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Zusammenfassung

Vielfältige radarbasierte Applikationen für den Automobilbereich werden zur Zeit in der
Forschung untersucht oder befinden sich bereits in der Vor- oder Serienentwicklung der
Automobilindustrie. Seit ein paar Jahren sind radarbasierte Automatic Cruise Control
(ACC) Systeme auf dem Markt, welche zunächst dem Luxussegment vorbehalten waren
und sich dort etabliert haben. Nun werden neue radarbasierte Applikationen angestrebt,
welche dem Fahrer weitere, unterstützende komfort- oder sicherheitsrelevante Funktio-
nen zur Verfügung stellen sollen. So wird z.B. an Fahrerassistenz-Systemen wie dem Park
Manöver Assistenten, dem Spurwechselassistenten oder einem ACC/Stop & Go System
gearbeitet. Die auf dem Markt befindlichen ACC-Systeme setzen vornehmlich Fernbere-
ichssensorik im mm-Wellenbereich bei 77 GHz ein, welche in ihrer bestehenden Form den
Anforderungen der neuen Applikationen nicht genügen. Deshalb wurden in den letzten
Jahren auf dem Gebiet der radarbasierten Nahbereichssensorik verschiedene 24 GHz Sen-
soren entwickelt, die mit der vorhandenen Fernbereichssensorik zu einem Radarnetzwerk
zusammengefaßt werden sollen, um die Anforderungen der angestrebten Applikationen
zu erfüllen.

Im Straßenverkehr hat es die Radarsensorik mit ausgedehnten Zielen in Mehrzielsitu-
ationen mit einer großen Anzahl von bewegten und nicht bewegten Objekten zu tun.
Diese werden von heutigen Sensoren immer besser detektiert. Um eine entsprechende
Reaktion des Fahrers oder des Fahrerassistenzsystems auf die detektierten Objekte zu
ermöglichen, müssen die Meßdaten der verschiedenen Sensoren mit Hilfe entsprechen-
der Signalverarbeitung aufbereitet werden, so daß die übermittelten Daten einen hohen
Anteil relevanter, fehlerfreier Information enthalten. Diese Signalverarbeitung findet im
sogenannten Postprocessing statt.

Die vorgestellte Arbeit präsentiert eine Postprocessing Architektur für ein Multi-Sensor
Radarnetzwerk. Diese extrahiert die von der Applikation benötigte Information aus
den Radarmeßdaten, d.h. Fehldetektionen werden aussortiert, relevante Informationen
stabilisiert und zusätzliche Informationen mit Hilfe der eigenen Fahrzeugdaten gener-
iert. Einleitend werden die Meßrandbedingungen der Radarsensorik im Straßenverkehr
erläutert und verschiedene 24 GHz Radarnetzwerkkonzepte untersucht sowie bewertet.
Anschließend werden verschiedene Schätzalgorithmen zur Bestimmung der Position und
Geschwindigkeit der detektierten Ziele sowie verschiedene Trackingfilter zu deren zeitlichen
Verfolgung hergeleitet und evaluiert. Aus den gewonnenen Erkenntnissen der Unter-
suchung dieser Schätz- und Trackingverfahren wird eine mehrzielfähige Postprocessing
Architektur für ein Radarnetzwerk bestehend aus zwei 24 GHz Monopulsradarsensoren
hergeleitet. Die für ein mehrzielfähiges System benötigte Datenzuordung wird anhand
der Detektionseigenschaften der verwendeten Sensorik erläutert. Speziell die Trennung
der großen Anzahl von detektierten Ziele in bewegte und unbewegte Ziele unter Ein-
beziehung der eigenen Fahrzeuginformation stellt für diese Datenzuordung eine wichtige
Grundlage dar. Außerdem wird der Tatsache Rechnung getragen, daß die beobachteten
Objekte als ausgedehnt betrachtet werden müssen und somit mehrere Detektion in einem
Meßzyklus erzeugen können. Neben den analytischer Untersuchungen der verschiedenen
Postprocessing Algorithmik, stellt die empirische Evaluation der hergeleiteten Postpro-
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cessing Architektur in einem Erprobungsfahrzeug einen Schwerpunkt dieser Arbeit dar.
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Chapter 1

Introduction

The first invention of RADAR (radio detection and ranging) can be dated around the
beginning of the twentieth century. In fact, several researchers in different countries
announced the birth of radar at similar times. All these works were based on the equations
of the british physicist James Clerk Maxwell describing the behavior of electromagnetic
waves in 1864. Inherent in Maxwell’s equations are the laws of radio-wave reflection,
which were first demonstrated in 1886 in experiments by the German physicist Heinrich
Hertz. Some years later, the German engineer Chistian Hülsmeyer proposed the use of
radio echoes in a detecting device designed to avoid collisions in marine navigation on the
river Rhine. But until the 1930s no further interest in the radar technology was aroused.
The threat of war along with growing technological advances all over the world prompted
many countries to intensify their research in the field of radar.

Nowadays many peaceful radar applications can be found in our everyday life such as
radar for weather analysis and prediction, for the discovery and rescue of avalanche
victims, or just as the vandal-resistant automatic toilet flush. The first research activities
in the field of automotive radar systems for road traffic situations were started in the 1970s
with the aim of increasing the comfort and safety of road users in times of permanently
growing traffic. But at that time, the geometrical size of a single radar sensor exceeded the
size of a practical series product. The cost and the performance of such a system did also
not meet the necessary requirements for comfort and safety applications in a passenger
car. Since then, the fast development in microwave technology and microelectronic has
led to an improvement concerning all these requirements. Today’s radar front-ends are
small enough to be integrated into a car, the necessary signal processing hardware is
powerful enough to handle different algorithms and the reduced cost make it possible to
develop new active comfort and safety applications.

This thesis will present a postprocessing architecture for an automotive radar network
that has been implemented in a test vehicle and evaluated in real road traffic scenarios.
Before this, different multi-sensor radar network concepts will be investigated and their
characteristics in estimating the road users’ kinematic states as well as interpreting typical
road traffic scenarios will be discussed. It will be explained how different postprocessing
algorithms can enhance the radar network’s performance and what typical challenges

1
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Ultrasonic Lidar Video Radar

Max. Range −− + o ++
Range Accuracy + ++ o ++
and Resolution
Angular Accuracy − ++ ++ Accuracy:+
and Resolution multiple sensors scanning Resolution:−1

needed principle
Range Rate/ −− o − ++
Velocity
Extended Objects −− ++ ++ +
Obscuration − o − ++
(Rain, Snow, Fog)
Size / Packaging visible visible visible invisible
Cost ++ + + o

Table 1.1: Different sensor types and their suitability for automotive applications

have to be faced in the field of automotive radar processing.

This chapter will first present an overview of the different automotive radar applica-
tions and will explain the appropriate requirements of these systems. To develop an
understanding for the system properties and especially for the postprocessing task in
an automotive radar network, the basic radar measurement principles will be outlined.
After this, two high-performance radar sensors and their measurement properties will
be presented. With these radar front-ends, three different multi-sensor radar network
concepts will be established and compared in respect of the different estimation criteria
for automotive applications. Finally, the basic steps of a postprocessing architecture will
be outlined.

1.1 Automotive Radar Applications

The safety of road users in times of permanently growing traffic has become a major topic
for automotive companies in recent years. Many systems such as airbags, ABS (Antilock
Braking System) with EBD (Electronic Brake Distribution) and brake assistant, ESP
(Electronic Stability Program), SRS (Supplemental Restraint System), or the preventive
belt pretensioner have been invented and the properties of car frames and bodies con-
cerning the energy absorption have been optimized to protect the passengers inside a car.
Most of these systems reduce the risk of getting injured if an accident happens or even
the probability of losing the control over the car, but the ultimate solution to achieve
the reduction of accidents are active safety systems that prevent cars from smashing into

1Most of today’s radar sensors are not able to resolve targets in the azimuth angular direction. To
achieve such a resolution, a mechanically or electronically scanning antenna is required. Such radar
sensors are under development, but are not available yet.
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each other. The first simple collision avoidance features are already on the road as pricey
adaptive cruise control options on a small group of luxury cars, but in the near future
this technology will become widely available.

In the field of automotive comfort- and safety-applications, different sensors such as
ultrasonic, infrared, lidar (light detection and ranging), or radar sensors as well as video
cameras are currently under investigation. Table 1.1 shows the different criteria that are
important to car manufacturers for their new applications and the appropriate suitability
of the different sensor types. These requirements can be grouped into three main cate-
gories, namely sensor performance, sensor size/visibility, and cost. To be economically
successful in all automotive segments, the cost of a single sensor should be around ten
dollar in mass-production, and since design plays an important role in selling cars, the
sensors must also be "invisible" in the car body. This means that the sensors should be
small in size and that they can be hidden behind the front bumper, for example. No
"holes" should be visible as it is the case for today’s ultrasonic park distance control
sensors. The requirements concerning the performance are depending strongly on the
targeted application. Generally, it is advantageous to have a large set of measurement
information available. For automotive applications, the measurements of today’s sensors
comprise

• range

• azimuth angle

• velocity

• object size

The evaluation of a sensor’s measurement performance can be manifold. The character-
istic values that are generally utilized to describe the sensor performance are

• the accuracy,

• the resolution,

• the maximum unambiguous range.

The measurement accuracy is defined as the standard deviation of the measurement
relative to its expectation value. In the ideal measurement case, the expectation is the
error-free measurement, i.e. the ideal measurement corresponding to the real target
position. The resolution of a sensor is defined as the least necessary condition that leads
to a separate detection of two neighboring objects of equal size with equal reflection
properties, i.e. with the same radar cross section (see section 1.2.3). It depends strongly
on the radar sensor’s measurement principle. If no scanning receive antenna is utilized,
then no resolution in the azimuth angular direction can be achieved. The range resolution
of a sensor, i.e. the least necessary radial distance between two neighboring objects,
depends directly on the bandwidth of the utilized transmit waveform (see section 1.2).
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ACC Parking Blind Spot Lane Change
Aid Surveillance Assistant

Update Rate: ≧ 20 Hz ≧ 10 Hz ≧ 10 Hz ≧ 20 Hz
TCycle ≦ 50 ms ≦ 100 ms ≦ 100 ms ≦ 50 ms
Range:
Min. Range 1.0 m 0.0 m 0.5 m 0.5 m
Max. Range 200.0 m 8.0 m 5.0 m 150.0 m
Range Accuracy 0.25 m 0.05 m 1.0 m 1.0 m
Range Resolution 1.0 m 0.1 m 0.5 m 0.5 m
Azimuth Angle
Angular field of view
of a single sensor ±15◦ ±60◦ ±60◦ ±60◦

Angle Accuracy 2◦ 2◦ − 2◦

Angular Resolution 5◦ 5◦ − 5◦

Velocity
Min. Velocity −360 km/h −50 km/h − −360 km/h
Max. Velocity 180 km/h 50 km/h − 180 km/h
Velocity Accuracy 0.45 km/h 0.1 km/h − 0.45 km/h
Velocity Resolution 1.8 km/h 1.0 km/h − 1.8 km/h

Pre-Crash Collision Stop & Go
Warning Avoidance (incl. ACC)

Update Rate: ≧ 100 Hz ≧ 100 Hz ≧ 50 Hz
TCycle ≦ 10 ms ≦ 10 ms ≦ 20 ms
Range:
Min. Range 0.3 m 1.0 m 0.3 m
Max. Range 30.0 m 200.0 m 150.0 m
Range Accuracy 0.05 m 0.25 m 0.25 m
Range Resolution 0.25 m 0.25 m 0.25 m
Azimuth Angle
Angular field of view
of a single sensor ±60◦ ±15◦ ±60◦

Angle Accuracy 2◦ 2◦ 2◦

Angular Resolution 5◦ 5◦ 5◦

Velocity
Min. Velocity −250 km/h −360 km/h −360 km/h
Max. Velocity 100 km/h 180 km/h 180 km/h
Velocity Accuracy 1.0 km/h 0.45 km/h 0.45 km/h
Velocity Resolution 3.0 km/h 1.8 km/h 1.8 km/h

Table 1.2: Suggested requirements for different automotive applications



1.1 Automotive Radar Applications 5

A C C
P a r k i n g  A i d

L a n e  C h a n g e  A s s i s t a n t
P r e - C r a s h  W a r n i n g

C o l l i s i o n  A v o i d a n c e
S t o p  &  G o

1

1

2

1 2

3

4

5

2 3 5

2 3 4 5
1 2 3 4 5

6

4

3

4

6

Figure 1.1: Automotive applications for a combined near- and far-distance sensor network

The maximum unambiguous range of the measurements is also an important criterion.
Today’s radar sensors can be grouped into three categories referring to the maximum de-
tectable range of an object. So-called far-distance sensor can achieve a maximum range
that lies within 150 and 200 m with a small azimuth angular coverage of about 10◦. Near-
and medium distance sensors cover a range area up to 20-50 m and have a wider azimuth
angular antenna coverage that of about 60◦-120◦. Finally, the sensors must be robust
and work with the same high performance in all weather conditions.

As shown in table 1.1 the ultrasonic sensors are low in cost but their maximum range is
too small for many wanted automotive applications. Another disadvantage of this sensor
type is the visibility in the car body, e.g. the "holes in the front bumper" known from
today’s park distance control systems. Nevertheless, these kind of sensors are favored for
parking aid applications at the moment, because they are very low in cost and show an
acceptable measurement performance for applications with very short distances. Lidar
sensors and video cameras show a good range and angular measurement performance
but this performance is not weather independent. This means that these sensors down-
grade their measurement performance in rain or snow due to line-of-sight obstruction. In
the case of lidar sensors many enhancements have been established by different sensor
manufacturers, so that some of today’s lidar sensors show an acceptable bad weather
performance. But the robustness and weather independence paired with the invisibility
of the sensors in the car body, the compact sensor size, and a high measurement perfor-
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mance are the big advantages of radar technology. Car manufacturers are investigating
systems consisting of different sensor types in order to find the most versatile and low-cost
combination. Figure 1.1 shows a versatile multi-sensor radar network covering the scan
areas of different automotive applications. Such a complete radar network will probably
not be implemented in a final product, nowadays. But since the number of driver as-
sistance functions in a passenger car will increase in the future, this may be a possible
sensor constellation in a few years. Figure 1.1 shows also a table summarizing the sensor
combinations that are at least demanded by the different automotive application. Cost
considerations will play a vital role in the implementation of each system. It will drive
the system architectures to minimize the number of sensors on the vehicle in order to
reduce component and installation cost. The performance requirements of a multi-sensor
network also depend strongly on the targeted application. These application-dependent
requirements are summarized in table 1.2. Concerning the functionality, the scan area,
and the performance requirements, the different automotive applications can be charac-
terized as follows:

• ACC (Adaptive Cruise Control)
An ACC system is a convenience application for the driver and can be considered as
an enhancement of the standard cruise control. While the standard cruise control
performs best in low traffic environments with a very low number of obstacles
in the own driving path, the adaptive cruise control enhances its performance to
more dense traffic situations. The ACC system is able to decelerate if the own
vehicle is approaching another slower moving car situated in the same lane and
to accelerate again if such a slower moving car is changing lanes in order to give
way. The required detection area of an ACC system is mainly the own lane as well
as the two neighboring lanes at a greater distance in front of the own car. The
first ACC systems are on the market Since 1998 and are now offered by several car
manufacturers as an option for their luxury cars. Most of these systems operate
with a 77 GHz far-distance radar sensor that can detect targets up to a maximum
distance of at least 150 m ahead of the own car. The far-distance sensor is mounted
in the front bumper, so that the scan area visualized in figure 1.1 is achieved. The
update rate of an ACC system should be better than 20 Hz in order to decelerate
in time if an obstacle is detected in the driving path of the own car. The first ACC
systems were restricted to road traffic situations, where the own vehicle is moving
faster than 80 km/h. But today’s ACC systems are working properly at 30 km/h
and will be enhanced in the future by additional near- or medium-distance sensors
to achieve a stop & go functionality.

• Parking Aid
The purpose of a parking aid system is to support the driver in a parking maneuver.
The general action is the movement of a vehicle from an area where the traffic flows
to an area close to the traffic flow where the vehicle can be left stationary. This
includes a planning of the parking maneuver by checking the size of the parking
lot in comparison to the size of the own car and the own driving capability. Such
a driver assistance functionality can be achieved at different levels. The basic level
is to inform the driver by optical or acoustical means if an obstacle at the front or
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rear gets close to the host vehicle. This can be combined with an alert signal at
a certain minimum distance, for example. The driver has to check by his own if
the desired parking lot is suitable for his car and the planned parking maneuver.
This functionality is already achieved by today’s park distance control. At the next
level of a parking support system, the driver is given information about the desired
parking lot and maybe a recommendation about the vehicle path (steering angle,
car speed). At the final level, the complete parking maneuver is done automatically
by the car. The required scan area for such a parking aid system is ideally the whole
near-distance area around the car (see figure 1.1) or at least the near-distance area
in front and behind the front and rear bumper, respectively. One car manufacturer
presented a system that is relying basically on two side-looking sensors mounted
in the vehicle’s right mudguard and on sensors covering the near-distance areas
in front and behind the car. The side-looking sensors are measuring the size of
the parking lot while the car is driving past it. Then, the car is informing the
driver if a parking maneuver is possible. If this is the case, the driver assistance
system is automatically steering the car while the driver is only controlling the
speed of the maneuver. Such a system requires only a low update rate because
the car’s movement is very slow compared to normal road traffic maneuvers. The
necessary maximum range of the sensors is very small, e.g. about 15 m. But it
is important that the range measurements are very accurate to enable a precise
parking maneuver.

• Blind Spot Surveillance/ Lane Change Assistant
The purpose of these safety applications is to avoid a classical reason for accidents,
a driver has overseen an obstacle being in the blind spot of his car or one that is
approaching with high speed on a neighbored lane while the driver is maneuvering
in the appropriate direction. Such an accident can simply be prevented if e.g.
an acoustical or optical signal in the side rear mirrors informs the driver of the
obstacle’s presence in his car’s blind spot area. The blind spot surveillance system
requires a small detection area with a maximum range of 5 m at the location of
the car’s blind spot. Velocity measurements are not relevant for this application
because it is a mere presence detection. The lane change assistant system can be
considered as the logical extension of the blind spot surveillance system. At this,
the driver is informed whether an obstacle will be situated on the right or left lane
next to his car in the next moments. If he wants to change lanes in such a situation,
a warning signal will appear. Since this application is preferred for highway-driving
where high relative velocities may be measured, precise velocity measurements are
necessary and the detection area of the side- and back-looking sensors must cover
up to 150m behind the own vehicle (see figure 1.1)for a lane change assistant with
full functionality.

• Pre-Crash Warning
The general function of the safety application "pre-crash warning" is to detect an
unavoidable crash with an obstacle a short time before the impact occurs. If there
is a high probability of such an impact, the safety restraint systems will be provided
with the appropriate information and thus can react a few milliseconds before the
crash occurs. A possible reaction to the information of the radar network will be
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a faster airbag deployment in a combination with some degree of car deceleration.
Since a crash can occur from every direction, the pre-crash warning system requires
the whole near-distance area around the car for detection (see figure 1.1). The
required update rate of such a safety application is very high because collisions with
other vehicles may occur at very high relative speeds. It is extremely important,
that the pre-crash warning system detects an unavoidable crash as early as possible
with an extreme low false alarm rate, so that the system can react properly.

• Collision Avoidance/ Warning
A collision warning system has to give the driver information that is indicating the
need for urgent action to avoid a collision. The warning has to be provided in the
advanced phases of a dangerous situation in order to draw the driver’s attention
to the need of performing an emergency braking, lane changing, or other collision
avoidance maneuvers. If these necessary actions are performed automatically by
the vehicle, the application is called collision avoidance system. Since collisions
can occur from every direction, the scan area of the sensors must cover the whole
near-distance area around the car. But in contradiction to the pre-crash warning
system, the driver or system must be able to react quickly enough to avoid the
collision. This gives a certain importance to the area where the obstacles with the
highest relative velocity approach from, the area in front of the car. Thus, such
a collision warning/avoidance system requires a far-distance sensor in the front
bumper covering up to 200 m in range. For the same reason, the update rate of
such a safety system must be very high in order to detect possible collisions as early
as possible.

• Stop & Go
The stop & go functionality is an enhancement of the adaptive cruise control en-
abling it to be utilized in more traffic scenarios than a simple ACC system. The
main difference from today’s ACC systems is that the stop & go system shall be
able to bring the vehicle to a complete stop and also to accelerate it again. Because
of this functionality enhancement, the stop & go system will further extend the us-
ability of today’s ACC systems to more dense traffic situations, such as city traffic
and congested highway scenarios. Due to the demands of a close target detection
and an early reaction in cut-in situations, the stop & go system requires additional
near-distance sensors with a wide azimuthal scan area. These sensor are mounted
in the front bumper as shown in figure 1.1. The update rate must be slightly higher
than the one of an ACC system, because the stop & go system should work in
dense traffic scenarios, where obstacles can suddenly appear in the driving path
from different directions.

Because of the fact that all applications have a great impact either on the response of the
driver to a warning signal or directly on the speed and maybe somewhere in the future
on the steering angle of the car, they share a key requirement:

• high reliability
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The newest field in today’s radar signal processing research is the classification of road
users by distinguishing between pedestrians, cyclists, passenger cars, and large trucks.
The first results in this new automotive radar signal processing area have been promising
and the above described applications will be enhanced by using more information about
the detected objects in the future.

In the following, this thesis will concentrate on radar networks consisting of near- or
medium-distance sensors that are needed for the parking aid, blind spot surveillance/lane
change assistant, pre-crash warning, collision avoidance, and stop & go systems.

1.2 Radar Measurement Principles

Before introducing the considered radar sensors and the possible radar network concepts,
this section will give a brief introduction to radar transmit signals and the underlying
measurement principles. As already mentioned in the previous section, the most common
measurements available from today’s automotive radar sensors are

• range

• azimuth angle

• velocity

• object size

The principle of a radar bases on the reflection of a transmit signal at an object. A radar
sensor is determining the range between itself and the detected object by measuring the
time delay τ between the transmit and the receive signal, i.e. the duration that it takes
the electromagnetic wave to travel this two-way path with the speed of light c [Roh01].
The corresponding range r can be calculated from the time delay τ

r =
c · τ
2

(1.1)

The radial velocity measurement of an object bases on the Doppler frequency shift
fDoppler between the transmit and the receive signal. This shift is given by

fDoppler =
−2 · vr

λ
(1.2)

where λ is the wavelength and vr is the radial velocity of the object relative to the radar
sensor.

To determine the azimuth angle of the object’s direction, different techniques can
be applied. The oldest one is the physical moving of an antenna beam through the desired
azimuth angle range. A more modern approach is an electronic beam steering with array
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antennas by differentially shifting the phases of the transmit signal emitted by the indi-
vidual radiators. Both antenna steering techniques can be found in prototypes of today’s
automotive far-distance radar sensors and offer the big advantage of azimuth angular
resolution of multiple targets. But since these methods are too complex or expensive for
the implementation in near- or medium-distance radar sensors at the moment, simpler
techniques are utilized to determine the azimuth angular information:

• Sequential Lobing
The sequential lobing angle estimation technique is often applied by far-distance
radar sensors for ACC systems. At this, the radar switches sequentially between
several overlapping receive antenna beams. Then, the difference between the mea-
sured receive signals is utilized to calculate an angular error signal and to extract
the azimuth angular information from it.

• Monopulse Technique
Another angle estimation technique that is historically derived from sequential lob-
ing is the monopulse technique [Mah98], [Sko80]. The difference to the sequential
lobing is that all antenna beams are generated simultaneously (by the name-giving
single pulse ⇒ monopulse). The idea is to use different receive paths at the same
time and to extract the angular information from the comparison of the different
receive signals [Klo02]. These receive signals can be compared in amplitude and
phase, so that the angular information can be determined by the appropriately
calculated error signals.

• Trilateration / Multilateration
The estimation of the azimuth angular direction of an object can also be achieved
by using at least two high accuracy range-measuring sensors located at different
reference points. For each measured range, the possible positions of the detected
object can be found on a circular arc with the appropriate sensor location at the
circle center. The position of the object is determined by intersecting all circular
arcs corresponding to the range measurements of the different sensors. It is a sim-
ple geometric calculation in the case of two range measurements from two different
sensors. This angle estimation technique is called trilateration and will be described
in detail in the next chapter where different kinematic state estimation methods
will be outlined.
The term trilateration is often mixed up with the term multilateration. Both are
defined ambiguously in the literature, so that this thesis will follow the definition
of [Föl01]. There, the trilateration is the determination of the object position by
intersecting circular arcs as described before. The multilateration is an extension
of this position estimation utilizing a radar network that consists of synchronized
sensors. Every sensor knows the state of the other radar network sensors at every
point in time, so that the transmit signal of one sensor can also be evaluated by
the other ones. Thus, additional range measurements are available for the position
estimation. Figure 1.3 shows that beside the monostatic range measurements r1

and r2, two bistatic measurements of the summed up distance r1 + r2 are avail-
able, because sensor 2 can evaluate the transmit signal of sensor 1 and vice versa.
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The advantage of such a system is not only the greater number of distance mea-
surements from different aspect angles, it is also the simultaneousness of the taken
measurements [RHLS02].

r 1 r 2 r 3 r 4

( a )                                                                 ( b )  
Figure 1.2: Angle estimation techniques: (a) analysis of amplitude and phase information
for overlapping antenna beams (Sequential Lobing, Monopulse) ; (b) multilateration of
different range measurements

( a )                                                                             ( b )  

r 1 r 2 r 1 + r 2 r 2r 1

Figure 1.3: Range measurements of a monostatic (a) and a bistatic radar network (b)
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So far, the basic radar measurement principles have been explained on the basis of a trans-
mit signal that is an undefined sine-based electromagnetic waveform. But this transmit
signal waveform has to be designed carefully in order to gain the wanted precise mea-
surement information. Two basic, commonly implemented waveform principles will be
explained in the following section as a representation for the variety of possible transmit
signals. These two principles are implemented in the two automotive radar sensors that
will be considered for a radar network later in this chapter.

1.2.1 Pulse Radar

The oldest transmit signal in radar history is the pulse radar waveform. Such a pulse
is generated by amplitude modulating a sine-wave with an appropriate pulse shape. As
shown in figure 1.4, the pulse is transmitted by the radar sensor antenna and the reflected
signal is received after a time delay τ . This time delay τ is utilized to calculate the range r
of an object as it is given in equation (1.1). This method is called pulse delay ranging. The
measurement properties and thus the design parameters of such a pulse radar transmit
signal are:

• Pulse Width
The pulse width has an impact on the range accuracy and resolution of a radar sen-
sor. The range resolution ∆R is defined as the minimum radial distance between
two neighboring objects of equal reflection properties that leads to a separate de-
tection of both. If the radial distance between the two targets is smaller than ∆R,
then the two reflected pulses superpose to a single pulse that cannot be resolved at
the receiver. The range resolution ∆R can be calculated as

∆R =
c

2
· Tpulse (1.3)

The accuracy σr of the range measurement r is influenced proportionally to the
pulse width Tpulse

σr ∼
c

2
· Tpulse (1.4)

For a high signal-to-noise ratio, the accuracy is about 20 − 30 % of the resolu-
tion [Roh01].

• Pulse Repetition Frequency (PRF)
The pulse repetition frequency PRF is given by

PRF =
1

TPulseRepetition
(1.5)

and defines the unambiguous range Rmax of the radar sensor

Rmax =
c

2
· TPulseRepetition (1.6)
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Figure 1.4: Measurement principle of a pulse radar

Objects outside this measurement range r > Rmax can be detected, but the mea-
surements are ambiguous. The measured range rm > Rmax will be projected onto
the unambiguous measurement range r < Rmax in such a case. This projection can
be expressed by a modulo operation

rm = rreal mod Rmax (1.7)

• Pulse-Doppler Processing
The above described basic pulse radar waveform is only measuring the delay of
the received pulse echoes, which means that simultaneously received returns from
different objects cannot be resolved. To achieve a separation of targets at almost the
same range but with different radial velocities, a pulse-Doppler processing can be
applied. At this, a train of pulses is transmitted and an analysis of the phase shifts
in the reflected signal enables the determination of the different objects’ velocities
(pulse-doppler principle, see [Roh01], [Lud98]). Such a velocity determination in
a single range gate containing multiple targets is usually achieved by a spectrum
analysis with a fast Fourier transform (FFT). A high precision range-measuring
pulse radar has a large number of range gates and thus a large number of FFT
calculations are necessary.

Several further techniques, such as the use of staggered PRFs or the pulse compression
technique, have been developed to enhance the basic pulse delay ranging principle. Please
consider [Lud98], [Roh01], or [Wie03] for further details on this topic.
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1.2.2 Linear Frequency Modulated Continuous Wave Radar

(LFM-CW)

In contradiction to the pulse radar, the continuous wave (CW) radars have no switch
between the transmit and receive mode, which means that they are transmitting and
receiving simultaneously. Due to the non-existing switching time between these modes,
the LFM-CW waveform principle has no physical restriction concerning the minimum
detectable range. Many different CW transmit waveforms have been investigated in the
last years (see [Mei01]) and are implemented in today’s automotive radar sensors, e.g.

• the frequency shift keying (FSK)-CW transmit waveform,

• the linear frequency modulated (LFM)-CW transmit waveform,

• the intertwined LFM-CW waveform, and

• a waveform consisting of short steep chirps.

This thesis will briefly explain one often implemented class of CW-based measurement
principles, the linear frequency modulated (LFM-CW) principle. This transmit waveform
is implemented in one of the later presented automotive radar sensors that is utilized to
establish a multi-sensor radar network. For further details on the other CW measurement
principles, consider [Mei01].

The LFM-CW radar transmit signal is a linear sine sweep between the operating fre-
quency fcarrier and fcarrier + fhub as it is shown in figure 1.5 (a). The signal is reflected
at the object and received with a time delay τ . Since these radars are transmitting and
receiving simultaneously, this causes a frequency difference df between the instantaneous
frequencies of the transmit signal ftrans(t) and the receive signal frec(t) at time t

df(t) = ftrans(t) − frec(t) (1.8)

The received signal is mixed down to the baseband, so that the frequency difference df can
be detected by performing a Fast Fourier Transform (FFT). If an object is not moving,
then the range can be calculated directly from the detected difference frequency. But if
this is not the case, the receive signal of figure 1.5 (a) is additionally frequency shifted
by the Doppler-frequency fDoppler (see eq.(1.2)) as it is shown in figure 1.5 (b). This
superposition of range and velocity information in the measured frequency difference df
is described by the following equation

df = fDoppler − fτ (1.9)

With fDoppler as defined in eq.(1.2) and fτ given by

fτ =
2

c
· fhub

Tchirp

· r (1.10)
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Figure 1.5: Measurement principle of a simple LFM-CW radar

the possible range and velocity values of the detected target are determined by the fol-
lowing linear equation

r =
c · Tchirp

2 · fhub

· (−2 · vr

λ
− df) (1.11)

and can be visualized as a straight line in a range-Doppler diagram. The ambiguity
of the range and velocity information extracted from a single chirp can be solved by
transmitting consecutive chirps with inverse gradients, so-called up- and down-chirps, as
they are shown in figure 1.6. In a single-target situation, two chirps are sufficient to
resolve the two linear equations and to determine the object’s range and velocity. But in
a multi-target situation, the resulting system of linear equations is under-determined. To
improve the possibility of resolving these ambiguities, a four-chirp waveform is normally
utilized (see figure 1.6). The third and the fourth chirp must have a different gradient
as the first and second one in order to extend the system of linear equations. Each
linear equation belongs to one chirp and can be visualized as a line in the range-Doppler
diagram. Figure 1.7 shows these lines for a two-target situation measured with a transmit
signal consisting of four chirps. The correct range and Doppler-frequency values of the
two targets can be determined by finding the intersections of the four appropriate lines
corresponding to the appropriate linear equations. In a multi-target situation with more
than two targets, such a four-chirp transmit signal waveform will always lead to a great
number of intersections, which have to be evaluated carefully. Although the number
ghost-targets can be minimized by applying special intersection techniques (see [Ahr99]),
they cannot be completely eliminated. This task has to be solved by different processing
steps later in the signal processing chain.
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Figure 1.6: LFM-CW transmit signal with two up- and downchirps

Figure 1.7: Range-Doppler diagram for a two-target situation (as exracted from a LFM-
CW receive signal with two successive up- and downchirps)

The design parameters of an LFM-CW waveform are

• the chirp duration Tchirp

• and the frequency bandwidth fhub

Both have a direct impact on the accuracy and the resolution achieved by the peak fre-
quency estimation in the baseband receive signal spectrum. Thus, the question of range
or velocity accuracy and resolution is answered by the consideration of the achievable
frequency estimation accuracy and resolution. This frequency estimation accuracy and
resolution depends on the applied frequency estimation algorithm. In the following, an
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implementation of the fast fourier transform (FFT) is assumed for spectral estimation.
Compared to parametric spectral estimation methods, the FFT processing is independent
of the number of targets present in the spectrum and it has a determined low computa-
tion complexity.

The smallest resolvable difference between the frequencies df1 and df2 belonging to two
peaks with equal magnitude in an FFT spectrum is at least 2 FFT-bins. If a non-
rectangular window with a better side-lobe suppression is applied before the FFT calcu-
lation, then this separation by 2 FFT-bins is not sufficient to achieve a peak frequency
resolution. Thus, this frequency separation of 2 FFT-bins can be considered as an up-
per bound for the frequency resolution of a system that is utilizing FFT-based spectrum
estimation. With the FFT bin-width of an N-point FFT given by

∆fbin =
fs

N
(1.12)

and the chirp duration Tchirp being the inverse of this bin-width, the upper bound for the
frequency resolution is determined by

∆f = |df1 − df2| >
1

Tchirp
(1.13)

According to eq.(1.9) the detected frequencies df1 and df2 are superpositions of the range
and velocity information. Thus, it is difficult to generally speak of range and velocity
resolution in the case of an LFM-CW radar, because both must be derived from the
frequency resolution ∆f . The assumption that the velocities of the two considered objects
are similar (vr1

= vr2
), leads to an often used value for the range resolution of an LFM-CW

radar

∆R =
c

2
· 1

fhub
(1.14)

This range resolution will only be determined by the bandwidth fhub of the transmit
signal. The same approach can also be applied to derive the velocity resolution. If two
objects with the same reflection properties are positioned at the same range (r1 = r2),
then the resolution of the radial velocity is given by

∆Vr =
λ

2
· 1

Tchirp
(1.15)

The accuracy of a spectral peak frequency determination in an FFT spectrum depends
also on the measurement time Tchirp of a single chirp. Thus, the achievable frequency
accuracy is proportional to the achievable frequency resolution. At a high S/N value, it
lies within of 10-20 % of the FFT-binwidth.
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object RCS / m2

insect 10−5

bird 10−2

military aircraft 10
human 1
car 10

Table 1.3: Typical values for the radar cross section [Roh01]

1.2.3 Object Reflection Properties

The radar signal reflection behavior of different road users is very important and must be
taken into account in the design of the radar network postprocessing architecture outlined
in the next chapters. Thus, it is necessary to introduce some basic radar principles related
to the reflection behavior. Assuming a lossless propagation medium, the transmitted
power PT of a radar sensor produces a power density ST at the distance r

ST =
PT · Gant

4πr2
(1.16)

where Gant is the transmitting antenna gain relative to an omnidirectional antenna. If an
object is located in the antenna beam, it is reflecting the radiated energy proportionally
to its size. This reflection property is summarized in one object-specific, scalar parameter,
the so-called radar cross section (RCS). This radar cross section is the equivalent value
of an ideally, omnidirectional reflecting object that produces the same receive power at
the radar sensor receiver as the real object. Thus, the reflected power density SR at the
receive antenna’s position can be written as

SR =
PT · Gant · RCS

(4πr2)2 (1.17)

The receiving antenna has an effective aperture Aant related to the antenna gain Gant by

Aant

Gant

=
λ2

4π
(1.18)

Inserting (1.18) in eq.(1.17) leads to the received power known as the radar equation

PR =
PT · G2

ant · λ2 · RCS

(4π)3r4
(1.19)
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Figure 1.8: Reflection amplitude of a car depending on the sensor’s aspect angle (mea-
sured at an operating frequency of 77 GHz)

Figure 1.9: Reflection amplitude of a human being depending on the sensor’s aspect angle
(measured at an operating frequency of 77 GHz)
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The radar cross section of a complex object is depending on several factors:

• object extension

• material

• shape

• aspect angle of the measuring radar sensor

• the radar’s operating frequency

Typical RCS values of some objects can be found in table 1.3, [Roh01]. The figures 1.8
and 1.9 show the RCS of a car and a human being depending on the aspect angle of the
measuring radar sensor. One important difference between both RCS characteristics is
the aspect angle dependency. The human being can be considered as an approximately
omnidirectional reflecting object while the passenger car shows a strong aspect angle de-
pendency of its RCS. Thus, it can be expected that the receive signal amplitude will vary
significantly if the passenger car will change its aspect angle relative to the measuring
radar sensor.

If radar sensors are utilized in automotive applications, one important reflection property
difference to the classical field of airborne radar must be taken into account: The distance
between the radar sensors and the detected object is relative small (up to 200 m) com-
pared to the object size. Thus, objects must be considered as extended targets, which
especially becomes important in the case of distributed sensors in a near- or medium-
range radar network. Because each radar sensor is observing the extended object from a
different aspect angle, it is likely that each sensor will receive a reflection from a different
reflection center on the car body and with a different amplitude. As an example, figure
1.10 (a) shows an object detection of a two-sensor radar network under the assumption
that all reflections originate from the same reflection center and figure 1.10 (b) shows the
more realistic detection scenario with an extended target, where the two radar sensors
receive multiple reflections originating from different reflection centers on the car body.
This important detection behavior of extended targets must be taken into account when
it comes to the design of an automotive radar network with an appropriate postprocessing
architecture. As a consequence, the experiences in developing postprocessing algorithms
for airborne radar applications cannot be simply transferred to the field of automotive
radar. They have to be enhanced with the focus on the fact that one object may appear
as numerous detections that may not belong to the same reflection centers on the object.
This important reflection behavior of extended targets will lead to a special clustering
concept implemented in the later presented postprocessing architecture.
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( a ) ( b )

Figure 1.10: Point-target (a) and extended object (b) as detected by a two-sensor radar
network

1.2.4 Summary

This section introduced some basic radar measurement principles determining range,
velocity, and azimuth angle information from the received radar signal. It focused on
two transmit signal waveforms being implemented in the two automotive radar sensors
presented in the next section. Both transmit waveforms have advantages and disadvan-
tages due to their measurement principle. The advantage of the LFM-CW radar is the
achievable high resolution paired with a low implementation complexity while simulta-
neously measuring range and velocity. The pulse radar must have very short pulses to
have the same high resolution performance. The generation of these ultra-short pulses
combined with the necessary switching between the transmit and receive mode as well as
the necessary signal processing bandwidth in the receiver are serious disadvantages of the
pulse radar technique. The determination of the object’s velocity requires also a complex
pulse-Doppler signal processing. On the other hand, the CW-radar technique cannot
offer the same high maximum measurement ranges of a pulse radar due to the concept of
permanent transmission. Finally, the reflection behavior of different objects occuring in
real road traffic scenarios have been outlined. At this, it has been stressed that vehicles
must be considered as extended targets. This significant difference in automotive radar
applications compared to the classical field of airborne radar will play an important role
in the radar network design in the following sections.
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Parameter MR Sensor HRR Pulse Sensor

Operating Frequency 24 GHz 24 GHz

Cycle Time 25 ms 20 ms

Range Coverage 0.75 ... 50 m 0.15 ... 30 m

Range Accuracy 0.12 m 0.03 m

Range Resolution 0.6 m 0.15 m

(bandwidth) (FMCW: 250 MHz) (Pulse: 1 GHz)

Transmit Antenna 6 × 1 patch array 6 × 1 patch array

Receiving Antenna 6 × 2 patch array 6 × 1 patch array

Elevation Angle Coverage ±13◦ ±13◦

Azimuth Angle Coverage ±40◦ ±40◦

Azimuth Angular Accuracy 1◦ -

Azimuth Angular Resolution no -

Speed Coverage −250 km/h ... 91 km/h -

Speed Accuracy 0.25 km/h -

Speed Resolution 1.0 km/h -

Table 1.4: Sensor Properties

y  /  m

x  /  m

y  /  m

( a )                                                                                  ( b )

x  /  m

p

Figure 1.11: Definition of a sensor’s range and azimuth angle accuracy
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Figure 1.12: Picture and detailed view of the high range resolution (HRR) pulse radar
sensor

1.3 Radar Sensors for Automotive Applications

The radar networks considered in this thesis are consisting of two different high-perfor-
mance radar sensors applicable for near-distance automotive radar systems. Both sensors
operate at a carrier frequency of 24 GHz. The first sensor is a high range resolution (HRR)
pulse radar sensor, which is only measuring target ranges but with an extremely high
accuracy. The second radar sensor is a so-called universal medium range radar (UMRR)
sensor that measures target range and radial velocity as well as the azimuth angle of the
target direction based on the monopulse radar (MR) technique. These two radar sensors
will be utilized to establish three different types of radar networks that will be compared
in the next section. Before that, the properties of the two sensors will be summarized
briefly. At this, the accuracies of the single sensor measurements mSens

r and mSens
φ are

defined as their standard deviations σSens
r and σSens

φ as visualized in figure 1.11.

1.3.1 High Range Resolution Pulse Radar Sensor

The HRR radar sensor as presented in [WS98] and [Klo02] is a pulse radar sensor mea-
suring the range according to the pulse delay ranging principle described in section 1.2.
Due to its ultra-short pulses (1 ns), it achieves very precise range measurements with
an accuracy of a few centimeters. As described in [Klo02], velocity measurements are
possible by applying pulse-Doppler frequency processing. But due to the great number
of range gates, this would require a very high computation effort, so that the investigated
HRR sensors are implemented as range only measuring sensor with no pulse-Doppler
processing. As shown in table 1.4, the HRR pulse radar sensor requires a bandwidth of
1 GHz in order to achieve a range resolution of 0.15 m and a range accuracy of 0.03 m.
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Figure 1.13: Universal Medium Range (UMRR) Radar

This bandwidth exceeds the available 250 MHz at 24 GHz in several European countries.
But according to the latest political decisions, this ultra wide bandwidth will be available
for a limited time period until the year 2013. As shown on the circuit board in figure 1.12,
the HRR pulse radar sensor has two 6 × 1 patch array antennas, i.e. one transmit and
one receive antenna. The 3dB-beamwidth of such an antenna is ±40 ◦ in the azimuthal
and ±13 ◦ in the elevation plane. A complete scan over the distance of 30 m, i.e. one
measurement cycle, takes 20 ms. This corresponds to a target list update rate of 50 Hz.
Due to its extremely high range accuracy and resolution the HRR pulse radar sensor is
predestined to be implemented in a multi-sensor radar network that is determining the
azimuth angle of an object by applying the trilateration technique described in section
1.2. The quality of the estimated azimuth angle is depending highly on the accurate mea-
surement of the object’s range. The position estimation properties of such a multi-sensor
radar network will be discussed in detail in the next section.

1.3.2 Monopulse Radar Sensor

The universal medium range radar (UMRR) sensor as presented in [MBM03] and [MR02]
can operate with different transmit signal waveforms. The UMRR sensors considered in
this thesis are working with an LFM-CW narrowband transmit signal as it has been
presented in section 1.2. It requires a bandwidth of 250 MHz and thus is compliant to the
available bandwidth at 24 GHz throughout most countries of the European Union. It can
be utilized for automotive applications without any limitation in the period of time as it is
given for ultra wideband radar sensors at 24 GHz. A picture of the UMRR sensor is shown
in figure 1.13. This sensor is capable of measuring a target at a radial distance up to 50 m
with an accuracy of 0.12 m. It measures simultaneously the target’s radial velocity with
an accuracy of 0.25 km/h. Due to the transmit signal bandwidth of 250 MHz, it achieves
a possible range resolution of 0.6 m between two targets with the same reflectivity and
the same radial velocity. If two targets are located at the same range (r1 = r2), both
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Figure 1.14: Block diagram of the UMRR sensors

can be resolved if their radial velocity difference is greater ∆Vr ≥ 1.0 km/h. The block
diagram in figure 1.14 shows schematically the RF frontend and the DSP module of the
sensor. One transmit and two receive patch array antennas are integrated in the RF
module with 6 × 1 elements each. This dual receive antenna setup allows the direct
azimuth angle measurement by applying the monopulse technique. The implementation
of this angle estimation technique achieves an azimuth angular accuracy of 1 ◦. As stated
in [MBM03], a target separation in azimuth angular direction is not possible due to
the actual monopulse concept. But in the future the UMRR antenna concept will be
modified, so that a true angular resolution will be achieved. Thus, the only condition
for resolving two targets with the same reflectivity is the radial distance or the radial
velocity difference between them in case of the same radial velocity or the same distance,
respectively. Although the UMRR sensor is not offering the precise range measurements
of the HRR pulse radar sensor, it has the advantage of measuring almost the complete
kinematic state of a detected target, namely the range, the azimuth angle, and the radial
velocity. Due to this set of measurements, the UMRR sensor can either be implemented
in a multi-sensor network or as a stand-alone system. These two possibilities will be
investigated in the next section along with a multi-sensor HRR pulse radar network.
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Radar Network Radar Network Single MR Sensor

Type 1 Type 2

4 HRR Pulseradar 2 MR Sensors 1 MR Sensor

Sensors

4 measurements: 4 measurements: 2 measurements:

mSens n
r mSens n

r , mSens n
ϕ mSens n

r , mSens n
ϕ

(n = 1,..., 4) (n = 1, 2) (n = 1)

Table 1.5: Comparison of two 24 GHz Radar Networks

1.4 Multi-Sensor Radar Network

In this section, three different automotive radar network concepts will be compared. As
already described in section 1.2, radar sensors can be grouped to a radar network in
order to obtain a precise position estimation of a detected object. The azimuth angle of
the object’s direction can be estimated by applying a trilateration algorithm in a radar
network consisting of only range measuring sensors or by using monopulse radar sensors,
either in a multi-sensor network or as stand-alone sensors. In the following, two different
types of radar networks as well as one stand-alone sensor will be compared in their
position estimation performance under ideal measurement conditions. First, the concept
of the radar networks will be outlined. Then, a brief derivation of the comparison criteria
will follow, and finally, the performance as well as the advantages and disadvantages of
the different radar network concepts will be presented.

1.4.1 Radar Network Concepts

The basis of this radar network comparison is the available number of measurements cor-
responding to one detected object. The first two different networks are designed with the
precondition that four measurement values per target must be available if the detection
probability of each sensor is ideal pdetect = 1 (see table 1.5). The third system is a stand-
alone MR sensor and delivers two measurements per target. This investigation will be
restricted to an ideal detection probability as well as to the detection of point targets in
order to investigate the basic position estimation behavior of the different radar systems.

The first radar network consists of four high performance HRR pulse radar sensors as
described in table 1.4. These sensors have an ultra-short pulse length (1 ns) and can
achieve very precise range measurements with an accuracy of a few centimeters. The
available measurements determining the object position are given by

mHRR n =
[

mHRR n
r

]

n = 1, ..., 4 (1.20)
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Figure 1.15: 4 HRR sensor (a) and 2 UMRR (b) radar network
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Figure 1.16: Single UMRR sensor

The sensors are mounted in the vehicle’s front bumper as schematically shown in figure
1.15(a).

The second radar network consists of two monopulse radar sensors, which have the same
position estimation properties as the described UMRR sensors in table 1.4. This MR
sensor combination offers also four measurements values per detected object, namely two
ranges and two estimated azimuth angles.

mMR n =

[

mMRn
ϕ

mMRn
r

]

n = 1, 2 (1.21)

As shown in figure 1.15(b), the two monopulse radar sensors are mounted in a vehicle
front bumper at 0.4 m on the left and right side of the origin of ordinates.
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In order to get an impression of the estimation gain of these two multi-sensor radar
networks, a single MR sensor will also be investigated. As already pointed out, this
MR sensor is capable of simultaneously measuring the range and estimating the azimuth
angle of a detected object

mMRn =

[

mMR n
ϕ

mMR n
r

]

n = 1 (1.22)

Thus, the object’s position can be determined by a simple geometric calculation.

1.4.2 Radar Network Performance

The position estimation performances of the two radar networks as well as the one of the
single MR sensor will be compared in accuracy and resolution. Since these two terms
have only been defined for single radar sensors in section 1.2, the question must be an-
swered what accuracy and resolution definitions are reasonable for a multi-sensor radar
network.

A radar network’s position estimation accuracy can be defined analog to the single
sensor’s measurement accuracy and will be derived in the following. Given the radar
network’s estimated position of a detected target by

t̂ =

[

t̂x
t̂y

]

(1.23)

and its real position by

t =

[

tx
ty

]

(1.24)

then the position estimation accuracy can be described by the expectation of the position
estimate

E
[

t̂
]

(1.25)

and the covariance matrix of the estimate t̂

P =

[

σ2
x σ2

xy

σ2
yx σ2

y

]

(1.26)

This covariance matrix of the radar network’s position estimate can directly be obtained
from the N measurement noise covariance matrices of the N radar sensors in the net-
work. In the following these accuracy measures will be derived from the single sensor
information:

Each radar network is described by the sensor placement in the front bumper. The
position of the n-th sensor is defined by

sSens n =

[

sSens n
x

sSens n
y

]

(1.27)
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The measurements of each sensor are given relative to the appropriate sensor position.
The geometric relation between the ideal measurements tSens n

ϕ , tSens n
r of sensor n and the

real target position t in a global cartesian coordinate system must be known. It is given
by the following set of nonlinear equations

tSens n
ϕ = fϕ(t, sSens n) = arctan

(

sSens n
y − ty

sSens n
x − tx

)

tSens n
r = fr(t, s

Sens n) =

√

(tx − sSens n
x )2 +

(

ty − sSens n
y

)2

(1.28)

By adding a sensor-dependent measurement error eSens n, we get realistic measurements
and can rewrite the above equations for each of the two considered radar sensors.

The measurements of the HRR radar sensor are given by

mHRR n =
[

mHRR n
r

]

=
[

fr(t, s
Sens n)

]

+
[

eHRR n
r

]

n = 1, . . . , 4 (1.29)

It will be assumed that these measurements are unbiased

E
[

eHRR n
r

]

= 0 (1.30)

and that the measurement noise covariance matrix is given by

RHRR n =
[

σHRR2

r

]

(1.31)

Analogously, the measurements of the MR sensor are given by

mMRn =

[

mMR n
r

mMR n
ϕ

]

=

[

fr(t, s
Sens n)

fϕ(t, sSens n)

]

+

[

eMR n
r

eMR n
ϕ

]

i = 1, 2 (1.32)

with

E
[

eMRn
r

]

= 0

E
[

eMRn
ϕ

]

= 0
(1.33)

and the measurement noise covariance matrix

RMRn =

[

σMR2

r 0

0 σMR2

ϕ

]

(1.34)

Considering an arbitrary N-sensor radar network with N different single sensor measure-
ments per target, then a complete measurement set is given by the vector m

m =











mSens 1

mSens 2

...
mSens N











(1.35)
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with the covariance matrix containing the N single sensor measurement noise covariance
matrices of the N radar network sensors

R =











RSens 1 0 . . . 0
0 RSens 2 . . . 0
...

...
. . .

...
0 0 . . . RSens N











(1.36)

Because the measurements of the HRR pulse radar sensor mHRR n as well as the ones
of the MR sensor mMR n are unbiased, the radar network’s estimated target position t̂

calculated according to the set of nonlinear equations in (1.28) is also unbiased.

E
[

t̂
]

= t (1.37)

The radar network’s position estimate covariance P of eq.(1.26) can be calculated from
the sensors’ measurement noise covariance matrices in the following way

P = (JT R−1J)−1; (1.38)

At this, J is the Jacobi matrix derived from the nonlinear measurement equations of the
considered radar sensor (see (1.29), (1.32)) and evaluated at the estimated position t̂

J =
[

∂m

∂tx
∂m

∂ty

]

t=t̂

(1.39)

The position estimation covariance matrix in eq.(1.38) refers to cartesian coordinates. To
obtain this accuracy measure in a more compact way, i.e. with negligible non-diagonal
matrix elements, the covariance matrix P must be linearly transformed to polar coordi-
nates by

Σ = UT P U (1.40)

with the transformation matrix

U =

[

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]

(1.41)

where

ϕ = arctan

(

ty
tx

)

(1.42)

The obtained polar coordinate covariance matrix Σ has diagonal elements Σ(i,i) being
much greater than non-diagonal elements Σ(i,j)

Σ(i,i) ≫ Σ(i,j) i 6= j (1.43)
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Figure 1.17: Standard deviations describing the radar network’s position estimation ac-
curacy at the distance r1 (a) and r2(b) relative to the origin of coordinates

Due to this property, the diagonal elements of Σ can be interpreted as the nearly inde-
pendent variances along the radial −→u r and the tangential direction −→u tan with respect to
the true object position (tx = E[t̂x], ty = E[t̂y]).

Σ =

[

σ2
r 0
0 σ2

tan

]

(1.44)

Thus, the radial standard deviation is given by

σr =
√

Σ(1,1) (1.45)

and the standard deviation in the tangential direction is

σtan =
√

Σ(2,2) (1.46)

Both standard deviations of the radar network’s position estimate are illustrated in figure
1.17. It can be seen that σtan is increasing, the higher the target range. The angular
standard deviation σϕ is position independent and can be calculated from σtan by

σϕ = arctan

(

σtan
√

t2x + t2y

)

(1.47)

σr and σϕ will serve as position estimate accuracy measures in the radar network com-
parison in the next section:

Radar Network Position Estimation Accuracy:

σr =
√

Σ(1,1) (1.48)

σϕ = arctan

(

√

Σ(2,2)
√

t2x + t2y

)

(1.49)
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This analytical derived accuracy measures are equivalent to the accuracy measures pre-
sented in [SFR03], where a minimum mean square error (MMSE) position estimation
was outlined and position estimation accuracy results were obtained in a Monte-Carlo
simulation.
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Figure 1.18: Range resolution condition of one radar sensor (a) and of all four radar
sensors (b) with two tables summarizing the possibility of resolving the considered two
targets for each radar sensor

The resolution of a multi-sensor radar network must be derived directly from the single
sensor resolution conditions. As described in section 1.3, each of the considered radar
sensors has its own resolution condition. In the case of the HRR pulse radar, the only
resolution condition is the necessary radial distance difference ∆R between two targets
with the same reflection behavior. This resolution condition is visualized in figure 1.18
(a) as two circular arcs with the distance ∆R to the position of target no. 1. This simple
example demonstrates that target no. 1 and no. 2 can be resolved by the shown radar
sensor if target no. 2 is located at a greater radial distance than ∆R to target no. 1,
e.g. at position a. The separation of the two targets is not possible if target no. 2 is
placed at position b. The table below the coordinate system summarizes this example
by denoting the possible resolution with a green hook and the impossibility of resolving
the two targets with a red cross. Considering now the 4 HRR radar sensor network, the
term resolution has to be defined two-dimensional, because the estimated position is also
two-dimensional. Figure 1.18(b) shows the different single sensor resolution conditions
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for a 4 HRR sensor radar network. The table below indicates if the resolution of the
two targets is achieved by the different sensors depending on the position of target no.
2. Two targets with the same reflectivity are considered as resolved if one sensor in the
radar network is detecting both separately. One can argue that at least two sensors must
be able to separate the two targets in order to estimate two positions and one can also
demand that the majority of the sensors, e.g. three of the four sensors, must resolve the
two targets in order to achieve good quality position estimates. But the term resolution
gives by definition only an indication about the possibility of resolving the two target
situation, not about the quality of the estimation. Thus, this radar network resolution
can be described by the only eye-catching characteristic in figure 1.18(b), the rhombic
area around target no.1. This is the area where none of the sensors can resolve the two
targets. If the second target is located outside, both can be resolved by at least one
radar sensor. This rhombic area has a certain extension in the radial Dr and the lateral
direction Dtan. Due to the sensor constellation in an automotive radar network, Dr will
not change significantly at different positions in the radar network’s scan area. But the
extension of the rhombic area in the tangential direction Dtan will vary strongly, so that
this quantity will draw the main attention in the radar network comparison in the next
section.

The UMRR sensor has a different resolution condition because it is a LFM-CW radar
sensor. The target ranges and radial velocities are derived from the detected peak fre-
quencies in the downconverted receive signal spectrum. As explained in section 1.2.2, the
only resolution condition of an LFM-CW radar is the resolution of two peak frequencies
corresponding to two targets in the frequency spectrum. Since these peak frequencies
contain a superposition of the range and the velocity information, two resolution side
conditions can be derived from the peak frequency resolution condition in eq.(1.13). If
two targets have the same radial velocity ((vr1

= vr2
)), then the resolution of both de-

pends only on the radial distance difference ∆R. This leads to the same derivation of
a multi-sensor network resolution condition as shown in figure 1.18(b) with a similar
rhombic area where none of the sensors can resolve the two targets with the same ve-
locity. Due to the UMRR sensor’s velocity measurement capability, it can additionally
resolve two targets located at the same range (r1 = r2) if the radial velocity difference
between both is at least ∆Vr ≥ 1.0 km/h. The possibility of separating two targets due
to their different radial velocities is a clear advantage of the UMRR sensor compared to
the HRR pulse radar sensor, which also gives the appropriate radar network an edge over
the HRR multi-sensor radar network. In the following radar network concept compari-
son, the extension of the rhombic area, where none of the sensors can resolve two targets
with the same reflectivity will be discussed and the consequences for practical automotive
applications will be outlined.

1.4.3 Radar Network Type 1

The HRR pulse radar network estimates the object position with distance measurements
only. This is achieved by applying a trilateration algorithm in the MMSE sense as it
is basically described in section 1.2. The principle distribution of the radar network’s
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position estimates is shown in figure 1.19(a). It can be seen that the range accuracy of
the estimated position is excellent but the azimuth angle estimates are not as accurate.
Figure 1.19(b) shows the range accuracy results of the radar network for the complete
scan area. A position independent range accuracy of

σr = 0.015 m (1.50)

is accomplished. This result could be expected because 4 sensors each with a range
accuracy of σHRR

r = 0.03 m have been utilized to obtain the radar network’s position
estimate. The radar network’s range accuracy can analytically be expressed as

σr =
1√
4
· σHRR

r (1.51)

The angular accuracy σϕ achieved by the ideal trilateration in figure 1.19(c) is position
dependent and varies between

1.9◦ ≤ σϕ ≤ 2.6◦ (1.52)

At first glance, these azimuth angular accuracy numbers seem to be very good. But
having a closer look at the analogous standard deviation σtan (figure 1.19(d)), which is
the deviation orthogonal to the radial direction in m, reveals that the tangential standard
deviation of the position estimate is relative high. The position dependent standard de-
viation σtan has a bath-tub-like characteristic with maximum values at the detection area
borders. These maxima reach values of 1.3 m. σtan is increasing linearly in the x-direction
and has a parabolic behavior in the y-direction. This lack of azimuth angular accuracy
has its cause in the geometric configuration. Considering the maximum distance between
the single radar sensors in the front bumper, which is 1.2 m, compared to the covered
distance of 30 m, it becomes clear that a position estimation retrieved by a trilateration
of range measurements will suffer a strong limitation in angular accuracy. Small range
measurement errors will result in significant azimuth angle errors of the position esti-
mate. This phenomenon is known as a dilution of precision (DOP) from the research
field of satellite navigation. Such a DOP cannot be avoided in the case of only range
measuring automotive radar networks because the positioning of the sensors is limited
by the extension of the vehicle’s front bumper.

As already discussed in the previous section, the resolution of a multi-sensor radar net-
work cannot be described in a simple way. Instead, an area has been defined where none
of the network sensors can resolve two targets with the same reflectivity. This area can
be derived from the single sensor resolution condition of the HRR pulse radar sensors
as shown in figure 1.20(a). The only resolution condition of a single HRR pulse radar
sensor is radial distance ∆R between two targets, which has to be ∆R ≥ 0.15 m. The
resulting extension of the area of no resolution is given by the two values Dr and Dtan.
Dr is position independent and has a value of

Dr = 0.15 m (1.53)

as could be expected from the single sensor resolution. The extension orthogonal to the
radial direction Dtan is strongly position dependent, e.g. it varies between 4 m ≤ Dtan ≤
9 m
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Figure 1.19: The 4 HRR radar network’s position estimation error due to the single-
sensor measurement accuracies of σHRR

r = 0.03m (a). Figures (b), (c), and (d) show the
resulting radar network’s position estimation accuracies σr, σφ, and σtan, respectively.
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Figure 1.20: Complete single-sensor resolution conditions for the 4 HRR pulse sensor
network (a) and the position dependent extension Dtan of the rhomb-like area where the
resolution of two targets is impossible (b)
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Figure 1.21: The 2 UMRR network’s position estimation error due to the single-sensor
measurement accuracies of σUMRR

r = 0.12m and σUMRR
ϕ = 1◦ (a). Figures (b), (c), and

(d) show the resulting radar network’s position estimation accuracies σr, σφ, and σtan,
respectively.
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Figure 1.22: Complete single-sensor resolution conditions for the 2 UMRR sensor network
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at a range r = 10 m (figure 1.20(b)). The area of no resolution reaches its maximum
lateral extension at the detection area boundaries with a maximum value of Dtan = 13 m.
Although this radar network comparison restricts itself to point targets, the following
realistic example should illustrate the lateral resolution deficit of this network. If we
consider a typical road traffic scenario, where the own car is following another car on
the same lane and a third car from the oncoming traffic can be found on the left lane at
about the same distance as the car ahead of us, then the HRR pulse radar network with
a trilateration algorithm is not capable of resolving these two cars. Without any further
signal processing of the estimated target positions, these dynamic situations cannot be
interpreted correctly.

Overall, the HRR-pulse radar network delivers a very accurate range estimation but
loses this accuracy in the azimuth angular direction due to the relative small distance
between the sensor mounting positions compared to the covered distance. The resolu-
tion performance is limited due to its simple single sensor resolution condition, which
allows only the separate detection of targets that have a different radial range of at least
∆R ≥ 0.15 m.

1.4.4 Radar Network Type 2

The advantage of the 2 UMRR sensor network is the possibility of measuring the azimuth
angle of the target direction. Thus, the error in the angular direction −→u ϕ can be con-
tained by the precise azimuth angle measurements of the UMRR sensors. The principle
position estimate distribution of this radar network is shown in figure 1.21(a). Applying
a MMSE position estimation to the available single sensor measurements leads to the
network’s position estimate accuracies shown in figure 1.21(b), (c), and (d). The position
independent standard deviation σr of the UMRR network’s estimate t̂ is not as accurate
as the one of the HRR pulse radar network (see figure 1.21(b))

σr = 0.085 m (1.54)

but still can be considered as very precise. The azimuth angle estimation by the monopulse
method helps to avoid angular errors. Hence, an extremely high, position independent
azimuth angle accuracy σϕ is achieved

σϕ = 0.7◦ (1.55)

Considering the analogous standard deviation σtan, orthogonal to the radial direction −→u r

in figure 1.21(d), it becomes clear that the 2 UMRR network shows a better performance
than the 4 HRR pulse radar network. It has the same bath-tub-like characteristic as the
one of the HRR pulse radar network and it is also increasing linearly in the x-direction,
but with a significant lower gradient. Thus, the maximum value at the detection area
boundaries is clearly smaller σtan = 0.4 m.

Due to its LFM-CW measurement principle, the single UMRR sensor resolution con-
dition for two targets with the same reflectivity is different to the one of a single HRR
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sensor. Due to the superposition of range and radial velocity information in the detected
peak frequency, two special resolution cases are considered. If the two targets have the
same radial velocity ((vr1

= vr2
)), the resolution of both depends only on the radial

distance difference ∆R. This is the same resolution condition as the one of the HRR
pulse radar network, except that it is only valid if the two targets have the same radial
velocity. A similar area can be geometrically constructed for this special case, where
none of the two UMRR sensors can resolve the targets (figure 1.22). The extension in
the radial direction of this rhomb-like area is Dr = 0.6 m. No value for the extension in
the orthogonal direction can be given, because the circular arcs denoting the single sen-
sor resolution conditions are not intersecting. This is caused by the mounting distance
between the two sensors in the y-direction dy, which is smaller than twice the range
resolution dy < 2 · ∆R. As a consequence, the UMRR radar network cannot resolve
two targets with the same velocity if the radial distance between both is ∆R ≤ 0.6 m.
But due to the UMRR sensor’s LFM-CW measurement principle, it also can resolve two
targets located at the same range (r1 = r2) if the radial velocity difference between both
is ∆Vr ≥ 1.0 km/h. This possibility of separating two targets due to their different radial
velocities is a clear advantage of the UMRR sensor compared to the HRR pulse radar
sensor. This also gives the UMRR network an edge over the HRR pulse radar network
in the resolution performance in dynamic road traffic scenarios.

The UMRR network outperforms the HRR pulse radar network in position estimation
accuracy because it takes advantage of the azimuth angle estimation of each sensor con-
taining the loss of accuracy in the azimuth angular direction. Although the range ac-
curacy of the HRR network is significantly higher than the one of the UMRR network,
the azimuth angle accuracy gain is more important for the overall position estimation
performance. The UMRR network also offers a better overall resolution. Both radar
networks cannot achieve a lateral resolution of two targets situated at the same range in
a realistic static measurement situation. But in dynamic multi-target scenarios where the
detected targets have significantly different radial velocities, the 2 UMRR radar network
achieves such a lateral resolution due to its LFM-CW measurement principle. Thus, the
2 UMRR radar network can be considered as the more versatile system.

1.4.5 Single MR Sensor

The purpose of a multi-sensor network is to determine the position of an object if only
range measurements are available (4 HRR pulse radar network) or to achieve a more
precise position estimation than in the single sensor case (2 UMRR network). The raising
question is what position estimation performance is gained by a multi-sensor network
compared to a single MR sensor. Therefore, the performance of such a sensor has also
been investigated in accuracy and resolution. As already presented in table 1.4 the UMRR
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Figure 1.23: 1 UMRR sensor’s position estimation error assuming measurement accura-
cies of σUMRR

r = 0.12m and σUMRR
ϕ = 1◦ (a). Figures (b), (c), and (d) show the position

estimation accuracies σr, σφ , and σtan, respectively.
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Figure 1.24: Single UMRR sensor resolution condition
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sensor properties are

σr = 0.12 m (1.56)

σϕ = 1◦ (1.57)

These standard deviations are position independent, so that the constant functions in
the figures 1.23(b) and 1.23(c) could be expected. The analogous function σtan of the
azimuth angular standard deviation σϕ is shown in figure 1.23(d). It can be seen that
the overall accuracy of the position estimation is clearly higher than the one of the HRR
pulse radar network. This leads to the conclusion that one measured azimuth angle of a
MR sensor enhances the azimuth angular estimation accuracy more than the high range
accuracy of a few centimeters of each sensor in a 4 HRR multi-sensor network. Compar-
ing the accuracy performance of the 2 UMRR radar network to the performance of the
single UMRR sensor, the multi-sensor network accuracy is slightly higher by a factor of√

2. This could be expected since number of available measurements is twice the one of
the single sensor.

The resolution of one UMRR sensor has already been explained in the previous sec-
tions and was given in table 1.4. It is also visualized in figure 1.24. Since no significant
resolution enhancement in the lateral direction is achieved by the 2 UMRR sensor net-
work, the resolution performance of a single sensor and the one of the network can be
considered to be the same.

Overall, the performance of a single MR sensor is higher than the one of the 4 HRR
pulse radar network and slightly lower than the one of the 2 UMRR network. This gives
the single UMRR sensor the advantage that it can be utilized as a stand-alone system
either as a single sensor or in a distributed multi-sensor system, where all sensors de-
liver complete position estimates independent of the other sensor’s target measurements.
Overall, the single UMRR sensor offers flexible implementation possibilities, because it
delivers the complete position information of a detected target.

1.4.6 Summary

This comparison of different radar network concepts has shown that a high position
estimation performance could be achieved by all networks. At this, it has become clear
that the availability of azimuth angle measurements enhances the position estimation
accuracy significantly and gives the MR sensor network a clear advantage over the only
range measuring 4 HRR pulse radar sensor network. Simultaneous velocity measurements
give also the possibility to resolve different targets in dynamic road traffic scenarios. But
some resolution limitations of the different radar networks have also become evident and
will lead to merged observations for closely spaced targets. Such merged observations
can be avoided if additional postprocessing steps are applied to achieve a high estimation
performance over time. For example, it may occur that not every target is detected in each
measurement cycle or that ghost-targets appear suddenly from cycle to cycle. In order
to enhance this time-varying behavior of the different targets, different postprocessing
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Accuracy Resolution

σr/m σϕ/◦ Dr/m Dtan/m ∆Vr/km/h

Radar Network 1 0.015 2.1 0.15 ≤ 13 -

(4 HRR)

Radar Network 2 0.085 0.7 0.6 - 1.0

(2 Mono)

Single MR 0.12 1 0.6 - 1.0

sensor

Table 1.6: Radar network performances (pdetect = 1)

stages can be applied, so that ghost-targets, missed detections, measurement errors, or
any additive noise process can be eliminated or smoothed. The presented comparison
has been restricted to point targets, which will barely occur in real road traffic scenarios.
As described in section 1.2, most of the road users must be considered as extended
objects. As a consequence, each radar sensor will have a different aspect angle to the
object and will receive one or more reflections of different reflection centers, .e.g. different
measurements originating from different points on the car body. In order to achieve the
same high position estimation performance as in the point target case, additional signal
processing steps are necessary. Especially in multi-target situations, data association
algorithms become essential to sort the single sensor’s target lists according to their
origin of reflection. All these different additional signal processing steps can be embraced
in the term postprocessing algorithms. Such a principle postprocessing architecture for
a multi-sensor radar network will be presented in the following section.
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Figure 1.25: Example of a typical road traffic scenario

Figure 1.26: General postprocessing structure for an automotive multi-sensors network
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1.5 A Postprocessing Structure for a Radar Network

As described in section 1.1, automotive radar applications demand high accuracy position
and velocity estimates of road users with a high reliability. The task of postprocessing
algorithms is to determine these stable and accurate position and velocity estimates as
well as the extension of the detected objects from the error-prone or incomplete single-
sensor measurements.

Figure 1.25 shows a typical snapshot of single-sensor target detections available in a single
measurement cycle. The following cases may occur and have to be avoided, smoothed,
or enhanced by applying different postprocessing steps:

• not all objects are detected in every measurement cycle (missed detections), e.g.
the red car of the oncoming traffic in figure 1.25

• disturbance, clutter, or multipath propagation may cause echoes interpreted as
targets that are not present in reality (ghost targets)

• due to the extension of road users one or more echoes may be received from different
reflection centers on one object

• multi-target situations must be resolved and interpreted

Figure 1.26 shows a general postprocessing structure for an automotive multi-sensor net-
work. The postprocessing algorithms have access to different information about the road
traffic scenario and the host vehicle’s kinematic state. The road traffic scenario informa-
tion is given by the measurements of each single sensor in the radar network. For the
radar sensors presented in section 1.3 this information may comprise

• target range r

• radial velocity vr

• receive signal amplitude a

• target azimuth angle ϕ

The host vehicle data that is available for the postprocessing algorithms can be manifold.
In this thesis, the utilized host vehicle information is

• the host vehicle velocity vhost

• and the turning rate ωhost

The host vehicle velocity is measured by the ABS sensors of the four wheels and the turn-
ing rate is obtained from a yaw-rate sensor, which is typically implemented in today’s
ESP systems. This host vehicle information is available on the so-called powertrain CAN
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of today’s passenger cars.

In figure 1.26, the input data from the various radar sensor front-ends and from the
host vehicle is first buffered. In the following postprocessing step, the detected targets
are assigned to groups that originate from the same object. This is achieved by a data
association algorithm that takes advantage of the knowledge about the actual target
measurements of the radar sensors, the host vehicle information and the kinematic state
prediction of previous, already evaluated objects formed to so-called object tracks. The
actual target measurement data is either associated to already existing object tracks or is
assigned to new target groups corresponding to a single object. At this, it is important to
take the possible extension of the different road traffic users into account. This grouped
data is then fed into the kinematic state estimation process calculating the position and
velocity of the detected objects relative to the host vehicle from the single-cycle measure-
ment data. The output of this kinematic state estimation step is fed into a tracking stage.
The task of the tracking filter is to smooth the object’s kinematic state estimate over
time and to avoid detection discontinuities. For this purpose, it may assume a certain
behavior of the object motion, a so-called target dynamic model, in order to achieve an
optimal tracking filter estimate. If an object is detected for the first time, it formes a
so-called unevaluated object track. If possible, this track will be updated by single cycle
state estimates in the following measurement cycles, otherwise its position and velocity
will be predicted according to the track’s latest kinematic state. Such a linear prediction
helps to avoid track discontinuities due to missed detections. The updating process of a
tracking filter takes the accuracy of its input data as well as the uncertainty caused by
the target dynamics into account. Thus, the tracking filter smoothes measurement errors
without ignoring the object’s dynamics, so that the kinematic state estimation perfor-
mance of the overall system will be significantly enhanced. As the last postprocessing
step, all detected objects must be sorted to an application dependent criterion. It is easy
to understand that safety applications are more interested in objects that will have a
short time-to-impact. Convenience applications like parking aid favor the object’s with
the shortest distance to the car. Hence, an application dependent object selection must
be performed before the estimated object data is passed to an application processor that
decides what kind of passive or active actions have to be taken.

The following chapters will outline and evaluate different postprocessing algorithms for
an automotive radar network, which are finally implemented in a multi-target capa-
ble postprocessing architecture of an experimental car. The next chapter will give an
overview of kinematic state estimation algorithms that can handle different sets of radar
measurement data. It will also address the need of a tracking filter and discuss different
tracking algorithms based on the general discrete Kalman filter principle. At this, it will
present two non-linear Kalman filter approaches where the non-linear kinematic state
estimation and the tracking filter are fused to one postprocessing step. Furthermore, dif-
ferent models of the object dynamics will be derived and their suitability for automotive
applications will be discussed. Finally, different Kalman filter processing enhancements,
either in computation complexity or in estimation performance, will be outlined. Chapter
3 will present a complete postprocessing architecture utilizing a special data association
technique in order to enable the application of the presented kinematic state estimation
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and tracking algorithms in multi-target road traffic scenarios. Chapter 4 will present
the implementation of the presented postprocessing architecture in the experimental car
and detailed experimental results in different real road traffic scenarios will be discussed.
Finally, chapter 5 will conclude this thesis and will give an outlook on future research in
the field of automotive radar applications.





Chapter 2

Kinematic State Estimation

This chapter will investigate different kinematic state estimation methods that can be
applied in a multi-sensor radar network. These methods refer typically to the task of
estimating the position, velocity, and acceleration of an object on the basis of either
the actual radar sensor measurements or the actual and the past radar sensor measure-
ments. All kinematic state estimation algorithms that will be presented are based on the
geometric relation between the single-sensor measurements and the unknown kinematic
states. Thus, this chapter begins with a brief description of the underlying measure-
ment equations. This is followed by an introduction to the so-called batch processing
approaches, where the kinematic states are estimated from the sensor measurements of a
limited measurement time, e.g. a single measurement cycle. The presented type of this
batch kinematic state estimation will be based on the principles of least squares estima-
tion (LSE). Due to the possible detection of ghost targets, or missed detections of real
targets in a single measurement cycle, the estimated kinematic states must be processed
by a tracking filter that helps to avoid these missed detections, smoothes measurement
errors, and enhances the time-depending performance of the system. This chapter will
present tracking algorithms that are different derivations of the Kalman filter algorithm.
All Kalman filter derivations offer the advantage of incorporating assumptions on the tar-
get dynamics in order to achieve an optimal estimation. Thus, different target dynamic
models will also be introduced and their suitability for automotive radar applications will
be discussed. An alternative to the kinematic state estimation plus linear tracking filter
approach are the extended Kalman filter (EKF) and the unscented Kalman filter (UKF),
where the estimation and the tracking step are fused to a single postprocessing stage.
The performance of the two nonlinear tracking filters will be compared to the one of the
combined least-squares kinematic state estimation plus linear Kalman filter approach.
Finally, different Kalman filter signal processing enhancements either in computation
complexity or in estimation performance will be outlined.

47
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2.1 Position and Velocity Estimation

In the field of land surveying, two traditional techniques are utilized for the position deter-
mination of an object, the trilateration and the triangulation described in [Bau98], [Bau99].
As shown in figure 2.1(a) the position of a target can be determined by two range mea-
surements, i.e. by intersecting the corresponding two circular arcs (trilateration). An
analogous position determination, the so-called triangulation, can be achieved by two
measured angles (figure 2.1(b)). At this, two straight lines defined by the measured an-
gles are intersected and determine the wanted position. These simple methods are based
on the solution of a set of nonlinear measurement equations. The two states, the object
position [tx, ty]

T in the (x,y)-coordinate plane, are calculated from two measurements,
either two ranges [r1, r2]

T or two angles [ϕ1, ϕ2]
T . The resulting set of measurement

equations has a non-ambiguous solution. If the contributing measurements contain a
certain error, than the non-ambiguous solution is error-prone as well.

x  /  m

y  /  m
( a )                                                                                ( b )

x  /  m

y  /  m

Figure 2.1: Geometrical calculation of an object’s position by a trilateration (a) and a
triangulation (b)

To achieve a high quality estimate of the unknown kinematic states of an object, it is ad-
vantageous that more measurements than unknown kinematic states are available. This
extended number of measurements leads to an over-determined measurement equation
system that can be solved by a least squares estimation approach. Such a kinematic
state estimation approach requires a certain number of radar sensors that provide the
estimation algorithm with an appropriate number of measurement values. In an ideal
measurement case, it must be guaranteed that all measurements are taken at the same
point in time and that they originate from the same reflection center on the extended
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object’s surface. These side conditions will only approximately be met in reality.

Before introducing different kinematic state estimation algorithms, the basic geometric
relations between the available radar sensor measurements and the unknown kinematic
states in the so-called measurement equations will be outlined in the following section.

2.1.1 Geometric Preliminaries

The real kinematic state t of a target in an (x,y)-coordinate plane is defined by

t =

















tx
ty
tvx

tvy

tax

tay

















(2.1)

These target states are unknown and want to be estimated from the different single-sensor
measurements contained in the vector m. The geometric relation between the real target
states and these measurements can be described by a function h (t) and an additive error
vector e

m = h (t) + e (2.2)

The vector m contains the measurements of the N different sensors

m =











mSens 1

mSens 2

...
mSens N











(2.3)

At this, each single-sensor measurement vector mSens n may contain only a single (e.g.
HRR sensor) or multiple measurement values (e.g. UMRR sensor). The additive error e

consists of sensor-dependent elements that represent the limited measurement accuracy
of each radar sensor. The measurements in m are assumed to be unbiased

E [e] = 0 (2.4)

and their uncertainty is described by the measurement noise covariance matrix R as given
by

R = E
[

e eT
]

(2.5)

As an example, the geometric relation between the ideal, error-free measurements of the
n-th radar sensor

tSens n = [tSens n
r , tSens n

ϕ , tSens n
vr

]T (2.6)
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and the unknown target states in the vector t is given by the following set of nonlinear
equations

tSens n
ϕ = hϕ(t, sSens n) = arctan

(

sSens n
y − ty

sSens n
x − tx

)

(2.7)

tSens n
r = hr(t, s

Sens n) =

√

(tx − sSens n
x )2 +

(

ty − sSens n
y

)2
(2.8)

tSens n
vr

= hvr
(t, sSens n) =

tvx
·
(

tx − sSens n
x

)

+ tvy
·
(

ty − sSens n
y

)

√

(tx − sSens n
x )2 +

(

ty − sSens n
y

)2
(2.9)

The radar network itself is described by the sensor placement in the front bumper. The
position of the n-th sensor is given by

sSens n =

[

sSens n
x

sSens n
y

]

(2.10)

2.1.2 Kinematic State Determination from Single-Sensor Mea-

surements

In the case of an UMRR sensor, the single-sensor measurements comprise the position and
partly the velocity of the detected target. This kinematic state information is measured
in polar coordinates

mUMRR
(r,ϕ) = [r, ϕ, vr]

T (2.11)

The velocity in the lateral direction as well as the object acceleration cannot directly be
measured and thus are not available. Nevertheless, the available kinematic state informa-
tion from one UMRR sensor offers the possibility of an implementation as a stand-alone
system in a distributed radar sensor network. At this, each UMRR sensor is delivering
its own target list that is later fused to a global object list by a central postprocess-
ing unit. In order to simplify the geometric relation between the different single-sensor
measurements contained in the measurement vector mUMRR and the unknown kinematic
target state vector t, it is reasonable to transform the measurements from each sensor to
a global cartesian coordinate system. The relation between these two coordinate systems
is visualized in figure 2.2.

The transformation basically consists of two steps:

• the transformation of the sensor coordinate system from polar to cartesian coordi-
nates,

• and the linear transformation from the sensor to the global kinematic state coordi-
nate system by taking the position and azimuthal orientation of the sensor relative
to the global coordinate system into account.
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Figure 2.2: Relation between the polar sensor and the global cartesian coordinate system

The UMRR measurement values in cartesian coordinates can directly be determined by
the following measurement equations

x = r · cos (ϕ)

y = r · sin (ϕ)

vx = vr · cos (ϕ) + r · ω · sin (ϕ)

vy = vr · sin (ϕ) + r · ω · cos (ϕ)

(2.12)

so that the transformed UMRR measurements are given by

mUMRR
(x,y) = [x, y, vx, vy]

T (2.13)

As already mentioned, the complete target velocity information cannot be retrieved from
the UMRR sensor measurements. Only the radial component of the target velocity
is measured. Thus, the radial velocity information can only be split into its x- and y-
components by incorporating the measured azimuth angular information. The orthogonal
component of the object’s velocity, i.e. r ·ω, is still unknown and can only be obtained by
combining measurements of different sensors, e.g. in the central postprocessing unit of
the multi-sensor radar network. By arbitrarily setting the turning rate to zero (ω = 0),
the velocity measurements in cartesian coordinates contain a certain error. This error
must be be taken into account in the covariance matrix of the transformed UMRR mea-
surements.

The measurement covariance matrix R(x,y) in cartesian coordinates can be derived from
the original covariance matrix R(r,ϕ) by a simple transformation

R(x,y) = JR(r,ϕ)J
T (2.14)
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with the transformation matrix

J =











∂x
∂r

∂x
∂ϕ

∂x
∂vr

∂x
∂ω

∂y
∂r

∂y
∂ϕ

∂y
∂vr

∂y
∂ω

∂vx

∂r
∂vx

∂ϕ
∂vx

∂vr

∂vx

∂ω
∂vy

∂r

∂vy

∂ϕ

∂vy

∂vr

∂vy

∂ω











=









cos(ϕ) −r · sin(ϕ) 0 0
sin(ϕ) r · cos(ϕ) 0 0

ω · sin(ϕ) −vr · sin(ϕ) cos(ϕ) r · sin(ϕ)
ω · cos(ϕ) vr · cos(ϕ) sin(ϕ) r · cos(ϕ)









(2.15)

where r, ϕ, and vr are the actual UMRR sensor measurements. The measurement co-
variance matrix R(r,ϕ) is given by

R(r,ϕ) =









σ2
r 0 0 0
0 σ2

ϕ 0 0
0 0 σ2

vr
0

0 0 0 σ2
ω









(2.16)

where σr, σϕ, and σvr
are the measurement accuracies of the sensor. The variance of ω

is originally not part of the measurement noise covariance matrix R, but must be taken
into account if the turning rate is assumed to be zero (ω = 0). It represents the possible
error introduced by this assumption. If the maximum occurring turning rate is ωmax,
then the variance must be set to

σ2
ω = ω2

max (2.17)

Since ωmax is strongly depending on the targeted automotive application, it must be em-
pirically adjusted in real road traffic scenarios.

The second step of the transformation from polar sensor to global cartesian coordinates
is linear. The azimuthal orientation of the radar sensor sSens

α and its relative position
[sSens

x , sSens
y ]T to the origin of the global coordinate system are given by

sSens =





sSens
x

sSens
y

sSens
α



 (2.18)

These parameters lead to the following linear transformation

m
glob

(x,y) = T · mUMRR
(x,y) +









sSens
x

sSens
y

0
0









(2.19)

where m
glob

(x,y) is the measurement vector in global cartesian coordinates. The transforma-
tion is given by the 4 × 4 turning matrix

T =









cos(sSens
α ) − sin(sSens

α ) 0 0
sin(sSens

α ) cos(sSens
α ) 0 0

0 0 cos(sSens
α ) − sin(sSens

α )
0 0 sin(sSens

α ) cos(sSens
α )









(2.20)
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The appropriate covariance matrix P(x,y) is obtained by

P(x,y) = T · R(x,y) · T T (2.21)

Having transformed the UMRR measurements to a global cartesian coordinate system,
the measurement equation eq.(2.2) has become linear

m
glob

(x,y) = t + e (2.22)

so that the UMRR sensors can be utilized as stand-alone systems in a distributed radar
network, for example. All measurements have been transformed to the same global
coordinate system, so that the following postprocessing stages have a common data basis.

2.1.3 Linear Least Squares Estimation from Multiple Sensor Mea-
surements

This section will present an approach for determining an object’s kinematic state from
different single-sensor measurements in global cartesian coordinates. It will be assumed
that all measurement data serving as the input of the algorithm is originating from one
reflection center of an object and that the kinematic state of this object is constant dur-
ing the observation time. Furthermore, a linear relationship between the L-dimensional
unknown kinematic state vector t and the available M-dimensional measurement vector
m is assumed

m = Ht + e (2.23)

where H is an M × L measurement matrix. This system of linear equations can only
be solved if the number of measurements M is greater or equal the number of unknown
states L (M ≥ L). The criterion of such a linear least squares estimation can be written
as

e = m− Ht

eT e
!
= min

(2.24)

and leads to the ’normal equations’ of the least squares problem
(

HT H
)

t̂LS = HTm (2.25)

with the least squares estimate t̂LS of the unknown vector t given by

t̂LS =
(

HTH
)−1

HTm (2.26)

If the measurements m are unbiased, then the least squares estimate t̂LS is also unbiased

E [̂tLS] = t (2.27)

Its covariance matrix PLS can be calculated by

PLS = E
[

(̂tLS − E [̂tLS])(̂tLS − E [̂tLS])T
]

=
(

HTH
)−1

(2.28)
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These basic least squares calculations were first introduced by C.F.Gauß in order to de-
termine the orbits of planets.

As an extension of this basic least squares estimation, the different measurements can be
weighted by an m × m weight matrix W . This so-called weighted least squares approach

changes the least squares criterion in eq.(2.24) to

eT We
!
= min (2.29)

The weighted least squares estimate t̂WLS is then given by

t̂WLS =
(

HT WH
)−1

HTWm (2.30)

The estimation covariance matrix PWLS is given by

PWLS =
(

HT W H
)−1

(2.31)

The estimate t̂WLS is unbiased in the sense that

E
[

t̂WLS

]

= E [t] (2.32)

The choice of the optimal weight matrix W is discussed in several publications, e.g. [CC98]
or [BP99]. It is given by the inverse of the measurement covariance matrix R = E[eeT ]

W = R−1 (2.33)

In [CC98] t̂WLS is called the least squares optimal estimate of t, because it can be shown
that R−1 is the optimal weight for all positive definite symmetric matrices W in the sense
that

var(t− t̂WLS(R−1)) ≤ var(t− t̂WLS(W )) (2.34)

This means that t̂WLS is the minimum variance estimate of t. Generally, the direct
computation of the kinematic state estimation t̂ according to eq.(2.26) and (2.30) cannot
be recommended, because this calculation is prone to rounding errors. Instead, the
computation of the least squares estimate t̂ can be achieved by a QR-decomposition as
described in [MV93] or [Voß02].

2.1.4 Nonlinear Least Squares Estimation from Multiple Sensor
Measurements

The linear least squares estimation approach described in the previous section can be
extended to nonlinear measurement equations as given by

m = h (t) + e (2.35)

h(t) is a vector of nonlinear functions, e.g. if the single-sensor measurements are given in
the sensor’s polar coordinate system and the unknown kinematic state vector is chosen
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Figure 2.3: Example of the square error function ferror(t,m) for a target at the position
[tx, ty]

T = [12, −2]T m of the 4 HRR pulse radar network (a) and the 2 UMRR network
(b)

to be in global cartesian coordinates. The criterion for a least squares estimation is the
same one as defined in eq.(2.29). It can be rewritten for the optimal weight W = R−1,
so that the resulting square error function that has to be minimized is given by

ferror(t,m) = [m − h(t)]TR−1[m− h(t)]
!
= min (2.36)

In the figures 2.3(a) and (b) this square error function is exemplarily visualized for a
target at the position [tx, ty]

T = [12, −2]T m. Figure 2.3(a) shows ferror(t,m) for a HRR
pulse radar network, which is consisting of four only range measuring sensors. Figure
2.3(b) shows the appropriate square error function of a 2 UMRR sensor network. The
sensor positions are denoted in both figures by the green lines and the real target position
[tx, ty]

T = [12, −2]T m by the red line. To retrieve a solution of the nonlinear weighted
least squares criterion in eq.(2.36), the minimum t̂ of such a square error function has to
be found. As expected, only one minimum of the function ferror(t,m) is existing in the
scan area of the radar networks. This minimum is the solution of the over-determined
set of nonlinear measurement equations and can be determined by applying an iterative
algorithm called Gauß-Newton method [Voß02]. It is based on a first-order approximation
of the nonlinear measurement function h (t) and will be outlined in the following:

Iterative Algorithm:

In each iterative algorithm, a start value for the iteration process has to be chosen first.
In this iterative algorithm, the choice of the start value has proven to be uncritical for
the scan area of the considered multi-sensor networks. The target is expected to have a
position with tx > 0 within the radar network’s scan area, so that the initial kinematic
state value of this iterative process can be set to

t̂0 =
[

tx0
, 0, 0, 0

]T
with tx0

> 0 (2.37)

One iteration step consists of the following calculations:
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The approximate solution t̂n+1 of the over-determined system of nonlinear equations
at step n + 1 can be calculated by correcting a former solution t̂n with a term ∆t̂n+1

t̂n+1 = t̂n + ∆t̂n+1 (2.38)

The correction term ∆t̂n+1 is calculated in a weighted least squares sense

∆t̂n+1 = PHTR−1∆m (2.39)

The covariance matrix P is calculated in each step as follows

P = (HT R−1H)−1; (2.40)

R is the measurement noise covariance matrix that is utilized for weighting each measure-
ment with the inverse of the appropriate sensor accuracy. ∆m is a vector of innovations
between the single-sensor measurements m and the measurements m̂n expected from the
approximate solution t̂n at iteration step n.

∆m = m − m̂n (2.41)

H is the matrix of partial derivatives (the so-called Jacobi matrix) corresponding to the
appropriate nonlinear measurement equations as given in eq.(2.7)-(2.9) evaluated at the
approximate position t = t̂n

H =
[

∂m

∂tx
∂m

∂ty
∂m

∂tvx

∂m

∂tvy

]

t=t̂n
(2.42)

These calculation are repeated until a stop criterion is fulfilled. This stop criterion can
be chosen to be either a maximum number of iteration steps or an arbitrarily chosen
threshold ǫ, so that the sum of square errors

SOS = ∆t̂T
n+1 · ∆t̂n+1 (2.43)

computed in each iteration step is fulfilling

SOS ≤ ǫ (2.44)

The significance of the correction ∆t̂n+1 in the last step n+1 can be tested by calculating
the normalized square distance

d2
n+1 = ∆tT

n+1P
−1∆tn+1 (2.45)

A small value for d2
n+1 (less than about 0.01) is a clear indication that convergence has

occurred.

The Gauss-Newton method can be applied for the kinematic state estimation in each of
the radar network types presented in 1.4. Assuming the geometric preliminaries in 2.1.1,
the estimated kinematic state t̂ is unbiased. It also gives a minimum variance estimate of
t under the side conditions described for the linear least squares approach in the previous
section.
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Figure 2.4: Number of iterations until convergence occurs for different start values utilized
in a 4 HRR pulse radar network (a), (c), (e) and a 2 UMRR sensor network (b), (d), (f).
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t̂01 t̂02 t̂03

n̄iterat n̄iterat n̄iterat

Radar Network 1 4.25 78.9 % 3.92 79.7 % 4.35 79.5 %

(4 HRR)

Radar Network 2 4.16 99.8 % 3.89 99.9 % 4.36 99.6 %

(2 UMRR)

Table 2.1: Number of iterations until convergence occurs and estimation percentage for
the condition given in eq.(2.51)

Different enhancements of the presented iterative nonlinear least squares approach have
been investigated in [Voß02] and [Föl01]. In these publications, the introduction of a
so-called damp factor has been suggested in order to achieve a faster convergence. This
enhancement of the Gauss-Newton method is called damped Newton method. If the
measurement matrix H is badly conditioned, then different regularization methods can
be applied. But the author’s experience with the presented Gauss-Newton method in
automotive radar network applications leads to the conclusion that these enhancements
are not necessary to achieve convergence or to avoid wrong estimates. The mentioned
enhancements should be considered in more critical applications.

Choice of Start Value

As already stated in the last section, the choice of the iterative algorithm’s start value
is uncritical for automotive radar network applications. Convergence is guaranteed if
the initial value of t̂0 is chosen to be somewhere in the radar network’s detection area.
This statement should be exemplarily proven in the following. Therefore, the iteration
depth necessary for convergence will be investigated for three different initial values of
t̂0i (i = 1, . . . , 3):

t̂01 =
[

29, 0, 0, 0
]T

m (2.46)

t̂02 =
[

15, 0, 0, 0
]T

m (2.47)

t̂03 =
[

2, 0, 0, 0
]T

m (2.48)

Again, the 4 HRR pulse radar network and the 2 UMRR network are compared in this ex-
ample. The single sensor measurement values have been generated with the appropriate
accuracies as described in section 1.4.2 in eq.(1.29) and (1.32). The figures 2.4(a)-(f) show
the necessary number of iterations to achieve convergence in the iterative least squares
estimation for each point of the radar networks’ scanning areas. The start value of the
iteration is visualized by a green square. The different colors in the scan area refer to the
iteration depth necessary for convergence of a detected target at the appropriate position.

In the case of the 4 HRR pulse radar network, the number of iterations necessary for
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convergence are shown in the figures 2.4(a), 2.4(c), and 2.4(e). It can be seen that the
necessary iteration depth is not greater than 15, in fact, the average number of iterations
n̄iterat considering one complete scanning area lies within

3.92 ≤ n̄iterat ≤ 4.25 (2.49)

The appropriate iteration depth charts for the 2 UMRR sensor network are shown in
the figures 2.4(b), 2.4(d), and 2.4(f). The achieved results are similar to the ones of
the 4 HRR pulse radar network: The maximum number of necessary iterations is not
exceeding 15. The average number of iterations n̄iterat for the three different initial values
t̂0i (i = 1, . . . , 3) considering one complete scan area lies within the range

3.89 ≤ n̄iterat ≤ 4.36 (2.50)

Until now, only the number of iteration until convergence occurs have been considered.
But it may occur that convergence is achieved and the error of the estimated kinematic
state t̂ − t is too large to consider this result as correct or precise enough for a target
detection. Therefore, a maximum error is defined, so that all estimates fulfilling

√

(̂t− t)T (̂t− t) ≤ 1 m (2.51)

are considered as correct target estimates. The percentage of correct estimations accord-
ing to eq.(2.51) has been investigated by a Monte-Carlo simulation with 1000 simulations
for each of the three start values in both radar networks. The results show a significant
difference between the 4 HRR pulse radar network and the 2 UMRR network and are
summarized in table 2.1. The ILSE algorithm applied in a 2 UMRR network is correctly
converging with almost a perfect 100 %, whereas the correct estimate percentage in a 4
HRR radar network is reducing to 80 %. This result verifies the outcome of the radar
network concept comparison in section 1.4 of the last chapter, where the 2 UMRR sensor
network showed the better estimation performance due to the availability of complemen-
tary single-sensor measurements, such as range and azimuth angle.

Overall, these examples of different initial values of the iterative kinematic state esti-
mation have shown that convergence is occurring for almost every initial value inside the
radar network’s scanning area. But it has also proven that convergence of the iterative
kinematic state estimation does not mean that a reasonable kinematic state estimate is
determined. At this, the 2 UMRR network has verified to have a better kinematic state
estimation performance than the 4 HRR pulse radar network due to its complementary
radar sensor measurements.

2.1.5 Incorporation of Host Vehicle Information

The previous sections have dealt with determining the relative kinematic state between
the detected object and the host vehicle in global cartesian coordinates by either directly
transforming the sensor measurements to this coordinate system or by combining dif-
ferent single-sensor measurements in a least squares sense. Since this relative kinematic
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state information comprises the dynamics of two objects, it is reasonable to extract the
absolute kinematic state of the detected object by incorporating the available host ve-
hicle information. The information about the own vehicles motion is available on the
powertrain CAN bus of today’s vehicles and comprises the yaw-rate mHost

ω (k) and the
vehicle speed mHost

v (k).

mHost =

[

mHost
v

mHost
ω

]

(2.52)

Both are visualized in figure 2.5. The global cartesian coordinate system has been chosen
in a way that the turning point of the host vehicle is the origin of coordinates. Such a
choice simplifies the following calculations, so that the absolute kinematic state of the
detected object is given by

tabs(k) = trel(k) − D(k)mHost =









trelx (k)
trely (k)
trelvx

(k)
trelvy

(k)









−









0 0
0 0
1 0
0 r(k)









·
[

mHost
v

mHost
ω

]

(2.53)

with

r(k) =
√

(trelx (k))2 + (trely (k))2 (2.54)

x

y

Figure 2.5: Available information about the host vehicle’s kinematic state ( yaw-rate
mHost

ω (k) and velocity mHost
v (k))
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Since the yaw-rate mHost
ω (k) and the speed mHost

v (k) of the host vehicle are also measured
by sensors with a limited accuracy, the covariance matrix of the object’s absolute kine-
matic state consists of two parts, the covariance matrix of the relative kinematic state
estimate P rel(k) and the one corresponding to the host vehicle measurements:

P abs(k) = P rel(k) + D(k)RHostD(k)T (2.55)

The obtained absolute kinematic state of a detected object serves as the input of the
tracking filter described in the next section. Because such a tracking filter makes certain
assumptions on the absolute object dynamics, it is reasonable to feed it with the absolute
kinematic states of an object.

2.1.6 Summary

The previous sections have dealt with the kinematic state estimation as a batch process-
ing step. This means the estimates have been retrieved during a limited measurement
time where the unknown kinematic state of a detected object remained unchanged. At
this, two approaches have been described, the kinematic state determination from single-
sensor measurements and a least squares estimation approach utilizing all available mea-
surements corresponding to one reflection center of a detected object. Since the dynamic
behavior of an object over time plays an important role in the kinematic state estima-
tion, the following section will outline tracking algorithms, especially the Kalman filter
approach. At this, it will be focussed on the 2 UMRR sensor network. The reason for
leaving out the 4 HRR pulse radar network in further investigations is the following:

As already stated in the radar network comparison in section 1.4, a limitation in the
position estimation accuracy occurs if the aspect angles of the different sensors are al-
most similar and only one type of measurements is available. These side conditions meet
exactly the measurement situation of a 4 HRR pulse radar network. Only range mea-
surements are available for the position estimation and all sensors are mounted in the
vehicle’s front bumper, whose width is small compared to the covered range. In 1.4, it
has been shown that the azimuth angle determination with four extremely precise range
measurements still leads to a not negligible azimuth angle error in the estimated target
position. Such an observation has also been made with an analogous measurement con-
stellation in the research field of satellite navigation. The more the aspect angle of the
satellites relative to the GPS receiver differ from each other, the more accurate is the
resulting position estimate. Therefore, a quality measure for an arbitrary sensor-target
constellation has been developed and has been named dilution of precision (DOP). It
describes the quality of the estimated GPS receiver position determined by the pseudo
measurements of the available satellites. Different DOP calculations have been defined
in the literature, e.g. [PS96], and all have in common, that a large DOP value corre-
sponds to a bad accuracy condition due to similar aspect angles of the different sensors.
Exactly such a large DOP value is the outcome for almost the complete scan area of the
4 HRR pulse radar network. It can be explained by the limited extension of vehicle’s
front bumper, which is relative small compared to the covered scan distance of 30 or
50 m. The DOP of such a measurement constellation cannot be avoided in the case of
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automotive radar networks with only one type of position measurements. This leads to
the conclusion that complementary measurements, such as range and azimuth angle, are
necessary to achieve reliable, precise position estimates. As a consequence, the following
investigation of postprocessing algorithms will focus on the radar network concept with 2
UMRR sensors. This 2 UMRR sensor network and an adequate designed postprocessing
architecture will be explored in detail.

2.2 Target Tracking

In the previous section, different methods of determining a detected object’s kinematic
state have been outlined. These methods have estimated the unknown kinematic state
on the basis of the measurements of one measurement cycle. Measurements of multiple
cycles could only be utilized under the assumption that the kinematic state of the object
is constant during the observation time. The task of a tracking filter is to extend such an
estimated "snapshot" of a dynamic scenario by taking the time-varying object behavior
and measurement effects into account. The tracking filter smoothes kinematic state
estimation errors and helps to avoid missed detections. It incorporates the kinematic
state estimation task of the least squares estimator in its filter equations as well as a
model of the observed object’s dynamics. The most popular tracking filter approach is
the Kalman filter named after its inventor R.E. Kalman [Kal60] and will be described in
detail in the following. Different derivatives of this basic filter concept as well as different
Kalman filter enhancements, either in tracking performance or computation complexity,
will also be presented.

2.2.1 Kalman Filtering

The goal of the Kalman filter is to estimate its unknown filter states, i.e. the kinematic
states in this thesis, t̂(k|k) at cycle k on the basis of the measurements taken in the
previous k cycles

Mk

0
= {m(0), . . . , m(k)} (2.56)

Without making any assumptions on the dynamic behavior of a target, the optimal
estimate t̂(k|k) of the target’s real kinematic state t(k) at cycle k in the minimum mean
square sense (MMSE) is given by the conditional mean [Kay93]

t̂(k|k) = E
[

t(k)|Mk

0

]

=

∫

t(k) · p
(

t(k)|Mk

0

)

dt(k) (2.57)

where Mk

0
is the sequence of measurements up to cycle k. This determination of the

posterior estimate t̂(k|k) is called Bayesian approach and requires the knowledge of the
posterior probability density function (PDF) p

(

t(k)|Mk

0

)

. In most cases this density is
unknown. But the Bayesian approach can be simplified under the assumption that the
densities of all variables are Gaussian [WM01], so that the posteriori kinematic state
estimate t̂(k|k) at cycle k is given by the following equations
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Optimal State Estimate Update:

t̂(k|k) = t̂(k|k − 1) + K(k) · m̃(k) (2.58)

K(k) = C(k) · S(k)−1 (2.59)

P (k|k) = P (k|k − 1) − K(k) · R(k) · K(k)T (2.60)

where R(k) is the measurement noise covariance matrix, m̃(k) is the measurement inno-
vation

m̃(k) = m(k) − m̂(k|k − 1) (2.61)

with its covariance matrix S(k). C(k) is the cross-covariance matrix between the target’s
kinematic state and the measurements and is given by

C(k) = E
[

(t(k) − E[t(k)])(m(k) − E[m(k)])T
]

(2.62)

The prediction of the kinematic state t̂(k|k − 1), the appropriate covariance matrix
P (k|k−1), and the measurements m̂(k|k−1) are obtained from the following prediction
equations:

Optimal State Estimate Prediction:

t̂(k|k − 1) = E
[

φk−1(̂t(k − 1|k − 1), f(k − 1), w(k − 1))
]

(2.63)

P (k|k − 1) = C(k) · S(k)−1 (2.64)

m̂(k|k − 1) = E
[

hk−1(̂t(k|k − 1), f(k), v(k))
]

(2.65)

In these prediction equations, the state-transition function φk−1(. . .) describes the time-
varying behavior of the kinematic filter states and the measurement function hk−1(. . .)
the relation between the measurements and the filter states. Both base on the following
state-space model

t(k|k − 1) = φk−1(tk−1|k−1, fk−1, wk−1) (2.66)

m(k) = hk(t(k|k), f(k), v(k)) (2.67)

This model is a general system description assuming . . .

• that the state prediction t(k|k−1) is depending on the last posteriori state estimate
t(k − 1|k − 1) at time k − 1, on a deterministic control input f(k), e.g. the known
position change of the own vehicle, and on the Gaussian noise w(k) representing
the randomness in the target’s motion.

• that the measurements m(k) at time k are depending on the real kinematic state
t(k), on the deterministic control input f(k), and on the Gaussian measurement
noise v(k).
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This general Kalman filter approach will be the starting point for the following derivations
of three different types of Kalman filters, i.e. the linear Kalman filter (LKF), the extended
Kalman filter (EKF), and the unscented Kalman filter (UKF). All these approaches
will refer to the general recursive estimation equations (2.58)-(2.65) and simplify them
according to each filter’s assumptions.

2.2.2 Linear Kalman Filter

The linear Kalman filter is based on the general Kalman filter approach of the last section
with two additional assumptions:

• First, it assumes the correlation between the target’s kinematic state samples of
consecutive scans k and k + 1 to be given by a first-order Gauss-Markov pro-
cess [Kay93].

• Second, the unknown states t(k) and the measurements m(k) are assumed to have
a linear relationship.

Thus, the general state-space description of eq. (2.66) and (2.67) is simplified to the
following equations

t(k + 1) = Φ(k) · t(k) + B(k) · f(k) + w(k) (2.68)

m(k) = H(k) · t(k) + D(k) · f(k) + v(k) (2.69)

At this, t is the state vector that wants to be estimated. The matrix Φ(k) describes
the state transition from scan k to k + 1 and is assumed to be known. w(k) is a zero-
mean, white, Gaussian noise with assumed known covariance matrix Q. Q is also called
process noise and represents the randomness in the target’s motion, such as a random
acceleration. The vector f(k) is a deterministic input, such as a known kinematic state
change of the own vehicle at scan k. B(k) is the appropriate state transition matrix
for the deterministic control input f(k). In the measurement equation (2.69), H(k) is
the measurement matrix and v(k) is the zero-mean, white, Gaussian measurement noise
with a covariance matrix R(k). The deterministic control input f(k) may also have an
impact on the measurements m(k), so that this influence is described by the matrix D(k).

Based on this state-space model, the LKF estimates the kinematic state vector t̂(k + 1)
at scan k + 1 on the basis of the previous k + 1 measurements

Mk+1

0
= {m(0), . . . , m(k + 1)} (2.70)

with their covariance matrices R(0), . . . , R(k +1). The following description of the LKF
algorithm can directly be derived from the basic recursive estimation equations in (2.58)-
(2.65) by inserting the underlying linear state-space description of eq.(2.68) and (2.69).
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Filter Algorithm

Given the target dynamics and the measurement model from the state-space description
in eq.(2.68) and (2.69), the linear Kalman filter steps are as follows:

State Estimate Initialization:

P (0|0) = Cov(t(0)) (2.71)

t̂(0|0) = E(t(0)) (2.72)

State Estimate Prediction:

P (k|k − 1) = Φ(k)P (k − 1|k − 1)Φ(k)T + Q (2.73)

t̂(k|k − 1) = Φ(k)̂t(k − 1|k − 1) + B(k − 1)f(k − 1) (2.74)

State Estimate Update:

K(k) = P (k|k − 1)H(k)T (H(k)P (k|k − 1)H(k)T + R(k))−1 (2.75)

P (k|k) = (I − K(k)H(k))P (k|k − 1) (2.76)

t̂(k|k) = t̂(k|k − 1) + K(k)(m(k) − D(k)f(k) − H(k)̂t(k|k − 1)) (2.77)

xy xy

Figure 2.6: Implementation of the Kalman filter algorithm
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The LKF is an optimal MMSE estimator under the assumption that the process and
the measurement noise are Gaussian. Because both are assumed to be zero-mean, the
resulting state estimate t̂(k|k) is also unbiased

E
[

t̂(k|k)
]

= E [t(k|k)] (2.78)

The LKF approach can be considered as an efficient method of analytically propagating
Gaussian random variables through linear system dynamics.

A realization of the LKF is shown in figure 2.6. Beginning with the update equations
(2.75), (2.76), and (2.77), the measurements m(k) at time k are received from the different
sensors and corrected by the deterministic control input D(k) ·f(k). Then, the innovation
of the corrected measurements is calculated by subtracting the expected measurements
m̂(k|k − 1) derived from the information of the last cycle. After that, the Kalman gain
K(k) is calculated according to eq.(2.75). Knowing the weight K(k) of the innovation
term (m(k)−D(k)f(k)−H(k)̂t(k|k− 1)) in eq.(2.77), the new kinematic state estimate
t̂(k|k) and the appropriate covariance matrix P (k|k) (see eq.(2.76)) are calculated. To
obtain the predictions of the kinematic states and the covariance matrix for the next
measurement cycle k + 1, the prediction equations (2.73) and (2.74) are applied.

Example of the Linear Kalman Filter Steps

To illustrate the cycle-to-cycle estimation process of a LKF and to give an impression of
the impact of different Kalman parameters on its kinematic state estimation, a principle
example will be explained in the following.

As shown in figure 2.7(a), a target with the kinematic state t(0|0) is moving in the
positive y-direction at scan k = 0. After the first target detection, the Kalman filter
is initialized and fed with the actual target measurement m(0), so that the first a pos-
teriori kinematic state estimate t̂(0|0) with its appropriate covariance matrix P (0|0) is
retrieved. In this example, the Kalman filter initialization has been a poor choice, so
that the uncertainty of the first kinematic state estimate is very high. In the next cy-
cle (figure 2.7(b)), the target has the real kinematic state t(1|1) and the actual target
measurement vector m(1) has an uncertainty described by the covariance matrix R(1).
The predicted kinematic state t̂(1|0) is calculated from the information of the previous
estimate t̂(0|0). Due to the possible error of this prediction, its uncertainty is increasing,
so that the predicted covariance matrix P (1|0) is much greater than the measurement
noise covariance matrix R(1). Due to the weighting according to the covariance matrices,
the actual measurement will have a great impact on the new posteriori estimate t̂(1|1)
in the Kalman filter update equations. The uncertainty of the new estimate given by the
covariance matrix P (1|1) is significantly decreasing compared to P (0|0). This prediction
and updating procedure is repeated in every measurement cycle, so that the target’s
kinematic state estimate t̂(3|3) at cycle k = 3 has achieved a high accuracy denoted by
small values in the covariance matrix P (3|3) (figure 2.7(d)).

Assuming precise single-sensor measurements, the quickness of convergence towards the
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real target’s kinematic state t(k) depends only on the quality of filter state initialization.
It is simple to understand that the closer the initialization of the filter’s kinematic states
t̂(0|0) is located to the real kinematic states t(0), the faster a precise kinematic state
estimate can be retrieved. But in the case where the choice of the state initialization
has been poor, the convergence time can also be kept short by increasing the predicted
covariance matrix of the predicted kinematic state estimate in the first measurement cy-
cles after initialization. Such an increase in the uncertainty causes the Kalman filter "to
believe" more in the actual measurements than in its filter states and thus will quickly
lead to an accurate kinematic state estimate. It should only be applied over a few cycles
because otherwise the Kalman filter will not enhance the estimation accuracy compared
to the pure measurement information.

2.2.3 Target Dynamic Models

The special advantage in Kalman filtering is the incorporation of a target dynamic model
that describes the possible kinematic state changes between consecutive measurement
cycles. The better the target dynamic model fits to the real target behavior, the more
accurate are the filter state estimates. The target dynamic model is represented by the
so-called process noise in the state-transition equation (2.68) of the underlying state-
space model. The covariance matrix of this process noise expresses the uncertainty in
the Kalman filter state estimation due to random target dynamics, or in other words, it
determines the allowed target dynamic changes from cycle to cycle. It has to be derived
from the target dynamics occurring in the targeted road traffic situations. The choice
of the process noise covariance matrix Q has been discussed in many publications, e.g.
in [BP99], [BSF88], and [BSL93]. These works concentrate on the field of airborne radar
signal processing and not every target dynamic model in this field may be reasonable for
the application in road traffic scenarios. This thesis will present two approaches that have
proven to show a very good performance in real traffic scenarios, the piecewise constant
white noise acceleration and the piecewise constant Wiener process acceleration model.

Piecewise Constant White Noise Acceleration Model

The state-transition equation of the LKF has already been given in (2.68) and can be
rewritten for the stochastic part as

t(k + 1) = Φ(k) · t(k) + w(k) (2.79)

Assuming t(k) to be a 2-state vector

t(k) =
[

tx ty tvx
tvy

]T
(2.80)
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Figure 2.7: Example of the principle Kalman filter estimation steps from the initialization
t̂(0|0), P (0|0) to the estimate t̂(3|3), P (3|3) at cycle 3

the transition matrix Φ(k) is given by

Φ(k) =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









(2.81)

where T denotes the duration of the sampling period. In contradiction to many other
target dynamic model derivations in the literature, the piecewise constant white noise
acceleration model is directly defined in discrete time. It assumes that the target performs
accelerations that are constant over the sampling interval T . This can be expressed by
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a discrete time process noise wa(k), which is a scalar-valued, zero-mean white sequence
with

E [wa(k)wa(l)] = σ2
wa

δ(kl) (2.82)

It is assumed that wa(k) is the constant acceleration during the k-th sampling period
of length T . Thus, the target’s velocity increases during this period by wa(k) · T . The
position is also affected by wa(k) · T 2/2. Therefore, the process noise w(k) in eq.(2.79)
is given by

w(k) =

[

T 2/2
T

]

· wa(k) (2.83)

The appropriate process noise covariance matrix Q can be calculated as

Q = E
[

w(k)Tw(k)
]

=

[

T 2/2
T

]

· σ2
wa(k) ·

[

T 2/2 T
]

=

[

1
4
T 4 1

2
T 3

1
2
T 3 T 2

]

· σ2
wa(k)

(2.84)

As a guideline for the process noise variance choice σ2
wa(k), [BSL93] suggests to select the

standard deviation σwa(k) to be of the order of the maximum occurring acceleration amax,
so that a practical range of σwa(k) is given by

0.4 · amax ≤ σwa(k) ≤ amax (2.85)

In real road traffic situations, this guideline has proven to work properly.

Piecewise Constant Wiener Process Acceleration Model

Some safety applications demand an excellent performance in traffic situation where great
accelerations occur, e.g. in a situation where a road user performs an emergency break-
ing. Utilizing a 2-state Kalman filter with a 2-state target dynamic model, i.e. without
any estimated acceleration t̂a, will lead to poor kinematic state predictions and thus to
missed track updates. This tracking filter behavior is critical for the decisions/actions
that have to be taken by the safety application and can be avoided by implementing a
3-state Kalman filter with an appropriate 3-state target dynamic model. Such a 3-state
target dynamic model can analogously be developed to the 2-state piecewise constant
white noise acceleration model derived in the previous section.

The so-called piecewise constant Wiener process noise acceleration model is a 3-state
target dynamic model and assumes that the increments to acceleration ∆a are constant
over the sampling interval T . This leads to the process noise w(k) in eq.(2.79) given by

w(k) =





T 2/2
T
1



 · wa(k) (2.86)
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with the appropriate process noise covariance matrix Q given by

Q = E
[

w(k)Tw(k)
]

=





T 2/2
T
1



 · σ2
wa(k) ·

[

T 2/2 T 1
]

=





1
4
T 4 1

2
T 3 1

2
T 2

1
2
T 3 T 2 T

1
2
T 2 T 1



 · σ2
wa(k)

(2.87)

The guideline for choosing σwa(k) can be given, so that

0.4 · ∆amax ≤ σwa(k) ≤ ∆amax (2.88)

This guideline suggests that σwa(k) should be smaller than the maximum acceleration
increment expected over the sampling period T , but at least 40 % of this maximum ac-
celeration increment.

The main difference between the presented 2-state and 3-state model is the different
assumption on the observed target’s acceleration. In the piecewise constant white noise
acceleration model, the input acceleration is uncorrelated from measurement cycle to
measurement cycle while the piecewise constant Wiener process noise acceleration model
assumes the acceleration to be a random walk process.

Interactive Multiple Modeling (IMM)

Several publications (e.g. [BP99]) try to improve the target dynamic modeling of the
standard Kalman filter implementation by applying multiple models, each representing
a different target dynamic behavior. At this, these different models are processed in a
parallel Kalman filter structure and the achieved tracking filter results are combined to a
final filter state estimate. Such an approach is called interacting multiple model (IMM)
Kalman filtering and has proven to achieve more accurate state estimates. But after
investigating the side conditions of this superior performance, it became clear that the
IMM approach will be no benefit in an automotive postprocessing structure. The IMM is
advantageous if the measurement cycle time is relative long, so that the observed object
could have performed a significant maneuver (which can be modeled appropriately by one
of the different dynamic models). The considered radar sensors in this thesis have a target
list update rate of 40 Hz, which refers to a measurement cycle time of 25 ms. During this
time, none of the considered road users will perform such a significant kinematic state
change, so that a well-chosen single-target dynamic model reveals to be not inferior to the
IMM approach. Additionally, the IMM approach will linearly increase the computation
complexity with the number of implemented models. As a conclusion, the IMM approach
will not be considered for the postprocessing architecture in this thesis.
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Summary

The choice of the process noise matrix Q and thus the target dynamic model is a compro-
mise between choosing a quick responding and a well smoothing, noise filtering Kalman
filter. Starting from the present target dynamic model derivations is a good basis for
adjusting each model according to the targeted real road traffic scenarios. But it is
important that this theoretical derived process noise and its parameters are evaluated
empirically and appropriately adjusted in real road traffic situations.

2.2.4 Extended Kalman Filter

The LKF requirement that all observation and process models are linear is rarely satisfied
in practical applications. To apply the Kalman filter approach to a nonlinear measure-
ment situation as given by the considered UMRR ssensors delivering measurements in
polar sensor coordinates while estimating the kinematic state in global cartesian coor-
dinates, one idea is to linearize the underlying nonlinear measurement equations. Such
a tracking filter approach is the extended Kalman filter (EKF). It works with the same
linear filter equations as the LKF while the measurement matrix H is obtained by a
linearization of the nonlinear measurement equations h(. . .).

Considering this case of nonlinear measurement equations, the LKF state-space descrip-
tion of eq.(2.68) and (2.69) changes to

t(k + 1) = Φ(k) · t(k) + B(k) · f(k) + q(k)

m(k) = hk(t(k)) + D(k) · f(k) + v(k)
(2.89)

To achieve a linear state-space model, the EKF linearizes the nonlinear measurement
function hk(t(k)) in the moment where the measurements are taken under the assumption
that the predicted kinematic state is not "too much" error-prone. This linearization of
hk(t(k)) is a first order approximation of the nonlinear measurement equations hk(t(k))
at the target’s predicted kinematic state t̂(k|k − 1). Thus, the LKF equations remain
valid for the EKF with the measurement matrix H(k) being the linearization of hk(t(k)).
The EKF equations are summarized on the next page.
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State Estimate Initialization:

P (0|0) = Cov(t(0)) (2.90)

t̂(0|0) = E(t(0)) (2.91)

State Estimate Prediction:

P (k|k − 1) = Φ(k)P (k − 1|k − 1)Φ(k)T + Q (2.92)

t̂(k|k − 1) = Φ(k)̂t(k − 1|k − 1) + B(k − 1)f(k − 1) (2.93)

State Estimate Update:

K(k) = P (k|k − 1)H(k)T (H(k)P (k|k − 1)H(k)T + R(k))−1 (2.94)

P (k|k) = (I − K(k)H(k))P (k|k − 1) (2.95)

t̂(k|k) = t̂(k|k − 1) + K(k)(m(k) − D(k)f(k) − H(k)̂t(k|k − 1)) (2.96)

Linearization of hk(t):

H(k) =
∂hk(t)

∂t

∣

∣

∣

t=t̂(k|k−1)
(2.97)

The EKF has proven to be a powerful and popular approach, but must be considered
as suboptimal compared to the LKF. The LKF can be viewed as an efficient method
for analytically propagating Gaussian random variables through linear system dynamics.
In the case of the nonlinear state-space model in eq.(2.89), the EKF approximates the
optimal term of the measurement predictions in eq.(2.65) due to its linearization of the
nonlinear measurement function hk(t) by

m̂(k|k − 1) ≈ H(k)̂t(k|k − 1) (2.98)

with H(k) defined in eq.(2.97). Thus, it is introducing an error, which is the residual of
the Taylor serie’s first term given by

Resk(t(k)) = hk(t(k)) − hk (̂t(k|k − 1)) +
∂hk(t)

∂t

∣

∣

∣

t=t̂(k|k−1)
· (t(k) − t̂(k|k − 1))

1!
(2.99)

Due to this error, the analytical propagation of Gaussian random variables through
this linearized system results in a suboptimal state and covariance estimate, t̂(k|k) and
P (k|k). It may occur that large errors are introduced in the linearization process by
error-prone state predictions, so that convergence is not guaranteed. To avoid such di-
vergence and to obtain the best possible estimate with the EKF, different methods of
feeding it with the actual measurement data have been developed:
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Parallel processing of the actual measurement data is the direct approach as it is
applied by the standard EKF equations (2.90)-(2.97). It means that the complete set of
N measurements belonging to a single target

m =











mSens 1

mSens 2

...
mSens N











(2.100)

is fed simultaneously in the EKF to correct the state prediction t̂(k|k − 1) of the last
cycle. The accuracy of the linearization (2.97) and thus the accuracy of the estimated
filter state t̂(k|k) is depending on the quality of the state prediction t̂(k|k − 1). In case
of a poor prediction, this approach introduces a large estimation error or may even lead
to divergence in some situations.

Sequential processing tries to ensure the convergence and accuracy of the state es-
timation by taking advantage of the available N target measurements. These target
measurements are sequentially fed into the EKF in the order of their measurement accu-
racy (most accurate measurement first). This means that the EKF is updated as many
times as number of measurements are available.

mn =
[

mSens n
]

n = 1, . . . , N (2.101)

In the first filter update step, the state prediction t̂(k|k−1) of the last measurement cycle
is corrected by the first measurement m1(k) to t̂1(k|k). If t̂(k|k− 1) is of poor quality, it
will be significantly corrected by m1(k). This corrected filter state prediction will again
be corrected by the next available measurement m2(k) in the following filter update step.
But in contradiction to the parallel processing approach, the measurement matrix H2(k)
will not be determined at the first state prediction t̂(k|k−1). H2(k) will be calculated as
a linearization of h(k)(t) at the corrected state prediction t̂1(k|k) and thus will introduce
a significantly smaller linearization error. This sequential update procedure is repeated
until all N measurements are processed once. The n-th update step is given by

Kn(k) = Pn(k|k − 1)Hn(k)T (Hn(k)Pn(k|k)H(k)T + Rn(k))−1 (2.102)

Pn(k|k) = (I − Kn(k)Hn(k))Pn(k|k) (2.103)

t̂n(k|k) = t̂n(k|k) + Kn(k)(mn(k) − D(k)f(k) − Hn(k)̂tn(k|k)) (2.104)

where

Hn(k) =
∂hk(t)

∂t

∣

∣

∣

t=t̂n(k|k)
(2.105)

with

P0(k|k) = Pn(k|k − 1) (2.106)

t̂0(k|k) = t̂n(k|k − 1) (2.107)

No Kalman filter state prediction must be calculated between the different sequential
update steps within the same measurement cycle.
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The sequential calculation of the EKF state update leads to an enhancement of the
linearization accuracy in every sequential processing step, because the state prediction
t̂(k|k − 1) is corrected to a more accurate state estimate by each measurement value in
each of the sequential processing steps. In addition to increasing the filter stability, this
approach also leads to a significant computational simplification. Only one measurement
value mSens n(k) and one measurement noise covariance matrix R(k) are simultaneously
fed into the EKF update equation per sequential step. This causes a reduced size of all
incorporated matrices and thus to a significantly reduced number of operations compared
to the parallel approach.

2.2.5 Unscented Kalman Filter

The unscented Kalman filter (UKF) is another approach of applying the Kalman filter
to nonlinear systems. The previously presented EKF is considered to be suboptimal
because it simply replaces every nonlinear relationship with a linearized approximation,
which leads to the described disadvantages. In [JU96] an alternative Kalman filter ap-
proach to nonlinear systems is derived. This approach is not approximating the nonlinear
functions in eq.(2.63) and (2.65), instead, it chooses discrete representations of the mean
and variance information of all Gaussian random variables contributing to the system
description, so that these discrete representations can be propagated through the true
nonlinear system. The advantage of this procedure is the avoidance of linearization er-
rors that might lead to divergence or large estimation errors. According to [WM01], the
achieved accuracy of the posteriori state estimate t̂((k|k)) corresponds to the accuracy
of a second order Taylor series approximating the functions in eq.(2.63) and (2.65) for
any nonlinearity. The unscented transformation was first introduced by [JU96] and is
discussed intensively in [WM01], [Jul00], [JU97a], [JU97b] and [Jul98] for different appli-
cations.

Unscented Transformation

The unscented transformation (UT) is a method for calculating the statistics of a random
variable x that undergoes a nonlinear transformation y = g(x). The idea of the UT is to
approximate the statistical distribution of x by generating a discrete distribution having
the same first and second statistical moment. Each point of this discrete distribution ap-
proximation can directly be propagated through the nonlinear function g(x). The mean
and covariance estimate of the nonlinear transformation result y can be extracted from
the nonlinear transformation of the approximated discrete distribution of x. This basic
principle of the UT approach is illustrated in figure 2.8.

Assuming that x has the mean value x̄ and covariance Px, the statistics of x can be
represented by a discrete approximation of its distribution. This discrete approximation



2.2 Target Tracking 75

Figure 2.8: The discrete sigma points Xi are capturing the mean and covariance of
the random variable x. After the nonlinear transformation Yi = g(Xi), the mean and
covariance of y can be estimated from sigma points Yi

is obtained by forming a matrix X of 2L + 1 so-called sigma vectors Xi

X0 = x̄ (2.108)

Xi = x̄ +
(

√

(L + λ)Px

)

i
, i = 1, . . . , L (2.109)

Xi = x̄ −
(

√

(L + λ)Px

)

i−L
, i = L + 1, . . . , 2L (2.110)

(2.111)

with the scaling parameter λ

λ = α2(L + κ) − L (2.112)

The constant α determines the spread of the discrete sigma points around the mean x̄
and is usually set to a small positive value in the range of 10−4 ≤ α ≤ 1 (see [WM01]).
The second scaling parameter κ must be set to either 0 or 3 − L. The parameter β
incorporates prior knowledge about the distribution of x, e.g. for Gaussian distributions
β = 2 has proven to be optimal. The term (

√

(L + λ)Px)i is the i-th column of the
matrix square root of (L + λ)Px.

The discrete sigma points Xi are now propagated through the true nonlinear function
g(. . .), so that the resulting discrete sigma points Yi approximating the distribution of y
are

Yi = g(Xi) i = 0, . . . , 2L (2.113)
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The estimated mean and the covariance of the random variable y can be regained by
calculating the weighted sample mean and covariance of the propagated sigma points Yi

ȳ ≈
2L
∑

i=0

W
(m)
i Yi (2.114)

Py ≈
2L
∑

i=0

W
(c)
i [Yi − ȳ][Yi − ȳ]T (2.115)

with weights W
(m)
i and W

(c)
i given by

W
(m)
0 = λ/(L + λ)

W
(c)
0 = λ/(L + λ) + (1 − α2 + β)

W
(m)
i = W

(c)
i = 1/[2(L + λ)] i = 1, . . . , 2L

(2.116)

Filter Algorithm

The unscented Kalman filter is a straightforward application of the UT to the general
Kalman filter equations (2.58)-(2.60) and (2.63)-(2.65). Assuming the same state-space
model as in the case of the EKF

t(k + 1) = Φ(k) · t(k) + B(k) · f(k) + q(k)

m(k) = hk(t(k)) + D(k) · f(k) + v(k)
(2.117)

with the process and the measurement noise being zero-mean, white, and Gaussian, the
UKF filter equations are given by the following equations:
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State Estimate Initialization:

P (0|0) = Cov(t(0)) (2.118)

t̂(0|0) = E(t(0)) (2.119)

Sigma Points Calculation:

X (k − 1|k − 1) =





t̂(k − 1|k − 1)

t̂(k − 1|k − 1) + γ
√

P (k − 1|k − 1)

t̂(k − 1|k − 1) − γ
√

P (k − 1|k − 1)





T

(2.120)

State Estimate Prediction:

X (k|k − 1) = Φ(k − 1) · X (k − 1|k − 1) (2.121)

t̂(k|k − 1) =

2L
∑

i=0

W
(m)
i Xi,k|k−1 + B(k) · f(k) (2.122)

P (k|k − 1) =
2L
∑

i=0

W
(c)
i

[

Xi,k|k−1 − t̂(k|k − 1)
] [

Xi,k|k−1 − t̂(k|k − 1)
]T

+ Q(2.123)

Y(k|k − 1) = hk(X (k|k − 1)) (2.124)

m̂(k|k − 1) =
2L
∑

i=0

W
(m)
i Yi,k|k−1 (2.125)

State Estimate Update:

Pỹ(k) ỹ(k) =
2L
∑

i=0

W
(c)
i

[

Yi,k|k−1 − m̂(k|k − 1)
] [

Yi,k|k−1 − m̂(k|k − 1)
]T

(2.126)

Px(k) y(k) =

2L
∑

i=0

W
(c)
i

[

Xi,k|k−1 − t̂(k|k − 1)
] [

Yi,k|k−1 − m̂(k|k − 1)
]T

(2.127)

K(k) = Px(k) y(k)P
−1
ỹ(k) ỹ(k) (2.128)

t̂(k|k) = t̂(k|k − 1) + K(k)(m(k|k) + D(k) · f(k) − m̂(k|k − 1)) (2.129)

P (k|k) = P (k|k − 1) − K(k)Pỹ(k) ỹ(k)K(k)T (2.130)

where
γ =

√

(L + λ), λ =composite scaling parameter, L =dimension of the state vector,
Q(k) =process noise covariance matrix at scan k, R(k) =measurement noise covariance
matrix at scan k, and Wi =weights as calculated in eq.(2.116)
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Postprocessing Postprocessing Postprocessing Postprocessing

System Type 1 System Type 2 System Type 3 System Type 4

Kinematic State single sensor ILSE seq. EKF UKF

Estimation Task measurements

Tracking Task LKF LKF seq. EKF UKF

Table 2.2: 5 different postprocessing systems in a 2 UMRR sensor network for single-
target situations

2.2.6 Comparison of Different Kinematic State Estimation Sys-
tems

In the previous sections, two kinematic state estimation methods and three different types
of Kalman filters have been presented and their properties have been outlined. Now, this
section will exemplarily evaluate the kinematic state estimation plus tracking perfor-
mance of four different single-target postprocessing systems consisting of the presented
algorithms. This comparison will base on simulated measurements of the previously de-
scribed 2 UMRR sensor network. A brief overview of the four different postprocessing
systems is given in table 2.2.

The first postprocessing system is a simple straightforward approach. Each UMRR sensor
is measuring one range, one azimuth angle, and one radial velocity per target. These mea-
surements can directly be transformed to global cartesian coordinates (see section 2.1.2)
and are sequentially fed in the LKF, which is fusing the measurements of the two sensors.

The second postprocessing system is estimating the kinematic state in global cartesian co-
ordinates by applying the iterative least squares algorithm of section 2.1.4. The achieved,
already fused estimate is then fed into the LKF where the final kinematic state estimate
is retrieved.

The postprocessing system no. 3 is fusing the two processing steps, i.e. the kinematic
state estimation and the tracking filter, in a sequential EKF as it has been described in
2.2.4. All single-sensor measurements are fed sequentially into the tracking filter and the
kinematic state estimate is updated in each processing step until all measurements are
processed once.

The 4-th postprocessing system consists also of a single postprocessing stage, namely
the UKF presented in the previous section. It determines the kinematic state by approx-
imating the stochastic behavior of the random variables in the system and propagating
them through the true nonlinear system.
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( a )                                      ( b )                           ( c )                            ( d )  
Figure 2.9: Tracking test scenario: The red car is turning into the lane of the host car
and is accelerating (a). Then the host car is also accelerating (b) until it is getting close
to the red car (c). After that, it is decelerating until it stops and the red car is turning
to one’s left (d).

Test Scenario

The considered test scenario for comparing the different single-target postprocessing sys-
tems is the vehicle maneuver visualized in figure 2.9(a)-(d). The red car is turning into
the lane of the host car with a velocity of 20 km/h and is accelerating with 2 m/s2(a),
then the host car is also accelerating with 4 m/s2(b) until it is getting close to the red
car (c). After that, both cars are decelerating with 4 m/s2. Finally, the host vehicle is
stopping and the red car is turning to the left side (d).

Simulation Preliminaries

All postprocessing systems in this comparison will have the same simulated target mea-
surements as inputs. Given the real target kinematic state

t =
[

tx, ty, tvx
tvy

]T
(2.131)
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the single-sensor measurements have been generated according to the following measure-
ment equations

mSens n
r =

√

(tx − sSens n
x )2 +

(

ty − sSens n
y

)2
+ nSens n

r

mSens n
ϕ = arctan

(

sSens n
y − ty

sSens n
x − tx

)

+ nSens n
ϕ

mSens n
vr

=
tvx

·
(

tx − sSens n
x

)

+ tvy
·
(

ty − sSens n
y

)

√

(tx − sSens n
x )2 +

(

ty − sSens n
y

)2
+ nSens n

vr

(2.132)

where sSens n
x and sSens n

y are the coordinates of the n-th sensor. The additive noise terms
nSens n

r , nSens n
ϕ , and nSens n

vr
are unbiased Gaussian random variables

E[nSens n
r ] = E[nSens n

ϕ ] = E[nSens n
vr

] = 0 (2.133)

with standard deviations σSens n
r , σSens n

ϕ , and σSens n
vr

according to the appropriate measure-
ment accuracies of an UMRR sensor (see section 1.3.2). The number of UMRR sensors
in the radar network is N = 2. The measurements of these two UMRR sensors are taken
simultaneously. This synchronism is the ideal measurement case because the estimation
accuracy is improving by a factor of 1/

√
2 due to the measurement redundancy.

All Kalman filters in the applied single-target postprocessing systems are based on the
same underlying target dynamic model, namely the piecewise constant white noise accel-
eration model (see section 2.2.3) with the modeling parameter

σwa(k) = 3 m/s (2.134)

The test scenario has been simulated 500 times per postprocessing system and the re-
trieved kinematic state estimation results have been utilized to calculate the different
postprocessing systems’ position estimation accuracies given by the standard deviations
σr and σφ.

Expected Results

Before having a closer look at the estimation and tracking results of the single-target
postprocessing systems, the expected performance of these systems should be discussed
briefly. The relative trajectory of the considered target maneuver as it is observed by the
host vehicle is shown in figures 2.10(a) and 2.10(b). In order to get an impression of the
estimation accuracy gain of a single-target postprocessing system with a tracking filter,
figure 2.10(a) visualizes also the positions directly retrieved from the single UMRR sen-
sor measurements (light grey dots) and 2.10(b) shows the appropriate enhanced tracking
results (grey dots). But what accuracy gain can be expected from the different single-
target postprocessing systems ?
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Figure 2.10: Trajectory of the tracking test scenario with the raw measurement data of
the 2 UMRR sensors (a) and the processed data at the output of the tracking filter (b)

Given the single-sensor measurement accuracies

σSens n
r = 0.12 m

σSens n
ϕ = 1 ◦

(2.135)

with n = 1, 2 , it can be expected that the estimation accuracies of the different postpro-
cessing systems are significantly better. Thus, this single-sensor accuracies will serve as
one reference for the systems’ estimation performances.

In the ideal case of simultaneously taken measurements by the two UMRR sensors, the
position estimation accuracies should improve by a factor of 1/

√
2 compared to the single-

sensor accuracies, which yields to

σNet
r = 0.085 m

σNet
ϕ = 0.707 ◦

(2.136)

It can also be expected that at least these position estimation accuracies are achieved
by the different radar network postprocessing systems. Thus, these values will also be
considered for rating the different system performances.

But due to the incorporation of prior knowledge about the target’s dynamic behav-
ior, it can further be expected that the achieved position estimation accuracies are even
better than the ones achieved due to the pure redundancy of target measurements. This
accuracy gain will be investigated in the following.
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Figure 2.11: Standard deviations of the raw measurement data (upper curve) and the
LKF results (lower curve) achieved by directly feeding the measurements into the filter

Simulation Results

The first postprocessing system is directly feeding the transformed sensor measurements
into the LKF and achieves the position estimation accuracy performance visualized as
the standard deviations σr and σϕ (lower curves) in figure 2.11. The upper curves are
denoting the achieved accuracies of the raw UMRR sensor measurements and the green
line the expected improved estimation accuracy performance of a synchronized 2 UMRR
sensor network without any tracking filter. As previously stated, both will serve as
performance references in this comparison. The position estimation accuracy, i.e. σr and
σϕ, achieved by postprocessing system no. 1 can be summarized by

σr ≈ 0.06 m

0.25 ◦ ≤ σφ ≤ 0.3◦
(2.137)

In the moments where the observed target is maneuvering, the accuracies are getting
temporarily lower until the observed target has stopped its maneuver. At these points,
the Kalman filter’s target dynamic model (i.e. the process noise matrix Q) limits the
allowed kinematic state changes caused by the measurements. The observed tracking
filter’s latency in responding to a kinematic state change can be lowered by increasing
the process noise Q, but this would also lead to a worse noise filtering performance, i.e.
allowing more measurement noise to pass the filter. The latency can still be improved
without increasing the noise in the kinematic state estimates. One approach is to tem-
porarily increase the process noise during a detected target maneuver. Such an approach
will be outlined later in this chapter. It will refer to this example and present the im-
proved estimation results. Overall, the results of the direct LKF approach show that the
target dynamic model in the linear Kalman filter approach leads to an improved position
estimation compared to the one achieved by the pure redundancy of measurements in a
radar network.

In contradiction to postprocessing system no. 1, postprocessing system no. 2 determines
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Figure 2.12: Standard deviations of the raw measurement data (upper curve) and the
tracking results of the iterated least squares estimator combined with a LKF (lower curve)

the complete kinematic state estimate in an iterative least squares algorithm before feed-
ing the obtained estimation result into the same LKF. As expected, this leads only to a
slightly better estimation accuracy performance as achieved by the direct LKF approach.
Figure 2.12 shows the standard deviations achieved by postprocessing no. 2, which are

σr ≈ 0.05 m

0.25 ◦ ≤ σφ ≤ 0.3◦
(2.138)

The range accuracy is constant at a value of σr ≈ 0.05 m in the regions where no relative
change in direction between the detected and the host vehicle is performed. The azimuth
angle accuracy in the same region lies within the range of 0.25 ◦ ≤ σφ ≤ 0.3◦. If either the
host or the observed vehicle is maneuvering, the achieved position estimation accuracies
are lower due to the latency caused by the chosen target dynamic model. While achiev-
ing only a slightly better estimation accuracy, the kinematic state estimation achieved
by the iterative least squares algorithm is significantly more complex than the coordinate
transformation of the single-sensor measurements before feeding these measurements into
the LKF. Applying the iterative kinematic state estimation algorithm before the tracking
filter is only reasonable in a radar network, where each sensor delivers incomplete infor-
mation about the target’s kinematic state and only a fusion of all sensors’ information
leads to a complete kinematic state estimate (see HRR pulse radar network). Since the
UMRR sensor is simultaneously measuring range, azimuth angle and radial velocity, i.e.
the almost complete kinematic state information except the tangential velocity, the co-
ordinate transformation of the single-sensor measurements before feeding them into the
LKF is the computational cheaper choice.

The sequential EKF in postprocessing system no. 3 is offering the possibility of di-
rectly feeding the measurements into the tracking filter without applying any coordinate
transformation. As already stated in section 2.2.4, the EKF has suboptimal estimation
properties due to its linearization of the nonlinear measurement equations, in fact, it is
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Figure 2.13: Standard deviations of the raw measurement data (upper curve) and the
tracking results of the sequential EKF (lower curve)

introducing an approximation error. The accuracy results retrieved in the Monte-Carlo
simulation prove this by a lower overall estimation accuracy (see figure 2.13). The
achieved range and the azimuth angle accuracies are given by

σr = 0.085 m

σφ = 0.707 ◦ (2.139)

which are exactly the expected values of the synchronized two-sensor network without
any incorporation of a target dynamic model. The advantage of the Kalman filter’s un-
derlying target dynamic model seems to be neutralized by the linearization error in this
example. Additionally, the EKF shows not the same noise filtering property with the
applied target dynamic model as the preceding LKFs. But lowering the allowed target
dynamics leads to worse position estimation accuracies, even to a divergence of the filter
states in some cases. As a consequence, the implementation of an EKF will not be con-
sidered as an option for an postprocessing system in this thesis. In other cases, the EKF
must be tested intensively for each application and the side conditions of the targeted
system must be considered in detail.

Postprocessing system no. 4 is an alternative to the EKF approach and consists of one
UKF. As described in 2.2.5, the UKF is another approach of directly feeding the radar
sensor measurements into the tracking filter without any preprocessing or coordinate
transformation. As shown in figure 2.14, the achieved position estimation accuracies are
significantly better than the ones of the EKF and almost as precise as the ones of the
direct LKF approach. The second obvious observation in these curves is that the latency
of the UKF in responding to a target’s maneuver is higher than the one of the LKFs
although all Kalman approaches are sharing the same underlying target dynamic model.
But such slow response to target maneuvers will be addressed and solved later in this
chapter by a maneuver adaptive approach. Overall, the UKF proves to be more stable
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Figure 2.14: Standard deviations of the raw measurement data (upper curve) and the
tracking results of the UKF (lower curver)

and also more accurate as the EKF. In regions without any change of direction in the
relative motion between the two targets, it has an excellent accuracy of

σr ≈ 0.08 m

0.3 ◦ ≤ σφ ≤ 0.4 ◦ (2.140)

If a maneuver of either the observed or the own vehicle takes place, the accuracy is get-
ting worse with standard deviations around σr ≈ 0.12 m and σφ ≈ 1.3 ◦.

Finally, it must be said that the UKF will show its true advantages if the underlying
state-space description is to a great extent nonlinear. In this example, the only nonlin-
earity can be found in the measurement equations in eq.(2.117). Applied to a complete
nonlinear systems, the UKF will outperform the EKF and the LKF will not be applica-
ble [WM01].

Overall, this investigation has shown that the LKF has optimal estimation properties
when feeded by the correctly transformed measurement data. The sequential EKF has
proven to be stable concerning the estimation convergence, but looses estimation accu-
racy due to its linear approximation of the nonlinear measurement equations. The UKF
is stable according to its design and it has shown that it is significantly more accurate
than the EKF, but less than the LKF approaches. It will demonstrate its full advantages
if it is applied to highly nonlinear systems. As a conclusion of these Monte-Carlo simu-
lation results, the postprocessing architecture that will be outlined in the next chapter
will contain a LKF approach directly fed with transformed single-sensor measurements.

These tracking simulation results are restricted to the investigated 2 UMRR sensor radar
network and may differ for other sensor constellations, e.g. for the 4 HRR radar network.
The detailed investigation of a four-sensor only range measuring network can be found
in [Klo02].
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2.2.7 Filter Decoupling

Filter decoupling is of high practical importance when it comes to tracking filter imple-
mentation on an automotive processing unit with limited processing power and memory.
The more state elements are included in the kinematic state vector t, the higher gets the
computation complexity of the Kalman filter equations, especially due to the increase
of matrix dimensions. Therefore, it is desirable to decouple as many elements of the
kinematic state vector as possible, so that the original Kalman filter can be split in sev-
eral independent Kalman filters with fewer state elements. Depending on the choice of
the target’s kinematic state coordinate system, the statistical dependency between the
different states is more or less significant. The process of decoupling demands that this
interaction is relative insignificant, so that the estimation errors for the appropriate states
are approximately uncorrelated. This corresponds to a filter state covariance matrix with
the cross-covariance elements being approximately zero.

In the following, this section will consider an implementation of the 2 UMRR network as
it is discussed in section 1.4. The UMRR sensors measurements are

m =





r
ϕ
vr



 (2.141)

The estimate of the target’s kinematic state vector in global cartesian coordinates is given
by

t̂ =









t̂x
t̂y
t̂vx

t̂vy









(2.142)

and P(x,y) is its appropriate covariance matrix in cartesian coordinates. The statistically
independent main axes of P(x,y) can be calculated by a singular value decomposition
(SVD), so that P(x,y) is decomposed as

P(x,y) = UΣV T (2.143)

Because P(x,y) is a symmetric matrix, the matrices U and V are identical, which leads to

P(x,y) = V ΣV T (2.144)

The matrix V contains the unitary direction vectors −→u n (n = 1, . . . , 4) of the independent
main axes and Σ is a diagonal matrix containing the singular values, which are the
variances along the directions of the main axes.

Σ(n, m) =

{

σ2
n if n = m

0 if n 6= m
(2.145)

This decorrelation of filter states is optimal, but may not be of practical use when it
comes to choosing the appropriate kinematic state’s coordinate system. In the case of
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xyxy

Figure 2.15: Example of a decoupled Kalman filter by choosing the state vector in polar
coordinates

the discussed 2 UMRR network, the choice of the filter states in polar coordinates proves
to be a good one. The polar covariance matrix Pr,ϕ shows that the kinematic states in
polar coordinates are approximately uncorrelated. The matrix P(r,ϕ) can be derived from
P(x,y) by a simple coordinate transformation

P(r,ϕ) = JP(x,y) JT (2.146)

with the transformation matrix

J =













∂tr
∂tx

∂tr
∂ty

∂tr
∂tvx

∂tr
∂tvy

∂tϕ
∂tx

∂tϕ
∂ty

∂tϕ
∂tvx

∂tϕ
∂tvy

∂tvr

∂tx

∂tvr

∂ty

∂tvr

∂tvx

∂tvr

∂tvy
∂tω
∂tx

∂tω
∂ty

∂tω
∂tvx

∂tω
∂tvy













=













tx
tr

ty
tr

0 0

− ty
t2r

tx
t2r

0 0

− ty ·(−tvx ·ty+tvy ·tx)

t3r

tx·(−tvx ·ty+tvy ·tx)

t3r

tx
tr

ty
tr

− (−2·tvx ·ty ·tx+tvy ·t
2
x−tvy ·t

2
y)

t4r
− (−tvx ·t

2
y+tvx ·t

2
x+2·tvy ·ty ·tx)

t4r
− ty

t2r

tx
t2r













(2.147)
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derived from the following nonlinear transformation equations

tr =
√

t2x + t2y

tϕ = arctan

(

ty
tx

)

tvr
= tvx

· cos(tϕ) + tvy
· sin(tϕ)

tω =
(

−tvx
· sin(tϕ) + tvy

· cos(tϕ)
)

/tr

(2.148)

The resulting filter states in polar coordinates are approximately uncorrelated, because
the appropriate covariance diagonal elements P(r,ϕ)(n, n) are much greater than the non-
diagonal elements P(r,ϕ)(n, m)

P(r,ϕ)(n, n) ≫ P(r,ϕ)(n, m) n 6= m (2.149)

Having found such a good choice of the filter states, a Kalman filter containing all states
can be decomposed into two independent Kalman filters as shown in figure 2.15. This
also yields a decomposition of the input measurements into

mr =

[

r
vr

]

mϕ =
[

ϕ
]

(2.150)

The achieved reduction in computation complexity can be demonstrated for the Kalman
filter update equations. These are of order O(n3

dim) with ndim = 4 being the dimension
of the original filter state vector in this derivation. The splitting of the original track-
ing filter into two filters with ndim = 2 reduces the number of operations significantly
(43 − 2 · 23 = 48).

The position estimation example in the previous sections will be picked up in the follow-
ing and it will be proved that decoupling of a Kalman filter can not only be considered
as a very efficient way of reducing the computation complexity, it is also maintaining the
tracking filter’s estimation performance.

Example for Filter Decoupling in a Multi-Sensor Radar Network

To exemplarily show the performance of a decoupled Kalman filter, the test scenario of
the single-target postprocessing comparison in section 2.2.6 is picked up.

Postprocessing system no. 1 has shown an excellent performance and will be modified to
a decoupled Kalman filter by choosing the filter states and the inputs of the LKF to be
in polar coordinates. Thus, the LKF can be split into two nearly independent Kalman
filters. The system’s position estimation accuracy results have been investigated in a
Monte-Carlo simulation with NMonteCarlo = 500 simulations. The achieved estimation
accuracy results are shown in figure 2.16. The first observation is that the decoupled
Kalman filter achieves approximately the same estimation accuracy performance as the
non-decoupled system. The range accuracy is constant at σr ≈ 0.06 m and the azimuth
angular standard deviation is σr ≈ 0.25 ◦ in the regions where no change in direction
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Figure 2.16: Standard deviations of the raw measurement data (upper curve) and the
tracking results of postprocessing system no. 1 with a decoupled LKF (lower curve)

takes place. As already explained in the single-target postprocessing system comparison,
the position estimation performance is worse during a maneuver. Comparing the decou-
pled and non-decoupled systems in such a situation reveals that the position estimation
performance of the decoupled system is slightly worse than the one of the non-decoupled
direct LKF approach. This can be explained by the approximative assumption that the
polar filter states are uncorrelated. But overall, the performance of the decoupled direct
LKF approach can be considered to be on the same level as the one of the non-decoupled
approach. The decrease of accuracy during a maneuver can be prevented by an adaptive
process noise approach that will be discussed in the following section.

2.2.8 Adaptive Filtering Based on Maneuver Detection

Although the considered radar sensors have a high update rate of fupdate = 40 Hz, it
may occur that an observed target performs a maneuver with a large acceleration or an
abrupt change of direction, so that the Kalman filter estimates are not able to follow
the target’s real kinematic state. In this case, the implemented target dynamic model
is not allowing such an abrupt kinematic state change. But a permanent increase of
the allowed target dynamics is not a solution in this situation, because it would lead
to a worse filtering performance, which means allowing more measurement noise to pass
the tracking filter. In order to reduce the kinematic state estimation error in these
situations and to gain a quicker filter response, several methods have been suggested
in the literature (e.g. [BP99], [BSLK01]). The simplest and also very efficient method
is the implementation of a so-called "fudge factor". If the measurements assigned to
a track differ more than usually from the expected measurements (retrieved from the
track predictions), then the process noise matrix Q is increased by a certain factor (the
so-called fudge factor) to enable the track update procedure to respond more quickly to
the possible target maneuver. The implementation of such an algorithm is as follows:
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Figure 2.17: Monitored statistical square distance in the example scenario of section 2.2.6

If a target detection is associated with a track, the statistical square distance d2 between
the predicted measurements of this track m̂p and the real measurements m must be
calculated

d2 = ∆mT S−1∆m (2.151)

where ∆m is the innovation vector

∆m = m− m̂p (2.152)

and S is the innovation covariance matrix

Sij = HPHT + R (2.153)

P is the predicted track covariance matrix transformed by the measurement matrix H to
the measurement coordinate system and R is the measurement noise covariance matrix.
This normalized statistical square distance is monitored in the tracking process. If it
exceeds a certain threshold, a maneuver is detected and the Kalman filter switches to a
"higher" process noise matrix Qhigh = ff ·Q in the update procedure in order to account
for the actual target maneuver. The term ff is an arbitrarily chosen "fudge factor".
Such a simple process noise level switching may have I levels with I different "fudge
factors" ffi, so that Q is given by

Q =























Q1 if d < dthresh1

Q2 if dthresh1
≤ d < dthresh2

...

QI if dthreshI−1
≤ d

(2.154)

The different thresholds dthreshi
as well as the "fudge factors" ffi must be adjusted to

the system’s kinematic state estimation behavior in real road traffic scenarios.

The weak point of the simple fudge factor method is that it relies on the statistical
square distance obtained from one measurement cycle. It may occur that only one bad
measurement is received and although no maneuver is taking place, the process noise
matrix is increased, which leads to a bad accuracy performance of the Kalman filter. To
avoid such wrong maneuver detections, it is assumed that a target maneuver will last
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Figure 2.18: Standard deviations of the raw measurement data (upper curve) and the
tracking results of the maneuver adaptive LKF (lower curve) achieved by directly feeding
the measurements into the filter

over a certain number of measurement cycles, so that it will be observed in the monitored
statistical square distance in consecutive cycles. To detect the onset of a target maneuver,
the statistical square distance of the last K cycles will be taken into account. Such a
mean statistical square distance can be calculated by

d2
mean =

1

K
·

kactual
∑

k=kactual−K

d2(k) (2.155)

This method has proven to lead to good tracking accuracy results in real road traffic
scenarios. The following example will show the achieved enhancement in maneuver situ-
ations.

Example for Maneuver Adaptive Filtering in a Multi-Sensor Radar Network

Considering the single-target postprocessing comparison scenario of section 2.2.6 and the
achieved accuracy performance of the LKF in figure 2.12, it can be observed that the
accuracy of the LKF position estimate at t ≈ 2 s is temporarily worse than the average
accuracy performance. This is caused by the detected target’s change of direction. If
the above described statistical square distance d2 is monitored, the onset of this target
maneuver can be detected as shown in figure 2.17. Implementing a simple two-level
process noise with a fudge factor ff = 5, the LKF accuracy performance is significantly
enhanced during the maneuver (see figure 2.18). No measurement errors due to a slow
responding Kalman filter are visible.
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2.3 Chapter Conclusions

This chapter has presented different kinematic state estimation techniques, e.g. an itera-
tive algorithm on the basis of the principle of least squares estimation. It has outlined the
Kalman filter application to the tracking task and discussed different Kalman filter types
such as the LKF, the EKF, and the UKF. All these different kinematic state estimation
and tracking approaches have been combined to different single-target postprocessing
systems and have been compared in their performance. At this, the LKFs have shown
the best state estimation accuracy. If a nonlinear relation between the measurements and
the Kalman filter states cannot be solved by a coordinate transformation, then the UKF
has proven to be the best choice. The UKF has shown a significantly better estimation
performance than the EKF while having a lower computation complexity. Furthermore,
different signal processing enhancements of the Kalman filter technique either in compu-
tation complexity achieved by filter decoupling or in estimation performance by imple-
menting an maneuver adaptive target dynamic model have been presented. But without
further signal processing steps, all presented techniques or enhancements are only appli-
cable in single-target situations. Real road traffic scenarios are multi-target situations
where the radar sensors have to deal with the reflection behavior of extended objects. At
this, the received reflections from different reflection centers on a road user’s surface lead
to multiple target detections belonging to a single extended object. In order to apply
the presented techniques to these multi-target situations, the assignments between the
measurements and the reflection centers must be known. Since this is rarely the case in
reality, algorithms must be designed that sort the measurement data by their origin of
reflection. These algorithms are called data association methods and will be presented
in the next chapter. The following chapter will develop a complete postprocessing archi-
tecture that is capable of handling multi-target situations and extended targets in real
road traffic scenarios.



Chapter 3

A Multi-Target Postprocessing

Architecture

This chapter will extend the previously presented kinematic state estimation techniques
in a way that they are applicable in real multi-target situations and will present a post-
processing architecture for a multi-sensor radar network. In chapter 1 typical road traffic
scenarios have been discussed and it has been shown that these scenarios are multi-target
situations. Furthermore, the specific reflection behavior of road users has been presented.
At this, it has been stressed that road users like vehicles or trucks must be considered
as extended targets that may cause more than one reflection of the radar signal. Thus,
these objects are represented by more than one set of measurements in the target list of
the complete radar network or even the one of a single sensor. Additionally, an extended
target being observed by different sensors at slightly different aspect angles may cause
that the target measurements of each sensor belong to different reflection centers on the
car body. All these radar measurement properties have to be taken into account in the
design of a multi-target postprocessing architecture. The previous chapter presented dif-
ferent kinematic state estimation methods enhancing the estimation performance of a
multi-sensor radar network. But all these algorithms have been restricted to ideal single-
target situations where all incoming target measurements of the different sensors belong
to the same reflection center on an object. In real road traffic situations, this can neither
be guaranteed in a single-target nor in a multi-target situation. Hence, algorithms are
required that determine the measurements of the incoming target lists that belong to
the same object. These measurements must be clustered to appropriate target groups
and processed as extended objects in the following. These tasks will be addressed by
the postprocessing algorithms that will be presented in this chapter. The described tech-
niques will extend the previously discussed kinematic state estimation algorithms to a
complete multi-target capable postprocessing system, which will exemplarily be derived
for the implementation of a 2 UMRR network.

93
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Figure 3.1: Postprocessing overview

3.1 Postprocessing Architecture for a 2 UMRR Net-

work

The structure of the complete postprocessing system for a 2 UMRR network consists of
two processing levels, the sensor-level and the central-level processing. This processing
division is visualized in figure 3.1. The sensor-level processing will contain sensor-specific
signal processing with the goal to group the detected single-sensor targets to target clus-
ters representing an extended object and to estimate the objects’ kinematic states. Such
sensor-level subsystems offer also the advantages of a distributed system, which are a
reduced data bus load between the different processing levels by a meaningful data re-
duction in each single-sensor path and a parallel single-sensor specific processing. The
central-level postprocessing has mainly the task of fusing the single-sensor object esti-
mates to a central data set containing a list of the overall detected extended objects.

Before having a closer look at the two postprocessing levels, the available information
about the road traffic scenario will be briefly summarized. This information will be the
basis of all decisions that will be made in the algorithms of both postprocessing levels.
This available information comprises

• the target measurements of the different radar sensors,

• the measurements of the own vehicle’s motion,

• and the kinematic states of the already existing object tracks in both postprocessing
levels representing previously, over several scans detected objects.

The target measurements in the considered 2 UMRR network comprise one range mSens n
r ,

one azimuth angle mSens n
ϕ , and one radial velocity measurement mSens n

vr
per target, so that

a single-target measurement set is given by the following vector

mSens n(k) =





mSens n
r

mSens n
ϕ

mSens n
vr



 n = 1, 2 (3.1)
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Figure 3.2: Sensor-level postprocessing structure

where k denotes the measurement cycle index and n the appropriate sensor. The available
information about the own vehicle’s motion can be found on the vehicle’s powertrain CAN
bus and is extremely manifold in today’s passenger cars. The presented postprocessing
system restricts itself to the velocity mHost

v and the yaw rate mHost
ω of the own vehicle. This

information will be treated as host vehicle measurements given in the vector mHost(k)

mHost(k) =

[

mHost
v

mHost
ω

]

(3.2)

Additionally, information about the kinematic state of previously detected objects is avail-
able as predicted sensor measurements m̂(k|k− 1) based on the object track information
of the implemented Kalman filter in both postprocessing levels

m̂Track(k|k − 1) =





m̂Track
r

m̂Track
ϕ

m̂Track
vr



 (3.3)

These three different information sources will be utilized in the algorithms of both post-
processing levels, which are described in the following sections.

3.2 Sensor-Level Postprocessing

The sensor-level postprocessing contains sensor-specific postprocessing stages and has
the structure shown in figure 3.2. It performs the following tasks on the incoming single-
sensor target list:
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• The simple classification determines for each detected target if it is moving or
not by deriving this information from the available target measurements and the
host vehicle data. This distinction between moving and non-moving targets gives
the following postprocessing stages additional, meaningful information, which is
important for the data association, for example.

• The target clustering groups the target detections of one UMRR sensor according
to the road user they are originating from. The goal is to obtain target groups (so-
called clusters) that belong to the same passenger car or truck, for example, and
thus enable a reasonable processing of extended objects.

• The data association decides whether a measurement cluster belongs to an ex-
isting single-sensor object track and thus is utilized to update this track, or if it
represents a newly detected object and will form a new object track. Finally, all
tracks will be checked whether they have recently been updated or not. If tracks
have not been updated for a certain time, they will be considered as "dead" and
will be deleted.

• The linear Kalman filter updates the existing object tracks with the previously
assigned cluster information, will predict the kinematic states of the not updated
tracks, and will finally predict the kinematic states of all existing tracks for the
next measurement cycle.

In the following, each of these different tasks will be outlined in detail.

xy xy

x

y

Figure 3.3: Simple classification of moving and non-moving targets
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3.2.1 Simple Target Classification

The generation of meaningful attributes for each target simplifies the clustering and data
association procedure in the different postprocessing levels and is also important for the
object selection on the application processor. The simple target classification presented
in the following takes advantage of the information about the own vehicle’s motion by
combining it with the available target measurements. It classifies the detected targets as
moving or non-moving. This target distinction has proven to be important for the fol-
lowing data association and clustering algorithms, because the high performance UMRR
sensors are detecting a great number of non-moving objects in the surrounding of the
street, such as metal poles of a guard rail or parking cars. In order to achieve the
distinction between this high number of non-moving and moving targets, the following
calculations are performed:

The available host vehicle motion information comprises the velocity mHost
v and the yaw

rate mHost
ω . As visualized in figure 3.3, the velocity of the host vehicle in its central turn-

ing point (see blue point) relative to the actual host vehicle coordinate system is given
by

[

vHost
xp

(∆t)

vHost
yp

(∆t)

]

= mHost
v ·

[

cos(mHost
ω ∆t)

sin(mHost
ω ∆t)

]

(3.4)

At this, ∆t denotes the time that passed since the last host vehicle data update. In
the following, the origin of the host coordinate system is chosen to be the host vehicle’s
central turning point at the time of the host vehicle data reception ∆t = 0. Then, the
actual location of this central turning point at an arbitrary time ∆t can be calculated by
a simple integration of eq.(3.4). This leads to the path-prediction

[

xHost
p (∆t)

yHost
p (∆t)

]

=
mHost

v

mHost
ω

·
[

sin(mHost
ω ∆t)

− cos(mHost
ω ∆t) + 1

]

(3.5)

This information about the host vehicle’s driving path and velocity is utilized to evaluate
whether a detected target is moving or not. At this, the velocity of the n-th UMRR
sensor must be determined and compared with its measured radial target velocity. The
actual location of the considered UMRR sensor at time ∆t can be obtained from eq.(3.5)
by a coordinate transformation that is taking the vehicles rotation into account:

[

sSens n
x (∆t)

sSens n
y (∆t)

]

=

[

cos(mHost
ω ∆t) − sin(mHost

ω ∆t)
sin(mHost

ω ∆t) cos(mHost
ω ∆t)

]

·
[

sSens n
x (0)

sSens n
y (0)

]

+

[

xHost
p (∆t)

yHost
p (∆t)

]

(3.6)

where [sSens n
x , sSens n

y ]T∆t=0 is the position of the n-th sensor relative to the host vehicle’s
turning point at time ∆t = 0. Now, the sensor’s velocity can be determined by a simple
differentiation of this equation, so that the sensor’s velocity is given by

[

sSens n
vx

(∆t)
sSens n

vy
(∆t)

]

= ωhost ·
[

− sin(mHost
ω ∆t) − cos(mHost

ω ∆t)
cos(mHost

ω ∆t) − sin(mHost
ω ∆t)

]

·
[

sSens n
x (0)

sSens n
y (0)

]

+ mHost
v ·

[

cos(mHost
ω ∆t)

sin(mHost
ω ∆t)

] (3.7)
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To compare the sensor’s velocity with the measured radial velocity of each target, it must
be projected onto the radial interconnection between the sensor and the detected target
position as it is visualized in figure 3.3

sSens n
vr

(∆t) =

[

sSens n
vx

(∆t) sSens n
vy

(∆t)
]

·
[

mSens n
x (∆t) − sSens n

x (∆t)
mSens n

y (∆t) − sSens n
y (∆t)

]

√

(mSens n
x (∆t) − sSens n

x (∆t))2 + (mSens n
y (∆t) − sSens n

y (∆t))2
(3.8)

where [mSens n
x (∆t), mSens n

y (∆t)]T is the measured target position in cartesian coordinates
at time ∆t. If the difference between the measured radial velocity of the target mSens n

vr
(∆t)

and the sensor’s radial velocity component sSens n
vr

(∆t) is smaller than a certain threshold
∆vthresh, the target is considered to be non-moving.

∥

∥mSens n
vr

(∆t) − sSens n
vr

(∆t)
∥

∥ < ∆vthresh (3.9)

The value of the threshold ∆vthresh must be evaluated empirically with the complete
radar network in real road traffic scenarios. In case of the 2 UMRR sensor network,
0.1 m/s ≤ ∆vthresh ≤ 2.0 m/s has proven to achieve a reliable separation between moving
and non-moving targets.

After this processing step, the target measurements being available for the following
target clustering and data association algorithm have been extended to

mSens n =









mSens n
r

mSens n
ϕ

mSens n
vr

mSens n
mov









(3.10)

where mSens n
mov is a binary status flag indicating whether the target is moving or not

(mSens n
mov = true =̂ moving target).

In the following postprocessing steps, it is important to be aware of the fact that this
simple classification in moving or non-moving targets relies on the comparison of radial
velocities. It may occur that an object has only a tangential velocity component and thus
is wrongly classified as a non-moving target. In the considered real road traffic scenarios,
this situation has proven to occur very rarely, but will be considered in the following
postprocessing steps, mainly the data association, in order to avoid wrong assignments.

Real Road Traffic Example

In order to demonstrate the high performance of this simple target classification, the
following real road traffic example is presented. As shown in the video capture in figure
3.4, the host vehicle is driving in an urban environment. The two lanes allow only the
driving in the host vehicle’s direction. The trees on the left side separate these two lanes
from the two lanes of the upcoming traffic. Parking cars can be found on the right side.
Two cars are situated ahead of the host vehicle, each one driving on one lane of the road.
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Figure 3.4: Road traffic scenario as seen by a video camera

( a )                                        ( b )                                        ( c )

Figure 3.5: Road traffic scenario as seen by the left (a), the right (b), and both radar
sensors (c)
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( a )                                        ( b )                                        ( c )

f mn o n - m o v i n g  t a r g e t m o v i n g  t a r g e t

Figure 3.6: Road traffic scenario as interpreted after the simple target identification step
by the left (a), the right (b), and both radar sensors (c)

( a )                                     ( b )

Figure 3.7: Clustering of multiple reflections and derivation of the object size
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Figure 3.5 shows the target detections of the left (a), the right (b), and both UMRR sen-
sors (c). Comparing the target detections of the radar sensors with the video capture of
this situation makes it easy to identify the objects for a human being. The two targets on
the left side originate from the trees or some well-reflecting objects on the green turf, the
two targets in the middle are the two cars in front of the own vehicle, and the detections
on the right side must originate from the parking cars.

If the simple target classification is processing the incoming target lists together with
the available information about the host vehicle’s motion, then the distinction between
moving (green circles) and non-moving targets (red circles) shown in figure 3.6 is achieved.
It can be seen that a clear decision could be made for each target with the result that
the two cars in the middle are the only moving objects in this scenario. Additionally,
this example proves that measuring an extended object at slightly different aspect an-
gles causes the measurements to differ from each other because the received reflections
originate from slightly different reflection centers on the car body. To handle these mea-
surement characteristic of extended objects correctly, a target clustering algorithm is
applied after this simple target classification step. The following section will outline this
next postprocessing step.

3.2.2 Sensor-Level Clustering

The task of measurement clustering arises from the fact that more than one target mea-
surement of the actually received target list may belong to the same road user. The
phenomenon that road users must be considered as extended objects has already been
discussed in section 1.2.3. It may occur that multiple target measurements in the single-
sensor target list belong to the same road user, but not to the same reflection center
on the road user’s surface. The considered UMRR sensors estimate one azimuth an-
gle per range gate, so that a detection of an extended target as shown in figure 3.7 is
realistic. Figure 3.7(a) visualizes that the reception of one or two reflections may be
expected from a normal passenger car. It is highly probable that a truck will generate
more than two reflections. The goal of the sensor-level clustering step is to group all
target detections belonging to the same road user on the basis of the available target in-
formation. Depending on the number and the fluctuation of the received reflections, the
extension of the observed object can additionally be estimated. This postprocessing step
also leads to a reasonable data reduction by generating clusters that comprise multiple
target measurements.

Cluster Algorithm

Clustering techniques have widely been discussed in literature and are extensively de-
scribed in [Boc74] or [Bac94], for example. One group of often applied techniques are
the sequential agglomerative hierarchical non-overlapping algorithms. One derivative of
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these kind of clustering algorithms is applied in the sensor-level postprocessing. It has
the following processing scheme:

1. First, each of the I detected targets mi is considered as an independent cluster ĉi

and is represented by its estimated kinematic state including its classification as
moving or non-moving

ĉi = mi =
[

mr, mϕ, mvr
, mmov

]T
(3.11)

with its appropriate covariance matrix

Cov(ĉi) = Ri (3.12)

2. In a second step, the cluster pair (i, j)|i6=j with the greatest similarity according to
a given similarity criterion has to be found. The implemented similarity measure
SMij is the inverse of the statistical distance between the two kinematic states ĉi

and ĉj representing the two clusters:

SMij =
1

√

(ĉi − ĉj)T · (Ri + Rj)−1 · (ĉi − ĉj)
(3.13)

3. In the following step, it has to be checked whether the pair fulfills a given ho-
mogeneity criterion or not. The homogeneity criterion of a cluster is a necessary
condition that must be fulfilled by all cluster elements. In the sensor-level as well
as in the central-level clustering, it is expressed by a simple thresholding utilizing
the similarity measure SMij

SMij ≥ ΨSimilar (3.14)

where ΨSimilar is the minimum similarity value between two elements of the same
cluster. If this homogeneity criterion is fulfilled, then both clusters are fused to a
single one by calculating a new cluster centroid ĉf representing the enclosed target
measurements:

ĉf = Rj(Ri + Rj)
−1ĉi + Ri(Ri + Rj)

−1ĉj (3.15)

Cov(ĉf) = Ri(Ri + Rj)
−1Rj (3.16)

This cluster fusion assumes that both clusters’ estimation errors are uncorrelated.
Finally, the number of remaining clusters is reduced to I − 1. If the homogene-
ity criterion is not fulfilled by the considered cluster pair (i, j), then the cluster
procedure is stopped since no other possible cluster pair will fulfill this criterion.

4. Finally, it is checked whether more than one cluster is remaining after the last
processing step or not. If this is the case, the cluster procedure is continued with
step no. 2, otherwise, it is stopped.
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Figure 3.8: Sensor-level data association overview

The extraction of the physical extension of an observed object in such a clustering process
has proven to be not very reliable. Although it was possible to determine multiple targets
belonging to the same road user, the object extensions extracted from this information
have been unstable. This has been caused by multiple, highly fluctuating detections in
the raw measurement data from cycle to cycle. An object size estimation in the spectrum
would probably lead to more stable results than the extraction from the target cluster
information, because the phenomenon of an object extension can already be observed in
the frequency spectrum of the down-converted LFM-CW receive signal. Extended ob-
jects can be identified in the frequency spectrum by the superposition of different spectral
peaks. These peaks are forming a single broad peak cluster that appears to be too broad
for a single peak.

Nevertheless, the handling of extended objects will be restricted to the described tar-
get clustering with the additional information how many targets are included in each
cluster and what maximum position difference ∆x and ∆y lies between them. A real
road traffic example that is showing the clustering performance of the complete postpro-
cessing system will be shown later in the central-level postprocessing section.

3.2.3 Sensor-Level Data Association

Until now, the previously presented simple target classification and target clustering step
have either generated additional target information or grouped the available target in-
formation to clusters representing different extended objects in the single-sensor cluster
list. Now, the data association has to distinguish between these target clusters in order
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to enable a tracking of these extended objects over time. Thus, the data association
has the main task of determining the target clusters that belong to already existing ob-
ject tracks and of determining the ones that are new. This decision is very important
for the overall performance of the postprocessing system since it is ensuring the object
track maintenance after initialization. Wrong or missed assignments will lead to a wrong
estimation of object trajectories or a temporarily disappearing of an existing object track.

Many data association techniques have been published, mainly in the field of airborne
radar (see [BP99], [BSF88], [BS90], [BS92], [WL90]). Most of these techniques have a
very high computation complexity and base on airborne radar specific assumptions, e.g.
the observation of point targets, which cannot be assumed in the field of automotive
radar. A data association approach with limited computation complexity while achiev-
ing good association results under automotive radar side conditions will be outlined in
the following.

The implemented sensor-level data association structure is a two-level all-neighbor data
association approach. It has two main association stages, each consisting of three main
processing steps as shown in figure 3.8. In the first data association stage, the incoming
target clusters are assigned to the evaluated object tracks. The track status "evaluated"
denotes that the tracks considered in this step have proven to originate from reliable
object detections in a number of consecutive measurement cycles. After having found all
possible cluster-track assignments for the evaluated object tracks, the already "utilized"
clusters are removed from the list of possible track update candidates for the following,
second data association stage. At this next stage, the remaining clusters are assigned in
the same data association procedure to the unevaluated object tracks. This two-level dis-
tinction gives priority to the evaluated object tracks and assumes that a newly appearing
object will not be assignable to an existing, evaluated object track. Thus, it is avoided
that a new initiated and not reliable object track "steals" the assignment or at least takes
away a significant "assignment portion" from a longer existing, evaluated object track.
Within each data association stage, an all-neighbor data association approach is applied,
i.e. that a cluster may be assigned to multiple tracks. Each assigned cluster is weighted
by a certain factor, so that each track may be updated with multiple target clusters and
thus may share the target clusters with other tracks.

The two data association stages in figure 3.8 consists of the same three processing steps.
The first one is the gating. At this, the number of considered object track update candi-
dates among the target clusters is reduced by limiting the search area around the object
track’s predicted kinematic state. The next step is rating the quality of the found update
candidates according to a given data association criterion. Finally, the cluster-to-track
association decides which target clusters are assigned to which object tracks.

The basis of the implemented data association is the available cluster data compris-
ing the target detections from one UMRR sensor, and the predicted kinematic states of
the object tracks. The cluster data comprises the position [r, ϕ]T , the radial velocity [vr]
as well as the classification [mov] as a moving or non-moving object. At cycle k, the i-th
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target cluster as received from the preceding clustering step is given by

ĉi(k) =
[

r, ϕ, vr, mov
]T

(3.17)

The predicted kinematic states of the object tracks are given by

t̂j(k|k − 1) =
[

x, y, vx, vy, mov
]T

(3.18)

where the index j denotes the track among the J available object tracks.

The data association decisions can only be made on the basis of the common kinematic
state information of both information sources. In this case, it is the position, the radial
velocity, and the classification as moving or non-moving object. A first precondition for a
cluster-to-track assignment is that both are classified as moving or non-moving. Thus, the
sensor-level data association plane has 3 dimensions, namely the 2 dimensional position
and the radial velocity. This information will be the basis for the different sensor-level
data association stages outlined in the following.

Gating

The first processing step in the data association procedure is the so-called gating. The
goal of the gating step is the reduction of possible object track update candidates among
the target clusters in order to reduce the number of comparisons between the target clus-
ters’ kinematic states and the object tracks’ predicted kinematic states in the following
data association stages. Such a reduction in computation complexity is reasonable and
can simply be achieved by the definition of a multi-dimensional area (a so-called gate)
around the predicted kinematic state values of the appropriate object track. All target
clusters lying inside this gate of a predicted object track’s kinematic state are considered
as possible assignments and have to be rated according to a well-chosen association cri-
terion in the next data association step.

The shape of a gate can be manifold. As already stated in the previous section, the
necessary condition for a cluster-to-track assignment is the classification of both as mov-
ing or non-moving. The remaining data association plane and thus the gate belonging to
a predicted object track has 3 dimensions, namely the range, the azimuth angle, and the
radial velocity. The simplest approach is to define certain value ranges for each dimension
of the association plane. This will lead to a gate that looks like a 3-dimensional cuboid.
But it is more advantageous to take the quality of the object track’s kinematic state pre-
diction into account. The uncertainty of the track’s predicted kinematic states t̂(k|k−1)
is given by its predicted covariance matrix P (k|k−1). If this covariance matrix indicates
a high prediction accuracy, the gate is chosen to be small because it is very probable that
an appropriate target cluster lies within this area. In the case where the object track’s
prediction is highly uncertain, the gate is chosen to be large in order to compensate for-
mer estimation errors. Such a gating behavior can be achieved by utilizing the statistical
square distance d2, which is the mathematical result of a likelihood expression. It is given
by

d2 = ∆cT
ij S−1

ij ∆cij (3.19)
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with ∆cij being the innovation vector between the actually detected target cluster ĉi(k)
and the predicted object track’s kinematic state t̂j(k|k − 1)

∆cij = ĉi(k) − h(̂tj(k|k − 1)) (3.20)

where h(...) is the function transforming the object track’s kinematic states to the mea-
surement clusters coordinate system. The residual covariance matrix Sij is given by

Sij = H(k)Pj(k|k − 1)H(k)T + Ri(k) (3.21)

with

H(k) =
∂h(t)

∂t

∣

∣

∣

t=t̂(k|k−1)
(3.22)

Pj(k|k − 1) is the track prediction covariance matrix of track j transformed by the mea-
surement matrix H(k) to the coordinates of the cluster’s kinematic states and Ri(k) is
the i-th cluster’s covariance matrix. The gate is then defined by a simple threshold dthresh

d ≤ dthresh (3.23)

and looks like a 3-dimensional ellipsoid. All clusters satisfying this gate will be considered
as possible object track update candidates and will further be tested according to the
association criteria described in the following section.

Data Association Criteria

Having determined the possible object track update candidates among the measurement
clusters in the gating step, each cluster-to-track assignment must be rated according to a
given data association criterion. Such a criterion must take the similarity of the cluster-
track pair as well as the complete assignment situation of all actual measurement clusters
and existing object tracks into account.

One simple association criterion has already been presented in the previous section,
namely the statistical square distance in eq.(3.19), where it has been used to define the
gate for determining the possible track update candidates. Since this similarity measure
is already calculated in the gating step, the simplest approach requiring no additional
computation would be to utilize this statistical distance measure to rate the association
quality between an actual measurement cluster and the predicted track’s kinematic state.
In [BP99] this normalized squared distance is extended by an additive logarithmic factor,
so that it is given for object track j and measurement cluster i by

d2
ij ext = d2

ij + ln [det(Sij)] (3.24)

This additive factor resulting from a Gaussian likelihood calculation has the effect of pe-
nalizing tracks with greater uncertainty and thus ensures that tracks with missed updates
and a resulting larger covariance matrix do not steal possible updates from higher quality
tracks. But this approach does not take the complete assignment situation of all actual
measurement clusters and all existing object tracks into account, only the assignment
quality of a single cluster-track pair.
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Another approach to rate the quality of a possible cluster-to-track assignment is the
calculation of an association probability. Since this is only achieved by a complex com-
putation (see [BP99] for details), [FBS90] suggested an approximation of the association
probability by the following expression

Probij =
Gij

Stj + Sri − Gij + B
(3.25)

where Gij is proportional to the Gaussian likelihood function indicating the assignment
quality between object track j and measurement cluster i:

Gij =
1

√

det(Sij)
exp

(

−1

2
∆cT

ijS
−1
ij ∆cij

)

(3.26)

At this, ∆cij is the measurement cluster residual or so-called innovation vector for track
j and measurement cluster i ( see eq.(3.20) ). Sij is the covariance matrix of the cluster
residual according to eq.(3.21). In the denominator of Probij in eq.(3.25), Sti is the sum
of all G’s for track j

Stj =

I
∑

i=1

Gij (3.27)

and Sri is the sum of all G’s for measurement cluster j

Sri =

J
∑

j=1

Gij (3.28)

Both values can be computed economically by accumulating the sums during the com-
putation of the different Gij values. The association probability Probij was chosen in a
way that it is reducing to the exact probability in the case of a single track and several
measurements and to a symmetrically analogous form in the case of a single measurement
and several tracks. For other cases, it is an approximation (see [FBS90] for details). The
term B is a bias taking the non-unity detection probability and the presence of clutter
as well as false alarms into account. In real road traffic scenarios a fixed value of B = 0
has proven to lead to good results.

Compared to the association criterion in eq.(3.24), the probability Probij in eq.(3.25)
is not only taking the likelihood between object track j and measurement cluster i into
account, it also considers whether that measurement correlates with other tracks, or vice
versa, whether that track correlates with other measurements. The only case that the
approximated association probability Pij is not considering is whether other tracks cor-
relate with other measurements, which is included in the exact equation as derived and
discussed in [BP99]. But nevertheless, this approximated probability criterion is a very
good compromise between data association performance and computation complexity.
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Figure 3.9: Example of two objects driving parallel and turning to one’s left

Example:

In order to visualize the behavior of the different described association criteria, a simple
example will be presented in the following. Figure 3.9 shows two detected and tracked ob-
jects driving parallel to each other with a constant velocity v = [14, 0]T m/s. Both perform
the same maneuver, a so-called coordinated turn resulting in a velocity v = [10, 9]T m/s.
This maneuver is not expected by the tracking filter. Thus, the difference between the
real and the predicted position in the x-direction is given by ∆x = −0.5 m and in the
y-direction by ∆y = 1.15 m. Now, the different association criteria are calculated for this
given two-target situation depending on the difference ∆y.

The figures 3.10 and 3.11 show the resulting curves of the inverse of the extended normal-
ized squared distance as given in eq. (3.24) and the approximated assignment probability
of eq.(3.25) versus the y-offset ∆y, respectively. Each figure shows four plots that cor-
respond to the possible combinations between the 2 measurement clusters and the 2
predicted object track positions. Depending on the offset ∆y, each assignment criterion
of the considered measurement-track pair is varying. It is easy to verify that both as-
signment quality measures have a maximum for the combinations (1, 1) and (2, 2) at the
real track prediction error in the y-direction ∆y ≈ 1.15 m. But although the correct
prediction error can be determined by both association criteria, the probabilities Probij

(i = 1, 2 j = 1, 2) show a clearer definition of areas where the appropriate cluster-track
assignment is likely to be correct.

Because the approximated probability has shown to achieve good association results in
simulations as well as real road traffic situations, it will be utilized in the experimental
system presented in the next chapter.
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Figure 3.10: Inverse of the extended normalized square distance for the different
measurement-track combinations
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Figure 3.11: Approximated probability of the different measurement-track combinations
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Data Association Method

After the reduction of possible track update candidates among the target clusters by
the application of gates and after rating the assignment quality between the considered
track update candidates and object track predictions, it must be decided which of the
incoming target clusters should be assigned to which object track. Therefore, two different
strategies exist. Both are visualized in figures 3.13(a) and (b) for the traffic scenario
example of figure 3.12:

1. Nearest Neighbor Data Association:
Allow each track to be updated with the "closest", most likely observation according
to an arbitrarily chosen association criterion. This method is visualized in figure
3.13(a), where only the "closest" measurement clusters are chosen to update the
appropriate object tracks.

2. All Neighbors Data Association:
Allow multiple cluster-to-track assignments weighted by a certain factor, so that
each track may be updated with multiple target clusters and thus may share these
target clusters with other tracks. Figure 3.13(b) shows that all measurements pass-
ing the gating test will update the appropriate track. Measurement number 2 is
shared by both tracks and thus will be weighted in order to take the uncertainty of
this assignment into account.

In order to decide what data association strategy is reasonable for the incoming pre-
sorted cluster data at the sensor-level postprocessing, one question must be answered:
Is it probable that more than one cluster belongs to an already existing track or not ?
Assume that the previous postprocessing stages, such as the simple target classification
and the target clustering have ideally achieved their processing goal, i.e. that all targets
originating from one object are grouped to a single cluster, then it is easy to conclude
that only a single correct cluster-track assignment must exist for each track. Thus, the
global nearest neighbor strategy would be the optimal choice. But since it may occur that
the pre-sorted cluster data still contains multiple clusters belonging to the same object,
the all-neighbor approach must be preferred in order fuse all available information about
one detected object to a single object track.

The all-neighbors approach that will be outlined in the following will be a simplified joint
probabilistic data association (JPDA), where every object track will be updated with a
weighted-average target cluster being calculated from all target clusters that passed the
gating test of the appropriate object track. For the sake of completeness, it must be
mentioned that the original JPDA algorithm was first presented by Y. Bar-Shalom and
T.E. Fortmann and is described in detail in [BSF88].

The simplified JPDA makes use of the approximated probability of the association of
track j to cluster i introduced in eq.(3.25) of the previous section. The calculation of this
approximated assignment probability Probij can be summarized as follows:
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Figure 3.12: Data association traffic scenario example
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Figure 3.13: Traffic scenario example of figure 3.12 for the global nearest neighbor (b)
and the all neighbors data association approach (c)
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Association Probability :

Probij =
Gij

Stj + Sri − Gij + B
(3.29)

with

Gij =
1

√

det(Sij)
exp

(

−1

2
∆cT

ijS
−1
ij ∆cij

)

,

Stj =
I
∑

i=1

Gij and Sri =
J
∑

j=1

Gij

This association probability has been calculated for each considered cluster-track pair
that passed the gating test of one of the existing object tracks, so that each track j is
updated at measurement cycle k with a weighted-average cluster given by

Weighted-Average Cluster Measurement:

cWA j(k) =
∑

i

Probij(k)ĉi(k) (3.30)

Weighted-Average Covariance Matrix:

PWA j(k) =
∑

i

Probij(k)Rj(k) (3.31)

The incorporation of this weighted average cluster data in the implemented Kalman filter
equations will be outlined in the following track update section.

This simplified JPDA data association method is implemented in the experimental car
that will be described in the next chapter. Performance measures in real road traffic
scenarios will be presented and it will be referred to the assignment characteristics of
this all-neighbor data association technique in order to explain the performance in the
experimental results.

3.2.4 Sensor-Level Tracking

The sensor-level tracking procedure can be divided into two cases, namely that one or
more measurement clusters have been assigned to a track with a certain probability or
not. In the first case, a Kalman filter is applied and the track is updated with the ap-
propriate measurement clusters. In the second case, the actual track prediction cannot
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Figure 3.14: Sensor-level tracking overview

be corrected by a measurement cluster and thus must further be predicted to the next
measurement cycle in order to find an assignment then.

Figure 3.14 shows the implemented sensor-level tracking algorithm. First, the incom-
ing target single-sensor clusters (SSC) are transformed to global cartesian coordinates.
In the following step, the object tracks are updated by the assigned measurement clus-
ters. The object tracks without any measurement cluster assignment will be maintained
on the basis of their prediction. After obtaining the kinematic states of all object tracks,
the track data as well as the unassigned measurement clusters are passed to the track
initialization, evaluation, and deletion procedure. At this, the unassigned measurement
clusters are initializing new tracks, all object tracks are evaluated whether they have
been updated in the last cycles or not, and the ones that have not been updated for
"a long time" are deleted. Finally, the complete kinematic states of the object tracks
are predicted to the time of the next update. The following sections will describe each
processing step in this tracking filter procedure.

Coordinate Transformation and Implemented Kalman Filter

The implemented Kalman filter is a simple 3-state LKF that showed an excellent perfor-
mance in the last chapter when it was fed with measurements in global cartesian coor-
dinates. Because the UMRR sensor measurements and thus the measurement cluster’s
kinematic states are given in polar coordinates relative to the sensor position

ĉ =
[

ĉr, ĉϕ, ĉvr

]T
(3.32)
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they must be transformed in two steps to a global cartesian coordinate system.

In the first step, the measurement clusters must be transformed to cartesian coordi-
nates relative to the position of the measuring UMRR sensor. This transformation is
achieved by the following set of nonlinear equations

ĉx = ĉr · cos (ĉϕ)

ĉy = ĉr · sin (ĉϕ)

ĉvx
= ĉvr

· cos (ĉϕ) + ĉr · ĉω · sin (ĉϕ)

ĉvy
= ĉvr

· sin (ĉϕ) + ĉr · ĉω · cos (ĉϕ)

(3.33)

It is important to notice that the velocity in cartesian coordinates [ĉvx
, ĉvy

]T contains
only the measured radial velocity component since the tangential component cannot be
measured. Thus, ĉω is assumed to be zero and the appropriate measurement cluster noise
covariance matrix in polar coordinates R(r,ϕ) must be chosen to be

R(r,ϕ) =









σ2
r 0 0 0
0 σ2

ϕ 0 0
0 0 σ2

vr
0

0 0 0 σ2
ω









(3.34)

where σr, σϕ, and σvr
are the measurement accuracies of the measurement cluster. The

variance of ω must be set according to the uncertainty introduced by the assumption
ĉω = 0. This variance σ2

ω can be chosen to

σ2
ω = ω2

max (3.35)

Since the maximum occurring turning rate ωmax is strongly depending on the targeted
automotive application, it must be adjusted empirically in real road traffic scenarios.

The covariance matrix of the single-sensor measurement clusters in cartesian coordinates
is calculated by utilizing the Jacobi matrix J

R(x,y) = JR(r,ϕ)J
T (3.36)

This transformation matrix J is given by

J =













∂ĉx

∂ĉr

∂ĉx

∂ĉϕ

∂ĉx

∂ĉvr

∂ĉx

∂ĉω
∂ĉy

∂ĉr

∂ĉy

∂ĉϕ

∂ĉy

∂ĉvr

∂ĉy

∂ĉω
∂ĉvx

∂ĉr

∂ĉvx

∂ĉϕ

∂ĉvx

∂ĉvr

∂ĉvx

∂ĉω
∂ĉvy

∂ĉr

∂ĉvy

∂ĉϕ

∂ĉvy

∂ĉvr

∂ĉvy

∂ĉω













=









cos(ĉϕ) −ĉr · sin(ĉϕ) 0 0
sin(ĉϕ) ĉr · cos(ĉϕ) 0 0

ĉω · sin(ĉϕ) −ĉvr
· sin(ĉϕ) cos(ĉϕ) ĉr · sin(ĉϕ)

ĉω · cos(ĉϕ) ĉvr
· cos(ĉϕ) sin(ĉϕ) ĉr · cos(ĉϕ)









(3.37)

After having obtained the measurement clusters in cartesian coordinates relative to the
sensor position, they must be transformed in a second step to a global, sensor independent
coordinate system with an arbitrarily chosen origin of coordinates. If the measuring
sensor has an azimuthal orientation sSens

α and a position
[

sSens
x , sSens

y

]T
relative to this
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arbitrarily chosen origin of coordinates, then the measurement clusters in global cartesian
coordinates ĉglob can be calculated by the following linear transformation

ĉglob =

[

cos(sSens
α ) − sin(sSens

α )
sin(sSens

α ) cos(sSens
α )

]

·









ĉx

ĉy

ĉvx

ĉvy









+









sSens
x

sSens
y

0
0









(3.38)

The appropriate covariance matrix Rglob is given by

Rglob =

[

cos(sSens
α ) − sin(sSens

α )
sin(sSens

α ) cos(sSens
α )

]

· R(x,y) ·
[

cos(sSens
α ) − sin(sSens

α )
sin(sSens

α ) cos(sSens
α )

]T

(3.39)

The target measurement clusters in global cartesian coordinates ĉglob with the appropriate
measurement noise covariance matrix Rglob can directly be fed into the simple LKF. For
the sake of simplicity, the superscripts "glob" will be omitted in the following, so that
ĉ and R are the single-sensor clusters in global cartesian coordinates. Note, that the
measurement matrix H becomes the unity matrix since the coordinate system of the
measurement clusters has been chosen to be the same as the one of the LKF’s estimated
kinematic state vector. Thus, the LKF equations are reducing significantly in their
computation complexity. Taking the cluster-track assignment probabilities Probij of the
data association section into account, the LKF equations of track j at cycle k are given
by

LKF State Estimate Prediction:

Pj(k|k − 1) = Φ(k)Pj(k − 1|k − 1)Φ(k)T + Q (3.40)

t̂j(k|k − 1) = Φ(k)̂tj(k − 1|k − 1) (3.41)

LKF State Estimate Update:

Kj(k) = Pj(k|k − 1)

(

Pj(k|k − 1) +
∑

i

Probij(k) · Ri(k)

)−1

(3.42)

Pj(k|k) = (I − Kj(k)) · Pj(k|k − 1) (3.43)

t̂j(k|k) = t̂j(k|k − 1) + Kj(k) ·
∑

i

Probij(k) · ∆cij(k) (3.44)

where ∆cij(k) is the innovation between the object track prediction t̂j(k|k − 1) and the
cluster measurement ĉi(k)

∆cij(k) := ĉi(k) − t̂j(k|k − 1) (3.45)

The implemented LKF incorporates the information about the host vehicle’s motion
described in 2.1.5 as well as the maneuver adaptive process noise as presented in 2.2.8.
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Missed Update

If no measurement cluster has been assigned to an existing track, the track will be
maintained according to the following equations:

LKF State Estimate Prediction:

Pj(k|k − 1) = Φ(k)Pj(k − 1|k − 1)Φ(k)T + Q (3.46)

t̂j(k|k − 1) = Φ(k)̂tj(k − 1|k − 1) (3.47)

LKF State Estimate Update:

Pj(k|k) = Pj(k|k − 1) (3.48)

t̂j(k|k) = t̂j(k|k − 1) (3.49)

At this, the increase of the track’s covariance matrix Pj(k − 1|k − 1) by the process
noise covariance matrix Q in the prediction step is not compensated by an assigned
measurement cluster in the following LKF update step. Thus, a track without any
assigned cluster is automatically penalized by a higher uncertainty. If this increase in the
covariance proves to be too low, then each track without an assignment can additionally
be penalized by an arbitrarily chosen covariance matrix Z in the LKF update step, so
that (3.48) becomes

Pj(k|k) = Pj(k|k − 1) + Z (3.50)

Track Initialization, Evaluation, and Deletion

The straight-forward track-initiation and evaluation scheme that will be presented in the
following has proven to work well in real road traffic scenarios. At this, the clustered
targets that are not assigned to an existing track are considered as ’unused’. Each of
these unassigned target clusters will initiate a new object track with the status of not
being evaluated yet. Such potential object tracks will take part with a low priority in the
cluster-to-track association procedure in the following measurements cycles (see section
3.2.3 for details). If the unevaluated tracks are updated an arbitrary number Neval of
times in Kcheck consecutive measurement cycles, they will change their status to ’evalu-
ated’. Figure 3.15 shows an ’seven-out-of-eleven’ track initiation with a sliding evaluation
window, for example.

A similar procedure can be applied for track deletion. If fewer track updates than the
given number Neval are possible in the last Kcheck measurement cycles, the track will loose
its status as evaluated. But it will not directly be deleted, instead, it will ’survive’ as an
unevaluated track and still take part in the association procedure with a low priority for
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Figure 3.15: Track evaluation by number of detections in consecutive measurement cycles
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Figure 3.16: Track evaluation with track quality monitoring

the next Kdel cycles. If it is not updated during this period, it will be deleted. Otherwise
it can regain the status ’evaluated’.

If the number of possible track updates in the last Kcheck measurement cycle is con-
sidered as the actual track quality, then a time-dependent track quality function as it is
shown in figure 3.16 can be established. The two conditions when a track is considered as
evaluated or has to be deleted can be visualized as a track evaluation and deletion region.
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Figure 3.17: Central-level postprocessing structure

The choice of the parameters Neval, Kcheck and Kdel in this two-level postprocessing ar-
chitecture will be discussed together with the central-level track evaluation and deletion
parameters in section 3.4 at the end of this chapter.

3.3 Central-Level Postprocessing

Having presented the different sensor-level postprocessing stages, the following sections
will outline the appropriate central-level algorithms. At this, each section will underline
the similarities and emphasize the differences between both postprocessing levels.

The output of each sensor-level postprocessing system will be a single-sensor object (SSO)
list with the appropriate kinematic state estimates including a status-bit t̂mov denoting
if the object is considered to be moving or non-moving.

t̂SSO(k) =













t̂SSO
x

t̂SSO
y

t̂SSO
vx

t̂SSO
vy

t̂SSO
mov













(3.51)

This SSO list will be transmitted to the central-level postprocessing unit as it is shown
in figure 3.17. This unit performs the following tasks:
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• The central-level object clustering groups the objects from the latest SSO lists
of the 2 UMRR sensors according to the road user they are originating from. The
goal is to obtain object clusters containing objects from all radar sensors’ SSO lists.

• The central-level data association decides whether an actual object cluster
belongs to an existing central-level object track and thus is utilized to update this
track or represents a newly detected object and thus will form a new central-level
track. Finally, all object tracks will be checked whether they have recently been
updated or not. If tracks have not been updated for a certain time, they will be
deleted.

• The linear Kalman filter and data fusion stage updates the existing central-
level object tracks with the previously assigned object clusters, will predict linearly
the kinematic states of the not updated tracks, and will finally predict the kinematic
states of all existing tracks for the next measurement cycle.

These different central-level postprocessing tasks show that the central-level clustering,
the data association, and the tracking filter have the same basic functionality as the
appropriate sensor-level stages. Thus, the following descriptions of these central-level
postprocessing steps will strongly refer to the sensor-level descriptions and emphasize the
important differences.

The output of the central-level postprocessing and thus of the complete postprocessing
architecture is a fused object list (FOL), which contains the objects’ kinematic states,
their classification as moving or non-moving, and their physical extension, i.e. the width
and depth according to the multiple measurements originating from the same object:

t̂FOL(k) =





















t̂FOL
x

t̂FOL
y

t̂FOL
vx

t̂FOL
vy

t̂FOL
mov

t̂FOL
∆x

t̂FOL
∆y





















(3.52)

This fused object list can be transmitted to an application processor where the different
objects can be sorted according to their priority for the targeted application. Then, the
important objects have to be selected and appropriate actions must be taken.

3.3.1 Central-Level Clustering

The central-level clustering is the first central-level postprocessing stage and receives the
single-sensor object (SSO) lists from the different single-sensor paths. The main task
of the central-level clustering is similar to the one of the sensor-level target clustering,
namely to determine the single-sensor objects in the different SSO lists that originate
from the same road user and to group them to global object clusters. The difference
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to the sensor-level clustering approach is that the kinematic states of the single-sensor
objects originating from the same road user cannot be considered as uncorrelated. These
kinematic state estimates base on the target dynamic model implemented in the sensor-
level Kalman filter in each sensor path. Thus, the single-sensor objects representing the
same road user share a common target dynamic model. This leads to a correlation of the
appropriate SSO kinematic state estimates and must be taken into account when it comes
to testing and fusing the different global cluster candidates. The following central-level
cluster processing scheme is implemented in the postprocessing architecture:

Cluster Algorithm

1. First, each of the I detected single-sensor objects of all SSO lists is considered as an
independent global object cluster ĉi and is represented by its estimated kinematic
states including its classification as moving or non-moving

ĉi = t̂i =
[

t̂x, t̂y, t̂vx
, t̂vy

, tmov

]T
(3.53)

with its covariance matrix

Cov(ĉi) = Pi (3.54)

2. In a second step, the cluster pair (i, j)|i6=j with the greatest similarity according to
a given similarity criterion has to be found. The implemented similarity measure
SMij is the inverse of the statistical distance between the two kinematic states ĉi

and ĉj representing the two clusters:

SMij =
1

√

(ĉi − ĉj)T · (Pi + Pj − Pij − P T
ij )

−1 · (ĉi − ĉj)
(3.55)

where Pij is the cross covariance matrix being a measure of the correlation between
the global object clusters ĉi and ĉj. On details how this cross covariance matrix
Pij can be obtained from information of the preceding postprocessing steps, please
consider the appendix A, where the general minimum variance data fusion approach
is outlined in detail.

3. In the following step, it has to be checked whether the pair fulfills a given homogene-
ity criterion or not. The homogeneity criterion of a cluster is a necessary condition
that must be fulfilled by all cluster elements. In the central-level clustering, it is
given by a simple thresholding utilizing the similarity measure SMij

SMij ≥ ΨSimilar (3.56)

At this, ΨSimilar is the minimum similarity value between two elements of the same
cluster. If this homogeneity criterion is fulfilled, then both clusters are fused by
calculating a new cluster centroid ĉf representing the enclosed single-sensor objects.

ĉf = ĉi + [Pi − Pij ] ·
[

Pi + Pj − Pij − P T
ij

]−1 · [ĉj − ĉi] (3.57)

Cov(ĉf) = Pi − [Pi − Pij] ·
[

Pi + Pj − Pij − P T
ij

]−1 · [Pi − Pij]
T (3.58)
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This cluster fusion is calcualted in the minimum variance sense and is derived in
detail in the appendix A. Finally, the number of remaining global object clusters
is reduced to I − 1. If the homogeneity criterion is not fulfilled by the considered
cluster pair (i, j), then the cluster procedure is stopped since no other possible
cluster pair will fulfill this criterion.

4. Finally, it is checked whether more than one cluster is remaining after the latest
processing step or not. If yes, the cluster procedure is continued with step no. 2,
otherwise, it is stopped.

As already stated in the sensor-level target clustering section, the extraction of the phys-
ical extensions of an observed object in such a clustering process has proven to be not
reliable. Such an extraction must be carried out directly in or after the spectral estima-
tion in the sensor front end, where it will lead to more stable results. Thus, the handling
of extended objects in this thesis will be restricted to the described clustering process
with the additional information how many targets are included in each cluster and what
maximum position difference ∆x and ∆y lies between them. The following real road
traffic example will show the achieved central-level clustering results.

Real Road Traffic Example

The real road traffic situation shown in figure 3.18 includes a truck on the right lane of a
highway directly in front of the host vehicle and a passenger car overtaking this truck on
the left lane. The two UMRR sensors are detecting five moving targets (see 3.19(a)), four
with almost the same speed as the host vehicle and one with a significant larger speed.
The four detections directly in front of the passenger car belong to two trucks driving in
front of the own vehicle and thus are clustered by the previously described algorithm (see
figure 3.19(b)). The overtaking passenger car is only observed by a single target detection
and cannot be clustered with any other detection. It can be seen that all targets with
a certain similarity are clustered and fused to one object with certain extensions. These
extensions are given in the x- and y-direction of the object’s coordinate system with the
x-axis in the direction of the object’s velocity. In this example, the clustering is reducing
the number of objects to 3, which represents the real number of road users present
in this road traffic scenario snapshot. This example shows that the determination of
object extensions depends heavily on the position of the detected reflection centers on
the car body. For example, the two trucks in front of the own vehicle have about the
same extension in reality. But due to the limited number of detected targets, it is not
possible to estimate this real extension. The estimated extension can be considered
as the object size that can be at least assumed for the detected object, i.e. it cannot
be determined whether the object extensions are larger than the estimated one or not.
Different test drives in real road traffic situations have proven that a strongly fluctuating
number of target detections is causing quickly changing object extensions that cannot
be smoothed in a reasonable way by a tracking filter. The object extension estimation
may be significantly improved by finding peak clusters in the frequency spectrum or
by comparing the detections in different chirps of a LFM-CW receive signal. Because
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this sensor specific signal processing is not part of the postprocessing architecture, no
further investigations have been carried out. Overall, the clustering step has shown to
achieve a correct grouping of targets according to the real extended objects. The reduced
number of objects will be a benefit for the postprocessing performance, especially the
data association.

Figure 3.18: Video camera snapshot of the real road traffic example

( a )                                          ( b )
Figure 3.19: Moving target detections of both UMRR sensors (a) and the appropriate
cluster at the end of the postprocessing chain (b)
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Figure 3.20: Central-level data association overview

3.3.2 Central-Level Data Association

The central-level data association has the same task as the appropriate sensor-level imple-
mentation, namely determining the global clusters received from the central-level clus-
tering step that belong to already existing central-level object tracks and determining
the ones that are new. Thus, the implemented central-level data association structure
is the same two-level, all-neighbor data association approach described in 3.2.3 and is
shown in figure 3.20. Again, it is distinguished between two data association levels. In
the first level, the cluster-track assignments for all evaluated global object tracks are
found in three main data association steps. Only the unassigned, remaining global ob-
ject clusters are considered as possible update candidates of the unevaluated tracks in
the second data association stage. This two-level distinction prioritizes the evaluated
over the unevaluated object tracks and assumes that newly appearing objects will not
be assignable to an existing evaluated object track. This prioritization avoids that an
unevaluated and maybe not reliable track is diminishing the object cluster portion in the
update of a longer existing, evaluated object track. Within each stage, the all-neighbor
data association approach described in 3.2.3 is applied.

The only difference between the central- and the sensor-level data association is that
the central-level data association plane has 4 dimension, because the incoming global
cluster data includes the complete velocity information

ĉi(k) =
[

x, y, vx, vy, mov
]T

(3.59)
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Figure 3.21: Central-level tracking overview

The first data association step is the gating, where the number of possible track up-
date candidates among the received global clusters is reduced by limiting the search
area around the global object track’s predicted kinematic state. The implemented gates
have an elliptical shape and are analogously defined to the sensor-level ones given in
eq.(3.19)-(3.23). At the next processing stage, the determined update candidates are
rated according to the assignment probability of eq.(3.25) presented in section 3.2.3. Fi-
nally, the all-neighbor cluster-to-track association decides which global object clusters
are assigned to which global object tracks and transfers the global clusters including the
assignment information to the central-level tracking filter stage.

3.3.3 Central-Level Tracking

The central-level tracking stage consists of three main processing steps (see figure 3.21),
the Kalman filter update, the track initialization, evaluation and deletion stage, and the
track prediction. Each cluster of the incoming global cluster list comprises

ĉ =
[

x, y, vx, vy, mov, ∆x, ∆y
]T

(3.60)

plus the assignment information of the previous data association step and with its co-
variance matrix R. Each assigned global object cluster is utilized for the update of the
appropriate global object track. At this, the coordinate system of the global object
clusters and the central-level tracking filter’s kinematic states is the same, so that no
coordinate transformation is necessary prior to the tracking filter update step. The im-
plemented Kalman filter is a LKF similar to the one that has already been outlined in
section 3.2.4, so that the following Kalman filter equations remain valid:
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LKF State Estimate Prediction:

Pj(k|k − 1) = Φ(k)Pj(k − 1|k − 1)Φ(k)T + Q (3.61)

t̂j(k|k − 1) = Φ(k)̂tj(k − 1|k − 1) (3.62)

LKF State Estimate Update:

Kj(k) = Pj(k|k − 1)

(

Pj(k|k − 1) +
∑

i

Probij(k) · Ri(k)

)−1

(3.63)

Pj(k|k) = (I − Kj(k)) · Pj(k|k − 1) (3.64)

t̂j(k|k) = t̂j(k|k − 1) + Kj(k) ·
∑

i

Probij(k) · ∆cij(k) (3.65)

where ∆cij(k) is the innovation between the global object track prediction t̂j(k|k− 1) and
the global cluster ĉi(k)

∆cij(k) := ĉi(k) − t̂j(k|k − 1) (3.66)

The implemented LKF contains a maneuver adaptive process noise as presented in 2.2.8
and incorporates the information about the host vehicle’s motion described in 2.1.5. The
choice of the target dynamic model parameter, i.e. the process noise, in case of a two
postprocessing level architecture with one Kalman filter in each level’s processing chain
is important for the radar network’s estimation performance and will be discussed in
section 3.4 at the end of this chapter.

Missed Update

Missed object track updates are handled analogously to the sensor-level implementation.
If no global object cluster has been assigned to an existing global object track, then the
track will be maintained according to the following equations:

LKF State Estimate Prediction:

Pj(k|k − 1) = Φ(k)Pj(k − 1|k − 1)Φ(k)T + Q (3.67)

t̂j(k|k − 1) = Φ(k)̂tj(k − 1|k − 1) (3.68)

LKF State Estimate Update:

Pj(k|k) = Pj(k|k − 1) (3.69)

t̂j(k|k) = t̂j(k|k − 1) (3.70)
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As already outlined in the sensor-level tracking filter section, the not updated object
track can additionally be penalized by increasing its uncertainty. At this, an arbitrarily
chosen covariance matrix Z is added in the LKF update step in eq.(3.70)

Pj(k|k) = Pj(k|k − 1) + Z (3.71)

Track Initialization, Evaluation, and Deletion

The track initialization, evaluation, and deletion procedure is in principle the same as
the straight-forward approach presented in 3.2.4. At this, the global clusters that are not
assigned to an existing object track are considered as ’unused’. Each of these unassigned
global clusters will initiate a new global object track with the status of not being eval-
uated yet. Such potential object tracks will take part in the cluster-to-track association
procedure in the following measurements cycles, but with a lower priority as the eval-
uated global object tracks. If the unevaluated tracks are updated an arbitrary number
of times Neval in Kcheck consecutive measurement cycles, they will change their status to
’evaluated’. An equivalent procedure is applied for track deletion. If fewer track updates
than the given number Neval are possible in the last Kcheck measurement cycles, the track
will loose its status as evaluated. But it will not directly be deleted, instead, it will
’survive’ as an unevaluated track and still take part in the association procedure for the
next Kdel cycles. If it is not updated during this period, it will be deleted. Otherwise it
can regain the status ’evaluated’.

The important difference of both track evaluation and deletion procedures can be found
in the choice of the parameters Neval, Kcheck, and Kdel. This choice has to be considered
in the context of the complete postprocessing’s estimation behavior, i.e. together with
the appropriate sensor-level parameters as well as with the implemented target dynamic
models. This important point in the postprocessing design will be discussed in the next
section.

3.4 Choice of Tracking Filter Parameters

Implementing a two-level postprocessing architecture with one tracking filter in each
level’s processing chain leads to the question how to choose the tracking filter parame-
ters, i.e. the target dynamic model and the track evaluation and deletion time. If only
a single Kalman filter would be implemented, the appropriate guidelines of choosing a
target dynamic model given in 2.2.3 are valid. But applying the described target dy-
namic model twice in the complete postprocessing chain will lead to a stronger filtering
effect that results in a significant latency in reacting to an object’s maneuver. A similar
conclusion is valid for the track evaluation and deletion time. If the track evaluation
time suitable for a single Kalman filter stage is applied to the Kalman filters of both
processing levels, then the time until an object track is considered as evaluated and thus
transmitted to the application processor is twice as long as in the single-level Kalman
filter implementation. An analogous observation can be made for the track deletion time.
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This behavior of the two-level postprocessing architecture is neither wanted nor is it rea-
sonable.

The strategy in this two-level postprocessing architecture is to keep the tracking re-
sults in each single-sensor path as "raw" as possible. The different measurement clusters
should only be stabilized by the tracking filter without introducing a too restrictive target
dynamic model. At this, the Kalman filter’s main task is the avoidance of measurement
drop-outs in order to guarantee a continuous single-sensor object data stream at the out-
put of the sensor-level postprocessing. Therefore, the process noise matrix Q must be
chosen significantly greater than described in the guideline in section 2.2.3. This allows
a quick reaction to an observed target maneuver but also reduces the Kalman filter’s
estimation accuracy due the lower measurement noise filtering. The measurement noise
remaining in the single-sensor object data will be filtered out in the following central-level
tracking filter. The sensor-level track evaluation and deletion time must also be chosen to
be short compared to a single tracking filter approach. The tracking filter should quickly
establish a track after an object has been detected for the first time. A ’two-out-of-three’
track initiation scheme (see section 3.2.4 for definition) has proven to be reasonable. A
similar time can be chosen for track deletion. At the sensor-level stage, it is important
to avoid a loss of information due to too restrictive side conditions. At this, it can be
accepted that false object tracks may temporarily exist in order to guarantee the maxi-
mum available information at the following central-level postprocessing stage. It is also
self-evident, that these false single-sensor object tracks must be deleted as quickly as thy
have been initiated.

The tasks of the central-level tracking filter are complementary to the sensor-level ap-
proach. At this level, false track initializations and deletions must be avoided. This means
that the time for evaluating a central-level object track must be chosen significantly higher
than the one of the sensor-level tracking filter. The same conclusion remains valid for
the central-level track deletion time. A ’seven-out-of-eight’ track initiation scheme has
proven to show good results in real road traffic scenarios and leads to an object initiation
time at the output of the complete postprocessing system of 9 · 25 ms = 225 ms. The
target dynamic model of the central-level Kalman filter has the task to achieve accurate
kinematic state estimation results. This can be achieved by implementing one of the two
target dynamic models described in section 2.2.3. Starting with the parameters of the
given guideline and slightly adjusting the process noise to the targeted real road traffic
scenarios proved to work well. Because the maneuver adaptive process noise presented
in section 2.2.8 is implemented in the central-level Kalman filter, the standard target dy-
namic model can be chosen to be a bit too restrictive in order to gain precise kinematic
state estimation results scenarios with constant target motion. The amount of process
noise increase in case of a detected maneuver must be determined empirically for the
targeted application in real road traffic scenarios.
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3.5 Chapter Conclusions

This chapter has presented a postprocessing architecture for a multi-sensor automotive
radar network, exemplarily derived for 2 UMRR sensors. The implemented algorithms
have been an extension of the previously outlined single-target kinematic state estima-
tion techniques to multi-target situations. The signal processing chain has been divided
into two processing levels, the sensor- and the central-level processing. The sensor-level
postprocessing contains sensor-specific algorithms that estimate the objects’ kinematic
states from the single-sensor measurements. It offers the advantages of a distributed sy-
stem, which are a reduced data bus load and a parallel computation of the single-sensor
measurements. The central-level postprocessing has mainly the task of fusing the differ-
ent single-sensor object estimates according to the road user they originate from and of
obtaining precise kinematic state estimates of the appropriately fused objects.

The simple target classification step has divided the detected targets of the incoming
single-sensor measurements into moving and non-moving targets. This distinction has
added an important information to each target, which has simplified the target clustering
and the data association applied later in the postprocessing chain. The presented target
clustering algorithm implemented in the sensor-level as well as in the central-level post-
processing has taken the reflection behavior of extended objects into account by assuming
that different target detections belonging to the same road user may originate from dif-
ferent reflection centers on the road user’s surface. These different reflections have been
treated like clusters with a physical extension. The data association on both processing
levels has taken advantage of the additional information generated by the classification
step and the meaningful target grouping by the clustering steps on both processing lev-
els. Different association criteria have been presented and discussed together with two
different association philosophies, the nearest-neighbor and the all-neighbor association.
Finally, a data association procedure consisting of two, differently prioritized levels has
been outlined. At each priority level a JPDA all-neighbor approach has been applied. As
the last postprocessing stage in both postprocessing levels, the tracking filter stage has
been derived on the basis of the kinematic state estimation algorithms discussed in the
previous chapter. At this, the track initialization, evaluation and deletion procedure as
well as the choice of the target dynamic model parameters have been a special focus.

Having developed a two-level postprocessing architecture for a 2 UMRR network, it must
be proven that this signal processing chain shows a very good performance in real road
traffic scenarios. This will be addressed in the following chapter where the experimental
car and its equipment as well as the estimation results in different typical road traffic
situations will be presented.



Chapter 4

Experimental System

One of the most important achievements in engineering a complete system architecture
is the prove of its functionality in real world situations. Having designed the concept
and algorithms of the complete postprocessing architecture for the 2 UMRR network
under important assumptions such as the reflection behavior of extended targets, the
implemented system as it was described in the previous chapter must prove that it is
working properly. In the following sections, the test car and the utilized equipment will
be summarized briefly. The experimental results achieved with the integrated postpro-
cessing architecture in diverse real road traffic scenarios will be presented. Since there are
numerous real road traffic scenarios that have been tested with this experimental system,
this chapter will restrict itself to a limited number of meaningful examples.

4.1 Test Vehicle and Equipment

The test vehicle used for evaluation of the previously presented postprocessing architec-
ture is shown in figure 4.1. The two UMRR sensors are mounted symmetrically in the
front bumper with a distance of 0.80 m in between them. It can seen in figure 4.2, that
the sensors are not covered by any material, e.g. the bumper’s lacquered plastic. For the
purpose of research activities in the field of automotive radar, this is reasonable, but will
change in a later series product.

The test car’s system architecture is schematically shown in figure 4.3. Both UMRR
sensors are connected to a power supply and are transmitting their target lists with an
update rate of 30 Hz via the sensor CAN bus of the test vehicle to the node computer.
The node computer is the central processing unit where the described postprocessing
system is implemented on. Beside the single-sensor target lists, it also receives the mea-
surement data from the host vehicle sensors. The ABS sensor delivers the host vehicle
speed and the turn-rate sensor sends the measured yaw-rate via the vehicle CAN bus to
the postprocessing unit. The turn-rate sensor is not a part of the vehicle’s periphery and
was developed separately. Its picture is shown in figure 4.4. For further details on the
realization and performance of this yaw-rate sensor, please consider [Föl00].

129
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Figure 4.1: Testcar equipped with 2 UMRR sensors in the front bumper

Figure 4.2: Detailed view of one UMRR sensor in the front bumper
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Figure 4.3: Testcar radar network structure

The update rates of the different sensor’s information are summarized in table 4.1. The
ABS sensor offers the information about the host vehicle speed with an update rate of
30 Hz and the turn-rate sensor periodically transmits its information with 100 Hz. As
already mentioned, the two UMRR sensor are transmitting their target lists with an
update rate of 30 Hz. Overall, the postprocessing architecture will send its object lists
with an update rate of 30 Hz to an appropriate application processor. Thus, the complete
radar network plus postprocessing system has the potential to fulfill the requirements of
the comfort systems described in table 1.2 of chapter 1. According to the supplier of
the UMRR sensors, the measurement update rate will be increased in the next sensor
generation, so that the sensor and thus the presented postprocessing system will also be
suitable for additional safety applications.
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Parameter Bus Update Rate

Target List Sensor No.1 Sensor-CAN 30 Hz

Target List Sensor No.2 Sensor-CAN 30 Hz

Host Vehicle Velocity Vehicle-CAN 30 Hz

Turn-Rate Vehicle-CAN 100 Hz

Table 4.1: Information available on the CAN-bus

Figure 4.4: Turn rate sensor

4.2 Software Implementation Tool

The described postprocessing architecture has been implemented in C++ as modules in
the signal processing development and simulation environment RASI (R

¯
a
¯
dar S

¯
i
¯
mulation).

This tool offers the possibility to run the implemented algorithms in a synchronized or a
real-time mode. Additionally, this development software is capable to integrate hardware,
e.g. radar sensors, by supporting the real-time execution of the implemented modules.
For details on this development tool, its messaging system and structure please con-
sider [LR03].

RASI has a graphical user interface visualizing the signal processing flow between the
different C++ modules in the actual workspace. The instantaneous communication data
rates as well as the instantaneous processing loads of all modules are displayed during
the simulation. The implemented structure of the previously described postprocessing
system in the graphical user interface of RASI is shown in figure 4.5.

The visualization of the postprocessing system’s output data is possible with the RASI
Radar Viewer module. The actual detected objects are displayed in a birdseye view
showing the position and the velocity of the moving objects relative to the experimental
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Figure 4.5: Signal processing modules in the graphical user interface of RASI

Figure 4.6: Data viewer tools in RASI
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car. The available host vehicle data is also displayed in this window. To observe the
object movement over time, the target traces can be viewed in a range-time diagram.
Additionally, the data of the actual target lists can also be displayed as text in a separate
window.

In order to evaluate the radar network data of a test drive, a video camera is integrated
in the experimental car and the complete sensor data including the video information
can be recorded by the RASI software. During the offline evaluation of the recorded test
drives, this reference video can be viewed by using the RASI capture module.

The different postprocessing algorithms have been evaluated in real road traffic situa-
tions by utilizing this development tool. They have been redesigned several times in
order to improve the system’s performance. The final experimental results achieved by
the implemented postprocessing architecture will be presented in the following section.

4.3 Real Measurement Situations

This section will present the results achieved by the implemented postprocessing architec-
ture in real road traffic scenarios. At this, the implemented postprocessing architecture
has to deal with extended targets, multi-target situations, moving and non-moving ob-
jects as well as different maneuvers of observed road users. The experimental results will
be structured in three different main scenarios:

• driving on a highway,

• driving in an urban area,

• and a very special situation, driving through a tunnel.

In each of these scenarios, different situations will be considered. The situations comprise
cut-in or cut-out maneuvers of observed road users or the own vehicle, cars overtaking
each other in the host vehicle’s scanning area, and the detection of oncoming traffic.

4.3.1 Highway Scenario

The highway is a highly restricted environment concerning different side conditions. The
occurring types of road users are motorcycles, passenger cars, and trucks. Their maneu-
vers normally comprise the acceleration, deceleration and lane changing. No oncoming,
right- or left-turning traffic can be found. In a normal highway situation, all road users
neighbored to the own vehicle are heading in the same direction and have at least a cer-
tain minimum speed. A special challenge for a radar based automotive application are
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the wide range of occurring accelerations and velocities. Additionally, the radar system
has to cope with guardrails, which lead to a great number of target detections at the
radar sensors. Nevertheless, this traffic scenario is the easiest to handle for automotive
radar sensors, so that ACC systems were introduced for this road traffic scenario as the
first radar-based automotive convenience application. At first, ACC systems were re-
stricted to the own car’s minimum velocity of about mHost

v = 80 km/h, but today’s ACC
systems are working properly at mHost

v = 20 km/h. In the near future, these systems will
be enhanced by short or medium range radar sensors in order to detect objects in the
surroundings of the own car. Such a multi-sensor network will enable a complete stop &
go functionality, e.g. in a traffic jam.

1

Figure 4.7: Typical ACC traffic situation

Figure 4.8: Target traces of the typical ACC traffic situation in figure 4.7
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Figure 4.7 shows a typical ACC road traffic scenario. No dense traffic can be found on
the highway and the own vehicle is following a vehicle driving ahead. The so-called target
traces are visualized in the range-time diagram in figure 4.8. They show the measured
ranges of each object track up to 45 m during the last 10 s. The point in time, where
the video camera picture was captured is indicated by the transparent area including the
relevant target number. This situation is a good example for the distinction between
moving and non-moving objects. The target trace of the moving object (white trace)
shows that the passenger car in front of the own car is moving at almost the same speed
and thus is detected at almost the same range over the displayed time period of 10 s.
But the great number of non-moving objects originating from the poles of the guard rail
are also detected and clearly distinguished from the moving object.

A more dense traffic highway situation is shown in figure 4.9. The own vehicle is fol-
lowing a passenger car (target no.1) on the middle lane. Different road users such as the
small bus (target no.2) are passing by on the left lane. The trucks on the right lane are
almost standing still. The traces of the detected targets are shown in figure 4.10. It can
clearly be seen that target no.1 (pink trace), which is the passenger car ahead of the own
vehicle, is driving at almost the same speed at a distance around 35 m. Target no.2 is
moving at a higher speed ( indicated by the positive gradient of the yellow trace) and
is overtaking the experimental vehicle on the left lane. The remaining ones among the
shown target traces are detections of the almost non-moving trucks on the right lane.
The target traces have a negative gradient until they reach rtrace = 0 m. At this point in
time, the object tracks are not updated anymore because they left the scanning area of
the radar network. But the tracking filter keeps these tracks alive for a very short time
in order to find another update. Thus, the target traces of the trucks on the right lane
are still existing after the trucks have been overtaken. By definition, "range" is a positive
value, so that target traces change to a positive gradient indicating when the object is
dropping away.

Overall, the tests in highway situations have shown that the radar network could de-
tect all relevant objects inside its scanning area. It was able to handle a high number of
non-moving objects originating from the guardrail or road work barriers, for example. At
this, it could clearly distinguish these non-moving objects from the fewer moving ones,
also in medium dense traffic situations.
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Figure 4.9: Highway situation with medium dense traffic
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Figure 4.10: Target traces of the highway situation with medium dense traffic
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Figure 4.11: Urban traffic scenario with one passenger car overtaking another one

4.3.2 Urban Scenario

The urban traffic scenario adds many requirements to the previously presented, typical
ACC scenario on the highway. In urban environments, the radar sensors have to de-
tect a greater variety of road users, e.g. pedestrians, bicycles, passenger cars, or trucks.
All of them can head in every possible direction (e.g. at the crossways). Additionally,
diverse non-moving objects such as parking cars can be found on the side of urban streets.

Figure 4.11 shows an urban traffic situation where one passenger car (target no.1) is
overtaking another one (target no.2) in front of the own vehicle. This situation is critical
for radar sensors that can only achieve a target resolution in the radial direction. If both
cars are situated at almost the same distance, the sensors will only detect one target
with a wrong kinematic state that results from the fusion of both targets’ real kinematic
states. This radar typical measurement limitation must be solved by the implemented
postprocessing architecture without generating wrong object track assignments or track
discontinuities. The target traces in figure 4.12 show that the object tracks of target
no.1 (pink trace) and 2 (white trace) are continuous although the two targets cannot be
resolved in the area where both are located at almost the same range. The remaining
target traces belong to parking cars on the right side as well as some metal poles on the
left side of the street. The distinction between the moving and non-moving objects in the
postprocessing system is already achieved at the sensor-level and can be visualized by
the range-time diagram in figure 4.13. It only shows the target traces of the two moving
objects of both sensor-level postprocessing systems and proves that a clear distinction
between moving and non-moving objects is possible by the implemented algorithms.
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Figure 4.12: Central-level target traces of the urban traffic scenario in figure 4.11
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Figure 4.13: Sensor-level target traces of sensor no.1 and 2 of the detected moving objects
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Figure 4.14: Cut-out situation in an urban traffic environment
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Figure 4.15: Target traces of the cut-out situation in an urban traffic environment

An important situation type in urban traffic scenarios are the cut-in and cut-out maneu-
vers of vehicles driving in front of the own car. It is important that a vehicle cutting in
the lane of the own car or a vehicle ahead of a car cutting out of the own lane is detected
early enough to give the driver or the application sufficient time for an appropriate re-
action. Figure 4.14 shows a cut-out situation at a range of 20 m ahead the experimental
car. Target no.1 is changing lanes in order to overtake target no.2 on the right lane. The
appropriate target traces in figure 4.15 show that after about half a second after initiation
of target no.1’s cut-out maneuver, target no.2 is detected, so that an appropriate reaction
of the application would be possible.
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Figure 4.16: A second cut-out situation in an urban traffic environment
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Figure 4.17: Target traces of the second cut-out situation in an urban traffic environment

In some cut-out situations the experimental system has been able to detect the second
vehicle driving ahead of the maneuvering car even before the maneuver has been initiated.
Such a road traffic example shows figure 4.16 with the appropriate target traces in figure
4.17. Again, target no.1 is changing lanes in order to overtake target no.2 on the right
lane. But in this case, target no.2 has already been detected a short time before target
no.1 initiates its maneuver. This example shows also that a clear distinction between the
slow moving passenger car (target no.3) on the right lane and the target traces belonging
to stationary objects in the surroundings of the road is possible.
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Figure 4.18: Cut-in situation in an urban traffic environment
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Figure 4.19: Target traces of the cut-in situation in an urban traffic environment

Cut-in situations are more critical than cut-outs, because a new vehicle is entering the own
driving path and thus significantly shortens the distance to the next object driving ahead
of the own vehicle. Figure 4.18 shows such a cut-in situation. The black passenger car
(target no.1) is entering the driving path of the experimental car and thus is immediately
closer as target no.2. The target traces in figure 4.19 show that the distance between
target no.2 and the own vehicle is increasing until the gap is large enough for target no.1
to cut in the left lane. Because target no.1 is entering in the radar sensor’s scanning
area from the side, it suddenly appears at a short distance (see light blue trace). Targets
entering the radar sensor’s scanning area from the side must be evaluated after the first
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2
1

Figure 4.20: Tunnel scenario with dense traffic moving at almost the same velocity
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Figure 4.21: Target traces of the tunnel scenario with dense traffic

detection in order to avoid the generation of ghost targets. This evaluation time must be
short enough to offer the driver or the appropriate application enough time to react to
this immediately appearing object at a short distance while guaranteeing the avoidance of
ghost targets. The implemented postprocessing system has proven to have a sufficiently
quick reaction in such situations. The other target traces in figure 4.19 can also be
assigned to obstacles present in this road traffic scenario. The red target trace with a
great negative gradient belongs to a vehicle from the oncoming traffic of the other side
of the street. The green and the yellow target trace with a relative low gradient are
originating from road users that have been overtaken by the experimental car.



144 4. Experimental System

12

Figure 4.22: Tunnel scenario with dense traffic moving at different velocities
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Figure 4.23: Target traces of the tunnel scenario with dense traffic moving at different
velocities

The experimental radar network has shown that it is capable of handling typical ur-
ban traffic situations such as cut-in and cut-out situations as well as overtaking cars,
where the postprocessing overcomes the radar sensors’ inability of lateral resolution. In
these situations, the system was again able to distinguish between the great number of
stationary targets and moving vehicles.
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4.3.3 Tunnel Scenario

The tunnel scenario is a very special situation. The radar sensors will have to deal with
detections originating from the walls of the tunnel while they must be capable to detect
the moving objects, cars or trucks, without greater disturbance, without missing detec-
tions, or without generating ghost targets. Figure 4.20 shows the experimental vehicle
driving on the left lane in a tunnel (of the river Elbe). It follows the passenger car (target
no.1). All vehicles are moving at almost the same velocity. The target traces in figure
4.21 show that two moving objects are detected by the radar network. Target no.1 is the
dark passenger in front of the own vehicle and target no.2 is the truck on the right lane.
The passenger car driving on the right lane at almost the same distance as target no.1 is
not detected. Probably, this car has not been detected after entering the radar network’s
scanning area, because it has immediately been situated at the same distance as target
no.1. Due to the radar sensor’s inability of resolving two objects in the lateral direction,
it will not be detected until the velocity or range difference between the two vehicle is
large enough.

Figure 4.22 shows again a tunnel scenario with dense traffic, but in this example, the
vehicles on both lanes are moving at significant different velocities. The experimental
car is following a big truck (target no.1) driving on the right lane. Different vehicles are
passing by on the left lane. The target traces in figure 4.23 show a constant detection of
the white truck (red trace of target no.1) and also different vehicles overtaking the own
car on the left lane. The passenger car, target no.2 (pink trace), is detected as long as it
is not "masked" by the big target no.1 due to the sensor’s inability of lateral resolution.
The remaining target traces have the same negative gradient and are belonging to detec-
tions originating from the tunnel walls.

The implemented radar network system has proven to be able to distinguish between
moving and non-moving objects inside a tunnel without greater disturbance or without
generating a significant number of ghost targets. All relevant objects have been detected
in a dense traffic situation with either all vehicles moving at the same or at different
velocities.

4.4 Chapter Conclusions

This chapter has presented the most important part of this thesis, the prove that the ana-
lyzed algorithms, the designed and implemented postprocessing architecture are working
in real road traffic scenarios. A great number of tests have been carried out in different
road traffic situations and only an excerpt of the experimental results could be presented
in this chapter. The integrated medium range radar network has proven to work in
highway, urban traffic, and challenging tunnel situations. It has shown to work in dense
traffic as well as in situations with a great number of stationary targets. These stationary
targets could clearly be identified by the implemented algorithms and thus distinguished
from the moving objects. Multiple reflection from the same road users were clustered,
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so that only one object has been generated for each road user by the implemented post-
processing system. As already mentioned in the last chapter, the estimation of object
extensions depends strongly on the fact whether multiple reflections are received from a
single road user or not. The test drives have proven that such an extension estimation is
sometimes possible, but reveals to be unstable. A solution to this fluctuating extension
estimation would be the estimation directly in the sensor front-end. Overall, the im-
plemented medium range radar network with its postprocessing architecture has shown
good results in different road traffic situations being relevant for new forward sensing
applications. Future improvements in the sensor performance will lead to an even better
radar network system performance suitable for a greater variety of road traffic situations
and automotive applications.



Chapter 5

Conclusion and Future Outlook

This thesis presented a postprocessing architecture for an automotive radar network,
which is capable of fulfilling the requirements of new safety- and convenience applica-
tions, such as the collision mitigation or the stop & go system extending the existing
ACC. Chapter 1 introduced a selection of radar-based automotive applications and out-
lined their requirements. It explained also the radar fundamentals that are the basis
for understanding the radar network implementation in this thesis. It stressed that the
complete radar network must properly work in a dense road traffic environment, i.e. in
multi-target situations. Thus, the presented postprocessing system must be capable of
handling a great number of objects. It must take into account that the detected objects
behave like extended targets. On the basis of these real radar measurement properties,
two radar network concepts with two different high performance 24 GHz radar sensors
have been introduced and evaluated. As a result of this radar network concept compar-
ison, it was shown, that a 2 monopulse radar network, which is measuring one range,
radial velocity, and azimuth angle per target, is superior to a high precision range-only
measuring 4 sensor pulse radar network.

Chapter 2 focused on kinematic state estimation algorithms for different sets of radar
sensor measurements. First, it presented a least squares kinematic state estimation ap-
proach based on the radar measurements of a single measurement cycle and outlined its
properties. After that, a general discrete Kalman filter considering all measurements up
to the actual measurement cycle was introduced. Such an approach offered the possibil-
ity of incorporating a target dynamic model, which led to an increase of kinematic state
estimation accuracy compared to the least squares approach. In the following, differ-
ent Kalman tracking filter algorithms were derived and their properties were discussed.
Finally, the least squares kinematic state estimation algorithm and different Kalman
tracking filter were combined to single-target postprocessing systems and were evaluated
in a comparison. At this, it was shown that the systems with a linear Kalman filter
as well as the unscented Kalman filter were superior to the extended Kalman filter in
the considered situations. Furthermore, this chapter presented and evaluated different
Kalman filter enhancements. The maneuver adaptive Kalman filtering addressed the
need for a quicker filter state response to a strongly maneuvering target. It detected the
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maneuver via a statistical distance measure and increased the allowed object dynamics
in the target dynamic model during the maneuver. In another approach, a reduction in
computation complexity while maintaining the kinematic state estimation performance
was achieved by a decoupling of the different filter states. Finally, the incorporation of
the measured host vehicle motion in the filter equations was outlined with the goal to
take advantage of all available information that describes the relative kinematic state of
the detected targets.

Chapter 3 extended the kinematic state estimation and tracking techniques of chapter
2 to multi-target situations and derived a postprocessing architecture for a multi-sensor
radar network, which is capable of handling extended objects. At this, it focused on a
two-level postprocessing implementation for a 2 UMRR sensor network. Two important
processing steps have been presented in order to distinguish between the different ob-
served extended objects, which proved to generate a great number of detected targets at
the radar sensors. The first step was the simple target classification distinguishing be-
tween moving and non-moving targets by incorporating the information about the own
vehicle’s motion. The second one is the clustering step that groups all targets originating
from the same object to one target cluster. Both processing steps helped to achieve a
distinction between the different extended objects while also leading to a meaningful data
reduction. Furthermore, this chapter presented data association algorithms necessary for
handling multi-target situations. Finally, the structure of the tracking filters including the
track initialization, evaluation, and deletion procedure implemented in the postprocessing
system was outlined with the special focus on the choice of two-level system’s parameters.

Surely, the highlight of this thesis was the integration of the postprocessing architec-
ture in the experimental car in order to evaluate the considered algorithms in real road
traffic situations. The development of the presented postprocessing system was only
possible on the basis of practical experiences in real road traffic situations. Analytical
investigations and simulations were the fundamentals of the first rudimentary postpro-
cessing approach but could not model the complex real road traffic environment. The
postprocessing algorithm redesign initiated by the practical experiences led to the pre-
sented high performance of the developed postprocessing architecture. A selection of
these experimental results achieved by the implemented system was presented in chapter
4.

The extensive use of the experimental car has not only led to improvements of the im-
plemented postprocessing system, it has also given some hints on future investigations of
signal processing parts being not part of this thesis. Starting with the sensor front-ends,
the first part in the signal processing chain: It would be one of the most important im-
provements if radar sensors were able to resolve different targets in the lateral direction.
The first scanning far distance radar sensors are commercially available at the moment
and will be used in ACC/Stop & Go and collision mitigation systems in the future. The
resolution in the azimuth angular direction is either achieved by a mechanically scanning
or an electronically steered phased array antenna. It is self-evident, that this complex
technology must be available at a certain price and that the sensors must at least have
the same size as the already available non-scanning front-ends in order to be integrated
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in future series products. Concerning the postprocessing steps, the clustering has proven
to work efficiently but the simultaneous estimation of object extensions from the avail-
able target list data at the output of the sensor front-ends has not been reliable. The
phenomenon of object extensions can already be observed in the spectrum of the down-
converted LFM-CW receive signal, where extended objects can be identified due to the
superposition of several magnitude peaks. The object size estimation in the spectrum
would lead to more stable results than the one from the available target list information.
The clustering of targets can also be improved by incorporating other sensor types, such
as a video camera or a lidar sensor. Many investigations on applications like heading
control or lane departure warning systems utilizing a video camera have been carried out
in recent years. If these systems will be implemented in a passenger car, the additional in-
formation can be utilized for object classification including object size estimation. Object
classification with different type of sensors is already a big topic for research institutes
and the automotive industry since new pedestrian safety systems are demanded from
the European Union. Such a multi-sensor classification will simplify several steps in the
described postprocessing architecture and has a high potential to improve the overall
performance of driver assistance systems.





Appendix A

Data Fusion

The task of data fusion can be found at several postprocessing stages in this work, e.g.
in the sensor-level and the central-level clustering as well as the track-to-track fusion. At
this, two data sets have to be fused to a single data set. In the following the minimum
variance data fusion will be derived in detail:

Consider two estimates x̂1 and x̂2 of the true state vector x̄ given by

x̂1 = x̄ + n1 (A.1)

x̂2 = x̄ + n2 (A.2)

n1 and n2 are unbiased Gaussian noise vectors with the covariance matrices

Cov(x̂1) = E[n1n
T
1 ] = P1 (A.3)

Cov(x̂2) = E[n2n
T
2 ] = P2 (A.4)

so that the expectations of the two estimates t̂1, t̂2 are

E[x̂1] = E[x̂2] = t̄ (A.5)

Now, these two estimated vectors should be fused according to the following equation

x̂f = A · x̂1 + B · x̂2 (A.6)

where A and B are weights with the side condition

A + B = I (A.7)

At this, I is the identity matrix. Since this fusion is a linear operation, the fused estimate
x̂fused is also unbiased

E[x̂f] = x̄ (A.8)
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The covariance matrix of the fused estimate x̂fused can be calculated as

Cov(x̂f) = E
[

(Ax̂1 + Bx̂2 − x̄)(Ax̂1 + Bx̂2 − x̄)T
]

= E
[

(An1 + Bn2)(An1 + Bn2)
T
]

= E
[

An1n
T
1 AT + Bn2n

T
2 BT + An1n

T
2 BT + Bn2n

T
1 AT

]

= AP1A
T + BP2B

T + AP12B
T + BP21A

T

(A.9)

where P12 and P21 are the two cross-covariance matrices with the property P12 = P T
21.

Until now, this derivation was a general data fusion approach with two weight matri-
ces A and B. In the following these matrices will be determined, so that a minimum

variance fusion is achieved. Therefore, the error of the fused state estimate x̂f must be
considered. It is given by

nf = A · x̂1 + B · x̂2 − x̄ (A.10)

The minimum variance approach tries to minimize the sum of variances of each element
in this error vector nf

E
[

nT
f nf

] !
= min (A.11)

This sum of variances can be written as

E
[

nT
f nf

]

= E
[

(Ax̂1 + Bx̂2 − x̄)T (Ax̂1 + Bx̂2 − x̄)
]

= E
[

(Ax̄1 + An1 + Bx̄2 + Bn2 − x̄)T (Ax̄1 + An1 + Bx̄2 + Bn2 − x̄)
]

= E
[

(An1 + Bn2)
T (An1 + Bn2)

]

= E
[

(nT
1 AT An1 + nT

2 BT Bn2 + nT
1 AT Bn2 + nT

2 BT An1)
]

with B = I − A, this leads to

E
[

nT
f nf

]

= E[(nT
1 AT An1 + nT

2 (I − A)T (I − A)n2 + nT
1 AT (I − A)n2 + nT

2 (I − A)T An1)]

= E
[

nT
1 AT An1

]

+ E
[

nT
2 (I − A)T (I − A)n2

]

+ E
[

nT
1 AT (I − A)n2

]

+ E
[

nT
2 (I − A)T An1

]

= E
[

nT
1 AT An1

]

+ E
[

nT
2 (I − AT − A + AT A)n2

]

+ E
[

nT
1 (AT − AT A)n2

]

+ E
[

nT
2 (A − AT A)n1

]

In order to find the matrix A that minimizes this expression, the equation is deviated
after each element of A and the deviations are set to zero

∂E
[

nT
f nf

]

/∂A = 2A · E
[

n1n
T
1

]

+ (2A − 2) · E
[

n2n
T
2

]

+

− (2A − 1) · E
[

n1n
T
2

]

− (2A − 2) · E
[

n2n
T
1

]
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= 2A · P1 + (2A − 2) · P2 − (2A − 1) · P12 − (2A − 1)P21

= 2A · (P1 + P2 − P12 − P21) − 2 · P2 + P12 + P21
!
= 0

This leads to the weight matrices

A = P2−(P12+P21)/2
P1+P2−P12−P21

(A.12)

B = P1−(P12+P21)/2
P1+P2−P12−P21

(A.13)

so that the minimum variance fusion formula is

x̂f =

(

P2 − (P12 + P21)/2

P1 + P2 − P12 − P21

)

· x̂1 +

(

P1 − (P12 + P21)/2

P1 + P2 − P12 − P21

)

· x̂2 (A.14)

with the covariance matrix of the fused estimate given by

Cov(x̂f) = AP1A
T + BP2B

T + AP12B
T + BP21A

T

= P1 − (P1 − P12) ·
(

P1 + P2 − P12 − P T
12

)−1 · (P1 − P12)
T

(A.15)

In the following, the minimum variance data fusion will be summarized for the two cases
of uncorrelated and correlated data sets.

Fusion of Uncorrelated Data

The assumption of uncorrelated estimation errors of the fusion candidate vectors leads
to the side condition, that

P12 = P T
21 = 0 (A.16)

Thus, the processing steps of the minimum variance data fusion of uncorrelated estimates

are given by

Fusion Condition:

(x̂1 − x̂2)
T · S−1 · (x̂1 − x̂2) ≤ δ (A.17)

with

S = P1 + P2 (A.18)

Fusion:

x̂f = P2 · S−1 · x̂1 + P1 · S−1 · x̂2 (A.19)

Cov(x̂f) = P1 · S−1 · P2 (A.20)
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Fusion of Correlated Data

If the estimation errors of the fusion candidates are correlated, then the cross covariance
matrix is nonzero

P12 = P T
21 6= 0 (A.21)

The following processing steps have to be calculated in the case of the minimum variance

data fusion of correlated estimates:

Fusion Condition:

(x̂1 − x̂2)
T · S−1 · (x̂1 − x̂2) ≤ δ (A.22)

with

S = P1 + P2 − P12 − P T
12 (A.23)

Fusion:

x̂f = x̂1 + [P1 − P12] · S−1 · [x̂2 − x̂1] (A.24)

Cov(x̂f) = P1 − [P1 − P12] · S−1 · [P1 − P12]
T (A.25)

At this, the cross covariance matrix between the two data fusion candidates must be
known. Therefore, the knowledge about the dependencies between the estimation errors
must be applied. In the central-level clustering algorithm as well as in the track merging,
the fusion candidates are the tracked kinematic state estimates. Under the assumption
that the two fusion candidates represent the same object with its inherent dynamics,
both share the common process noise in the tracking filter model. Thus, the estimation
errors are correlated. As suggested in [BSF88], the cross-covariance matrix P12 can be
obtained by a recursion. At time index k, it is given by

P12(k|k) = [I − K1(k)H1(k)]

· [Φ(k − 1)P12(k − 1|k − 1)Φ(k − 1)T + Q]

· [I − K1(k)H1(k)]T
(A.26)

with the initial condition

P12(0|0) = 0 (A.27)

To calculate the cross-covariance matrix according to eq.(A.26), the latest Kalman gains
Ki(k) as well as the latest measurement matrices Hi(k) of the last track update in each
sensor path (i = 1, 2) must be available. Since the cross-covariance must already be
known for testing the hypotheses that both data sets represent the same target (see
eq.(A.22)), it must be calculated for each possible fusion pair in each cycle.



Acronyms and Abbreviations

ĉ Vector containing estimated cluster data

m̂ Vector containing estimated measurement data

t̂ Vector containing estimated kinematic states

c Vector containing cluster data

e Vector containing errors

m Vector containing measurements

s Vector containing the sensor position

t Vector containing real kinematic states

∆fbin FFT-bin width

∆R Range resolution

∆Vr Radial velocity resolution

λ Wavelength

−→u x Unity vector pointing in x-direction

Φ State transition matrix

φ(. . .) State transition function

σx Standard deviation (accuracy) of variable x

τ Radar signal delay

ϕ Azimuth angle

c Speed of light

Cov(x) Covariance of x

d2 Normalized statistical squared distance

det(X) Determinant of matrix X
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df difference frequency

E[x] Expectation of x

fs Sampling frequency

fDoppler Doppler frequency

fhub Frequency hub

ff Fudge factor

G Gaussian likelihood

H Measurement matrix

h(. . .) Measurement function

J Jacobi matrix

K Kalman gain

k Cycle index

P Covariance matrix

PRF Pulse repetition frequency

Prob Probability

Q Process noise covariance matrix

R Measurement noise covariance matrix

r Range

RCS Radar cross section

T Cycle time

Tchirp Chirp duration

Tpulse Pulse width

ACC Adaptive cruise control

CW Continuous wave

DOP Dilution of precision

EKF Extended Kalman filter

FFT Fast Fourier transform

FOL Fused object list
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FSK Frequency shift keying

GC Global cluster

GO Global object

GPS Global positioning system

HRR High range resolution

ILSE Iterated least squares estimation

JPDA Joint probabilistic data association

LFM-CW Linear frequency modulated continuous wave

LIDAR Light detection and ranging

LKF Linear Kalman filter

LS Least squares

LSE Least squares estimation

MMSE Minimum mean square error

MR Monopulse radar

PDF Probability density function

RADAR Radio detection and ranging

SSC Single-sensor cluster

SSO Single-sensor object

UKF Unscented Kalman filter

UMRR Universal medium range radar

UT Unscented tranformation

WLS weighted least squares
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