track Validation and Deletion Crite-
ria

After a track is validated it is assumed that the target is actually present.
So, if a validated target track receives no more measurement updates it
cannot be assumed that the target has simply disappeared. The lack of
measurement updates is much more likely to be for one of the following
reasons:

1. The target leaves the observation area or is shadowed by another ob-
ject.

2. The signal is below the detection threshold due to target �uctuations.

3. The tracker has literally lost the track due to measurement errors.
These errors cause the target measurements to be out of scope for the
data assignment.

As targets do not simply vanish, it does not seem to be pertinent to close a
target track as soon as there are no more measurements observed. Inspired
by this idea, another criterion for track validation and deletion is proposed
that uses the uncertainty of the track state. If it is no longer possible to
predict the track state better than a given value, the track is not useful
anymore, and can be deleted. Since the Kalman �lter maintains an ap-
proximation of the state error variance and includes an uncertainty for the
system model, the approximated state error variance can directly be used
to delete or at least invalidate target tracks.

7.3.5 Target Model of Motion
The tracker predicts the target states for each cycle according to the target
equations of motion. In Cartesian coordinates, the equations are linear.
Given the state ~x of the target as the combination of target position ~t and
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~v in Cartesian coordinates

~x =




tx
ty
vx

vy




the system matrix A(dt) that models the target motion for a step dt in time
is a 4 by 4 matrix:

A(dt) =




1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


 (7.1)

This equation can directly be used in the Kalman �lter state prediction.
Usually and within this investigation, the trackers cycle time dt is constant,
so A(dt) is also a constant matrix.

Also, the Kalman �lter process noise has to be modeled. This noise
corresponds to the unknown acceleration of the object. A compromise has
to be made between the variance of the state estimates and the ability to
track accelerated targets. It has been found that

Q =




0 0 0 0
0 0 0 0
0 0

(
dt · 3m

s

)2 0
0 0 0

(
dt · 3m

s

)2


 (7.2)

is a useful tradeo�.

7.3.6 Update Rate of the Tracked Target List
The higher the sensor update rate is, the more data the tracker has available
in a segment of time. A higher update rate can either improve the state
estimates or makes the tracker react faster to changing target situations.
In most cases, the update rate at the output of the tracking �lter can be
chosen to be lower. It is even conceivable that a speci�ed update rate has
to be met. The use of a tracking �lter like a Kalman �lter makes it very
easy to run a di�erent update rate at the output of the tracker than is used
at its input. The update clock of the tracker output can even be driven
asynchronously from the input. To produce a target list for a speci�c time,
the current state variables of each track are calculated for the desired point
in time by the use of the tracker state prediction equation.

With some additional timing information, it is also possible to formally
compensate the time that is used for the complete measurement, by trans-
mitting an optimal prediction for the current time. This is much better
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than compensating for the measurement time in the application because all
the necessary information is already available to the tracker.

7.4 Synchronization between Sensors
The trilateration algorithm has an especially high demand for accurate range
information. However, if the range-velocity lists from di�erent sensors are
not processed synchronously, the range measurements used for triangulation
are not referring to the same point in time. Due to the target movement,
there is a discrepancy between range measurements from di�erent sensors
and the position estimate contains an additional error. For instance, with
a target-list update rate of 25 ms, a vehicle can easily move 25ms ∗ 50km

h ≈
0.35m between two measurements. For trilateration, a third of a meter is
a signi�cant amount of uncertainty in the range information. Therefore,
synchronized processing of the target lists from multiple sensors is essential.
There are two methods to achieve correct processing:

1. Process only the target lists that are from the same measurement cycle
of a synchronized sensor group.

2. Compensate the Ranges by R0 = Rt + v(t0 − t) so that all ranges are
referring to the same point in time.

Both methods assume the knowledge of the (relative) time of the measure-
ment for each target list from each sensor. The second method implies a
linear movement of the objects.

7.4.1 Implemented Radar Network Synchronization
The synchronization concept of the radar network is shown in Figure 7.6.
It consists of a hardware aspect and a software aspect.

The sensor hardware is driven synchronously. Transmission of the wave-
form is triggered by a central synchronization box. The synchronization box
precisely triggers the start of a waveform sequence every 100ms by distribut-
ing a synchronization signal to all sensors. Upon the synchronization signal,
the sensors start the transmission synchronously and transmit a waveform
sequence consisting of 4 waveforms. The second signal that is distributed
from the synchronization box to the sensors is a 100 MHz clock signal. This
signal is used within each sensor to derive the local timing and clock signals.

The LFMCW signal processing is done on the sensors local signal pro-
cessing hardware. For this, an interface between the sensor front end and
the digital signal processor (DSP) forwards the receive data to the DSP in
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Figure 7.6: Synchronization scheme

a continuous stream of samples. Each transmitted sample is 16 bit wide.
14 bits contain the AD converted receive signal and 1 bit is used as a �ag,
marking the start of a new waveform sequence. The remaining bit is unused.

The sensors run synchronously and each sensor knows the start of a new
waveform sequence and locally counts the numbers of processed waveform-
sequences. The target lists transmitted to the network processor are time
stamped using this local counter. However, there are two limitations that
make an additional synchronization step necessary:

1. As a result of the complex signal processing hardware, it cannot be
ensured that after power-up all sensors start exactly from the same
waveform sequence. The network processor receives target lists with
each sensors local time stamp but does not know precisely at which
time each sensor started its counter. There remains an ambiguity of
about one waveform sequence (100ms).

2. The sensors are connected to the network processor using an Eth-
ernet link. The network processor is a standard personal computer
with standard networking components. Using standard hardware and
in this case also using a standard operating system, the latencies of
the network connections are unpredictable to the network processing
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software. With a high system load, latencies can sometimes reach the
order of 100 ms. The network processor can not directly use the target
lists time of arrival for resolving the ambiguity of 100ms.

In summary, the waveforms are transmitted and processed synchronously
with a very high accuracy. However, the relation between each sensors local
waveform sequence counter is not known precisely. In practice, the unknown
latencies of the Ethernet connections prevent a direct comparison of each
sensor's local sequence counter on arrival at the network processor. For the
described situation, the following additional synchronization scheme within
the network processing is proposed and has been successfully implemented.
It is described in the following.

Additional Target List Synchronization
Each sensor transmits a short synchronization message containing the local
sequence count as soon as the sensor recognizes the start of a new sequence.
This message is transmitted over the Ethernet link as an out-of-band mes-
sage alongside with the target lists.

The network processor receives the synchronization messages from each
sensor every 100 ms. The network processor creates a statistic about their
mean times of arrival. This statistic has a scope of a few seconds.

The synchronization message from sensor i with the sequence count k
is received at time ti,k. The sensor start time t0 is de�ned as the time,
the sequence with number 0 has been processed. This sensor start time is
estimated by averaging the receive time of the incoming messages:

ˆti,0 =
1

kstop − kstart + 1

kstop∑

k=kstart

ti,k − Tseqk

The relation between the sensors local counters can be identi�ed by com-
paring the sensor start times:

dki,j = round

(
ti,0 − tj,0

Tseq

)

The maintenance of this statistic allows a robust synchronization that also
accounts for the occasional outliers which are unavoidable when using stan-
dard computer hardware and operating systems. For this implementation,
it is numerically more accurate to adjust the sensor reference start time to
the time scope of the statistic:

ˆti,kstart =
1

kstop − kstart + 1

kstop∑

k=kstart

(ti,k − tstart)− Tseq(k − kstart)
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With the knowledge of the relation between the sensors local sequence coun-
ters, the target lists can be processed synchronously. For this, the target
lists contain the local count l of the corresponding processed waveform:

li = 4 · ki + ci

Where ci is the number of the waveform relative to the start of the sequence
for sensor i. For all further processing, the network processor replaces the
sensors local waveform count li with a count l∗ common to all sensors:

l∗ = li − 4 · dki,0

Because of the described network latency, the received target lists are bu�ered
prior to processing. The target list bu�er is chosen to hold 4 sets of 4 target
lists, in order to bu�er 4 target lists from each of the 4 sensors. The target
lists are sorted into the bu�er according to their waveform index modulo 4.
When all target lists for one waveform index l∗ have been received, the cor-
responding column from the receive bu�er is passed to the signal processing
stages.

7.5 Performance Considerations
The performance of the straightforward implementation of the radar net-
work is acceptable in the single target case where a robust detection of the
target by the LFMCW sensors is possible. In the multiple target case with
a growing number of targets, the detection rate and the probability of an
accurate target range and velocity measurement go down. The implementa-
tion only works in some situations, for example when the target of interest
is the dominant re�ector in the scene. This is usually the case for vehicles
that have one of their faces oriented perpendicular to the direction of the
radar sensors. This situation occurs when following a car on a straight road.

The network processing implementation described above uses a forward
data association and trilateration without any memory of the previous tar-
gets states. To obtain a good lateration result on a target, at least 3 sensors
have to provide accurate range information about this target. Unfortu-
nately, in many multiple target situations the probability for this is very
low. The following section describes improved network processing strate-
gies which increase the detection performance and measurement accuracy.
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Chapter 8

Improved Radar Network
Processing Strategies

The system described in Chapter 6.2 is particularly characterized by the
need for a very good target detection rate from the single sensors. The
data assignment and trilateration processing works only for targets that are
steadily detected by at least 3 sensors. An alternative strategy, introduced
in [Oprisan 2002], is to update the track states directly by the single sen-
sor range measurements. In this �range to track� association strategy, the
trilateration algorithm is shifted into the measurement update function of
the extended Kalman �lter. The trilateration equations are directly used as
the measurement equation of the extended Kalman �lter. In this case, the
target track is updated, even when fewer ranges are available than required
for a standalone trilateration procedure. Therefore, much more information
is used to update the track.

The �range to track� association strategy exhibits better track main-
tenance than straightforward processing. However, there is still scope for
improvement in the estimation accuracy of targets with either a low RCS
or in dense multiple target situations. To further improve track stability
and estimation accuracy, a third processing strategy is proposed, that uses
data directly from the sensors spectral analysis. The detected frequencies
of each chirp and each sensor are used to directly update the track states.
This strategy is referred to as the �frequency to track� association strategy.

This new strategy shows a remarkable improvement, because a target
track of a normal re�ecting object is now nearly always updated by every
sensor in each measurement cycle. With this strategy, the data assignment
can be very selective about the measurements used to update the target

123
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state estimates in order to improve position estimation quality. Figure 8.1
shows the three investigated network processing strategies.

8.1 Track Update by Range to Track Associa-
tion Strategy

The second diagram in Figure 8.1 shows the extended modules and new in-
teraction between these modules for the range to track association strategy.
For this strategy, the data assignment directly assigns the ranges to the
tracks. After being assigned to their corresponding tracks, the ranges are
forwarded to an extended Kalman �lter. New target tracks are generated
by the standard trilateration algorithm used in straightforward processing.
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8.1.1 Adaptation of the Kalman Filter
The straight forward processing strategy uses a linear Kalman �lter whose
measurement space and target state space are identical. In the case of the
advanced range to track strategy, the measurements are related nonlinearly
to the target state by the lateration equations 6.3 and 6.4. These equations
are used as the measurement equation system for the extended Kalman
�lter. The state equations do not change and remain linear.

Since the state model remains linear, the state equation 7.1 and the
corresponding process noise matrix 7.2 from the linear Kalman tracker can
still be used.

The nonlinear measurement equation is linearized at the currently best
state estimate. Computationally, this linearization of the measurement
equation is identical to one iteration of the Gauss-Newton algorithm (Sec-
tion 6.4). Therefore, the construction of the Jacobian of the measurement
equations can be taken from equation 6.5 which is repeated here, written
with the abbreviation ~ri =

(
rix

riy

)
=

(
~t0 − ~si

)
as the distance vector be-

tween the position of sensor i and the target position:

JRt =
∂ ~R(~t)

∂~t

∣∣~t0 =




r1x

|~r1|
r2x

|~r2|
...

rnx

|~rn|

r1y

|~r1|
r2y

|~r2|
...

rny

|~rn|




(8.1)

The above matrix is identical to the matrix used to calculate the radial
velocities ~VR from the target velocity ~v assuming the target at position
~t0. Since the relation between ~VR and ~v is linear, the Jacobian matrix is
identical to the measurement matrix:

JV v = JRt =
∂~VR

∂~v

∣∣~t0, ∀v (8.2)

The partial deviations of ~VR with respect to ~t are:

JV t =
∂~VR

∂~t

∣∣~t0, ∀~v =




vxr2
1y−vyr1xr1y

|~r1|3
vyr2

1x−vyr1xr1y

|~r1|3
vxr2

2y−vyr2xr2y

|~r2|3
vyr2

2x−vyr2xr2y

|~r2|3
...

...
vxr2

ny−vyrnxrny

|~rn|3
vyr2

nx−vyrnxrny

|~rn|3




(8.3)
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Again, written with the abbreviation ~ri =
(

rix

riy

)
=

(
~t0 − ~siy

)
. The Ja-

cobians are independent from the current velocity estimate, because the
relation between radial velocities ~VR and laterated velocity ~v is linear. The
target measurement vector z is implemented as a combination of each sen-
sor's measured range followed by each sensor's measured radial velocity.
The target state vector x remains unchanged.

z =
(

~R
~Vr

)
=




R1

R2

R3

R4

vr1

vr2

vr3

vr4




, x =




tx
ty
vx

vy




If the measurement vector z is de�ned in this way, the linearization of the
measurement equation is constructed by using the Jacobians derived above:

∂z

∂x
=

(
JRt 0
JV t JV v

)
= Jzx (8.4)

If some measurements are not available, the corresponding rows are deleted
from the above matrix.

8.1.2 Adaptation of the Assignment Stage
The network processing concept described in this section uses only one as-
signment procedure. It directly assigns the ranges to the target tracks,
while, in contrast, the straight forward processing strategy has two assign-
ment stages:

• for the trilateration, the range measurements are assigned to target
position estimates,

• for the tracker, target position estimates are assigned to target tracks.

The new range to track assignment is an integration of these two separate
assignment procedures. It translates between the target position space and
the range measurement space as the straight forward trilateration assign-
ment does. It is an assignment of measurements to track state estimates
like the straight forward position to track assignment is.
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The standard range to target position processing described in the last
Chapter is preserved to initialize tracks for new targets. A detailed de-
scription of the complete range to track strategy can be found in algorithm
5.

Algorithm 5 Tracking with range to track assignment
1. Wait for new range-velocity (R, vr) measurements. Create measure-

ment predictions R̂, v̂r for all existing tracks. For this, the extended
Kalman measurement equations are used.

For each existing track:

(a) For each sensor:
i. Each sensors target list is checked for the measurement clos-

est to the predicted measurement R̂, v̂r. The distance be-
tween measurement and prediction is calculated by: D =

p2
(
R− R̂

)2

+q2 (vr − v̂r)
2. q and p are parameters compen-

sating for the di�erent error variances on range and velocity
measurements.

ii. From each sensor's target list, the measurement with small-
est D is assigned to the track if D is smaller than a prede�ned
gate. Therfore, a measurement can be assigned to multiple
tracks, but each track can have only one measurement as-
signment from each sensor.

iii. if the measurement is assigned, mark the measurement as
�assigned to track�.

(b) Update the track with the assigned measurements using the ex-
tended Kalman �lter.

2. Perform the straightforward processing with all measurements not
marked as �assigned to track�. If there are new validated hypothe-
ses, initiate new tracks.

3. Perform the track maintenance as described in section 7.3.3.

4. Update track states for the next measurement cycle by the Kalman
�lter prediction.
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8.2 Track Update by Frequency to Track As-
sociation Strategy

A third network signal processing strategy is proposed to further improve
the track update rate and position estimation. The newly proposed fre-
quency to track association strategy combines the LFMCW range-velocity
processing with the position estimation by lateration. Both subtasks are
merged by directly using the frequency estimates to update the target track
states. The third diagram in Figure 8.1 on page 124 shows the structure for
the new frequency to track association method.

The range to track association strategy, described in the previous sec-
tion, is used as the starting point. The previously de�ned measurement
vector z contains the ranges and radial velocities from one target. Now,
for the frequency to track update, the measurement vector zf contains the
frequency measurements fi,j from all chirps i from all sensors j. The state
vector x remains unchanged. These three vectors are shown below:

zf =




f1,1

f2,1

f3,1

f4,1

f1,2

f2,2

...
f4,ns




, z =




R1

R2

R3

R4

vr1

vr2

vr3

vr4




, x =




tx
ty
vx

vy




With Equation 4.2 the relation between a frequency fi,j and target range
Rj and radial velocity vr,j can be stated:

fi,j = aivr,j + biRj

The relation between frequency measurement vector zf and range-velocity
measurement vector z is linear and can be described by:

zf = Az

The matrix A is constructed according to the sequence of the elements
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de�ned above for the measurement vectors:

A =




b1 0 0 0 a1 0 0 0

b2

...
...

... a2

...
...

...
b3 a3

b4 a4

b1 a1

b2 a2

b3 a3

b4 a4

b1 a1

b2 a2

b3 a3

b4 a4

b1 a1

b2 a2

...
...

... b3

...
...

... a3

0 0 0 b4 0 0 0 a4




The Jacobian Jfx of the Kalman �lter measurement function can now be
written as a multiplication of A with the previously de�ned range-to-track
update Jacobian Jzx:

Jfx = A Jzx

The frequencies are assigned to the tracks and are forwarded to the extended
Kalman �lter in the form of sets of frequencies for each track. Additionally,
the original range-velocity measurements are evaluated to detect new tar-
gets. By means of a normal trilateration, all new likely target hypotheses
are calculated and sent to the tracker for initialization of new tracks. New
targets are distinguished from targets having existing tracks by comparing
the laterated positions to all track state variables.
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Chapter 9

Experimental System

This chapter describes the experimental radar network used to test the
signal processing concepts investigated in this thesis. The radar network
was built up within the European project1 �A multifunctional radar network
(RadarNet)�. The complete system consists of four near distance sensors, a
central synchronization unit, and the radar network processor. An overview
of the system is shown in Figure 9.1. The experimental car shown in Figure
9.2 was equipped with the radar network system at the Technical University
of Hamburg Harburg.

Within the RadarNet project several automotive applications have been
implemented and tested. The applications interpret the target information
generated by the network processor. On the basis of this target information
and the state of the vehicle, the applications control the vehicle functions
accordingly. The possible interventions range from alerting the driver to
applying the vehicle brakes.

9.1 Single Sensor Hardware
The sensor hardware of the network consists of four 77GHz LFMCW sensors
of the type described in Chapter 10. They are to operate in the near range
of up to 30 meters. The maximum sweep bandwidth of the sensors is 450
MHz while one sweep has a duration of only 2 ms. Using an FFT and a
window function (Section 4.2), this results in a practical range resolution of
0.5m and a velocity resolution of 1.5m/s.

1The European research project �A Multifunctional Automotive Radar Network�
(RadarNet) has been supported by the European Commission under the 5th Framework
Programme (project no. IST-14031).
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Figure 9.1: Radar network hardware overview

Figure 9.2: Experimental car equipped with the radar network
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The internal clock and sweep generation is driven by a central synchro-
nization unit. The unit delivers two signals to the sensors. A 100 MHz clock
signal is used to derive the internal clock signal within each sensor. The
second signal is a synchronization signal that triggers the start of a wave-
form sequence every 100 ms. The details of the synchronization concept are
described in Section 7.4.1.

Each sensor processes the LFMCW receive signal on its digital signal
processing hardware. The resulting target lists contain the target detections
and for each target detection, the measured target range and target radial
velocity are included. The target lists are transmitted to the central network
processor via an 100 MBit Ethernet interface.

For the advanced frequency to track processing strategy, the frequency
detections for each chirp are also transmitted to the network processor.

9.2 Network Hardware
The central network processor hardware is a personal computer. It consists
of standard components including a four port Ethernet card and a CAN
interface. The four near distance sensors are connected to the network
processor via the Ethernet interface. To allow a high data-rate for each
sensor and to minimize network latencies, each sensor has its own dedicated
Ethernet port on the four port Ethernet card.

The network processing software processes the single sensor measure-
ments to obtain a target list with target position information. The target
position information is transmitted to the automotive application processor
via the CAN interface.

9.3 Sensor Positioning
The sensors are mounted at the front side of the experimental vehicle (Figure
9.2). The observation area is in front of the vehicle with a targeted azimuthal
coverage of ±30deg. Figure 9.3 shows the relative positions of the sensors
on the experimental vehicle. Since the distance between the outer sensors
has the most impact on the accuracy of the target position estimation, this
distance should be chosen to be as large as possible.

9.4 Network coordinates
To report targets to the application in Cartesian coordinates, a network
coordinate system is introduced. Figure 9.4 shows the origin of the network
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coordinate system in the center of the sensor setup. The coordinate center
can be de�ned by the N sensor positions (si,x, si,y) within this coordinate
system itself:

N−1∑

i=0

si,x = 0 ∧
N−1∑
n=0

si,y = 0

The network coordinate center can be placed freely at any position on the
host vehicle. The above de�nition of the coordinate center is an arbitrary
choice.

Most classical radar systems measure range and azimuth separately. Per-
formance characteristics of range and azimuth measurement are therefore
stated separately for these classical systems. With a monopulse radar for ex-
ample, the accuracy of the range measurement does not directly depend on
the target azimuth (and vice versa). The radar network on the other hand
estimates the two-dimensional target position by the trilateration technique
from only the range measurements of the single sensors. The trilateration
technique naturally represents target position estimates in Cartesian coor-
dinates.

Measurement of the target position by the trilateration principle cannot
be separated into range and azimuth measurement for near targets. How-
ever, if the targets are far away from the radar network - compared to the
extension of the network sensor setup itself - the measurement of range and
azimuth can approximately be assumed to be separate. In this case it is
advantageous to present the characteristics of the target position estimates
in polar coordinates.
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Chapter 10

Single Sensor Experimental
Results

In this chapter, measurement results for the single LFMCW sensor are
shown. These practical measurements are used to verify the signal pro-
cessing concepts in an environment with complex backscattering properties
and the non-ideal properties of a complex radar sensor.

Most analytic investigations of radar systems make use of point target
models in which the target radar cross section is assumed to be �uctuating
according to a rice distribution. In reality, these target �uctuations are a re-
sult of the target spatial extension. If the spatial extension is much smaller
than the radar resolution, the assumption of a �uctuating point target is
valid. However, with high resolution radar sensors and radar network appli-
cations, the target extension is a very important feature to be considered.
The following three measurement scenarios are described in the following
sections:

• The �rst measurement evaluates the sensor range measurement per-
formance in a very elementary laboratory setup. A corner re�ector is
moved towards the sensor and the measured distance is compared to
a reference.

• The second measurement is done using an extended target. Measure-
ments are investigated for a passenger car passing the radar sensor.
Also the proposed tracking strategy (Section 5.4) is investigated.

• Thirdly, measurement data of a real tra�c scenario is used to show the
general performance of the sensor. Results are shown for the proposed
tracking strategy.
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Figure 10.1: Photograph of prototype near distance sensor

Figure 10.1 shows a photograph of the LFMCW near distance sensor that
is a part of the experimental radar network. These prototypes work in the
77GHz frequency domain with a maximum sweep bandwidth of 450MHz.
The remaining parameters of the used waveform are described in Section
5.3. The transmitted frequency sweeps are generated by a direct sequence
synthesizer. This generation technique guarantees the linearity of the sweep
and the exact adherence to the speci�ed frequency bandwidth. Thus, no
compensation is needed, while for voltage controlled oscillators it is often
necessary to compensate the non-linearity of the VCO and deviations of the
actual bandwidth of the transmitted sweep.

10.1 Single Point Target Range Measurement
The sensor range accuracy has been tested with a single target at ranges
up to 10m. The target is a corner re�ector with a radar cross section of
25m2. During the experiment, the target was moved automatically between
a distance of 1m and 10m to the sensor a large number of times. For each
target position, a histogram of the measurement errors was recorded.

In Figure 10.2, the measured range errors are plotted as histograms
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Figure 10.2: Distribution of range error versus target distance

against the target position. The gray scale intensity shows the frequency of
occurrence for each measurement error value at each target position. This
measurement shows that under good measurement conditions, the sensor
measures the range with a standard deviation of less than 3cm.

The measurement shows outliers at some ranges due to obstacles in the
measurement room that could not be removed. The detection rate is 100%
at the target positions where there is no interference. Apart from these
interferences, the question of which range-velocity assignment method to
use has no impact on the single target measurement.

10.2 Single Extended Target Range Measure-
ment

Measurements of a car at distances up to 60m have been done. The mea-
sured range deviation of the untracked data is near to that of a point target
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(under 5cm) for a car oriented in the direction to the sensor. In this case,
the re�ection of the forward face of the car is measured. A car oriented
sideways - exactly perpendicular to the line between radar and target - also
has a strong re�ection from the foremost parts of the car body. The data
presented in this section is from a vehicle that is passing the sensor. The ve-
hicle is not directly oriented towards the network but presents a constantly
changing aspect angle.

10.2.1 Deviation of Frequency Measurements
Three plots for the measurement of a passing car are shown in Figure 10.3.
The upmost plot shows the tracked range of the passing car over the mea-
surement cycle. The tracker described in Section 5.4.4 is used for this mea-
surement.

There was no reference information of the target position available. Even
if the position of the target vehicle were known, it would still not be possi-
ble to de�ne a precise reference point on the vehicle that could be used to
compare the sensor measurements. Therefore, a di�erent approach is taken
to quantify the measurement performance. The velocity of the target vehi-
cle is held constant and the target measurements are tracked. Because of
the constant speed, the tracks can be strongly �ltered. Using this method,
the measurements can be compared relatively to the track prediction. The
deviation of the measurements from the prediction gives a good indication
of the short term variations of the measurements. It makes visible the mea-
surement noise and range variations due to fast �uctuations of the target
signal. However, it does not give information about the absolute measure-
ment error. Also, slow shifts of the re�ection center are not detectable.

The lowermost plot in Figure 10.3 shows the deviation of the frequency
measurements from the track prediction for all ~250 measurement cycles.
The frequency measurements are from the �rst two chirps of the waveform.
It can be seen that the errors are not correlated notably over the measure-
ment time.

The middle plot shows a histogram generated from all deviations of
the complete measurement. In this measurement, a frequency of 500Hz
corresponds to the spectral bin size. Roughly 50% of the measured frequency
values are within a gate of ± a fourth of the bin size. A spectral bin size of
500 Hz corresponds to a range of 30cm.

10.2.2 Investigation of Proposed Tracking Algorithm
The results presented above indicate a low detection rate using the classical
LFMCW frequency to range-velocity assignment technique with small gate
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sizes. The probability of all four chirps lying within a gate of ±0.2bin is
much lower than 50%. In order to achieve a good detection rate, the gate
size has to be chosen higher. This in turn would increase the false alarm rate
and reduce measurement accuracy in multiple target situations as shown in
Section 5.3.

The estimation accuracy and track stability of the proposed tracker with
frequency to track assignment (Section 5.4.4) is shown in the following mea-
surement. For the analysis, the tracks are only lightly �ltered as the overall
performance of the tracker and the measurement to track assignment is of
interest.

The tracker is updated by the frequencies of all chirps that lie within
the validation gate. A measurement is used for track update if it is within
the assignment gate around the track prediction. A gate size of ±1bin leads
to a track update rate of above 90 %. This means that the track is updated
with at least 1 frequency measurement in 9 out of 10 measurement cycles.
A gate size of ± 0.2 bin still leads to an update rate of 70%. For both gate
sizes, the track is maintained throughout all the measurement cycles.

As already stated, there is no absolute reference for the target position.
To estimate the error of the tracked range states, the track range states
of the complete measurement are �tted by a 5th order polynomial and
the polynomial is compared to the estimated track states. A 5th order
polynomial was chosen to adapt to slow shifts of the re�ection center and/or
a slight variation in vehicle speed.

Again, it should be explicitly stated that this is not a valid test for the
absolute deviation of the measured range from the vehicle's position since
the vehicle position is actually not perfectly known. However, the variance
of the state estimate can be compared for the two gate sizes ±1 and ±0.2.
Figure 10.4 shows the resulting range deviation for each of the two gate
sizes. They di�er by a factor of approximately 5.

The results show that a gate size around ±0.2 bin can be used to validate
the measured frequencies for the track update. The resulting track update
rate of 70% still makes it very possible to keep the track active over the
complete measurement. It is a very interesting result that the standard
deviation of the range estimate is nearly accurately proportional to the gate
size. The chosen tracking algorithm does a good job even though the data
assignment is of a simple design.

It should be kept in mind that the shown range deviations can not rep-
resent the re�ection displacement from a reference position on the vehicle.
The center of the re�ection depends on the aspect angle on the target. Four
range measurements from four distributed near distance sensors do not nec-
essarily measure the same re�ection center.
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Figure 10.3: Measurement of a passing car
Upper plot: Range track of a passing car.
Lower plot: Frequency deviation over measurement cycle for the measure-
ments of two 450MHz chirps
Middle plot: Histogram of the frequency deviation from tracker for com-
plete measurement
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10.3 Measurement of a Road Tra�c Scenario
In this section, the performance of the radar in a road tra�c scenario is
presented. The radar sensor is placed on a parking space parallel to a two
lane street. There are two cars approaching and passing the radar, there
is one car moving away from the sensor. The results show the raw target
detections of the LFMCW frequency to range-velocity assignment and the
target range-velocity estimates from the target tracker.

Three validation methods for the LFMCW processing were selected from
the methods presented in Section 5.3. In Figures 10.5 to 10.10, detections of
stationary targets (|vr| < 0.2m

s ) are shown as crosses, detections of moving
targets as dots. For the stationary target detections it is not possible to
clearly identify if it is a wrong detection because there are many objects in
the scene. Since there were only three moving objects, false detections with
a non-zero radial velocity are easily identi�ed.

The gate size of the validation methods is a parameter of major interest.
This parameter controls the tradeo� between detection probability and false
alarm rate of the sensor signal processing. Results are shown for gate sizes
of ±0.1 bin and ±0.2 bin. All results shown in the �gures were created from
the same (recorded) measurement data.

The results of the single sensor tracking are shown as lines in the same
plots. The direct frequency to track method is used that was described in
Section 5.4.4. The tracker uses another validation gate to directly assign the
frequencies to the target tracks. The size of this gate is set to be equal to
the gate size used in the range-velocity processing. The two validation gates
in�uence di�erent aspects of the signal processing. While the upholding of
the target tracks depends on the tracking assignment, the track initiation
depends on the standard range-velocity processing.

From the �rst �gure (Figure 10.5) it can be seen that a gate size of
±0.1bin results in a low detection quality using the 2 chirp validation tech-
nique with a circular gate. This is consistent with the previous results.
Despite the small gate size, there are some obvious false detections. This
is typical for an urban environment where numerous objects are within the
observation area. For a standalone sensor, a tracker is mandatory in order
to reject these false detections. To some extend, the tracker is able to initi-
ate and validate the three target tracks, even when using the small gate of
size ±0.1bin.

The next two �gures show the combined validation method which allows
one chirp measurement to be falsi�ed to some degree (Section 5.3.) The
track initiation is already useful. The validation method does not change
the frequency assignment of the tracker, so the tracks are still unstable due
to the small gate size.
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In previous sections, a gate size of ±0.2bin was shown to be a useful
choice in case of an extended target and also in multi-target situations.
This can be approved by the measurement results shown in Figures 10.8
to 10.10. The simulations showed that the performance of the 2 chirp vali-
dation method is always better when comparing detection rates for a �xed
false alarm rate. Figure 10.8 shows a su�cient detection performance for
a fast track initiation. The gate size of ±0.2bin is also su�cient for the
frequency to track assignment to steadily maintain the target tracks.

The results show that a stable tracking of the three vehicles is possible.
A few false alarms from the sensors are negligible for the radar network
application. That is because the radar network processor can only form a
target track when it receives consistent updates on a target from multiple
sensors. Optimized strategies of track validation are not considered further
in this section. A further optimization of the track validation should be
investigated to reduce false track initiations for standalone LFMCW sensors.

10.4 Discussion of Results
The LFMCW processing using a waveform of four chirps is a well known
concept in automotive radar [Meinecke 2001, Mende 1999]. It is a technique
enabling the simultaneous measurement of a targets range and Doppler
frequency with a very simple CW radar front-end. With this technique it
is also possible to resolve multiple targets in many situations.

In radar signal processing, a major characteristic taken advantage of is
the dynamics of the target scenario. In a dynamic target scenario the target
states are constantly changing and so also the measured echo frequencies are
di�erent for each measurement cycle. Target �uctuations also add to the
variation of the measurements. Each measurement is unique and moving
targets interfere only for a short time in one chirp. These e�ects make it
possible to guarantee a high probability of a target detection after some
measurement cycles.

It was shown in [Meinecke 2001] that a standard algorithm can be ap-
plied to far distance sensors. This classic concept will produce useful results
for applications like automotive cruise control (ACC) systems. There are
two di�erences when using LFMCW near distance sensors in a radar net-
work instead of using an LFMCW far distance sensor:

1. The target density per unit range is much higher because of the shape
of the observation area.

2. The requirements for the range accuracy are much higher.
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Figure 10.5: Range measurements and track states of a road tra�c scenario.
2 chirp validation, circular gate, gate size S = ±0.1bin
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Figure 10.6: Range measurements and track states of a road tra�c scenario.
First combined validation method, gate size S = ±0.1bin
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Figure 10.7: Range measurements and track states of a road tra�c scenario.
Second combined validation method, gate size S = ±0.1bin
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Figure 10.8: Range measurements and track states of a road tra�c scenario.
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Figure 10.9: Range measurements and track states of a road tra�c scenario.
First combined validation method, gate size S = 0.2bin
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Figure 10.10: Range measurements and track states of a tra�c scenario.
Second combined validation method, gate size S = 0.2bin.
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While an automotive far distance sensor (FDS) operates with an observation
range of up to 200m with multiple small antenna beams, a near distance
sensor (NDS) has a wide antenna beam and only a small maximum range
up to 30m. It was shown that the basic processing commonly used for an
FDS has to be modi�ed for an NDS because of the higher target density
per unit range.

The single sensor LFMCW processing algorithm produces target detec-
tions and parameter estimations that are the basis of the radar network
lateration techniques. These techniques need a high target detection rate
and a good accuracy of the range measurements in order to produce good
lateration results.

It was shown in this chapter that in situations with multiple targets,
especially when many surrounding objects interfere with the targets to be
detected, a small gate size (about ±0.2 bin) has to be chosen for the range-
velocity processing to get useful values for the false alarm rate. A small
gate size is also very useful to achieve a good accuracy.

However, the small gate size will result in a small detection rate at
the output of the range-velocity processing algorithm. The proposed single
sensor tracking directly uses the frequency detections of the chirps to update
the target tracks. This approach improves the stability of the target tracks
signi�cantly, because the tracks are updated even when detections in single
chirps are lost due to target interferences.

The measurement results from the last section show, that with the pro-
posed signal processing scheme, it is realistic to use the LFMCWmodulation
technique also in multiple target situations with many interfering objects
while maintaining a good range estimation accuracy.
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Chapter 11

Radar Network
Experimental Results

This chapter presents experimental results from the complete radar network.
The results show the performance, a radar network is able to achieve even
with a sensor range resolution of only≈ 0.5m. This is much less resolution
than other test systems [Klotz 2002] have.

In the �rst section, test results for single point targets are shown to
illustrate the achievable position estimation accuracy in an ideal situation.
These tests also verify the basic functionality of the radar network.

The second section presents the results of measuring a single extended
target moving in front of the radar network. These results will be used to
assess whether the principle of position estimation by lateration techniques
with the described system parameters is applicable to extended targets.

In the third section, the azimuth accuracy is analyzed for extended tar-
gets that are not oriented in the direction of the radar network. Measure-
ment data are investigated for vehicles driving along a road. The radar
network is positioned next to the road, so that the target vehicles are ori-
ented and moving in a direction di�erent to the radar network orientation.

The fourth section presents the results of a typical urban stop and go
scenario. The test vehicle equipped with the radar network is driven through
a two lane street following another vehicle. The purpose of this experiment
is to check for the practical usability and the limits of the presented radar
network.
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11.1 Single Point Target Detection and Posi-
tion Measurement

The experiment to measure a single point target is done for two reasons. It
proofs the basic functionality of the lateration concept. It also shows the
achievable position estimation accuracy under best conditions.

In Figure 11.1, two experimental setups are sketched. In the �rst setup,
a corner re�ector is moved back and forth in front of the radar network. The
target range, de�ned as the distance between target and network coordinate
center, is generated from the trilateration position estimation and compared
to the reference range. In the second setup, the lateral position of the corner
re�ector is changed. The target azimuth, de�ned as the angle between
target distance vector and network y-axis, is generated from the trilateration
position estimation and compared to the reference angle.

In both experimental setups, the corner re�ector is moved automatically,
and the measured values are plotted against the reference values. Figures
11.2-11.4 show the experimental results of the single target measurements
of target range and target azimuth.

The single point target experimental results show an extraordinary preci-
sion in range and azimuth accuracy. Since the scene contains only one stably
detected target, the chosen network processing strategy does not alter the
results. The network range accuracy is better than 1.5cm. As expected, the
network range accuracy is better than the single sensor accuracy. This is
because four single sensor range measurements are combined in the position
estimate. The accuracy of the tracked target angle is much better than 2
degrees. These measurements thus show the basic functionality of the radar
network.

The network processing system provides an accurate and unbiased es-
timate of the target position. The experimental setup includes a system
to automatically move the test re�ector. The system provided a reference
value for the target position with an accuracy of 1cm. The accuracy of the
radar network reaches the precision of this reference.
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11.2 Measurement of an Extended Target
The results of the �rst experiment show that the network performance is
very good under ideal circumstances. The single sensor measurements pro-
vide the basis for the target position estimation and they have the perfor-
mance to obtain a useful estimation accuracy. In this section, measurement
of an extended target is discussed. In this case, the di�erences of the three
network processing strategies become relevant.

For the experiment, a passenger car was driven towards the radar net-
work at approximately 5 m/s. The single sensor target lists were stored
to have reproducible data. These data were used to test di�erent network
processing strategies and di�erent gate sizes for the assignment procedures.
The range to track assignment (described in Section 8.1) is shown in Figure
11.5 and the frequency to track assignment strategy (described in Section
8.2) is shown in Figure 11.6. For each strategy, three di�erent gate sizes
were chosen. In addition to the track trajectories, the target detections
from the standard lateration procedure are shown as circles. The lateration
works as described in Chapter 6.2. These target detections from the stan-
dard lateration are identical in all plots. The gate size for the lateration
procedure is 0.1 m for the target range and 0.2 m/s for the target radial
velocity.

As can be seen from the range to track experimental results in Figure
11.5, for small gate sizes there are disruptions in the target tracks. Using
gate sizes of ±0.5m for target range and ±1m/s for target velocity the
veri�ed target track gets enough updates to keep the target active during
the complete measurement.

Figure 11.6 shows the results for the frequency to track assignment for
three di�erent gate sizes. The most obvious di�erence to the range to track
assignment is the enhanced accuracy of the lateral measurement. Another
very important point is the more stable track maintenance while having
smaller gates compared to the range and velocity gates of the range to
track assignment (1 frequency bin corresponds to ~0.3 m).

In this measurement, the vehicle is oriented towards the radar network
and the front face of the vehicle presents a large re�ector for the radar.
Re�ections of vehicle parts behind the front plane are neither strong nor
stable enough to produce a target detection behind the vehicle front.

The results can be interpreted in the same way as the results for the
single sensor LFMCW frequency to track technique. The more the mea-
surement to track assignment is able to choose from, the smaller the gate
size can be to still get enough updates to maintain the tracks. A small
gate size can reduce the false alarm rate as well as it reduces the impact of
interferences between neighboring targets.
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The described algorithms use the nearest neighbor / gating technique
(Section 7.1). Both the range to track and the frequency to track strat-
egy can probably be improved by means of more sophisticated assignment
strategies. Measurement to track assignment techniques are a broad re-
search topic in the �eld of radar technology. The assignment of range or
frequency detections to (laterated) target tracks within the radar network
processing still provides interesting future research topics.
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Figure 11.5: Position estimates for an extended target using the range to
track assignment. The circles show the target detections from the normal
trilateration algorithm.
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11.3. ARBITRARILY ORIENTED EXTENDED TARGETS 161

11.3 Arbitrarily Oriented Extended Targets
If the target vehicle is driven towards the radar network the results show
a good performance in the lateral position estimation. This can be seen
from the results in the previous section where the target vehicle is driven
along the y-axis of the radar network. To investigate the position estimation
accuracy for targets not oriented towards the network, the experiment uses
the tra�c scene shown in Figure 11.7. In this scene, the vehicle is driving
on a trajectory that has a 25 degree deviation from the network y-axis. It
intersects the network y-axis at around 17 m.

In Figure 11.8 the target measurement is shown for the instant the pho-
tograph was taken. The target position is shown from a birds eye view as
a circle. A line is drawn from this circle into the direction of the estimated
target velocity vector. The length of the line corresponds to the distance,
the target will move within one second. This measurement reveals the preci-
sion with which the LFMCW radar network can measure not only the radial
velocity but also the tangential component to deliver an accurate velocity
vector.

Figure 11.9 shows the trajectories of multiple targets. The dark lines
denote cars that are approaching on the opposite lane as in the example
shown in Figure 11.7. The lighter lines denote cars that are moving away
in the right-hand lane.

The measurements were done using the frequency to track algorithm.
The classical approach and the range to track algorithm did not produce
stable detections.

It can be seen that, although the single trajectory is often a stable line,
the displacement between the track trajectories and the actual course of the
road can be very high. The reason for this can be traced back to the single
sensor range measurements. Each sensor measures a di�erent re�ection
center on the car. Figure 11.10 shows a section of the Fourier spectra of all
four sensors. The spectra are from the same measurement time and show a
vehicle measured from the side. It can be seen that the appearance of the
target is di�erent for all four sensors. Furthermore, due to the limitation of
resolution, some target re�ections interfere with each other.

The results show that a precise azimuth measurement can only be guar-
anteed if the target is oriented towards the sensor network. For di�erently
oriented targets the position estimates were accurate in some cases but a
speci�c accuracy cannot be guaranteed.

As also can be seen in the spectra, interferences of re�ection centers on
an extended target are possible. An increase in range resolution can reduce
the probability of interferences. However, this can not alter the natural
e�ect of each sensor measuring a slightly di�erent re�ection center on the
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Figure 11.7: Photograph of the tra�c scenario, Hamburg Harburg, Ehestor-
fer Weg

target. It is believed that performance can be improved by an increase in
the number of measured signal paths that are available for the lateration
technique. This can be achieved by increasing the number of sensors or by
using the concept of multilateration with multistatic radars.
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Figure 11.8: Screenshot of the tra�c scenario shown in Figure 11.7
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Figure 11.10: Comparison of sensor spectra for a passenger car in front of
the radar network, oriented sideways (25deg o�set).
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11.4 Stop and Go Tra�c Scenario
As shown in the preceeding sections, a point target and a target vehicle ori-
ented towards the radar network can be detected well. The target position
can be precisely measured for the point target while the position estimate
for the target vehicle is within the bounds of the car front when using the
frequency to track assignment technique.

With the experiment presented in this section, the use of the radar net-
work is evaluated for some of the applications currently of interest. Figure
11.11 shows a standard urban tra�c scene on a two lane road. The host
vehicle equipped with a radar network is following another vehicle. There is
one car on the opposite lane that is about to pass the host vehicle. Figure
11.12 shows the corresponding output of the radar network from a birds eye
view. It shows the detected targets at their estimated positions as num-
bered circles. The estimated target velocity is visualized by a line starting
at the target circle going into the direction of the target movement. The
length of the line denotes the distance the target will travel in one second.
Positions and velocities are relative to the host vehicle coordinate system.
Target number 0 denotes the detection of the preceeding vehicle. Detection
number 5 corresponds to the oncoming car while number 3 is a detection of
a car in the right parking lane.

Figure 11.13 shows three plots on the complete 2 minute test run. The
upper plot shows the target range over time. At the beginning of the test
run the preceeding car enters the observation area and from then on is
tracked by the network processor. The track of the preceding car is shown
as a dark line while the remaining tracks are shown lighter. The middle plot
shows the target relative velocities. During the test run, the preceeding car
comes to a full stop and resumes driving after a short time. Also the host
vehicle comes to a full stop and resumes driving.

The bottom plot shows the lateral position estimate of the target tracks.
It can be seen, that the precision of the lateral position estimate is su�-
ciently good so that the preceeding car can constantly be assigned to the
lane of the host vehicle.

Many stationary objects are detected during the test. While the range
and radial velocity can be measured well, the accuracy of the lateral position
estimates is not su�cient to reliably detect whether the object is in the host
vehicle lane or not. The lateral position can be measured correctly and even
precisely for many objects, but some objects are measured with a signi�cant
error.

Further tests demonstrated that it is possible to improve the lateral po-
sition estimates for objects at the side of the lane by decreasing the gate size
of the assignment algorithm. However, decreasing the gate size decreases



11.4. STOP AND GO TRAFFIC SCENARIO 167

Figure 11.11: Photograph of a common tra�c scene, Hamburg Harburg,
Eissendorfer Strasse

the detection rate to a value that is no longer useful.
The results show that the radar network has an excellent target detection

rate and measures the target range and radial velocity at very high accu-
racy. For a safety system like the collision avoidance system, the presented
radar network still needs to be improved so that lateral position accuracy
is high for all targets. It is anticipated that an increase in the number of
sensors and an increased single sensor range resolution can greatly improve
the number of correctly estimated target positions. The use of the multi-
lateration technique with a multistatic radar network could also improve
the performance. Both these options should be investigated in practical
scenarios.

It is concluded that the presented radar network performs well for ACC
applications including a stop and go function.
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Figure 11.12: Screenshot of radar network measurement data corresponding
to the photograph in Figure 11.11
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Figure 11.13: Measurement data for complete duration of stop-and-go scene



170 CHAPTER 11. RADAR NETWORK EXPERIMENTAL RESULTS



Chapter 12

Conclusions

This thesis has �rst described concepts of linear frequency modulated con-
tinuous wave (LFMCW) radars and the concepts of radar networks. New
signal processing algorithms were investigated and developed.

For the �rst time, a radar network has been developed with 77 GHz
LFMCW sensors that are using a bandwidth of only 450 MHz. To accom-
plish a good performance, improvements to the classical approaches have
been explored and presented. Some improvements speci�cally apply to the
single sensor LFMCW processing, some improvements speci�cally apply
to the network processing algorithms. The newly proposed frequency to
track strategy �nally interconnects the LFMCW and the network process-
ing through a conjoint measurement to track assignment. It was shown that
the interconnection of signal processing steps makes it possible to extract
information from the measurement data much more e�ciently.

A recently studied network [Klotz 2002] has used pulse radars with high
resolution capability. The presented network has a much lower resolution
but still has a promising performance. Though the lateral position estimates
have to be improved for safety applications, the usability for ACC systems
with �stop and go� functionality has been demonstrated.

The accuracy of the azimuth position estimates depends on the targets
spatial extension and it has been found that the sensors resolution capability
and especially the number of sensors is crucial to the performance of the
azimuth measurement. Also the use of the multilateration technique with
a multistatic radar network should be investigated in practical scenarios.

The described signal processing algorithms were used for the European
research project �A Multifunctional Automotive Radar Network� (Radar-
Net). RadarNet has been supported by the European Commission under
the 5th Framework Programme (project no. IST-14031). At present, the
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Figure 12.1: Passenger car equipped with a radar network prototype.

car manufacturers participating in the RadarNet project are gathering in-
formation with the radar network prototypes. Seven network prototypes
have been constructed. As an example, the experimental car seen in Figure
12.1 is tested with pre-crash sensing applications.

This work also demonstrates that there is signi�cant scope for further
research on LFMCW radar networks, especially on multistatic networks
using the multilateration technique.



Appendix A

Derivation of the LFMCW
Base Band Receive Signal

The baseband signal for the LFMCW radar was derived graphically in Sec-
tion 3.4. For completeness, the down-converted received signal is derived
analytically for the LFMCW waveform and the stepped version. These
equations can also be used for simulating radar front-end measurement data.

A.1 Continuously Rising LFM Chirp
The starting point is the linear frequency chirp that is de�ned by its instan-
taneous frequency ω (t):

ω (t) = 2π

(
f0 +

∆f

TC
t

)

The instantaneous frequency is the derivative of the instantaneous phase
ϕ (t):

dϕ (t)
dt

= ω (t)

ϕ (t) = 2π

(
f0t +

∆f

TC

t

2

2
)

+ ϕ0

The transmit signal s (t) can be written as a cosine function of ϕ (t):

s(t) = cos
(

2π

(
f0 +

∆f

2TC
t

)
t + ϕ0

)
= cos (ϕ (t))
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s(t) =
1
2
ejϕ(t) +

1
2
e−jϕ(t)

If the transmit signal is re�ected at time t′ by a target at range R(t′), the
connection between transmit signal s(t) and receive signal r(t) is given by:

r

(
t′ +

R (t′)
c

)
= s

(
t′ − R (t′)

c

)

The electromagnetic wave only needs a very short time to travel to the
target and back to the radar. Within this short time, the target movement
can be neglected for the construction of the receive signal from the transmit
signal:

r (t) = s

(
t− 2R (t)

c

)

In the equation above, a phase shift from the target re�ection and the
attenuation of the signal is not taken into consideration. The next step is
to obtain the baseband receive signal produced by mixing the receive signal
with the current transmit signal:

r∗b (t) = r (t) s (t)

r∗b (t) =
1
4

(
ejϕ(t− 2R(t)

c ) + e−jϕ(t− 2R(t)
c )

)(
ejϕ(t) + e−jϕ(t)

)

A low pass �lter is used to �lter out the high frequency components to only
keep the base band component:

rb (t) =
1
4

(
ejϕ(t− 2R(t)

c )e−jϕ(t) + e−jϕ(t− 2R(t)
c )ejϕ(t)

)

rb (t) =
1
2
cos

(
ϕ

(
t− 2R (t)

c

)
− ϕ (t)

)
=

1
2

cos (ϕrb (t))

rb is the signal at the output of a single channel demodulator. A quadrature
demodulator produces an in-phase and a quadrature output. The two out-
put signals can be considered as the real and imaginary part of one complex
signal:

rbC (t) =
1
2
e−jϕ(t− 2R(t)

c )+jϕ(t) =
1
2
e−jϕrb(t)
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Depending on the demodulator used, the base band signal will be a real
or complex function of ϕrb (t). The instantaneous phase ϕrb (t) can be
expressed by the instantaneous target range R (t):

ϕrb (t) = ϕ

(
t− 2R (t)

c

)
− ϕ (t)

ϕrb (t) = 2π

(
f0 +

∆f

2TC

(
t− 2R (t)

c

))(
t− 2R (t)

c

)
− 2π

(
f0 +

∆f

2TC
t

)
t

ϕrb (t) = 2π

(
−f0

2R (t)
c

+
∆f

2TC

(
−2t

2R (t)
c

+
(

2R (t)
c

)2
))

For the �nal steps of the derivation, a target with initial range R0 and
constant radial velocity v0 is assumed:

R (t) = R0 + v0t

For automotive and most other applications, an acceleration of the target
can be neglected for the duration of one chirp. This holds true as long
as the chirps have a duration of a few milliseconds and the target is not
rocket-propelled. Insertion of the above equation of movement yields:

ϕrb (t) = 2π

(
−f0

2R0 + 2v0t

c
+

∆f

2TC

(
−2t

2R0 + 2v0t

c
+

(
2R0 + 2v0t

c

)2
))

ϕrb (t) =
2π

(
−R0

(
2f0
c + 4t ∆f

2TCc

)
− v0t

(
f0

2
c + 4t ∆f

2TCc

)
+ ∆f

2TC

(
4R2

0+8R0v0t+2v2
0t2

c2

))

The terms quadratic in t and the last term can also be neglected. Constant
phase shifts can be accumulated and are omitted. However, for simulation
purposes it is a good idea to leave everything in the equation.

ϕrb (t) = −2π

(
R0

(
2∆f

TCc

)
+ v0

(
2f0

c

))
t

The resulting base band receive signal is approximately a harmonic oscilla-
tion with the frequency frb:

frb = −2R0∆f

TCc
− 2v0f0

c
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The �rst term depends on the target range, the second term depends on
the target relative radial velocity and corresponds to the Doppler frequency.
The result agrees with the graphical derivation. When using common sys-
tem parameters for automotive radar, the impact of the simpli�cations made
above is negligible.

A.2 Stepped LFM Chirp
In contrast to the analog LFMCW radar, the stepped LFMCW radar uses
discrete frequency steps and for each of these steps it samples the received
and down converted signal once. The frequency stepping and sampling of
the received signal is done in a synchronized way. Each time the radar
changes the frequency, it waits a given settling time after which the base
band receive signal approximately remains constant. The signal is then
sampled and the frequency can be changed again for the measurement at
the next frequency step. The ith frequency step is given by its frequency
ωi:

ωi = 2π

(
f0 +

∆f

TC
Tai

)

Where Ta is the (constant) frequency stepping rate and sampling rate of
the receive signal.

The transmit signal is given by:

s(t′) = cos (ωit
′) = cos (ϕ (t′))

s(t) =
1
2
ejϕ(t) +

1
2
e−jϕ(t)

As done above, the HF receive signal is derived from the transmit signal
that is delayed by the signal propagation time which in turn depends on the
target range R(t).

r (t) = s

(
t− 2R (t)

c

)

Again, a phase shift and the attenuation of the signal is not taken into
consideration. The baseband receive signal is produced by mixing the radars
receive signal with its current transmit signal:

r∗b (t) = r (t) s (t)
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With the same steps taken as for the analog LFM sweep this yields a real
or complex function of ϕrb (t′). The instantaneous received phase in base
band ϕrb (t′) can be expressed by the instantaneous target range Ri:

ϕrb (t′) = ϕ

(
t′ − 2Ri

c

)
− ϕ (t)

ϕrb (t′) = 2π

(
f0 +

∆f

TC
Tai

) (
t′ − 2Ri

c

)
− 2π

(
f0 +

∆f

TC
Tai

)
t′

ϕrb = 2π

(
f0 +

∆f

TC
Tai

)(
−2Ri

c

)

ϕrb remains constant for the sampling period when target movement is
negligible. In the following, we use a sampled version of the target movement
from above:

Ri = R0 + v0Tai

When simulating the sampled receive signal from an LFMCW front-end,
each sample can be calculated for its own. Even the most complicated
target movement can easily be incorporated. Insertion of the equation of
movement yields:

ϕrb (t) = 2π

(
f0 +

∆f

TC
Tai

) (
−2R0 + 2v0Tai

c

)

ϕrb (t) = −2π

(
2R0

c
f0 +

2R0

c

∆f

TC
Tai +

2v0Tai

c
f0 +

2v0

c

∆f

TC
T 2

a i2
)

Again, the terms quadratic in i can be neglected, constant phase shifts can
be accumulated and are omitted:

ϕrb = −2π

(
2R0

c

∆f

TC
+

2v0f0

c

)
Tai

The resulting sampled signal is approximately a harmonic oscillation with
the frequency frb sampled at rate Ta:

frb = −2R0∆f

TCc
− 2v0f0

c
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Appendix B

Detection Theory

Detection theory is used to understand the performance of a threshold de-
tector such as the one described in Section 4.3. This understanding is the
basis for the constant false alarm rate (CFAR) detector that is described
afterwards in Section 4.4.

The detection task can be regarded as a binary hypothesis testing prob-
lem. With a binary hypothesis test, it is assumed, that the system of interest
can have two di�erent states. The task is to choose between two hypotheses
about the current system state (H0,H1) from examining an observed mea-
surement x. For the radar detection task, one hypothesis (H0) refers to the
case where only noise is received and there is no target present. The second
hypothesis (H1) refers to the case where the signal power x is coming from
a target echo, additively superposed by noise.

B.1 Maximum Likelihood Detector
A detector according to the maximum likelihood criterion will choose the
most �likely� hypothesis for some measurement x. To use the maximum like-
lihood detector, the conditional probability densities p(x|H0) and p(x|H1)
must be known.

The most likely hypothesis is simply chosen by taking the hypothesis Hi

with maximum p(x|Hi) for a given x.
The likelihood ratio is simply de�ned by:

L(x) =
p(x|H1)
p(x|H0)

With this, the maximum likelihood detector can be written in the following
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form:

φ(x) =





1 if p(x|H1)
p(x|H0)

> 1

ϑ if p(x|H1)
p(x|H0)

= 1

0 if p(x|H1)
p(x|H0)

< 1

Where φ(x) = 1 means �decide for H1�, and φ(x) = 0 means �decide for
H0�. The case φ(x) = ϑ is practically irrelevant, because its probability is
usually 0.

The maximum likelihood is �the best� that can be done when only the
conditional probability densities p(x|H0) and p(x|H1) are known.

B.2 Maximum a Posteriori Detector
In some cases, also the a priori probabilities P (H0) and P (H1) for the
occurrences of the hypotheses are known. In this case, we can minimize
the probability of error by �nding the most probable hypotheses Hi for a
given measurement x. The a posteriori probability P (Hi|x) can be obtained
through the Bayes rule:

P (Hi|x)p(x) = P (Hi)p(x|Hi)

P (Hi|x)
∑

k

(p(x|Hk)P (Hk)) = P (Hi)p(x|Hi)

P (Hi|x) =
P (Hi)p(x|Hi)∑

k(p(x|Hk)P (Hk))

With the two a posteriori probabilities, the most probable hypothesis can
be determined by calculating the ratio:

P (H1|x)
P (H0|x)

=
P (H1)p(x|H1)
P (H0)p(x|H0)

≶ 1

If, additionally, the cost for a wrong decision can be speci�ed, the �minimum
Bayes risk criterion� can be used to minimize the cost for the decision maker.
The maximum a posteriori probability criterion above is a special case of
the minimum risk criterion with equal cost for each wrong decision and no
cost for a right decision.
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B.3 Neyman-Pearson Detector
With tasks like the radar detection, there is only some available information
about the system and also the detection criteria introduced above are not
suitable for the radar detection. For the radar detection task, a detector
that works according to the Neyman Pearson criterion is suitable.

According to the radar detection case, we de�ne the both hypothesis:

• H0: �no target present�

• H1: �target present�

The Neyman Pearson detector can be used, when

1. the conditional probability densities p(x|H0) and p(x|H1) are known.

2. the cost of wrongly detecting H0 (missed target detection) is substan-
tially di�erent to the cost for wrongly detecting H1(false alarm).

For the Neyman-Pearson criterion, the following two probabilities are con-
sidered:

• Detection probability Pd: Probability of correctly choosing H1.

• False alarm probability Pfa: Probability of choosing H1 when actually
H0 was true.

The Neyman-Pearson criterion can be stated with the above probabilities:

• maximize Pd while not exceeding Pfa for a given value Pfa ≤ α.

This criterion is very suitable for the radar detection task. It is �rst stated,
which false alarm rate is tolerable and the detection probability is maximized
for the given false alarm rate.

The following likelihood ratio test uses a threshold g to decide between
to hypotheses H0 and H1:

φ(x) =





1 if p(x|H1)
p(x|H0)

> g

ϑ if p(x|H1)
p(x|H0)

= g

0 if p(x|H1)
p(x|H0)

< g

Where φ(x) = 1 means H1 is chosen and φ(x) = 0 means H0 is chosen.
Similar to the maximum likelihood detector, the case p(x|H1)

p(x|H0)
= g is prac-

tically irrelevant because its probability is usually assumed to be in�nitely
small.
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B.3.1 Proof of the Neyman-Pearson Lemma
The Neyman-Pearson lemma states that this test is optimal in the sense
of the Neyman-Pearson criterion. The proof of this lemma is done by in-
tegrating the conditional probability densities of the measurement over the
decision region R1 (to choose H1):

Pd =
∫

R1

p(x|H1) =
∫

φ(x)p(x|H1)

Pfa =
∫

R1

p(x|H0) =
∫

φ(x)p(x|H0)

If Pd is increased by extending the decision region R1, also Pfa is increased,
as long as both distribution functions are nonzero in the extension of the
regions.

Let g be the threshold chosen so that Pfa < α when using the likeli-
hood ratio decision function φ(x). For any other decision rule φ′(x) with a
Pfa(φ′) ≤ α the following equation must be true:

∫
(φ(x)− φ′(x)) (p(x|H1)− g p(x|H0)) ≥ 0

This is true for the following reason: If φ(x) = 1 then φ(x)−φ′(x) ≥ 0 and,
from the de�nition of φ, also (p(x|H1)− g p(x|H0)) ≥ 0.

The elements of the above equation are multiplied out :
∫

(φ(x)p(x|H1)− gφ(x)p(x|H0)− φ′(x)p(x|H1) + gφ′(x)p(x|H0)) ≥ 0

This equation can be written using the de�nitions of the detection and false
alarm rate:

Pd(φ)− gPfa(φ)− Pd(φ′) + gPfa(φ′) ≥ 0

If Pfa(φ′) ≤ Pfa(φ) also the following is true:

Pd(φ)− Pd(φ′) ≥ 0

Pd(φ) ≥ Pd(φ′)

This completes the proof. The same approach can be taken to prove that
the ratio test is also optimal for the maximum a posteriori criterion.

A Neyman-Pearson detector implemented directly from this de�nition
would have to look up every measurement value in a likelihood ratio table
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l(x) and it chooses H0 if l(x) < g and H1 if l(x) > g. This however is
not necessary in most cases, since the distribution functions p(x|H0) and
p(x|H1) generally have an advantageous characteristic. This advantage lies
in the fact, that the likelihood ratio l(x) is a monotonic function of x,
which can easily be shown analytically. A detection decision can be made
by comparing the measurement value directly with a threshold S. The
Neyman-Pearson detector is then given by:

• choose H0 if x < S

• choose H1 if x > S

In this case, the detection- and false alarm- probabilities can be stated in a
more usable way:

• Pd =
∫∞

S
p(x|H1)

• Pfa =
∫∞

S
p(x|H0)

When the likelihood function is monotonic, the threshold detector is opti-
mal. It can be seen from the last equation, that in this case the distribution
function p(x|H1) need not be known to adjust the threshold of the detector.
The implementation of the Neyman Pearson threshold detector for use as a
radar detector is discussed in Section 4.3.
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Appendix C

A Radar Simulation Tool
(RASI)

This chapter describes the steps in developing software for a radar system
and presents a radar simulation tool. It is shown, in which way this tool
supports the development. The contents of this chapter have already been
published [Lübbert 2003].

The hardware of the discussed radar network was speci�ed and devel-
oped within the European research project �A Multifunctional Automotive
Radar Network� (RadarNet). The research of signal processing strategies
described in this thesis has been done on the basis of the developed sensors
and network hardware.

The sensor software and the software for the radar network processor
have been built up from scratch. At the start of this project, initial simula-
tions of the signal processing algorithms were made. It was soon recognized
that there would be great bene�ts to be gained from a development envi-
ronment that can host the signal processing algorithms over the complete
duration of the project. Using the same system and signal processing mod-
ules from the �rst project stages concentrating on simulations up to the last
stages of implementing and testing the algorithms on available hardware, a
great reduction of cost and time needed was made.

A RAdar SImulation Tool (RASI) was developed to simulate radar tar-
get scenarios and to have a development environment to host the signal
processing algorithms. The system was designed to have real time capabili-
ties and to support hardware interfaces like CAN and Ethernet. In this way,
actual measurement data can be fed into the system. The signal processing
on the measurement data is done with the same modules that are used for
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the simulation tests.

C.1 Simulating a Radar Scenario
The signal processing algorithms for radar systems are very complex and
their development requires experience and a good understanding of the un-
derlying systems. While experience of course is a great advantage in building
up a new radar sensor, it is also very helpful to get an early insight into the
planned system by the use of simulations. In most cases a huge di�erence
is expected between real and simulated data. None the less there are some
good points in using simulation as a starting point for the software devel-
opment. While simulation is inevitable when the sensor hardware is not
available completely, simulation also provides reproducible data to be fed
into the algorithms and hardware de�ciencies can be put aside. A particular
measurement scenario can easily be created, and last but not least, software
development is generally more convenient and e�cient using workstations
rather than DSP hardware.

At �rst, the Radar Simulation (RASI) Tool was created to provide an
environment for simulation and to develop the signal processing software in
a convenient and stable way. Later, RASI was extended to support many
di�erent hardware interfaces in order to be able to process actual real-world
measurement data. The capability of running the algorithms in real time
makes it possible to run the radar measurement with exactly the same
software that was developed within the simulation.

C.2 Developing a Radar Signal Processing Sys-
tem

The development of a radar sensor prototype is usually separated into two
work packages, one consists of the software development, the other consists
of the sensor hardware development. To minimize the development time,
software and hardware development is commonly carried out in parallel by
two teams. The challenge for the software team is to e�ciently prepare the
software for the day the hardware is available.

The �rst step in software development is to build up the signal process-
ing software by the help of simulations. For this purpose there are standard
signal processing suites available. However, for radar signal processing soft-
ware it is often decided to build up a proprietary solution. In this case, the
main task is to develop algorithms for detection, checking hypotheses and
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Figure C.1: Components of the radar development environment

their probabilities, and resolve ambiguities in the measurements rather than
to put together readily available �lters and adjusting their parameters.

The radar hardware part on the other hand can be divided into the
sensor front-end and the signal processing hardware. Today, the front-end
typically includes the high frequency subsystems to produce the transmit
signal, the receiver ampli�er, the mixer, and the antenna system. The signal
processing hardware hosts the software to control the functions of the front
end and to process the received data. Commonly, a digital signal processor
is used for this.

There are test boards available for many signal processors. If there is
one available for the chosen processor, the software may be ported to the
test board before the sensor hardware is available.

If at some point in the hardware development measured data is available,
it can be given to the software team to test the signal processing with real
data. As soon as the hardware is available, the software can be ported to
the sensor hardware.

C.3 Overview of RASI
RASI is a development environment for a PC based system. RASI consists
of multiple components that run separated from each other. Figure C.1
shows these components and how they interact. The radar signal processing
algorithms and sensor control software are developed as modules that are
additionally loaded into the system at runtime.

The RASI scheduling and messaging system is the core of RASI. It
loads the signal processing-modules at runtime, assigns processor time and
manages the routing of messages between the modules. For the software de-
velopment it provides a programming API and an object-framework for the
modules. The modules are built up on and access RASI functions through
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the framework.
The graphical user interface component provides easy access to the con-

trolling functions of the system. The user can load and connect the neces-
sary modules and can change all relevant parameters of the system and the
modules.

For the support of the radar applications, a radar library and additional
modules were built. The radar library builds up on top of the RASI base
system. It provides signal processing functions and extends the object-
framework by adding typical radar processing module templates.

The additional modules provide helper functions including functions for
recording data to a �le or graphically displaying radar target lists on the
screen. During the RadarNet project, the number of support modules in-
creased to a great pool of readily available tools. The support modules, the
simulation of a radar scenario, and the signal processing modules are all
implemented as modules which are loaded by the base system at runtime.

C.4 Structure of the Simulation
To properly implement and test the radar signal processing software us-
ing simulations, a radar scenario and the channel impulse responses for
the available antennas are needed. Additionally, in the RadarNet case, the
time synchronization of the sensors has to be modeled. The single sensor
hardware is simulated by generating the front-end output signals from the
channel impulse responses. These time signals can then be used to test
the radar signal processing software modules that are under development.
The processing modules in turn generate target lists which can �nally be dis-
played on the screen, and be compared to the simulated scenario. The block
diagram of the processing modules together with the simulation modules is
shown in Figure C.2 for the classical radar network processing (Chapter 7).

The complete system was implemented in RASI. Figure C.3 shows the
graphical interface of the system. The modules are loaded and intercon-
nected at runtime and can be handled completely separately at compile
time. This is useful especially in projects which are handled by several
persons or even institutions.

The modularization of the example is done on a coarse functional level.
The following modules are implemented:

• The �world model� simulates objects and their movements in the radar
scenario. Channel impulse responses are generated for the existing
antennas.
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Figure C.3: Graphical interface of the run time environment
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• The ND sensor array simulates the behavior of the near distance sensor
array with the 4 sensor front ends that generate the measured time
samples from the channel impulse responses.

• The Radar Viewer presents the simulation and the generated target
lists.

• The signal processing blocks:

� NDS Signal Processing,
� network Processor containing the data assignment stage,
� multilateration,
� tracking.

The system is structured on a higher level and not into elementary signal
processing blocks. In this example, the whole NDS signal processing is
combined into one module while the post processing is separated into a few
functional blocks.

Communication between modules is achieved by the use of a simple
messaging system. It is roughly comparable to message exchange systems
found in operating systems.

The �ow of communication is determined at runtime by interconnect-
ing the module pins. Additionally, the messaging system incorporates time
stamps to ensure a timely synchronized message �ow. RASI ensures causal-
ity of the message handling, while the modules themselves determine the
time needed to process a message.

C.5 Real Time Capability and Support of Hard-
ware

The advantages of a modular software design is well known and commonly
practiced. However, with commonly known, o�-the-shelve signal processing
environments it is di�cult to integrate hardware and run the signal pro-
cessing in real time. This is the second issue that was considered during
the development of RASI, and because of this, RASI not only supports
the simulation of real time but also the actual execution in real time. To
date, RASI supports interfaces like CAN and fast serial ports, Ethernet,
and protocols like TCP/IP and UDP/IP. To support simulated and actual
real time, RASI can be put into one of two modes:
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Figure C.4: Message handling in simulated real-time mode (left) and real-
time mode (right)

• Using the simulated real-time mode, the messages are sorted into a
queue by the value of their time stamp. The earliest message with the
smallest valued time stamp is delivered to its receiving module �rst.
In this mode, there is one queue for all modules.

• Using the actual real time mode, every module has its own message
queue. The messages are instantly put into the receiving module's
queue and are processed in a �rst in - �rst out manner. The latency
times are in the range of 2ms.

The message handling is visualized in Figure C.4. Using the simulated
real time mode, the system is con�gured as a cooperative multi-threading
system. The actual real time mode provides preemptive multi-threading.

C.6 RASI Used as an Environment for Proto-
types

In the RadarNet project, one part of the software is ported to the near
distance sensor and the second part, the post processing software, remains
on a PC system. Because of the properties of RASI that are described
above, post processing software that is to run on a workstation can be
hosted by RASI throughout the complete project. The simulation and the
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�nal prototype runs with the same software modules. The RadarNet post
processing modules have been delivered to project partners together with a
minimal runtime system to run on a PC.

C.7 Results
The three main advantages of the RASI development environment are:

1. Modular design of functional signal processing units

2. Provision of a communication solution for the software modules

3. The ability to do simulations and real measurements with the same
software

4. A growing pool of readily available modules

With the help of RASI, the time needed to develop a new sensor until it is
operational can be strongly reduced. The system has been presented at the
International Radar Symposium 2003 in Dresden, Germany [Lübbert 2003].

The sensor signal processing software was functional within the RASI
signal processing environment when the sensor hardware was delivered. A
small program on the sensor hardware was created to transfer the measured
data to a computer running the signal processing environment. This way,
the sensor was operational after 4 days. After 2 more weeks, the complete
near distance sensor software was successfully ported to the sensor hardware
and was ready to be presented.
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