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ABSTRACT 

The 400,000 km2 Volta Basin is an international basin covering almost 28% of the West Coast. 
Basin of Africa. It extends from longitude 5o 30 W to 2o 00E and from latitude 5 30o N to 14o 30 
N and is shared by the six West African countries Benin, Togo, Ghana, La Cote d’Ivoire, 
Burkina Faso and Mali. The water resources of this basin are under severe stress due to both 
human and natural causes. High population growth rate coupled with widespread and 
indiscriminate water mobilisation and use in the basin on the one hand, and high spatial and 
temporal variability of rainfall and high potential evapotranspiration on the other, are putting 
enormous pressure on the basin’s water resources. As a result, there are serious water resources 
management problems such as flooding, water shortage, water pollution and loss of aquatic 
biodiversity. It is, therefore, recognised that integrated transboundary water resources 
management is necessary and urgent to ensure environmental integrity and sustainable water use 
in the basin. Streamflow modelling and prediction are essential components of any water 
resources management framework developed for the water-allocation and -use managers in the 
basin.

In this thesis, a riverflow modelling framework developed for monthly riverflow 
prediction in the Volta Basin is presented. By analysing available catchment rainfall, runoff and 
potential evapotranspiration series in the basin using methods such as correlation plots, 
autoregressive (AR) and autoregressive with exogenous input (ARX) modelling, it is shown that 
the monthly catchment rainfall-runoff process is better characterised by non-linear models. 

First, a spatio-temporal linear dynamic model employing the Kalman smoother and 
the Expectation-Maximisation (EM) algorithm was developed and applied to filling in short 
gaps in daily riverflow series in the basin. This model was found to be a very good and powerful 
tool for filling in such data gaps. 

Then, two non-linear modelling frameworks - a non-linear autoregressive and moving 
average with exogenous input (NARMAX) polynomial and a data-based mechanistic (DBM) 
modelling framework  - were developed and applied to the monthly rainfall-runoff series in the 
basin for river catchment runoff prediction. The NARMAX model was able to capture much of 
the nonlinearity in the runoff generation process and provided good predictions of riverflow. 
However, it is a purely black-box formulation providing no physical interpretation of the runoff 
process in the basin. The DBM framework was very successful in representing the runoff 
mechanism in the basin, adequately predicting monthly river runoffs. Unlike the NARMAX 
models, the DBM framework is a grey-box that provided physically interpretable results at the 
catchment scale. Results from this modelling framework show that monthly runoff in the basin 
can be interpreted to occur in two pathways: a fast flow pathway and a slow, mainly delayed 
flow, pathway. Catchment effective rainfall in the basin was found to have a power law 
relationship with catchment runoff. In addition, the Identification of unit Hydrographs And 
Component flows from Rainfall, Evaporation and Streamflow (IHACRES) type effective 
rainfall-catchment wetness non-linear relationship in which the basin drying time constant is 
exponentially related to basin potential evapotranspiration, was found to be suitable for 
characterising the runoff processes in the basin. 

Therefore, it is recommended that data-driven approaches be considered as the most 
appropriate for riverflow modelling in the Volta Basin. This is due, in part, to the fact that the 
approaches provide very good results that are, to some extent, physically interpretable and also 
because the quality, quantity and diversity of hydrological data used for riverflow modelling in 
the basin are too poor to enable effective use of the more elaborate distributed hydrological 
models. 





TABLE OF CONTENTS 

1 INTRODUCTION .................................................................................................. 1 

1.1 Structure of the thesis .................................................................................. 3 
1.2 Systems approach in hydrology and the river catchment as a system......... 5 

1.2.1 System identification ................................................................................ 7 
1.2.2 Digital filters and the differential and difference equations description 

of dynamic systems................................................................................. 11 
1.2.3 External model description ..................................................................... 12 
1.2.4 State- space representation of the general models of dynamic systems . 13 
1.2.5 Transfer function (TF) models of dynamic stochastic systems .............. 16 

1.3 Background to the study............................................................................ 17 
1.4 Research question and objectives .............................................................. 21 

2 THE STUDY AREA............................................................................................. 22 

2.1 Introduction ............................................................................................... 22 
2.2 Climate....................................................................................................... 24 

2.2.1 Rainfall .................................................................................................. 24 
2.2.2 Potential evapotranspiration.................................................................... 24 

2.3 Land cover and use .................................................................................... 26 
2.4 Hydrology.................................................................................................. 27 

2.4.1 Drainage.................................................................................................. 27 
2.4.2 Stream flow distribution ......................................................................... 29 

2.5 Hydrogeology ............................................................................................ 29 
2.5.1 Geology .................................................................................................. 29 
2.5.2 Groundwater occurrence and flow.......................................................... 30 
2.5.3 Borehole yields ....................................................................................... 31 

2.6 Water use in the basin................................................................................ 32 
2.7 Water resources management problems in the basin................................. 33 

3 EXPLORATORY DATA ANALYSIS ................................................................ 36 

3.1 Introduction ............................................................................................... 36 
3.2 Rainfall-runoff characteristics of the monthly riverflow data ................... 43 

3.2.1 Persistence in river runoff....................................................................... 55 
3.2.2 Autoregressive and moving average modelling of monthly runoff ........ 58 
3.2.3 Non-linearity in monthly rainfall-runoff relationship............................. 69 

3.3 Conclusions ............................................................................................... 73 

4 SPATIO-TEMPORAL MODEL FOR FILLING GAPS IN DAILY 
STREAM FLOW SERIES.................................................................................... 74 

4.1 Introduction ............................................................................................... 74 
4.2 The discrete spatio-temporal dynamic modelling framework................... 76 
4.3 Missing observations ................................................................................. 84 
4.4 System matrices parameterisation ............................................................. 84 
4.5 Application of the modelling framework .................................................. 85 
4.6 Results and discussion............................................................................... 87 
4.7 Conclusions ............................................................................................... 93 



5 MODELLING STREAMFLOWS USING NARMAX POLYNOMIAL 
MODELS .............................................................................................................. 95 

5.1 Introduction ............................................................................................... 95 
5.2 The NARMAX polynomial model ............................................................ 95 

5.2.1 Formulation of the model........................................................................ 97 
5.2.2 Error reduction ratio and selection of significant terms.......................... 98 

5.3 Application of the model ........................................................................... 98 
5.4 Results and discussion............................................................................. 101 
5.5 Conclusions and recommendations ......................................................... 111 

6 DATA-BASED MECHANISTIC MODELLING OF STREAMFLOWS ......... 112 

6.1 Introduction ............................................................................................. 112 
6.2 Runoff Models in Hydrology .................................................................. 112 

6.2.1 Difference equation representation of the rainfall-runoff linear filter .. 117 
6.2.2 Transfer function representation of the rainfall-runoff linear time-

varying (LTV) filter .............................................................................. 119 
6.3 The HMC modelling framework ............................................................. 122 
6.4 Fixed interval smoothing (FIS) method of parameter estimation of 

LTV-SDP models .................................................................................... 125 
6.5 Application of the modelling framework to rainfall-runoff series in 

the Volta Basin ........................................................................................ 128 
6.6 Results and discussion............................................................................. 131 
6.7 Conclusions and recommendations ......................................................... 145 

7 SUMMARY AND RESEARCH FINDINGS..................................................... 147 

7.1 Introduction ............................................................................................. 147 
7.2 Exploratory data analysis......................................................................... 148 
7.3 Filling gaps in stream flow data .............................................................. 149 
7.4 Modelling streamflow using NARMAX polynomial models ................. 149 
7.5 Data-based mechanistic modelling of streamflow................................... 149 
7.6 Recommendations for further research.................................................... 150 

8 REFERENCES.................................................................................................... 152 

9 APPENDIX......................................................................................................... 160 

ACKNOWLEDGEMENTS 



ABREVIATIONS AND ACRONYMS 

AIC
AR
ARMA
ARX
CGIAR
DBM
DSS
EM
ERR
ETP
FIS
GCI
GEF
GEM
IWMI 
LTF
LTI
LTV
LTV-SDPs
MSE
NARMAX 
NARX 
NSE
NVR
SDP
SISO
SSG
TC
TV-SDPs
UNEP
VBRP
YIC
ZEF

Akaike information criterion 
Autoregressive
Autoregressive and moving average 
Autoregressive with exogenous input 
Consultative Group on International Agricultural Research
Data based mechanistic model 
Decision support system 
Expectation-Maximisation 
Error reduction ratio 
Potential evapotranspiration 
Fixed interval smoother 
Green Cross International 
Global Environment Facility 
General Expectation-Maximization 
International Water Management Institute 
Linear transfer function 
Linear time invariant 
Linear time varying 
Linear time varying state dependent parameters 
Mean square error 
Non-linear autoregressive and moving average with exogenous input 
Non-linear autoregressive with exogenous input 
Nash-Sutcliffe efficiency 
Noise variance ratio 
State-dependent parameter 
Single input-single output 
Steady state gain 
Time constant 
Time varying state-dependent parameters 
United Nations Environment Programme 
Volta Basin Research Project 
Young information criterion 
Centre for Development Research 





Introduction

1

1 INTRODUCTION

Fresh water is increasingly becoming a scarce resource in many regions of the world 

due to both natural and man-made causes. Natural phenomena such as droughts cause 

water shortages in many areas, while floods cause pollution and degrade water sources. 

Often, however, it is the poor management of the resource by man that has resulted in 

the depletion and pollution of water bodies and made the resource less available. Over-

extraction of water for domestic, agricultural, industrial and other purposes and the 

pollution of both surface water and groundwater from both point (industrial) and non-

point (agricultural, mining) sources are major threats to water resources. For example, 

diversion of water from feeding rivers for irrigation, hydropower production and other 

purposes, and excessive pollution from agricultural chemicals and industrial and 

municipal wastes have contributed immensely to turning otherwise very productive 

water bodies such as the Aral Sea, Dead Sea and Lake Chad into environmental 

disasters (Micklin and Williams, 1996; Glanz, 1996; Coe and Grove, 1998; Devitt, 

2001; FoEME, 1996; FoEME, 1998).

Severe water deficits can have disastrous consequences for the population of 

any region. The droughts in 1972, 1973, 1977 and 1982 – 1984 in the Sahel for 

example, caused the death of several hundred thousand people and forced millions to 

migrate to other less severely affected areas. In all, about 250 million people from 22 

countries were affected by these droughts (ZEF, 2000).

In the Volta Basin of West Africa, there are competing demands for water use 

both within and among the riparian countries of the basin. This competition is mainly 

between industrial demands, particularly for power generation, and for agricultural 

water supplies, especially for irrigation. This is manifested in the numerous dams and 

reservoirs constructed throughout the basin for various purposes including industrial, 

agricultural and domestic water supplies. Thus, in Ghana, there is the world largest 

artificial lake, the Volta Lake, created by the dam on the Main Volta River at 

Akosombo for hydropower and covering 4% of the land area of the country. The over 

1,000 MW of electrical power produced at this dam and the Kpong dam 100 km 

downstream, provide much of the electrical energy needs of the country. There are also 

smaller dams, particularly in the northern parts of the country, for irrigation and 
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domestic water supplies. The more than 600 small dams and lakes in Burkina Faso and 

many other similar dams in the other riparian countries provide various levels of 

electrical power, irrigation and domestic water supplies. The pressure on the water 

resources of the basin is bound to increase significantly in the future, as the high 

population growth rate would lead to an over 80% increase in population over the 

current level of about 18.6 million by the year 2025 (Water for Food, 2003). Despite the 

intensive and extensive use of the water resources, there is little consultation or co-

operation between the countries involved in the use of these resources. In addition, 

rainfall in the region is erratic and unevenly distributed. Low rainfall in 1982/83 and 

1997/1998, for example, saw water levels of reservoirs dropping to minimum operating 

levels and causing severe cuts in hydropower production and supply in Ghana in 

particular. The low rainfall also caused widespread crop failure, and consequently 

hunger, and a large part of the population in the basin suffered severe distress (Water for 

Food, 2003). There is, therefore, a great potential for conflicts within and between the 

involved countries with respect to the use of the basin’s water resources, particularly in 

times of crisis.  

Obviously, therefore, proper management of water resources is required in 

order to preserve and use them sustainably. Of particular concern are arid and semi-arid 

areas, where natural replenishment of water resources through precipitation is often 

inadequate or poorly distributed in space and time. Sustainable management of water 

resources is also urgent in areas of high population growth rates and expanding use of 

the resources as in the Volta Basin.  

A scientifically sound decision support system (DSS) for the sustainable use of 

the water resources of the basin would be an important tool for the water resources 

managers in the basin. A key input to this DSS is the assessment of the resources in 

terms of quantity and distribution in space and time. This would provide information on 

how much water is available, where it is and when it is available. 

An important indicator of the water yield of a given river catchment is 

streamflow; it provides information on both surface and subsurface flow processes and 

indicates to a large extent the level of interaction between these flow components. 

Analysis of the streamflows of the various river catchments in the Volta Basin could 

provide important insights into the level of river-aquifer interactions in the basin. In 
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addition, it would be possible to extract information on catchment-scale aquifer 

characteristics such as hydraulic conductivity and aquifer storage coefficients from long 

and high quality streamflow series. Unfortunately, existing streamflow series at gauging 

stations in the Volta Basin are short and full of gaps. In their present form it would be 

very difficult to extract the necessary information to enable proper assessment of the 

catchment response to rainfall inputs. 

Therefore, a major contribution to the information needs for the water 

resources development and management of the Volta Basin would be the development 

of a modelling framework for riverflow prediction in the basin. A good modelling 

framework for streamflow prediction would provide strategies for: 

(i) Filling in both short (a few days to a month) and long (more than a month to 

several continuous years) gaps in existing streamflow series  

(ii)  Extending flow series several years beyond their current lengths 

(iii) A general assessment of the quality of existing flow series 

It is the main objective of this study to develop such a modelling framework. 

The aim is to add to and improve upon important aspects of the water resources 

information in the Volta Basin. The modelling framework would also provide an 

important tool for the quantification in both space and time of the main variable 

resource in the basin, i.e., riverflow. It would provide an objective and scientific means 

of augmenting and extending streamflow records, which are necessary requirements for 

the proper assessment of the water resources of this very important basin. In 

undertaking this assignment, the main unit of analysis is the river catchment. The 

catchment will be considered a nonlinear dynamic system and the tools for the analysis 

of such systems, developed in systems engineering, used in a given time frame and 

temporal scale to model the runoff the catchment generates. 

1.1 Structure of the thesis 

The chapters of this thesis are stand alone chapters that are largely independent of each 

other. Chapter 1 begins with the main introduction to the thesis in which the philosophy 



Introduction

4

behind the study, i.e., the river catchment as a system, is presented along with the 

background to, research question and objectives of the study. 

The study area, the 400,000 km2 Volta Basin of West Africa, is described in 

Chapter 2. The high spatio-temporal rainfall and runoff variability in the basin, the poor 

groundwater potential, the almost indiscriminate exploitation of the water resources of 

the basin and the perceived water resources management problems facing the basin are 

highlighted. The need for transboundary co-operation between the riparian countries for 

the sustainable use of the basin’s water resources is also highlighted. 

In Chapter 3, the characteristics of the data available for the modelling 

activities are explored. In particular, the linear or non-linear nature of the data is 

examined and the modelling strategies applicable given the characteristics of the data 

ascertained. 

The spatio-temporal state-space model is formulated, developed and applied to 

daily stream flow data at selected gauging stations in the basin in Chapter 4. The aim is 

to demonstrate the strengths of the developed model in patching small gaps of up to one 

month in daily stream flow data under natural conditions in the basin. 

Non-linear rainfall-runoff modelling is examined more closely in Chapter 5, 

with the formulation, development and application of a NARMAX (Non-linear 

Autoregressive and Moving Average with exogenous input) polynomial model to the 

monthly rainfall-runoff series in the basin. Here it is demonstrated that the rainfall-

runoff relationship is better described by non-linear models than by linear ones. 

Chapter 6 presents the main work of this thesis – the formulation, development 

and application of a rainfall-runoff model, which is proposed as the most suitable for 

riverflow prediction in the data-poor Volta Basin. This model, a hybrid metric-

conceptual, data-driven, grey-box model, is shown to provide very good predictions of 

monthly riverflows at gauging stations in all three principal sub-basins of the basin. In 

addition, it yields results that provide some physical interpretation as to the types of 

flow paths that runoff in the basin follows. 

Finally, Chapter 7 summarizes the findings, conclusions and recommendations 

of the study.
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1.2 Systems approach in hydrology and the river catchment as a system 

Prediction of the output of a system is a major objective of any applied science such as 

hydrology. Streamflow is an output of the river catchment system, the prediction of 

which is a primary concern in hydrology. A system has both a structure and a function. 

Many definitions of a system emphasize either its structure or its function. The 

International Council on Systems Engineering (INCOSE, 2004), an international 

professional society for systems engineers based in the USA, defines a system as “a 

construct or collection of different elements
1 that together produce results not obtainable 

by the elements alone.”  This definition emphasizes the structure of the system, i.e. a 

collection of different elements. On the other hand, the following definition by Dooge 

(2003) emphasizes the system function. In this definition, “any structure, device, 

scheme, or procedure, real or abstract, that interrelates in a given time reference, an 

input, cause, or stimulus of matter, energy, or information, and an output, effect, or 

response of information, energy, or matter”, the function of the system as interrelating 

an input and output is emphasized. A system can, therefore, be visualized as an input-

output element as depicted in the block diagram in Figure 1.1, with input being external 

to the system, i.e., it influences but is not affected by the processes occurring in the 

system. Both input and output can be vector-valued. 

Figure 1.1 A system as a basic input-output element 

A complex system may then consist of two or more subsystems each being a 

distinct input-output element. The subsystems in turn may be composed of components, 

the lowest elements in the system, each one being also a distinct input-output element. 

The open river catchment system shown in Figure 1.2 can be decomposed into four 

subsystems:  surface, soil, groundwater and stream network, each with a distinct input- 

1 The emphasis here and in the following defintion are the author’s. 
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output linkage. The soil system, for example, can further be divided into layers, each 

being an individual input-output element (Dooge, 2003).  

Figure 1.2  River catchment system (modified from Dooge, 2003) 

A system is usually characterized by a number of variables that change with 

time. The state of the system at any instant is the set of values of all the variables that 

completely characterizes the system at that instant (Ljung, 1994; Wicox, 2002; Dooge, 

2003). These variables are known as the state variables of the system. When there are 

direct, instantaneous relationships between the state variables, so that the state of the 

system at any instant does not depend on previous states, the system is termed static. In 

static systems, the variations in the output are dependent on only the instantaneous 

value of the input. If, however, the state of the system depends also on previous states, 

i.e., its state can change without current external input, so that the current output value 

Infiltration
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depends also on earlier input values, then the system is dynamic (Ljung, 1994). 

Dynamic systems, therefore, have memory or persistence which can be infinite if the 

current state depends on the entire past states of the system or finite if the current state 

depends on a fixed period of its past states. The fixed period of past states influencing 

the current state is also called the memory of the system (Dooge, 2003). Initial values of 

the state variables define the initial state of a dynamic system and enable the prediction 

of all future states of the system given all future input.  

If the processes occurring in a system take place continuously, then that 

system is termed continuous, otherwise the system is discrete. When the relationship 

between the input and output does not depend on when the input is applied, the system 

is time invariant or stationary, and is time variant or unstationary otherwise. A system is 

also linear or nonlinear depending on whether the superposition and scaling properties 

apply or not. Systems are simple when they do not decompose into two or more 

subsystems or components, otherwise they are complex. Stable systems have bounded 

outputs when the inputs are bounded. A causal system is one that is not anticipative, i.e., 

it cannot have an output earlier than the corresponding input (Dooge, 2003). 

The river catchment system is natural (inputs such as rainfall and temperature 

are uncontrollable), complex, nonlinear, time variant, causal, continuous (though the 

input-output observations are often discrete), extremely stable (rainfall often results in 

very attenuated runoff) and generally dynamic. However, it can be static depending on 

the size of the catchment, its drainage density, the climate of the region in which it is 

located and the input-output time scale. In arid and semi-arid regions, for example, 

while daily and monthly runoff from large catchments may depend also on previous 

daily or monthly rainfall, and the system in this case has memory, annual rainfall for 

previous years may not have any influence on current year annual runoff and the system 

at this time scale would have zero memory.  

1.2.1 System identification 

Prediction of the output of a system from input-output observations proceeds in two 

main steps. In the first step, the systems identification step, input-output observations 

are used to identify the input-output transformation mechanism of the system. In the 

prediction step, the identified mechanism is applied to new input observations to predict 



Introduction

8

the output. The system identification step is the more important and critical step. As in 

the definition of a system, the critical process of system identification can be undertaken 

with emphasis on the details of the system’s structure or just its function.  

Distributed models for system identification and output prediction consider in 

detail the nature of the system and the physical laws governing its behavior. They seek 

to provide output predictions for every component of the system and are generally 

deterministic. Such models require a very good understanding of the nature of the 

system - the internal workings of and connection and interaction between its subsystems 

and components of the subsystems, together with knowledge of the physical laws 

governing the processes occurring in the system - to formulate (Dooge, 2003). These 

physics-based models (Wheater et al., 1993) are parametric (Heunecke and Welsch, 

2004), as the parameters of the models are system or process parameters and are 

therefore physically interpretable. Distributed approaches therefore have the potential to 

provide the most useful and comprehensive information about the system, its nature and 

its functioning. However, the models have the serious drawback of being plagued with 

identifiability problems as a result of the very high number of parameters they usually 

require to be estimated from limited input-output observations (Young, 2001a). 

Distributed models in hydrology are based largely on the blueprint of Freeze and Harlan 

(1969), an example being the Systeme Hydrologique Europeen (SHE) model (Abbott et

al., 1986a). 

The second approach to system identification is the so called black-box 

approach in which the details of the nature of the system and the physical laws 

governing the processes taking place in it are ignored completely and only its overall 

behavior is considered. This is the classical data-driven systems approach to system 

identification. It is also known as the metric approach (Wheater et al., 1993). As shown 

in Figure 1.3, the physical laws and the nature of the system are lumped together in this 

approach in what is called system operation (Dooge, 2003) and though, when the 

physical laws and/or the nature of the system change the system operation also changes, 

it is only the horizontal relationship shown in the figure that is considered important. 

These models are non-parametric in the sense that their parameters are not process 

parameters (Heunecke and Welsch, 2004) and so are not physically interpretable. The 

parameters result from the use of weighting functions in the overall input-output 
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transformation of the system. While the lack of physical interpretation of the parameters 

resulting from this systems approach combined with the inability of the approach to 

provide useful insights into the nature of the system being investigated may be a serious 

drawback, the approach often provides adequate and useful results and generally 

involves very few parameters to be estimated from input-output data. It thus avoids 

many of the identifiability problems encountered by the distributed approaches. The two 

polynomial models, nonlinear autoregressive with exogenous input (NARX) and 

nonlinear autoregressive and moving average with exogenous input (NARMAX), are 

models in this category that have been widely and successfully used in systems and 

control engineering (Chen and Billings, 1989) and to a limited extent in hydrology 

(Tabrizi et al., 1998) to model the input-output nonlinearity in engineering and 

environmental systems. 

Figure 1.3 Concept of system operation (Dooge, 2003) 

A third approach to system identification seeks a compromise between the 

fully distributed and the classical systems approaches. These are the conceptual 

approaches (Wheater et al., 1993). They specify a priori the structure of the system 
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based on simplifying assumptions and the models are formulated based on the processes 

considered important in the system. They are therefore grey-box models with many of 

the parameters having physical interpretation. They generally have fewer parameters 

than the distributed approaches but still suffer heavily from identifiability problems. In 

hydrology, models in this category either use distribution functions to describe the 

spatial distribution of runoff such as in the TOPMODEL (Beven and Kirkby, 1979) or, 

as for the Stanford Watershed model (Crawford and Linsley, 1966), the runoff 

generation components and processes considered important in the catchment system are 

represented by internal storages and fluxes. 

More recently, new systems approaches, the hybrid metric-conceptual 

approaches have been proposed for the system identification problem (Jakeman et al.,

1990; Young, 1992). These exploit the parametric parsimony of the classical systems 

approaches combined with the ability of the conceptual approaches to provide 

physically interpretable results. These new „let the data determine the model“ 

approaches can, therefore, be considered grey-box approaches. The Identification of 

unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow 

data (IHACRES, Jakeman et al., 1990) is an example of models in this category in 

which the structure of the catchment system (lumped) is determined a priori and the 

input-output data are only used to estimate the model parameters. The Data-Based 

Mechanistic (DBM) models (Young, 2001a), the other model type in the hybrid metric-

conceptual approaches, makes no assumptions about the structure of the system but 

allows the data to determine both the system structure (lumped) and the parameter 

estimates. The hybrid metric-conceptual models usually have much fewer parameters 

than the conceptual models, and though the problem of identifiability is not completely 

eliminated in them, it is minimized. They, therefore, can be the most appropriate when 

the input-output observations available for system identification are limited in quantity, 

quality and diversity, which is often the case in river catchment rainfall-runoff 

modelling, particularly in the Volta Basin. Hybrid metric-conceptual models are 

transfer-function models based on digital filters and are particularly useful when the 

dynamic system is considered to have both deterministic and stochastic components; 

this is a concept that is very much applicable to river catchment systems that usually 

have noisy input-output observations. 



Introduction

11

1.2.2 Digital filters and the differential and difference equations description of 

dynamic systems  

A real digital filter is a real-valued function, Ft{x}, which maps the real discrete input 

signal x (entire signal) to another real discrete output signal yt at each sampling instant t 

(Smith III, 2004). Examples of real digital filters are: 

t t 0 t 1 t-1F x = y = b x +b x   (1.1a) 

t t 0 t 1 t-1 2 t+1F x = y = b x +b x +b x   (1.1b) 

t t 1 t-1 0 t 1 t-1F x = y = a y +b x +b x   (1.1c) 

t t 1 t-1 0 t 1 t-1 2 t+1F x = y = a y +b x +b x +b x   (1.1d) 

t t 1 t t-1 0 t t 1 t t-1F x = y = a y +b x +b x    (1.1e) 

2 3

t t 1 t-1 0 t 1 t-1F x = y = a y +b x +b x   (1.1f) 

where y, x and all coefficients are real. 

Filters 1.1a – 1.1e are all linear filters, i.e., they possess both the scaling and 

superposition properties of linear systems. For all constant values of g and any signals 

x1 and x2, the scaling property of linear systems states that scaling the input of a linear 

system (multiplying it by a constant gain factor, g) scales the output by the same factor, 

i.e., Ft{gx1}=gFt{x1}; the superposition property states that the response of a linear 

system to a sum of signals is the sum of the responses to each individual input signal, 

i.e., the input signals superimpose and do not interact (Ft{x1 + x2} = Ft{x1} + Ft{x2})

(Smith III, 2004). Filter 1.1f is a nonlinear filter (it doesn’t possess the scaling and 

superposition properties). Filter 1.1e is a linear time varying filter, since the coefficients 

a1t, b0t and b1t are time dependent; the rest are time-invariant filters, with constant 

coefficients. The filters in 1.1a, 1.1c, 1.1e and 1.1f are causal filters, as the output signal 

at each sampling instant does not depend on future samples of the input signal. Digital 

filters that involve past output samples such as 1.1c – 1.1f are recursive or Infinite 

Impulse Response (IIR) filters, and the past output terms are feedback terms. Filters 

without feedback are non-recursive or Finite Impulse Response (FIR) filters, i.e., the 
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filters have past, present and/or future input or feed forward terms only (Smith III, 

2004).

In the mathematical modelling of a dynamic system, the relationships between 

the variables (input, output and internal or state variables) of the system are often 

described by differential equations for continuous representations and difference 

equations for discrete representations. These equations can be described in two ways: 

The inputs (external variables) are directly related to the outputs in one equation, or the 

inputs and outputs are related indirectly through a number of internal or state variables 

by means of a system of first-order differential or difference equations. The former 

description is termed external, while the latter is internal, also called state space (Ljung 

and Glad, 1994).

1.2.3 External model description 

For the external model, the single differential equation relating the vector-valued input 

(u(t)) and output (y(t)) can be expressed as (Ljung and Glad, 1994): 

 g(y
(n)

(t),y
(n-1)

(t),...,y(t),u
(m)

(t),u
(m-1)

(t),...,u(t)) = 0 (1.2) 

where
k

k

k

d
y t = y t

d t

and g(.,.,...,.) is an arbitrary, vector-valued, nonlinear function. 

For linear g, equation 1.1 can be written as: 

n n-1

n n-1 1 0n n-1

m m-1

m m-1 1 0m m-1

d y d y d y
a +a +. . .+a +a y =

d t d t d t

d u d u d u
b +b +. . .+b +b u

d t d t d t

 (1.3) 

or in difference equation form: 

yt = a1yt-1 + a2yt-2 + ...+anyt-n + b0ut + b1ut-1 + ...+ bmut-m (1.4)
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or, in the case of stochastic modelling, 

yt = a1yt-1 + a2yt-2 + ...+anyt-n + b0ut + b1ut-1 + ...+ bmut-m + t (1.5) 

where ut, yt = values of u and y at time t, 

a0, a1,.., an, b0, b1, ..., bm are time invariant if the system is stationary and time variant 

otherwise, and t is a random error that is the source of stochasticity in the system. The 

differential and difference equations 1.3, 1.4 and 1.5 are linear digital filter formulas for 

computing an output sample of a signal at time t based on past and present input 

samples of the input signal and past output samples.  

The processes occurring in environmental systems, such as hydrological 

systems, are continuous. However, inputs, outputs and other observed variables of these 

systems are normally available as discrete time series. In modelling these systems, 

therefore, difference equations such as in equation 1.4 for deterministic and 1.5 for 

stochastic modelling are often used.  

1.2.4 State- space representation of the general models of dynamic systems 

When the outputs of the system are modeled as indirectly related to the inputs, internal 

state variables are introduced. Suppose yt = (y1t, y2t, ..., ypt)’ is the p x 1 output vector, ut

= (u1t, u2t, .., umt)’ the m x 1 input vector, and xt = (x1t, x2t, .., xnt)’ the n x 1 state vector 

of the system, which unambiguously define the state of the system at time instant t, and 

that the prime denotes transpose of the vectors. Then the following equations (ignoring 

stochastic components) constitute the internal model of the system (Ljung and Glad, 

1994):

.

1 t 1 1 t n t 1 t m t

.

2 t 2 1 t n t 1 t m t

.

n t n 1 t n t 1 t m t

x = f x ,. . . . ,x ,u ,. . . . ,u

x = f x ,. . . . ,x ,u ,. . . . ,u

.

.

.

x = f x ,. . . . ,x ,u ,. . . . ,u

 (1.6a) 
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and

1 t 1 1 t n t 1 t m t

2 t 2 1 t n t 1 t m t

p t n 1 t n t 1 t m t

y = h x ,. . . . ,x ,u ,. . . . ,u

y = h x ,. . . . ,x ,u ,. . . . ,u

.

.

.

y = h x ,. . . . ,x ,u ,. . . . ,u

 (1.6b) 

where fi(.,...,.) and hi(.,...,.) are generally nonlinear functions of the n+m components of 

variables x and u.

In more compact form, equations 1.6 can be rewritten as: 

.

t t tx = f x ,u  (1.7a) 

t t ty = h x ,u  (1.7b) 

where f(xt,ut) = (f1(xt,ut),f2(xt,ut),...,fn(xt,ut)) and h(xt,ut) = (h1(xt,ut),h2(xt,ut),...,hp(xt,ut))

are n x 1 and p x 1 functions, respectively, that are generally nonlinear. 

The discrete time equations corresponding to 1.7 are: 

t+1 t tx = f x ,u  (1.8a) 

t t ty = h x ,u  (1.8b) 

If f(xt,ut) is continuously differentiable and ut is a piecewise continuous function, then 

for all t > t0, the initial time, and for a given initial state, xt0 = x0, there always exists a 

unique solution to 1.7 (and 1.8) (Ljung and Glad, 1994). Models 1.7 and 1.8 are state-

space models of order n, the dimension of the state vector xt.

For the discrete time linear stochastic case, the state-space model is given as: 

 xt+1 = Fxt + But + t (1.9a)

 yt  = Hxt + Dut + t (1.9b) 
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where  F, H, B and C are, respectively, n x n, p x n, n x m and p x m system matrices; 

and t and t  are vector-valued random noise terms. When the input, output and state 

vectors are also spatially distributed, the state-space model would be a spatio-temporal 

model and is useful in environmental systems modelling. A form of spatio-temporal 

state-space model is employed in Chapter 4 in filling short gaps in daily riverflow series 

at a gauging station using flow series from neighboring gauging stations. 

The external and internal model representation of a dynamic system are 

illustrated in figure 1.4 

Figure 1.4 (a) External model, and (b) internal model (Ljung and Glad, 1994) 

u y

ttt

.

u,xfx

ttt u,xhy
u y

a

b
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1.2.5 Transfer function (TF) models of dynamic stochastic systems 

If z-1 is the backward shift operator such that z-iut = ut-i, then Equation 1.4 can be re-

written as: 

- 1 - 2 -n - 1 - m

t 1 t 2 t n t 0 t 1 t-1 m t-my = - a z y - a z y - . . .- a z y +b u +b z u +. . .+b z u  (1.10a) 

-1 - 2 - n -1 -m

t 1 2 n t 0 1 m ty + a z +a z +. . .+a z y = b +b z +. . .+b z u   (1.10b) 

-1 -1

t tA z y = B z u   (1.10c) 

-1

t t-1

B z
y = u

A z
     (1.10d) 

where

1 1 2 n

1 2 nA z 1 a z a z ... a z

1 1 m

0 1 mB z b b z ... b z

Equation 1.10d is the Linear Transfer Function (LTF) representation of the input-output 

digital filter. The ratio 

1

1

1

B z
h z

A z
 is the transfer function. Stochasticity can be 

accounted for by adding a noise term to Equation 1.10d, so that the general stochastic 

linear transfer model for the dynamic system is then given as: 

-1

t t-1

B z
y = u +

A z
 (1.11) 

where t is a noise term, which is the source of stochasticity in the output.  

The feed-back and feed-forward coefficients in A and B in the LTF can either 

be time variant or invariant. As noted earlier, the Linear Time Invariant (LTI) transfer 

function characterizes stationary systems while the Linear Time Varying (LTV) 

function characterizes non-stationary systems. If the parameters of the LTV transfer 

function are allowed to be state dependent so that they vary as rapidly as the variation in 

the states, then the transfer function can characterize nonlinear systems (Young, 2001a). 
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This is the form of the transfer function used in the hybrid metric-conceptual modelling 

of the river catchment rainfall-runoff transformation process in Chapter 6. 

1.3 Background to the study 

The six countries within the Volta Basin have weak economies with low Gross National 

Incomes (GNI) and high debt to GNI ratios  (Table 1.1). They are, therefore, classified 

as low-income countries by the World Bank (World Bank, 2004). Population growth 

rate in the basin is high (Table 1.1) with the total population estimated to reach 34 

million by 2025 from the current level of about 18.6 million (GEF, 2003a). The high 

population growth rate coupled with the general widespread poverty in the region will 

result in enormous pressure on the natural resources, including water resources.  

Domestic and industrial water demand is projected to increase about 300% by 2025 due 

to the rapid population increase and the expected industrial expansion (GEF, 2003a). 

The problem is exacerbated by both high rainfall variability and uncertainty resulting in 

emphasis being placed more and more on irrigated rather than rain-fed agriculture in all 

the countries in the basin. For example, irrigation water demand is projected to increase 

by nearly 540 and 710% for Ghana and Burkina Faso, respectively, by 2025 (GEF, 

2003a). Already, numerous dams and reservoirs of various sizes have been created in 

the basin to mobilize water for various purposes.  

Table 1.1 National population and growth rates, incomes and indebtedness of the 
six riparian countries of the Volta Basin (Data Source: World Bank, 
2004; UN, 2005). (GNI=Gross National Income) 

Country Population 

(2002)

million

Annual

population

growth rate  

(1980-2005)
a

%

GNI

 (2002) 

billion

$

GNI/capita

 (2002) 

$

Total

external

debt

(2002)

million $ 

Debt

as % 

of GNI

(2002)
b

Benin 7 2.9 2.5 380 1,843 74 

Burkina
Faso

12 2.4 2.6 220 1,580 61 

La Cote 
d’Ivoire

17 3.2 10.3 610 11,816 115 

Ghana 20 2.8 5.4 270 7,338 136 

Mali 11 2.5 2.8 240 2,803 100 

Togo 5 2.9 1.3 270 1,581 122 
a  UN (2005) 
b  Own computations using data in 4th and 6th columns 
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The riparian countries do recognize the likely overexploitation of the natural 

resources in the region. Consequently, each country has established one national agency 

or another to regulate the use of the resources within its boundaries and to ensure 

national environmental integrity and sustainable water development and use.    

Most of the water resources development projects in each country have been 

undertaken with little or no consultation with the other riparian countries. Currently, 

there are no formal institutional arrangements for managing the water resources of the 

basin nor are there any legal provisions for cooperation among the riparian countries for 

integrated multipurpose development and management of the shared water resources. 

However, this is beginning to change, as the countries recognize that the best way to 

sustainable water use and environmental integrity maintenance in the basin is through 

transboundary co-operation and consultation.

Thus in 1998, Ghana proposed an initiative on integrated ecosystems 

management of the basin. This resulted in the formation of the Volta River Basin 

Project (VRBP) involving all six riparian countries and financed by a grant from the 

Global Environment Facility (GEF) of UNEP from 1999 to 2002, following an inter-

ministerial workshop held in Accra, Ghana, in 1999. At this workshop, the Accra Volta 

River Basin Declaration was adopted. In the declaration, the six riparian countries 

agreed to join forces and actively collaborate to achieve the following objectives (GEF, 

2003a):

The formulation of a strategic action plan for the Volta River Basin 

The formulation of a framework agreement of co-operation between the Basin 

States for the integrated management of the Volta River Basin 

The formulation of an agreed programme with a holistic vision for the 

integrated management of the Basin 

Since this workshop, a flurry of activities involving concerned actors both 

from within the region and outside it have taken place to facilitate and promote 

collaboration between the riparian states for integrated land and water management of 

the basin. One of such initiatives resulted in the project “Addressing Transboundary 

Concerns in the Volta River Basin and its Downstream Coastal Area”, a project 
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formulated by representatives and endorsed by the governments of the six riparian 

countries with funding from the GEF and scheduled for execution from October 2003 to 

October 2007 (GEF, 2003b). According to GEF (2003b), “the global environmental 

objective of this project is to enhance the capacity of the countries to plan and manage 

the Volta catchment areas within their territories and aquatic resources and ecosystems 

on a sustainable basis.”  The following three project areas will be supported: 

1.  Build capacity and create a regional institutional framework for the effective 

management of the Volta Basin; 

2. Develop regional policy, legal and regulatory frameworks for addressing 

transboundary concerns in the Volta Basin and its downstream coastal areas; 

3.  Initiate national and regional measures to combat transboundary 

environmental degradation in the Volta Basin. 

Another initiative in the region is that by Green Cross International (GCI) 

through its Water for Peace project. The main aim of the project is “the prevention of 

conflicts and the promotion of dialogue and cooperation on the water and land resources 

of the Volta Basin. The project focuses on ensuring the fuller involvement of civil 

society in the development of transboundary basin management agreements, institutions 

and strategies.”   

In May 2004, in Accra, Ghana, the International Water Management Institute 

(IWMI) launched an 18-million dollar 15-year Water and Food Programme in the Volta 

Basin (Ghanaweb, 2004). To be financed under the Consultative Group on International 

Agricultural Research (CGIAR) Challenge Programme on Water and Food, the 

programme has 11 projects relevant to the basin. The first phase of five years is 

“expected to create research-based knowledge and methods for growing more food with 

less water, and develop a transparent framework for setting targets and monitoring 

progress.” (Ghanaweb, 2004).

These and other such programs initiated in and for the benefit of the basin seek 

to position the people, the institutions and governments of the riparian countries to 

manage the natural resources of the Volta Basin in a sustainable and environmentally 

friendly manner for the benefit of the people and biodiversity in the basin. To achieve 

these laudable goals, support systems, i.e., scientifically based decision support systems, 

will be required. The Center for Development Research (ZEF) of Bonn University, 
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Germany, is undertaking the development of one such system, in the Sustainable Water 

Use under Changing Land Use, Rainfall reliability and Water Demands in the Volta 

Basin (Glowa-Volta) Project. Under this project, started in 2000, ZEF is coordinating 

and participating in research in the Volta Basin aimed at “the development of a 

scientifically sound decision-support system for the assessment, sustainable use and 

development of water resources in the Volta Basin based on the analysis of the physical 

and socio-economic determinants of hydrologic cycles” (ZEF, 2000). This decision 

support system (DSS) is to be made up of a set of dynamic models, which capture all 

first-order linkages between relevant processes in the atmosphere, soil and water and 

which readily interchange information with the correct scale and format. The project is 

interdisciplinary and is being undertaken in collaboration with other German and 

international institutions including the CSIR-Water Research Institute of Ghana.  

The research is being conducted in three research clusters, each involving 

researchers of different disciplines. Each cluster consists of several subprograms geared 

towards addressing specific research questions handled in the cluster. One of these 

clusters is the Water Use cluster, which deals with five research questions being 

addressed in the subprojects runoff and hydraulic routing, integrated economic-

hydrological optimization, health and water, communal and household water supply, 

and institutional analysis. This cluster will provide the necessary information for the 

optimal allocation of the available water to the various social, economic, agricultural 

and industrial sectors in the basin. The research question of the runoff and hydraulic 

routing subproject is:  

What is the water availability over time throughout the Volta River network?

The research activities undertaken in this study seek to provide some of the 

important information required to answer this research question. 
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1.4 Research question and objectives 

The research question in this study is: 

What modelling framework is suitable for riverflow prediction in the Volta Basin? 

To provide answers to the above research question, the following objectives 

were set: 

(i) Formulate, develop and apply a suitable model for filling in short gaps in 

daily riverflows at gauging stations in the basin 

(ii) Formulate, develop and apply a suitable rainfall-runoff model for 

predicting natural monthly riverflows in the basin. 
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2 THE STUDY AREA 

2.1 Introduction 

The Volta Basin is an international basin spanning six countries in West Africa.   The 

FAO (FAO, 1997) groups it with the rest of the river basins draining to the sea from 

Senegal to Nigeria in one region called West Coast (Figure 2.1), a region that covers 

4.7% of the African continent and spreads over 13 countries (FAO, 1997).  The Volta 

basin covers almost 28% of the West Coast, extends from longitude 5o 30 W to 2o 00 E 

and from latitude 5 30o N to 14o 30 N and is shared by Benin, Togo, Ghana, La Cote 

d’Ivoire, Burkina Faso and Mali. However, most of the basin, about 85% of the total 

area of nearly 400,000 km2, lies in Burkina Faso and Ghana. Table 2.1 shows the areas 

of each country covered by the basin.  

According to the World Bank (2004) classification of economies, all the 

countries in the Volta Basin are Low Income Counties (LICs) with 2002 GNI per capita 

of less than $735. The vast majority of the population lives on primarily rain-fed 

agriculture, but irrigation is becoming increasingly important in the basin.  

Table 2.1 Volta Basin areas by country (FAO, 1997) 

Country Total area 

(km
2
)

Area within the 

basin (km
2
)

As % of total 

area of basin 

(%)

As % of total area 

of country (%)

Mali 1,240,190      9,496   2.4   0.8

Burkina
Faso

   274,000 183,000 46.4 66.8

Benin    112,620   16,000   4.1 14.2

Togo      56,785   26,700   6.8 47.0

Côte
d'Ivoire

   322,462    7,000   1.8   2.2

Ghana     238,540 152,000   38.6 63.7

For Volta 
Basin

394,196 100.0
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2.2 Climate

The climate of the Volta Basin, as for the rest of West Africa, is controlled by the south-

north-south movement of the Inter Tropical Convergence Zone, ITCZ. The ITCZ is the 

belt into which the harmattan, the hot, dry and dusty tropical continental air mass from 

the Sahara to the north and the monsoon, the warm, moist tropical maritime air mass 

from the Atlantic to the south of the region, converge. The oscillation of the ITCZ 

produces two marked seasons in the region – the wet and dry seasons. In its complex 

oscillation across the region, the belt passes certain areas, particularly the lower 

latitudes, twice, giving the affected areas two rainy seasons.  The basin can thus be 

divided into 3 main climatic zones: humid southern zone with two distinct rainy 

seasons, tropical transition zone with two rainy seasons close to each other, and tropical 

northern zone, covering most of the basin. This zone has one rainy season lasting from 

April to October, with rainfall peaking in September, and one dry season from 

November to March.  

2.2.1 Rainfall

Rainfall is highly variable both spatially and temporally. It increases from north to south 

with mean annual values ranging from less than 500 mm in the extreme north to more 

than 1600 mm in the forested regions of the basin to the south in Ghana (Figure 2.2; 

MWH, 1998(2)). Over 70% of the annual total rainfall occurs in the three months of 

July, August and September with little or no rainfall in the months November – March 

in most of the basin.  

2.2.2 Potential evapotranspiration 

Potential evapotranspiration in the basin varies both spatially and temporally with an 

annual mean varying from 2500 mm in the north of the basin to 1800 mm in the coastal 

zone. Mean monthly potential evaportranspiration exceeds mean monthly rainfall for 

most of the year for the entire basin. 
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Figure. 2.2 Annual rainfall in the Volta Basin (VBRP, 2002)
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2.3 Land cover and use 

Figure 2.3 Land cover and use types in the Volta Basin (WRI, 2003) 

As shown in Figure 2.3, the predominant land cover type in the Volta Basin is savanna. 

Table 2.2 below shows the relative areas occupied by each land cover use type in the 

basin:

Table 2.2 Relative coverage of each Land Cover and Use type (WRI, 2003) 

Land cover and use type  Percent of basin area 

Forest cover   0.7 

Grassland, savanna and shrubland  85.6 

Wetlands 10.4 

Irrigated cropland   0.1 

Dryland area 91.7 

Urban and industrial area   0.5 

Loss of original forest cover 96.6 
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2.4 Hydrology

2.4.1 Drainage

The basin is drained by numerous streams, most of which dry up in the dry season. 

These streams can be grouped into four main river systems formed from the four main 

rivers draining the basin. These rivers are the Black Volta (Mouhoun), White Volta 

(Nakanbe), Main Volta and Oti (Pendjari) Rivers (Figure 2.4). The Main Volta River is 

formed by the joining of the Black and White Volta Rivers and is joined further 

downstream by the Oti.  

The Oti River starts out as the Pendjari River, with its source in northwest 

Benin. It first flows northeast, meanders west and then southwest along the boarder 

between Benin and Burkina Faso, continues its southwest flow through northern Togo 

forming, for a short while, the boarder between Togo and Burkina Faso and then flows 

south, entering Ghana as the Oti and forming part of the northern boarder between Togo 

and Ghana. It continues its southward flow until it joins the Main Volta River. Main 

tributaries of this river include the Doubodo and Koulpeolge, which originate from 

southeastern Burkina Faso; the Koumangou and Kara Rivers originating from 

northwestern Benin and flowing through northern Togo to join the Oti in Ghana; and 

the Mio River from northern Togo. 

The White Volta River and its main tributary the Red Volta (Nazinon), have 

their source in north and central Burkina Faso, respectively. The White Volta flows 

south, then east and then southeast, flowing almost parallel to the Red Volta. Both then 

flow south when they enter Ghana, with the White Volta turning west to be joined by 

the Red Volta. The White Volta River then continues westwards through northern 

Ghana and then turns south where it is joined by tributaries Kulpawn, Nasia and Mole.  

The Black Volta River originates from southwestern Burkina Faso. It flows 

northeast from its source, turns southeast and then south to Ghana. On entering Ghana, 

it continues its southward flow, forming part of the boarders between Burkina Faso and 

Ghana and then La Cote d’Ivoire and Ghana. It flows southeast after leaving the La 

Cote d’Ivoire-Ghana boarder, turns north, then east and then southeast joining the White 

Volta River to form the Main Volta. Important tributaries of the Black Volta River 

include the Grand Bale and the Bourgouriba, both of which originate in western 
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Burkina Faso, and the Tain River, which has it source in the western part of Ghana and 

joins the main river downstream of Bui.  

Figure. 2.4 The Drainage system of the Volta Basin (VBRP, 2002) 

The Main Volta River is formed from the joining of the Black and White Volta 

Rivers and is joined further downstream by the Oti. Its main tributaries include the 
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Daka, Pru, Sene and Afram, all of which, together with the main river, flow entirely 

within Ghana.  

The most prominent landmark of hydrological importance in the basin is the 

Volta Lake, formed from the hydropower dam built on the Main Volta River in 

southeastern Ghana. With a surface area of 8500 km2 and a capacity of 148 km3 (FAO, 

1997), it is one of the largest man-made lakes in the world.  

2.4.2 Stream flow distribution  

Mean annual streamflow at various sections of the main rivers and some of their 

tributaries are shown in Figure. 2.1. For the Black Volta River, the mean annual runoff 

close to its source in western Burkina Faso is just above 0.4 km3. The flow rises more 

than 3 fold just before entering Ghana and on entering Ghana the annual flow has 

increased to 8 times its value at the source of the river. By the time the flow leaves the 

Ghana-La Cote d’Ivoire boarder, it is close to its maximum of just under 7.8 km3 yr-1

near the confluence with the White Volta. The mean annual flow of the White Volta 

starts at a little above 0.2 km3 downstream of its source in northern Burkina Faso, 

increases to about 2.2 km3 on entering Ghana and then to just over 4.0 km3 downstream 

of the confluence with the Red Volta. The river joins the Black Volta at a slightly higher 

annual flow of just under 8 km3.  The Pendjari River attains an annual flow of nearly 2.2 

km3 before turning into the Oti, when its annual flow then reaches about 3.0 km3 along 

the short Togo-Burkina Faso boarder. The flow enters Ghana with nearly 4.2 km3 yr-1

and by the time it leaves the Togo-Ghana boarder it has increased to a little over 11.0 

km3 yr-1. It joins the Main Volta River at nearly 12.7 km3 yr-1, more than one and half 

times the annual flow of the Black or White Volta Rivers at their confluence. Below the 

Akosombo dam, the controlled annual discharge of the Volta is about 38.2 km3.

2.5 Hydrogeology

2.5.1 Geology

The basin overlies two main geological systems: a main Precambrian platform and a 

sedimentary layer (Figure 2.5). The igneous and metamorphic rocks of the Precambrian 

platform form part of the West African shield and consist primarily of granites, schists 

and basic rocks (van der Sommen and Geirnaert, 1988; MWH, 1998(2)). The 
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predominant rocks in these formations are the Dahomian, Togo series, Birimian and the 

folded series of the Tarkwaian (MWH, 1998(2)). Panafrican tectonic movements have 

subjected this crystalline basement to faulting and fracturing (van der Sommen and 

Geirnaert, 1988). The second geological system is less important in the basin as a whole 

but underlies a substantial area in Ghana. It is represented by the Voltaian system 

(underlying about 45% of all of Ghana, Dapaah-Siakwan and Gyau-Boakye (2000)) and 

recent formations found in the lateritic deposits in the northern parts of the basin. There 

are also recent alluvial deposits forming narrow bands along the main rivers of the 

basin.

2.5.2 Groundwater occurrence and flow 

Two main aquifer systems occur in the basin – those developed in the weathered mantel 

of high porosity but low permeability (reservoir type) and the ones developed in the 

fractured bedrock of low porosity but high permeability (conductive type). Due to the 

absence of primary porosity in the crystalline basement complex and voltaian system, 

groundwater occurrence in much of the basin is associated with the development of 

secondary porosity such as from joints, fractures, shears and fissures (MWH, 1998(1), 

Dapaah-Siakwan and Boakye, 2000). It is, therefore, widely believed that the aquifer 

systems in the basin are highly discontinuous with individual compartments in which 

isolated groundwater circulation occurs. However, van der Sommen and Geirnaert 

(1988), citing hydrogeological studies in Ghana, Burkina Faso and Niger, hypothesize a 

regional groundwater recharge-discharge system in the basement complex that increases 

in importance from north to south in tandem with increasing rainfall. Since mean 

monthly potential evaportranspiration exceeds mean monthly rainfall for most of the 

year for the entire basin, groundwater loss in the dry season would likely be more to 

evapotranspiration than to baseflow to rivers. Baseflow is thought, therefore, to be 

insignificant in the basin.  
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Figure 2.5 Geological Map of the Volta Basin (VBRP, 2002) 

2.5.3 Borehole yields 

Borehole yields in the basin are rather small – the mean yield being 2.1 – 5.7 m3h-1

(MWH, 1998(1)). Van der Sommen and Geirnaert (1988) quote 2.5 m3h-1 as the mean 

borehole yield in Burkina Faso with about 10% of the boreholes there yielding above 5 

m3h-1. These mean yield values were obtained from analyses of borehole yields from 
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drilling programs that had concentrated largely on hand-operated wells developed 

mainly for rural water supply. In these programs, drilling was usually stopped at depths 

where the yields were found adequate for the rural communities served. These 

boreholes are, therefore, generally partially penetrating. Thus, while the low mean 

yields reported in the literature suggest that most of the aquifers in the basin are low 

yielding, it should be recognized that the yields reported in the literature were obtained 

from partially penetrating wells that may not have exploited the full potential of the 

aquifers involved. Nonetheless, given the general unfavorable conditions for 

groundwater flow and storage in the basin due to the rather poor geology, aquifer yields 

are not expected to be much higher than the available estimates. 

2.6 Water use in the basin 

The main water uses in the basin are hydropower, irrigation and domestic water supply. 

There are numerous infrastructural developments in the riparian countries of the basin 

for the mobilization particularly of surface water for various purposes. Important 

infrastructure includes (GCI, 2003): 

• The Sourou works, Burkina Faso (300x106 m3)

• The Ziga dam, Burkina Faso (200x106 m3)

• The Kompienga dam, Burkina Faso (2 050x106 m3)

• The Bagré dam, Burkina Faso (1,700x106 m3)

• The Akosombo dam, Ghana (150,000x106 m3)

In addition, thousands of boreholes have been drilled in the basin mainly for 

domestic water supply.  Hydropower, particularly from the huge Volta Lake in Ghana, 

is by far the biggest water user in the basin. The hydropower production from the 

Akosombo dam and the much smaller Kpong dam downstream exceeds 1,000 

megawatts and is the main energy source for Ghana (MWH, 1998(2)).  

Surface water and groundwater are exploited independently for various 

purposes throughout the basin. No attention is paid to the effect of the consumptive use 

of one on the other. This attitude has developed because the two water systems are 

regarded as separate resources with little or no interaction between them. Groundwater 

recharge is considered to be largely from excess rainfall, and groundwater flow to rivers 
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in the basin is widely regarded as insignificant (van der Sommen and Geirnaert, 1988; 

MWH, 1998(1)). 

2.7 Water resources management problems in the basin 

The water resources management problems in the basin arise from two main sources. 

On the one hand, there is undue pressure on the resources from expanding populations 

and industrial activities coupled with the high rainfall variability and uncertainty in the 

basin. The result is largely water shortage or rather unavailability of water for large 

sections of the population, crop failure and the inability of hydraulic structures to 

function as designed due to reduced water levels. There is also pressure on other natural 

resources, resulting in land degradation, pollution of water bodies and environmental 

degradation in general. On the other hand, the numerous dams and reservoirs for water 

mobilisation in the basin result in reduced downstream flows and modification of 

downstream streamflow in general. Streamflow-dependent livelihoods of downstream 

populations and aquatic life are thus threatened. Floods that occur frequently in parts of 

the basin cause physical havoc and facilitate the spread of pollution to water bodies and 

other areas. 

Stakeholders in the basin have identified twelve key water resources 

management problems in the basin urgently requiring attention. These are presented in 

Table 2.3. The rankings of the problems as perceived by each of the six riparian 

countries are shown in Table 2.4. This table shows that, for Ghana, the downstream 

country of the basin, all except 2 of the problems are high priority with none being low 

or no priority.

Table 2.4 also shows that flooding is of serious concern only in Burkina Faso 

and Ghana. Diminishing water resources, loss of biodiversity, water-borne diseases, 

inadequate/lack of information dissemination mechanisms and inadequate institutional 

and legal framework for basin management are the 5 top problems that are considered 

serious in all 6 countries.  
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Table 2.3 Key environmental problems and their causes as identified by technical 
representatives of the six riparian countries of the Volta Basin in 1999 
(GEFa, 2003) 

Problem Cause 
Upstream

Diminishing water resources Increased demands and increased pollution (which 
reduces availability or increases the cost of the available 
polluted waters); altered hydrology from changes in land 
use which affect runoff/infiltration. 

Hydrological changes Changes in land use that may affect runoff and infiltration 
patterns as well as sedimentation of canals/rivers, which 
may reduce hydraulic efficiency. 

Soil erosion Deforestation; bush fires; overgrazing; nomadism and 
human migration; uncontrolled human settlements along 
riverbanks and eroded soils resulting in decreased water 
quality. 

Downstream 

Pollution Dumping of human, domestic and industrial waste into 
water courses; leaching of agro-chemicals into rivers; salt 
water intrusion; oil spillage; waste from mining activities; 
use of agrochemicals in fishing. 

Coastal erosion Inadequate flow of sediments to the coast due to physical 
development within the basin. 

Coastal pollution Transport of pollutants to the coastal zone. 

Flooding Uncontrolled spilling from reservoirs; inadequate/lack of 
early warning systems; intense precipitation at short 
intervals; loss of wetlands. 

Basin wide 

Loss of biodiversity Deforestation; pollution; overexploitation of natural 
resources by humans and their livestock (overgrazing); 
changes in flow regimes downstream of dams; inundation 
of reservoir areas; dams as barriers. 

Aquatic weeds Introduction, deliberate in the case of florists, accidental 
in the case of fishermen and others, of exotic aquatic 
plants; the problem is exacerbated by increased nutrient 
availability, which promotes explosive growth, from both 
organic and inorganic sources. 

Water-borne diseases Creation of dams or impoundments; changes in flow 
regimes; contamination of water bodies with human waste 
and pollution; infestation of water bodies with aquatic 
weeds, habitat for hosts and vectors. 

Inadequate / lack of information 
dissemination mechanisms 

Inadequate resources (financial/human) for information 
gathering; absence of a regional mechanism for gathering 
information from member countries. 

Inadequate institutional and legal 
framework for basin management 

Lack of an enabling political environment 
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Table 2.4 Ranking of key environmental problems of the Volta River Basin by 
country and national priority (GEFa, 2003) 

Environmental Problem BN BF CI GH ML TL 

Diminishing water resources 3 3 2 3 3 3 

Hydrological changes 2 2 2 2 2 2 

Soil erosion 2 3 2 2 3 2 

Pollution 2 2 3 3 2 2 

Coastal erosion 3 1 3 3 1 3 

Coastal pollution 3 1 2 3 1 3 

Flooding 1 3 1 3 1 1 

Loss of biodiversity 3 3 3 3 3 3 

Aquatic weeds 2 3 3 3 2 1 

Water-borne diseases 3 3 3 3 3 3 

Inadequate/lack of information 3 3 3 3 3 3 

Poor institutions/legal framework 3 3 3 3 3 3 
1 = Low or no priority;  2 = Medium priority;  3 = High priority 

BN = Benin,  BF = Burkina Faso,  CI = La Cote d’Ivoire,  GH = Ghana,  ML = Mali 
TL = Togo 

In order to effectively tackle these problems and to avoid future conflicts 

within and between the countries in the basin, there is the need for the countries to co-

operate and collaborate in the integrated development of the water resources of the 

basin.
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3 EXPLORATORY DATA ANALYSIS  

3.1 Introduction 

In this chapter, the data used for the rainfall-runoff modelling activities to be presented 

in chapters 5 and 6 are explored. The aim is to ascertain the characteristics of the data 

and determine, qualitatively, the level of persistence in the river runoff and the degree of 

nonlinearity in the rainfall-rainfall relationship. This would facilitate the choice of 

modelling framework suitable for the data. Two model-selection criteria – the complete 

K-fold cross validation and the Akaike information criteria – are also examined in this 

chapter in order to select the one most convenient for the non-linear model selection in 

later chapters. 

The data used were selected from catchment monthly rainfall and 

corresponding streamflow and potential evapotranspiration (PET) series compiled and 

quality controlled by Taylor (2003) for river gauging stations in the Black and White 

Volta and Oti sub-basins. Selected stations for this study (Table 3.1 and Figure 3.1) 

were those with fairly natural flows and without gaps within their data series. This has 

resulted in very short flow series with almost none of the recent droughts captured. As 

Table 3.1 shows, most of the stations are in the Black Volta sub-basin. This is because 

the runoff data for the stations in this sub-basin have relatively fewer gaps and are of 

relatively better quality than those for the other two sub-basins. Also, since flows in the 

main White Volta River are highly controlled due to several hydro and irrigation dams 

upstream, particularly in Burkina Faso, no gauging stations on this river were selected. 

In general, runoff data are more complete and of better quality for gauging stations on 

the principal rivers of the Black and White Volta and Oti than for those on their 

tributaries.  

At the annual scale (with runoff aggregated from the monthly series), there 

appears to be a distinct wet and dry period in the flow series as shown in Figure 3.2 

using 4 of the stations with the longest flow series. The wet period can be taken as that 

up to 1971 and the dry period from 1972. Separate annual means for the wet and dry 

periods for these stations are presented in Table 3.2. A first check on the quality of the 

runoff data was a comparison of the computed mean annual runoffs with available 

values in the literature for the stations. Table 3.3 summarises the comparison between 
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mean annual runoff derived from the series used in this study and the FAO (1997) mean 

annual runoff available for most of the stations.      

Table 3.1 Selected characteristics of gauging stations used in the study 
(Data Source: Taylor, 2003) 

Co-ordinates

(decimal degrees) 

Station River 

Longitude Latitude 

Drainage

area

(km
2
)

Period of 

runoff

Series

Black Volta sub-Basin

1. Banzo Black Volta 4.80 W 11.32 N     3,024 1956-1978 

2.Nwokuy Black Volta 3.50 W 12.52 N   12,094 1956-1987 

3.Manimenso Black Volta 3.40 W 12.75 N   21,124 1956-1983 

4.Tenado Black Volta 2.80 W 12.17 N   24,086 1977-1985 

5. Boromo Black Volta 2.90 W 11.90 N   48,078 1955-1988 

6. Debougou Bougouriba 3.10 W 10.93 N   15,140 1963-1981 

7.Lawra Black Volta 2.90 W 10.60 N   96,000 1951-1973 

8. Dapola Black Volta 2.90 W 10.57 N   96,437 1951-1990 

9. Bui  Black Volta 2.10 W 8.20 N 111,853 1954-1971 

10. Bamboi Black Volta 1.90 W 8.15 N 134,200 1951-1975 

White Volta sub-Basin

11. Wiasi Sissili 1.30 W 10.33 N 12,105 1962-1973 

12. Yagaba Kulpawn 1.2 W 10.10 N   9,100 1958-1972 

13. Nasia Nasia 0.75 W 10.10 N   6,070 1969-1975 

14. Nabogo Nabogo 0.80 W 9.70 N   3,040 1963-1974 

Oti sub-Basin

15. Porga Oti 0.90 E 11.05 N 27,197 1952-1984 

16. Mango Oti 0.40E 10.30 N 36,287 1953-1973 

17. Koumangou Koumangou 0.40 E 10.20N 6,070 1959-1973 

18. Sabari Oti 0.20 E 9.28 N 72,775 1960-1973 
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Figure 3.1 Map of the Volta Basin showing the gauging stations used in the study 
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Figure 3.2a Annual hydrograph for Nwokuy on the Black Volta River  

Figure 3.2b Annual hydrograph for Boromo on the Black Volta River  
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Figure 3.2c Annual hydrograph for Dapola on the Black Volta River 

Figure 3.2d Annual hydrograph for Porga on the Oti River  
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Table 3.2 Mean annual flows for wet and dry periods for 4 of the stations with the 
longest flow series. 

Mean annual flow  (km
3
)

Period
Nwokuy 

(Black Volta)

Boromo

(Black Volta) 

Dapola

(Black Volta) 

Porga

(Oti)

Up to 1971 (wet) 1.09 1.39 4.13 2.28 

From 1972 (dry) 0.54 0.74 2.14 1.28 

Entire period 0.82 1.07 3.18 1.89 

It can be observed that the FAO (1997) mean annual flows for these stations 

fall within the values for the wet and dry periods (Table 3.2). The discrepancies in the 

two sets of mean flow values presented in Table 3.3 may, therefore, be due largely to 

differences in the flow periods used in the two computations, though the flow periods of 

the data used in the computations of the means in the FAO (1997) case are not known. 

Therefore, the river flow data used in this study appear to represent the actual flows in 

the various catchments for the periods for which the have been compiled and, except for 

the rather short durations, should be good enough for the analysis undertaken in this 

study.

Each set of rainfall, runoff and ETP series at a gauging station was partitioned 

into estimation and validation series. These were used for model selection and 

validation purposes for the Autoregressive and Moving Average (ARMA) and 

Autoregressive with exogenous (ARX) models used in later sections of this chapter and 

for the models presented in chapters 5 and 6. This partitioning was done in such a way 

as to obtain estimation series long enough to be able to account for the variations in the 

validation series as much as possible.  
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Table 3.3 Comparison of mean annual flows at the gauging stations from FAO 
(1997) and computed from the monthly flows used in this study (NA = 
Not available) 

Station Mean annual flow 

(km
3
 yr

-1
)

 FAO (1997) Used in this study 

Black Volta Basin 

1. Banzo 0.41 0.37 

2.Nwokuy 1.03 0.82 

3.Manimenso 0.91 0.77 

4.Tenado NA 0.58 

5. Boromo 1.31 1.07 

6. Debougou 0.88 0.79 

7.Lawra NA 3.63 

8. Dapola 3.28 3.18 

9. Bui  7.08 7.29 

10. Bamboi 7.79 8.20 

White Volta sub-Basin 

11. Wiasi 0.71 0.77 

12. Yagaba 1.11 1.15 

13. Nasia NA 0.80 

14. Nabogo NA 0.51 

Oti sub-Basin 

15. Porga 2.16 1.89 

16. Mango 4.16 4.32 

17. Koumangou NA 1.94 

18. Sabari 11.04 11.28 
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3.2 Rainfall-runoff characteristics of the monthly riverflow data 

Figures 3.3a and 3.3b show plots of total monthly catchment rainfall and corresponding 

total monthly catchment runoff and potential evapotranspiration (ETP) for Bamboi on 

the Black Volta River and for Sabari on the Oti River. The plots for the remaining 

stations are shown in figures 9.1i – 9.1xvi in the appendix. They indicate more variation 

in monthly runoff than in monthly rainfall and potential evapotranspiration for all 

stations (the series are compiled for the hydrological year March – February, as adopted 

by the Hydrological Services Department of Ghana). This observation is supported by 

the coefficient of variation (cv) values for each month listed in Table 3.4 for Bamboi 

and Sabari and in tables 9.1i – 9.1xvi in the appendix for the rest of the stations. These 

tables summarize important monthly rainfall, runoff and ETP characteristics for the 

stations. Plots of the coefficient of variation for each month for the three series as in 

figures 3.4a – 3.4d for representative stations in the 3 sub-basins show clearly the 

differences in the variation between the series. For the rainy season, when rainfall is 

expected and widespread, the monthly cv for rainfall is less than the corresponding cv 

for runoff. In the dry season, when rainfall is not expected and isolated, streamflow 

variation is less than rainfall variation. The variation in the potential evapotranspiration, 

in comparison, is much less significant. The difference in the variations of the rainfall 

and runoff  (and also between runoff and potential evapotranspiration) suggests 

nonlinearity in their relationship (Adreini et al., 2000).

The temporal distribution of catchment rainfall in the basin on the monthly 

scale is illustrated in figures 3.5a – 3.5c. These figures are plots of monthly rainfall as 

percent of total catchment rainfall for the entire rainfall series.  In the case of the Black 

Volta Basin, the stations have been split into upstream (all in Burkina Faso) and 

downstream (2 in Burkina Faso) stations. It is observed from the plots that over 70% of 

the total rainfall in a year occurs in the 4 months June – September. This has important 

implications for water resources development and management in the basin, since this 

temporal variability in rainfall implies both flooding in some months and water shortage 

in others in much of the basin. Little wonder then these two have been identified as 

major water resources management problems by technical teams of the riparian 

countries (GEFa, 2003). 
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Figure 3.3a Observed monthly rainfall, runoff and ETP for Bamboi, Black Volta 
River

Figure 3.3b Observed monthly rainfall, runoff and ETP for Sabari, Oti River 
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Table 3.4  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at (a) Bamboi and (b) Sabari. (All values 
in mm except CV = coefficient of variation, which is dimensionless) 

(a) Bamboi 

Statisticn Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb 

Rainfall 13.2 31.3 61.1 93.9 121.8 168.1 123.4 28.6 1.4 0.4 0.2 1.0 

Runoff 0.0 0.1 0.2 0.3 1.2 3.0 6.9 4.5 1.0 0.2 0.1 0.0 Minimum 

ETP 205.5 187.9 181.3 155.0 134.3 114.9 119.7 147.7 161.6 161.0 169.8 179.9

Rainfall 50.8 80.4 137.6 157.9 215.1 269.6 277.6 152.0 42.1 17.1 7.6 20.5 

Runoff 1.3 1.2 1.8 5.0 12.5 25.5 45.6 32.8 22.8 4.9 3.0 2.2 Maximum 

ETP 227.1 208.1 206.7 181.7 157.8 138.3 138.7 180.7 173.4 178.8 189.3 193.0

Rainfall 25.4 53.9 95.5 121.4 173.0 220.5 176.9 63.9 11.9 4.6 1.7 7.3 

Runoff 0.6 0.6 1.0 2.1 4.2 8.1 18.1 16.8 5.6 2.2 1.3 0.8 Mean

ETP 215.9 199.6 196.0 166.2 146.4 127.2 131.1 162.7 168.1 170.8 182.5 185.7

Rainfall 9.4 12.8 18.7 17.0 24.8 27.7 33.5 30.3 9.9 4.5 2.2 5.6 

Runoff 0.4 0.3 0.4 1.3 2.7 5.2 8.8 8.6 4.5 1.1 0.8 0.5 Std Dev. 

ETP 5.0 4.8 5.5 6.2 5.2 5.6 4.7 5.8 3.2 4.4 4.4 3.3 

Rainfall 0.37 0.24 0.20 0.14 0.14 0.13 0.19 0.47 0.83 0.98 1.29 0.76 

Runoff 0.67 0.57 0.44 0.65 0.65 0.64 0.49 0.51 0.81 0.51 0.65 0.71 CV

ETP 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.02 0.02 

(b) Sabari 

Statisticn Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb 

Rainfall 14.6 37.6 87.3 93.3 161.3 158.4 164.6 35.1 0.7 0.5 0.2 0.4 

Runoff 0.0 0.0 0.1 0.3 1.1 14.8 38.7 11.2 1.1 0.3 0.1 0.1 Minimum 

ETP 192.1 177.2 161.2 123.5 96.2 86.8 98.0 131.8 154.2 163.4 170.9 179.5 

Rainfall 52.0 80.3 123.0 190.1 253.0 303.4 292.6 130.8 26.3 15.8 2.1 19.0

Runoff 0.3 0.6 1.3 7.8 32.0 57.2 110.1 68.8 12.3 2.2 0.8 0.5Maximum 

ETP 224.7 198.2 190.0 162.1 135.1 121.9 119.1 166.2 171.4 185.7 210.6 200.6

Rainfall 29.5 59.4 105.3 141.4 203.4 247.9 217.2 72.4 6.6 4.2 0.7 4.4 

Runoff 0.1 0.2 0.4 1.9 9.8 31.7 68.3 36.0 4.8 1.0 0.4 0.2 Mean 

ETP 212.1 188.8 177.8 139.4 121.1 103.1 109.7 148.4 162.6 177.6 201.0 193.9 

Rainfall 12.0 13.4 11.5 27.9 23.8 38.3 33.0 27.8 7.3 5.1 0.6 6.2

Runoff 0.1 0.2 0.3 2.2 8.4 14.4 26.5 19.4 3.3 0.6 0.2 0.1Std Dev. 

ETP 8.9 6.1 8.4 8.9 10.4 11.2 6.5 7.9 5.4 7.4 10.0 5.4

Rainfall 0.41 0.23 0.11 0.20 0.12 0.15 0.15 0.38 1.11 1.21 0.90 1.43 

Runoff 0.76 0.92 0.73 1.17 0.86 0.45 0.39 0.54 0.68 0.56 0.57 0.64 CV

ETP 0.04 0.03 0.05 0.06 0.09 0.11 0.06 0.05 0.03 0.04 0.05 0.03 
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Figure 3.4a Coefficients of variation of monthly runoff, rainfall and potential 
evapotranspiration (ETP) at Dapola on the Black Volta River 

Figure 3.4b Coefficients of variation of monthly runoff, rainfall and potential 
evapotranspiration (ETP) at Bamboi on the Black Volta River 
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Figure 3.4c Coefficients of variation of monthly runoff, rainfall and potential 
evapotranspiration (ETP) at Yagaba on the Kulpawn River (White Volta 
Basin)

Figure 3.4d Coefficients of variation of monthly runoff, rainfall and potential 
evapotranspiration (ETP) at Sabari on the Oti River
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 (i) 

(ii)

Figure 3.5a Percent of total catchment rainfall occurring in each month of the 
hydrological year – Black Volta Basin 
(i) Upstream stations  
(ii) Downstream stations 
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Figure 3.5b Percent of total catchment rainfall occurring in each month of the 
hydrological year - White Volta Basin 

Figure 3.5c Percent of total catchment rainfall occurring in each month of the 
hydrological year - Oti Basin 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

M
o
n

th
ly

 r
a
in

fa
ll

 a
s 

p
er

ce
n

t 
o
f 

to
ta

l 
a
n

n
u

a
l 

ra
in

fa
ll

 (
%

)

Wiasi Yagaba Nasia Nabogo

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

M
o

n
th

ly
 r

a
in

fa
ll

 a
s 

p
e
r
c
e
n

t 
o

f 
to

ta
l 

a
n

n
u

a

r
a

in
fa

ll
 (

%
)

Porga Mango Koumangou Sabari



Exploratory data analysis 

50

The monthly means of rainfall and ETP for selected stations are plotted in 

figures 3.6a – 3.6d. The monthly mean rainfalls were aggregated from the 

corresponding daily values obtained from a network of rain gauges in the basin and 

interpolated to obtained mean values for each catchment using the Iddrisi GIS software 

(Taylor, 2004).  It can be observed from these plots and tables 3.4 and 9.1i – 9.1xvi that 

except for the 3 (or 4 in some cases) wettest months of July, August and September 

(also June in some cases, tables 9.1i  - 9.1xvi)), mean monthly ETP in the basin exceeds 

rainfall for all months. The rather high ETP for most of the year, particularly in the dry 

season, means much of the loss from groundwater would be to evapotranspiration rather 

than to baseflow.  This implies that, for the Volta Basin, recession flow in streams 

would be a very poor indicator of groundwater recharge and storage. Another important 

implication of the high ETP for much of the year is that natural streamflow cannot be 

relied upon for water usage in the basin such as for agriculture and industry, and 

impoundments of some sort have to be resorted to. The numerous dams and reservoirs 

created for water storage throughout the basin is recognition of this implication. 

Figures 3.7a – 3.7c are plots of monthly mean runoffs as percent of total 

annual runoff at the gauging stations and show the temporal distribution of runoff in the 

basin. The distribution in monthly runoff for the upstream stations in the Black Volta 

Basin are quite different from that of the rest of the stations including the downstream 

stations of the Black Volta.  While for the other stations it is clear that most of the 

runoff occurs in the three months August to October, for the Black Volta upstream 

stations, June or July for some and November for others have comparatively substantial 

runoffs. This may be an abnormality and needs further investigation, since the rainfall 

pattern as shown in figures 3.5a – 3.5d is the same for all stations. However, for the 

‚normal’ stations, between 70 and 75%, 90 and 95% and 83 and 88% of the total annual 

runoff occurs in the period August-October for the Black Volta, White Volta and Oti 

basins, respectively.  Thus, as in the case of the distribution of rainfall, this very skewed 

temporal distribution of runoff means that run-of-the-river water-use systems would 

require hydraulic structures to ensure all-year-round water availability. 
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Figure 3.6a Monthly mean rainfall and potential evapotranspiration (ETP) for Dapola 
on the Black Volta River  

Figure 3.6b Monthly mean rainfall and potential evapotranspiration (ETP) for 
Bamboi on the Black Volta River 
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Figure 3.6c Monthly mean rainfall and potential evapotranspiration (ETP) for 
Yagaba on the Kulpawn River (White Volta Basin)  

Figure 3.6d Monthly mean rainfall and potential evapotranspiration (ETP) for Sabari 
on the Oti River 
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 (i) 

(ii)

Figure 3.7a Percent of total catchment runoff occurring in each month of the 
hydrological year – Black Volta Basin 
(i) Upstream stations  
(ii) Downstream stations 
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Figure 3.7b Percent of total catchment runoff occurring in each month of the 
hydrological year - White Volta Basin 

Figure 3.7c Percent of total catchment runoff occurring in each month of the 
hydrological year - Oti Basin 
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3.2.1 Persistence in river runoff 

River runoffs often have memory or show persistence, i.e., the current runoff depends 

on past values. The fixed period of past runoffs influencing the current values is called 

the memory of the runoff system. Persistence of the runoff series used in this study was 

examined at both the monthly and annual scales by the use of the correlogram (plot of 

the autocorrelation function (ACF) against the lag), for the various runoff series. The 

ACF is the correlation coefficient rk at various lags k = 1, 2, ...,nk of the flow series, nk 

being the number of feasible lags for the given length of the series. 

The autocorrelation coefficient at lag k for a series x = (x1, x2, ..., xN) of length 

N is given as (Anderson, 1976; Salas et al., 1980): 

N -k

i i+k

i=1
k N 2

i

i=1

x - x x - x

r =

x - x

 (3.1) 

where xi is the ith element and x  the mean of the series, respectively.  

If the elements of x are independent and identically distributed random 

variables, then Var(rk), the variance of rk, is given as: 

 Var(rk) =1/N (3.2) 

Since successive values of rk for a time series can be highly correlated, i.e., the value of 

a given rk may be correlated with the K values at lower lags, Var(rk) is modified to 

account for this correlation as follows (Anderson, 1976): 

K
2

k i

i=1

1
V a r ( r )= 1+2 r

N
 (3.3) 

where K<k. 

The standard errors derived from 3.3 are called the Large-lag standard errors 

of rk (Anderson, 1976) and are used to establish the 95% confidence intervals for the 

correlation plots presented in figures 3.8a – 3.8d for both the monthly and annual runoff 

series.
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 (i) (ii) 

Figure 3.8a Autocorrelation function (ACF) for Dapola on the Black Volta River  
(SE = Standard error)  
(i) Monthly series 
(ii) Annual series 

 (i) (ii) 

Figure 3.8b Autocorrelation unction (ACF) for Bamboi on the Black Volta River  
(i) Monthly series 
(ii) Annual series 
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 (i) (ii) 

Figure 3.8c Autocorrelation function (ACF) for Yagaba on the Kulpawn River 
(White Volta Basin)   
(i)  Monthly series 
(ii) Annual series 

(i) (ii) 

Figure 3.8d Autocorrelation function (ACF) for Sabari on the Oti River
(i) Monthly series  
(ii) Annual series 
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The correlation plots of figures 3.8a – 3.8d are stem plots with values of the 

correlation coefficient at a given lag indicated by the circle at the tip of the vertical line 

at that lag. The dotted lines are the 2large-lag confidence bands at the 95% 

significance level. Though this level means that on average a given rk value has a 5% 

chance of being outside the confidence bands, rk values well above the bands should 

indicate significant autocorrelation.  

The plots show both seasonality and persistence in the monthly runoff series. 

However, except for the rather small r1 value shown as significant for Dapola, neither 

seasonality nor persistence exists for the annual series, an indication that for the Volta 

Basin, the annual series are independent and without memory.  This means that any 

delayed or groundwater flow to the rivers ceases at the end of the dry season, so that 

there is little or no over-year baseflow. At the annual scale, therefore, direct runoff is the 

only important contributor to riverflow. On the other hand, persistence in monthly flow 

means that delayed direct runoff and/or baseflow may be relatively important at this 

scale.

3.2.2 Autoregressive and moving average modelling of monthly runoff 

Since there is persistence in the monthly runoff series, two black box autoregressive 

models were investigated to determine their suitability for representing the flow series 

in the basin. Various orders of the polynomial autoregressive (AR) and autoregressive 

moving average (ARMA) models (Box et al, 1994) were fitted to monthly runoff series, 

and the best models (from evaluation criteria given below) selected for each runoff 

series. The ARX and ARMAX functions of the Systems Identification Toolbox of 

Matlab (Ljung, 2003) were used to estimate the models. The general ARMA (na,nc) 

model used is as given below (Ljung, 1999; Ljung, 2003): 

 A(q)yt  = C(q)et     (3.4) 

where:

yt  =  deseasonalized monthly river runoff at time t months 

et  =  random error at time t months 
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 A(q)  =  (1 – a1q – a2q
2
 - …….. – anaq

na
)

 C(q)  =  (1 – c1q – c2q
2
 - …….. – cncq

nc
)

q   =  backward operator, i.e., qyt = yt-1

a1, a2,…., ana are the parameters of the AR component of the model to be estimated 

c1, c2,…., cnc are the parameters of the MA component of the model to be estimated  

na   =  order of the AR model 

nc   =  order of the MA model 

Each runoff series was deseasonalized by subtracting the monthly means from 

each sample (Salas et al., 1980). The AR ARMA modelling was undertaken using the 

deseasonalized series. It should be noted that deseasonalizing the original series means 

that the number of parameters obtained for any model fitted to the series should be 

augmented by 12, the number of seasonal means, to obtain the total number of 

parameters involved (Salas et al., 1980). Two model selection criteria were used, i.e., 

the K-fold cross validation (Kohavi, 1995; Lendasse et al., 2003; Comp.ai.neural-nets 

FAQ, 2004) and the Akaike Information Criterion, AIC (Akaike, 1974). The reason for 

using both model selection criteria was to evaluate them and determine which is more 

convenient to use in the nonlinear modelling activities described in later chapters.

K-fold cross validation 

For the K-fold cross validation, the following procedure (Lendasse et al., 2003) was 

followed for each model order (na, nc): 

1. Divide the samples of the runoff series yt into K series of roughly equal size. 

The samples of the k
th series form the validation series Yval. The other sets 

form a new estimation series Yest. 

2. Fit the ARMA model to Yest and compute the mean error MEk (na,nc) of Yval 

as:

n v
2

v a l p va l

t t

t=1
k

y - y

M E ( n a ,n c )=
n v

(3.5)
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where val

ty  is an observed sample, 
p va l

ty
 the corresponding predicted sample 

of the validation series Yval, and nv the number of samples in the validation 

series.

3. Repeat Steps 1 and 2 for k varying from 1 to K. The average error, E, is then 

computed according to: 

K

k

k=1

M E

E =
K

(3.6)

4. Repeat steps 1 to 3 for all model orders (na, nc) being considered and select 

the best model as the one with minimum E. 

In this study, K was fixed at 10 for series of 240 months and above and 5 for 

the rest. The division of the series into Yest and Yval was done such that each series 

had an integer number of whole hydrological years.  

Single validation series method 

In this method, each runoff series being fitted was divided into two sub-series only. The 

first sub-series was the estimation series and was used to estimate the parameters of the 

candidate model. The second sub-series was the validation series and was used to select 

the best model from those fitted to the estimation series using the Akaike Information 

Criterion, AIC (Akaike, 1974). The following form of the criterion was used: 

 AIC = log (V) + 2p/n   (3.7) 

where V is the sum of squares of the residuals of the predicted from the observed 

validation series, p the number of parameters estimated (na+nc) and n the length of the 

series used.

The selected models for all the runoff series used were also compared by 

means of the Nash-Sutcliffe Efficiency coefficient, NSE (Nash and Sutcliffe, 1970), to 
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ascertain how much predictions from each model are better than the means of the 

respective series. The NSE (%) used is defined as: 

e

y

N S E = 1 0 0 ( 1- )  (3.8) 

where e is the variance of the residuals and y that of the observed runoff series. 

The estimation series in each case for this method was not chosen arbitrarily. It 

was chosen long enough to contain as much as possible the variation in the validation 

data (Young, 2001b). This was done subjectively by examining the series plot and 

ensuring that at least 5 years of the series was left for validation of very high orders.  As 

a result, only stations with runoff series of 120 months or more were examined. 

For both the K-fold cross validation and the single validation series methods, 

an AR model (na) was selected first and then an appropriate MA model (nc) fitted. This 

allowed better comparisons between the models selected by the two methods. 

The values of the model selection criteria vs. model orders are plotted for 

selected stations in Figure 3.9 for the AIC fits and in Figure 3.10 for the K-fold cross 

validation. The optimum na or (na, nc) values shown in the figures are the respective 

values obtained at the minimum validation AIC, or minimum validation mean square 

errors in the case of the cross validation method. Results of the AR and ARMA model 

selection for the flow series investigated are summarized in Table 3.5. The entries for 

each station are the models selected and the corresponding NSE values computed for 

the estimation, validation and full series for the AIC case and for the full series only for 

the K-fold cross validation case. The NSE values at the minimum validation AIC of the 

AR model are presented in the first row and those at the minimum validation AIC of the 

ARMA model in the second. The NSE coefficients for the models selected by the K-

fold cross validation AR and ARMA fits are shown in rows 3 and 4, respectively.  
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(a)

(b)

Figure 3.9 Akaike information criterion and Nash-Sutcliffe efficiency vs. model 
order   

 (a) Bamboi on the Black Volta River 
 (b) Mango on the Oti River 
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       (a) (b) 

 (c) (d) 

Figure 3.10 Cross validation mean square errors vs. AR model order na  
(a) Boromo on the Black Volta River    
(b) Bamboi on the Black Volta River 
(c) Wiasi on the Sisilli River (White Volta Basin) 
(d) Mango on the Oti River 
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Table 3.5 Nash-Sutcliffe efficiency values for the AIC and the K-fold cross 
validation Fits for the gauging stations studied. (BVB – Black Volta 
Basin; WVB – White Volta Basin; OB – Oti Basin. Entries in rows 1 and 
2 for each station correspond, respectively, to the AR and ARMA models 
selected by the AIC; those in rows 3 and 4 are the corresponding values 
for the models (AR and then ARMA) selected by the K-fold cross 
validation fit) 

NASH-SUTCLIFFE EFFICIENCY (%) 

Gauging station 

AR(ARMA) 

order

na, (na,nc) 
Estimation

series (AIC) 

Validation

series (AIC) 

Full series at 

optimum na, 

or (na, nc) 

1 83.95 58.69 77.52

(1,6) 84.00 66.71 77.68

9 - - 77.76

1.  Banzo (BVB) 

(9,0) - - 77.76

1 89.41 37.08 87.32

(1,2) 90.22 67.14 88.05

2 - - 88.38

2.  Nwokuy 
 (BVB) 

(2,1) - - 88.02

1 95.32 48.54 92.71

(1,5) 96.34 84.69 94.16

1 - - 92.71

3.  Manimenso 
 (BVB) 

(1,4) - - 94.06 

1 86.39 38.56 82.66

(1,4) 86.98 65.72 83.18

11 - - 84.88

4.  Boromo 
 (BVB) 

(11,0) - - 84.88 

1 78.94 42.83 75.11

(1,3) 80.39 61.66 77.42

2 - - 76.69

5.  Debougou 
 (BVB) 

(2,1) - - 75.89 

1 80.42 72.29 81.02

(1,1) 81.13 79.78 81.85

2 - - 81.83

6.  Lawra (BVB) 

(2,1) - - 81.88 

1 80.68 32.74 77.84

(1,1) 81.55 52.71 78.71

2 - - 78.63

7.  Dapola 
 (BVB) 

(2,1) - - 78.71 

1 84.17 83.70 86.15

(1,2) 84.93 89.74 86.30

11 - - 87.43

8.  Bui (BVB) 

(11,0) - - 87.43 

1 83.06 66.89 83.56

(1,4) 83.26 80.35 83.68

2 - - 84.66

9.  Bamboi 
 (BVB) 

(2,1) - - 83.64 
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Table 3.5 Continued 

NASH-SUTCLIFFE  EFFICIENCY (%) 

Gauging station 

AR(ARMA) 

order

na, (na,nc) 
Estimation

series (AIC)

Validation

series (AIC) 

Full series at 

optimum na, 

or (na, nc) 

1 75.83 64.35 74.28

(1,1) 76.02 71.08 74.51

10 - - 77.55

10. Wiasi (WVB) 

(10,0) - - 77.55 

1 76.20 67.71 76.68

(1,2) 74.98 76.52 75.02

11 - - 79.41

11. Yagaba 
(WVB) 

(11,0) - - 79.41 

1 79.37 73.37 77.85

(1,1) 78.92 74.57 77.27

23 - - 86.28

12. Nabogo 
(WVB) 

(23,0) - - 86.28 

1 85.27 43.35 80.79

(1,1) 85.49 55.33 81.13

9 - - 83.05

13. Porga (OB) 

(9,0) - - 83.05 

1 85.17 76.27 83.62

(1,1) 85.80 78.97 84.23

8 - - 84.89

14. Mango (OB) 

(8,0) - - 84.89 

1 83.50 82.52 83.47

(1,1) 83.47 83.98 83.39

9 - - 83.77

15. Koumangou 
(OB) 

(9,0) - - 83.77 

1 86.12 81.28 85.85

(1,1) 86.69 84.88 86.61

10 - - 88.76

16. Sabari (OB) 

(10,0) - - 88.76 

The model selection plots in Figure 3.9 show that the MA part of the ARMA 

models (obtained after fitting the AR models) improves the prediction of the validation 

series more than the same number of parameters for the AR model, as indicated by the 

validation NSE values. Since the MA terms model the random errors influencing the 

runoffs, stochasticity is an important consideration in modelling these series.
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It is clear from the figures and the table, that the models selected by the two 

procedures are different for both types of models (except for Manimenso – station 3 - 

where an AR(1) model is selected by both). For the AR models, for example, the AIC 

applied to the one validation series consistently selects an AR(1) as the best model. The 

K-fold cross validation, on the other hand, selects quite a range of models in this 

category, and in all cases but one models of higher order than by the AIC are selected. 

The AIC is thus a more stringent model selection criterion. Nevertheless, considering 

the NSEs, the criterion has been able to pick very low order models whose performance 

is comparable to that of the higher order models selected by the K-fold cross validation.  

The K-fold cross validation method averages the mean out-of-sample 

prediction errors over several validation series arbitrarily selected with a given value of 

k (5 or 10 in this study) and should, therefore, select models that are more reliable than 

those selected by the one validation series method where the models could be different 

with different validation series. However, for the series used here, the number of 

parameters it selects might not be parsimonious, given the fact that the 12 monthly 

means are an addition to each number of parameters selected. The flatness of the 

validation series mean error curves for the first few parameters as indicated in Figure 

3.9  suggests that the significant number of parameters may well be lower and close to 

that selected by the AIC criterion in each case. That being the case, the AIC criterion 

may be more appropriate as a model selection criterion for these runoff series, as there 

is no ambiguity in the number of significant parameters it selects. 

The observed and predicted estimation and validation series for the models 

selected based on the AIC are plotted in Figure 3.11 for some of the stations. These 

plots and the NSE values shown in Table 3.5, particularly those for the validation series, 

indicate that in general, the autoregressive models are not very good at representing the 

flows in the basin (except in one case, i.e., Manimenso, station 3 in Table 3.5). These 

models cannot be reliably used for prediction of future flows in the basin, since the 

results show that they lack the necessary information on such flows. Rainfall input 

would be necessary to adequately model these flows.  
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(a)

(b)

Figure 3.11 Observed and predicted total monthly runoff for AIC validated ARMA 
model
(a) Dapola on the Black Volta River ((na,nc) = (1,1)) 
(b) Bamboi on the Black Volta River ((na,nc) = (1,4)) 
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(c)

(d)

Figure 3.11 Continued 
(c) Wiasi on the Sisilli River (Black Volta Basin) ((na,nc) = (1,1)) 
(d) Porga on the Oti River ((na,nc) = (1,1)) 
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3.2.3 Non-linearity in monthly rainfall-runoff relationship 

The nonlinearity in the rainfall-runoff relationship is next investigated by determining 

the suitability of a linear time invariant input-output model representation of the 

relationship. The model considered is the black box ARX (Autoregressive with 

eXogenous input) model given as (Box et al, 1994; Ljung, 2003): 

 A(q)yt  = B(q)xt-nk + et     (3.9) 

where:

yt  = monthly river runoff at time t months 

xt  = monthly catchment rainfall at time t months 

et  = random error at time t months 

A(q)  =  (1 – a1q – a2q
2
 - …… – anaq

na
)

B(q)  =  ( b1q + b2q
2
 + …….. + Bnbq

nb
)

q   =  backward operator, i.e., qyt = yt-1

a1, a2,.., ana are the parameters of the AR component of the model to be estimated 

b1, b2,.., bnc are the parameters of the input component of the model to be estimated  

na   = order of the AR model 

nb   = order of the input model 

nk   = input delay in months 

Each model is thus represented by the values [na nb nk]. The Systems 

Identification toolbox of Matlab (Ljung, 2003) was used to identify and estimate the 

models.

Results of the ARX modelling activities are summarized in Figure 3.12 for 

some of the stations and in Table 3.6 for all the stations.  It can be seen from the plots 

and the validation NSE values in Table 3.6 that although most of the fitted models have 

large numbers of parameters (15 or more) they still do not provide very good 

simulations. 
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(a)

(b)

Figure 3.12 Observed and predicted total monthly runoff - ARX model 
(a) Dapola on the Black Volta River [na nb nk] = [14 15 0] 
(b) Bamboi on the Black Volta River [na nb nk] = [14 15 0]  
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(c)

(d)

Figure 3.12 Continued 
(c) Wiasi on the Sisilli River (White Volta Basin)[na nb nk] = [1 14 0] 
(d) Porga on the Oti River [na nb nk] = [14 5 5]
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Table 3.6 Estimation and validation NSE values for the ARX Models 

Model NSE (%) 

Station  River  [na nb nk] 

Estimation 

Series

Validation 

Series

Black Volta Basin 

1.  Banzo Black Volta [8 1 0] 74.08 71.53 

2.  Nwokuy Black Volta [13 1 0] 89.90 81.07 

3.  Manimenso Black Volta [14 3 0] 96.20 87.02 

4.  Tenado Black Volta [1 1 0] 83.00 70.59 

5.  Boromo Black Volta [1 1 0] 82.08 77.50 

6.  Debougou Bougouriba [13 1 0] 79.55 61.62 

7.  Lawra Black Volta [13 14 0] 89.57 78.44 

8.  Dapola Black Volta [14 15 0] 86.41 66.01 

9.  Bui Black Volta [1 15 0] 85.43 85.54 

10. Bamboi Black Volta [14 15 0] 87.29 85.00 

White Volta Basin 

11. Wiasi Sissili [1 14 0] 82.31 71.19 

12. Yagaba Kulpawn [13 4 6]] 64.31 56.71 

13. Nasia Nasia [5 10 3] 86.92 62.30 

14. Nabogo Nabogo [12 8 8] 75.41 58.56 

Oti Basin 

15. Porga Oti [14 5 5] 78.87 61.49 

16. Mango Oti [14 14 0] 89.14 83.38 

17. Koumangou Koumangou [15 3 0] 84.28 79.02 

18. Sabari Oti [15 13 0] 90.41 88.02 

The large number of parameters needed means that the linear models are 

unsuitable for representing the rainfall-runoff process, and nonlinear models should be 

considered.  Appropriate nonlinear models should provide better predictions of the 

validation series with fewer than 15 parameters. 
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3.3 Conclusions

Rainfall and runoff variability in the Volta Basin, both temporally and spatially, is high. 

Most rainfall and runoff in the basin occurs within 3 to 4 months of the year. Potential 

evapotranspiration is also very high, particularly in the dry season. These in 

combination mean that riverflow in the dry season is low and unreliable and that 

groundwater contribution to streamflow is not substantial. There is no persistence in 

annual runoff in the basin, so runoff at this temporal scale can be considered as largely 

independent. The inadequacy of the linear models fitted to the monthly rainfall-runoff 

series have shown that modelling the rainfall-runoff process in this basin is a non-linear 

estimation problem.  

Nonlinear rainfall-runoff modelling is described in the next chapters starting 

with a modelling framework suitable for data infilling to daily runoff series in the basin.  
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4 SPATIO-TEMPORAL MODEL FOR FILLING GAPS IN DAILY 

STREAM FLOW SERIES
2

4.1 Introduction 

A major requirement for the assessment, development and sustainable use of the water 

resources of any river basin is the availability of good quality runoff series of 

sufficiently long duration. In the Volta Basin, both daily and monthly river discharge 

series exist for a good number of gauging stations. However, many of these records are 

of poor quality and contain gaps of from several days to several years.  

In an assessment of monthly flow series of river discharge from the main river 

gauging stations in the basin, Taylor (2003) observed that in general 20% of monthly 

discharge data over a 20-year period are missing from the available series in the basin, 

with some gauges having as many as 50% gaps in their series. By regressing rainfall 

with the various series, the above study determined that only half of the gauging stations 

examined had reliable flow series, though these also had gaps of varying lengths. 

Filling gaps in existing river flow series in the Volta Basin is, therefore, a 

necessary and essential exercise if river runoff is to be satisfactorily modeled. This is 

because a full series of river runoff data is required to calibrate and test any models 

designed for predicting river flows in the basin.

Several methods are available for data infilling in general and for hydrological 

data infilling in particular. Data imputation methods (Dempster et al., 1977, Schafer 

1997, Little and Rubin 2003) are generally difficult to apply to hydrological data such 

as monthly river runoff series because of autocorrelations at high lags and seasonal 

effects. A few reviews are available on methods that have been used successfully for 

hydrological data infilling (Kottegoda and Elgy1979, Gyau-Boakye and Schultz, 1994). 

Gyau-Boakye and Schultz (1994) have provided a framework for filling in gaps of 

various lengths in daily runoff series in West Africa including the Volta Basin. Among 

methods recommended for such data infilling are autoregression with or without 

rainfall, simple and multiple regressions with neighboring gauges, interpolation, 

recession methods and linear storage model formulations, and the method used depends, 

                                                

2 This chapter has been published in modified form in Hydrology and Earth System Sciences, 9, 209–224, 
2005 
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among others, on the length of the data gaps to be filled and the season in which these 

gaps occur. Papadakis et al (1993) have also demonstrated the strength of satellite 

imagery with non-linear modelling in stream flow generation. Taylor et al (2004) used 

the Thornthwaite-Mather (TM) method to model river runoff in the Volta Basin and 

concluded that the method could be used to adequately fill in gaps in the runoff series in 

the basin if properly formulated. 

Autoregressions without rainfall, simple and multiple linear regressions with 

neighboring gauges, interpolation and recession methods of data infilling, where they 

work, have the advantages of simplicity and not requiring any other input data such as 

rainfall, evaportranspiration, soil moisture status etc, that other models need. However, 

they still need separate complete and extensive data sets for their calibration and 

verification, a requirement that may be a dream in much of the Volta Basin. Recession 

and autoregressive methods are unsuitable for periods of flow with rainfall, as they 

ignore the effect of the driving rainfall input. Multiple regressions account for the 

rainfall input and catchment moisture status by their use of the runoff from neighboring 

gauges and so are more suitable for data infilling when there is rainfall. However, by 

being fitted to “global” data (runoff series for several years together), they may not 

provide very good estimates for short “local” gaps. Also, since in applying them to 

estimate missing values at a gauging station, the available observed runoff at the station 

for the period considered is completely ignored, optimum use of available runoff 

information is not being made. This means that the quality of the estimates would be 

sub-optimal.  

The gap-filling method through the use of spatio-temporal dynamic models 

presented in this chapter makes optimum use of all available spatial and temporal 

information. Spatio-temporal dynamic models have been applied successfully to 

environmental systems (Shumway and Stoffer, 1982; Hasket, 1989; Rouhani and 

Myers, 1990; Goodall and Mardia, 1994; Guttorp and Sampson, 1994; Mardia et al., 

1998). When cast in state-space form, they can be used with the Kalman smoother and 

the Expectation-Maximization (EM) algorithm to estimate missing values in 

environmental data including runoff data. Formulated this way, they have the advantage 

of not needing separate calibration data, as the use of the EM algorithm ensures that 

model parameters, missing observations and state vectors can be adequately estimated 
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with the same data set and concurrently. Another advantage is that available “local “ 

measured streamflow data within the modelling period are also used in the estimation 

process, thereby ensuring that important information contained in these data is fully and 

optimally used. 

In this chapter, the spatio-temporal state space dynamic model with time 

invariant parameters is presented. The presentation is in three parts.  The first part is the 

model formulation using the Kalman smoother and the EM algorithm. This is followed 

by an outline of the necessary modifications that have to be made in the model 

framework to take care of missing values and to allow for the inclusion of constraints 

and prior knowledge of model structure and parameters.  The final part is the 

application of the model to filling short gaps (a few days to a month) in daily riverflow 

data in the Volta Basin of West Africa using series lengths of up to one year. The aim of 

this modeling exercise was to ascertain the applicability and effectiveness of such a 

model to runoff patching in the basin. A typical daily river runoff time series with gaps 

is given in Figure 4.1. 

4.2 The discrete spatio-temporal dynamic modelling framework 

The discrete spatio-temporal dynamic model is formulated to predict an n x 1 state 

vector xt=(x 1(t), x 2(t), …, x n(t))’  of an unobserved spatio-temporal state process at a 

fixed network of n locations. In addition, there is the m x 1 vector yt=(y 1(t), y 2(t), …, 

y m(t))’ of observed or measured values at m locations at time t, where the two sets of 

spatial locations need not be the same (Xu and Wikle, 2004). Here, and throughout, the 

prime marks the transpose vector or matrix. Bold small letters indicate vectors and bold 

capitals are matrices. The state-space representation for the prediction of the unobserved 

process without external input and for the linear dynamic case with time invariant 

parameters consists of the following process/state and measurement equations: 

t t-1 tx = Fx + , 0 0 0x ~ N µ , , ~ N 0,Q    (4.1a) 

t t ty = Hx + , ~ N 0,R      (4.1b) 
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Figure 4.1 Daily hydrograph at Sabari on the Oti River (1985-1989). Typical pattern 
of gaps considered in the spatio-temporal modelling 
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F is the n x n transition or state propagation matrix that describes the dynamics 

of the system - a first-order Markov process. H is the m x n measurement matrix that 

relates the estimated state vectors to the vector of actual observations. The additive n x 1 

state estimation errors, t, and the m x 1 measurement errors, t,, are uncorrelated 

Gaussian white noises with zero mean and covariance Q (n x n) and R (m x m).  For 

convenience, the initial n x 1 state vector, x0, is considered normally distributed with 

mean µ0 and covariance 0. Equation 4.1 is the finite dimensional linear dynamical 

system from which the vector time series of observations Y = (y0, y1, y2, …, yN) is 

assumed to be generated.  

As noted in Ribeiro (2004), when x0 is a Gaussian vector, t and t are 

Gaussian white noises and when the state and observation dynamics are linear, the 

conditional probability density function p(xt|Y) is normally distributed, i.e., 

N N

t t tp x |Y ~ N x ,P . The conditional mean of this Gaussian probability density 

function is equivalent to the estimate N

tx of the state xt given the N observations at each 

of the m sites. The covariance matrix N

tP  quantifies the uncertainty of the state estimate 

given the same N observations.  

In general, some or all of the system parameters  = {F, H, Q, R, µ0, 0} are 

not known and will have to be estimated from the observations. This is a system 

identification problem and, in the Gaussian framework under consideration, the 

parameter estimation can be undertaken by the method of maximum likelihood. The 

maximum likelihood estimate of  given X = (x0, x1, x2, …,xN) and Y = (y0, y1, y2, …, 

yN) is obtained by maximizing the joint log-likelihood of  X, Y, and  with respect to 

. This log-likelihood function is given as (Shumway and Stoffer, 1982): 

' -1

0 0 0 0 0 0

N
' -1

Y t t-1 t t -1

t=1

N
' -1

t t t t

t=1

log + x - µ x - µ

1
logL = logL X,Y, = - +Nlog Q + x - Fx Q x - Fx

2

+Nlog R + y - Hx R y - Hx

 (4.2) 
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When there are no constraints placed on the structure of the system matrices F, 

H, Q, and R, the estimates of the components of  are (Digalakis et al., 1993; Xu and 

Wikle, 2004): 

^
-1

4 3F = A A   (4.3a) 

^
-1

6 1H = A A  (4.3b) 

^
-1 '

2 4 3 4Q = A - A A A  (4.3c) 

^
-1 '

5 6 1 6R = A - A A A  (4.3d) 

0 0µ = x  (4.3e) 

0 0= P  (4.3f) 

where:

N
'

1 t t

t=0

1
A = x x

N +1
 (4.4a) 

N
'

2 t t

t=1

1
A = x x

N
 (4.4b) 

N
'

3 t-1 t-1

t=1

1
A = x x

N
 (4.4c) 

N
'

4 t t-1

t=1

1
A = x x

N
 (4.4d) 

N
'

5 t t

t=0

1
A = y y

N +1
 (4.4e) 

N
'

6 t t

t=0

1
A = y x

N +1
 (4.4f) 

are known as the sufficient statistics. 

In the state-space formulation of interest, the set of state vectors X (N x n) are 

not observed directly and not available a priori for the computation of the sufficient 

statistics and hence the parameter estimates. In addition, some of the observations in the 

set Y (N x m) may be missing. In these circumstances, the Expectation-Maximisation or 
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EM algorithm (Dempster et al., 1977) has been found to be a powerful tool for the 

maximum likelihood estimation of the system parameters (Shumway and Stoffer, 1982; 

Digalakis et. al., 1993; Ghahramani and Hinton, 1996; Bilmes, 1998; Xu and Wikle, 

2004).

The EM algorithm is designed for parameter estimation of incomplete or 

missing data problems by the method of maximum likelihood (Dempster et. al., 1997). 

By treating the state vector as missing observations, the problem is now the same as a 

problem with incomplete data, which justifies the use of the EM algorithm. Thus, both 

the recursions for the computations of the state vector, such as by the Kalman filter used 

here, and the estimation of the model parameters can be undertaken concurrently and 

offline computations of the parameters is not necessary. The EM procedure involves 

computing the model parameter set  and then the state vector over and over again in a 

series of iterations until a set of convergence conditions is met. The computations for 

each iteration are carried out in two main steps, the E-step and the M-step. 

Consider the (r+1)th iteration when (r) , the parameter set at the rth iteration, is 

known and it is required to find (r+1) , the parameter set at the (r+1)th iteration. In the 

E-step of the EM algorithm, the expected value of the complete-data log-likelihood 

log p(X, Y|  ) with respect to the unobserved and missing data X, given the 

observations Y and the current parameter estimates (r), is evaluated. This expectation is 

defined as: 

G(
(r+1)

) = G(
(r+1)

,
(r)

 )  = E[log p(X,Y| 
(r+1)

)| Y, 
(r)

 ]  

     = E[L(X, Y, 
(r+1)

 |Y, 
(r)

] (4.5) 

The expectation is evaluated with the known parameter set (r) (the new parameter set 

(r+1) is obtained by optimising G in the M step). The set Y, excluding any missing 

observations, constitutes the incomplete data set, while the full data set (X, Y) contains 

both observed and missing data. 

In the M-step, (r+1), the new estimate of , is computed by maximising the 

conditional expectation evaluated in the E-step, i.e.,

(r+1) (r+1)= argmaxG   (4.6) 
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The log-likelihood is guaranteed to increase with each iteration and the 

algorithm is guaranteed to converge to at least a local minimum (Dempster, 1977; 

Bilmes, 1998). 

For the regular exponential distributions (e.g., normal, binomial, poisson, 

gamma distributions), the E-step of the EM algorithm consists of the computation of the 

conditional expectations of the complete data sufficient statistics as given in Equation 

4.4  (Dempster, 1977).  In the M-step, these conditional expectations of the complete-

data sufficient statistics are then used instead of the (unknown) actual complete-data 

sufficient statistics. Thus, the following quantities are computed in the E-step and used 

to evaluate the sufficient statistics in Equation 4.4, (Digalakis, 1993): 

(r) N

t tE x |Y, = x  (4.7a) 

'
' (r) N N N

t t t t tE x x |Y, = P + x x  (4.7b) 

' '
' (r) N N N N

t t-1 t t t-1 t-1 t t-1

'
N N N

t,t-1 t t-1

E x x |Y, = E x - x x - x |Y + x x

= P + x x

 (4.7c) 

'
' (r) ' (r) N

t t t t t tE y x |Y, = y E x |Y, = y x  (4.7d) 

' (r) '

t t t tE y y |Y, = y y , (no missing values in Y) (4.7e) 

The required statistics in equations 4.7a-4.7d above at iteration r+1 can be computed for 

all t = 1, 2, … , N from the fixed interval Kalman smoother (also known as Rauch-

Tung-Striebel or RTS smoother (S. Haykin, 2001)) using the parameter estimates 

obtained at iteration r. The smoother is given as (S. Haykin, 2001; Xu and Wikle, 2004):   

Filter equation – Forward pass (t = 1, 2, …, N) 

a. Prediction: t -1 t-1

t t-1x = Fx  (4.8a) 

t-1 t-1 '

t t-1P = FP F +Q  (4.8b) 

 with 0

0 0x = µ  and 0

0 0P =  (4.8c) 
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b.Update (filter): t-1

t t te = y - Hx  (4.9a) 

t -1 '

et t= HP H + R  (4.9b) 

t-1 ' -1

t t etK = P H   (4.9c) 

t t-1

t t t tx = x + K e  (4.9d) 

t t-1 t-1

t t t tP = P - K HP  4.(9e) 

Smoothing – Backward pass (t =N, N-1, ..,1) 

N t

N tx = x , N t

N tP = P , t = N only (4.10a) 

-1
t-1 ' t-1

t-1 t-1 tJ = P F P  (4.10b) 

N t-1 N t-1

t-1 t-1 t-1 t tx = x + J x - x     (4.10c) 

N t-1 N t-1 '

t -1 t-1 t-1 t t t -1P = P + J P - P J    (4.10d) 

Smoothed lag-one covariance (t = N, N-1, …, 2):

N N -1

N,N -1 N N -1P = I - K H FP ,  t=N only     (4.10e) 

N t-1 N t-1 '

t -1,t -1 t-1 t-2 t-1 t,t-1 t-1 t-2P = P J + J P - FP J      (4.10f) 

In the above equations, t-1 t N

t t tx , x , x  and t-1 t N

t t tP ,P ,P are the predicted, filtered (updated) 

and smoothed values, respectively, of the state vector xt and its covariance Pt. The 

values of interest are the smoothed values N
tx and N

tP , which are inserted on the right-

hand side of equations 7a-e to calculate the expected values needed for the M-step. The 

log-likelihood function can also be conveniently computed as a by-product of the 

Kalman filter as follows: 

N N
' -1

Y et t et t

t=1 t=1

1
logL = - log + e e

2
 (4.11) 
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where et and et, the innovation vector and innovation covariance matrix, respectively, 

are computed for t =1, 2, …, N as in equations 4. 9a and 4.9b. 

The EM algorithm for the maximum likelihood estimation of the linear time 

invariant dynamic system represented in (4.1) can now be summarised as follows: 

E-step at iteration r+1 

(i)  Use the parameter set (r)
 = {F

(r)
, H

(r)
, Q

(r)
, R

(r)
, µ0

(r)
, 0

(r)
} obtained from the 

previous iteration, r, and the Kalman smoother presented in equations 4. 8 – 4.10 

to compute the statistics in Equation 4.7. Also compute the log-likelihood, 

LY( (r+1)) using Equation 4.11 

(ii) Use the statistics computed in (i) to compute the conditional expectations of the 

sufficient statistics in Equation 4.4 

M-step at iteration r+1 

Re-estimate (update) the parameter set as (r+1) = {F(r+1), H(r+1), Q(r+1), R(r+1), µ0
(r+1),

0
(r+1)} using the relationships in (4.3), with the conditional expectations of the 

sufficient statistics calculated in (ii) under the E-step in equations 4.3a-d, x0 in Equation 

4.3e, and P0 in Equation 4.3f.

Convergence

Test for the convergence of either the parameters or the log-likelihood, i.e., perform one 

of the following tests: 

(r+1) (r)- <  (4.12a) 

(r+1) (r)

Y Y LL - L <  (4.12b) 

where  and L are sufficiently small positive numbers. 

If the test succeeds, the iterations are stopped and (r+1) is retained as the final 

set of estimates of the system parameters, otherwise the iterations continue. Xu and 

Wikle (2004) prefer the use of the parameter values as the test criterion (Equation 4. 

12a) to the use of the log-likelihood (Equation 4.12b) as the log-likelihood can be 
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unstable for spatio-temporal problems due to the high spatial correlations in the 

innovations as a result of processes at adjacent spatial locations often being very 

similar.  

4.3 Missing observations 

If there are missing observations, then yt and H in the update equations of the forward 

pass of the Kalman filter would have to be modified as follows:  

(i) Replace all missing values in yt in Equation 4.9a with zeroes 

(observed zero values of yt may be represented as very small 

numbers such as 0.0001). 

(ii) Replace entries in the corresponding rows in H in Equation 4.9a 

with zeroes. 

In addition, the conditional expectations given in Equation 4.7 would have to 

be modified as follows (Digalakis et al., 1993): 

t
(r)

t (m) (r)

t

y , if observed
E y |Y, =

H E x |Y, , if missing
 (4.13a) 

'

t t' (r)

t t (m) (m) ' (r) (m) '

t t

y y , if observed
E y y |Y, =

R + H E x x |Y, H , if missing
 (4.13b) 

(r)

t t
' (r)

t t
(m) ' (r)

t t

y E x |Y, , if observed
E y x |Y, =

H E x x |Y, , if missing
  (4.13c) 

where H(m) and R(m) are the H and R matrices, respectively, corresponding to the 

missing values. 

4.4 System matrices parameterisation 

Equation 4.3 is used in the M-step to update the parameter values, when these 

parameters are not constrained or parameterised in any way. The parameters thus 

obtained are the maximum likelihood estimates. To avoid identifiability problems, some 

or all of the system matrices may be constrained or parameterised directly. In such 

cases, the parameters are no longer maximum likelihood estimates. However, the 
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parameterisation can be undertaken in such a way as to still result in an increase in the 

log likelihood at each iteration and lead to a convergence of the parameters. The 

algorithm is then called the General EM (GEM) (Xu and Wikle, 2004). Most often, Q is 

constrained to a diagonal matrix while R is modelled as R = 2Im, where Im is an m x m 

identity matrix. The process matrix F can also be parameterised if its form and structure 

are known, while H may be specified a priori as a design matrix and would no longer be 

updated in the M-step.

In the GEM, the (r+1)th update formula for the general unconstrained Q, 

whether F is parameterised or not, is given as (Xu and Wikle, 2004): 

(r+1) ' '

2 4 4 3

1
Q = A, where A= A - A F - FA + FA F

N
  (4.14a) 

For the case when F is not parameterised and is estimated as in relation 4.3a, Equation 

4.14a reduces to Equation 4.3c. For a diagonal Q matrix, its M-step update is: 

(r+1) 1
diag Q = diag A

N
 (4.14b) 

where diag (A) is the diagonal vector of A. 

When R is parameterised as R = 2Im, 2 is updated in the M-step as follows: 

N
'

2(r+1) N N N '

t t t t t

t=1

1
= tr y - Hx y - Hx + HP H

Nm
 (4.14c) 

The relations in Equation 4.14 ensure that the log likelihood increases monotonically 

even though the final parameter estimates would not be maximum likelihood estimates. 

4.5 Application of the modelling framework 

The methodology developed here was designed to enable the estimation of short gaps of 

a few days to one month in the annual daily runoff series (temporal) at a given gauging 

station using the available observed runoff series of the same period measured at the 

station and at one or more other stations (spatial) in the same main sub-basin. Thus the 
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missing runoff data at a station in the Black Volta basin would be estimated using its 

available runoff data and those from other stations in the same main sub-basin for the 

year. The lengths of missing data considered in the study are comparable to the typical 

real gaps shown in the hydrograph in Figure 4.1. 

Thus Equation 4.1 was used to model the runoff process both spatially, with 

discrete locations at the gauging stations, and temporally, with annual daily time series 

of runoff at the stations. The state vector, xt, represents the unobserved actual catchment 

runoff and yt is the vector with measured runoff at the m gauging stations at sampling 

time t. Both xt and yt are taken as m x 1 vectors of actual catchment and measured 

runoff series of length N 366, i.e., xt and yt occur at the same locations. The process 

matrix F is unconstrained, H = Im, Q is constrained to be diagonal and R= 2Im. At least 

one of the stations would have missing riverflow observations, the estimation of which 

is the main task at hand. Only gaps of a few days to a maximum of one month were 

considered. As convergence criterion, (r+1) (r)- < 0.001 was adopted. It should be 

mentioned that the results are relatively sensitive to the initial values used. 

The model was applied to daily time series of riverflows of about one year 

measured at the stations Lawra (Black Volta River), Bui (Black Volta River), Bamboi 

(Black Volta River), Saboba and Sabari (Oti River) located as shown in Figure 3.1. By 

blacking out some of the observed data at a target gauging station, a maximum of 30 

consecutive days of missing data in selected periods of the year were artificially created 

in the flow series of the target station. Three predictions of the missing data were made 

and compared by running the model with (i) the remaining samples of the target station 

as observed series (ii) the target station’s series and the series from the rest of the 

stations in the same main sub-basin and (iii) the target station’s series and that from 

only one other station in the same main sub-basin. Reliable daily flows for at least two 

stations for a full year could be obtained only for the main sub-basins of the Black Volta 

and Oti. The EM algorithm as described earlier not only provides estimates of the 

parameters but also those of the missing observations and state variables. It was used 

here to obtain estimates of the artificially created missing riverflow observations of the 

target stations. The performance of the model was evaluated in each case by the 

following Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) criterion: 
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2

e

2

y

NSE = 100 1-  (4.15) 

where 2

e  is the variance of the residuals and 2

y  the variance of the measured runoff at 

the target station. 

4.6 Results and discussion 

Figures 4.2a, 4.3a, and 4.4a are the observed runoff series used in the modelling 

exercise. They show varying degrees of correlation between the individual series in a 

plot. Figure 4.2a shows, for example, that there is a high correlation between the Bui 

and Bamboi flows but little correlation between the Lawra series and the others. The 

correlation between the two series in Figure 4.4a is not very good but not too poor 

either. As in Figure 4.2a, Figure 4.3a shows very good correlation between the two 

series plotted. A high correlation or lack of it in any set of runoff series could result in 

good or poor predictions of missing values in one series with the others as predictors.

Predicted missing values for the target station Bui in the Black Volta Basin are 

presented in figures 4.2b, 4.2c and 4.2d for the three cases (i), (ii) and (iii) above for the 

year 1964. The standard errors of the estimates for each case are also shown in the 

respective plots (at the bottom of the figures). As expected, these errors are small where 

observations are available and larger where they are missing. The “hills” and “valleys” 

in the error plots indicate clearly the ranges of the missing and observed flows.  

Figures 4.2b and 4.2c and the relevant NSE values in Table 4.1 show that the 

use of the series from both Lawra and Bamboi, together with the remaining 

observations from Bui, provides better predictions of the missing values of Bui and with 

less uncertainty than using the observed series of Bui alone. The spatial interpolation 

obtained from the model is therefore adequate in this case. Figure 4.2d and Table 4.1 

show that the use of the Bamboi series without that of Lawra did not reduce the quality 

of the predictions significantly, due to the fact that the correlation between the flows at 

Bui and at Lawra is low, as can be seen from the hydrographs in Figure 4.2a. Figures 

4.3b and 4.3c show plots of predicted and observed flows at Bui for the year 1994 for 

cases (i) and (iii), again showing the good correlation between the Bui and Bamboi 

flows. 
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Figure 4.2a Daily hydrographs for stations Lawra, Bui and Bamboi on the Black 
Volta River (1964) 

Figure 4.2b Measured and simulated daily hydrographs for station Bui on the Black 
Volta River; state space model on Bui discharge only (1964) 
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Figure 4.2c Measured and simulated daily hydrographs for station Bui on the Black 
Volta River; state space model on Bui, Lawra and Bamboi discharges 
(1964)

Figure 4.2d Measured and simulated daily hydrographs for Bui on the Black Volta 
River; state space model on Bui and Bamboi discharges (1964) 
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Figure 4.3a Daily hydrographs for Bui and Bamboi on the Black Volta River (1994) 

Figure 4.3b Measured and simulated daily hydrographs for Bui on the Black Volta 
River; state space model on Bui discharge only (1994) 
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Figure 4.3c Measured and simulated daily hydrographs for Bui on the Black Volta 
River; state space model on Bui and Bamboi discharges (1994) 

Figure 4.4a Daily hydrographs for Saboba and Sabari on the Oti River (1976) 
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Figure 4.4b Measured and simulated daily hydrographs for Sabari on the Oti River; 
state space model on Sabari discharge only (1976) 

Figure4.4c Measured and simulated daily hydrographs for Sabari on the Oti River; 
state space model on Sabari and Saboba discharges (1976) 
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Table 4.1 NSEs for the various tests 

TEST SERIES 
NSE

(%) 

Flows in the Black Volta 

Target station Bui only 95.0 

Bui, Lawra and Bamboi 99.0 

1964

Bui and Bamboi only 98.6 

Flows in the Black Volta 

Target station Bui only 93.5 

1994

Bui and Bamboi  97.6 

Flows in the Oti 

Target station Sabari only 61.6 

1976

Sabari and Saboba 91.4 

Predicted and observed flows at the station Sabari on the Oti River for 1976 

are shown in the plots in figures 4.4b and 4.c for cases (i) and (iii) only, with the 

respective standard errors of the predictions plots. These and Table 4.1 show that 

though the spatial correlation between the flows at Saboba and those at Sabari may not 

be good enough to provide excellent predictions at Sabari using Saboba data, the 

predictions with the Saboba flows are much better than those from the use of the Sabari 

observations alone. 

4.7 Conclusions

A spatio-temporal state space linear dynamic model was developed to fill short gaps (up 

to one month) in daily runoff series using other, spatially correlated, daily series of up to 

a year long. Parameter estimation was by the EM algorithm. Application of the model in 

the Volta Basin of West Africa shows that it is capable of providing good estimates of 

short gaps in river flows. The strength of the model is its ability to provide estimates of 

both the parameter and the missing values concurrently and without the need for 

separate calibration or training series and also provide error estimates of predictions. In 

addition, the errors of the predictions are smaller when using other spatially correlated 

series with the series with missing values than when this series is used alone to fill its 

gaps.  It is, therefore, very suitable for filling in short gaps in riverflow series for basins 

such as the Volta, where missing flows in runoff series at many gauging stations 

abound, and for evaluating the accuracy of the model predictions.  
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The critical assumption in the spatio-temporal model is that the catchment 

runoffs for all stations considered in a model run are generated by the same process. The 

model thus works well when there is good spatial correlation between the runoff series 

involved. The results obtained in this study show that very clearly. It is, therefore, 

important that stations be grouped according to the degree of spatial correlation in their 

runoff series in order to obtain good predictions of missing values using the formulation 

presented here.

The presented method to fill data gaps is a relatively simple application of the 

powerful combination of the EM algorithm and Kalman smoother. While this 

combination allows the estimation of both states and parameters concurrently, using 

spatial and temporal data, use of non-linear updates and Gaussian error structures of the 

underlying processes would add versatility to the framework. 
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5 MODELLING STREAMFLOWS USING NARMAX POLYNOMIAL 

MODELS

5.1 Introduction 

In Chapter 3, it was shown that the rainfall-runoff relationship in the Volta Basin, as in 

almost all basins, is very non-linear. It is, therefore, important that in modelling this 

relationship, this nonlinearity is adequately accounted for if streamflow predictions are 

to be reliable. 

A non-linear input-output model suitable for representing a wide variety of 

non-linear systems including environmental systems is the NARMAX (Non-linear 

Autoregressive Moving Average with eXogenous Input) polynomial model (Billings 

and Leontaritis, 1982; Leontaritis and Billings, 1985; Chen and Billings, 1989; Tabrizi 

et al., 1998).  In this chapter, the suitability of this model for river runoff prediction in 

the Volta Basin is investigated. The model is applied to monthly rainfall-runoff series at 

selected gauging stations in the basin and the results used to ascertain its ability to 

adequately account for the nonlinearities in the runoff generation process. 

5.2 The NARMAX polynomial model 

The NARMAX model is a metric or black-box model that been has been found to be 

very useful in modelling the nonlinear dynamics of both natural and devised systems. 

Its formulation includes a very elegant method of selecting parameters that are most 

significant in representing the nonlinearities in the system, thereby ensuring parameter 

parsimony in the estimated model. It is usually expressed as a non-linear polynomial 

function expansion of lagged input, output and noise terms, and, for the Single-Input-

Single-Output (SISO) model, is given as: 
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y k k ud

e

y ( t -1 ) , y ( t - 2 ) ,. . . , y ( t - n ) ,u ( t - n ) ,. . . ,u ( t - n - n )
y ( t )= f +e ( t )

e ( t -1 ) ,. . . ,e ( t - n )
(5.1)

where

fd  = polynomial of degree d (d>1) 

y(t), u(t), e(t) = output, input and white noise signals, respectively, at time t 

ny, nu, ne = maximum output, input and noise lags, respectively 

nk (>0)   = input signal time delay (measured in sampling intervals) 

In non-linear systems identification in general, nk is usually taken as at least 1. 

However, since in the analysis here u(t) is monthly rainfall, nk=0, i.e., y(t)  is a function 

of both current and previous inputs, would be considered. Thus for ny = nu = ne = 1, d = 

2 and nk = 0, for example, the polynomial expansion in Equation 5.1 for y(t) is: 

1 2 3 4

2 2 2

5 6 7 8

9 1 0

1 1 1 2 1 3

2

1 4 1 5

+ y t -1 + u t + u t -1 +

y t -1 + u t + u t u t -1 + u t -1 +

y ( t )= y t -1 u t + y t -1 u t -1 + +e t

y t -1 e t -1 + u t e t -1 + u t -1 e t -1 +

e t -1 + e t -1

  (5.2) 

where 1, 2, .., 15  are parameters of the model. 

A non-linear polynomial model of the form of Equation 5.1 but without the 

noise terms is the NARX (Non-linear Autoregressive with eXogenous Input) model 

given as: 

e(t))nnu(t),...,nu(t),ny(t2),...,y(t1),y(tfy(t) ukk

d
y   (5.3)

This model is also general and can describe any non-linear system well (Stenman, 

2000). In addition, it is not recursive, as the regressors are independent of previous 

model outputs, whereas in the NARMAX representation the noise terms can only be 

derived from previous model outputs. Therefore, the NARX model is more convenient 

to work with. However, the absence of a noise model in the structure means that a large 
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number of regressor terms has to be included so that the model can adequately represent 

both the system and noise dynamics (Stenman, 2000). Due to this limitation and also to 

avoid bias in the estimated parameters (Chiras, 2000), the full NARMAX model is 

preferred.

5.2.1 Formulation of the model 

For a given input-output series and any set of ny, nu, ne , nk and d, the polynomial 

represented in Equation 5.1 above can generally be expressed as: 

np

1m

mm e(t)Py(t)    (5.4a) 

where np (p not a subscript) is the number of parameters of the model and so equals the 

number of terms in the polynomial expansion, Pm is the mth regressor term with P1 =1, 

and m is the regression parameter for term m. The regressor terms are formed, as in 

Equation 5.2, by various combinations of lagged values of the output and noise terms 

and both lagged and current (when nk = 0) values of the input term.  

In matrix form Equation 5.4a becomes: 

 y = P   +   (5.4b) 

Here P is n by np and y n by 1 regressor and output matrices, respectively,  is np by 1, 

and  is n by 1 parameter and white noise vectors, respectively, with n being the number 

of input-output samples. 

Equation 5.4 is linear in the parameters, and so its parameters can be estimated 

by the use of well established parameter estimation techniques developed for linear 

systems identification, such as orthogonal least squares methods, although recursion is 

required to estimate the noise terms. 



Modelling streamflows using NARMAX polynomial models 

98

The system identification problem in modelling the output y using the NARMAX 

polynomial representation then consists of: 

(i) Determination of the input, output and noise lags and input time delay 

(i.e., model order) 

(ii) Selection of the polynomial degree 

(iii) Estimation of the parameters of the model represented as in Equation 5.4 

Procedures in (i) and (ii) involve model structure selection, while procedure (iii) is the 

straightforward parameter estimation.  

5.2.2 Error reduction ratio and selection of significant terms 

A major difficulty in systems identification using NARMAX models is obtaining a 

model that is parsimonious in the number of parameters and represents the dynamics of 

the system adequately.  This is because of the enormous number of parameters that is 

often involved in such models. For example, a model with ny = nu = ne = d = 3 and nk 

= 0 results in 286 parameters. To assist in the selection of the most significant terms to 

be considered in a NARMAX model, the Error Reduction Ratio (ERR) algorithm 

(Billings et al., 1989, Korenberg et al., 1988), which is derived from the orthogonal 

least square algorithm used for solving equations such as Equation 5.4, is often used. 

The ERR is used to order regressors according to the levels to which each regressor 

reduces the mean square model error (MSE). The regressor with the largest reduction in 

the MSE is ranked first and is the first to be considered in a forward regression solution 

to Equation 5.4. The strength of the procedure lies in the fact that it does not require the 

estimation of the full model in order to rank the regressors. The number of terms to be 

included in the final model is determined by the application of information criteria 

(Billings et. al., 1989, Chiras et al., 2000) such as final prediction error, FPE (Akaike, 

1974a), Akaike information criterion, AIC (Akaike, 1974b) and Bayesian information 

criterion, BIC (Kashyap, 1977) on validation series. The method is elaborated in the 

methodology sub-section below. 

5.3 Application of the model 

Monthly rainfall (u)-runoff (y) series for selected river catchments in the Volta Basin 

were used to fit and evaluate SISO NARMAX polynomial models of various structures.   
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QR function available in Matlab (Mathworks, 2004). The parameters of the model at 

each forward regression stage were obtained with the Matlab REGRESS function and 

used to compute the predicted values of the validation series. The predicted validation 

series at each stage of the forward regression were used with evaluation criteria to 

determine when to stop regressing.  

A QR orthogonal-triangular decomposition can be performed on the n by np 

matrix P in (5.4b) to obtain 

 P = QR (5.5) 

where Q is an n by np orthogonal matrix such that QTQ = I, the np by np identity 

matrix, and R an np by np upper triangular matrix.  

Let:

 g = Q
T
y   (5.6) 

be an np by 1 vector, so that for the np by 1 parameter vector , ,

 R  = g  (5.7) 

Then

QgRPRPy 1  (5.8) 

Thus, the sum of squares of the observed output samples is  

n p n p
T 2 T T 2 T

i i i i

i=1 1

y y = g q q + = g +  (5.9) 

where gi is element i of vector g, qi column i of matrix Q, and the orthogonality of Q 

and the mean of  = 0  hold. 
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The error reduction ratio ERRi due to the ith regressor term is defined as the 

proportion of the observed output variance explained by that term (Chen et. al., 1989), 

i.e.:

yy

g
ERR

T

i
i

2

(5.10)

Equation 5.10 was used to order the regressors in each model according to their ERRi

values and the forward regression procedure used to select significant regressors and 

estimate parameter values. The process (NARX) model was fitted first, equation 5.10 

used again to order the noise terms from the residuals generated by the fitted process 

model and the forward regression procedure used again to select the significant noise 

terms. The general steps adopted in the modelling procedure for each of the river 

catchments considered were as follows: 

1. Select a model structure (i.e., pick na, nb, and nc; nk = 0 and d = 3 for all structures 

in this study). 

2. Form the regressors for the process or NARX model and rank them using their ERR 

values.

3. Perform forward regression and select process model (with optimum number of 

parameters) with validation series using both the AIC and NSE criteria 

4. Form noise terms using the residuals from the model selected in 2 above and rank 

these using their ERR values. 

5. Perform forward regression adding terms from the noise terms to the process model 

terms. Select full model (with optimum number of parameters) with validation 

series using both the AIC and NSE criteria.

6. Repeat for other model structures and select the best model(s) for the catchment 

from the values of the AIC and NSE of the validation series.  
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The following forms of the AIC (Ljung, 1999) and NSE criteria were used: 

n

2np
VLogAIC s (5.11a)

yvar

var
1100NSE  (5.11b) 

where V = T  , nps = number of selected regressors, and n is the sample size of the 

monthly runoff series (estimation or validation) being considered. 

5.4 Results and discussion 

Tables 5.1 and 5.2 summarize the results of the model selection process for Bamboi on 

the Black Volta River and Mango on the Oti River for various model structures 

considered in the study. Similar model selection procedures were undertaken for the rest 

of the selected stations. Tables 5.1 and 5.2 indicate that of the 23 model structures 

considered for each station only 8 of them in each case included significant terms from 

the noise model from the selection process.  This suggests that for the remaining models 

enough process terms were fitted to account for both the system dynamics and the noise 

input. Considering both the NSE and AIC criteria for the validation series (columns 6, 

10, 12 and 16), Table 5.1 shows that only 3 of the model structures for Bamboi are 

important. These are models 1 ([na nb nc] =[1 1 1]), 5 ([na nb nc] =[1 3 3]) and 7 ([na nb

nc] = [1 4 2]). However, considering parameter parsimony, model 1 is the best with its 

13 parameters (column 13). Models 5 and 7 with 22 and 23 parameters, respectively, are 

likely to be overparameterized. 

A similar analysis of Table 5.2 shows that 5 good models can be identified, 

i.e., models 3 ([na nb nc] =[1 3 1]), 9 ([na nb nc] =[1 5 1]), 10 ([na nb nc] =[1 5 2]), 11 ([na

nb nc] =[1 5 3]) and 23 ([na nb nc] =[5 1 1]).  Here, models 9 and 11 are superior 

considering their lower AIC values (column 16). However, model 9, with 3 parameters 

less than and with an F value for the estimation series (the fitted series) higher than that 

of 11 (indicating the fit to 9 is more significant than for 11), should be considered the 

better of the two. 
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Figures 5.1a, 5.2a, 5.3a and 5.4a show plots of AIC and NSE values against 

number of parameters included in the best NARMAX model for the representative 

stations Dapola and Bamboi on the Black Volta River, Yagaba on the Kulpawn River 

(White Volta Basin) and Mango on the Oti River. The best models for Dapola and 

Bamboi, for example, are  [na nb nc] =[3 1 0]) and  [na nb nc] =[1 1 1], respectively. Such 

plots were used to select the best (optimum) model in each model class (of the same 

structure) such as listed in tables 5.1 and 5.2. The best in a given class was the one with 

minimum validation series AIC. The NSE values shown in the figures are the values for 

the validation series at the optimum number of parameters. The plots show that there is 

a continuous fall in the AIC and rise in NSE with increasing numbers of parameters for 

the estimation series. Since this series is the fitting series and is known to the model, an 

increase in the number of parameters always leads to a better fit to the series. Not so for 

the validation series. The model does not know the output component of this series and 

so cannot adjust to fit it. Thus, insignificant parameters soon show as an increase in the 

AIC. Therefore, the application of the AIC on validation data can be very effective in 

determining when to stop adding parameters to a model. However, the use of this 

criterion alone would not always result in a parsimonious model, as clearly shown in 

tables 5.1 and 5.2 where the number of parameters for some of the models is rather very 

high. Other goodness-of-fit criteria need also to be considered to arrive at an optimum 

model.

Visual evaluation of the selected model in each class was made through plots 

such as those in figures 5.1b, 5.2b, 5.3b and 5.4b for the best models for Dapola, 

Bamboi, Yagaba and Mango, respectively. These figures show plots of observed and 

predicted total monthly runoff for the NARMAX formulations. The plots and the 

validation NSEs shown in figures 5.1a – 5.4a indicate fairly good fits and predictions 

for the selected models. The number of fitted parameters, the estimation and validation 

NSEs for the best models for the stations modeled here and the corresponding values 

from Table 3.6 for the best linear ARX models in Chapter 3 are shown in Table 5.3.  It 

can be seen from the validation NSEs in particular, that the nonlinear modelling has 

produced better predictions with much fewer parameters than the linear modelling. For 

Lawra, Dapola, Bamboi and Mango, in particular, better predictions have been obtained 

for the nonlinear model with less than half the number of parameters.  
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(a)

(b)

Figure 5.1 AIC, NSE, observed and predicted runoff plots for Dapola on the Black 
Volta River – [na nb nc] = [3 1 0] 
(a) AIC and NSE vs. number of NARMAX parameters (nnp) 
(b) Observed and predicted monthly runoff for both estimation and 

validation series 
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(a)

(b)

Figure 5.2 AIC, NSE, observed and predicted runoff plots for Bamboi on the Black 
Volta River – [na nb nc] = [1 1 1] 
(a) AIC and NSE vs. number of NARMAX parameters (nnp) 
(b) Observed and predicted monthly runoff for both estimation and 

validation series 
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(a)

(b)

Figure 5.3 AIC, NSE, observed and predicted runoff plots for Yagaba on the 
Kulpawn River (White Volta Basin) – [na nb nc] = [1 1 1] 
(a) AIC and NSE vs. number of NARMAX parameters (nnp) 
(b) Observed and predicted monthly runoff for both estimation and 

validation series 
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(a)

(b)

Figure 5.4 AIC, NSE, observed and predicted runoff plots for Mango on the Oti 
River  – [na nb nc] = [1 5 1] 
(a) AIC and NSE vs. number of NARMAX parameters (nnp) 
(b) Observed and predicted monthly runoff for both estimation and 

validation series 
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Table 5.3 Comparison of performance of the linear ARX and the NARMAX 
models (BV = Black Volta, KM = Koumangou) 

Number of 

parameters in 

best model 

NSE (%) 

Estimation series Validation series 

Station River 

ARX NARMAX

ARX NARMAX ARX NARMAX

Black Volta Basin 

Lawra BV 27 9 89.57 87.50 78.44 88.43 

Dapola BV 29 14 86.41 88.82 66.01 68.18 

Bui BV 16 10 85.43 95.22 85.54 91.27 

Bamboi BV 29 13 87.29 94.44 85.00 89.93 

White Volta Basin

Wiasi Sisilli 15 11 82.31 87.89 71.19 84.88 

Yagaba Kulpawn 17 13 64.31 86.90 56.71 72.39 

Nasia Nasia 15 10 86.92 94.30 62.30 69.62 

Nabogo Nabogo 20 10 75.41 80.08 58.56 69.97 

Oti Basin

Porga Oti 19 11 78.87 93.78 61.49 82.35 

Mango Oti 28 13 89.14 93.70 83.38 91.22 

Koumangou KM 18 13 84.28 88.37 79.02 87.10 

Sabari Oti 28 14 90.41 93.04 88.02 92.14 

Clearly, nonlinear modelling of the rainfall-runoff process, as illustrated here, 

is very appropriate.  The NARMAX models have been able to account for much of the 

nonlinearity in the rainfall-runoff transformation in this study, considering the very 

good predictions with relatively fewer parameters.  

In Table 5.4, the selected regressors and the full regressor set for both the 

NARX and NARMAX formulations are presented for the best model for Bamboi. The 

rankings of the regressors as indicated in the table are obtained from the application of 

the ERR algorithm. The NSE values for the validation series as each regressor term is 

included in the model up to one term after the optimum number of terms are also 

indicated in the table. It is important to note that while the full regressor terms number 

35, only 13 were found to be significant for the full NARMAX case for this model 

structure.
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Table 5.4 Regressors for model [na nb nc) = [1 1 1] for Bamboi on the Black Volta 
(The NSE value refers to the value for the model with number of 
regressors up to the current regressor) 

Optimum Regressor Terms  Full Regressor terms 

Regressor 

#

Regressor 

Rank

Regressor 

(P)

Validation

series 

NSE(%)*

Regressor

#

Regressor 

Rank

Regressor 

(P)

NARX Model Process model terms 

1 1 1 -5.35 1 1 1 

2 2 yt-1 -5.36 2 2 yt-1

3 3 ut 68.71 3 3 ut

4 4 ut-1 67.25 4 4 ut-1

5 5 (yt-1)
2 67.56 5 5 (yt-1)

2

6 6 (yt-1)* ut 79.85 6 6 (yt-1)*ut

7 7 (yt-1)*( ut-1) 80.39 7 7 (yt-1)*(ut-1)

9 8 ut*( ut-1) 86.55 9 8 ut*(ut-1)

10 9 (ut-1)
2 87.72 10 9 (ut-1)

2

8 10 ut
2 88.42 8 10 ut

2

13 11 (yt-1)
2
*( ut-1) 88.42 13 11 (yt-1)

2
*( ut-1)

14 12 (yt-1)* ut
2
 88.96 14 12 (yt-1)* ut

2

 13  88.82 15 13 (yt-1)* ut *( ut-1)

NARMAX Model 16 14 (yt-1)*( ut-1)^2

1 1 1 -5.35 11 15 (yt-1)^3

2 2 yt-1 -5.36 12 16 (yt-1)^2* ut

3 3 ut 68.71 17 17 ut^3 

4 4 ut-1 67.25 18 18 ut^2*( ut-1)

5 5 (yt-1)
2 67.56 19 19 ut*( ut-1)^2

6 6 (yt-1)* ut 79.85 20 20 (ut-1)^3

7 7 (yt-1)*( ut-1) 80.39    

9 8 ut*( ut-1) 86.55 Noise  model terms 

10 9 (ut-1)
2 87.72 29 1 (et-1)* ut

 2

8 10 ut
2 88.42 25 2 (et-1)

2

13 11 (yt-1)
2
*( ut-1) 88.42 33 3 (et-1)

2
* ut

14 12 (yt-1)* ut
2 88.96 34 4 (et-1)

2
*( ut-1)

29 13 (et-1)* ut
2
 89.93 26 5 (et-1)*( yt-1)

2

  14  87.51 30 6 (et-1)* ut*( ut-1)

     31 7 (et-1)*(ut-1)
2

     32 8 (et-1)
2
*(yt-1)

     35 9 (et-1)
3

     23 10 (et-1)*ut

     27 11 (et-1)*(yt-1)*ut

     21 12 et-1

     22 13 (et-1)*(yt-1)

     24 14 (et-1)*(ut-1)

     28 15 (et-1)*(yt-1)*(ut-1)
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5.5 Conclusions and recommendations 

A SISO NARMAX polynomial model was successfully formulated and applied to 

monthly rainfall-runoff series for runoff prediction at selected river gauging stations in 

the Volta Basin. Several model structures for each station were evaluated using the AIC, 

NSE (for the validation series), R-square, and F (for the estimation series) goodness-of-

fit criteria.  The combination of these criteria enabled the identification of the “best” 

model from all the models tested for each river catchment. The AIC criterion was 

particularly useful in selecting the optimum models from the several available for each 

model structure. However, the other goodness-of-fit criteria were required to 

successfully identify parsimonious models in some of the cases.  

Monthly rainfall predictions from the selected models were very good, and the 

polynomial models appeared to have captured a good part of the rainfall-runoff non-

linearity, even though some peak and/or low flows were not adequately simulated in the 

cases investigated. The use of multiple goodness-of-fit criteria in which different criteria 

are employed for fitting simulations to different parts of the hydrograph, especially the 

peak and low flow sections, could result in improvements in the predicted hydrographs.  

Nevertheless, the results show the appropriateness of nonlinear representation 

of the rainfall-flow process. They also indicate that the NARMAX modelling 

framework is suitable for monthly river runoff prediction in the Volta Basin. The 

drawback of the method, as applied here, is its inability to provide physically 

interpretable results. However, the several good models made available by the 

NARMAX modelling framework could be useful in the selection of model structures 

that also provide insight into the physical behavior of the catchment rainfall-runoff 

system. The results are a motivation, therefore, to seek a better nonlinear modelling 

framework that would also provide some plausible interpretation of the nature of the 

runoff process in the basin. 
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6 DATA-BASED MECHANISTIC MODELLING OF STREAMFLOWS 

6.1 Introduction 

The nonlinear rainfall-runoff NARMAX model developed in the previous chapter 

showed the appropriatenss of nonlinear representation of the rainfall-runoff process.  

Predictions of runoff were better with fewer parameters than for the linear ARX 

modeling case, though peak and low flows were not adequately simulated in some 

cases. However, it still had quite a number of parameters, indicating that the process 

nonlinearity was not accounted for very well. In addition, it was a purely black-box 

model, providing no physically interpretable results. Models that characterize the 

rainfall-flow nonlinearity very well and also provide some insights into the form of the 

flow process are necessary in hydrology. Such models promote better identification and 

understanding of the important hydrological issues and thereby assist in the design of 

better basin water resources management. This chapter focuses on such models and 

presents a modelling framework that is proposed as the most appropriate for riverflow 

modelling in the Volta Basin. The utility of properly formulated models cannot be 

overemphasized. The forecasting, backcasting and flow gap infilling abilities of well 

formulated streamflow models and the insights into the processes generating and 

controlling the flows that such models can provide make them very useful tools in many 

areas of catchment-scale water-resources management. Such areas include flood 

forecasting and control, drought management, assessment of water supply potentials 

and waste load carrying capacities of streams, engineering design of hydraulic structures 

such as on-the-river reservoirs and the assessment of the impacts of anthropogenic 

effects on both the spatial and temporal distribution of streamflow as well as the water 

quality of the streams (Tabrizi et. al., 1998; Beven, 2000).

6.2 Runoff Models in Hydrology 

A wide variety of models for modelling streamflow exists in the literature. An extensive 

list of the most popular ones has been compiled by Singh and Woolhiser (2002). In 

general, these models can be grouped into four main categories (Wheater et. al., 1993; 

Beven 2000, Young 2001): 
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1. Physics-based or fully distributed models:  These are the most complex and 

comprehensive rainfall-runoff models. They seek to model all aspects of the 

subsurface and surface flow processes in a catchment by representing the 

component processes with partial differential equations derived from 

consideration of the physics of the processes involved. They attempt to 

provide local outputs for every part of the model domain, are formulated based 

largely on the blueprint of Freeze and Harlan (1969) and have a very high 

number of parameters to be estimated from observed data. These models 

include the Systeme Hydrologique Europeen (SHE) model (Abbott et. al.,

1986a &b; Bathurst et. al., 1995), the Australian TOPOG (Vertessy et. al.,

1993) and THALES (Grayson et. al., 1995) models, the Institute of Hydrology 

Distributed Model, IHDM, from the UK (Calver and Wood, 1995) and the 

Swiss Water balance Simulation Model ETH, WaSiM-ETH (Schulla, 2001). 

2. Conceptual models:  These models vary in complexity but are less ambitious 

than the fully distributed models. They specify the model structure a priori 

based on the component processes considered important in the runoff 

generation process. There are two main classes of models in this category. The 

first consists of simplified distributed models, also called distribution function 

models, that use distribution functions to represent the spatial variability of 

catchment runoff, thereby avoiding the use of detailed process representations 

of the fully distributed models (Beven, 2000). The TOPMODEL (Beven and 

Kirkby, 1979) and the Probability Distributed Model, PDM (Moore and Clark, 

1981) are examples. The models in the second class are the Explicit Soil 

Moisture Accounting, ESMA, models (O’Connell, 1991). These models 

represent the important processes controlling catchment response to rainfall by 

a system of internal storages linked by mathematical description of the fluxes 

between them. Examples of such models are the Dawdy and O’Donnell 

(1965), the Stanford Watershed (Crawford and Linsley, 1966), the Sacramento 

Soil Moisture Accounting, SAC-SMA (Burnash et. al., 1973; Burnash 1995.) 

and the Xinanjiang (Zhao and Liu, 1995) models and the Australian Large 

Scale Catchment Model, LASCAM (Sivapalan et. al., 1996a, b, c).  The 
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number of parameters to be calibrated for in most of these models is high but 

tend to be lower than in the fully distributed models.  

3. Metric models:  These are data-based, mainly black-box models, that rely 

largely on observed data to characterize the runoff response using statistical 

estimation or optimization methods. They are often based on the analysis of 

time series such as the Box-Cox type discrete-time transfer functions (Box et. 

al., 1994) and neural network models (Young, 2001). NARMAX (Non-Linear 

Autoregressive and Moving Average with eXogenous input) polynomial 

models are also in this category. These models are often parsimonious in their 

parameterization and many are able to explain the observed data well. 

However, it is usually difficult for such models to provide a physically 

meaningful interpretation of the flow process characterized, and this makes 

them unattractive as general modelling tools in hydrology. 

4. Hybrid metric-conceptual (HMC) models:  These are usually transfer 

function models and, as the name implies, combine the essential features of 

both the metric and conceptual models. In particular, they combine the ability 

of metric models to efficiently (parsimoniously) characterize the observational 

data in statistical terms and the advantages of conceptual models that have a 

prescribed physical interpretation (Young, 2001). They are therefore models of 

moderate parameterization. Two main modelling approaches can be identified 

for models in this category: 

a. Deductive approach in which the conceptual model structure is specified a 

priori. The Identification of unit Hydrographs And Component flows from 

Rainfall, Evaporation and Streamflow data, IHACRES, model (Jakeman et

al., 1990; Jakeman and Hornberger, 1993; Jakeman et al., 1993a; 

Littlewood and Jakeman, 1994) is an example. 

b. Data-based mechanistic (DBM):  An inductive approach to modelling in 

which the model structure is not pre-specified by the modeler, i.e., the 

observed data are allowed, as much as possible, to determine the model 

structure from a more general class of models, and then the model is 
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interpreted in a physically meaningful manner (Young and Pedregal, 1997; 

Young, 1998; Young, 2001a). An essential feature in all DBM modelling is 

the physical interpretation of the identified models so that the selected 

working models are those that not only explain the observed data well but 

also can be interpreted in physically meaningful terms. Examples of the 

application of this approach to rainfall-runoff modelling are Young and 

Beven (1994), Young et al. (1997), Mwakalila et al. ( 2001a) and Young 

(2001).

The most serious drawback of distributed and many conceptual models is the 

problem of over-parameterization, i.e., they often have too many parameters to be 

estimated from a limited set of rainfall-flow, meteorological, soil and sub-surface 

hydraulic data (Loague and Freeze, 1985; Hornberger et. al., 1985; Hooper et. al., 1988; 

Beven, 1989, Jakeman and Hornberger, 1993, Young and Beven, 1994; Young, 2001a). 

Though a good number of the parameters of these models may have physical meaning 

and can be estimated from soil, vegetation and other river catchment characteristics, 

deriving effective values from point measurements for the large scale applications they 

are intended for can be very problematic. Thus, there is often no unique set of 

parameters or combination of parameters that explain the observed data used for 

calibrating such models, unless prior restrictions are imposed on many of these 

parameters (Young, 1996). Several different parameterizations can usually be identified 

that explain the observed data equally well – a situation referred to as equifinality 

(Franks et. al., 1997; Beven, 2000; Beven, 2001; Beven and Freer, 2001).

The identifiability problem of these models may be attributed mainly to the 

inadequate information content of observed data, which makes it impossible to identify 

unique models (Jakeman and Hornberger, 1993; Kokkonen and Jakeman, 2001; Young 

2001). The low information content of observational data may be due, on the one hand, 

to the inputs to the dynamic system not being sufficiently exciting (Young, 1984, Young 

2001), and on the other, to the existence of dominant modes of dynamic systems in 

general (Young et. al., 1996; Hasselman et. al., 1997; Hasselman, 1998; Young, 1998; 

Young 2001) resulting in the output of the systems being dominated by the cumulative 

effect of a few dynamic modes. Consequently, several researchers maintain that the 

information content of a typical set of rainfall-runoff data is enough to support the 
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estimation of only a small number of parameters (ten or less) and for the identification 

of non-linear models of dynamic order of up to only three (Kirby, 1976; Hornberger et. 

al., 1985, Jakeman and Hornberger, 1993; Wheater et. al., 1993; Young and Beven, 

1994; Ye et. al., 1998; Young, et. al., 1997, 1998; Young, 2001). In the opinion of 

Young (2001), the search for a single, all encompassing model of any dynamic system 

is futile; therefore, the model-builder should look for a model that suits the nature of the 

study objectives.

HMC models appear then to be the models to use for rainfall-runoff 

modelling. They generally contain few parameters and while the identifiability problem 

is not entirely eliminated, it is reduced. Also, they usually have the necessary 

functionality to adequately represent the rainfall-runoff nonlinearity and lend 

themselves to plausible physical interpretation of the flow mechanisms characterized. 

The IHACRES model, for example, has only 6 or 7 parameters to be estimated from 

observational data (compared to up to 17 in the SAC-SMA model) but has been used 

successfully in a wide range of hydrological applications, including rainfall-runoff 

modelling, catchment characterization and assessment of the impact of climate change 

on the hydrological response of catchments and low flow analysis, in several regions 

and under various climatic conditions (Jakeman and Hornberger, 1993; Jakeman et al.,

1993a,b; Sefton et  al., 1995; Post and Jakeman, 1996; Post et. al., 1996; Littlewood and 

Marsh, 1996; Littlewood et. al., 1996; Hansen et. al., 1997 ). In addition, the statistical

procedures for assessing the validity and quantifying the uncertainties in both the 

parameter estimates and the outputs of HMC models have been well developed (Young, 

1984;Young and Beven, 1994; Young, 2001).

Experience from extensive theoretical analysis and practical application of 

rainfall-runoff models in this category show that in hydrology, parallel processes, in 

which catchment runoff for example can be decomposed into parallel pathways of fast 

and slow flows, appear to be the rule (Young, 1992; Jakeman and Hornberger, 1993; 

Jakeman et. al., 1993; Young and Beven, 1994, Ye et. al., 1997,1998;Young et. al.,

1997; Young, 2001). The ability of these models to provide such important and useful 

information on the flows they characterize adds to their utility and, together with their 

parametric parsimony, enhances their credibility and makes them very attractive in 

catchment rainfall-runoff modelling. 
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In this chapter, monthly riverflows in selected catchments in the Volta Basin 

are modeled using a HMC rainfall-runoff modelling framework. This involves the use 

of the Fixed Interval Smoothing, FIS, algorithm (Young 1984, 88, 89) to estimate the 

parameters of a linear time-varying, state-dependent parameter (LTV-SDP) transfer 

function relating monthly catchment runoff to rainfall. The aim of the study is to obtain 

models that explain the observed data very well and in addition provide plausible 

decomposition of the runoffs in the basin into various parallel component (fast and slow 

or delayed) flows. The study also seeks to establish the relationship between catchment 

wetness index (computed from rainfall and potential evaportranspiration, ETP) and 

effective rainfall in the basin. This relationship would be useful in the estimation of the 

runoff series for ungaged catchments in the basin with measured rainfall and 

temperature or computed ETP. 

In the rainfall-runoff modelling presented in this chapter, only linear

recursive causal filters will be considered, with the use of time varying, state-

dependent coefficients to characterize any nonlinearities in the rainfall-runoff 

transformation. The  nonlinear rainfall-runoff modelling framework is developed in two 

steps. In the first step, a nonlinear transformation of catchment rainfall to effective 

rainfall using a linear time-varying (LTV) filter with state-dependent parameters is 

established. A linear time-invariant (LTI) relationship between effective rainfall and 

river runoff is then determined in the second step. Figure 6.1(a) illustrates the two-step 

rainfall-runoff modelling process. 

Of particular interest is the plausibility of the modeled runoff being 

decomposed into two parallel components, i.e., slow or delayed and fast flows (Figure 

6.1(b)). The slow flow would represent the sum of subsurface flow and baseflow  or 

delayed flow in general, while the fast flow would be from surface flow and interflow 

(direct runoff). 

6.2.1 Difference equation representation of the rainfall-runoff linear filter 

The difference equation is one of the time domain linear filter formulas used in 

computing an output sample of a signal, such as runoff, at time t based on past and 

present input samples of the input signal (rainfall) and past output samples. The general 
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LTV difference equation (explicit finite difference scheme) for runoff at any sampling 

point t is given as follows: 

t 1 t t-1 2 t t-2 n t t-n 0 t t -d 1 t t-d -1 1 m t-d -my = - a y - a y - . . .- a y +b r +b r +. . .+b t  (6.1a) 

where

yt = river runoff at sampling instant t, 

rt = rainfall at sampling instant t, 

a1t, a2t, …, ant are feedback, and b0t, b1t, …, bmt are feedforward, time varying, real 

coefficients. 

d sampling intervals = pure time delay in the rainfall input. 

Equation 6.1a is a causal recursive LTV real digital filter. 

(a)

     

      

(b)

Figure 6.1 The rainfall-runoff transformation   

(a) Rainfall (rt)         Effective Rainfall (ut)       Total Runoff (yt)

transformations 
(b) Effective Rainfall transformations to two parallel flow components – 

Fast flow (yft) and Slow flow (yst) components 
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6.2.2 Transfer function representation of the rainfall-runoff linear time-

varying (LTV) filter

If z-1 is the backward shift operator such that z-irt = rt-i, then Equation 6.1a can be re-

written as: 

- 1 - 2 - n - 1 -m

t 1 t t 2 t t n t t 0 t t-d 1 t t-d mt t-dy = - a z y - a z y - . . .- a z y +b r +b z r +. . .+b z t  (6.1b) 

-1 -2 - n -1 - m

t 1 t 2 t n t t 0 t 1 t m t t-dy + a z +a z +. . .+a z y = b +b z +. . .+b z r   (6.1c) 

-1 -1

t t t t-dA z y = B z r           (6.1d) 

-1

t

t t-d-1

t

B z
y = r

A z
                       (6.1e) 

where

1 1 2 n

t 1t 2t ntA z 1 a z a z ... a z

1 1 m

t 0t 1t mtB z b b z ... b z

Equation 6.1e is the Linear Time Varying (LTV) transfer function (with time variable 

parameters, TVP) representation of the rainfall-runoff digital filter. The ratio 

1

t 1

t1

t

B z
h z

A z
 is the time dependent transfer function. Stochasticity can be 

introduced into the deterministic or process model represented in Equation 6.1e by 

adding a noise term to it so that the general stochastic LTV transfer function model is 

then given as: 

-1

t

t t -d t-1

t

B z
y = r +

A z
     (6.2a) 

or

-1 -m

0t 1t mt
t t-d t-1 -2 -n

1t 2t nt

b +b z +...+b z
y = r +

1+a z +a z +...+a z
   (6.2b) 
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where t is a noise term that is the source of stochasticity in the runoff. The vector [n m 

d] is used as a short hand representation of the process part of the model in Equation 6.2 

with n feedback, m feedforward coefficients and d samples time delay. 

The model given in Equation 6.2 is used as the model describing the overall 

behavior of the rainfall-flow dynamics in the presentation given here. It is first used to 

determine effective rainfall in relation to the input or output series (the nonlinear part of 

the analysis). When the form of the effective rainfall is determined, the time invariant 

form of Equation 6.2 is then used to model the effective rainfall-runoff transformation 

(the linear part of the analysis). The time invariant form is given as: 

-

t t -d t-1

B z
y = u +

A z
    6.3a) 

or

-1 -m

0 1 m
t t-d t-1 -2 -n

1 2 n

b +b z +...+b z
y = u +

1+a z +a z +...+a z
   (6.3b) 

where ut is effective rainfall at sample t and 

-1

-1

-1

B z
= h z

A z
 the Linear Time Invariant 

(LTI) transfer function. Note that, for example, equations 6.3a and 6.3b can  be 

expressed equivalently as: 

-d

t t t-1

B z
y = u +

A z
    (6.3c) 

or

-d -1-d -m-d

0 1 m
t t t-1 -2 -n

1 2 n

b z +b z +...+b z
y = u +

1+a z +a z +...+a z
   (6.3d) 

with B now a function of z-d and the delay removed from ut.

In general, when the poles (roots of the denominator polynomial) of Equation 

6.3.a are real then the system can always be interpreted unambiguously as a series 
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and/or parallel connection of first- and second-order sub-systems (Young, 1992). So, for 

example, the LTI transfer function models 

-1 -d

0 1

t t-1 -2

1 2

b +b z z
y = u

1+a z +a z
 (6.4a) 

and   

-2d

0
t t-1 -2

1 2

b z
y = u

1+a z +a z
 (6.4b) 

can be decomposed into parallel and serial connections, respectively, of first-order sub-

systems as shown in Figure 6.2. 
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' " ' " ' " " ' ' "

1 2 0 1a +a  = a ,  a a = a ,  b +b  = b  and a b +a b  = b  

     

   

   

Figure 6.2. Decomposition of second order transfer functions

6.3 The HMC modelling framework 

The HMC modelling framework used is based on linear time-varying, state-dependent 

parameter (LTV-SDP) transfer function modelling. The state dependency of the 

parameters allows them to vary in such a manner as to adequately account for the 
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nonlinearity in the rainfall-effective rainfall transformation. The procedure for this 

modelling framework is summarized below based on the outline for a Single-Input-

Single-Output (SISO) system in Young and Beven (1994). 

1. Start from a linear time invariant (LTI) transfer function relating the output 

variable yt (e.g., catchment monthly runoff) to the primary input variable rt (e.g., 

catchment monthly rainfall). Use this LTI model and the input-output series to 

determine [na nb d] of the simplest model that fits the data relatively well (na = 

number of feedback coefficients; nb = number of feedforward coefficients and d 

the time delay in the input). The model selection can be achieved by employing 

a combination of model order identification criteria such as the Akaike 

Information Criterion (AIC; Akaike, 1974), the Young Information Criterion 

(YIC; Young, 1989) and the coefficient of determination, 2

TR  (Nash-Sutcliffe 

Efficiency, NSE (Nash and Sutcliffe, 1970) in hydrology). This avoids over-

parameterization of the LTV-SDP model to be fitted in the next step. 

2. Proceed to a LTV-SDP transfer function relating yt to rt with the same order as 

identified in step 1 above using the relationship defined in Equation 6.2 and 

repeated in Equation 6.5 below: 

.r
za...za1

zb...zbb
r

zA

zB
y tdtn

nt

1

1t

m

mt

1

1t0t
tt1

t

1

t
t (6.5)

t = 1, 2, …,N 

where

N is the number of samples in the output-input series, 

a1t, …,ant, b0t, b1t,…,bmt are n+m+1 are time-varying state-dependent 

parameters (TV-SDPs) that vary in such a manner as to account for the non-

linearities and/or non-stationarities in the observed series. 

z-1 is the backward shift operator, i.e., z-irt = rt-i

t is a noise term that is statistically independent of the input variable rt

d is the input delay, measured in sampling intervals.  
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3. Apply the Fixed Interval Smoothing (FIS) method of recursive estimation  to the 

alternative vector form of Equation 6.5, given in Equation 6.6 below, to estimate 

the state dependent parameters of the LTV transfer function. 

tt

T

tt eazy , 2

t ,0N~e  (6.6) 

   

where:

mdtdtdtnttt

T

t rrryyy .......z 121 ,   1 by np vector,

np = n+m+1, 

T

mtttntttt bbbaaa ........a 1021 ,      np by 1 vector, 

et is a stochastic noise vector with variance 2, is statistically independent of the 

input variable rt  and is related to t in equation 6.3 by t1

t

t e
zA

1
.

(….)T refers to the transpose of the vector. 

When applied to equation 6.6, the FIS algorithm yields Nt /

^

a , an estimate of ta at 

each sampling point t based on all N samples of the observed series. Also 

provided at each sampling point of the input-output series is an estimate of the 

covariance of the estimated parameters, 

T
~

t/N

~

t/N

*

t/N aaEP ,  also based on 

the N samples with t/N

^

tt/N

~

aaa , the estimation error (actual-estimated 

values).

4. Identify the elements of Nt /

^

a  that vary significantly over time (usually by visual 

means, from graphical plots of the elements of Nt /

^

a  vs. time). Then, while 

constraining all other parameters to constants, re-estimate Nt /

^

a  from the FIS 

algorithm and the input-output series. 

5. Determine which of the variables in the vector z of Equation 6.6 is significantly 

related to the significantly varying state dependent parameters identified in step 

4 above. This can be done through scatter plots and other correlation analyses. 

Then establish a functional relationship between these variables and the 
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significantly varying parameters by means of a weighted least squares 

estimation with weights given by the reciprocals of the estimated variances of 

the parameters, i.e., the reciprocals of the diagonal terms in *

t/NP  for the 

significantly varying parameters.  

6. Replace the input variable with the new variable, ut,, obtained through the 

functions determined in step 5. It should then be possible to fit a final LTI 

model, with constant parameters, to the output variable yt,, the new primary 

input variable ut and any other identified secondary input variables. In rainfall-

runoff modelling, ut is effective rainfall and potential evapotranspiration or 

temperature is secondary input. 

6.4 Fixed interval smoothing (FIS) method of parameter estimation of LTV-

SDP models 

Parameters used in the characterization of the input-output relationship of highly non-

linear systems, such as the runoff generating process from rainfall, need to vary rapidly 

with time in order to adequately characterize the systems. They are, therefore, better 

estimated in a SDP setting, as the state dependency allows the necessary rapid temporal 

parametric changes commensurate with the variation in the system variables. The 

recursive fixed-interval smoothing (FIS) algorithm, combined with special data re-

ordering and `back-fitting’ procedures, has been widely used in non-linear systems 

identification, including catchment rainfall-runoff modelling, to obtain estimates of state 

dependent parameter variations (Young, 1984, 1988, 1989, 1993; Young and Beven, 

1994; Young and Pedregal, 1998, Young et al., 1999; Young et al., 2001).  As a time 

series of observed data of fixed length or interval is also available, the estimation of the 

parameters can be undertaken in two directions, i.e., forward pass filtering using the 

versatile Kalman filter algorithm (Kalman, 1960) and backward pass smoothing 

(Bryson and Ho, 1969) using the optimal fixed interval smoothing method (Young, 

1999; Young and Beven, 1994). Non-parametric methods, including graphical methods, 

are then employed to establish the relationship between the estimated SDPs and the 

associated state or observed variable(s). The FIS algorithm was used in this study to 

estimate the significantly varying parameters of the LTV-SDP model presented in 

Equation 6.6. The relationship of these parameters with the rainfall and runoff series 
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was then examined, and the series with a significant relationship identified. An 

appropriate function relating this series to the estimated time varying parameters was 

then established and used with the rainfall series to estimate the effective rainfall series. 

An outline of the SDP estimation procedure exploiting the powerful FIS algorithm is 

given below (details in the references cited above). 

Consider the vector form of the Single-Input-Single–Output (SISO) LTV-SDP 

transfer function given in Equation 6.6 above. Each of the time variable parameters, i.e., 

each of the np elements of ta , ai,t, may be represented by a two-dimensional state vector 

T

i,t i ,t i ,tl sx , where li,t and si,t are respectively the changing level (magnitude) and 

slope of the associated TV-SDP. The stochastic evolution of each ti,x  can be described 

by the following Generalized Random Walk (GRW) process 

i ,t i i ,t -1 i i ,tx = F x +G   i = 1, 2, …, np      (6.7) 

where:

0
Fi ,

10

0
Gi

, ,  and  are hyper parameters that have to be estimated first from the observed data 

before the TVPs can be computed, and i,t is a noise vector. Special cases of the GRW 

are the Integrated Random Walk, IRW (  =  =  =1;  = 0) and the scalar Random 

Walk, RW ((  =  =  = 0;  =1).

By combining equations 6.6 and 6.7, the following state-space equations are 

obtained:

Observation equation: tttt exHy  (6.8ai) 

State equation t1tt GFxx  (6.8aii) 

where

TT

tnp,

T

t2,

T

t1,t x...xxx   (6.8b) 
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F is a 2np × 2np block diagonal matrix with blocks defined by the Fi matrices in 

Equation 6.7; G is a 2np × 2np block diagonal matrix with blocks defined by the 

corresponding subsystem matrices Gi in Equation 6.7; and t is a 2np-dimensional 

vector containing the white noise input vectors i,t in the equation. The white noise 

inputs provide the stochastic stimulus for parametric change in the model and are 

assumed to be independent of the observation noise et. Ht is a 1 × 2np vector of the 

following form: 

 Ht = [ yt 1  0   yt 2  0 . . .  yt n  0  ut d  0 . . . ut d m  0]   (6.8c) 

Note that the number of parameters associated with y is n and that associated with u is 

m+1, so that the total number of parameters is np = n+m+1.  Thus Ht in Equation 6.8c is 

a vector with 2np elements (number of zeroes is np). 

The FIS algorithm, in relation to the series yt of fixed interval N samples, i.e.,  

t = 1, 2, …, N, is given as: 

1. Forward pass recursive filtering equations (from beginning of sample set to 

end)

Prediction:

1t

^

1t|t

^

xFx   (6.9ai) 

 Pt|t 1 = FPt 1F
T

+ GQrG
T (6.9aii) 

Correction:

1t|tt

1T

t1t|tt

T

t1t|t1t|t

^

t

^

HyHPH1HPxx  (6.9aiii) 

1t|tt

1T

t1t|tt

T

t1t|t1t|tt PHHPH1HPPP  (6.9aiv) 

2. Backward pass smoothing equations (from end of the sample set to 

beginning)

t

T

rN|1t

1
N|t

^

LGGQxFx  (6.9bi) 
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1t

^

1t1t

T

1t1t

TT

t

T

1t1tt xHyHLFHHPIL , LN = 0  (6.9bii) 

tttttNttt

T

ttNt FPPPPPFPPP 1

|1|1|1

1

|1|   (6.9biii) 

In the above algorithms, 
2

Q
Qr  and  

2

*

t
t

P
P . Qr is called the Noise Variance Ratio 

(NVR) matrix, Q , a 2np x 2np matrix (usually assumed diagonal), is the covariance of 

the white noise input t, and *

tP  is the error covariance matrix associated with the state 

estimates. If et is a discrete white noise, then *

tP  would be an accurate estimate of the 

covariance of the estimated TV-SDPs and thereby be an accurate representation of the 

estimated uncertainty in the parameters. 

The NVR matrix Qr is unknown prior to the FIS analysis, and so it and all 

unknown hyper-parameters in the state space model represented in equation 6.8 have to 

be estimated from the time series data yt and rt through appropriate optimization 

procedures before the FIS algorithms can be used. 

6.5 Application of the modelling framework to rainfall-runoff series in the 

Volta Basin 

For each river catchment studied, the LTV-SDP modelling framework as outlined above 

was applied first to the rainfall and runoff series of the data sets to determine effective 

rainfall as specified in steps 1-5 in the framework. The ETP series was added later as 

secondary input, after fitting to the effective rainfall series, to estimate the final LTI 

model. Model order identification was undertaken by examining the AIC, YIC and NSE 

order selection criteria together. The best models were those with low AIC, very 

negative YIC and high NSE. For the final LTI model identification, the model that, in 

addition to satisfying the above criteria, also provided a decomposition of the modeled 

flow into plausible fast and slow parallel component flows was chosen. Obvious 

feasible models, considering the last criterion, would include those with [na nb d] = [1 2 

d], [2 2 d], [2 3 d] and [3 2 d]. If the poles (roots of the denominator polynomial) of the 

respective transfer functions are real, these models (with any identified d) provide 

decomposition of the flow into a bypass and 1 linear store, 2 linear stores in parallel, a 
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bypass and 2 linear stores in parallel and a linear store in parallel with 2 others in series, 

respectively. The time constants or residence times of the identified stores and the 

steady state gains were also computed.  

If, for example, an identified [2 2 0] model given as: 

tt2

2

1

1

1

10
t u

zaza1

zbb
y    (6.10a) 

has real poles, then yt can be unambiguously decomposed into the following parallel 

forms: 

t1t1t u
z'a'1

'b'
u

za'1

b'
y   (6.10b) 

where:

1"' aaa , 2"' aaa , 0"' bbb  and 1"''" bbaba

since from the above,  '/" 2 aaa  so that 12 '/' aaaa , then

0'' 21

2
aaaa  (6.10c) 

The solution (real, as the poles of the TF are assumed real) to the quadratic Equation 

6.10c provides the values of 'a and "a .

The steady state gains (SSGs) in Equation 6.10b are 
'a1

'b
1SSG  and 

"a1

"b
2SSG , while the time constants (TCs) are given as TC1 = - t/log(- 'a ) and  TC2 

= - t/log(- "a ) where t is the time step. Obviously, both 'b  and "b  should be positive, 

while 'a  and "a  are both negative for the steady state gains and time constants to have 

physical meaning. The percentage of the total flow occurring in each pathway following 

such decompositions was obtained from the steady state gains. 

Relevant functions in the CAPTAIN toolbox (Young et. al., 2004) for Matlab 

(Mathworks, 2002) were used for all model identification and for both LTV-SDP and 
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constant parameter estimations. The following forms of the model selection criteria 

were used with the YIC form taken from Beven and Young, 1994.  

2

y

2

e1100NSE   (6.11) 

NEVNloglogYIC e2

y

2

e
e   (6.12a)  

^
2

i

^

ii

2

a

a

p.

np

1
NEVN .  (6.12b) 

N

2np
logVAIC(np)  (6.13) 

where:

2

e  is the variance of the model residual; 2

y  the variance of the observed output series, 

yt; np = m+n+1 is the number of estimated parameters in the Nt /

^

a  vector; 
^

iip  is the ith

diagonal element of the *

t/NP   covariance matrix obtained in the FIS analysis ( 2

e

^

iip

being an estimate of the variance of the estimated uncertainty on the ith parameter 

estimate);  ia  the ith parameter estimate in the Nt /

^

a  vector and V is the sum of squares 

of the model residuals. 

The NSE evaluates a model based on how well it explains the data, so that the 

closer this value is to 100% the better the model; the AIC selects the one that explains 

the data well and is parsimonious in the number of its parameters. The lower the value 

of the AIC the better the model. The YIC also selects models that explain the data well 

but penalizes them for large uncertainties in parameter estimates; the more negative the 

YIC, the better.

The set of rainfall, ETP and runoff series for a catchment was split into two 

different sets - estimation and validation series. The estimation series was used in the 

FIS analysis, the determination of effective rainfall and the estimation of the parameters 
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in the final LTI model.  When effective rainfall was found to be a function of the 

observed runoff, the following form of the parametric non-linear rainfall filter used in 

various formulations of the IHACRES  application (Jakeman et al., 1990; Jakeman and 

Hornberger, 1993; Jakeman et al., 1993) was fitted with the effective rainfall obtained 

in the estimation mode and used to model effective rainfall in the validation mode (as 

the runoff series is then assumed to be unknown). 

t

B

tt rSu  (6.14a) 

)s0.5(sS 1ttt   (6.14b) 

1

1
1 t

t

tt sgrs   (6.14c) 

tm ETPETPf

wt e  (6.14d)  

Here B (> 0) is a free parameter to be estimated; st is a catchment wetness index; g is a 

scaling parameter that constraints st to have values between 0 and 1 and is also to be 

estimated from the data;  w is catchment drying time constant at a reference ETP, 

ETPm;  f is a parameter that controls the sensitivity of the catchment drying time 

constant, t , to ETPt, the ETP at sampling instant t. For all the catchments studied, the 

initial catchment index, s0, was fixed at 0, w at 1 and ETPm at 240 mm, close to the 

maximum ETP for the catchments studied. Since equation 6.14 was used during model 

validation when ut was estimated as f(yt).rt in calibration mode, this estimate of ut was 

used to fit the model in the equation and to estimate the parameters ,  f and g.

6.6 Results and discussion 

The results from each stage of the modelling process are presented and discussed for 

one catchment only, since similar discussions would also apply to the other catchments. 

However, where appropriate, selected results for all the catchments studied are 

presented and discussed.

The first 4 columns of Table 6.1 show the top five (based on YIC) models 

identified for the catchment in the model order identification for use in the LTV 

modelling. The simplest, which has a low YIC, relatively high NSE and both a and b 
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parameters (ie, neither n nor m is zero), is [1 1 1]. A similar result was obtained for the 

rest of the catchments with selected orders being [1 1 1] or [1 1 0] in some cases. Thus, 

only two time-variable parameters, one associated with runoff (the a parameter) and the 

other with rainfall (b parameter) were estimated in each case from the FIS algorithm. 

Figure 6.1a is a plot of the estimated values of these parameters, with the dotted lines 

representing the values 2 times their estimated standard errors, for Bamboi. Clearly, 

the a parameter varies much less than the b parameter, so it was maintained constant for 

the next application of the FIS algorithm. The final estimates are shown in Figure 6.1b 

with the a parameter now constant and the b parameter being state dependent. The last 

two columns of Table 6.1 show the NSE for the LTV model fit with parameter a being 

state dependent (i.e., varying with time) in the first column and with a remaining 

constant in the second for the model [1 1 1] used in the estimation. These NSE values 

indicate that the FIS algorithm was successful in identifying the necessary variation in 

the b parameter to enable the model to represent the flow process accurately. Similar 

results were obtained for the rest of the catchments.  

In all cases, the state-dependent b parameter was found to be correlated with 

runoff and not with rainfall. Figure 6.2 is a plot of the parameter and 2 times its 

standard error against monthly runoff, for Bamboi. The data have been sorted in order 

of runoff. The weighted least squares power fit, with an NSE of 96.61%, is also shown 

on the graph.  The weighted least squares linear fit (not shown on the graph) was 

obtained with a NSE of 95.93%. In each case, the weights used were the reciprocals of 

the estimated variances of the b parameter at each sampling instant. The slightly better 

fit power law relationship was found to be the case for the other catchments. The fitted 

parameters of the functional relationship bt = yt , between the state dependent b 

parameter and monthly runoff, for all the catchments studied are given in Table 6.2. The 

very high NSE values for all catchments indicate that a good estimate of the effective 

rainfall for these catchments can be obtained as ut = crtyt , the value of c selected such 

that total effective rainfall equals total runoff for the calibration period for each case. 

Thus, a surrogate (catchment runoff) replaces the catchment wetness index (such as 

given in Equation 6.14) that is used to define a rainfall filter for the estimation of 

effective rainfall in the IHACRES type models.  
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Table 6.1.  Top 5 models from LTI model selection for LTV-SDP modelling for 
Bamboi on the Black Volta River (ordered by YIC for estimation series 
NSE of at least 65%; LTV-SDP NSEs are for selected model [1 1 1] used 
in the LTV-SDP analysis) 

LTV-SDP NSE (%) Model

Order

[m n d] 

YIC AIC NSE (%) 

(LTI)
Varying a Constant a 

[1 1 1] 

[1 2 0] 
[2 3 0] 
[3 2 0] 
[2 1 1] 

-4.49

-3.25
-2.98
-1.72
-0.49

3.0754

2.9325
2.9557
2.9262
3.0883

65.29

70.27
70.28
71.15
65.25

98.35

-

-

-

-

99.17

-

-

-

-

The non-linear rainfall filter defined in Equation 6.14 was then fitted to the ut

(of the calibration series) as defined above for each catchment in order to use the 

validation series in the selection of a final model for each basin. The estimated values of 

the B, f and g parameters used in Equation 6.14 are shown in Table 6.3 together with 

the NSE values for both the estimation and validation series. The NSE values show 

good fits between the estimated and predicted effective rainfall for all the catchments, 

and so the non-linear rainfall filters defined in Equation 6.14 with these parameters can 

be used to model the effective rainfall in the validation mode for the catchments.  

The top 5 (based on YIC and for NSE > 90%) LTI models identified from the 

yt and ut calibration series for Bamboi are presented in Table 6.4. The validation NSE 

values confirm that these models represent the observed data very well and can all be 

used for the prediction of monthly runoff in the catchment. However, the second and 

third models ( [2 1 0] and [3 1 0] ) are respectively equivalent to 2 and 3 stores in series. 

They, therefore, do not decompose into parallel flow pathways like the other 4 models, 

and so are excluded from the feasible model set – the feasible set thus consisting of the 

remaining 4 models. The feasible models, their parameter estimates and the estimated 

standard errors of the parameters (in brackets) are presented in Table 6.5.   
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Figure 6.1 FIS estimated a and b parameters for Bamboi, Black Volta River 
(i) Both a and b state dependent    
(ii) Only b state dependent 

Figure 6.2 FIS estimates of the b parameter vs. monthly runoff for Bamboi, Black 
Volta River 
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Table 6.2 Parameter estimates from the weighted least squares power fit of 
monthly runoff to the FIS estimated b parameter, i.e., b = y  (WVB = 
White Volta Basin; OB = Oti Basin)  

Gauging station, river Catchment

area (km
2
)

NSE(%) 

Lawra, Black Volta

Dapola , Black Volta

Bui, Black Volta  

Bamboi, Black Volta  

Yagaba, Kulpawn (WVB) 

Nabogo, Nabogo (WVB) 

Porga, Oti  

Mango, Oti 

Koumangou, Koumangou 

(OB) 

Sabari, Oti 

96,000

96,437

111,853

134,200

9,100

3,040

27,197

36,287

6,070

72,775

0.005861

0.006015

0.007344

0.007947

0.009160

0.008365

0.011929

0.011449

0.010534

0.010916

0.7989

0.7817

0.7892

0.7831

0.8034

0.8178

0.6654

0.7126

0.7919

0.7589

94.73

94.27

96.47

98.35

96.25

95.85

97.56

98.21

94.73

96.37

Table 6.3 Non-linear rainfall filter parameter estimates  

NSE (%) Gauging

station

B f g 

Estimation 

series

Validation

series

Lawra

Dapola

Bui 

Bamboi  

Yagaba

Nabogo

Porga, Oti  

Mango, Oti 

Koumangou 

Sabarii

1.7817

1.7537

2.7061

2.0266

3.3657

3.6898

2.0714

2.6275

2.4808

2.8641

0.027198

0.016005

0.012476

0.020744

0.006191

0.006506

0.010491

0.010022

0.007356

0.007680

0.0004091

0.0004895

0.0010461

0.0005847

0.0018730

0.0018538

0.0008728

0.0011999

0.0015325

0.0013608

87.87

89.28

83.62

85.90

89.25

91.91

95.48

95.14

92.86

96.89

88.80

84.63

92.37

90.09

88.59

87.49

91.86

92.76

92.45

93.60
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Table 6.4 Identified linear time invariant (LTI) process models of the effective 
rainfall-runoff transformation for Bamboi on the Black Volta River  
(Est. = Estimation, Val. = Validation) 

AIC NSE Model

[n m d] 

YIC

(Est.

series) 

Est.

series

Val.

series

Est.

series

Val.

series

[0 2 0] 

[3 1 0] 

[2 1 0] 

[2 2 0] 

[2 3 0] 

[1 2 0] 

-8.5376

-5.9225

-5.8726

-4.6218

-4.5306

-3.4967

6.2675

6.4886

6.7170

6.1723

6.1031

6.2686

6.4594

6.4041

6.4373

6.4704

6.4628

6.4653

95.24

93.91

92.23

95.60

95.88

95.21

88.54

89.20

88.69

88.55

88.71

88.57

A parallel decomposition of the models is shown in Table 6.6. Clearly the last 

two models are unacceptable on physical grounds – the [2 2 0] model has a negative b” 

value (and hence a negative steady state gain) while the positive a” value of the [2 3 0] 

structure results in a complex valued time constant. The models that best describe the 

flow process in the catchment and have sound parallel decomposition are, therefore, the 

[0 2 0] and [1 2 0] models. They decompose as follows: 

[0 2 0] 1t

"

t

'

t ububy  (6.15a) 

[1 2 0] 1t1"

"

t

'

t u
za1

b
uby  (6.15b) 
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Table 6.5 Estimated parameters of the feasible LTI model set for Bamboi on the 

Black Volta River (estimated standard errors of parameters in brackets) 

Estimated parameters Model

[n m d] a1 a2 b0 b1 b2

[0 2 0] 

[1 2 0] 

[2 2 0] 

[2 3 0] 

-

-0.0522

(0.0323)

0.1443

(0.0568)

-0.4601

(0.1531)

-

-

-0.1310

(0.0326)

-0.1213

(0.0339)

0.3273

(0.0184)

0.3381

(0.0195)

0.3301

(0.0186)

0.3300

(0.0181)

0.60054

(0.0184)

0.5521

(0.0356)

0.6478

(0.0379)

0.4541

(0.0592)

-

-

-

-0.3638

(0.0838)

Table 6.6 Parallel decomposition of flow for the feasible LTI model set for Bamboi 
on the Black Volta River 

Runoff Decomposition into Parallel Flows 

Instantaneous 

Flow 

Fast Flow  

(Store 1) 

Slow Flow  

(Store 2) 

Model

[n m d] 

b` a`` b`` a``` b``` 

[0 2 0] 

[1 2 0] 

[2 2 0] 

[2 3 0] 

0.3273

0.3381

-

0.3301

-

-0.0522

0.4412

0.1874

0.6005

0.5698

-0.6803

0.5238

-

-

-0.2969

-0.6475

-

-

1.0104

0.0822
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For model [0 2 0], Equation 6.15a shows that the total runoff is a sum of 

fractions of the current effective rainfall and that of the previous month. While the 

model is attractive because of the relatively low uncertainty in its parameter estimates, 

its drawback is the absence of the a parameter, i.e., no contribution of subsurface flow 

to the total catchment runoff is being captured. On the other hand, the [1 2 0] model 

decomposition of the flow into a fast bypass (within the month) and slow flow through a 

linear storage (Equation 6.15b) appears more plausible for the basin. The bypass would 

include flow resulting from rainfall falling directly in the channel, flows from saturated 

flood plains of the river and those from other saturated areas close enough to the outlet 

of the catchment as to be available within the month. However, the small value of the a 

parameter coupled with its rather high uncertainty means that very little baseflow is 

being accounted for and that this model may well be a [0 2 0] model.  

For some of the catchments, only the [0 2 0] model was found to provide a 

plausible parallel decomposition of the flow and so was selected as the best model for 

those cases. Table 6.7 shows the estimated parameters and the NSEs for both estimation 

and validation series obtained from the best models fits for the selected catchments. The 

plots of the observed and predicted monthly runoff from the LTI models relating 

effective rainfall to runoff (without a noise term) for the catchments are shown in 

figures 6.3 – 6.12 for both estimation and validation series. Both table and plots show 

the very good fits of these process models to the observed data. However, in a few cases 

such as Dapola (Figure 6.3),  Nabogo (Figure 6.8) and Mango (Figure 6.10), some of 

the peak flows have not been well predicted. The plots also show that for the case of the 

Black Volta River in particular, a part of the recession flow has not been fully captured 

in the selected models. These discrepancies might be a result of tradeoffs from choosing 

models that explain the data fairly well and also provide some physical interpretation of 

the results (grey box models) over those that fit the data extremely well but offer no 

plausible interpretation of the flow process (black box models). Also, the reliance of the 

modelling framework on effective rainfall means flows during periods of no rainfall 

(recession flows) are likely not to be completely represented (Mwakalila, et. al., 2001). 
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Table 6.7 Estimated parameters of the best LTI model for selected catchments 
(estimated standard errors of parameters in brackets; Est. = Estimation 
Series, Val. = Validation Series) 

Estimated

Parameters 

  NSE (%) Gauging

Station

a1 b0 b1 Est. Val. 

Lawra

Dapola

Bui 

Bamboi 

Yagaba

Nabogo

Porga

Mango

Koumangou 

Sabari

-0.2442(0.0340)

-0.2791(0.0225)

-

-0.0522(0.0323)

-0.1614(0.0757)

-

-0.0259(0.0237)

-

-0.0838(0.0535)

-

0.3962(0.0191)

0.4214(0.0127)

0.4067(0.0203)

0.3381(0.0195)

0.7918(0.0180)

0.7857(0.0243)

0.4057(0.0143)

0.5247(0.0149)

0.6654(0.0185)

0.6265(0.0195)

0.3289(0.0354)

0.2819(0.0242)

0.5478(0.0203)

0.5521(0.0356)

0.0773(0.0759)

0.2487(0.0243)

0.5786(0.0256)

0.5192(0.0149)

0.2667(0.0525)

0.4107(0.0195)

93.09

93.45

96.26

95.22

97.02

95.49

95.89

96.61

96.78

97.20

84.46

65.36

90.94

88.57

78.04

83.73

82.26

89.81

86.58

91.14

Table 6.8 lists the steady state gains for the best model for all the selected 

catchments. The table shows that, in general, the fast flow component is smaller than 

the slow one for the large catchments (in the Black Volta Basin) but is larger for the 

smaller catchments (White Volta and Oti Basins), Porga on the Oti River being an 

exception. As can be seen for the model [1 2 0] in the table, the time constants are very 

small, implying no significant baseflow contribution to streamflow. 

No significant improvement in model fit was observed with the inclusion of 

the ETPt series for the catchments. This may be because the use of the catchment runoff 

as a surrogate for the catchment wetness index in the estimation of effective rainfall was 

adequate to also account for the seasonal evaporative effects.  Therefore, all model 

parameters were estimated with the runoff and the primary input, effective rainfall, 

series only.
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Figure 6.3 Observed and predicted monthly runoff for Lawra, Black Volta River 
 LTI model [n m d] = [1 2 0]  

Figure 6.4 Observed and predicted monthly runoff for Dapola, Black Volta River 
 LTI model [n m d] = [1 2 0] 
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Figure 6.5 Observed and predicted monthly runoff for Bui, Black Volta River 
 LTI model [n m d] = [0 2 0]  

Figure 6.6 Observed and predicted monthly runoff for Bamboi, Black Volta River 
 LTI model [n m d] = [1 2 0] 
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Figure 6.7 Observed and predicted monthly runoff for Yagaba, Kulpawn River 
(White Volta Basin) LTI model [n m d] = [1 2 0]  

Figure 6.8 Observed and predicted monthly runoff for Nabogo, Nabogo River 
(White Volta Basin) LTI model [n m d] = [0 2 0]  
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Figure 6.9 Observed and predicted monthly runoff for Porga, Oti River
LTI model  [n m d] = [1 2 0]  

Figure 6.10 Observed and predicted monthly runoff for Mango, Oti River
LTI model  [n m d] = [0 2 0]  
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Figure 6.11 Observed and predicted monthly runoff for Koumangou, Koumangou 
River (Oti Basin) LTI model  [n m d] = [1 2 0]  

Figure 6.12 Observed and predicted monthly runoff for Sabari, Oti River
LTI model  [n m d] = [0 2 0]  
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Table 6.8 Steady state gains (SSG), percent of total monthly flow (% flow) and 
time constants (TC) of parallel flow components for the best model for 
each of the selected catchments. 

Flow Type 

Fast  Slow  

Gauging

Station

Best

Model

SSG % Flow SSG % Flow TC 

(days)

Lawra

Dapola

Bui  

Bamboi  

Yagaba

Nabogo

Porga

Mango

Koumangou  

Sabari

[1 2 0] 

[1 2 0] 

[0 2 0] 

[1 2 0] 

[1 2 0] 

[0 2 0] 

[1 2 0] 

[0 2 0] 

[1 2 0] 

[0 2 0] 

0.3962

0.4214

0.4067

0.3381

0.7918

0.7857

0.4057

0.5249

0.6654

0.6265

41.30

43.20

42.61

36.00

76.40

75.96

40.15

50.26

65.41

60.40

0.5631

0.5541

0.5478

0.6531

0.2446

0.2457

0.6048

0.5192

0.3519

0.4107

58.70

56.80

57.39

64.00

23.60

24.04

59.85

49.74

34.59

39.60

21.28

23.51

-

10.16

16.45

-

8.21

-

12.10

-

6.7 Conclusions and recommendations 

A hybrid metric-conceptual modelling framework was successfully developed and 

applied to monthly runoff and rainfall series for selected river catchments in the Volta 

Basin of West Africa. Monthly runoff was found to be a suitable surrogate for the basin 

wetness index in defining a monthly rainfall filter for the estimation of effective rainfall. 

For simulation without observed runoff, the IHACRES-type definition of catchment 

wetness index for generating effective rainfall was found to be adequate for the 

catchments studied. 

Results of the study show that monthly catchment runoff in the basin can be 

decomposed into parallel flow pathways, and the fitted models represented the river 

flows very well. However, the model form and the information content of the observed 

data appeared not to have fully captured the over-month recession flow for the case of 

the gauging stations on the Black Volta River where plots of the time series of the 

observed runoff seem to indicate that such recession flow exists. On the other hand, it is 

very clear from the results of this study and the observed runoff series for the 



Data-based mechanistic modelling of streamflows 

146

catchments investigated, that over-year (deep groundwater) flow is negligible in the 

basin (the flow drops to zero at the end of each year). This supports the results of the 

autocorrelation function analyses undertaken for the annual runoff series described in 

Chapter 3 in which no significant autocorrelation at any lag was found for the stations. 

This means that at the annual scale, current runoff is independent of any past values.

On the whole, this modelling framework is adequate for monthly river flow 

prediction in the basin given the limitations in the input-output data available in the 

basin in terms of quality, quantity and diversity. It is recommended that the framework 

be applied to daily rainfall, runoff and ETP series to establish it as the main framework 

for riverflow modelling at the two most important temporal scales in the basin. 
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7 SUMMARY AND RESEARCH FINDINGS 

7.1 Introduction 

The 400,000 km2 Volta Basin is an international basin covering almost 28% of Africa’s 

West Coast. It extends from longitude 5o 30 W to 2o 00E and from latitude 5 30o N to 

14o 30 N and is shared by the six West African countries Benin, Togo, Ghana, La Cote 

d’Ivoire, Burkina Faso and Mali. There is great pressure on the land and water resources 

of the basin, due mainly to the poor economies of the riparian countries, rapid 

population growth rates, erratic and uncertain rainfall and increasing demands for water 

for agriculture and hydropower production. The geology of the basin does not favour 

massive groundwater storage and flow, so that this component of the resources has not 

contributed appreciably to water use in the basin except for rural-community water 

supplies. Water resources development in the basin for agriculture, industry and 

hydropower production has thus relied on surface water resources.

No institutional or legal framework currently exists for co-operation between 

the countries in the basin in the use of the water resources. Each country thus undertakes 

the mobilisation of its water requirements without consideration of the other users in the 

basin. The rather haphazard and indiscriminate harvesting and use of the resource have 

resulted in both upstream and downstream problems and are a potential source of 

conflicts both at local (within country) and international levels. Governments and water 

resources managers in the basin, at least at the national level, have recognised this 

potential conflict and the lack of any international mechanisms for consultation and co-

operation between the riparian countries in the use of the water and other natural 

resources of the basin. They have identified the management problems needing priority 

attention, advocated an integrated land and water resources management and pledged 

transboundary co-operation to ensure environmental integrity and sustainable water use. 

Concerned external actors have noted this willingness of the states in the basin 

to co-operate and are lending their support in the form of expertise and funds to ensure 

the maintenance of environmental integrity of the basin. The intervention of agencies 

and organisations such as GEF, UNEP, GCI and CGIAR seeks to develop the necessary 

human and institutional capacity within the riparian countries, develop appropriate legal 

framework and provide the necessary funding for a proper management of the basin’s 
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water and other natural resources. External research institutions such as ZEF (Bonn 

University) are intervening in the scientific research area towards the development of 

both suitable scientifically-based decision support systems and human capacity in the 

basin to facilitate the water and other natural resources management tasks of the people 

and institutions of the riparian states. It is in furtherance of the objectives of the latter 

intervention that this thesis has been produced. It is contributing to the hydrological 

information base of the basin, and the results obtained in this study will hopefully form 

one of the several strands of the envisaged decision support system. 

7.2 Exploratory data analysis 

Exploratory analysis of the monthly catchment rainfall, runoff and potential 

evapotranspiration (ETP) as well as the annual series from the aggregation of the 

monthly series shows that: 

- There is much more variation in monthly runoff than in the corresponding 

rainfall and ETP, suggesting a non-linear relationship between runoff and the 

two inputs. 

- Except for 3 or 4 months of the year, mean monthly ETP far exceeds mean 

monthly rainfall for all months. This implies that groundwater loss in the dry 

season is mainly to evapotranspiration rather than to streamflow as baseflow.  

- Between 70 and 95% of mean monthly runoff in much of the basin occurs in 4 

months of the year. This very skewed temporal distribution of runoff and 

rainfall means, therefore, that run-on-the-river water-use systems require 

hydraulic structures to ensure all year round water availability. 

- There is persistence in catchment monthly runoff. However, annual runoffs 

have no memory. 

- The rainfall-runoff process is largely non-linear. While good linear models can 

be obtained for some of the catchments if large numbers of parameters are 

allowed, it is only non-linear modelling that can bring out the real character of 

the flow process. 
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7.3 Filling gaps in stream flow data 

A large number of gaps exist in the available stream flow data in the basin, particularly 

in the daily flow series. The study has produced a novel method for filling in short gaps 

in daily streamflow series using a combination of spatio-temporal state-space modelling 

with Kalman smoothing and the Expectation-Maximization (EM) algorithm. The very 

good results obtained demonstrate both the ability of the method to adequately predict 

missing daily riverflow series and its power and utility as a tool in hydrological 

modelling in general. 

7.4 Modelling streamflow using NARMAX polynomial models 

NARMAX polynomial models have been shown to be suitable for non-linear modelling 

of input-output systems including environmental systems. In this study, the modelling 

framework produced very good results with much fewer parameters than in the case of 

the linear modelling. This indicates that much of the nonlinearity in the rainfall-runoff 

relationship had been accounted for in this modelling framework. It confirms the 

observation made in the exploratory data analysis phase of this study that the rainfall-

runoff process is better modelled as a non-linear process. The main drawback of 

NARMAX models is their purely black-box nature. 

7.5 Data-based mechanistic modelling of streamflow  

The DBM framework takes advantage of the ability of the purely black-box models, 

such as NARMAX models, to adequately represent the rainfall-flow non-linear process 

parsimoniously. In addition, it seeks to select models from the feasible model set that 

also provide some insight into the flow mechanism. The very good results obtained 

from the application of this modelling framework to rainfall-runoff series establish it as 

the framework of choice for runoff modelling in the basin, particularly in the instances, 

such as here, where the available input-output data are limited in quantity, quality and 

diversity. Its main strength over the NARMAX formulations is its ability to produce 

results that depict parallel processes in the basin as has been found to be the case for 

hydrological processes in general. 

Results from this modelling framework also show that the non-linear 

relationship between the catchment wetness index and effective rainfall, in which the 
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catchment drying time constant is an exponentially weighted function of potential 

evapotranspiration, is suitable for the estimation of effective rainfall from rainfall and 

potential evapotranspiration.

7.6 Recommendations for further research 

The following issues are recommended for further study: 

- The application of the spatio-temporal state-space modelling framework for 

missing flow series infilling should be extended beyond data infilling to areas such 

as adaptive flood forecasting in the Volta Basin. In such an application, forecasts 

of several hours ahead of water levels at a gauging station are made from real time 

measurements of water levels at several upstream gauging stations and previous 

water level measurements at the station of interest.  

- The DBM framework should be applied to daily catchment rainfall, runoff and 

ETP (or temperature) in order to confirm that it is also suitable for runoff 

prediction at this temporal scale. Successful application of the framework at this 

scale would establish it as the model to use, when it is ascertained that it is not 

feasible to use distributed models in a given instance because of lack of requisite 

input-output data. 

- Further research is needed to generalise the parameters B, f and g in the non-linear 

catchment wetness index-effective rainfall relationship of Equation 6.14 for a sub-

basin such as Upper Black Volta or Middle White Volta, in order to be able to 

simulate runoff for ungaged river catchments. Results from the study have shown 

the ability of the model in 6.14 for runoff prediction in the catchments used in the 

study. Since this model does not use observed runoff as a surrogate for catchment 

wetness in the estimation of effective rainfall, it is very suitable for prediction in 

ungaged catchments. 

- Results from the DBM modelling framework should be compared with those from 

distributed models such as WaSiM-ETH in order to determined areas in which 

these models complement each other. This would be appropriate for both daily 

and monthly runoff modelling in the basin and elsewhere and could be very useful 

in the calibration of such distributed models. 
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- Rainfall-runoff and hydrological modelling in general require very good and 

diverse observed input-output data, such as rainfall, temperature, soil moisture and 

runoff. Therefore, it is recommended that a few river catchments in the basin be 

selected and monitored for these input-output data, especially rainfall, runoff and 

temperature (for ETP computations). Continuous monitoring systems (e.g., 

weather stations, water level measuring divers) should be installed in the selected 

catchments to provide at least hourly measurements of the variables of interest. 

This would provide very good quality data with some diversity for testing any 

developed models for the basin thoroughly and adequately. 
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9 APPENDIX 

Figure 9.1i Observed monthly rainfall, runoff and ETP for Banzo, Black Volta River

Figure 9.1ii Observed monthly rainfall, runoff and ETP for Nwokuy, Black Volta 
River  
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Figure 9.1iii Observed monthly rainfall, runoff and ETP for Manimenso, Black Volta 
River  

Figure 9.1iv Observed monthly rainfall, runoff and ETP for Tenado, Black Volta 
River  
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Figure 9.1v Observed monthly rainfall, runoff and ETP for Boromo, Black Volta 
River 

Figure 9.1vi Observed monthly rainfall, runoff and ETP for Debougou, Bourgouriba 
River (Black Volta Basin)  
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Figure 9.1vii Observed monthly rainfall, runoff and ETP for Lawra, Black Volta River

Figure 9.1viii Observed monthly rainfall, runoff and ETP for Dapola, Black Volta 
River  
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Figure 9.1ix Observed monthly rainfall, runoff and ETP for Bui, Black Volta River  

Figure 9.1x Observed monthly rainfall, runoff and ETP for Wiasi, Sisilli River 
(White Volta Basin)  
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Figure 9.1xi Observed monthly rainfall, runoff and ETP for Yagaba, Kulpawn River 
(White Volta Basin) 

Figure 9.1xii Observed monthly rainfall, runoff and ETP for Nasia, Nasia River (White 
Volta Basin)  
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Figure 9.1xiii Observed monthly rainfall, runoff and ETP for Nabogo, Nabogo River 
(White Volta Basin) 

Figure 9.1xiv Observed monthly rainfall, runoff and ETP for Porga, Oti River
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Figure 9.1xv Observed monthly rainfall, runoff and ETP for Mango, Oti River 

Figure 9.1xvi Observed monthly rainfall, runoff and ETP for Koumangou, Koumangou 
River (Oti Basin) 
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Table 9.1i  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Banzo. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 0.0 12.0 34.0 34.0 124.0 110.0 92.0 14.0 1.0 0.0 0.0 1.0

Runoff 0.9 0.9 0.0 0.0 0.9 12.2 7.8 2.6 0.0 0.0 0.0 0.0Minimum 

ETP 212.2 190.9 184.3 155.2 133.9 111.6 119.5 143.2 158.0 168.7 177.7 190.8

Rainfall 85.0 111.0 191.0 171.0 373.0 441.0 302.0 175.0 34.0 25.0 15.0 25.0

Runoff 4.4 17.4 7.0 7.8 39.2 63.6 83.7 26.1 11.3 7.0 5.2 3.5Maximum 

ETP 235.4 213.3 211.4 177.5 155.2 137.6 139.8 182.1 174.9 185.3 196.6 203.7

Rainfall 16.5 51.0 93.8 128.3 224.6 281.7 192.4 62.1 10.3 2.0 1.0 3.8

Runoff 1.9 2.6 2.7 3.8 12.7 31.1 38.8 15.2 5.6 3.4 2.4 2.0Mean

ETP 225.4 202.6 199.2 164.8 144.8 124.3 130.3 163.1 168.2 178.9 188.5 197.2

Rainfall 17.7 19.6 41.9 29.1 56.1 69.2 42.0 36.7 7.7 5.8 3.3 6.7

Runoff 0.9 3.4 1.6 1.8 8.0 13.5 18.5 6.7 3.2 1.7 1.3 1.0Std Dev. 

ETP 5.7 6.0 6.7 6.4 5.6 6.4 5.2 7.6 4.3 4.3 4.8 3.7

Rainfall 1.08 0.38 0.45 0.23 0.25 0.25 0.22 0.59 0.74 2.88 3.12 1.78

Runoff 0.48 1.31 0.58 0.48 0.63 0.43 0.48 0.44 0.57 0.49 0.55 0.52CV

ETP 0.03 0.03 0.03 0.04 0.04 0.05 0.04 0.05 0.03 0.02 0.03 0.02

Table 9.1ii  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Nwokuy. (All values in mm except 
CV = coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 0.5 7.0 38.3 52.5 122.5 145.8 109.0 14.5 1.0 0.0 0.0 0.5

Runoff 0.0 0.0 0.0 0.7 1.1 1.5 3.3 3.5 0.9 0.7 0.2 0.0Minimum 

ETP 213.7 192.7 186.8 153.7 135.7 113.5 121.0 144.4 144.2 157.8 178.3 188.1

Rainfall 75.0 94.3 185.5 174.5 354.0 407.5 291.3 175.8 30.8 21.3 13.0 18.0

Runoff 2.2 1.7 2.4 4.8 7.2 14.8 28.5 39.4 28.5 10.0 5.4 3.1Maximum 

ETP 241.5 217.3 213.5 179.3 160.4 138.3 161.0 184.0 179.6 189.7 197.6 203.6

Rainfall 14.3 43.5 90.9 128.6 209.9 269.2 183.5 56.2 8.5 1.3 0.9 2.5

Runoff 1.2 1.1 1.3 2.1 3.2 7.4 13.4 16.5 13.6 4.4 2.2 1.5Mean

ETP 227.0 205.4 201.1 166.1 146.6 126.8 133.6 165.5 169.7 178.5 188.7 196.5

Rainfall 15.0 19.7 33.4 27.1 52.0 57.3 36.3 32.6 7.7 4.2 2.6 4.2

Runoff 0.7 0.6 0.7 0.8 1.3 2.8 5.5 7.9 8.3 2.8 1.4 0.9Std Dev. 

ETP 6.1 6.4 6.3 6.2 5.8 6.0 7.1 7.8 6.5 6.2 5.1 4.1

Rainfall 1.05 0.45 0.37 0.21 0.25 0.21 0.20 0.58 0.90 3.32 2.95 1.66

Runoff 0.56 0.58 0.54 0.40 0.41 0.37 0.41 0.48 0.61 0.63 0.63 0.60CV

ETP 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.04 0.03 0.03 0.02
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Table 9.1iii  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Manimenso. (All values in mm except 
CV = coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 1.1 6.9 33.3 74.6 119.3 187.6 104.1 8.3 0.9 0.0 0.0 0.1

Runoff 0.2 0.9 1.1 2.1 2.5 2.2 0.5 0.4 0.3 0.2 0.1 0.1Minimum 

ETP 214.6 198.8 193.9 161.5 141.4 120.7 127.7 147.3 149.4 160.9 174.1 187.7

Rainfall 50.1 69.3 160.1 178.7 328.0 347.4 251.3 158.3 22.9 13.3 7.9 8.6

Runoff 1.4 2.6 3.4 6.1 10.4 12.1 10.9 8.9 5.6 3.5 1.9 1.4Maximum 

ETP 238.4 223.0 219.1 188.3 163.1 142.3 164.4 184.4 179.0 186.4 193.4 200.0

Rainfall 10.2 35.6 77.9 118.5 199.2 257.3 167.9 48.2 5.2 1.0 0.7 1.5

Runoff 0.8 1.2 1.8 3.8 6.2 7.2 6.6 3.9 2.2 1.3 0.8 0.7Mean

ETP 227.8 210.7 207.9 174.9 153.2 132.6 139.0 167.1 171.5 175.9 185.1 193.8

Rainfall 10.9 15.3 25.8 25.1 44.4 45.6 35.5 31.2 5.3 2.8 1.7 2.8

Runoff 0.3 0.4 0.5 1.0 1.9 2.5 3.0 2.6 1.6 0.9 0.5 0.4Std Dev. 

ETP 5.9 6.3 6.1 6.6 5.4 5.7 6.9 7.6 5.9 5.5 4.7 3.8

Rainfall 1.07 0.43 0.33 0.21 0.22 0.18 0.21 0.65 1.02 2.88 2.50 1.88

Runoff 0.37 0.31 0.27 0.27 0.31 0.35 0.46 0.65 0.75 0.73 0.64 0.59CV

ETP 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.02

Table 9.1iv  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Tenado. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 0.8 10.1 37.3 52.5 126.1 142.1 74.9 6.6 0.3 0.3 0.0 0.0

Runoff 0.0 0.0 0.0 0.2 0.7 0.1 0.4 0.1 0.0 0.0 0.0 0.0Minimum 

ETP 213.2 215.8 190.8 177.8 147.9 144.1 146.4 167.9 166.2 162.4 176.1 198.7

Rainfall 14.5 49.9 100.3 134.1 230.1 232.5 171.1 59.3 11.4 0.5 0.3 10.0

Runoff 0.3 1.0 1.3 2.6 7.2 7.4 7.9 7.2 6.3 2.7 0.9 0.5Maximum 

ETP 238.0 237.5 206.7 202.9 169.3 158.6 173.3 185.6 195.9 182.1 193.3 211.3

Rainfall 4.7 18.7 62.0 92.6 176.4 189.9 121.3 33.4 2.4 0.3 0.0 1.1

Runoff 0.2 0.2 0.5 1.3 3.1 4.8 5.2 3.9 3.0 1.1 0.5 0.3Mean

ETP 228.3 228.0 197.4 194.1 160.5 149.5 153.7 175.0 183.2 169.9 184.8 205.7

Rainfall 4.9 12.2 18.8 21.2 38.3 26.6 28.2 15.0 3.7 0.1 0.1 3.3

Runoff 0.1 0.3 0.4 0.7 1.8 2.5 2.6 2.0 2.0 0.9 0.3 0.2Std Dev. 

ETP 8.4 7.2 5.5 6.9 7.0 5.0 8.4 7.0 8.6 6.9 6.1 4.8

Rainfall 1.03 0.65 0.30 0.23 0.22 0.14 0.23 0.45 1.55 0.30 3.00 2.96

Runoff 0.67 1.29 0.82 0.55 0.59 0.51 0.50 0.52 0.68 0.80 0.63 0.66CV

ETP 0.04 0.03 0.03 0.04 0.04 0.03 0.05 0.04 0.05 0.04 0.03 0.02
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Table 9.1v  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Boromo. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 0.5 2.9 23.7 44.5 102.5 123.1 60.7 4.6 0.1 0.0 0.0 0.0

Runoff 0.0 0.0 0.1 0.4 0.8 0.3 0.6 0.1 0.0 0.0 0.0 0.0Minimum 

ETP 212.6 208.6 210.8 177.7 158.8 139.0 139.6 159.0 163.6 164.5 171.0 176.9

Rainfall 25.1 55.9 108.7 148.9 234.8 329.9 188.4 96.3 15.5 13.6 1.2 5.2

Runoff 0.9 1.0 1.8 2.2 5.2 6.3 9.1 7.2 4.7 4.2 3.0 1.9Maximum 

ETP 239.3 230.6 231.9 208.0 182.9 165.3 173.0 190.7 188.6 185.3 193.3 195.3

Rainfall 3.6 18.6 53.2 93.3 166.5 211.1 130.9 30.1 1.8 0.9 0.2 0.7

Runoff 0.3 0.3 0.5 1.0 1.8 3.6 4.9 3.7 2.7 1.9 1.0 0.5Mean

ETP 227.4 219.0 222.6 193.5 172.1 151.4 151.9 174.9 177.9 173.1 182.6 187.9

Rainfall 4.8 12.8 16.7 20.9 32.6 47.1 29.8 18.6 3.0 2.5 0.3 1.4

Runoff 0.3 0.2 0.3 0.5 0.9 1.4 2.2 2.0 1.4 1.3 0.9 0.5Std Dev. 

ETP 5.7 5.4 5.8 6.5 6.1 5.7 6.5 6.5 4.9 4.9 5.5 4.4

Rainfall 1.35 0.69 0.31 0.22 0.20 0.22 0.23 0.62 1.64 2.89 1.99 1.99

Runoff 0.81 0.79 0.62 0.46 0.47 0.37 0.45 0.54 0.50 0.71 0.92 0.95CV

ETP 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02

Table 9.1vi  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Debougou. (All values in mm except 
CV = coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 2.6 8.4 40.6 80.2 141.2 177.4 137.2 17.6 2.8 0.2 0.0 0.2

Runoff 0.0 0.0 0.0 0.0 0.3 3.1 3.8 1.9 0.5 0.0 0.0 0.0Minimum 

ETP 216.2 195.8 183.7 154.6 138.3 113.9 123.4 150.6 150.3 164.1 187.2 196.4

Rainfall 59.4 90.4 152.8 173.8 300.2 360.6 237.2 189.4 17.2 24.2 26.8 13.2

Runoff 0.0 0.2 0.9 2.6 4.7 30.6 49.3 34.8 11.0 3.0 0.9 0.2Maximum 

ETP 243.6 219.2 212.0 183.3 161.7 140.0 170.8 182.5 186.4 200.0 207.3 211.0

Rainfall 20.8 53.7 98.2 125.4 199.9 250.6 183.1 64.9 6.7 4.0 2.1 2.6

Runoff 0.0 0.0 0.2 0.8 2.0 9.6 21.2 14.3 3.1 0.7 0.2 0.0Mean

ETP 232.6 209.1 197.3 167.8 149.8 127.8 138.0 172.4 178.0 186.7 199.7 203.3

Rainfall 13.8 20.4 25.7 21.9 38.8 42.5 25.2 42.1 4.1 6.8 6.4 4.0

Runoff 0.0 0.0 0.3 0.7 1.1 7.3 13.6 9.1 2.9 0.7 0.2 0.1Std Dev. 

ETP 7.4 6.4 7.7 8.3 6.6 7.8 10.3 8.6 8.1 8.1 5.1 4.7

Rainfall 0.7 0.4 0.3 0.2 0.2 0.2 0.1 0.7 0.6 1.7 3.0 1.6

Runoff 0.0 4.4 1.1 0.8 0.6 0.8 0.6 0.6 0.9 1.0 1.2 2.4CV

ETP 0.03 0.03 0.04 0.05 0.04 0.06 0.07 0.05 0.05 0.04 0.03 0.02
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Table 9.1vii  Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Lawra. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 1.3 10.1 32.2 81.7 111.0 185.2 108.5 12.8 0.7 0.0 0.0 0.1

Runoff 0.2 0.2 0.2 0.4 0.7 2.8 3.7 1.1 0.3 0.2 0.2 0.2Minimum 

ETP 219.1 202.9 200.6 171.1 153.0 129.2 133.4 159.3 171.8 170.1 175.7 187.0

Rainfall 36.1 56.2 128.4 153.6 226.1 324.5 259.5 130.5 17.5 12.0 3.9 7.1

Runoff 0.9 0.5 0.9 2.4 3.6 19.3 20.6 23.0 12.7 3.7 2.1 1.1Maximum 

ETP 240.0 221.6 224.1 198.1 172.5 151.5 151.7 191.0 184.1 186.1 196.2 198.6

Rainfall 8.9 32.7 74.8 107.5 183.0 245.8 165.6 43.6 5.0 2.0 0.4 1.5

Runoff 0.3 0.3 0.5 0.9 1.8 6.0 12.5 9.3 3.2 1.6 0.9 0.5Mean

ETP 228.7 213.6 213.7 182.4 163.6 140.7 144.2 173.7 178.3 177.9 188.0 192.3

Rainfall 8.0 11.5 21.0 16.6 30.8 35.4 34.4 27.1 4.3 3.5 0.8 1.8

Runoff 0.2 0.1 0.2 0.5 0.8 3.5 4.4 5.5 2.5 0.8 0.5 0.3Std Dev. 

ETP 4.8 4.6 5.5 5.7 4.4 5.3 4.0 5.8 3.1 4.2 4.6 3.3

Rainfall 0.89 0.35 0.28 0.15 0.17 0.14 0.21 0.62 0.87 1.78 2.02 1.17

Runoff 0.52 0.29 0.36 0.52 0.46 0.58 0.36 0.59 0.77 0.48 0.56 0.53CV

ETP 0.02 0.02 0.03 0.03 0.03 0.04 0.03 0.03 0.02 0.02 0.02 0.02

Table 9.1viii Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Dapola. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 1.5 7.6 34.1 68.3 113.2 163.3 91.6 8.1 0.6 0.1 0.0 0.1

Runoff 0.0 0.0 0.0 0.4 0.7 0.8 2.0 0.0 0.0 0.0 0.0 0.0Minimum 

ETP 212.1 202.1 200.1 167.8 149.4 128.9 132.8 154.5 157.5 166.6 175.1 182.1

Rainfall 35.3 56.6 128.1 155.0 227.3 324.6 259.0 133.7 17.4 12.0 6.2 7.5

Runoff 0.9 0.6 1.0 1.9 5.4 20.6 21.4 23.0 13.3 4.0 2.5 1.4Maximum 

ETP 239.2 224.2 223.7 197.6 173.3 154.6 170.6 190.8 186.3 189.7 195.7 198.4

Rainfall 8.4 29.5 71.7 104.9 180.2 232.0 154.1 43.1 4.0 1.4 0.5 1.3

Runoff 0.2 0.2 0.5 1.0 2.2 5.8 11.2 7.0 2.6 1.3 0.6 0.3Mean

ETP 227.3 213.9 213.1 182.2 162.2 141.8 145.2 172.8 177.0 177.1 186.4 191.4

Rainfall 6.8 12.0 19.1 18.3 29.1 37.9 33.5 26.4 3.9 2.8 1.2 1.8

Runoff 0.2 0.2 0.3 0.4 1.0 3.3 5.0 5.4 2.3 1.0 0.6 0.4Std Dev. 

ETP 5.4 5.2 5.5 6.0 5.5 5.5 6.2 6.3 5.1 4.9 5.0 4.0

Rainfall 0.80 0.41 0.27 0.17 0.16 0.16 0.22 0.61 0.97 2.02 2.43 1.44

Runoff 1.03 0.75 0.52 0.44 0.46 0.57 0.44 0.76 0.89 0.76 0.97 1.03CV

ETP 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.02
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Table 9.1ix Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Bui. (All values in mm except CV = 
coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 11.0 29.6 60.8 89.3 119.4 186.8 147.9 27.4 1.5 0.4 0.1 0.9

Runoff 0.0 0.0 0.2 0.2 0.7 2.9 8.4 6.9 2.4 0.9 0.2 0.1Minimum 

ETP 206.8 188.2 188.8 155.8 135.4 115.7 120.6 149.3 163.6 163.0 179.5 181.5

Rainfall 49.7 79.9 134.2 158.2 215.6 276.5 231.6 125.2 44.3 17.3 7.3 18.2

Runoff 0.8 0.7 1.2 5.0 15.0 30.4 54.6 36.1 9.9 3.5 2.0 1.0Maximum 

ETP 228.4 207.6 207.8 183.1 157.4 139.4 139.2 183.1 175.8 181.0 191.7 194.2

Rainfall 24.8 56.6 93.1 125.0 170.2 223.9 180.2 59.9 13.0 5.0 1.5 6.3

Runoff 0.2 0.2 0.5 1.6 4.2 9.7 21.5 18.3 5.5 2.2 0.9 0.4Mean

ETP 218.0 199.9 197.5 166.2 147.6 126.8 132.0 165.2 170.2 173.3 185.8 187.2

Rainfall 11.0 14.5 19.4 16.8 26.4 24.9 22.4 28.1 10.8 5.6 2.1 5.2

Runoff 0.2 0.2 0.3 1.3 3.7 6.8 10.3 7.8 2.5 0.8 0.5 0.3Std Dev. 

ETP 5.3 4.7 5.1 6.5 4.5 5.6 4.9 6.8 3.3 5.1 3.8 3.3

Rainfall 0.44 0.26 0.21 0.13 0.16 0.11 0.12 0.47 0.83 1.12 1.37 0.82

Runoff 1.04 0.90 0.63 0.81 0.90 0.71 0.48 0.43 0.45 0.34 0.57 0.78CV

ETP 0.02 0.02 0.03 0.04 0.03 0.04 0.04 0.04 0.02 0.03 0.02 0.02

Table 9.1x Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Wiasi. (All values in mm except CV = 
coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 8.8 33.3 65.3 76.3 115.0 184.0 128.3 23.3 0.8 0.8 0.0 1.0

Runoff 0.0 0.0 0.0 0.0 0.7 1.7 3.7 0.7 0.0 0.0 0.0 0.0Minimum 

ETP 198.6 184.4 174.0 143.5 137.2 104.3 107.5 142.7 161.0 165.4 168.3 177.1

Rainfall 59.5 90.0 124.5 154.3 259.8 322.0 251.0 100.3 21.8 21.8 10.3 25.0

Runoff 0.2 0.2 0.4 5.9 31.1 36.8 57.7 24.4 1.5 0.7 0.2 0.2Maximum 

ETP 227.0 202.5 199.1 180.6 153.6 139.4 131.8 167.5 172.8 186.8 192.7 191.3

Rainfall 19.9 60.3 93.8 117.0 190.3 246.5 186.4 58.0 5.7 3.9 0.9 5.3

Runoff 0.0 0.0 0.1 1.1 4.6 20.0 29.4 7.9 0.5 0.1 0.0 0.0Mean

ETP 215.8 194.8 187.9 159.4 144.8 121.1 123.4 160.3 167.6 176.6 183.4 185.0

Rainfall 15.3 17.0 13.9 19.1 41.5 38.6 36.2 21.7 6.7 6.3 3.0 8.1

Runoff 0.1 0.1 0.2 1.7 8.5 12.0 15.9 6.9 0.5 0.2 0.1 0.1Std Dev. 

ETP 8.9 6.3 8.3 10.1 6.0 10.4 7.5 7.5 4.1 7.2 6.3 4.6

Rainfall 0.77 0.28 0.15 0.16 0.22 0.16 0.19 0.37 1.18 1.59 3.46 1.52

Runoff 3.46 3.46 1.90 1.48 1.85 0.60 0.54 0.87 1.01 2.16 3.46 3.46CV

ETP 0.04 0.03 0.04 0.06 0.04 0.09 0.06 0.05 0.02 0.04 0.03 0.02
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Table 9.1xi Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Yagaba. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 8.7 31.0 79.0 82.0 91.0 122.7 142.0 13.0 1.7 0.0 0.0 0.7

Runoff 0.0 0.0 0.0 0.0 0.0 0.3 4.6 1.7 0.0 0.0 0.0 0.0Minimum 

ETP 190.9 161.1 154.0 129.1 110.6 92.3 97.7 131.0 151.9 158.5 177.1 173.5

Rainfall 84.3 107.7 197.0 167.3 302.3 351.0 267.3 148.0 58.3 25.3 19.3 55.7

Runoff 0.3 1.7 2.0 4.1 40.3 94.7 136.4 98.7 29.0 5.8 1.4 0.9Maximum 

ETP 215.7 188.3 181.0 165.0 139.2 125.0 124.4 169.6 168.0 180.3 191.4 189.1

Rainfall 35.4 75.7 114.1 129.9 167.9 221.2 203.8 66.2 13.2 4.8 1.3 7.7

Runoff 0.0 0.2 0.4 1.0 5.9 30.4 64.6 19.7 3.1 0.7 0.2 0.1Mean

ETP 204.9 178.5 169.9 142.6 128.6 108.8 113.3 149.9 159.3 170.9 185.1 181.1

Rainfall 20.1 21.2 25.2 19.8 56.7 52.1 28.9 33.9 17.2 8.0 5.0 15.8

Runoff 0.1 0.4 0.7 1.4 10.9 27.7 33.7 24.7 7.2 1.5 0.4 0.3Std Dev. 

ETP 7.2 7.1 7.7 9.0 6.9 9.0 7.5 8.6 4.7 6.8 3.5 4.2

Rainfall 0.57 0.28 0.22 0.15 0.34 0.24 0.14 0.51 1.30 1.67 3.74 2.06

Runoff 3.87 2.31 1.66 1.33 1.85 0.91 0.52 1.25 2.33 2.23 2.25 2.28CV

ETP 0.03 0.04 0.05 0.06 0.05 0.08 0.07 0.06 0.03 0.04 0.02 0.02

Table 9.1xii Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Nasia. (All values in mm except CV = 
coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 10.0 39.0 79.5 100.5 164.0 187.5 197.5 43.0 1.0 1.0 0.0 2.5

Runoff 0.0 0.0 0.0 0.0 0.0 5.7 23.7 11.3 0.8 0.2 0.0 0.0Minimum 

ETP 178.4 170.0 155.0 133.1 101.4 82.9 92.1 136.2 145.7 153.2 163.4 168.3

Rainfall 45.5 86.0 120.0 130.5 242.0 307.0 331.0 93.0 8.0 8.5 3.0 17.5

Runoff 0.0 0.1 0.3 0.2 15.8 35.8 91.0 77.6 8.4 1.4 0.6 0.2Maximum 

ETP 213.0 186.6 182.9 158.6 134.9 117.0 112.5 150.8 156.6 175.9 193.4 189.9

Rainfall 33.3 65.4 101.7 120.4 196.8 245.9 234.0 67.9 3.9 2.7 0.7 6.6

Runoff 0.0 0.0 0.1 0.1 3.2 21.2 65.5 37.3 3.7 0.7 0.2 0.1Mean

ETP 198.8 178.7 168.4 143.9 120.8 102.8 104.0 142.7 151.8 165.7 183.4 181.3

Rainfall 13.4 16.1 14.4 10.9 25.2 38.9 45.3 19.7 2.5 3.1 1.3 5.3

Runoff 0.0 0.0 0.1 0.1 5.6 8.8 27.6 24.0 2.8 0.4 0.2 0.1Std Dev. 

ETP 11.6 6.6 9.6 7.9 11.8 12.4 7.9 5.5 4.4 8.3 9.7 6.8

Rainfall 0.40 0.25 0.14 0.09 0.13 0.16 0.19 0.29 0.64 1.12 1.75 0.81

Runoff 1.33 2.65 1.63 1.13 1.74 0.41 0.42 0.64 0.75 0.58 1.02 1.44CV

ETP 0.06 0.04 0.06 0.05 0.10 0.12 0.08 0.04 0.03 0.05 0.05 0.04
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Table 9.1xiii Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Nabogo. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 11.0 15.0 70.0 58.0 137.0 103.0 138.0 37.0 2.0 2.0 0.0 2.0

Runoff 0.0 0.0 0.0 0.0 0.2 3.0 28.5 5.0 0.2 0.0 0.0 0.0Minimum 

ETP 172.2 171.4 155.1 121.9 110.6 87.4 87.7 125.8 145.1 148.2 161.3 169.7

Rainfall 114.0 130.0 142.0 215.0 215.0 393.0 311.0 173.0 26.0 7.0 14.0 18.0

Runoff 0.1 0.3 1.1 2.5 16.8 73.9 148.6 132.0 14.5 0.3 0.1 0.1Maximum 

ETP 212.8 185.6 177.0 155.2 136.7 121.4 115.6 151.1 159.3 179.1 189.6 190.8

Rainfall 50.8 75.9 114.7 126.1 178.4 235.5 220.3 90.9 7.5 3.0 2.2 6.8

Runoff 0.0 0.0 0.3 0.5 5.3 25.1 92.5 42.1 2.7 0.1 0.0 0.0Mean

ETP 198.9 179.1 165.2 135.6 121.9 102.0 102.6 142.5 152.9 166.1 182.2 182.5

Rainfall 31.5 36.1 23.3 44.3 22.5 69.6 45.8 36.4 7.1 1.8 5.1 5.9

Runoff 0.0 0.1 0.3 0.7 4.9 18.2 39.9 31.8 4.8 0.1 0.0 0.0Std Dev. 

ETP 11.9 4.5 8.2 9.2 8.4 11.1 8.4 7.0 4.6 10.8 7.8 6.2

Rainfall 0.62 0.48 0.20 0.35 0.13 0.30 0.21 0.40 0.94 0.59 2.34 0.86

Runoff 1.63 1.96 1.28 1.33 0.93 0.72 0.43 0.76 1.76 0.51 0.70 0.94CV

ETP 0.06 0.03 0.05 0.07 0.07 0.11 0.08 0.05 0.03 0.07 0.04 0.03

Table 9.1xiv Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Porga. (All values in mm except CV = 
coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 2.9 8.0 52.1 70.0 109.1 142.3 106.4 12.4 0.1 0.0 0.0 0.0

Runoff 0.0 0.0 0.0 0.1 0.1 3.0 5.0 3.8 0.2 0.0 0.0 0.0Minimum 

ETP 200.5 202.7 185.3 145.8 125.1 103.9 112.2 144.7 147.4 155.1 186.0 196.7

Rainfall 22.1 71.1 173.9 165.7 281.1 334.4 297.6 152.0 10.3 10.1 1.9 6.2

Runoff 0.7 0.2 3.1 6.6 10.5 39.3 55.9 43.6 9.6 2.6 0.9 0.8Maximum 

ETP 244.9 232.1 219.5 185.3 155.7 144.0 171.9 191.4 189.1 210.0 222.5 217.1

Rainfall 9.5 33.8 88.4 120.3 188.4 240.6 188.0 44.3 1.8 1.2 0.3 1.0

Runoff 0.0 0.0 0.3 1.0 3.1 13.5 26.9 20.2 3.3 0.7 0.3 0.1Mean

ETP 231.3 217.7 204.6 161.1 142.4 125.0 129.4 168.3 179.4 193.9 212.1 207.2

Rainfall 5.2 16.6 24.5 23.6 33.2 44.8 41.1 24.3 2.5 2.2 0.5 1.3

Runoff 0.1 0.1 0.6 1.3 2.4 8.1 12.3 12.0 2.7 0.6 0.3 0.1Std Dev. 

ETP 8.7 6.9 7.5 7.8 7.2 10.1 9.9 9.2 7.4 9.6 7.2 4.7

Rainfall 0.55 0.49 0.28 0.20 0.18 0.19 0.22 0.55 1.41 1.91 1.87 1.34

Runoff 4.37 3.21 2.33 1.27 0.79 0.60 0.46 0.60 0.82 0.81 0.91 1.52CV

ETP 0.04 0.03 0.04 0.05 0.05 0.08 0.08 0.05 0.04 0.05 0.03 0.02
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Table 9.1xv Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Mango. (All values in mm except CV 
= coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 3.3 15.9 55.9 77.3 100.2 189.8 125.5 19.3 0.2 0.0 0.0 0.0

Runoff 0.0 0.0 0.0 0.2 0.6 7.8 25.1 7.8 0.8 0.1 0.1 0.1Minimum 

ETP 209.0 195.8 181.3 139.1 117.4 97.9 108.2 146.1 165.4 179.0 184.0 193.9

Rainfall 28.3 76.5 185.4 171.8 281.1 328.2 264.3 85.1 16.1 9.6 2.1 5.9

Runoff 0.3 0.1 1.7 11.3 21.3 59.1 90.1 62.5 8.7 1.8 0.7 0.4Maximum 

ETP 240.2 220.5 211.5 179.0 149.9 137.8 129.6 182.8 183.1 199.7 220.7 212.5

Rainfall 12.4 41.2 91.4 125.5 190.1 258.0 199.9 47.3 3.7 1.6 0.4 1.5

Runoff 0.1 0.0 0.3 1.7 5.4 21.4 51.3 33.0 4.4 0.9 0.4 0.2Mean

ETP 227.3 209.4 198.6 154.9 136.7 117.1 122.1 162.7 175.2 190.8 211.0 205.0

Rainfall 6.3 15.4 28.5 24.2 38.0 36.9 37.8 18.0 4.3 2.6 0.6 1.9

Runoff 0.1 0.0 0.4 2.6 4.8 12.6 22.2 16.6 2.6 0.4 0.2 0.1Std Dev. 

ETP 7.0 5.8 6.9 7.6 7.3 10.1 5.4 7.0 4.5 5.8 8.0 4.2

Rainfall 0.51 0.37 0.31 0.19 0.20 0.14 0.19 0.38 1.18 1.63 1.55 1.27

Runoff 1.12 1.30 1.44 1.53 0.88 0.59 0.43 0.50 0.59 0.49 0.44 0.58CV

ETP 0.03 0.03 0.03 0.05 0.05 0.09 0.04 0.04 0.03 0.03 0.04 0.02

Table 9.1xvi Selected monthly statistics of the monthly rainfall, runoff and potential 
evapotranspiration (ETP) series at Koumangou. (All values in mm 
except CV = coefficient of variation, which is dimensionless) 

Statistic Series Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall 7.5 30.5 75.0 80.5 168.0 114.5 158.5 32.0 1.0 0.0 0.0 0.0

Runoff 0.0 0.0 0.0 0.4 7.4 23.0 68.6 18.7 2.2 0.4 0.0 0.0Minimum 

ETP 175.9 159.8 137.8 108.0 74.2 69.1 80.0 115.5 142.2 149.1 162.7 173.2

Rainfall 74.0 92.0 151.5 188.0 291.0 320.5 323.5 152.5 38.5 35.0 3.0 13.5

Runoff 1.7 6.5 6.5 16.5 105.1 141.5 194.1 151.1 39.9 6.5 3.0 2.2Maximum 

ETP 213.8 179.2 168.1 147.2 120.9 111.6 108.6 150.8 158.4 172.6 208.7 196.5

Rainfall 30.9 67.4 110.7 144.0 221.1 258.1 240.1 88.4 8.7 6.0 0.2 2.1

Runoff 0.2 0.9 1.9 5.9 26.5 68.9 134.6 61.6 14.4 3.0 1.1 0.4Mean

ETP 198.8 171.2 156.4 124.2 103.5 91.1 95.2 131.9 150.4 165.2 197.4 189.0

Rainfall 19.8 17.0 20.6 33.6 41.6 49.3 41.9 30.0 11.3 9.1 0.8 3.9

Runoff 0.5 1.7 1.7 5.4 23.9 35.2 44.8 34.8 12.0 2.1 0.8 0.6Std Dev. 

ETP 9.8 6.3 9.0 9.1 12.2 12.3 7.7 7.8 5.4 7.5 10.8 5.7

Rainfall 0.64 0.25 0.19 0.23 0.19 0.19 0.17 0.34 1.29 1.53 3.87 1.87

Runoff 2.67 1.91 0.93 0.92 0.90 0.51 0.33 0.57 0.84 0.68 0.76 1.43CV

ETP 0.05 0.04 0.06 0.07 0.12 0.14 0.08 0.06 0.04 0.05 0.05 0.03
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